
VMM Tuning Tip

VMM Tuning Tip: Protecting Computational Memory
By Barry J. Saad pSeries Advanced Technical Support

This VMM tuning tip is applicable pSeries servers running AIX 5.2 ML4+ or AIX 5.3 ML1+.

The goal of the new tuning approach is to prevent or protect computational memory (i.e. process

memory (data, stack, and heap), kernel memory and shared memory (e.g., Oracle’s System

Global Area (SGA)) from being paged-out to paging space. Under the assumption that once

paged-out, at some point in the future, the data will have to be paged-in from paging space,

which would negatively impact system performance. Protecting computational memory is

particularly important for applications that maintain their own data cache (e.g., DB2 and Oracle).

The objective, protecting computational memory, is achieved by setting the VMM parameters as

follows:

 maxperm%=maxclient%=(A high value)

A high value prevents the lrud1 from running unnecessarily, and if possible the value should
be greater than numclient% (reported by vmstat –v). A typical setting is 90%.

 minperm%=(A low value)

A low value ensures that the setting for lru_file_repage isn’t overridden, and should be
less than numperm % (report by vmstat –v). Typical settings, based on total system
memory, are:

• 32G of memory or less minperm%=5%.

• Greater than 32G and less than 64G of memory minperm%=10%.

• Greater than 64G of memory minperm%=20%.

 strict_maxperm=0 (default)

 strict_maxclient=1 (default)

 lru_file_repage=0
To understand why this combination of tuning parameters works you need to understand how

the lru_file_repage parameter influences the VMM page stealing algorithm.

1 lrud is the kernel process that is responsible for stealing memory when required.

Version 1 – 3/22/2006 1 of 3 © 2006 IBM Corporation

VMM Tuning Tip

Background: The VMM classifies memory into one of two buckets – either
computational or non-computational. Computational memory includes working storage
segments and application text segments2. Non-Computational, also referred to as File
System Cache, includes file system data from JFS, JFS2, NFS or any filesystem type.
The size of the file system cache is tracked by the kernel in a parameter called
numperm, and the size of the client segment usage is tracked by in a kernel parameter
called numclient. Now, the kernel does not track the size of JFS pages in memory and
strictly speaking numclient is not a sub-set of numperm; however, for most purposes
thinking of numclient as a sub-set of numperm will not cause any conceptual issues.

The process starts when the VMM needs memory because the number of free frames drops

below minfree or a defined trigger point is reached (e.g., the number of client pages exceeds

maxclient% and strict_maxclient=1). The lrud will make a determination to steal either

memory type or limit the search to only file cache memory. This determination is made based

on a number of parameters, but the key parameter is lru_file_repage. When

lru_file_repage is set to 1, which is the default, the VMM will use the computational and

non-computational re-page counts, in addition to other parameters, to determine whether to

steal either memory type or just file memory. When the lru_file_repage is set to 0, the

VMM will attempt to steal only file memory provided (1) numperm is greater than minperm and

(2) the VMM is able to steal enough memory to satisfy demand. It’s really that simple, setting

lru_file_repage=0 is a very strong hint to the VMM to steal file memory period.

2 Reference the ‘svmon’ man page for more information about memory segment types.

Version 1 – 3/22/2006 2 of 3 © 2006 IBM Corporation

VMM Tuning Tip

Note: What is a re-page? A page fault is considered to be either a new page fault or
a re-page fault. A re-page fault occurs when a page that is known to have been
referenced recently is referenced again, and is not found in memory because the page
has been replaced. In a sense, a re-page can be viewed as a failure in the page
selection algorithm – in an ideal world you would not have any re-page faults. To
classify a page fault as new or re-page, the VMM maintains a re-page history buffer
and maintains two counters that estimate computational-memory repaging and file-
memory repaging. The re-paging rates are multiplied by 90% each time the page-
replacement algorithm runs, so that they reflect recent re-paging activity more strongly
than historical repaging activity.

Until the VMM reaches the point when memory is required the system will fill memory with either

file memory or computational memory without restriction – assuming with strict maxclient set to

a hard limit the numclient% is less than maxclient%. Using this approach the system will not

expend CPU resources unnecessarily. It is normal and expected behavior for the number of

free frames to hover between the minfree and maxfree values. Remember the VMM is much

like a person – let’s put to off until tomorrow what doesn’t have to be done today.

As a side note: The “legacy” tuning approach, shown below, was in wide spread use prior to the

introduction of the lru_file_repage parameter. While this method achieves the same

objective (i.e., protecting computational memory) it is no longer the preferred tuning method.

 maxperm%=maxclient%=(typically a low percentage – 20 or 30)

 minperm%=5

 strict_maxperm=0 (default)

 strict_maxclient=0

It is possible, although not recommended, to use the “legacy” approach on systems with the

lru_file_repage parameter. In that case you need to ensure that lru_file_repage is set

to the default value of 1. The “new” recommendations are based on VMM developer experience

and represent the best approach to tuning the system when the objective is to protect

computational memory.

Version 1 – 3/22/2006 3 of 3 © 2006 IBM Corporation

	VMM Tuning Tip: Protecting Computational Memory

