
man pages section 1: User
Commands

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0210–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020313@3332

Contents

Preface 17

Introduction 23

Intro(1) 24

User Commands 27

acctcom(1) 28
adb(1) 31
addbib(1) 32
alias(1) 34
allocate(1) 37
amt(1) 39
answerbook2(1) 40
appcert(1) 41
apptrace(1) 48
apropos(1) 53
ar(1) 55
arch(1) 59
as(1) 60
asa(1) 64
at(1) 66
atq(1) 72
atrm(1) 73
audioconvert(1) 74
audioplay(1) 78

3

audiorecord(1) 80

auths(1) 83

awk(1) 85

banner(1) 90

basename(1) 91

basename(1B) 93

bc(1) 94

bdiff(1) 98

bfs(1) 99

biff(1B) 103

break(1) 104

cal(1) 106

calendar(1) 107

cancel(1) 109

cat(1) 111

cc(1B) 113

cd(1) 115

cdrw(1) 118

checknr(1) 124

chgrp(1) 125

chkey(1) 127

chmod(1) 129

chown(1) 135

chown(1B) 137

ckdate(1) 138

ckgid(1) 141

ckint(1) 143

ckitem(1) 145

ckkeywd(1) 148

ckpath(1) 150

ckrange(1) 153

ckstr(1) 156

cksum(1) 159

cktime(1) 161

ckuid(1) 163

ckyorn(1) 165

clear(1) 167

cmp(1) 168

4 man pages section 1: User Commands • May 2002

col(1) 170

comm(1) 172

command(1) 174

compress(1) 177

coproc(1F) 180

cp(1) 184

cpio(1) 188

cpp(1) 196

cputrack(1) 202

crle(1) 206

crontab(1) 216

crypt(1) 220

csh(1) 221

csplit(1) 247

ct(1C) 250

ctags(1) 252

cu(1C) 255

cut(1) 261

date(1) 264

dc(1) 268

deallocate(1) 272

deroff(1) 274

df(1B) 275

dhcpinfo(1) 276

diff(1) 278

diff3(1) 282

diffmk(1) 284

dircmp(1) 285

dis(1) 286

dispgid(1) 288

dispuid(1) 289

dos2unix(1) 290

download(1) 292

dpost(1) 294

du(1) 297

du(1B) 300

dump(1) 302

dumpcs(1) 305

Contents 5

echo(1) 306

echo(1B) 310

echo(1F) 311

ed(1) 312

edit(1) 324

egrep(1) 328

eject(1) 331

elfdump(1) 335

enable(1) 337

env(1) 339

eqn(1) 341

error(1) 346

ex(1) 350

exec(1) 359

exit(1) 361

expand(1) 363

exportfs(1B) 365

expr(1) 366

expr(1B) 369

exstr(1) 372

face(1) 376

factor(1) 377

fastboot(1B) 378

fdformat(1) 379

fgrep(1) 383

file(1) 385

file(1B) 387

filesync(1) 389

find(1) 396

finger(1) 403

fmlcut(1F) 406

fmlexpr(1F) 408

fmlgrep(1F) 410

fmli(1) 412

fmt(1) 415

fmtmsg(1) 416

fnattr(1) 421

fnbind(1) 424

6 man pages section 1: User Commands • May 2002

fnlist(1) 426

fnlookup(1) 428

fnrename(1) 429

fnsearch(1) 430

fnunbind(1) 436

fold(1) 437

from(1B) 439

ftp(1) 440

ftpcount(1) 451

ftpwho(1) 452

gcore(1) 453

gencat(1) 454

geniconvtbl(1) 457

genlayouttbl(1) 460

genmsg(1) 475

getconf(1) 481

getfacl(1) 486

getfrm(1F) 490

getitems(1F) 491

getopt(1) 492

getoptcvt(1) 494

getopts(1) 497

gettext(1) 503

gettxt(1) 505

glob(1) 507

gprof(1) 508

graph(1) 513

grep(1) 515

groups(1) 520

groups(1B) 521

grpck(1B) 522

hash(1) 523

head(1) 525

history(1) 527

hostid(1) 536

hostname(1) 537

iconv(1) 538

indicator(1F) 540

Contents 7

indxbib(1) 541

install(1B) 542

ipcrm(1) 544

ipcs(1) 545

isainfo(1) 549

isalist(1) 551

jobs(1) 552

join(1) 559

kbd(1) 562

kdestroy(1) 565

keylogin(1) 566

keylogout(1) 568

kill(1) 569

kinit(1) 573

klist(1) 578

kpasswd(1) 580

ksh(1) 581

ktutil(1) 630

last(1) 632

lastcomm(1) 634

ld(1) 636

ld(1B) 648

ldap(1) 649

ldapdelete(1) 653

ldaplist(1) 656

ldapmodify(1) 660

ldapmodrdn(1) 664

ldapsearch(1) 667

ldd(1) 672

ld.so.1(1) 677

let(1) 685

lex(1) 686

limit(1) 698

line(1) 702

lint(1B) 703

list_devices(1) 705

listusers(1) 707

llc2_autoconfig(1) 708

8 man pages section 1: User Commands • May 2002

llc2_config(1) 709

llc2_stats(1) 711

ln(1) 719

ln(1B) 722

loadkeys(1) 725

locale(1) 726

localedef(1) 729

logger(1) 733

logger(1B) 735

login(1) 737

logname(1) 744

logout(1) 745

look(1) 746

lookbib(1) 747

lorder(1) 748

lp(1) 749

lpc(1B) 755

lpq(1B) 759

lpr(1B) 761

lprm(1B) 765

lpstat(1) 767

lptest(1B) 771

ls(1) 772

ls(1B) 778

m4(1) 781

mach(1) 786

machid(1) 787

mail(1B) 789

mailcompat(1) 790

mailp(1) 791

mailq(1) 793

mailstats(1) 795

mailx(1) 797

make(1S) 818

man(1) 853

mconnect(1) 859

mcs(1) 860

mdb(1) 862

Contents 9

mesg(1) 903

message(1F) 904

mixerctl(1) 906

mkdir(1) 908

mkmsgs(1) 910

mkstr(1B) 912

more(1) 914

mp(1) 920

mpss.so.1(1) 926

msgfmt(1) 929

mt(1) 935

mv(1) 938

nawk(1) 941

nca(1) 962

ncab2clf(1) 964

ncakmod(1) 966

netscape(1) 967

newform(1) 972

newgrp(1) 975

news(1) 977

newtask(1) 978

nice(1) 980

nis+(1) 982

niscat(1) 997

nischgrp(1) 1000

nischmod(1) 1002

nischown(1) 1005

nischttl(1) 1007

nisdefaults(1) 1009

niserror(1) 1012

nisgrpadm(1) 1013

nisln(1) 1017

nisls(1) 1019

nismatch(1) 1021

nismkdir(1) 1024

nisopaccess(1) 1027

nispasswd(1) 1030

nisrm(1) 1034

10 man pages section 1: User Commands • May 2002

nisrmdir(1) 1036

nistbladm(1) 1038

nistest(1) 1044

nl(1) 1046

nm(1) 1049

nohup(1) 1054

nroff(1) 1058

od(1) 1061

on(1) 1067

optisa(1) 1069

pack(1) 1070

pagesize(1) 1073

pargs(1) 1074

passwd(1) 1076

paste(1) 1082

patch(1) 1085

pathchk(1) 1090

pathconv(1F) 1093

pax(1) 1095

perl(1) 1104

pfexec(1) 1111

pg(1) 1112

pgrep(1) 1117

pkginfo(1) 1121

pkgmk(1) 1123

pkgparam(1) 1126

pkgproto(1) 1128

pkgtrans(1) 1130

plimit(1) 1132

plot(1B) 1134

pmap(1) 1136

postdaisy(1) 1143

postdmd(1) 1145

postio(1) 1147

postmd(1) 1150

postplot(1) 1153

postprint(1) 1155

postreverse(1) 1157

Contents 11

posttek(1) 1159

ppgsz(1) 1161

pr(1) 1164

praliases(1) 1168

prctl(1) 1169

preap(1) 1172

prex(1) 1174

print(1) 1185

printenv(1B) 1186

printf(1) 1187

priocntl(1) 1192

proc(1) 1203

prof(1) 1206

profiles(1) 1210

projects(1) 1212

ps(1) 1213

ps(1B) 1222

pvs(1) 1225

pwd(1) 1228

ranlib(1) 1229

rcp(1) 1230

rdist(1) 1232

read(1) 1237

readfile(1F) 1240

readonly(1) 1241

refer(1) 1242

regcmp(1) 1244

regex(1F) 1246

reinit(1F) 1248

renice(1) 1249

reset(1F) 1252

rlogin(1) 1253

rm(1) 1256

rmformat(1) 1260

roffbib(1) 1268

roles(1) 1270

rpcgen(1) 1272

rpm2cpio(1) 1277

12 man pages section 1: User Commands • May 2002

rsh(1) 1278

run(1F) 1281

runat(1) 1283

rup(1) 1286

rup(1C) 1287

ruptime(1) 1288

rusage(1B) 1289

rusers(1) 1291

rwho(1) 1292

sag(1) 1293

sar(1) 1295

sccs(1) 1300

sccs-admin(1) 1310

sccs-cdc(1) 1314

sccs-comb(1) 1316

sccs-delta(1) 1318

sccs-get(1) 1321

sccs-help(1) 1327

sccs-prs(1) 1328

sccs-prt(1) 1332

sccs-rmdel(1) 1335

sccs-sact(1) 1336

sccs-sccsdiff(1) 1337

sccs-unget(1) 1338

sccs-val(1) 1339

scp(1) 1341

script(1) 1343

sdiff(1) 1344

sed(1) 1346

sed(1B) 1353

set(1) 1359

set(1F) 1364

setcolor(1F) 1366

setfacl(1) 1367

setpgrp(1) 1371

sftp(1) 1372

sh(1) 1375

shell(1F) 1393

Contents 13

shell_builtins(1) 1394

shift(1) 1398

shutdown(1B) 1399

size(1) 1400

sleep(1) 1402

smart2cfg(1) 1403

soelim(1) 1405

solregis(1) 1406

sort(1) 1409

sortbib(1) 1416

sotruss(1) 1418

spell(1) 1420

spline(1) 1423

split(1) 1424

srchtxt(1) 1426

ssh(1) 1429

ssh-add(1) 1439

ssh-agent(1) 1441

ssh-http-proxy-connect(1) 1443

ssh-keygen(1) 1445

ssh-socks5-proxy-connect(1) 1448

strchg(1) 1450

strings(1) 1453

strip(1) 1455

stty(1) 1457

stty(1B) 1465

sum(1) 1472

sum(1B) 1473

suspend(1) 1474

symorder(1) 1475

sysV-make(1) 1476

tabs(1) 1483

tail(1) 1487

talk(1) 1490

tar(1) 1493

tbl(1) 1504

tcopy(1) 1506

tee(1) 1507

14 man pages section 1: User Commands • May 2002

telnet(1) 1508

test(1) 1518

test(1B) 1526

test(1F) 1528

tftp(1) 1530

time(1) 1533

times(1) 1536

timex(1) 1537

tip(1) 1539

tnfdump(1) 1548

tnfxtract(1) 1553

touch(1) 1555

touch(1B) 1558

tplot(1) 1559

tput(1) 1560

tr(1) 1564

tr(1B) 1569

trap(1) 1570

troff(1) 1572

true(1) 1575

truss(1) 1576

tset(1B) 1583

tsort(1) 1588

tty(1) 1590

type(1) 1591

typeset(1) 1592

ucblinks(1B) 1594

ul(1) 1595

umask(1) 1596

uname(1) 1599

unifdef(1) 1602

uniq(1) 1604

units(1) 1606

unix2dos(1) 1608

uptime(1) 1610

users(1B) 1611

uucp(1C) 1612

uuencode(1C) 1616

Contents 15

uuglist(1C) 1618

uustat(1C) 1619

uuto(1C) 1623

uux(1C) 1626

vacation(1) 1630

vc(1) 1633

vgrind(1) 1637

vi(1) 1641

vipw(1B) 1651

volcancel(1) 1652

volcheck(1) 1653

volmissing(1) 1655

volrmmount(1) 1656

vsig(1F) 1658

w(1) 1659

wait(1) 1661

wc(1) 1664

what(1) 1666

whatis(1) 1667

whereis(1B) 1668

which(1) 1670

who(1) 1671

whoami(1B) 1674

whocalls(1) 1675

whois(1) 1676

write(1) 1677

xargs(1) 1680

xgettext(1) 1685

xstr(1) 1687

yacc(1) 1689

yes(1) 1693

ypcat(1) 1694

ypmatch(1) 1695

yppasswd(1) 1696

ypwhich(1) 1697

Index 1699

16 man pages section 1: User Commands • May 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

17

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

18 man pages section 1: User Commands • May 2002

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 19

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

20 man pages section 1: User Commands • May 2002

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 21

22 man pages section 1: User Commands • May 2002

Introduction

23

Intro – introduction to commands and application programs

This section describes, in alphabetical order, commands available with this operating
system.

Pages of special interest are categorized as follows:

1B Commands found only in the SunOS/BSD Compatibility Package.

1C Commands for communicating with other systems.

1F Commands associated with Form and Menu Language Interpreter
(FMLI).

1S Commands specific to the SunOS system.

See these sections of the man pages section 1M: System Administration Commands for
more information.

� Section 1M in this manual for system maintenance commands.

� Section 4 of this manual for information on file formats.

� Section 5 of this manual for descriptions of publicly available files and
miscellaneous information pages.

� Section 6 in this manual for computer demonstrations.

For tutorial information about these commands and procedures, see:

� Solaris Advanced User’s Guide

Unless otherwise noted, commands described in the SYNOPSIS section of a manual
page accept options and other arguments according to the following syntax and
should be interpreted as explained below.

name [-option...] [cmdarg...] where:

[] Surround an option or cmdarg that is not required.

... Indicates multiple occurrences of the option or cmdarg.

name The name of an executable file.

{ } The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

option (Always preceded by a “−”.) noargletter... or, argletter optarg[,...]

noargletter A single letter representing an option without an option-argument.
Note that more than one noargletter option can be grouped after
one “−” (Rule 5, below).

argletter A single letter representing an option requiring an
option-argument.

Intro(1)

NAME

DESCRIPTION

OTHER
SECTIONS

Manual Page
Command Syntax

24 man pages section 1: User Commands • Last Revised 1 Nov 1999

optarg An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter must be
separated by commas, or separated by a tab or space character and
quoted (Rule 8, below).

cmdarg Path name (or other command argument) not beginning with “−”,
or “−” by itself indicating the standard input.

These command syntax rules are not followed by all current commands, but all new
commands will obey them. getopts(1) should be used by all shell procedures to
parse positional parameters and to check for legal options. It supports Rules 3-10
below. The enforcement of the other rules must be done by the command itself.

1. Command names (name above) must be between two and nine characters long.

2. Command names must include only lower-case letters and digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by “−”.

5. Options with no arguments may be grouped after a single “−”.

6. The first option-argument (optarg above) following an option must be preceded by
a tab or space character.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be separated by
commas or separated by tab or space character and quoted (−o xxx,z,yy or − o
"xxx z yy").

9. All options must precede operands (cmdarg above) on the command line.

10. “− −” may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their significance in
ways determined by the command with which they appear.

13. “−” preceded and followed by a space character should only be used to mean
standard input.

See attributes(5) for a discussion of the attributes listed in this section.

getopts(1), wait(1), exit(2), getopt(3C), wait(3UCB), attributes(5)

Upon termination, each command returns two bytes of status, one supplied by the
system and giving the cause for termination, and (in the case of “normal” termination)
one supplied by the program [see wait(3UCB) and exit(2)]. The former byte is 0 for
normal termination; the latter is customarily 0 for successful execution and non-zero
to indicate troubles such as erroneous parameters, or bad or inaccessible data. It is
called variously “exit code”, “exit status”, or “return code”, and is described only
where special conventions are involved.

Intro(1)

Command Syntax
Standard: Rules

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Introduction 25

Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings and therefore
become confused upon encountering a null character (the string terminator) within a
line.

Intro(1)

WARNINGS

26 man pages section 1: User Commands • Last Revised 1 Nov 1999

User Commands

27

acctcom – search and print process accounting files

acctcom [-abfhikmqrtv] [-C sec] [-e time] [-E time] [-g group]
[-H factor] [-I chars] [-l line] [-n pattern] [-o output-file] [-O sec]
[-s time] [-S time] [-u user] [filename…]

The acctcom utility reads filenames, the standard input, or /var/adm/pacct, in the
form described by acct(3HEAD) and writes selected records to standard output. Each
record represents the execution of one process. The output shows the COMMAND NAME,
USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE
(K), and optionally, F (the fork()/exec() flag: 1 for fork() without exec()),
STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS
TRNSFD, and BLOCKS READ (total blocks read and written).

A ‘#’ is prepended to the command name if the command was executed with
super-user privileges. If a process is not associated with a known terminal, a ‘?’ is
printed in the TTYNAME field.

If no filename is specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using ‘&’ in the shell), /var/adm/pacct is read;
otherwise, the standard input is read.

If any filename arguments are given, they are read in their respective order. Each file is
normally read forward, that is, in chronological order by process completion time. The
file /var/adm/pacct is usually the current file to be examined; a busy system may
need several such files of which all but the current file are found in
/var/adm/pacctincr.

The following options are supported:

-a Show some average statistics about the processes selected. The
statistics will be printed after the output records.

-b Read backwards, showing latest commands first. This option has
no effect when standard input is read.

-f Print the fork()/exec() flag and system exit status columns in
the output. The numeric output for this option will be in octal.

-h Instead of mean memory size, show the fraction of total available
CPU time consumed by the process during its execution. This “hog
factor” is computed as (total CPU time)/(elapsed time).

-i Print columns containing the I/O counts in the output.

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-q Do not print any output records, just print the average statistics as
with the -a option.

-r Show CPU factor (user-time/(system-time + user-time)).

acctcom(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

28 man pages section 1: User Commands • Last Revised 11 Jan 1996

-t Show separate system and user CPU times.

-v Exclude column headings from the output.

-C sec Show only processes with total CPU time (system-time +
user-time) exceeding sec seconds.

-e time Select processes existing at or before time.

-E time Select processes ending at or before time. Using the same time for
both -S and -E shows the processes that existed at time.

-g group Show only processes belonging to group. The group may be
designated by either the group ID or group name.

-H factor Show only processes that exceed factor, where factor is the “hog
factor” as explained in option -h above.

-I chars Show only processes transferring more characters than the cutoff
number given by chars.

-l line Show only processes belonging to terminal /dev/term/line.

-n pattern Show only commands matching pattern that may be a regular
expression as in regcmp(3C), except + means one or more
occurrences.

-o output-file Copy selected process records in the input data format to
output-file; suppress printing to standard output.

-O sec Show only processes with CPU system time exceeding sec seconds.

-s time Select processes existing at or after time, given in the format
hr [:min [:sec]].

-S time Select processes starting at or after time.

-u user Show only processes belonging to user. The user may be specified
by a user ID, a login name that is then converted to a user ID, ‘#’
(which designates only those processes executed with superuser
privileges), or ‘?’ (which designates only those processes
associated with unknown user IDs).

/etc/group system group file

/etc/passwd system password file

/var/adm/pacctincr active processes accounting file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu

acctcom(1)

FILES

ATTRIBUTES

User Commands 29

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI enabled

ps(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), fwtmp(1M), runacct(1M), su(1M), acct(2), regcmp(3C),
acct(3HEAD), utmp(4), attributes(5)

System Administration Guide: Basic Administration

acctcom reports only on processes that have terminated; use ps(1) for active
processes.

acctcom(1)

SEE ALSO

NOTES

30 man pages section 1: User Commands • Last Revised 11 Jan 1996

adb – general-purpose debugger

adb [-kw] [-I dir] [-P prompt] [-V mode] [object [core]]

The adb utility is an interactive, general-purpose debugger. It can be used to examine
files and provides a controlled environment for the execution of programs.

The adb utility is now implemented as a link to the mdb(1) utility in Solaris 9. mdb(1)
is a low-level debugging utility that can be used to examine user processes as well as
the live operating system or operating system crash dumps. The new mdb(1) utility
provides complete backwards compatibility with the existing syntax and features of
adb, including support for processing adb macro files. The Solaris Modular Debugger
Guide and mdb(1) man page describes the features of mdb, including its adb
compatibility mode. This mode will be activated by default when the adb link is
executed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmdb (32-bit)

SUNWmdbx (64-bit)

mdb(1), attributes(5)

Solaris Modular Debugger Guide

adb(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

User Commands 31

addbib – create or extend a bibliographic database

addbib [-a] [-p promptfile] database

When addbib starts up, answering y to the initial Instructions? prompt yields
directions. Typing n (or RETURN) skips the directions. addbib then prompts for
various bibliographic fields, reads responses from the terminal, and sends output
records to database. A null response (just RETURN) means to leave out that field. A ‘−’
(minus sign) means to go back to the previous field. A trailing backslash allows a field
to be continued on the next line. The repeating Continue? prompt allows the user
either to resume by typing y (or RETURN), to quit the current session by typing n or
q, or to edit database with any system editor (see vi(1), ex(1), ed(1)).

The following options are supported:

-a Suppresses prompting for an abstract. Asking for an abstract is the
default. Abstracts are ended with a Control−D.

-p promptfile Uses a new prompting skeleton, defined in promptfile. This file
should contain prompt strings, a TAB, and the key-letters to be
written to the database.

The most common key-letters and their meanings are given below. addbib insulates
you from these key-letters, since it gives you prompts in English, but if you edit the
bibliography file later on, you will need to know this information.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced

%F Footnote number or label (supplied by refer)

%G Government order number

%H Header commentary, printed before reference

%I Issuer (publisher)

%J Journal containing article

%K Keywords to use in locating reference

%L Label field used by -k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%O Other commentary, printed at end of reference

%P Page number(s)

addbib(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Bibliography Key
Letters

32 man pages section 1: User Commands • Last Revised 14 Sep 1992

%Q Corporate or Foreign Author (unreversed)

%R Report, paper, or thesis (unpublished)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract — used by roffbib, not by refer

%Y,Z Ignored by refer

EXAMPLE 1 Editing the bibliography file

Except for A, each field should be given just once. Only relevant fields should be
supplied.

%A Mark Twain
%T Life on the Mississippi
%I Penguin Books
%C New York

%D 1978

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

ed(1), ex(1), indxbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1), vi(1),
attributes(5)

addbib(1)

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 33

alias, unalias – create or remove a pseudonym or shorthand for a command or series
of commands

/usr/bin/alias [alias-name [= string…]]

/usr/bin/unalias alias-name…

/usr/bin/unalias -a

alias [name [def]]

unalias pattern

alias [-tx] [name [= value]…]

unalias name…

The alias and unalias utilities create or remove a pseudonym or shorthand term
for a command or series of commands, with different functionality in the C-shell and
Korn shell environments.

The alias utility creates or redefines alias definitions or writes the values of existing
alias definitions to standard output. An alias definition provides a string value that
replaces a command name when it is encountered.

An alias definition affects the current shell execution environment and the execution
environments of the subshells of the current shell. When used as specified by this
document, the alias definition will not affect the parent process of the current shell nor
any utility environment invoked by the shell.

The unalias utility removes the definition for each alias name specified. The aliases
are removed from the current shell execution environment.

alias assigns def to the alias name. def is a list of words that may contain escaped
history-substitution metasyntax. name is not allowed to be alias or unalias. If def is
omitted, the alias name is displayed along with its current definition. If both name and
def are omitted, all aliases are displayed.

Because of implementation restrictions, an alias definition must have been entered on
a previous command line before it can be used.

unalias discards aliases that match (filename substitution) pattern. All aliases may be
removed by ‘unalias *’.

alias with no arguments prints the list of aliases in the form name=value on standard
output. An alias is defined for each name whose value is given. A trailing space in
value causes the next word to be checked for alias substitution. The -t flag is used to
set and list tracked aliases. The value of a tracked alias is the full pathname
corresponding to the given name. The value becomes undefined when the value of
PATH is reset but the aliases remained tracked. Without the -t flag, for each name in

alias(1)

NAME

SYNOPSIS

csh

ksh

DESCRIPTION

/usr/bin/alias

/usr/bin/unalias

csh

ksh

34 man pages section 1: User Commands • Last Revised 28 Sep 2001

the argument list for which no value is given, the name and value of the alias is
printed. The -x flag is used to set or print exported aliases. An exported alias is defined
for scripts invoked by name. The exit status is non-zero if a name is given, but no value,
and no alias has been defined for the name.

The aliases given by the list of names may be removed from the alias list with
unalias.

The following option is supported by unalias:

-a Removes all alias definitions from the current shell execution environment.

The following option is supported by alias:

-t Sets and lists tracked aliases.

The following operands are supported:

alias-name Write the alias definition to standard output.

alias-name The name of an alias to be removed.

alias-name=string Assign the value of string to the alias alias-name.

If no operands are given, all alias definitions will be written to standard output.

The format for displaying aliases (when no operands or only name operands are
specified) is:

"%s=%s\n" name, value

The value string will be written with appropriate quoting so that it is suitable for
reinput to the shell.

EXAMPLE 1 Modifying a command’s output

This example specifies that the output of the ls utility is columnated and more
annotated:

example% alias ls="ls −CF"

EXAMPLE 2 Repeating previous entries in the command history file

This example creates a simple “redo” command to repeat previous entries in the
command history file:

example% alias r=’fc −s’

EXAMPLE 3 Specifying a command’s output options

This example provides that the du utility summarize disk output in units of 1024
bytes:

alias(1)

OPTIONS

ksh

OPERANDS

alias

unalias

OUTPUT

EXAMPLES

User Commands 35

EXAMPLE 3 Specifying a command’s output options (Continued)

example% alias du=du −k

EXAMPLE 4 Dealing with an argument that is itself an alias name

This example sets up the nohup utility so that it can deal with an argument that is
itself an alias name:

example% alias nohup="nohup "

See environ(5) for descriptions of the following environment variables that affect the
execution of alias and unalias: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 One of the alias-name operands specified did not have an alias definition, or
an error occurred.

>0 One of the alias-name operands specified did not represent a valid alias
definition, or an error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), shell_builtins(1), attributes(5), environ(5)

alias(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

alias

unalias

ATTRIBUTES

SEE ALSO

36 man pages section 1: User Commands • Last Revised 28 Sep 2001

allocate – device allocation

allocate [-s] [-U uname] device

allocate [-s] [-U uname] -g dev-type

allocate [-s] [-U uname] -F device

The allocate utility manages the ownership of devices through its allocation
mechanism. It ensures that each device is used by only one qualified user at a time.

The device argument specifies the device to be manipulated. To preserve the integrity
of the device’s owner, the allocate operation is executed on all the device special files
associated with that device.

The argument dev−type is the device type to be operated on and can only be used with
the -g option.

The default allocate operation allocates the device special files associated with device to
the uid of the current process.

If the -F option is specified, the device cleaning program is executed when allocation
is performed. This cleaning program is found in /etc/security/lib. The name of
this program is found in the device_allocate(4) entry for the device in the dev−exec
field.

Only authorized users may allocate a device. The required authorizations are specified
in device_allocate(4).

The following options are supported:

-g dev−type Allocates a non−allocated device with a device−type matching
dev−type.

-s Silent. Suppresses any diagnostic output.

-F device Reallocates the device allocated to another user. This option is
often used with -U to reallocate a specific device to a specific user.
Only a user with the solaris.devices.revoke authorization
is permitted to use this option.

-U uname Uses the user ID uname instead of the user ID of the current
process when performing the allocate operation. Only a user with
the solaris.devices.revoke authorization is permitted to use
this option.

The following exit values are returned:

non—zero An error occurred.

/etc/security/device_allocate

/etc/security/device_maps

allocate(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

User Commands 37

/etc/security/dev/*

/etc/security/lib/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

deallocate(1), list_devices(1), bsmconv(1M), dminfo(1M),
device_allocate(4), device_maps(4), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

allocate(1)

ATTRIBUTES

SEE ALSO

NOTES

38 man pages section 1: User Commands • Last Revised 17 Jan 2001

amt – run abstract machine test

amt [-s]

The amt command is for use in a Common Criteria security certified system. The
command is used to verify that the low level functions necessary to enforce the object
reuse requirements of the Controlled Access Protection Profile are working correctly.
/usr/bin/amt is a shell script that executes tests specific to your system. For a 32–bit
system, the tests run as a 32–bit application. For a 64–bit system, the tests run twice;
once as a 32–bit application and once as a 64–bit application.

amt lists test results with a "pass" or "fail" for each test it performs, unless output is
suppressed with the -s option.

The following option is supported:

s Suppresses output.

The following error values are returned:

0 All tests passed.

>0 Count of the number of tests that failed.

<0 Incorrect command line argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu (32-bit), SUNWcsxu (64-bit)

Interface Stability Evolving

attributes(5)

amt(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 39

answerbook2 – online documentation system

/usr/dt/bin/answerbook2 [-h]

The AnswerBook2 server product is no longer included with Solaris or the Solaris
Documentation CD products. Solaris docmentation is now provided in HTML and
PDF format on the Documentation CD and does not require the AnswerBook2 server
to be viewed.

The answerbook2 utility opens the default web browser and displays an HTML page
that shows a link to locally installed documentation, and, if the AnswerBook2 server
has been defined, a link to AnswerBook2 collections.

To define a default AnswerBook2 server, use the environment variable,
AB2_DEFAULTSERVER.

This functionality is also accessible through the AnswerBook2 option on the CDE front
panel Help menu.

If you need an AnswerBook2 server, you can download the AnswerBook2 server
software from http://www.sun.com.

The following option is supported:

-h Displays a usage statement.

AB2_DEFAULTSERVER Fully-qualified URL that identifies the default
AnswerBook2 server to use. For example:
http://imaserver.eng.sun.com:8888/

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability http://www.sun.com

attributes(5)

Use the online Help system to find out more about the AnswerBook2 product, once
the web browser is opened and the AnswerBook2 library can be viewed.

answerbook2(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

NOTES

40 man pages section 1: User Commands • Last Revised 29 Nov 2001

appcert – examine application-level products for unstable use of Solaris interfaces

appcert [-h] [-n] [-f infile] [-w working_dir] [-B] [-L] [-S] {obj |
dir…}

The appcert utility examines an application’s conformance to the Solaris Application
Binary Interface (ABI). The Solaris ABI defines the runtime library interfaces in Solaris
that are safe and stable for application use. More specifically, appcert identifies any
dependencies on unstable runtime interfaces, as well as certain other risks that could
cause the product to fail to work on a subsequent release of Solaris.

appcert checks for:

� Private symbol usage in Solaris libraries. These are private symbols, that is, functions
or data, that are not intended for developer consumption. They are interfaces that
Solaris libraries use to call one another. These symbols might change their semantic
behavior or even disappear altogether (so-called "demoted" symbols), so it is a
good practice to make sure your application does not depend upon any of them.

� Static linking. In particular, this refers to static linking of archives libc.a,
libsocket.a, and libnsl.a, that is, instead of dynamically linking the
corresponding shared object .so’s. Because the semantics of private symbol calls
from one Solaris library to another can change from one release to another, it is not
a good practice to "hardwire" library code into your binary objects.

� Unbound symbols. These are library symbols (that is, functions or data) that the
dynamic linker could not resolve when appcert was run. This might be an
environment problem (for example, LD_LIBRARY_PATH) or a build problem (for
example, not specifying -llib and/or -z defs with compiling). They are flagged
to point these problems out and in case a more serious problem is indicated.

An entire product can be readily examined by appcert (that is, if the product is a
collection of many programs and supporting shared objects) by referring appcert to
the directories where the product is installed.

To perform its task, appcert constructs a profile of interface dependencies for each
object file within the product (whether an executable object or shared object), to
determine all the Solaris system interfaces that are depended upon. (Notice that
appcert uses the Solaris runtime linker to make this determination.) These
dependency profiles are then compared to a definition of the Solaris ABI to identify
any interfaces that are Private (unsafe and unstable for application-level use).

appcert generates a simple roll-up report that indicates which of the product’s
components, if any, had liabilities and what those liabilities were. The report aids
developers who are examining their product’s release-to-release stability.

Notice that appcert produces complete interface dependency information, both the
Public (safe and stable) Solaris interfaces and the Private (non-ABI) interfaces. This
information can also be examined for each product component, if you want.

IMPORTANT: appcert must run in the same environment in which the application
being checked runs. See NOTES.

appcert(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 41

The following options are supported:

-B If appcert is run in "batch" mode, the output report will contain
one line per binary, beginning with PASS if no problems were
detected for the binary, FAIL if any problems were found, or INC
if the binary could not be completely checked. Do not interpret
these labels too literally. For example, PASS just means that none
of the appcert warnings were triggered. These strings are flush
left and so can be selected via grep ^FAIL ..., and so forth.

-f infile Specifies the file infile that contains a list of files (one per line) to
check. This list is appended to the list determined from the
command line operands (see OPERANDS below).

-h Prints out the usage information.

-L appcert examines your product for the presence of shared
objects. If it finds some, it appends the directories they reside in to
LD_LIBRARY_PATH. Use this flag to prevent appcert from doing
this.

-n When searching directories for binaries to check, this option does
not follow symbolic links. See find(1).

-S Appends Solaris library directories (that is,
/usr/openwin/lib:/usr/dt/lib) to LD_LIBRARY_PATH.

-w working_dir Identifies the directory in which to run the library components and
create temporary files (default is /tmp).

The following operands are supported:

{ obj | dir} ... A complete list of objects and/or directories that contain the
objects constituting the product to be checked. appcert
recursively searches directories looking for object files; non-object
files are ignored.

The following exit values are returned:

0 appcert ran successfully and found no potential binary stability
problems.

1 appcert failed to run successfully.

2 Some of the objects checked have potential binary stability problems.

3 No binary objects were located that could be checked.

If the object file to be examined depends on libraries, those dependencies must be
recorded in it (by using the compiler’s -l switch).

If the object file to be examined depends on other shared libraries, those libraries must
be accessible via LD_LIBRARY_PATH or RPATH when appcert is run.

appcert(1)

OPTIONS

OPERANDS

EXIT STATUS

LIMITATIONS

42 man pages section 1: User Commands • Last Revised 15 Dec 2000

To check 64-bit applications, the machine must be running the 64-bit Solaris kernel.
See isalist(1). Also, the checks for static linking are currently not done on 64-bit
applications.

appcert cannot examine:

� Object files that are completely or partially statically linked.

Completely statically linked objects are reported as unstable.

� Executable files that do not have execute permission set.

These are skipped. Shared objects without execute permission are not skipped.

� Object files that are setuid root.

Due to limitations in ldd(1), these are skipped. Copy and/or change the
permissions to check them.

� Non-ELF file executables such as shell scripts.

� Non-C language interfaces to Solaris; for example, C++ and Java.

The code itself need not be in C as long as the calls to Solaris libaries are in C.

appcert records its findings in the following files in the working directory
(/tmp/appcert.????? by default):

Index A mapping between checked binaries and the subdirectory in the
working directory in which the output specific to that binary can
be found.

Report A copy of the rollup report that was displayed on stdout when
appcert was run.

Skipped A list of binaries that appcert was asked to check but had to skip,
along with a brief reason why each was skipped.

In addition, there is per-object information in the subdirectories under
appcert.?????/objects/, in the following files:

check.demoted_symbols A list of symbols suspected to be demoted Solaris
symbols.

check.dynamic.private A list of private Solaris symbols to which the object
makes direct bindings.

check.dynamic.public A list of public Solaris symbols to which the object
makes direct bindings.

appcert(1)

OUTPUT FILES

User Commands 43

check.dynamic.unbound A list of symbols not bound by the dynamic linker
when ldd -r was run. For convenience, ldd output
lines containing "file not found" are also
included.

summary.dynamic A pretty-printed summary of dynamic bindings for
the objects examined, including tables of Public and
Private symbols used from each Solaris library.

Other files are temporary files used internally by appcert.

Private symbols are functions or data variables in a Solaris library that are not
intended for developer or external use. These symbols are interfaces that the Solaris
libraries use to call and communicate with one another. They are marked in pvs(1)
output with the symbol version name "SUNWprivate".

Private symbols can change their semantic behavior or even disappear altogether
("demoted" or "deprecated" symbols), so your application should not depend upon
any of them.

Demoted symbols are functions or data variables in a Solaris library that were once
private to that library and have been removed (or possibly scoped local to the library)
in a later Solaris release. If your application directly calls one of these demoted
symbols, it will fail to run (relocation error) on the release in which the symbol was
removed and releases thereafter.

In some rare cases, a demoted symbol will return in a later release, but nevertheless
there are still some releases on which the application will not run.

Sun Microsystems Inc. performed most of the library scoping in the transition from
Solaris 2.5.1 to 2.6. This action was done to increase binary stability. By making these
completely internal interfaces invisible (that is, they cannot be dynamically linked
against), a developer cannot accidentally or intentionally call these interfaces. For
more information, see the Linker and Libraries Guide, in particular the chapter on
versioning. This document may be found online at http://docs.sun.com.

Unbound symbols are library symbols (that is, functions or data) referenced by the
application that the dynamic linker could not resolve when appcert was run. Note:
appcert does not actually run your application, so some aspect of the environment
that affects dynamic linking might not be set properly.

Unbound symbols do not necessarily indicate a potential binary stability problem.
They only mean that when appcert was run, the runtime dynamic linker could not
resolve these symbols.

Unbound symbols might be due to LD_LIBRARY_PATH not being correctly set. Make
sure it is set, so that all of your binary objects can find all of the libraries they depend
on (either your product’s own libraries, Solaris libraries, or those of a third party).
Then re-run appcert.

appcert(1)

Private Symbol
Use

Demoted Symbols

Unbound Symbols

44 man pages section 1: User Commands • Last Revised 15 Dec 2000

You might find it useful to write a shell script that sets up the environment correctly
and then runs appcert on the binaries you want to check.

Another common cause for unbound symbols is when a shared object under test has
not recorded its dynamic dependencies, that is, at build time the -l switch was not
supplied to the compiler and ld(1). So the shared object requires that the executables
that link against it have the correct dependencies recorded.

Notice that such a shared object can either be linked in the standard way (that is,
specified at an executable’s build time) or dynamically opened (for example, an
executable calls dlopen(3DL) on the shared object sometimes when running). Either
case can give rise to unbound symbols when appcert is run. The former can usually
be resolved by setting LD_LIBRARY_PATH appropriately before running appcert.
The latter (dlopen) is usually difficult to resolve. Under some circumstances, you
might be able to set LD_PRELOAD appropriately to preload the needed libraries, but
this procedure does not always work.

How do you know if the environment has been set up correctly so that there will be no
unbound symbols? It must be set up so that running ldd -r on the binary yields no
“file not found” or “symbol not found” errors. See ld.so.1(1) and ldd(1) for
more information on dynamic linking.

In any event, appcert flags unbound symbols as a warning in case they might
indicate a more serious problem. Unbound symbols can be an indicator of
dependencies on demoted symbols (symbols that have been removed from a library or
scoped local to it). Dependencies on demoted symbols will lead to serious binary
stability problems.

However, setting up the environment properly should remove most unbound
symbols. In general, it is good practice to record library dependencies at build time
whenever possible because it helps make the binary object better defined and
self-contained. Also recommended is using the -z defs flag when building shared
objects, to force the resolution of all symbols during compilation. See ld(1) for more
information.

appcert runs /bin/ldd -r on each binary object to be tested. It sets the
environment variable LD_DEBUG=“files,bindings”. (See ldd(1) and ld.so.1(1)
for more information). If that command fails for some reason, appcert will have no
dynamic symbol binding information and will find “no bindings”.

appcert can fail if any of the following is true:

� The binary object does not have read permission.

� The binary object is SUID or SGID and the user does not have sufficient privileges.

� The binary object is an executable without the execute permission bit set.

� The binary object is a 64-bit application, but the kernel running on the current
machine supports only 32-bit applications.

� The binary object is completely statically linked.

appcert(1)

No Bindings
Found

User Commands 45

� The binary object has no library dependency information recorded.

Other cases exist as well (for example, out of memory). In general, this flag means that
appcert could not completely examine the object due to permissions or environment.
Try to modify the permissions or environment so that the dynamic bindings can be
recorded.

An obsolete library is one whose use is deprecated and that might, in some future
release, be removed from Solaris altogether. appcert flags these because applications
depending on them might not run in future releases of Solaris. All interfaces,
including Private ones, in an obsolete library are frozen and will not change.

Direct use of the symbols sys_errlist or sys_nerr presents a risk in which
reference might be made past the end of the sys_errlist array. These symbols are
deprecated in 32-bit versions of Solaris and are absent altogether in 64-bit versions.
Use strerror(3C) instead.

The “strong” symbols (for example, _socket) associated with “weak” symbols (for
example, socket) are reserved as private (their behavior could change in the future).
Your application should only directly reference the weak symbol (usually the strong
symbols begin with “_”).

Note: Under certain build environments, the strong/private symbol dependency gets
recorded into your binary instead of the weak/public one, even though the source
code doesn’t appear to reference the private symbol. Nevertheless, steps should be
taken to trace down why this is occurring and fix the dependency.

appcert needs to run in the same environment in which the application being
checked runs. Otherwise it might not be able to resolve references correctly to
interfaces in the Solaris libraries. Take the following steps:

1. Make sure that LD_LIBRARY_PATH and any other aspects of the environment are
set to whatever settings are used when the application is run. Also make sure that
it contains the directories containing any non-Solaris shared objects that are part of
the product, so that they can be found when referenced.

2. Make sure that all the binaries to be checked:

� Are dynamically linked ELF objects

� Have execute permission set on executables (this is not necessary for shared
objects)

� Are not SUID root (otherwise you will have to be root to check them; make
non-SUID copies and check those if necessary).

You might find it useful to write a shell script that sets up the environment correctly
and then runs appcert.

Some potential problems that can be encountered are:

� appcert reports unbound symbols that appear to be part of Solaris libraries.

appcert(1)

Obsolete Library

Use of
sys_errlist/sys_nerr

Use of Strong vs.
Weak Symbols

NOTES

46 man pages section 1: User Commands • Last Revised 15 Dec 2000

This is probably caused when the application uses dlopen(3DL) to access a shared
object that does not have its Solaris dependencies recorded. appcert cannot
resolve symbol use in such cases, since the dynamic linker is never invoked on the
shared object, and there is no other dependency information that could be used to
resolve the Solaris symbol bindings. This can also occur with non-Solaris symbols.

To avoid this problem, make sure that when a shared object is built, its
dependencies on Solaris libraries are explicitly recorded by using the -llib option
on the compile line (see cc(1) and ld(1)).

� appcert reports that the application uses a Solaris private symbol that is not
referenced in the application’s source code.

This problem is most likely due to static linking of a Solaris library that references
that symbol. Since appcert uses the dynamic linker to resolve symbols, statically
linked libraries appear to appcert to be part of the application code (which, in a
sense, they are). This can also sometimes happen as a result of macro substitution
in a Solaris header file.

To avoid this problem, whenever possible do not statically link Solaris library
archives into your application.

� appcert does not recognize a library as part of Solaris.

Some obsolete Solaris libraries are so old that they were obsoleted before their
symbols could be versioned. Consequently, appcert cannot recognize them as
being part of Solaris.

The use of the terms “public” and “private” as equivalent to “stable” and
“unstable” is unfortunately somewhat confusing. In particular, experimental or
evolving interfaces are public in the sense that they are documented and their use is
encouraged. But they are unstable, because an application built with them might not
run on subsequent releases. Thus, they are classified as private for appcert’s
purposes until they are no longer evolving. Conversely, obsolete interfaces will
eventually disappear, and so are unstable, even though they have been public and
stable in the past and are still treated as public by appcert. Fortunately, these two
situations are rare.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWapct

Interface stability Stable

cc(1), find(1), isalist(1), ld(1), ldd(1), ld.so.1(1), pvs(1), dlopen(3DL),
strerror(3C), intro(4), attributes(5)

Linker and Libraries Guide

appcert(1)

BUGS

ATTRIBUTES

SEE ALSO

User Commands 47

apptrace – trace application function calls to Solaris shared libraries

apptrace [-f] [-F [!] tracefromlist] [-T [!] tracetolist] [-o outputfile] [
[-tv] [!] call ,…] command [command arguments]

The apptrace utility runs the executable program specified by command and traces
all calls that the program command makes to the Solaris shared libraries. Tracing means
that for each call the program makes, apptrace reports the name of the library
interface called, the values of the arguments passed, and the return value.

By default, apptrace traces calls directly from the executable object to any of the
shared objects it depends on. Indirect calls (that is, calls made between shared objects
that the executable depends upon) are not reported by default.

Calls from or to additional shared objects may be traced using the -F or -T options
(see below).

The default reporting format is a single line per call, with no formatted printing of
arguments passed by reference or of data structures.

Formatted printing providing additional argument details is obtained using the -v
option (see below).

By default, every interface provided by a shared object is traced if called. However, the
set of interfaces to be traced can be restricted, using the -t and/or -v options.

Since it is generally possible to trace calls between any of the dynamic objects linked at
runtime (the executable object and any of the shared objects depended upon), the
report of each traced call gives the name of the object from which the call was made.

apptrace traces all of the procedure calls that occur between dynamic objects via the
procedure linkage table, so only those procedure calls which are bound via the table
will be traced. See the Linker and Libraries Guide.

The following options are supported:

-f Follows all children created by fork(2). This option
will also cause the process id to be printed at the
beginning of each line.

-F [!]tracefromlist Traces calls from a comma-separated list of shared
objects. Only calls from these shared objects will be
traced. The default is to trace calls from the main
executable only. Only the basename of the shared object
is required. For example, libc will match /usr/lib/libc.so.1.
Additionally, shell style wildcard characters are
supported as described in fnmatch(5). A list preceded
by a ‘‘!’’ defines a list of objects from which calls should
not be traced. If the tracing of calls from command is
required, then command must be a member of
tracefromlist.

apptrace(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

48 man pages section 1: User Commands • Last Revised 12 Jul 2001

-o outputfile apptrace output will be directed to the outputfile. By
default, apptrace output is placed on the stderr
stream of the process being traced.

-t [!]call, . . . Traces or excludes function calls. Those calls specified
in the comma-separated list call are traced. If the list
begins with a !, the specified function calls are excluded
from the trace output. The default is -t *. The use of
shell style wildcards is allowed.

-T [!]tracetolist Traces calls to a comma-separated list of shared objects.
The default is to trace calls to all shared objects. As
above, the basename is all that is required and
wildcarding is allowed. A list preceded by a ‘‘!’’
denotes a list of objects to which calls should not be
traced.

-v [!]call, . . . Provides verbose, formatted output of the arguments
and return values of the function calls specified (as
above in the -t option). Unlike truss(1), calls named
by the -v option do not have to be named by the -t
option. For example, apptrace -v open is equivalent
to truss -t open -v open.

EXAMPLE 1 Tracing the date command

% apptrace date
date → libc.so.1:atexit(func = 0xff3ba1c8) = 0x0
date → libc.so.1:atexit(func = 0x117e4) = 0x0
date → libc.so.1:setlocale(category = 0x6, locale = "") = "C"
date → libc.so.1:textdomain(domainname =

"SUNW_OST_OSCMD") = "SUNW_OST_OSCMD"
date → libc.so.1:getopt(argc = 0x1, argv = 0xffbeed5c,

optstring = "a:u") = 0xffffffff errno = No error
date → libc.so.1:time(tloc = 0x21ecc) = 0x371397c3
date → libc.so.1:nl_langinfo(item = 0x3a) = "%a %b %e %T %Z %Y"
date → libc.so.1:localtime(clock = 0x21ecc) = 0xff03c928
date → libc_psr.so.1:memcpy(0xffbeeccc, 0xff03c928, 0x24)
date → libc.so.1:strftime(s = "Tue Apr 13 15:15:15 ",

maxsize = 0x400, format = "%a %b %e %T %Z %Y",
timeptr = 0xffbeeccc) = 0x1c

date → libc.so.1:puts(Tue Apr 13 15:15:15 EDT 1999
s = "Tue Apr 13 15:15:15 ") = 0x1d

date → libc.so.1:exit(status = 0)

EXAMPLE 2 Tracing a specific set of interfaces with verbosity set

% apptrace -v ’*gid*’ id -a
id → libc.so.1:getgid() = 0xa

return = (gid_t) 10 (0xa)
id → libc.so.1:getegid() = 0xa

return = (gid_t) 10 (0xa)
id → libc.so.1:getgrgid(gid = 0xa) = 0x2238c

apptrace(1)

EXAMPLES

User Commands 49

EXAMPLE 2 Tracing a specific set of interfaces with verbosity set (Continued)

gid = (gid_t) 10 (0xa)
return = (struct group *) 0x2238c (struct group) {

gr_name: (char *) 0x223a0 "staff"
gr_passwd: (char *) 0x223a6 ""
gr_gid: (gid_t) 10 (0xa)
gr_mem: (char **) 0x2239c

}

id → libc.so.1:getgrgid(gid = 0xa) = 0x2238c
gid = (gid_t) 10 (0xa)
return = (struct group *) 0x2238c (struct group) {

gr_name: (char *) 0x223a0 "staff"
gr_passwd: (char *) 0x223a6 ""
gr_gid: (gid_t) 10 (0xa)
gr_mem: (char **) 0x2239c

}

id → libc.so.1:getgrgid(gid = 0x3) = 0x2238c
gid = (gid_t) 3 (0x3)
return = (struct group *) 0x2238c (struct group) {

gr_name: (char *) 0x223b4 "sys"
gr_passwd: (char *) 0x223b8 ""
gr_gid: (gid_t) 3 (0x3)
gr_mem: (char **) 0x2239c

}

id → libc.so.1:getgrgid(gid = 0x29) = 0x2238c
gid = (gid_t) 41 (0x29)
return = (struct group *) 0x2238c (struct group) {

gr_name: (char *) 0x223a4 "opcom"
gr_passwd: (char *) 0x223aa ""
gr_gid: (gid_t) 41 (0x29)
gr_mem: (char **) 0x2239c

}

id → libc.so.1:getgrgid(gid = 0xe) = 0x2238c
gid = (gid_t) 14 (0xe)
return = (struct group *) 0x2238c (struct group) {

gr_name: (char *) 0x223a0 "sysadmin"
gr_passwd: (char *) 0x223a9 ""
gr_gid: (gid_t) 14 (0xe)
gr_mem: (char **) 0x2239c

}

id → libc.so.1:getgrgid(gid = 0xd3) = 0x2238c
gid = (gid_t) 211 (0xd3)
return = (struct group *) 0x2238c (struct group) {

gr_name: (char *) 0x223a8 "test"
gr_passwd: (char *) 0x223ad ""
gr_gid: (gid_t) 211 (0xd3)
gr_mem: (char **) 0x2239c

}

uid=44013(georgn) gid=10(staff) groups=10(staff),3(sys),

apptrace(1)

50 man pages section 1: User Commands • Last Revised 12 Jul 2001

EXAMPLE 2 Tracing a specific set of interfaces with verbosity set (Continued)

41(opcom),14(sysadmin),211(test)

Basic runtime support for apptrace is provided by the link auditing feature of the
Solaris runtime linker (ld.so.1(1)) and the apptrace command’s use of this facility
relies on an auditing object (apptrace.so.1) kept in /usr/lib/abi.

In order to perform formatted printing of arguments when tracing calls (as selected by
the -v option), apptrace needs to know the number and data types of the arguments
supplied to the called interface. Special runtime support shared objects are provided
which apptrace relies upon to perform formatted printing. A runtime support object
is provided for each Solaris shared library, which contains an "interceptor" function for
each interface within the shared library. These supporting shared objects are kept in
/usr/lib/abi. apptrace has a simple algorithm to map from the name of a library
interface to the name of an interceptor function in the library’s supporting
verbose-tracing shared object. If an interceptor is not found in the library’s supporting
tracing shared object, apptrace cannot determine either the number or data types of
the arguments for that interface. In this case, apptrace uses a default output format
for the call-tracing report (hex-formatted printing of the first three arguments).

In general, apptrace cannot trace calls to functions accepting variable argument lists.
There has been some clever coding in several specific cases to work around this
limitation, most notably in the printf and scanf families.

Functions that attempt to probe the stack or otherwise extract information about the
caller cannot be traced. Some examples are [gs]etcontext(), [sig]longjmp(),
[sig]setjmp(), and vfork().

Functions such as exit(2) that do not return may also produce strange output. Also,
functions that call other traced functions before returning will produce slightly
garbled output.

For security reasons, only root can apptrace setuid/setgid programs.

Tracing functions whose usage requires the inclusion of varargs.h, such as
vwprintw(3XCURSES) and vwscanw(3XCURSES), will not provide formatted
printing of arguments.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcstl (32–bit)

SUNWcstlx (64–bit)

apptrace(1)

FILES

LIMITATIONS

ATTRIBUTES

User Commands 51

ld.so.1(1), truss(1), vwprintw(3XCURSES), vwscanw(3XCURSES),
attributes(5), fnmatch(5)

Linker and Libraries Guide

apptrace(1)

SEE ALSO

52 man pages section 1: User Commands • Last Revised 12 Jul 2001

apropos – locate commands by keyword lookup

apropos keyword…

The apropos utility displays the man page name, section number, and a short
description for each man page whose NAME line contains keyword. This information is
contained in the /usr/share/man/windex database created by catman(1M). If
catman(1M) was not run, or was run with the -n option, apropos fails. Each word is
considered separately and the case of letters is ignored. Words which are part of other
words are considered; for example, when looking for ‘compile’, apropos finds all
instances of ‘compiler’ also.

apropos is actually just the -k option to the man(1) command.

EXAMPLE 1 To find a man page whose NAME line contains a keyword

Try

example% apropos password

and

example% apropos editor

If the line starts ‘filename(section) . . .’ you can run

man -s section filename
to display the man page for filename.

EXAMPLE 2 To find the man page for the subroutine printf()

Try

example% apropos format

and then

example% man -s 3s printf

to get the manual page on the subroutine printf().

/usr/share/man/windex table of contents and keyword database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

CSI Enabled

man(1), whatis(1), catman(1M), attributes(5)

apropos(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

User Commands 53

/usr/share/man/windex: No such file or directory
This database does not exist. catman(1M) must be run to create it.

apropos(1)

DIAGNOSTICS

54 man pages section 1: User Commands • Last Revised 20 Dec 1996

ar – maintain portable archive or library

/usr/ccs/bin/ar -d [-Vv] archive file…

/usr/ccs/bin/ar -m [-abiVv] [posname] archive file…

/usr/ccs/bin/ar -p [-sVv] archive [file…]

/usr/ccs/bin/ar -q [-cVv] archive file…

/usr/ccs/bin/ar -r [-abciuVv] [posname] archive file…

/usr/ccs/bin/ar -t [-sVv] archive [file…]

/usr/ccs/bin/ar -x [-CsTVv] archive [file…]

/usr/xpg4/bin/ar -d [-Vv] archive file…

/usr/xpg4/bin/ar -m [-abiVv] [posname] archive file…

/usr/xpg4/bin/ar -p [-sVv] archive [file…]

/usr/xpg4/bin/ar -q [-cVv] archive file…

/usr/xpg4/bin/ar -r [-abciuVv] [posname] archive file…

/usr/xpg4/bin/ar -t [-sVv] archive [file…]

/usr/xpg4/bin/ar -x [-CsTVv] archive [file…]

The ar utility maintains groups of files combined into a single archive file. Its main
use is to create and update library files. However, it can be used for any similar
purpose. The magic string and the file headers used by ar consist of printable ASCII
characters. If an archive is composed of printable files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across all
machines. The portable archive format and structure are described in detail in
ar(3HEAD). The archive symbol table (described in ar(3HEAD)) is used by the link
editor ld(1) to effect multiple passes over libraries of object files in an efficient manner.
An archive symbol table is only created and maintained by ar when there is at least
one object file in the archive. The archive symbol table is in a specially named file that
is always the first file in the archive. This file is never mentioned or accessible to the
user. Whenever the ar command is used to create or update the contents of such an
archive, the symbol table is rebuilt. The -s option described below will force the
symbol table to be rebuilt.

The following options are supported:

-a Positions new files in archive after the file named by the posname operand.

-b Positions new files in archive before the file named by the posname operand.

-c Suppresses the diagnostic message that is written to standard error by
default when archive is created.

ar(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 55

-C Prevents extracted files from replacing like-named files in the file system.
This option is useful when -T is also used to prevent truncated file names
from replacing files with the same prefix.

-d Deletes one or more files from archive.

-i Positions new files in archive before the file named by the posname operand
(equivalent to -b).

-m Moves files. If -a, -b, or -i with the posname operand are specified, moves
files to the new position; otherwise, moves files to the end of archive.

-p Prints the contents of files in archive to standard output. If no files are
specified, the contents of all files in archive will be written in the order of
the archive.

-q Quickly appends files to the end of archive. Positioning options -a, -b, and
-i are invalid. The command does not check whether the added files are
already in archive. This option is useful to avoid quadratic behavior when
creating a large archive piece-by-piece.

-r Replaces or adds files in archive. If archive does not exist, a new archive file
will be created and a diagnostic message will be written to standard error
(unless the -c option is specified). If no files are specified and the archive
exists, the results are undefined. Files that replace existing files will not
change the order of the archive. If the -u option is used with the -r option,
then only those files with dates of modification later than the archive files
are replaced. If the -a, -b, or -i option is used, then the posname argument
must be present and specifies that new files are to be placed after (-a) or
before (-b or -i) posname; otherwise the new files are placed at the end.

-s Forces the regeneration of the archive symbol table even if ar is not
invoked with a option which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

-t Prints a table of contents of archive. The files specified by the file operands
will be included in the written list. If no file operands are specified, all files
in archive will be included in the order of the archive.

-T Allows file name truncation of extracted files whose archive names are
longer than the file system can support. By default, extracting a file with a
name that is too long is an error; a diagnostic message will be written and
the file will not be extracted.

-u Updates older files. When used with the -r option, files within archive will
be replaced only if the corresponding file has a modification time that is at
least as new as the modification time of the file within archive.

-V Prints its version number on standard error.

-v Gives verbose output. When used with the option characters -d, -r, or -x,
writes a detailed file-by-file description of the archive creation and the

ar(1)

/usr/bin/ar

56 man pages section 1: User Commands • Last Revised 18 Mar 1997

constituent files, and maintenance activity. When used with -p, writes the
name of the file to the standard output before writing the file itself to the
standard output. When used with -t, includes a long listing of information
about the files within the archive. When used with -x, prints the filename
preceding each extraction. When writing to an archive, a message is written
to the standard error.

-v Same as /usr/bin/ar version, except when writing to an archive, no
message is written to the standard error.

-x Extracts the files named by the file operands from archive. The contents of
archive will not be changed. If no file operands are given, all files in archive
will be extracted. If the file name of a file extracted from archive is longer
than that supported in the directory to which it is being extracted, the
results are undefined. The modification time of each file extracted will be
set to the time file is extracted from archive.

The following operands are supported:

archive A path name of the archive file.

file A path name. Only the last component will be used when
comparing against the names of files in the archive. If two or more
file operands have the same last path name component (
basename(1)), the results are unspecified. The implementation’s
archive format will not truncate valid file names of files added to
or replaced in the archive.

posname The name of a file in the archive file, used for relative positioning;
see options -m and -r.

See environ(5) for descriptions of the following environment variables that affect the
execution of ar: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

ar(1)

/usr/xpg4/bin/ar

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/ar

/usr/xpg4/bin/ar

User Commands 57

basename(1), cc(1B), cpio(1), ld(1), lorder(1), strip(1), tar(1), ar(3HEAD),
a.out(4), attributes(5), environ(5), XPG4(5)

If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

By convention, archives are suffixed with the characters .a.

ar(1)

SEE ALSO

NOTES

58 man pages section 1: User Commands • Last Revised 18 Mar 1997

arch – display the architecture of the current host

arch [-k | archname]

arch displays the application architecture of the current host system. Due to extensive
historical use of this command without any options, all SunOS 5.x SPARC based
systems will return "sun4" as their application architecture. Use of this command is
discouraged; see NOTES section below.

Systems can be broadly classified by their architectures, which define what executables
will run on which machines. A distinction can be made between kernel architecture
and application architecture (or, commonly, just “architecture”). Machines that run
different kernels due to underlying hardware differences may be able to run the same
application programs.

-k Display the kernel architecture, such as sun4m, sun4c, and so forth. This
defines which specific SunOS kernel will run on the machine, and has
implications only for programs that depend on the kernel explicitly (for
example, ps(1)).

The following operand is supported:

archname Use archname to determine whether the application binaries for
this application architecture can run on the current host system.
The archname must be a valid application architecture, such as
sun4, i86pc, and so forth.

If application binaries for archname can run on the current host
system, TRUE (0) is returned; otherwise, FALSE (1) is returned.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

mach(1), ps(1), uname(1), attributes(5)

This command is provided for compatibility with previous releases and its use is
discouraged. Instead, the uname command is recommended. See uname(1) for usage
information.

arch(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 59

as – assembler

as [-b] [-K PIC] [-L] [-m] [-n] [-o outfile] [-P] [-Dname] [-Dname=def]
[-Ipath] [-Uname…] [-q] [-Qy | n] [-s] [-S [a | b | c | l | A | B
| C | L]] [-T] [-V] [-xarch=v7 | -xarch=v8 | -xarch=v8a |
-xarch=v8plus | -xarch=v8plusa | -xarch=v9 | -xarch=v9a]
[-xF] filename…

as [-b] [-K PIC] [-L] [-m] [-n] [-o outfile] [-P] [-Dname] [-Dname=def]
[-Ipath] [-Uname…] [-Qy | n] [-s] [-S [a | b | c | l | A | B | C |
L]] [-T] [-V] filename…

The as command creates object files from assembly language source files.

The following flags are common to both SPARC and IA. They may be specified in any
order:

-b Generates extra symbol table information for the Sun
SourceBrowser.

-K PIC Generates position-independent code.

-L Saves all symbols, including temporary labels that are
normally discarded to save space, in the ELF symbol
table.

-m Runs the m4(1) macro processor on the input to the
assembler.

-n Suppresses all the warnings while assembling.

-o outfile Puts the output of the assembly in outfile. By default,
the output file name is formed by removing the .s
suffix, if there is one, from the input file name and
appending a .o suffix.

-P Runs cpp(1), the C preprocessor, on the files being
assembled. The preprocessor is run separately on each
input file, not on their concatenation. The preprocessor
output is passed to the assembler.

-Dname
-Dname=def When the -P option is in effect, these options are

passed to the cpp(1) preprocessor without
interpretation by the as command; otherwise, they are
ignored.

-Ipath When the -P option is in effect, this option is passed to
the cpp(1) preprocessor without interpretation by the
as command; otherwise, it is ignored.

as(1)

NAME

Sparc

IA

DESCRIPTION

Common Options

60 man pages section 1: User Commands • Last Revised 12 Jan 2001

-Uname When the -P option is in effect, this option is passed to
the cpp(1) preprocessor without interpretation by the
as command; otherwise, it is ignored.

-Qy | n If y is specified, this option produces the "assembler
version" information in the comment section of the
output object file. If n is specified, the information is
suppressed.

-s Places all stabs in the .stabs section. By default, stabs
are placed in stabs.excl sections, which are stripped
out by the static linker, ld(1), during final execution.
When the -s option is used, stabs remain in the final
executable because .stab sections are not stripped by
the static linker.

-S[a|b|c|l|A|B|C|L] Produces a disassembly of the emitted code to the
standard output. Adding each of the following
characters to the -S option produces:

a disassembling with address

b disassembling with “.bof”

c disassembling with comments

l disassembling with line numbers

Capital letters turn the switch off for the corresponding
option.

-T This is a migration option for 4.x assembly files to be
assembled on 5.x systems. With this option, the symbol
names in 4.x assembly files will be interpreted as 5.x
symbol names.

-V Writes the version number of the assembler being run
on the standard error output.

-xF Generates additional information for performance
analysis of the executable using Sun WorkShop
analyzer. If the input file does not contain any stabs
(debugging directives), then the assembler will
generate some default stabs which are needed by the
Sun WorkShop analyzer. Also see the dbx manual page
available with Sun Workshop.

-q Performs a quick assembly. When the -q option is
used, many error checks are not performed. Note: This
option disables many error checks. Use of this option to
assemble handwritten assembly language is not
recommended.

as(1)

Options for
SPARC only

User Commands 61

-xarch=v7 This option instructs the assembler to accept
instructions defined in the SPARC version 7 (V7)
architecture. The resulting object code is in ELF format.

-xarch=v8 This option instructs the assembler to accept
instructions defined in the SPARC-V8 architecture, less
the quad-precision floating-point instructions. The
resulting object code is in ELF format.

-xarch=v8a This option instructs the assembler to accept
instructions defined in the SPARC-V8 architecture, less
the quad-precision floating-point instructions and less
the fsmuld instruction. The resulting object code is in
ELF format. This is the default choice of the
-xarch=options.

-xarch=v8plus This option instructs the assembler to accept
instructions defined in the SPARC-V9 architecture, less
the quad-precision floating-point instructions. The
resulting object code is in ELF format. It will not
execute on a Solaris V8 system (a machine with a V8
processor). It will execute on a Solaris V8+ system. This
combination is a SPARC 64–bit processor and a 32–bit
OS.

-xarch=v8plusa This option instructs the assembler to accept
instructions defined in the SPARC-V9 architecture, less
the quad-precision floating-point instructions, plus the
instructions in the Visual Instruction Set (VIS). The
resulting object code is in V8+ ELF format. It will not
execute on a Solaris V8 system (a machine with a V8
processor). It will execute on a Solaris V8+ system

-xarch=v9 This option limits the instruction set to the SPARC-V9
architecture. The resulting .o object files are in 64-bit
ELF format and can only be linked with other object
files in the same format. The resulting executable can
only be run on a 64-bit SPARC processor running 64-bit
Solaris with the 64–bit kernel.

-xarch=v9a This option limits the instruction set to the SPARC-V9
architecture, adding the Visual Instruction Set (VIS)
and extensions specific to UltraSPARC processors. The
resulting .o object files are in 64-bit ELF format and can
only be linked with other object files in the same
format. The resulting executable can only be run on a
64-bit SPARC processor running 64-bit Solaris with the
64–bit kernel.

The following operand is supported:

as(1)

OPERANDS

62 man pages section 1: User Commands • Last Revised 12 Jan 2001

filename Assembly language source file

TMPDIR The as command normally creates temporary files in
the directory /tmp. Another directory may be specified
by setting the environment variable TMPDIR to the
chosen directory. (If TMPDIR is not a valid directory,
then as will use /tmp).

By default, as creates its temporary files in /tmp.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

cc(1B), cpp(1),ld(1), m4(1), nm(1), strip(1), tmpnam(3C), a.out(4), attributes(5)

dbx manual page available with Sun Workshop

If the -m option, which invokes the m4(1) macro processor, is used, keywords for m4
cannot be used as symbols (variables, functions, labels) in the input file, since m4
cannot determine which keywords are assembler symbols and which keywords are
real m4 macros.

Whenever possible, access the assembler through a compilation system interface
program such as cc(1B).

All undefined symbols are treated as global.

as(1)

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 63

asa – convert FORTRAN carriage-control output to printable form

asa [-f] [file…]

The asa utility will write its input files to standard output, mapping carriage-control
characters from the text files to line-printer control sequences.

The first character of every line will be removed from the input, and the following
actions will be performed.

If the character removed is:

SPACE The rest of the line will be output without change.

0 It is replaced by a newline control sequence followed by the rest of the
input line.

1 It is replaced by a newpage control sequence followed by the rest of the
input line.

+ It is replaced by a control sequence that causes printing to return to the first
column of the previous line, where the rest of the input line is printed.

For any other character in the first column of an input line, asa skips the character
and prints the rest of the line unchanged.

If asa is called without providing a filename, the standard input is used.

The following option is supported:

-f Start each file on a new page.

The following operand is supported:

file A pathname of a text file used for input. If no file operands are specified,
or ‘ − ’ is specified, then the standard input will be used.

EXAMPLE 1 Examples of the asa command.

The command

a.out | asa | lp

converts output from a.out to conform with conventional printers and directs it
through a pipe to the printer.

The command

asa output

shows the contents of file output on a terminal as it would appear on a printer.

The following program is used in the next two examples:

asa(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

64 man pages section 1: User Commands • Last Revised 18 Apr 1995

EXAMPLE 1 Examples of the asa command. (Continued)

write(*,’(" Blank")’)
write(*,’("0Zero ")’)
write(*,’("+ Plus ")’)
write(*,’("1One ")’)
end

Example 1. With actual files:

a.out > MyOutputFile
asa < MyOutputFile | lp

Example 2. With only pipes:

a.out | asa | lp

Both of the above examples produce two pages of output:

Page 1:

Blank

ZeroPlus

Page 2:

One

See environ(5) for descriptions of the following environment variables that affect the
execution of asa: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

lp(1), attributes(5), environ(5)

asa(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 65

at, batch – execute commands at a later time

at [-c | -k | -s] [-m] [-f file] [-p project] [-q queuename] -t time

at [-c | -k | -s] [-m] [-f file] [-p project] [-q queuename] timespec…

at -l [-p project] [-q queuename] [at_job_id. ..]

at -r at_job_id. ..

batch [-p project]

The at utility reads commands from standard input and groups them together as an
at-job, to be executed at a later time.

The at-job will be executed in a separate invocation of the shell, running in a separate
process group with no controlling terminal, except that the environment variables,
current working directory, file creation mask (see umask(1)), and system resource
limits (for sh and ksh only, see ulimit(1)) in effect when the at utility is executed
will be retained and used when the at-job is executed.

When the at-job is submitted, the at_job_id and scheduled time are written to standard
error. The at_job_id is an identifier that will be a string consisting solely of
alphanumeric characters and the period character. The at_job_id is assigned by the
system when the job is scheduled such that it uniquely identifies a particular job.

User notification and the processing of the job’s standard output and standard error
are described under the -m option.

Users are permitted to use at and batch (see below) if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only a user with the solaris.jobs.user
authorization is allowed to submit a job. If only at.deny exists and is empty, global
usage is permitted. The at.allow and at.deny files consist of one user name per
line.

cron and at jobs will be not be executed if the user’s account is locked. Only accounts
which are not locked as defined in shadow(4) will have their job or process executed.

The batch utility reads commands to be executed at a later time. It is the equivalent
of the command:

at −q b −m now

where queue b is a special at queue, specifically for batch jobs. Batch jobs will be
submitted to the batch queue for immediate execution.

The following options are supported. If the -c, -k, or -s options are not specified, the
SHELL environment variable by default determines which shell to use.

-c C shell. csh(1) is used to execute the at-job.

-k Korn shell. ksh(1) is used to execute the at-job.

at(1)

NAME

SYNOPSIS

at

batch

OPTIONS

66 man pages section 1: User Commands • Last Revised 11 Jan 2002

-s Bourne shell. sh(1) is used to execute the at-job.

-f file Specifies the path of a file to be used as the source of the at-job,
instead of standard input.

-l (The letter ell.) Reports all jobs scheduled for the invoking user if
no at_job_id operands are specified. If at_job_ids are specified,
reports only information for these jobs.

-m Sends mail to the invoking user after the at-job has run,
announcing its completion. Standard output and standard error
produced by the at-job will be mailed to the user as well, unless
redirected elsewhere. Mail will be sent even if the job produces no
output.

If -m is not used, the job’s standard output and standard error will
be provided to the user by means of mail, unless they are
redirected elsewhere; if there is no such output to provide, the user
is not notified of the job’s completion.

-p project Specifies under which project the at or batch job will be run.
When used with the -l option, limits the search to that particular
project. Values for project will be interpreted first as a project name,
and then as a possible project ID, if entirely numeric. By default,
the user’s current project is used.

-q queuename Specifies in which queue to schedule a job for submission. When
used with the -l option, limits the search to that particular queue.
Values for queuename are limited to the lower case letters a through
z. By default, at-jobs will be scheduled in queue a. In contrast,
queue b is reserved for batch jobs. Since queue c is reserved for
cron jobs, it can not be used with the -q option.

-r at_job_id Removes the jobs with the specified at_job_id operands that were
previously scheduled by the at utility.

-t time Submits the job to be run at the time specified by the time
option-argument, which must have the format as specified by the
touch(1) utility.

The following operands are supported:

at_job_id The name reported by a previous invocation of the at utility at the
time the job was scheduled.

timespec Submit the job to be run at the date and time specified. All of the
timespec operands are interpreted as if they were separated by
space characters and concatenated. The date and time are
interpreted as being in the timezone of the user (as determined by
the TZ variable), unless a timezone name appears as part of time
below.

at(1)

OPERANDS

User Commands 67

In the "C" locale, the following describes the three parts of the time
specification string. All of the values from the LC_TIME categories
in the "C" locale are recognized in a case-insensitive manner.

time The time can be specified as one, two or four
digits. One- and two-digit numbers are taken
to be hours, four-digit numbers to be hours
and minutes. The time can alternatively be
specified as two numbers separated by a colon,
meaning hour:minute. An AM/PM indication
(one of the values from the am_pm keywords in
the LC_TIME locale category) can follow the
time; otherwise, a 24-hour clock time is
understood. A timezone name of GMT, UCT, or
ZULU (case insensitive) can follow to specify
that the time is in Coordinated Universal Time.
Other timezones can be specified using the TZ
environment variable. The time field can also
be one of the following tokens in the "C" locale:

midnight Indicates the time 12:00 am (00:00).

noon Indicates the time 12:00 pm.

now Indicate the current day and time.
Invoking at now will submit an
at-job for potentially immediate
execution (that is, subject only to
unspecified scheduling delays).

date An optional date can be specified as either a
month name (one of the values from the mon
or abmon keywords in the LC_TIME locale
category) followed by a day number (and
possibly year number preceded by a comma)
or a day of the week (one of the values from
the day or abday keywords in the LC_TIME
locale category). Two special days are
recognized in the "C" locale:

today Indicates the current day.

tomorrow Indicates the day following the
current day.

If no date is given, today is assumed if the
given time is greater than the current time, and
tomorrow is assumed if it is less. If the given
month is less than the current month (and no
year is given), next year is assumed.

at(1)

68 man pages section 1: User Commands • Last Revised 11 Jan 2002

increment The optional increment is a number preceded
by a plus sign (+) and suffixed by one of the
following: minutes, hours, days, weeks,
months, or years. (The singular forms will be
also accepted.) The keyword next is
equivalent to an increment number of + 1. For
example, the following are equivalent
commands:

at 2pm + 1 week

at 2pm next week

The format of the at command line shown here is guaranteed only for the "C" locale.
Other locales are not supported for midnight, noon, now, mon, abmon, day, abday,
today, tomorrow, minutes, hours, days, weeks, months, years, and next.

Since the commands run in a separate shell invocation, running in a separate process
group with no controlling terminal, open file descriptors, traps and priority inherited
from the invoking environment are lost.

EXAMPLE 1 Typical sequence at a terminal

This sequence can be used at a terminal:

$ at −m 0730 tomorrow
sort < file >outfile
<EOT>

EXAMPLE 2 Redirecting output

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

$ at now + 1 hour <<!
diff file1 file2 2>&1 >outfile | mailx mygroup

EXAMPLE 3 Self-rescheduling a job

To have a job reschedule itself, at can be invoked from within the at-job. For example,
this "daily-processing" script named my.daily will run every day (although
crontab is a more appropriate vehicle for such work):

my.daily runs every day
at now tomorrow < my.daily
daily-processing

at(1)

USAGE

at

User Commands 69

EXAMPLE 3 Self-rescheduling a job (Continued)

EXAMPLE 4 Various time and operand presentations

The spacing of the three portions of the "C" locale timespec is quite flexible as long as
there are no ambiguities. Examples of various times and operand presentations
include:

at 0815am Jan 24
at 8 :15amjan24
at now "+ 1day"
at 5 pm FRIday
at ’17

utc+
30minutes’

EXAMPLE 5 Typical sequence at a terminal

This sequence can be used at a terminal:

$ batch
sort <file >outfile
<EOT>

EXAMPLE 6 Redirecting output

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

$ batch <<!
diff file1 file2 2>&1 >outfile | mailx mygroup
!

See environ(5) for descriptions of the following environment variables that affect the
execution of at and batch: LC_CTYPE, LC_MESSAGES, NLSPATH, and LC_TIME.

SHELL Determine a name of a command interpreter to be used to invoke
the at-job. If the variable is unset or NULL, sh will be used. If it is
set to a value other than sh, the implementation will use that shell;
a warning diagnostic will be printed telling which shell will be
used.

TZ Determine the timezone. The job will be submitted for execution at
the time specified by timespec or -t time relative to the timezone
specified by the TZ variable. If timespec specifies a timezone, it will
override TZ. If timespec does not specify a timezone and TZ is unset
or NULL, an unspecified default timezone will be used.

DATEMSK If the environment variable DATEMSK is set, at will use its value as
the full path name of a template file containing format strings. The
strings consist of format specifiers and text characters that are used
to provide a richer set of allowable date formats in different

at(1)

batch

ENVIRONMENT
VARIABLES

70 man pages section 1: User Commands • Last Revised 11 Jan 2002

languages by appropriate settings of the environment variable
LANG or LC_TIME. The list of allowable format specifiers is located
in the getdate(3C) manual page. The formats described in the
OPERANDS section for the time and date arguments, the special
names noon, midnight, now, next, today, tomorrow, and the
increment argument are not recognized when DATEMSK is set.

The following exit values are returned:

0 The at utility successfully submitted, removed or listed a job or jobs.

>0 An error occurred, and the job will not be scheduled.

/usr/lib/cron/at.allow names of users, one per line, who are
authorized access to the at and batch
utilities

/usr/lib/cron/at.deny names of users, one per line, who are
denied access to the at and batch utilities

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Not enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

auths(1), crontab(1), csh(1), date(1), ksh(1), sh(1), touch(1), ulimit(1),
umask(1), cron(1M), getdate(3C), auth_attr(4), shadow(4), attributes(5),
environ(5)

Regardless of queue used, cron(1M) has a limit of 100 jobs in execution at any time.

There can be delays in cron at job execution. In some cases, these delays can
compound to the point that cron job processing appears to be hung. All jobs will be
executed eventually. When the delays are excessive, the only workaround is to kill and
restart cron.

at(1)

EXIT STATUS

FILES

ATTRIBUTES

at

batch

SEE ALSO

NOTES

User Commands 71

atq – display the jobs queued to run at specified times

atq [-c] [-n] [username…]

The atq utility displays the at jobs queued up for the current user. at(1) is a utility
that allows users to execute commands at a later date. If invoked by a user with the
solaris.jobs.admin authorization, atq will display all jobs in the queue.

If no options are given, the jobs are displayed in chronological order of execution.

When an authorized user invokes atq without specifying username, the entire queue is
displayed; when a username is specified, only those jobs belonging to the named user
are displayed.

The following options are supported:

-c Displays the queued jobs in the order they were created (that is, the time
that the at command was given).

-n Displays only the total number of jobs currently in the queue.

/var/spool/cron/atjobs spool area for at jobs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

at(1), atrm(1), auths(1), cron(1M), auth_attr(4), attributes(5)

atq(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

72 man pages section 1: User Commands • Last Revised 13 Aug 1999

atrm – remove jobs spooled by at or batch

atrm [-afi] [[job #] [user…]]

The atrm utility removes delayed-execution jobs that were created with the at(1)
command, but have not yet executed. The list of these jobs and associated job numbers
can be displayed by using atq(1).

atrm removes each job-number you specify, and/or all jobs belonging to the user you
specify, provided that you own the indicated jobs.

You can only remove jobs belonging to other users if you have
solaris.jobs.admin privileges.

The following options are supported:

-a All. Removes all unexecuted jobs that were created by the current user. If
invoked by the privileged user, the entire queue will be flushed.

-f Force. All information regarding the removal of the specified jobs is
suppressed.

-i Interactive. atrm asks if a job should be removed. If you respond with a y,
the job will be removed.

/var/spool/cron/atjobs spool area for at jobs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

at(1), atq(1), auths(1), cron(1M), auth_attr(4), attributes(5)

atrm(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

User Commands 73

audioconvert – convert audio file formats

audioconvert [-pF] [-f outfmt] [-o outfile] [[-i infmt] [file…]] …

audioconvert converts audio data between a set of supported audio encodings and
file formats. It can be used to compress and decompress audio data, to add audio file
headers to raw audio data files, and to convert between standard data encodings, such
as -law and linear PCM.

If no filenames are present, audioconvert reads the data from the standard input
stream and writes an audio file to the standard output. Otherwise, input files are
processed in order, concatenated, and written to the output file.

Input files are expected to contain audio file headers that identify the audio data
format. If the audio data does not contain a recognizable header, the format must be
specified with the -i option, using the rate, encoding, and channels keywords to
identify the input data format.

The output file format is derived by updating the format of the first input file with the
format options in the -f specification. If -p is not specified, all subsequent input files
are converted to this resulting format and concatenated together. The output file will
contain an audio file header, unless format=raw is specified in the output format
options.

Input files may be converted in place by using the -p option. When -p is in effect, the
format of each input file is modified according to the -f option to determine the
output format. The existing files are then overwritten with the converted data.

The file(1) command decodes and prints the audio data format of Sun audio files.

The following options are supported:

-p In Place: The input files are individually converted to the format
specified by the -f option and rewritten. If a target file is a
symbolic link, the underlying file will be rewritten. The -o option
may not be specified with -p.

-F Force: This option forces audioconvert to ignore any file header
for input files whose format is specified by the -i option. If -F is
not specified, audioconvert ignores the -i option for input files
that contain valid audio file headers.

-f outfmt Output Format: This option is used to specify the file format and
data encoding of the output file. Defaults for unspecified fields are
derived from the input file format. Valid keywords and values are
listed in the next section.

-o outfile Output File: All input files are concatenated, converted to the
output format, and written to the named output file. If -o and -p
are not specified, the concatenated output is written to the
standard output. The -p option may not be specified with -o.

audioconvert(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

74 man pages section 1: User Commands • Last Revised 16 Feb 2001

-i infmt Input Format: This option is used to specify the data encoding of
raw input files. Ordinarily, the input data format is derived from
the audio file header. This option is required when converting
audio data that is not preceded by a valid audio file header. If -i
is specified for an input file that contains an audio file header, the
input format string will be ignored, unless -F is present. The
format specification syntax is the same as the -f output file
format.

Multiple input formats may be specified. An input format
describes all input files following that specification, until a new
input format is specified.

file File Specification: The named audio files are concatenated,
converted to the output format, and written out. If no file name is
present, or if the special file name ‘−’ is specified, audio data is
read from the standard input.

-? Help: Prints a command line usage message.

The syntax for the input and output format specification is:

keyword=value[,keyword=value . . .]

with no intervening whitespace. Unambiguous values may be used without the
preceding keyword=.

rate The audio sampling rate is specified in samples per second. If a
number is followed by the letter k, it is multiplied by 1000 (for
example, 44.1k = 44100). Standard of the commonly used sample
rates are: 8k, 16k, 32k, 44.1k, and 48k.

channels The number of interleaved channels is specified as an integer. The
words mono and stereo may also be used to specify one and two
channel data, respectively.

encoding This option specifies the digital audio data representation.
Encodings determine precision implicitly (ulaw implies 8-bit
precision) or explicitly as part of the name (for example,
linear16). Valid encoding values are:

ulaw CCITT G.711 -law encoding. This is an 8-bit
format primarily used for telephone quality
speech.

alaw CCITT G.711 A-law encoding. This is an 8-bit
format primarily used for telephone quality
speech in Europe.

linear8,
linear16,

audioconvert(1)

Format
Specification

User Commands 75

linear32 Linear Pulse Code Modulation (PCM)
encoding. The name identifies the number of
bits of precision. linear16 is typically used
for high quality audio data.

pcm Same as linear16.

g721 CCITT G.721 compression format. This
encoding uses Adaptive Delta Pulse Code
Modulation (ADPCM) with 4-bit precision. It is
primarily used for compressing -law voice data
(achieving a 2:1 compression ratio).

g723 CCITT G.723 compression format. This
encoding uses Adaptive Delta Pulse Code
Modulation (ADPCM) with 3-bit precision. It is
primarily used for compressing -law voice data
(achieving an 8:3 compression ratio). The audio
quality is similar to G.721, but may result in
lower quality when used for non-speech data.

The following encoding values are also accepted as shorthand to
set the sample rate, channels, and encoding:

voice Equivalent to
encoding=ulaw,rate=8k,channels=mono.

cd Equivalent to
encoding=linear16,rate=44.1k,channels=stereo.

dat Equivalent to
encoding=linear16,rate=48k,channels=stereo.

format This option specifies the audio file format. Valid formats are:

sun Sun compatible file format (the default).

raw Use this format when reading or writing raw audio
data (with no audio header), or in conjunction with an
offset to import a foreign audio file format.

offset (-i only) Specifies a byte offset to locate the start of the audio data.
This option may be used to import audio data that contains an
unrecognized file header.

See largefile(5) for the description of the behavior of audioconvert when
encountering files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Recording and compressing voice data before storing it

Record voice data and compress it before storing it to a file:

example% audiorecord | audioconvert -f g721 > mydata.au

audioconvert(1)

USAGE

EXAMPLES

76 man pages section 1: User Commands • Last Revised 16 Feb 2001

EXAMPLE 2 Concatenating two audio files

Concatenate two Sun format audio files, regardless of their data format, and output an
8-bit ulaw, 16 kHz, mono file:

example% audioconvert -f ulaw,rate=16k,mono -o outfile.au infile1 infile2

EXAMPLE 3 Converting a directory to Sun format

Convert a directory containing raw voice data files, in place, to Sun format (adds a file
header to each file):

example% audioconvert -p -i voice -f sun *.au

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, IA

Availability SUNWauda

Interface Stability Evolving

audioplay(1), audiorecord(1), file(1), attributes(5), largefile(5)

The algorithm used for converting multi-channel data to mono is implemented by
simply summing the channels together. If the input data is perfectly in phase (as
would be the case if a mono file is converted to stereo and back to mono), the resulting
data may contain some distortion.

audioconvert(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 77

audioplay – play audio files

audioplay [-iV] [-v vol] [-b bal] [-p speaker | headphone | line]
[-d dev] [file…]

The audioplay utility copies the named audio files (or the standard input if no
filenames are present) to the audio device. If no input file is specified and standard
input is a tty, the port, volume, and balance settings specified on the command line
will be applied and the program will exit.

The input files must contain a valid audio file header. The encoding information in
this header is matched against the capabilities of the audio device and, if the data
formats are incompatible, an error message is printed and the file is skipped.
Compressed ADPCM (G.721) monaural audio data is automatically uncompressed
before playing.

Minor deviations in sampling frequency (that is, less than 1%) are ordinarily ignored.
This allows, for instance, data sampled at 8012 Hz to be played on an audio device
that only supports 8000 Hz. If the -V option is present, such deviations are flagged
with warning messages.

The following options are supported:

-i
Immediate: If the audio device is unavailable (that is, another process currently has
write access), audioplay ordinarily waits until it can obtain access to the device.
When the -i option is present, audioplay prints an error message and exits
immediately if the device is busy.

-V
Verbose: Prints messages on the standard error when waiting for access to the audio
device or when sample rate deviations are detected.

-v vol
Volume: The output volume is set to the specified value before playing begins, and
is reset to its previous level when audioplay exits. The vol argument is an integer
value between 0 and 100, inclusive. If this argument is not specified, the output
volume remains at the level most recently set by any process.

-b bal
Balance: The output balance is set to the specified value before playing begins, and
is reset to its previous level when audioplay exits. The bal argument is an integer
value between -100 and 100, inclusive. A value of -100 indicates left balance, 0
middle, and 100 right. If this argument is not specified, the output balance remains
at the level most recently set by any process.

-p speaker | headphone | line
Output Port: Selects the built-in speaker (the default), headphone jack, or line
out as the destination of the audio output signal. If this argument is not specified,
the output port will remain unchanged. Please note: Not all audio adapters support
all of the output ports. If the named port does not exist, an appropriate substitute
will be used.

audioplay(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

78 man pages section 1: User Commands • Last Revised 16 Feb 2001

-d dev
Device: The dev argument specifies an alternate audio device to which output
should be directed. If the -d option is not specified, the AUDIODEV environment
variable is consulted (see below). Otherwise, /dev/audio is used as the default
audio device.

−\?
Help: Prints a command line usage message.

file File Specification: Audio files named on the command line are played
sequentially. If no filenames are present, the standard input stream (if it is
not a tty) is played (it, too, must contain an audio file header). The special
filename ‘−’ may be used to read the standard input stream instead of a file.
If a relative path name is supplied, the AUDIOPATH environment variable is
consulted (see below).

See largefile(5) for the description of the behavior of audioplay when
encountering files greater than or equal to 2 Gbyte (231 bytes).

AUDIODEV The full path name of the audio device to write to, if no -d
argument is supplied. If the AUDIODEV variable is not set,
/dev/audio is used.

AUDIOPATH A colon-separated list of directories in which to search for audio
files whose names are given by relative pathnames. The current
directory (".") may be specified explicitly in the search path. If the
AUDIOPATH variable is not set, only the current directory will be
searched.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, IA

Availability SUNWauda

Interface Stability Evolving

audioconvert(1), audiorecord(1), mixerctl(1), attributes(5), largefile(5),
usb_ac(7D), audio(7I), mixer(7I)

audioplay currently supports a limited set of audio format conversions. If the audio
file is not in a format supported by the audio device, it must first be converted. For
example, to convert to voice format on the fly, use the command:

example% audioconvert -f voice myfile | audioplay

The format conversion will not always be able to keep up with the audio output. If
this is the case, you should convert to a temporary file before playing the data.

audioplay(1)

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

BUGS

User Commands 79

audiorecord – record an audio file

audiorecord [-af] [-v vol] [-b bal] [-m monvol] [-p mic | line |
internal-cd] [-c channels] [-s rate] [-e encoding] [-t time]
[-i info] [-d dev] [file]

The audiorecord utility copies audio data from the audio device to a named audio
file (or the standard output if no filename is present). If no output file is specified and
standard output is a tty, the volume, balance, monitor volume, port, and audio format
settings specified on the command line will be applied and the program will exit.

By default, monaural audio data is recorded at 8 kHz and encoded in -law format. If
the audio device supports additional configurations, the -c, -s, and -e options may
be used to specify the data format. The output file is prefixed by an audio file header
that identifies the format of the data encoded in the file.

Recording begins immediately and continues until a SIGINT signal (for example,
Ctrl-C) is received. If the -t option is specified, audiorecord stops when the
specified quantity of data has been recorded.

If the audio device is unavailable (that is, another process currently has read access),
audiorecord prints an error message and exits immediately.

The following options are supported:

-a
Append: Appends the data on the end of the named audio file. The audio device
must support the audio data format of the existing file.

-f
Force: When the -a flag is specified, the sample rate of the audio device must match
the sample rate at which the original file was recorded. If the -f flag is also
specified, sample rate differences are ignored, with a warning message printed on
the standard error.

-v vol
Volume: The recording gain is set to the specified value before recording begins, and
is reset to its previous level when audiorecord exits. The vol argument is an
integer value between 0 and 100, inclusive. If this argument is not specified, the
input volume will remain at the level most recently set by any process.

-b bal
Balance: The recording balance is set to the specified value before recording begins,
and is reset to its previous level when audiorecord exits. The bal argument is an
integer value between -100 and 100, inclusive. A value of -100 indicates left balance,
0 middle, and 100 right. If this argument is not specified, the input balance will
remain at the level most recently set by any process.

-m monvol
Monitor Volume: The input monitor volume is set to the specified value before
recording begins, and is reset to its previous level when audiorecord exits. The
monval argument is an integer value between 0 and 100, inclusive. A non-zero value

audiorecord(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

80 man pages section 1: User Commands • Last Revised 16 Feb 2001

allows a directly connected input source to be heard on the output speaker while
recording is in-progress. If this argument is not specified, the monitor volume will
remain at the level most recently set by any process.

-p mic | line | internal-cd
Input Port: Selects the mic, line, or internal-cd input as the source of the audio
output signal. If this argument is not specified, the input port will remain
unchanged. Please note: Some systems will not support all possible input ports. If
the named port does not exist, this option is ignored.

-c channels
Channels: Specifies the number of audio channels (1 or 2). The value may be
specified as an integer or as the string mono or stereo. The default value is mono.

-s rate
Sample Rate: Specifies the sample rate, in samples per second. If a number is
followed by the letter k, it is multiplied by 1000 (for example, 44.1k = 44100). The
default sample rate is 8 kHz.

-e encoding
Encoding: Specifies the audio data encoding. This value may be one of ulaw, alaw,
or linear. The default encoding is ulaw.

-t time
Time: The time argument specifies the maximum length of time to record. Time can
be specified as a floating-point value, indicating the number of seconds, or in the
form: hh:mm:ss.dd, where the hour and minute specifications are optional.

-i info
Information: The ‘information’ field of the output file header is set to the string
specified by the info argument. This option cannot be specified in conjunction with
the -a argument.

-d dev
Device: The dev argument specifies an alternate audio device from which input
should be taken. If the -d option is not specified, the AUDIODEV environment
variable is consulted (see below). Otherwise, /dev/audio is used as the default
audio device.

-\?
Help: Prints a command line usage message.

file File Specification: The named audio file is rewritten (or appended). If no
filename is present (and standard output is not a tty), or if the special
filename ‘−’ is specified, output is directed to the the standard output.

See largefile(5) for the description of the behavior of audiorecord when
encountering files greater than or equal to 2 Gbyte (231 bytes).

AUDIODEV The full path name of the audio device to record from, if no -d
argument is supplied. If the AUDIODEV variable is not set,
/dev/audio is used.

audiorecord(1)

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

User Commands 81

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, IA

Availability SUNWauda

Interface Stability Evolving

audioconvert(1), audioplay(1), mixerctl(1), attributes(5), largefile(5),
usb_ac(7D), audio(7I), mixer(7I)

audiorecord(1)

ATTRIBUTES

SEE ALSO

82 man pages section 1: User Commands • Last Revised 16 Feb 2001

auths – print authorizations granted to a user

auths [user …]

The auths command prints on standard output the authorizations that you or the
optionally-specified user or role have been granted. Authorizations are rights that are
checked by certain privileged programs to determine whether a user may execute
restricted functionality.

Each user may have zero or more authorizations. Authorizations are represented by
fully-qualified names, which identify the organization that created the authorization
and the functionality that it controls. Following the Java convention, the hierarchical
components of an authorization are separated by dots (.), starting with the reverse
order Internet domain name of the creating organization, and ending with the specific
function within a class of authorizations.

An asterisk (*) indicates all authorizations in a class.

A user’s authorizations are looked up in user_attr(4) and in the
/etc/security/policy.conf file (see policy.conf(4)). Authorizations may be
specified directly in user_attr(4) or indirectly through prof_attr(4).
Authorizations may also be assigned to every user in the system directly as default
authorizations or indirectly as default profiles in the /etc/security/policy.conf
file.

EXAMPLE 1 Sample output

The auths output has the following form:

example% auths tester01 tester02
tester01 : com.sun.system.date, com.sun.jobs.admin
tester02 : com.sun.system.*

example%

The following exit values are returned:

0 Successful completion.

1 An error occurred.

/etc/user_attr

/etc/security/auth_attr

/etc/security/policy.conf

/etc/security/prof_attr

See attributes(5) for descriptions of the following attributes:

auths(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

User Commands 83

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

profiles(1), roles(1), getauthattr(3SECDB), auth_attr(4), policy.conf(4),
prof_attr(4), user_attr(4), attributes(5)

auths(1)

SEE ALSO

84 man pages section 1: User Commands • Last Revised 11 Feb 2000

awk – pattern scanning and processing language

/usr/bin/awk [-f progfile] [-F c] [’ prog ’] [parameters] [filename…]

/usr/xpg4/bin/awk [-F ERE] [-v assignment…] ’program’ -f progfile…
[argument…]

The /usr/xpg4/bin/awk utility is described on the nawk(1) manual page.

The /usr/bin/awk utility scans each input filename for lines that match any of a set
of patterns specified in prog. The prog string must be enclosed in single quotes (´) to
protect it from the shell. For each pattern in prog there may be an associated action
performed when a line of a filename matches the pattern. The set of pattern-action
statements may appear literally as prog or in a file specified with the -f progfile option.
Input files are read in order; if there are no files, the standard input is read. The file
name ’−’ means the standard input.

The following options are supported:

-f progfile awk uses the set of patterns it reads from progfile.

-Fc Uses the character c as the field separator (FS) character. See the
discussion of FS below.

Each input line is matched against the pattern portion of every pattern-action
statement; the associated action is performed for each matched pattern. Any filename of
the form var=value is treated as an assignment, not a filename, and is executed at the
time it would have been opened if it were a filename. Variables assigned in this manner
are not available inside a BEGIN rule, and are assigned after previously specified files
have been read.

An input line is normally made up of fields separated by white spaces. (This default
can be changed by using the FS built-in variable or the -Fc option.) The default is to
ignore leading blanks and to separate fields by blanks and/or tab characters.
However, if FS is assigned a value that does not include any of the white spaces, then
leading blanks are not ignored. The fields are denoted $1, $2, . . . ; $0 refers to the
entire line.

A pattern-action statement has the form:

pattern { action }

Either pattern or action may be omitted. If there is no action, the matching line is
printed. If there is no pattern, the action is performed on every input line.
Pattern-action statements are separated by newlines or semicolons.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of relational
expressions and regular expressions. A relational expression is one of the following:

expression relop expression
expression matchop regular_expression

awk(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Input Lines

Pattern-action
Statements

User Commands 85

where a relop is any of the six relational operators in C, and a matchop is either ~
(contains) or !~ (does not contain). An expression is an arithmetic expression, a
relational expression, the special expression

var in array

or a Boolean combination of these.

Regular expressions are as in egrep(1). In patterns they must be surrounded by
slashes. Isolated regular expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions. A pattern may consist of two
patterns separated by a comma; in this case, the action is performed for all lines
between the occurrence of the first pattern to the occurrence of the second pattern.

The special patterns BEGIN and END may be used to capture control before the first
input line has been read and after the last input line has been read respectively. These
keywords do not combine with any other patterns.

Built-in variables include:

FILENAME name of the current input file

FS input field separator regular expression (default blank and tab)

NF number of fields in the current record

NR ordinal number of the current record

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

An action is a sequence of statements. A statement may be one of the following:

if (expression) statement [else statement]
while (expression) statement
do statement while (expression)
for (expression ; expression ; expression) statement
for (var in array) statement
break
continue
{ [statement] . . . }
expression # commonly variable = expression
print [expression-list] [>expression]
printf format [,expression-list] [>expression]
next # skip remaining patterns on this input line

exit [expr] # skip the rest of the input; exit status is expr

awk(1)

Built-in Variables

86 man pages section 1: User Commands • Last Revised 7 Jul 2000

Statements are terminated by semicolons, newlines, or right braces. An empty
expression-list stands for the whole input line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, −, *, /, %, ^ and
concatenation (indicated by a blank). The operators ++, −−, +=, −=, *=, /=, %=, ^=, >,
>=, <, <=, ==, !=, and ?: are also available in expressions. Variables may be scalars,
array elements (denoted x[i]), or fields. Variables are initialized to the null string or
zero. Array subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted (""), with the usual C escapes
recognized within.

The print statement prints its arguments on the standard output, or on a file if
>expression is present, or on a pipe if ’|cmd’ is present. The output resulted from the
print statement is terminated by the output record separator with each argument
separated by the current output field separator. The printf statement formats its
expression list according to the format (see printf(3C)).

The arithmetic functions are as follows:

cos(x) Return cosine of x, where x is in radians. (In
/usr/xpg4/bin/awk only. See nawk(1).)

sin(x) Return sine of x, where x is in radians. (In /usr/xpg4/bin/awk
only. See nawk(1).)

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

sqrt(x) Return the square root of x.

int(x) Truncate its argument to an integer. It will be truncated toward 0
when x > 0.

The string functions are as follows:

index(s, t)
Return the position in string s where string t first occurs, or 0 if it does not occur at
all.

int(s)
truncates s to an integer value. If s is not specified, $0 is used.

length(s)
Return the length of its argument taken as a string, or of the whole line if there is no
argument.

split(s, a, fs)
Split the string s into array elements a[1], a[2], . . . a[n], and returns n. The
separation is done with the regular expression fs or with the field separator FS if fs
is not given.

awk(1)

Built-in Functions

User Commands 87

sprintf(fmt, expr, expr, . . .)
Format the expressions according to the printf(3C) format given by fmt and
returns the resulting string.

substr(s, m, n)
returns the n-character substring of s that begins at position m.

The input/output function is as follows:

getline Set $0 to the next input record from the current input file.
getline returns 1 for successful input, 0 for end of file, and −1
for an error.

See largefile(5) for the description of the behavior of awk when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Print lines longer than 72 characters:

length > 72

EXAMPLE 2 Print first two fields in opposite order:

{ print $2, $1 }

EXAMPLE 3 Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

EXAMPLE 4 Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

EXAMPLE 5 Printing fields in reverse order

{ for (i = NF; i > 0; −−i) print $i }

EXAMPLE 6 Print all lines between start/stop pairs:

/start/, /stop/

EXAMPLE 7 Print all lines whose first field is different from the previous one:

$1 != prev { print; prev = $1 }

EXAMPLE 8 Print a file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

awk(1)

Large File
Behavior

EXAMPLES

88 man pages section 1: User Commands • Last Revised 7 Jul 2000

EXAMPLE 8 Print a file, filling in page numbers starting at 5: (Continued)

EXAMPLE 9 Print a file and number its pages starting at 5:

Assuming this program is in a file named prog, the following command line prints
the file input numbering its pages starting at 5:

awk f prog n=5 input

See environ(5) for descriptions of the following environment variables that affect the
execution of awk: LC_CTYPE and LC_MESSAGES.

LC_NUMERIC Determine the radix character used when interpreting numeric
input, performing conversions between numeric and string values
and formatting numeric output. Regardless of locale, the period
character (the decimal-point character of the POSIX locale) is the
decimal-point character recognized in processing awk programs
(including assignments in command-line arguments).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

egrep(1), grep(1), nawk(1), sed(1), printf(3C), attributes(5), environ(5),
largefile(5), XPG4(5)

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression
to be treated as a number add 0 to it; to force it to be treated as a string concatenate the
null string ("") to it.

awk(1)

ENVIRONMENT
VARIABLES

ATTRIBUTES

/usr/bin/awk

/usr/xpg4/bin/awk

SEE ALSO

NOTES

User Commands 89

banner – make posters

banner strings

banner prints its arguments (each up to 10 characters long) in large letters on the
standard output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

echo(1), attributes(5)

banner(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

90 man pages section 1: User Commands • Last Revised 14 Sep 1992

basename, dirname – deliver portions of path names

/usr/bin/basename string [suffix]

/usr/xpg4/bin/basename string [suffix]

dirname string

The basename utility deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used inside
substitution marks (‘ ‘) within shell procedures.

The suffix is a pattern defined on the expr(1) manual page.

The suffix is a string with no special significance attached to any of the characters it
contains.

The dirname utility delivers all but the last level of the path name in string.

EXAMPLE 1 Setting environment variables

The following example, invoked with the argument /home/sms/personal/mail
sets the environment variable NAME to the file named mail and the environment
variable MYMAILPATH to the string /home/sms/personal:

example% NAME=‘basename $HOME/personal/mail‘

example% MYMAILPATH=‘dirname $HOME/personal/mail‘

EXAMPLE 2 Compiling a file and moving the output

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles
the named file and moves the output to cat in the current directory:

example% cc $1

example% mv a.out ‘basename $1 .c‘

See environ(5) for descriptions of the following environment variables that affect the
execution of basename and dirname: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

basename(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/bin

/usr/xpg4/bin

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin

User Commands 91

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

expr(1), attributes(5), environ(5), XPG4(5)

basename(1)

/usr/xpg4/bin

SEE ALSO

92 man pages section 1: User Commands • Last Revised 18 Mar 1997

basename – display portions of pathnames

/usr/ucb/basename string [suffix]

The basename utility deletes any prefix ending in ‘/’ and the suffix, if present in string.
It directs the result to the standard output, and is normally used inside substitution
marks (‘ ‘) within shell procedures. The suffix is a string with no special significance
attached to any of the characters it contains.

EXAMPLE 1 Using the basename command.

This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the
named file and moves the output to cat in the current directory:

example% cc $1
example% mv a.out ‘basename $1 .c‘

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

sh(1), attributes(5)

basename(1B)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 93

bc – arbitrary precision arithmetic language

bc [-c] [-l] [file…]

The bc utility implements an arbitrary precision calculator. It takes input from any
files given, then reads from the standard input. If the standard input and standard
output to bc are attached to a terminal, the invocation of bc is interactive, causing
behavioral constraints described in the following sections. bc processes a language
that resembles C and is a preprocessor for the desk calculator program dc, which it
invokes automatically unless the -c option is specified. In this case the dc input is
sent to the standard output instead.

The syntax for bc programs is as follows:

L means a letter a−z,

E means an expression: a (mathematical or logical) value, an operand that
takes a value, or a combination of operands and operators that evaluates to
a value,

S means a statement.

Enclosed in /* and */.

Simple variables: L.
Array elements: L [E] (up to BC_DIM_MAX dimensions).
The words ibase, obase (limited to BC_BASE_MAX), and scale (limited to
BC_SCALE_MAX).

Arbitrarily long numbers with optional sign and decimal point. Strings of fewer than
BC_STRING_MAX characters, between double quotes ("). (E)

sqrt (E) Square root

length (E) Number of significant decimal digits.

scale (E) Number of digits right of decimal point.

L (E , ... , E)

+ − * / % ^
(% is remainder; ^ is power)

++ −−
(prefix and postfix; apply to names)

== <= >= != < >

= =+ =− =* =/ =% =^

E
{ S ;. . . ; S }
if (E) S

bc(1)

NAME

SYNOPSIS

DESCRIPTION

USAGE

Comments

Names (Operands)

Other Operands

Operators

Statements

94 man pages section 1: User Commands • Last Revised 28 Mar 1995

while (E) S
for (E ; E ; E) S
null statement
break
quit

.string

define L (L ,. . . , L) {
auto L ,. . . , L
S ;. . . S
return (E)
}

s(x) sine

c(x) cosine

e(x) exponential

l(x) log

a(x) arctangent

j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an
assignment. Either semicolons or new-lines may separate statements. Assignment to
scale influences the number of digits to be retained on arithmetic operations in the
manner of dc. Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. auto variables are stacked
during function calls. When using arrays as function arguments or defining them as
automatic variables, empty square brackets must follow the array name.

The following operands are supported:

-c Compile only. The output is dc commands that are sent to the
standard output.

-l Define the math functions and initialize scale to 20, instead of
the default zero.

The following operands are supported:

file A pathname of a text file containing bc program statements. After
all cases of file have been read, bc will read the standard input.

bc(1)

Function
Definitions

Functions in -l
Math Library

OPTIONS

OPERANDS

User Commands 95

EXAMPLE 1 Setting the precision of a variable

In the shell, the following assigns an approximation of the first ten digits of n to the
variable x:

x=$(printf "%s\n" ’scale = 10; 104348/33215’ | bc)

EXAMPLE 2 Defining a computing function

Defines a function to compute an approximate value of the exponential function:

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}

EXAMPLE 3 Printing the approximate values of the function

Prints approximate values of the exponential function of the first ten integers:

for(i=1; i<=10; i++) e(i)

or

for (i = 1; i <= 10; ++i) { e(i) }

See environ(5) for descriptions of the following environment variables that affect the
execution of bc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were processed successfully.

unspecified An error occurred.

/usr/lib/lib.b mathematical library

/usr/include/limits.h to define BC_ parameters

See attributes(5) for descriptions of the following attributes:

bc(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

96 man pages section 1: User Commands • Last Revised 28 Mar 1995

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

dc(1), awk(1), attributes(5)

The bc command does not recognize the logical operators && and | |.

The for statement must have all three expressions (E’s).

bc(1)

SEE ALSO

NOTES

User Commands 97

bdiff – big diff

bdiff filename1 filename2 [n] [-s]

bdiff is used in a manner analogous to diff to find which lines in filename1 and
filename2 must be changed to bring the files into agreement. Its purpose is to allow
processing of files too large for diff. If filename1 (filename2) is −, the standard input is
read.

bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff on corresponding segments. If both
optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been processed
whole). Note: Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value
for n. This is useful in those cases in which 3500-line segments are too large
for diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note: However, this does not suppress possible diagnostic messages from
diff, which bdiff calls.

See largefile(5) for the description of the behavior of bdiff when encountering
files greater than or equal to 2 Gbyte (231 bytes).

/tmp/bd?????

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

diff(1), attributes(5), largefile(5)

Use help for explanations.

bdiff(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

98 man pages section 1: User Commands • Last Revised 14 Sep 1992

bfs – big file scanner

/usr/bin/bfs [-] filename

The bfs command is (almost) like ed(1) except that it is read-only and processes
much larger files. Files can be up to 1024K bytes and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines). bfs is usually more
efficient than ed(1) for scanning a file, since the file is not copied to a buffer. It is most
useful for identifying sections of a large file where csplit(1) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written
with the w (write) command. The optional − suppresses printing of sizes. Input is
prompted with * if P and a carriage return are typed, as in ed(1). Prompting can be
turned off again by inputting another P and carriage return. Note that messages are
given in response to errors if prompting is turned on.

All address expressions described under ed(1) are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?:

> indicates downward search without wrap-around, and

< indicates upward search without wrap-around.

There is a slight difference in mark names; that is, only the letters a through z may be
used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, !, and null commands operate as described under ed(1).
Commands such as −−−, +++−, +++=, −12, and +4p are accepted. Note that 1,10p
and 1,10 will both print the first ten lines. The f command only prints the name of
the file being scanned; there is no remembered file name. The w command is
independent of output diversion, truncation, or crunching (see the xo, xt, and xc
commands, below). The following additional commands are available:

xf file
Further commands are taken from the named file. When an end-of-file is reached,
an interrupt signal is received or an error occurs, reading resumes with the file
containing the xf. The xf commands may be nested to a depth of 10.

xn
List the marks currently in use (marks are set by the k command).

xo [file]
Further output from the p and null commands is diverted to the named file,
which, if necessary, is created mode 666 (readable and writable by everyone), unless
your umask setting (see umask(1)) dictates otherwise. If file is missing, output is
diverted to the standard output. Note that each diversion causes truncation or
creation of the file.

bfs(1)

NAME

SYNOPSIS

DESCRIPTION

bfs Commands

User Commands 99

: label
This positions a label in a command file. The label is terminated by new-line, and
blanks between the : (colon) and the start of the label are ignored. This command
may also be used to insert comments into a command file, since labels need not be
referenced.

(. , .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command succeeds. It
fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the specified range,

including the first and last lines.

On success, . (dot) is set to the line matched and a jump is made to label. This
command is the only one that does not issue an error message on bad addresses, so
it may be used to test whether addresses are bad before other commands are
executed. Note that the command, xb/^/ label, is an unconditional jump.

The xb command is allowed only if it is read from someplace other than a terminal.
If it is read from a pipe, only a downward jump is possible.

xt number
Output from the p and null commands is truncated to, at most, number characters.
The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The commands xv5100
or xv5 100 both assign the value 100 to the variable 5. The command xv61,100p
assigns the value 1,100p to the variable 6. To reference a variable, put a % in front
of the variable name. For example, using the above assignments for variables 5 and
6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line containing a
match. To escape the special meaning of %, a \ must precede it.

g/".*\%[cds]/p

bfs(1)

100 man pages section 1: User Commands • Last Revised 20 May 1996

could be used to match and list %c, %d, or %s formats (for example, "printf"-like
statements) of characters, decimal integers, or strings. Another feature of the xv
command is that the first line of output from a UNIX system command can be
stored into a variable. The only requirement is that the first character of value be an
!. For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 35, print it, and increment the variable 36
by one. To escape the special meaning of ! as the first character of value, precede it
with a \.

xv7\!date

stores the value !date into variable 7.

xbz label
xbn label

These two commands will test the last saved return code from the execution of a
UNIX system command (!command) or nonzero value, respectively, to the specified
label. The two examples below both search for the next five lines containing the
string size:

Example 1:

xv55
: l
/size/
xv5!expr %5 − 1
!if 0%5 != 0 exit 2
xbn l

Example 2:

xv45
: l
/size/
xv4!expr %4 − 1
!if 0%4 = 0 exit 2
xbz l

xc [switch]
If switch is 1, output from the p and null commands is crunched; if switch is 0,
it is not. Without an argument, xc reverses switch. Initially, switch is set for no
crunching. Crunched output has strings of tabs and blanks reduced to one blank
and blank lines suppressed.

The following operand is supported:

bfs(1)

OPERANDS

User Commands 101

filename Any file up to 1024K bytes and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines).
filename can be a section of a larger file which has been divided
into more manageable sections for editing by the use of
csplit(1).

The following exit values are returned:

0 Successful completion without any file or command errors.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

csplit(1), ed(1), umask(1), attributes(5)

Message is ? for errors in commands, if prompting is turned off. Self-explanatory error
messages are displayed when prompting is on.

bfs(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

102 man pages section 1: User Commands • Last Revised 20 May 1996

biff – give notice of incoming mail messages

/usr/ucb/biff [y | n]

biff turns mail notification on or off for the terminal session. With no arguments,
biff displays the current notification status for the terminal.

If notification is allowed, the terminal rings the bell and displays the header and the
first few lines of each arriving mail message. biff operates asynchronously. For
synchronized notices, use the MAIL variable of sh(1) or the mail variable of csh(1).

A ‘biff y’ command can be included in your ~/.login or ~/.profile file for
execution when you log in.

y Allow mail notification for the terminal.

n Disable notification for the terminal.

~/.login User’s login file

~/.profile User’s profile file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

csh(1), mail(1), sh(1), attributes(5)

biff(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

User Commands 103

break, continue – shell built-in functions to escape from or advance within a
controlling while, for, foreach, or until loop

break [n]

continue [n]

break

continue

*break [n]

*continue [n]

break exits from the enclosing for or while loop, if any. If n is specified, break n
levels.

continue resumes the next iteration of the enclosing for or while loop. If n is
specified, resume at the n-th enclosing loop.

break resumes execution after the end of the nearest enclosing foreach or while
loop. The remaining commands on the current line are executed. This allows
multilevel breaks to be written as a list of break commands, all on one line.

continue continues execution of the next iteration of the nearest enclosing while or
foreach loop.

break exits from the enclosed for, while, until, or select loop, if any. If n is
specified then break n levels.

continue resumes the next iteration of the enclosed for, while, until, or select
loop. If n is specified then resume at the n-th enclosed loop.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(5) for descriptions of the following attributes:

break(1)

NAME

sh

csh

ksh

sh

csh

ksh

ATTRIBUTES

104 man pages section 1: User Commands • Last Revised 15 Apr 1994

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), exit(1), ksh(1), sh(1), attributes(5)

break(1)

SEE ALSO

User Commands 105

cal – display a calendar

cal [[month] year]

The cal utility writes a Gregorian calendar to standard output. If the year operand is
specified, a calendar for that year is written. If no operands are specified, a calendar
for the current month is written.

The following operands are supported:

month Specify the month to be displayed, represented as a decimal integer from 1
(January) to 12 (December). The default is the current month.

year Specify the year for which the calendar is displayed, represented as a
decimal integer from 1 to 9999. The default is the current year.

See environ(5) for descriptions of the following environment variables that affect the
execution of cal: LC_TIME, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

calendar(1), attributes(5), environ(5)

An unusual calendar is printed for September 1752. That is the month 11 days were
skipped to make up for lack of leap year adjustments. To see this calendar, type:

cal 9 1752

The command cal 83 refers to the year 83, not 1983.

The year is always considered to start in January.

cal(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

106 man pages section 1: User Commands • Last Revised 1 Feb 1995

calendar – reminder service

calendar [-]

The calendar utility consults the file calendar in the current directory and writes
lines that contain today’s or tomorrow’s date anywhere in the line to standard output.
Most reasonable month-day dates such as Aug. 24, august 24, 8/24, and so forth,
are recognized, but not 24 August or 24/8. On Fridays and weekends “tomorrow”
extends through Monday. calendar can be invoked regularly by using the
crontab(1) or at(1) commands.

When the optional argument - is present, calendar does its job for every user who
has a file calendar in his or her login directory and sends them any positive results
by mail(1). Normally this is done daily by facilities in the UNIX operating system
(seecron(1M)).

If the environment variable DATEMSK is set, calendar will use its value as the full
path name of a template file containing format strings. The strings consist of
conversion specifications and text characters and are used to provide a richer set of
allowable date formats in different languages by appropriate settings of the
environment variable LANG or LC_TIME; see environ(5). Seestrftime(3C) for the
list of allowable conversion specifications.

EXAMPLE 1 Possible contents of a template

The following example shows the possible contents of a template:

%B %eth of the year %Y

%B represents the full month name, %e the day of month and %Y the year (4 digits).

If DATEMSK is set to this template, the following calendar file would be valid:

March 7th of the year 1989 <Reminder>

See environ(5) for descriptions of the following environment variables that affect the
execution of calendar: LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and TZ.

0 Successful completion.

>0 An error occurred.

/etc/passwd system password file

/tmp/cal* temporary files used by calendar

/usr/lib/calprog program used to determine dates for today and
tomorrow

See attributes(5) for descriptions of the following attributes:

calendar(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

User Commands 107

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

at(1), crontab(1), mail(1), cron(1M), ypbind(1M), strftime(3C),
attributes(5), environ(5)

Appropriate lines beginning with white space will not be printed.

Your calendar must be public information for you to get reminder service.

calendar’s extended idea of ‘‘tomorrow’’ does not account for holidays.

The - argument works only on calendar files that are local to the machine; calendar
is intended not to work on calendar files that are mounted remotely with NFS. Thus,
‘calendar -’ should be run only on diskful machines where home directories exist;
running it on a diskless client has no effect.

calendar is no longer in the default root crontab. Because of the network burden
‘calendar -’ can induce, it is inadvisable in an environment running ypbind(1M)
with a large passwd.byname map. If, however, the usefulness of calendar outweighs
the network impact, the super-user may run ‘crontab -e’ to edit the root crontab.
Otherwise, individual users may wish to use ‘crontab -e’ to edit their own crontabs
to have cron invoke calendar without the - argument, piping output to mail
addressed to themselves.

calendar(1)

SEE ALSO

NOTES

108 man pages section 1: User Commands • Last Revised 1 Feb 1995

cancel – cancel print request

cancel [request-ID…] [destination…]

cancel -u user… [destination…]

The cancel utility cancels print requests. There are two forms of the cancel
command.

The first form of cancel has two optional arguments: print requests (request-ID) and
destinations (destination). Specifying request-ID with destination cancels request-ID on
destination. Specifying only the destination cancels the current print request on
destination. If destination is not specified, cancel cancels the requested print request on
all destinations.

The second form of cancel cancels a user’s print requests on specific destinations.

Users can only cancel print requests associated with their username. By default, users
can only cancel print requests on the host from which the print request was submitted.
If a super-user has set user-equivalence=true in /etc/printers.conf on the
print server, users can cancel print requests associated with their username on any
host. Super-users can cancel print requests on the host from which the print request
was submitted. Super-users can also cancel print requests from the print server.

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

The following options are supported:

-u user The name of the user for which print requests are to be cancelled.
Specify user as a username.

The following operands are supported:

destination The destination on which the print requests are to be canceled.
destination is the name of a printer or class of printers (see
lpadmin(1M)). If destination is not specified, cancel cancels the
requested print request on all destinations. Specify destination
using atomic, POSIX-style (server:destination), or Federated
Naming Service (FNS) (. . ./service/printer/. . .)
names. See NOTES for information regarding using POSIX-style
destination names with cancel. See printers.conf(4) for
information regarding the naming conventions for atomic and FNS
names, and standards(5) for information regarding POSIX.

request-ID The print request to be canceled. Specify request-ID using LP-style
request IDs (destination-number).

user The name of the user for which the print requests are to be
cancelled. Specify user as a username.

cancel(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 109

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/var/spool/print/* LP print queue.

$HOME/.printers User-configurable printer database.

/etc/printers.conf System printer configuration database.

printers.conf.byname NIS version of /etc/printers.conf.

printers.org_dir NIS+ version of /etc/printers.conf.

fns.ctx_dir.domain FNS version of /etc/printers.conf.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

lp(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), lpadmin(1M), nsswitch.conf(4),
printers(4), printers.conf(4), attributes(5), standards(5)

POSIX-style destination names (server:destination) are treated as print requests if
destination has the same format as an LP-style request-ID. See standards(5).

cancel(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

110 man pages section 1: User Commands • Last Revised 12 Apr 1999

cat – concatenate and display files

cat [-nbsuvet] [file…]

The cat utility reads each file in sequence and writes it on the standard output. Thus:

example% cat file

prints file on your terminal, and:

example% cat file1 file2 >file3

concatenates file1 and file2, and writes the results in file3. If no input file is given, cat
reads from the standard input file.

The following options are supported:

-n Precede each line output with its line number.

-b Number the lines, as -n, but omit the line numbers from blank lines.

-u The output is not buffered. (The default is buffered output.)

-s cat is silent about non-existent files.

-v Non-printing characters (with the exception of tabs, new-lines and
form-feeds) are printed visibly. ASCII control characters (octal 000 − 037)
are printed as ^n, where n is the corresponding ASCII character in the
range octal 100 − 137 (@, A, B, C, . . ., X, Y, Z, [, \,], ^, and _); the DEL
character (octal 0177) is printed ^?. Other non-printable characters are
printed as M-x, where x is the ASCII character specified by the low-order
seven bits.

When used with the -v option, the following options may be used:

-e A $ character will be printed at the end of each line (prior to the new-line).

-t Tabs will be printed as ^I’s and formfeeds to be printed as ^L’s.

The -e and -t options are ignored if the -v option is not specified.

The following operand is supported:

file A path name of an input file. If no file is specified, the standard
input is used. If file is ‘ − ’, cat will read from the standard input
at that point in the sequence. cat will not close and reopen
standard input when it is referenced in this way, but will accept
multiple occurrences of ‘ − ’ as file.

See largefile(5) for the description of the behavior of cat when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Concatenating a file

The following command:

example% cat myfile

cat(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

User Commands 111

EXAMPLE 1 Concatenating a file (Continued)

writes the contents of the file myfile to standard output.

EXAMPLE 2 Concatenating two files into one

The following command:

example% cat doc1 doc2 > doc.all

concatenates the files doc1 and doc2 and writes the result to doc.all.

EXAMPLE 3 Concatenating two arbitrary pieces of input with a single invocation

The command:

example% cat start - middle - end > file

when standard input is a terminal, gets two arbitrary pieces of input from the terminal
with a single invocation of cat. Note, however, that if standard input is a regular file,
this would be equivalent to the command:

cat start - middle /dev/null end > file

because the entire contents of the file would be consumed by cat the first time ‘ − ’
was used as a file operand and an end-of-file condition would be detected immediately
when ‘ − ’ was referenced the second time.

See environ(5) for descriptions of the following environment variables that affect the
execution of cat: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

touch(1), environ(5), attributes(5), largefile(5)

Redirecting the output of cat onto one of the files being read will cause the loss of the
data originally in the file being read. For example,

example% cat filename1 filename2 >filename1

causes the original data in filename1 to be lost.

cat(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

112 man pages section 1: User Commands • Last Revised 1 Feb 1995

cc – C compiler

/usr/ucb/cc [options]

/usr/ucb/cc is the interface to the BSD Compatibility Package C compiler. It is a
script that looks for the link /usr/ccs/bin/ucbcc to the C compiler. The
/usr/ccs/bin/ucbcc link is available only with the SPROcc package, whose
default location is /opt/SUNWspro. The /usr/ucb/cc interface is identical to
/usr/ccs/bin/ucbcc, except that BSD headers are used and BSD libraries are
linked before base libraries. The /opt/SUNWspro/man/man1/acc.1 man page is
available only with the SPROcc package.

The /usr/ucb/cc interface accepts the same options as /usr/ccs/bin/ucbcc,
with the following exceptions:

-Idir Search dir for included files whose names do not begin with a
slash (/) prior to searching the usual directories. The directories
for multiple -I options are searched in the order specified. The
preprocessor first searches for #include files in the directory
containing sourcefile, and then in directories named with -I
options (if any), then /usr/ucbinclude, and finally, in
/usr/include.

-Ldir Add dir to the list of directories searched for libraries by
/usr/ccs/bin/ucbcc. This option is passed to
/usr/ccs/bin/ld and /usr/lib. Directories specified with this
option are searched before /usr/ucblib and /usr/lib.

-Y P, dir Change the default directory used for finding libraries.

The following exit values are returned:

0 Successful compilation or link edit.

>0 An error occurred.

/usr/ccs/bin/ld link editor

/usr/lib/libc C library

/usr/ucbinclude BSD Compatibility directory for header files

/usr/ucblib BSD Compatibility directory for libraries

/usr/ucblib/libucb BSD Compatibility C library

/usr/lib/libsocket library containing socket routines

/usr/lib/libnsl library containing network functions

/usr/lib/libelf library containing routines to process ELF object files

/usr/lib/libaio library containing asynchronous I/O routines

See attributes(5) for descriptions of the following attributes:

cc(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

User Commands 113

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

ld(1), a.out(4), attributes(5)

The -Y P, dir option may have unexpected results and should not be used.

cc(1B)

SEE ALSO

NOTES

114 man pages section 1: User Commands • Last Revised 24 Feb 1998

cd, chdir, pushd, popd, dirs – change working directory

/usr/bin/cd [directory]

cd [argument]

chdir [argument]

cd [dir]

chdir [dir]

pushd [+n | dir]

popd [+n]

dirs [-l]

cd [arg]

cd old new

The /usr/bin/cd utility changes the current directory in the context of the cd utility
only. This is in contrast to the version built into the shell, as described below.
/usr/bin/cd has no effect on the invoking process but can be used to determine
whether or not a given directory can be set as the current directory.

The Bourne shell built-in cd changes the current directory to argument. The shell
parameter HOME is the default argument. The shell parameter CDPATH defines the
search path for the directory containing argument. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the current
directory). Note: The current directory is specified by a null path name, which can
appear immediately after the equal sign or between the colon delimiters anywhere
else in the path list. If argument begins with ‘/’, ‘.’, or ‘. . ’, the search path is not
used. Otherwise, each directory in the path is searched for argument. cd must have
execute (search) permission in argument. Because a new process is created to execute
each command, cd would be ineffective if it were written as a normal command;
therefore, it is recognized by and is internal to the shell. (See pwd(1), sh(1), and
chdir(2)).

chdir is just another way to call cd.

If dir is not specified, the C shell built-in cd uses the value of shell parameter HOME as
the new working directory. If dir specifies a complete path starting with ‘ / ’, ‘ . ’, or
‘ . . ’, dir becomes the new working directory. If neither case applies, cd tries to find
the designated directory relative to one of the paths specified by the CDPATH shell
variable. CDPATH has the same syntax as, and similar semantics to, the PATH shell
variable. cd must have execute (search) permission in dir. Because a new process is
created to execute each command, cd would be ineffective if it were written as a
normal command; therefore, it is recognized by and is internal to the C-shell. (See
pwd(1), sh(1), and chdir(2)).

cd(1)

NAME

SYNOPSIS

sh

csh

ksh

/usr/bin/cd

sh

csh

User Commands 115

chdir changes the shell’s working directory to directory dir. If no argument is given,
change to the home directory of the user. If dir is a relative pathname not found in the
current directory, check for it in those directories listed in the cdpath variable. If dir is
the name of a shell variable whose value starts with a /, change to the directory
named by that value.

pushd will push a directory onto the directory stack. With no arguments, exchange
the top two elements.

+n Rotate the n’th entry to the top of the stack and cd to it.

dir Push the current working directory onto the stack and change to dir.

popd pops the directory stack and cd to the new top directory. The elements of the
directory stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

dirs will print the directory stack, most recent to the left; the first directory shown is
the current directory. With the -l argument, produce an unabbreviated printout; use
of the ~ notation is suppressed.

The Korn shell built-in cd command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is − the directory is changed to the previous
directory. The shell variable HOME is the default arg. The variable PWD is set to the
current directory. The shell variable CDPATH defines the search path for the directory
containing arg. Alternative directory names are separated by a colon (:). The default
path is <null> (specifying the current directory). Note that the current directory is
specified by a null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg begins with a ‘ / ’, ‘
. ’, or ‘ . . ’, then the search path is not used. Otherwise, each directory in the path
is searched for arg.

The second form of cd substitutes the string new for the string old in the current
directory name, PWD and tries to change to this new directory.

The cd command may not be executed by rksh. Because a new process is created to
execute each command, cd would be ineffective if it were written as a normal
command; therefore, it is recognized by and is internal to the Korn shell. (See pwd(1),
sh(1), and chdir(2)).

The following operands are supported:

directory An absolute or relative pathname of the directory that becomes the
new working directory. The interpretation of a relative pathname
by cd depends on the CDPATH environment variable.

If a non-empty directory name from CDPATH is used, an absolute pathname of the new
working directory will be written to the standard output as follows:

"%s\n", <new directory>

cd(1)

ksh

OPERANDS

OUTPUT

116 man pages section 1: User Commands • Last Revised 26 Mar 2001

Otherwise, there will be no output.

See environ(5) for descriptions of the following environment variables that affect the
execution of cd: LC_CTYPE, LC_MESSAGES, and NLSPATH.

CDPATH A colon-separated list of pathnames that refer to directories. If the
directory operand does not begin with a slash (/) character, and
the first component is not dot or dot-dot, cd will search for
directory relative to each directory named in the CDPATH variable,
in the order listed. The new working directory will be set to the
first matching directory found. An empty string in place of a
directory pathname represents the current directory. If CDPATH is
not set, it will be treated as if it were an empty string.

HOME The name of the home directory, used when no directory operand is
specified.

PWD A pathname of the current working directory, set by cd after it has
changed to that directory.

The following exit values are returned by cd:

0 The directory was successfully changed.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), pwd(1), sh(1), chdir(2), attributes(5), environ(5)

cd(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 117

cdrw – CD read and write

cdrw -i [-vSCO] [-d device] [-p speed] [image-file]

cdrw -a [-vSCO] [-d device] [-p speed] [-T audio-type] audio-file1
[audio-file2…]

cdrw -x [-v] [-d device] [-T audio-type] track-number out-file

cdrw -c [-vSC] [-d device] [-p speed] [-m tmp-dir] [-s src-device]

cdrw -b [-v] [-d device]all | session

cdrw -M [-v] [-d device]

cdrw -l [-v]

cdrw -h

The cdrw command provides the ability to create data and audio CDs. It also provides
the ability to extract audio tracks from an audio CD. Any MMC-compliant CD-R or
CD-RW drive can be used with cdrw.

cdrw will search for a CD writer device connected to the system, unless the user
specifies a device with the -d option. If it finds a single such writer device, it will use
that as the default CD writer device for the command.

When more than one CD writer is connected to the system, use the -d option to
indicate which device is desired. The device name can be specified in one of the
following ways: /dev/rdsk/cNtNdNsN, cNtNdNsN, cNtNdN, or a symbolic name
used by volume manager, such as cdrom or cdrom1. The -l option will provide a list
of CD writers.

For instructions on adding a USB-mass-storage-class-compliant CD-RW to your
system, see scsa2usb(7D).

When creating data CDs, cdrw uses the track-at-once mode of writing. With the -i
option, the user will specify a file that contains the data to write on CD media. In the
absence of such a file, cdrw will read data from standard input.

In either case, the data will typically first have been prepared by using the
mkisofs(1M) command to convert the file and file information into the High Sierra
format used on CDs. See the examples that include use of this command.

For creating an audio CD, using the -a option, single or multiple audio files can be
specified. All of the audio files should be in the supported audio formats. Currently
approved formats are:

sun Sun .au files with data in Red Book CDDA form

wav RIFF (.wav) files with data in Red Book CDDA form

cda .cda files having raw CD audio data (that is, 16 bit PCM stereo at 44.1 KHz
sample rate in little-endian byteorder)

cdrw(1)

NAME

SYNOPSIS

DESCRIPTION

Creating Data CDs

Creating Audio
CDs

118 man pages section 1: User Commands • Last Revised 21 Aug 2001

aur .aur files having raw CD data in big-endian byteorder

If no audio format is specified, cdrw tries to understand the audio file format based on
the file extension. The case of the characters in the extension is ignored. If a format is
specified using the -T option, it will be assumed as the audio file type for all the files
specified. Also, -cdrw will close the session after writing the audio tracks. Therefore,
the tracks to be written should be specified in a single command line.

cdrw can also be used for extracting audio data from an audio CD with the -x option.
The CD should have tracks in Red Book CDDA form. By default, the output format is
based on the file extension. A user can specify a sun, wav, cda, or aur output format
using the -T option.

cdrw can be used to copy single session data CD-ROMs and Red Book audio CDs. For
copying a CD, cdrw looks for a specified source device. If no source device is specified
when using the -c option, the current CD writing device is assumed to be the source.
cdrw will extract the track or tracks into a temporary file and will look for a blank
writable CD-R/RW media in the current CD writing device. If no such media is found,
the user will be asked to insert a blank writable CD media in the current CD writing
device. If enough space is not available in the default temporary directory, an
alternative directory can be specified using the -m option.

Users have to erase the CD-RW media before it can be re-written. With the -b option,
the following flavors of erasing are currently supported:

session Erase the last session.

all Erase the entire media.

If the session erasing type is used, cdrw will erase the last session. If there is only
one session recorded on the CD-RW (for example, a data/audio CD-RW created by
this tool), then session erasing is useful as it will only erase the portion that is
recorded, leaving behind a blank disk. This is faster than erasing the entire media.

The all erasing type should be used if it is a multisession disk, or the last session is
not closed, or disk status is unknown, and the user wishes to erase the disk. With this
type of erase, cdrw will erase the entire disk.

The user can get a list of CD writing devices currently present in the system with the
-l option. Also, for a particular media, the user can get the blanking status and table
of contents through the -M option. The -M option also prints information about the last
session start address and the next writable address. This information, along with the
-O option, can be used to create multisession CDs. Please refer to mkisofs(1M) for
more information.

The following options are supported:

-a Creates an audio disk. At least one audio-file name must be specified. A CD
can not have more than 99 audio tracks, so no more than 99 audio files can

cdrw(1)

Extracting Audio

Copying CDs

Erasing CD-RW
Media

Checking
device-list or
media-status

OPTIONS

User Commands 119

be specified. Also, the maximum audio data that can be written to the
media by default is 74 minutes, unless -C is specified.

-b Blanks a CD-RW media. The type of erasing must be specified by the all
or session argument.

-c Copies a CD. If no other argument is specified, the default CD writing
device is assumed to be the source device as well. In this case, the copying
operation will read the source media into a temporary directory and will
prompt the user to place a blank media into the drive for copying to
proceed.

-C Uses media stated capacity. Without this option, cdrw will use a default
value for writable CD media, which is 74 minutes for an audio CD or
681984000 bytes for a data CD.

-d Specifies CD writing device.

-h Help. Prints usage message.

-i Specifies image file for creating data CDs. The file size should be less than
what can be written on a CD-R or CD-RW media, which is 681984000 bytes
by default or the media stated capacity if the -C option is used. Also, it is
better to have the file locally available instead of having it on an
NFS-mounted filesystem, because the CD writing process expects data to
be available continuously without interruptions.

-l Lists all the CD writers found in the system.

-m Uses an alternate temporary directory instead of system default temporary
directory for storing track data while copying a CD. An alternate
temporary directory might be required because the amount of data on a CD
can be huge (as much as 800 Mbytes for an 80 minute audio CD) and the
system default temporary directory might not have that much space.

-M Reports media status. cdrw will report if the media is blank or not, its table
of contents, the last session’s start address, and the next writable address if
the disk is open.

-O Keeps the disk open. cdrw will close the session, but it will keep the disk
open so that another session can be added later on to create a multisession
disk.

-p Sets the CD writing speed. For example, -p 4 will set the speed to 4X. If
this option is not specified, cdrw will use the default speed of the CD
writer. If this option is specified, cdrw will try to set the drive write speed
to this value, but there is no guarantee of the speed actually used by the
drive.

-s Specifies source device for copying CD.

cdrw(1)

120 man pages section 1: User Commands • Last Revised 21 Aug 2001

-S Simulation mode. In this mode, cdrw will do everything with the drive
laser turned off, so nothing will be written to the media. This can be used
to verify if the system can provide data at a rate good enough for CD
writing.

-T Audio format to use extracting audio files or reading audio files for audio
CD creation. The audio-type can be sun, wav, cda, or aur.

-v Verbose mode.

-x Extracts audio data from an audio track.

EXAMPLE 1 Creating a data CD

example% cdrw -i /local/iso_image

EXAMPLE 2 Creating a CD from a directory

This example creates a CD from the directory tree /home/foo:

example% mkisofs –r /home/foo 2>/dev/null | cdrw –i –p 1

EXAMPLE 3 Extracting an audio track number

This example extracts audio track number 1 to /home/foo/song1.wav:

example% cdrw –x –T wav 1 /home/foo/song1.wav

EXAMPLE 4 Using wav files

This example creates an audio CD from wav files on disk:

example% cdrw –a song1.wav song2.wav song3.wav song4.wav

EXAMPLE 5 Erasing a CD-RW media

This example erases a CD-RW media in a CD-RW drive:

example% cdrw –b all

EXAMPLE 6 Creating a data CD with multiple drives

This example creates a data CD on a system with multiple CD-R/RW drives:

example% cdrw –d c1t6d0s2 –i /home/foo/iso-image

EXAMPLE 7 Checking data delivery rate

This example checks if the system can provide data to a CD-RW drive at a rate
sufficient for the write operation:

cdrw(1)

EXAMPLES

User Commands 121

EXAMPLE 7 Checking data delivery rate (Continued)

example% cdrw –S –i /home/foo/iso-image

EXAMPLE 8 Running at a higher priority

This example runs cdrw at a higher priority (for root user only):

example# priocntl –e –p 60 cdrw –i /home/foo/iso-image

EXAMPLE 9 Creating a multi-session disk

Create the first session image using mkisofs(1M) and record it onto the disk without
closing the disk:

example% cdrw -O -i /home/foo/iso-image

Additional sessions can be added to an open disk by creating an image with
mkisofs(1M) using the session start and next writable address reported by cdrw.

example% cdrw -M

Track No. |Type |Start address
----------+--------+-------------
1 |Data | 0
Leadout |Data | 166564

Last session start address: 162140

Next writable address: 173464

example% mkisofs -o /tmp/image2 -r -C 0,173464 -M \

/dev/rdsk/c0t2d0s2 /home/foo

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcdrw

audioconvert(1), mkisofs(1M), priocntl(1), attributes(5), rbac(5),
scsa2usb(7D), sd(7D)

The CD writing process requires data to be supplied at a constant rate to the drive. It
is advised to keep I/O activity to a minimum and shut down the related applications
while writing CDs.

When making copies or extracting audio tracks, it is better to use an MMC compliant
source CD-ROM drive. The CD writing device can be used for this purpose.

cdrw(1)

ATTRIBUTES

SEE ALSO

NOTES

122 man pages section 1: User Commands • Last Revised 21 Aug 2001

Before writing a CD, ensure that the media is blank by using the -M option and use the
-S simulation mode to test the system to make sure it can provide data at the required
rate. In case the system is not able to provide data at the required rate, try simulation
with a slower write speed set through the -p option. Users can also try to run cdrw at
a higher priority using the priocntl(1) command.

The -p option is provided for users who are aware of the CD-R/RW drive and its
capabilities to operate at different write speeds. Some commercially available drives
handle the drive speed setting command differently, so use this option judiciously.

Most commercially available drives allow writing beyond 74 minutes as long as the
media has the capacity (such as 80–minute media). However, such capability of
writing beyond 74 minutes might not be supported by the drive in use. If the drive
being used supports such capability, then use the -C option to indicate that the tool
should rely on the capacity indicated by the media.

The cdrw command uses rbac(5) to control user access to the devices. By default,
cdrw is accessible to all users but can be restricted to individual users. Please refer to
"Administering CD-R/CD-RW devices" in the System Administration Guide: Basic
Administration for more information.

cdrw(1)

User Commands 123

checknr – check nroff and troff input files; report possible errors

checknr [-fs] [-a . x1 . y1 . x2 . y2xn .yn] [-c . x1 . x2 . x3
... .xn] [filename…]

checknr checks a list of nroff(1) or troff(1) input files for certain kinds of errors
involving mismatched opening and closing delimiters and unknown commands. If no
files are specified, checknr checks the standard input. Delimiters checked are:

� Font changes using \fx . . . \fP.

� Size changes using \sx . . . \s0.

� Macros that come in open . . . close forms, for example, the .TS and .TE macros
which must always come in pairs.

checknr knows about the ms(5) and me(5) macro packages.

checknr is intended to be used on documents that are prepared with checknr in
mind. It expects a certain document writing style for \f and \s commands, in that
each \fx must be terminated with \fP and each \sx must be terminated with \s0.
While it will work to directly go into the next font or explicitly specify the original font
or point size, and many existing documents actually do this, such a practice will
produce complaints from checknr. Since it is probably better to use the \fP and \s0
forms anyway, you should think of this as a contribution to your document
preparation style.

-f Ignore \f font changes.

-s Ignore \s size changes.

-a .x1 .y1. . . Add pairs of macros to the list. The pairs of macros are assumed to
be those (such as .DS and .DE) that should be checked for
balance. The -a option must be followed by groups of six
characters, each group defining a pair of macros. The six characters
are a period, the first macro name, another period, and the second
macro name. For example, to define a pair .BS and .ES, use
‘-a.BS.ES’

-c .x1 . . . Define commands which checknr would otherwise complain
about as undefined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

eqn(1), nroff(1), troff(1), attributes(5), me(5), ms(5)

There is no way to define a one-character macro name using the -a option.

checknr(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

BUGS

124 man pages section 1: User Commands • Last Revised 14 Sep 1992

chgrp – change file group ownership

chgrp [-fhR] group file…

The chgrp utility will set the group ID of the file named by each file operand to the
group ID specified by the group operand.

For each file operand, it will perform actions equivalent to the chown(2) function,
called with the following arguments:

� The file operand will be used as the path argument.
� The user ID of the file will be used as the owner argument.
� The specified group ID will be used as the group argument.

Unless chgrp is invoked by a process with appropriate privileges, the set-user-ID and
set-group-ID bits of a regular file will be cleared upon successful completion; the
set-user-ID and set-group-ID bits of other file types may be cleared.

The operating system has a configuration option _POSIX_CHOWN_RESTRICTED, to
restrict ownership changes. When this option is in effect, the owner of the file may
change the group of the file only to a group to which the owner belongs. Only the
super-user can arbitrarily change owner IDs, whether or not this option is in effect. To
set this configuration option, include the following line in /etc/system:

set rstchown = 1

To disable this option, include the following line in /etc/system:

set rstchown = 0

_POSIX_CHOWN_RESTRICTED is enabled by default. See system(4) and
fpathconf(2).

-f Force. Do not report errors.

-h If the file is a symbolic link, change the group of the symbolic link. Without
this option, the group of the file referenced by the symbolic link is changed.

-R Recursive. chgrp descends through the directory, and any subdirectories,
setting the specified group ID as it proceeds. When a symbolic link is
encountered, the group of the target file is changed (unless the -h option is
specified), but no recursion takes place.

The following operands are supported:

group A group name from the group database or a numeric group ID. Either
specifies a group ID to be given to each file named by one of the file
operands. If a numeric group operand exists in the group database as a
group name, the group ID number associated with that group name is used
as the group ID.

file A path name of a file whose group ID is to be modified.

chgrp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 125

See largefile(5) for the description of the behavior of chgrp when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of chgrp: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

/etc/group group file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled (see NOTES)

chmod(1), chown(1), id(1M), chown(2), fpathconf(2), group(4), passwd(4),
system(4), attributes(5), environ(5), largefile(5)

chgrp is CSI-enabled except for the group name.

chgrp(1)

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

126 man pages section 1: User Commands • Last Revised 20 Dec 1996

chkey – change user’s secure RPC key pair

chkey [-p] [-s nisplus | nis | files | ldap] [-m <mechanism>]

chkey is used to change a user’s secure RPC public key and secret key pair. chkey
prompts for the old secure-rpc password and verifies that it is correct by decrypting
the secret key. If the user has not already used keylogin(1) to decrypt and store the
secret key with keyserv(1M), chkey registers the secret key with the local
keyserv(1M) daemon. If the secure-rpc password does not match the login
password, chkey prompts for the login password. chkey uses the login password to
encrypt the user’s secret Diffie-Hellman (192 bit) cryptographic key. chkey can also
encrypt other Diffie-Hellman keys for authentication mechanisms configured using
nisauthconf(1M).

chkey ensures that the login password and the secure-rpc password(s) are kept the
same, thus enabling password shadowing. See shadow(4).

The key pair can be stored in the /etc/publickey file (see publickey(4)), the NIS
publickey map, or the NIS+ cred.org_dir table. If a new secret key is generated,
it will be registered with the local keyserv(1M) daemon. However, only NIS+ can
store Diffie-Hellman keys other than 192-bits.

Keys for specific mechanisms can be changed or reencrypted using the -m option
followed by the authentication mechanism name. Multiple -m options can be used to
change one or more keys. However, only mechanisms configured using
nisauthconf(1M) can be changed with chkey.

If the source of the publickey is not specified with the -s option, chkey consults the
publickey entry in the name service switch configuration file. See
nsswitch.conf(4). If the publickey entry specifies one and only one source, then
chkey will change the key in the specified name service. However, if multiple name
services are listed, chkey can not decide which source to update and will display an
error message. The user should specify the source explicitly with the -s option.

Non root users are not allowed to change their key pair in the files database.

The following options are supported:

-p Re-encrypt the existing secret key with the user’s login
password.

-s nisplus Update the NIS+ database.

-s nis Update the NIS database.

-s files Update the files database.

-s ldap Update the LDAP database.

-m <mechanism> Changes or re-encrypt the secret key for the specified
mechanism.

chkey(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 127

/etc/nsswitch.conf

/etc/publickey

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

keylogin(1), keylogout(1), keyserv(1M), newkey(1M), nisaddcred(1M),
nisauthconf(1M), nsswitch.conf(4), publickey(4), shadow(4), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

chkey(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

128 man pages section 1: User Commands • Last Revised 24 Jan 2002

chmod – change the permissions mode of a file

chmod [-fR] absolute-mode file…

chmod [-fR] symbolic-mode-list file…

The chmod utility changes or assigns the mode of a file. The mode of a file specifies its
permissions and other attributes. The mode may be absolute or symbolic.

An absolute mode specification has the following format:

chmod [options] absolute-mode file . . .where absolute-mode is specified using octal
numbers nnnn defined as follows:

n a number from 0 to 7. An absolute mode is constructed from the OR of any
of the following modes:

4000 Set user ID on execution.

20 # 0 Set group ID on execution if # is 7, 5, 3, or 1.

Enable mandatory locking if # is 6, 4, 2, or 0.

For directories, files are created with BSD semantics for
propagation of the group ID. With this option, files and
subdirectories created in the directory inherit the group ID of
the directory, rather than of the current process. For directories,
the set-gid bit may only be set or cleared by using symbolic
mode.

1000 Turn on sticky bit. See chmod(2).

0400 Allow read by owner.

0200 Allow write by owner.

0100 Allow execute (search in directory) by owner.

0700 Allow read, write, and execute (search) by owner.

0040 Allow read by group.

0020 Allow write by group.

0010 Allow execute (search in directory) by group.

0070 Allow read, write, and execute (search) by group.

0004 Allow read by others.

0002 Allow write by others.

0001 Allow execute (search in directory) by others.

0007 Allow read, write, and execute (search) by others.

chmod(1)

NAME

SYNOPSIS

DESCRIPTION

Absolute mode

User Commands 129

For directories, the setgid bit cannot be set (or cleared) in absolute mode; it must be
set (or cleared) in symbolic mode using g+s (or g-s).

A symbolic mode specification has the following format:

chmod [options] symbolic-mode-list file . . .where symbolic-mode-list is a comma-separated
list (with no intervening whitespace) of symbolic mode expressions of the form:

[who] operator [permissions]

Operations are performed in the order given. Multiple permissions letters following a
single operator cause the corresponding operations to be performed simultaneously.

who zero or more of the characters u, g, o, and a specifying whose
permissions are to be changed or assigned:

u user’s permissions

g group’s permissions

o others’ permissions

a all permissions (user, group, and other)

If who is omitted, it defaults to a, but the setting of the file mode
creation mask (see umask in sh(1) or csh(1) for more information)
is taken into account. When who is omitted, chmod will not
override the restrictions of your user mask.

operator either +, −, or =, signifying how permissions are to be changed:

+ Add permissions.

If permissions is omitted, nothing is added.

If who is omitted, add the file mode bits represented by
permissions, except for the those with corresponding bits
in the file mode creation mask.

If who is present, add the file mode bits represented by
the permissions.

− Take away permissions.

If permissions is omitted, do nothing.

If who is omitted, clear the file mode bits represented
by permissions, except for those with corresponding bits
in the file mode creation mask.

If who is present, clear the file mode bits represented by
permissions.

chmod(1)

Symbolic mode

130 man pages section 1: User Commands • Last Revised 4 Dec 2000

= Assign permissions absolutely.

If who is omitted, clear all file mode bits; if who is
present, clear the file mode bits represented by who.

If permissions is omitted, do nothing else.

If who is omitted, add the file mode bits represented by
permissions, except for the those with corresponding bits
in the file mode creation mask.

If who is present, add the file mode bits represented by
permissions.

Unlike other symbolic operations, = has an absolute effect in that it
resets all other bits represented by who. Omitting permissions is
useful only with = to take away all permissions.

permission any compatible combination of the following letters:

l mandatory locking

r read permission

s user or group set-ID

t sticky bit

w write permission

x execute permission

X execute permission if the file is a directory or if there is
execute permission for one of the other user classes

u,g,o indicate that permission is to be taken from the current
user, group or other mode respectively.

Permissions to a file may vary depending on your user
identification number (UID) or group identification number (GID).
Permissions are described in three sequences each having three
characters:

User Group Other

rwx rwx rwx

This example (user, group, and others all have permission to read,
write, and execute a given file) demonstrates two categories for
granting permissions: the access class and the permissions
themselves.

chmod(1)

User Commands 131

The letter s is only meaningful with u or g, and t only works with
u.

Mandatory file and record locking (l) refers to a file’s ability to
have its reading or writing permissions locked while a program is
accessing that file.

In a directory which has the set-group-ID bit set (reflected as either
-----s--- or -----l--- in the output of ’ls -ld’), files and
subdirectories are created with the group-ID of the parent
directory—not that of current process.

It is not possible to permit group execution and enable a file to be
locked on execution at the same time. In addition, it is not possible
to turn on the set-group-ID bit and enable a file to be locked on
execution at the same time. The following examples, therefore, are
invalid and elicit error messages:

chmod g+x,+l file
chmod g+s,+l file

Only the owner of a file or directory (or the super-user) may
change that file’s or directory’s mode. Only the super-user may set
the sticky bit on a non-directory file. If you are not super-user,
chmod will mask the sticky-bit but will not return an error. In
order to turn on a file’s set-group-ID bit, your own group ID must
correspond to the file’s and group execution must be set.

The following options are supported:

-f Force. chmod will not complain if it fails to change the mode of a file.

-R Recursively descends through directory arguments, setting the mode for
each file as described above. When symbolic links are encountered, the
mode of the target file is changed, but no recursion takes place.

The following operands are supported:

absolute-mode
symbolic-mode-list Represents the change to be made to the file mode bits of each file

named by one of the file operands. See Absolute Mode and
Symbolic Mode above in the DESCRIPTION section for more
information.

file A path name of a file whose file mode bits are to be modified.

See largefile(5) for the description of the behavior of chmod when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Denying execute permission to everyone

example% chmod a-x file

chmod(1)

OPTIONS

OPERANDS

USAGE

EXAMPLES

132 man pages section 1: User Commands • Last Revised 4 Dec 2000

EXAMPLE 2 Allowing only read permission to everyone

example% chmod 444 file

EXAMPLE 3 Making a file readable and writable by the group and others

example% chmod go+rw file
example% chmod 066 file

EXAMPLE 4 Causing a file to be locked during access

example% chmod +l file

EXAMPLE 5 Allowing everyone to read, write, and execute the file and turn on the set
group-ID

example% chmod a=rwx,g+s file
example% chmod 2777 file

See environ(5) for descriptions of the following environment variables that affect the
execution of chmod: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

getfacl(1), ls(1), setfacl(1), chmod(2), attributes(5), environ(5),
largefile(5)

Absolute changes do not work for the set-group-ID bit of a directory. You must use
g+s or g-s.

chmod permits you to produce useless modes so long as they are not illegal (for
instance, making a text file executable). chmod does not check the file type to see if
mandatory locking is meaningful.

If the filesystem is mounted with the nosuid option, setuid execution is not allowed.

chmod(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 133

If you use chmod to change the file group owner permissions on a file with ACL
entries, both the file group owner permissions and the ACL mask are changed to the
new permissions. Be aware that the new ACL mask permissions may change the
effective permissions for additional users and groups who have ACL entries on the
file. Use the getfacl(1) command to make sure the appropriate permissions are set
for all ACL entries.

chmod(1)

134 man pages section 1: User Commands • Last Revised 4 Dec 2000

chown – change file ownership

chown [-fhR] owner [: group] file…

The chown utility will set the user ID of the file named by each file to the user ID
specified by owner, and, optionally, will set the group ID to that specified by group.

If chown is invoked by other than the super-user, the set-user-ID bit is cleared.

Only the owner of a file (or the super-user) may change the owner of that file.

The operating system has a configuration option {_POSIX_CHOWN_RESTRICTED}, to
restrict ownership changes. When this option is in effect the owner of the file is
prevented from changing the owner ID of the file. Only the super-user can arbitrarily
change owner IDs whether or not this option is in effect. To set this configuration
option, include the following line in /etc/system:

set rstchown = 1

To disable this option, include the following line in /etc/system:

set rstchown = 0

{_POSIX_CHOWN_RESTRICTED} is enabled by default. See system(4) and
fpathconf(2).

The following options are supported:

-f Do not report errors.

-h If the file is a symbolic link, change the owner of the symbolic link. Without
this option, the owner of the file referenced by the symbolic link is
changed.

-R Recursive. chown descends through the directory, and any subdirectories,
setting the ownership ID as it proceeds. When a symbolic link is
encountered, the owner of the target file is changed (unless the -h option is
specified), but no recursion takes place.

The following operands are supported:

owner[: group] A user ID and optional group ID to be assigned to
file. The owner portion of this operand must be a user
name from the user database or a numeric user ID.
Either specifies a user ID to be given to each file named
by file. If a numeric owner exists in the user database as
a user name, the user ID number associated with that
user name will be used as the user ID. Similarly, if the
group portion of this operand is present, it must be a
group name from the group database or a numeric
group ID. Either specifies a group ID to be given to
each file. If a numeric group operand exists in the

chown(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 135

group database as a group name, the group ID number
associated with that group name will be used as the
group ID.

file A path name of a file whose user ID is to be modified.

See largefile(5) for the description of the behavior of chown when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Changing ownership of all files in the hierarchy

To change ownership of all files in the hierarchy, including symbolic links, but not the
targets of the links:

example% chown −R −h owner[:group] file...

See environ(5) for descriptions of the following environment variables that affect the
execution of chown: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

/etc/passwd system password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled (see NOTES)

chgrp(1), chmod(1), chown(2), fpathconf(2), passwd(4), system(4),
attributes(5), environ(5), largefile(5)

chown is CSI-enabled except for the owner and group names.

chown(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

136 man pages section 1: User Commands • Last Revised 1 Jun1998

chown – change owner

/usr/ucb/chown [-fR] owner [.group] filename…

chown changes the owner of the filenames to owner. The owner may be either a decimal
user ID (UID) or a login name found in the password file. An optional group may also
be specified. The group may be either a decimal group ID (GID) or a group name
found in the GID file.

Only the super-user can change owner, in order to simplify accounting procedures.

-f Do not report errors.

-R Recursively descend into directories setting the ownership of all files in
each directory encountered. When symbolic links are encountered, their
ownership is changed, but they are not traversed.

See largefile(5) for the description of the behavior of chown when encountering
files greater than or equal to 2 Gbyte (231 bytes).

/etc/passwd password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

chgrp(1), chown(2), group(4), passwd(4), attributes(5), largefile(5)

chown(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

FILES

ATTRIBUTES

SEE ALSO

User Commands 137

ckdate, errdate, helpdate, valdate – prompts for and validates a date

ckdate [-Q] [-W width] [-f format] [-d default] [-h help] [-e error]
[-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errdate [-W width] [-e error] [-f format]

/usr/sadm/bin/helpdate [-W width] [-h help] [-f format]

/usr/sadm/bin/valdate [-f format] input

The ckdate utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a date, text for help and error
messages, and a default value (which will be returned if the user responds with a
RETURN). The user response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckdate command. They are errdate
(which formats and displays an error message), helpdate (which formats and
displays a help message), and valdate (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When format is defined in the errdate and helpdate
modules, the messages will describe the expected format.

The following options are supported:

-d default Defines the default value as default. The default does not have to
meet the format criteria.

-e error Defines the error message as error.

-f format Specifies the format against which the input will be verified.
Possible formats and their definitions are:

%b = abbreviated month name (jan, feb, mar)

%B = full month name %d = day of month (01 - 31)

%D = date as %m/%d/%y (the default format)

%e = day of month (1 - 31; single digits are preceded by a
blank)

%h = abbreviated month name, identical to %b%

%m = month number (01 - 12)

ckdate(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

138 man pages section 1: User Commands • Last Revised 14 Sep 1992

%y = year within century (for instance, 89)

%Y = year as CCYY (for instance, 1989)

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against format criteria.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

3 User termination (quit).

4 Garbled format argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default prompt for ckdate is:

Enter the date [?,q]:

The default error message is:

ERROR - Please enter a date. Format is <format>.

The default help message is:

Please enter a date. Format is <format>.

ckdate(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 139

When the quit option is chosen (and allowed), q is returned along with the return code
3. The valdate module will not produce any output. It returns zero for success and
non-zero for failure.

ckdate(1)

140 man pages section 1: User Commands • Last Revised 14 Sep 1992

ckgid, errgid, helpgid, valgid – prompts for and validates a group id

ckgid [-Q] [-W width] [-m] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

/usr/sadm/bin/errgid [-W width] [-e error]

/usr/sadm/bin/helpgid [-W width] [-m] [-h help]

/usr/sadm/bin/valgid input

ckgid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing group ID, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckgid command. They are errgid
(which formats and displays an error message), helpgid (which formats and displays
a help message), and valgid (which validates a response). These modules should be
used in conjunction with FML objects. In this instance, the FML object defines the
prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-m Displays a list of all groups when help is requested or when the
user makes an error.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

ckgid(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 141

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against /etc/group.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default prompt for ckgid is:

Enter the name of an existing group [?,q]:

The default error message is:

ERROR: Please enter one of the following group names: [List]

If the -m option of ckgid is used, a list of valid groups is displayed here.

The default help message is:

ERROR: Please enter one of the following group names: [List]

If the -m option of ckgid is used, a list of valid groups is displayed here.

When the quit option is chosen (and allowed), q is returned along with the return code
3. The valgid module will not produce any output. It returns 0 for success and
non-zero for failure.

ckgid(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

142 man pages section 1: User Commands • Last Revised 14 Sep 1992

ckint, errint, helpint, valint – display a prompt; verify and return an integer value

ckint [-Q] [-W width] [-b base] [-d default] [-h help] [-e error]
[-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errint [-W width] [-b base] [-e error]

/usr/sadm/bin/helpint [-W width] [-b base] [-h help]

/usr/sadm/bin/valint [-b base] input

The ckint utility prompts a user, then validates the response. It defines, among other
things, a prompt message whose response should be an integer, text for help and error
messages, and a default value (which will be returned if the user responds with a
carriage return).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckint command. They are errint
(which formats and displays an error message), helpint (which formats and displays
a help message), and valint (which validates a response). These modules should be
used in conjunction with FML objects. In this instance, the FML object defines the
prompt. When base is defined in the errint and helpint modules, the messages
will include the expected base of the input.

The following options are supported:

-b base Defines the base for input. Must be 2 to 36, default is 10.

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

ckint(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 143

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against base criterion.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default base 10 prompt for ckint is:

Enter an integer [?,q]:

The default base 10 error message is:

ERROR - Please enter an integer.

The default base 10 help message is:

Please enter an integer.

The messages are changed from "integer" to "base base integer" if the base is set to a
number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return code
3. The valint module will not produce any output. It returns 0 for success and
non-zero for failure.

ckint(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

144 man pages section 1: User Commands • Last Revised 14 Sep 1992

ckitem, erritem, helpitem – build a menu; prompt for and return a menu item

ckitem [-Q] [-W width] [-uno] [-f filename] [-l label] [[-i invis] [,…]]
[-m max] [-d default] [-h help] [-e error] [-p prompt] [-k pid
[-s signal]] [choice [...]]

/usr/sadm/bin/erritem [-W width] [-e error] [choice [..]]

/usr/sadm/bin/helpitem [-W width] [-h help] [choice [..]]

The ckitem utility builds a menu and prompts the user to choose one item from a
menu of items. It then verifies the response. Options for this command define, among
other things, a prompt message whose response will be a menu item, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return).

By default, the menu is formatted so that each item is prepended by a number and is
printed in columns across the terminal. Column length is determined by the longest
choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Two visual tool modules are linked to the ckitem command. They are erritem
(which formats and displays an error message) and helpitem (which formats and
displays a help message). These modules should be used in conjunction with FML
objects. In this instance, the FML object defines the prompt. When choice is defined in
these modules, the messages will describe the available menu choice (or choices).

The following options are supported:

-d default Define the default value as default. The default is not validated and
so does not have to meet any criteria.

-e error Define the error message as error.

-f filename Define a file, filename, which contains a list of menu items to be
displayed. (The format of this file is: token<tab>description.
Lines beginning with a pound sign (#) are designated as comments
and ignored.)

-h help Define the help messages as help.

-i invis Define invisible menu choices (those which will not be printed in
the menu). (For example, ‘‘all’’ used as an invisible choice would
mean it is a legal option but does not appear in the menu. Any

ckitem(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 145

number of invisible choices may be defined.) Invisible choices
should be made known to a user either in the prompt or in a help
message.

-k pid Specify that the process ID pid is to be sent a signal if the user
chooses to abort.

-l label Define a label, label, to print above the menu.

-m max Define the maximum number of menu choices that the user can
choose. The default is 1.

-n Specify that menu items should not be displayed in alphabetical
order.

-o Specify that only one menu token will be returned.

-p prompt Define the prompt message as prompt.

-Q Specify that quit will not be allowed as a valid response.

-s signal Specify that process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-u Specify that menu items should be displayed as an unnumbered
list.

-W width Specify that prompt, help and error messages will be formatted to
a line length of width.

The following operand is supported:

choice Define menu items. Items should be separated by white space or
newline.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or inability to open file on
-f option, or usage error.

3 User termination (quit).

4 No choices from which to choose.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

ckitem(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

146 man pages section 1: User Commands • Last Revised 14 Sep 1992

The user may input the number of the menu item if choices are numbered or as much
of the string required for a unique identification of the item. Long menus are paged
with 10 items per page.

When menu entries are defined both in a file (by using the -f option) and also on the
command line, they are usually combined alphabetically. However, if the -n option is
used to suppress alphabetical ordering, then the entries defined in the file are shown
first, followed by the options defined on the command line.

The default prompt for ckitem is:

Enter selection [?,??,q]:

One question mark will give a help message and then redisplay the prompt. Two
question marks will give a help message and then redisplay the menu label, the menu
and the prompt.

The default error message if you typed a number is:

ERROR: Bad numeric choice specification

The default error message if you typed a string is:

ERROR: Entry does not match available menu selection. Enter the number
of the menu item you wish to select, the token which is associated
with the menu item, or a partial string which uniquely identifies the
token for the menu item. Enter ?? to reprint the menu.

The default help message is:

Enter the number of the menu item you wish to select, the token
which is associated with the menu item, or a partial string which
uniquely identifies the token for the menu item. Enter ? to
reprint the menu.

When the quit option is chosen (and allowed), q is returned along with the return code
3.

ckitem(1)

NOTES

User Commands 147

ckkeywd – prompts for and validates a keyword

ckkeywd [-Q] [-W width] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]] keyword [...]

ckkeywd prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be one of a list of keywords, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return). The answer returned from this command must match one of the
defined list of keywords.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

keyword Defines the keyword, or list of keywords, against which the
answer will be verified.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or no keywords from which
to choose, or usage error.

ckkeywd(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

148 man pages section 1: User Commands • Last Revised 14 Sep 1992

3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default prompt for ckkeywd is:

Enter appropriate value [keyword,[. . .],?,q]:

The default error message is:

ERROR: Please enter one of the following keywords: keyword,[. . .],q

The default help message is:

keyword,[. . .],q

When the quit option is chosen (and allowed), q is returned along with the return code
3.

ckkeywd(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 149

ckpath, errpath, helppath, valpath – display a prompt; verify and return a pathname

ckpath [-Q] [-W width] [-a | l] [-b | c | f | y] [-n [o | z]]
[-rtwx] [-d default] [-h help] [-e error] [-p prompt] [-k pid
[-s signal]]

/usr/sadm/bin/errpath [-W width] [-a | l] [-b | c | f | y] [-n [o |
z]] [-rtwx] [-e error]

/usr/sadm/bin/helppath [-W width] [-a | l] [-b | c | f | y] [-n [o |
z]] [-rtwx] [-h help]

/usr/sadm/bin/valpath [-a | l] [-b | c | f | y] [-n [o | z]]
[-rtwx] input

The ckpath utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a pathname, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).

The pathname must obey the criteria specified by the first group of options. If no
criteria is defined, the pathname must be for a normal file that does not yet exist. If
neither -a (absolute) or -l (relative) is given, then either is assumed to be valid.

All messages are limited in length to 79 characters and are formatted automatically.
Tabs and newlines are removed after a single white space character in a message
definition, but spaces are not removed. When a tilde is placed at the beginning or end
of a message definition, the default text is inserted at that point, allowing both custom
text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckpath command. They are errpath
(which formats and displays an error message on the standard output), helppath
(which formats and displays a help message on the standard output), and valpath
(which validates a response). These modules should be used in conjunction with
Framed Access Command Environment (FACE) objects. In this instance, the FACE
object defines the prompt.

The following options are supported:

-a Pathname must be an absolute path.

-b Pathname must be a block special file.

-c Pathname must be a character special file.

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-f Pathname must be a regular file.

ckpath(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

150 man pages section 1: User Commands • Last Revised 14 Sep 1992

-h help Defines the help message as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to quit.

-l Pathname must be a relative path.

-n Pathname must not exist (must be new).

-o Pathname must exist (must be old).

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit is not allowed as a valid response.

-r Pathname must be readable.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-t Pathname must be creatable (touchable). Pathname will be created
if it does not already exist.

-w Pathname must be writable.

-W width Specify that prompt, help and error messages be formatted to a
line length of width.

-x Pathname must be executable.

-y Pathname must be a directory.

-z Pathname must have a file having a size greater than zero bytes.

The following operand is supported:

input Input to be verified against validation options.

The text of the default messages for ckpath depends upon the criteria options that
have been used.

EXAMPLE 1 Default prompt

An example default prompt for ckpath (using the -a option) is:

example% ckpath -a

Enter an absolute pathname [?,q]

EXAMPLE 2 Default error message

An example default error message (using the -a option) is:

example% /usr/sadm/bin/errpath -a
ERROR: A pathname is a filename, optionally preceded by parent directories.

The pathname you enter: - must begin with a slash (/)

ckpath(1)

OPERANDS

EXAMPLES

User Commands 151

EXAMPLE 3 Default help message

An example default help message (using the -a option) is:

example% /usr/sadm/bin/helppath -a
A pathname is a filename, optionally preceded by parent directories.

The pathname you enter: - must begin with a slash (/)

EXAMPLE 4 The quit option

When the quit option is chosen (and allowed), q is returned along with the return code
3. Quit input gets a trailing newline.

EXAMPLE 5 Using the valpath module

The valpath module will produce a usage message on stderr. It returns 0 for success
and non-zero for failure.

example% /usr/sadm/bin/valpath
usage: valpath [-[a|l][b|c|f|y][n|[o|z]]rtwx] input

.

.

.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

2 Mutually exclusive options.

3 User termination (quit).

4 Mutually exclusive options.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

face(1), signal(3HEAD), attributes(5)

ckpath(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

152 man pages section 1: User Commands • Last Revised 14 Sep 1992

ckrange, errange, helprange, valrange – prompts for and validates an integer

ckrange [-Q] [-W width] [-l lower] [-u upper] [-b base] [-d default]
[-h help] [-e error] [-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errange [-W width] [-e error] [-l lower] [-u upper]
[-b base]

/usr/sadm/bin/helprange [-W width] [-h help] [-l lower] [-u upper]
[-b base]

/usr/sadm/bin/valrange [-l lower] [-u upper] [-b base] input

The ckrange utility prompts a user for an integer between a specified range and
determines whether this response is valid. It defines, among other things, a prompt
message whose response should be an integer in the range specified, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).

This command also defines a range for valid input. If either the lower or upper limit is
left undefined, then the range is bounded on only one end.

All messages are limited in length to 79 characters and are formatted automatically.
Tabs and newlines are removed after a single whitespace character in a message
definition, but spaces are not removed. When a tilde is placed at the beginning or end
of a message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckrange command. They are errange
(which formats and displays an error message on the standard output), helprange
(which formats and displays a help message on the standard output), and valrange
(which validates a response). These modules should be used in conjunction with
Framed Access Command Environment (FACE) objects. In this instance, the FACE
object defines the prompt.

Note: Negative "input" arguments confuse getopt in valrange. By inserting a "−"
before the argument, getopt processing will stop. See getopt(1) and intro(1) about
getopt parameter handling. getopt is used to parse positional parameters and to
check for legal options.

The following options are supported:

-b base Defines the base for input. Must be 2 to 36, default is 10. Base
conversion uses strtol(3C). Output is always base 10.

-d default Defines the default value as default. default is converted using
strtol(3C) in the desired base. Any characters invalid in the
specified base will terminate the strtol conversion without error.

ckrange(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 153

-e error Defines the error message as error.

-h help Defines the help message as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to quit.

-l lower Defines the lower limit of the range as lower. Default is the
machine’s largest negative long.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-u upper Defines the upper limit of the range as upper. Default is the
machine’s largest positive long.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against upper and lower limits and base.

EXAMPLE 1 Default base 10 prompt

The default base 10 prompt for ckrange is:

example% ckrange
Enter an integer between lower_bound and
upper_bound [lower_bound−upper_bound,?,q]:

EXAMPLE 2 Default base 10 error message

The default base 10 error message is:

example% /usr/sadm/bin/errange
ERROR: Please enter an integer between lower_bound \

and upper_bound.

EXAMPLE 3 Default base 10 help message

The default base 10 help message is:

example% /usr/sadm/bin/helprange

Please enter an integer between lower_bound and upper_bound.

ckrange(1)

OPERANDS

EXAMPLES

154 man pages section 1: User Commands • Last Revised 14 Sep 1992

EXAMPLE 4 Changing messages for a base other than 10

The messages are changed from ‘‘integer’’ to ‘‘base base integer’’ if the base is set to a
number other than 10. For example,

example% /usr/sadm/bin/helprange -b 36

EXAMPLE 5 Using the quit option

When the quit option is chosen (and allowed), q is returned along with the return code
3. Quit input gets a trailing newline.

EXAMPLE 6 Using the valrange module

The valrange module will produce a usage message on stderr. It returns 0 for
success and non-zero for failure.

example% /usr/sadm/bin/valrange

usage: valrange [-l lower] [-u upper] [-b base] input

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

2 Usage error.

3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

intro(1), face(1), getopt(1), strtol(3C), attributes(5), signal(3HEAD)

ckrange(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 155

ckstr, errstr, helpstr, valstr – display a prompt; verify and return a string answer

ckstr [-Q] [-W width] [[-r regexp] [...]] [-l length] [-d default]
[-h help] [-e error] [-p prompt] [-k pid [- s signal]]

/usr/sadm/bin/errstr [-W width] [-e error] [-l length] [[-r regexp]
[...]]

/usr/sadm/bin/helpstr [-W width] [-h help] [-l length] [[-r regexp]
[...]]

/usr/sadm/bin/valstr [-l length] [[-r regexp] [...]] input

The ckstr utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a string, text for help and error
messages, and a default value (which are returned if the user responds with a
RETURN).

The answer returned from this command must match the defined regular expression
and be no longer than the length specified. If no regular expression is given, valid
input must be a string with a length less than or equal to the length defined with no
internal, leading or trailing white space. If no length is defined, the length is not
checked.

All messages are limited in length to 79 characters and are formatted automatically.
Tabs and newlines are removed after a single white space character in a message
definition, but spaces are not removed. When a tilde is placed at the beginning or end
of a message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckstr command. They are errstr
(which formats and displays an error message on the standard output), helpstr
(which formats and displays a help message on the standard output), and valstr
(which validates a response). These modules should be used in conjunction with
Framed Access Command Environment (FACE) objects. In this instance, the FACE
object defines the prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help message as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to quit.

-l length Specifies the maximum length of the input.

ckstr(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

156 man pages section 1: User Commands • Last Revised 14 Sep 1992

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-r regexp Specifies a regular expression, regexp, against which the input
should be validated. May include white space. If multiple
expressions are defined, the answer need match only one of them.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against format length and/or regular
expression criteria.

EXAMPLE 1 Default prompt

The default prompt for ckstr is:

example% ckstr

Enter an appropriate value [?,q]:

EXAMPLE 2 Default error message

The default error message is dependent upon the type of validation involved. The user
will be told either that the length or the pattern matching failed. The default error
message is:

example% /usr/sadm/bin/errstr
ERROR: Please enter a string which contains no embedded,

leading or trailing spaces or tabs.

EXAMPLE 3 Default help message

The default help message is also dependent upon the type of validation involved. If a
regular expression has been defined, the message is:

example% /usr/sadm/bin/helpstr -r regexp
Please enter a string which matches the following pattern:

regexp

Other messages define the length requirement and the definition of a string.

EXAMPLE 4 Using the quit option

When the quit option is chosen (and allowed), q is returned along with the return code
3. Quit input gets a trailing newline.

ckstr(1)

OPERANDS

EXAMPLES

User Commands 157

EXAMPLE 5 Using the valstr module

The valstr module will produce a usage message on stderr. It returns 0 for success
and non-zero for failure.

example% /usr/sadm/bin/valstr

usage: valstr [-l length] [[-r regexp] [. . .]] input

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

2 Invalid regular expression.

3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

face(1), signal(3HEAD), attributes(5)

ckstr(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

158 man pages section 1: User Commands • Last Revised 14 Sep 1992

cksum – write file checksums and sizes

cksum [file…]

The cksum command calculates and writes to standard output a cyclic redundancy
check (CRC) for each input file, and also writes to standard output the number of
octets in each file.

For each file processed successfully, cksum will write in the following format:

"%u %d %s\n" <checksum>, <# of octets>, <path name>

If no file operand was specified, the path name and its leading space will be omitted.

The CRC used is based on the polynomial used for CRC error checking in the
referenced Ethernet standard.

The encoding for the CRC checksum is defined by the generating polynomial:

G (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Mathematically, the CRC value corresponding to a given file is defined by the
following procedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2
polynomial M(x) of degree n−1. These n bits are the bits from the file, with the most
significant bit being the most significant bit of the first octet of the file and the last
bit being the least significant bit of the last octet, padded with zero bits (if
necessary) to achieve an integral number of octets, followed by one or more octets
representing the length of the file as a binary value, least significant octet first. The
smallest number of octets capable of representing this integer is used.

2. M(x) is multiplied by x 32 (that is, shifted left 32 bits) and divided by G(x) using
mod 2 division, producing a remainder R(x) of degree ≤ 31.

3. The coefficients of R(x) are considered to be a 32-bit sequence.

4. The bit sequence is complemented and the result is the CRC.

The following operand is supported:

file A path name of a file to be checked. If no file operands are specified, the
standard input is used.

The cksum command is typically used to quickly compare a suspect file against a
trusted version of the same, such as to ensure that files transmitted over noisy media
arrive intact. However, this comparison cannot be considered cryptographically
secure. The chances of a damaged file producing the same CRC as the original are
astronomically small; deliberate deception is difficult, but probably not impossible.

cksum(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

USAGE

User Commands 159

Although input files to cksum can be any type, the results need not be what would be
expected on character special device files. Since this document does not specify the
block size used when doing input, checksums of character special files need not
process all of the data in those files.

The algorithm is expressed in terms of a bitstream divided into octets. If a file is
transmitted between two systems and undergoes any data transformation (such as
moving 8-bit characters into 9-bit bytes or changing “Little Endian” byte ordering to
“Big Endian”), identical CRC values cannot be expected. Implementations performing
such transformations may extend cksum to handle such situations.

See largefile(5) for the description of the behavior of cksum when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of cksum: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All files were processed successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sum(1), attributes(5), environ(5), largefile(5)

cksum(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

160 man pages section 1: User Commands • Last Revised 1 Feb 1995

cktime, errtime, helptime, valtime – display a prompt; verify and return a time of day

cktime [-Q] [-W width] [-f format] [-d default] [-h help] [-e error]
[-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errtime [-W width] [-e error] [-f format]

/usr/sadm/bin/helptime [-W width] [-h help] [-f format]

/usr/sadm/bin/valtime [-f format] input

The cktime utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a time, text for help and error
messages, and a default value (which is returned if the user responds with a
RETURN). The user response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including NEWLINE) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the cktime command. They are errtime
(which formats and displays an error message), helptime (which formats and
displays a help message), and valtime (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When format is defined in the errtime and helptime
modules, the messages will describe the expected format.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-f format Specifies the format against which the input will be verified.
Possible formats and their definitions are:

%H = hour (00 - 23)
%I = hour (00 - 12)
%M = minute (00 - 59)
%p = ante meridian or post meridian
%r = time as %I:%M:%S %p
%R = time as %H:%M (the default format)
%S = seconds (00 - 59)
%T = time as %H:%M:%S

-h help Defines the help messages as help.

cktime(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 161

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against format criteria.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error .

3 User termination (quit) .

4 Garbled format argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default prompt for cktime is:

Enter a time of day [?,q]:

The default error message is:

ERROR: Please enter the time of day. Format is <format>.

The default help message is:

Please enter the time of day. Format is <format>.

When the quit option is chosen (and allowed), q is returned along with the return code
3. The valtime module will not produce any output. It returns 0 for success and
non-zero for failure.

cktime(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

162 man pages section 1: User Commands • Last Revised 14 Sep 1992

ckuid, erruid, helpuid, valuid – prompts for and validates a user ID

ckuid [-Q] [-W width] [-m] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

/usr/sadm/bin/erruid [-W width] [-e error]

/usr/sadm/bin/helpuid [-W width] [-m] [-h help]

/usr/sadm/bin/valuid input

The ckuid utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be an existing user ID, text for help
and error messages, and a default value (which are returned if the user responds with
a RETURN).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including NEWLINE) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckuid command. They are erruid
(which formats and displays an error message), helpuid (which formats and displays
a help message), and valuid (which validates a response). These modules should be
used in conjunction with FML objects. In this instance, the FML object defines the
prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-m Displays a list of all logins when help is requested or when the
user makes an error.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

ckuid(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 163

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against /etc/passwd.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

2 Usage error.

3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default prompt for ckuid is:

Enter the login name of an existing user [?,q]:

The default error message is:

ERROR - Please enter the login name of an existing user.

If the -m option is used, the default error message is:

ERROR: Please enter one of the following login names: <List>

The default help message is:

Please enter the login name of an existing user.

If the -m option is used, the default help message is:

Please enter one of the following login names: <List>

When the quit option is chosen (and allowed), q is returned along with the return code
3. The valuid module will not produce any output. It returns 0 for success and
non-zero for failure.

ckuid(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

164 man pages section 1: User Commands • Last Revised 14 Sep 1992

ckyorn, erryorn, helpyorn, valyorn – prompts for and validates yes/no

ckyorn [-Q] [-W width] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

/usr/sadm/bin/erryorn [-W width] [-e error]

/usr/sadm/bin/helpyorn [-W width] [-h help]

/usr/sadm/bin/valyorn input

ckyorn prompts a user and validates the response. It defines, among other things, a
prompt message for a yes or no answer, text for help and error messages, and a
default value (which is returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text is inserted at that point, allowing both custom text
and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn
(which formats and displays an error message), helpyorn (which formats and
displays a help message), and valyorn (which validates a response). These modules
should be used in conjunction with FACE objects. In this instance, the FACE object
defines the prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

ckyorn(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 165

input Input to be verified as y, yes, or n, no (in any combination of
upper- and lower-case letters).

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.

2 Usage error.

3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default prompt for ckyorn is:

Yes or No [y,n,?,q]:

The default error message is:

ERROR - Please enter yes or no.

The default help message is:

To respond in the affirmative, enter y, yes, Y, or YES.
To respond in the negative, enter n, no, N, or NO.

When the quit option is chosen (and allowed), q is returned along with the return code
3. The valyorn module will not produce any output. It returns 0 for success and
non-zero for failure.

ckyorn(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

166 man pages section 1: User Commands • Last Revised 14 Sep 1992

clear – clear the terminal screen

clear

clear clears your screen if this is possible. It looks in the environment for the
terminal type and then in the terminfo database to figure out how to clear the screen.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

clear(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

User Commands 167

cmp – compare two files

cmp [-l] [-s] file1 file2 [skip1] [skip2]

The cmp utility compares two files. cmp will write no output if the files are the same.
Under default options, if they differ, it writes to standard output the byte and line
numbers at which the first difference occurred. Bytes and lines are numbered
beginning with 1. If one file is an initial subsequence of the other, that fact is noted.
skip1 and skip2 are initial byte offsets into file1 and file2 respectively, and may be either
octal or decimal; a leading 0 denotes octal.

-l Write the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Write nothing for differing files; return exit statuses only.

The following operands are supported:

file1 A path name of the first file to be compared. If file1 is −, the standard input
will be used.

file2 A path name of the second file to be compared. If file2 is −, the standard
input will be used.

If both file1 and file2 refer to standard input or refer to the same FIFO special, block
special or character special file, an error results.

See largefile(5) for the description of the behavior of cmp when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Byte for byte comparison of files.

The following example:

example% cmp file1 file2 0 1024

does a byte for byte comparison of file1 and file2. It skips the first 1024 bytes in file2
before starting the comparison.

See environ(5) for descriptions of the following environment variables that affect the
execution of cmp: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following error values are returned:

0 The files are identical.

1 The files are different; this includes the case where one file is identical to
the first part of the other.

>1 An error occurred.

See attributes(5) for descriptions of the following attributes:

cmp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

168 man pages section 1: User Commands • Last Revised 1 Feb 1995

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

comm(1), diff(1), attributes(5), environ(5), largefile(5)

cmp(1)

SEE ALSO

User Commands 169

col – reverse line-feeds filter

col [-bfpx]

The col utility reads from the standard input and writes to the standard output. It
performs the line overlays implied by reverse line-feeds, and by forward and reverse
half-line-feeds. Unless -x is used, all blank characters in the input will be converted to
tab characters wherever possible. col is particularly useful for filtering multi-column
output made with the .rt command of nroff(1) and output resulting from use of the
tbl(1) preprocessor.

The ASCII control characters SO and SI are assumed by col to start and end text in an
alternative character set. The character set to which each input character belongs is
remembered, and on output SI and SO characters are generated as appropriate to
ensure that each character is written in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
carriage-return and newline characters, SI, SO, VT, reverse line-feed, forward
half-line-feed and reverse half-line-feed. The VT character is an alternative form of full
reverse line-feed, included for compatibility with some earlier programs of this type.
The only other characters to be copied to the output are those that are printable.

The ASCII codes for the control functions and line-motion sequences mentioned above
are as given in the table below. ESC stands for the ASCII escape character, with the
octal code 033; ESC− means a sequence of two characters, ESC followed by the
character x.

reverse line-feed ESC−7

reverse half-line-feed ESC−8

forward half-line-feed ESC−9

vertical-tab (VT) 013

start-of-text (SO) 016

end-of-text (SI) 017

-b Assume that the output device in use is not capable of backspacing. In this
case, if two or more characters are to appear in the same place, only the last
one read will be output.

-f Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the -f (fine) option; in this case, the output from col may
contain forward half-line-feeds (ESC-9), but will still never contain either
kind of reverse line motion.

col(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

170 man pages section 1: User Commands • Last Revised 1 Feb 1995

-p Normally, col will ignore any escape sequences unknown to it that are
found in its input; the -p option may be used to cause col to output these
sequences as regular characters, subject to overprinting from reverse line
motions. The use of this option is highly discouraged unless the user is
fully aware of the textual position of the escape sequences.

-x Prevent col from converting blank characters to tab characters on output
wherever possible. Tab stops are considered to be at each column position n
such that n modulo 8 equals 1.

See environ(5) for descriptions of the following environment variables that affect the
execution of col: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following error values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

nroff(1), tbl(1), ascii(5), attributes(5), environ(5)

The input format accepted by col matches the output produced by nroff with either
the -T37 or -Tlp options. Use -T37 (and the -f option of col) if the ultimate
disposition of the output of col will be a device that can interpret half-line motions,
and -Tlp otherwise.

col cannot back up more than 128 lines or handle more than 800 characters per line.

Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any superscripts.

col(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 171

comm – select or reject lines common to two files

comm [-123] file1 file2

The comm utility will read file1 and file2, which should be ordered in the current
collating sequence, and produce three text columns as output: lines only in file1; lines
only in file2; and lines in both files.

If the input files were ordered according to the collating sequence of the current locale,
the lines written will be in the collating sequence of the original lines. If not, the
results are unspecified.

The following options are supported:

-1 Suppress the output column of lines unique to file1.

-2 Suppress the output column of lines unique to file2.

-3 Suppress the output column of lines duplicated in file1 and file2.

The following operands are supported:

file1 A path name of the first file to be compared. If file1 is −, the standard input
is used.

file2 A path name of the second file to be compared. If file2 is −, the standard
input is used.

See largefile(5) for the description of the behavior of comm when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Printing a list of utilities specified by files.

If file1, file2, and file3 each contained a sorted list of utilities:

example% comm -23 file1 file2 | comm -23 - file3

would print a list of utilities in file1 not specified by either of the other files;

example% comm -12 file1 file2 | comm -12 - file3

would print a list of utilities specified by all three files; and

example% comm -12 file2 file3 | comm -23 -file1

would print a list of utilities specified by both file2 and file3, but not specified in file1.

See environ(5) for descriptions of the following environment variables that affect the
execution of comm: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were successfully output as specified.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

comm(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

172 man pages section 1: User Commands • Last Revised 21 Feb 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

cmp(1), diff(1), sort(1), uniq(1), attributes(5), environ(5), largefile(5)

comm(1)

SEE ALSO

User Commands 173

command – execute a simple command

command [-p] command_name [argument…]

command [-v | -V]command_name

The command utility causes the shell to treat the arguments as a simple command,
suppressing the shell function lookup.

If the command_name is the same as the name of one of the special built-in utilities, the
special properties will not occur. In every other respect, if command_name is not the
name of a function, the effect of command will be the same as omitting command.

The command utility also provides information concerning how a command name will
be interpreted by the shell; see -v and -V.

The following options are supported:

-p Perform the command search using a default value for PATH that is
guaranteed to find all of the standard utilities.

-v Write a string to standard output that indicates the path or command that
will be used by the shell, in the current shell execution environment to
invoke command_name.

� Utilities, regular built-in utilities, command_names including a slash
character, and any implementation-provided functions that are found
using the PATH variable will be written as absolute path names.

� Shell functions, special built-in utilities, regular built-in utilities not
associated with a PATH search, and shell reserved words will be written
as just their names.

� An alias will be written as a command line that represents its alias
definition.

� Otherwise, no output will be written and the exit status will reflect that
the name was not found.

-V Write a string to standard output that indicates how the name given in the
command_name operand will be interpreted by the shell, in the current shell
execution environment. Although the format of this string is unspecified, it
will indicate in which of the following categories command_name falls and
include the information stated:

� Utilities, regular built-in utilities, and any implementation-provided
functions that are found using the PATH variable will be identified as
such and include the absolute path name in the string.

� Other shell functions will be identified as functions.
� Aliases will be identified as aliases and their definitions will be

included in the string.
� Special built-in utilities will be identified as special built-in utilities.
� Regular built-in utilities not associated with a PATH search will be

identified as regular built-in utilities.

command(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

174 man pages section 1: User Commands • Last Revised 1 Feb 1995

� Shell reserved words will be identified as reserved words.

The following operands are supported:

argument One of the strings treated as an argument to command_name.

command_name The name of a utility or a special built-in utility.

EXAMPLE 1 Make a version of cd that always prints out the new working directory exactly
once:

cd() {
command cd "$@" >/dev/null
pwd

}

EXAMPLE 2 Start off a ‘‘secure shell script’’ in which the script avoids being spoofed by its
parent:

IFS=’
’
The preceding value should be <space><tab><newline>.
Set IFS to its default value.
\unalias -a
Unset all possible aliases.
Note that unalias is escaped to prevent an alias
being used for unalias.
unset -f command
Ensure command is not a user function.
PATH="$(command -p getconf _CS_PATH):$PATH"
Put on a reliable PATH prefix.
. . .

At this point, given correct permissions on the directories called by PATH, the script
has the ability to ensure that any utility it calls is the intended one. It is being very
cautious because it assumes that implementation extensions may be present that
would allow user functions to exist when it is invoked; this capability is not specified
by this document, but it is not prohibited as an extension. For example, the ENV
variable precedes the invocation of the script with a user startup script. Such a script
could define functions to spoof the application.

See environ(5) for descriptions of the following environment variables that affect the
execution of command: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the search path used during the command search, except as
described under the -p option.

When the -v or -V options are specified, the following exit values are returned:

0 Successful completion.

>0 The command_name could not be found or an error occurred.

Otherwise, the following exit values are returned:

command(1)

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 175

126 The utility specified by command_name was found but could not be
invoked.

127 An error occurred in the command utility or the utility specified by
command_name could not be found.

Otherwise, the exit status of command will be that of the simple command specified by
the arguments to command.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sh(1), type(1), attributes(5)

command(1)

ATTRIBUTES

SEE ALSO

176 man pages section 1: User Commands • Last Revised 1 Feb 1995

compress, uncompress, zcat – compress, uncompress files or display expanded files

compress [-fv] [-b bits] [file…]

compress [-cfv] [-b bits] [file]

uncompress [-cfv] [file…]

zcat [file…]

The compress utility will attempt to reduce the size of the named files by using
adaptive Lempel-Ziv coding. Except when the output is to the standard output, each
file will be replaced by one with the extension .Z, while keeping the same ownership
modes, change times and modification times. If appending the .Z to the file pathname
would make the pathname exceed 1023 bytes, the command will fail. If no files are
specified, the standard input will be compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number of
bits per code, and the distribution of common substrings. Typically, text such as source
code or English is reduced by 50−60%. Compression is generally much better than that
achieved by Huffman coding (as used in pack(1)), and takes less time to compute. The
bits parameter specified during compression is encoded within the compressed file,
along with a magic number to ensure that neither decompression of random data nor
recompression of compressed data is subsequently allowed.

The uncompress utility will restore files to their original state after they have been
compressed using the compress utility. If no files are specified, the standard input
will be uncompressed to the standard output.

This utility supports the uncompressing of any files produced by compress. For files
produced by compress on other systems, uncompress supports 9- to 16-bit
compression (see -b).

The zcat utility will write to standard output the uncompressed form of files that
have been compressed using compress. It is the equivalent of uncompress -c.
Input files are not affected.

The following options are supported:

-c Writes to the standard output; no files are changed and no .Z files are
created. The behavior of zcat is identical to that of ‘uncompress -c’.

-f When compressing, forces compression of file, even if it does not actually
reduce the size of the file, or if the corresponding file.Z file already exists. If
the -f option is not given, and the process is not running in the
background, prompts to verify whether an existing file.Z file should be
overwritten. When uncompressing, does not prompt for overwriting files.
If the -f option is not given, and the process is not running in the
background, prompts to verify whether an existing file should be
overwritten. If the standard input is not a terminal and -f is not given,
writes a diagnostic message to standard error and exits with a status
greater than 0.

compress(1)

NAME

SYNOPSIS

compress

uncompress

zcat

OPTIONS

User Commands 177

-v Verbose. Writes to standard error messages concerning the percentage
reduction or expansion of each file.

-b bits Sets the upper limit (in bits) for common substring codes. bits must be
between 9 and 16 (16 is the default). Lowering the number of bits will
result in larger, less compressed files.

The following operand is supported:

file A path name of a file to be compressed by compress, uncompressed by
uncompress, or whose uncompressed form is written to standard out by
zcat. If file is −, or if no file is specified, the standard input will be used.

See largefile(5) for the description of the behavior of compress, uncompress,
and zcat when encountering files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of compress, uncompress, and zcat: LC_CTYPE, LC_MESSAGES, and
NLSPATH.

The following error values are returned:

0 Successful completion.

1 An error occurred.

2 One or more files were not compressed because they would have increased
in size (and the -f option was not specified).

>2 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

ln(1), pack(1), attributes(5), environ(5), largefile(5)

Usage: compress [-fvc] [-b maxbits] [file . . .]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow -b, or invalid maxbits, not a numeric value.

file: not in compressed format
The file specified to uncompress has not been compressed.

compress(1)

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

178 man pages section 1: User Commands • Last Revised 9 Sep 1999

file: compressed with xxbits, can only handle yybits
file was compressed by a program that could deal with more bits than the
compress code on this machine. Recompress the file with smaller bits.

file: already has . Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try again.

file: already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input
A SIGSEGV violation was detected, which usually means that the input file is
corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

– – not a regular file: unchanged
When the input file is not a regular file, (such as a directory), it is left unaltered.

– – has xx other links: unchanged
The input file has links; it is left unchanged. See ln(1) for more information.

– – file unchanged
No savings are achieved by compression. The input remains uncompressed.

filename too long to tack on .Z
The path name is too long to append the .Z suffix.

Although compressed files are compatible between machines with large memory, -b
12 should be used for file transfer to architectures with a small process data space
(64KB or less).

compress should be more flexible about the existence of the . Z suffix.

compress(1)

NOTES

User Commands 179

coproc, cocreate, cosend, cocheck, coreceive, codestroy – communicate with a process

cocreate [-r rpath] [-w wpath] [-i id] [-R refname] [-s send_string]
[-e expect_string] command

cosend [-n] proc_id string

cocheck proc_id

coreceive proc_id

codestroy [-R refname] proc_id [string]

These co-processing functions provide a flexible means of interaction between FMLI
and an independent process; especially, they enable FMLI to be responsive to
asynchronous activity.

The cocreate function starts command as a co-process and initializes communications
by setting up pipes between FMLI and the standard input and standard output of
command. The argument command must be an executable and its arguments (if any).
This means that command expects strings on its input (supplied by cosend) and sends
information on its output that can be handled in various ways by FMLI.

The cosend function sends string to the co-process identified by proc_id via the pipe
set up by cocreate (optionally wpath), where proc_id can be either the command or id
specified in cocreate. By default, cosend blocks, waiting for a response from the
co-process. Also by default, FMLI does not send a send_string and does not expect an
expect_string (except a newline). That is, it reads only one line of output from the
co-process. If -e expect_string was not defined when the pipe was created, then the
output of the co-process is any single string followed by a newline: any other lines of
output remain on the pipe. If the -e option was specified when the pipe was created,
cosend reads lines from the pipe until it reads a line starting with expect_string. All
lines except the line starting with expect_string become the output of cosend.

The cocheck function determines if input is available from the process identified by
proc_id, where proc_id can be either the command or id specified in cocreate. It
returns a Boolean value, which makes cocheck useful in if statements and in other
backquoted expressions in Boolean descriptors. cocheck receives no input from the
co-process; it simply indicates if input is available from the co-process. You must use
coreceive to actually accept the input. The cocheck function can be called from a
reread descriptor to force a frame to update when new data is available. This is
useful when the default value of a field in a form includes coreceive.

The coreceive function is used to read input from the co-process identified by
proc_id, where proc_id can be either the command or id specified in cocreate. It should
only be used when it has been determined, using cocheck, that input is actually
available. If the -e option was used when the co-process was created, coreceive will
continue to return lines of input until expect_string is read. At this point, coreceive
will terminate. The output of coreceive is all the lines that were read excluding the

coproc(1F)

NAME

SYNOPSIS

DESCRIPTION

180 man pages section 1: User Commands • Last Revised 5 Jul 1990

line starting with expect_string . If the -e option was not used in the cocreate, each
invocation of coreceive will return exactly one line from the co-process. If no input
is available when coreceive is invoked, it will simply terminate without producing
output.

The codestroy function terminates the read/write pipes to proc-id, where proc_id can
be either the command or id specified in cocreate. It generates a SIGPIPE signal to
the (child) co-process. This kills the co-process, unless the co-process ignores the
SIGPIPE signal. If the co-process ignores the SIGPIPE, it will not die, even after the
FMLI process terminates (the parent process id of the co-process will be 1).

The optional argument string is sent to the co-process before the co-process dies. If
string is not supplied, a NULL string is passed, followed by the normal send_string
(newline by default). That is, codestroy will call cosend proc_id string: this implies
that codestroy will write any output generated by the co-process to stdout. For
example, if an interactive co-process is written to expect a "quit" string when the
communication is over, the close descriptor could be defined; close=‘codestroy
ID ’quit’ | message‘ and any output generated by the co-process when the
string quit is sent to it via codestroy (using cosend) would be redirected to the
message line.

The codestroy function should usually be given the -R option, since you may have
more than one process with the same name, and you do not want to kill the wrong
one. codestroy keeps track of the number of refnames you have assigned to a process
with cocreate, and when the last instance is killed, it kills the process (id) for you.
codestroy is typically called as part of a close descriptor because close is
evaluated when a frame is closed. This is important because the co-process will
continue to run if codestroy is not issued.

When writing programs to use as co-processes, the following tips may be useful. If the
co-process program is written in C language, be sure to flush output after writing to
the pipe. (Currently, awk(1) and sed(1) cannot be used in a co-process program
because they do not flush after lines of output.) Shell scripts are well-mannered, but
slow. C language is recommended. If possible, use the default send_string, rpath and
wpath. In most cases, expect_string will have to be specified. This, of course, depends
on the co-process.

In the case where asynchronous communication from a co-process is desired, a
co-process program should use vsig to force strings into the pipe and then signal
FMLI that output from the co-process is available. This causes the reread descriptor
of all frames to be evaluated immediately.

cocreate options are:

-r rpath If -r is specified, rpath is the pathname from which
FMLI reads information. This option is usually used to
set up communication with processes that naturally
write to a certain path. If -r is not specified, cocreate
will choose a unique path in /var/tmp.

coproc(1F)

OPTIONS

User Commands 181

-w wpath If -w is specified, wpath is the pathname to which
cosend writes information. This option is usually used
so that one process can talk to many different FMLI
processes through the same pipe. If -w is not specified,
cocreate will choose a unique path in /var/tmp.

-i id If -i is specified, id is an alternative name for the
co-processinitialized by this cocreate. If -i is not
specified, id defaults to command. The argument id can
later be used with the other co-processing functions
rather than command. This option is typically used,
since it facilitates the creation of two or more
co-processes generated from the same command. (For
example, cocreate -i ID1 program args and
cocreate -i ID2 program different_args).

-R refname If -R is specified, refname is a local name for the
co-process. Since the cocreate function can be issued
more than once, a refname is useful when the same
co-process is referenced a second or subsequent time.
With the -R option, if the co-process already exists a
new one will not be created: the same pipes will be
shared. Then, refname can be used as an argument to
the -R option to codestroy when you want to end a
particular connection to a co-process and leave other
connections undisturbed. (The co-process is only killed
after codestroy -R has been called as many times as
cocreate -R was called.)

-s send_string The -s option specifies send_string as a string that will
be appended to all output sent to the co-process using
cosend. This option allows a co-process to know when
input from FMLI has completed. The default
send_string is a newline if -s is not specified.

-e expect_string The -e option specifies expect_string as a string that
identifies the end of all output returned by the
co-process. (Note: expect_string need only be the initial
part of a line, and there must be a newline at the end of
the co-process output.) This option allows FMLI to
know when output from the co-process has completed.
The default expect_string is a newline if -e is not
specified.

cosend options are:

-n If the -n option is specified, cosend will not wait for a response from the
co-process. It simply returns, providing no output. If the -n option is not
used, a co-process that does not answer will cause FMLI to permanently
hang, waiting for input from the co-process.

coproc(1F)

182 man pages section 1: User Commands • Last Revised 5 Jul 1990

EXAMPLE 1 Sample commands

.

.

.
init=‘cocreate -i BIGPROCESS initialize‘
close=‘codestroy BIGPROCESS‘

.

.

.
reread=‘cocheck BIGPROCESS‘

name=‘cosend -n BIGPROCESS field1‘
.
.
.

name="Receive field"
inactive=TRUE
value=‘coreceive BIGPROCESS‘

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

awk(1), cat(1), sed(1), vsig(1F), attributes(5)

If cosend is used without the -n option, a co-process that does not answer will cause
FMLI to permanently hang.

The use of non-alphabetic characters in input and output strings to a co-process
should be avoided because they may not get transferred correctly.

coproc(1F)

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 183

cp – copy files

/usr/bin/cp [-fip@] source_file target_file

/usr/bin/cp [-fip@] source_file… target

/usr/bin/cp -r | -R [-fip@] source_dir… target

/usr/xpg4/bin/cp [-fip@] source_file target_file

/usr/xpg4/bin/cp [-fip@] source_file… target

/usr/xpg4/bin/cp -r | -R [-fip@] source_dir… target

In the first synopsis form, neither source_file nor target_file are directory files, nor can
they have the same name. The cp utility will copy the contents of source_file to the
destination path named by target_file. If target_file exists, cp will overwrite its contents,
but the mode (and ACL if applicable), owner, and group associated with it are not
changed. The last modification time of target_file and the last access time of source_file
are set to the time the copy was made. If target_file does not exist, cp creates a new file
named target_file that has the same mode as source_file except that the sticky bit is not
set unless the user is super-user. In this case, the owner and group of target_file are
those of the user, unless the setgid bit is set on the directory containing the newly
created file. If the directory’s setgid bit is set, the newly created file will have the
group of the containing directory rather than of the creating user. If target_file is a link
to another file, cp will overwrite the link destination with the contents of source_file;
the link(s) from target_file will remain.

In the second synopsis form, one or more source_files are copied to the directory
specified by target. For each source_file specified, a new file with the same mode (and
ACL if applicable), is created in target; the owner and group are those of the user
making the copy. It is an error if any source_file is a file of type directory, if target either
does not exist or is not a directory.

In the third synopsis form, one or more directories specified by source_dir are copied to
the directory specified by target. Either -r or -R must be specified. For each source_dir,
cp will copy all files and subdirectories.

The following options are supported for both /usr/bin/cp and
/usr/xpg4/bin/cp:

-f Unlink. If a file descriptor for a destination file cannot be obtained, attempt
to unlink the destination file and proceed.

-i Interactive. cp will prompt for confirmation whenever the copy would
overwrite an existing target. A y answer means that the copy should
proceed. Any other answer prevents cp from overwriting target.

-r Recursive. cp will copy the directory and all its files, including any
subdirectories and their files to target.

-R Same as -r, except pipes are replicated, not read from.

cp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

184 man pages section 1: User Commands • Last Revised 6 Jun 2001

-@ Preserves extended attributes. cp will attempt to copy all of the source
file’s extended attributes along with the file data to the destination file.

The following option is supported for /usr/bin/cp only:

-p Preserve. cp duplicates not only the contents of source_file, but also
preserves the owner and group id, permission modes, modification and
access time, ACLs, and extended attributes, if applicable. Notice that the
command may fail if ACLs are copied to a file system without appropriate
support. The command will not fail if unable to preserve extended
attributes, modification and access time, or permission modes. If unable to
preserve owner and group id, cp will not fail, and it will clear S_ISUID
and S_ISGID bits in the target. cp will print a diagnostic message to
stderr and return a non-zero exit status if unable to clear these bits.

In order to preserve the owner and group id, permission modes, and
modification and access times, users must have the appropriate file access
permissions. This includes being superuser or the same owner id as the
destination file.

The following option is supported for /usr/xpg4/bin/cp only:

-p Preserve. cp duplicates not only the contents of source_file, but also
preserves the owner and group id, permission modes, modification and
access time, ACLs, and extended attributes, if applicable. Notice that the
command may fail if ACLs or extended attributes are copied to a file
system without appropriate support. If unable to duplicate the
modification and access time or the permission modes, cp will print a
diagnostic message to stderr and return a non-zero exit status. If unable
to preserve owner and group id, cp will not fail, and it will clear S_ISUID
and S_ISGID bits in the target. cp will print a diagnostic message to
stderr and return a non-zero exit status if unable to clear these bits.

In order to preserve the owner and group id, permission modes, and
modification and access times, users must have the appropriate file access
permissions. This includes being superuser or the same owner id as the
destination file.

The following operands are supported:

source_file A pathname of a regular file to be copied.

source_dir A pathname of a directory to be copied.

target_file A pathname of an existing or non-existing file, used for the output
when a single file is copied.

target A pathname of a directory to contain the copied files.

See largefile(5) for the description of the behavior of cp when encountering files
greater than or equal to 2 Gbyte (231 bytes).

cp(1)

/usr/bin/cp

/usr/xpg4/bin/cp

OPERANDS

USAGE

User Commands 185

EXAMPLE 1 Copying a file

example% cp goodies goodies.old

example% ls goodies*

goodies goodies.old

EXAMPLE 2 Copying a list of files to a destination directory

example% cp ~/src/* /tmp

EXAMPLE 3 Copying a directory, first to a new, and then to an existing destination directory

example% ls ~/bkup
/usr/example/fred/bkup not found

example% cp -r ~/src ~/bkup

example% ls -R ~/bkup
x.c y.c z.sh

example% cp -r ~/src ~/bkup

example% ls -R ~/bkup
src x.c y.c z.sh
src:

x.c y.c z.s

See environ(5) for descriptions of the following environment variables that affect the
execution of cp: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All files were copied successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

Interface Stability Stable

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

cp(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/cp

/usr/xpg4/bin/cp

186 man pages section 1: User Commands • Last Revised 6 Jun 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

chmod(1), chown(1), setfacl(1), utime(2), attributes(5), environ(5), fsattr(5),
largefile(5), XPG4(5)

The permission modes of the source file are preserved in the copy.

A -- permits the user to mark the end of any command line options explicitly, thus
allowing cp to recognize filename arguments that begin with a -.

cp(1)

SEE ALSO

NOTES

User Commands 187

cpio – copy file archives in and out

cpio -i [-bBcdfkmPrsStuvV6@] [-C bufsize] [-E file] [-H header]
[-I file [-M message]] [-R id] [pattern…]

cpio -o [-aABcLPvV@] [-C bufsize] [-H header] [-O file [-M message]]

cpio -p [-adlLmPuvV@] [-R id] directory

The cpio command copies files into and out of a cpio archive. The cpio archive may
span multiple volumes. The -i, -o, and -p options select the action to be performed.
The following list describes each of the actions. These actions are mutually exclusive.

cpio -i (copy in) extracts files from the standard input, which is assumed to be the
product of a previous cpio -o command. Only files with names that match one of the
patterns are selected. See sh(1) and OPERANDS for more information about pattern.
Extracted files are conditionally copied into the current directory tree, based on the
options described below. The permissions of the files will be those of the previous
cpio -o command. The owner and group will be the same as the current user, unless
the current user is the super-user. If this is the case, owner and group will be the same
as those resulting from the previous cpio -o command. Notice that if cpio -i tries
to create a file that already exists and the existing file is the same age or younger
(newer), cpio will output a warning message and not replace the file. The -u option
can be used to unconditionally overwrite the existing file.

cpio -o (copy out) reads a list of file path names from the standard input and copies
those files to the standard output, together with path name and status information in
the form of a cpio archive. Output is padded to an 8192-byte boundary by default or
to the user-specified block size (with the -B or -C options) or to some
device-dependent block size where necessary (as with the CTC tape).

cpio -p (pass) reads a list of file path names from the standard input and
conditionally copies those files into the destination directory tree, based on the options
described below.

Note: cpio assumes four-byte words.

If, when writing to a character device (-o) or reading from a character device (-i),
cpio reaches the end of a medium (such as the end of a diskette), and the -O and -I
options are not used, cpio prints the following message:

To continue, type device/file name when ready.

To continue, you must replace the medium and type the character special device name
(/dev/rdiskette for example) and press RETURN. You may want to continue by
directing cpio to use a different device. For example, if you have two floppy drives
you may want to switch between them so cpio can proceed while you are changing
the floppies. Press RETURN to cause the cpio process to exit.

The following options are supported:

cpio(1)

NAME

SYNOPSIS

DESCRIPTION

Copy In Mode

Copy Out Mode

Pass Mode

OPTIONS

188 man pages section 1: User Commands • Last Revised 22 Oct 2001

-i (copy in) Reads an archive from the standard input and
conditionally extracts the files contained in it and places them into
the current directory tree.

-o (copy out) Reads a list of file path names from the standard input
and copies those files to the standard output in the form of a cpio
archive.

-p (pass) Reads a list of file path names from the standard input and
conditionally copies those files into the destination directory tree.

The following options can be appended in any sequence to the -i, -o, or -p options:

-a Resets access times of input files after they have been copied,
making cpio’s access invisible. Access times are not reset for
linked files when cpio -pla is specified.

-A Appends files to an archive. The -A option requires the -O option.
Valid only with archives that are files, or that are on floppy
diskettes or hard disk partitions. The effect on files that are linked
in the existing portion of the archive is unpredictable.

-b Reverses the order of the bytes within each word. Use only with
the -i option.

-B Blocks input/output 5120 bytes to the record. The default buffer
size is 8192 bytes when this and the -C options are not used. -B
does not apply to the -p (pass) option.

-c Reads or writes header information in ASCII character form for
portability. There are no UID or GID restrictions associated with
this header format. Use this option between SVR4-based machines,
or the -H odc option between unknown machines. The -c option
implies the use of expanded device numbers, which are only
supported on SVR4-based systems. When transferring files
between SunOS 4 or Interactive UNIX and the Solaris 2.6
Operating environment or compatible versions, use -H odc.

-C bufsize Blocks input/output bufsize bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 8192 bytes
when this and -B options are not used. -C does not apply to the
-p (pass) option.

-d Creates directories as needed.

-E file Specifies an input file (file) that contains a list of filenames to be
extracted from the archive (one filename per line).

-f Copies in all files except those in patterns. See OPERANDS for a
description of pattern.

cpio(1)

User Commands 189

-H header Reads or writes header information in header format. Always use
this option or the -c option when the origin and the destination
machines are different types. This option is mutually exclusive
with options -c and -6.

Valid values for header are:

bar bar head and format. Used only with the -i
option (read only).

crc | CRC ASCII header with expanded device numbers
and an additional per-file checksum. There are
no UID or GID restrictions associated with this
header format.

odc ASCII header with small device numbers. This
is the IEEE/P1003 Data Interchange Standard
cpio header and format. It has the widest range
of portability of any of the header formats. It is
the official format for transferring files between
POSIX-conforming systems (see
standards(5)). Use this format to
communicate with SunOS 4 and Interactive
UNIX. This header format allows UIDs and
GIDs up to 262143 to be stored in the header.

tar | TAR tar header and format. This is an older tar
header format that allows UIDs and GIDs up
to 2097151 to be stored in the header. It is
provided for the reading of legacy archives
only, that is, in conjunction with option -i.

Specifying this archive format with option -o
has the same effect as specifying the "ustar"
format: the output archive is in ustar format,
and must be read using -H ustar.

ustar | USTAR IEEE/P1003 Data Interchange Standard tar
header and format. This header format allows
UIDs and GIDs up to 2097151 to be stored in
the header.

Files with UIDs and GIDs greater than the limit stated above will
be archived with the UID and GID of 60001. To transfer a large
file (8 Gb — 1 byte), the header format can be tar|TAR,
ustar|USTAR, or odc only.

-I file Reads the contents of file as an input archive, instead of the
standard input. If file is a character special device, and the current

cpio(1)

190 man pages section 1: User Commands • Last Revised 22 Oct 2001

medium has been completely read, replace the medium and press
RETURN to continue to the next medium. This option is used only
with the -i option.

-k Attempts to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is
corrupted or out of sequence, this option lets you read only those
files with good headers. For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate
prematurely. cpio will find the next good header, which may be
one for a smaller archive, and terminate when the smaller
archive’s trailer is encountered. Use only with the -i option.

-l In pass mode, makes hard links between the source and
destination whenever possible. If the -L option is also specified,
the hard link will be to the file referred to by the symbolic link.
Otherwise, the hard link will be to the symbolic link itself. Use
only with the -p option.

-L Follows symbolic links. If a symbolic link to a directory is
encountered, archives the directory referred to by the link, using
the name of the link. Otherwise, archives the file referred to by the
link, using the name of the link.

-m Retains previous file modification time. This option is ineffective
on directories that are being copied.

-M message Defines a message to use when switching media. When you use the
-O or -I options and specify a character special device, you can
use this option to define the message that is printed when you
reach the end of the medium. One %d can be placed in message to
print the sequence number of the next medium needed to
continue.

-O file Directs the output of cpio to file, instead of the standard output. If
file is a character special device and the current medium is full,
replace the medium and type a carriage return to continue to the
next medium. Use only with the -o option.

-P Preserves ACLs. If the option is used for output, existing ACLs are
written along with other attributes, except for extended attributes,
to the standard output. ACLs are created as special files with a
special file type. If the option is used for input, existing ACLs are
extracted along with other attributes from standard input. The
option recognizes the special file type. Notice that errors will occur
if a cpio archive with ACLs is extracted by previous versions of
cpio. This option should not be used with the -c option, as ACL
support may not be present on all systems, and hence is not
portable. Use ASCII headers for portability.

cpio(1)

User Commands 191

-r Interactively renames files. If the user types a carriage return
alone, the file is skipped. If the user types a ‘‘.’’, the original
pathname will be retained. Not available with cpio -p.

-R id Reassigns ownership and group information for each file to user
ID. (ID must be a valid login ID from /etc/passwd.) This option
is valid only for the super-user.

-s Swaps bytes within each half word.

-S Swaps halfwords within each word.

-t Prints a table of contents of the input. If any file in the table of
contents has extended attributes, these are also listed. No files are
created. -t and -V are mutually exclusive.

-u Copies unconditionally. Normally, an older file will not replace a
newer file with the same name.

-v Verbose. Prints a list of file and extended attribute names. When
used with the -t option, the table of contents looks like the output
of an ls -l command (see ls(1)).

-V Special verbose. Prints a dot for each file read or written. Useful to
assure the user that cpio is working without printing out all file
names.

-6 Processes a UNIX System Sixth Edition archive format file. Use
only with the -i option. This option is mutually exclusive with -c
and -H.

-@ Includes extended attributes in archive. By default, cpio does not
place extended attributes in the archive. With this flag, cpio will
look for extended attributes on the files to be placed in the archive
and add them, as regular files, to the archive. The extended
attribute files go in the archive as special files with special file
types. When the -@ flag is used with -i or -p, it instructs cpio to
restore extended attribute data along with the normal file data.
Extended attribute files can only be extracted from an archive as
part of a normal file extract. Attempts to explicitly extract attribute
records are ignored.

The following operands are supported:

directory A path name of an existing directory to be used as the target of
cpio -p.

pattern Expressions making use of a pattern-matching notation similar to
that used by the shell (see sh(1)) for filename pattern matching,
and similar to regular expressions. The following metacharacters
are defined:

* Matches any string, including the empty string.

cpio(1)

OPERANDS

192 man pages section 1: User Commands • Last Revised 22 Oct 2001

? Matches any single character.

[. . .]Matches any one of the enclosed characters. A pair of
characters separated by ‘−’ matches any symbol
between the pair (inclusive), as defined by the system
default collating sequence. If the first character
following the opening ‘[’ is a ‘!’, the results are
unspecified.

! The ! (exclamation point) means not. For example, the
!abc* pattern would exclude all files that begin with
abc.

In pattern, metacharacters ?, *, and [. . .] match the slash (/)
character, and backslash (\) is an escape character. Multiple cases
of pattern can be specified and if no pattern is specified, the default
for pattern is * (that is, select all files).

Each pattern must be enclosed in double quotes. Otherwise, the
name of a file in the current directory might be used.

See largefile(5) for the description of the behavior of cpio when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The following examples show three uses of cpio.

EXAMPLE 1 Using standard input

example% ls | cpio -oc > ../newfile

When standard input is directed through a pipe to cpio -o, as in the example above,
it groups the files so they can be directed (>) to a single file (../newfile). The -c
option insures that the file will be portable to other machines (as would the -H
option). Instead of ls(1), you could use find(1), echo(1), cat(1), and so on, to pipe a
list of names to cpio. You could direct the output to a device instead of a file.

EXAMPLE 2 Extracting files into directories

example% cat newfile | cpio -icd "memo/a1" "memo/b*"

In this example, cpio -i uses the output file of cpio -o (directed through a pipe
with cat), extracts those files that match the patterns (memo/a1, memo/b*), creates
directories below the current directory as needed (-d option), and places the files in
the appropriate directories. The -c option is used if the input file was created with a
portable header. If no patterns were given, all files from newfile would be placed in
the directory.

EXAMPLE 3 Copying or linking files to another directory

example% find . -depth -print | cpio -pdlmv newdir

cpio(1)

USAGE

EXAMPLES

User Commands 193

EXAMPLE 3 Copying or linking files to another directory (Continued)

In this example, cpio -p takes the file names piped to it and copies or links (-l
option) those files to another directory, newdir. The -d option says to create
directories as needed. The -m option says to retain the modification time. (It is
important to use the -depth option of find(1) to generate path names for cpio. This
eliminates problems that cpio could have trying to create files under read-only
directories.) The destination directory, newdir, must exist.

Notice that when you use cpio in conjunction with find, if you use the -L option
with cpio, you must use the -follow option with find and vice versa. Otherwise,
there will be undesirable results.

For multi-reel archives, dismount the old volume, mount the new one, and continue to
the next tape by typing the name of the next device (probably the same as the first
reel). To stop, type a RETURN and cpio will end.

See environ(5) for descriptions of the following environment variables that affect the
execution of cpio: LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and
NLSPATH.

TMPDIR cpio creates its temporary file in /var/tmp by default.
Otherwise, it uses the directory specified by TMPDIR.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

Interface Stability Stable

ar(1), cat(1), echo(1), find(1), ls(1), setfacl(1), sh(1), tar(1), vold(1M),
archives(4), attributes(5), environ(5), fsattr(5), largefile(5),
standards(5)

The maximum path name length allowed in a cpio archive is determined by the
header type involved. The following table shows the proper value for each supported
archive header type.

cpio(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

194 man pages section 1: User Commands • Last Revised 22 Oct 2001

Header type Command line options Maximum path name length

BINARY “-o” 256

POSIX “-oH odc” 256

ASCII “-oc” 1023

CRC “-oH crc” 1023

USTAR “-oH ustar” 255

When the command line options “-o -H tar” are specified, the archive created is of
type USTAR. This means that it is an error to read this same archive using the
command line options “-i -H tar”. The archive should be read using the command
line options “-i -H ustar”. The options "-i -H tar" refer to an older tar archive format.

An error message is output for files whose UID or GID are too large to fit in the
selected header format. Use -H crc or -c to create archives that allow all UID or GID
values.

Only the super-user can copy special files.

Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than 0 characters of data, and the user is
not root, the file will not be saved or restored.

The inode number stored in the header (/usr/include/archives.h) is an
unsigned short, which is 2 bytes. This limits the range of inode numbers from 0 to
65535. Files which are hard linked must fall in this inode range. This could be a
problem when moving cpio archives between different vendors’ machines.

When the Volume Management daemon is running, accesses to floppy devices
through the conventional device names (for example, /dev/rdiskette) may not
succeed. See vold(1M) for further details.

You must use the same blocking factor when you retrieve or copy files from the tape to
the hard disk as you did when you copied files from the hard disk to the tape.
Therefore, you must specify the -B or -C option.

During -p and -o processing, cpio buffers the file list presented on stdin in a
temporary file.

cpio(1)

User Commands 195

cpp – the C language preprocessor

/usr/lib/cpp [-BCHMpPRT] [-undef] [-Dname] [-Dname = def]
[-Idirectory] [-Uname] [-Ydirectory] [input-file [output-file]]

cpp is the C language preprocessor. It is invoked as the first pass of any C compilation
started with the cc(1B) command; however, cpp can also be used as a first-pass
preprocessor for other Sun compilers.

Although cpp can be used as a macro processor, this is not normally recommended, as
its output is geared toward that which would be acceptable as input to a compiler’s
second pass. Thus, the preferred way to invoke cpp is through the cc(1B) command,
or some other compilation command. For general-purpose macro-processing, see
m4(1).

cpp optionally accepts two filenames as arguments. input-file and output-file are,
respectively, the input and output files for the preprocessor. They default to the
standard input and the standard output.

The following options are supported:

-B Support the C++ comment indicator ‘/ /’. With this indicator
everything on the line after the / / is treated as a comment.

-C Pass all comments (except those that appear on cpp directive lines)
through the preprocessor. By default, cpp strips out C-style
comments.

-H Print the pathnames of included files, one per line on the standard
error.

-M Generate a list of makefile dependencies and write them to the
standard output. This list indicates that the object file which would
be generated from the input file depends on the input file as well
as the include files referenced.

-p Use only the first eight characters to distinguish preprocessor
symbols, and issue a warning if extra tokens appear at the end of a
line containing a directive.

-P Preprocess the input without producing the line control
information used by the next pass of the C compiler.

-R Allow recursive macros.

-T Use only the first eight characters for distinguishing different
preprocessor names. This option is included for backward
compatibility with systems which always use only the first eight
characters.

-undef Remove initial definitions for all predefined symbols.

cpp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

196 man pages section 1: User Commands • Last Revised 1 Nov 1999

-Dname Define name as 1 (one). This is the same as if a -Dname=1 option
appeared on the cpp command line, or as if a

#define name 1

line appeared in the source file that cpp is processing.

-Dname=def Define name as if by a #define directive. This is the same as if a

#define name def

line appeared in the source file that cpp is processing. The -D
option has lower precedence than the -U option. That is, if the
same name is used in both a -U option and a -D option, the name
will be undefined regardless of the order of the options.

-Idirectory Insert directory into the search path for #include files with names
not beginning with ‘/’. directory is inserted ahead of the standard
list of ‘‘include’’ directories. Thus, #include files with names
enclosed in double-quotes (") are searched for first in the directory
of the file with the #include line, then in directories named with
-I options, and lastly, in directories from the standard list. For
#include files with names enclosed in angle-brackets (< >), the
directory of the file with the #include line is not searched. See
Details below for exact details of this search order.

-Uname Remove any initial definition of name, where name is a symbol that
is predefined by a particular preprocessor. Here is a partial list of
symbols that may be predefined, depending upon the architecture
of the system:

Operating System: ibm, gcos, os, tss and unix

Hardware: interdata, pdp11, u370, u3b,
u3b2, u3b5, u3b15, u3b20d, vax,
ns32000, iAPX286, i386, sparc,
and sun

UNIX system variant: RES, and RT

The lint command: lint

The symbols sun, sparc and unix are defined for all Sun
systems.

-Ydirectory Use directory directory in place of the standard list of directories
when searching for #include files.

All cpp directives start with a hash symbol (#) as the first character on a line. White
space (SPACE or TAB characters) can appear after the initial # for proper indentation.

cpp(1)

Directives

User Commands 197

#define name token-string
Replace subsequent instances of name with token-string.

#define name(argument [, argument] . . .) token-string
There can be no space between name and the ‘(’. Replace subsequent instances of
name, followed by a parenthesized list of arguments, with token-string, where each
occurrence of an argument in the token-string is replaced by the corresponding token
in the comma-separated list. When a macro with arguments is expanded, the
arguments are placed into the expanded token-string unchanged. After the entire
token-string has been expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

#undef name
Remove any definition for the symbol name. No additional tokens are permitted on
the directive line after name.

#include "filename "
#include <filename>

Read in the contents of filename at this location. This data is processed by cpp as if it
were part of the current file. When the <filename> notation is used, filename is only
searched for in the standard ‘‘include’’ directories. See the -I and -Y options above
for more detail. No additional tokens are permitted on the directive line after the
final ‘"’ or ‘>’.

#line integer-constant "filename"
Generate line control information for the next pass of the C compiler.
integer-constant is interpreted as the line number of the next line and filename is
interpreted as the file from where it comes. If "filename" is not given, the current
filename is unchanged. No additional tokens are permitted on the directive line
after the optional filename.

#if constant-expression
Subsequent lines up to the matching #else, #elif, or #endif directive, appear in
the output only if constant-expression yields a nonzero value. All binary
non-assignment C operators, including ‘&&’, ‘| |’, and ‘,’, are legal in
constant-expression. The ‘?:’ operator, and the unary ‘−’, ‘!’, and ‘~’ operators, are
also legal in constant-expression.

The precedence of these operators is the same as that for C. In addition, the unary
operator defined, can be used in constant-expression in these two forms: ‘defined
(name)’ or ‘defined name’. This allows the effect of #ifdef and #ifndef
directives (described below) in the #if directive. Only these operators, integer
constants, and names that are known by cpp should be used within
constant-expression. In particular, the size of operator is not available.

#ifdef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the
output only if name has been defined, either with a #define directive or a -D
option, and in the absence of an intervening #undef directive. Additional tokens
after name on the directive line will be silently ignored.

cpp(1)

198 man pages section 1: User Commands • Last Revised 1 Nov 1999

#ifndef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the
output only if name has not been defined, or if its definition has been removed with
an #undef directive. No additional tokens are permitted on the directive line after
name.

#elif constant-expression
Any number of #elif directives may appear between an #if, #ifdef, or
#ifndef directive and a matching #else or #endif directive. The lines following
the #elif directive appear in the output only if all of the following conditions
hold:

� The constant-expression in the preceding #if directive evaluated to zero, the
name in the preceding #ifdef is not defined, or the name in the preceding
#ifndef directive was defined.

� The constant-expression in all intervening #elif directives evaluated to zero.
� The current constant-expression evaluates to non-zero.

If the constant-expression evaluates to non-zero, subsequent #elif and #else
directives are ignored up to the matching #endif. Any constant-expression allowed
in an #if directive is allowed in an #elif directive.

#else
This inverts the sense of the conditional directive otherwise in effect. If the
preceding conditional would indicate that lines are to be included, then lines
between the #else and the matching #endif are ignored. If the preceding
conditional indicates that lines would be ignored, subsequent lines are included in
the output. Conditional directives and corresponding #else directives can be
nested.

#endif
End a section of lines begun by one of the conditional directives #if, #ifdef, or
#ifndef. Each such directive must have a matching #endif.

Formal parameters for macros are recognized in #define directive bodies, even when
they occur inside character constants and quoted strings. For instance, the output
from:

#define abc(a)| ‘|a|
abc(xyz)

is:

1 ""
| ‘|xyz |

The second line is a NEWLINE. The last seven characters are ‘‘| ‘|xyz |’’
(vertical-bar, backquote, vertical-bar, x, y, z, vertical-bar). Macro names are not
recognized within character constants or quoted strings during the regular scan. Thus:

cpp(1)

Macros

User Commands 199

#define abc xyz
printf("abc");

does not expand abc in the second line, since it is inside a quoted string that is not
part of a #define macro definition.

Macros are not expanded while processing a #define or #undef. Thus:

#define abc zingo
#define xyz abc
#undef abc
xyz

produces abc. The token appearing immediately after an #ifdef or #ifndef is not
expanded.

Macros are not expanded during the scan which determines the actual parameters to
another macro call. Thus:

#define reverse(first,second)second first
#define greeting hello
reverse(greeting,
#define greeting goodbye
)

produces ‘‘ #define hello goodbye hello’’.

Output consists of a copy of the input file, with modifications, plus lines of the form:

#lineno " filename " "level "

indicating the original source line number and filename of the following output line
and whether this is the first such line after an include file has been entered (level=1),
the first such line after an include file has been exited (level=2), or any other such line
(level is empty).

#include files are searched for in the following order:

1. The directory of the file that contains the #include request (that is, #include is
relative to the file being scanned when the request is made).

2. The directories specified by -I options, in left-to-right order.

3. The standard directory(s) (/usr/include on UNIX systems).

Two special names are understood by cpp. The name _ _LINE_ _ is defined as
the current line number (a decimal integer) as known by cpp, and _ _FILE_ _ is
defined as the current filename (a C string) as known by cpp. They can be used
anywhere (including in macros) just as any other defined name.

cpp(1)

Output

Directory Search
Order

Special Names

200 man pages section 1: User Commands • Last Revised 1 Nov 1999

A NEWLINE character terminates a character constant or quoted string. An escaped
NEWLINE (that is, a backslash immediately followed by a NEWLINE) may be used in
the body of a #define statement to continue the definition onto the next line. The
escaped NEWLINE is not included in the macro value.

Comments are removed (unless the -C option is used on the command line).
Comments are also ignored, except that a comment terminates a token.

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

cc(1B), m4(1), attributes(5)

The error messages produced by cpp are intended to be self-explanatory. The line
number and filename where the error occurred are printed along with the diagnostic.

When NEWLINE characters were found in argument lists for macros to be expanded,
some previous versions of cpp put out the NEWLINE characters as they were found
and expanded. The current version of cpp replaces them with SPACE characters.

Because the standard directory for included files may be different in different
environments, this form of #include directive:

#include <file.h>

should be used, rather than one with an absolute path, like:

#include "/usr/include/file.h"

cpp warns about the use of the absolute pathname.

While the compiler allows 8-bit strings and comments, 8-bits are not allowed
anywhere else.

cpp(1)

Newline Characters

Comments

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 201

cputrack – monitor process and LWP behavior using CPU performance counters

cputrack -c eventspec [-c eventspec]… [-efntvD] [-N count] [-o pathname]
[-T interval] command [args]

cputrack -c eventspec [-c eventspec]… -p pid [-efntvD] [-N count]
[-o pathname] [-T interval]

cputrack -h

The cputrack utility allows CPU performance counters to be used to monitor the
behavior of a process or family of processes running on the system. If interval is
specified with the -T option, cputrack samples activity every interval seconds,
repeating forever. If a count is specified with the -N option, the statistics are repeated
count times for each process tracked. If neither are specified, an interval of one second
is used. If command and optional args are specified, cputrack runs the command with
the arguments given while monitoring the specified CPU performance events.
Alternatively, the process ID of an existing process can be specified using the -p
option.

Because cputrack is an unprivileged program, it is subject to the same restrictions
that apply to truss(1). For example, setuid(2) executables cannot be tracked.

The following options are supported:

-c eventspec Specifies a set of events for the CPU performance counters to
monitor. The list of available events and the syntax of the event
specifications for the system can be determined using the -h
option. The semantics of these event specifications can be
determined by reading the CPU manufacturers documentation for
the events. See cpc_strtoevent(3CPC) for a description of the
syntax.

Multiple -c options may be specified, in which case cputrack
cycles between the different event settings on each sample.

-D Enables debug mode.

-e Follows all exec(2), or execve(2) system calls. Without this
option, cputrack terminates when the process image is overlaid
with a new executable.

-f Follows all children created by fork(2), fork1(2), or vfork(2)
system calls.

-h Prints an extended help message on how to use the utility and
how to program the processor-dependent counters.

-n Omits all header output (useful if cputrack is the beginning of a
pipeline).

-N count Specifies the maximum number of CPU performance counter
samples to take before exiting.

cputrack(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

202 man pages section 1: User Commands • Last Revised 8 Jun 2001

-o outfile Specifies file to be used for the cputrack output.

-p pid Interprets the argument as the process ID of an existing process to
which process counter context should be attached and monitored.

-t Prints an additional column of processor cycle counts, if available
on the current architecture.

-T interval Specifies the interval between CPU performance counter samples
in seconds.

-v Enables more verbose output.

The operating system enforces certain restrictions on the tracing of processes. In
particular, a command whose object file cannot be read by a user cannot be tracked by
that user; set-uid and set-gid commands can only be tracked by a privileged user.
Unless it is run by a privileged user, cputrack loses control of any process that
performs an exec() of a set-id or unreadable object file. Such processes continue
normally, though independently of cputrack, from the point of the exec().

The system may run out of per-user process slots when the -f option is used, since
cputrack runs one controlling process for each process being tracked.

The times printed by cputrack correspond to the wallclock time when the hardware
counters were actually sampled, instead of when the program told the kernel to
sample them. The time is derived from the same timebase as gethrtime(3C).

The cputrack utility attaches performance counter context to each process that it
examines. The presence of this context allows the performance counters to be
multiplexed between different processes on the system, but it cannot be used at the
same time as the cpustat(1M) utility.

Once an instance of the cpustat utility is running, further attempts to run cputrack
will fail until all instances of cpustat terminate.

Sometimes cputrack provides sufficient flexibility and prints sufficient statistics to
make adding the event selection code to an application unnecessary. However, more
control is occasionally desired. Because the same performance counter context is used
by both the application itself and by the agent LWP injected into the application by
cputrack, it is possible for an application to interact with the counter context to
achieve some interesting capabilities. See cpc_count_usr_events(3CPC).

The processor cycle counts enabled by the -t option always apply to both user and
system modes, regardless of the settings applied to the performance counter registers.

The output of cputrack is designed to be readily parseable by nawk(1) and perl(1),
thereby allowing performance tools to be composed by embedding cputrack in
scripts. Alternatively, tools may be constructed directly using the same APIs that
cputrack is built upon, using the facilities of libcpc(3LIB) and libpctx(3LIB). See
cpc(3CPC).

cputrack(1)

USAGE

User Commands 203

Although cputrack uses performance counter context to maintain separate
performance counter values for each LWP, some of the events that can be counted will
inevitably be impacted by other activities occurring on the system, particularly for
limited resources that are shared between processes (for example, cache miss rates).
For such events, it may also be interesting to observe overall system behavior with
cpustat(1M).

For the -T interval option, if interval is specified as zero, no periodic sampling is
performed. The performance counters are only sampled when the process creates or
destroys an LWP, or it invokes fork(2), exec(2), or exit(2).

EXAMPLE 1 Using performance counters to count clock cycles

In this example, the utility is being used on a machine containing an UltraSPARC 1
processor. The counters are set to count processor clock cycles and instructions
dispatched in user mode while running the sleep(1) command.

example% cputrack –c pic0=Cycle_cnt,pic1=Instr_cnt sleep 10
time lwp event pic0 pic1
2.040 1 tick 377820 202593
4.028 1 tick 0 0
6.028 1 tick 0 0
8.028 1 tick 0 0
10.028 1 tick 6930 954
10.036 1 exit 410623 212137

EXAMPLE 2 Counting external cache references and hits

This example shows more verbose output while following the fork() and exec() of
a simple shell script on an UltraSPARC machine. The counters are measuring the
number of external cache references and external cache hits. Notice that the explicit
pic0 and pic1 names can be omitted where there are no ambiguities.

example% cputrack –fev –c EC_ref,EC_hit /bin/ulimit –c
time pid lwp event pic0 pic1
0.032 101200 1 init_lwp 0 0
0.106 101200 1 fork # 101201
0.115 101201 1 init_lwp 0 0
0.179 101201 1 fini_lwp 5934 5031
0.179 101201 1 exec 5934 5031
0.399 101201 1 exec # ’basename /bin/ulimit’
0.413 101201 1 init_lwp 0 0
0.435 101201 1 fini_lwp 19780 17234
0.435 101201 1 exit 19780 17234 unlimited
0.454 101200 1 fini_lwp 63025 54583

0.454 101200 1 exit 63025 54583

EXAMPLE 3 Counting instructions

This example shows how many instructions were executed in the application and in
the kernel to print the date on a Pentium machine:

cputrack(1)

SPARC

IA

204 man pages section 1: User Commands • Last Revised 8 Jun 2001

EXAMPLE 3 Counting instructions (Continued)

example% cputrack –c inst_retired,inst_retired,nouser1,sys1 date
time lwp event pic0 pic1

Fri Aug 20 20:03:08 PDT 1999

0.072 1 exit 246725 339666

By running any instance of the cpustat(1M) utility, all existing performance counter
context is forcibly invalidated across the machine. This may in turn cause all
invocations of the cputrack command to exit prematurely with unspecified errors.

If cputrack is invoked on a system that has CPU performance counters, but on
which the packages containing the kernel support for those counters is not installed,
the following message appears:

cputrack: CPU performance counters are inaccessible on this machine

This error message implies that cpc_access() has failed and is documented in
cpc_access(3CPC). Review this documentation for more information about the
problem and possible solutions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

nawk(1), perl(1), proc(1), truss(1), prstat(1M), cpustat(1M), exec(2), exit(2),
fork(2), setuid(2), vfork(2), gethrtime(3C), cpc(3CPC), cpc_access(3CPC),
cpc_count_usr_events(3CPC), cpc_strtoevent(3CPC), libcpc(3LIB),
libpctx(3LIB), proc(4), attributes(5)

Sun Microelectronics UltraSPARC I&II User’s Manual, January 1997, STP1031,
http://www.sun.com/sparc

Intel Architecture Software Developer’s Manual, Volume 3: System Programmers Guide,
243192, http://developer.intel.com

cputrack(1)

WARNINGS

ATTRIBUTES

SEE ALSO

User Commands 205

crle – configure runtime linking environment

crle [-64] [-a name] [-c conf] [-e env] [-E env] [-f flags] [-i name]
[-I name] [-g name] [-G name] [-l dir] [-o dir] [-s dir] [-t [ELF
| AOUT]] [-u] [-v]

The crle utility provides for the creation and display of a runtime linking
configuration file. Without any arguments, or with just the -c option, crle displays
the contents of a configuration file, any system defaults and the command-line
required to regenerate the configuration file. When used with any other options, a new
configuration file is created or updated. The configuration file is read and interpreted
by the runtime linker, ld.so.1(1), during process start-up.

The default configuration file is /var/ld/ld.config for 32-bit objects and
/var/ld/64/ld.config for 64-bit objects. Note: It is recommended that any new
configuration file is first created in a temporary location. The environment variable
LD_CONFIG can be set to this new configuration file to cause its use by the runtime
linker instead of any default. After verification, the new configuration file can be
moved to the default location if desired. Setting the environment variable
LD_NOCONFIG to any value results in the runtime linker ignoring any configuration
files, and may prove useful during experimentation.

The configuration file may contain the following information:

Default Search Paths The runtime linker uses a prescribed search path for
locating the dynamic dependencies of an object. This
search path starts with the components of any
LD_LIBRARY_PATH definition, followed by the
components of an object’s runpath and finally any
defaults specific to the object’s type. This last
component of the search path can be expressed within
the configuration file. Note: Typical use of this facility
should augment any system defaults; see the -l
option.

Trusted Directories When processing a secure application the runtime
linker restricts the use of LD_LIBRARY_PATH and the
directories from which preload and audit libraries may
be used to known trusted directories. These trusted
directories can be expressed within the configuration
file. Note: Typical use of this facility should augment
any system defaults; see the -s option.

Directory Cache The location of shared objects within defined
directories can be maintained as a cache within the
configuration file. This directory cache can reduce the
overhead of searching for application dependencies.

Alternative Objects In conjunction with the directory cache, shared objects
may have alternative objects specified for use at

crle(1)

NAME

SYNOPSIS

DESCRIPTION

206 man pages section 1: User Commands • Last Revised 10 Oct 2001

runtime. These alternate objects may be supplied by
the user, or can be created by crle as copies of shared
objects fixed to known memory locations. These fixed
alternative objects can require less processing at
runtime than their original shared object counterpart.

Environment Variables Any environment variable interpreted by the runtime
linker can be specified within the configuration file.

Defining alternative default search paths, or additional trusted directories can be
useful for administrators who wish to install third party software in a central location,
or otherwise alter the search path of applications that may not have been coded with
suitable runpaths.

Defining user supplied alternative objects provides a means of replacing dependencies
other than via symbolic links or requiring LD_LIBRARY_PATH settings.

Defining runtime linker environment variables provides a means of centralizing their
definition for all applications.

The directory cache and crle generated alternate objects can provide a means of
reducing the runtime start-up overhead of applications that require many
dependencies, or whose dependencies are expensive to relocate (this may be the case
when shared objects contain position-dependent code).

When alternate objects generated by crle are specified within a configuration file,
ld.so.1(1) performs some minimal consistency verification of the alternative objects
against their originating objects. This verification is intended to avert application
failure should an applications configuration information become out-of-sync with the
underlying system components. When this situation arises the flexibility offered by
dynamic linking system components may be compromised, and diagnosing the
application failure may be difficult. Note: No verification of directory cache
information is performed. Any changes to the directory structure will not be seen by a
process until the cache is rebuilt.

System shared objects are often well tuned and may have no benefit being cached. The
directory cache and alternative object features are typically applicable to user
applications and shared objects.

crle creates alternate objects for the shared objects discovered when using the -I and
-G options by calls to dldump(3DL). The alternate object is created in the directory
specified by the preceding -o option, or defaults to the directory in which the
configuration file is created. The flags used for the dldump() are specified using the
-f option, or default to RTLD_REL_RELATIVE.

The following options are supported:

-64 Specifies to process 64-bit objects, the default is 32-bit.

crle(1)

OPTIONS

User Commands 207

-a name This option adds an alternative to name to the
configuration file. The actual alternative file must be
supplied by the user. Multiple occurrences of this
option are permitted. If name is a directory each shared
object within the directory is added to the cache. If
name does not exist, it is marked in the cache as a
nonexistent file.

-c conf Specifies to use the configuration file name conf. If this
option is not supplied the default configuration file is
used.

-e env This option specifies a replaceable environment variable,
env. Only environment variables applicable to the
runtime linker are meaningful. Multiple occurrences of
this option are permitted. This option is similar to the
-E option, but differs in how configuration file
definitions and process environment definitions of the
same name are resolved at runtime.

A definition established in a configuration file can be
overridden by a process environment definition, or be
suppressed by a null-value process environment
definition.

In other words, these configuration file definitions can
be replaced or removed by the process environment at
runtime.

-E env This option specifies a permanent environment variable,
env. Only environment variables applicable to the
runtime linker are meaningful. Multiple occurrences of
this option are permitted. This option is similar to the
-e option, but differs in how configuration file
definitions and process environment definitions of the
same name are resolved at runtime.

Environment variable definitions meaningful to the
runtime linker fall into one of two categories, that is,
singular definitions such as LD_NOLAZYLOAD=1 and
LD_DEBUG_OUTPUT=file, or list definitions which can
take one or more values such as
LD_LIBRARY_PATH=path, and LD_DEBUG=files,details.

A singular definition established in a configuration file
will take precedence over a process environment
definition. A list definition established in a
configuration file will be appended to a process

crle(1)

208 man pages section 1: User Commands • Last Revised 10 Oct 2001

environment definition. Any definition established in a
configuration file can not be suppressed by a null-value
process environment definition.

In other words, these configuration file definitions can
not be replaced or removed by the process environment
at runtime.

-f flags This option provides the symbolic flags argument to the
dldump(3DL) calls used to generate alternate objects.
Any of the RTLD_REL flags defined in
/usr/include/dlfcn.h can be used. Multiple flags
can be or’ed together using the "|" character, and in
this case the string should be quoted to avoid
expansion by the shell. If no flags values are provided
the default flag is RTLD_REL_RELATIVE.

-i name This option adds an individual name to the
configuration cache. Multiple occurrences of this option
are permitted. name may be a shared object or a
directory. If name is a directory each shared object
within the directory is added to the cache. Note: If name
does not exist, it is marked in the cache as a
nonexistent directory.

-I name This option is the same as -i and in addition any
shared objects have alternatives created via
dldump(3DL). If the -f flag contains RTLD_REL_EXEC
then name may be a dynamic executable, for which an
alternative is created. Only one dynamic executable can
be specified in this manner as the cache created is
specific to this application.

-g name This option adds the group name to the configuration
cache. Each object is expanded to determine its
dependencies. Multiple occurrences of this option are
permitted. name may be a dynamic executable, shared
object or a directory. The name itself, if it is a shared
object, and its dependencies are added to the cache. If
name is a directory each shared object within the
directory, and its dependencies, are added to the cache.

-G name This option is the same as -g and in addition any
shared objects have alternatives created via
dldump(3DL). If name is a dynamic executable, and the
-f flag contains RTLD_REL_EXEC, then an alternative
for the dynamic executable is also created. Only one
dynamic executable can be specified in this manner as
the cache created is specific to this application.

crle(1)

User Commands 209

-l dir This option specifies a new default search directory dir
for ELF or AOUT objects. Multiple occurrences of this
option are permitted. The type of object applicable to
the search is specified by the preceding -t option, or
defaults to ELF.

The system default search path for ELF objects is
/usr/lib for 32-bit objects, and /usr/lib/64 for
64-bit objects. The system default search paths for AOUT
objects is /usr/4lib, /usr/lib and
/usr/local/lib.

Use of this option replaces the system default search
path, and thus it is normally required that a -l option
be used to specify the original system default in
relation to any new paths being applied. However, if
the -u option is in effect, and a configuration file does
not exist, the system defaults are added to the new
configuration file before the new paths specified with
the -l option.

-o dir This option specifies the directory dir in which any
alternate objects must exist (in the case of using the -a
option), or will be created (in the case of alternatives
created by crle). Without this option, alternate objects
will exist in the directory in which the configuration
file is created. Multiple occurrences of this option are
permitted, the directory dir being used to locate
alternatives for any following command-line options.
Alternative objects are not permitted to override their
associated originals.

-s dir This option specifies a new trusted directory dir for
secure ELF or AOUT objects. See SECURITY in
ld.so.1(1) for a definition of secure objects.

Multiple occurrences of this option are permitted. The
type of object applicable to the search is specified by
the preceding -t option, or defaults to ELF.

The system default trusted directory for secure ELF
objects is /usr/lib/secure for 32-bit objects and
/usr/lib/secure/64 for 64-bit objects. The system
default trusted directories for secure AOUT objects are
/usr/4lib, /usr/lib, /usr/ucblib, and
/usr/local/lib.

crle(1)

210 man pages section 1: User Commands • Last Revised 10 Oct 2001

Use of this option replaces the system default trusted
directories, and thus it is normally required that a -s
option be used to specify the original system default in
relation to any new directories being applied. However,
if the -u option is in effect, and a configuration file
does not exist, the system defaults are added to the new
configuration file before the new directories specified
with the -s option.

-t ELF | AOUT This option toggles the object type applicable to any -l
or -s options that follow. The default object type is
ELF.

-u This option requests that a configuration file be
updated, possibly with the addition of new
information. Without other options any existing
configuration file is inspected and its contents
recomputed. Additional arguments allow information
to be appended to the recomputed contents. See
NOTES.

If a configuration file does not exist it will be created as
directed by the other arguments. In the case of the -l
and -s options any system defaults will first be
applied to the configuration file before the directories
specified with these options.

-v Verbose mode. When creating a configuration file, a
trace of the files being processed is written to the
standard out. When printing the contents of a
configuration file, more extensive directory and file
information is provided.

By default the runtime linker attempts to read the configuration file
/var/ld/ld.config for each 32-bit application it processes or
/var/ld/64/ld.config for each 64-bit application. When processing an alternative
application, the runtime linker will use a $ORIGIN/ld.config.app-name
configuration file if present (see NOTES). Applications may reference an alternative
configuration file either by setting the LD_CONFIG environment variable (see
ld.so.1(1)), or by recording a configuration file name in the application at the time it
is built using the link-editors -c option (see ld(1)).

EXAMPLE 1 Update (and display) of a new default search path for ELF objects

example% crle -u -l /local/lib
example% crle

Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib:/local/lib
Trusted Directories (ELF): /usr/lib/secure (system default)

crle(1)

EXAMPLES

User Commands 211

EXAMPLE 1 Update (and display) of a new default search path for ELF objects
(Continued)

Command line:
crle -l /usr/lib:/local/lib

example% crle -u -l /usr/local/lib
example% crle

Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib:/local/lib:/usr/local/lib
Trusted Directories (ELF): /usr/lib/secure (system default)

Command line:

crle -l /usr/lib:/local/lib:/usr/local/lib

In this example, the default configuration file initially did not exist, and thus the new
search path /local/lib is appended to the system default. The next update appends
the search path /usr/local/lib to those already established in the configuration
file.

EXAMPLE 2 Creation (and display) of a new default search path and new trusted directory
for ELF objects

example% crle -l /local/lib -l /usr/lib -s /local/lib
example% crle

Configuration file [2]: /var/ld/ld.config
Default Library Path (ELF): /local/lib:/usr/lib
Trusted Directories (ELF): /local/lib

Command line:

crle -l /local/lib:/usr/lib -s /local/lib

With this configuration, third party applications may be installed in /local/bin and
their associated dependencies in /local/lib. The default search path allows the
applications to locate their dependencies without the need to set LD_LIBRARY_PATH.
Note: The system default trusted directory has been replaced with this example.

EXAMPLE 3 Creation of a directory cache for ELF objects

example% crle -i /usr/dt/lib -i /usr/openwin/lib -i /usr/lib \
-c config
example% ldd -s ./main
....

find object=libc.so.1; required by ./main
search path=/usr/dt/lib:/usr/openwin/lib (RPATH ./main)
trying path=/usr/dt/lib/libc.so.1
trying path=/usr/openwin/lib/libc.so.1
search path=/usr/lib (default)
trying path=/usr/lib/libc.so.1

libc.so.1 => /usr/lib/libc.so.1

example% LD_CONFIG=config ldd -s ./main

crle(1)

212 man pages section 1: User Commands • Last Revised 10 Oct 2001

EXAMPLE 3 Creation of a directory cache for ELF objects (Continued)

....
find object=libc.so.1; required by ./main
search path=/usr/dt/lib:/usr/openwin/lib (RPATH ./main)
search path=/usr/lib (default)
trying path=/usr/lib/libc.so.1

libc.so.1 => /usr/lib/libc.so.1

With this configuration, the cache reflects that the system library libc.so.1 does not
exist in the directories /usr/dt/lib or /usr/openwin/lib. Therefore, the search
for this system file ignores these directories even though the application’s runpath
indicates they should be searched.

EXAMPLE 4 Creation of an alternative object cache for an ELF executable

example% crle -c /local/$HOST/.xterm/ld.config.xterm \
-f RTLD_REL_ALL -G /usr/openwin/bin/xterm

example% ln -s /local/$HOST/.xterm/xterm /local/$HOST/xterm
example% ldd /usr/local/$HOST/xterm

libXaw.so.5 => /local/$HOST/.xterm/libWaw.so.5 (alternate)
libXmu.so.4 => /local/$HOST/.xterm/libXmu.so.4 (alternate)
....
libc.so.1 => /local/$HOST/.xterm/libc.so.1 (alternate)

....

With this configuration, a new xterm and its dependencies are created. These new
objects are fully relocated to themselves and result in faster start-up than the
originating objects. Note: The execution of this application uses its own specific
configuration file. This model is generally more flexible than using the environment
variable LD_CONFIG, as the configuration file will not be erroneously used by other
applications such as ldd(1) or truss(1).

EXAMPLE 5 Creating an alternative object cache to replace an ELF shared object

example% ldd /usr/bin/vi
libcurses.so.1 => /usr/lib/libcurses.so.1
....

example% crle -a /usr/lib/libcurses.so.1 -o /usr/ucblib
example% crle

Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib (system default)
Trusted Directories (ELF): /usr/lib/secure (system default)

Directory: /usr/lib
libcurses.so.1 (alternate: /usr/ucblib/libcurses.so.1)

....

example% ldd /usr/bin/vi
libcurses.so.1 => /usr/ucblib/libcurses.so.1 (alternate)

....

crle(1)

User Commands 213

EXAMPLE 5 Creating an alternative object cache to replace an ELF shared object
(Continued)

With this configuration, any dependency that would normally resolve to
/usr/lib/libcurses.so.1 will instead resolve to
/usr/ucblib/libcurses.so.1.

EXAMPLE 6 Setting replaceable and permanent environment variables

example% crle -e LD_LIBRARY_PATH=/local/lib \
-E LD_PRELOAD=preload.so.1

example% crle
.....
Environment Variables:

LD_LIBRARY_PATH=/local/lib (replaceable)
LD_PRELOAD=preload.so.1 (permanent)

.....
example% LD_DEBUG=files LD_PRELOAD=preload.so.2 ./main
.....
18764: file=preload.so.2; preloaded
18764: file=/local/lib/preload.so.2 [ELF]; generating link map
.....
18764: file=preload.so.1; preloaded
18764: file=/local/lib/preload.so.1 [ELF]; generating link map

.....

With this configuration file, a replaceable search path has been specified together with
a permanent preload object which becomes appended to the process environment
definition.

The creation or display of a configuration file results in a 0 being returned; otherwise
any error condition is accompanied with a diagnostic message and a non-zero value
being returned.

Tagging an alternative application to use an application specific configuration file can
only be achieved if the original application contains one of the .dynamic tags
DT_FLAGS_1 or DT_FEATURE_1. Without these entries any application specific
configuration file must be specified using the LD_CONFIG environment variable. Care
should be exercised with this latter method as this environment variable will be visible
to any forked applications.

The use of the -u option requires at least version 2 of crle. This version level is
evident from displaying the contents of a configuration file:

example% crle

Configuration file [2]: /var/ld/ld.config

......

crle(1)

EXIT STATUS

NOTES

214 man pages section 1: User Commands • Last Revised 10 Oct 2001

With a version 2 configuration file, crle is capable of constructing the command-line
arguments required to regenerate the configuration file and to provide full update
capabilities. Although the update of a version 1 configuration file is possible, the
contents of the configuration file may be insufficient for crle to compute the entire
update requirements.

/var/ld/ld.config Default configuration file for 32-bit
applications.

/var/ld/64/ld.config Default configuration file for 64-bit
applications.

/var/tmp Default location for temporary
configuration file (see tempnam(3C)).

/usr/lib/lddstub Stub application employed to dldump(3DL)
32-bit objects.

/usr/lib/64/lddstub Stub application employed to dldump(3DL)
64-bit objects.

/usr/lib/libcrle.so.1 Audit library employed to dldump(3DL)
32-bit objects.

/usr/lib/64/libcrle.so.1 Audit library employed to dldump(3DL)
64-bit objects.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

ld(1), ld.so.1(1), dldump(3DL), tempnam(3C), attributes(5)

crle(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 215

crontab – user crontab file

crontab [filename]

crontab [-elr] username

The crontab utility manages a user’s access with cron (see cron(1M)) by copying,
creating, listing, and removing crontab files. If invoked without options, crontab
copies the specified file, or the standard input if no file is specified, into a directory
that holds all users’ crontabs.

If crontab is invoked with filename, this will overwrite an existing crontab entry for
the user that invokes it.

Users: Access to crontab is allowed:

� if the user’s name appears in /etc/cron.d/cron.allow.
� if /etc/cron.d/cron.allow does not exist and the user’s name is not in

/etc/cron.d/cron.deny.

Users: Access to crontab is denied:

� if /etc/cron.d/cron.allow exists and the user’s name is not in it.
� if /etc/cron.d/cron.allow does not exist and user’s name is in

/etc/cron.d/cron.deny.
� if neither file exists, only a user with the solaris.jobs.user authorization is

allowed to submit a job.

Notice that the rules for allow and deny apply to root only if the allow/deny files
exist.

The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or
tabs. The first five are integer patterns that specify the following:

minute (0−59),
hour (0−23),
day of the month (1−31),
month of the year (1−12),
day of the week (0−6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of
elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification of
days may be made by two fields (day of the month and day of the week). Both are
adhered to if specified as a list of elements. See EXAMPLES.

The sixth field of a line in a crontab file is a string that is executed by the shell at the
specified times. A percent character in this field (unless escaped by \) is translated to
a NEWLINE character.

crontab(1)

NAME

SYNOPSIS

DESCRIPTION

crontab Access
Control

crontab Entry
Format

216 man pages section 1: User Commands • Last Revised 3 Dec 2001

Only the first line (up to a ‘ % ’ or end of line) of the command field is executed by
the shell. Other lines are made available to the command as standard input. Any line
beginning with a ‘ # ’ is a comment and will be ignored. The file should not contain
blank lines.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file. cron
supplies a default environment for every shell, defining HOME, LOGNAME,
SHELL(=/bin/sh), TZ, and PATH. The default PATH for user cron jobs is
/usr/bin; while root cron jobs default to /usr/sbin:/usr/bin. The default
PATH can be set in /etc/default/cron; see cron(1M).

If you do not redirect the standard output and standard error of your commands, any
generated output or errors will be mailed to you.

The following options are supported:

-e Edits a copy of the current user’s crontab file, or creates an empty file to
edit if crontab does not exist. When editing is complete, the file is
installed as the user’s crontab file. If a username is given, the specified user’s
crontab file is edited, rather than the current user’s crontab file; this may
only be done by a user with the solaris.jobs.admin authorization. The
environment variable EDITOR determines which editor is invoked with the
-e option. The default editor is ed(1). Notice that all crontab jobs should be
submitted using crontab; you should not add jobs by just editing the
crontab file because cron will not be aware of changes made this way.

If all lines in the crontab file are deleted, the old crontab file will be
restored. The correct way to delete all lines is to remove the crontab file via
the -r option.

-l Lists the crontab file for the invoking user. Only a user with the
solaris.jobs.admin authorization can specify a username following the
-r or -l options to remove or list the crontab file of the specified user.

-r Removes a user’s crontab from the crontab directory.

EXAMPLE 1 Cleaning up core files

This example cleans up core files every weekday morning at 3:15 am:

15 3 * * 1-5 find $HOME -name core 2>/dev/null | xargs rm -f

EXAMPLE 2 Mailing a birthday greeting

0 12 14 2 * mailx john%Happy Birthday!%Time for lunch.

EXAMPLE 3 Specifying days of the month and week

This example

crontab(1)

OPTIONS

EXAMPLES

User Commands 217

EXAMPLE 3 Specifying days of the month and week (Continued)

0 0 1,15 * 1

would run a command on the first and fifteenth of each month, as well as on every
Monday.

To specify days by only one field, the other field should be set to *. For example:

0 0 * * 1

would run a command only on Mondays.

See environ(5) for descriptions of the following environment variables that affect the
execution of crontab: LC_TYPE, LC_MESSAGES, and NLSPATH.

EDITOR Determine the editor to be invoked when the -e option is
specified. The default editor is ed(1). If both the EDITOR and
VISUAL environment variables are set, the value of the VISUAL
variable is selected as the editor.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/etc/cron.d main cron directory

/etc/cron.d/cron.allow list of allowed users

/etc/default/cron contains cron default settings

/etc/cron.d/cron.deny list of denied users

/var/cron/log accounting information

/var/spool/cron/crontabs spool area for crontab

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

atq(1), atrm(1), auths(1), ed(1), sh(1), cron(1M), su(1M), auth_attr(4),
attributes(5), environ(5)

If you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with Control-d. This removes all entries in your crontab file.
Instead, exit with Control-c.

crontab(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

218 man pages section 1: User Commands • Last Revised 3 Dec 2001

If an authorized user modifies another user’s crontab file, resulting behavior may be
unpredictable. Instead, the super-user should first use su(1M) to become super-user to
the other user’s login before making any changes to the crontab file.

When updating cron, check first for existing crontab entries that may be scheduled
close to the time of the update. Such entries may be lost if the update process
completes after the scheduled event. This can happen because, when cron is notified
by crontab to update the internal view of a user’s crontab file, it first removes the
user’s existing internal crontab and any internal scheduled events. Then it reads the
new crontab file and rebuilds the internal crontab and events. This last step takes time,
especially with a large crontab file, and may complete after an existing crontab entry is
scheduled to run if it is scheduled too close to the update. To be safe, start a new job at
least 60 seconds after the current date and time.

crontab(1)

User Commands 219

crypt – encode or decode a file

crypt [password]

The crypt utility encrypts and decrypts the contents of a file. crypt reads from the
standard input and writes on the standard output. The password is a key that selects a
particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. crypt encrypts and
decrypts with the same key:

example% crypt key<clear.file> encrypted.file

example% crypt key<encrypted.file | pr

will print the contents of clear. file.

Files encrypted by crypt are compatible with those treated by the editors ed(1),
ex(1), and vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve; direct search of the key space must be infeasible; “sneak paths”
by which keys or cleartext can become visible must be minimized.

crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are widely
known, thus crypt provides minimal security.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, that is, to take a substantial fraction of a second to compute.
However, if keys are restricted to (say) three lower-case letters, then encrypted files
can be read by expending only a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users
executing ps(1) or a derivative command. To minimize this possibility, crypt takes
care to destroy any record of the key immediately upon entry. No doubt the choice of
keys and key security are the most vulnerable aspect of crypt.

/dev/tty for typed key

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

des(1), ed(1), ex(1), makekey(1), ps(1), vi(1), attributes (5)

crypt(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

220 man pages section 1: User Commands • Last Revised 14 May 1997

csh – shell command interpreter with a C-like syntax

csh [-bcefinstvVxX] [argument…]

csh, the C shell, is a command interpreter with a syntax reminiscent of the C
language. It provides a number of convenient features for interactive use that are not
available with the Bourne shell, including filename completion, command aliasing,
history substitution, job control, and a number of built-in commands. As with the
Bourne shell, the C shell provides variable, command and filename substitution.

When first started, the C shell normally performs commands from the .cshrc file in
your home directory, provided that it is readable and you either own it or your real
group ID matches its group ID. If the shell is invoked with a name that starts with ‘−’,
as when started by login(1), the shell runs as a login shell.

If the shell is a login shell, this is the sequence of invocations: First, commands in
/etc/.login are executed. Next, commands from the .cshrc file your home
directory are executed. Then the shell executes commands from the .login file in
your home directory; the same permission checks as those for .cshrc are applied to
this file. Typically, the .login file contains commands to specify the terminal type
and environment. (For an explanation of file interpreters, see below "Command
Execution" and exec(2).)

As a login shell terminates, it performs commands from the .logout file in your
home directory; the same permission checks as those for .cshrc are applied to this
file.

After startup processing is complete, an interactive C shell begins reading commands
from the terminal, prompting with hostname% (or hostname# for the privileged
user). The shell then repeatedly performs the following actions: a line of command
input is read and broken into words. This sequence of words is placed on the history
list and then parsed, as described under USAGE, below. Finally, the shell executes
each command in the current line.

When running noninteractively, the shell does not prompt for input from the terminal.
A noninteractive C shell can execute a command supplied as an argument on its
command line, or interpret commands from a file, also known as a script.

The following options are supported:

-b Force a “break” from option processing. Subsequent command line
arguments are not interpreted as C shell options. This allows the passing of
options to a script without confusion. The shell does not run set-user-ID or
set-group-ID scripts unless this option is present.

-c Execute the first argument (which must be present). Remaining arguments
are placed in argv, the argument-list variable, and passed directly to csh.

-e Exit if a command terminates abnormally or yields a nonzero exit status.

csh(1)

NAME

SYNOPSIS

DESCRIPTION

Initialization and
Termination

Interactive
Operation

Noninteractive
Operation

OPTIONS

User Commands 221

-f Fast start. Read neither the .cshrc file, nor the .login file (if a login
shell) upon startup.

-i Forced interactive. Prompt for command line input, even if the standard
input does not appear to be a terminal (character-special device).

-n Parse (interpret), but do not execute commands. This option can be used to
check C shell scripts for syntax errors.

-s Take commands from the standard input.

-t Read and execute a single command line. A ‘\’ (backslash) can be used to
escape each newline for continuation of the command line onto subsequent
input lines.

-v Verbose. Set the verbose predefined variable; command input is echoed
after history substitution (but before other substitutions) and before
execution.

-V Set verbose before reading .cshrc.

-x Echo. Set the echo variable; echo commands after all substitutions and just
before execution.

-X Set echo before reading .cshrc.

Except with the options -c, -i, -s, or -t, the first nonoption argument is taken to be
the name of a command or script. It is passed as argument zero, and subsequent
arguments are added to the argument list for that command or script.

When enabled by setting the variable filec, an interactive C shell can complete a
partially typed filename or user name. When an unambiguous partial filename is
followed by an ESC character on the terminal input line, the shell fills in the remaining
characters of a matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as CTRL-d), the
shell lists all filenames that match. It then prompts once again, supplying the
incomplete command line typed in so far.

When the last (partial) word begins with a tilde (~), the shell attempts completion with
a user name, rather than a file in the working directory.

The terminal bell signals errors or multiple matches; this can be inhibited by setting
the variable nobeep. You can exclude files with certain suffixes by listing those
suffixes in the variable fignore. If, however, the only possible completion includes a
suffix in the list, it is not ignored. fignore does not affect the listing of filenames by
the EOF character.

csh(1)

Filename
Completion

222 man pages section 1: User Commands • Last Revised 23 May 1997

The shell splits input lines into words at space and tab characters, except as noted
below. The characters &, |, ;, <, >, (, and) form separate words; if paired, the pairs
form single words. These shell metacharacters can be made part of other words, and
their special meaning can be suppressed by preceding them with a ‘\’ (backslash). A
newline preceded by a \ is equivalent to a space character.

In addition, a string enclosed in matched pairs of single-quotes (’), double-quotes
("), or backquotes (‘), forms a partial word; metacharacters in such a string,
including any space or tab characters, do not form separate words. Within pairs of
backquote (‘) or double-quote (") characters, a newline preceded by a ‘\’
(backslash) gives a true newline character. Additional functions of each type of quote
are described, below, under Variable Substitution, Command Substitution,
and Filename Substitution.

When the shell’s input is not a terminal, the character # introduces a comment that
continues to the end of the input line. Its special meaning is suppressed when
preceded by a \ or enclosed in matching quotes.

A simple command is composed of a sequence of words. The first word (that is not part
of an I/O redirection) specifies the command to be executed. A simple command, or a
set of simple commands separated by | or |& characters, forms a pipeline. With |, the
standard output of the preceding command is redirected to the standard input of the
command that follows. With | &, both the standard error and the standard output are
redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case they are executed
sequentially. Pipelines that are separated by && or | | form conditional sequences in
which the execution of pipelines on the right depends upon the success or failure,
respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses ‘()’ to form a simple
command that can be a component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously or “in the background” by
appending an ‘&’; rather than waiting for the sequence to finish before issuing a
prompt, the shell displays the job number (see Job Control, below) and associated
process IDs and prompts immediately.

History substitution allows you to use words from previous command lines in the
command line you are typing. This simplifies spelling corrections and the repetition of
complicated commands or arguments. Command lines are saved in the history list, the
size of which is controlled by the history variable. The most recent command is
retained in any case. A history substitution begins with a ! (although you can change
this with the histchars variable) and may occur anywhere on the command line;
history substitutions do not nest. The ! can be escaped with \ to suppress its special
meaning.

csh(1)

Lexical Structure

Command Line
Parsing

History
Substitution

User Commands 223

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets
executed.

An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when
followed by a space character, tab, newline,
= or (.

!! Refer to the previous command. By itself,
this substitution repeats the previous
command.

!n Refer to command line n.

!-n Refer to the current command line minus n.

!str Refer to the most recent command starting
with str.

!?str? Refer to the most recent command
containing str.

!?str? additional Refer to the most recent command
containing str and append additional to that
referenced command.

!{command} additional Refer to the most recent command
beginning with command and append
additional to that referenced command.

^previous_word^replacement^ Repeat the previous command line
replacing the string previous_word with the
string replacement. This is equivalent to the
history substitution:

!:s/previous_word/replacement/.

To re-execute a specific previous command
AND make such a substitution, say,
re-executing command #6,

!:6s/previous_word/replacement/.

A ‘:’ (colon) separates the event specification from the word designator. It can be
omitted if the word designator begins with a ^, $, *, − or %. If the word is to be
selected from the previous command, the second ! character can be omitted from the
event specification. For instance, !!:1 and !:1 both refer to the first word of the
previous command, while !!$ and !$ both refer to the last word in the previous
command. Word designators include:

csh(1)

Event Designators

Word Designators

224 man pages section 1: User Commands • Last Revised 23 May 1997

The entire command line typed so far.

0 The first input word (command).

n The n’th argument.

^ The first argument, that is, 1.

$ The last argument.

% The word matched by (the most recent) ?s search.

x−y A range of words; −y abbreviates 0−y.

* All the arguments, or a null value if there is just one word in the event.

x* Abbreviates x−$.

x− Like x* but omitting word $.

After the optional word designator, you can add one of the following modifiers,
preceded by a :.

h Remove a trailing pathname component, leaving the head.

r Remove a trailing suffix of the form ‘.xxx’, leaving the basename.

e Remove all but the suffix, leaving the Extension.

s/l/r/ Substitute r for l.

t Remove all leading pathname components, leaving the tail.

& Repeat the previous substitution.

g Apply the change to the first occurrence of a match in each word, by
prefixing the above (for example, g&).

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

x Like q, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that
matches l; an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character strings.
Any character can be used as the delimiter in place of /. A backslash quotes the
delimiter character. The character &, in the right hand side, is replaced by the text from
the left-hand-side. The & can be quoted with a backslash. A null l uses the previous
string either from a l or from a contextual scan string s from !?s. You can omit the
rightmost delimiter if a newline immediately follows r; the rightmost ? in a context
scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous
command, or to a previous history reference on the command line (if any).

csh(1)

Modifiers

User Commands 225

^l^r^ This is equivalent to the history substitution: !:s/l/r/.

The C shell maintains a list of aliases that you can create, display, and modify using
the alias and unalias commands. The shell checks the first word in each command
to see if it matches the name of an existing alias. If it does, the command is
reprocessed with the alias definition replacing its name; the history substitution
mechanism is made available as though that command were the previous input line.
This allows history substitutions, escaped with a backslash in the definition, to be
replaced with actual command line arguments when the alias is used. If no history
substitution is called for, the arguments remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another alias.
Nested aliases are expanded before any history substitutions is applied. This is useful
in pipelines such as

alias lm ’ls -l \!* | more’

which when called, pipes the output of ls(1) through more(1).

Except for the first word, the name of the alias may not appear in its definition, nor in
any alias referred to by its definition. Such loops are detected, and cause an error
message.

The following metacharacters indicate that the subsequent word is the name of a file
to which the command’s standard input, standard output, or standard error is
redirected; this word is variable, command, and filename expanded separately from
the rest of the command.

<
Redirect the standard input.

< < word
Read the standard input, up to a line that is identical with word, and place the
resulting lines in a temporary file. Unless word is escaped or quoted, variable and
command substitutions are performed on these lines. Then, the pipeline is invoked
with the temporary file as its standard input. word is not subjected to variable,
filename, or command substitution, and each line is compared to it before any
substitutions are performed by the shell.

> >! >& >&!
Redirect the standard output to a file. If the file does not exist, it is created. If it does
exist, it is overwritten; its previous contents are lost.

When set, the variable noclobber prevents destruction of existing files. It also
prevents redirection to terminals and /dev/null, unless one of the ! forms is
used. The & forms redirect both standard output and the standard error (diagnostic
output) to the file.

> > > >& > >! > >&!
Append the standard output. Like >, but places output at the end of the file rather
than overwriting it. If noclobber is set, it is an error for the file not to exist, unless

csh(1)

Quick Substitution

Aliases

I/O Redirection

226 man pages section 1: User Commands • Last Revised 23 May 1997

one of the ! forms is used. The & forms append both the standard error and
standard output to the file.

The C shell maintains a set of variables, each of which is composed of a name and a
value. A variable name consists of up to 20 letters and digits, and starts with a letter
(the underscore is considered a letter). A variable’s value is a space-separated list of
zero or more words.

To refer to a variable’s value, precede its name with a ‘$’. Certain references (described
below) can be used to select specific words from the value, or to display other
information about the variable. Braces can be used to insulate the reference from other
characters in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are resolved,
and I/O redirections are applied. Exceptions to this are variable references in I/O
redirections (substituted at the time the redirection is made), and backquoted strings
(see Command Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except within
double-quotes where it always occurs. Variable substitution is suppressed inside of
single-quotes. A $ is escaped if followed by a space character, tab or newline.

Variables can be created, displayed, or destroyed using the set and unset
commands. Some variables are maintained or used by the shell. For instance, the argv
variable contains an image of the shell’s argument list. Of the variables used by the
shell, a number are toggles; the shell does not care what their value is, only whether
they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in command).
With numeric operations, an empty value is considered to be zero; the second and
subsequent words of multiword values are ignored. For instance, when the verbose
variable is set to any value (including an empty value), command input is echoed on
the terminal.

Command and filename substitution is subsequently applied to the words that result
from the variable substitution, except when suppressed by double-quotes, when
noglob is set (suppressing filename substitution), or when the reference is quoted
with the :q modifier. Within double-quotes, a reference is expanded to form (a portion
of) a quoted string; multiword values are expanded to a string with embedded space
characters. When the :q modifier is applied to the reference, it is expanded to a list of
space-separated words, each of which is quoted to prevent subsequent command or
filename substitutions.

Except as noted below, it is an error to refer to a variable that is not set.

$var
${var} These are replaced by words from the value of var, each separated

by a space character. If var is an environment variable, its value is
returned (but ‘:’ modifiers and the other forms given below are
not available).

csh(1)

Variable
Substitution

User Commands 227

$var[index]
${var[index]} These select only the indicated words from the value of var.

Variable substitution is applied to index , which may consist of (or
result in) a either single number, two numbers separated by a ‘−’,
or an asterisk. Words are indexed starting from 1; a ‘*’ selects all
words. If the first number of a range is omitted (as with
$argv[−2]), it defaults to 1. If the last number of a range is
omitted (as with $argv[1−]), it defaults to $#var (the word
count). It is not an error for a range to be empty if the second
argument is omitted (or within range).

$#name
${#name} These give the number of words in the variable.

$0 This substitutes the name of the file from which command input is
being read except for setuid shell scripts. An error occurs if the
name is not known.

$n
${n} Equivalent to $argv[n].

$* Equivalent to $argv[*].

The modifiers :e, :h, :q, :r, :t, and :x can be applied (see History
Substitution), as can :gh, :gt, and :gr. If { } (braces) are used, then the
modifiers must appear within the braces. The current implementation allows only one
such modifier per expansion.

The following references may not be modified with : modifiers.

$?var
${?var} Substitutes the string 1 if var is set or 0 if it is not set.

$?0 Substitutes 1 if the current input filename is known or 0 if it is not.

$$ Substitutes the process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further
interpretation thereafter. It can be used to read from the keyboard
in a C shell script.

Command and filename substitutions are applied selectively to the arguments of
built-in commands. Portions of expressions that are not evaluated are not expanded.
For non-built-in commands, filename expansion of the command name is done
separately from that of the argument list; expansion occurs in a subshell, after I/O
redirection is performed.

A command enclosed by backquotes (‘ . . . ‘) is performed by a subshell. Its standard
output is broken into separate words at each space character, tab and newline; null
words are discarded. This text replaces the backquoted string on the current command

csh(1)

Command and
Filename

Substitutions

Command
Substitution

228 man pages section 1: User Commands • Last Revised 23 May 1997

line. Within double-quotes, only newline characters force new words; space and tab
characters are preserved. However, a final newline is ignored. It is therefore possible
for a command substitution to yield a partial word.

Unquoted words containing any of the characters *, ?, [or {, or that begin with ~, are
expanded (also known as globbing) to an alphabetically sorted list of filenames, as
follows:

* Match any (zero or more) characters.

? Match any single character.

[. . .] Match any single character in the enclosed list(s) or range(s). A list
is a string of characters. A range is two characters separated by a
dash (−), and includes all the characters in between in the ASCII
collating sequence (see ascii(5)).

{ str, str, . . . } Expand to each string (or filename-matching pattern) in the
comma-separated list. Unlike the pattern-matching expressions
above, the expansion of this construct is not sorted. For instance,
{b,a} expands to ‘b’ ‘a’, (not ‘a’ ‘b’). As special cases, the
characters { and }, along with the string { }, are passed
undisturbed.

~[user] Your home directory, as indicated by the value of the variable
home, or that of user, as indicated by the password entry for user.

Only the patterns *, ? and [. . .] imply pattern matching; an error results if no
filename matches a pattern that contains them. The ‘.’ (dot character), when it is the
first character in a filename or pathname component, must be matched explicitly. The
/ (slash) must also be matched explicitly.

A number of C shell built-in commands accept expressions, in which the operators are
similar to those of C and have the same precedence. These expressions typically
appear in the @, exit, if, set and while commands, and are often used to regulate
the flow of control for executing commands. Components of an expression are
separated by white space.

Null or missing values are considered 0. The result of all expressions is a string, which
may represent decimal numbers.

The following C shell operators are grouped in order of precedence:

(. . .) grouping

>~ one’s complement

! logical negation

* / % multiplication, division, remainder (these are right
associative, which can lead to unexpected results;
group combinations explicitly with parentheses.)

csh(1)

Filename
Substitution

Expressions and
Operators

User Commands 229

+ − addition, subtraction (also right associative)

<< >> bitwise shift left, bitwise shift right

< > <= >= less than, greater than, less than or equal to, greater
than or equal to

= = != =~ !~ equal to, not equal to, filename-substitution pattern
match (described below), filename-substitution pattern
mismatch

& bitwise AND

^ bitwise XOR (exclusive or)

| bitwise inclusive OR

&& logical AND

| | logical OR

The operators: ==, !=, =~, and !~ compare their arguments as strings; other operators
use numbers. The operators =~ and !~ each check whether or not a string to the left
matches a filename substitution pattern on the right. This reduces the need for
switch statements when pattern-matching between strings is all that is required.

Also available are file inquiries:

-r filename Return true, or 1 if the user has read access. Otherwise it returns
false, or 0.

-w filename True if the user has write access.

-x filename True if the user has execute permission (or search permission on a
directory).

-e filename True if filename exists.

-o filename True if the user owns filename.

-z filename True if filename is of zero length (empty).

-f filename True if filename is a plain file.

-d filename True if filename is a directory.

If filename does not exist or is inaccessible, then all inquiries return false.

An inquiry as to the success of a command is also available:

{ command } If command runs successfully, the expression evaluates to true, 1.
Otherwise, it evaluates to false, 0. (Note: Conversely, command
itself typically returns 0 when it runs successfully, or some other
value if it encounters a problem. If you want to get at the status
directly, use the value of the status variable rather than this
expression).

csh(1)

230 man pages section 1: User Commands • Last Revised 23 May 1997

The shell contains a number of commands to regulate the flow of control in scripts and
within limits, from the terminal. These commands operate by forcing the shell either to
reread input (to loop), or to skip input under certain conditions (to branch).

Each occurrence of a foreach, switch, while, if. . .then and else built-in
command must appear as the first word on its own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered. The
shell performs seeks within the internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto commands will succeed on
nonseekable inputs.)

If the command is a C shell built-in command, the shell executes it directly. Otherwise,
the shell searches for a file by that name with execute access. If the command name
contains a /, the shell takes it as a pathname, and searches for it. If the command
name does not contain a /, the shell attempts to resolve it to a pathname, searching
each directory in the path variable for the command. To speed the search, the shell
uses its hash table (see the rehash built-in command) to eliminate directories that
have no applicable files. This hashing can be disabled with the -c or -t, options, or
the unhash built-in command.

As a special case, if there is no / in the name of the script and there is an alias for the
word shell, the expansion of the shell alias is prepended (without modification) to
the command line. The system attempts to execute the first word of this special
(late-occurring) alias, which should be a full pathname. Remaining words of the alias’s
definition, along with the text of the input line, are treated as arguments.

When a pathname is found that has proper execute permissions, the shell forks a new
process and passes it, along with its arguments, to the kernel using the execve()
system call (see exec(2)). The kernel then attempts to overlay the new process with
the desired program. If the file is an executable binary (in a.out(4) format) the kernel
succeeds and begins executing the new process. If the file is a text file and the first line
begins with #!, the next word is taken to be the pathname of a shell (or command) to
interpret that script. Subsequent words on the first line are taken as options for that
shell. The kernel invokes (overlays) the indicated shell, using the name of the script as
an argument.

If neither of the above conditions holds, the kernel cannot overlay the file and the
execve() call fails (see exec(2)); the C shell then attempts to execute the file by
spawning a new shell, as follows:

� If the first character of the file is a #, a C shell is invoked.
� Otherwise, a Bourne shell is invoked.

The shell normally ignores QUIT signals. Background jobs are immune to signals
generated from the keyboard, including hangups (HUP). Other signals have the values
that the C shell inherited from its environment. The shell’s handling of interrupt and

csh(1)

Control Flow

Command
Execution

Signal Handling

User Commands 231

terminate signals within scripts can be controlled by the onintr built-in command.
Login shells catch the TERM signal; otherwise, this signal is passed on to child
processes. In no case are interrupts allowed when a login shell is reading the .logout
file.

The shell associates a numbered job with each command sequence to keep track of
those commands that are running in the background or have been stopped with TSTP
signals (typically CTRL-z). When a command or command sequence (semicolon
separated list) is started in the background using the & metacharacter, the shell
displays a line with the job number in brackets and a list of associated process
numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently
stopped (or put into the background if none are stopped) is referred to as the current
job and is indicated with a ‘+’. The previous job is indicated with a ‘−’; when the
current job is terminated or moved to the foreground, this job takes its place (becomes
the new current job).

To manipulate jobs, refer to the bg, fg, kill, stop, and % built-in commands.

A reference to a job begins with a ‘%’. By itself, the percent-sign refers to the current
job.

% %+ %% The current job.

%− The previous job.

%j Refer to job j as in: ‘kill -9 %j’. j can be a job number, or a string
that uniquely specifies the command line by which it was started;
‘fg %vi’ might bring a stopped vi job to the foreground, for
instance.

%?string Specify the job for which the command line uniquely contains
string.

A job running in the background stops when it attempts to read from the terminal.
Background jobs can normally produce output, but this can be suppressed using the
‘stty tostop’ command.

While running interactively, the shell tracks the status of each job and reports
whenever the job finishes or becomes blocked. It normally displays a message to this
effect as it issues a prompt, in order to avoid disturbing the appearance of your input.
When set, the notify variable indicates that the shell is to report status changes
immediately. By default, the notify command marks the current process; after
starting a background job, type notify to mark it.

Built-in commands are executed within the C shell. If a built-in command occurs as
any component of a pipeline except the last, it is executed in a subshell.

csh(1)

Job Control

Status Reporting

Commands

232 man pages section 1: User Commands • Last Revised 23 May 1997

:
Null command. This command is interpreted, but performs no action.

alias [name [def]]
Assign def to the alias name. def is a list of words that may contain escaped
history-substitution metasyntax. name is not allowed to be alias or unalias. If
def is omitted, the current definition for the alias name is displayed. If both name and
def are omitted, all aliases are displayed with their definitions.

bg [%job . . .]
Run the current or specified jobs in the background.

break
Resume execution after the end of the nearest enclosing foreach or while loop.
The remaining commands on the current line are executed. This allows multilevel
breaks to be written as a list of break commands, all on one line.

breaksw
Break from a switch, resuming after the endsw.

case label:
A label in a switch statement.

cd [dir]
chdir [dir]

Change the shell’s working directory to directory dir. If no argument is given,
change to the home directory of the user. If dir is a relative pathname not found in
the current directory, check for it in those directories listed in the cdpath variable.
If dir is the name of a shell variable whose value starts with a /, change to the
directory named by that value.

continue
Continue execution of the next iteration of the nearest enclosing while or foreach
loop.

default:
Labels the default case in a switch statement. The default should come after all
case labels. Any remaining commands on the command line are first executed.

dirs [-l]
Print the directory stack, most recent to the left; the first directory shown is the
current directory. With the -l argument, produce an unabbreviated printout; use of
the ~ notation is suppressed.

echo [-n] list
The words in list are written to the shell’s standard output, separated by space
characters. The output is terminated with a newline unless the -n option is used.
csh will, by default, invoke its built-in echo, if echo is called without the full
pathname of a Unix command, regardless of the configuration of your PATH (see
echo(1)).

csh(1)

User Commands 233

eval argument . . .
Reads the arguments as input to the shell and executes the resulting command(s).
This is usually used to execute commands generated as the result of command or
variable substitution. See tset(1B) for an example of how to use eval.

exec command
Execute command in place of the current shell, which terminates.

exit [(expr)]
The calling shell or shell script exits, either with the value of the status variable or
with the value specified by the expression expr.

fg [%job]
Bring the current or specified job into the foreground.

foreach var (wordlist)
. . .

end
The variable var is successively set to each member of wordlist. The sequence of
commands between this command and the matching end is executed for each new
value of var. Both foreach and end must appear alone on separate lines.

The built-in command continue may be used to terminate the execution of the
current iteration of the loop and the built-in command break may be used to
terminate execution of the foreach command. When this command is read from
the terminal, the loop is read once prompting with ? before any statements in the
loop are executed.

glob wordlist
Perform filename expansion on wordlist. Like echo, but no \ escapes are
recognized. Words are delimited by NULL characters in the output.

goto label
The specified label is a filename and a command expanded to yield a label. The shell
rewinds its input as much as possible and searches for a line of the form label:
possibly preceded by space or tab characters. Execution continues after the
indicated line. It is an error to jump to a label that occurs between a while or for
built-in command and its corresponding end.

hashstat
Print a statistics line indicating how effective the internal hash table for the path
variable has been at locating commands (and avoiding execs). An exec is
attempted for each component of the path where the hash function indicates a
possible hit and in each component that does not begin with a ‘/’. These statistics
only reflect the effectiveness of the path variable, not the cdpath variable.

history [-hr] [n]
Display the history list; if n is given, display only the n most recent events.

-r Reverse the order of printout to be most recent first rather than oldest
first.

csh(1)

234 man pages section 1: User Commands • Last Revised 23 May 1997

-h Display the history list without leading numbers. This is used to
produce files suitable for sourcing using the -h option to source.

if (expr)command
If the specified expression evaluates to true, the single command with arguments is
executed. Variable substitution on command happens early, at the same time it does
for the rest of the if command. command must be a simple command, not a
pipeline, a command list, or a parenthesized command list. Note: I/O redirection
occurs even if expr is false, when command is not executed (this is a bug).

if (expr) then
. . .

else if (expr2) then
. . .

else
. . .

endif
If expr is true, commands up to the first else are executed. Otherwise, if expr2 is
true, the commands between the else if and the second else are executed.
Otherwise, commands between the else and the endif are executed. Any number
of else if pairs are allowed, but only one else. Only one endif is needed, but it
is required. The words else and endif must be the first nonwhite characters on a
line. The if must appear alone on its input line or after an else.

jobs [-l]
List the active jobs under job control.

-l List process IDs, in addition to the normal information.

kill [-sig] [pid] [%job] . . .
kill -l

Send the TERM (terminate) signal, by default, or the signal specified, to the specified
process ID, the job indicated, or the current job. Signals are either given by number
or by name. There is no default. Typing kill does not send a signal to the current
job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or
process is sent a CONT (continue) signal as well.

-l List the signal names that can be sent.

limit [-h] [resource [max-use]]
Limit the consumption by the current process or any process it spawns, each not to
exceed max-use on the specified resource. If max-use is omitted, print the current
limit; if resource is omitted, display all limits. (Run the sysdef(1M) command to
obtain the maximum possible limits for your system. The values reported are in
hexadecimal, but can be translated into decimal numbers using the bc(1)
command).

-h Use hard limits instead of the current limits. Hard limits impose a
ceiling on the values of the current limits. Only the privileged user may
raise the hard limits.

resource is one of:

csh(1)

User Commands 235

cputime Maximum CPU seconds per process.

filesize Largest single file allowed; limited to the size of the
filesystem. (see df(1M)).

datasize (heapsize) Maximum data size (including stack) for the process.
This is the size of your virtual memory See swap(1M).

stacksize Maximum stack size for the process. See swap(1M).

coredumpsize Maximum size of a core dump (file). This limited to the
size of the filesystem.

descriptors Maximum number of file descriptors. Run sysdef().

memorysize Maximum size of virtual memory.

max-use is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).

nk n kilobytes. This is the default for all but cputime.

nm n megabytes or minutes (for cputime).

mm:ss Minutes and seconds (for cputime).

Example of limit: to limit the size of a core file dump to 0 Megabytes, type the
following:

limit coredumpsize 0M

login [username | -p]
Terminate a login shell and invoke login(1). The .logout file is not processed. If
username is omitted, login prompts for the name of a user.

-p Preserve the current environment (variables).

logout
Terminate a login shell.

nice [+n |-n] [command]
Increment the process priority value for the shell or for command by n. The higher
the priority value, the lower the priority of a process, and the slower it runs. When
given, command is always run in a subshell, and the restrictions placed on
commands in simple if commands apply. If command is omitted, nice increments
the value for the current shell. If no increment is specified, nice sets the process
priority value to 4. The range of process priority values is from −20 to 20. Values of
n outside this range set the value to the lower, or to the higher boundary,
respectively.

+n Increment the process priority value by n.

-n Decrement by n. This argument can be used only by the privileged user.

csh(1)

236 man pages section 1: User Commands • Last Revised 23 May 1997

nohup [command]
Run command with HUPs ignored. With no arguments, ignore HUPs throughout the
remainder of a script. When given, command is always run in a subshell, and the
restrictions placed on commands in simple if statements apply. All processes
detached with & are effectively nohup’d.

notify [%job] . . .
Notify the user asynchronously when the status of the current job or specified jobs
changes.

onintr [−| label]
Control the action of the shell on interrupts. With no arguments, onintr restores
the default action of the shell on interrupts. (The shell terminates shell scripts and
returns to the terminal command input level). With the − argument, the shell
ignores all interrupts. With a label argument, the shell executes a goto label when
an interrupt is received or a child process terminates because it was interrupted.

popd [+n]
Pop the directory stack and cd to the new top directory. The elements of the
directory stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

pushd [+n |dir]
Push a directory onto the directory stack. With no arguments, exchange the top two
elements.

+n Rotate the n’th entry to the top of the stack and cd to it.

dir Push the current working directory onto the stack and change to dir.

rehash
Recompute the internal hash table of the contents of directories listed in the path
variable to account for new commands added. Recompute the internal hash table of
the contents of directories listed in the cdpath variable to account for new directories
added.

repeat count command
Repeat command count times. command is subject to the same restrictions as with the
one-line if statement.

set [var [= value]]
set var[n] = word

With no arguments, set displays the values of all shell variables. Multiword values
are displayed as a parenthesized list. With the var argument alone, set assigns an
empty (null) value to the variable var. With arguments of the form var = value set
assigns value to var, where value is one of:

word A single word (or quoted string).

(wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set
var[n] = word replaces the n’th word in a multiword value with word.

csh(1)

User Commands 237

setenv [VAR [word]]
With no arguments, setenv displays all environment variables. With the VAR
argument, setenv sets the environment variable VAR to have an empty (null)
value. (By convention, environment variables are normally given upper-case
names.) With both VAR and word arguments, setenv sets the environment variable
NAME to the value word, which must be either a single word or a quoted string. The
most commonly used environment variables, USER, TERM, and PATH, are
automatically imported to and exported from the csh variables user, term, and
path; there is no need to use setenv for these. In addition, the shell sets the PWD
environment variable from the csh variable cwd whenever the latter changes.

The environment variables LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY take immediate effect when changed within the
C shell.

If any of the LC_* variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment,
the operational behavior of csh for each corresponding locale category is
determined by the value of the LANG environment variable. If LC_ALL is set, its
contents are used to override both the LANG and the other LC_* variables. If none
of the above variables is set in the environment, the "C" (U.S. style) locale
determines how csh behaves.

LC_CTYPE Determines how csh handles characters. When LC_CTYPE is
set to a valid value, csh can display and handle text and
filenames containing valid characters for that locale.

LC_MESSAGES Determines how diagnostic and informative messages are
presented. This includes the language and style of the messages
and the correct form of affirmative and negative responses. In
the "C" locale, the messages are presented in the default form
found in the program itself (in most cases, U.S./English).

LC_NUMERIC Determines the value of the radix character (decimal point (".")
in the "C" locale) and thousand separator (empty string ("") in
the "C" locale).

shift [variable]
The components of argv, or variable, if supplied, are shifted to the left, discarding
the first component. It is an error for the variable not to be set or to have a null
value.

source [-h] name
Reads commands from name. source commands may be nested, but if they are
nested too deeply the shell may run out of file descriptors. An error in a sourced file
at any level terminates all nested source commands.

-h Place commands from the file name on the history list without executing
them.

csh(1)

238 man pages section 1: User Commands • Last Revised 23 May 1997

stop %jobid . . .
Stop the current or specified background job.

stop pid . . .
Stop the specified process, pid. (see ps(1)).

suspend
Stop the shell in its tracks, much as if it had been sent a stop signal with ^Z. This is
most often used to stop shells started by su.

switch (string)
case label:

. . .
breaksw

. . .
default:

. . .
breaksw
endsw

Each label is successively matched, against the specified string, which is first
command and filename expanded. The file metacharacters *, ? and [. . .] may be
used in the case labels, which are variable expanded. If none of the labels match
before a “default” label is found, execution begins after the default label. Each case
statement and the default statement must appear at the beginning of a line. The
command breaksw continues execution after the endsw. Otherwise control falls
through subsequent case and default statements as with C. If no label matches
and there is no default, execution continues after the endsw.

time [command]
With no argument, print a summary of time used by this C shell and its children.
With an optional command, execute command and print a summary of the time it
uses. As of this writing, the time built-in command does NOT compute the last 6
fields of output, rendering the output to erroneously report the value "0" for these
fields.

example %time ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w

(See below the "Environment Variables and Predefined Shell Variables" sub-section
on the time variable.)

umask [value]
Display the file creation mask. With value, set the file creation mask. With value
given in octal, the user can turn-off any bits, but cannot turn-on bits to allow new
permissions. Common values include 077, restricting all permissions from everyone
else; 002, giving complete access to the group, and read (and directory search)
access to others; or 022, giving read (and directory search) but not write permission
to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases are removed
by ‘unalias *’.

csh(1)

User Commands 239

unhash
Disable the internal hash tables for the path and cdpath variables.

unlimit [-h] [resource]
Remove a limitation on resource. If no resource is specified, then all resource
limitations are removed. See the description of the limit command for the list of
resource names.

-h Remove corresponding hard limits. Only the privileged user may do
this.

unset pattern
Remove variables whose names match (filename substitution) pattern. All variables
are removed by ‘unset *’; this has noticeably distasteful side effects.

unsetenv variable
Remove variable from the environment. As with unset, pattern matching is not
performed.

wait
Wait for background jobs to finish (or for an interrupt) before prompting.

while (expr)
. . .

end
While expr is true (evaluates to nonzero), repeat commands between the while and
the matching end statement. break and continue may be used to terminate or
continue the loop prematurely. The while and end must appear alone on their
input lines. If the shell’s input is a terminal, it prompts for commands with a
question-mark until the end command is entered and then performs the commands
in the loop.

% [job] [&]
Bring the current or indicated job to the foreground. With the ampersand, continue
running job in the background.

@ [var =expr]
@ [var[n]=expr]

With no arguments, display the values for all shell variables. With arguments, set
the variable var, or the n’th word in the value of var, to the value that expr evaluates
to. (If [n] is supplied, both var and its n’th component must already exist.)

If the expression contains the characters >, <, &, or |, then at least this part of expr
must be placed within parentheses.

The operators *=, +=, and so forth, are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however, mandatory in
separating components of expr that would otherwise be single words.

Special postfix operators, + + and − −, increment or decrement name, respectively.

csh(1)

240 man pages section 1: User Commands • Last Revised 23 May 1997

Unlike the Bourne shell, the C shell maintains a distinction between environment
variables, which are automatically exported to processes it invokes, and shell
variables, which are not. Both types of variables are treated similarly under variable
substitution. The shell sets the variables argv, cwd, home, path, prompt, shell, and
status upon initialization. The shell copies the environment variable USER into the
shell variable user, TERM into term, and HOME into home, and copies each back into
the respective environment variable whenever the shell variables are reset. PATH and
path are similarly handled. You need only set path once in the .cshrc or .login
file. The environment variable PWD is set from cwd whenever the latter changes. The
following shell variables have predefined meanings:

argv Argument list. Contains the list of command line arguments
supplied to the current invocation of the shell. This variable
determines the value of the positional parameters $1, $2, and so
on.

cdpath Contains a list of directories to be searched by the cd, chdir, and
popd commands, if the directory argument each accepts is not a
subdirectory of the current directory.

cwd The full pathname of the current directory.

echo Echo commands (after substitutions) just before execution.

fignore A list of filename suffixes to ignore when attempting filename
completion. Typically the single word ‘.o’.

filec Enable filename completion, in which case the CTRL-d character
EOT and the ESC character have special significance when typed
in at the end of a terminal input line:

EOT Print a list of all filenames that start with the preceding
string.

ESC Replace the preceding string with the longest
unambiguous extension.

hardpaths If set, pathnames in the directory stack are resolved to contain no
symbolic-link components.

histchars A two-character string. The first character replaces ! as the
history-substitution character. The second replaces the carat (^) for
quick substitutions.

history The number of lines saved in the history list. A very large number
may use up all of the C shell’s memory. If not set, the C shell saves
only the most recent command.

home The user’s home directory. The filename expansion of ~ refers to
the value of this variable.

ignoreeof If set, the shell ignores EOF from terminals. This protects against
accidentally killing a C shell by typing a CTRL-d.

csh(1)

Environment
Variables and

Predefined Shell
Variables

User Commands 241

mail A list of files where the C shell checks for mail. If the first word of
the value is a number, it specifies a mail checking interval in
seconds (default 5 minutes).

nobeep Suppress the bell during command completion when asking the C
shell to extend an ambiguous filename.

noclobber Restrict output redirection so that existing files are not destroyed
by accident. > redirections can only be made to new files. >>
redirections can only be made to existing files.

noglob Inhibit filename substitution. This is most useful in shell scripts
once filenames (if any) are obtained and no further expansion is
desired.

nonomatch Returns the filename substitution pattern, rather than an error, if
the pattern is not matched. Malformed patterns still result in
errors.

notify If set, the shell notifies you immediately as jobs are completed,
rather than waiting until just before issuing a prompt.

path The list of directories in which to search for commands. path is
initialized from the environment variable PATH, which the C shell
updates whenever path changes. A null word (’’) specifies the
current directory. The default is typically (/usr/bin .). One
may override this initial search path upon csh start-up by setting
it in .cshrc or .login (for login shells only). If path becomes
unset, only full pathnames will execute. An interactive C shell will
normally hash the contents of the directories listed after reading
.cshrc, and whenever path is reset. If new commands are
added, use the rehash command to update the table.

prompt The string an interactive C shell prompts with. Noninteractive
shells leave the prompt variable unset. Aliases and other
commands in the .cshrc file that are only useful interactively, can
be placed after the following test: ‘if ($?prompt == 0) exit’,
to reduce startup time for noninteractive shells. A ! in the prompt
string is replaced by the current event number. The default prompt
is hostname% for mere mortals, or hostname# for the privileged user.

The setting of $prompt has three meanings:

$prompt not set non-interactive shell, test $?prompt.

$prompt set but == "" .cshrc called by the which(1)
command.

$prompt set and != "" normal interactive shell.

csh(1)

242 man pages section 1: User Commands • Last Revised 23 May 1997

savehist The number of lines from the history list that are saved in
~/.history when the user logs out. Large values for savehist
slow down the C shell during startup.

shell The file in which the C shell resides. This is used in forking shells
to interpret files that have execute bits set, but that are not
executable by the system.

status The status returned by the most recent command. If that command
terminated abnormally, 0200 is added to the status. Built-in
commands that fail return exit status 1; all other built-in
commands set status to 0.

time Control automatic timing of commands. Can be supplied with one
or two values. The first is the reporting threshold in CPU seconds.
The second is a string of tags and text indicating which resources
to report on. A tag is a percent sign (%) followed by a single
upper-case letter (unrecognized tags print as text):

%D Average amount of unshared data space used in
Kilobytes.

%E Elapsed (wallclock) time for the command.

%F Page faults.

%I Number of block input operations.

%K Average amount of unshared stack space used in
Kilobytes.

%M Maximum real memory used during execution of the
process.

%O Number of block output operations.

%P Total CPU time — U (user) plus S (system) — as a
percentage of E (elapsed) time.

%S Number of seconds of CPU time consumed by the
kernel on behalf of the user’s process.

%U Number of seconds of CPU time devoted to the user’s
process.

%W Number of swaps.

%X Average amount of shared memory used in Kilobytes.

The default summary display outputs from the %U, %S, %E, %P, %X,
%D, %I, %O, %F, and %W tags, in that order.

verbose Display each command after history substitution takes place.

csh(1)

User Commands 243

See largefile(5) for the description of the behavior of csh when encountering files
greater than or equal to 2 Gbyte (231 bytes).

~/.cshrc Read at beginning of execution by each shell.

~/.login Read by login shells after .cshrc at login.

~/.logout Read by login shells at logout.

~/.history Saved history for use at next login.

/usr/bin/sh The Bourne shell, for shell scripts not starting with a
‘#’.

/tmp/sh* Temporary file for ‘<<’.

/etc/passwd Source of home directories for ‘~name’.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

bc(1), echo(1), login(1), ls(1), more(1), ps(1), sh(1), shell_builtins(1),
tset(1B), which(1), df(1M), swap(1M), sysdef(1M), access(2), exec(2), fork(2),
pipe(2), a.out(4), environ(4), ascii(5), attributes(5), environ(5),
largefile(5), termio(7I)

You have stopped jobs.
You attempted to exit the C shell with stopped jobs under job control. An
immediate second attempt to exit will succeed, terminating the stopped jobs.

The use of setuid shell scripts is strongly discouraged.

Words can be no longer than 1024 bytes. The system limits argument lists to 1,048,576
bytes. However, the maximum number of arguments to a command for which
filename expansion applies is 1706. Command substitutions may expand to no more
characters than are allowed in the argument list. To detect looping, the shell restricts
the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in if
this is different from the current directory; this can be misleading (that is, wrong) as
the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form
a ; b ; c are also not handled gracefully when stopping is attempted. If you suspend
b, the shell never executes c. This is especially noticeable if the expansion results from
an alias. It can be avoided by placing the sequence in parentheses to force it into a
subshell.

csh(1)

Large File
Behavior

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

244 man pages section 1: User Commands • Last Revised 23 May 1997

Control over terminal output after processes are started is primitive; use the Sun
Window system if you need better output control.

Commands within loops, prompted for by ?, are not placed in the history list.

Control structures should be parsed rather than being recognized as built-in
commands. This would allow control commands to be placed anywhere, to be
combined with |, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitutions.
There are two problems with : modifier usage on variable substitutions: not all of the
modifiers are available, and only one modifier per substitution is allowed.

The g (global) flag in history substitutions applies only to the first match in each word,
rather than all matches in all words. The common text editors consistently do the latter
when given the g flag in a substitution command.

Quoting conventions are confusing. Overriding the escape character to force variable
substitutions within double quotes is counterintuitive and inconsistent with the
Bourne shell.

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

It is up to the user to manually remove all duplicate pathnames accrued from using
built-in commands as

set path = pathnamesor

setenv PATH = pathnamesmore than once. These often occur because a shell script or a
.cshrc file does something like

‘set path=(/usr/local /usr/hosts $path)’to ensure that the named directories are in
the pathname list.

The only way to direct the standard output and standard error separately is by
invoking a subshell, as follows:

command > outfile) >& errorfile

Although robust enough for general use, adventures into the esoteric periphery of the
C shell may reveal unexpected quirks.

If you start csh as a login shell and you do not have a .login in your home
directory, then the csh reads in the /etc/.login.

When the shell executes a shell script that attempts to execute a non-existent
command interpreter, the shell returns an erroneous diagnostic message that the shell
script file does not exist.

As of this writing, the time built-in command does NOT compute the last 6 fields of
output, rendering the output to erroneously report the value "0" for these fields:

csh(1)

BUGS

User Commands 245

example %time ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w

csh(1)

246 man pages section 1: User Commands • Last Revised 23 May 1997

csplit – split files based on context

csplit [-ks] [-f prefix] [-n number] file arg1… argn

The csplit utility reads the file named by the file operand, writes all or part of that
file into other files as directed by the arg operands, and writes the sizes of the files.

The following options are supported:

-f prefix Name the created files prefix00, prefix01, . . . , prefixn. The default
is xx00 . . . xxn. If the prefix argument would create a file name
exceeding 14 bytes, an error will result; csplit will exit with a
diagnostic message and no files will be created.

-k Leave previously created files intact. By default, csplit will
remove created files if an error occurs.

-n number Use number decimal digits to form filenames for the file pieces. The
default is 2.

-s Suppress the output of file size messages.

The following operands are supported:

file The path name of a text file to be split. If file is -, the standard
input will be used.

The operands arg1 . . . argn can be a combination of the following:

/rexp/[offset] Create a file using the content of the lines from the current line up
to, but not including, the line that results from the evaluation of
the regular expression with offset, if any, applied. The regular
expression rexp must follow the rules for basic regular expressions.
The optional offset must be a positive or negative integer value
representing a number of lines. The integer value must be
preceded by + or −. If the selection of lines from an offset
expression of this type would create a file with zero lines, or one
with greater than the number of lines left in the input file, the
results are unspecified. After the section is created, the current line
will be set to the line that results from the evaluation of the regular
expression with any offset applied. The pattern match of rexp
always is applied from the current line to the end of the file.

%rexp%[offset] This operand is the same as /rexp/[offset], except that no file will
be created for the selected section of the input file.

line_no Create a file from the current line up to (but not including) the line
number line_no. Lines in the file will be numbered starting at one.
The current line becomes line_no.

{num} Repeat operand. This operand can follow any of the operands
described previously. If it follows a rexp type operand, that
operand will be applied num more times. If it follows a line_no

csplit(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 247

operand, the file will be split every line_no lines, num times, from
that point.

An error will be reported if an operand does not reference a line between the current
position and the end of the file.

See largefile(5) for the description of the behavior of csplit when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Splitting and combining files

This example creates four files, cobol00 . . . cobol03.

example% csplit -f cobol filename ’/procedure division/’ /par5./ /par16./

After editing the ‘‘split’’ files, they can be recombined as follows:

example% cat cobol0[0−3] > filename

Note: This example overwrites the original file.

EXAMPLE 2 Splitting a file into equal parts

This example splits the file at every 100 lines, up to 10,000 lines. The -k option causes
the created files to be retained if there are less than 10,000 lines; however, an error
message would still be printed.

example% csplit -k filename 100 {99}

EXAMPLE 3 Creating a file for separate C routines

If prog.c follows the normal C coding convention (the last line of a routine consists
only of a } in the first character position), this example creates a file for each separate
C routine (up to 21) in prog.c.

example% csplit -k prog.c ’%main(%’ ’/^}/+1’ {20}

See environ(5) for descriptions of the following environment variables that affect the
execution of csplit: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

csplit(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

248 man pages section 1: User Commands • Last Revised 20 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

sed(1), split(1), attributes(5), environ(5), largefile(5)

The diagnostic messages are self-explanatory, except for the following:

arg − out of range The given argument did not reference a line between
the current position and the end of the file.

csplit(1)

SEE ALSO

DIAGNOSTICS

User Commands 249

ct – spawn login to a remote terminal

ct [options] telno…

The ct utility dials the telephone number of a modem that is attached to a terminal
and spawns a login process to that terminal. The telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate places.
(The set of legal characters for telno is 0 through 9, -, =, *, and #. The maximum length
telno is 31 characters). If more than one telephone number is specified, ct will try each
in succession until one answers; this is useful for specifying alternate dialing paths.

ct will try each line listed in the file /etc/uucp/Devices until it finds an available
line with appropriate attributes, or runs out of entries.

After the user on the destination terminal logs out, there are two things that could
occur depending on what type of port monitor is monitoring the port. In the case of no
port monitor, ct prompts: Reconnect? If the response begins with the letter n, the
line will be dropped; otherwise, ttymon will be started again and the login: prompt
will be printed. In the second case, where a port monitor is monitoring the port, the
port monitor reissues the login: prompt.

The user should log out properly before disconnecting.

The following options are supported:

-h Normally, ct will hang up the current line so that it can be used to
answer the incoming call. The -h option will prevent this action.
The -h option will also wait for the termination of the specified ct
process before returning control to the user’s terminal.

-sspeed The data rate may be set with the -s option. speed is expressed in
baud rates. The default baud rate is 1200.

-v If the -v (verbose) option is used, ct will send a running narrative
to the standard error output stream.

-wn If there are no free lines ct will ask if it should wait, and for how
many minutes, before it gives up. ct will continue to try to open
the dialers at one-minute intervals until the specified limit is
exceeded. This dialogue may be overridden by specifying the -wn
option. n is the maximum number of minutes that ct is to wait for
a line.

-xn This option is used for debugging; it produces a detailed output of
the program execution on stderr. n is a single number between 0
and 9. As n increases to 9, more detailed debugging information is
given.

ct(1C)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

250 man pages section 1: User Commands • Last Revised 14 Sep 1992

/etc/uucp/Devices

/var/adm/ctlog

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

cu(1C), login(1), uucp(1C), ttymon(1M), attributes(5)

The ct program will not work with a DATAKIT Multiplex interface.

For a shared port, one used for both dial-in and dial-out, the ttymon program
running on the line must have the -r and -b options specified (see ttymon(1M)).

ct(1C)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 251

ctags – create a tags file for use with ex and vi

/usr/bin/ctags [-aBFtuvwx] [-f tagsfile] file…

/usr/xpg4/bin/ctags [-aBFuvwx] [-f tagsfile] file…

The ctags utility makes a tags file for ex(1) from the specified C, C++, Pascal,
FORTRAN, yacc(1), and lex(1) sources. A tags file gives the locations of specified
objects (in this case functions and typedefs) in a group of files. Each line of the tags file
contains the object name, the file in which it is defined, and an address specification
for the object definition. Functions are searched with a pattern, typedefs with a line
number. Specifiers are given in separate fields on the line, separated by SPACE or TAB
characters. Using the tags file, ex can quickly find these objects’ definitions.

Normally, ctags places the tag descriptions in a file called tags; this may be
overridden with the -f option.

Files with names ending in .c or .h are assumed to be either C or C++ source files
and are searched for C/C++ routine and macro definitions. Files with names ending in
.cc, .C, or .cxx, are assumed to be C++ source files. Files with names ending in .y
are assumed to be yacc source files. Files with names ending in .l are assumed to be
lex files. Others are first examined to see if they contain any Pascal or FORTRAN
routine definitions; if not, they are processed again looking for C definitions.

The tag main is treated specially in C or C++ programs. The tag formed is created by
prepending M to file, with a trailing .c , .cc .C, or .cxx removed, if any, and leading
path name components also removed. This makes use of ctags practical in directories
with more than one program.

The precedence of the options that pertain to printing is -x, -v, then the remaining
options. The following options are supported:

-a Appends output to an existing tags file.

-B Uses backward searching patterns (?. . . ?).

-f tagsfile Places the tag descriptions in a file called tagsfile instead of tags.

-F Uses forward searching patterns (/. . . /) (default).

-t Creates tags for typedefs. /usr/xpg4/bin/ctags creates tags
for typedefs by default.

-u Updates the specified files in tags, that is, all references to them are
deleted, and the new values are appended to the file. Beware: this
option is implemented in a way that is rather slow; it is usually
faster to simply rebuild the tags file.

-v Produces on the standard output an index listing the function
name, file name, and page number (assuming 64 line pages). Since
the output will be sorted into lexicographic order, it may be
desired to run the output through sort -f.

ctags(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

252 man pages section 1: User Commands • Last Revised 18 Mar 1997

-w Suppresses warning diagnostics.

-x Produces a list of object names, the line number and file name on
which each is defined, as well as the text of that line and prints this
on the standard output. This is a simple index which can be
printed out as an off-line readable function index.

The following file operands are supported:

file.c Files with basenames ending with the .c suffix are treated as
C-language source code.

file.h Files with basenames ending with the .h suffix are treated as
C-language source code.

file.f Files with basenames ending with the .f suffix are treated as
FORTRAN-language source code.

The -v option is mainly used with vgrind which will be part of the optional BSD
Compatibility Package.

EXAMPLE 1 Producing entries in alphabetical order

Using ctags with the -v option produces entries in an order which may not always
be appropriate for vgrind. To produce results in alphabetical order, you may want to
run the output through sort -f.

example% ctags -v filename.c filename.h | sort -f > index

example% vgrind -x index

EXAMPLE 2 Building a tags file

To build a tags file for C sources in a directory hierarchy rooted at sourcedir, first create
an empty tags file, and then run find(1)

example% cd sourcedir ; rm -f tags ; touch tags
example% find . \(-name SCCS -prune -name \\

’*.c’ -o -name ’*.h’ \) -exec ctags -u {} \;

Notice that spaces must be entered exactly as shown.

See environ(5) for descriptions of the following environment variables that affect the
execution of ctags: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

tags output tags file

See attributes(5) for descriptions of the following attributes:

ctags(1)

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

User Commands 253

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

ex(1), lex(1), vgrind(1), vi(1), yacc(1), attributes(5), environ(5), XPG4(5)

Recognition of functions, subroutines, and procedures for FORTRAN and
Pascal is done in a very simpleminded way. No attempt is made to deal with block
structure; if you have two Pascal procedures in different blocks with the same name,
you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a
hack.

The ctags utility does not know about #ifdefs.

The ctags utility should know about Pascal types. Relies on the input being well
formed to detect typedefs. Use of -tx shows only the last line of typedefs.

ctags(1)

/usr/bin/ctags

/usr/xpg4/bin/ctags

SEE ALSO

NOTES

254 man pages section 1: User Commands • Last Revised 18 Mar 1997

cu – call another UNIX system

cu [-c device | -l line] [-s speed] [-b bits] [-h] [-n] [-t] [-d] [-o |
-e] [-L] [-C] [-H] telno | systemname [local-cmd]

The command cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers of files. It is
convenient to think of cu as operating in two phases. The first phase is the connection
phase in which the connection is established. cu then enters the conversation phase.
The -d option is the only one that applies to both phases.

cu accepts many options. The -c, -l, and -s options play a part in selecting the
medium. The remaining options are used in configuring the line.

-b bits Forces bits to be the number of bits processed on the line. bits is
either 7 or 8. This allows connection between systems with
different character sizes. By default, the character size of the line is
set to the same value as the current local terminal, but the
character size setting is affected by LC_CTYPE also.

-c device Forces cu to use only entries in the "Type" field (the first field in
the /etc/uucp/Devices file) that match the user specified
device, usually the name of a local area network.

-C Runs the local-cmd specified at the end of the command line
instead of entering interactive mode. The stdin and stdout of
the command that is run refer to the remote connection.

-d Prints diagnostic traces.

-e Sets an EVEN data parity. This option designates that EVEN parity
is to be generated for data sent to the remote system.

-h Sets communication mode to half-duplex. This option emulates
local echo in order to support calls to other computer systems that
expect terminals to be set to half-duplex mode.

-H Ignores one hangup. This allows the user to remain in cu while the
remote machine disconnects and places a call back to the local
machine. This option should be used when connecting to systems
with callback or dialback modems. Once the callback occurs
subsequent hangups will cause cu to terminate. This option can be
specified more than once. For more information about dialback
configuration, see remote(4) and System Administration Guide: IP
Services

-l line Specifies a device name to use as the communication line. This can
be used to override the search that would otherwise take place for
the first available line having the right speed. When the -l option
is used without the -s option, the speed of a line is taken from the
/etc/uucp/Devices file record in which line matches the second
field (the Line field). When the -l and -s options are both used

cu(1C)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 255

together, cu will search the /etc/uucp/Devices file to check if
the requested speed for the requested line is available. If so, the
connection will be made at the requested speed, otherwise, an
error message will be printed and the call will not be made. In the
general case where a specified device is a directly connected
asynchronous line (for instance, /dev/term/a), a telephone
number (telno) is not required. The specified device need not be in
the /dev directory. If the specified device is associated with an
auto dialer, a telephone number must be provided.

-L Goes through the login chat sequence specified in the
/etc/uucp/Systems file. For more information about the chat
sequence, see System Administration Guide: IP Services

-n Requests user prompt for telephone number. For added security,
this option will prompt the user to provide the telephone number
to be dialed, rather than taking it from the command line.

-o Sets an ODD data parity. This option designates that ODD parity is
to be generated for data sent to the remote system.

-s speed Specifies the transmission speed (300, 1200, 2400, 4800, 9600,
19200, 38400). The default value is "Any" speed which will
depend on the order of the lines in the /etc/uucp/Devices file.

-t Dials a terminal which has been set to auto answer. Appropriate
mapping of carriage-return to carriage-return-line-feed pairs is set.

The following operands are supported:

telno When using an automatic dialler, specifies the telephone number
with equal signs for secondary dial tone or minus signs placed
appropriately for delays of 4 seconds.

systemname Specifies a uucp system name, which can be used rather than a
telephone number; in this case, cu will obtain an appropriate
direct line or telephone number from a system file.

cu uses the same mechanism that uucp(1C) does to establish a connection. This means
that it will use the uucp control files /etc/uucp/Devices and
/etc/uucp/Systems. This gives cu the ability to choose from several different
media to establish the connection. The possible media include telephone lines, direct
connections, and local area networks (LAN). The /etc/uucp/Devices file contains a
list of media that are available on your system. The /etc/uucp/Systems file
contains information for connecting to remote systems, but it is not generally readable.

Note: cu determines which /etc/uucp/Systems and /etc/uucp/Devices files to
use based upon the name used to invoke cu. In the simple case, this name will be
"cu", but you could also have created a link to cu with another name, such as
"pppcu", in which case cu would then look for a "service=pppcu" entry in the
/etc/uucp/Sysfiles file to determine which /etc/uucp/Systems file to use.

cu(1C)

OPERANDS

Connection Phase

256 man pages section 1: User Commands • Last Revised 11 May 2001

The telno or systemname parameter from the command line is used to tell cu what
system you wish to connect to. This parameter can be blank, a telephone number, a
system name, or a LAN specific address.

telephone number A telephone number is a string consisting of the tone
dial characters (the digits 0 through 9, *, and #) plus
the special characters = and −. The equal sign
designates a secondary dial tone and the minus sign
creates a 4 second delay.

system name A system name is the name of any computer that uucp
can call; the uuname(1C) command prints a list of these
names.

LAN address The documentation for your LAN will show the form
of the LAN specific address.

If cu’s default behavior is invoked (not using the -c or -l options), cu will use the
telno or systemname parameter to determine which medium to use. If a telephone
number is specified, cu will assume that you wish to use a telephone line and it will
select an automatic call unit (ACU). Otherwise, cu will assume that it is a system
name. cu will follow the uucp calling mechanism and use the /etc/uucp/Systems
and /etc/uucp/Devices files to obtain the best available connection. Since cu will
choose a speed that is appropriate for the medium that it selects, you may not use the
-s option when this parameter is a system name.

The -c and -l options modify this default behavior. -c is most often used to select a
LAN by specifying a Type field from the /etc/uucp/Devices file. You must include
either a telno or systemname value when using the -c option. If the connection to
systemname fails, a connection will be attempted using systemname as a LAN specific
address. The -l option is used to specify a device associated with a direct connection.
If the connection is truly a direct connection to the remote machine, then there is no
need to specify a systemname. This is the only case where a telno or systemname
parameter is unnecessary. On the other hand, there may be cases in which the
specified device connects to a dialer, so it is valid to specify a telephone number. The
-c and -l options should not be specified on the same command line.

After making the connection, cu runs as two processes. The transmit process reads
data from the standard input and, except for lines beginning with ~, passes it to the
remote system. The receive process accepts data from the remote system and, except for
lines beginning with ~, passes it to the standard output. Normally, an automatic
DC3/DC1 protocol is used to control input from the remote so the buffer is not
overrun. Lines beginning with ~ have special meanings.

The transmit process interprets the following user initiated commands:

~. Terminates the conversation.

~! Escapes to an interactive shell on the local system.

~!cmd . . . Runs cmd on the local system (via sh -c).

cu(1C)

Conversation
Phase

Commands

User Commands 257

~$cmd . . . Runs cmd locally and send its output to the remote
system.

~%cd Changes the directory on the local system. Note: ~!cd
will cause the command to be run by a sub-shell,
probably not what was intended.

~%take from [to] Copies file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is used
in both places.

~%put from [to] Copies file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in
both places.

~~ line Sends the line ~ line to the remote system.

~%break Transmits a BREAK to the remote system (which can
also be specified as ~%b).

~%debug Toggles the -d debugging option on or off (which can
also be specified as ~%d).

~t Prints the values of the termio structure variables for
the user’s terminal (useful for debugging).

~l Prints the values of the termio structure variables for
the remote communication line (useful for debugging).

~%ifc Toggles between DC3/DC1 input control protocol and
no input control. This is useful when the remote system
does not respond properly to the DC3 and DC1
characters (can also be specified as ≈%nostop).

~%ofc Toggles the output flow control setting. When enabled,
outgoing data may be flow controlled by the remote
host (can also be specified as ≈%noostop).

~%divert Allows/disallows unsolicited diversions. That is,
diversions not specified by ~%take.

~%old Allows/disallows old style syntax for received
diversions.

~%nostop Same as ~%ifc.

The receive process normally copies data from the remote system to the standard
output of the local system. It may also direct the output to local files.

The use of ~%put requires stty(1) and cat(1) on the remote side. It also requires that
the current erase and kill characters on the remote system be identical to these current
control characters on the local system. Backslashes are inserted at appropriate places.

cu(1C)

258 man pages section 1: User Commands • Last Revised 11 May 2001

The use of ~%take requires the existence of echo(1) and cat(1) on the remote system,
and that the remote system must be using the Bourne shell, sh. Also, tabs mode (see
stty(1)) should be set on the remote system if tabs are to be copied without
expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by using
~ ~. Executing a tilde command reminds the user of the local system uname. For
example, uname can be executed on Z, X, and Y as follows:

uname
Z
~[X]!uname
X
~~[Y]!uname

Y

In general, ~ causes the command to be executed on the original machine. ~ ~ causes
the command to be executed on the next machine in the chain.

EXAMPLE 1 Dialling a system

To dial a system whose telephone number is 9 1 201 555 1234 using 1200 baud
(where dialtone is expected after the 9):

example% cu -s 1200 9=12015551234

If the speed is not specified, "Any" is the default value.

EXAMPLE 2 Logging in to a system on a direct line

To login to a system connected by a direct line:

example% cu -l /dev/term/b

or

example% cu -l term/b

EXAMPLE 3 Dialling a system with specific line and speed

To dial a system with a specific line and speed:

example% cu -s 1200 -l term/b

EXAMPLE 4 Using a system name

To use a system name:

example% cu systemname

See environ(5) for descriptions of the following environment variables that affect the
execution of cu: LC_CTYPE, LC_MESSAGES, and NLSPATH.

cu(1C)

EXAMPLES

ENVIRONMENT
VARIABLES

User Commands 259

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/etc/uucp/Devices device file

/etc/uucp/Sysfiles system file

/etc/uucp/Systems system file

/var/spool/locks/* lock file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

cat(1), echo(1), stty(1), tip(1), uname(1), ct(1C), uuname(1C), uucp(1C),
remote(4), attributes(5), environ(5)

System Administration Guide: IP Services

The cu utility takes the default action upon receipt of signals, with the exception of:

SIGHUP Close the connection and terminate.

SIGINT Forward to the remote system.

SIGQUIT Forward to the remote system.

SIGUSR1 Terminate the cu process without the normal connection closing
sequence.

The cu command does not do any integrity checking on data it transfers. Data fields
with special cu characters may not be transmitted properly. Depending on the
interconnection hardware, it may be necessary to use a ~. to terminate the conversion,
even if stty 0 has been used. Non-printing characters are not dependably
transmitted using either the ~%put or ~%take commands. ~%put and ~%take cannot
be used over multiple links. Files must be moved one link at a time.

There is an artificial slowing of transmission by cu during the ~%put operation so that
loss of data is unlikely. Files transferred using ~%take or ~%put must contain a
trailing newline, otherwise, the operation will hang. Entering a Control-D command
usually clears the hang condition.

cu(1C)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

260 man pages section 1: User Commands • Last Revised 11 May 2001

cut – cut out selected fields of each line of a file

cut -b list [-n] [file…]

cut -c list [file…]

cut -f list [-d delim] [-s] [file…]

Use the cut utility to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as specified by
list can be fixed length, that is, character positions as on a punched card (-c option) or
the length can vary from line to line and be marked with a field delimiter character
like TAB (-f option). cut can be used as a filter.

Either the -b, -c, or -f option must be specified.

Use grep(1) to make horizontal ‘‘cuts’’ (by context) through a file, or paste(1) to put
files together column-wise (that is, horizontally). To reorder columns in a table, use
cut and paste.

The following options are supported:

list A comma-separated or blank-character-separated list of integer
field numbers (in increasing order), with optional − to indicate
ranges (for instance, 1,4,7; 1−3,8; −5,10 (short for 1−5,10); or
3− (short for third through last field)).

-b list The list following -b specifies byte positions (for instance, -b1-72
would pass the first 72 bytes of each line). When -b and -n are
used together, list is adjusted so that no multi-byte character is
split.

-c list The list following -c specifies character positions (for instance,
-c1-72 would pass the first 72 characters of each line).

-d delim The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with special meaning to
the shell must be quoted. delim can be a multi-byte character.

-f list The list following -f is a list of fields assumed to be separated in
the file by a delimiter character (see -d); for instance, -f1,7
copies the first and seventh field only. Lines with no field
delimiters will be passed through intact (useful for table
subheadings), unless -s is specified.

-n Do not split characters. When -b list and -n are used together, list
is adjusted so that no multi-byte character is split.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

The following operands are supported:

cut(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 261

file A path name of an input file. If no file operands are specified, or if
a file operand is −, the standard input will be used.

See largefile(5) for the description of the behavior of cut when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Mapping user IDs

A mapping of user IDs to names follows:

example% cut -d: -f1,5 /etc/passwd

EXAMPLE 2 Setting current login name

To set name to current login name:

example$ name=`who am i | cut -f1 -d’ ’`

See environ(5) for descriptions of the following environment variables that affect the
execution of cut: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

grep(1), paste(1), attributes(5), environ(5), largefile(5)

cut: -n may only be used with -b

cut: -d may only be used with -f

cut: -s may only be used with -f

cut: cannot open <file>
Either file cannot be read or does not exist. If multiple files are present, processing
continues.

cut: no delimiter specified
Missing delim on -d option.

cut(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

262 man pages section 1: User Commands • Last Revised 29 Apr 1999

cut: invalid delimiter

cut: no list specified
Missing list on -b, -c, or -f option.

cut: invalid range specifier

cut: too many ranges specified

cut: range must be increasing

cut: invalid character in range

cut: internal error processing input

cut: invalid multibyte character

cut: unable to allocate enough memory

cut(1)

User Commands 263

date – write the date and time

/usr/bin/date [-u] [+ format]

/usr/bin/date [-a [-] sss.fff]

/usr/bin/date [-u] [[mmdd] HHMM | mmddHHMM [cc] yy] [.SS]

/usr/xpg4/bin/date [-u] [+ format]

/usr/xpg4/bin/date [-a [-] sss.fff]

/usr/xpg4/bin/date [-u] [[mmdd] HHMM | mmddHHMM [cc] yy] [.SS]

The date utility writes the date and time to standard output or attempts to set the
system date and time. By default, the current date and time will be written.

Specifications of native language translations of month and weekday names are
supported. The month and weekday names used for a language are based on the
locale specified by the environment variable LC_TIME; see environ(5).

The following is the default form for the "C" locale:

%a %b %e %T %Z %Yfor example,

Fri Dec 23 10:10:42 EST 1988

The following options are supported:

-a [-] sss.fff Slowly adjust the time by sss.fff seconds (fff represents fractions of a
second). This adjustment can be positive or negative. The system’s
clock will be sped up or slowed down until it has drifted by the
number of seconds specified. Only the super-user may adjust the
time.

-u Display (or set) the date in Greenwich Mean Time
(GMT—universal time), bypassing the normal conversion to (or
from) local time.

The following operands are supported:

+format If the argument begins with +, the output of date is the result of
passing format and the current time to strftime(). date uses
the conversion specifications listed on the strftime(3C) manual
page, with the conversion specification for %C determined by
whether /usr/bin/date or /usr/xpg4/bin/date is used:

/usr/bin/date Locale’s date and time
representation. This is the default
output for date.

/usr/xpg4/bin/date Century (a year divided by 100 and
truncated to an integer) as a
decimal number [00-99].

date(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

264 man pages section 1: User Commands • Last Revised 12 Dec 2000

The string is always terminated with a NEWLINE. An argument
containing blanks must be quoted; see the EXAMPLES section.

mm Month number

dd Day number in the month

HH Hour number (24 hour system)

MM Minute number

SS Second number

cc Century (a year divided by 100 and truncated to an integer) as a
decimal number [00-99]. For example, cc is 19 for the year 1988
and 20 for the year 2007.

yy Last two digits of the year number. If century (cc) is not specified,
then values in the range 69–99 shall refer to years 1969 to 1999
inclusive, and values in the range 00–68 shall refer to years 2000
to 2068, inclusive.

The month, day, year number, and century may be omitted; the current values are
applied as defaults. For example, the following entry:

example% date 10080045

sets the date to Oct 8, 12:45 a.m. The current year is the default because no year is
supplied. The system operates in GMT. date takes care of the conversion to and from
local standard and daylight time. Only the super-user may change the date. After
successfully setting the date and time, date displays the new date according to the
default format. The date command uses TZ to determine the correct time zone
information; see environ(5).

EXAMPLE 1 Generating output

The command

example% date ’+DATE: %m/%d/%y%nTIME:%H:%M:%S’

generates as output

DATE: 08/01/76

TIME: 14:45:05

EXAMPLE 2 Setting the current time

The command

example# date 1234.56

sets the current time to 12:34:56.

date(1)

EXAMPLES

User Commands 265

EXAMPLE 3 Setting another time and date in Greenwich Mean Time

The command

example# date -u 010100302000

sets the date to January 1st, 12:30 am, 2000, which will be displayed as

Thu Jan 01 00:30:00 GMT 2000

See environ(5) for descriptions of the following environment variables that affect the
execution of date: LC_CTYPE, LC_TIME, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone in which the time and date are written, unless the
-u option is specified. If the TZ variable is not set and the -u is not
specified, the system default timezone is used.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

strftime(3C), attributes(5), environ(5), XPG4(5)

no permission You are not the super-user and you tried to change the
date.

bad conversion The date set is syntactically incorrect.

If you attempt to set the current date to one of the dates that the standard and
alternate time zones change (for example, the date that daylight time is starting or
ending), and you attempt to set the time to a time in the interval between the end of
standard time and the beginning of the alternate time (or the end of the alternate time
and the beginning of standard time), the results are unpredictable.

date(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/date

/usr/xpg4/bin/date

SEE ALSO

DIAGNOSTICS

NOTES

266 man pages section 1: User Commands • Last Revised 12 Dec 2000

Using the date command from within windowing environments to change the date
can lead to unpredictable results and is unsafe. It may also be unsafe in the multi-user
mode, that is, outside of a windowing system, if the date is changed rapidly back and
forth. The recommended method of changing the date is ’date -a’.

date(1)

User Commands 267

dc – desk calculator

dc [filename]

dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained. The overall structure of dc is a stacking (reverse Polish)
calculator. If an argument is given, input is taken from that file until its end, then from
the standard input.

bc is a preprocessor for dc that provides infix notation and a C-like syntax that
implements functions. bc also provides reasonable control structures for programs.
See bc(1).

The following constructions are recognized:

number The value of the number is pushed on the
stack. A number is an unbroken string of
the digits 0−9. It may be preceded by an
underscore (_) to input a negative number.
Numbers may contain decimal points.

+ − / * % ^ The top two values on the stack are added
(+), subtracted (−), multiplied (*), divided
(/), remaindered (%), or exponentiated (^).
The two entries are popped off the stack;
the result is pushed on the stack in their
place. Any fractional part of an exponent is
ignored.

sx The top of the stack is popped and stored
into a register named x, where x may be any
character. If the s is capitalized, x is treated
as a stack and the value is pushed on it.

lx The value in register x is pushed on the
stack. The register x is not altered. All
registers start with zero value. If the l is
capitalized, register x is treated as a stack
and its top value is popped onto the main
stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The
top value remains unchanged.

P Interprets the top of the stack as an ASCII
string, removes it, and prints it.

f All values on the stack are printed.

dc(1)

NAME

SYNOPSIS

DESCRIPTION

USAGE

268 man pages section 1: User Commands • Last Revised 28 Mar 1995

q Exits the program. If executing a string, the
recursion level is popped by two.

Q Exits the program. The top value on the
stack is popped and the string execution
level is popped by that value.

x Treats the top element of the stack as a
character string and executes it as a string
of dc commands.

X Replaces the number on the top of the stack
with its scale factor.

[...] Puts the bracketed ASCII string onto the top
of the stack.

<x >x =x The top two elements of the stack are
popped and compared. Register x is
evaluated if they obey the stated relation.

v Replaces the top element on the stack by its
square root. Any existing fractional part of
the argument is taken into account, but
otherwise the scale factor is ignored.

! Interprets the rest of the line as a shell
command.

c All values on the stack are popped.

i The top value on the stack is popped and
used as the number radix for further input.

I Pushes the input base on the top of the
stack.

o The top value on the stack is popped and
used as the number radix for further
output.

O Pushes the output base on the top of the
stack.

k The top of the stack is popped, and that
value is used as a non-negative scale factor:
the appropriate number of places are
printed on output, and maintained during
multiplication, division, and
exponentiation. The interaction of scale
factor, input base, and output base will be
reasonable if all are changed together.

dc(1)

User Commands 269

K Pushes the current scale factor on the top of
the stack.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack
with its length.

? A line of input is taken from the input
source (usually the terminal) and executed.

Y Displays dc debugging information.

; : are used by bc(1) for array operations.

EXAMPLE 1 Printing the first ten values of n!

This example prints the first ten values of n!:

[la1+dsa*pla10>y]sy
0sa1
lyx

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

bc(1), attributes(5)

x is unimplemented x is an octal number.

out of space The free list is exhausted (too many digits).

out of stack space Too many pushes onto the stack (stack
overflow).

empty stack Too many pops from the stack (stack
underflow).

nesting depth Too many levels of nested execution.

divide by 0 Division by zero.

sqrt of neg number Square root of a negative number is not
defined (no imaginary numbers).

exp not an integer dc only processes integer exponentiation.

exp too big The largest exponent allowed is 999.

input base is too large The input base x: 2<= x <= 16.

dc(1)

EXAMPLES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

270 man pages section 1: User Commands • Last Revised 28 Mar 1995

input base is too small The input base x: 2<= x <= 16.

output base is too large The output base must be no larger than
BC_BASE_MAX.

invalid scale factor Scale factor cannot be less than 1.

scale factor is too large A scale factor cannot be larger than
BC_SCALE_MAX.

symbol table overflow Too many variables have been specified.

invalid index Index cannot be less than 1.

index is too large An index cannot be larger than
BC_DIM_MAX.

dc(1)

User Commands 271

deallocate – device deallocation

deallocate [-s] device

deallocate [-s] [-F] device

deallocate [-s] -I

The deallocate utility deallocates a device allocated to the evoking user. device can
be a device defined in device_allocate(4) or one of the device special files
associated with the device. It resets the ownership and the permission on all device
special files associated with device, disabling the user’s access to that device. This
option can be used by an authorized user to remove access to the device by another
user. The required authorization is solaris.device.allocate.

When deallocation or forced deallocation is performed, the appropriate device
cleaning program is executed, based on the contents of device_allocate(4). These
cleaning programs are normally stored in /etc/security/lib.

The following options are supported:

device Deallocate the device associated with the device special file
specified by device.

-s Silent. Suppresses any diagnostic output.

-F device Forces deallocation of the device associated with the file specified
by device. Only a user with the solaris.devices.revoke
authorization is permitted to use this option.

-I Forces deallocation of all allocatable devices. Only a user with the
solaris.devices.revoke authorization is permitted to use
this option. This option should only be used at system
initialization.

The following exit values are returned:

non—zero An error occurred.

/etc/security/device_allocate

/etc/security/device_maps

/etc/security/dev/*

/etc/security/lib/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

deallocate(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

272 man pages section 1: User Commands • Last Revised 17 Jan 2001

allocate(1), list_devices(1), bsmconv(1M), dminfo(1M),
device_allocate(4), device_maps(4), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

deallocate(1)

SEE ALSO

NOTES

User Commands 273

deroff – remove nroff/troff, tbl, and eqn constructs

deroff [-m [m | s | l]] [-w] [-i] [filename…]

deroff reads each of the filenames in sequence and removes all troff(1) requests,
macro calls, backslash constructs, eqn(1) constructs (between .EQ and .EN lines, and
between delimiters), and tbl(1) descriptions, perhaps replacing them with white
space (blanks and blank lines), and writes the remainder of the file on the standard
output. deroff follows chains of included files (.so and .nx troff commands); if a
file has already been included, a .so naming that file is ignored and a .nx naming
that file terminates execution. If no input file is given, deroff reads the standard
input.

-m The -m option may be followed by an m, s, or l. The -mm option causes the
macros to be interpreted so that only running text is output (that is, no text
from macro lines.) The -ml option forces the -mm option and also causes
deletion of lists associated with the mm macros.

-w If the -w option is given, the output is a word list, one ‘‘word’’ per line,
with all other characters deleted. Otherwise, the output follows the
original, with the deletions mentioned above. In text, a ‘‘word’’ is any
string that contains at least two letters and is composed of letters, digits,
ampersands (&), and apostrophes (’); in a macro call, however, a ‘‘word’’ is
a string that begins with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than letters, digits,
apostrophes, and ampersands. Trailing apostrophes and ampersands are
removed from ‘‘words.’’

-i The -i option causes deroff to ignore .so and .nx commands.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

eqn(1), nroff(1), tbl(1), troff(1), attributes(5)

deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little output.

The -ml option does not handle nested lists correctly.

deroff(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

NOTES

274 man pages section 1: User Commands • Last Revised 14 Sep 1992

df – display status of disk space on file systems

/usr/ucb/df [-a] [-i] [-t type] [filesystem...] [filename...]

The df utility displays the amount of disk space occupied by currently mounted file
systems, the amount of used and available space, and how much of the file system’s
total capacity has been used.

If arguments to df are path names, df produces a report on the file system containing
the named file. Thus ‘df .’ shows the amount of space on the file system containing
the current directory.

The following options are supported:

-a Report on all filesystems including the uninteresting ones which
have zero total blocks (that is, auto-mounter).

-i Report the number of used and free inodes. Print ‘ * ’ if no
information is available.

-t type Report on filesystems of a given type (for example, nfs or ufs).

EXAMPLE 1 Output sample

A sample of output for df looks like:

example% df
Filesystem kbytes used avail capacity Mounted on
sparky:/ 7445 4714 1986 70% /
sparky:/usr 42277 35291 2758 93% /usr

Note that used+avail is less than the amount of space in the file system (kbytes);
this is because the system reserves a fraction of the space in the file system to allow its
file system allocation routines to work well. The amount reserved is typically about
10%; this may be adjusted using tunefs (see tunefs(1M)). When all the space on a
file system except for this reserve is in use, only the super-user can allocate new files
and data blocks to existing files. When a file system is overallocated in this way, df
may report that the file system is more than 100% utilized.

/etc/mnttab list of file systems currently mounted

/etc/vfstab list of default parameters for each file system

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

du(1M), quot(1M), tunefs(1M), mnttab(4), attributes(5)

df(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

User Commands 275

dhcpinfo – display values of parameters received through DHCP

dhcpinfo [-c] [-i interface] [-n limit] code

dhcpinfo [-c] [-i interface] [-n limit] identifier

The dhcpinfo utility prints the DHCP–supplied value(s) of the parameter requested
on the command line. The parameter may be identified either by its numeric code in
the DHCP specification, or by its mnemonic identifier, as listed in dhcp_inittab(4).
This command is intended to be used in command substitutions in the shell scripts
invoked by init(1M) at system boot. It first contacts the DHCP client daemon
dhcpagent(1M) to verify that DHCP has successfully completed on the requested
interface. If DHCP has successfully completed on the requested interface, dhcpinfo
retrieves the values for the requested parameter. Parameter values echoed by
dhcpinfo should not be used without checking its exit status. See EXIT STATUS.

See dhcp_inittab(4) for the list of mnemonic identifier codes for all DHCP
parameters. See RFC 2132, DHCP Options and BOOTP Vendor Extensions for more
detail.

The output from dhcpinfo consists of one or more lines of ASCII text; the format of
the output depends upon the requested parameter. The number of values returned per
line and the total number of lines output for a given parameter are determined by the
parameter’s granularity and maximum values, respectively, as defined by
dhcp_inittab(4).

The format of each individual value is determined by the data type of the option, as
determined by dhcp_inittab(4). The possible data types and their formats are listed
below:

Data Type Format dhcp_inittab(4) type

Unsigned Number One or more decimal digits UNUMBER8, UNUMBER16,
UNUMBER32, UNUMBER64

Signed Number One or more decimal digits,
optionally preceded by a minus
sign

SNUMBER8, SNUMBER16,
SNUMBER32, SNUMBER64

IP Address Dotted-decimal notation IP

Octet The string "0x" followed by a
two-digit hexadecimal value

OCTET

String Zero or more ASCII characters ASCII

The following options are supported:

-c Displays the output in a canonical format. This format is identical
to the OCTET format with a granularity of 1.

dhcpinfo(1)

NAME

SYNOPSIS

DESCRIPTION

Output Format

OPTIONS

276 man pages section 1: User Commands • Last Revised 29 Jul 1999

-i interface Specifies the interface to retrieve values for DHCP parameters
from. If this option is not specified, the primary interface is used.

-n limit Limits the list of values displayed to limit lines.

The following operands are supported:

code Numeric code for the requested DHCP parameter, as defined by
the DHCP specification. Vendor options are specified by adding
256 to the actual vendor code.

identifier Mnemonic symbol for the requested DHCP parameter, as listed in
dhcp_inittab(4).

The following exit values are returned:

0 Successful operation.

2 The operation was not successful. The DHCP client daemon may not be
running, the interface might have failed to configure, or no satisfactory
DHCP responses were received.

3 Bad arguments.

4 The operation timed out.

6 Some system error (should never occur).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Evolving

dhcpagent(1M), ifconfig(1M), init(1M),dhcp_inittab(4),attributes(5)

Alexander, S., and R. Droms, RFC 2132, DHCP Options and BOOTP Vendor Extensions,
Silicon Graphics, Inc., Bucknell University, March 1997.

dhcpinfo(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 277

diff – compare two files

diff [-bitw] [-c | -e | -f | -h | -n | -u]file1 file2

diff [-bitw] [-C number | -U number]file1 file2

diff [-bitw] [-D string] file1 file2

diff [-bitw] [-c | -e | -f | -h | -n] [-l] [-r] [-s] [-S name]
directory1 directory2

The diff utility will compare the contents of file1 and file2 and write to standard
output a list of changes necessary to convert file1 into file2. This list should be minimal.
Except in rare circumstances, diff finds a smallest sufficient set of file differences. No
output will be produced if the files are identical.

The normal output contains lines of these forms:

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

where n1 and n2 represent lines file1 and n3 and n4 represent lines in file2 These lines
resemble ed(1) commands to convert file1 to file2. By exchanging a for d and reading
backward, file2 can be converted to file1. As in ed, identical pairs, where n1=n2 or
n3=n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged
by ‘ < ’, then all the lines that are affected in the second file flagged by ‘ > ’.

The following options are supported:

-b Ignores trailing blanks (spaces and tabs) and treats other strings of
blanks as equivalent.

-i Ignores the case of letters. For example, ‘A’ will compare equal to
‘a’.

-t Expands TAB characters in output lines. Normal or -c output
adds character(s) to the front of each line that may adversely affect
the indentation of the original source lines and make the output
lines difficult to interpret. This option will preserve the original
source’s indentation.

-w Ignores all blanks (SPACE and TAB characters) and treats all other
strings of blanks as equivalent. For example, ‘if (a = = b)’
will compare equal to ‘if(a= =b)’.

The following options are mutually exclusive:

-c Produces a listing of differences with three lines of context. With
this option, output format is modified slightly. That is, output
begins with identification of the files involved and their creation
dates, then each change is separated by a line with a dozen *’s.

diff(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

278 man pages section 1: User Commands • Last Revised 27 Sep 2001

The lines removed from file1 are marked with ’—’. The lines added
to file2 are marked ’ + ’. Lines that are changed from one file to the
other are marked in both files with ’ ! ’.

-C number Produces a listing of differences identical to that produced by -c
with number lines of context.

-D string Creates a merged version of file1 and file2 with C preprocessor
controls included so that a compilation of the result without
defining string is equivalent to compiling file1, while defining
string will yield file2.

-e Produces a script of only a, c, and d commands for the editor ed,
which will recreate file2 from file1. In connection with the -e
option, the following shell program may help maintain multiple
versions of a file. Only an ancestral file ($1) and a chain of
version-to-version ed scripts ($2,$3,...) made by diff need be on
hand. A ‘‘latest version’’ appears on the standard output.

(shift; cat $*; echo ´1,$p’) | ed − $1

-f Produces a similar script, not useful with ed, in the opposite order.

-h Does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited
length. Options -c, -C, -D, -e, -f, and -n are unavailable with
-h. diff does not descend into directories with this option.

-n Produces a script similar to -e, but in the opposite order and with
a count of changed lines on each insert or delete command.

-u Produces a listing of differences with three lines of context. The
output is similar to that of the -c option, except that the context is
“unified”. Removed and changed lines in file1 are marked by a ’-’
while lines added or changed in file2 are marked by a ’+’. Both
versions of changed lines appear in the output, while added,
removed, and context lines appear only once. The identification of
file1 and file2 is different, with “−−−” and “+++” being printed
where “***” and “−−−” would appear with the -c option. Each
change is separated by a line of the form

@@ -n1,n2 +n3,n4 @@

-U number Produces a listing of differences identical to that produced by -u
with number lines of context.

The following options are used for comparing directories:

-l Produces output in long format. Before the diff, each text file is
piped through pr(1) to paginate it. Other differences are
remembered and summarized after all text file differences are
reported.

diff(1)

User Commands 279

-r Applies diff recursively to common subdirectories encountered.

-s Reports files that are the identical. These identical files would not
otherwise be mentioned.

-S name Starts a directory diff in the middle, beginning with the file name.

The following operands are supported:

file1
file2 A path name of a file or directory to be compared. If either file1 or

file2 is −, the standard input will be used in its place.

directory1
directory2 A path name of a directory to be compared.

If only one of file1 and file2 is a directory, diff will be applied to the non-directory file
and the file contained in the directory file with a filename that is the same as the last
component of the non-directory file.

See largefile(5) for the description of the behavior of diff when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Typical output of the diff command

In the following command, dir1 is a directory containing a directory named x, dir2
is a directory containing a directory named x, dir1/x and dir2/x both contain files
named date.out, and dir2/x contains a file named y:

example% diff -r dir1 dir2
Common subdirectories: dir1/x and dir2/x

Only in dir2/x: y

diff -r dir1/x/date.out dir2/x/date.out

1c1

< Mon Jul 2 13:12:16 PDT 1990

> Tue Jun 19 21:41:39 PDT 1990

See environ(5) for descriptions of the following environment variables that affect the
execution of diff: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

TZ Determines the locale for affecting the timezone used for calculating file
timestamps written with the -C and -c options.

The following exit values are returned:

0 No differences were found.

diff(1)

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

280 man pages section 1: User Commands • Last Revised 27 Sep 2001

1 Differences were found.

>1 An error occurred.

/tmp/d????? temporary file used for comparison

/usr/lib/diffh executable file for -h option

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

bdiff(1), cmp(1), comm(1), dircmp(1), ed(1), pr(1), sdiff(1), attributes(5),
environ(5), largefile(5)

Editing scripts produced under the -e or -f options are naive about creating lines
consisting of a single period (.).

Missing NEWLINE at end of file indicates that the last line of the file in question did
not have a NEWLINE. If the lines are different, they will be flagged and output,
although the output will seem to indicate they are the same.

diff(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 281

diff3 – 3-way differential file comparison

diff3 [-exEX3] filename1 filename2 filename3

diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

==== all three files differ

====1 filename1 is different

====2 filename2 is different

====3 filename3 is different

The type of change suffered in converting a given range of a given file to some other is
indicated in one of these ways:

f : n1 a Text is to be appended after line number n1 in file f, where f = 1, 2,
or 3.

f : n1 , n2 c Text is to be changed in the range line n1 to line n2. If n1 = n2, the
range may be abbreviated to n1.

The original contents of the range follows immediately after a c indication. When the
contents of two files are identical, the contents of the lower-numbered file is
suppressed.

The following command will apply the resulting script to filename1.

(cat script; echo ´1,$p´) | ed − filename1

-e Produce a script for the ed(1) editor that will incorporate into filename1 all
changes between filename2 and filename3 (that is, the changes that normally
would be flagged ==== and ====3).

-x Produce a script to incorporate only changes flagged ====.

-3 Produce a script to incorporate only changes flagged ====3.

-E Produce a script that will incorporate all changes between filename2 and
filename3, but treat overlapping changes (that is, changes that would be
flagged with ==== in the normal listing) differently. The overlapping lines
from both files will be inserted by the edit script, bracketed by <<<<<< and
>>>>>> lines.

-X Produce a script that will incorporate only changes flagged ====, but treat
these changes in the manner of the -E option.

See largefile(5) for the description of the behavior of diff3 when encountering
files greater than or equal to 2 Gbyte (231 bytes).

diff3(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

282 man pages section 1: User Commands • Last Revised 14 Sep 1992

/tmp/d3*

/usr/lib/diff3prog

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

diff(1), attributes(5), largefile(5)

Text lines that consist of a single ‘.’ will defeat -e.

Files longer than 64 Kbytes will not work.

diff3(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 283

diffmk – mark differences between versions of a troff input file

diffmk oldfile newfile markedfile

diffmk compares two versions of a file and creates a third version that includes
“change mark” (.mc) commands for nroff(1) and troff(1). oldfile and newfile are the
old and new versions of the file. diffmk generates markedfile, which, contains the text
from newfile with troff(1) “change mark” requests (.mc) inserted where newfile
differs from oldfile. When markedfile is formatted, changed or inserted text is shown by
| at the right margin of each line. The position of deleted text is shown by a single *.

See largefile(5) for the description of the behavior of diffmk when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 An example of the diffmk command.

diffmk can also be used in conjunction with the proper troff requests to produce
program listings with marked changes. In the following command line:

example% diffmk old.c new.c marked.c ; nroff reqs marked.c | pr

the file reqs contains the following troff requests:

.pl 1

.ll 77

.nf

.eo

.nh

which eliminate page breaks, adjust the line length, set no-fill mode, ignore escape
characters, and turn off hyphenation, respectively.

If the characters | and * are inappropriate, you might run markedfile through sed(1) to
globally change them.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

diff(1), nroff(1), sed(1), troff(1), attributes(5), largefile(5)

Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output, that
is, replacing .sp by .sp 2 will produce a “change mark” on the preceding or
following line of output.

diffmk(1)

NAME

SYNOPSIS

DESCRIPTION

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

BUGS

284 man pages section 1: User Commands • Last Revised 14 Sep 1992

dircmp – directory comparison

dircmp [-ds] [-w n] dir1 dir2

The dircmp command examines dir1 and dir2 and generates various tabulated
information about the contents of the directories. Listings of files that are unique to
each directory are generated for all the options. If no option is entered, a list is output
indicating whether the file names common to both directories have the same contents.

The following options are supported:

-d Compares the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them
into agreement. The list format is described in diff(1).

-s Suppresses messages about identical files.

-w n Changes the width of the output line to n characters. The default width is
72.

The following operands are supported:

dir1
dir2 A path name of a directory to be compared.

See largefile(5) for the description of the behavior of dircmp when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of dircmp: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred. (Differences in directory contents are not considered
errors.)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

cmp(1), diff(1), attributes(5), environ(5), largefile(5)

dircmp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 285

dis – object code disassembler

/usr/ccs/bin/dis [-C] [-o] [-V] [-L] [-d sec] [-D sec] [-F function]
[-l string] [-t sec] file…

The dis command produces an assembly language listing of file, which may be an
object file or an archive of object files. The listing includes assembly statements and an
octal or hexadecimal representation of the binary that produced those statements.
However, the IA64 listing is limited to assembly statements only.

The following options are interpreted by the disassembler and may be specified in any
order.

-C Displays demangled C++ symbol names in the disassembly.

-d sec Disassembles the named section as data, printing the offset of the
data from the beginning of the section.

-D sec Disassembles the named section as data, printing the actual
address of the data.

-F function Disassembles only the named function in each object file specified
on the command line. The -F option may be specified multiple
times on the command line.

-l string Disassembles the archive file specified by string. For example, one
would issue the command dis -l x -l z to disassemble libx.a
and libz.a, which are assumed to be in LIBDIR.

-L Invokes a lookup of C-language source labels in the symbol table
for subsequent writing to standard output.

-o Prints numbers in octal. The default is hexadecimal.

-t sec Disassembles the named section as text.

-V Prints, on standard error, the version number of the disassembler
being executed.

If the -d, -D, or -t options are specified, only those named sections from each
user-supplied file will be disassembled. Otherwise, all sections containing text will be
disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
indicates that the break-pointable line number starts with the following instruction.
These line numbers will be printed only if the file was compiled with additional
debugging information, for example, the -g option of cc(1B). An expression such as
<40> in the operand field or in the symbolic disassembly, following a relative
displacement for control transfer instructions, is the computed address within the
section to which control will be transferred. A function name will appear in the first
column, followed by () if the object file contains a symbol table.

The following operand is supported:

dis(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

286 man pages section 1: User Commands • Last Revised 28 Jun 1999

file A path name of an object file or an archive (see ar(1)) of object
files.

See environ(5) for descriptions of the following environment variables that affect the
execution of dis: LC_CTYPE, LC_MESSAGES, and NLSPATH.

LIBDIR If this environment variable contains a value, use this as the path
to search for the library. If the variable contains a null value, or is
not set, it defaults to searching for the library under /usr/lib.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/usr/lib default LIBDIR

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ar(1), as(1), cc(1B), ld(1), a.out(4), attributes(5), environ(5)

The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

dis(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 287

dispgid – displays a list of all valid group names

dispgid

dispgid displays a list of all group names on the system (one group per line).

The following exit values are returned:

0 Successful execution.

1 Cannot read the group file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

dispgid(1)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

288 man pages section 1: User Commands • Last Revised 14 Sep 1992

dispuid – displays a list of all valid user names

dispuid

dispuid displays a list of all user names on the system (one line per name).

The following exit values are returned:

0 Successful execution.

1 Cannot read the password file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

dispuid(1)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 289

dos2unix – convert text file from DOS format to ISO format

dos2unix [-ascii] [-iso] [-7] [-437 | -850 | -860 | -863 |
-865]originalfile convertedfile

The dos2unix utility converts characters in the DOS extended character set to the
corresponding ISO standard characters.

This command can be invoked from either DOS or SunOS. However, the filenames
must conform to the conventions of the environment in which the command is
invoked.

If the original file and the converted file are the same, dos2unix will rewrite the
original file after converting it.

The following options are supported:

-ascii Removes extra carriage returns and converts end of file characters
in DOS format text files to conform to SunOS requirements.

-iso This is the default. It converts characters in the DOS extended
character set to the corresponding ISO standard characters.

-7 Converts 8 bit DOS graphics characters to 7 bit space characters so
that SunOS can read the file.

On non-i386 systems, dos2unix will attempt to obtain the keyboard type to
determine which code page to use. Otherwise, the default is US. The user may
override the code page with one of the following options:

-437 Use US code page

-850 Use multilingual code page

-860 Use Portuguese code page

-863 Use French Canadian code page

-865 Use Danish code page

The following operands are required:

originalfile The original file in DOS format that is being converted to ISO
format.

convertedfile The new file in ISO format that has been converted from the
original DOS file format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

dos2unix(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ATTRIBUTES

290 man pages section 1: User Commands • Last Revised 14 Sep 2000

unix2dos(1), ls(1), attributes(5)

File filename not found, or no read permission
The input file you specified does not exist, or you do not have read permission.
Check with the SunOS command, ls -l (see ls(1)).

Bad output filename filename, or no write permission
The output file you specified is either invalid, or you do not have write permission
for that file or the directory that contains it. Check also that the drive or diskette is
not write-protected.

Error while writing to temporary file
An error occurred while converting your file, possibly because there is not enough
space on the current drive. Check the amount of space on the current drive using
the DIR command. Also be certain that the default diskette or drive is
write-enabled (not write-protected). Notice that when this error occurs, the original
file remains intact.

Translated temporary file name = filename.
Could not rename temporary file to filename.

The program could not perform the final step in converting your file. Your
converted file is stored under the name indicated on the second line of this
message.

dos2unix(1)

SEE ALSO

DIAGNOSTICS

User Commands 291

download – host resident PostScript font downloader

download [-f] [-p printer] [-m name] [-H directory] [file…]

/usr/lib/lp/postscript/download

download prepends host resident fonts to files and writes the results on the standard
output. If no files are specified, or if − is one of the input files, the standard input is
read. download assumes the input files make up a single PostScript job and that
requested fonts can be included at the start of each input file.

Requested fonts are named in a comment (marked with %%DocumentFonts:) in the
input files. Available fonts are the ones listed in the map table selected using the -m
option.

The map table consists of fontname−file pairs. The fontname is the full name of the
PostScript font, exactly as it would appear in a %%DocumentFonts: comment. The
file is the pathname of the host resident font. A file that begins with a / is used as is.
Otherwise the pathname is relative to the host font directory. Comments are
introduced by % (as in PostScript) and extend to the end of the line.

The only candidates for downloading are fonts listed in the map table that point
download to readable files. A font is downloaded once, at most. Requests for unlisted
fonts or inaccessible files are ignored. All requests are ignored if the map table can not
be read.

-f Force a complete scan of each input file. In the absence of an
explicit comment pointing download to the end of the file, the
default scan stops immediately after the PostScript header
comments.

-p printer Check the list of printer-resident fonts in
/etc/lp/printers/printer/residentfonts before
downloading.

-m name Use name as the font map table. A name that begins with / is the
full pathname of the map table and is used as is. Otherwise name is
appended to the pathname of the host font directory.

-H directory Use dir as the host font directory. The default is
/usr/lib/lp/postscript.

EXAMPLE 1 Examples of the download command.

The following map table could be used to control the downloading of the Bookman
font family:

%
% The first string is the full PostScript font name. The second string
% is the file name - relative to the host font directory unless it begins
% with a /.
%

download(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

292 man pages section 1: User Commands • Last Revised 9 Sep 1996

EXAMPLE 1 Examples of the download command. (Continued)

Bookman-Light bookman/light
Bookman-LightItalic bookman/lightitalic
Bookman-Demi bookman/demi

Bookman-DemiItalic bookman/demiitalic

Using the file myprinter/map (in the default host font directory) as the map table,
you could download fonts by issuing the following command:

example% download -m myprinter/map file

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1),
posttek(1), attributes(5)

The download program should be part of a more general program.

download does not look for %%PageFonts: comments and there is no way to force
multiple downloads of a particular font.

Using full pathnames in either map tables or the names of map tables is not
recommended.

download(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 293

dpost – troff postprocessor for PostScript printers

dpost [-c num] [-e num] [-m num] [-n num] [-o list] [-w num]
[-x num] [-y num] [-F dir] [-H dir] [-L file] [-O] [-T name] [file…]

/usr/lib/lp/postscript/dpost

dpost translates files created by troff(1) into PostScript and writes the results on the
standard output. If no files are specified, or if − is one of the input files, the standard
input is read.

The files should be prepared by troff. The default font files in
/usr/lib/font/devpost produce the best and most efficient output. They assume
a resolution of 720 dpi, and can be used to format files by adding the -Tpost option
to the troff call. Older versions of the eqn and pic preprocessors need to know the
resolution that troff will be using to format the files. If those are the versions
installed on your system, use the -r720 option with eqn and -T720 with pic.

dpost makes no assumptions about resolutions. The first x res command sets the
resolution used to translate the input files, the DESC.out file, usually
/usr/lib/font/devpost/DESC.out, defines the resolution used in the binary font
files, and the PostScript prologue is responsible for setting up an appropriate user
coordinate system.

-c num Print num copies of each page. By default only one copy is printed.

-e num Sets the text encoding level to num. The recognized choices are 0, 1,
and 2. The size of the output file and print time should decrease as
num increases. Level 2 encoding will typically be about 20 percent
faster than level 0, which is the default and produces output
essentially identical to previous versions of dpost.

-m num Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin, which is located near the upper left
corner of each page. The default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can be
any positive integer. By default, num is set to 1.

-o list Print those pages for which numbers are given in the
comma-separated list. The list contains single numbers N and
ranges N1−N2. A missing N1 means the lowest numbered page, a
missing N2 means the highest. The page range is an expression of
logical pages rather than physical sheets of paper. For example, if
you are printing two logical pages to a sheet, and you specified a
range of 4, then two sheets of paper would print, containing four
page layouts. If you specified a page range of 3-4, when
requesting two logical pages to a sheet; then only page 3 and page
4 layouts would print, and they would appear on one physical
sheet of paper.

dpost(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

294 man pages section 1: User Commands • Last Revised 9 Sep 1996

-p mode Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

-w num Set the line width used to implement troff graphics commands
to num points, where a point is approximately 1/72 of an inch. By
default, num is set to 0.3 points.

-x num Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed near the upper left
corner of the page, with positive x to the right and positive y down
the page. Positive num moves everything right. The default offset
is 0 inches.

-y num Translate the origin num inches along the positive y axis. Positive
num moves text up the page. The default offset is 0.

-F dir Use dir as the font directory. The default dir is /usr/lib/font,
and dpost reads binary font files from directory
/usr/lib/font/devpost.

-H dir Use dir as the host resident font directory. Files in this directory
should be complete PostScript font descriptions, and must be
assigned a name that corresponds to the appropriate two-character
troff font name. Each font file is copied to the output file only
when needed and at most once during each job. There is no
default directory.

-L file Use file as the PostScript prologue which, by default, is
/usr/lib/lp/postscript/dpost.ps.

-O Disables PostScript picture inclusion. A recommended option
when dpost is run by a spooler in a networked environment.

-T name Use font files for device name as the best description of available
PostScript fonts. By default, name is set to post and dpost reads
binary files from /usr/lib/font/devpost.

EXAMPLE 1 Examples of the dpost command.

If the old versions of eqn and pic are installed on your system, you can obtain the
best possible looking output by issuing a command line such as the following:

example% pic -T720 file | tbl | eqn -r720 | troff -mm -Tpost | dpost

Otherwise,

example% pic file | tbl | eqn | troff -mm -Tpost | dpost

should give the best results.

The following exit values are returned:

0 Successful completion.

dpost(1)

EXAMPLES

EXIT STATUS

User Commands 295

non-zero An error occurred.

/usr/lib/font/devpost/*.out

/usr/lib/font/devpost/charlib/*

/usr/lib/lp/postscript/color.ps

/usr/lib/lp/postscript/draw.ps

/usr/lib/lp/postscript/forms.ps

/usr/lib/lp/postscript/ps.requests

/usr/lib/macros/pictures

/usr/lib/macros/color

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1),
postreverse(1), posttek(1), troff(1), attributes(5)

Output files often do not conform to Adobe’s file structuring conventions. Piping the
output of dpost through postreverse(1) should produce a minimally conforming
PostScript file.

Although dpost can handle files formatted for any device, emulation is expensive
and can easily double the print time and the size of the output file. No attempt has
been made to implement the character sets or fonts available on all devices supported
by troff. Missing characters will be replaced by white space, and unrecognized fonts
will usually default to one of the Times fonts (that is, R, I, B, or BI).

An x res command must precede the first x init command, and all the input files
should have been prepared for the same output device.

Use of the -T option is not encouraged. Its only purpose is to enable the use of other
PostScript font and device description files, that perhaps use different resolutions,
character sets, or fonts.

Although level 0 encoding is the only scheme that has been thoroughly tested, level 2
is fast and may be worth a try.

dpost(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

296 man pages section 1: User Commands • Last Revised 9 Sep 1996

du – summarize disk usage

/usr/bin/du [-adLr] [-k | -h] [-o | -s] [file ...]

/usr/xpg4/bin/du [-a | -s] [-k | -h] [-rx] [file ...]

The du utility writes to standard output the size of the file space allocated to, and the
size of the file space allocated to each subdirectory of, the file hierarchy rooted in each
of the specified files. The size of the file space allocated to a file of type directory is
defined as the sum total of space allocated to all files in the file hierarchy rooted in the
directory plus the space allocated to the directory itself. This sum will include the
space allocated to any extended attributes encountered.

Files with multiple links will be counted and written for only one entry. The directory
entry that is selected in the report is unspecified. By default, file sizes are written in
512-byte units, rounded up to the next 512-byte unit.

When du cannot obtain file attributes or read directories (see stat(2)), it will report an
error condition and the final exit status will be affected.

The following options are supported for /usr/bin/du and /usr/xpg4/bin/du:

-a In addition to the default output, report the size of each file not of type
directory in the file hierarchy rooted in the specified file. Regardless of the
presence of the -a option, non-directories given as file operands will
always be listed.

-h All sizes are scaled to a human readable format, for example, 14K, 234M,
2.7G, or 3.0T. Scaling is done by repetitively dividing by 1024.

-k Write the files sizes in units of 1024 bytes, rather than the default 512-byte
units.

-s Instead of the default output, report only the total sum for each of the
specified files.

The following options are supported for /usr/bin/du only:

-d Do not cross filesystem boundaries. For example, du -d / reports usage
only on the root partition.

-L Process symbolic links by using the file or directory which the symbolic
link references, rather than the link itself.

-o Do not add child directories’ usage to a parent’s total. Without this option,
the usage listed for a particular directory is the space taken by the files in
that directory, as well as the files in all directories beneath it. This option
does nothing if -s is used.

-r Generate messages about directories that cannot be read, files that cannot
be opened, and so forth, rather than being silent (the default).

The following options are supported for /usr/xpg4/bin/du only:

du(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/xpg4/bin/du

OPTIONS

/usr/bin/du

/usr/xpg4/bin/du

User Commands 297

-r By default, generate messages about directories that cannot be read, files
that cannot be opened, and so forth.

-x When evaluating file sizes, evaluate only those files that have the same
device as the file specified by the file operand.

The following operand is supported:

file The path name of a file whose size is to be written. If no file is specified, the
current directory is used.

The output from du consists of the amount of the space allocated to a file and the
name of the file.

See largefile(5) for the description of the behavior of du when encountering files
greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of du: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

Interface Stability Stable

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

Interface Stability Standard

ls(1), stat(2), attributes(5), environ(5), fsattr(5), largefile(5), XPG4(5)

System Administration Guide: Basic Administration

A file with two or more links is counted only once. If, however, there are links between
files in different directories where the directories are on separate branches of the file
system hierarchy, du will count the excess files more than once.

du(1)

OPERANDS

OUTPUT

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/du

/usr/xpg4/bin/du

SEE ALSO

NOTES

298 man pages section 1: User Commands • Last Revised 19 Nov 2001

Files containing holes will result in an incorrect block count.

du(1)

User Commands 299

du – display the number of disk blocks used per directory or file

/usr/ucb/du [-adkLr] [-o | -s] [filename]

The du utility gives the number of kilobytes contained in all files and, recursively,
directories within each specified directory or file filename. If filename is missing, ‘.’ (the
current directory) is used.

A file that has multiple links to it is only counted once.

The following options are supported:

-a Generates an entry for each file.

-d Does not cross file system boundaries. For example, du -d / reports usage
only on the root partition.

-k Writes the files sizes in units of 1024 bytes, rather than the default 512-byte
units.

-L Processes symbolic links by using the file or directory that the symbolic
link references, rather than the link itself.

-o Does not add child directories’ usage to a parent’s total. Without this
option, the usage listed for a particular directory is the space taken by the
files in that directory, as well as the files in all directories beneath it. This
option does nothing if the -s option is used.

-r Generates messages about directories that cannot be read, files that cannot
be opened, and so forth, rather than being silent (the default).

-s Only displays the grand total for each of the specified filenames.

Entries are generated only for each directory in the absence of options.

EXAMPLE 1 Showing usage of all subdirectories in a directory

This example uses du in a directory. The pwd(1) command was used to identify the
directory, then du was used to show the usage of all the subdirectories in that
directory. The grand total for the directory is the last entry in the display:

example% pwd
/usr/ralph/misc
example% du
5 ./jokes
33 ./squash
44 ./tech.papers/lpr.document
217 ./tech.papers/new.manager
401 ./tech.papers
144 ./memos
80 ./letters
388 ./window
93 ./messages
15 ./useful.news

1211 .

du(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

300 man pages section 1: User Commands • Last Revised 5 Jun 2001

If any of the LC_* variables, that is, LC_CTYPE, LC_MESSAGES, LC_TIME,
LC_COLLATE, LC_NUMERIC, and LC_MONETARY (see environ(5)), are not set in the
environment, the operational behavior of du for each corresponding locale category is
determined by the value of the LANG environment variable. If LC_ALL is set, its
contents are used to override both the LANG and the other LC_* variables. If none of
the above variables is set in the environment, the "C" (U.S. style) locale determines
how du behaves.

LC_CTYPE Determines how du handles characters. When
LC_CTYPE is set to a valid value, du can display and
handle text and filenames containing valid characters
for that locale. du can display and handle Extended
Unix Code (EUC) characters where any individual
character can be 1, 2, or 3 bytes wide. du can also
handle EUC characters of 1, 2, or more column widths.
In the "C" locale, only characters from ISO 8859-1 are
valid.

LC_MESSAGES Determines how diagnostic and informative messages
are presented. This includes the language and style of
the messages, and the correct form of affirmative and
negative responses. In the "C" locale, the messages are
presented in the default form found in the program
itself (in most cases, U.S. English).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

pwd(1), df(1M), du(1), quot(1M), attributes(5), environ(5)

Filename arguments that are not directory names are ignored, unless you use -a.

If there are too many distinct linked files, du will count the excess files more than
once.

du(1B)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 301

dump – dump selected parts of an object file

dump [-aCcfghLorstV] [-T index [, indexn]] filename…

dump [-afhorstL [v]] filename…

dump [-hsr [-d number [, numbern]]] filename…

dump [-hsrt [-n name]] filename…

The dump utility dumps selected parts of each of its object file arguments.

The dump utility is best suited for use in shell scripts, whereas the elfdump(1)
command is recommended for more human-readable output.

This utility will accept both object files and archives of object files. It processes each
file argument according to one or more of the following options:

-a Dumps the archive header of each member of an
archive.

-c Dumps the string table(s).

-C Dumps decoded C++ symbol table names.

-f Dumps each file header.

-g Dumps the global symbols in the symbol table of an
archive.

-h Dumps the section headers.

-L Dumps dynamic linking information and static shared
library information, if available.

-o Dumps each program execution header.

-r Dumps relocation information.

-s Dumps section contents in hexadecimal.

-t Dumps symbol table entries.

-T index
-T index1,index2 Dumps only the indexed symbol table entry defined by

index or a range of entries defined by index1,index2.

-V Prints version information.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number
-d number1,number2 Dumps the section number indicated by number or the

range of sections starting at number1 and ending at
number2. This modifier can be used with -h, -s, and
-r. When -d is used with -h or -s, the argument is

dump(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

302 man pages section 1: User Commands • Last Revised 2 Mar 1999

treated as the number of a section or range of sections.
When -d is used with -r, the argument is treated as
the number of the section or range of sections to which
the relocation applies. For example, to print out all
relocation entries associated with the .text section,
specify the number of the section as the argument to
-d. If .text is section number 2 in the file, dump -r
-d 2 will print all associated entries. To print out a
specific relocation section, use dump -s -n name for
raw data output, or dump -sv -n name for interpreted
output.

-n name Dumps information pertaining only to the named
entity. This modifier can be used with -h, -s, -r, and
-t. When -n is used with -h or -s, the argument will
be treated as the name of a section. When -n is used
with -t or -r, the argument will be treated as the
name of a symbol. For example, dump -t -n .text
will dump the symbol table entry associated with the
symbol whose name is .text, where dump -h -n
.text will dump the section header information for
the .text section.

-p Suppresses printing of the headings.

-v Dumps information in symbolic representation rather
than numeric. This modifier can be used with

-a (date, user id, group id)

-f (class, data, type, machine, version, flags)

-h (type, flags)

-L (value)

-o (type, flags)

-r (name, type)

-s (interpret section contents wherever
possible)

-t (type, bind)

When -v is used with -s, all sections that can be
interpreted, such as the string table or symbol table,
will be interpreted. For example, dump -sv -n .symtab
filename. . . will produce the same formatted output as
dump -tv filename. . . , but dump -s -n .symtab
filename. . . will print raw data in hexadecimal. Without
additional modifiers, dump -sv filename. . . will dump

dump(1)

User Commands 303

all sections in the files, interpreting all those that it can
and dumping the rest (such as .text or .data) as raw
data.

The dump utility attempts to format the information it dumps in a meaningful way,
printing certain information in character, hexadecimal, octal, or decimal representation
as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

elfdump(1), nm(1), ar(3HEAD), a.out(4), attributes(5)

dump(1)

ATTRIBUTES

SEE ALSO

304 man pages section 1: User Commands • Last Revised 2 Mar 1999

dumpcs – show codeset table for the current locale

dumpcs [-0123vw]

dumpcs shows a list of printable characters for the user’s current locale, along with
their hexadecimal code values. The display device is assumed to be capable of
displaying characters for a given locale. With no option, dumpcs displays the entire
list of printable characters for the current locale.

With one or more numeric options specified, it shows EUC codeset(s) for the current
locale according to the numbers specified, and in order of codeset number. Each
non-printable character is represented by an asterisk “*” and enough ASCII space
character(s) to fill that codeset’s column width.

-0 Show ASCII (or EUC primary) codeset.

-1 Show EUC codeset 1, if used for the current locale.

-2 Show EUC codeset 2, if used for the current locale.

-3 Show EUC codeset 3, if used for the current locale.

-v “Verbose”. Normally, ranges of non-printable characters are collapsed into
a single line. This option produces one line for each non-printable
character.

-w Replace code values with corresponding wide character values (process
codes).

The environment variables LC_CTYPE and LANG control the character classification
throughout dumpcs. On entry to dumpcs, these environment variables are checked in
that order. This implies that a new setting for LANG does not override the setting of
LC_CTYPE. When none of the values is valid, the character classification defaults to
the POSIX.1 “C” locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

localedef(1), attributes(5)

dumpcs can only handle EUC locales.

dumpcs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 305

echo – echo arguments

/usr/bin/echo [string…]

The echo utility writes its arguments, separated by BLANKs and terminated by a
NEWLINE, to the standard output. If there are no arguments, only the NEWLINE
character will be written.

echo is useful for producing diagnostics in command files, for sending known data
into a pipe, and for displaying the contents of environment variables.

The C shell, the Korn shell, and the Bourne shell all have echo built-in commands,
which, by default, will be invoked if the user calls echo without a full pathname. See
shell_builtins(1). sh’s echo, ksh’s echo, and /usr/bin/echo understand the
back-slashed escape characters, except that sh’s echo does not understand \a as the
alert character. In addition, ksh’s echo, does not have an -n option. sh’s echo and
/usr/bin/echo only have an -n option if the SYSV3 environment variable is set (see
ENVIRONMENT VARIABLES below). If it is, none of the backslashed characters
mentioned above are available. csh’s echo and /usr/ucb/echo, on the other hand,
have an -n option, but do not understand the back-slashed escape characters.

The following operand is supported:

string A string to be written to standard output. If any operand is “-n”, it will be
treated as a string, not an option. The following character sequences will be
recognized within any of the arguments:

\a Alert character.

\b Backspace.

\c Print line without new-line. All characters following the \c in
the argument are ignored.

\f Form-feed.

\n New-line.

\r Carriage return.

\t Tab.

\v Vertical tab.

\\ Backslash.

\0n Where n is the 8-bit character whose ASCII code is the 1-, 2- or
3-digit octal number representing that character.

Portable applications should not use -n (as the first argument) or escape sequences.

The printf(1) utility can be used portably to emulate any of the traditional behaviors
of the echo utility as follows:

echo(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

USAGE

306 man pages section 1: User Commands • Last Revised 20 Jan 2000

� The Solaris 2.6 operating environment or compatible version’s /usr/bin/echo is
equivalent to:

printf "%b\n" "$*"

� The /usr/ucb/echo is equivalent to:

if ["X$1" = "X-n"]

then

shift

printf "%s" "$*"

else

printf "%s\n" "$*"

fi

New applications are encouraged to use printf instead of echo.

EXAMPLE 1 Finding how far below root your current directory is located

You can use echo to determine how many subdirectories below the root directory (/)
is your current directory, as follows:

� Echo your current-working-directory’s full pathname.

� Pipe the output through tr to translate the path’s embedded slash-characters into
space-characters.

� Pipe that output through wc -w for a count of the names in your path.

example% /usr/bin/echo $PWD | tr ’/’ ’ ’ | wc -w

See tr(1) and wc(1) for their functionality.

Below are the different flavors for echoing a string without a NEWLINE:

EXAMPLE 2 /usr/bin/echo

example% /usr/bin/echo "$USER’s current directory is $PWD\c"

EXAMPLE 3 sh/ksh shells

example$ echo "$USER’s current directory is $PWD\c"

EXAMPLE 4 csh shell

example% echo -n "$USER’s current directory is $PWD"

echo(1)

EXAMPLES

User Commands 307

EXAMPLE 5 /usr/ucb/echo

example% /usr/ucb/echo -n "$USER’s current directory is $PWD"

SYSV3 This environment variable is used to provide compatibility with
INTERACTIVE UNIX System and SCO UNIX installation scripts.
It is intended for compatibility only and should not be used in
new scripts.

See environ(5) for descriptions of the following environment variables that affect the
execution of echo: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following error values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

echo(1B), printf(1), shell_builtins(1), tr(1), wc(1), ascii(5), attributes(5),
environ(5)

When representing an 8-bit character by using the escape convention \0n, the n must
always be preceded by the digit zero (0).

For example, typing: echo ’WARNING:\ 07’ will print the phrase WARNING: and
sound the “bell” on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the “ \” that precedes the “07”.

Following the \0, up to three digits are used in constructing the octal output character.
If, following the \0n, you want to echo additional digits that are not part of the octal
representation, you must use the full 3-digit n. For example, if you want to echo “ESC
7” you must use the three digits “033” rather than just the two digits “33” after the
\ 0.

2 digits Incorrect: echo"0337 | od -xc

produces: df0a (hex)

337 (ascii)

3 digits Correct: echo "00337" | od -xc

echo(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

308 man pages section 1: User Commands • Last Revised 20 Jan 2000

produces: lb37 0a00 (hex)

033 7 (ascii)

For the octal equivalents of each character, see ascii(5).

echo(1)

User Commands 309

echo – echo arguments to standard output

/usr/ucb/echo [-n] [argument]

echo writes its arguments, separated by BLANKs and terminated by a NEWLINE, to the
standard output.

echo is useful for producing diagnostics in command files and for sending known
data into a pipe, and for displaying the contents of environment variables.

For example, you can use echo to determine how many subdirectories below the root
directory (/) is your current directory, as follows:

� echo your current-working-directory’s full pathname

� pipe the output through tr to translate the path’s embedded slash-characters into
space-characters

� pipe that output through wc -w for a count of the names in your path.

example% /usr/bin/echo "echo $PWD | tr ’/’ ’ ’ | wc -w"

See tr(1) and wc(1) for their functionality.

The shells csh(1), ksh(1), and sh(1), each have an echo built-in command, which, by
default, will have precedence, and will be invoked if the user calls echo without a full
pathname. /usr/ucb/echo and csh’s echo() have an -n option, but do not
understand back-slashed escape characters. sh’s echo(), ksh’s echo(), and
/usr/bin/echo, on the other hand, understand the black-slashed escape characters,
and ksh’s echo() also understands \a as the audible bell character; however, these
commands do not have an -n option.

-n Do not add the NEWLINE to the output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

csh(1), echo(1), ksh(1), sh(1), tr(1), wc(1), attributes(5)

The -n option is a transition aid for BSD applications, and may not be supported in
future releases.

echo(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

NOTES

310 man pages section 1: User Commands • Last Revised 3 Aug 1994

echo – put string on virtual output

echo [string…]

The echo function directs each string it is passed to the standard output. If no
argument is given, echo looks to the standard input for input. It is often used in
conditional execution or for passing a string to another command.

EXAMPLE 1 A sample of the echo command.

Set the done descriptor to help if a test fails:

done=‘if [-s $F1];
then echo close;
else echo help;
fi‘

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

echo(1), attributes(5)

echo(1F)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 311

ed, red – text editor

/usr/bin/ed [-s | -] [-p string] [-x] [-C] [file]

/usr/xpg4/bin/ed [-s | -] [-p string] [-x] [-C] [file]

/usr/bin/red [-s | -] [-p string] [-x] [-C] [file]

The ed utility is the standard text editor. If file is specified, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed’s buffer
so that it can be edited.

The ed utility operates on a copy of the file it is editing; changes made to the copy
have no effect on the file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer. There is only one buffer.

The red utility is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via !shell command. Attempts
to bypass these restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. The default terminal
mode is either stty -tabs or stty tab3, where tab stops are set at eight columns
(see stty(1)). If, however, the first line of file contains a format specification, that
specification will override the default mode. For example, if the first line of file
contains

<:t5,10,15 s72:>

tab stops would be set at 5, 10, and 15, and a maximum line length of 72 would be
imposed.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every command
that requires addresses has default addresses, so that the addresses can very often be
omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Leave input mode by typing a period (.) at
the beginning of a line, followed immediately by a carriage return.

If ed executes commands with arguments, it uses the default shell /usr/bin/sh (see
sh(1)).

If ed executes commands with arguments, it uses /usr/xpg4/bin/sh (see ksh(1)).

The ed utility supports a limited form of regular expression notation. Regular
expressions are used in addresses to specify lines and in some commands (for
example, s) to specify portions of a line that are to be substituted. To understand

ed(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/bin/ed

/usr/xpg4/bin/ed

Regular
Expressions

312 man pages section 1: User Commands • Last Revised 2 Jan 2002

addressing in ed, it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; the exact
effect on the current line is discussed under the description of each command.

Internationalized Basic Regular Expressions are used for all system-supplied locales.
See regex(5).

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one or
two addresses assume default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires, the last one(s) are
used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the first address is calculated, the
current line (.) is set to that value, and then the second address is calculated. This
feature can be used to determine the starting line for forward and backward searches
(see Rules 5 and 6, above). The second address of any two-address sequence must
correspond to a line in the buffer that follows the line corresponding to the first
address.

In the following list of ed commands, the parentheses shown prior to the command
are not part of the address; rather, they show the default address(es) for the command.

Each address component can be preceded by zero or more blank characters. The
command letter can be preceded by zero or more blank characters. If a suffix letter (l,
n, or p) is given, it must immediately follow the command.

The e, E, f, r, and w commands take an optional file parameter, separated from the
command letter by one or more blank characters.

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed will warn the user if an attempt is made to destroy the editor buffer via the
e or q commands. The ed utility will write the string:

"?\ n"

(followed by an explanatory message if help mode has been enabled via the H
command) to standard output and will continue in command mode with the current
line number unchanged. If the e or q command is repeated with no intervening
command, it will take effect.

If an end-of-file is detected on standard input when a command is expected, the ed
utility acts as if a q command had been entered.

It is generally illegal for more than one command to appear on a line. However, any
command (except e, f, r, or w) may be suffixed by l, n, or p in which case the current
line is either listed, numbered or written, respectively, as discussed below under the l,
n, and p commands.

ed(1)

ed Commands

User Commands 313

(.)a
<text>
.

The append command accepts zero or more lines of text and appends it after the
addressed line in the buffer. The current line (.) is left at the last inserted line, or, if
there were none, at the addressed line. Address 0 is legal for this command: it
causes the ‘‘appended’’ text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal is 256 per line
(including the new-line character).

(.)c
<text>
.

The change command deletes the addressed lines from the buffer, then accepts zero
or more lines of text that replaces these lines in the buffer. The current line (.) is left
at the last line input, or, if there were none, at the first line that was not deleted; if
the lines deleted were originally at the end of the buffer, the current line number
will be set to the address of the new last line; if no lines remain in the buffer, the
current line number will be set to 0.

C
Same as the X command, described later, except that ed assumes all text read in for
the e and r commands is encrypted unless a null key is typed in.

(. , .)d
The delete command deletes the addressed lines from the buffer. The line after the
last line deleted becomes the current line; if the lines deleted were originally at the
end of the buffer, the new last line becomes the current line. If no lines remain in the
buffer, the current line number will be set to 0.

e file
The edit command deletes the entire contents of the buffer and then reads the
contents of file into the buffer. The current line (.) is set to the last line of the
buffer. If file is not given, the currently remembered file name, if any, is used (see
the f command). The number of bytes read will be written to standard output,
unless the -s option was specified, in the following format:

"%d\ n" <number of bytes read>

file is remembered for possible use as a default file name in subsequent e, E, r,
and w commands. If file is replaced by !, the rest of the line is taken to be a shell (
sh(1)) command whose output is to be read. Such a shell command is not
remembered as the current file name. See also DIAGNOSTICS below. All marks will
be discarded upon the completion of a successful e command. If the buffer has
changed since the last time the entire buffer was written, the user will be warned, as
described previously.

E file
The Edit command is like e, except that the editor does not check to see if any
changes have been made to the buffer since the last w command.

ed(1)

314 man pages section 1: User Commands • Last Revised 2 Jan 2002

f file
If file is given, the f command will change the currently remembered path name
to file; whether the name is changed or not, it then will write the (possibly new)
currently remembered path name to the standard output in the following format:

"%s\ n"pathname

The current line number is unchanged.

(1 , $)g/RE/command list
In the global command, the first step is to mark every line that matches the given
RE. Then, for every such line, the given command list is executed with the current
line (.) initially set to that line. When the g command completes, the current line
number will have the value assigned by the last command in the command list. If
there were no matching lines, the current line number will not be changed. A single
command or the first of a list of commands appears on the same line as the global
command. All lines of a multi-line list except the last line must be ended with a
backslash (\); a, i, and c commands and associated input are permitted. The .
terminating input mode may be omitted if it would be the last line of the command
list. An empty command list is equivalent to the p command. The g, G, v, V, and !
commands are not permitted in the command list. See also the NOTES and the last
paragraph before FILES below. Any character other than space or newline can be
used instead of a slash to delimit the RE. Within the RE, the RE delimiter itself can
be used as a literal character if it is preceded by a backslash.

(1 , $)G/RE/
In the interactive Global command, the first step is to mark every line that matches
the given RE. Then, for every such line, that line is written to standard output, the
current line (.) is changed to that line, and any one command (other than one of the
a, c, i, g, G, v, and V commands) may be input and is executed. After the execution
of that command, the next marked line is written, and so on; a new-line acts as a
null command; an & causes the re-execution of the most recent non-null command
executed within the current invocation of G. Note: The commands input as part of
the execution of the G command may address and affect any lines in the buffer. The
final value of the current line number will be the value set by the last command
successfully executed. (Note that the last command successfully executed will be
the G command itself if a command fails or the null command is specified.) If there
were no matching lines, the current line number will not be changed. The G
command can be terminated by a SIGINT signal. The G command can be
terminated by an interrupt signal (ASCII DEL or BREAK). Any character other than
space or newline can be used instead of a slash to delimit the RE. Within the RE, the
RE delimiter itself can be used as a literal character if it is preceded by a backslash.

h
The help command gives a short error message that explains the reason for the
most recent ? diagnostic. The current line number is unchanged.

ed(1)

User Commands 315

H
The Help command causes ed to enter a mode in which error messages are written
for all subsequent ? diagnostics. It will also explain the previous ? if there was one.
The H command alternately turns this mode on and off; it is initially off. The current
line number is unchanged.

(.)i
<text>
.

The insert command accepts zero or more lines of text and inserts it before the
addressed line in the buffer. The current line (.) is left at the last inserted line, or, if
there were none, at the addressed line. This command differs from the a command
only in the placement of the input text. Address 0 is not legal for this command.
The maximum number of characters that may be entered from a terminal is 256 per
line (including the new-line character).

(. , .+1)j
The join command joins contiguous lines by removing the appropriate new-line
characters. If exactly one address is given, this command does nothing. If lines are
joined, the current line number will be set to the address of the joined line;
otherwise, the current line number is unchanged.

(.)kx
The mark command marks the addressed line with name x, which must be an
ASCII lower-case letter (a-z). The address ´x then addresses this line; the current
line (.) is unchanged.

(. , .)l
The l command writes to standard output the addressed lines in a visually
unambiguous form. The characters (\\ , \ a, \ b, \ f, \ r, \ t, \v) will be
written as the corresponding escape sequence; the \ n in that table is not
applicable. Non-printable characters not in the table will be written as one
three-digit octal number (with a preceding backslash character) for each byte in the
character (most significant byte first).

Long lines will be folded, with the point of folding indicated by writing
backslash/newline character; the length at which folding occurs is unspecified, but
should be appropriate for the output device. The end of each line will be marked
with a $. An l command can be appended to any other command other than e, E,
f, q, Q, r, w, or !. The current line number will be set to the address of the last line
written.

(. , .)ma
The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for a and causes the addressed line(s) to be moved to the
beginning of the file. It is an error if address a falls within the range of moved lines;
the current line (.) is left at the last line moved.

ed(1)

316 man pages section 1: User Commands • Last Revised 2 Jan 2002

(. , .)n
The number command writes the addressed lines, preceding each line by its line
number and a tab character; the current line (.) is left at the last line written. The n
command may be appended to any command other than e, E, f, q, Q, r, w, or !.

(. , .)p
The print command writes the addressed lines to standard output; the current line
(.) is left at the last line written. The p command may be appended to any
command other than e, E, f, q, Q, r, w, or !. For example, dp deletes the current
line and writes the new current line.

P
The P command causes ed to prompt with an asterisk (*) (or string, if -p is
specified) for all subsequent commands. The P command alternatively turns this
mode on and off; it is initially on if the -p option is specified, otherwise off. The
current line is unchanged.

q
The quit command causes ed to exit. If the buffer has changed since the last time
the entire buffer was written, the user will be warned; see DIAGNOSTICS.

Q
The editor exits without checking if changes have been made in the buffer since the
last w command.

($)r file
The read command reads the contents of file into the buffer. If file is not given,
the currently remembered file name, if any, is used (see the e and f commands).
The currently remembered file name is not changed unless file is the very first file
name mentioned since ed was invoked. Address 0 is legal for r and causes the file
to be read in at the beginning of the buffer. If the read is successful and the -s
option was not specified, the number of characters read is written to standard
output in the following format:

%d\ n, <number of bytes read>

The current line (.) is set to the last line read. If file is replaced by !, the rest of
the line is taken to be a shell command (see sh(1)) whose output is to be read. For
example, $r !ls appends the current directory to the end of the file being edited.
Such a shell command is not remembered as the current file name.

(. , .)s/RE/replacement/
(. , .)s/RE/replacement/count, count=[1-512]
(. , .)s/RE/replacement/g
(. , .)s/RE/replacement/l
(. , .)s/RE/replacement/n
(. , .)s/RE/replacement/p

The substitute command searches each addressed line for an occurrence of the
specified RE. Zero or more substitution commands can be specified. In each line in
which a match is found, all (non-overlapped) matched strings are replaced by the

ed(1)

User Commands 317

replacement if the global replacement indicator g appears after the command. If the
global indicator does not appear, only the first occurrence of the matched string is
replaced. If a number count appears after the command, only the count-th
occurrence of the matched string on each addressed line is replaced. It is an error if
the substitution fails on all addressed lines. Any character other than space or
new-line may be used instead of the slash (/) to delimit the RE and the replacement;
the current line (.) is left at the last line on which a substitution occurred. Within
the RE, the RE delimiter itself can be used as a literal character if it is preceded by a
backslash. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching
the RE on the current line. The special meaning of & in this context may be
suppressed by preceding it by \ . As a more general feature, the characters \n,
where n is a digit, are replaced by the text matched by the n-th regular
subexpression of the specified RE enclosed between \ (and \). When nested
parenthesized subexpressions are present, n is determined by counting occurrences
of \ (starting from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute command is used as
the replacement in the current substitute command; if there was no previous
substitute command, the use of % in this manner is an error. The % loses its special
meaning when it is in a replacement string of more than one character or is
preceded by a \ . For each backslash (\) encountered in scanning replacement from
beginning to end, the following character loses its special meaning (if any). It is
unspecified what special meaning is given to any character other than &, \, %, or
digits.

A line may be split by substituting a new-line character into it. The new-line in the
replacement must be escaped by preceding it by \ . Such substitution cannot be done
as part of a g or v command list. The current line number will be set to the address
of the last line on which a substitution is performed. If no substitution is
performed, the current line number is unchanged. If a line is split, a substitution is
considered to have been performed on each of the new lines for the purpose of
determining the new current line number. A substitution is considered to have been
performed even if the replacement string is identical to the string that it replaces.

The substitute command supports the following indicators:

count Substitute for the countth occurrence only of the RE found on each
addressed line. count must be between 1-512.

g Globally substitute for all non-overlapping instances of the RE rather
than just the first one. If both g and count are specified, the results are
unspecified.

l Write to standard output the final line in which a substitution was made.
The line will be written in the format specified for the l command.

n Write to standard output the final line in which a substitution was made.
The line will be written in the format specified for the n command.

ed(1)

318 man pages section 1: User Commands • Last Revised 2 Jan 2002

p Write to standard output the final line in which a substitution was made.
The line will be written in the format specified for the p command.

(. , .)ta
This command acts just like the m command, except that a copy of the addressed
lines is placed after address a (which may be 0); the current line (.) is left at the last
line copied.

u
The undo command nullifies the effect of the most recent command that modified
anything in the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, u, v, G, or V
command. All changes made to the buffer by a g, G, v, or V global command will be
undone as a single change; if no changes were made by the global command (such
as with g/ RE /p), the u command will have no effect. The current line number
will be set to the value it had immediately before the command being undone
started.

(1 , $)v/RE/command list
This command is the same as the global command g, except that the lines marked
during the first step are those that do not match the RE.

(1 , $)V/RE/
This command is the same as the interactive global command G, except that the
lines that are marked during the first step are those that do not match the RE.

(1 , $)w file
The write command writes the addressed lines into file. If file does not exist, it
is created with mode 666 (readable and writable by everyone), unless your file
creation mask dictates otherwise; see the description of the umask special
command on sh(1). The currently remembered file name is not changed unless
file is the very first file name mentioned since ed was invoked. If no file name is
given, the currently remembered file name, if any, is used (see the e and f
commands); the current line (.) is unchanged. If the command is successful, the
number of characters written is printed, unless the -s option is specified in the
following format:

"%d\ n",<number of bytes written>

If file is replaced by !, the rest of the line is taken to be a shell (see sh(1))
command whose standard input is the addressed lines. Such a shell command is not
remembered as the current path name. This usage of the write command with ! is
to be considered as a ‘‘last w command that wrote the entire buffer’’.

(1 , $)W file
This command is the same as the write command above, except that it appends the
addressed lines to the end of file if it exists. If file does not exist, it is created as
described above for the w command.

X
An educated guess is made to determine whether text read for the e and r
commands is encrypted. A null key turns off encryption. Subsequent e, r, and w

ed(1)

User Commands 319

commands will use this key to encrypt or decrypt the text. An explicitly empty key
turns off encryption. Also, see the -x option of ed.

($)=
The line number of the addressed line will be written to standard output in the
following format:

"%d\ n"<line number>

The current line number is unchanged by this command.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell (see sh(1)) to
be interpreted as a command. Within the text of that command, the unescaped
character % is replaced with the remembered file name; if a ! appears as the first
character of the shell command, it is replaced with the text of the previous shell
command. Thus, !! will repeat the last shell command. If any replacements of % or
! are performed, the modified line will be written to the standard output before
command is executed. The ! command will write:

"!\ n"

to standard output upon completion, unless the -s option is specified. The current
line number is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be written. A new-line alone
is equivalent to .+1p; it is useful for stepping forward through the buffer. The
current line number will be set to the address of the written line.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed writes a "?\ n" and returns to
its command level.

The ed utility will take the standard action for all signals with the following
exceptions:

SIGINT The ed utility will interrupt its current activity, write the string
"?\ n" to standard output, and return to command mode.

SIGHUP If the buffer is not empty and has changed since the last write, the
ed utility will attempt to write a copy of the buffer in a file. First,
the file named ed.hup in the current directory will be used; if that
fails, the file named ed.hup in the directory named by the HOME
environment variable will be used. In any case, the ed utility will
exit without returning to command mode.

Some size limitations are in effect: 512 characters in a line, 256 characters in a global
command list, and 255 characters in the path name of a file (counting slashes). The
limit on the number of lines depends on the amount of user memory; each line takes 1
word.

ed(1)

320 man pages section 1: User Commands • Last Revised 2 Jan 2002

When reading a file, ed discards ASCII and NUL characters.

If a file is not terminated by a new-line character, ed adds one and puts out a message
explaining what it did.

If the closing delimiter of an RE or of a replacement string (for example, /) would be
the last character before a new-line, that delimiter may be omitted, in which case the
addressed line is written. The foll owing pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p

g/s1 g/s1/p

?s1 ?s1?

If an invalid command is entered, ed will write the string:

"?\ n"

(followed by an explanatory message if help mode has been enabled by the H
command) to standard output and will continue in command mode with the current
line number unchanged.

-C Encryption option; the same as the -x option, except that ed
simulates a C command. The C command is like the X command,
except that all text read in is assumed to have been encrypted.

-p string Allows the user to specify a prompt string. By default, there is no
prompt string.

-s | -; Suppresses the writing of character counts by e, r, and w
commands, of diagnostics from e and q commands, and of the !
prompt after a !shell command.

-x Encryption option; when used, ed simulates an X command and
prompts the user for a key. The X command makes an educated
guess to determine whether text read in is encrypted or not. The
temporary buffer file is encrypted also, using a transformed
version of the key typed in for the -x option. See NOTES.

The following operand is supported:

file If file is specified, ed simulates an e command on the file named by the
path name file before accepting commands from the standard input.

See largefile(5) for the description of the behavior of ed and red when
encountering files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of ed: HOME, LC_CTYPE, LC_COLLATE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

ed(1)

OPTIONS

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 321

0 Successful completion without any file or command errors.

>0 An error occurred.

$TMPDIR If this environment variable is not NULL, its value is used in place
of /var/tmp as the directory name for the temporary work file.

/var/tmp If /var/tmp exists, it is used as the directory name for the
temporary work file.

/tmp If the environment variable TMPDIR does not exist or is NULL, and
if /var/tmp does not exist, then /tmp is used as the directory
name for the temporary work file.

ed.hup Work is saved here if the terminal is hung up.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

bfs(1), edit(1), ex(1), grep(1), ksh(1), sed(1), sh(1), stty(1), umask(1), vi(1),
fspec(4), attributes(5), environ(5), largefile(5), regex(5), XPG4(5)

? for command errors.

?file for an inaccessible file. (use the help and Help commands for detailed
explanations).

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed warns the user if an attempt is made to destroy ed’s buffer via the e or q
commands. It writes ? and allows one to continue editing. A second e or q command
at this point will take effect. The -s command-line option inhibits this feature.

The - option, although it continues to be supported, has been replaced in the
documentation by the -s option that follows the Command Syntax Standard (see
intro(1)).

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if
the editor is invoked from a restricted shell (see sh(1)).

ed(1)

FILES

ATTRIBUTES

/usr/bin/red

/usr/xpg4/bin/ed

SEE ALSO

DIAGNOSTICS

NOTES

322 man pages section 1: User Commands • Last Revised 2 Jan 2002

The sequence \ n in an RE does not match a new-line character.

If the editor input is coming from a command file (for example, ed file <
ed_cmd_file), the editor exits at the first failure.

ed(1)

User Commands 323

edit – text editor (variant of ex for casual users)

/usr/bin/edit [-| -s] [-l] [-L] [-R] [-r [filename]] [-t tag] [-v]
[-V] [-x] [-wn] [-C] [+command | -c command]filename…

/usr/xpg4/bin/edit [-| -s] [-l] [-L] [-R] [-r [filename]] [-t tag]
[-v] [-V] [-x] [-wn] [-C] [+command | -c command]filename…

The edit utility is a variant of the text editor ex recommended for new or casual
users who wish to use a command-oriented editor. It operates precisely as ex with the
following options automatically set:

novice ON

report ON

showmode ON

magic OFF

The following brief introduction should help you get started with edit. If you are
using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command edit name to the
shell. edit makes a copy of the file that you can then edit, and tells you how many
lines and characters are in the file. To create a new file, you also begin with the
command edit with a filename: edit name; the editor will tell you it is a [New
File].

The edit command prompt is the colon (:), which you should see after starting the
editor. If you are editing an existing file, then you will have some lines in edit’s
buffer (its name for the copy of the file you are editing). When you start editing, edit
makes the last line of the file the current line. Most commands to edit use the current
line if you do not tell them which line to use. Thus if you say print (which can be
abbreviated p) and type carriage return (as you should after all edit commands), the
current line will be printed. If you delete (d) the current line, edit will print the
new current line, which is usually the next line in the file. If you delete the last line,
then the new last line becomes the current one.

If you start with an empty file or wish to add some new lines, then the append (a)
command can be used. After you execute this command (typing a carriage return after
the word append), edit will read lines from your terminal until you type a line
consisting of just a dot (.); it places these lines after the current line. The last line you
type then becomes the current line. The insert (i) command is like append, but
places the lines you type before, rather than after, the current line.

The edit utility numbers the lines in the buffer, with the first line having number 1. If
you execute the command 1, then edit will type the first line of the buffer. If you then
execute the command d, edit will delete the first line, line 2 will become line 1, and
edit will print the current line (the new line 1) so you can see where you are. In
general, the current line will always be the last line affected by a command.

edit(1)

NAME

SYNOPSIS

DESCRIPTION

324 man pages section 1: User Commands • Last Revised 18 Mar 1997

You can make a change to some text within the current line by using the substitute
(s) command: s/old /new/ where old is the string of characters you want to replace
and new is the string of characters you want to replace old with.

The filename (f) command will tell you how many lines there are in the buffer you
are editing and will say [Modified] if you have changed the buffer. After modifying
a file, you can save the contents of the file by executing a write (w) command. You
can leave the editor by issuing a quit (q) command. If you run edit on a file, but do
not change it, it is not necessary (but does no harm) to write the file back. If you try
to quit from edit after modifying the buffer without writing it out, you will receive
the message No write since last change (:quit! overrides), and edit
will wait for another command. If you do not want to write the buffer out, issue the
quit command followed by an exclamation point (q!). The buffer is then irretrievably
discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file, you
can make any changes you want. You should learn at least a few more things,
however, if you will use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you supply
(as in append, you type lines up to a line consisting of only a dot (.). You can tell
change to change more than one line by giving the line numbers of the lines you
want to change, that is, 3,5c. You can print lines this way too: 1,23p prints the first
23 lines of the file.

The undo (u) command reverses the effect of the last command you executed that
changed the buffer. Thus if you execute a substitute command that does not do
what you want, type u and the old contents of the line will be restored. You can also
undo an undo command. edit will give you a warning message when a command
affects more than one line of the buffer. Note that commands such as write and quit
cannot be undone.

To look at the next line in the buffer, type carriage return. To look at a number of lines,
type ^D (while holding down the control key, press d) rather than carriage return. This
will show you a half-screen of lines on a CRT or 12 lines on a hardcopy terminal. You
can look at nearby text by executing the z command. The current line will appear in
the middle of the text displayed, and the last line displayed will become the current
line; you can get back to the line where you were before you executed the z command
by typing ’’. The z command has other options: z− prints a screen of text (or 24 lines)
ending where you are; z+ prints the next screenful. If you want less than a screenful of
lines, type z.11 to display five lines before and five lines after the current line.
(Typing z.n, when n is an odd number, displays a total of n lines, centered about the
current line; when n is an even number, it displays n-1 lines, so that the lines
displayed are centered around the current line.) You can give counts after other
commands; for example, you can delete 5 lines starting with the current line with the
command d5.

edit(1)

User Commands 325

To find things in the file, you can use line numbers if you happen to know them; since
the line numbers change when you insert and delete lines this is somewhat unreliable.
You can search backwards and forwards in the file for strings by giving commands of
the form /text/ to search forward for text or ?text? to search backward for text. If a
search reaches the end of the file without finding text, it wraps around and continues
to search back to the line where you are. A useful feature here is a search of the form
/^text/ which searches for text at the beginning of a line. Similarly /text$/ searches
for text at the end of a line. You can leave off the trailing / or ? in these commands.

The current line has the symbolic name dot (.); this is most useful in a range of lines
as in .,$p which prints the current line plus the rest of the lines in the file. To move to
the last line in the file, you can refer to it by its symbolic name $. Thus the command
$d deletes the last line in the file, no matter what the current line is. Arithmetic with
line references is also possible. Thus the line $-5 is the fifth before the last and .+20 is
20 lines after the current line.

You can find out the current line by typing ‘.=’ . This is useful if you wish to move
or copy a section of text within a file or between files. Find the first and last line
numbers you wish to copy or move. To move lines 10 through 20, type 10,20d a to
delete these lines from the file and place them in a buffer named a. edit has 26 such
buffers named a through z. To put the contents of buffer a after the current line, type
put a. If you want to move or copy these lines to another file, execute an edit (e)
command after copying the lines; following the e command with the name of the
other file you wish to edit, that is, edit chapter2. To copy lines without deleting
them, use yank (y) in place of d. If the text you wish to move or copy is all within one
file, it is not necessary to use named buffers. For example, to move lines 10 through 20
to the end of the file, type 10,20m $.

These options can be turned on or off using the set command in ex(1).

− | -s Suppress all interactive user feedback. This is useful
when processing editor scripts.

-l Set up for editing LISP programs.

-L List the name of all files saved as the result of an editor
or system crash.

-R Readonly mode; the readonly flag is set, preventing
accidental overwriting of the file.

-r filename Edit filename after an editor or system crash. (Recovers
the version of filename that was in the buffer when the
crash occurred.)

-t tag Edit the file containing the tag and position the editor
at its definition.

-v Start up in display editing state using vi. You can
achieve the same effect by simply typing the vi
command itself.

edit(1)

OPTIONS

326 man pages section 1: User Commands • Last Revised 18 Mar 1997

-V Verbose. When ex commands are read by means of
standard input, the input will be echoed to standard
error. This may be useful when processing ex
commands within shell scripts.

-x Encryption option; when used, edit simulates the X
command of ex and prompts the user for a key. This
key is used to encrypt and decrypt text using the
algorithm of the crypt command. The X command
makes an educated guess to determine whether text
read in is encrypted or not. The temporary buffer file is
encrypted also, using a transformed version of the key
typed in for the -x option.

-wn Set the default window size to n. This is useful when
using the editor over a slow speed line.

-C Encryption option; same as the -x option, except that
vi simulates the C command of ex. The C command is
like the X command of ex, except that all text read in is
assumed to have been encrypted.

+command | -c command Begin editing by executing the specified editor
command (usually a search or positioning command).

The filename argument indicates one or more files to be edited.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

ed(1), ex(1), vi(1), attributes(5), XPG4(5)

The encryption options are provided with the Security Administration Utilities
package, which is available only in the United States.

The /usr/xpg4/bin/edit utility is identical to /usr/bin/edit.

edit(1)

ATTRIBUTES

/usr/bin/edit

/usr/xpg4/bin/edit

SEE ALSO

NOTES

User Commands 327

egrep – search a file for a pattern using full regular expressions

/usr/bin/egrep [-bchilnsv] [-e pattern_list] [-f file] [strings] [file…]

/usr/xpg4/bin/egrep [-bchilnsvx] [-e pattern_list] [-f file] [strings]
[file…]

The egrep (expression grep) utility searches files for a pattern of characters and prints
all lines that contain that pattern. egrep uses full regular expressions (expressions
that have string values that use the full set of alphanumeric and special characters) to
match the patterns. It uses a fast deterministic algorithm that sometimes needs
exponential space.

If no files are specified, egrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there
is more than one input file.

The /usr/bin/egrep utility accepts full regular expressions as described on the
regexp(5) manual page, except for \(and \), \(and \), \{ and \}, \< and \>, and
\n, and with the addition of:

1. A full regular expression followed by + that matches one or more occurrences of
the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences of the full
regular expression.

3. Full regular expressions separated by | or by a NEWLINE that match strings that
are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses ()for grouping.

Be careful using the characters $, *, [, ^, |, (,), and \ in full regular expression,
because they are also meaningful to the shell. It is safest to enclose the entire full
regular expression in single quotes ´ . . . ´.

The order of precedence of operators is [], then * ? +, then concatenation, then |
and NEWLINE.

The /usr/xpg4/bin/egrep utility uses the regular expressions described in the
EXTENDED REGULAR EXPRESSIONS section of the regex(5) manual page.

The following options are supported for both /usr/bin/egrep and
/usr/xpg4/bin/egrep:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is
0).

-c Print only a count of the lines that contain the pattern.

-e pattern_list Search for a pattern_list (full regular expression that begins with a −).

-f file Take the list of full regular expressions from file.

egrep(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/bin/egrep

/usr/xpg4/bin/egrep

OPTIONS

328 man pages section 1: User Commands • Last Revised 12 May 1997

-h Suppress printing of filenames when searching multiple files.

-i Ignore upper/lower case distinction during comparisons.

-l Print the names of files with matching lines once, separated by
NEWLINEs. Does not repeat the names of files when the pattern is
found more than once.

-n Precede each line by its line number in the file (first line is 1).

-s Work silently, that is, display nothing except error messages. This
is useful for checking the error status.

-v Print all lines except those that contain the pattern.

The following option is supported for /usr/xpg4/bin/egrep only:

-x Consider only input lines that use all characters in the line to match an
entire fixed string or regular expression to be matching lines.

The following operands are supported:

file A path name of a file to be searched for the patterns. If no file
operands are specified, the standard input will be used.

pattern Specify a pattern to be used during the search for input.

pattern Specify one or more patterns to be used during the search for
input. This operand is treated as if it were specified as
-epattern_list.

See largefile(5) for the description of the behavior of egrep when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of egrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 If any matches are found.

1 If no matches are found.

2 For syntax errors or inaccessible files (even if matches were found).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

egrep(1)

/usr/xpg4/bin/egrep

OPERANDS

/usr/bin/egrep

/usr/xpg4/bin/egrep

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/egrep

User Commands 329

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

fgrep(1), grep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5),
regex(5), regexp(5), XPG4(5)

Ideally there should be only one grep command, but there is not a single algorithm
that spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

The /usr/xpg4/bin/egrep utility is identical to /usr/xpg4/bin/grep -E (see
grep(1)). Portable applications should use /usr/xpg4/bin/grep -E.

egrep(1)

/usr/xpg4/bin/egrep

SEE ALSO

NOTES

/usr/xpg4/bin/egrep

330 man pages section 1: User Commands • Last Revised 12 May 1997

eject – eject media such as CD-ROM and floppy from drive

eject [-dfnpq] [device | nickname]

The eject utility is used for those removable media devices that do not have a
manual eject button, or for those that do, but are managed by Volume Management
(see vold(1M)). The device may be specified by its name or by a nickname; if Volume
Management is running and no device is specified, the default device is used.

Only devices that support eject under program control respond to this command.
eject responds differently, depending on whether or not Volume Management is
running.

When eject is used on media that can only be ejected manually, it will do everything
except remove the media, including unmounting the file system if it is mounted. In
this case, eject displays a message that the media can now be manually ejected. If a
window system is running, the message is displayed as a pop-up window, unless the
-p option is supplied. If no window system is running or the -p option is supplied, a
message is displayed both to stderr and to the system console that the media can
now be physically removed.

Volume Management has the concept of a default device, which eject uses if no
pathname or nickname is specified. Use the -d option to check what default device
will be used.

When Volume Management is not running and a pathname is specified, eject sends
the eject command to that pathname. If a nickname is supplied instead of a pathname,
eject will recognize the following list:

Nickname Path

fd /dev/rdiskette

fd0 /dev/rdiskette

fd1 /dev/rdiskette1

diskette /dev/rdiskette

diskette0 /dev/rdiskette0

diskette1 /dev/rdiskette1

rdiskette /dev/rdiskette

rdiskette0 /dev/rdiskette0

rdiskette1 /dev/rdiskette1

floppy /dev/rdiskette

floppy0 /dev/rdiskette0

eject(1)

NAME

SYNOPSIS

DESCRIPTION

With Volume
Management

Without Volume
Management

User Commands 331

Nickname Path

floppy1 /dev/rdiskette1

The list above can be reproduced with the -n option.

Do not physically eject media from a device which contains mounted file systems.
eject automatically searches for any mounted file systems which reside on the
device and attempts to umount them prior to ejecting the media (see mount(1M)). If
the unmount operation fails, eject prints a warning message and exits. The -f
option may be used to specify an eject even if the device contains mounted partitions;
this option works only if Volume Management is not running.

eject can also display its default device and a list of nicknames.

If you have inserted a floppy diskette, you must use volcheck(1) before ejecting the
media to inform Volume Management of the floppy’s presence.

The following options are supported:

-d Displays the name of the default device to be ejected.

-f Forces the device to eject even if it is busy, if Volume Management is not
running.

-n Displays the nickname to device name translation table.

-p Does not try to call the eject_popup program.

-q Queries to see if the media is present.

The following operands are supported:

device Specifies which device to eject, by the name it appears in the
directory /dev.

nickname Specifies which device to eject, by its nickname as known to this
command.

EXAMPLE 1 Ejecting a CD while Volume Management is running

To eject a CD from its drive, while Volume Management is running (assuming only
one CD-ROM drive):

example> eject cdrom0

EXAMPLE 2 Ejecting a CD-ROM without running Volume Management

To eject a CD-ROM drive with pathname /dev/dsk/c0t3d0s2, without Volume
Management running:

example> eject /dev/dsk/c0t3d0s2

eject(1)

OPTIONS

OPERANDS

EXAMPLES

332 man pages section 1: User Commands • Last Revised 20 Sep 1996

EXAMPLE 3 Ejecting a floppy disk

To eject a floppy disk (whether or not Volume Management is running):

example> eject floppy0

The following exit codes are returned:

0 The operation was successful or, with the -q option, the media is in the
drive.

1 The operation was unsuccessful or, with the -q option, the media is not in
the drive.

2 Invalid options were specified.

3 An ioctl() request failed.

4 Manually ejectable media is now okay to remove.

/dev/diskette0 default diskette file

/dev/sr0 default CD-ROM file (deprecated)

/dev/dsk/c0t6d0s2 default CD-ROM file

/usr/lib/vold/eject_popup popup used for manually ejected media

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

volcancel(1), volcheck(1), volmissing(1), mount(1M), rmmount(1M), vold(1M),
ioctl(2), rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)

A short help message is printed if an unknown option is specified. A diagnostic is
printed if the device name cannot be opened or does not support eject.

Device Busy An attempt was made to eject a device that has a mounted file
system. A warning message is printed when doing a forced eject of
a mounted device.

There should be a way to change the default on a per-user basis.

If Volume Management is not running, it is possible to eject a volume that is currently
mounted (see mount(1M)). For example, if you have a CD-ROM drive at
/dev/dsk/c0t3d0s2 mounted on /mnt, the following command (without Volume
Management running) will work:

example> eject /dev/dsk/c0t3d0s0

eject(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

BUGS

User Commands 333

since both slices s0 and s2 reference the whole CD-ROM drive.

eject(1)

334 man pages section 1: User Commands • Last Revised 20 Sep 1996

elfdump – dump selected parts of an object file

elfdump [-CcdeGghikmnprsvy] [-N name] [-w file] filename…

The elfdump utility symbolically dumps selected parts of the specified object file(s).
The options allow specific portions of the file to be displayed.

The elfdump utility is similar in function to the dump(1) utility, which offers an older
and less user-friendly interface than elfdump, although dump may be more
appropriate for certain uses such as in shell scripts.

Archive files, produced by ar(1), can also be inspected with elfdump. In this case
each object within the archive is processed using the options supplied.

For a complete description of the displayed information, refer to the Linker and
Libraries Guide.

The following options are supported:

-c Dumps section header information.

-C Demangles C++ symbol names.

-d Dumps the contents of the .dynamic section.

-e Dumps the ELF header.

-g Dumps the contents of the .group section.

-G Dumps the contents of the .got section.

-h Dumps the contents of the .hash section.

-i Dumps the contents of the .interp section.

-k Calculates the ELF checksum (see gelf_checksum(3ELF)).

-m Dumps the contents of the .SUNW_move section.

-n Dumps the contents of the .note section.

-N name Qualifies an option with a specific name. For example, in a file that
contains more than one symbol table, the .dynsym table can be
displayed using:

example% elfdump -s -N .dynsym filename

-p Dumps the program headers.

-r Dumps the contents of the relocation sections (that is, .rel[a]).

-s Dumps the contents of the symbol table sections (that is, .dynsym
and/or .symtab) and, in the case of archives, dumps the archive
symbol table. Individual sections can be specified with the -N
option, or an archive symbol table can be specified using the
special section name -N ARSYM.

elfdump(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 335

In addition to the standard symbol table information, the version
definition index of the symbol is also provided under the ver
heading.

-v Dumps the contents of the version sections (that is,
.SUNW_version).

-w file Writes the contents of a section specified with the -N option to the
named file. This is useful for extracting an individual section’s
data for additional processing. For example, extracting the .text
section of a file can be carried out with:

example% elfdump -w text.out -N .text filename

-y Dumps the contents of the .SUNW_syminfo section.

The following operand is supported:

filename The name of the specified object file.

liblddbg.so linker debugging library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ar(1), dump(1), nm(1), pvs(1), elf(3ELF), attributes(5)

Linker and Libraries Guide

elfdump(1)

OPERANDS

FILES

ATTRIBUTES

SEE ALSO

336 man pages section 1: User Commands • Last Revised 29 Oct 2001

enable, disable – enable/disable LP printers

/usr/bin/enable printer…

/usr/bin/disable [-c | -W] [-r [reason]] printer…

The enable command activates printers, enabling them to print requests submitted
by the lp command. enable must be run on the printer server.

The disable command deactivates printers, disabling them from printing requests
submitted by the lp command. By default, any requests that are currently printing on
printer will be reprinted in their entirety either on printer or another member of the
same class of printers. The disable command must be run on the print server.

Use lpstat -p to check the status of printers.

enable and disable only effect queueing on the print server’s spooling system.
Executing these commands from a client system will have no effect on the server.

The following options are supported for use with disable:

-c Cancels any requests that are currently printing on printer. This
option cannot be used with the -W option. If the printer is remote,
the -c option will be silently ignored.

-W Waits until the request currently being printed is finished before
disabling printer. This option cannot be used with the -c option. If
the printer is remote, the -W option will be silently ignored.

-r [reason] Assigns a reason for the disabling of the printer(s). This reason
applies to all printers specified. This reason is reported by lpstat
-p. Enclose reason in quotes if it contains blanks. The default
reason is "unknown reason" for the existing printer, and "new
printer" for a printer added to the system but not yet enabled.

The following operand is supported for both enable and disable:

printer The name of the printer to be enabled or disabled. Specify printer
using atomic name. See printers.conf(4) for information
regarding the naming conventions for atomic names.

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/var/spool/lp/* LP print queue.

See attributes(5) for descriptions of the following attributes:

enable(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

User Commands 337

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

CSI enabled

lp(1), lpstat(1), printers.conf(4), attributes(5)

enable(1)

SEE ALSO

338 man pages section 1: User Commands • Last Revised 9 Sep 1996

env – set environment for command invocation

/usr/bin/env [-i | -] [name=value…] [utility [arg…]]

/usr/xpg4/bin/env [-i | -] [name=value…] [utility [arg…]]

The env utility obtains the current environment, modifies it according to its
arguments, then invokes the utility named by the utility operand with the modified
environment.

Optional arguments are passed to utility. If no utility operand is specified, the resulting
environment is written to the standard output, with one name=value pair per line.

If env executes commands with arguments, it uses the default shell /usr/bin/sh
(see sh(1)).

If env executes commands with arguments, it uses /usr/xpg4/bin/sh (see ksh(1)).

The following options are supported:

-i | − Ignores the environment that would otherwise be inherited from
the current shell. Restricts the environment for utility to that
specified by the arguments.

The following operands are supported:

name=value Arguments of the form name=value modify the execution
environment, and are placed into the inherited environment before
utility is invoked.

utility The name of the utility to be invoked. If utility names any of the
special shell built-in utilities, the results are undefined.

arg A string to pass as an argument for the invoked utility.

EXAMPLE 1 Invoking utilities with new PATH values

The following utility:

example% env -i PATH=/mybin mygrep xyz myfile

invokes the utility mygrep with a new PATH value as the only entry in its
environment. In this case, PATH is used to locate mygrep, which then must reside in
/mybin.

See environ(5) for descriptions of the following environment variables that affect the
execution of env: LC_CTYPE, LC_MESSAGES, and NLSPATH.

If utility is invoked, the exit status of env is the exit status of utility; otherwise, the env
utility is with one of the following values:

0 Successful completion.

env(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/bin

/usr/xpg4/bin

OPTIONS

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 339

1-125 An error occurred.

126 utility was found but could not be invoked.

127 utility could not be found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

ksh(1), sh(1), exec(2), profile(4), attributes(5), environ(5), XPG4(5)

env(1)

ATTRIBUTES

/usr/bin

/usr/xpg4/bin

SEE ALSO

340 man pages section 1: User Commands • Last Revised 2 Jan 2002

eqn, neqn, checkeq – typeset mathematics test

eqn [-d xy] [-f n] [-p n] [-s n] [file…]

neqn [file…]

checkeq [file…]

eqn and neqn are language processors to assist in describing equations. eqn is a
preprocessor for troff(1) and is intended for devices that can print troff’s output.
neqn is a preprocessor for nroff(1) and is intended for use with terminals. Usage is
almost always:

example% eqn file ... | troff

example% neqn file ... | nroff

If no files are specified, eqn and neqn read from the standard input. A line beginning
with .EQ marks the start of an equation. The end of an equation is marked by a line
beginning with .EN. Neither of these lines is altered, so they may be defined in macro
packages to get centering, numbering, and so on. It is also possible to set two
characters as ‘‘delimiters’’; subsequent text between delimiters is also treated as eqn
input.

checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

The following options are supported:

-dxy Sets equation delimiters set to characters x and y with the command-line
argument. The more common way to do this is with delim xy between
.EQ and .EN. The left and right delimiters may be identical. Delimiters are
turned off by delim off appearing in the text. All text that is neither
between delimiters nor between .EQ and .EN is passed through
untouched.

-fn Changes font to n globally in the document. The font can also be changed
globally in the body of the document by using the gfont n directive,
where n is the font specification.

-pn Reduces subscripts and superscripts by n point sizes from the previous
size. In the absence of the -p option, subscripts and superscripts are
reduced by 3 point sizes from the previous size.

-sn Changes point size to n globally in the document. The point size can also
be changed globally in the body of the document by using the gsize n
directive, where n is the point size.

The following operands are supported:

file The nroff or troff file processed by eqn or neqn.

eqn(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 341

The nroff version of this description depicts the output of neqn to the terminal screen
exactly as neqn is able to display it. To see an accurate depiction of the output, view
the printed version of this page.

Tokens within eqn are separated by braces, double quotes, tildes, circumflexes,
SPACE, TAB, or NEWLINE characters. Braces { } are used for grouping. Generally
speaking, anywhere a single character like x could appear, a complicated construction
enclosed in braces may be used instead. A tilde (~) represents a full SPACE in the
output; a circumflex (^) half as much.

Subscripts and superscripts:
These are produced with the keywords sub and sup.

x sub i makes xi

a sub i sup 2 produces ai
2

e sup {x sup 2 + y sup 2} gives ex2
+y2

Fractions:
Fractions are made with over.

a over b
yields

Square Roots:
These are made with sqrt

1 over sqrt {ax sup 2 +bx+c}
results in

Limits:
The keywords from and to introduce lower and upper limits on arbitrary things:

lim from {n→ inf } sum from 0 to n x sub i
makes

eqn(1)

EQN LANGUAGE

342 man pages section 1: User Commands • Last Revised 1 Feb 1996

Brackets and Braces:
Left and right brackets, braces, etc., of the right height are made with left and
right.

left [x sup 2 + y sup 2 over alpha right] ~=~1
produces

The right clause is optional. Legal characters after left and right are braces,
brackets, bars, c and f for ceiling and floor, and "" for nothing at all (useful for
a right-side-only bracket).

Vertical piles:
Vertical piles of things are made with pile, lpile, cpile, and rpile.

pile {a above b above c}
produces

There can be an arbitrary number of elements in a pile. lpile left-justifies, pile
and cpile center, with different vertical spacing, and rpile right justifies.

Matrices:
Matrices are made with matrix.

matrix { lcol { x sub i above y sub 2 } ccol { 1 above 2 } }
produces

In addition, there is rcol for a right-justified column.

eqn(1)

User Commands 343

Diacritical marks:
Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and
under.

x dot = f(t) bar
is

y dotdot bar ~=~ n under
is

x vec ~=~ y dyad
is

Sizes and Fonts:
Sizes and font can be changed with size n or size ±n, roman, italic, bold, and
font n. Size and fonts can be changed globally in a document by gsize n and
gfont n, or by the command-line arguments -sn and -fn.

Successive display arguments:
Successive display arguments can be lined up. Place mark before the desired lineup
point in the first equation; place lineup at the place that is to line up vertically in
subsequent equations.

Shorthands:
Shorthands may be defined or existing keywords redefined with define:

define thing % replacement %
Defines a new token called thing which will be replaced by replacement whenever
it appears thereafter. The % may be any character that does not occur in
replacement.

Keywords and Shorthands:
Keywords like sum int inf and shorthands like >= → and != are recognized.

Greek letters:
Greek letters are spelled out in the desired case, as in alpha or GAMMA.

eqn(1)

344 man pages section 1: User Commands • Last Revised 1 Feb 1996

Mathematical words:
Mathematical words like sin, cos, and log are made Roman automatically.

troff(1) four-character escapes like \(bu (•) can be used anywhere. Strings enclosed
in double quotes ". . ." are passed through untouched; this permits keywords to be
entered as text, and can be used to communicate with troff when all else fails.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

nroff(1), tbl(1), troff(1), attributes(5), ms(5)

To embolden characters such as digits and parentheses, it is necessary to quote them,
as in ‘bold "12.3"’.

eqn(1)

ATTRIBUTES

SEE ALSO

BUGS

User Commands 345

error – insert compiler error messages at right source lines

error [-n] [-q] [-s] [-v] [-t suffixlist] [-I ignorefile] [filename]

error analyzes error messages produced by a number of compilers and language
processors. It replaces the painful, traditional methods of scribbling abbreviations of
errors on paper, and permits error messages and source code to be viewed
simultaneously.

error looks at error messages, either from the specified file filename or from the
standard input, and:

� Determines which language processor produced each error message.
� Determines the file name and line number of the erroneous line.
� Inserts the error message into the source file immediately preceding the erroneous

line.

Error messages that can’t be categorized by language processor or content are not
inserted into any file, but are sent to the standard output. error touches source files
only after all input has been read.

error is intended to be run with its standard input connected with a pipe to the error
message source. Some language processors put error messages on their standard error
file; others put their messages on the standard output. Hence, both error sources
should be piped together into error. For example, when using the csh syntax, the
following command analyzes all the error messages produced by whatever programs
make(1S) runs when making lint:

example% make -s lint | & error -q -v

error knows about the error messages produced by: as(1), cpp(1), ld(1), cc(1B),
make(1S) and other compilers. For all languages except Pascal, error messages are
restricted to one line. Some error messages refer to more than one line in more than
one file, in which case error duplicates the error message and inserts it in all the
appropriate places.

-n Do not touch any files; all error messages are sent to the standard
output.

-q error asks whether the file should be touched. A ‘y’ or ‘n’ to the
question is necessary to continue. Absence of the -q option implies
that all referenced files (except those referring to discarded error
messages) are to be touched.

-s Print out statistics regarding the error categorization.

-v After all files have been touched, overlay the visual editor vi with
it set up to edit all files touched, and positioned in the first
touched file at the first error. If vi(1) can’t be found, try ex(1) or
ed(1) from standard places.

error(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

346 man pages section 1: User Commands • Last Revised 5 Mar 1992

-t suffixlist Take the following argument as a suffix list. Files whose suffices do
not appear in the suffix list are not touched. The suffix list is dot
separated, and ‘*’ wildcards work. Thus the suffix list:

.c.y.f*.h

allows error to touch files ending with ‘.c’, ‘.y’, ‘.f*’ and ‘.h’.

error catches interrupt and terminate signals, and terminates in an orderly fashion.

EXAMPLE 1 Examples of the error command.

In the following C shell (/usr/bin/csh) example, error takes its input from the
FORTRAN compiler:

example% f77 -c any.f |& error options

Here is the same example using the Korn shell (/usr/bin/ksh):

example% f77 -c any.f 2>&1 | error options

error does one of six things with error messages.

synchronize Some language processors produce short errors
describing which file they are processing. error uses
these to determine the file name for languages that do
not include the file name in each error message. These
synchronization messages are consumed entirely by
error.

discard Error messages from lint that refer to one of the two
lint libraries, /usr/lib/lint/llib-lc and
/usr/lib/lint/llib-port are discarded, to
prevent accidentally touching these libraries. Again,
these error messages are consumed entirely by error.

nullify Error messages from lint can be nullified if they refer
to a specific function, which is known to generate
diagnostics which are not interesting. Nullified error
messages are not inserted into the source file, but are
written to the standard output. The names of functions
to ignore are taken from either the file named
.errorrc in the user’s home directory, or from the file
named by the -I option. If the file does not exist, no
error messages are nullified. If the file does exist, there
must be one function name per line.

error(1)

EXAMPLES

USAGE

User Commands 347

not file specific Error messages that can’t be intuited are grouped
together, and written to the standard output before any
files are touched. They are not inserted into any source
file.

file specific Error messages that refer to a specific file but to no
specific line are written to the standard output when
that file is touched.

true errors Error messages that can be intuited are candidates for
insertion into the file to which they refer.

Only true error messages are inserted into source files. Other error messages are
consumed entirely by error or are written to the standard output. error inserts the
error messages into the source file on the line preceding the line number in the error
message. Each error message is turned into a one line comment for the language, and
is internally flagged with the string ### at the beginning of the error, and %%% at the
end of the error. This makes pattern searching for errors easier with an editor, and
allows the messages to be easily removed. In addition, each error message contains the
source line number for the line the message refers to. A reasonably formatted source
program can be recompiled with the error messages still in it, without having the error
messages themselves cause future errors. For poorly formatted source programs in
free format languages, such as C or Pascal, it is possible to insert a comment into
another comment, which can wreak havoc with a future compilation. To avoid this,
format the source program so there are no language statements on the same line as the
end of a comment.

~/.errorrc function names to ignore for lint error messages

/dev/tty user’s teletype

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

as(1), cc(1B), cpp(1), csh(1), ed(1), ex(1), make(1S), ld(1), vi(1), attributes(5)

Opens the tty-device directly for user input.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s error message format may cause error to not
understand the error message.

error, since it is purely mechanical, will not filter out subsequent errors caused by
“floodgating” initiated by one syntactically trivial error. Humans are still much better
at discarding these related errors.

error(1)

FILES

ATTRIBUTES

SEE ALSO

BUGS

348 man pages section 1: User Commands • Last Revised 5 Mar 1992

Pascal error messages belong after the lines affected, error puts them before. The
alignment of the ‘|’ marking the point of error is also disturbed by error.

error was designed for work on CRT ’s at reasonably high speed. It is less pleasant
on slow speed terminals, and was not designed for use on hardcopy terminals.

error(1)

User Commands 349

ex – text editor

/usr/bin/ex [-| -s] [-l] [-L] [-R] [-r [file]] [-t tag] [-v] [-V]
[-x] [-wn] [-C] [+command | -c command]file…

/usr/xpg4/bin/ex [-| -s] [-l] [-L] [-R] [-r [file]] [-t tag] [-v]
[-V] [-x] [-wn] [-C] [+command | -c command]file…

The ex utility is the root of a family of editors: ex and vi. ex is a superset of ed(1),
with the most notable extension being a display editing facility. Display based editing
is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case
see vi(1), which is a command which focuses on the display-editing portion of ex.

If you have used ed you will find that, in addition to having all of the ed commands
available, ex has a number of additional features useful on CRT terminals. Intelligent
terminals and high speed terminals are very pleasant to use with vi. Generally, the ex
editor uses far more of the capabilities of terminals than ed does, and uses the
terminal capability data base (see terminfo(4)) and the type of the terminal you are
using from the environment variable TERM to determine how to drive your terminal
efficiently. The editor makes use of features such as insert and delete character and line
in its visual command (which can be abbreviated vi) and which is the central mode
of editing when using the vi command.

The ex utility contains a number of features for easily viewing the text of the file. The
z command gives easy access to windows of text. Typing ^D (CTRL-D) causes the
editor to scroll a half-window of text and is more useful for quickly stepping through
a file than just typing return. Of course, the screen-oriented visual mode gives
constant access to editing context.

The ex utility gives you help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. ex gives you a lot of
feedback, normally printing changed lines, and indicates when more than a few lines
are affected by a command so that it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents overwriting existing files, unless you edited them,
so that you do not accidentally overwrite a file other than the one you are editing. If
the system (or editor) crashes, or you accidentally hang up the telephone, you can use
the editor recover command (or -r file option) to retrieve your work. This will get
you back to within a few lines of where you left off.

The ex utility has several features for dealing with more than one file at a time. You
can give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or a
pattern as used by the shell to specify a new set of files to be dealt with. In general, file
names in the editor may be formed with full shell metasyntax. The metacharacter ‘%’
is also available in forming file names and is replaced by the name of the current file.

ex(1)

NAME

SYNOPSIS

DESCRIPTION

350 man pages section 1: User Commands • Last Revised 18 Mar 1997

The editor has a group of buffers whose names are the ASCII lower-case letters (a-z).
You can place text in these named buffers where it is available to be inserted elsewhere
in the file. The contents of these buffers remain available when you begin editing a
new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In
addition, there is a confirmed substitute command. You give a range of substitutions
to be done and the editor interactively asks whether each substitution is desired.

It is possible to ignore the case of letters in searches and substitutions. ex also allows
regular expressions which match words to be constructed. This is convenient, for
example, in searching for the word ‘‘edit’’ if your document also contains the word
‘‘editor.’’

ex has a set of options which you can set to tailor it to your liking. One option which
is very useful is the autoindent option that allows the editor to supply leading
white space to align text automatically. You can then use ^D as a backtab and space or
tab to move forward to align new code easily.

Miscellaneous useful features include an intelligent join (j) command that supplies
white space between joined lines automatically, commands < and > which shift groups
of lines, and the ability to filter portions of the buffer through commands such as
sort.

The following options are supported:

− | -s Suppress all interactive user feedback. This is useful
when processing editor scripts.

-l Set up for editing LISP programs.

-L List the name of all files saved as the result of an editor
or system crash.

-R Readonly mode; the readonly flag is set, preventing
accidental overwriting of the file.

-r file Edit file after an editor or system crash. (Recovers the
version of file that was in the buffer when the crash
occurred.)

-t tag Edit the file containing the tag and position the editor
at its definition.

-v Start up in display editing state using vi. You can
achieve the same effect by simply typing the vi
command itself.

-V Verbose. When ex commands are read by means of
standard input, the input will be echoed to standard
error. This may be useful when processing ex
commands within shell scripts.

ex(1)

OPTIONS

User Commands 351

-x Encryption option. Simulates the X command and
prompts the user for a key. This key is used to encrypt
and decrypt text using the algorithm of the crypt
command. The X command makes an educated guess
to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a
transformed version of the key typed in for the -x
option.

-wn Set the default window size to n. This is useful when
using the editor over a slow speed line.

-C Encryption option. Same as the -x option, except
simulates the C command. The C command is like the X
command, except that all text read in is assumed to
have been encrypted.

+command | -c command Begin editing by executing the specified editor
command (usually a search or positioning command).

If both the -t tag and the -c command options are given, the -t tag will be processed
first. That is, the file containing the tag is selected by -t and then the command is
executed.

The following operand is supported:

file A path name of a file to be edited.

Command Normal and initial state. Input prompted for by “:”. Your line kill
character cancels a partial command.

Insert Entered by a, i, or c. Arbitrary text may be entered. Insert state
normally is terminated by a line having only "." on it, or,
abnormally, with an interrupt.

Visual Entered by typing vi; terminated by typing Q or ^\ (CTRL-\).

Command
Name

Abbrev- iation Command
Name

Abbrev- iation Command
Name

Abbrev- iation

abbrev ab map set se

append a mark ma shell sh

args ar move m source so

change c next n substitute s

copy co number nu unabbrev unab

delete d preserve pre undo u

edit e print p unmap unm

ex(1)

/usr/xpg4/bin/ex

OPERANDS

ex States

ex Command
Names and

Abbreviations

352 man pages section 1: User Commands • Last Revised 18 Mar 1997

Command
Name

Abbrev- iation Command
Name

Abbrev- iation Command
Name

Abbrev- iation

file f put pu version ve

global g quit q visual vi

insert i read r write w

join j recover rec xit x

list l rewind rew yank ya

For all of the ex commands listed below, if both a count and a range are specified for a
command that uses them, the number of lines affected will be taken from the count
value rather than the range. The starting line for the command is taken to be the first
line addressed by the range.

Abbreviate ab[brev] word rhs

Append [line] a[ppend][!]

Arguments ar[gs]

Change [range] c[hange][!] [count]

Change Directory chd[ir][!] [directory]; cd[!] [directory]

Copy [range] co[py] line [flags]; [range] t line [flags]

Delete [range] d[elete] [buffer] [count] [flags]

Edit e[dit][!] [+line][file]; ex[!] [+line] [file]

File f[ile] [file]

Global [range] g[lobal] /pattern/ [commands]; [range] v
/pattern/ [commands]

Insert [line] i[nsert][!]

Join [range] j[oin][!] [count] [flags]

List [range] l[ist] [count] [flags]

Map map[!] [x rhs]

Mark [line] ma[rk] x; [line] k x

Move [range] m[ove] line

Next n[ext][!] [file ...]

Number [range] nu[mber] [count] [flags]; [range] # [count]
[flags]

Open [line] o[pen] /pattern/ [flags]

Preserve pre[serve]

ex(1)

ex Command
Arguments

User Commands 353

Print [range] p[rint] [count] [flags]

Put [line] pu[t] [buffer]

Quit q[uit][!]

Read [line] r[ead][!] [file]

Recover rec[over] file

Rewind rew[ind][!] Set se[t] [option[=[value]]...] [nooption...]
[option?...] [all]

Shell sh[ell]

Source so[urce] file

Substitute [range] s[ubstitute] [/pattern/repl/[options] [count]
[flags]]

Suspend su[spend][!]; st[op][!]

Tag ta[g][!] tagstring

Unabbreviate una[bbrev] word

Undo u[ndo]

Unmap unm[ap][!] x

Visual [line] vi[sual] [type] [count] [flags]

Write [range} w[rite][!] [>>] [file]; [range} w[rite] [!] [file];
[range} wq[!] [>>] [file]

Write and Exit [range] x[it][!] [file]

Yank [range] ya[nk] [buffer] [count]

Adjust Window [line] z [type] [count] [flags]

Escape ! command [range]! command

Shift Left [range] < [count] [flags]

Shift Right [range] > [count] [flags]

Resubstitute [range] & [options] [count] [flags]; [range] s[ubstitute]
[options] [count] [flags]; [range] ~ [options] [count]
[flags]

Scroll EOF

Write Line Number [line] = [flags]

Execute @ buffer; * buffer

C forced encryption

X heuristic encryption

ex(1)

ex Commands

354 man pages section 1: User Commands • Last Revised 18 Mar 1997

& resubst

CR print next

> rshift

< lshift

^D scroll

z window

! shell escape

n line n

. current

$ last

+ next

− previous

+n n forward

% 1,$

/pat next with pat

?pat previous with pat

x−n n before x

x,y x through n

’x marked with x

’’ previous context

EXINIT place set’s here in environment variable

$HOME/.exrc editor initialization file

./.exrc editor initialization file

set x enable option x

set nox disable option x

set x=val give value val to option x

set show changed options

set all show all options

set x? show value of option x

autoindent ai supply indent

ex(1)

ex Command
Addresses

Initializing
options

Most useful
options and their

abbreviations

User Commands 355

autowrite aw write before changing files

directory pathname of directory for temporary work files

exrc ex allow vi/ex to read the .exrc in the current directory. This
option is set in the EXINIT shell variable or in the .exrc file
in the $HOMEdirectory.

ignorecase ic ignore case of letters in scanning

list print ^I for tab, $ at end

magic treat . [* special in patterns

modelines first five lines and last five lines executed as vi/ex
commands if they are of the form ex:command: or
vi:command:

number nu number lines

paragraphs para macro names that start paragraphs

redraw simulate smart terminal

report informs you if the number of lines modified by the last
command is greater than the value of the report variable

scroll command mode lines

sections sect macro names that start sections

shiftwidth sw for < >, and input ^D

showmatch sm to) and } as typed

showmode smd show insert mode in vi

slowopen slow stop updates during insert

term specifies to vi the type of terminal being used (the default is
the value of the environment variable TERM)

window visual mode lines

wrapmargin wm automatic line splitting

wrapscan ws search around end (or beginning) of buffer

^ beginning of line

$ end of line

. any character

\< beginning of word

\> end of word

ex(1)

Scanning pattern
formation

356 man pages section 1: User Commands • Last Revised 18 Mar 1997

[str] any character in str

[^str] any character not in str

[xy] any character between x and y

* any number of preceding characters

See environ(5) for descriptions of the following environment variables that affect the
execution of ex: HOME, PATH, SHELL, TERM, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
and NLSPATH.

COLUMNS Override the system-selected horizontal screen size.

EXINIT Determine a list of ex commands that are executed on editor
start-up, before reading the first file. The list can contain multiple
commands by separating them using a vertical-line (|) character.

LINES Override the system-selected vertical screen size, used as the
number of lines in a screenful and the vertical screen size in visual
mode.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/var/tmp/Exnnnnn editor temporary

/var/tmp/Rxnnnnn named buffer temporary

/usr/lib/expreserve preserve command

/usr/lib/exrecover recover command

/usr/lib/exstrings error messages

/usr/share/lib/terminfo/* describes capabilities of terminals

/var/preserve/login preservation directory (where login is the
user’s login)

$HOME/.exrc editor startup file

./.exrc editor startup file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ex(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/ex

User Commands 357

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

ed(1), edit(1), grep(1), sed(1), sort(1), vi(1), curses (3CURSES), term(4),
terminfo(4), attributes(5), environ(5), standards(5)

Solaris Advanced User’s Guide

The vi and ex utilities are based on software developed by The University of
California, Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

Several options, although they continue to be supported, have been replaced in the
documentation by options that follow the Command Syntax Standard (see intro(1)).
The − option has been replaced by -s, a -r option that is not followed with an
option-argument has been replaced by -L, and +command has been replaced by -c
command.

The message file too large to recover with -r option, which is seen when
a file is loaded, indicates that the file can be edited and saved successfully, but if the
editing session is lost, recovery of the file with the -r option will not be possible.

The z command prints the number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line -s option is used.

The editing environment defaults to certain configuration options. When an editing
session is initiated, ex attempts to read the EXINIT environment variable. If it exists,
the editor uses the values defined in EXINIT, otherwise the values set in
$HOME/.exrc are used. If $HOME/.exrc does not exist, the default values are used.

To use a copy of .exrc located in the current directory other than $HOME, set the exrc
option in EXINIT or $HOME/.exrc. Options set in EXINIT can be turned off in a
local .exrc only if exrc is set in EXINIT or $HOME/.exrc.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting
the editor.

Null characters are discarded in input files and cannot appear in resultant files.

The standard Solaris version of ex will be replaced by the POSIX.2-conforming
version (see standards(5)) in the future. Scripts which use the ex family of
addressing and features should use the /usr/xpg4/bin version of these utilities.

ex(1)

/usr/xpg4/bin/ex

SEE ALSO

AUTHOR

NOTES

358 man pages section 1: User Commands • Last Revised 18 Mar 1997

exec, eval, source – shell built-in functions to execute other commands

exec [argument…]

eval [argument…]

exec command

eval argument…

source [-h] name

*exec [arg…]

*eval [arg…]

The exec command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and, if no other
arguments are given, cause the shell input/output to be modified.

The arguments to the eval built-in are read as input to the shell and the resulting
command(s) executed.

exec executes command in place of the current shell, which terminates.

eval reads its arguments as input to the shell and executes the resulting command(s).
This is usually used to execute commands generated as the result of command or
variable substitution.

source reads commands from name. source commands may be nested, but if they
are nested too deeply the shell may run out of file descriptors. An error in a sourced
file at any level terminates all nested source commands.

-h Place commands from the file name on the history list without executing
them.

With the exec built-in, if arg is given, the command specified by the arguments is
executed in place of this shell without creating a new process. Input/output
arguments may appear and affect the current process. If no arguments are given the
effect of this command is to modify file descriptors as prescribed by the input/output
redirection list. In this case, any file descriptor numbers greater than 2 that are opened
with this mechanism are closed when invoking another program.

The arguments to eval are read as input to the shell and the resulting command(s)
executed.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

exec(1)

NAME

sh

csh

ksh

sh

csh

ksh

User Commands 359

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), sh(1), attributes(5)

exec(1)

ATTRIBUTES

SEE ALSO

360 man pages section 1: User Commands • Last Revised 15 Apr 1994

exit, return, goto – shell built-in functions to enable the execution of the shell to
advance beyond its sequence of steps

exit [n]

return [n]

exit [(expr)]

goto label

*exit [n]

*return [n]

exit will cause the calling shell or shell script to exit with the exit status specified by
n. If n is omitted the exit status is that of the last command executed (an EOF will also
cause the shell to exit.)

return causes a function to exit with the return value specified by n. If n is omitted,
the return status is that of the last command executed.

exit will cause the calling shell or shell script to exit, either with the value of the
status variable or with the value specified by the expression expr.

The goto built-in uses a specified label as a search string amongst commands. The
shell rewinds its input as much as possible and searches for a line of the form label:
possibly preceded by space or tab characters. Execution continues after the indicated
line. It is an error to jump to a label that occurs between a while or for built-in
command and its corresponding end.

exit will cause the calling shell or shell script to exit with the exit status specified by
n. The value will be the least significant 8 bits of the specified status. If n is omitted
then the exit status is that of the last command executed. When exit occurs when
executing a trap, the last command refers to the command that executed before the
trap was invoked. An end-of-file will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

return causes a shell function or ’.’ script to return to the invoking script with the
return status specified by n. The value will be the least significant 8 bits of the
specified status. If n is omitted then the return status is that of the last command
executed. If return is invoked while not in a function or a ’.’ script, then it is the
same as an exit.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

exit(1)

NAME

sh

csh

ksh

sh

csh

ksh

User Commands 361

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

break(1), csh(1), ksh(1), sh(1), attributes(5)

exit(1)

ATTRIBUTES

SEE ALSO

362 man pages section 1: User Commands • Last Revised 15 Apr 1994

expand, unexpand – expand TAB characters to SPACE characters, and vice versa

expand [-t tablist] [file…]

expand [-tabstop] [-tab1, tab2,. . ., tabn] [file…]

unexpand [-a] [-t tablist] [file…]

expand copies files (or the standard input) to the standard output, with TAB
characters expanded to SPACE characters. BACKSPACE characters are preserved into
the output and decrement the column count for TAB calculations. expand is useful for
pre-processing character files (before sorting, looking at specific columns, and so forth)
that contain TAB characters.

unexpand copies files (or the standard input) to the standard output, putting TAB
characters back into the data. By default, only leading SPACE and TAB characters are
converted to strings of tabs, but this can be overridden by the -a option (see the
OPTIONS section below).

The following options are supported for expand:

-t tablist Specify the tab stops. The argument tablist must consist
of a single positive decimal integer or multiple positive
decimal integers, separated by blank characters or
commas, in ascending order. If a single number is
given, tabs will be set tablist column positions apart
instead of the default 8. If multiple numbers are given,
the tabs will be set at those specific column positions.

Each tab-stop position N must be an integer value
greater than zero, and the list must be in strictly
ascending order. This is taken to mean that, from the
start of a line of output, tabbing to position N causes
the next character output to be in the (N+1)th column
position on that line.

In the event of expand having to process a tab
character at a position beyond the last of those
specified in a multiple tab-stop list, the tab character is
replaced by a single space character in the output.

-tabstop Specify as a single argument, sets TAB characters
tabstop SPACE characters apart instead of the default 8.

-tab1, tab2,. . ., tabn Set TAB characters at the columns specified by
-tab1, tab2,. . ., tabn

The following options are supported for unexpand:

-a Insert TAB characters when replacing a run of two or more SPACE
characters would produce a smaller output file.

expand(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 363

-t tablist Specify the tab stops. The option-argument tablist must be a single
argument consisting of a single positive decimal integer or
multiple positive decimal integers, separated by blank characters
or commas, in ascending order. If a single number is given, tabs
will be set tablist column positions apart instead of the default 8. If
multiple numbers are given, the tabs will be set at those specific
column positions. Each tab-stop position N must be an integer
value greater than zero, and the list must be in strictly ascending
order. This is taken to mean that, from the start of a line of output,
tabbing to position N will cause the next character output to be in
the (N+1)th column position on that line. When the -t option is
not specified, the default is the equivalent of specifying -t 8
(except for the interaction with -a, described below).

No space-to-tab character conversions occur for characters at
positions beyond the last of those specified in a multiple tab-stop
list.

When -t is specified, the presence or absence of the -a option is
ignored; conversion will not be limited to the processing of leading
blank characters.

The following ooperand is supported for expand and unexpand:

file The path name of a text file to be used as input.

See environ(5) for descriptions of the following environment variables that affect the
execution of expand and unexpand: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

tabs(1), attributes(5), environ(5)

expand(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

364 man pages section 1: User Commands • Last Revised 1 Feb 1995

exportfs – translates exportfs options to share/unshare commands

/usr/sbin/exportfs [-aiuv] [-o options] [pathname]

exportfs translates SunOS 4.x exportfs options to the corresponding
share/unshare options and invokes share/unshare with the translated options.

With no options or arguments, exportfs invokes share to print out the list of all
currently shared NFS filesystems.

exportfs is the BSD/Compatibility Package command of share(1M) and
unshare(1M). Use share(1M)/ unshare(1M) whenever possible.

-a Invokes shareall(1M), or if -u is specified, invokes
unshareall(1M).

-i Ignore options in /etc/dfs/dfstab.

-u Invokes unshare(1M) on pathname.

-v Verbose.

-o options Specify a comma-separated list of optional characteristics for the
filesystems being exported. exportfs translates options to
share-equivalent options. (see share(1M) for information about
individual options).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnfssu

share(1M), shareall(1M), unshare(1M), unshareall(1M), attributes(5)

exportfs(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

User Commands 365

expr – evaluate arguments as an expression

/usr/bin/expr argument…

/usr/xpg4/bin/expr argument…

The expr utility evaluates the expression and writes the result to standard output.
The character 0 is written to indicate a zero value and nothing is written to indicate a
null string.

The argument operand is evaluated as an expression. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped (see sh(1)).
Strings containing blanks or other special characters should be quoted. The length of
the expression is limited to LINE_MAX (2048 characters).

The operators and keywords are listed below. The list is in order of increasing
precedence, with equal precedence operators grouped within { } symbols. All of the
operators are left-associative.

expr \| expr
Returns the evaluation of the first expr if it is neither NULL nor 0; otherwise, returns
the evaluation of the second expr if it is not NULL; otherwise, 0.

expr \& expr
Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr{ =, \>, \>=, \<, \<=, !=} expr
Returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a string comparison using the locale-specific
coalition sequence. The result of each comparison will be 1 if the specified
relationship is TRUE, 0 if the relationship is FALSE.

expr { +, − } expr
Addition or subtraction of integer-valued arguments.

expr { *, /, %} expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : (colon) compares the first argument with the second
argument, which must be an internationalized basic regular expression (BRE); see
regex(5) and NOTES. Normally, the /usr/bin/expr matching operator returns
the number of bytes matched and the /usr/xpg4/bin/expr matching operator
returns the number of characters matched (0 on failure). If the second argument
contains at least one BRE sub-expression [\ (. . . \)], the matching operator returns
the string corresponding to \1.

integer
An argument consisting only of an (optional) unary minus followed by digits.

string
A string argument that cannot be identified as an integer argument or as one of the
expression operator symbols.

expr(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

366 man pages section 1: User Commands • Last Revised 6 Jun 2000

The following operators are included for compatibility with INTERACTIVE UNIX
System only and are not intended to be used by non- INTERACTIVE UNIX System
scripts:

index string character-list
Report the first position in which any one of the bytes in character-list matches a
byte in string.

length string
Return the length (that is, the number of bytes) of string.

substr string integer-1 integer-2
Extract the substring of string starting at position integer-1 and of length integer-2
bytes. If integer-1 has a value greater than the number of bytes in string, expr
returns a null string. If you try to extract more bytes than there are in string, expr
returns all the remaining bytes from string. Results are unspecified if either integer-1
or integer-2 is a negative value.

EXAMPLE 1 Adding an integer to a shell variable

Add 1 to the shell variable a:

example$ a=‘expr $a + 1‘

EXAMPLE 2 Returning a path name segment

The following example emulates basename(1), returning the last segment of the path
name $a. For $a equal to either /usr/abc/file or just file, the example returns
file. (Watch out for / alone as an argument: expr takes it as the division operator;
see NOTES below.)

example$ expr $a : ’.*/\(.*\)’ \| $a

EXAMPLE 3 Using // characters to simplify the expression

Here is a better version of the previous example. The addition of the // characters
eliminates any ambiguity about the division operator and simplifies the whole
expression.

example$ expr //$a : ’.*/\(.*\)’

EXAMPLE 4 Returning the number of bytes in a variable

example$ expr "$VAR" : ’.*’

EXAMPLE 5 Returning the number of characters in a variable

example$ expr "$VAR" : ’.*’

See environ(5) for descriptions of the following environment variables that affect the
execution of expr: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

expr(1)

Compatibility
Operators (IA

only)

EXAMPLES

/usr/bin/expr

/usr/xpg4/bin/expr

ENVIRONMENT
VARIABLES

User Commands 367

As a side effect of expression evaluation, expr returns the following exit values:

0 If the expression is neither NULL nor 0.

1 If the expression is either NULL or 0.

2 For invalid expressions.

>2 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

basename(1), ed(1), sh(1), Intro(3), attributes(5), environ(5), regex(5),
XPG4(5)

syntax error Operator and operand errors.

non-numeric argument Arithmetic is attempted on such a string.

After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

example$ expr $a = ’=’

looks like:

example$ expr = = =

as the arguments are passed to expr (and they are all taken as the = operator). The
following works:

example$ expr X$a = X=

Unlike some previous versions, expr uses Internationalized Basic Regular Expressions
for all system-provided locales. Internationalized Regular Expressions are explained
on the regex(5) manual page.

expr(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

Regular
Expressions

368 man pages section 1: User Commands • Last Revised 6 Jun 2000

expr – evaluate arguments as a logical, arithmetic, or string expression

/usr/ucb/expr argument…

The expr utility evaluates expressions as specified by its arguments. After evaluation,
the result is written on the standard output. Each token of the expression is a separate
argument, so terms of the expression must be separated by blanks. Characters special
to the shell must be escaped. Note: 0 is returned to indicate a zero value, rather than
the null string. Strings containing blanks or other special characters should be quoted.
Integer-valued arguments may be preceded by a unary minus sign. Internally, integers
are treated as 32-bit, two’s-complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by ‘\’. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

expr \| expr
Returns the evaluation of the first expr if it is neither NULL nor 0; otherwise, returns
the evaluation of the second expr if it is not NULL; otherwise, 0.

expr \& expr
Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr { =, \, \ , \<, \<=, != } expr
Returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a lexical comparison.

expr { +, − } expr
Addition or subtraction of integer-valued arguments.

expr { \, /, % } expr
Multiplication, division, or remainder of the integer-valued arguments.

string : regular-expression
match string regular-expression

The two forms of the matching operator above are synonymous. The matching
operators : and match compare the first argument with the second argument
which must be a regular expression. Regular expression syntax is the same as that
of regexp(5), except that all patterns are “anchored” (treated as if they begin with
^) and therefore ^ is not a special character, in that context. Normally, the matching
operator returns the number of characters matched (0 on failure). Alternatively, the
\ . . . \ pattern symbols can be used to return a portion of the first argument.

substr string integer-1 integer-2
Extracts the substring of string starting at position integer-1 and of length integer-2
characters. If integer-1 has a value greater than the length of string, expr returns a
null string. If you try to extract more characters than there are in string, expr
returns all the remaining characters from string. Beware of using negative values for
either integer-1 or integer-2 as expr tends to run forever in these cases.

expr(1B)

NAME

SYNOPSIS

DESCRIPTION

User Commands 369

index string character-list
Reports the first position in string at which any one of the characters in character-list
matches a character in string.

length string
Returns the length (that is, the number of characters) of string.

(expr)
Parentheses may be used for grouping.

EXAMPLE 1 Adding an integer to a shell variable

Add 1 to the shell variable a.

a=’expr $a + 1’

EXAMPLE 2 Returning a path name segment

Return the last segment of a path name (that is, the filename part). Watch out for /
alone as an argument: expr will take it as the division operator (see BUGS below).

’For $a equal to either "/usr/abc/file" or just "file"’

expr $a : ’.*/\ \ $a

EXAMPLE 3 Using // characters to simplify the expression

The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

A better representation of example 2.

expr //$a : ’.*/\

EXAMPLE 4 Returning the value of a variable

Returns the number of characters in $VAR.

expr $VAR : ’.*’

expr returns the following exit codes:

0 If the expression is neither NULL nor 0.

1 If the expression is NULL or 0.

2 For invalid expressions.

See attributes(5) for descriptions of the following attributes:

expr(1B)

EXAMPLES

EXIT STATUS

ATTRIBUTES

370 man pages section 1: User Commands • Last Revised 6 Jun 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

sh(1), test(1), attributes(5), regexp(5)

syntax error for operator/operand errors

non-numeric argument if arithmetic is attempted on such a string

division by zero if an attempt to divide by zero is made

After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

expr $a = ’=’

looks like:

expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The
following works:

expr X$a = X=

Note: the match, substr, length, and index operators cannot themselves be used
as ordinary strings. That is, the expression:

example% expr index expurgatorious length
syntax error
example%

generates the ‘syntax error’ message as shown instead of the value 1 as you might
expect.

expr(1B)

SEE ALSO

DIAGNOSTICS

BUGS

User Commands 371

exstr – extract strings from source files

exstr filename…

exstr -e filename…

exstr -r [-d] filename…

The exstr utility is used to extract strings from C-language source files and replace
them by calls to the message retrieval function (see gettxt(3C)). This utility will
extract all character strings surrounded by double quotes, not just strings used as
arguments to the printf command or the printf routine. In the first form, exstr
finds all strings in the source files and writes them on the standard output. Each string
is preceded by the source file name and a colon (:).

The first step is to use exstr -e to extract a list of strings and save it in a file. Next,
examine this list and determine which strings can be translated and subsequently
retrieved by the message retrieval function. Then, modify this file by deleting lines
that can’t be translated and, for lines that can be translated, by adding the message file
names and the message numbers as the fourth (msgfile) and fifth (msgnum) entries on a
line. The message files named must have been created by mkmsgs(1) and exist in
/usr/lib/locale/locale/LC_MESSAGES . (The directory locale corresponds to
the language in which the text strings are written; see setlocale(3C)). The message
numbers used must correspond to the sequence numbers of strings in the message
files.

Now use this modified file as input to exstr -r to produce a new version of the
original C-language source file in which the strings have been replaced by calls to the
message retrieval function gettxt(). The msgfile and msgnum fields are used to
construct the first argument to gettxt(). The second argument to gettxt() is printed
if the message retrieval fails at run-time. This argument is the null string, unless the
-d option is used.

This utility cannot replace strings in all instances. For example, a static initialized
character string cannot be replaced by a function call. A second example is that a
string could be in a form of an escape sequence which could not be translated. In
order not to break existing code, the files created by invoking exstr -e must be
examined and lines containing strings not replaceable by function calls must be
deleted. In some cases the code may require modifications so that strings can be
extracted and replaced by calls to the message retrieval function.

The following options are supported:

-e Extract a list of strings from the named C-language source files, with
positional information. This list is produced on standard output in the
following format:

file:line:position:msgfile:msgnum:string

file the name of a C-language source file

exstr(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

372 man pages section 1: User Commands • Last Revised 5 Jul 1990

line line number in the file

position character position in the line

msgfile null

msgnum null

string the extracted text string

Normally you would redirect this output into a file. Then you would edit
this file to add the values you want to use for msgfile and msgnum:

msgfile the file that contains the text strings that will replace
string. A file with this name must be created and
installed in the appropriate place by the mkmsgs(1)
utility.

msgnum the sequence number of the string in msgfile.

The next step is to use exstr -r to replace strings in file.

-r Replace strings in a C-language source file with function calls to the
message retrieval function gettxt().

-d This option is used together with the -r option. If the message retrieval
fails when gettxt() is invoked at run-time, then the extracted string is
printed. You would use the capability provided by exstr on an
application program that needs to run in an international environment and
have messages print in more than one language. exstr replaces text
strings with function calls that point at strings in a message data base. The
data base used depends on the run-time value of the LC_MESSAGES
environment variable (see environ(5)).

EXAMPLE 1 The following examples show uses of exstr

Assume that the file example.c contains two strings:

main()

{

printf("This is an example\n");

printf("Hello world!\n");

}

The exstr utility, invoked with the argument example.c extracts strings from the
named file and prints them on the standard output.

example% exstr example.c

produces the following output:

exstr(1)

EXAMPLES

User Commands 373

EXAMPLE 1 The following examples show uses of exstr (Continued)

example.c:This is an example\n

example.c:Hello world!\n

The exstr utility, invoked with the -e option and the argument example.c, and
redirecting output to the file example.stringsout

example% exstr -e example.c > example.stringsout

produces the following output in the file example.stringsout

example.c:3:8:::This is an example\n

example.c:4:8:::Hello world!\n

You must edit example.stringsout to add the values you want to use for the
msgfile and msgnum fields before these strings can be replaced by calls to the retrieval
function. If UX is the name of the message file, and the numbers 1 and 2 represent the
sequence number of the strings in the file, here is what example.stringsout looks
like after you add this information:

example.c:3:8:UX:1:This is an example\n

example.c:4:8:UX:2:Hello world!\n

The exstr utility can now be invoked with the -r option to replace the strings in the
source file by calls to the message retrieval function gettxt().

example% exstr -r example.c <example.stringsout >intlexample.c

produces the following output:

extern char *gettxt();

main()

{

printf(gettxt("UX:1", ""));

printf(gettxt("UX:2", ""));

}

The following example:

example% exstr -rd example.c <example.stringsout >intlexample.c

uses the extracted strings as a second argument to gettxt():

extern char *gettxt();

main()

{

exstr(1)

374 man pages section 1: User Commands • Last Revised 5 Jul 1990

EXAMPLE 1 The following examples show uses of exstr (Continued)

printf(gettxt("UX:1", "This is an example\n"));

printf(gettxt("UX:2", "Hello world!\n"));

}

/usr/lib/locale/locale/LC_MESSAGES/*
files created by mkmsgs(1)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

gettxt(1), mkmsgs(1), printf(1), srchtxt(1), gettxt(3C), printf(3C),
setlocale(3C), attributes(5), environ(5)

The error messages produced by exstr are intended to be self-explanatory. They
indicate errors in the command line or format errors encountered within the input file.

exstr(1)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 375

face – executable for the Framed Access Command Environment Interface

face [-i init_file] [-c command_file] [-a alias_file] [filename…]

The Framed Access Command Environment Interface (FACE) presents your files and
file folders on the screen through a system of menus and forms if you are properly set
up as a FACE user.

filename must follow the naming convention Menu.xxx for a menu, Form.xxx for a
form, and Text.xxx for a text file, where xxx is any string that conforms to the UNIX
system file naming conventions. The Form and Menu Language Interpreter (FMLI)
descriptor lifetime will be ignored for all frames opened by argument to face.
These frames have a lifetime of immortal by default. If filename is not specified on the
command line, the FACE Menu will be opened along with those objects specified by
the LOGINWIN environment variables. These variables are found in the user’s
.environ file.

The following options are supported:

-a alias_file Alias file

-c command_file Command file

-i init_file Initial file

The following operand is supported:

filename The full pathname of the file describing the object to be opened
initially.

The face command will return a non-zero exit value if the user is not properly set up
as a FACE user.

$HOME/pref/.environ

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfac

env(1), attributes(5)

face(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

376 man pages section 1: User Commands • Last Revised 5 Jul 1990

factor – obtain the prime factors of a number

factor [integer]

factor writes to standard input all prime factors for any positive integer less than or
equal to 1014. The prime factors are written the proper number of times.

If factor is used without an argument, it waits for an integer to be entered. After
entry of the integer, it factors it, writes its prime factors the proper number of times,
and then waits for another integer. factor exits if a 0 or any non-numeric character is
entered.

If factor is invoked with an argument (integer), it writes the integer, factors it and
writes all the prime factors as described above, and then exits. If the argument is 0 or
non-numeric, factor writes a 0 and then exits.

The maximum time to factor an integer is proportional to sqrt(n), where n is the
integer which is entered. factor will take this time when n is prime or the square of a
prime.

integer Any positive integer less than or equal to 1014.

0 Successful completion.

1 An error occurred.

factor prints the error message Ouch! for input out of range or for garbage input.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

attributes(5)

factor(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

EXIT STATUS

DIAGNOSTICS

ATTRIBUTES

SEE ALSO

User Commands 377

fastboot, fasthalt – reboot/halt the system without checking the disks

/usr/ucb/fastboot [boot-options]

/usr/ucb/fasthalt [halt-options]

fastboot and fasthalt are shell scripts that invoke reboot and halt with the
proper arguments.

These commands are provided for compatibility only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

fsck(1M), halt(1M), init(1M), reboot(1M), init.d(4), attributes(5)

fastboot(1B)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

378 man pages section 1: User Commands • Last Revised 28 Feb 1994

fdformat – format floppy diskette or PCMCIA memory card

fdformat [-dDeEfHlLmMUqvx] [-b label] [-B filename] [-t dostype]
[devname]

The fdformat utility has been superseded by rmformat(1), which provides most but
not all of fdformat’s functionality.

fdformat is used to format diskettes and PCMCIA memory cards. All new blank
diskettes or PCMCIA memory cards must be formatted before they can be used.

fdformat formats and verifies the media and indicates whether any bad sectors were
encountered. All existing data on the diskette or PCMCIA memory card, if any, is
destroyed by formatting. If no device name is given, fdformat uses the diskette as a
default.

By default, fdformat uses the configured capacity of the drive to format the diskette.
A 3.5 inch high-density drive uses diskettes with a formatted capacity of 1.44MB. A
5.25 inch high-density drive uses diskettes with a formatted capacity of 1.2MB. In
either case, a density option does not have to be specified to fdformat. However, a
density option must be specified when using a diskette with a lower capacity than the
drive’s default. Use the -H option to format high-density diskettes (1.44MB capacity)
in an extra-high-density (ED) drive. Use the -D option, the -l option, or the -L option
to format double- density (or low-density) diskettes (720KB capacity) in an HD or ED
drive. To format medium-density diskettes (1.2MB capacity), use the -M option with
-t nec (this is the same as using the -m option with -t nec).

Extended density uses double-sided, extended-density or extra-high-density (DS/ED)
diskettes. Medium and high densities use the same media: double-sided, high-density
(DS/HD) diskettes. Double (low) density uses double-sided, double-density (DS/DD)
diskettes. Substituting diskettes of one density for diskettes of either a higher or lower
density generally does not work. Data integrity cannot be assured whenever a diskette
is formatted to a capacity not matching its density.

A PCMCIA memory card with densities from 512KB to 64MB may be formatted.

fdformat writes new identification and data fields for each sector on all tracks unless
the -x option is specified. For diskettes, each sector is verified if the -v option is
specified.

After formatting and verifying, fdformat writes an operating-system label on block
0. Use the -t dos option (same as the -d option) to put an MS-DOS file system on the
diskette or PCMCIA memory card after the format is done. Use the -t nec option with
the -M option (same as the -m option) to put an NEC-DOS file system on a diskette.
Otherwise, fdformat writes a SunOS label in block 0.

The following options are supported:

-b label Labels the media with volume label. A SunOS volume label is
restricted to 8 characters. A DOS volume label is restricted to 11
upper-case characters.

fdformat(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 379

-B filename Installs special boot loader in filename on an MS-DOS diskette.
This option is only meaningful when the -d option (or -t dos) is
also specified.

-D Formats a 720KB (3.5 inch) or 360KB (5.25 inch) double-density
diskette (same as the -l or -L options). This is the default for
double-density type drives. It is needed if the drive is a high- or
extended-density type.

-e Ejects the diskette when done. This feature is not available on all
systems.

-E Formats a 2.88MB (3.5 inch) extended-density diskette. This is the
default for extended-density type drives.

-f Forces formatting, that is, this option does not ask for confirmation
before starting format.

-H Formats a 1.44MB (3.5 inch) or 1.2MB (5.25 inch) high-density
diskette. This is the default for high-density type drives; it is
needed if the drive is the extended-density type.

-M Writes a 1.2MB (3.5 inch) medium-density format on a
high-density diskette (use only with the -t nec option). This is the
same as using -m.

This feature is not available on all systems.

-q Quiet; does not print status messages.

-t dos Installs an MS-DOS file system and boot sector formatting. This is
equivalent to the DOS format command or the -d option.

-t nec Installs an NEC-DOS file system and boot sector on the disk after
formatting. This should be used only with the -M option. This
feature is not available on all systems.

-U Performs umount on any file systems and then formats. See
mount(1M).

-v Verifies each block of the diskette after the format.

-x Skips the format and only writes a SunOS label or an MS-DOS file
system.

The following operands are supported:

devname Replaces devname with rdiskette0 (systems without Volume
Management) or floppy0 (systems with Volume Management) to
use the first drive or rdiskette1 (systems without Volume
Management) or floppy1 (systems with Volume Management) to
use the second drive. If devname is omitted, the first drive, if one
exists, is used. For PCMCIA memory cards, replace devname with
the device name for the PCMCIA memory card which resides in

fdformat(1)

OPERANDS

380 man pages section 1: User Commands • Last Revised 16 Mar 2000

/dev/rdsk/cNtNdNsN or /dev/dsk/cNtNdNsN. If devname is
omitted, the default diskette drive, if one exists, is used.

If devname is omitted, the default diskette drive, if one exists, will
be used. N represents a decimal number and can be specified as
follows:

cN Controller N

tN Technology type N:

0x1 ROM
0x2 OTPROM
0x3 EPROM
0x4 EEPROM
0x5 FLASH
0x6 SRAM

0x7 DRAM

dN Technology region in type N.

sN Slice N.

The following options are provided for compatibility with
previous versions of fdformat. Their use is discouraged.

-d Formats an MS-DOS floppy diskette or PCMCIA
memory card (same as -t dos). This is equivalent to
the MS-DOS FORMAT command.

-l Formats a 720KB (3.5 inch) or 360KB (5.25 inch)
double-density diskette (same as -D or -L). This is the
default for double-density type drives; it is needed if
the drive is the high- or extended-density type.

-L Formats a 720KB (3.5 inch) or 360KB (5.25 inch)
double-density diskette (same as -l or -D). This is the
default for double-density type drives.

-m Writes a 1.2 MB (3.5 inch) medium- density format on
a high-density diskette (use only with the- t nec
option). This is the same as using -M. This feature is not
available on all systems.

/vol/dev/diskette0 Directory providing block device access for the media
in floppy drive 0.

/vol/dev/diskette0 Directory providing character device access for the
media in floppy drive 0.

/vol/dev/aliases/floppy0 Symbolic link to the character device for the media in
floppy drive 0.

fdformat(1)

FILES

User Commands 381

/dev/rdiskette Directory providing character device access for the
media in the primary floppy drive, usually drive 0.

/vol/dev/dsk/cNtNdNsN Directory providing block device access for the PCMCIA
memory card. See OPERANDS for a description of N.

/vol/dev/rdsk/cNtNdNsN Directory providing character device access for the
PCMCIA memory card. See OPERANDS for a
description of N.

/vol/dev/aliases/pcmemS Symbolic link to the character device for the PCMCIA
memory card in socket S where S represents a PCMCIA
socket number.

/dev/rdsk/cNtNdNsN Directory providing character device access for the
PCMCIA memory card. See OPERANDS for a
description of N.

/dev/dsk/cNtNdNsN Directory providing block device access for the PCMCIA
memory card. See OPERANDS for a description of N.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

cpio(1), eject(1), rmformat(1), tar(1), volcancel(1), volcheck(1),
volmissing(1), volrmmount(1), mount(1M), newfs(1M), prtvtoc(1M), vold(1M),
rmmount.conf(4), vold.conf(4), attributes(5), pcfs(7FS), volfs(7FS)

fd(7D)

A diskette or PCMCIA memory card containing a ufs file system created on a SPARC
based system (by using fdformat and newfs(1M)), is not identical to a diskette or
PCMCIA memory card containing a ufs file system created on an IA based system. Do
not interchange ufs diskettes or memory cards between these platforms. Use cpio(1)
or tar(1) to transfer files on diskettes or memory cards between them. A diskette or
PCMCIA memory card formatted using the -t dos option (or -d) for MS-DOS does
not have the necessary system files, and is therefore not bootable. Trying to boot from
it on a PC produces the following message:

Non-System disk or disk error.
Replace and strike any key when ready

Currently, bad sector mapping is not supported on floppy diskettes or PCMCIA
memory cards. Therefore, a diskette or memory card is unusable if fdformat finds an
error (bad sector).

fdformat(1)

ATTRIBUTES

SEE ALSO

IA Only

NOTES

BUGS

382 man pages section 1: User Commands • Last Revised 16 Mar 2000

fgrep – search a file for a fixed-character string

/usr/bin/fgrep [-bchilnsvx] [-e pattern_list] [-f pattern-file] [pattern]
[file…]

/usr/xpg4/bin/fgrep [-bchilnsvx] [-e pattern_list] [-f pattern-file]
[pattern] [file…]

The fgrep (fast grep) utility searches files for a character string and prints all lines
that contain that string. fgrep is different from grep(1) and egrep(1) because it
searches for a string, instead of searching for a pattern that matches an expression. It
uses a fast and compact algorithm.

The characters $, *, [, ^, |, (,), and \ are interpreted literally by fgrep, that is,
fgrep does not recognize full regular expressions as does egrep. Since these
characters have special meaning to the shell, it is safest to enclose the entire string in
single quotes ´ . . . ´.

If no files are specified, fgrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there
is more than one input file.

The following options are supported:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is
0).

-c Print only a count of the lines that contain the pattern.

-e pattern_list Search for a string in pattern-list (useful when the string begins with
a −).

-f pattern-file Take the list of patterns from pattern-file.

-h Suppress printing of files when searching multiple files.

-i Ignore upper/lower case distinction during comparisons.

-l Print the names of files with matching lines once, separated by
new-lines. Does not repeat the names of files when the pattern is
found more than once.

-n Precede each line by its line number in the file (first line is 1).

-s Work silently, that is, display nothing except error messages. This
is useful for checking the error status.

-v Print all lines except those that contain the pattern.

-x Print only lines matched entirely.

The following operands are supported:

fgrep(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 383

file A path name of a file to be searched for the patterns. If no file
operands are specified, the standard input will be used.

pattern Specify a pattern to be used during the search for input.

pattern Specify one or more patterns to be used during the search for
input. This operand is treated as if it were specified as
-epattern_list.

See largefile(5) for the description of the behavior of fgrep when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of fgrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 if any matches are found

1 if no matches are found

2 for syntax errors or inaccessible files (even if matches were found).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

ed(1), egrep(1), grep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5),
XPG4(5)

Ideally there should be only one grep command, but there is not a single algorithm
that spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

The /usr/xpg4/bin/fgrep utility is identical to /usr/xpg4/bin/grep -F (see
grep(1)). Portable applications should use /usr/xpg4/bin/grep -F.

fgrep(1)

/usr/bin/fgrep

/usr/xpg4/bin/fgrep

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/fgrep

/usr/xpg4/bin/fgrep

SEE ALSO

NOTES

/usr/xpg4/bin/fgrep

384 man pages section 1: User Commands • Last Revised 12 May 1997

file – determine file type

file [-h] [-m mfile] [-f ffile] file…

file [-h] [-m mfile] -f ffile

file -c [-m mfile]

The file utility performs a series of tests on each file supplied by file and, optionally,
on each file listed in ffile in an attempt to classify it. If the file is not a regular file, its file
type is identified. The file types directory, FIFO, block special, and character special
are identified as such. If the file is a regular file and the file is zero-length, it is
identified as an empty file.

If file appears to be a text file, file examines the first 512 bytes and tries to determine
its programming language. If file is an executable a.out, file prints the version
stamp, provided it is greater than 0. If file is a symbolic link, by default the link is
followed and file tests the file to which the symbolic link refers.

By default, file will try to use the localized magic file
/usr/lib/locale/locale/LC_MESSAGES/magic, if it exists, to identify files that
have a magic number. For example, in the Japanese locale, file will try to use
/usr/lib/locale/ja/LC_MESSAGES/magic. If a localized magic file does not
exist, file will utilize /etc/magic. A magic number is a numeric or string constant
that indicates the file type. See magic(4) for an explanation of the format of
/etc/magic.

If file does not exist, cannot be read, or its file status could not be determined, it is not
considered an error that affects the exit status. The output will indicate that the file
was processed, but that its type could not be determined.

The following options are supported:

-c Check the magic file for format errors. For reasons of efficiency,
this validation is normally not carried out.

-h Do not follow symbolic links.

-f ffile ffile contains a list of the files to be examined.

-m mfile Use mfile as an alternate magic file, instead of /etc/magic.

The following operands are supported:

file A path name of a file to be tested.

See largefile(5) for the description of the behavior of file when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Binary executable files

Determine if an argument is a binary executable file:

file(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

User Commands 385

EXAMPLE 1 Binary executable files (Continued)

file "$1" | grep −Fq executable &&
printf "%s is executable.\n" "$1"

See environ(5) for descriptions of the following environment variables that affect the
execution of file: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/etc/magic file’s magic number file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ls(1), magic(4), attributes(5), environ(5), largefile(5)

If the -h option is specified and file is a symbolic link, file prints the error message:

symbolic link to file

file(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

386 man pages section 1: User Commands • Last Revised 1 Apr 1996

file – determine the type of a file by examining its contents

/usr/ucb/file [-f ffile] [-cL] [-m mfile] filename…

file performs a series of tests on each filename in an attempt to determine what it
contains. If the contents of a file appear to be ASCII text, file examines the first 512
bytes and tries to guess its language.

file uses the file /etc/magic to identify files that have some sort of magic number,
that is, any file containing a numeric or string constant that indicates its type.

-c Check for format errors in the magic number file. For reasons of
efficiency, this validation is not normally carried out. No file
type-checking is done under -c.

-f ffile Get a list of filenames to identify from ffile.

-L If a file is a symbolic link, test the file the link references rather
than the link itself.

-m mfile Use mfile as the name of an alternate magic number file.

EXAMPLE 1 Using file on all the files in a specific user’s directory.

This example illustrates the use of file on all the files in a specific user’s directory:

example% pwd
/usr/blort/misc

example% /usr/ucb/file *

code: mc68020 demand paged executable
code.c: c program text
counts: ascii text
doc: roff,nroff, or eqn input text
empty.file: empty
libz: archive random library
memos: directory
project: symboliclink to /usr/project
script: executable shell script
titles: ascii text
s5.stuff: cpio archive
example%

The environment variables LC_CTYPE, LANG, and LC_default control the character
classification throughout file. On entry to file, these environment variables are
checked in the following order: LC_CTYPE, LANG, and LC_default. When a valid
value is found, remaining environment variables for character classification are
ignored. For example, a new setting for LANG does not override the current valid
character classification rules of LC_CTYPE. When none of the values is valid, the shell
character classification defaults to the POSIX.1 “C” locale.

/etc/magic

file(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ENVIRONMENT
VARIABLES

FILES

User Commands 387

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

magic(4), attributes(5)

file often makes mistakes. In particular, it often suggests that command files are C
programs.

file does not recognize Pascal or LISP.

file(1B)

ATTRIBUTES

SEE ALSO

BUGS

388 man pages section 1: User Commands • Last Revised 14 Sep 1992

filesync – synchronize ordinary, directory or special files

filesync [-aehmnqvy] [-o src | dst] [-f src | dst | old | new]
[-r directory…]

filesync [-aehmnqvy] -s source-dir -d dest-dir filename…

The filesync utility synchronizes files between multiple computer systems, typically
a server and a portable computer. filesync synchronizes ordinary, directory or
special files. Although intended for use on nomadic systems, filesync is useful for
backup and file replication on more permanently connected systems.

If files are synchronized between systems, the corresponding files on each of the
systems are identical. Changing a file on one or both of the systems causes the files to
become different (not synchronized). In order to make the files identical again, the
differences between the files must be reconciled. See Reconciling and
Synchronizing Files for specific details about how filesync reconciles and
synchronizes files.

There are two forms of the filesync command. The first form of filesync is
invoked without file arguments. This form of filesync reconciles differences
between the files and systems specified in the $HOME/.packingrules file.
$HOME/.packingrules is a packing rules list for filesync and cachefspack,
and contains a list of files to be kept synchronized. See packingrules(4) and
cachefspack(1M).

The second form of filesync copies specific files from a directory on the source
system to a directory on the destination system. In addition, this form of filesync
adds the file or files specified as arguments (filename) to $HOME/.packingrules. See
-s and -d for information about specifying directories on source and destination
systems. See OPERANDS for details about specifying file (filename) arguments.

Multiple filesync commands are cumulative (that is, the specified files are added to
the already existing packing rules file list). See Multiple filesync Commands.

filesync synchronizes files between computer systems by performing the following
two tasks:

1. filesync examines the directories and files specified in the packing rules file on
both systems, and determines whether or not they are identical. Any file that
differs requires reconciliation.

filesync also maintains a baseline summary in the $HOME/.filesync-base
file for all of the files that are being monitored. This file lists the names, types, and
sizes of all files as of the last reconciliation.

2. Based on the information contained in the baseline file and the specified options
(see Resolving filesync Conflicts), filesync determines which of the
various copies is the correct one, and makes the corresponding changes to the other
system. Once this has been done, the two copies are, again, identical
(synchronized).

filesync(1)

NAME

SYNOPSIS

DESCRIPTION

Reconciling and
Synchronizing

Files

User Commands 389

If a source file has changed and the destination file has not, the changes on the
source system are propagated to the destination system. If a destination file has
changed and the corresponding source file has not, the changes on the destination
file are propagated to the source system. If both systems have changed (and the
files are not still identical) a warning message will be printed out, asking the user
to resolve the conflict manually. See Resolving filesync Conflicts.

In cases where files on both sides have changed, filesync attempts to determine
which version should be chosen. If filesync cannot automatically determine which
version should be selected, it prints out a warning message and leaves the two
incompatible versions of the file unreconciled.

In these cases, you must either resolve the differences manually, or tell filesync how
to choose which file should win. Use the -o and -f options to tell filesync how to
resolve conflicts (see OPTIONS).

Alternatively, for each conflicting file, you can examine the two versions, determine
which one should be kept, and manually bring the two versions into agreement (by
copying, deleting, or changing the ownership or protection to be correct). You can then
re-run filesync to see whether or not any other conflicts remain.

The packing rules file $HOME/.packingrules contains a list of files to be kept
synchronized. The syntax of this file is described in packingrules(4).

The $HOME/.packingrules file is automatically created if users invoke filesync
with filename arguments. By using filesync options, users can augment the packing
rules in $HOME/.packingrules.

Many users choose to create the packing rules file manually and edit it by hand. Users
can edit $HOME/.packingrules (using any editor) to permanently change the
$HOME/.packingrules file, or to gain access to more powerful options that are not
available from the command line (such as IGNORE commands). It is much easier to
enter complex wildcard expressions by editing the $HOME/.packingrules file.

$HOME/.filesync-base is the filesync baseline summary file. filesync uses
the information in $HOME/.filesync-base to identify the differences between files
during the reconciliation and synchronization process. Users do not create or edit the
baseline file. It is created automatically by filesync and records the last known state
of agreement between all of the files being maintained.

Over a period of time, the set of files you want to keep synchronized can change. It is
common, for instance, to want to keep files pertaining to only a few active projects on
your notebook. If you continue to keep files associated with every project you have
ever worked on synchronized, your notebook’s disk will fill up with old files. Each
filesync command will waste a lot of time updating files you no longer care about.

If you delete the files from your notebook, filesync will want to perform the
corresponding deletes on the server, which would not be what you wanted. Rather,
you would like a way to tell filesync to stop synchronizing some of the files. There
are two ways to do this:

filesync(1)

Resolving filesync
Conflicts

Packing Rules File

Baseline File

Multiple filesync
Commands

390 man pages section 1: User Commands • Last Revised 6 Nov 2000

1. Edit $HOME/.packingrules. Delete the rules for the files that you want to delete.

2. Delete $HOME/.packingrules. Use the filesync command to specify the files
that you want synchronized.

Either way works, and you can choose the one that seems easiest to you. For minor
changes, it is probably easier to just edit $HOME/.packingrules. For major changes
it is probably easier to start from scratch.

Once filesync is no longer synchronizing a set of files, you can delete them from
your notebook without having any effect on the server.

When using filesync to keep files synchronized between nomadic machines and a
server, store the packing rules and baseline files on the nomadic machines, not the
server. If, when logged into your notebook, the HOME environment variable does not
normally point to a directory on your notebook, you can use the FILESYNC
environment variable to specify an alternate location for the packing rules and
baseline files.

Each nomadic machine should carry its own packing rules and baseline file. Incorrect
file synchronization can result if a server carries a baseline file and multiple nomadic
machines attempt to reconcile against the server’s baseline file. In this case, a nomadic
machine could be using a baseline file that does not accurately describe the state of its
files. This might result in incorrect reconciliations.

To safeguard against the dangers associated with a single baseline file being shared by
more than two machines, filesync adds a default rule to each new packing rules
file. This default rule prevents the packing rules and baseline files from being copied.

The following options are supported:

-a
Force the checking of Access Control Lists (ACLs) and attempt to make them agree
for all new and changed files. If it is not possible to set the ACL for a particular file,
filesync stops ACL synchronization for that file.

Some file systems do not support ACLs . It is not possible to synchronize ACLs
between file systems that support ACLs and those that do not; attempting to do so
will result in numerous error messages.

-d dest-dir
Specify the directory on the destination system into which filename is to be copied.
Use with the -s source-dir option and the filename operand. See -s and OPERANDS.

-e
Flag all differences. It may not be possible to resolve all conflicts involving modes
and ownership (unless filesync is being run with root privileges). If you cannot
change the ownership or protections on a file, filesync will normally ignore
conflicts in ownership and protection. If you specify the -e (everything must agree)
flag, however, filesync will flag these differences.

filesync(1)

Nomadic
Machines

OPTIONS

User Commands 391

-f src | dst | old | new
The -f option tells filesync how to resolve conflicting changes. If a file has been
changed on both systems, and an -f option has been specified, filesync will
retain the changes made on the favored system and discard the changes made on
the unfavored system.

Specify -f src to favor the source-system file. Specify -f dst to favor the
destination-system file. Specify -f old to favor the older version of the file. Specify
-f new to favor the newer version of the file.

It is possible to specify the -f and -o options in combination if they both specify
the same preference (src and dst). If -f and -o conflict, the -f option is ignored.
See the -o option description.

-h
Halt on error. Normally, if filesync encounters a read or write error while
copying files, it notes the error and the program continues, in an attempt to
reconcile other files. If the -h option is specified, filesync will immediately halt
when one of these errors occurs and will not try to process any more files.

-m
Ensure that both copies of the file have the same modification time. The
modification time for newly copied files is set to the time of reconciliation by
default. File changes are ordered by increasing modification times so that the
propagated files have the same relative modification time ordering as the original
changes. Users should be warned that there is usually some time skew between any
two systems, and transferring modification times from one system to another can
occasionally produce strange results.

There are instances in which using filesync to update some (but not all) files in a
directory will confuse the make program. If, for instance, filesync is keeping .c
files synchronized, but ignoring .o files, a changed .c file may show up with a
modification time prior to a .o file that was built from a prior version of the .c file.

-n
Do not really make the changes. If the -n option is specified, filesync determines
what changes have been made to files, and what reconciliations are required and
displays this information on the standard output. No changes are made to files,
including the packing rules file.

Specifying both the -n and -o options causes filesync to analyze the prevailing
system and report the changes that have been made on that system. Using -n and
-o in combination is useful if your machine is disconnected (and you cannot access
the server) but you want to know what changes have been made on the local
machine. See the -o option description.

-o src | dst
The -o option forces a one-way reconciliation, favoring either the source system
(src) or destination system (dst).

filesync(1)

392 man pages section 1: User Commands • Last Revised 6 Nov 2000

Specify -o src to propagate changes only from the source system to the
destination system. Changes made on the destination system are ignored.
filesync aborts if it cannot access a source or destination directory.

Specify -o dst to propagate changes only from the destination system to the
source system. Changes made on the source system are ignored. filesync aborts
if it cannot access a source or destination directory.

Specifying -n with the -o option causes filesync to analyze the prevailing
system and reports on what changes have been made on that system. Using -n and
-o in combination is useful if a machine is disconnected (and there is no access to
the server), but you want to know what changes have been made on the local
machine. See the -n option description.

It is possible to specify the -o and -f options in combination if they both specify
the same preference (src or dst). If -o and -f options conflict, the -f option will
be ignored. See the -f option description.

-q
Suppress the standard filesync messages that describe each reconciliation action
as it is performed.

The standard filesync message describes each reconciliation action in the form of
a UNIX shell command (for example, mv, ln, cp, rm, chmod, chown, chgrp,
setfacl, and so forth).

-r directory
Limit the reconciliation to directory. Specify multiple directories with multiple -r
specifications.

-s source-dir
Specify the directory on the source system from which the filename to be copied is
located. Use with the -d dest-dir option and the filename operand. See the -d option
description and OPERANDS.

-v
Display additional information about each file comparison as it is made on the
standard output.

-y
Bypass safety check prompts. Nomadic machines occasionally move between
domains, and many of the files on which filesync operates are expected to be
accessed by NFS. There is a danger that someday filesync will be asked to
reconcile local changes against the wrong file system or server. This could result in
a large number of inappropriate copies and deletions. To prevent such a mishap,
filesync performs a few safety checks prior to reconciliation. If large numbers of
files are likely to be deleted, or if high level directories have changed their I-node
numbers, filesync prompts for a confirmation before reconciliation. If you know
that this is likely, and do not want to be prompted, use the -y (yes) option to
automatically confirm these prompts.

filesync(1)

User Commands 393

The following operands are supported:

filename The name of the ordinary file, directory, symbolic link, or special
file in the specified source directory (source-dir) to be synchronized.
Specify multiple files by separating each filename by spaces. Use
the filename operand with the -s and -d options. See OPTIONS.

If filename is an ordinary file, that ordinary file will be replicated
(with the same filename) in the specified destination directory
(dest-dir).

If filename is a directory, that directory and all of the files and
subdirectories under it will be replicated (recursively) in the
specified destination directory (dest-dir).

If filename is a symbolic link, a copy of that symbolic link will be
replicated in the specified destination directory (dest-dir).

If filename is a special file, a special file with the same major or
minor device numbers will be replicated in the specified
destination directory. (dest-dir). Only super-users can use
filesync to create special files.

Files created in the destination directory (dest-dir) will have the
same owner, group and other permissions as the files in the source
directory.

If filename contains escaped shell wildcard characters, the wildcard
characters are stored in $HOME/.packingrules and evaluated
each time filesync is run.

For example, the following would make sure that the two specified
files, currently in $RHOME, were replicated in $HOME:

filesync -s $RHOME -d $HOME a.c b.c

The following example would ensure that all of the *.c files in
$RHOME were replicated in $HOME, even if those files were not
created until later.

filesync -s $RHOME -d $HOME ’*.c’

If any of the destination files already exist, filesync ensures that
they are identical and issues warnings if they are not.

Once files have been copied, the distinction between the source
and destination is a relatively arbitrary one (except for its use in
the -o and -f switches).

FILESYNC Specifies the default location of the filesync packing
rules and baseline files. The default value for this

filesync(1)

OPERANDS

ENVIRONMENT
VARIABLES

394 man pages section 1: User Commands • Last Revised 6 Nov 2000

variable is $HOME. The suffixes .packingrules and
.filesync-base will be appended to form the
names of the packing rules and baseline files.

LC_MESSAGES Determines how diagnostic and informative messages
are presented. In the "C" locale, the messages are
presented in the default form found in the program
itself (in most cases, U.S. English).

Normally, if all files are already up-to-date, or if all files were successfully reconciled,
filesync will exit with a status of 0. However, if either the -n option was specified
or any errors occurred, the exit status will be the logical OR of the following:

0 No conflicts, all files up to date.

1 Some resolvable conflicts.

2 Some conflicts requiring manual resolution.

4 Some specified files did not exist.

8 Insufficient permission for some files.

16 Errors accessing packing rules or baseline file.

32 Invalid arguments.

64 Unable to access either or both of the specified src or dst directories.

128 Miscellaneous other failures.

$HOME/.packingrules list of files to be kept synchronized

$HOME/.filesync-base baseline summary file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

cachefspack(1M), packingrules(4), attributes(5)

filesync(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 395

find – find files

/usr/bin/find path… expression

/usr/xpg4/bin/find path… expression

The find utility recursively descends the directory hierarchy for each path seeking
files that match a Boolean expression written in the primaries given below.

find will be able to descend to arbitrary depths in a file hierarchy and will not fail
due to path length limitations (unless a path operand specified by the application
exceeds PATH_MAX requirements).

The following operands are supported:

path A path name of a starting point in the directory hierarchy.

expression The first argument that starts with a −, or is a ! or a (, and all
subsequent arguments will be interpreted as an expression made up
of the following primaries and operators. In the descriptions,
wherever n is used as a primary argument, it will be interpreted as
a decimal integer optionally preceded by a plus (+) or minus (−)
sign, as follows:

+n more than n

n exactly n

-n less than n

Valid expressions are:

-atime n True if the file was accessed n days ago. The access time of
directories in path is changed by find itself.

-cpio device Always true. Writes the current file on device in cpio format
(5120-byte records).

-ctime n True if the file’s status was changed n days ago.

-depth Always true. Causes descent of the directory hierarchy to be done
so that all entries in a directory are acted on before the directory
itself. This can be useful when find is used with cpio(1) to
transfer files that are contained in directories without write
permission.

-exec command True if the executed command returns a zero value as exit status.
The end of command must be punctuated by an escaped semicolon
(;). A command argument { } is replaced by the current path
name. If the last argument to -exec is { } and you specify +
rather than the semicolon (;), the command will be invoked fewer
times, with { } replaced by groups of pathnames.

find(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

Expressions

396 man pages section 1: User Commands • Last Revised 6 Jun 2001

-follow Always true. Causes symbolic links to be followed. When
following symbolic links, find keeps track of the directories
visited so that it can detect infinite loops. For example, such a loop
would occur if a symbolic link pointed to an ancestor. This
expression should not be used with the -type l expression.

-fstype type True if the filesystem to which the file belongs is of type type.

-group gname True if the file belongs to the group gname. If gname is numeric and
does not appear in the /etc/group file, or in the NIS/NIS+
tables, it is taken as a group ID.

-inum n True if the file has inode number n.

-links n True if the file has n links.

-local True if the file system type is not a remote file system type as
defined in the /etc/dfs/fstypes file. nfs is used as the default
remote filesystem type if the /etc/dfs/fstypes file is not
present. Note that -local will descend the hierarchy of non-local
directories. See EXAMPLES for an example of how to search for
local files without descending.

-ls Always true. Prints current path name together with its associated
statistics. These include (respectively):

� inode number
� size in kilobytes (1024 bytes)
� protection mode
� number of hard links
� user
� group
� size in bytes
� modification time.

If the file is a special file, the size field will instead contain the
major and minor device numbers.

If the file is a symbolic link, the pathname of the linked-to file is
printed preceded by ‘→’. The format is identical to that of ls
-gilds (see ls(1B)). Note: Formatting is done internally, without
executing the ls program.

-mount Always true. Restricts the search to the file system containing the
directory specified. Does not list mount points to other file
systems.

-mtime n True if the file’s data was modified n days ago.

-name pattern True if pattern matches the current file name. Normal shell file
name generation characters (see sh(1)) may be used. A backslash

find(1)

User Commands 397

(\) is used as an escape character within the pattern. The
pattern should be escaped or quoted when find is invoked from
the shell.

Unless the character ’.’ is explicitly specified in the beginning of
pattern, a current file name beginning with ’.’ will not match
pattern when using /usr/bin/find. /usr/xpg4/bin/find
does not make this distinction; wildcard file name generation
characters can match file names beginning with ’.’.

-ncpio device Always true. Writes the current file on device in cpio -c format
(5120 byte records).

-newer file True if the current file has been modified more recently than the
argument file.

-nogroup True if the file belongs to a group not in the /etc/group file, or in
the NIS/NIS+ tables.

-nouser True if the file belongs to a user not in the /etc/passwd file, or in
the NIS/NIS+ tables.

-ok command Like -exec, except that the generated command line is printed
with a question mark first, and is executed only if the user
responds by typing y.

-perm [-]mode The mode argument is used to represent file mode bits. It will be
identical in format to the symbolic mode operand,
symbolic_mode_list, described in chmod(1), and will be interpreted
as follows. To start, a template will be assumed with all file mode
bits cleared. An op symbol of:

+ Will set the appropriate mode bits in the template

− Will clear the appropriate bits

= Will set the appropriate mode bits, without regard to
the contents of the file mode creation mask of the
process

The op symbol of − cannot be the first character of mode, to avoid
ambiguity with the optional leading hyphen. Since the initial mode
is all bits off, there are no symbolic modes that need to use − as the
first character.

If the hyphen is omitted, the primary will evaluate as true when
the file permission bits exactly match the value of the resulting
template.

Otherwise, if mode is prefixed by a hyphen, the primary will
evaluate as true if at least all the bits in the resulting template are
set in the file permission bits.

find(1)

398 man pages section 1: User Commands • Last Revised 6 Jun 2001

-perm [-]onum True if the file permission flags exactly match the octal number
onum (see chmod(1)). If onum is prefixed by a minus sign (−), only
the bits that are set in onum are compared with the file permission
flags, and the expression evaluates true if they match.

-print Always true. Causes the current path name to be printed.

-prune Always yields true. Does not examine any directories or files in the
directory structure below the pattern just matched. (See
EXAMPLES). If -depth is specified, -prune will have no effect.

-size n[c] True if the file is n blocks long (512 bytes per block). If n is
followed by a c, the size is in bytes.

-type c True if the type of the file is c, where c is b, c, d, D, f, l, p, or s for
block special file, character special file, directory, door, plain file,
symbolic link, fifo (named pipe), or socket, respectively.

-user uname True if the file belongs to the user uname. If uname is numeric and
does not appear as a login name in the /etc/passwd file, or in
the NIS/NIS+ tables, it is taken as a user ID.

-xdev Same as the -mount primary.

-xattr True if the file has extended attributes.

The primaries may be combined using the following operators (in order of decreasing
precedence):

1) (expression) True if the parenthesized expression is true
(parentheses are special to the shell and
must be escaped).

2) ! expression The negation of a primary (! is the unary
not operator).

3) expression [-a] expression Concatenation of primaries (the and
operation is implied by the juxtaposition of
two primaries).

4) expression -o expression Alternation of primaries (-o is the or
operator).

Note: When you use find in conjunction with cpio, if you use the -L option with
cpio then you must use the -follow expression with find and vice versa.
Otherwise there will be undesirable results.

If no expression is present, -print will be used as the expression. Otherwise, if the
given expression does not contain any of the primaries -exec, -ok or -print, the
given expression will be effectively replaced by:

(given_expression) -print

find(1)

Complex
Expressions

User Commands 399

The -user, -group, and -newer primaries each will evaluate their respective
arguments only once. Invocation of command specified by -exec or -ok does not
affect subsequent primaries on the same file.

See largefile(5) for the description of the behavior of find when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Writing out the hierarchy directory

The following commands are equivalent:

example% find .example% find . -print

They both write out the entire directory hierarchy from the current directory.

EXAMPLE 2 Removing files

Remove all files in your home directory named a.out or *.o that have not been
accessed for a week:

example% find $HOME \(-name a.out -o -name ’*.o’ \) \

-atime +7 -exec rm {} \;

EXAMPLE 3 Printing all file names but skipping SCCS directories

Recursively print all file names in the current directory and below, but skipping SCCS
directories:

example% find . -name SCCS -prune -o -print

EXAMPLE 4 Printing all file names and the SCCS directory name

Recursively print all file names in the current directory and below, skipping the
contents of SCCS directories, but printing out the SCCS directory name:

example% find . -print -name SCCS -prune

EXAMPLE 5 Testing for the newer file

The following command is basically equivalent to the -nt extension to test(1):

example$ if [-n "$(find
file1 -prune -newer file2)"]; then

printf %s\\n "file1 is newer than file2"

EXAMPLE 6 Selecting a file using 24–hour mode

The descriptions of -atime, -ctime, and -mtime use the terminology n ‘‘24-hour
periods’’. For example, a file accessed at 23:59 will be selected by:

find(1)

USAGE

EXAMPLES

400 man pages section 1: User Commands • Last Revised 6 Jun 2001

EXAMPLE 6 Selecting a file using 24–hour mode (Continued)

example% find . -atime -1 print

at 00:01 the next day (less than 24 hours later, not more than one day ago). The
midnight boundary between days has no effect on the 24-hour calculation.

EXAMPLE 7 Printing files matching a user’s permission mode

Recursively print all file names whose permission mode exactly matches read, write,
and execute access for user, and read and execute access for group and other:

example% find . -perm u=rwx,g=rx,o=rx

The above could alternatively be specified as follows:

example% find . -perm a=rwx,g-w,o-w

EXAMPLE 8 Printing files with write access for other

Recursively print all file names whose permission includes, but is not limited to, write
access for other:

example% find . -perm -o+w

EXAMPLE 9 Printing local files without descending non-local directories

example% find . ! -local -prune -o -print

EXAMPLE 10 Printing the files in the name space possessing extended attributes

example% find . -xattr

See environ(5) for descriptions of the following environment variables that affect the
execution of find: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All path operands were traversed successfully.

>0 An error occurred.

/etc/passwd password file

/etc/group group file

/etc/dfs/fstypes file that registers distributed file system packages

See attributes(5) for descriptions of the following attributes:

find(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

User Commands 401

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

Interface Stability Stable

chmod(1), cpio(1), ls(1B), sh(1), test(1), stat(2), umask(2), attributes(5),
environ(5), fsattr(5), largefile(5)

The following options are obsolete and will not be supported in future releases:

-cpio device Always true. Writes the current file on device in cpio format
(5120-byte records).

-ncpio device Always true. Writes the current file on device in cpio -c format
(5120–byte records).

When using find to determine files modified within a range of time, use the -mtime
argument before the -print argument. Otherwise, find will give all files.

Some files that may be under the Solaris root file system are actually mount points for
virtual file systems, such as mntfs or namefs. When comparing against a ufs file
system, they will not be selected if -mount or -xdev is specified in the find
expression.

find(1)

SEE ALSO

WARNINGS

NOTES

402 man pages section 1: User Commands • Last Revised 6 Jun 2001

finger – display information about local and remote users

finger [-bfhilmpqsw] [username…]

finger [-l] [username@hostname 1 [@hostname 2 .. .@hostname n…]]

finger [-l] [@hostname 1 [@hostname 2 .. .@hostname n…]]

By default, the finger command displays in multi-column format the following
information about each logged-in user:

� user name

� user’s full name

� terminal name (prepended with a ‘* ’ (asterisk) if write-permission is denied)

� idle time

� login time

� host name, if logged in remotely

Idle time is in minutes if it is a single integer, in hours and minutes if a ‘: ’ (colon) is
present, or in days and hours if a ‘d’ is present.

When one or more username arguments are given, more detailed information is given
for each username specified, whether they are logged in or not. username must be that
of a local user, and may be a first or last name, or an account name. Information is
presented in multi-line format as follows:

� the user name and the user’s full name

� the user’s home directory and login shell

� time the user logged in if currently logged in, or the time the user last logged in;
and the terminal or host from which the user logged in

� last time the user received mail, and the last time the user read mail

� the first line of the $HOME/.project file, if it exists

� the contents of the $HOME/.plan file, if it exists

Note: when the comment (GECOS) field in /etc/passwd includes a comma, finger
does not display the information following the comma.

If the arguments username@hostname1[@hostname2 . . .@hostnamen] or
@hostname1[@hostname2 . . .@hostnamen] are used, the request is sent first to
hostnamen and forwarded through each hostnamen-1 to hostname1. The program
uses the finger user information protocol (see RFC 1288) to query that
remote host for information about the named user (if username is specified), or about
each logged-in user. The information displayed is server dependent.

finger(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 403

As required by RFC 1288, finger passes only printable, 7-bit ASCII data. This
behavior may be modified by a system administrator by using the PASS option in
/etc/default/finger. Specifying PASS=low allows all characters less than
decimal 32 ASCII. Specifying PASS=high allows all characters greater than decimal
126 ASCII. PASS=low,high or PASS=high,low allows both characters less than 32
and greater than 126 to pass through.

The following options are supported, except that the username@hostname form
supports only the -l option:

-b Suppresses printing the user’s home directory and shell in a long format
printout.

-f Suppresses printing the header that is normally printed in a non-long
format printout.

-h Suppresses printing of the .project file in a long format printout.

-i Forces “idle” output format, which is similar to short format except that
only the login name, terminal, login time, and idle time are printed.

-l Forces long output format.

-m Matches arguments only on user name (not first or last name).

-p Suppresses printing of the .plan file in a long format printout.

-q Forces quick output format, which is similar to short format except that
only the login name, terminal, and login time are printed.

-s Forces short output format.

-w Suppresses printing the full name in a short format printout.

$HOME/.plan user’s plan

$HOME/.project user’s projects

/etc/default/finger finger options file

/etc/passwd password file

/var/adm/lastlog time of last login

/var/adm/utmpx accounting

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmds

passwd(1), who(1), whois(1), passwd(4), attributes(5)

finger(1)

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

404 man pages section 1: User Commands • Last Revised 6 Nov 2000

Zimmerman, D., The Finger User Information Protocol, RFC 1288, Center for Discrete
Mathematics and Theoretical Computer Science (DIMACS), Rutgers University,
December 1991.

The finger user information protocol limits the options that may be used
with the remote form of this command.

finger(1)

NOTES

User Commands 405

fmlcut – cut out selected fields of each line of a file

fmlcut -clist [filename…]

fmlcut -flist [-dchar] [-s] [filename…]

The fmlcut function cuts out columns from a table or fields from each line in filename;
in database parlance, it implements the projection of a relation. fmlcut can be used as
a filter; if filename is not specified or is −, the standard input is read. list specifies the
fields to be selected. Fields can be fixed length (character positions) or variable length
(separated by a field delimiter character), depending on whether -c or -f is specified.

Note: Either the -c or the -f option must be specified.

list A comma-separated list of integer field numbers (in increasing order), with
optional − to indicate ranges. For example: 1,4,7; 1−3,8; −5,10 (short
for 1−5,10); or 3− (short for third through last field).

-clist If -c is specified, list specifies character positions (for instance, −c1−72
would pass the first 72 characters of each line). Note: No space intervenes
between -c and list.

-flist If -f is specified, list is a list of fields assumed to be separated in the file by
the default delimiter character, TAB, or by char if the -d option is specified.
For example, −f1,7 copies the first and seventh field only. Lines with no
delimiter characters are passed through intact (useful for table
subheadings), unless -s is specified. Note: No space intervenes between -f
and list. The following options can be used if you have specified -f.

-dchar If -d is specified, char is the field delimiter. Space or other
characters with special meaning to FMLI must be quoted. Note:
No space intervenes between -d and char . The default field
delimiter is TAB.

-s Suppresses lines with no delimiter characters. If -s is not
specified, lines with no delimiters will be passed through
untouched.

EXAMPLE 1 Getting login IDs and names

The following example gets the login IDs and names.

example% fmlcut -d: -f1,5 /etc/passwd

EXAMPLE 2 Getting the current login name

The next example gets the current login name.

example% ‘who am i | fmlcut -f1 -d" "‘

See attributes(5) for descriptions of the following attributes:

fmlcut(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

406 man pages section 1: User Commands • Last Revised 5 Jul 1990

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

fmlgrep(1F), attributes(5)

fmlcut returns the following exit values:

0 when the selected field is successfully cut out

2 on syntax errors

The following error messages may be displayed on the FMLI message line:

ERROR: line too long
A line has more than 1023 characters or fields, or there is no new-line character.

ERROR: bad list for c / f option
Missing -c or -f option or incorrectly specified list. No error occurs if a line has
fewer fields than the list calls for.

ERROR: no fields
The list is empty.

ERROR: no delimiter
Missing char on -d option.

fmlcut cannot correctly process lines longer than 1023 characters, or lines with no
newline character.

fmlcut(1F)

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 407

fmlexpr – evaluate arguments as an expression

fmlexpr arguments

The fmlexpr function evaluates its arguments as an expression. After evaluation, the
result is written on the standard output. Terms of the expression must be separated by
blanks. Characters special to FMLI must be escaped. Note that 30 is returned to
indicate a zero value, rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments may be preceded by a
unary minus sign. Internally, integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by \. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

expr \| expr
Returns the first expr if it is neither NULL nor 0, otherwise returns the second
expr.

expr \& expr
Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr { =, \>, \>=, \<, \<=, != } expr
Returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a lexical comparison.

expr { +, − } expr
Addition or subtraction of integer-valued arguments.

expr { *, /, % } expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : (colon) compares the first argument with the second
argument which must be a regular expression. Regular expression syntax is the
same as that of ed(1), except that all patterns are "anchored" (that is, begin with ^)
and, therefore, ^ is not a special character, in that context. Normally, the matching
operator returns the number of bytes matched (0 on failure). Alternatively, the
(. . .) pattern symbols can be used to return a portion of the first argument.

EXAMPLE 1 Incrementing a variable

Add 1 to the variable a:

example% fmlexpr $a + 1 | set -l a

EXAMPLE 2 Setting a variable equal to a filename

For $a equal to either /usr/abc/file or just file:

example% fmlexpr $a : .*/\(.*\) \| $a

returns the last segment of a path name (that is, file). Watch out for / alone as an
argument: fmlexpr will take it as the division operator (see NOTES below).

fmlexpr(1F)

NAME

SYNOPSIS

DESCRIPTION

Expressions

EXAMPLES

408 man pages section 1: User Commands • Last Revised 5 Jul 1990

EXAMPLE 3 A better representation of Example 2

example% fmlexpr //$a : .*/\(.*\)

The addition of the // characters eliminates any ambiguity about the division
operator (because it makes it impossible for the left-hand expression to be interpreted
as the division operator), and simplifies the whole expression.

EXAMPLE 4 Counting characters in a variable

Return the number of characters in $VAR:

example% fmlexpr $VAR : .*

As a side effect of expression evaluation, fmlexpr returns the following exit values:

0 if the expression is neither NULL nor 0 (that is, TRUE)

1 if the expression is NULL or 0 (that is, FALSE)

2 for invalid expressions (that is, FALSE).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ed(1), expr(1), set(1F), sh(1), attributes(5)

syntax error for operator/operand errors

non-numeric argument if arithmetic is attempted on such a string

In the case of syntax errors and non-numeric arguments, an error message will be
printed at the current cursor position. Use refresh to redraw the screen.

After argument processing by FMLI, fmlexpr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

example% fmlexpr $a = =

looks like:

example% fmlexpr = = =

as the arguments are passed to fmlexpr (and they will all be taken as the = operator).
The following works, and returns TRUE:

example% fmlexpr X$a = X=

fmlexpr(1F)

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 409

fmlgrep – search a file for a pattern

fmlgrep [-b] [-c] [-i] [-l] [-n] [-s] [-v] limited_regular_expression
[filename…]

fmlgrep searches filename for a pattern and prints all lines that contain that pattern.
fmlgrep uses limited regular expressions (expressions that have string values that
use a subset of the possible alphanumeric and special characters) like those described
on the regexp(5) manual page to match the patterns. It uses a compact
non-deterministic algorithm.

Be careful when using FMLI special characters (for instance, $, ‘, ’, ") in
limited_regular_expression. It is safest to enclose the entire limited_regular_expression in
single quotes ’ ... ’.

If filename is not specified, fmlgrep assumes standard input. Normally, each line
matched is copied to standard output. The file name is printed before each line
matched if there is more than one input file.

The following options are supported:

-b Precede each line by the block number on which it was found. This can be
useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.

-i Ignore upper/lower case distinction during comparisons.

-l Print only the names of files with matching lines, separated by new-lines.
Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).

-s Suppress error messages about nonexistent or unreadable files.

-v Print all lines except those that contain the pattern.

The following exit values are returned:

0 if the pattern is found (that is, TRUE)

1 if the pattern is not found (that is, FALSE)

2 if an invalid expression was used or filename is inaccessible

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

fmlgrep(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

ATTRIBUTES

410 man pages section 1: User Commands • Last Revised 28 Mar 1995

egrep(1), fgrep(1), fmlcut(1F), grep(1), attributes(5), regexp(5)

Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined
in /usr/include/stdio.h.

If there is a line with embedded nulls, fmlgrep will only match up to the first null; if
it matches, it will print the entire line.

fmlgrep(1F)

SEE ALSO

NOTES

User Commands 411

fmli – invoke FMLI

fmli [-a alias_file] [-c command_file] [-i initialization_file] filename…

The fmli command invokes the Form and Menu Language Interpreter and opens the
frame(s) specified by the filename argument. The filename argument is the pathname of
the initial frame definition file(s), and must follow the naming convention Menu.xxx,
Form.xxx, or Text.xxx for a menu, form or text frame respectively, where xxx is any
string that conforms to UNIX system file naming conventions. The FMLI descriptor
lifetime will be ignored for all frames opened by argument to fmli. These frames
have a lifetime of immortal by default.

The following options are supported:

-a alias_file If -a is specified, alias_file is the name of a file which
contains lines of the form alias=pathname. Thereafter,
$alias can be used in definition files to simplify
references to objects or devices with lengthy
pathnames, or to define a search path (similar to $PATH
in the UNIX system shell).

-c command_file If -c is specified, command_file is the name of a file in
which default FMLI commands can be disabled, and
new application-specific commands can be defined.
The contents of command_file are reflected in the FMLI
Command Menu.

-i initialization_file If -i is specified, initialization_file is the name of a file
in which the following characteristics of the application
as a whole can be specified:

− A transient introductory frame
displaying product information

− A banner, its position, and other
elements of the banner line

− Color attributes for all elements of
the screen

− Screen Labeled Keys (SLKs) and
their layout on the screen.

EXAMPLE 1 Examples of the fmli command.

To invoke fmli:

example% fmli Menu.start

where Menu.start is an example of filename named according to the file name
conventions for menu definition files explained above.

To invoke fmli and name an initialization file:

fmli(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

412 man pages section 1: User Commands • Last Revised 14 Sep 1992

EXAMPLE 1 Examples of the fmli command. (Continued)

example% fmli -i init.myapp Menu.start

where init.myapp is an example of initialization_file.

LOADPFK Leaving this environment variable unset tells FMLI, for certain
terminals like the AT&T 5620 and 630, to download its equivalent
character sequences for using function keys into the terminal’s
programmable function keys, wiping out any settings the user
may already have set in the function keys. Setting LOADPFK=NO in
the environment will prevent this downloading.

COLUMNS Can be used to override the width of the logical screen defined for
the terminal set in TERM. For terminals with a 132-column mode,
for example, invoking FMLI with the line

COLUMNS=132 fmli frame-file

will allow this wider screen width to be used.

LINES Can be used to override the length of the logical screen defined for
the terminal set in TERM.

/usr/bin/fmli

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

vsig(1F), attributes(5)

If filename is not supplied to the fmli command, fmli returns the message:

Initial object must be specified.

If filename does not exist or is not readable, fmli returns an error message and exits.
The example command line above returns the following message and exits:

Can’t open object "Menu.start"

If filename exists, but does not start with one of the three correct object names (Menu.,
Form., or Text.) or if it is named correctly but does not contain the proper data,
fmli starts to build the screen by putting out the screen labels for function keys, after
which it flashes the message:

fmli(1)

Variables

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 413

I do not recognize that kind of object

and then exits.

fmli(1)

414 man pages section 1: User Commands • Last Revised 14 Sep 1992

fmt – simple text formatters

fmt [-cs] [-w width | -width] [inputfile…]

fmt is a simple text formatter that fills and joins lines to produce output lines of (up
to) the number of characters specified in the -w width option. The default width is 72.
fmt concatenates the inputfiles listed as arguments. If none are given, fmt formats text
from the standard input.

Blank lines are preserved in the output, as is the spacing between words. fmt does not
fill nor split lines beginning with a ‘.’ (dot), for compatibility with nroff(1). Nor does
it fill or split a set of contiguous non-blank lines which is determined to be a mail
header, the first line of which must begin with “From”.

Indentation is preserved in the output, and input lines with differing indentation are
not joined (unless -c is used).

fmt can also be used as an in-line text filter for vi(1). The vi command:

!}fmt

reformats the text between the cursor location and the end of the paragraph.

-c Crown margin mode. Preserve the indentation of the
first two lines within a paragraph, and align the left
margin of each subsequent line with that of the second
line. This is useful for tagged paragraphs.

-s Split lines only. Do not join short lines to form longer
ones. This prevents sample lines of code, and other
such formatted text, from being unduly combined.

-w width | -width Fill output lines to up to width columns.

inputfile Input file.

See environ(5) for a description of the LC_CTYPE environment variable that affects
the execution of fmt.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

nroff(1), vi(1), attributes(5), environ(5)

The -width option is acceptable for BSD compatibility, but it may go away in future
releases.

fmt(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 415

fmtmsg – display a message on stderr or system console

fmtmsg [-c class] [-u subclass] [-l label] [-s severity] [-t tag] [-a action]
text

Based on a message’s classification component, fmtmsg either writes a formatted
message to stderr or writes a formatted message to the console.

A formatted message consists of up to five standard components (see environment
variable MSGVERB in the ENVIRONMENT VARIABLES section of this page). The
classification and subclass components are not displayed as part of the standard
message, but rather define the source of the message and direct the display of the
formatted message.

The following options are supported:

-c class Describes the source of the message. Valid keywords are:

hard The source of the condition is hardware.

soft The source of the condition is software.

firm The source of the condition is firmware.

-u subclass A list of keywords (separated by commas) that further defines the
message and directs the display of the message. Valid keywords
are:

appl The condition originated in an application.
This keyword should not be used in
combination with either util or opsys.

util The condition originated in a utility. This
keyword should not be used in combination
with either appl or opsys.

opsys The message originated in the kernel. This
keyword should not be used in combination
with either appl or util.

recov The application will recover from the
condition. This keyword should not be used in
combination with nrecov.

nrecov The application will not recover from the
condition. This keyword should not be used in
combination with recov.

print Print the message to the standard error stream
stderr.

console Write the message to the system console.
print, console, or both may be used.

fmtmsg(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

416 man pages section 1: User Commands • Last Revised 20 Jul 1994

-l label Identifies the source of the message.

-s severity Indicates the seriousness of the error. The keywords and
definitions of the standard levels of severity are:

halt The application has encountered a severe fault
and is halting.

error The application has detected a fault.

warn The application has detected a condition that is
out of the ordinary and might be a problem.

info The application is providing information about
a condition that is not in error.

-t tag The string containing an identifier for the message.

-a action A text string describing the first step in the error recovery process.
This string must be written so that the entire action argument is
interpreted as a single argument. fmtmsg precedes each action
string with the TO FIX: prefix.

text A text string describing the condition. Must be written so that the
entire text argument is interpreted as a single argument.

EXAMPLE 1 Standard message format

The following example of fmtmsg produces a complete message in the standard
message format and displays it to the standard error stream.

example% fmtmsg -c soft -u recov,print,appl -l UX:cat \

-s error -t UX:cat:001 -a "refer to manual" "invalid syntax"

produces:

UX:cat: ERROR: invalid syntax

TO FIX: refer to manual UX:cat:138

EXAMPLE 2 Using MSGVERB

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, fmtmsg produces:

ERROR: invalid syntax
TO FIX: refer to manual

fmtmsg(1)

EXAMPLES

User Commands 417

EXAMPLE 2 Using MSGVERB (Continued)

EXAMPLE 3 Using SEV_LEVEL

When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following fmtmsg command:

example% fmtmsg -c soft -u print -l UX:cat -s note \
-a "refer to manual" "invalid syntax"

produces:

NOTE: invalid syntax

TO FIX: refer to manual

and displays the message on stderr.

The environment variables MSGVERB and SEV_LEVEL control the behavior of fmtmsg.
MSGVERB is set by the administrator in the /etc/profile for the system. Users can
override the value of MSGVERB set by the system by resetting MSGVERB in their own
.profile files or by changing the value in their current shell session. SEV_LEVEL
can be used in shell scripts.

MSGVERB tells fmtmsg which message components to select when writing messages
to stderr. The value of MSGVERB is a colon-separated list of optional keywords.
MSGVERB can be set as follows:

MSGVERB=[keyword[:keyword[:...]]]
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB contains
a keyword for a component and the component’s value is not the component’s null
value, fmtmsg includes that component in the message when writing the message to
stderr. If MSGVERB does not include a keyword for a message component, that
component is not included in the display of the message. The keywords may appear in
any order. If MSGVERB is not defined, if its value is the null string, if its value is not of
the correct format, or if it contains keywords other than the valid ones listed above,
fmtmsg selects all components.

MSGVERB affects only which message components are selected for display. All message
components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by
fmtmsg. The standard severity levels shown below cannot be modified. Additional
severity levels can be defined, redefined, and removed.

0 (no severity is used)

fmtmsg(1)

ENVIRONMENT
VARIABLES

418 man pages section 1: User Commands • Last Revised 20 Jul 1994

1 HALT

2 ERROR

3 WARNING

4 INFO

SEV_LEVEL is set as follows:

description is a comma-separated list containing three fields:

SEV_LEVEL= [description[:description[:...]]]
export SEV_LEVEL

description=severity_keyword, level, printstring

severity_keyword is a character string used as the keyword with the -s severity option
to fmtmsg.

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3, or 4,
which are reserved for the standard severity levels). If the keyword severity_keyword is
used, level is the severity value passed on to fmtmsg(3C).

printstring is the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the
defaults are available. If a description in the colon separated list is not a comma
separated list containing three fields, or if the second field of a comma separated list
does not evaluate to a positive integer, that description in the colon separated list is
ignored.

The following exit values are returned:

0 All the requested functions were executed successfully.

1 The command contains a syntax error, an invalid option, or an invalid
argument to an option.

2 The function executed with partial success, however the message was not
displayed on stderr.

4 The function executed with partial success; however, the message was not
displayed on the system console.

32 No requested functions were executed successfully.

See attributes(5) for descriptions of the following attributes:

fmtmsg(1)

EXIT STATUS

ATTRIBUTES

User Commands 419

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

addseverity(3C), fmtmsg(3C), attributes(5)

fmtmsg(1)

SEE ALSO

420 man pages section 1: User Commands • Last Revised 20 Jul 1994

fnattr – update and examine attributes associated with an FNS named object

fnattr [-AL] composite_name [[-O | -U]identifier…]

fnattr [-L] composite_name [{-a [-s] [-O | -U]identifier [value…]} | {-d
[[-O | -U]identifier [value…]]} | {-m [-O | -U]identifier old_value
new_value}…]

The fnattr command is for updating and examining attributes associated with an
FNS named object. There are four uses for this command: add an attribute or value,
delete an attribute or value, modify an attribute’s value, and list the contents of an
attribute.

The options for adding, modifying, and deleting attributes and their values can be
combined in the same command line. The modifications will be executed in the order
that they are specified.

Any unsuccessful modification will abort all subsequent modifications specified in the
command line; any modifications already carried out will remain. The unsuccessful
modifications are displayed as output of fnattr.

-a Add an attribute or add a value to an attribute associated with object
named by composite_name. identifier is the identifier of the attribute to
manipulate; its format is FN_ID_STRING unless the -O or -U option is
given. value . . . represents the attribute values to add. The attribute syntax
used for storing value is fn_attr_syntax_ascii.

-A Consult the authoritative source to get attribute information.

-d Delete attributes associated with object named by composite_name. If
identifier is not specified, all attributes associated with the named object are
deleted. If identifier is specified without accompanying values (value . . .),
the entire attribute identified by identifier is removed. If individual attribute
values (value . . .) are specified, then only these are removed from the
attribute. Removal of the last value of an attribute entails removal of the
attribute as well. The format of identifier is FN_ID_STRING unless the -O or
-U option is given.

-L If the composite name is bound to an XFN link, manipulate the attributes
associated with the object pointed to by the link. If -L is not used, the
attributes associated with the XFN link are manipulated.

-m Modify the values of the attribute identified by identifier associated with the
object named by composite_name. old_value is replaced by new_value in the
specified attribute. Other attributes and values associated with
composite_name are not affected. The format of identifier is FN_ID_STRING
unless the -O or -U option is given.

-O The format of identifier is FN_ID_ISO_OID_STRING, an ASN.1
dot-separated integer list string.

fnattr(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 421

-s Add in supersede mode. If an attribute with the same identifier as identifier
already exists, remove all its values, and replace with value. If this option is
omitted, the resulting values for the specified attribute is a union of the
existing values and value.

-U The format of identifier is FN_ID_DCE_UUID, a DCE UUID in string form.

The following operand is supported:

composite_name An FNS named object.

The -a option is used for adding attributes and values. This following command
replaces the value of the shoesize attribute of user/jane with the value 7.5:

eg% fnattr user/jane -as shoesize 7.5

The following command adds the value Chameleo to the project attribute of
user/jane:

eg% fnattr user/jsmith -a project Chameleo

The -d option is used for deleting attributes and values. The following command
deletes all the attributes associated with user/jane:

eg% fnattr user/jane -d

The following command deletes the attribute shoesize associated with user/jane:

eg% fnattr user/jane -d shoesize

The following command deletes the attribute value old_project from the
projects attribute associated with user/jane:

eg% fnattr user/jane -d projects old_project

The -m option is for modifying an attribute value. The following command replaces
the value Chameleo by Dungeon in the projects attribute associated with
user/jsmith:

eg% fnattr user/jsmith -m projects Chameleo Dungeon

The following command is an example of unsuccessful modification attempts. The
user executing this command does not have permission to update user/jane’s
attributes but is allowed to add new attributes. Executing the command will add the
attribute hatsize but will not delete shoesize or modify dresssize because -d
shoesize will fail and cause the command to stop:

fnattr(1)

OPERANDS

Adding

Deleting

Modifying

422 man pages section 1: User Commands • Last Revised 24 Dec 1996

eg% fnattr user/jane -a hatsize medium -d shoesize -m dresssize 5
6

No options are required to list attributes and their values. The following command
lists all the attributes associated with user/jane:

eg% fnattr user/jane

The following command lists the values of the project attribute of user/jane:

eg% fnattr user/jane project

The following command lists the values of the project and shoesize attributes of
user/jane:

eg% fnattr user/jane project shoesize

0 Operation was successful.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnlookup(1), attributes(5), fns(5)

Built-in attributes, such as onc_unix_passwd for users, cannot be updated using the
fnattr command. Their contents are affected by updates to the underlying naming
service, such as NIS+ or NIS.

fnattr(1)

Listing

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 423

fnbind – Bind a reference to an FNS name

fnbind [-s] [-v] [-L] name new_name

fnbind -r [-s] [-v] new_name [-O | -U]ref_type { [-O | -U]addr_type [-c
| -x]addr_contents}…

The fnbind utility binds the reference named by name to the name new_name. The
second synopsis of fnbind (uses the -r option) allows the binding of new_name to the
reference constructed using arguments supplied in the command line.

The following options are supported:

-s Bind to new_name even if it is already bound. If this option is omitted,
fnbind fails if new_name is already bound.

-v Display the reference being bound to new_name.

-L Create an XFN link using name and bind it to new_name.

-r Create a reference using ref_type as the reference’s type, and one or more
pairs of addr_type and addr_contents as the reference’s list of addresses, and
bind this reference to new_name. Unless the -O or -U options are used,
FN_ID_STRING is used as the identifier format for ref_type and addr_type.
Unless the -c or -x options are used, addr_contents is stored as an
XDR-encoded string.

-c Store addr_contents in the given form; do not use XDR-encoding.

-x addr_contents specifies a hexadecimal string. Convert it to its hexidecimal
representation and store it; do not use XDR-encoding.

-O The identifier format is FN_ID_ISO_OID_STRING, an ASN.1
dot-separated integer list string.

-U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

EXAMPLE 1 Binding a service to a printer

The command

example% fnbind -s thisorgunit/service/printer thisorgunit/service/pr

binds the name thisorgunit/service/pr to the reference named by
thisorgunit/service/printer. Any reference bound to
thisorgunit/service/pr is overwritten.

EXAMPLE 2 Binding to an XFN link

The command

example% fnbind -L thisorgunit/service/printer thisorgunit/service/pr

fnbind(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

424 man pages section 1: User Commands • Last Revised 4 Nov 1994

EXAMPLE 2 Binding to an XFN link (Continued)

binds the name thisorgunit/service/pr to the XFN link constructed using the
name thisorgunit/service/printer .

EXAMPLE 3 Binding to an address type

The command

example% fnbind -r thisorgunit/service/calendar SUNW_cal \
SUNW_cal_deskset_onc staff@exodus

binds the name thisorgunit/service/calendar to the reference with reference
type SUNW_cal and address type SUNW_cal_deskset_onc, and address contents of
staff@exodus.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnlookup(1), fnrename(1), fnunbind(1), FN_identifier_t(3XFN), xdr(3NSL),
attributes (5), fns(5), xfn_links(3XFN)

fnbind(1)

ATTRIBUTES

SEE ALSO

User Commands 425

fnlist – display the names and references bound in an FNS context

fnlist [-Alv] [composite_name]

fnlist displays the names and references bound in the context of composite_name.

If composite_name is not provided, the default initial context is displayed.

The following options are supported:

-A Consult the authoritative source for information.

-l Display the references as well as the names bound in the context of
composite_name. Without this option, only the names are displayed.

-v Display the references in detail. For onc_fn_* references, this option is
useful to derive the name of the NIS+ table that stores the reference for
every name bound in the context of composite_name.

The following operand is supported:

composite_name An FNS named object. Composite names, like UNIX
file names, depend on the subcontexts created.
Examples of commands with valid composite_name
operands are:

eg% fnlist thisorgunit
eg% fnlist thisorgunit/service
eg% fnlist thisorgunit/service/printer

When FNS is deployed, the composite name is specific
to the deployed site.

EXAMPLE 1 Examples of the fnlist command.

In the following example, the command with no operand provides the listing with
reference and address types for the initial context:

eg% fnlist -l

In the following examples, where a user context is given (that is, composite_name =
user/), FNS must first be deployed via fncreate(1M), using one of the naming
services NIS, NIS+, or files. If FNS is not deployed, there are no user contexts and
the commands will fail with the "Name not found" error message.

The following command shows the names bound in the context of user/:

eg% fnlist user/

The following command displays the names and references bound in the context of
user/:

eg% fnlist -l user/

fnlist(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

426 man pages section 1: User Commands • Last Revised 7 May 1997

EXAMPLE 1 Examples of the fnlist command. (Continued)

0 Operation was successful.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnbind(1), fnlookup(1), fnunbind(1), fncreate(1M), fndestroy(1M),
attributes(5), fns(5), fns_references(5)

fnlist(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 427

fnlookup – display the reference bound to an FNS name

fnlookup [-ALv] composite_name

fnlookup displays the binding of composite_name.

-A Consult the authoritative source for information.

-L If the composite name is bound to an XFN link, display the reference that
the link is bound to. Without the -L option, fnlookup displays the XFN
link.

-v Display the binding in detail. For onc_fn_* references, this option is
useful to derive the name of the NIS+ table that stores the reference for
composite_name and a string representation of the reference, if applicable.

The following operand is supported:

composite_name An FNS named object.

EXAMPLE 1 Examples of the fnlookup command.

In the following example, the command

eg% fnlookup user/jsmith/service/calendar

shows the reference to which the name user/jsmith/service/calendar, that
refers to the calendar of user jsmith, is bound.

In the next example, the command

eg% fnlookup user/jsmith/service

shows the reference to which the name user/jsmith/service, that refers to the
service context of user jsmith, is bound. If this is bound to an XFN link, then

eg% fnlookup -L user/jsmith/service

displays the reference to which this link is bound.

0 Operation was successful.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnbind(1), fnlist(1), fnunbind(1), fncreate(1M), fndestroy(1M),
xfn_links(3XFN), attributes(5), fns(5), fns_references(5)

fnlookup(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

428 man pages section 1: User Commands • Last Revised 21 Jul 1996

fnrename – rename the binding of an FNS name

fnrename [-s] [-v] context_name old_atomic_name new_atomic_name

fnrename renames the binding of old_atomic_name to new_atomic_name in the context
of context_name. Both old_atomic_name and new_atomic_name must be atomic names, to
be resolved in the context named by context_name.

-s Overwrite any reference already bound to new_atomic_name. If this option
is omitted, fnrename fails if new_atomic_name is already bound.

-v Display the binding being renamed.

EXAMPLE 1 An example of the fnrename command.

For example, the command

eg% fnrename user/jsmith/service/ clendar calendar

binds calendar to the reference bound to clendar in the context named by
user/jsmith/service/ and unbinds clendar.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnbind(1), fnlist(1), fnunbind(1), fncreate(1M), fndestroy(1M),
xfn_links(3XFN), attributes(5), fns(5), fns_references(5)

fnrename(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 429

fnsearch – search for FNS objects with specified attributes

fnsearch [-AlLv] [-n max] [-s scope] composite_name [-a ident]… [-O |
-U]filter_expr [filter_arg]…

The fnsearch command operation displays the names and, optionally, the attributes
and references of objects bound at or below composite_name whose attributes satisfy a
given filter expression. The filter expression is given in terms of logical expressions
involving the identifiers and values of the attributes and references of objects
examined during the search.

For general information about FNS, see fns(5).

The following options are supported:

-a ident Display the given attribute of each object that satisfies the filter
expression. If the -a option is not used, all attributes are
displayed. An empty ident (" " from the shell) indicates that no
attributes are to be displayed. Multiple -a options may be given.
The syntax of ident is described fully under Displaying
Selected Attributes below.

-A Consult the authoritative source(s) for information.

-l Display the reference of each object that satisfies the filter
expression.

-L Follow XFN links during the search.

-n max Restrict the maximum number of objects displayed to the given
number (a positive integer). There is no limit by default.

-s scope Set the scope of the search. scope is one of:

• object Only the object
composite_name is
searched.

• context Objects bound directly
to composite_name are
searched.

• subtree Objects bound to
composite_name or any of
its subcontexts are
searched.

• constrained_subtree Like subtree, but the
search may be restricted
to a set of subcontexts
defined in a
context-implementation-defined
manner

fnsearch(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

430 man pages section 1: User Commands • Last Revised 21 Jul 1996

scope may be abbreviated to any unambiguous prefix, such as o or
cont. If this option is not given, the default behavior is -s
context.

-v Display in detail the reference of each object that satisfies the filter
expression. This option takes precedence over -l.

The following operand is supported:

composite_name An FNS named object.

The simplest form of filter expression is one that tests for the existence of an attribute.
This expression is formed simply by giving the attribute’s name. To search for objects
having an attribute named for_sale, for example:

% fnsearch composite_name for_sale

Another simple filter expression is one that tests the value of a particular attribute. To
find objects whose ages are less than 17:

% fnsearch composite_name "age < 17"

String values are indicated by enclosing the string in single quotes. To find all red
objects:

% fnsearch composite_name "color == ’red’"

Note that the double quotes (") in this example are not part of the filter expression.
Instead, they prevent the shell from interpreting the white-space and single quotes
that are part of the expression.

Simple filter expressions may be composed using the logical operators and, or, and
not. For example:

% fnsearch composite_name "age >= 35 and us_citizen"

Parentheses may be used to group expressions:

% fnsearch composite_name "not (make == ’olds’ and year == 1973)"

The precedence of operators is, in order of increasing precedence:

or
and
not
relational operators (see Relational Operators below)

The logical operators and and or are left-associative.

The following are the relational operators that may be used to compare an attribute to
a supplied value:

== True if at least one value of the attribute is equal to the supplied value.

!= True if none of the attribute’s values are equal to the supplied value.

fnsearch(1)

OPERANDS

Simple Filter
Expressions

Logical Operators

Relational
Operators

User Commands 431

< True if at least one value of the attribute is less than the supplied value.

<= True if at least one value of the attribute is less than or equal to the
supplied value.

> True if at least one value of the attribute is greater than the supplied value.

>= True if at least one value of the attribute is greater than or equal to the
supplied value.

~= True if at least one value of the attribute matches the supplied value
according to some context-specific approximate matching criterion. This
criterion must subsume strict equality.

Comparisons and ordering are specific to the syntax or rules of the attribute being
tested.

By default, the fnsearch command displays the names and all of the attributes of
each object matching the search criteria. The list of attributes displayed may be
restricted by using the -a command line option. In the following example, only the
color and shape attributes of small objects are displayed:

% fnsearch composite_name -a color -a shape "size == ’small’"

The format of an attribute identifier is taken to be FN_ID_STRING (an ASCII string)
by default. To name an attribute identifier that is an OSI OID or a DCE UUID , the
attribute name is prefixed by -O or -U, respectively:

-O The identifier format is FN_ID_ISO_OID_STRING, an ASN.1
dot-separated integer list string.

-U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

For example:

% fnsearch composite_name -a -O 2.5.4.0 "shoe_size < 9"

and

% fnsearch composite_name -a -U 0006a446-5e97-105f-9828-8190285baa77 \
"bowling_avg > 200"

Some parts of a filter expression may be replaced by a substitution token: a percent
sign (%) followed by a single character. The value of this portion of the expression is
then given in a filter argument that follows the filter expression, in much the same
way as is done in printf(1). The available substitution tokens are:

%a attribute

%s string

%i identifier

%v attribute value (the only syntax currently supported is
fn_attr_syntax_ascii)

fnsearch(1)

Displaying
Selected Attributes

Filter Arguments

432 man pages section 1: User Commands • Last Revised 21 Jul 1996

For example, the command:

% fnsearch composite_name "color == ’red’"

could equivalently be written:

% fnsearch composite_name "%a == ’red’" color

or:

% fnsearch composite_name "%a == %s" color red

The use of substitution tokens is helpful when writing shell scripts in which the values
of the filter arguments are generated at run-time.

By default, the format of the identifier of an attribute such as the color attribute
above is taken to be FN_ID_STRING (an ASCII string). Substitution tokens enable the
use of OSI OIDs and DCE UUIDs instead. The filter argument is prefixed by -O or -U,
with the same meaning as in the -a command line option described above:

-O The identifier format is FN_ID_ISO_OID_STRING, an ASN.1
dot-separated integer list string.

-U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

For example:

% fnsearch composite_name "%a -O 2.5.4.0

and

% fnsearch composite_name "%a" ==’red’" \
-U 0006a446-5e97-105f-9828-8190285baa77

A wildcarded string consists of a sequence of alternating wildcard specifiers and
strings. The wildcard specifiers is denoted by the asterisk (*) and means zero or more
occurrences of any character.

Wildcarded strings are used to specify substring matches. The following are some
examples of wildcarded strings and their meanings.

* any string

’tom’ the string "tom"

’harv’* any string starting with "harv"

*’ing’ any string ending with "ing"

’a’*’b’ any string starting with "a" and ending with "b"

’jo’*’ph’*’ne’*’er’ any string starting with "jo" and containing the
substring "ph", and which contains the substring "ne"
in the portion of the string following "ph", and which
ends with "er"

fnsearch(1)

Wildcarded Strings

User Commands 433

%s* any string starting with the string supplied as a filter
argument

’bix’*%s any string starting with "bix" and ending with the
string supplied as a filter argument

Extended operators are predicates (functions that return TRUE or FALSE) that may be
freely mixed with other operators in a filter expression.

An extended operation is specified by giving the operation name as a quoted string,
followed by an argument in parentheses. The following three extended operations are
currently defined:

’name’(WildcardedString) TRUE if the name of the object matches the
supplied wildcarded string.

’reftype’(Identifier) TRUE if the reference type of the object is
equal to the supplied identifier.

’addrtype’(Identifier) TRUE if any of the address types in the
reference of the object are equal to the
supplied identifier.

The following example shows a search for objects whose names start with bill and
having IQ attributes over 80:

% fnsearch composite_name "’name’(’bill’*) and IQ > 80"

The complete grammar of filter expressions is given below. It is based on the grammar
defined by the XFN specification (see FN_search_filter_t(3XFN)).

String literals in this grammar are enclosed in double quotes; the quotes are not
themselves part of the expression. Braces are used for grouping; brackets indicate
optional elements. An unquoted asterisk (*) signifies zero or more occurrences of the
preceding element; a plus sign (+) signifies one or more occurrences.

FilterExpr : : = [Expr]

Expr : : =

Expr "or" Expr| Expr "and" Expr | "not" Expr | "(" Expr ")"
| Attribute [RelOp Value]
| Ext

RelOp : : = "==" | "!=" | "<" | "<=" | ">" | ">=" | "~="

Attribute : : =

Char*| "%a"

Value : : =

Integer| WildcardedString| "%v"

fnsearch(1)

Extended
Operations

Grammar of Filter
Expressions

434 man pages section 1: User Commands • Last Revised 21 Jul 1996

WildcardedString : : =

"*"| String| {String "*"}+ [String]
| {"*" String}+ ["*"]
(that is, an alternating sequence of String and "*")

String : : =

"’" Char* "’"
| "%s"

Ext : : =

"’name’(" WildcardedString ")"
| "’reftype’(" Identifier ")"
| "’addrtype’(" Identifier ")"

Identifier : : =

"’" Char* "’"
| "%i"

Char : : =

an element of the Portable Character Set (ASCII)
| a character in the repertoire
of a string representation

0 Operation was successful.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

printf(1), FN_search_control_t(3XFN), FN_search_filter_t(3XFN),
fn_attr_ext_search(3XFN), fn_attr_search(3XFN), attributes(5), fns(5)

If the filter expression is empty, it evaluates to TRUE (all objects satisfy it).

If the identifier in any subexpression of the filter expression does not exist as an
attribute of an object, then the innermost logical expression containing that identifier
evaluates to FALSE.

fnsearch(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 435

fnunbind – unbind the reference from an FNS name

fnunbind composite_name

fnunbind unbinds the reference of composite_name.

For example,

eg% fnunbind user/jsmith/fs/

unbinds the reference to which the name user/jsmith/fs/ was bound.

Note that an fnunbind on a name of a context will fail because such a context cannot
be unbound without destroying it first with the command fndestroy.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnbind(1), fnlist(1), fnlookup(1), fnrename(1), fncreate(1M),
fndestroy(1M), attributes(5), fns(5)

fnunbind(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

436 man pages section 1: User Commands • Last Revised 6 Mar 1996

fold – filter for folding lines

fold [-bs] [-w width | -width] [file…]

The fold utility is a filter that will fold lines from its input files, breaking the lines to
have a maximum of width column positions (or bytes, if the -b option is specified).
Lines will be broken by the insertion of a NEWLINE character such that each output
line (referred to later in this section as a segment) is the maximum width possible that
does not exceed the specified number of column positions (or bytes). A line will not be
broken in the middle of a character. The behavior is undefined if width is less than the
number of columns any single character in the input would occupy.

If the CARRIAGE-RETURN, BACKSPACE, or TAB characters are encountered in the
input, and the -b option is not specified, they will be treated specially:

BACKSPACE The current count of line width will be decremented by
one, although the count never will become negative.
fold will not insert a NEWLINE character
immediately before or after any BACKSPACE
character.

CARRIAGE-RETURN The current count of line width will be set to 0. fold
will not insert a NEWLINE character immediately
before or after any CARRIAGE-RETURN character.

TAB Each TAB character encountered will advance the
column position pointer to the next tab stop. Tab stops
will be at each column position n such that n modulo 8
equals 1.

The following options are supported:

-b Count width in bytes rather than column positions.

-s If a segment of a line contains a blank character within the first
width column positions (or bytes), break the line after the last such
blank character meeting the width constraints. If there is no blank
character meeting the requirements, the -s option will have no
effect for that output segment of the input line.

-w width|-width Specify the maximum line length, in column positions (or bytes if
-b is specified). If width is not a positive decimal number, an error
is returned. The default value is 80.

The following operand is supported:

file A path name of a text file to be folded. If no file operands are specified,
the standard input will be used.

fold(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 437

EXAMPLE 1 Submitting a file of possibly long lines to the line printer.

An example invocation that submits a file of possibly long lines to the line printer
(under the assumption that the user knows the line width of the printer to be assigned
by lp(1)):

example% fold -w 132 bigfile | lp

See environ(5) for descriptions of the following environment variables that affect the
execution of fold: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were processed successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

cut(1), pr(1), attributes(5), environ(5)

fold and cut(1) can be used to create text files out of files with arbitrary line lengths.
fold should be used when the contents of long lines need to be kept contiguous. cut
should be used when the number of lines (or records) needs to remain constant.

fold is frequently used to send text files to line printers that truncate, rather than
fold, lines wider than the printer is able to print (usually 80 or 132 column positions).

fold may not work correctly if underlining is present.

fold(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

438 man pages section 1: User Commands • Last Revised 1 Feb 1995

from – display the sender and date of newly-arrived mail messages

/usr/ucb/from [-s sender] [username]

The from utility prints out the mail header lines in your mailbox file to show you who
your mail is from. If username is specified, then username’s mailbox is examined instead
of your own.

-s sender Only display headers for mail sent by sender.

See largefile(5) for the description of the behavior of from when encountering files
greater than or equal to 2 Gbyte (231 bytes).

/var/spool/mail/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

biff(1B), mail(1B), attributes(5), largefile(5)

from(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

FILES

ATTRIBUTES

SEE ALSO

User Commands 439

ftp – file transfer program

ftp [-dginptv] [-T timeout] [hostname [port]]

The ftp command is the user interface to the Internet standard File Transfer Protocol
(FTP). ftp transfers files to and from a remote network site.

The host and optional port with which ftp is to communicate may be specified on the
command line. If this is done, ftp immediately attempts to establish a connection to
an FTP server on that host. Otherwise, ftp enters its command interpreter and awaits
instructions from the user. When ftp is awaiting commands from the user, it displays
the prompt ftp>.

The following options may be specified at the command line, or to the command
interpreter:

-d Enables debugging.

-g Disables filename “globbing”.

-i Turns off interactive prompting during multiple file transfers.

-n Does not attempt “auto-login” upon initial connection. If
auto-login is not disabled, ftp checks the .netrc file in the user’s
home directory for an entry describing an account on the remote
machine. If no entry exists, ftp will prompt for the login name of
the account on the remote machine (the default is the login name
on the local machine), and, if necessary, prompts for a password
and an account with which to login.

-p Enables passive mode for data transfers. This command is useful
when connecting to a remote host from behind a connection
filtering firewall.

-t Enables packet tracing (unimplemented).

-T timeout Enables global connection timer, specified in seconds (decimal).
There is a timer for the control connection that is reset when
anything is sent to the server and disabled while the client is
prompting for user input. Another independent timer is used to
monitor incoming or outgoing data connections.

-v Shows all responses from the remote server, as well as report on
data transfer statistics. This is turned on by default if ftp is
running interactively with its input coming from the user’s
terminal.

The following commands can be specified to the command interpreter:

!
[command] Runs command as a shell command on the local machine. If no command
is given, invokes an interactive shell.

ftp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

440 man pages section 1: User Commands • Last Revised 9 Nov 2001

$ macro-name [args]
Executes the macro macro-name that was defined with the macdef command.
Arguments are passed to the macro unglobbed.

account [passwd]
Supplies a supplemental password required by a remote system for access to
resources once a login has been successfully completed. If no argument is included,
the user will be prompted for an account password in a non-echoing input mode.

append local-file [remote-file]
Appends a local file to a file on the remote machine. If remote-file is not specified,
the local file name is used, subject to alteration by any ntrans or nmap settings.
File transfer uses the current settings for “representation type”, “file structure”, and
“transfer mode”.

ascii
Sets the “representation type” to “network ASCII”. This is the default type.

bell
Sounds a bell after each file transfer command is completed.

binary
Sets the “representation type” to “image”.

bye
Terminates the FTP session with the remote server and exit ftp. An EOF will also
terminate the session and exit.

case
Toggles remote computer file name case mapping during mget commands. When
case is on (default is off), remote computer file names with all letters in upper case
are written in the local directory with the letters mapped to lower case.

cd remote-directory
Changes the working directory on the remote machine to remote-directory.

cdup
Changes the remote machine working directory to the parent of the current remote
machine working directory.

close
Terminates the FTP session with the remote server, and return to the command
interpreter. Any defined macros are erased.

cr
Toggles RETURN stripping during “network ASCII” type file retrieval. Records are
denoted by a RETURN/LINEFEED sequence during “network ASCII” type file
transfer. When cr is on (the default), RETURN characters are stripped from this
sequence to conform with the UNIX system single LINEFEED record delimiter.
Records on non-UNIX-system remote hosts may contain single LINEFEED
characters; when an “network ASCII” type transfer is made, these LINEFEED
characters may be distinguished from a record delimiter only when cr is off.

ftp(1)

User Commands 441

delete remote-file
Deletes the file remote-file on the remote machine.

debug
Toggles debugging mode. When debugging is on, ftp prints each command sent to
the remote machine, preceded by the string –>.

dir [remote-directory] [local-file]
Prints a listing of the directory contents in the directory, remote-directory, and,
optionally, placing the output in local-file. If no directory is specified, the current
working directory on the remote machine is used. If no local file is specified, or
local-file is −, output is sent to the terminal.

disconnect
A synonym for close.

form [format-name]
Sets the carriage control format subtype of the “representation type” to format-name.
The only valid format-name is non-print, which corresponds to the default
“non-print” subtype.

get remote-file [local-file]
Retrieves the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the remote machine, subject to
alteration by the current case, ntrans, and nmap settings. The current settings for
“representation type”, “file structure”, and “transfer mode” are used while
transferring the file.

glob
Toggles filename expansion, or “globbing”, for mdelete, mget and mput. If
globbing is turned off, filenames are taken literally.

Globbing for mput is done as in sh(1). For mdelete and mget, each remote file
name is expanded separately on the remote machine, and the lists are not merged.

Expansion of a directory name is likely to be radically different from expansion of
the name of an ordinary file: the exact result depends on the remote operating
system and FTP server, and can be previewed with the command, mls remote-files −.

mget and mput are not meant to transfer entire directory subtrees of files. You can
do this by transferring a tar(1) archive of the subtree (using a “representation
type” of “image” as set by the binary command).

hash
Toggles hash-sign (#) printing for each data block transferred. The size of a data
block is 8192 bytes.

help [command]
Prints an informative message about the meaning of command. If no argument is
given, ftp prints a list of the known commands.

ftp(1)

442 man pages section 1: User Commands • Last Revised 9 Nov 2001

lcd [directory]
Changes the working directory on the local machine. If no directory is specified, the
user’s home directory is used.

ls [remote-directory | -al] [local-file]
Prints an abbreviated listing of the contents of a directory on the remote machine. If
remote-directory is left unspecified, the current working directory is used.

The -a option lists all entries, including those that begin with a dot (.), which are
normally not listed. The -l option lists files in long format, giving mode, number
of links, owner, group, size in bytes, and time of last modification for each file. If
the file is a special file, the size field instead contains the major and minor device
numbers rather than a size. If the file is a symbolic link, the filename is printed
followed by “→” and the pathname of the referenced file.

If no local file is specified, or if local-file is −, the output is sent to the terminal.

macdef macro-name
Defines a macro. Subsequent lines are stored as the macro macro-name. A null line
(consecutive NEWLINE characters in a file or RETURN characters from the terminal)
terminates macro input mode. There is a limit of 16 macros and 4096 total
characters in all defined macros. Macros remain defined until a close command is
executed.

The macro processor interprets $ and \ as special characters. A $ followed by a
number (or numbers) is replaced by the corresponding argument on the macro
invocation command line. A $ followed by an i signals that macro processor that
the executing macro is to be looped. On the first pass, $i is replaced by the first
argument on the macro invocation command line; on the second pass, it is replaced
by the second argument, and so on. A \ followed by any character is replaced by
that character. Use the \ to prevent special treatment of the $.

mdelete remote-files
Deletes the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is
on, ftp will prompt the user to verify that the last argument is indeed the target
local file for receiving mdir output.

mget remote-files
Expands the remote-files on the remote machine and do a get for each file name
thus produced. See glob for details on the filename expansion. Resulting file
names will then be processed according to case, ntrans, and nmap settings. Files
are transferred into the local working directory, which can be changed with lcd
directory. New local directories can be created with ! mkdir directory.

mkdir directory-name
Makes a directory on the remote machine.

ftp(1)

User Commands 443

mls remote-files local-file
Like ls(1), except multiple remote files may be specified. If interactive prompting is
on, ftp will prompt the user to verify that the last argument is indeed the target
local file for receiving mls output.

mode [mode-name]
Sets the “transfer mode” to mode-name. The only valid mode-name is stream, which
corresponds to the default “stream” mode. This implementation only supports
stream, and requires that it be specified.

mput local-files
Expands wild cards in the list of local files given as arguments and do a put for
each file in the resulting list. See glob for details of filename expansion. Resulting
file names will then be processed according to ntrans and nmap settings.

nmap [inpattern outpattern]
Sets or unsets the filename mapping mechanism. If no arguments are specified, the
filename mapping mechanism is unset. If arguments are specified, remote filenames
are mapped during mput commands and put commands issued without a
specified remote target filename. If arguments are specified, local filenames are
mapped during mget commands and get commands issued without a specified
local target filename.

This command is useful when connecting to a non-UNIX-system remote host with
different file naming conventions or practices. The mapping follows the pattern set
by inpattern and outpattern. inpattern is a template for incoming filenames (which
may have already been processed according to the ntrans and case settings).
Variable templating is accomplished by including the sequences $1, $2, . . . , $9 in
inpattern. Use \ to prevent this special treatment of the $ character. All other
characters are treated literally, and are used to determine the nmap inpattern
variable values.

For example, given inpattern $1.$2 and the remote file name mydata.data, $1
would have the value mydata, and $2 would have the value data.

The outpattern determines the resulting mapped filename. The sequences $1, $2,
. . . , $9 are replaced by any value resulting from the inpattern template. The
sequence $0 is replaced by the original filename. Additionally, the sequence
[seq1 , seq2] is replaced by seq1 if seq1 is not a null string; otherwise it is replaced by
seq2.

For example, the command nmap $1.$2.$3 [$1,$2].[$2,file] would yield
the output filename myfile.data for input filenames myfile.data and
myfile.data.old, myfile.file for the input filename myfile, and
myfile.myfile for the input filename .myfile. SPACE characters may be
included in outpattern, as in the example nmap $1 | sed "s/ *$//" > $1. Use
the \ character to prevent special treatment of the $, [,], and ,, characters.

ntrans [inchars [outchars]]
Sets or unsets the filename character translation mechanism. If no arguments are
specified, the filename character translation mechanism is unset. If arguments are

ftp(1)

444 man pages section 1: User Commands • Last Revised 9 Nov 2001

specified, characters in remote filenames are translated during mput commands
and put commands issued without a specified remote target filename, and
characters in local filenames are translated during mget commands and get
commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host with
different file naming conventions or practices. Characters in a filename matching a
character in inchars are replaced with the corresponding character in outchars. If the
character’s position in inchars is longer than the length of outchars, the character is
deleted from the file name.

Only 16 characters can be translated when using the ntrans command under ftp.
Use case (described above) if needing to convert the entire alphabet.

open host [port]
Establishes a connection to the specified host FTP server. An optional port number
may be supplied, in which case, ftp will attempt to contact an FTP server at that
port. If the auto-login option is on (default setting), ftp will also attempt to
automatically log the user in to the FTP server.

passive
Toggles passive mode. When passive mode is turned on, the ftp client sends the
PASV command requesting that the FTP server open a port for the data connection
and return the address of that port. The remote server listens on that port and the
client connects to it. When passive mode is turned off, the ftp client sends the PORT
command to the server specifying an address for the remove server to connect back
to. Passive mode is useful when the connections to the ftp client are controlled, for
example, when behind a firewall. When connecting to an IPv6–enabled FTP server,
EPSV may be used in place of PASV and EPRT in place of PORT.

prompt
Toggles interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. By default,
prompting is turned on. If prompting is turned off, any mget or mput will transfer
all files, and any mdelete will delete all files.

proxy ftp-command
Executes an FTP command on a secondary control connection. This command
allows simultaneous connection to two remote FTP servers for transferring files
between the two servers. The first proxy command should be an open, to establish
the secondary control connection. Enter the command proxy ? to see other FTP
commands executable on the secondary connection.

The following commands behave differently when prefaced by proxy: open will
not define new macros during the auto-login process, close will not erase existing
macro definitions, get and mget transfer files from the host on the primary control
connection to the host on the secondary control connection, and put, mputd, and
append transfer files from the host on the secondary control connection to the host
on the primary control connection.

ftp(1)

User Commands 445

Third party file transfers depend upon support of the PASV command by the server
on the secondary control connection.

put local-file [remote-file]
Stores a local file on the remote machine. If remote-file is left unspecified, the local
file name is used after processing according to any ntrans or nmap settings in
naming the remote file. File transfer uses the current settings for “representation
type”, “file structure”, and “transfer mode”.

pwd
Prints the name of the current working directory on the remote machine.

quit
A synonym for bye.

quote arg1 arg2 ...
Sends the arguments specified, verbatim, to the remote FTP server. A single FTP
reply code is expected in return. (The remotehelp command displays a list of
valid arguments.)

quote should be used only by experienced users who are familiar with the FTP
protocol.

recv remote-file [local-file]
A synonym for get.

reget remote-file [local-file]
The reget command acts like get, except that if local-file exists and is smaller than
remote-file, local-file is presumed to be a partially transferred copy of remote-file and
the transfer is continued from the apparent point of failure. This command is useful
when transferring large files over networks that are prone to dropping connections.

remotehelp [command-name]
Requests help from the remote FTP server. If a command-name is specified it is
supplied to the server as well.

rename from to
Renames the file from on the remote machine to have the name to.

reset
Clears reply queue. This command re-synchronizes command/reply sequencing
with the remote FTP server. Resynchronization may be necessary following a
violation of the FTP protocol by the remote server.

restart [marker]
Restarts the immediately following get or put at the indicated marker. On UNIX
systems, marker is usually a byte offset into the file. When followed by an mget, the
restart applies to the first get performed. Specifying a marker of 0 clears the
restart marker. If no argument is specified, the current restart status is displayed.

rmdir directory-name
Deletes a directory on the remote machine.

ftp(1)

446 man pages section 1: User Commands • Last Revised 9 Nov 2001

runique
Toggles storing of files on the local system with unique filenames. If a file already
exists with a name equal to the target local filename for a get or mget command, a
.1 is appended to the name. If the resulting name matches another existing file, a
.2 is appended to the original name. If this process continues up to .99, an error
message is printed, and the transfer does not take place. The generated unique
filename will be reported. runique will not affect local files generated from a shell
command. The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggles the use of PORT commands. By default, ftp will attempt to use a PORT
command when establishing a connection for each data transfer. The use of PORT
commands can prevent delays when performing multiple file transfers. If the PORT
command fails, ftp will use the default data port. When the use of PORT
commands is disabled, no attempt will be made to use PORT commands for each
data transfer. This is useful when connected to certain FTP implementations that
ignore PORT commands but incorrectly indicate they have been accepted.

site arg1 [arg2] ...
Sends the arguments specified, verbatim, to the remote FTP server as a SITE
command.

status
Show the current status of ftp.

struct [struct-name]
Sets the file structure to struct-name. The only valid struct-name is file, which
corresponds to the default “file” structure. The implementation only supports
file, and requires that it be specified.

sunique
Toggles storing of files on remote machine under unique file names. The remote
FTP server must support the STOU command for successful completion. The remote
server will report the unique name. Default value is off.

tcpwindow [size]
Sets the TCP window size to be used for data connections. Specifying a size of 0
stops the explicit setting of the TCP window size on data connections. If no
argument is specified, the current setting is displayed.

tenex
Sets the “representation type” to that needed to talk to TENEX machines.

trace
Toggles packet tracing (unimplemented).

type [type-name]
Sets the “representation type” to type-name. The valid type-names are ascii for
“network ASCII”, binary or image for “image”, and tenex for “local byte size”

ftp(1)

User Commands 447

with a byte size of 8 (used to talk to TENEX machines). If no type is specified, the
current type is printed. The default type is “network ASCII”.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not specified and the
server requires it, ftp will prompt the user for it (after disabling local echo). If an
account field is not specified, and the FTP server requires it, the user will be
prompted for it. If an account field is specified, an account command will be
relayed to the remote server after the login sequence is completed if the remote
server did not require it for logging in. Unless ftp is invoked with “auto-login”
disabled, this process is done automatically on initial connection to the FTP server.

verbose
Toggles verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose mode is on, when a file transfer
completes, statistics regarding the efficiency of the transfer are reported. By default,
verbose mode is on if ftp’s commands are coming from a terminal, and off
otherwise.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (")
marks.

If any command argument which is not indicated as being optional is not specified,
ftp will prompt for that argument.

To abort a file transfer, use the terminal interrupt key. Sending transfers will be
immediately halted. Receiving transfers will be halted by sending an FTP protocol
ABOR command to the remote server, and discarding any further data received. The
speed at which this is accomplished depends upon the remote server’s support for
ABOR processing. If the remote server does not support the ABOR command, an ftp>
prompt will not appear until the remote server has completed sending the requested
file.

The terminal interrupt key sequence will be ignored when ftp has completed any
local processing and is awaiting a reply from the remote server. A long delay in this
mode may result from the ABOR processing described above, or from unexpected
behavior by the remote server, including violations of the ftp protocol. If the delay
results from unexpected remote server behavior, the local ftp program must be killed
by hand.

Local files specified as arguments to ftp commands are processed according to the
following rules.

1) If the file name − is specified, the standard input (for reading) or standard
output (for writing) is used.

2) If the first character of the file name is |, the remainder of the argument is
interpreted as a shell command. ftp then forks a shell, using popen(3C)

ftp(1)

ABORTING A
FILE TRANSFER

FILE NAMING
CONVENTIONS

448 man pages section 1: User Commands • Last Revised 9 Nov 2001

with the argument supplied, and reads (writes) from the standard output
(standard input) of that shell. If the shell command includes SPACE
characters, the argument must be quoted; for example "| ls -lt". A
particularly useful example of this mechanism is: "dir | more".

3) Failing the above checks, if globbing is enabled, local file names are
expanded according to the rules used in the sh(1); see the glob command.
If the ftp command expects a single local file (for example, put), only the
first filename generated by the globbing operation is used.

4) For mget commands and get commands with unspecified local file names,
the local filename is the remote filename, which may be altered by a case,
ntrans, or nmap setting. The resulting filename may then be altered if
runique is on.

5) For mput commands and put commands with unspecified remote file
names, the remote filename is the local filename, which may be altered by a
ntrans or nmap setting. The resulting filename may then be altered by the
remote server if sunique is on.

The FTP specification specifies many parameters which may affect a file transfer.

The “representation type” may be one of “network ASCII”, “EBCDIC”, “image”, or
“local byte size” with a specified byte size (for PDP-10’s and PDP-20’s mostly). The
“network ASCII” and “EBCDIC” types have a further subtype which specifies
whether vertical format control (NEWLINE characters, form feeds, etc.) are to be passed
through (“non-print”), provided in TELNET format (“TELNET format controls”), or
provided in ASA (FORTRAN) (“carriage control (ASA)”) format. ftp supports the
“network ASCII” (subtype “non-print” only) and “image” types, plus “local byte size”
with a byte size of 8 for communicating with TENEX machines.

The “file structure” may be one of file (no record structure), record, or page. ftp
supports only the default value, which is file.

The “transfer mode” may be one of stream, block, or compressed. ftp supports
only the default value, which is stream.

See largefile(5) for the description of the behavior of ftp when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The ftp command is IPv6–enabled. See ip6(7P).

~/.netrc

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbip

ftp(1)

FILE TRANSFER
PARAMETERS

USAGE

FILES

ATTRIBUTES

User Commands 449

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI enabled

ls(1), rcp(1), sh(1), tar(1), in.ftpd(1M), popen(3C), ftpusers(4), netrc(4),
attributes(5), largefile(5), ip6(7P)

Allman, M., Ostermann, S., and Metz, C. RFC 2428, FTP Extensions for IPv6 and NATs.
The Internet Society. September 1998.

Postel, Jon, and Joyce Reynolds. RFC 959, File Transfer Protocol (FTP). Network
Information Center. October 1985.

Piscitello, D. RFC 1639, FTP Operation Over Big Address Records (FOOBAR). Network
Working Group. June 1994.

Failure to log in may arise from an explicit denial by the remote FTP server because
the account is listed in /etc/ftpusers. See in.ftpd(1M) and ftpusers(4).

Correct execution of many commands depends upon proper behavior by the remote
server.

An error in the treatment of carriage returns in the 4.2 BSD code handling transfers
with a “representation type” of “network ASCII” has been corrected. This correction
may result in incorrect transfers of binary files to and from 4.2 BSD servers using a
“representation type” of “network ASCII”. Avoid this problem by using the “image”
type.

ftp(1)

SEE ALSO

NOTES

450 man pages section 1: User Commands • Last Revised 9 Nov 2001

ftpcount – show current number of users in each FTP Server class

ftpcount [-V]

Use the ftpcount command to show the current number of users logged in and the
login limit for each FTP Server class defined in the ftpaccess(4) file.

The ftpcount command supports the following options:

-V Display program copyright and version information, then terminate.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/var/run/ftp.pids-classnames

/etc/ftpd/ftpaccess

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpu

ftpwho(1), in.ftpd(1M), ftpaccess(4), attributes(5)

ftpcount(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 451

ftpwho – show current process information for each FTP Server user

ftpwho [-V]

Use the ftpwho command to show the current process information for each user
logged in to the FTP Server. This information is in addition to information displayed
by the ftpcount(1) command.

The ftpwho command supports the following options:

-V Display the program copyright and version information, then terminate.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/etc/ftpd/ftpaccess

/var/run/ftp.pids-classname

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpu

ftpcount(1), ps(1), in.ftpd(1M), ftpaccess(4), attributes(5)

ftpwho(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

452 man pages section 1: User Commands • Last Revised 15 Oct 2001

gcore – get core images of running processes

gcore [-o filename] process-id…

The gcore utility creates a core image of each specified process. By default, the name
of the core image file for the process whose process ID is process-id will be
core.process-id .

-o filename Substitutes filename in place of core as the first part of the name of
the core image files.

process-id process ID

0 On success.

non-zero On failure, such as non-existent process ID.

core.process-id core images

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo (32-bit)

SUNWtoox (64-bit)

kill(1), core(4), proc(4), attributes(5)

gcore(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 453

gencat – generate a formatted message catalog

gencat catfile msgfile…

The gencat command merges the message text source file(s) msgfile into a formatted
message database catfile. The database catfile is created if it does not already exist. If
catfile does exist, its messages are included in the new catfile. If set and message
numbers collide, the new message-text defined in msgfile replaces the old message text
currently contained in catfile. The message text source file (or set of files) input to
gencat can contain either set and message numbers or simply message numbers, in
which case the set NL_SETD (see nl_types(3HEAD)) is assumed.

The format of a message text source file is defined as follows. Note that the fields of a
message text source line are separated by a single ASCII space or tab character. Any
other ASCII spaces or tabs are considered as part of the subsequent field.

$set n comment Where n specifies the set identifier of the following
messages until the next $set, $delset, or end-of-file
appears. n must be a number in the range
(1–{NL_SETMAX}). Set identifiers within a single source
file need not be contiguous. Any string following the
set identifier is treated as a comment. If no $set
directive is specified in a message text source file, all
messages are located in the default message set
NL_SETD.

$delset n comment Deletes message set n from an existing message
catalog. Any string following the set number is treated
as a comment. (Note: if n is not a valid set it is ignored.)

$comment A line beginning with a dollar symbol $ followed by an
ASCII space or tab character is treated as a comment.

m message-text The m denotes the message identifier, a number in the
range (1-{NL_MSGMAX}). The message-text is stored in
the message catalog with the set identifier specified by
the last $set directive, and with message identifier m.
If the message-text is empty, and an ASCII space or tab
field separator is present, an empty string is stored in
the message catalog. If a message source line has a
message number, but neither a field separator nor
message-text, the existing message with that number (if
any) is deleted from the catalog. Message identifiers
need not be contiguous. The length of message-text must
be in the range (0–{NL_TEXTMAX}).

$quote c This line specifies an optional quote character c, which
can be used to surround message-text so that trailing
spaces or null (empty) messages are visible in a
message source line. By default, or if an empty $quote

gencat(1)

NAME

SYNOPSIS

DESCRIPTION

Message Text
Source File Format

454 man pages section 1: User Commands • Last Revised 1 Feb 1995

directive is supplied, no quoting of message-text will be
recognized.

Empty lines in a message text source file are ignored.

Text strings can contain the special characters and escape sequences defined in the
following table:

Description Symbol Sequence

newline NL(LF) \n

horizontal tab HT \t

vertical tab VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

backslash \ \\

bit pattern ddd \ddd

The escape sequence \ddd consists of backslash followed by 1, 2 or 3 octal digits,
which are taken to specify the value of the desired character. If the character following
a backslash is not one of those specified, the backslash is ignored.

Backslash followed by an ASCII newline character is also used to continue a string on
the following line. Thus, the following two lines describe a single message string:

1 This line continues \

to the next line

which is equivalent to:

1 This line continues to the next line

The following operands are supported:

catfile A path name of the formatted message catalogue. If − is specified,
standard output is used.

msgfile A path name of a message text source file. If − is specified for an
instance of msgfile, standard input is used. The format of message
text source files is defined in Message Text Source File
Format.

gencat(1)

OPERANDS

User Commands 455

See environ(5) for descriptions of the following environment variables that affect the
execution of gencat: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

CSI enabled

mkmsgs(1), catgets(3C), catopen(3C), gettxt(3C), environ(5), attributes(5),
nl_types(3HEAD)

gencat(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

456 man pages section 1: User Commands • Last Revised 1 Feb 1995

geniconvtbl – generate iconv code conversion tables

geniconvtbl [-fnq] [-p preprocessor] [-W arg] [-Dname] [-Dname=def]
[-Idirectory] [-Uname] [infile…]

The geniconvtbl utility accepts code conversion rules defined in flat text file(s) and
writes code conversion binary table file(s) that can be used to support user-defined
iconv code conversions (see iconv(1) and iconv(3C) for more detail on the iconv
code conversion).

The following options are supported:

-f Overwrites output file if the output file exists.

-n Does not generate an output file. This is useful to check
the contents of the input file.

-p preprocessor Uses specified preprocessor instead of the default
preprocessor, /usr/lib/cpp.

-q Quiet option. It suppresses warning and error
messages.

-W arg Passes the argument arg to the preprocessor. If this
option is specified more than once, all arguments are
passed to the preprocessor.

-Dname
-Dname=def
-Idirectory
-Uname geniconvtbl recognizes these options and passes

them and their arguments to the preprocessor.

The following operand is supported:

infile A path name of an input file. If no input file is
specified, geniconvtbl reads from the standard input
stream. The user can specify more than one input file if
necessary.

If input is from the standard input stream, geniconvtbl writes output to the
standard output stream. If one or more input files are specified, geniconvtbl reads
from each input file and writes to a corresponding output file. Each of the output file
names will be the same as the corresponding input file with .bt appended.

The generated output files must be moved to the following directory prior to using the
code conversions at iconv(1) and iconv(3C):

/usr/lib/iconv/geniconvtbl/binarytables/The output file name should
start with one or more printable ASCII characters as the ’fromcode’ name followed
by a percentage character (%), followed by one or more printable ASCII characters as
the ’tocode’ name, followed by the suffix ’.bt’. The ’fromcode’ and ’tocode’

geniconvtbl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

OUTPUT

User Commands 457

names are used to identify the iconv code conversion at iconv(1) and
iconv_open(3C)). The properly named output file should be placed in the directory,
/usr/lib/iconv/geniconvtbl/binarytables/.

EXAMPLE 1 Generating an iconv code conversion binary table

The following example generates a code conversion binary table with output file name
convertA2B.bt:

example% geniconvtbl convertA2B

EXAMPLE 2 Generating multiple iconv code conversion binary tables

The following example generates two code conversion binary tables with output files
test1.bt and test2.bt:

example% geniconvtbl test1 test2

EXAMPLE 3 Using another preprocessor

The following example generates a code conversion binary table once the specified
preprocessor has processed the input file:

example% geniconvtbl -p /opt/SUNWspro/bin/cc -W -E convertB2A

EXAMPLE 4 Placing a binary table

To use the binary table created in the first example above as the engine of the
conversion ’fromcode’ ABC to ’tocode’ DEF, become super-user and then rename it and
place it like this:

example# mv convertA2B.bt \
/usr/lib/iconv/geniconvtbl/binarytables/ABC%DEF.bt

EXAMPLE 5 Providing modified ISO8859-1 to UTF-8 code conversion

Write a geniconvtbl source file that defines the code conversion. For instance, you
can copy over
/usr/lib/iconv/geniconvtbl/srcs/ISO8859-1_to_UTF-8.src into your
directory and make necessary changes at the source file. Once the modifications are
done, generate the binary table:

example% geniconvtbl ISO8859-1_to_UTF-8.src

As super-user, place the generated binary table with a unique name at the system
directory where iconv_open(3C) can find the binary table:

example su
Password:
example% cp ISO8859-1_to_UTF-8.bt \

/usr/lib/iconv/geniconvtbl/binarytables/my-iso-8859-1%utf-8.bt

geniconvtbl(1)

EXAMPLES

458 man pages section 1: User Commands • Last Revised 30 Nov 2001

EXAMPLE 5 Providing modified ISO8859-1 to UTF-8 code conversion (Continued)

After that, you can do the iconv code conversion. For instance:

example% iconv -f my-iso-8859-1 -t utf-8 testfile.txt

See environ(5) for descriptions of the following environment variables that affect the
execution of geniconvtbl: LANG and LC_CTYPE.

The following exit values are returned:

0 No errors occurred and the output files were successfully created.

1 Command line options are not correctly used or an unknown command
line option was specified.

2 Invalid input or output file was specified.

3 Conversion rules in input files are not correctly defined.

4 Conversion rule limit of input files has been reached. See NOTES section of
geniconvtbl(4).

5 No more system resource error.

6 Internal error.

/usr/lib/iconv/geniconvtbl/binarytables/*.bt
conversion binary tables

/usr/lib/iconv/geniconvtbl/srcs/*
conversion source files for user reference

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

cpp(1), iconv(1), iconv(3C), iconv_close(3C), iconv_open(3C),
geniconvtbl(4), attributes(5), environ(5), iconv(5)

Solaris Internationalization Guide for Developers

The generated and correctly placed output files,
/usr/lib/iconv/geniconvtbl/binarytables/*.bt, are used in both 32-bit
and 64-bit environments.

geniconvtbl(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 459

genlayouttbl – generate layout table for complex text layout

genlayouttbl [-o outfile] [infile]

The genlayouttbl utility accepts a locale’s layout definition in a flat text file and
writes a binary layout table file that can be used in the complex text layout of the
locale.

The following option is supported:

-o outfile Writes output binary layout table to the outfile.

The following operand is supported:

infile A path name of an input file. If no input file is specified,
genlayouttbl reads from the standard input stream.

If no outfile is specified, genlayouttbl writes output to the standard output stream.

The generated output file must be moved to the following directory prior to the use at
the system and the file name should be layout.dat:

/usr/lib/locale/locale/LO_LTYPE/layout.dat

The locale should also have a symbolic link,
/usr/lib/locale/locale/LO_LTYPE/locale.layout.so.1, to the 32-bit Universal
Multiscript Layout Engine (UMLE),
/usr/lib/locale/common/LO_LTYPE/umle.layout.so.1.

For proper 64-bit platform operations, the locale should also have a symbolic link, as
for instance, in 64-bit SPARC platform,
/usr/lib/locale/locale/LO_LTYPE/sparcv9/locale.layout.so.1, to the 64-bit
UMLE, /usr/lib/locale/common/LO_LTYPE/sparcv9/umle.layout.so.1.

The locale is the locale that you want to provide and to use the layout functionality you
defined.

A layout definition file to genlayouttbl contains three different sections of
definitions:

� Layout attribute definition
� Bidirectional data and character type data definition
� Shaping data definition

For appropriate complex text layout support, all three sections need to be defined in
the layout definition file.

The following lexical conventions are used in the layout definition:

genlayouttbl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

OUTPUT AND
SYMBOLIC

LINKS

INPUT FILE
FORMAT

The Lexical
Conventions

460 man pages section 1: User Commands • Last Revised 5 Nov 1999

NAME A string of characters that consists of printable ASCII
characters. It includes DECIMAL and HEXADECIMAL
also. Examples: test, a1_src, b32, 123.

HEXADECIMAL_BYTE Two-digit hexadecimal number. The number starts with a
hexadecimal digit followed by another hexadecimal digit.
Examples: e0, E1, a7, fe.

HEXADECIMAL A hexadecimal number. The hexadecimal representation
consists of an escape character, ’0’ followed by the
constant ’x’ or ’X’ and one or more hexadecimal digits.
Examples: 0x0, 0x1, 0x1a, 0xA, 0x1b3.

DECIMAL A decimal number, represented by one or more decimal
digits. Examples: 0, 123, 2165.

Each comment must start with ’#’. The comment ends at the end of the line.

The following keywords are reserved:

active_directional, active_shape_editing, AL,
ALGORITHM_BASIC, ALGORITHM_IMPLICIT, AN, BN, check_mode,
context, CONTEXT_LTR, CONTEXT_RTL, CS, EN, END, ES, ET, FALSE,
FILE_CODE_REPRESENTATION, implicit_algorithm, keep, L,
LAYOUT_ATTRIBUTES, LAYOUT_BIDI_CHAR_TYPE_DATA,
LAYOUT_SHAPE_DATA, LRE, LRO, MODE_EDIT, MODE_STREAM, NSM,
national_numerals, numerals, NUMERALS_CONTEXTUAL,
NUMERALS_NATIONAL, NUMERALS_NOMINAL, ON, orientation,
ORIENTATION_CONTEXTUAL, ORIENTATION_LTR, ORIENTATION_RTL,
ORIENTATION_TTBLR, ORIENTATION_TTBRL, PDF,
PROCESS_CODE_REPRESENTATION, PS, R, repeat*, repeat+, RLE, RLO, S,
shape_charset, shape_charset_size, shape_context_size, swapping,
SWAPPING_NO, swapping_pairs, SWAPPING_YES, TEXT_EXPLICIT,
TEXT_IMPLICIT, TEXT_NOMINAL, TEXT_SHAPED, text_shaping, TEXT_VISUAL,
TRUE, type_of_text, WS

Additionally, the following symbols are also reserved as tokens:

() [] , : ; ... = -> +

The layout attribute definition section defines the layout attributes and their
associated values.

The definition starts with a keyword, LAYOUT_ATTRIBUTES, and ends with END
LAYOUT_ATTRIBUTES:

LAYOUT_ATTRIBUTES

Layout attributes here.

genlayouttbl(1)

Layout Attribute
Definition

User Commands 461

:
:

END LAYOUT_ATTRIBUTES

There are a total of eight layout attribute value trios that can be defined in this section:

� orientation
� context
� type_of_text
� implicit_algorithm
� swapping
� numerals
� text_shaping
� shape_context_size

Additionally, there are five layout attribute value pairs that also can be defined in this
section:

� active_directional
� active_shape_editing
� shape_charset
� shape_charset_size
� check_mode

Each attribute value trio will have an attribute name, an attribute value for the input
buffer, and an attribute value for the output buffer, as in the following example:

Orientation layout attribute value trio. The input and output
attribute values are separated by a colon and the left one
is the input attribute value:

orientation ORIENTATION_LTR:ORIENTATION_LTR

Each attribute value pair will have an attribute name and an associated attribute
value, as in the following example:

Shape charset attribute value pair:

shape_charset ISO8859-6

The orientation value trio defines the global directional text orientation. The
possible values are:

ORIENTATION_LTR Left-to-right horizontal rows that progress
from top to bottom.

ORIENTATION_RTL Right-to-left horizontal rows that progress
from top to bottom.

ORIENTATION_TTBRL Top-to-bottom vertical columns that
progress from right to left.

genlayouttbl(1)

462 man pages section 1: User Commands • Last Revised 5 Nov 1999

ORIENTATION_TTBLR Top-to-bottom vertical columns that
progress from left to right.

ORIENTATION_CONTEXTUAL The global orientation is set according to the
direction of the first significant (strong)
character. If there are no strong characters in
the text and the attribute is set to this value,
the global orientation of the text is set
according to the value of the attribute
context. This value is meaningful only for
bidirectional text.

If no value or value trio is defined, the default is ORIENTATION_LTR.

The context value trio is meaningful only if the attribute orientation is set to
ORIENTATION_CONTEXTUAL. It defines what orientation is assumed when no strong
character appears in the text. The possible values are:

CONTEXT_LTR In the absence of characters with strong directionality in the text,
orientation is assumed to be left-to-right rows progressing from top
to bottom.

CONTEXT_RTL In the absence of characters with strong directionality in the text,
orientation is assumed to be right-to-left rows progressing from top
to bottom.

If no value or value trio is specified, the default is CONTEXT_LTR.

The type_of_text value trio specifies the ordering of the directional text. The
possible values are:

TEXT_VISUAL Code elements are provided in visually ordered segments,
which can be rendered without any segment inversion.

TEXT_IMPLICIT Code elements are provided in logically ordered segments.
Logically ordered means that the order in which the characters
are provided is the same as the order in which the characters are
pronounced when reading the presented text or the order in
which characters would be entered from a keyboard.

TEXT_EXPLICIT Code elements are provided in logically ordered segments with
a set of embedded controls. Some examples of such embedded
controls from ISO/IEC 10646-1 are:

LEFT-TO-RIGHT EMBEDDING (LRE)
RIGHT-TO-LEFT EMBEDDING (RLE)
RIGHT-TO-LEFT OVERRIDE (RLO)
LEFT-TO-RIGHT OVERRIDE (LRO)
POP DIRECTIONAL FORMAT (PDF)

genlayouttbl(1)

User Commands 463

If no value or value trio is specified, the default is TEXT_IMPLICIT.

The implicit_algorithm value trio specifies the type of bidirectional implicit
algorithm used in reordering and shaping of directional or context-dependent text.
The possible values are:

ALGORITHM_IMPLICIT Directional code elements will be reordered using an
implementation-defined implicit algorithm.

ALGORITHM_BASIC Directional code elements will be reordered using a basic
implicit algorithm defined in the Unicode standard.

Even though we allow two different values for the implicit_algorithm, since the
Solaris implementation-defined implicit algorithm is based on the Unicode standard,
there is no difference in behavior whether you choose ALGORITHM_IMPLICIT or
ALGORITHM_BASIC for this attribute.

The default value is ALGORITHM_IMPLICIT.

The swapping value trio specifies whether symmetric swapping is applied to the text.
The possible values are:

SWAPPING_YES The text conforms to symmetric swapping.

SWAPPING_NO The text does not conform to symmetric swapping.

If no value or value trio is specified, the default is SWAPPING_NO.

The numerals value trio specifies the shaping of numerals. The possible values are:

NUMERALS_NOMINAL Nominal shaping of numerals using the Arabic numbers
of the portable character set (in Solaris, ASCII digits).

NUMERALS_NATIONAL National shaping of numerals based on the script of the
locale. For instance, Thai digits in the Thai locale.

NUMERALS_CONTEXTUAL Contextual shaping of numerals depending on the
context script of surrounding text, such as Hindi
numbers in Arabic text and Arabic numbers otherwise.

If no value or value trio is specified, the default is NUMERALS_NOMINAL.

The text_shaping value trio specifies the shaping; that is, choosing (or composing)
the correct shape of the input or output text. The possible values are:

TEXT_SHAPED The text has presentation form shapes.

TEXT_NOMINAL The text is in basic form.

If no value or value trio is specified, the default is TEXT_NOMINAL for input and
TEXT_SHAPED for output.

genlayouttbl(1)

464 man pages section 1: User Commands • Last Revised 5 Nov 1999

The shape_context_size value trio specifies the size of the context (surrounding
code elements) that must be accounted for when performing active shape editing. If
not defined, the default value 0 is used for the number of surrounding code elements
at both front and rear:

The shape_context_size for both front and rear surrounding code
elements are all zero:

shape_context_size 0:0

The front and rear attribute values are separated by a colon, with the front value to the
left of the colon.

The active_directional value pair specifies whether the current locale requires
(bi-)directional processing. The possible values are:

TRUE Requires (bi-)directional processing.

FALSE Does not require (bi-)directional processing.

The active_shape_editing value pair specifies whether the current locale requires
context-dependent shaping for presentation. The possible values are:

TRUE Requires context-dependent shaping.

FALSE Does not require context-dependent shaping.

The shape_charset value pair specifies the current locale’s shape charset on which
the complex text layout is based. There are two different kinds of shape charset values
that can be specified:

� A single shape charset
� Multiple shape charsets

For a single shape charset, it can be defined by using NAME as defined in the Lexical
Convention section above. For multiple shape charsets, however, it should follow
the syntax given below in extended BNF form:

multiple_shape_charset
: charset_list
;

charset_list : charset
| charset_list ’;’ charset
;

charset : charset_name ’=’ charset_id
;

charset_name : NAME
;

charset_id : HEXADECIMAL_BYTE

;

genlayouttbl(1)

User Commands 465

For instance, the following is a valid multiple shape charsets value for the
shape_charset attribute:

Multi-shape charsets:

shape_charset tis620.2533=e4;iso8859-8=e5;iso8859-6=e6

The shape_charset must be specified.

The shape_charset_size value pair specifies the encoding size of the current
shape_charset. The valid value is a positive integer from 1 to 4. If the multiple
shape charsets value is defined for the shape_charset attribute, the
shape_charset_size must be 4.

The shape_charset_size must be specified.

The check_mode value pair specifies the level of checking of the elements in the
input buffer for shaping and reordering purposes. The possible values are:

MODE_STREAM The string in the input buffer is expected to have valid
combinations of characters or character elements.

MODE_EDIT The shaping of input text may vary depending on locale-specific
validation or assumption.

When no value or value pair is not specified, the default value is MODE_STREAM.

This section defines the bidirectional and other character types that will be used in the
Unicode Bidirectional Algorithm and the shaping algorithm part of the UMLE.

The definition starts with a keyword LAYOUT_BIDI_CHAR_TYPE_DATA and ends
with END LAYOUT_BIDI_CHAR_TYPE_DATA:

LAYOUT_BIDI_CHAR_TYPE_DATA

Layout bidi definitions here.
:
:

END LAYOUT_BIDI_CHAR_TYPE_DATA

The bidirectional data and character type data definition should be defined for the two
different kinds of text shape forms, TEXT_SHAPED and TEXT_NOMINAL, depending on
the text_shaping attribute value and also for the two different kinds of text
representations, file code representation and process code representation (that is, wide
character representation):

LAYOUT_BIDI_CHAR_TYPE_DATA

FILE_CODE_REPRESENTATION
TEXT_SHAPED

TEXT_SHAPED bidi and character type data

genlayouttbl(1)

Bidirectional Data
And Character

Type Data
Definition

466 man pages section 1: User Commands • Last Revised 5 Nov 1999

definition in file code representation here.
:
:

END TEXT_SHAPED

TEXT_NOMINAL

TEXT_NOMINAL bidi and character type data
definition in file code representation here.
:
:

END TEXT_NOMINAL
END FILE_CODE_REPRESENTATION

PROCESS_CODE_REPRESENTATION
TEXT_SHAPED

TEXT_SHAPED bidi and character type data
definition in process code representation here.
:
:

END TEXT_SHAPED

TEXT_NOMINAL

TEXT_NOMINAL bidi and character type data
definition in process code representation here.
:
:

END TEXT_NOMINAL
END PROCESS_CODE_REPRESENTATION

END LAYOUT_BIDI_CHAR_TYPE_DATA

Each bidi and character type data definition can have the following definitions:

� Bidirectional data type definition
� swapping_pairs character type definition
� national_numerals character type definition

There are nineteen different bidirectional data types that can be defined, as in the
following table:

Keyword Category Description

L Strong Left-to-right

LRE Strong Left-to-right embedding

genlayouttbl(1)

User Commands 467

Keyword Category Description

LRO Strong Left-to-right override

R Strong Right-to-left

AL Strong Right-to-left

RLE Strong Right-to-left embedding

RLO Strong Right-to-left override

PDF Weak Pop directional format

EN Weak European number

ES Weak European number separator

ET Weak European number terminator

AN Weak Arabic number

CS Weak Common number separator

PS Separator Paragraph separator

S Separator Segment separator

WS Neutral White space

ON Neutral Other neutrals

NSM Weak Non-spacing mark

BN Weak Boundary neutral

If not defined in this section, the characters belong to the other neutrals type, ON.

Each keyword list above will be accompanied by one or more HEXADECIMAL ranges of
characters that belong to the bidirectional character type. The syntax is as follows:

bidi_char_type : bidi_keyword ’:’ range_list
;

bidi_keyword : ’L’
| ’LRE’
| ’LRO’
| ’R’
| ’AL’
| ’RLE’
| ’RLO’
| ’PDF’
| ’EN’
| ’ES’
| ’ET’
| ’AN’
| ’CS’
| ’PS’

genlayouttbl(1)

468 man pages section 1: User Commands • Last Revised 5 Nov 1999

| ’S’
| ’WS’
| ’ON’
| ’NSM’
| ’BN’
;

range_list : range
| range_list ’,’ range
;

range : HEXADECIMAL
| HEXADECIMAL ’...’ HEXADECIMAL

;

For example:

Bidi character type definitions:
L: 0x26, 0x41...0x5a, 0xc380...0xc396, 0xe285a0...0xe28682

WS: 0x20, 0xc2a0, 0xe28080...0xe28086

The swapping_pairs specifies the list of swappable characters if SWAPPING_YES is
specified as a value at the swapping value trio. The syntax of the swapping_pairs is
as follows:

swapping_pair_list : swapping_keyword ’:’ swap_pair_list
;

swapping_keyword : ’swapping_pairs’
;

swap_pair_list : swap_pair
| swap_pair_list ’,’ swap_pair
;

swap_pair : ’(’ HEXADECIMAL ’,’ HEXADECIMAL ’)’

For example:

Swapping pair definitions:

swapping_pairs: (0x28, 0x29), (0x7b, 0x7d)

The national_numerals specifies the list of national digits that can be converted as
the numerals value trio specifies. The syntax of the national_numerals is as
follows:

numerals_list : numerals_keyword ’:’
numerals_list ’;’ contextual_range_list
;

numerals_keyword : ’national_numerals’
;

genlayouttbl(1)

User Commands 469

numerals_list : ’(’ zero ’,’ one ’,’ two ’,’ three ’,’
four ’,’ five ’,’ six ’,’ seven ’,’
eight ’,’ nine ’)’

zero : HEXADECIMAL
;

one : HEXADECIMAL
;

two : HEXADECIMAL
;

three : HEXADECIMAL
;

four : HEXADECIMAL
;

five : HEXADECIMAL
;

six : HEXADECIMAL
;

seven : HEXADECIMAL
;

eight : HEXADECIMAL
;

nine : HEXADECIMAL
;

contextual_range_list
: contextual_range
| contextual_range_list ’,’ contextual_range
;

contextual_range : HEXADECIMAL
| HEXADECIMAL ’...’ HEXADECIMAL

:

For instance:

National numerals definition. The national number that will
replace Arabic number 0 to 9 is 0, 0x41, 0x42, and so on.
The contextual surrounding characters are 0x20 to 0x40 and
0x50 to 0x7f:
national_numerals:

(0x0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49)

; 0x20...0x40, 0x50...0x7f

Unless NUMERALS_CONTEXTUAL is the value of the numerals attribute, the contextual
range list definition is meaningless.

genlayouttbl(1)

470 man pages section 1: User Commands • Last Revised 5 Nov 1999

The shaping data definition section defines the context-dependent shaping rules that
will be used in the shaping algorithm of the UMLE.

The definition starts with a keyword, LAYOUT_SHAPE_DATA, and ends with END
LAYOUT_SHAPE_DATA:

LAYOUT_SHAPE_DATA

Layout shaping data definitions here.
:
:

END LAYOUT_SHAPE_DATA

The shaping data definition should be defined for the two different kinds of text shape
forms, TEXT_SHAPED and TEXT_NOMINAL, depending on the text_shaping
attribute value and also for the two different kinds of text representations, file code
representation and process code representation (that is, wide character representation:

LAYOUT_SHAPE_DATA

FILE_CODE_REPRESENTATION
TEXT_SHAPED

TEXT_SHAPED shaping data definition in file code
representation here.
:
:

END TEXT_SHAPED

TEXT_NOMINAL

TEXT_NOMINAL shaping data definition in file code
representation here.
:
:

END TEXT_NOMINAL
END FILE_CODE_REPRESENTATION

PROCESS_CODE_REPRESENTATION
TEXT_SHAPED

TEXT_SHAPED shaping data definition in process code
representation here.
:
:

END TEXT_SHAPED

TEXT_NOMINAL

TEXT_NOMINAL shaping data definition in process
code representation here.
:

genlayouttbl(1)

Shaping Data
Definition

User Commands 471

:

END TEXT_NOMINAL
END PROCESS_CODE_REPRESENTATION

END LAYOUT_SHAPE_DATA

Each shaping data definition consists of one or more of the shaping sequence
definitions. Each shaping sequence definition is a representation of a series of state
transitions triggered by an input character and the current state at each transition.

The syntax of the shaping sequence definition is as follows:

shaping_sequence : initial_state ’+’ input ’->’ next_state_list
;

initial_state : ’()’
;

input : HEXADECIMAL
;

next_state_list : next_state
| next_state_list ’+’ input ’->’ next_state
| ’(’ next_state_list ’+’ input ’)’ ’repeat+’
| ’(’ next_state_list ’+’ input ’)’ ’repeat*’
;

next_state : ’(’ out_buffer ’,’ in2out ’,’ out2in ’,’
property ’)’

;

out_buffer : ’[’ out_char_list ’]’
;

out_char_list : HEXADECIMAL
| ’(’ HEXADECIMAL ’)’ ’repeat+’
| out_char_list ’;’ HEXADECIMAL
;

in2out : ’[’ i2o_list ’]’
;

i2o_list : DECIMAL
| ’(’ DECIMAL ’)’ ’repeat+’
| i2o_list ’;’ DECIMAL
;

out2in : ’[’ o2i_list ’]’
;

o2i_list : DECIMAL
| ’(’ DECIMAL ’)’ ’repeat+’
| o2i_list ’;’ DECIMAL
;

genlayouttbl(1)

472 man pages section 1: User Commands • Last Revised 5 Nov 1999

property : ’[’ prop_list ’]’
;

prop_list : HEXADECIMAL
| ’(’ HEXADECIMAL ’)’ ’repeat+’
| prop_list ’;’ HEXADECIMAL

;

For example, the following shaping sequences can be defined:

A simple shaping sequence:
() + 0x21 ->

([0x0021], [0], [0;0], [0x80]) + 0x22 ->
([0x0021;0x0022], [0;1], [0;0;1;1], [0x80;0x80]) + 0xc2a0 ->
([0x0021;0x0022;0xe030], [0;1;2], [0;0;1;1;2;2],

[0x80;0x80;0x80])

A repeating shaping sequence:
() + 0x21 ->

(
([0x0021], [0], [0;0], [0x80]) + 0x22 ->
([0x0021;0x0022], [0;1], [0;0;1;1], [0x80;0x80]) + 0xc2a2

) repeat+

The first example shows a shaping sequence such that if 0x21, 0x22, and 0xc2a0 are
the input buffer contents, it will be converted into an output buffer containing
0x0021, 0x0022, and 0xe030; an input to the output buffer containing 0, 1, and 2;
an output to the input buffer containing 0, 0, 1, 1, 2, and 2; and a property buffer
containing 0x80, 0x80, and 0x80.

The second example shows a repeating shaping sequence where, if the first input code
element is 0x21, then the second and third input code elements are 0x22 and
0xc2a2, respectively.

The following exit values are returned:

0 No errors occurred and the output file was successfully created.

1 Command line options are not correctly used or unknown command line
option specified.

2 Invalid input or output file specified.

3 The layout definitions not correctly defined.

4 No more system resource error.

6 Internal error.

/usr/lib/locale/common/LO_LTYPE/umle.layout.so.1
The Universal Multiscript Layout Engine for 32-bit platforms.

/usr/lib/locale/common/LO_LTYPE/sparcv9/umle.layout.so.1
The Universal Multiscript Layout Engine for 64-bit SPARC platform.

genlayouttbl(1)

EXIT STATUS

FILES

User Commands 473

/usr/lib/locale/common/LO_LTYPE/ia64/umle.layout.so.1
The Universal Multiscript Layout Engine for 64-bit Intel platform.

/usr/lib/locale/locale/LO_LTYPE/layout.dat
The binary layout table file for the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWglt

m_create_layout(3LAYOUT), m_destroy_layout(3LAYOUT),
m_getvalues_layout(3LAYOUT), m_setvalues_layout(3LAYOUT),
m_transform_layout(3LAYOUT), m_wtransform_layout(3LAYOUT),
attributes(5), environ(5)

International Language Environments Guide

Unicode Technical Report #9: The Bidirectional Algorithm from
http://www.unicode.org/unicode/reports/

genlayouttbl(1)

ATTRIBUTES

SEE ALSO

474 man pages section 1: User Commands • Last Revised 5 Nov 1999

genmsg – generate a message source file by extracting messages from source files

genmsg [-abdfrntx] [-c message-tag] [-g project-file] [-l project-file]
[-m prefix] [-M suffix] [-o message-file] [-p preprocessor] [-s set-tags] file…

The genmsg utility extracts message strings with calls to catgets(3C) from source
files and writes them in a format suitable for input to gencat(1).

genmsg reads one or more input files and, by default, generates a message source file
whose name is composed of the first input file name with .msg. If the -o option is
specified, genmsg uses the option argument for its output file.

Command Output File

genmsg prog.c prog.c.msg

gensmg main.c util.c tool.c main.c.msg

genmsg -o prog.msg mail.c util.c prog.msg

genmsg also allows you to invoke a preprocessor to solve the dependencies of macros
and define statements for the catgets(3C) calls.

genmsg replaces message numbers with the calculated numbers based upon the
project file if the message numbers are -1, and it generates copies of the input files
with the new message numbers and a copy of the project file with the new maximum
message numbers.

A project file is a database that stores a list of set numbers with their maximum
message numbers. Each line in a project file is composed of a set number and its
maximum message number:

Set_number Maximum_message_number

In a project file, a line beginning with a number sign (#) or an ASCII space is
considered as a comment and ignored.

genmsg also has the reverse operation to replace all message numbers with -1.

genmsg allows you to comment about messages and set numbers to inform the
translator how the messages should be translated. It extracts the comment, which is
surrounded with the comment indicators and has the specified tag inside the
comment, from the input file and writes it with a dollar ($) prefix in the output file.
genmsg supports the C and C++ comment indicators, ’/*’, ’*/’, and ’//’.

genmsg generates two kinds of messages for testing, prefixed messages and long
messages. Prefixed messages allow you to check that your program is retrieving the
messages from the message catalog. Long messages allow you to check the appearance
of your window program’s initial size and position.

genmsg(1)

NAME

SYNOPSIS

DESCRIPTION

Invocation

Auto Message
Numbering

Comment
Extraction

Testing

User Commands 475

The following options are supported:

-a Append the output into the message file message-file
that is specified by the -o option. If two different
messages that have the same set and message number
are found, the message in the specified message file is
kept and the other message in the input file is
discarded.

-b Place the extracted comment after the corresponding
message in the output file. This option changes the
placement behavior of the -s or -c option.

-c message-tag Extract message comments having message-tag inside
them from the input files and write them with a ’$’
prefix as a comment in the output file.

-d Include an original text of a message as a comment to
be preserved along with its translations. With this
option, the translator can see the original messages
even after they are replaced with their translations.

-f Overwrite the input files and the project file when used
with the -l or -r option. With the -r option, genmsg
overwrites only the input files.

-g project-file Generate project-file that has a list of set numbers and
their maximum message numbers in the input files.

-l project-file Replace message numbers with the calculated numbers
based upon project-file if the message numbers are -1 in
the input files, and then generate copies of the input
files with the new message numbers and a copy of
project-file with the new maximum message numbers. If
project-file is not found, genmsg uses the maximum
message number in the input file as a base number and
generates project-file.

-m prefix Fill in the message with prefix. This option is useful for
testing.

-M suffix Fill in the message with suffix. This option is useful for
testing.

-n Add comment lines to the output file indicating the file
name and line number in the input files where each
extracted string is encountered.

-o message-file Write the output to message-file.

-p preprocessor Invoke preprocessor to preprocess macros and define
statements for the catgets(3C) calls. genmsg first
invokes the option argument as a preprocesser and

genmsg(1)

OPTIONS

476 man pages section 1: User Commands • Last Revised 20 Dec 1996

then starts the normal process against the output from
the preprocessor. genmsg initiates this process for all
the input files.

-r Replace message numbers with -1. This is the reverse
operation of the -l option.

-s set-tag Extract set number comments having set-tag inside
them from the input files and write them with a ’$’
prefix as a comment in the output file. If multiple
comments are specified for one set number, the first
one is extracted and the rest of them are discarded.

-t Generate a message that is three times as long as the
original message. This option is useful for testing.

-x Suppress warning messages about message and set
number range checks and conflicts.

file An input source file.

EXAMPLE 1 Assigning message numbers and generating new files

Suppose that you have the following source and project files:

example% cat test.cprintf(catgets(catfd, 1, -1, "line too long));
printf(catgets(catfd, 2, -1, "invalid code));example% cat proj1 10
2 20

The command

example% genmsg -l proj test.c

would assign the calculated message numbers based upon proj and generate the
following files:

test.c.msg message file

proj.new updated project file

test.c.new new source file

example% cat test.c.msg$quote "
$set 1
11 "line too long
$set 2
21 "invalid codeexample% cat proj.new1 11
2 21example% cat test.c.newprintf(catgets(catfd, 1, 11, "line too long));
printf(catgets(catfd, 2, 21, "invalid code));

EXAMPLE 2 Extracting comments into a file

The command

genmsg(1)

OPERANDS

EXAMPLES

User Commands 477

EXAMPLE 2 Extracting comments into a file (Continued)

example% genmsg -s SET -c MSG test.cexample% cat test.c/* SET: tar messages */
/* MSG: don’t translate "tar". */
catgets(catfd, 1, 1, "tar: tape write error");
// MSG: don’t translate "tar" and "-I".
catgets(catfd, 1, 2, "tar: missing argument for -I flag");

would extract the comments and write them in the following output file:

example% cat test.c.msg$ /* SET: tar messages */
$set 1
$ /* MSG: don’t translate "tar". */
1 "tar: tape write error"
$ // MSG: don’t translate "tar" and "-I".
2 "tar: missing argument for -I flag"

EXAMPLE 3 Generating test messages

The command

example% genmsg -m PRE: -M :FIX test.c

would generate the following messages for testing:

example% cat test.c.msg1 "PRE:OK:FIX"
2 "PRE:Cancel:FIX"

EXAMPLE 4 Parsing a macro and writing the extracted messages

Given the following input:

example% example.c
#include <nl_types.h>
#define MSG1 "message1"
#define MSG2 "message2"
#define MSG3 "message3"
#define MSG(n) catgets(catd, 1, n, MSG ## n)
void
main(int argc, char **argv)
{

nl_catd catd = catopen(argv[0], NL_CAT_LOCALE);
(void) printf("%s0, MSG(1));
(void) printf("%s0, MSG(2));
(void) printf("%s0, MSG(3));
(void) catclose(catd);

}

The following command:

example% genmsg -p "cc -E" -o example.msg example.c

would parse the MSG macros and write the extracted messages in example.msg.

EXAMPLE 5 Assigning calculated message numbers

Suppose that you have the following header, source, and project files:

genmsg(1)

478 man pages section 1: User Commands • Last Revised 20 Dec 1996

EXAMPLE 5 Assigning calculated message numbers (Continued)

example% . ./inc/msg.h
#define WARN_SET 1
#define ERR_SET 2
#define WARN_MSG(id, msg) catgets(catd, WARN_SET, (id), (msg))
#define ERR_MSG(id, msg) catgets(catd, ERR_SET, (id), (msg))
example% example.c
#include "msg.h"
printf("%s, WARN_MSG(-1, "Warning error"));
printf("%s, ERR_MSG(-1, "Fatal error"));
example % proj
1 10
2 10

The command

example% genmsg -f -p "cc -E -I../inc" -l proj \
-o example.msg example.c

would assign each of the -1 message numbers a calculated number based upon proj
and would overwrite the results to example.c and proj. Also, this command writes
the extracted messages in example.msg.

See environ(5) for descriptions of the following environment variables that affect the
execution of genmsg: LC_MESSAGES and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

gencat(1), catgets(3C), catopen(3C), attributes(5), environ(5)

genmsg does not handle pointers or valuables in the catgets(3C) call. For example:

const int set_num = 1;
extern int msg_num(const char *);
const char *msg = "Hello";
catgets(catd, set_num, msg_num(msg), msg);

When the auto message numbering is turned on with a preprocessor, if there are
multiple -1’s in the catgets(3C) line, genmsg replaces all of the -1’s in the line
with a calculated number. For example, given the input:

genmsg(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 479

#define MSG(id, msg) catgets(catd, 1, (id), (msg))
if (ret == -1) printf("%s, MSG(-1, "Failed"));

the command

genmsg -l proj -p "cc -E"

would produce:

#define MSG(id, msg) catgets(catd, 1, (id), (msg))
if (ret == 1) printf("%s, MSG(1, "Failed"));

The workaround would be to split it into two lines as follows:

if (ret == -1)
printf("%s, MSG(-1, "Failed"));

genmsg(1)

480 man pages section 1: User Commands • Last Revised 20 Dec 1996

getconf – get configuration values

getconf [-v specification] system_var

getconf [-v specification] path_var pathname

getconf -a

In the first synopsis form, the getconf utility will write to the standard output the
value of the variable specified by system_var, in accordance with specification if the -v
option is used.

In the second synopsis form, getconf will write to the standard output the value of
the variable specified by path_var for the path specified by pathname, in accordance
with specification if the -v option is used.

In the third synopsis form, config will write to the standard output the names of the
current system configuration variables.

The value of each configuration variable will be determined as if it were obtained by
calling the function from which it is defined to be available. The value will reflect
conditions in the current operating environment.

The following options are supported:

-a Writes the names of the current system configuration
variables to the standard output.

-v specification Gives the specification which governs the selection of
values for configuration variables.

The following operands are supported:

path_var A name of a configuration variable whose value is available from
the pathconf(2) function. All of the values in the following table
are supported:

LINK_MAX NAME_MAX POSIX_CHOWN_RESTRICTED

MAX_CANON PATH_MAX POSIX_NO_TRUNC

MAX_INPUT PIPE_BUF POSIX_VDISABLE

pathname A path name for which the variable specified by path_var is to be
determined.

system_var A name of a configuration variable whose value is available from
confstr(3C) or sysconf(3C). All of the values in the following
table are supported:

getconf(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 481

ARG_MAX BC_BASE_MAX

BC_DIM_MAX BC_SCALE_MAX

BC_STRING_MAX CHAR_BIT

CHARCLASS_NAME_MAX CHAR_MAX

CHAR_MIN CHILD_MAX

CLK_TCK COLL_WEIGHTS_MAX

CS_PATH EXPR_NEST_MAX

INT_MAX INT_MIN

LFS64_CFLAGS LFS64_LDFLAGS

LFS64_LIBS LFS64_LINTFLAGS

LFS_CFLAGS LFS_LDFLAGS

LFS_LIBS LFS_LINTFLAGS

LINE_MAX LONG_BIT

LONG_MAX LONG_MIN

MB_LEN_MAX NGROUPS_MAX

NL_ARGMAX NL_LANGMAX

NL_MSGMAX NL_NMAX

NL_SETMAX NL_TEXTMAX

NZERO OPEN_MAX

POSIX2_BC_BASE_MAX POSIX2_BC_DIM_MAX

POSIX2_BC_SCALE_MAX POSIX2_BC_STRING_MAX

POSIX2_C_BIND POSIX2_C_DEV

POSIX2_CHAR_TERM POSIX2_COLL_WEIGHTS_MAX

POSIX2_C_VERSION POSIX2_EXPR_NEST_MAX

POSIX2_FORT_DEV POSIX2_FORT_RUN

POSIX2_LINE_MAX POSIX2_LOCALEDEF

POSIX2_RE_DUP_MAX POSIX2_SW_DEV

POSIX2_UPE POSIX2_VERSION

_POSIX_ARG_MAX _POSIX_CHILD_MAX

_POSIX_JOB_CONTROL _POSIX_LINK_MAX

getconf(1)

482 man pages section 1: User Commands • Last Revised 30 Jan 1998

_POSIX_MAX_CANON _POSIX_MAX_INPUT

_POSIX_NAME_MAX _POSIX_NGROUPS_MAX

_POSIX_OPEN_MAX _POSIX_PATH_MAX

_POSIX_PIPE_BUF _POSIX_SAVED_IDS

_POSIX_SSIZE_MAX _POSIX_STREAM_MAX

_POSIX_TZNAME_MAX _POSIX_VERSION

RE_DUP_MAX SCHAR_MAX

SCHAR_MIN SHRT_MAX

SHRT_MIN SSIZE_MAX

STREAM_MAX TMP_MAX

TZNAME_MAX UCHAR_MAX

UINT_MAX ULONG_MAX

USHRT_MAX WORD_BIT

XBS5_ILP32_OFF32 XBS5_ILP32_OFF32_CFLAGS

XBS5_ILP32_OFF32_LDFLAGS XBS5_ILP32_OFF32_LIBS

XBS5_ILP32_OFF32_LINTFLAGS XBS5_ILP32_OFFBIG

XBS5_ILP32_OFFBIG_CFLAGS XBS5_ILP32_OFFBIG_LDFLAGS

XBS5_ILP32_OFFBIG_LIBS XBS5_ILP32_OFFBIG_LINTFLAGS

XBS5_LP64_OFF64 XBS5_LP64_OFF64_CFLAGS

XBS5_LP64_OFF64_LDFLAGS XBS5_LP64_OFF64_LIBS

XBS5_LP64_OFF64_LINTFLAGS XBS5_LPBIG_OFFBIG

XBS5_LPBIG_OFFBIG_CFLAGS XBS5_LPBIG_OFFBIG_LDFLAGS

XBS5_LPBIG_OFFBIG_LIBS XBS5_LPBIG_OFFBIG_LINTFLAGS

_XOPEN_CRYPT _XOPEN_ENH_I18N

_XOPEN_LEGACY _XOPEN_SHM

_XOPEN_VERSION _XOPEN_XCU_VERSION

_XOPEN_XPG2 _XOPEN_XPG3

_XOPEN_XPG4

The symbol PATH also is recognized, yielding the same value as the confstr() name
value CS_PATH.

getconf(1)

User Commands 483

See largefile(5) for the description of the behavior of getconf when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Writing the value of a variable

This example illustrates the value of {NGROUPS_MAX}:

example% getconf NGROUPS_MAX

EXAMPLE 2 Writing the value of a variable for a specific directory

This example illustrates the value of NAME_MAX for a specific directory:

example% getconf NAME_MAX /usr

EXAMPLE 3 Dealing with unspecified results

This example shows how to deal more carefully with results that might be unspecified:

if value=$(getconf PATH_MAX /usr); then
if ["$value" = "undefined"]; then

echo PATH_MAX in /usr is infinite.
else

echo PATH_MAX in /usr is $value.
fi

else
echo Error in getconf.

fi

Note that

sysconf(_SC_POSIX_C_BIND);

and

system("getconf POSIX2_C_BIND");

in a C program could give different answers. The sysconf call supplies a value that
corresponds to the conditions when the program was either compiled or executed,
depending on the implementation; the system call to getconf always supplies a
value corresponding to conditions when the program is executed.

See environ(5) for descriptions of the following environment variables that affect the
execution of getconf: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The specified variable is valid and information about its current state was
written successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

getconf(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

484 man pages section 1: User Commands • Last Revised 30 Jan 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

pathconf(2), confstr(3C), sysconf(3C), attributes(5), environ(5),
largefile(5)

getconf(1)

SEE ALSO

User Commands 485

getfacl – display discretionary file information

getfacl [-ad] file…

For each argument that is a regular file, special file, or named pipe, getfacl displays
the owner, the group, and the Access Control List (ACL). For each directory argument,
getfacl displays the owner, the group, and the ACL and/or the default ACL. Only
directories contain default ACLs.

getfacl may be executed on a file system that does not support ACLs. It reports the
ACL based on the base permission bits.

With no options specified, getfacl displays the filename, the file owner, the file
group owner, and both the ACL and the default ACL, if it exists.

The following options are supported:

-a Display the filename, the file owner, the file group owner, and the ACL of
the file.

-d Display the filename, the file owner, the file group owner, and the default
ACL of the file, if it exists.

The following operands are supported:

file The path name of a regular file, special file, or named pipe.

The format for ACL output is as follows:

file: filename
owner: uid
group: gid
user::perm
user:uid:perm
group::perm
group:gid:perm
mask:perm
other:perm
default:user::perm
default:user:uid:perm
default:group::perm
default:group:gid:perm
default:mask:perm
default:other:perm

When multiple files are specified on the command line, a blank line separates the
ACLs for each file.

The ACL entries are displayed in the order in which they are evaluated when an
access check is performed. The default ACL entries that may exist on a directory have
no effect on access checks.

getfacl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

OUTPUT

486 man pages section 1: User Commands • Last Revised 5 Nov 1994

The first three lines display the filename, the file owner, and the file group owner.
Note that when only the -d option is specified and the file has no default ACL, only
these three lines are displayed.

The user entry without a user ID indicates the permissions that are granted to the file
owner. One or more additional user entries indicate the permissions that are granted
to the specified users.

The group entry without a group ID indicates the permissions that are granted to the
file group owner. One or more additional group entries indicate the permissions that
are granted to the specified groups.

The mask entry indicates the ACL mask permissions. These are the maximum
permissions allowed to any user entries except the file owner, and to any group
entries, including the file group owner. These permissions restrict the permissions
specified in other entries.

The other entry indicates the permissions that are granted to others.

The default entries may exist only for directories, and indicate the default entries
that are added to a file created within the directory.

The uid is a login name or a user ID if there is no entry for the uid in the system
password file, /etc/passwd. The gid is a group name or a group ID if there is no
entry for the gid in the system group file, /etc/group. The perm is a three character
string composed of the letters representing the separate discretionary access rights: r
(read), w (write), x (execute/search), or the place holder character −. The perm is
displayed in the following order: rwx. If a permission is not granted by an ACL entry,
the place holder character appears.

If you use the chmod(1) command to change the file group owner permissions on a file
with ACL entries, both the file group owner permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask permissions may
change the effective permissions for additional users and groups who have ACL
entries on the file.

In order to indicate that the ACL mask restrict an ACL entry, getfacl displays an
additional tab character, pound sign ("#"), and the actual permissions granted,
following the entry.

EXAMPLE 1 Displaying file information

Given file "foo", with an ACL six entries long, the command

host% getfacl foo

would print:

file: foo
owner: shea
group: staff

getfacl(1)

EXAMPLES

User Commands 487

EXAMPLE 1 Displaying file information (Continued)

user::rwx
user:spy: − − −
user:mookie:r − −
group::r − −
mask::rw −
other:: − − −

EXAMPLE 2 Displaying information after chmod command

Continue with the above example, after "chmod 700 foo" was issued:

host% getfacl foo

would print:

file: foo
owner: shea
group: staff
user::rwx
user:spy: − − −
user:mookie:r − − #effective: − − −
group:: − − −
mask:: − − −
other:: − − −

EXAMPLE 3 Displaying information when ACL contains default entries

Given directory "doo", with an ACL containing default entries, the command

host% getfacl -d doo

would print:

file: doo
owner: shea
group: staff
default:user::rwx
default:user:spy: − − −
default:user:mookie:r − −
default:group::r − −
default:mask:: − − −
default:other:: − − −

/etc/passwd system password file

/etc/group group file

See attributes(5) for descriptions of the following attributes:

getfacl(1)

FILES

ATTRIBUTES

488 man pages section 1: User Commands • Last Revised 5 Nov 1994

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

chmod(1), ls(1), setfacl(1), acl(2), aclsort(3SEC), group(4), passwd(4),
attributes(5)

The output from getfacl is in the correct format for input to the setfacl -f
command. If the output from getfacl is redirected to a file, the file may be used as
input to setfacl. In this way, a user may easily assign one file’s ACL to another file.

getfacl(1)

SEE ALSO

NOTES

User Commands 489

getfrm – returns the current frameID number

getfrm

getfrm returns the current frameID number. The frameID number is a number
assigned to the frame by FMLI and displayed flush left in the frame’s title bar. If a
frame is closed its frameID number may be reused when a new frame is opened.
getfrm takes no arguments.

EXAMPLE 1 A sample of the getfrm command.

If a menu whose frameID is 3 defines an item to have this action descriptor:

action=open text stdtext ‘getfrm‘

the text frame defined in the definition file stdtext would be passed the argument 3
when it is opened.

It is not a good idea to use getfrm in a backquoted expression coded on a line by
itself. Stand-alone backquoted expressions are evaluated before any descriptors are
parsed, thus the frame is not yet fully current, and may not have been assigned a
frameID number.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

getfrm(1F)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

NOTES

ATTRIBUTES

SEE ALSO

490 man pages section 1: User Commands • Last Revised 5 Jul 1990

getitems – returns a list of currently marked menu items

getitems [delimiter_string]

The getitems function returns the value of lininfo if defined, else it returns the
value of the name descriptor, for all currently marked menu items. Each value in the
list is delimited by delimiter_string. The default value of delimiter_string is newline.

EXAMPLE 1 A sample output of getitems command.

The done descriptor in the following menu definition file executes getitems when
the user presses ENTER (note that the menu is multiselect):

Menu="Example"
multiselect=TRUE
done=‘getitems ":" | message‘
name="Item 1"
action=‘message "You selected item 1"‘
name="Item 2"
lininfo="This is item 2"
action=‘message "You selected item 2"‘
name="Item 3"
action=‘message "You selected item 3"‘

If a user marked all three items in this menu, pressing ENTER would cause the
following string to be displayed on the message line:

Item 1:This is item 2:Item 3

Because lininfo is defined for the second menu item, its value is displayed instead
of the value of the name descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

getitems(1F)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

NOTES

ATTRIBUTES

SEE ALSO

User Commands 491

getopt – parse command options

set -– ‘ getopt optstring $ * ‘

The getopts command supersedes getopt. For more information, see NOTES
below.

getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options. optstring is a string of recognized option
letters; see getopt(3C). If a letter is followed by a colon (:), the option is expected to
have an argument which may or may not be separated from it by white space. The
special option – is used to delimit the end of the options. If it is used explicitly,
getopt recognizes it; otherwise, getopt generates it; in either case, getopt places it
at the end of the options. The positional parameters ($1 $2 . . .) of the shell are reset
so that each option is preceded by a − and is in its own positional parameter; each
option argument is also parsed into its own positional parameter.

EXAMPLE 1 Processing the arguments for a command

The following code fragment shows how one might process the arguments for a
command that can take the options -a or -b, as well as the option -o, which requires
an argument:

set -- ‘getopt abo: $*‘
if [$? != 0]
then

echo $USAGE
exit 2

fi
for i in $*
do

case $i in
-a | -b) FLAG=$i; shift;;
-o) OARG=$2; shift 2;;
--) shift; break;;
esac

done

This code accepts any of the following as equivalent:

cmd -aoarg filename1 filename2
cmd -a -o arg filename1 filename2
cmd -oarg -a filename1 filename2
cmd -a -oarg -- filename1 filename2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

getopt(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

492 man pages section 1: User Commands • Last Revised 7 Jan 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI enabled

intro(1), getopts(1), getoptcvt(1), sh(1), shell_builtins(1), getopt(3C),
attributes(5)

getopt prints an error message on the standard error when it encounters an option
letter not included in optstring.

getopt will not be supported in the next major release. For this release a conversion
tool has been provided, namely, getoptcvt. For more information, see getopts(1)
and getoptcvt(1).

Reset optind to 1 when rescanning the options.

getopt does not support the part of Rule 8 of the command syntax standard (see
intro(1)) that permits groups of option-arguments following an option to be
separated by white space and quoted. For example,

cmd -a -b -o "xxx z yy" filenameis not handled correctly. To correct this deficiency,
use the getopts command in place of getopt.

If an option that takes an option-argument is followed by a value that is the same as
one of the options listed in optstring (referring to the earlier EXAMPLES section, but
using the following command line:

cmd -o -a filenamegetopt always treats it as an option-argument to -o; it never
recognizes -a as an option. For this case, the for loop in the example shifts past the
filename argument.

getopt(1)

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 493

getoptcvt – convert to getopts to parse command options

/usr/lib/getoptcvt [-b] filename

/usr/lib/getoptcvt

/usr/lib/getoptcvt reads the shell script in filename, converts it to use getopts
instead of getopt, and writes the results on the standard output.

getopts is a built-in Bourne shell command used to parse positional parameters and
to check for valid options. See sh(1). It supports all applicable rules of the command
syntax standard (see Rules 3-10, intro(1)). It should be used in place of the getopt
command. (See the NOTES section below.) The syntax for the shell’s built-in getopts
command is:

getopts optstring name [argument . . .]

optstring must contain the option letters the command using getopts will recognize;
if a letter is followed by a colon (:), the option is expected to have an argument, or
group of arguments, which must be separated from it by white space.

Each time it is invoked, getopts places the next option in the shell variable name and
the index of the next argument to be processed in the shell variable OPTIND.
Whenever the shell or a shell script is invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the shell variable
OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit status.
The special option −− may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (argument
. . .) are given on the getopts command line, getopts parses them instead.

So that all new commands will adhere to the command syntax standard described in
intro(1), they should use getopts or getopt to parse positional parameters and
check for options that are valid for that command (see the NOTES section below).

The following option is supported:

-b Makes the converted script portable to earlier releases of the UNIX system.
/usr/lib/getoptcvt modifies the shell script in filename so that when
the resulting shell script is executed, it determines at run time whether to
invoke getopts or getopt.

EXAMPLE 1 Processing the arguments for a command

The following fragment of a shell program shows how one might process the
arguments for a command that can take the options -a or -b, as well as the option -o,
which requires an option-argument:

getoptcvt(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

494 man pages section 1: User Commands • Last Revised 7 Jan 2000

EXAMPLE 1 Processing the arguments for a command (Continued)

while getopts abo: c
do

case $c in
a | b) FLAG=$c;;
o) OARG=$OPTARG;;
\?) echo $USAGE

exit 2;;
esac

done
shift ‘expr $OPTIND − 1‘

EXAMPLE 2 Equivalent code expressions

This code accepts any of the following as equivalent:

cmd -a -b -o "xxx z yy" filename
cmd -a -b -o "xxx z yy" -filename
cmd -ab -o xxx,z,yy filename
cmd -ab -o "xxx z yy" filename
cmd -o xxx,z,yy b a filename

See environ(5) for descriptions of the following environment variables that affect the
execution of getopts: LC_CTYPE, LC_MESSAGES, and NLSPATH.

OPTIND This variable is used by getoptcvt as the index of the next
argument to be processed.

OPTARG This variable is used by getoptcvt to store the argument if an
option is using arguments.

The following exit values are returned:

0 An option, specified or unspecified by optstring, was found.

>0 The end of options was encountered or an error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

intro(1), getopts(1), sh(1), shell_builtins(1), getopt(3C), attributes(5)

getopts prints an error message on the standard error when it encounters an option
letter not included in optstring.

getoptcvt(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 495

Although the following command syntax rule (see intro(1)) relaxations are permitted
under the current implementation, they should not be used because they may not be
supported in future releases of the system. As in the EXAMPLES section above, -a
and -b are options, and the option -o requires an option-argument. The following
example violates Rule 5: options with option-arguments must not be grouped with
other options:

example% cmd -aboxxx filename

The following example violates Rule 6: there must be white space after an option that
takes an option-argument:

example% cmd -ab oxxx filename

Changing the value of the shell variable OPTIND or parsing different sets of arguments
may lead to unexpected results.

getoptcvt(1)

NOTES

496 man pages section 1: User Commands • Last Revised 7 Jan 2000

getopts – parse utility options

/usr/bin/getopts optstring name [arg…]

getopts optstring name [argument…]

getopts optstring name [arg…]

The getopts utility can be used to retrieve options and option-arguments from a list
of parameters.

Each time it is invoked, the getopts utility places the value of the next option in the
shell variable specified by the name operand and the index of the next argument to be
processed in the shell variable OPTIND. Whenever the shell is invoked, OPTIND will
be initialised to 1.

When the option requires an option-argument, the getopts utility will place it in the
shell variable OPTARG. If no option was found, or if the option that was found does
not have an option-argument, OPTARG will be unset.

If an option character not contained in the optstring operand is found where an option
character is expected, the shell variable specified by name will be set to the
question-mark (?) character. In this case, if the first character in optstring is a colon
(:, the shell variable OPTARG will be set to the option character found, but no output
will be written to standard error; otherwise, the shell variable OPTARG will be unset
and a diagnostic message will be written to standard error. This condition is
considered to be an error detected in the way arguments were presented to the
invoking application, but is not an error in getopts processing.

If an option-argument is missing:

� If the first character of optstring is a colon, the shell variable specified by name will
be set to the colon character and the shell variable OPTARG will be set to the option
character found.

� Otherwise, the shell variable specified by name will be set to the question-mark
character (?), the shell variable OPTARG will be unset, and a diagnostic message
will be written to standard error. This condition is considered to be an error
detected in the way arguments were presented to the invoking application, but is
not an error in getopts processing; a diagnostic message will be written as stated,
but the exit status will be zero.

When the end of options is encountered, the getopts utility will exit with a return
value greater than zero; the shell variable OPTIND will be set to the index of the first
non-option-argument, where the first − − argument is considered to be an
option-argument if there are no other non-option-arguments appearing before it, or
the value $# + 1 if there are no non-option-arguments; the name variable will be set to
the question-mark character. Any of the following identifies the end of options: the
special option − −, finding an argument that does not begin with a −, or encountering
an error.

getopts(1)

NAME

SYNOPSIS

sh

ksh

/usr/bin/getopts

User Commands 497

The shell variables OPTIND and OPTARG are local to the caller of getopts and are not
exported by default.

The shell variable specified by the name operand, OPTIND and OPTARG affect the
current shell execution environment.

If the application sets OPTIND to the value 1, a new set of parameters can be used:
either the current positional parameters or new arg values. Any other attempt to
invoke getopts multiple times in a single shell execution environment with
parameters (positional parameters or arg operands) that are not the same in all
invocations, or with an OPTIND value modified to be a value other than 1, produces
unspecified results.

getopts is a built-in Bourne shell command used to parse positional parameters and
to check for valid options. See sh(1). It supports all applicable rules of the command
syntax standard (see Rules 3-10, intro(1)). It should be used in place of the getopt
command.

optstring must contain the option letters the command using getopts will recognize;
if a letter is followed by a colon, the option is expected to have an argument, or group
of arguments, which must be separated from it by white space.

Each time it is invoked, getopts places the next option in the shell variable name and
the index of the next argument to be processed in the shell variable OPTIND.
Whenever the shell or a shell script is invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the shell variable
OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit status.
The special option – may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (argument
. . .) are given on the getopts command line, getopts parses them instead.

/usr/lib/getoptcvt reads the shell script in filename, converts it to use getopts
instead of getopt, and writes the results on the standard output.

So that all new commands will adhere to the command syntax standard described in
intro(1), they should use getopts or getopt to parse positional parameters and
check for options that are valid for that command.

getopts prints an error message on the standard error when it encounters an option
letter not included in optstring.

Although the following command syntax rule (see intro(1)) relaxations are permitted
under the current implementation, they should not be used because they may not be
supported in future releases of the system. As in the EXAMPLES section below, -a
and -b are options, and the option -o requires an option-argument.

getopts(1)

sh

498 man pages section 1: User Commands • Last Revised 7 Jan 2000

The following example violates Rule 5: options with option-arguments must not be
grouped with other options:

example% cmd -aboxxx filename

The following example violates Rule 6: there must be white space after an option that
takes an option-argument:

example% cmd -ab oxxx filename

Changing the value of the shell variable OPTIND or parsing different sets of arguments
may lead to unexpected results.

Checks arg for legal options. If arg is omitted, the positional parameters are used. An
option argument begins with a + or a −. An option not beginning with + or − or the
argument – ends the options. optstring contains the letters that getopts recognizes. If
a letter is followed by a :, that option is expected to have an argument. The options
can be separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is
invoked with a + prepended when arg begins with a +. The index of the next arg is
stored in OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in
OPTARG, and to set name to ? for an unknown option and to : when a required option
is missing. Otherwise, getopts prints an error message. The exit status is non-zero
when there are no more options.

For a further discussion of the Korn shell’s getopts built-in command, see the
previous discussion in the Bourne shell (sh) section of this manpage.

The following operands are supported:

optstring A string containing the option characters recognised by the utility
invoking getopts. If a character is followed by a colon, the option
will be expected to have an argument, which should be supplied
as a separate argument. Applications should specify an option
character and its option-argument as separate arguments, but
getopts will interpret the characters following an option
character requiring arguments as an argument whether or not this
is done. An explicit null option-argument need not be recognised if
it is not supplied as a separate argument when getopts is
invoked; see getopt(3C). The characters question-mark (?) and
colon (:) must not be used as option characters by an application.
The use of other option characters that are not alphanumeric
produces unspecified results. If the option-argument is not
supplied as a separate argument from the option character, the
value in OPTARG will be stripped of the option character and the −.

getopts(1)

ksh

OPERANDS

User Commands 499

The first character in optstring will determine how getopts will
behave if an option character is not known or an option-argument
is missing.

name The name of a shell variable that will be set by the getopts utility
to the option character that was found.

The getopts utility by default will parse positional parameters passed to the
invoking shell procedure. If args are given, they will be parsed instead of the
positional parameters.

Since getopts affects the current shell execution environment, it is generally
provided as a shell regular built-in. If it is called in a subshell or separate utility
execution environment, such as one of the following:

(getopts abc value "$@")
nohup getopts ...
find . -exec getopts ... \;

it will not affect the shell variables in the caller’s environment.

Notice that shell functions share OPTIND with the calling shell even though the
positional parameters are changed. Functions that want to use getopts to parse their
arguments will usually want to save the value of OPTIND on entry and restore it
before returning. However, there will be cases when a function will want to change
OPTIND for the calling shell.

EXAMPLE 1 Parsing and displaying arguments

The following example script parses and displays its arguments:

aflag=
bflag=
while getopts ab: name
do

case $name in
a) aflag=1;;
b) bflag=1

bval="$OPTARG";;
?) printf "Usage: %s: [-a] [-b value] args\n" $0

exit 2;;
esac

done
if [! -z "$aflag"]; then

printf "Option -a specified\n"
fi
if [! -z "$bflag"]; then

printf ’Option -b "%s" specified\n’ "$bval"
fi
shift $(($OPTIND - 1))
printf "Remaining arguments are: %s\n" "$*"

getopts(1)

USAGE

EXAMPLES

500 man pages section 1: User Commands • Last Revised 7 Jan 2000

EXAMPLE 1 Parsing and displaying arguments (Continued)

EXAMPLE 2 Processing arguments for a command with options

The following fragment of a shell program shows how one might process the
arguments for a command that can take the options -a or -b, as well as the option -o,
which requires an option-argument:

while getopts abo: c
do

case $c in
a | b) FLAG=$c;;
o) OARG=$OPTARG;;
\?) echo $USAGE

exit 2;;
esac

done

shift ‘expr $OPTIND − 1‘

EXAMPLE 3 Equivalent code expressions

This code accepts any of the following as equivalent:

cmd -a -b -o "xxx z yy" filename
cmd -a -b -o "xxx z yy" -- filename
cmd -ab -o xxx,z,yy filename
cmd -ab -o "xxx z yy" filename

cmd -o xxx,z,yy -b -a filename

See environ(5) for descriptions of the following environment variables that affect the
execution of getopts: LC_CTYPE, LC_MESSAGES, and NLSPATH.

OPTIND This variable is used by getopts as the index of the next
argument to be processed.

OPTARG This variable is used by getopts to store the argument if an
option is using arguments.

The following exit values are returned:

0 An option, specified or unspecified by optstring, was found.

>0 The end of options was encountered or an error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

intro(1), getoptcvt(1), ksh(1), sh(1), getopt(3C), attributes(5), environ(5)

getopts(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 501

Whenever an error is detected and the first character in the optstring operand is not a
colon (:), a diagnostic message will be written to standard error with the following
information in an unspecified format:

� The invoking program name will be identified in the message. The invoking
program name will be the value of the shell special parameter 0 at the time the
getopts utility is invoked. A name equivalent to

basename "$0"may be used.

� If an option is found that was not specified in optstring, this error will be identified
and the invalid option character will be identified in the message.

� If an option requiring an option-argument is found, but an option-argument is not
found, this error will be identified and the invalid option character will be
identified in the message.

getopts(1)

DIAGNOSTICS

502 man pages section 1: User Commands • Last Revised 7 Jan 2000

gettext – retrieve text string from message database

gettext [-d textdomain | -−domain=textdomain] [textdomain] msgid

gettext -s [-e] [-n] [-d textdomain | -−domain=textdomain]msgid…

The gettext utility retrieves a translated text string corresponding to string msgid
from a message object generated with msgfmt(1). The message object name is derived
from the optional argument textdomain if present, otherwise from the TEXTDOMAIN
environment. If no domain is specified, or if a corresponding string cannot be found,
gettext prints msgid.

Ordinarily, gettext looks for its message object in
/usr/lib/locale/lang/LC_MESSAGES where lang is the locale name. If present, the
TEXTDOMAINDIR environment variable replaces the pathname component up to lang.

This command interprets C escape sequences such as \t for tab. Use \\ to print a
backslash. To produce a message on a line of its own, either enter \n at the end of
msgid, or use this command in conjunction with printf(1).

When used with the -s option, gettext behaves like echo(1). But it does not simply
copy its arguments to standard output. Instead, those messages found in the selected
catalog are translated.

The following options are supported:

-d textdomain
-−domain=textdomain Retrieves translated messages from the domain

textdomain, if textdomain is not specified as an operand.

-e Enables expansion of some escape sequences if used
with the -s option.

-n Suppresses trailing newline if used with the -s option.

-s Behaves like echo(1) (see DESCRIPTION above). If the
-s option is specified, no expansion of C escape
sequences is performed and a newline character is
appended to the output, by default.

The following operands are supported:

textdomain A domain name used to retrieve the messages. This
overrides the specification by the -d or -−domain
options, if present.

msgid A key to retrieve the localized message.

LANG Specifies locale name.

LC_MESSAGES Specifies messaging locale, and if present overrides
LANG for messages.

gettext(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ENVIRONMENT
VARIABLES

User Commands 503

TEXTDOMAIN Specifies the text domain name, which is identical to
the message object filename without .mo suffix.

TEXTDOMAINDIR Specifies the pathname to the message database. If
present, replaces /usr/lib/locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

echo(1), msgfmt(1), printf(1), gettext(3C), setlocale(3C), attributes(5)

This is the shell equivalent of the library routine gettext(3C).

gettext(1)

ATTRIBUTES

SEE ALSO

NOTES

504 man pages section 1: User Commands • Last Revised 17 Sep 2001

gettxt – retrieve a text string from a message database

gettxt msgfile : msgnum [dflt_msg]

gettxt retrieves a text string from a message file in the directory
/usr/lib/locale/locale/LC_MESSAGES . The directory name locale corresponds to
the language in which the text strings are written; see setlocale(3C).

msgfile Name of the file in the directory
/usr/lib/locale/locale/LC_MESSAGES to retrieve msgnum
from. The name of msgfile can be up to 14 characters in length, but
may not contain either \0 (null) or the ASCII code for / (slash) or
: (colon).

msgnum Sequence number of the string to retrieve from msgfile. The strings
in msgfile are numbered sequentially from 1 to n, where n is the
number of strings in the file.

dflt_msg Default string to be displayed if gettxt fails to retrieve msgnum
from msgfile. Nongraphic characters must be represented as
alphabetic escape sequences.

The text string to be retrieved is in the file msgfile, created by the mkmsgs(1) utility and
installed under the directory /usr/lib/locale/locale/LC_MESSAGES . You control
which directory is searched by setting the environment variable LC_MESSAGES. If
LC_MESSAGES is not set, the environment variable LANG will be used. If LANG is not
set, the files containing the strings are under the directory
/usr/lib/locale/C/LC_MESSAGES .

If gettxt fails to retrieve a message in the requested language, it will try to retrieve
the same message from /usr/lib/locale/C/LC_MESSAGES/ msgfile. If this also
fails, and if dflt_msg is present and non-null, then it will display the value of dflt_msg;
if dflt_msg is not present or is null, then it will display the string Message not
found!!.

EXAMPLE 1 The environment variables LANG and LC_MESSAGES.

If the environment variables LANG or LC_MESSAGES have not been set to other than
their default values, the following example:

example% gettxt UX:10 "hello world\n"

will try to retrieve the 10th message from /usr/lib/locale/C/UX/msgfile. If the
retrieval fails, the message "hello world," followed by a newline, will be displayed.

See environ(5) for descriptions of the following environment variables that affect the
execution of gettxt: LC_CTYPE and LC_MESSAGES.

LC_CTYPE Determines how gettxt handles characters. When
LC_CTYPE is set to a valid value, gettxt can display
and handle text and filenames containing valid

gettxt(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ENVIRONMENT
VARIABLES

User Commands 505

characters for that locale. gettxt can display and
handle Extended Unix Code (EUC) characters where
any individual character can be 1, 2, or 3 bytes wide.
gettxt can also handle EUC characters of 1, 2, or
more column widths. In the "C" locale, only characters
from ISO 8859-1 are valid.

LC_MESSAGES Determines how diagnostic and informative messages
are presented. This includes the language and style of
the messages, and the correct form of affirmative and
negative responses. In the "C" locale, the messages are
presented in the default form found in the program
itself (in most cases, U.S. English).

/usr/lib/locale/C/LC_MESSAGES/*
default message files created by mkmsgs(1)

/usr/lib/locale/locale/LC_MESSAGES/*
message files for different languages created by mkmsgs(1)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

CSI Enabled

exstr(1), mkmsgs(1), srchtxt(1), gettxt(3C), setlocale(3C), attributes(5),
environ(5)

gettxt(1)

FILES

ATTRIBUTES

SEE ALSO

506 man pages section 1: User Commands • Last Revised 20 Dec 1996

glob – shell built-in function to expand a word list

glob wordlist

glob performs filename expansion on wordlist. Like echo(1), but no ‘\’ escapes are
recognized. Words are delimited by null characters in the output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), echo(1), attributes(5)

glob(1)

NAME

csh

csh

ATTRIBUTES

SEE ALSO

User Commands 507

gprof – display call-graph profile data

gprof [-abcCDlsz] [-e function-name] [-E function-name] [-f function-name]
[-F function-name] [image-file [profile-file…]] [-n number of functions]

The gprof utility produces an execution profile of a program. The effect of called
routines is incorporated in the profile of each caller. The profile data is taken from the
call graph profile file that is created by programs compiled with the -xpg option of
cc(1), or by the -pg option with other compilers, or by setting the LD_PROFILE
environment variable for shared objects. See ld.so.1(1). These compiler options also
link in versions of the library routines which are compiled for profiling. The symbol
table in the executable image file image-file (a.out by default) is read and correlated
with the call graph profile file profile-file (gmon.out by default).

First, execution times for each routine are propagated along the edges of the call
graph. Cycles are discovered, and calls into a cycle are made to share the time of the
cycle. The first listing shows the functions sorted according to the time they represent,
including the time of their call graph descendants. Below each function entry is shown
its (direct) call-graph children and how their times are propagated to this function. A
similar display above the function shows how this function’s time and the time of its
descendants are propagated to its (direct) call-graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the
members of the cycle and their contributions to the time and call counts of the cycle.

Next, a flat profile is given, similar to that provided by prof(1). This listing gives the
total execution times and call counts for each of the functions in the program, sorted
by decreasing time. Finally, an index is given, which shows the correspondence
between function names and call-graph profile index numbers.

A single function may be split into subfunctions for profiling by means of the MARK
macro. See prof(5).

Beware of quantization errors. The granularity of the sampling is shown, but remains
statistical at best. It is assumed that the time for each execution of a function can be
expressed by the total time for the function divided by the number of times the
function is called. Thus the time propagated along the call-graph arcs to parents of
that function is directly proportional to the number of times that arc is traversed.

The profiled program must call exit(2) or return normally for the profiling
information to be saved in the gmon.out file.

The following options are supported:

-a Suppress printing statically declared functions. If this
option is given, all relevant information about the static
function (for instance, time samples, calls to other
functions, calls from other functions) belongs to the
function loaded just before the static function in the
a.out file.

gprof(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

508 man pages section 1: User Commands • Last Revised 27 Jul 1998

-b Brief. Suppress descriptions of each field in the profile.

-c Discover the static call-graph of the program by a
heuristic which examines the text space of the object
file. Static-only parents or children are indicated with
call counts of 0. Note that for dynamically linked
executables, the linked shared objects’ text segments
are not examined.

-C Demangle C++ symbol names before printing them
out.

-D Produce a profile file gmon.sum that represents the
difference of the profile information in all specified
profile files. This summary profile file may be given to
subsequent executions of gprof (also with -D) to
summarize profile data across several runs of an a.out
file. See also the -s option.

As an example, suppose function A calls function B n
times in profile file gmon.sum, and m times in profile
file gmon.out. With -D, a new gmon.sum file will be
created showing the number of calls from A to B as
n-m.

-e function-name Suppress printing the graph profile entry for routine
function-name and all its descendants (unless they have
other ancestors that are not suppressed). More than one
-e option may be given. Only one function-name may
be given with each -e option.

-E function-name Suppress printing the graph profile entry for routine
function-name (and its descendants) as -e, below, and
also exclude the time spent in function-name (and its
descendants) from the total and percentage time
computations. More than one -E option may be given.
For example:

‘-E mcount -E mcleanup’

is the default.

-f function-name Print the graph profile entry only for routine
function-name and its descendants. More than one -f
option may be given. Only one function-name may be
given with each -f option.

-F function-name Print the graph profile entry only for routine
function-name and its descendants (as -f, below) and
also use only the times of the printed routines in total

gprof(1)

User Commands 509

time and percentage computations. More than one -F
option may be given. Only one function-name may be
given with each -F option. The -F option overrides the
-E option.

-l Suppress the reporting of graph profile entries for all
local symbols. This option would be the equivalent of
placing all of the local symbols for the specified
executable image on the -E exclusion list.

-n Limits the size of flat and graph profile listings to the
top n offending functions.

-s Produce a profile file gmon.sum which represents the
sum of the profile information in all of the specified
profile files. This summary profile file may be given to
subsequent executions of gprof (also with -s) to
accumulate profile data across several runs of an
a.out file. See also the -D option.

-z Display routines which have zero usage (as indicated
by call counts and accumulated time). This is useful in
conjunction with the -c option for discovering which
routines were never called. Note that this has restricted
use for dynamically linked executables, since shared
object text space will not be examined by the -c option.

PROFDIR If this environment variable contains a value, place profiling
output within that directory, in a file named pid.programname. pid
is the process ID and programname is the name of the program
being profiled, as determined by removing any path prefix from
the argv[0] with which the program was called. If the variable
contains a null value, no profiling output is produced. Otherwise,
profiling output is placed in the file gmon.out.

a.out executable file containing namelist

gmon.out dynamic call-graph and profile

gmon.sum summarized dynamic call-graph and profile

$PROFDIR/pid.programname

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

gprof(1)

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

510 man pages section 1: User Commands • Last Revised 27 Jul 1998

cc(1), ld.so.1(1), prof(1), exit(2), pcsample(2), profil(2), malloc(3C),
malloc(3MALLOC), monitor(3C), attributes(5), prof(5)

Graham, S.L., Kessler, P.B., McKusick, M.K., ‘gprof: A Call Graph Execution Profiler’,
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction, SIGPLAN Notices,
Vol. 17, No. 6, pp. 120-126, June 1982.

Linker and Libraries Guide

If the executable image has been stripped and has no symbol table (.symtab), then
gprof will read the dynamic symbol table (.dyntab), if present. If the dynamic symbol
table is used, then only the information for the global symbols will be available, and
the behavior will be identical to the -a option.

LD_LIBRARY_PATH must not contain /usr/lib as a component when compiling a
program for profiling. If LD_LIBRARY_PATH contains /usr/lib, the program will
not be linked correctly with the profiling versions of the system libraries in
/usr/lib/libp.

The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes. Even
if a program seems to be the only one using the machine, hidden background or
asynchronous processes may blur the data. In rare cases, the clock ticks initiating
recording of the program counter may "beat" with loops in a program, grossly
distorting measurements. Call counts are always recorded precisely, however.

Only programs that call exit or return from main are guaranteed to produce a profile
file, unless a final call to monitor is explicitly coded.

Functions such as mcount(), _mcount(), moncontrol(), _moncontrol(),
monitor(), and _monitor() may appear in the gprof report. These functions are
part of the profiling implementation and thus account for some amount of the runtime
overhead. Since these functions are not present in an unprofiled application, time
accumulated and call counts for these functions may be ignored when evaluating the
performance of an application.

64–bit profiling may be used freely with dynamically linked executables, and profiling
information is collected for the shared objects if the objects are compiled for profiling.
Care must be applied to interpret the profile output, since it is possible for symbols
from different shared objects to have the same name. If name duplication occurs in the
profile output, the module id prefix before the symbol name in the symbol index
listing can be used to identify the appropriate module for the symbol.

When using the -s or -D option to sum multiple profile files, care must be taken not
to mix 32–bit profile files with 64–bit profile files.

32–bit profiling may be used with dynamically linked executables, but care must be
applied. In 32–bit profiling, shared objects cannot be profiled with gprof. Thus, when
a profiled, dynamically linked program is executed, only the "main" portion of the

gprof(1)

SEE ALSO

NOTES

64–bit profiling

32–bit profiling

User Commands 511

image is sampled. This means that all time spent outside of the "main" object, that is,
time spent in a shared object, will not be included in the profile summary; the total
time reported for the program may be less than the total time used by the program.

Because the time spent in a shared object cannot be accounted for, the use of shared
objects should be minimized whenever a program is profiled with gprof. If desired,
the program should be linked to the profiled version of a library (or to the standard
archive version if no profiling version is available), instead of the shared object to get
profile information on the functions of a library. Versions of profiled libraries may be
supplied with the system in the /usr/lib/libp directory. Refer to compiler driver
documentation on profiling.

Consider an extreme case. A profiled program dynamically linked with the shared C
library spends 100 units of time in some libc routine, say, malloc(). Suppose
malloc() is called only from routine B and B consumes only 1 unit of time. Suppose
further that routine A consumes 10 units of time, more than any other routine in the
"main" (profiled) portion of the image. In this case, gprof will conclude that most of
the time is being spent in A and almost no time is being spent in B. From this it will be
almost impossible to tell that the greatest improvement can be made by looking at
routine B and not routine A. The value of the profiler in this case is severely degraded;
the solution is to use archives as much as possible for profiling.

Parents which are not themselves profiled will have the time of their profiled children
propagated to them, but they will appear to be spontaneously invoked in the
call-graph listing, and will not have their time propagated further. Similarly, signal
catchers, even though profiled, will appear to be spontaneous (although for more
obscure reasons). Any profiled children of signal catchers should have their times
propagated properly, unless the signal catcher was invoked during the execution of
the profiling routine, in which case all is lost.

gprof(1)

BUGS

512 man pages section 1: User Commands • Last Revised 27 Jul 1998

graph – draw a graph

graph [-a spacing [start]] [-b] [-c string] [-g gridstyle] [-l label]
[-m connectmode] [-s] [-x [l] lower [upper [spacing]]] [-y [l] lower
[upper [spacing]]] [-h fraction] [-w fraction] [-r fraction] [-u fraction]
[-t] …

graph with no options takes pairs of numbers from the standard input as abscissaes
and ordinates of a graph. Successive points are connected by straight lines. The
standard output from graph contains plotting instructions suitable for input to
plot(1B) or to the command lpr -g (see lpr(1B)).

If the coordinates of a point are followed by a nonnumeric string, that string is printed
as a label beginning on the point. Labels may be surrounded with quotes ". . .", in
which case they may be empty or contain blanks and numbers; labels never contain
NEWLINE characters.

A legend indicating grid range is produced with a grid unless the -s option is present.

Each option is recognized as a separate argument. If a specified lower limit exceeds
the upper limit, the axis is reversed.

-a spacing[start]
Supply abscissaes automatically (they are missing from the input); spacing is the
spacing (default 1). start is the starting point for automatic abscissaes (default 0 or
lower limit given by -x).

-b
Break (disconnect) the graph after each label in the input.

-c string
String is the default label for each point.

-g gridstyle
Gridstyle is the grid style: 0 no grid, 1 frame with ticks, 2 full grid (default).

-l label
label is label for graph.

-m connectmode
Mode (style) of connecting lines: 0 disconnected, 1 connected (default). Some
devices give distinguishable line styles for other small integers.

-s
Save screen, do not erase before plotting.

-x [l] lower [upper [spacing]]
If l is present, x axis is logarithmic. lower and upper are lower (and upper) x limits.
spacing, if present, is grid spacing on x axis. Normally these quantities are
determined automatically.

graph(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 513

-y [l] lower [upper [spacing]]
If l is present, y axis is logarithmic. lower and upper are lower (and upper) y limits.
spacing, if present, is grid spacing on y axis. Normally these quantities are
determined automatically.

-h fraction
fraction of space for height.

-w fraction
fraction of space for width.

-r fraction
fraction of space to move right before plotting.

-u fraction
fraction of space to move up before plotting.

-t
Transpose horizontal and vertical axes. Option -x now applies to the vertical axis.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

lpr(1B), plot(1B), spline(1), plot(3PLOT), attributes(5)

graph stores all points internally and drops those for which there is no room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

graph(1)

ATTRIBUTES

SEE ALSO

BUGS

514 man pages section 1: User Commands • Last Revised 14 Sep 1992

grep – search a file for a pattern

/usr/bin/grep [-bchilnsvw] limited-regular-expression [filename…]

/usr/xpg4/bin/grep [-E | -F] [-c | -l | -q] [-bhinsvwx]
-e pattern_list… [-f pattern_file]… [file…]

/usr/xpg4/bin/grep [-E | -F] [-c | -l | -q] [-bhinsvwx]
[-e pattern_list…] -f pattern_file… [file…]

/usr/xpg4/bin/grep [-E | -F] [-c | -l | -q] [-bhinsvwx] pattern
[file…]

The grep utility searches text files for a pattern and prints all lines that contain that
pattern. It uses a compact non-deterministic algorithm.

Be careful using the characters $, *, [, ^, |, (,), and \ in the pattern_list because they
are also meaningful to the shell. It is safest to enclose the entire pattern_list in single
quotes ´ . . . ´.

If no files are specified, grep assumes standard input. Normally, each line found is
copied to standard output. The file name is printed before each line found if there is
more than one input file.

The /usr/bin/grep utility uses limited regular expressions like those described on
the regexp(5) manual page to match the patterns.

The options -E and -F affect the way /usr/xpg4/bin/grep interprets pattern_list. If
-E is specified, /usr/xpg4/bin/grep interprets pattern_list as a full regular
expression (see -E for description). If -F is specified, grep interprets pattern_list as a
fixed string. If neither are specified, grep interprets pattern_list as a basic regular
expression as described on regex(5) manual page.

The following options are supported for both /usr/bin/grep and
/usr/xpg4/bin/grep:

-b Precede each line by the block number on which it was found. This can be
useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.

-h Prevents the name of the file containing the matching line from being
appended to that line. Used when searching multiple files.

-i Ignore upper/lower case distinction during comparisons.

-l Print only the names of files with matching lines, separated by NEWLINE
characters. Does not repeat the names of files when the pattern is found
more than once.

-n Precede each line by its line number in the file (first line is 1).

-s Suppress error messages about nonexistent or unreadable files.

grep(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/bin/grep

/usr/xpg4/bin/grep

OPTIONS

User Commands 515

-v Print all lines except those that contain the pattern.

-w Search for the expression as a word as if surrounded by \< and \>.

The following options are supported for /usr/xpg4/bin/grep only:

-e pattern_list Specify one or more patterns to be used during the search for
input. Patterns in pattern_list must be separated by a NEWLINE
character. A null pattern can be specified by two adjacent newline
characters in pattern_list. Unless the -E or -F option is also
specified, each pattern will be treated as a basic regular expression.
Multiple -e and -f options are accepted by grep. All of the
specified patterns are used when matching lines, but the order of
evaluation is unspecified.

-E Match using full regular expressions. Treat each pattern specified
as a full regular expression. If any entire full regular expression
pattern matches an input line, the line will be matched. A null full
regular expression matches every line. Each pattern will be
interpreted as a full regular expression as described on the
regex(5) manual page, except for \(and \), and including:

1. A full regular expression followed by + that matches one or
more occurrences of the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1
occurrences of the full regular expression.

3. Full regular expressions separated by | or by a new-line that
match strings that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses
() for grouping.

The order of precedence of operators is [], then * ? +, then
concatenation, then | and new-line.

-f pattern_file Read one or more patterns from the file named by the path name
pattern_file. Patterns in pattern_file are terminated by a NEWLINE
character. A null pattern can be specified by an empty line in
pattern_file. Unless the -E or -F option is also specified, each
pattern will be treated as a basic regular expression.

-F Match using fixed strings. Treat each pattern specified as a string
instead of a regular expression. If an input line contains any of the
patterns as a contiguous sequence of bytes, the line will be
matched. A null string matches every line. See fgrep(1) for more
information.

-q Quiet. Do not write anything to the standard output, regardless of
matching lines. Exit with zero status if an input line is selected.

-x Consider only input lines that use all characters in the line to
match an entire fixed string or regular expression to be matching

grep(1)

/usr/xpg4/bin/grep

516 man pages section 1: User Commands • Last Revised 20 Oct 1997

lines.

The following operands are supported:

file A path name of a file to be searched for the patterns. If no file
operands are specified, the standard input will be used.

pattern Specify a pattern to be used during the search for input.

pattern Specify one or more patterns to be used during the search for
input. This operand is treated as if it were specified as
-epattern_list.

The -epattern_list option has the same effect as the pattern_list operand, but is useful
when pattern_list begins with the hyphen delimiter. It is also useful when it is more
convenient to provide multiple patterns as separate arguments.

Multiple -e and -f options are accepted and grep will use all of the patterns it is
given while matching input text lines. (Note that the order of evaluation is not
specified. If an implementation finds a null string as a pattern, it is allowed to use that
pattern first, matching every line, and effectively ignore any other patterns.)

The -q option provides a means of easily determining whether or not a pattern (or
string) exists in a group of files. When searching several files, it provides a
performance improvement (because it can quit as soon as it finds the first match) and
requires less care by the user in choosing the set of files to supply as arguments
(because it will exit zero if it finds a match even if grep detected an access or read
error on earlier file operands).

See largefile(5) for the description of the behavior of grep when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Finding all uses of a word

To find all uses of the word “Posix” (in any case) in the file text.mm, and write with
line numbers:

example% /usr/bin/grep -i -n posix text.mm

EXAMPLE 2 Finding all empty lines

To find all empty lines in the standard input:

example% /usr/bin/grep ^$

or

example% /usr/bin/grep -v .

grep(1)

OPERANDS

/usr/bin/grep

/usr/xpg4/bin/grep

USAGE

Large File
Behavior

EXAMPLES

User Commands 517

EXAMPLE 2 Finding all empty lines (Continued)

EXAMPLE 3 Finding lines containing strings

Both of the following commands print all lines containing strings abc or def or both:

example% /usr/xpg4/bin/grep -E ’abc def’

example% /usr/xpg4/bin/grep -F ’abc def’

EXAMPLE 4 Finding lines with matching strings

Both of the following commands print all lines matching exactly abc or def:

example% /usr/xpg4/bin/grep -E ’^abc$ ^def$’

example% /usr/xpg4/bin/grep -F -x ’abc def’

See environ(5) for descriptions of the following environment variables that affect the
execution of grep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 One or more matches were found.

1 No matches were found.

2 Syntax errors or inaccessible files (even if matches were found).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

egrep(1), fgrep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5),
regex(5), regexp(5), XPG4(5)

Lines are limited only by the size of the available virtual memory. If there is a line with
embedded nulls, grep will only match up to the first null; if it matches, it will print
the entire line.

grep(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/grep

/usr/xpg4/bin/grep

SEE ALSO

/usr/bin/grep

518 man pages section 1: User Commands • Last Revised 20 Oct 1997

The results are unspecified if input files contain lines longer than LINE_MAX bytes or
contain binary data. LINE_MAX is defined in /usr/include/limits.h.

grep(1)

/usr/xpg4/bin/grep

User Commands 519

groups – print group membership of user

groups [user…]

The command groups prints on standard output the groups to which you or the
optionally specified user belong. Each user belongs to a group specified in
/etc/passwd and possibly to other groups as specified in /etc/group. Note that
/etc/passwd specifies the numerical ID (gid) of the group. The groups command
converts gid to the group name in the output.

The output takes the following form:

example% groups tester01 tester02
tester01 : staff
tester02 : staff
example%

/etc/passwd

/etc/group

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

group(4), passwd(4), attributes(5)

groups(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

520 man pages section 1: User Commands • Last Revised 14 Sep 1992

groups – display a user’s group memberships

/usr/ucb/groups [user…]

With no arguments, groups displays the groups to which you belong; else it displays
the groups to which the user belongs. Each user belongs to a group specified in the
password file /etc/passwd and possibly to other groups as specified in the file
/etc/group. If you do not own a file but belong to the group which it is owned by
then you are granted group access to the file.

/etc/passwd

/etc/group

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

getgroups(2), attributes(5)

This command is obsolete.

groups(1B)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 521

grpck – check group database entries

/etc/grpck [filename]

The grpck utility checks that a file in group(4) does not contain any errors; it checks
the /etc/group file by default.

/etc/group

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

groups(1), group(4), passwd(4), attributes(5)

Too many/few fields
An entry in the group file does not have the proper number of fields.

No group name
The group name field of an entry is empty.

Bad character(s) in group name
The group name in an entry contains characters other than lower-case letters and
digits.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

Null login name
A login name in the list of login names in an entry is null.

Logname not found in password file
A login name in the list of login names in an entry is not in the password file.

Line too long
A line (including the newline character) in the group file exceeds the maximum
length of 512 characters.

Duplicate logname entry
A login name appears more than once in the list of login names for a group file
entry.

Out of memory
The program cannot allocate memory in order to continue.

Maximum groups exceeded for logname
A login name’s group membership exceeds the maximum, NGROUPS_MAX.

grpck(1B)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

522 man pages section 1: User Commands • Last Revised 10 Jan 2000

hash, rehash, unhash, hashstat – evaluate the internal hash table of the contents of
directories

/usr/bin/hash [utility]

/usr/bin/hash [-r]

hash [-r] [name…]

rehash

unhash

hashstat

hash [name…]

The /usr/bin/hash utility affects the way the current shell environment remembers
the locations of utilities found. Depending on the arguments specified, it adds utility
locations to its list of remembered locations or it purges the contents of the list. When
no arguments are specified, it reports on the contents of the list.

Utilities provided as built-ins to the shell are not reported by hash.

For each name, the location in the search path of the command specified by name is
determined and remembered by the shell. The -r option to the hash built-in causes
the shell to forget all remembered locations. If no arguments are given, hash provides
information about remembered commands. The Hits column of output is the number
of times a command has been invoked by the shell process. The Cost column of output
is a measure of the work required to locate a command in the search path. If a
command is found in a "relative" directory in the search path, after changing to that
directory, the stored location of that command is recalculated. Commands for which
this will be done are indicated by an asterisk (*) adjacent to the Hits information. Cost
will be incremented when the recalculation is done.

rehash recomputes the internal hash table of the contents of directories listed in the
path environmental variable to account for new commands added.

unhash disables the internal hash table.

hashstat prints a statistics line indicating how effective the internal hash table has
been at locating commands (and avoiding execs). An exec is attempted for each
component of the path where the hash function indicates a possible hit and in each
component that does not begin with a ’ / ’.

For each name, the location in the search path of the command specified by name is
determined and remembered by the shell. If no arguments are given, hash provides
information about remembered commands.

The following operand is supported by hash:

utility The name of a utility to be searched for and added to the list of
remembered locations.

hash(1)

NAME

SYNOPSIS

sh

csh

ksh

/usr/bin/hash

sh

csh

ksh

OPERANDS

User Commands 523

The standard output of hash is used when no arguments are specified. Its format is
unspecified, but includes the pathname of each utility in the list of remembered
locations for the current shell environment. This list consists of those utilities named in
previous hash invocations that have been invoked, and may contain those invoked
and found through the normal command search process.

See environ(5) for descriptions of the following environment variables that affect the
execution of hash: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the location of utility.

The following exit values are returned by hash:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

TYPE VALUE

Availability SUNWcsu

csh(1), ksh(1), sh(1), attributes(5), environ(5)

hash(1)

OUTPUT

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

524 man pages section 1: User Commands • Last Revised 28 Mar 1995

head – display first few lines of files

head [-number | -n number] [filename…]

The head utility copies the first number of lines of each filename to the standard output.
If no filename is given, head copies lines from the standard input. The default value of
number is 10 lines.

When more than one file is specified, the start of each file will look like:

==> filename <==Thus, a common way to display a set of short files, identifying each one,
is:

example% head -9999 filename1 filename2 . . .

The following options are supported:

-n number The first number lines of each input file will be copied to standard
output. The number option-argument must be a positive decimal
integer.

-number The number argument is a positive decimal integer with the same
effect as the -n number option.

If no options are specified, head will act as if -n 10had been specified.

The following operand is supported:

file A path name of an input file. If no file operands are specified, the
standard input will be used.

See largefile(5) for the description of the behavior of head when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Writing the first ten lines of all files

To write the first ten lines of all files (except those with a leading period) in the
directory:

example% head *

See environ(5) for descriptions of the following environment variables that affect the
execution of head: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

head(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

User Commands 525

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

cat(1), more(1), pg(1), tail(1), attributes(5), environ(5), largefile(5)

head(1)

SEE ALSO

526 man pages section 1: User Commands • Last Revised 1 Feb 1995

history, fc – process command history list

/usr/bin/fc [first [last]]

/usr/bin/fc -l [-nr] [first [last]]

/usr/bin/fc -s [old = new] [first]

history [-hr] [n]

fc -e - [old = new] [command]

fc [-e ename] [-nlr] [first [last]]

The fc utility lists or edits and reexecutes, commands previously entered to an
interactive sh.

The command history list references commands by number. The first number in the
list is selected arbitrarily. The relationship of a number to its command will not change
except when the user logs in and no other process is accessing the list, at which time
the system may reset the numbering to start the oldest retained command at another
number (usually 1). When the number reaches the value in HISTSIZE or 128
(whichever is greater), the shell may wrap the numbers, starting the next command
with a lower number (usually 1). However, despite this optional wrapping of
numbers, fc will maintain the time-ordering sequence of the commands. For example,
if four commands in sequence are given the numbers 32 766, 32 767, 1 (wrapped), and
2 as they are executed, command 32 767 is considered the command previous to 1,
even though its number is higher.

When commands are edited (when the -l option is not specified), the resulting lines
will be entered at the end of the history list and then reexecuted by sh. The fc
command that caused the editing will not be entered into the history list. If the editor
returns a non-zero exit status, this will suppress the entry into the history list and the
command reexecution. Any command-line variable assignments or redirection
operators used with fc will affect both the fc command itself as well as the command
that results, for example:

fc -s -- -1 2>/dev/nullreinvokes the previous command, suppressing standard error
for both fc and the previous command.

Display the history list; if n is given, display only the n most recent events.

-r Reverse the order of printout to be most recent first rather than oldest first.

-h Display the history list without leading numbers. This is used to produce
files suitable for sourcing using the -h option to the csh built-in command,
source(1).

History Substitution

history(1)

NAME

SYNOPSIS

csh

ksh

/usr/bin/fc

csh

User Commands 527

History substitution allows you to use words from previous command lines in the
command line you are typing. This simplifies spelling corrections and the repetition of
complicated commands or arguments. Command lines are saved in the history list, the
size of which is controlled by the history variable. The history shell variable may
be set to the maximum number of command lines that will be saved in the history file;
i.e.:

set history = 200will allow the history list to keep track of the most recent 200
command lines. If not set, the C shell saves only the most recent command.

A history substitution begins with a ! (although you can change this with the
histchars variable) and may occur anywhere on the command line; history
substitutions do not nest. The ! can be escaped with \ to suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets
executed.

Event Designators:

An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when
followed by a space character, tab, newline,
= or (.

!! Refer to the previous command. By itself,
this substitution repeats the previous
command.

!n Refer to command line n.

!-n Refer to the current command line minus n.

!str Refer to the most recent command starting
with str.

!?str? Refer to the most recent command
containing str.

!?str? additional Refer to the most recent command
containing str and append additional to that
referenced command.

!{command} additional Refer to the most recent command
beginning with command and append
additional to that referenced command.

^previous_word^replacement^ Repeat the previous command line
replacing the string previous_word with the
string replacement. This is equivalent to the
history substitution:

history(1)

528 man pages section 1: User Commands • Last Revised 30 Oct 1995

!:s/previous_word/replacement/.To re-execute a
specific previous command AND make
such a substitution, say, re-executing
command #6,

!:6s/previous_word/replacement/.

Word Designators:

A ‘:’ (colon) separates the event specification from the word designator. 2It can be
omitted if the word designator begins with a ^, $, *, − or %. If the word is to be
selected from the previous command, the second ! character can be omitted from the
event specification. For instance, !!:1 and !:1 both refer to the first word of the
previous command, while !!$ and !$ both refer to the last word in the previous
command. Word designators include:

The entire command line typed so far.

0 The first input word (command).

n The n’th argument.

^ The first argument, that is, 1.

$ The last argument.

% The word matched by (the most recent) ?s search.

x−y A range of words; −y abbreviates 0−y.

* All the arguments, or a null value if there is just one word in the
event.

x* Abbreviates x−$.

x− Like x* but omitting word $.

Modifiers:

After the optional word designator, you can add a sequence of one or more of the
following modifiers, each preceded by a :.

h
Remove a trailing pathname component, leaving the head.

r
Remove a trailing suffix of the form ‘.xxx’, leaving the basename.

e
Remove all but the suffix, leaving the extension.

s/oldchars/replacements/ Substitute
replacements for oldchars. oldchars is a string that may contain embedded blank
spaces, whereas previous_word in the event designator

history(1)

User Commands 529

^oldchars^replacements^may not.

t
Remove all leading pathname components, leaving the tail.

&
Repeat the previous substitution.

g
Apply the change to the first occurrence of a match in each word, by prefixing the
above (for example, g&).

p
Print the new command but do not execute it.

q
Quote the substituted words, escaping further substitutions.

x
Like q, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that
matches oldchars; an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character strings.
Any character can be used as the delimiter in place of /. A backslash quotes the
delimiter character. The character &, in the right hand side, is replaced by the text from
the left-hand-side. The & can be quoted with a backslash. A null oldchars uses the
previous string either from a oldchars or from a contextual scan string s from !?s. You
can omit the rightmost delimiter if a newline immediately follows replacements; the
rightmost ? in a context scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous
command, or to a previous history reference on the command line (if any).

Using fc, in the form of

fc -e − [old=new] [command], the command is re-executed after the substitution
old=new is performed. If there is not a command argument, the most recent command
typed at this terminal is executed.

Using fc in the form of

fc [-e ename] [-nlr] [first [last]],a range of commands from first to last is selected
from the last HISTSIZE commands that were typed at the terminal. The arguments
first and last may be specified as a number or as a string. A string is used to locate the
most recent command starting with the given string. A negative number is used as an
offset to the current command number. If the -l flag is selected, the commands are
listed on standard output. Otherwise, the editor program -e name is invoked on a file
containing these keyboard commands. If ename is not supplied, then the value of the

history(1)

ksh

530 man pages section 1: User Commands • Last Revised 30 Oct 1995

variable FCEDIT (default /bin/ed) is used as the editor. When editing is complete,
the edited command(s) is executed. If last is not specified then it will be set to first. If
first is not specified the default is the previous command for editing and −16 for
listing. The flag -r reverses the order of the commands and the flag -n suppresses
command numbers when listing. (See ksh(1) for more about command line editing.)

HISTFILE If this variable is set when the shell is invoked, then the value is
the pathname of the file that will be used to store the command
history.

HISTSIZE If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will
be greater than or equal to this number. The default is 128.

Command Re-entry:

The text of the last HISTSIZE (default 128) commands entered from a terminal device
is saved in a history file. The file $HOME/.sh_history is used if the HISTFILE
variable is not set or if the file it names is not writable. A shell can access the
commands of all interactive shells which use the same named HISTFILE. The special
command fc is used to list or edit a portion of this file. The portion of the file to be
edited or listed can be selected by number or by giving the first character or characters
of the command. A single command or range of commands can be specified. If you do
not specify an editor program as an argument to fc then the value of the variable
FCEDIT is used. If FCEDIT is not defined then /bin/ed is used. The edited
command(s) is printed and re-executed upon leaving the editor. The editor name − is
used to skip the editing phase and to re-execute the command. In this case a
substitution parameter of the form old=new can be used to modify the command
before execution. For example, if r is aliased to ´fc -e − ´ then typing ‘r bad=good
c’ will re-execute the most recent command which starts with the letter c, replacing
the first occurrence of the string bad with the string good.

Using the fc built-in command within a compound command will cause the whole
command to disappear from the history file.

The following options are supported:

-e editor Use the editor named by editor to edit the commands. The editor
string is a utility name, subject to search via the PATH variable. The
value in the FCEDIT variable is used as a default when -e is not
specified. If FCEDIT is null or unset, ed will be used as the editor.

-l (The letter ell.) List the commands rather than invoking an editor
on them. The commands will be written in the sequence indicated
by the first and last operands, as affected by -r, with each
command preceded by the command number.

-n Suppress command numbers when listing with -l.

history(1)

OPTIONS

User Commands 531

-r Reverse the order of the commands listed (with -l) or edited
(with neither -l nor -s).

-s Re-execute the command without invoking an editor.

The following operands are supported:

first
last Select the commands to list or edit. The number of previous commands

that can be accessed is determined by the value of the HISTSIZE variable.
The value of first or last or both will be one of the following:

[+]number A positive number representing a command number;
command numbers can be displayed with the -l
option.

−number A negative decimal number representing the command
that was executed number of commands previously. For
example, −1 is the immediately previous command.

string A string indicating the most recently entered command
that begins with that string. If the old=new operand is
not also specified with -s, the string form of the first
operand cannot contain an embedded equal sign.

When the synopsis form with -s is used:

� If first is omitted, the previous command will be
used. For the synopsis forms without -s :

� If last is omitted, last defaults to the previous
command when -l is specified; otherwise, it
defaults to first.

� If first and last are both omitted, the previous 16
commands will be listed or the previous single
command will be edited (based on the -l option).

� If first and last are both present, all of the commands
from first to last will be edited (without -l) or
listed (with -l). Editing multiple commands will be
accomplished by presenting to the editor all of the
commands at one time, each command starting on a
new line. If first represents a newer command than
last, the commands will be listed or edited in reverse
sequence, equivalent to using -r . For example, the
following commands on the first line are equivalent
to the corresponding commands on the second:

fc -r 10 20 fc 30 40

fc 20 10 fc -r 40 30

history(1)

OPERANDS

532 man pages section 1: User Commands • Last Revised 30 Oct 1995

� When a range of commands is used, it will not be an
error to specify first or last values that are not in the
history list; fc will substitute the value representing
the oldest or newest command in the list, as
appropriate. For example, if there are only ten
commands in the history list, numbered 1 to 10:

fc -l

fc 1 99will list and edit, respectively, all ten
commands.

old=new Replace the first occurrence of string old in the
commands to be reexecuted by the string new.

When the -l option is used to list commands, the format of each command in the list
is as follows:

"%d\t%s\n", <line number>, <command>

If both the -l and -n options are specified, the format of each command is:

"\t%s\n", <command>

If the commandcommand consists of more than one line, the lines after the first are
displayed as:

"\t%s\n", <continued-command>

EXAMPLE 1 Using history and fc

csh ksh

% history $ fc -l
1 cd /etc 1 cd /etc
2 vi passwd 2 vi passwd
3 date 3 date
4 cd 4 cd
5 du . 5 du .
6 ls -t 6 ls -t
7 history 7 fc -l

% !d $ fc -e - d
du . du .
262 ./SCCS 262 ./SCCS
336 . 336 .

% !da $ fc -e - da
Thu Jul 21 17:29:56 PDT 1994 Thu Jul 21 17:29:56 PDT 1994

% $ alias \!=’fc -e -’

history(1)

OUTPUT

EXAMPLES

User Commands 533

EXAMPLE 1 Using history and fc (Continued)

% !! $!
date alias =’fc -e -’
Thu Jul 21 17:29:56 PDT 1994

See environ(5) for descriptions of the following environment variables that affect the
execution of fc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

FCEDIT This variable, when expanded by the shell, determines the default
value for the e editor option’s editor option-argument. If FCEDIT is
null or unset, ed will be used as the editor.

HISTFILE Determine a pathname naming a command history file. If the
HISTFILE variable is not set, the shell may attempt to access or
create a file .sh_history in the user’s home directory. If the shell
cannot obtain both read and write access to, or create, the history
file, it will use an unspecified mechanism that allows the history to
operate properly. (References to history ‘‘file’’ in this section are
understood to mean this unspecified mechanism in such cases.) fc
may choose to access this variable only when initializing the
history file; this initialization will occur when fc or sh first
attempt to retrieve entries from, or add entries to, the file, as the
result of commands issued by the user, the file named by the ENV
variable, or a system startup file such as /etc/profile. (The
initialization process for the history file can be dependent on the
system startup files, in that they may contain commands that will
effectively preempt the user’s settings of HISTFILE and
HISTSIZE. For example, function definition commands are
recorded in the history file, unless the set -o nolog option is set.
If the system administrator includes function definitions in some
system startup file called before the ENV file, the history file will be
initialized before the user gets a chance to influence its
characteristics.) The variable HISTFILE is accessed initially when
the shell is invoked. Any changes to HISTFILE will not take effect
until another shell is invoked.

HISTSIZE Determine a decimal number representing the limit to the number
of previous commands that are accessible. If this variable is unset,
an unspecified default greater than or equal to 128 will be used.
The variable HISTSIZE is accessed initially when the shell is
invoked. Any changes to HISTSIZE will not take effect until
another shell is invoked.

The following exit values are returned:

0 Successful completion of the listing.

>0 An error occurred.

history(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

534 man pages section 1: User Commands • Last Revised 30 Oct 1995

Otherwise, the exit status will be that of the commands executed by fc.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ed(1), ksh(1), set(1), set(1F), sh(1), source(1), attributes(5),
environ(5)

history(1)

ATTRIBUTES

SEE ALSO

User Commands 535

hostid – print the numeric identifier of the current host

/usr/bin/hostid

The hostid command prints the identifier of the current host in hexadecimal. This
numeric value is likely to differ when hostid is run on a different machine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sysinfo(2), gethostid(3C), attributes(5)

hostid(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

536 man pages section 1: User Commands • Last Revised 14 Sep 1992

hostname – set or print name of current host system

/usr/bin/hostname [name-of-host]

The hostname command prints the name of the current host, as given before the
login prompt. The super-user can set the hostname by giving an argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

uname(1), attributes(5)

hostname(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

User Commands 537

iconv – code set conversion utility

iconv -f fromcode -t tocode [file…]

The iconv utility converts the characters or sequences of characters in file from one
code set to another and writes the results to standard output. If no conversion exists
for a particular character, it is converted to the underscore _ in the target code set.

The list of supported conversions and the locations of the associated conversion tables
are provided in the iconv(5) manual page.

The following options are supported:

-f fromcode Identifies the input code set.

-t tocode Identifies the output code set.

The following operands are supported:

file A path name of the input file to be translated. If file is omitted, the
standard input is used.

EXAMPLE 1 Converting and storing files

The following example converts the contents of file mail1 from code set 8859 to
646fr and stores the results in file mail.local:

example% iconv -f 8859 -t 646fr mail1 > mail.local

See environ(5) for descriptions of the following environment variables that affect the
execution of iconv: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

1 An error has occurred.

/usr/lib/iconv/*.so
conversion modules

/usr/lib/iconv/*.t
conversion tables

/usr/lib/iconv/iconv_data
list of conversions supported by conversion tables

/usr/lib/iconv/geniconvtbl/binarytables/*.bt
conversion binary tables

See attributes(5) for descriptions of the following attributes:

iconv(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

538 man pages section 1: User Commands • Last Revised 29 Oct 1999

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

geniconvtbl(1), iconv(3C), geniconvtbl(4), attributes(5), environ(5),
iconv(5), iconv_unicode(5)

The iconv utility can use conversion modules (/usr/lib/iconv/*.so), conversion
tables (/usr/lib/iconv/*.t), or conversion binary tables
(/usr/lib/iconv/geniconvtbl/binarytables/*.bt) to do the code set
conversion. The iconv utility uses iconv_open(3C) to see if a particular code set
conversion is available in the iconv(3C) function. iconv_open(3C) first tries to find
out if there is a conversion binary table and then if there is a conversion module. If
neither is available in your system, iconv_open(3C) will return a failure code. Then,
finally, iconv will search for a conversion table.

Refer to the /usr/share/man/man5/iconv_locale.5 manual page in the Asian
localized releases for information on which code set conversions are supported. For
example, the command

example% man -s 5 iconv_jawould display the manual page describing the code set
conversions that are supported for the Japanese locale.

Notice that the iconv_locale.5 manual page may not exist in your system,
depending on which locale you chose to install during the system installation.

iconv(1)

SEE ALSO

NOTES

User Commands 539

indicator – display application specific alarms and/or the "working" indicator

indicator [-b [n]] [-c column] [-l length] [-o] [-w] [string…]

The indicator function displays application specific alarms or the "working"
indicator, or both, on the FMLI banner line. The argument string is a string to be
displayed on the banner line, and should always be the last argument given. Note that
string is not automatically cleared from the banner line.

-bn The -b option rings the terminal bell n times, where n is an integer
from 1 to 10. The default value is 1. If the terminal has no bell, the
screen is flashed instead, if possible.

-c column The -c option defines the column of the banner line at which to
start the indicator string. The argument column must be an integer
from 0 to DISPLAYW-1. If the -c option is not used, column
defaults to 0 .

-l length The -l option defines the maximum length of the string
displayed. If string is longer than length characters, it will be
truncated. The argument length must be an integer from 1 to
DISPLAYW. If the -l option is not used, length defaults to
DISPLAYW. Note that if string doesn’t fit it will be truncated.

-o The -o option causes indicator to duplicate its output to stdout .

-w The -w option turns on the "working" indicator.

EXAMPLE 1 A sample output of the indicator command.

When the value entered in a form field is invalid, the following use of indicator
will ring the bell three times and display the word WRONG starting at column 1 of the
banner line.

invalidmsg=‘indicator -b 3 -c 1 "WRONG"‘

To clear the indicator after telling the user the entry is wrong:

invalidmsg=‘indicator -b 9 -c 1 "WRONG"; sleep 3;
indicator -c 1 " "‘

In this example the value of invalidmsg (in this case the default value Input is
not valid), still appears on the FMLI message line.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

indicator(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

SEE ALSO

540 man pages section 1: User Commands • Last Revised 5 Jul 1990

indxbib – create an inverted index to a bibliographic database

indxbib database-file…

indxbib makes an inverted index to the named database-file (which must reside
within the current directory), typically for use by lookbib(1) and refer(1). A
database contains bibliographic references (or other kinds of information) separated by
blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic
information. Each field starts on a line beginning with a ‘%’, followed by a key-letter,
then a blank, and finally the contents of the field, which may continue until the next
line starting with ‘%’.

indxbib is a shell script that calls two programs: /usr/lib/refer/mkey and
/usr/lib/refer/inv. mkey truncates words to 6 characters, and maps upper case
to lower case. It also discards words shorter than 3 characters, words among the 100
most common English words, and numbers (dates) < 1000 or > 2099. These parameters
can be changed.

indxbib creates an entry file (with a .ia suffix), a posting file (.ib), and a tag file
(.ic), in the working directory.

/usr/lib/refer/mkey

/usr/lib/refer/inv

x.ia entry file

x.ib posting file

x.ic tag file

x.ig reference file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

addbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1), attributes(5)

All dates should probably be indexed, since many disciplines refer to literature written
in the 1800s or earlier.

indxbib does not recognize pathnames.

indxbib(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

BUGS

User Commands 541

install – install files

/usr/ucb/install [-cs] [-g group] [-m mode] [-o owner] filename1
filename2

/usr/ucb/install [-cs] [-g group] [-m mode] [-o owner] filename…
directory

/usr/ucb/install -d [-g group] [-m mode] [-o owner] directory

install is used within makefiles to copy new versions of files into a destination
directory and to create the destination directory itself.

The first two forms are similar to the cp(1) command with the addition that executable
files can be stripped during the copy and the owner, group, and mode of the installed
file(s) can be given.

The third form can be used to create a destination directory with the required owner,
group and permissions.

Note: install uses no special privileges to copy files from one place to another. The
implications of this are:

� You must have permission to read the files to be installed.

� You must have permission to copy into the destination file or directory.

� You must have permission to change the modes on the final copy of the file if you
want to use the -m option to change modes.

� You must be superuser if you want to specify the ownership of the installed file
with -o. If you are not the super-user, or if -o is not in effect, the installed file will
be owned by you, regardless of who owns the original.

-c Copy files. In fact install always copies files, but the -c option is
retained for backwards compatibility with old shell scripts that
might otherwise break.

-d Create a directory. Missing parent directories are created as
required as in mkdir -p. If the directory already exists, the owner,
group and mode will be set to the values given on the command
line.

-s Strip executable files as they are copied.

-g group Set the group ownership of the installed file or directory. (staff by
default.)

-m mode Set the mode for the installed file or directory. (0755 by default.)

-o owner If run as root, set the ownership of the installed file to the user-ID
of owner.

See attributes(5) for descriptions of the following attributes:

install(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

542 man pages section 1: User Commands • Last Revised 14 Sep 1992

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

chgrp(1), chmod(1), chown(1), cp(1), mkdir(1), strip(1), install(1M),
attributes(5)

install(1B)

SEE ALSO

User Commands 543

ipcrm – remove a message queue, semaphore set, or shared memory ID

ipcrm [-m shmid] [-q msqid] [-s semid] [-M shmkey] [-Q msgkey]
[-S semkey]

ipcrm removes one or more messages, semaphores, or shared memory identifiers.

The identifiers are specified by the following options:

-m shmid Remove the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are
destroyed after the last detach.

-q msqid Remove the message queue identifier msqid from the system and
destroy the message queue and data structure associated with it.

-s semid Remove the semaphore identifier semid from the system and
destroy the set of semaphores and data structure associated with
it.

-M shmkey Removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

-Q msgkey Remove the message queue identifier, created with key msgkey,
from the system and destroy the message queue and data structure
associated with it.

-S semkey Remove the semaphore identifier, created with key semkey, from
the system and destroy the set of semaphores and data structure
associated with it.

The details of the removes are described in msgctl(2), shmctl(2), and semctl(2).
Use the ipcs command to find the identifiers and keys.

See environ(5) for descriptions of the following environment variables that affect the
execution of ipcrm: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWipc

ipcs(1), msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2), semget(2),
semop(2), shmctl(2), shmget(2), shmop(2), attributes(5), environ(5)

ipcrm(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

544 man pages section 1: User Commands • Last Revised 23 Jan 1998

ipcs – report inter-process communication facilities status

ipcs [-aAbcimopqst] [-D mtype]

The ipcs utility prints information about active inter-process communication
facilities. The information that is displayed is controlled by the options supplied.
Without options, information is printed in short format for message queues, shared
memory, and semaphores that are currently active in the system.

The following options are supported:

-m Prints information about active shared memory segments.

-q Prints information about active message queues.

-s Prints information about active semaphores.

If -m, -q, or -s are specified, information about only those indicated is printed. If
none of these three is specified, information about all three is printed subject to these
options:

-a Uses all XCU5 print options. (This is a shorthand notation for -b,
-c, -o, -p, and -t.)

-A Uses all print options. (This is a shorthand notation for -b, -c, -i,
-o, -p, and -t.)

-b Prints information on biggest allowable size: maximum number of
bytes in messages on queue for message queues, size of segments
for shared memory, and number of semaphores in each set for
semaphores. See below for meaning of columns in a listing.

-c Prints creator’s login name and group name. See below.

-D mtype Displays, in hexadecimal and ASCII, the contents of all messages
of type mtype found on any message queue that the user invoking
ipcs has permission to read. If mtype is 0, all messages are
displayed. If mtype is negative, all messages with type less than or
equal to the absolute value of mtype are displayed. (See msgrcv(2)
and msgsnap(2)).

-i Prints number of ISM attaches to shared memory segments.

-o Prints information on outstanding usage: number of messages on
queue and total number of bytes in messages on queue for
message queues and number of processes attached to shared
memory segments.

-p Prints process number information: process ID of last process to
send a message, process ID of last process to receive a message on
message queues, process ID of creating process, and process ID of
last process to attach or detach on shared memory segments. See
below.

ipcs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 545

-t Prints time information: time of the last control operation that
changed the access permissions for all facilities, time of last
msgsnd(2) and last msgrcv(2) on message queues, time of last
shmat(2) and last shmdt(2) on shared memory (see shmop(2)),
time of last semop(2) on semaphores. See below.

The column headings and the meaning of the columns in an ipcs listing are given
below. The letters in parentheses indicate the options that cause the corresponding
heading to appear. “all” means that the heading always appears. Note: These options
only determine what information is provided for each facility; they do not determine
which facilities are listed.

T (all) Type of the facility:

q message queue

m shared memory segment

s semaphore

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument to msgget(2), semget(2),
or shmget(2) to create the facility entry. (Note: The key
of a shared memory segment is changed to
IPC_PRIVATE when the segment has been removed
until all processes attached to the segment detach it.)

MODE (all) The facility access modes and flags: The mode consists
of 11 characters that are interpreted as follows. The first
two characters are:

R A process is waiting on a msgrcv(2).

S A process is waiting on a msgsnd(2).

D The associated shared memory segment has
been removed. It will disappear when the
last process attached to the segment
detaches it. (Note: If the shared memory
segment identifier is removed via an
IPC_RMID call to shmctl(2) before the
process has detached from the segment with
shmdt(2), the segment is no longer visible
to ipcs and it will not appear in the ipcs
output.)

C The associated shared memory segment is
to be cleared when the first attach is
executed.

- The corresponding special flag is not set.

ipcs(1)

546 man pages section 1: User Commands • Last Revised 18 Apr 2001

The next nine characters are interpreted as three sets of
three bits each. The first set refers to the owner’s
permissions; the next to permissions of others in the
user-group of the facility entry; and the last to all
others. Within each set, the first character indicates
permission to read, the second character indicates
permission to write or alter the facility entry, and the
last character is currently unused.

The permissions are indicated as follows:

r Read permission is granted.

w Write permission is granted.

a Alter permission is granted.

− The indicated permission is not granted.

OWNER (all) The login name of the owner of the facility entry.

GROUP (all) The group name of the group of the owner of the
facility entry.

CREATOR (a,A,c) The login name of the creator of the facility entry.

CGROUP (a,A,c) The group name of the group of the creator of the
facility entry.

CBYTES (a,A,o) The number of bytes in messages currently outstanding
on the associated message queue.

QNUM (a,A,o) The number of messages currently outstanding on the
associated message queue.

QBYTES (a,A,b) The maximum number of bytes allowed in messages
outstanding on the associated message queue.

LSPID (a,A,p) The process ID of the last process to send a message to
the associated queue.

LRPID (a,A,p) The process ID of the last process to receive a message
from the associated queue.

STIME (a,A,t) The time the last message was sent to the associated
queue.

RTIME (a,A,t) The time the last message was received from the
associated queue.

CTIME (a,A,t) The time when the associated entry was created or
changed.

ISMATTCH (a,i) The number of ISM attaches to the associated shared
memory segments.

ipcs(1)

User Commands 547

NATTCH (a,A,o) The number of processes attached to the associated
shared memory segment.

SEGSZ (a,A,b) The size of the associated shared memory segment.

CPID (a,A,p) The process ID of the creator of the shared memory
entry.

LPID (a,A,p) The process ID of the last process to attach or detach
the shared memory segment.

ATIME (a,A,t) The time the last attach was completed to the
associated shared memory segment.

DTIME (a,A,t) The time the last detach was completed on the
associated shared memory segment.

NSEMS (a,A,b) The number of semaphores in the set associated with
the semaphore entry.

OTIME (a,A,t) The time the last semaphore operation was completed
on the set associated with the semaphore entry.

See environ(5) for descriptions of the following environment variables that affect the
execution of ipcs: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone for the time strings written by ipcs.

/etc/group group names

/etc/passwd user names

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWipc

ipcrm(1), msgget(2), msgids(2), msgrcv(2), msgsnap(2), msgsnd(2), semget(2),
semids(2), semop(2), shmctl(2), shmget(2), shmids(2), shmop(2), attributes(5),
environ(5)

Things can change while ipcs is running. The information it gives is guaranteed to be
accurate only when it was retrieved.

ipcs(1)

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

548 man pages section 1: User Commands • Last Revised 18 Apr 2001

isainfo – describe instruction set architectures

isainfo [-v] [-b | -n | -k]

The isainfo utility is used to identify various attributes of the instruction set
architectures supported on the currently running system. Among the questions it can
answer are whether 64-bit applications are supported, or whether the running kernel
uses 32-bit or 64-bit device drivers.

When invoked with no flags, isainfo prints the name(s) of the native instruction sets
for applications supported by the current version of the operating system. These will
be a subset of the list returned by isalist(1). The subset corresponds to the basic
applications environments supported by the currently running system.

The following options are supported:

-b Prints the number of bits in the address space of the native instruction set.

-k Prints the name of the instruction set(s) used by the operating system
kernel components such as device drivers and STREAMS modules.

-n Prints the name of the native instruction set used by portable applications
supported by the current version of the operating system.

-v Prints more detailed information about the other options.

EXAMPLE 1 Invoking isainfo on a 32-bit IA platform

example% isainfo -v
32-bit i386 applications

example% isainfo -k
i386

EXAMPLE 2 Invoking isainfo on a system running the 32-bit operating system on a 64-bit
SPARC processor

example% isainfo -nsparc
example% isainfo -v
32-bit sparc applications
example% isainfo -kv
32-bit sparc kernel modules

EXAMPLE 3 Invoking isainfo on the same hardware platform (that is, a 64-bit SPARC
processor) running the 64-bit operating system

example% isainfo
sparcv9 sparc
example% isainfo -n
sparcv9
example% isainfo -v
64-bit sparcv9 applications 32-bit sparc applications
example% isainfo -vk
64-bit sparcv9 kernel modules

isainfo(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

User Commands 549

EXAMPLE 3 Invoking isainfo on the same hardware platform (that is, a 64-bit SPARC
processor) running the 64-bit operating system (Continued)

Non-zero Flags are not specified correctly, or the command is unable to
recognize attributes of the system on which it is running. An error
message is printed to stderr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

isalist(1), uname(1), psrinfo(1M), sysinfo(2), attributes(5), isalist(5)

isainfo(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

550 man pages section 1: User Commands • Last Revised 12 Mar 1999

isalist – display the native instruction sets executable on this platform

isalist

isalist prints the names of the native instruction sets executable on this platform on
the standard output, as returned by the SI_ISALIST command of sysinfo(2).

The names are space-separated and are ordered in the sense of best performance. That
is, earlier-named instruction sets may contain more instructions than later-named
instruction sets; a program that is compiled for an earlier-named instruction sets will
most likely run faster on this machine than the same program compiled for a
later-named instruction set.

Programs compiled for instruction sets that do not appear in the list will most likely
experience performance degradation or not run at all on this machine.

The instruction set names known to the system are listed in isalist(5). These names
may or may not match predefined names or compiler options in the C language
compilation system,

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

optisa(1), uname(1), sysinfo(2), attributes(5), isalist(5)

isalist(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

User Commands 551

jobs, fg, bg, stop, notify – control process execution

jobs [-p | -l] [% job_id…]

jobs -x command [arguments]

fg [% job_id…]

bg [% job_id…]

stop % job_id…

stop pid…

jobs [-l]

fg [% job_id]

bg [% job_id…]

notify [% job_id]…

stop % job_id…

stop pid…

jobs [-lnp] [% job_id…]

fg [% job_id…]

bg [% job_id…]

stop % job_id…

stop pid…

When Job Control is enabled, the Bourne shell built-in jobs reports all jobs that are
stopped or executing in the background. If %job_id is omitted, all jobs that are stopped
or running in the background will be reported. The following options will
modify/enhance the output of jobs:

-l Reports the process group ID and working directory of the jobs.

-p Reports only the process group ID of the jobs.

-x Replaces any job_id found in command or arguments with the corresponding
process group ID, and then executes command passing it arguments.

When the shell is invoked as jsh, Job Control is enabled in addition to all of the
functionality described previously for sh. Typically Job Control is enabled for the
interactive shell only. Non-interactive shells typically do not benefit from the added
functionality of Job Control.

With Job Control enabled every command or pipeline the user enters at the terminal is
called a job_id. All jobs exist in one of the following states: foreground, background or
stopped. These terms are defined as follows:

1. A job in the foreground has read and write access to the controlling terminal.

jobs(1)

NAME

sh

csh

ksh

sh

552 man pages section 1: User Commands • Last Revised 11 Apr 1995

2. A job in the background is denied read access and has conditional write access to the
controlling terminal (see stty(1))

3. A stopped job is a job that has been placed in a suspended state, usually as a result
of a SIGTSTP signal (see signal(3HEAD)).

Every job that the shell starts is assigned a positive integer, called a job_id number
which is tracked by the shell and will be used as an identifier to indicate a specific job.
Additionally, the shell keeps track of the current and previous jobs. The current job is the
most recent job to be started or restarted. The previous job is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%job_id

where job_id may be specified in any of the following formats:

% or + for the current job

− for the previous job

?<string> specify the job for which the command line uniquely contains
string.

n for job number n, where n is a job number

pref where pref is a unique prefix of the command name (for example, if
the command ls −l name were running in the background, it
could be referred to as %ls); pref cannot contain blanks unless it is
quoted.

When Job Control is enabled, fg resumes the execution of a stopped job in the
foreground, also moves an executing background job into the foreground. If %job_id is
omitted the current job is assumed.

When Job Control is enabled, bg resumes the execution of a stopped job in the
background. If %job_id is omitted the current job is assumed.

stop stops the execution of a background job(s) by using its job_id, or of any process
by using its pid; see ps(1).

The C shell built-in, jobs, without an argument, lists the active jobs under job control.

-l List process IDs, in addition to the normal information.

The shell associates a numbered job_id with each command sequence to keep track of
those commands that are running in the background or have been stopped with TSTP
signals (typically Control-Z). When a command or command sequence
(semicolon-separated list) is started in the background using the & metacharacter, the
shell displays a line with the job number in brackets and a list of associated process
numbers:

jobs(1)

csh

User Commands 553

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently
stopped (or put into the background if none are stopped) is referred to as the current
job and is indicated with a ‘+’. The previous job is indicated with a ‘−’; when the
current job is terminated or moved to the foreground, this job takes its place (becomes
the new current job).

To manipulate jobs, refer to the bg, fg, kill, stop, and % built-in commands.

A reference to a job begins with a ‘%’. By itself, the percent sign refers to the current
job.

% %+ %% The current job.

%− The previous job.

%j Refer to job j as in: ‘kill -9 %j’. j can be a job number, or a string
that uniquely specifies the command line by which it was started;
‘fg %vi’ might bring a stopped vi job to the foreground, for
instance.

%?string Specify the job for which the command line uniquely contains
string.

A job running in the background stops when it attempts to read from the terminal.
Background jobs can normally produce output, but this can be suppressed using the
‘stty tostop’ command.

fg brings the current or specified job_id into the foreground.

bg runs the current or specified jobs in the background.

stop stops the execution of a background job(s) by using its job_id, or of any process
by using its pid; see ps(1).

notify will notify the user asynchronously when the status of the current job or
specified jobs changes.

jobs displays the status of the jobs that were started in the current shell environment.
When jobs reports the termination status of a job, the shell removes its process ID
from the list of those "known in the current shell execution environment."

job_id specifies the jobs for which the status is to be displayed. If no job_id is given, the
status information for all jobs will be displayed.

The following options will modify/enhance the output of jobs:

-l (The letter ell.) Provides more information about each job listed. This
information includes the job number, current job, process group ID, state
and the command that formed the job.

jobs(1)

ksh

554 man pages section 1: User Commands • Last Revised 11 Apr 1995

-n Displays only jobs that have stopped or exited since last notified.

-p Displays only the process IDs for the process group leaders of the selected
jobs.

By default, jobs displays the status of all the stopped jobs, running background jobs,
and all jobs whose status has changed and have not been reported by the shell.

If the monitor option of the set command is turned on, an interactive shell
associates a job with each pipeline. It keeps a table of current jobs, printed by the
jobs command, and assigns them small integer numbers. When a job is started
asynchronously with &, the shell prints a line which looks like:

[1] 1234

indicating that the job, which was started asynchronously, was job number 1 and had
one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key ^Z
(Control-Z) which sends a STOP signal to the current job. The shell will then normally
indicate that the job has been “Stopped” (see OUTPUT below), and print another
prompt. You can then manipulate the state of this job, putting it in the background
with the bg command, or run some other commands and then eventually bring the job
back into the foreground with the foreground command fg. A ^Z takes effect
immediately and is like an interrupt, in that pending output and unread input are
discarded when it is typed.

There are several ways to refer to jobs in the shell. A job can be referred to by the
process id of any process of the job or by one of the following:

%number The job with the given number.

%string Any job whose command line begins with string; works only in the
interactive mode when the history file is active.

%?string Any job whose command line contains string; works only in the
interactive mode when the history file is active.

%% Current job.

%+ Equivalent to %%.

%− Previous job.

The shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked so that no further progress is possible, but only
just before it prints a prompt. This is done so that it does not otherwise disturb your
work. When the monitor mode is on, each background job that completes triggers any
trap set for CHLD. When you try to leave the shell while jobs are running or stopped,

jobs(1)

User Commands 555

you will be warned that ‘You have stopped (running) jobs.’ You may use the jobs
command to see what they are. If you do this or immediately try to exit again, the
shell will not warn you a second time, and the stopped jobs will be terminated.

fg will move a background job from the current environment into the foreground.
Using fg to place a job in the foreground will remove its process ID from the list of
those "known in the current shell execution environment." The fg command is
available only on systems that support job control. If job_id is not specified, the current
job is brought into the foreground.

bg resumes suspended jobs from the current environment by running them as
background jobs. If the job specified by job_id is already a running background job, bg
has no effect and will exit successfully. Using bg to place a job into the background
causes its process ID to become ‘‘known in the current shell execution environment’’,
as if it had been started as an asynchronous list. The bg command is available only on
systems that support job control. If job_id is not specified, the current job is placed in
the background.

stop stops the execution of a background job(s) by using its job_id, or of any process
by using its pid. See ps(1).

If the -p option is specified, the output consists of one line for each process ID:

"%d\n", "process ID"

Otherwise, if the -l option is not specified, the output is a series of lines of the form:

"[%d] %c %s %s\n", job-number, current, state, command

where the fields are as follows:

current The character + identifies the job that would be used as a default
for the fg or bg commands. This job can also be specified using
the job_id %+ or %% . The character − identifies the job that would
become the default if the current default job were to exit; this job
can also be specified using the job_id %− . For other jobs, this field
is a space character. At most, one job can be identified with + and
at most one job can be identified with −. If there is any suspended
job, then the current job will be a suspended job. If there are at
least two suspended jobs, then the previous job will also be a
suspended job.

job-number A number that can be used to identify the process group to the
wait, fg, bg, and kill utilities. Using these utilities, the job can
be identified by prefixing the job number with %.

state One of the following strings (in the POSIX Locale):

jobs(1)

OUTPUT

556 man pages section 1: User Commands • Last Revised 11 Apr 1995

Running Indicates that the job has not been
suspended by a signal and has not
exited.

Done Indicates that the job completed
and returned exit status zero.

Done(code) Indicates that the job completed
normally and that it exited with the
specified non-zero exit status, code,
expressed as a decimal number.

Stopped

Stopped(SIGTSTP) Indicates that the job was
suspended by the SIGTSTP signal.

Stopped(SIGSTOP) Indicates that the job was
suspended by the SIGSTOP signal.

Stopped(SIGTTIN) Indicates that the job was
suspended by the SIGTTIN signal.

Stopped(SIGTTOU) Indicates that the job was
suspended by the SIGTTOU signal.

The implementation may substitute the string Suspended in place
of Stopped. If the job was terminated by a signal, the format of
state is unspecified, but it will be visibly distinct from all of the
other state formats shown here and will indicate the name or
description of the signal causing the termination.

command The associated command that was given to the shell.

If the -l option is specified, a field containing the process group ID is inserted before
the state field. Also, more processes in a process group may be output on separate
lines, using only the process ID and command fields.

See environ(5) for descriptions of the following environment variables that affect the
execution of jobs, fg, and bg: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned for jobs, fg, and bg:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

jobs(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

User Commands 557

csh(1), kill(1), ksh(1), ps(1), sh(1), stop(1), shell_builtins(1), stty(1),
wait(1), signal(3HEAD), attributes(5), environ(5)

jobs(1)

SEE ALSO

558 man pages section 1: User Commands • Last Revised 11 Apr 1995

join – relational database operator

join [-a filenumber | -v filenumber] [-1 fieldnumber] [-2 fieldnumber]
[-o list] [-e string] [-t char] file1 file2

join [-a filenumber] [-j fieldnumber] [-j1 fieldnumber] [-j2 fieldnumber]
[-o list] [-e string] [-t char] file1 file2

The join command forms, on the standard output, a join of the two relations
specified by the lines of file1 and file2.

There is one line in the output for each pair of lines in file1 and file2 that have identical
join fields. The output line normally consists of the common field, then the rest of the
line from file1, then the rest of the line from file2. This format can be changed by using
the -o option (see below). The -a option can be used to add unmatched lines to the
output. The -v option can be used to output only unmatched lines.

The default input field separators are blank, tab, or new-line. In this case, multiple
separators count as one field separator, and leading separators are ignored. The
default output field separator is a blank.

If the input files are not in the appropriate collating sequence, the results are
unspecified.

Some of the options below use the argument filenumber. This argument should be a 1
or a 2 referring to either file1 or file2, respectively.

-a filenumber In addition to the normal output, produce a line for
each unpairable line in file filenumber, where filenumber
is 1 or 2. If both -a 1 and -a 2 are specified, all
unpairable lines will be output.

-e string Replace empty output fields in the list selected by
option -o with the string string.

-j fieldnumber Equivalent to -1fieldnumber -2fieldnumber.

-j1 fieldnumber Equivalent to -1fieldnumber.

-j2 fieldnumber Equivalent to -2fieldnumber. Fields are numbered
starting with 1.

-o list Each output line includes the fields specified in list.
Fields selected by list that do not appear in the input
will be treated as empty output fields. (See the -e
option.) Each element of which has the either the form
filenumber.fieldnumber, or 0, which represents the
join field. The common field is not printed unless
specifically requested.

-t char Use character char as a separator. Every appearance of
char in a line is significant. The character char is used as
the field separator for both input and output. With this

join(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 559

option specified, the collating term should be the same
as sort without the -b option.

-v filenumber Instead of the default output, produce a line only for
each unpairable line in filenumber, where filenumber is 1
or 2. If both -v 1 and -v 2 are specified, all unpairable
lines will be output.

-1 fieldnumber Join on the fieldnumberth field of file 1. Fields are
decimal integers starting with 1.

-2fieldnumber Join on the fieldnumberth field of file 2. Fields are
decimal integers starting with 1.

The following operands are supported:

file1

file2 A path name of a file to be joined. If either of the file1 or file2 operands is −,
the standard input is used in its place.

file1 and file2 must be sorted in increasing collating sequence as determined by
LC_COLLATE on the fields on which they are to be joined, normally the first in each
line (see sort(1)).

See largefile(5) for the description of the behavior of join when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Joining the password file and group file

The following command line will join the password file and the group file, matching
on the numeric group ID, and outputting the login name, the group name and the
login directory. It is assumed that the files have been sorted in ASCII collating
sequence on the group ID fields.

example% join -j1 4-j2 3 -o 1.1 2.1 1.6 -t:/etc/passwd /etc/group

EXAMPLE 2 Using the -o option

The -o 0 field essentially selects the union of the join fields. For example, given file
phone:

!Name Phone Number
Don +1 123-456-7890
Hal +1 234-567-8901

Yasushi +2 345-678-9012

and file fax:

!Name Fax Number

Don +1 123-456-7899

join(1)

OPERANDS

USAGE

EXAMPLES

560 man pages section 1: User Commands • Last Revised 8 Feb 2000

Keith +1 456-789-0122

Yasushi +2 345-678-9011where the large expanses of white space are meant to
each represent a single tab character), the command:

example% join -t"tab" -a 1 -a 2 -e ’(unknown)’ -o 0,1.2,2.2 phone faxwould
produce

!Name Phone Number Fax Number
Don +1 123-456-7890 +1 123-456-7899
Hal +1 234-567-8901 (unknown
Keith (unknown) +1 456-789-012

Yasushi +2 345-678-9012 +2 345-678-9011

See environ(5) for descriptions of the following environment variables that affect the
execution of join: LC_CTYPE, LC_MESSAGES, LC_COLLATE, and NLSPATH.

The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

awk(1), comm(1), sort(1), uniq(1), attributes(5), environ(5), largefile(5)

With default field separation, the collating sequence is that of sort -b; with -t, the
sequence is that of a plain sort.

The conventions of the join, sort, comm, uniq, and awk commands are wildly
incongruous.

join(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 561

kbd – manipulate the state of keyboard, or display the type of keyboard, or change the
default keyboard abort sequence effect

kbd [-r] [-t] [-a enable | disable | alternate] [-c on | off]
[-d keyboard device]

kbd [-i] [-d keyboard device]

The kbd utility manipulates the state of the keyboard, or displays the keyboard type,
or allows the default keyboard abort sequence effect to be changed. The abort
sequence also applies to serial console devices. The kbd utility sets the /dev/kbd
default keyboard device.

The -i option reads and processes default values for the keyclick and keyboard abort
settings from the /etc/default/kbd keyboard default file. Only keyboards that
support a clicker respond to the -c option. To turn clicking on by default, add or
change the value of the KEYCLICK variable in the /etc/default/kbd file to:

KEYCLICK=on

Next, run the command kbd -i to change the setting. Valid settings for the KEYCLICK
variable are on and off; all other values are ignored. If the KEYCLICK variable is not
specified in the default file, the setting is unchanged.

The keyboard abort sequence effect (L1-A or STOP-A on the keyboard, and BREAK on
the serial console input device on most systems) can only be changed by a superuser
using the -a option. The system can be configured to ignore the keyboard abort
sequence or trigger on the standard or alternate sequence.

A BREAK condition that originates from an erroneous electrical signal cannot be
distinguished from one deliberately sent by remote DCE. As a remedy, use the -a
option with Alternate Break to switch break interpretation. Due to the risk of incorrect
sequence interpretation, binary protocols such as PPP, SLIP, and others should not be
run over the serial console port when Alternate Break sequence is in effect. The
Alternate Break sequence has no effect on the keyboard abort. For more information
on the Alternate Break sequence, se zs(7D) ,se(7D), and asy(7D).

On many systems, the default effect of the keyboard abort sequence is to suspend the
operating system and enter the debugger or the monitor. Some systems feature key
switches with a secure position. On these systems, setting the key switch to the
secure position overrides any software default set with this command.

To permanently change the software default effect of the keyboard abort sequence,
first add or change the value of the KEYBOARD_ABORT variable in the
/etc/default/kbd file to:

KEYBOARD_ABORT=disable

Next, run the command kbd -i to change the setting. Valid settings are enable,
disable, and alternate; all other values are ignored. If the variable is not specified
in the default file, the setting is unchanged.

kbd(1)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

562 man pages section 1: User Commands • Last Revised 14 May 1999

To set the abort sequence to the hardware BREAK, set the value of the
KEYBOARD_ABORT variable in the /etc/default/kbd file to:

KEYBOARD_ABORT=enable

To change the current setting, run the command kbd -i. To set the abort sequence to
the Alternate Break character sequence, first set the current value of the
KEYBOARD_ABORT variable in the /etc/default/kbd file to:

KEYBOARD_ABORT=alternate

Next, run the command kbd -i to change the setting. When the Alternate Break
sequence is in effect, only serial console devices are affected.

The kbd utility supports the following options:

-i
Set keyboard defaults from the keyboard default file. With the exception of -d
keyboard device, this option cannot be used with any other option. The -i option
instructs the keyboard command to read and process keyclick and keyboard abort
default values from the /etc/default/kbd file. The -i option can only be used
by a superuser.

-r
Reset the keyboard as if power-up

-t
Return the type of the keyboard being used

-c on/off state
Turn the clicking of the keyboard on or off.

on Enable clicking

off Disable clicking

-a enable/disable/alternate state
Enable, disable, or alternate the keyboard abort sequence effect. By default, a
keyboard abort sequence (typically Stop-A or L1-A on the keyboard and BREAK on
the serial console device) suspends the operating system on most systems. The
default keyboard behavior can be changed using this option. The -a option can
only be used by a superuser.

enable Enable the default effect of the keyboard abort sequence (suspend the
operating system and enter the debugger or the monitor)

disable Disable the default/alternate effect and ignore keyboard abort sequences

alternate Enable the alternate effect of the keyboard abort sequences (suspend the
operating system and enter the debugger or the monitor) upon receiving
the Alternate Break character sequence on the console. The Alternate
Break sequence is defined by the drivers zs(7D), se(7D), asy(7D). Due
to a risk of incorrect sequence interpretation, binary protocols cannot be
run over the serial console port when this value is used.

kbd(1)

OPTIONS

User Commands 563

-d keyboard device
Specify the keyboard device being set. The default setting is /dev/kbd.

EXAMPLE 1 Displaying the keyboard type

To display the keyboard type:

example% kbd -tType 4 Sun keyboardexample%

EXAMPLE 2 Setting keyboard defaults

To set the keyboard defaults as specified in the keyboard default file:

example# kbd -iexample#

/etc/rcS shell script containing commands necessary to get the
system to single-user mode

/dev/kbd keyboard device file

/etc/default/kbd keyboard default file containing software defaults for
keyboard configurations.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcsu

loadkeys(1), kadb(1M), keytables(4), attributes(5), kb(7M), zs(7D), se(7D),
asy(7D)

Some server systems have key switches with a secure key position that can be read
by system software. This key position overrides the normal default of the keyboard
abort sequence effect and changes the default so the effect is disabled. When the key
switch is in the secure position on these systems, the keyboard abort sequence effect
cannot be overridden by the software default, which is settable with the kbd utility.

Currently, there is no way to determine the state of the keyboard click setting.

kbd(1)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

564 man pages section 1: User Commands • Last Revised 14 May 1999

kdestroy – destroy Kerberos tickets

/usr/bin/kdestroy [-q] [-c cache_name]

The kdestroy utility destroys the user’s active Kerberos authorization tickets by
writing zeros to the specified credentials cache that contains them. If the credentials
cache is not specified, the default credentials cache is destroyed. If the credentials
cache does not exist, kdestroy displays a message to that effect.

After overwriting the cache, kdestroy removes the cache from the system. The utility
displays a message indicating the success or failure of the operation. If kdestroy is
unable to destroy the cache, it will warn you by making your terminal beep.

If desired, you can place the kdestroy command in your .logout file so that your
tickets are destroyed automatically when you logout.

The following options are supported:

-c cache_name Uses cache_name as the credentials (ticket) cache name
and location. If this option is not used, the default
cache name and location are used.

-q Runs quietly. Your terminal will not beep when
kdestroy fails to destroy the tickets.

kdestroy uses the following environment variable:

KRB5CCNAME Location of the credentials (ticket) cache.

/tmp/krb5cc_uid Default credentials cache (uid is the decimal UID of the
user).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkrbu

kinit(1), klist(1), attributes(5), SEAM(5)

Only the tickets in the specified credentials cache are destroyed. Separate ticket caches
are used to hold root instance and password changing tickets. These files should
probably be destroyed too, or all of a user’s tickets should be kept in a single
credential cache.

Steve Miller, MIT Project Athena/Digital Equipment Corporation; Clifford Neuman,
MIT Project Athena Bill Sommerfeld, MIT Project Athena

kdestroy(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

BUGS

AUTHORS

User Commands 565

keylogin – decrypt and store secret key with keyserv

/usr/bin/keylogin [-r]

The keylogin command prompts for a password, and uses it to decrypt the user’s
secret key. The key may be found in the /etc/publickey file (see publickey(4)) or
the NIS map ‘‘publickey.byname’’ or the NIS+ table ‘‘cred.org_dir’’ in the user’s home
domain. The sources and their lookup order are specified in the
/etc/nsswitch.conf file. See nsswitch.conf(4). Once decrypted, the user’s
secret key is stored by the local key server process, keyserv(1M). This stored key is
used when issuing requests to any secure RPC services, such as NFS or NIS+. The
program keylogout(1) can be used to delete the key stored by keyserv .

keylogin will fail if it cannot get the caller’s key, or the password given is incorrect.
For a new user or host, a new key can be added using newkey(1M),
nisaddcred(1M), or nisclient(1M).

If multiple authentication mechanisms are configured for the system, each of the
configured mechanism’s secret key will be decrypted and stored by keyserv(1M). See
nisauthconf(1M) for information on configuring multiple authentication
mechanisms.

-r Update the /etc/.rootkey file. This file holds the unencrypted secret
key of the superuser. Only the superuser may use this option. It is used so
that processes running as superuser can issue authenticated requests
without requiring that the administrator explicitly run keylogin as
superuser at system startup time. See keyserv(1M). The -r option should
be used by the administrator when the host’s entry in the publickey
database has changed, and the /etc/.rootkey file has become
out-of-date with respect to the actual key pair stored in the publickey
database. The permissions on the /etc/.rootkey file are such that it may
be read and written by the superuser but by no other user on the system.

If multiple authentication mechanisms are configured for the system, each
of the configured mechanism’s secret keys will be stored in the
/etc/.rootkey file.

/etc/.rootkey superuser’s secret key

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

chkey(1), keylogout(1), login(1), keyserv(1M), newkey(1M), nisaddcred(1M),
nisauthconf(1M), nisclient(1M), nsswitch.conf(4), publickey(4),
attributes(5)

keylogin(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

566 man pages section 1: User Commands • Last Revised 10 Dec 2001

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

keylogin(1)

NOTES

User Commands 567

keylogout – delete stored secret key with keyserv

/usr/bin/keylogout [-f]

keylogout deletes the key stored by the key server process keyserv(1M). Further
access to the key is revoked; however, current session keys may remain valid until
they expire or are refreshed.

Deleting the keys stored by keyserv will cause any background jobs or scheduled
at(1) jobs that need secure RPC services to fail. Since only one copy of the key is kept
on a machine, it is a bad idea to place a call to this command in your .logout file
since it will affect other sessions on the same machine.

If multiple NIS+ authentication mechanisms are configured for the system, then all
keys stored by the key server process will be deleted, including keys that are no longer
configured.

-f Force keylogout to delete the secret key for the superuser. By default,
keylogout by the superuser is disallowed because it would break all RPC
services, such as NFS, that are started by the superuser.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

at(1), chkey(1), login(1), keylogin(1), keyserv(1M), newkey(1M),
nisauthconf(1M), publickey(4), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

keylogout(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

NOTES

568 man pages section 1: User Commands • Last Revised 10 Dec 2001

kill – terminate or signal processes

/usr/bin/kill -s signal_name pid…

/usr/bin/kill -l [exit_status]

/usr/bin/kill [-signal_name] pid…

/usr/bin/kill [-signal_number] pid…

The kill utility sends a signal to the process or processes specified by each pid
operand.

For each pid operand, the kill utility will perform actions equivalent to the kill(2)
function called with the following arguments:

1. The value of the pid operand will be used as the pid argument.

2. The sig argument is the value specified by the -s option, the -signal_name option,
or the -signal_number option, or, if none of these options is specified, by SIGTERM.

The signaled process must belong to the current user unless the user is the super-user.

See NOTES for descriptions of the shell built-in versions of kill.

The following options are supported:

-l (The letter ell.) Writes all values of signal_name supported by the
implementation, if no operand is given. If an exit_status operand is
given and it is a value of the ? shell special parameter and wait
corresponding to a process that was terminated by a signal, the
signal_name corresponding to the signal that terminated the
process will be written. If an exit_status operand is given and it is
the unsigned decimal integer value of a signal number, the
signal_name corresponding to that signal will be written.
Otherwise, the results are unspecified.

-s signal_name Specifies the signal to send, using one of the symbolic names
defined in the <signal.h> description. Values of signal_name will
be recognized in a case-independent fashion, without the SIG
prefix. In addition, the symbolic name 0 will be recognized,
representing the signal value zero. The corresponding signal will
be sent instead of SIGTERM.

-signal_name Equivalent to -s signal_name.

-signal_number Specifies a non-negative decimal integer, signal_number,
representing the signal to be used instead of SIGTERM, as the sig
argument in the effective call to kill(2).

The following operands are supported:

pid One of the following:

kill(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 569

1. A decimal integer specifying a process or process group to be
signaled. The process or processes selected by positive,
negative and zero values of the pid operand will be as
described for the kill function. If process number 0 is specified,
all processes in the process group are signaled. If the first pid
operand is negative, it should be preceded by −− to keep it
from being interpreted as an option.

2. A job control job ID that identifies a background process group
to be signaled. The job control job ID notation is applicable only
for invocations of kill in the current shell execution
environment.

Note: The job control job ID type of pid is available only on systems
supporting the job control option.

exit_status A decimal integer specifying a signal number or the exit status of a
process terminated by a signal.

Process numbers can be found by using ps(1).

The job control job ID notation is not required to work as expected when kill is
operating in its own utility execution environment. In either of the following
examples:

example% nohup kill %1 &

example% system("kill %1");

kill operates in a different environment and will not share the shell’s understanding
of job numbers.

When the -l option is not specified, the standard output will not be used.

When the -l option is specified, the symbolic name of each signal will be written in
the following format:

"%s%c", <signal_name>, <separator>

where the <signal_name> is in upper-case, without the SIG prefix, and the <separator>
will be either a newline character or a space character. For the last signal written,
<separator> will be a newline character.

When both the -l option and exit_status operand are specified, the symbolic name of
the corresponding signal will be written in the following format:

"%s\n", <signal_name>

EXAMPLE 1 Sending the kill signal

Any of the commands:

kill(1)

USAGE

OUTPUT

EXAMPLES

570 man pages section 1: User Commands • Last Revised 2 Oct 2001

EXAMPLE 1 Sending the kill signal (Continued)

example% kill -9 100 -165
example% kill -s kill 100 -165

example% kill -s KILL 100 -165

sends the SIGKILL signal to the process whose process ID is 100 and to all processes
whose process group ID is 165, assuming the sending process has permission to send
that signal to the specified processes, and that they exist.

EXAMPLE 2 Avoiding ambiguity with an initial negative number

To avoid an ambiguity of an initial negative number argument specifying either a
signal number or a process group, the former will always be the case. Therefore, to
send the default signal to a process group (for example, 123), an application should
use a command similar to one of the following:

example% kill -TERM -123

example% kill -- -123

See environ(5) for descriptions of the following environment variables that affect the
execution of kill: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 At least one matching process was found for each pid operand, and the
specified signal was successfully processed for at least one matching
process.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

csh(1), jobs(1), ksh(1), ps(1), sh(1), shell_builtins(1), wait(1), kill(2),
signal(3C), signal(3HEAD), attributes(5), environ(5)

The Bourne shell, sh, has a built-in version of kill to provide the functionality of the
kill command for processes identified with a jobid. The sh syntax is:

kill [-sig] [pid] [%job]...

kill -l

The C-shell, csh, also has a built-in kill command, whose syntax is:

kill(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

sh

csh

User Commands 571

kill [-sig][pid][%job]...

kill -l

The csh kill built-in sends the TERM (terminate) signal, by default, or the signal
specified, to the specified process ID, the job indicated, or the current job. Signals are
either given by number or by name. There is no default. Typing kill does not send a
signal to the current job. If the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process is sent a CONT (continue) signal as well.

-l Lists the signal names that can be sent.

The syntax of the ksh kill is:

kill [-sig][pid][%job]...

kill -l

The ksh kill sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by names (as given
in signal(3HEAD) stripped of the SIG prefix). If the signal being sent is TERM
(terminate) or HUP (hangup), then the job or process will be sent a CONT (continue)
signal if it is stopped. The argument job can be the process id of a process that is not a
member of one of the active jobs. In the second form, kill -l, the signal numbers
and names are listed.

kill(1)

ksh

572 man pages section 1: User Commands • Last Revised 2 Oct 2001

kinit – obtain and cache Kerberos ticket-granting ticket

/usr/bin/kinit [-AfpRv] [-c cache_name] [-k [-t keytab_file]]
[-l lifetime] [-r renewable_life] [-s start_time] [-S service_name]
[principal]

The kinit command is used to obtain and cache an initial ticket-granting ticket
(credential) for principal. This ticket is used for authentication by the Kerberos system.
Notice that only users with Kerberos principals can use the Kerberos system. For
information about Kerberos principals, see SEAM(5).

When you use kinit without options, the utility prompts for your principal and
Kerberos password, and tries to authenticate your login with the local Kerberos server.
The principal can be specified on the command line if desired.

If Kerberos authenticates the login attempt, kinit retrieves your initial
ticket-granting ticket and puts it in the ticket cache. By default your ticket will be
stored in the file /tmp/krb5cc_uid, where uid specifies your user identification
number. Tickets expire after a specified lifetime, after which kinit must be run again.
Any existing contents of the cache are destroyed by kinit.

Values specified in the command line override the values specified in the Kerberos
configuration file for lifetime and renewable_life.

The kdestroy(1) command may be used to destroy any active tickets before you end
your login session.

The following options are supported:

-A Requests address-less tickets.

-c cache_name Uses cache_name as the credentials (ticket) cache name
and location. If this option is not used, the default
cache name and location are used.

-f Requests forwardable tickets.

-k [-t keytab_file] Requests a host ticket, obtained from a key in the local
host’s keytab file. The name and location of the keytab
file may be specified with the -t keytab_file option;
otherwise the default name and location will be used.

-l lifetime Requests a ticket with the lifetime lifetime. If the -l
option is not specified, the default ticket lifetime
(configured by each site) is used. Specifying a ticket
lifetime longer than the maximum ticket lifetime
(configured by each site) results in a ticket with the
maximum lifetime. See the Time Formats section for
the valid time duration formats that you can specify for

kinit(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 573

lifetime. See kdc.conf(4) and kadmin(1M) (for
getprinc command to verify the lifetime values for
the server principal).

The lifetime of the tickets returned will be the
minimum of the following:

� Value specified in the command line.
� Value specified in the KDC configuration file.
� Value specified in the Kerberos data base for the

server principal. In the case of kinit, it is
krbtgt/realm name.

� Value specified in the Kerberos database for the user
principal.

-p Requests proxiable tickets.

-r renewable_life Requests renewable tickets, with a total lifetime of
renewable_life. See the Time Formats section for the
valid time duration formats that you can specify for
renewable_life. See kdc.conf(4) and kadmin(1M) (for
getprinc command to verify the lifetime values for
the server principal).

The renewable lifetime of the tickets returned will be
the minimum of the following:

� Value specified in the command line.
� Value specified in the KDC configuration file.
� Value specified in the Kerberos data base for the

server principal. In the case of kinit, it is
krbtgt/realm name.

� Value specified in the Kerberos database for the user
principal.

-R Requests renewal of the ticket-granting ticket. Notice
that an expired ticket cannot be renewed, even if the
ticket is still within its renewable life.

-s start_time Requests a postdated ticket, valid starting at start_time.
Postdated tickets are issued with the invalid flag set,
and need to be fed back to the KDC before use. See the
Time Formats section for either the valid absolute
time or time duration formats that you can specify for
start_time. kinit attempts to match an absolute time
first before trying to match a time duration.

-S service_name Specifies an alternate service name to use when getting
initial tickets.

kinit(1)

574 man pages section 1: User Commands • Last Revised 14 Dec 2001

-v Requests that the ticket granting ticket in the cache
(with the invalid flag set) be passed to the KDC for
validation. If the ticket is within its requested time
range, the cache is replaced with the validated ticket.

The following absolute time formats can be used for the -s start_time option. The
examples are based on the date and time of July 2, 1999, 1:35:30 p.m.

Absolute Time Format Example

yymmddhhmm[ss] 990702133530

hhmm[ss] 133530

yy.mm.dd.hh.mm.ss 99:07:02:13:35:30

hh:mm[:ss] 13:35:30

ldate:ltime 07-07-99:13:35:30

dd-month-yyyy:hh:mm[:ss] 02-july-1999:13:35:30

Variable Description

dd day

hh hour (24-hour clock)

mm minutes

ss seconds

yy year within century (0-68 is 2000 to 2068; 69-99
is 1969 to 1999)

yyyy year including century

month locale’s full or abbreviated month name

ldate locale’s appropriate date representation

ltime locale’s appropriate time representation

The following time duration formats can be used for the -l lifetime, -r renewable_life,
and -s start_time options. The examples are based on the time duration of 14 days, 7
hours, 5 minutes, and 30 seconds.

Time Duration Format Example

#d 14d

kinit(1)

Time Formats

User Commands 575

Time Duration Format Example

#h 7h

#m 5m

#s 30s

#d#h#m#s 14d7h5m30s

#h#m[#s] 7h5m30s

days-hh:mm:ss 14-07:05:30

hours:mm[:ss] 7:05:30

Delimiter Description

d number of days

h number of hours

m number of minutes

s number of seconds

Variable Description

number

days number of days

hours number of hours

hh hour (24-hour clock)

mm minutes

ss seconds

kinit uses the following environment variable:

KRB5CCNAME Location of the credentials (ticket) cache.

/tmp/krb5cc_uid Default credentials cache (uid is the decimal UID of the
user).

/etc/krb5/krb5.keytab Default location for the local host’s keytab file.

/etc/krb5/krb5.conf Default location for the local host’s configuration file.
See krb5.conf(4).

See attributes(5) for descriptions of the following attributes:

kinit(1)

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

576 man pages section 1: User Commands • Last Revised 14 Dec 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkrbu

Interface Stability Evolving

kdestroy(1), klist(1), kadmin(1M), kdc.conf(4), krb5.conf(4), attributes(5),
SEAM(5)

Steve Miller, MIT Project Athena/Digital Equipment Corporation; Clifford Neuman,
MIT Project Athena

kinit(1)

SEE ALSO

AUTHORS

User Commands 577

klist – list currently held Kerberos tickets

/usr/bin/klist [-e] [-a [-n]] [[-c] [cache_name] [-f] [-s]] [-k
[-t] [keytab_file] [-K]]

The klist utility prints the name of the credentials cache, the identity of the principal
that the tickets are for (as listed in the ticket file), and the principal names of all
Kerberos tickets currently held by the user, along with the issue and expiration time
for each authenticator. Principal names are listed in the form name/instance@realm,
with the ’/’ omitted if the instance is not included, and the ’@’ omitted if the realm is
not included.

If cache_file or keytab_name is not specified, klist will display the credentials in the
default credentials cache or keytab files as appropriate. By default, your ticket will be
stored in the file /tmp/krb5cc_uid, where uid is the current user-ID of the user.

The following options are supported:

-a Displays list of addresses in credentials. Uses the
configured nameservice to translate numeric network
addresses to the associated hostname if possible.

-c [cache_name] Lists tickets held in a credentials cache. This is the
default if neither -c nor -k is specified.

-e Displays the encryption types of the session key and
the ticket for each credential in the credential cache, or
each key in the keytab file.

-f Shows the flags present in the credentials, using the
following abbreviations:

F Forwardable

f forwarded

P Proxiable

p proxy

D postDateable

d postdated

R Renewable

I Initial

i invalid

-k [keytab_file] List keys held in a keytab file.

-K Displays the value of the encryption key in each keytab
entry in the keytab file.

klist(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

578 man pages section 1: User Commands • Last Revised 21 Nov 2001

-n Shows numeric IP addresses instead of
reverse-resolving addresses. Only valid with -a option.

-s Causes klist to run silently (produce no output), but
to still set the exit status according to whether it finds
the credentials cache. The exit status is ‘ 0’ if klist
finds a credentials cache, and ‘ 1’ if it does not.

-t Displays the time entry timestamps for each keytab
entry in the keytab file.

klist uses the following environment variable:

KRB5CCNAME Location of the credentials (ticket) cache.

/tmp/krb5cc_uid Default credentials cache (uid is the decimal
UID of the user).

/etc/krb5/krb5.keytab Default location for the local host’s keytab
file.

/etc/krb5/krb5.conf Default location for the local host’s
configuration file. See krb5.conf(4).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkrbu

Interface Stability

Command arguments Evolving

Command output Unstable

kdestroy(1), kinit(1), krb5.conf(4), attributes(5), SEAM(5)

When reading a file as a service key file, very little error checking is performed.

klist(1)

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

BUGS

User Commands 579

kpasswd – change a user’s Kerberos password

/usr/bin/kpasswd [principal]

The kpasswd command is used to change a Kerberos principal’s password. kpasswd
prompts for the current Kerberos password, which is used to obtain a changepw
ticket from the KDC for the user’s Kerberos realm. If kpasswd successfully obtains the
changepw ticket, the user is prompted twice for the new password, and the password
is changed.

If the principal is governed by a policy that specifies the length and/or number of
character classes required in the new password, the new password must conform to
the policy. (The five character classes are lower case, upper case, numbers,
punctuation, and all other characters.)

The following operand is supported:

principal
Change the password for the Kerberos principal principal. Otherwise, the principal
is derived from the identity of the user invoking the kpasswd command.

/tmp/ovsec_adm.xxxxxx
Temporary credentials cache for the lifetime of the password changing operation.
(xxxxxx is a random string.)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkrbu

CSI Enabled

SEAM(5)

If kpasswd is suspended, the changepw tickets may not be destroyed.

kpasswd(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

FILES

ATTRIBUTES

SEE ALSO

BUGS

580 man pages section 1: User Commands • Last Revised 30 Jul 2001

ksh, rksh – KornShell, a standard/restricted command and programming language

/usr/bin/ksh [± abCefhikmnoprstuvx] [± o option…] [arg…]

/usr/bin/ksh -c [± abCefhikmnoprstuvx] [± o option…] command_string
[command_name [arg…]]

/usr/xpg4/bin/sh [± abCefhikmnoprstuvx] [± o option…] [arg…]

/usr/xpg4/bin/sh -c [± abCefhikmnoprstuvx] [± o
option…] command_string [command_name [arg…]]

/usr/bin/rksh [± abCefhikmnoprstuvx] [± o option…] [arg…]

/usr/bin/rksh -c [± abCefhikmnoprstuvx] [± o option…] command_string
[command_name [arg…]]

The /usr/xpg4/bin/sh utility is a standards compliant shell. This utility provides
all the functionality of /usr/bin/ksh, except in cases discussed below where
differences in behavior exist. See Arithmetic Expansions section for details.

/usr/bin/ksh is a command and programming language that executes commands
read from a terminal or a file. rksh is a restricted version of the command interpreter
ksh; it is used to set up login names and execution environments whose capabilities
are more controlled than those of the standard shell. See Invocation below for the
meaning of arguments to the shell.

A metacharacter is one of the following characters:

; & () | < > NEWLINE SPACE TAB

A blank is a TAB or a SPACE. An identifier is a sequence of letters, digits, or underscores
starting with a letter or underscore. Identifiers are used as names for functions and
variables. A word is a sequence of characters separated by one or more non-quoted
metacharacters.

A command is a sequence of characters in the syntax of the shell language. The shell
reads each command and carries out the desired action either directly or by invoking
separate utilities. A special-command is a command that is carried out by the shell
without creating a separate process. Except for documented side effects, most special
commands can be implemented as separate utilities.

A simple-command is a sequence of blank-separated words which may be preceded by a
variable assignment list. (See Environment below.) The first word specifies the name
of the command to be executed. Except as specified below, the remaining words are
passed as arguments to the invoked command. The command name is passed as
argument 0 (see exec(2)). The value of a simple-command is its exit status if it
terminates normally. If it terminates abnormally due to receipt of a signal, the value is
the signal number plus 128. See signal(3HEAD) for a list of signal values. Obviously,
normal exit status values 129 to 255 cannot be distinguished from abnormal exit
caused by receiving signal numbers 1 to 127.

ksh(1)

NAME

SYNOPSIS

DESCRIPTION

Definitions

Commands

User Commands 581

A pipeline is a sequence of one or more commands separated by |. The standard output
of each command but the last is connected by a pipe(2) to the standard input of the
next command. Each command is run as a separate process; the shell waits for the last
command to terminate. The exit status of a pipeline is the exit status of the last
command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or | |, and
optionally terminated by ;, &, or |&. Of these five symbols, ;, &, and |& have equal
precedence, which is lower than that of && and | |. The symbols && and | | also
have equal precedence. A semicolon (;) causes sequential execution of the preceding
pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline
(that is, the shell does not wait for that pipeline to finish). The symbol |& causes
asynchronous execution of the preceding command or pipeline with a two-way pipe
established to the parent shell.

The standard input and output of the spawned command can be written to and read
from by the parent shell using the -p option of the special commands read and
print described in Special Commands. The symbol && (| |) causes the list
following it to be executed only if the preceding pipeline returns 0 (or a non-zero)
value. An arbitrary number of new-lines may appear in a list, instead of a semicolon,
to delimit a command.

A command is either a simple-command or one of the following. Unless otherwise stated,
the value returned by a command is that of the last simple-command executed in the
command.

for identifier [in word . . .] ; do list ; done
Each time a for command is executed, identifier is set to the next word taken from
the in word list. If in word . . . is omitted, then the for command executes the do
list once for each positional parameter that is set (see Parameter Substitution
below). Execution ends when there are no more words in the list.

select identifier [in word . . .] ; do list ; done
A select command prints to standard error (file descriptor 2), the set of words,
each preceded by a number. If in word . . . is omitted, then the positional
parameters are used instead (see Parameter Substitution below). The PS3
prompt is printed and a line is read from the standard input. If this line consists of
the number of one of the listed words, then the value of the variable identifier is set
to the word corresponding to this number. If this line is empty the selection list is
printed again. Otherwise the value of the variable identifier is set to NULL. (See
Blank Interpretation about NULL). The contents of the line read from
standard input is saved in the shell variable REPLY. The list is executed for each
selection until a break or EOF is encountered. If the REPLY variable is set to NULL
by the execution of list, then the selection list is printed before displaying the PS3
prompt for the next selection.

case word in [pattern [| pattern]) list ;;] . . . esac
A case command executes the list associated with the first pattern that matches
word. The form of the patterns is the same as that used for file-name generation (see
File Name Generation below).

ksh(1)

582 man pages section 1: User Commands • Last Revised 28 Jan 2002

if list ; then list ; [elif list ; then list ; . . .] [else list ;] fi
The list following if is executed and, if it returns an exit status of 0, the list
following the first then is executed. Otherwise, the list following elif is executed
and, if its value is 0, the list following the next then is executed. Failing that, the
else list is executed. If no else list or then list is executed, then the if command
returns 0 exit status.

while list ; do list ; done
until list ; do list ; done

A while command repeatedly executes the while list and, if the exit status of the
last command in the list is 0, executes the do list; otherwise the loop terminates. If
no commands in the do list are executed, then the while command returns 0 exit
status. until may be used in place of while to negate the loop termination test.

(list)
Execute list in a separate environment. Notice that if two adjacent open parentheses
are needed for nesting, a space must be inserted to avoid arithmetic evaluation as
described below.

{list}
list is simply executed. Notice that, unlike the metacharacters (and), { and } are
reserved words and must occur at the beginning of a line or after a ; in order to be
recognized.

[[expression]]
Evaluates expression and returns 0 exit status when expression is true. See
Conditional Expressions below, for a description of expression.

function identifier { list ;}
identifier() { list ;}

Define a function which is referenced by identifier. The body of the function is the
list of commands between { and }. (See Functions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user and system time
are printed to standard error.

The following reserved words are only recognized as the first word of a command and
when not quoted:

! if then else elif fi case
esac for while until do done { }

function select time [[]]

A word beginning with # causes that word and all the following characters up to a
new-line to be ignored.

The first word of each command is replaced by the text of an alias if an alias for this
word has been defined. An alias name consists of any number of characters excluding
metacharacters, quoting characters, file expansion characters, parameter and
command substitution characters, and =. The replacement string can contain any valid
shell script including the metacharacters listed above. The first word of each command

ksh(1)

Comments

Aliasing

User Commands 583

in the replaced text, other than any that are in the process of being replaced, will be
tested for aliases. If the last character of the alias value is a blank then the word
following the alias will also be checked for alias substitution. Aliases can be used to
redefine special builtin commands but cannot be used to redefine the reserved words
listed above. Aliases can be created, listed, and exported with the alias command
and can be removed with the unalias command. Exported aliases remain in effect
for scripts invoked by name, but must be reinitialized for separate invocations of the
shell (see Invocation below). To prevent infinite loops in recursive aliasing, if the
shell is not currently processing an alias of the same name, the word will be replaced
by the value of the alias; otherwise, it will not be replaced.

Aliasing is performed when scripts are read, not while they are executed. Therefore,
for an alias to take effect, the alias definition command has to be executed before the
command which references the alias is read.

Aliases are frequently used as a short hand for full path names. An option to the
aliasing facility allows the value of the alias to be automatically set to the full
pathname of the corresponding command. These aliases are called tracked aliases. The
value of a tracked alias is defined the first time the corresponding command is looked
up and becomes undefined each time the PATH variable is reset. These aliases remain
tracked so that the next subsequent reference will redefine the value. Several tracked
aliases are compiled into the shell. The -h option of the set command makes each
referenced command name into a tracked alias.

The following exported aliases are compiled into (and built-in to) the shell but can be
unset or redefined:

autoload=’typeset −fu’
false=’let 0’
functions=’typeset −f’
hash=’alias −t’
history=’fc −l’
integer=’typeset −i’
nohup=’nohup ’
r=’fc −e −’
true=’:’
type=’whence −v’

An example concerning trailing blank characters and reserved words follows. If the
user types:

$ alias foo="/bin/ls "
$ alias while="/"

the effect of executing:

$ while true
> do
> echo "Hello, World"
> done

is a never-ending sequence of Hello, World strings to the screen. However, if the
user types:

ksh(1)

584 man pages section 1: User Commands • Last Revised 28 Jan 2002

$ foo while

the result will be an ls listing of /. Since the alias substitution for foo ends in a space
character, the next word is checked for alias substitution. The next word, while, has
also been aliased, so it is substituted as well. Since it is not in the proper position as a
command word, it is not recognized as a reserved word.

If the user types:

$ foo; while

while retains its normal reserved-word properties.

After alias substitution is performed, each word is checked to see if it begins with an
unquoted ~. If it does, then the word up to a / is checked to see if it matches a user
name. If a match is found, the ~ and the matched login name are replaced by the login
directory of the matched user. This is called a tilde substitution. If no match is found,
the original text is left unchanged. A ~ by itself, or in front of a /, is replaced by
$HOME. A ~ followed by a + or − is replaced by $PWD and $OLDPWD, respectively.

In addition, tilde substitution is attempted when the value of a variable assignment
begins with a ~.

A tilde-prefix consists of an unquoted tilde character at the beginning of a word,
followed by all of the characters preceding the first unquoted slash in the word, or all
the characters in the word if there is no slash. In an assignment, multiple tilde-prefixes
can be used: at the beginning of the word (that is, following the equal sign of the
assignment), following any unquoted colon or both. A tilde-prefix in an assignment is
terminated by the first unquoted colon or slash. If none of the characters in the
tilde-prefix are quoted, the characters in the tilde-prefix following the tilde are treated
as a possible login name from the user database.

A portable login name cannot contain characters outside the set given in the
description of the LOGNAME environment variable. If the login name is null (that is, the
tilde-prefix contains only the tilde), the tilde-prefix will be replaced by the value of the
variable HOME. If HOME is unset, the results are unspecified. Otherwise, the tilde-prefix
will be replaced by a pathname of the home directory associated with the login name
obtained using the getpwnam function. If the system does not recognize the login
name, the results are undefined.

Tilde expansion generally occurs only at the beginning of words, but an exception
based on historical practice has been included:

PATH=/posix/bin:~dgk/bin

is eligible for tilde expansion because tilde follows a colon and none of the relevant
characters is quoted. Consideration was given to prohibiting this behavior because
any of the following are reasonable substitutes:

PATH=$(printf %s ~karels/bin : ~bostic/bin)
for Dir in ~maart/bin ~srb/bin .
do

ksh(1)

Tilde Substitution

Tilde Expansion

User Commands 585

PATH=${PATH:+$PATH:}$Dir
done

With the first command, explicit colons are used for each directory. In all cases, the
shell performs tilde expansion on each directory because all are separate words to the
shell.

Notice that expressions in operands such as:

make -k mumble LIBDIR=~chet/lib

do not qualify as shell variable assignments and tilde expansion is not performed
(unless the command does so itself, which make does not).

The special sequence $~ has been designated for future implementations to evaluate
as a means of forcing tilde expansion in any word.

Because of the requirement that the word not be quoted, the following are not
equivalent; only the last will cause tilde expansion:

\~hlj/ ~h\lj/ ~"hlj"/ ~hlj\/ ~hlj/

The results of giving tilde with an unknown login name are undefined because the
KornShell ~+ and ~− constructs make use of this condition, but, in general it is an
error to give an incorrect login name with tilde. The results of having HOME unset are
unspecified because some historical shells treat this as an error.

The standard output from a command enclosed in parenthesis preceded by a dollar
sign (that is, $(command)) or a pair of grave accents (‘‘) may be used as part or all of
a word; trailing new-lines are removed. In the second (archaic) form, the string
between the quotes is processed for special quoting characters before the command is
executed. (See Quoting below.) The command substitution $(cat file) can be
replaced by the equivalent but faster $(<file). Command substitution of most special
commands that do not perform input/output redirection are carried out without
creating a separate process.

Command substitution allows the output of a command to be substituted in place of
the command name itself. Command substitution occurs when the command is
enclosed as follows:

$(command)

or (backquoted version):

‘command‘

The shell will expand the command substitution by executing command in a subshell
environment and replacing the command substitution (the text of command plus the
enclosing $() or backquotes) with the standard output of the command, removing
sequences of one or more newline characters at the end of the substitution. Embedded

ksh(1)

Command
Substitution

586 man pages section 1: User Commands • Last Revised 28 Jan 2002

newline characters before the end of the output will not be removed; however, they
may be treated as field delimiters and eliminated during field splitting, depending on
the value of IFS and quoting that is in effect.

Within the backquoted style of command substitution, backslash shall retain its literal
meaning, except when followed by:

$ ‘ \

(dollar-sign, backquote, backslash). The search for the matching backquote is satisfied
by the first backquote found without a preceding backslash. During this search, if a
non-escaped backquote is encountered within a shell comment, a here-document, an
embedded command substitution of the $(command) form, or a quoted string,
undefined results occur. A single- or double-quoted string that begins, but does not
end, within the ‘. . .‘ sequence produces undefined results.

With the $(command) form, all characters following the open parenthesis to the
matching closing parenthesis constitute the command. Any valid shell script can be
used for command, except:

� A script consisting solely of redirections produces unspecified results.
� See the restriction on single subshells described below.

The results of command substitution will not be field splitting and pathname
expansion processed for further tilde expansion, parameter expansion, command
substitution or arithmetic expansion. If a command substitution occurs inside
double-quotes, it will not be performed on the results of the substitution.

Command substitution can be nested. To specify nesting within the backquoted
version, the application must precede the inner backquotes with backslashes; for
example:

‘\‘command \‘‘

The $() form of command substitution solves a problem of inconsistent behavior
when using backquotes. For example:

Command Output

echo ’\$x’ \$x

echo ‘echo ’\$x’‘ $x

echo $(echo ’\$x’) \$x

Additionally, the backquoted syntax has historical restrictions on the contents of the
embedded command. While the new $() form can process any kind of valid
embedded script, the backquoted form cannot handle some valid scripts that include
backquotes. For example, these otherwise valid embedded scripts do not work in the
left column, but do work on the right:

ksh(1)

User Commands 587

echo ‘ echo $(

cat <<eeof cat <<eeof

a here-doc with ‘ a here-doc with)

eof eof

‘)

echo ‘ echo $(

echo abc # a comment with ‘ echo abc # a comment with)

‘)

echo ‘ echo $(

echo ’‘’ echo ’)’

‘)

Because of these inconsistent behaviors, the backquoted variety of command
substitution is not recommended for new applications that nest command
substitutions or attempt to embed complex scripts.

If the command substitution consists of a single subshell, such as:

$((command))

a portable application must separate the $(and (into two tokens (that is, separate
them with white space). This is required to avoid any ambiguities with arithmetic
expansion.

An arithmetic expression enclosed in double parentheses preceded by a dollar sign (
$((arithmetic-expression))) is replaced by the value of the arithmetic expression
within the double parenthesis. Arithmetic expansion provides a mechanism for
evaluating an arithmetic expression and substituting its value. The format for
arithmetic expansion is as follows:

$((expression))

The expression is treated as if it were in double-quotes, except that a double-quote
inside the expression is not treated specially. The shell will expand all tokens in the
expression for parameter expansion, command substitution and quote removal.

Next, the shell will treat this as an arithmetic expression and substitute the value of
the expression. The arithmetic expression will be processed according to the rules of
the ISO C with the following exceptions:

� Only integer arithmetic is required.

ksh(1)

Arithmetic
Expansion

588 man pages section 1: User Commands • Last Revised 28 Jan 2002

� The sizeof() operator and the prefix and postfix ++ and − − operators are not
required.

� Selection, iteration, and jump statements are not supported.
� /usr/bin/ksh and /usr/bin/rksh treat prefix 0 through 9 as decimal

constants. See the examples below.

Command Result in /bin/ksh Result in /usr/xpg4/bin/sh

echo $((010+10)) 20 18

echo $((010+10)) 29 error

[10 —le $((011))] true false

As an extension, the shell may recognize arithmetic expressions beyond those listed. If
the expression is invalid, the expansion will fail and the shell will write a message to
standard error indicating the failure.

A simple example using arithmetic expansion:

repeat a command 100 times
x=100
while [$x −gt 0]
do

command
x=$(($x−1))

done

This feature is available in SunOS and only on versions of the UNIX operating system
that support the /dev/fd directory for naming open files. Each command argument
of the form <(list) or >(list) will run process list asynchronously connected to some
file in /dev/fd. The name of this file will become the argument to the command. If
the form with > is selected, then writing on this file will provide input for list. If < is
used, then the file passed as an argument will contain the output of the list process.
For example,

paste <(cut -f1 file1) <(cut -f3 file2) | tee >(process1) >(process2)

cuts fields 1 and 3 from the files file1 and file2, respectively, pastes the results
together, and sends it to the processes process1 and process2, as well as putting it onto
the standard output. Note that the file, which is passed as an argument to the
command, is a UNIX pipe(2) so programs that expect to lseek(2) on the file will not
work.

A parameter is an identifier, one or more digits, or any of the characters *, @, #, ?, −, $,
and !. A variable (a parameter denoted by an identifier) has a value and zero or more
attributes. variables can be assigned values and attributes by using the typeset special
command. The attributes supported by the shell are described later with the typeset
special command. Exported variables pass values and attributes to the environment.

ksh(1)

Process
Substitution

Parameter
Substitution

User Commands 589

The shell supports a one-dimensional array facility. An element of an array variable is
referenced by a subscript. A subscript is denoted by a [, followed by an arithmetic
expression (see Arithmetic Evaluation below) followed by a]. To assign values to
an array, use set -A name value The value of all subscripts must be in the
range of 0 through 4095. Arrays need not be declared. Any reference to a variable with
a valid subscript is legal and an array will be created if necessary. Referencing an array
without a subscript is equivalent to referencing the element 0. If an array identifier
with subscript * or @ is used, then the value for each of the elements is substituted
(separated by a field separator character).

The value of a variable may be assigned by writing:

name=value [name=value] . . .

If the integer attribute, -i, is set for name, the value is subject to arithmetic evaluation
as described below.

Positional parameters, parameters denoted by a number, may be assigned values with
the set special command. Parameter $0 is set from argument zero when the shell is
invoked. If parameter is one or more digits then it is a positional parameter. A
positional parameter of more than one digit must be enclosed in braces.

The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching }. Any } escaped by a
backslash or within a quoted string, and characters in embedded arithmetic
expansions, command substitutions and variable expansions, are not examined in
determining the matching }.

The simplest form for parameter expansion is:

${parameter}

The value, if any, of parameter will be substituted.

The parameter name or symbol can be enclosed in braces, which are optional except
for positional parameters with more than one digit or when parameter is followed by a
character that could be interpreted as part of the name. The matching closing brace
will be determined by counting brace levels, skipping over enclosed quoted strings
and command substitutions.

If the parameter name or symbol is not enclosed in braces, the expansion will use the
longest valid name whether or not the symbol represented by that name exists. When
the shell is scanning its input to determine the boundaries of a name, it is not bound
by its knowledge of what names are already defined. For example, if F is a defined
shell variable, the command:

ksh(1)

Parameter
Expansion

590 man pages section 1: User Commands • Last Revised 28 Jan 2002

echo $Fred

does not echo the value of $F followed by red; it selects the longest possible valid
name, Fred, which in this case might be unset.

If a parameter expansion occurs inside double-quotes:

� Pathname expansion will not be performed on the results of the expansion.

� Field splitting will not be performed on the results of the expansion, with the
exception of @.

In addition, a parameter expansion can be modified by using one of the following
formats. In each case that a value of word is needed (based on the state of parameter, as
described below), word will be subjected to tilde expansion, parameter expansion,
command substitution and arithmetic expansion. If word is not needed, it will not be
expanded. The } character that delimits the following parameter expansion
modifications is determined as described previously in this section and in dquote.
(For example, ${foo-bar}xyz} would result in the expansion of foo followed by
the string xyz} if foo is set, else the string barxyz}).

${parameter:−word} Use Default Values. If parameter is unset or null,
the expansion of word will be substituted; otherwise,
the value of parameter will be substituted.

${parameter:=word} Assign Default Values. If parameter is unset or
null, the expansion of word will be assigned to
parameter. In all cases, the final value of parameter will
be substituted. Only variables, not positional
parameters or special parameters, can be assigned in
this way.

${parameter:?[word]} Indicate Error if Null or Unset. If parameter
is unset or null, the expansion of word (or a message
indicating it is unset if word is omitted) will be written
to standard error and the shell will exit with a non-zero
exit status. Otherwise, the value of parameter will be
substituted. An interactive shell need not exit.

${parameter:+[word]} Use Alternative Value. If parameter is unset or
null, null will be substituted. Otherwise, the
expansion of word will be substituted.

In the parameter expansions shown previously, use of the colon in the format results
in a test for a parameter that is unset or null. Omission of the colon results in a test
for a parameter that is only unset. The following table summarizes the effect of the
colon:

ksh(1)

User Commands 591

parameter set and
not null

parameter set and
null

parameter unset

${parameter:-word}substitute
parameter

substitute word substitute word

${parameter−word}substitute
parameter

substitute null substitute word

${parameter:=word}substitute
parameter

assign word assign word

${parameter=word}substitute
parameter

substitute
parameter

assign null

${parameter:?word}substitute
parameter

error, exit error, exit

${parameter?word}substitute
parameter

substitute null error, exit

${parameter:+word}substitute word substitute null substitute null

${parameter+word}substitute word substitute word substitute null

In all cases shown with “substitute”, the expression is replaced with the value shown.
In all cases shown with “assign” parameter is assigned that value, which also replaces
the expression.

${#parameter} String Length. The length in characters of the value
of parameter. If parameter is * or @, then all the
positional parameters, starting with $1, are substituted
(separated by a field separator character).

The following four varieties of parameter expansion provide for substring processing.
In each case, pattern matching notation (see patmat), rather than regular expression
notation, will be used to evaluate the patterns. If parameter is * or @, then all the
positional parameters, starting with $1, are substituted (separated by a field separator
character). Enclosing the full parameter expansion string in double-quotes will not
cause the following four varieties of pattern characters to be quoted, whereas quoting
characters within the braces will have this effect.

${parameter%word} Remove Smallest Suffix Pattern. The word will
be expanded to produce a pattern. The parameter
expansion then will result in parameter, with the
smallest portion of the suffix matched by the pattern
deleted.

${parameter%%word} Remove Largest Suffix Pattern. The word will
be expanded to produce a pattern. The parameter
expansion then will result in parameter, with the largest
portion of the suffix matched by the pattern deleted.

ksh(1)

592 man pages section 1: User Commands • Last Revised 28 Jan 2002

${parameter#word} Remove Smallest Prefix Pattern. The word will
be expanded to produce a pattern. The parameter
expansion then will result in parameter, with the
smallest portion of the prefix matched by the pattern
deleted.

${parameter##word} Remove Largest Prefix Pattern. The word will
be expanded to produce a pattern. The parameter
expansion then will result in parameter, with the largest
portion of the prefix matched by the pattern deleted.

Examples:

${parameter:−word}

In this example, ls is executed only if x is null or unset. (The $(ls) command
substitution notation is explained in Command Substitution above.)

${x:-$(ls)}

${parameter:=word}

unset X
echo ${X:=abc}
abc

${parameter:?word}

unset posix
echo ${posix:?}
sh: posix: parameter null or not set

${parameter:+word}

set a b c
echo ${3:+posix}
posix

${#parameter}

HOME=/usr/posix
echo ${#HOME}
10

${parameter%word}

x=file.c
echo ${x%.c}.o
file.o

${parameter%%word}

x=posix/src/std
echo ${x%%/*}
posix

ksh(1)

User Commands 593

${parameter#word}

x=$HOME/src/cmd
echo ${x#$HOME}
/src/cmd

${parameter##word}

x=/one/two/three
echo ${x##*/}
three

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

− Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last executed command.

$ The process number of this shell.

_ Initially, the value of _ is an absolute pathname of the shell or
script being executed as passed in the environment. Subsequently it
is assigned the last argument of the previous command. This
parameter is not set for commands which are asynchronous. This
parameter is also used to hold the name of the matching MAIL file
when checking for mail.

! The process number of the last background command invoked.

ERRNO The value of errno as set by the most recently failed system call.
This value is system dependent and is intended for debugging
purposes.

LINENO The line number of the current line within the script or function
being executed.

OLDPWD The previous working directory set by the cd command.

OPTARG The value of the last option argument processed by the getopts
special command.

OPTIND The index of the last option argument processed by the getopts
special command.

PPID The process number of the parent of the shell.

PWD The present working directory set by the cd command.

RANDOM Each time this variable is referenced, a random integer, uniformly
distributed between 0 and 32767, is generated. The sequence of
random numbers can be initialized by assigning a numeric value
to RANDOM.

REPLY This variable is set by the select statement and by the read
special command when no arguments are supplied.

ksh(1)

Parameters Set by
Shell

594 man pages section 1: User Commands • Last Revised 28 Jan 2002

SECONDS Each time this variable is referenced, the number of seconds since
shell invocation is returned. If this variable is assigned a value,
then the value returned upon reference will be the value that was
assigned plus the number of seconds since the assignment.

The following variables are used by the shell:

CDPATH The search path for the cd command.

COLUMNS If this variable is set, the value is used to define the width of the
edit window for the shell edit modes and for printing select
lists.

EDITOR If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see the
set special command below) will be turned on.

ENV This variable, when the shell is invoked, is subjected to parameter
expansion by the shell and the resulting value is used as a
pathname of a file containing shell commands to execute in the
current environment. The file need not be executable. If the
expanded value of ENV is not an absolute pathname, the results are
unspecified. ENV will be ignored if the user’s real and effective user
IDs or real and effective group IDs are different.

This variable can be used to set aliases and other items local to the
invocation of a shell. The file referred to by ENV differs from
$HOME/.profile in that .profile is typically executed at
session startup, whereas the ENV file is executed at the beginning
of each shell invocation. The ENV value is interpreted in a manner
similar to a dot script, in that the commands are executed in the
current environment and the file needs to be readable, but not
executable. However, unlike dot scripts, no PATH searching is
performed. This is used as a guard against Trojan Horse security
breaches.

FCEDIT The default editor name for the fc command.

FPATH The search path for function definitions. By default, the FPATH
directories are searched after the PATH variable. If an executable
file is found, then it is read and executed in the current
environment. FPATH is searched before PATH when a function
with the -u attribute is referenced. The preset alias autoload
causes a function with the -u attribute to be created.

IFS Internal field separators, normally space, tab, and new-line
that are used to separate command words which result from
command or parameter substitution and for separating words
with the special command read. The first character of the IFS
variable is used to separate arguments for the $* substitution (See
Quoting below).

ksh(1)

Variables Used by
Shell

User Commands 595

HISTFILE If this variable is set when the shell is invoked, then the value is
the pathname of the file that will be used to store the command
history. (See Command re-entry below.)

HISTSIZE If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will
be greater than or equal to this number. The default is 128.

HOME The default argument (home directory) for the cd command.

LC_ALL This variable provides a default value for the LC_* variables.

LC_COLLATE This variable determines the behavior of range expressions,
equivalence classes and multi-byte character collating elements
within pattern matching.

LC_CTYPE Determines how the shell handles characters. When LC_CTYPE is
set to a valid value, the shell can display and handle text and
filenames containing valid characters for that locale. If LC_CTYPE
(see environ(5)) is not set in the environment, the operational
behavior of the shell is determined by the value of the LANG
environment variable. If LC_ALL is set, its contents are used to
override both the LANG and the other LC_* variables.

LC_MESSAGES This variable determines the language in which messages should
be written.

LANG Provide a default value for the internationalization variables that
are unset or null. If any of the internationalization variables
contains an invalid setting, the utility will behave as if none of the
variables had been defined.

LINENO This variable is set by the shell to a decimal number representing
the current sequential line number (numbered starting with 1)
within a script or function before it executes each command. If the
user unsets or resets LINENO, the variable may lose its special
meaning for the life of the shell. If the shell is not currently
executing a script or function, the value of LINENO is unspecified.

LINES If this variable is set, the value is used to determine the column
length for printing select lists. Select lists will print vertically
until about two-thirds of LINES lines are filled.

MAIL If this variable is set to the name of a mail file and the MAILPATH
variable is not set, then the shell informs the user of arrival of mail
in the specified file.

MAILCHECK This variable specifies how often (in seconds) the shell will check
for changes in the modification time of any of the files specified by
the MAILPATH or MAIL variables. The default value is 600
seconds. When the time has elapsed the shell will check before
issuing the next prompt.

ksh(1)

596 man pages section 1: User Commands • Last Revised 28 Jan 2002

MAILPATH A colon (:) separated list of file names. If this variable is set, then
the shell informs the user of any modifications to the specified files
that have occurred within the last MAILCHECK seconds. Each file
name can be followed by a ? and a message that will be printed.
The message will undergo parameter substitution with the
variable $_ defined as the name of the file that has changed. The
default message is you have mail in $_.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

PATH The search path for commands (see Execution below). The user
may not change PATH if executing under rksh (except in
.profile).

PPID This variable is set by the shell to the decimal process ID of the
process that invoked the shell. In a subshell, PPID will be set to the
same value as that of the parent of the current shell. For example,
echo $PPID and (echo $PPID) would produce the same value.

PS1 The value of this variable is expanded for parameter substitution
to define the primary prompt string which by default is ‘‘$ ’’.
The character ! in the primary prompt string is replaced by the
command number (see Command Re-entry below). Two
successive occurrences of ! will produce a single ! when the
prompt string is printed.

PS2 Secondary prompt string, by default ‘‘> ’’.

PS3 Selection prompt string used within a select loop, by default
‘‘#? ’’.

PS4 The value of this variable is expanded for parameter substitution
and precedes each line of an execution trace. If omitted, the
execution trace prompt is ‘‘+ ’’.

SHELL The pathname of the shell is kept in the environment. At
invocation, if the basename of this variable is rsh, rksh, or krsh,
then the shell becomes restricted.

TMOUT If set to a value greater than zero, the shell will terminate if a
command is not entered within the prescribed number of seconds
after issuing the PS1 prompt. (Notice that the shell can be
compiled with a maximum bound for this value which cannot be
exceeded.)

VISUAL If the value of this variable ends in emacs, gmacs, or vi, then the
corresponding option (see Special Command set below) will be
turned on.

ksh(1)

User Commands 597

The shell gives default values to PATH, PS1, PS2, PS3, PS4, MAILCHECK, FCEDIT,
TMOUT, and IFS, while HOME, SHELL, ENV, and MAIL are not set at all by the shell
(although HOME is set by login(1)). On some systems MAIL and SHELL are also set by
login.

After parameter and command substitution, the results of substitutions are scanned
for the field separator characters (those found in IFS) and split into distinct arguments
where such characters are found. Explicit null arguments ("") or (’’) are retained.
Implicit null arguments (those resulting from parameters that have no values) are
removed.

Following substitution, each command word is scanned for the characters *, ?, and [
unless the -f option has been set. If one of these characters appears, the word is
regarded as a pattern. The word is replaced with lexicographically sorted file names
that match the pattern. If no file name is found that matches the pattern, the word is
left unchanged. When a pattern is used for file name generation, the character period
(.) at the start of a file name or immediately following a /, as well as the character /
itself, must be matched explicitly. A file name beginning with a period will not be
matched with a pattern with the period inside parentheses. That is, ls .@(r*) would
locate a file named .restore, but ls @(.r*) would not. In other instances of
pattern matching, the / and . are not treated specially.

* Matches any string, including the null string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters. A pair of characters
separated by − matches any character lexically between the pair,
inclusive. If the first character following the opening "[" is a "! ",
then any character not enclosed is matched. A − can be included in
the character set by putting it as the first or last character.

A pattern-list is a list of one or more patterns separated from each other with a |.
Composite patterns can be formed with one or more of the following:

?(pattern-list) Optionally matches any one of the given patterns.

*(pattern-list) Matches zero or more occurrences of the given
patterns.

+(pattern-list) Matches one or more occurrences of the given patterns.

@(pattern-list) Matches exactly one of the given patterns.

!(pattern-list) Matches anything, except one of the given patterns.

Each of the metacharacters listed above (see Definitions) has a special meaning to
the shell and causes termination of a word unless quoted. A character may be quoted
(that is, made to stand for itself) by preceding it with a \ . The pair \ NEWLINE is
removed. All characters enclosed between a pair of single quote marks (’ ’) are
quoted. A single quote cannot appear within single quotes. Inside double quote marks

ksh(1)

Blank
Interpretation

File Name
Generation

Quoting

598 man pages section 1: User Commands • Last Revised 28 Jan 2002

(""), parameter and command substitution occur and \ quotes the characters \ , ‘, ",
and $. The meaning of $* and $@ is identical when not quoted or when used as a
parameter assignment value or as a file name. However, when used as a command
argument, $* is equivalent to ‘‘$1d $2d . . .’’, where d is the first character of
the IFS variable, whereas $@ is equivalent to $1 $2 Inside grave quote marks
(‘‘), \ quotes the characters \ , ’, and $. If the grave quotes occur within double
quotes, then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by quoting any
character of the reserved word. The recognition of function names or special command
names listed below cannot be altered by quoting them.

An ability to perform integer arithmetic is provided with the special command let.
Evaluations are performed using long arithmetic. Constants are of the form [base#] n
where base is a decimal number between two and thirty-six representing the arithmetic
base and n is a number in that base. If base is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of
expression as the C language. All the integral operators, other than ++, –;, ?:, and ,
are supported. Variables can be referenced by name within an arithmetic expression
without using the parameter substitution syntax. When a variable is referenced, its
value is evaluated as an arithmetic expression.

An internal integer representation of a variable can be specified with the -i option of
the typeset special command. Arithmetic evaluation is performed on the value of
each assignment to a variable with the -i attribute. If you do not specify an arithmetic
base, the first assignment to the variable determines the arithmetic base. This base is
used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the let
command is provided. For any command which begins with a ((, all the characters
until a matching)) are treated as a quoted expression. More precisely, ((. . .)) is
equivalent to let " . . .".

When used interactively, the shell prompts with the parameter expanded value of PS1
before reading a command. If at any time a new-line is typed and further input is
needed to complete a command, then the secondary prompt (that is, the value of PS2)
is issued.

A conditional expression is used with the [[compound command to test attributes of
files and to compare strings. Word splitting and file name generation are not
performed on the words between [[and]]. Each expression can be constructed from
one or more of the following unary or binary expressions:

-a file True, if file exists.

-b file True, if file exists and is a block special file.

-c file True, if file exists and is a character special file.

ksh(1)

Arithmetic
Evaluation

Prompting

Conditional
Expressions

User Commands 599

-d file True, if file exists and is a directory.

-e file True, if file exists.

-f file True, if file exists and is an ordinary file.

-g file True, if file exists and is has its setgid bit set.

-k file True, if file exists and is has its sticky bit set.

-n string True, if length of string is non-zero.

-o option True, if option named option is on.

-p file True, if file exists and is a fifo special file or a pipe.

-r file True, if file exists and is readable by current process.

-s file True, if file exists and has size greater than zero.

-t fildes True, if file descriptor number fildes is open and
associated with a terminal device.

-u file True, if file exists and has its setuid bit set.

-w file True, if file exists and is writable by current process.

-x file True, if file exists and is executable by current process.
If file exists and is a directory, then the current process
has permission to search in the directory.

-z string True, if length of string is zero.

-L file True, if file exists and is a symbolic link.

-O file True, if file exists and is owned by the effective user id
of this process.

-G file True, if file exists and its group matches the effective
group id of this process.

-S file True, if file exists and is a socket.

file1 -nt file2 True, if file1 exists and is newer than file2.

file1 -ot file2 True, if file1 exists and is older than file2.

file1 -ef file2 True, if file1 and file2 exist and refer to the same file.

string True if the string string is not the null string.

string = pattern True, if string matches pattern.

string != pattern True, if string does not match pattern.

string1=string2 True if the strings string1 and string2 are identical.

string1! =string2 True if the strings string1 and string2 are not identical.

ksh(1)

600 man pages section 1: User Commands • Last Revised 28 Jan 2002

string1 < string2 True, if string1 comes before string2 based on strings
interpreted as appropriate to the locale setting for
category LC_COLLATE.

string1 > string2 True, if string1 comes after string2 based on strings
interpreted as appropriate to the locale setting for
category LC_COLLATE.

exp1 -eq exp2 True, if exp1 is equal to exp2.

exp1 -ne exp2 True, if exp1 is not equal to exp2.

exp1 -lt exp2 True, if exp1 is less than exp2.

exp1 -gt exp2 True, if exp1 is greater than exp2.

exp1 -le exp2 True, if exp1 is less than or equal to exp2.

exp1 -ge exp2 True, if exp1 is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/fd/n, where n is an
integer, then the test is applied to the open file whose descriptor number is n.

A compound expression can be constructed from these primitives by using any of the
following, listed in decreasing order of precedence.

(expression) True, if expression is true. Used to group
expressions.

! expression True if expression is false.

expression1 && expression2 True, if expression1 and expression2 are both
true.

expression1 || expression2 True, if either expression1 or expression2 is
true.

Before a command is executed, its input and output may be redirected using a special
notation interpreted by the shell. The following may appear anywhere in a
simple-command or may precede or follow a command and are not passed on to the
invoked command. Command and parameter substitution occur before word or digit is
used except as noted below. File name generation occurs only if the pattern matches a
single file, and blank interpretation is not performed.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If
the file does not exist then it is created. If the file exists,
and the noclobber option is on, this causes an error;
otherwise, it is truncated to zero length.

>|word Sames as >, except that it overrides the noclobber
option.

ksh(1)

Input/Output

User Commands 601

>>word Use file word as standard output. If the file exists,
output is appended to it (by first seeking to the EOF).
Otherwise, the file is created.

<>word Open file word for reading and writing as standard
input.

<< [-]word The shell input is read up to a line that is the same as
word, or to an EOF. No parameter substitution,
command substitution, or file name generation is
performed on word. The resulting document, called a
here-document, becomes the standard input. If any
character of word is quoted, no interpretation is placed
upon the characters of the document. Otherwise,
parameter and command substitution occur, \NEWLINE
is ignored, and \ must be used to quote the characters
\ , $, ‘, and the first character of word. If − is
appended to <<, then all leading tabs are stripped from
word and from the document.

<&digit The standard input is duplicated from file descriptor
digit (see dup(2)). Similarly for the standard output
using >&digit.

<&− The standard input is closed. Similarly for the standard
output using >&−.

<&p The input from the co-process is moved to standard
input.

>&p The output to the co-process is moved to standard
output.

If one of the above is preceded by a digit, then the file descriptor number referred to is
that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each
redirection in terms of the (file descriptor, file) association at the time of evaluation. For
example:

... 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with
the file associated with file descriptor 1 (that is, fname). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and then file descriptor 1 would be associated with file fname.

ksh(1)

602 man pages section 1: User Commands • Last Revised 28 Jan 2002

If a command is followed by & and job control is not active, then the default standard
input for the command is the empty file /dev/null. Otherwise, the environment for
the execution of a command contains the file descriptors of the invoking shell as
modified by input/output specifications.

The environment (see environ(5)) is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The names must be
identifiers and the values are character strings. The shell interacts with the environment
in several ways. On invocation, the shell scans the environment and creates a variable
for each name found, giving it the corresponding value and marking it export.
Executed commands inherit the environment. If the user modifies the values of these
variables or creates new ones, using the export or typeset -x commands, they
become part of the environment. The environment seen by any executed command is
thus composed of any name-value pairs originally inherited by the shell, whose values
may be modified by the current shell, plus any additions which must be noted in
export or typeset -x commands.

The environment for any simple-command or function may be augmented by prefixing it
with one or more variable assignments. A variable assignment argument is a word of
the form identifier=value. Thus:

TERM=450 cmd args

and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned, except for special
commands listed below that are preceded with an asterisk).

If the -k flag is set, all variable assignment arguments are placed in the environment,
even if they occur after the command name. The following first prints a=b c and then
c:

echo a=b c
set −k echo

a=b c

This feature is intended for use with scripts written for early versions of the shell and
its use in new scripts is strongly discouraged. It is likely to disappear someday.

The function reserved word, described in the Commands section above, is used to
define shell functions. Shell functions are read in and stored internally. Alias names are
resolved when the function is read. Functions are executed like commands with the
arguments passed as positional parameters. (See Execution below.)

ksh(1)

Environment

Functions

User Commands 603

Functions execute in the same process as the caller and share all files and present
working directory with the caller. Traps caught by the caller are reset to their default
action inside the function. A trap condition that is not caught or ignored by the
function causes the function to terminate and the condition to be passed on to the
caller.

A trap on EXIT set inside a function is executed after the function completes in the
environment of the caller. This is true only for non-POSIX-style functions, that is,
functions declared as

function func

as opposed to POSIX-style functions, declared as

func()

Ordinarily, variables are shared between the calling program and the function.
However, the typeset special command used within a function defines local
variables whose scope includes the current function and all functions it calls.

The special command return is used to return from function calls. Errors within
functions return control to the caller.

The names of all functions can be listed with typeset+f. typeset -f lists all
function names as well as the text of all functions. typeset -f function-names lists the
text of the named functions only. Functions can be undefined with the -f option of the
unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option
of the typeset command allows a function to be exported to scripts that are executed
without a separate invocation of the shell. Functions that need to be defined across
separate invocations of the shell should be specified in the ENV file with the -xf
option of typeset.

A function is a user-defined name that is used as a simple command to call a
compound command with new positional parameters. A function is defined with a
function definition command.

The format of a function definition command is as follows:

fname() compound-command[io-redirect . . .]

The function is named fname; it must be a name. An implementation may allow other
characters in a function name as an extension. The implementation will maintain
separate name spaces for functions and variables.

The () in the function definition command consists of two operators. Therefore,
intermixing blank characters with the fname, (, and) is allowed, but unnecessary.

The argument compound-command represents a compound command.

ksh(1)

Function
Definition
Command

604 man pages section 1: User Commands • Last Revised 28 Jan 2002

When the function is declared, none of the expansions in wordexp will be performed
on the text in compound-command or io-redirect; all expansions will be performed as
normal each time the function is called. Similarly, the optional io-redirect redirections
and any variable assignments within compound-command will be performed during the
execution of the function itself, not the function definition.

When a function is executed, it will have the syntax-error and variable-assignment
properties described for the special built-in utilities.

The compound-command will be executed whenever the function name is specified as
the name of a simple command The operands to the command temporarily will
become the positional parameters during the execution of the compound-command; the
special parameter # will also be changed to reflect the number of operands. The
special parameter 0 will be unchanged. When the function completes, the values of
the positional parameters and the special parameter # will be restored to the values
they had before the function was executed. If the special built-in return is executed
in the compound-command, the function will complete and execution will resume with
the next command after the function call.

An example of how a function definition can be used wherever a simple command is
allowed:

If variable i is equal to "yes",
define function foo to be ls −l
#
["$i" = yes] && foo() {

ls −l
}

The exit status of a function definition will be 0 if the function was declared
successfully; otherwise, it will be greater than zero. The exit status of a function
invocation will be the exit status of the last command executed by the function.

If the monitor option of the set command is turned on, an interactive shell
associates a job with each pipeline. It keeps a table of current jobs, printed by the
jobs command, and assigns them small integer numbers. When a job is started
asynchronously with &, the shell prints a line which looks like:

[1] 1234

indicating that the job, which was started asynchronously, was job number 1 and had
one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may press the key ^Z
(Control-Z) which sends a STOP signal to the current job. The shell will then normally
indicate that the job has been ‘Stopped’, and print another prompt. You can then
manipulate the state of this job, putting it in the background with the bg command, or
run some other commands and then eventually bring the job back into the foreground
with the foreground command fg. A ^Z takes effect immediately and is like an
interrupt in that pending output and unread input are discarded when it is typed.

ksh(1)

Jobs

User Commands 605

A job being run in the background will stop if it tries to read from the terminal.
Background jobs are normally allowed to produce output, but this can be disabled by
giving the command “stty tostop”. If you set this tty option, then background jobs
will stop when they try to produce output as they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by the
process id of any process of the job or by one of the following:

%number The job with the given number.

%string Any job whose command line begins with string.

%?string Any job whose command line contains string.

%% Current job.

%+ Equivalent to %%.

%− Previous job.

The shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked so that no further progress is possible, but only
just before it prints a prompt. This is done so that it does not otherwise disturb your
work.

When the monitor mode is on, each background job that completes triggers any trap
set for CHLD.

When you try to leave the shell while jobs are running or stopped, you will be warned
with the message, ‘You have stopped(running) jobs.’ You may use the jobs
command to see what they are. If you do this or immediately try to exit again, the
shell will not warn you a second time, and the stopped jobs will be terminated. If you
have nohup’ed jobs running when you attempt to logout, you will be warned with the
message:

You have jobs running.

You will then need to logout a second time to actually logout. However, your
background jobs will continue to run.

The INT and QUIT signals for an invoked command are ignored if the command is
followed by & and the monitor option is not active. Otherwise, signals have the
values inherited by the shell from its parent (but see also the trap special command
below).

Each time a command is executed, the above substitutions are carried out. If the
command name matches one of the Special Commands listed below, it is executed
within the current shell process. Next, the command name is checked to see if it
matches one of the user defined functions. If it does, the positional parameters are
saved and then reset to the arguments of the function call. When the function
completes or issues a return, the positional parameter list is restored and any trap set
on EXIT within the function is executed. The value of a function is the value of the

ksh(1)

Signals

Execution

606 man pages section 1: User Commands • Last Revised 28 Jan 2002

last command executed. A function is also executed in the current shell process. If a
command name is not a special command or a user defined function, a process is
created and an attempt is made to execute the command via exec(2).

The shell variable PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default path
is /bin:/usr/bin: (specifying /bin, /usr/bin, and the current directory in that
order). The current directory can be specified by two or more adjacent colons, or by a
colon at the beginning or end of the path list. If the command name contains a / then
the search path is not used. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission but is not a directory or an a.out
file, it is assumed to be a file containing shell commands. A sub-shell is spawned to
read it. All non-exported aliases, functions, and variables are removed in this case. A
parenthesized command is executed in a sub-shell without removing non-exported
quantities.

The text of the last HISTSIZE (default 128) commands entered from a terminal device
is saved in a history file. The file $HOME/.sh_history is used if the HISTFILE
variable is not set or if the file it names is not writable. A shell can access the
commands of all interactive shells which use the same named HISTFILE. The special
command fc is used to list or edit a portion of this file. The portion of the file to be
edited or listed can be selected by number or by giving the first character or characters
of the command. A single command or range of commands can be specified. If you do
not specify an editor program as an argument to fc then the value of the variable
FCEDIT is used. If FCEDIT is not defined, then /bin/ed is used. The edited
command(s) is printed and re-executed upon leaving the editor. The editor name − is
used to skip the editing phase and to re-execute the command. In this case a
substitution parameter of the form old=new can be used to modify the command
before execution. For example, if r is aliased to ’fc -e -’ then typing ’r bad=good
c’ will re-execute the most recent command which starts with the letter c, replacing
the first occurrence of the string bad with the string good.

Normally, each command line entered from a terminal device is simply typed
followed by a new-line (RETURN or LINEFEED). If either the emacs, gmacs, or vi
option is active, the user can edit the command line. To be in either of these edit
modes set the corresponding option. An editing option is automatically selected each
time the VISUAL or EDITOR variable is assigned a value ending in either of these
option names.

The editing features require that the user’s terminal accept RETURN as carriage return
without line feed and that a space must overwrite the current character on the screen.

The editing modes implement a concept where the user is looking through a window
at the current line. The window width is the value of COLUMNS if it is defined,
otherwise 80. If the window width is too small to display the prompt and leave at least
8 columns to enter input, the prompt is truncated from the left. If the line is longer
than the window width minus two, a mark is displayed at the end of the window to

ksh(1)

Command
Re-entry

In-line Editing
Option

User Commands 607

notify the user. As the cursor moves and reaches the window boundaries the window
will be centered about the cursor. The mark is a > if the line extends on the right side
of the window, < if the line extends on the left, and * if the line extends on both sides
of the window.

The search commands in each edit mode provide access to the history file. Only
strings are matched, not patterns, although a leading caret (^) in the string restricts the
match to begin at the first character in the line.

This mode is entered by enabling either the emacs or gmacs option. The only
difference between these two modes is the way they handle ^T. To edit, move the
cursor to the point needing correction and then insert or delete characters or words as
needed. All the editing commands are control characters or escape sequences. The
notation for control characters is caret (^) followed by the character. For example, ^F
is the notation for control F. This is entered by depressing ‘f’ while holding down the
CTRL (control) key. The SHIFT key is not depressed. (The notation ^? indicates the
DEL (delete) key.)

The notation for escape sequences is M- followed by a character. For example, M-f
(pronounced Meta f) is entered by depressing ESC (ascii 033) followed by ‘f’. (M-F
would be the notation for ESC followed by SHIFT (capital) ‘F’.)

All edit commands operate from any place on the line (not just at the beginning).
Neither the RETURN nor the LINEFEED key is entered after edit commands except
when noted.

^F Move cursor forward (right) one character.

M-f Move cursor forward one word. (The emacs editor’s idea of a
word is a string of characters consisting of only letters, digits and
underscores.)

^B Move cursor backward (left) one character.

M-b Move cursor backward one word.

^A Move cursor to start of line.

^E Move cursor to end of line.

^]char Move cursor forward to character char on current line.

M-^]char Move cursor backward to character char on current line.

^X^X Interchange the cursor and mark.

erase (User defined erase character as defined by the stty(1) command,
usually ^H or #.) Delete previous character.

^D Delete current character.

M-d Delete current word.

M-^H (Meta-backspace) Delete previous word.

ksh(1)

emacs Editing
Mode

608 man pages section 1: User Commands • Last Revised 28 Jan 2002

M-h Delete previous word.

M-^? (Meta-DEL) Delete previous word (if your interrupt character is ^?
(DEL, the default) then this command will not work).

^T Transpose current character with next character in emacs mode.
Transpose two previous characters in gmacs mode.

^C Capitalize current character.

M-c Capitalize current word.

M-l Change the current word to lower case.

^K Delete from the cursor to the end of the line. If preceded by a
numerical parameter whose value is less than the current cursor
position, then delete from given position up to the cursor. If
preceded by a numerical parameter whose value is greater than
the current cursor position, then delete from cursor up to given
cursor position.

^W Kill from the cursor to the mark.

M-p Push the region from the cursor to the mark on the stack.

kill (User defined kill character as defined by the stty(1) command,
usually ^G or @.) Kill the entire current line. If two kill characters
are entered in succession, all kill characters from then on cause a
line feed (useful when using paper terminals).

^Y Restore last item removed from line. (Yank item back to the line.)

^L Line feed and print current line.

^@ (null character) Set mark.

M-space (Meta space) Set mark.

J (New line) Execute the current line.

M (Return) Execute the current line.

eof End-of-file character, normally ^D, is processed as an End-of-file
only if the current line is null.

^P Fetch previous command. Each time ^P is entered the previous
command back in time is accessed. Moves back one line when not
on the first line of a multi-line command.

M-< Fetch the least recent (oldest) history line.

M-> Fetch the most recent (youngest) history line.

^N Fetch next command line. Each time ^N is entered the next
command line forward in time is accessed.

ksh(1)

User Commands 609

^Rstring Reverse search history for a previous command line containing
string. If a parameter of zero is given, the search is forward. string
is terminated by a RETURN or NEW LINE. If string is preceded by
a ^, the matched line must begin with string. If string is omitted,
then the next command line containing the most recent string is
accessed. In this case a parameter of zero reverses the direction of
the search.

^O Operate. Execute the current line and fetch the next line relative to
current line from the history file.

M-digits (Escape) Define numeric parameter, the digits are taken as a
parameter to the next command. The commands that accept a
parameter are ^F, ^B, erase, ^C, ^D, ^K, ^R, ^P, ^N, ^], M-., M-^],
M-_, M-b, M-c, M-d, M-f, M-h, M-l and M-^H.

M-letter Soft-key. Your alias list is searched for an alias by the name _letter
and if an alias of this name is defined, its value will be inserted on
the input queue. The letter must not be one of the above
meta-functions.

M-[letter Soft-key. Your alias list is searched for an alias by the name __letter
and if an alias of this name is defined, its value will be inserted on
the input queue. The can be used to program functions keys on
many terminals.

M−. The last word of the previous command is inserted on the line. If
preceded by a numeric parameter, the value of this parameter
determines which word to insert rather than the last word.

M−_ Same as M−..

M−* An asterisk is appended to the end of the word and a file name
expansion is attempted.

M−ESC File name completion. Replaces the current word with the longest
common prefix of all filenames matching the current word with an
asterisk appended. If the match is unique, a / is appended if the
file is a directory and a space is appended if the file is not a
directory.

M−= List files matching current word pattern if an asterisk were
appended.

^U Multiply parameter of next command by 4.

\ Escape next character. Editing characters, the user’s erase, kill and
interrupt (normally ^?) characters may be entered in a command
line or in a search string if preceded by a \ . The \ removes the
next character’s editing features (if any).

^V Display version of the shell.

ksh(1)

610 man pages section 1: User Commands • Last Revised 28 Jan 2002

M-# Insert a # at the beginning of the line and execute it. This causes a
comment to be inserted in the history file.

There are two typing modes. Initially, when you enter a command you are in the input
mode. To edit, enter control mode by typing ESC (033) and move the cursor to the
point needing correction and then insert or delete characters or words as needed. Most
control commands accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled and the
command will be echoed again if the speed is 1200 baud or greater and it contains any
control characters or less than one second has elapsed since the prompt was printed.
The ESC character terminates canonical processing for the remainder of the command
and the user can then modify the command line. This scheme has the advantages of
canonical processing with the type-ahead echoing of raw mode.

If the option viraw is also set, the terminal will always have canonical processing
disabled. This mode is implicit for systems that do not support two alternate end of
line delimiters, and may be helpful for certain terminals.

By default the editor is in input mode.

erase (User defined erase character as defined by the stty(1) command,
usually ^H or #.) Delete previous character.

^W Delete the previous blank separated word.

^D Terminate the shell.

^V Escape next character. Editing characters and the user’s erase or
kill characters may be entered in a command line or in a search
string if preceded by a ^V. The ^V removes the next character’s
editing features (if any).

\ Escape the next erase or kill character.

These commands will move the cursor.

[count]l Cursor forward (right) one character.

[count]w Cursor forward one alpha-numeric word.

[count]W Cursor to the beginning of the next word that follows a blank.

[count]e Cursor to end of word.

[count]E Cursor to end of the current blank delimited word.

[count]h Cursor backward (left) one character.

[count]b Cursor backward one word.

[count]B Cursor to preceding blank separated word.

[count]| Cursor to column count.

ksh(1)

vi Editing Mode

Input Edit
Commands

Motion Edit
Commands

User Commands 611

[count]fc Find the next character c in the current line.

[count]Fc Find the previous character c in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc Equivalent to F followed by l.

[count]; Repeats count times, the last single character find command, f, F,
t, or T.

[count], Reverses the last single character find command count times.

0 Cursor to start of line.

^ Cursor to first non-blank character in line.

$ Cursor to end of line.

% Moves to balancing (,), {, }, [, or]. If cursor is not on one of the
above characters, the remainder of the line is searched for the first
occurrence of one of the above characters first.

These commands access your command history.

[count]k Fetch previous command. Each time k is entered the previous
command back in time is accessed.

[count]− Equivalent to k.

[count]j Fetch next command. Each time j is entered, the next command
forward in time is accessed.

[count]+ Equivalent to j.

[count]G The command number count is fetched. The default is the least
recent history command.

/string Search backward through history for a previous command
containing string. string is terminated by a RETURN or NEWLINE.
If string is preceded by a ^, the matched line must begin with
string. If string is NULL, the previous string will be used.

?string Same as / except that search will be in the forward direction.

n Search for next match of the last pattern to / or ? commands.

N Search for next match of the last pattern to / or ?, but in reverse
direction. Search history for the string entered by the previous /
command.

These commands will modify the line.

a Enter input mode and enter text after the current
character.

A Append text to the end of the line. Equivalent to $a.

ksh(1)

Search Edit
Commands

Text Modification
Edit Commands

612 man pages section 1: User Commands • Last Revised 28 Jan 2002

[count]cmotion
c[count]motion Delete current character through the character that

motion would move the cursor to and enter input
mode. If motion is c, the entire line will be deleted and
input mode entered.

C Delete the current character through the end of line and
enter input mode. Equivalent to c$.

[count]s Delete count characters and enter input mode.

S Equivalent to cc.

D Delete the current character through the end of line.
Equivalent to d$.

[count]dmotion
d[count]motion Delete current character through the character that

motion would move to. If motion is d, the entire line will
be deleted.

i Enter input mode and insert text before the current
character.

I Insert text before the beginning of the line. Equivalent
to 0i.

[count]P Place the previous text modification before the cursor.

[count]p Place the previous text modification after the cursor.

R Enter input mode and replace characters on the screen
with characters you type overlay fashion.

[count]rc Replace the count character(s) starting at the current
cursor position with c, and advance the cursor.

[count]x Delete current character.

[count]X Delete preceding character.

[count]. Repeat the previous text modification command.

[count]~ Invert the case of the count character(s) starting at the
current cursor position and advance the cursor.

[count]_ Causes the count word of the previous command to be
appended and input mode entered. The last word is
used if count is omitted.

* Causes an * to be appended to the current word and
file name generation attempted. If no match is found, it
rings the bell. Otherwise, the word is replaced by the
matching pattern and input mode is entered.

ksh(1)

User Commands 613

\ Filename completion. Replaces the current word with
the longest common prefix of all filenames matching
the current word with an asterisk appended. If the
match is unique, a / is appended if the file is a
directory and a space is appended if the file is not a
directory.

Miscellaneous commands.

[count]ymotion
y[count]motion Yank current character through character that motion

would move the cursor to and puts them into the
delete buffer. The text and cursor are unchanged.

Y Yanks from current position to end of line. Equivalent
to y$.

u Undo the last text modifying command.

U Undo all the text modifying commands performed on
the line.

[count]v Returns the command fc -e
${VISUAL:-${EDITOR:–vi}} count in the input
buffer. If count is omitted, then the current line is used.

^L Line feed and print current line. Has effect only in
control mode.

J (New line) Execute the current line, regardless of mode.

M (Return) Execute the current line, regardless of mode.

If the first character of the command is a #, then this
command deletes this # and each # that follows a
newline. Otherwise, sends the line after inserting a # in
front of each line in the command. Useful for causing
the current line to be inserted in the history as a
comment and removing comments from previous
comment commands in the history file.

= List the file names that match the current word if an
asterisk were appended it.

@letter Your alias list is searched for an alias by the name
_letter and if an alias of this name is defined, its value
will be inserted on the input queue for processing.

The following simple-commands are executed in the shell process. Input/Output
redirection is permitted. Unless otherwise indicated, the output is written on file
descriptor 1 and the exit status, when there is no syntax error, is 0. Commands that are
preceded by one or two * (asterisks) are treated specially in the following ways:

ksh(1)

Other Edit
Commands

Special Commands

614 man pages section 1: User Commands • Last Revised 28 Jan 2002

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

* : [arg . . .]
The command only expands parameters.

* . file [arg . . .]
Read the complete file then execute the commands. The commands are executed in
the current shell environment. The search path specified by PATH is used to find the
directory containing file. If any arguments arg are given, they become the positional
parameters. Otherwise the positional parameters are unchanged. The exit status is
the exit status of the last command executed.

** alias [-tx] [name[=value]] . . .
alias with no arguments prints the list of aliases in the form name=value on
standard output. An alias is defined for each name whose value is given. A trailing
space in value causes the next word to be checked for alias substitution. The -t flag
is used to set and list tracked aliases. The value of a tracked alias is the full
pathname corresponding to the given name. The value becomes undefined when
the value of PATH is reset but the aliases remained tracked. Without the -t flag, for
each name in the argument list for which no value is given, the name and value of
the alias is printed. The -x flag is used to set or print exported aliases. An exported
alias is defined for scripts invoked by name. The exit status is non-zero if a name is
given, but no value, and no alias has been defined for the name.

bg [%job. . .]
This command is only on systems that support job control. Puts each specified job
into the background. The current job is put in the background if job is not specified.
See "Jobs" section above for a description of the format of job.

* break [n]
Exit from the enclosed for, while, until, or select loop, if any. If n is specified
then break n levels.

* continue [n]
Resume the next iteration of the enclosed for, while, until, or select loop. If n
is specified then resume at the n-th enclosed loop.

cd [arg]
cd old new

This command can be in either of two forms. In the first form it changes the current
directory to arg. If arg is − the directory is changed to the previous directory. The
shell variable HOME is the default arg. The variable PWD is set to the current
directory. The shell variable CDPATH defines the search path for the directory

ksh(1)

User Commands 615

containing arg. Alternative directory names are separated by a colon (:). The
default path is null (specifying the current directory). Notice that the current
directory is specified by a null path name, which can appear immediately after the
equal sign or between the colon delimiters anywhere else in the path list. If arg
begins with a / then the search path is not used. Otherwise, each directory in the
path is searched for arg.

The second form of cd substitutes the string new for the string old in the current
directory name, PWD and tries to change to this new directory. The cd command
may not be executed by rksh.

command [-p] [command_name] [argument . . .]
command [-v -V] command_name

The command utility causes the shell to treat the arguments as a simple command,
suppressing the shell function lookup. The -p flag performs the command search
using a default value for PATH that is guaranteed to find all of the standard utilities.
The -v flag writes a string to standard output that indicates the pathname or
command that will be used by the shell, in the current shell execution environment,
to invoke command_name. The -V flag writes a string to standard output that
indicates how the name given in the command_name operand will be interpreted by
the shell, in the current shell execution environment.

echo [arg . . .]
See echo(1) for usage and description.

* eval [arg . . .]
The arguments are read as input to the shell and the resulting command(s)
executed.

* exec [arg . . .]
If arg is given, the command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may appear and
affect the current process. If no arguments are given the effect of this command is to
modify file descriptors as prescribed by the input/output redirection list. In this
case, any file descriptor numbers greater than 2 that are opened with this
mechanism are closed when invoking another program.

* exit [n]
Causes the calling shell or shell script to exit with the exit status specified by n. The
value will be the least significant 8 bits of the specified status. If n is omitted then
the exit status is that of the last command executed. When exit occurs when
executing a trap, the last command refers to the command that executed before the
trap was invoked. An EOF will also cause the shell to exit except for a shell which
has the ignoreeof option (See set below) turned on.

** export [name[=value]] . . .
The given names are marked for automatic export to the environment of
subsequently-executed commands.

fc [-e ename] [-nlr] [first [last]]
fc -e - [old=new] [command]

ksh(1)

616 man pages section 1: User Commands • Last Revised 28 Jan 2002

In the first form, a range of commands from first to last is selected from the last
HISTSIZE commands that were typed at the terminal. The arguments first and last
may be specified as a number or as a string. A string is used to locate the most
recent command starting with the given string. A negative number is used as an
offset to the current command number. If the -l flag is selected, the commands are
listed on standard output. Otherwise, the editor program ename is invoked on a file
containing these keyboard commands. If ename is not supplied, then the value of
the variable FCEDIT (default /bin/ed) is used as the editor. When editing is
complete, the edited command(s) is executed. If last is not specified then it will be
set to first. If first is not specified the default is the previous command for editing
and −16 for listing. The flag -r reverses the order of the commands and the flag -n
suppresses command numbers when listing. In the second form the command is
re-executed after the substitution old=new is performed. If there is not a command
argument, the most recent command typed at this terminal is executed.

fg [%job. . .]
This command is only on systems that support job control. Each job specified is
brought to the foreground. Otherwise, the current job is brought into the
foreground. See "Jobs" section above for a description of the format of job.

getopts optstring name [arg . . .]
Checks arg for legal options. If arg is omitted, the positional parameters are used.
An option argument begins with a + or a −. An option not beginning with + or − or
the argument – ends the options. optstring contains the letters that getopts
recognizes. If a letter is followed by a :, that option is expected to have an
argument. The options can be separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is
invoked with a + prepended when arg begins with a +. The index of the next arg is
stored in OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in
OPTARG, and to set name to ? for an unknown option and to : when a required
option is missing. Otherwise, getopts prints an error message. The exit status is
non-zero when there are no more options. See getoptcvt(1) for usage and
description.

hash [name . . .]
For each name, the location in the search path of the command specified by name is
determined and remembered by the shell. The -r option causes the shell to forget
all remembered locations. If no arguments are given, information about
remembered commands is presented. Hits is the number of times a command has
been invoked by the shell process. Cost is a measure of the work required to locate a
command in the search path. If a command is found in a "relative" directory in the
search path, after changing to that directory, the stored location of that command is
recalculated. Commands for which this will be done are indicated by an asterisk (*)
adjacent to the hits information. Cost will be incremented when the recalculation is
done.

ksh(1)

User Commands 617

jobs [-lnp] [%job . . .]
Lists information about each given job; or all active jobs if job is omitted. The -l
flag lists process ids in addition to the normal information. The -n flag displays
only jobs that have stopped or exited since last notified. The -p flag causes only the
process group to be listed. See "Jobs" section above and jobs(1) for a description
of the format of job.

kill [-sig] %job . . .
kill [-sig] pid . . .
kill -l

Sends either the TERM (terminate) signal or the specified signal to the specified jobs
or processes. Signals are either given by number or by names (as given in
signal(3HEAD) stripped of the prefix ‘‘SIG’’ with the exception that SIGCHD is
named CHLD). If the signal being sent is TERM (terminate) or HUP (hangup), then the
job or process will be sent a CONT (continue) signal if it is stopped. The argument
job can be the process id of a process that is not a member of one of the active jobs.
See Jobs for a description of the format of job. In the second form, kill -l, the
signal numbers and names are listed.

let arg . . .
Each arg is a separate arithmetic expression to be evaluated. See the Arithmetic
Evaluation section above, for a description of arithmetic expression evaluation.

The exit status is 0 if the value of the last expression is non-zero, and 1 otherwise.

login argument . . .
Equivalent to ‘exec login argument. . . .’ See login(1) for usage and description.

* newgrp [arg . . .]
Equivalent to exec /bin/newgrp arg

print [-Rnprsu[n]] [arg . . .]
The shell output mechanism. With no flags or with flag − or –, the arguments are
printed on standard output as described by echo(1). The exit status is 0, unless the
output file is not open for writing.

-n Suppress NEWLINE from being added to the output.

-R | -r Raw mode. Ignore the escape conventions of echo. The -R
option will print all subsequent arguments and options other
than -n.

-p Write the arguments to the pipe of the process spawned with |&
instead of standard output.

-s Write the arguments to the history file instead of standard
output.

-u [n] Specify a one digit file descriptor unit number n on which the
output will be placed. The default is 1.

pwd
Equivalent to print -r - $PWD.

ksh(1)

618 man pages section 1: User Commands • Last Revised 28 Jan 2002

read [-prsu[n]] [name?prompt] [name . . .]
The shell input mechanism. One line is read and is broken up into fields
using the characters in IFS as separators. The escape character, (\), is used to
remove any special meaning for the next character and for line continuation. In raw
mode, -r, the \ character is not treated specially. The first field is assigned to the
first name, the second field to the second name, etc., with leftover fields assigned to
the last name. The -p option causes the input line to be taken from the input pipe of
a process spawned by the shell using |&. If the -s flag is present, the input will be
saved as a command in the history file. The flag -u can be used to specify a one
digit file descriptor unit n to read from. The file descriptor can be opened with the
exec special command. The default value of n is 0. If name is omitted then REPLY
is used as the default name. The exit status is 0 unless the input file is not open for
reading or an EOF is encountered. An EOF with the -p option causes cleanup for
this process so that another can be spawned. If the first argument contains a ?, the
remainder of this word is used as a prompt on standard error when the shell is
interactive. The exit status is 0 unless an EOF is encountered.

** readonly [name[=value]] . . .
The given names are marked readonly and these names cannot be changed by
subsequent assignment.

* return [n]
Causes a shell function or ’.’ script to return to the invoking script with the return
status specified by n. The value will be the least significant 8 bits of the specified
status. If n is omitted then the return status is that of the last command executed. If
return is invoked while not in a function or a ’.’ script, then it is the same as an
exit.

set [±abCefhkmnopstuvx] [±o option]. . . [±A name] [arg . . .]
The flags for this command have meaning as follows:

-A Array assignment. Unset the variable name and assign values
sequentially from the list arg. If +A is used, the variable name is not unset
first.

-a All subsequent variables that are defined are automatically exported.

-b Causes the shell to notify the user asynchronously of background job
completions. The following message will be written to standard error:

"[%d]%c %s%s\n", <job-number>, <current>, <status>, <job-name>

where the fields are as follows:

<current> The character + identifies the job that would be used
as a default for the fg or bg utilities; this job can also
be specified using the job_id %+ or %%. The character
− identifies the job that would become the default if
the current default job were to exit; this job can also
be specified using the job_id %−. For other jobs, this

ksh(1)

User Commands 619

field is a space character. At most one job can be
identified with + and at most one job can be
identified with −. If there is any suspended job, then
the current job will be a suspended job. If there are at
least two suspended jobs, then the previous job will
also be a suspended job.

<job-number> A number that can be used to identify the process
group to the wait, fg, bg, and kill utilities. Using
these utilities, the job can be identified by prefixing
the job number with %.

<status> Unspecified.

<job-name> Unspecified.

When the shell notifies the user a job has been completed, it may remove
the job’s process ID from the list of those known in the current shell
execution environment. Asynchronous notification will not be enabled
by default.

-C Prevent existing files from being overwritten by the shell’s > redirection
operator. The >| redirection operator will override this noclobber
option for an individual file.

-e If a command has a non-zero exit status, execute the ERR trap, if set, and
exit. This mode is disabled while reading profiles.

-f Disables file name generation.

-h Each command becomes a tracked alias when first encountered.

-k All variable assignment arguments are placed in the environment for a
command, not just those that precede the command name.

-m Background jobs will run in a separate process group and a line will
print upon completion. The exit status of background jobs is reported in
a completion message. On systems with job control, this flag is turned
on automatically for interactive shells.

-n Read commands and check them for syntax errors, but do not execute
them. Ignored for interactive shells.

-o The following argument can be one of the following option names:

allexport Same as -a.

errexit Same as -e.

bgnice All background jobs are run at a lower priority. This
is the default mode.

emacs Puts you in an emacs style in-line editor for
command entry.

ksh(1)

620 man pages section 1: User Commands • Last Revised 28 Jan 2002

gmacs Puts you in a gmacs style in-line editor for
command entry.

ignoreeof The shell will not exit onEOF. The command exit
must be used.

keyword Same as -k.

markdirs All directory names resulting from file name
generation have a trailing / appended.

monitor Same as -m.

noclobber Prevents redirection > from truncating existing files.
Require >| to truncate a file when turned on.
Equivalent to -C.

noexec Same as -n.

noglob Same as -f.

nolog Do not save function definitions in history file.

notify Equivalent to -b.

nounset Same as -u.

privileged Same as -p.

verbose Same as -v.

trackall Same as -h.

vi Puts you in insert mode of a vi style in-line editor
until you hit escape character 033. This puts you in
control mode. A return sends the line.

viraw Each character is processed as it is typed in vi
mode.

xtrace Same as -x.

If no option name is supplied, the current option settings are printed.

-p Disables processing of the $HOME/.profile file and uses the file
/etc/suid_profile instead of the ENV file. This mode is on
whenever the effective uid is not equal to the real uid, or when the
effective gid is not equal to the real gid. Turning this off causes the
effective uid and gid to be set to the real uid and gid.

-s Sort the positional parameters lexicographically.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-v Print shell input lines as they are read.

ksh(1)

User Commands 621

-x Print commands and their arguments as they are executed.

− Turns off -x and -v flags and stops examining arguments for flags.

−− Do not change any of the flags; useful in setting $1 to a value beginning
with −. If no arguments follow this flag then the positional parameters
are unset.

Using + rather than − causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $−. Unless -A is specified, the remaining arguments are
positional parameters and are assigned, in order, to $1 $2 If no
arguments are given, the names and values of all variables are printed
on the standard output.

* shift [n]
The positional parameters from $n+1 $n+1 . . . are renamed $1 . . ., default
n is 1. The parameter n can be any arithmetic expression that evaluates to a
non-negative number less than or equal to $#.

stop%jobid . . .

stop pid . . .
stop stops the execution of a background job(s) by using its jobid, or of any process
by using its pid. (see ps(1)).

suspend
Stops the execution of the current shell (but not if it is the login shell).

test expression
Evaluate conditional expressions. See Conditional Expressions section above
and test(1) for usage and description.

* times
Print the accumulated user and system times for the shell and for processes run
from the shell.

* trap [arg sig . . .]
arg is a command to be read and executed when the shell receives signal(s) sig. arg
is scanned once when the trap is set and once when the trap is taken. sig can be
specified as a signal number or signal name. trap commands are executed in order
of signal number. Any attempt to set a trap on a signal number that was ignored on
entry to the current shell is ineffective.

If arg is −, the shell will reset each sig to the default value. If arg is null (’’), the
shell will ignore each specified sig if it arises. Otherwise, arg will be read and
executed by the shell when one of the corresponding sigs arises. The action of the
trap will override a previous action (either default action or one explicitly set). The
value of $? after the trap action completes will be the value it had before the trap
was invoked.

ksh(1)

622 man pages section 1: User Commands • Last Revised 28 Jan 2002

sig can be EXIT, 0 (equivalent to EXIT) or a signal specified using a symbolic
name, without the SIG prefix, for example, HUP, INT, QUIT, TERM. If sig is 0 or
EXIT and the trap statement is executed inside the body of a function, then the
command arg is executed after the function completes. If sig is 0 or EXIT for a trap
set outside any function, the command arg is executed on exit from the shell. If sig
is ERR, arg will be executed whenever a command has a non-zero exit status. If sig
is DEBUG, arg will be executed after each command.

The environment in which the shell executes a trap on EXIT will be identical to the
environment immediately after the last command executed before the trap on EXIT
was taken.

Each time the trap is invoked, arg will be processed in a manner equivalent to eval
"$arg".

Signals that were ignored on entry to a non-interactive shell cannot be trapped or
reset, although no error need be reported when attempting to do so. An interactive
shell may reset or catch signals ignored on entry. Traps will remain in place for a
given shell until explicitly changed with another trap command.

When a subshell is entered, traps are set to the default args. This does not imply
that the trap command cannot be used within the subshell to set new traps.

The trap command with no arguments will write to standard output a list of
commands associated with each sig. The format is:

trap −− %s %s . . . <arg>, <sig> . . .

The shell will format the output, including the proper use of quoting, so that it is
suitable for reinput to the shell as commands that achieve the same trapping
results. For example:

save_traps=$(trap)
. . .

eval "$save_traps"

If the trap name or number is invalid, a non-zero exit status will be returned;
otherwise, 0 will be returned. For both interactive and non-interactive shells,
invalid signal names or numbers will not be considered a syntax error and will not
cause the shell to abort.

Traps are not processed while a job is waiting for a foreground process. Thus, a trap
on CHLD won’t be executed until the foreground job terminates.

type name . . .
For each name, indicate how it would be interpreted if used as a command name.

** typeset [±HLRZfilrtux[n]] [name[=value]] . . .
Sets attributes and values for shell variables and functions. When typeset is
invoked inside a function, a new instance of the variables name is created. The
variables value and type are restored when the function completes. The following
list of attributes may be specified:

ksh(1)

User Commands 623

-H This flag provides UNIX to host-name file mapping on non-UNIX
machines.

-L Left justify and remove leading blanks from value. If n is non-zero it
defines the width of the field; otherwise, it is determined by the width of
the value of first assignment. When the variable is assigned to, it is filled
on the right with blanks or truncated, if necessary, to fit into the field.
Leading zeros are removed if the -Z flag is also set. The -R flag is turned
off.

-R Right justify and fill with leading blanks. If n is non-zero it defines the
width of the field, otherwise it is determined by the width of the value
of first assignment. The field is left filled with blanks or truncated from
the end if the variable is reassigned. The -L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank character is
a digit and the -L flag has not been set. If n is non-zero it defines the
width of the field; otherwise, it is determined by the width of the value
of first assignment.

-f The names refer to function names rather than variable names. No
assignments can be made and the only other valid flags are -t, -u, and
-x. The flag -t turns on execution tracing for this function. The flag -u
causes this function to be marked undefined. The FPATH variable will be
searched to find the function definition when the function is referenced.
The flag -x allows the function definition to remain in effect across shell
procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is non-zero it
defines the output arithmetic base; otherwise, the first assignment
determines the output base.

-l All upper-case characters are converted to lower-case. The upper-case
flag, -u is turned off.

-r The given names are marked readonly and these names cannot be
changed by subsequent assignment.

-t Tags the variables. Tags are user definable and have no special meaning
to the shell.

-u All lower-case characters are converted to upper-case characters. The
lower-case flag, -l is turned off.

-x The given names are marked for automatic export to the environment
of subsequently-executed commands.

The -i attribute can not be specified along with -R, -L, -Z, or -f.

ksh(1)

624 man pages section 1: User Commands • Last Revised 28 Jan 2002

Using + rather than − causes these flags to be turned off. If no name arguments are
given but flags are specified, a list of names (and optionally the values) of the variables
which have these flags set is printed. (Using + rather than − keeps the values from
being printed.) If no names and flags are given, the names and attributes of all variables
are printed.

ulimit [-HSacdfnstv] [limit]
Set or display a resource limit. The available resources limits are listed below. Many
systems do not contain one or more of these limits. The limit for a specified
resource is set when limit is specified. The value of limit can be a number in the unit
specified below with each resource, or the value unlimited. The H and S flags
specify whether the hard limit or the soft limit for the given resource is set. A hard
limit cannot be increased once it is set. A soft limit can be increased up to the value
of the hard limit. If neither the H or S options is specified, the limit applies to both.
The current resource limit is printed when limit is omitted. In this case the soft limit
is printed unless H is specified. When more that one resource is specified, then the
limit name and unit is printed before the value.

-a Lists all of the current resource limits.

-c The number of 512-byte blocks on the size of core dumps.

-d The number of K-bytes on the size of the data area.

-f The number of 512-byte blocks on files written by child processes (files
of any size may be read).

-n The number of file descriptors plus 1.

-s The number of K-bytes on the size of the stack area.

-t The number of seconds to be used by each process.

-v The number of K-bytes for virtual memory.

If no option is given, -f is assumed.

umask [-S] [mask]
The user file-creation mask is set to mask (see umask(2)). mask can either be an octal
number or a symbolic value as described in chmod(1). If a symbolic value is given,
the new umask value is the complement of the result of applying mask to the
complement of the previous umask value. If mask is omitted, the current value of
the mask is printed. The -S flag produces symbolic output.

unalias name. . .
The aliases given by the list of names are removed from the alias list.

unset [-f] name . . .
The variables given by the list of names are unassigned, that is, their values and
attributes are erased. readonly variables cannot be unset. If the -f, flag is set, then
the names refer to function names. Unsetting ERRNO, LINENO, MAILCHECK,
OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their special meaning
even if they are subsequently assigned to.

ksh(1)

User Commands 625

* wait [job]
Wait for the specified job and report its termination status. If job is not given then all
currently active child processes are waited for. The exit status from this command is
that of the process waited for. See Jobs for a description of the format of job.

whence [-pv] name . . .
For each name, indicate how it would be interpreted if used as a command name.

The -v flag produces a more verbose report.

The -p flag does a path search for name even if name is an alias, a function, or a
reserved word.

If the shell is invoked by exec(2), and the first character of argument zero ($0) is −,
then the shell is assumed to be a login shell and commands are read from
/etc/profile and then from either .profile in the current directory or
$HOME/.profile, if either file exists. Next, commands are read from the file named
by performing parameter substitution on the value of the environment variable ENV if
the file exists. If the -s flag is not present and arg is, then a path search is performed
on the first arg to determine the name of the script to execute. The script arg must have
read permission and any setuid and setgid settings will be ignored. If the script is
not found on the path, arg is processed as if it named a builtin command or function.
Commands are then read as described below; the following flags are interpreted by
the shell when it is invoked:

-c Read commands from the command_string operand. Set the value of special
parameter 0 from the value of the command_name operand and the
positional parameters ($1, $2, and so on) in sequence from the remaining
arg operands. No commands will be read from the standard input.

-s If the -s flag is present or if no arguments remain, commands are read
from the standard input. Shell output, except for the output of the
Special Commands listed above, is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a
terminal (as told by ioctl(2)), then this shell is interactive. In this case,
TERM is ignored (so that kill 0 does not kill an interactive shell) and INTR
is caught and ignored (so that wait is interruptible). In all cases, QUIT is
ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

rksh is used to set up login names and execution environments whose capabilities are
more controlled than those of the standard shell. The actions of rksh are identical to
those of ksh, except that the following are disallowed:

� changing directory (see cd(1))
� setting the value of SHELL, ENV, or PATH
� specifying path or command names containing /

ksh(1)

Invocation

rksh Only

626 man pages section 1: User Commands • Last Revised 28 Jan 2002

� redirecting output (>, >|, <>, and >>)
� changing group (see newgrp(1)).

The restrictions above are enforced after .profile and the ENV files are interpreted.

When a command to be executed is found to be a shell procedure, rksh invokes ksh
to execute it. Thus, it is possible to provide to the end-user shell procedures that have
access to the full power of the standard shell, while imposing a limited menu of
commands; this scheme assumes that the end-user does not have write and execute
permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control
over user actions, by performing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (that is, /usr/rbin)
that can be safely invoked by rksh.

Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. Otherwise, the shell returns the exit status of the last command executed
(see also the exit command above). If the shell is being used non-interactively then
execution of the shell file is abandoned. Run time errors detected by the shell are
reported by printing the command or function name and the error condition. If the
line number that the error occurred on is greater than one, then the line number is also
printed in square brackets ([]) after the command or function name.

For a non-interactive shell, an error condition encountered by a special built-in or
other type of utility will cause the shell to write a diagnostic message to standard error
and exit as shown in the following table:

Error Special Built-in Other Utilities

Shell language syntax error will exit will exit

Utility syntax error (option or operand error) will exit will not exit

Redirection error will exit will not exit

Variable assignment error will exit will not exit

Expansion error will exit will exit

Command not found n/a may exit

Dot script not found will exit n/a

An expansion error is one that occurs when the shell expansions are carried out (for
example, ${x!y}, because ! is not a valid operator); an implementation may treat
these as syntax errors if it is able to detect them during tokenization, rather than
during expansion.

ksh(1)

ERRORS

User Commands 627

If any of the errors shown as “will (may) exit” occur in a subshell, the subshell will
(may) exit with a non-zero status, but the script containing the subshell will not exit
because of the error.

In all of the cases shown in the table, an interactive shell will write a diagnostic
message to standard error without exiting.

See largefile(5) for the description of the behavior of ksh and rksh when
encountering files greater than or equal to 2 Gbyte (231 bytes).

Each command has an exit status that can influence the behavior of other shell
commands. The exit status of commands that are not utilities is documented in this
section. The exit status of the standard utilities is documented in their respective
sections.

If a command is not found, the exit status will be 127. If the command name is found,
but it is not an executable utility, the exit status will be 126. Applications that invoke
utilities without using the shell should use these exit status values to report similar
errors.

If a command fails during word expansion or redirection, its exit status will be greater
than zero.

When reporting the exit status with the special parameter ?, the shell will report the
full eight bits of exit status available. The exit status of a command that terminated
because it received a signal will be reported as greater than 128.

/etc/profile

/etc/suid_profile

$HOME/.profile

/tmp/sh*

/dev/null

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

ksh(1)

USAGE

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/rksh

/usr/xpg4/bin/ksh

628 man pages section 1: User Commands • Last Revised 28 Jan 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

cat(1), cd(1), chmod(1), cut(1), echo(1), env(1), getoptcvt(1), jobs(1), login(1),
newgrp(1), paste(1), ps(1), shell_builtins(1), stty(1), test(1), vi(1), dup(2),
exec(2), fork(2), ioctl(2), lseek(2), pipe(2), ulimit(2), umask(2), wait(2),
rand(3C), signal(3C), a.out(4), profile(4), attributes(5), environ(5),
largefile(5), signal(3HEAD), XPG4(5)

Morris I. Bolsky and David G. Korn, The KornShell Command and Programming
Language, Prentice Hall, 1989.

The use of setuid shell scripts is strongly discouraged.

If a command which is a tracked alias is executed, and then a command with the same
name is installed in a directory in the search path before the directory where the
original command was found, the shell will continue to exec the original command.
Use the -t option of the alias command to correct this situation.

Some very old shell scripts contain a ^ as a synonym for the pipe character |.

Using the fc built-in command within a compound command will cause the whole
command to disappear from the history file.

The built-in command .file reads the whole file before any commands are executed.
Therefore, alias and unalias commands in the file will not apply to any functions
defined in the file.

When the shell executes a shell script that attempts to execute a non-existent
command interpreter, the shell returns an erroneous diagnostic message that the shell
script file does not exist.

ksh(1)

SEE ALSO

WARNINGS

NOTES

User Commands 629

ktutil – Kerberos keytab maintenance utility

/usr/bin/ktutil

The ktutil command is an interactive command-line interface utility for managing
the keylist in keytab files. You must read in a keytab’s keylist before you can manage
it. Also, the user running the ktutil command must have read/write permissions on
the keytab. For example, if a keytab is owned by root, which it typically is, ktutil
must be run as root to have the appropriate permissions.

clear_list, clear Clears the current keylist.

read_kt file, rkt file Reads a keytab into the current keylist. You must
specify a keytab file to read.

write_kt file, wkt file Writes the current keylist to a keytab file. You must
specify a keytab file to write. If the keytab file already
exists, the current keylist is appended to the existing
keytab file.

delete_entry number,
delent number

Deletes an entry from the current keylist. Specify the
entry by the keylist slot number.

list, l Lists the current keylist.

list_request, lr Lists available requests (commands).

quit, exit, q Exits utility.

EXAMPLE 1 Deleting a principal from a file

The following example deletes the host/denver@ACME.com principal from the
/etc/krb5/krb5.keytab file. Notice that if you want to delete an entry from an
existing keytab, you must first write the keylist to a temporary keytab and then
overwrite the existing keytab with the the temporary keytab. This is because the wkt
command actually appends the current keylist to an existing keytab, so you can’t use
it to overwrite a keytab.

example# /usr/krb5/bin/ktutil
ktutil: rkt /etc/krb5/krb5.keytab
ktutil: list

slot KVNO Principal
---- ---- ---------------------------------------

1 8 host/vail@ACME.COM
2 5 host/denver@ACME.COM
ktutil:delent 2
ktutil:l

slot KVNO Principal
---- ---- --------------------------------------

1 8 host/vail@ACME.COM
ktutil:wkt /tmp/krb5.keytab
ktutil:q

example# mv /tmp/krb5.keytab /etc/krb5/krb5.keytab

ktutil(1)

NAME

SYNOPSIS

DESCRIPTION

COMMANDS

EXAMPLES

630 man pages section 1: User Commands • Last Revised 6 Nov 2000

EXAMPLE 1 Deleting a principal from a file (Continued)

/etc/krb5/krb5.keytab keytab file for Kerberos clients

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkrbu

SEAM(5)

ktutil(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 631

last – display login and logout information about users and terminals

last [-a] [-n number | -number] [-f filename] [name | tty…]

The last command looks in the /var/adm/wtmpx file, which records all logins and
logouts, for information about a user, a terminal, or any group of users and terminals.
Arguments specify names of users or terminals of interest. If multiple arguments are
given, the information applicable to any of the arguments is printed. For example,
last root console lists all of root’s sessions, as well as all sessions on the console
terminal. last displays the sessions of the specified users and terminals, most recent
first, indicating the times at which the session began, the duration of the session, and
the terminal on which the session took place. last also indicates whether the session
is continuing or was cut short by a reboot.

The pseudo-user reboot logs in when the system reboots. Thus,

last reboot

will give an indication of mean time between reboots.

last with no arguments displays a record of all logins and logouts, in reverse order.

If last is interrupted, it indicates how far the search has progressed in
/var/adm/wtmpx. If interrupted with a quit signal (generated by a CTRL−\), last
indicates how far the search has progressed, and then continues the search.

The following options are supported:

-a Displays the hostname in the last column.

-f filename Uses filename as the name of the accounting
file instead of /var/adm/wtmpx.

-n number | -number Limits the number of entries displayed to
that specified by number. These options are
identical; the -number option is provided as
a transition tool only and will be removed
in future releases.

Date and time format is based on locale specified by the LC_ALL, LC_TIME, or LANG
environments, in that order of priority.

/var/adm/wtmpx accounting file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

last(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

632 man pages section 1: User Commands • Last Revised 17 Aug 1999

utmpx(4), attributes(5)

last(1)

SEE ALSO

User Commands 633

lastcomm – display the last commands executed, in reverse order

lastcomm [-f file] [-x] [command-name] … [user-name] … [terminal-name] …

The lastcomm command gives information on previously executed commands.
lastcomm with no arguments displays information about all the commands recorded
during the current accounting file’s lifetime. If called with arguments, lastcomm only
displays accounting entries with a matching command-name, user-name, or
terminal-name. If extended process accounting is active (see acctadm(1M)) and is
recording the appropriate data items, lastcomm attempts to take data from the
current extended process accounting file. If standard process accounting is active,
lastcomm takes data from the current standard accounting file (see acct(2)).

If terminal-name is ‘- -’, there was no controlling TTY for the process. The process was
probably executed during boot time. If terminal-name is ‘??’, the controlling TTY could
not be decoded into a printable name.

For each process entry, lastcomm displays the following items of information:

� The command name under which the process was called.
� One or more flags indicating special information about the process. The flags have

the following meanings:

F The process performed a fork but not an exec.

S The process ran as a set-user-id program.

� The name of the user who ran the process.

� The terminal which the user was logged in on at the time (if applicable).

� The amount of CPU time used by the process (in seconds).

� The date and time the process exited.

The following options are supported:

-f file Uses file as the source of accounting data. file may be either an
extended process accounting file or a standard process accounting
file.

-x Uses the currently active extended process accounting file. If
extended processing accounting is inactive, no output will be
produced.

EXAMPLE 1 Listing executions of named commands

The command

example% lastcomm a.out root term/01

produces a listing of all the executions of commands named a.out by user root
while using the terminal term/01.

lastcomm(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

634 man pages section 1: User Commands • Last Revised 10 Jan 2000

EXAMPLE 2 Listing all user commands

The command

example% lastcomm root

produces a listing of all the commands executed by user root.

/var/adm/pacct standard accounting file

/var/adm/exacct/proc extended accounting file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

last(1), acctadm(1M), acct(2), acct(3HEAD), sigvec(3UCB), core(4),
attributes(5)

lastcomm(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 635

ld – link-editor for object files

/usr/ccs/bin/ld [-64] [-a | -r] [-b] [-c name] [-C] [-G] [-i] [-m]
[-s] [-t] [-V] [-B direct] [-B dynamic | static] [-B group]
[-B local] [-B eliminate] [-B reduce] [-B symbolic] [-d y | n]
[-D token,…] [-e epsym] [-F name | -f name] [-h name] [-I name]
[-L path] [-l x] [-M mapfile] [-N string] [-o outfile] [-p auditlib]
[-P auditlib] [-Q y | n] [-R path] [-S supportlib] [-u symname] [-Y
P,dirlist] [-z absexec] [-z allextract | defaultextract |
weakextract] [-z combreloc] [-z defs | nodefs] [-z
endfiltee] [-z finiarray=function] [-z groupperm | nogroupperm]
[-z ignore | record] [-z initarray=function] [-z initfirst] [-z
interpose] [-z lazyload | nolazyload] [-z ld32=arg1,arg2,…] [-z
ld64=arg1,arg2,…] [-z loadfltr] [-z muldefs] [-z nodefaultlib]
[-z nodelete] [-z nodlopen] [-z nodump] [-z nopartial] [-z
noversion] [-z now] [-z origin] [-z preinitarray=function] [-z
redlocsym] [-z rescan] [-z text | textwarn | textoff] [-z
verbose] filename…

The ld command combines relocatable object files, performs relocation, and resolves
external symbols. ld operates in two modes, static or dynamic, as governed by the -d
option. In all cases, the output of ld is left in a.out by default (see NOTES).

In static mode, -dn, relocatable object files given as arguments are combined to
produce an executable object file. If the -r option is specified, relocatable object files
are combined to produce one relocatable object file.

In dynamic mode, -dy, the default, relocatable object files given as arguments are
combined to produce an executable object file that will be linked at execution with any
shared object files given as arguments. If the -G option is specified, relocatable object
files are combined to produce a shared object.

If any argument is a library, ld by default searches it exactly once at the point it
encounters the library in the argument list. The library may be either a relocatable
archive (see ar(3HEAD)) or a shared object.

For an archive library, ld loads only those routines that define an unresolved external
reference. ld searches the archive library symbol table sequentially with as many
passes as are necessary to resolve external references that can be satisfied by library
members. Thus, the order of members in the library is functionally unimportant,
unless multiple library members exist that define the same external symbol. Archive
libraries that have interdependencies may require multiple command-line definitions,
or use of the -z rescan option.

A shared object consists of an indivisible, whole unit that has been generated by a
previous link-edit of one or more input files. When the link-editor processes a shared
object, the entire contents of the shared object become a logical part of the resulting

ld(1)

NAME

SYNOPSIS

DESCRIPTION

636 man pages section 1: User Commands • Last Revised 11 Dec 2001

output file image. The shared object is not physically copied during the link-edit as its
actual inclusion is deferred until process execution. This logical inclusion means that
all symbol entries defined in the shared object are made available to the link-editing
process.

No command-line option is required to distinguish 32–bit or 64–bit objects. The
link-editor uses the ELF class of the first input relocatable object file it sees on the
command line to govern the mode in which it will operate. Intermixing 32–bit and
64–bit objects is not permitted. See also the -64 option and the LD_NOEXEC_64
environment variable.

The following options are supported:

-64
Creates a 64-bit object. By default, the class of the object being generated is
determined from the first ELF object processed from the command line. This option
is useful when creating an object directly with ld whose input is solely from a
mapfile (see the -M option) or an archive library.

-a
In static mode only, produces an executable object file; gives errors for undefined
references. This is the default behavior for static mode. -a may not be used with
the -r option.

-b
In dynamic mode only, does no special processing for relocations that reference
symbols in shared objects. Without the -b option, the link-editor creates special
position-independent relocations for references to functions defined in shared
objects and arranges for data objects defined in shared objects to be copied into the
memory image of an executable by the runtime linker.

The -b option is intended for specialized dynamic objects and is not recommended
for general use. Its use suppresses all specialized processing required to insure an
object’s shareability, and may even prevent the relocation of 64–bit executables.

-B direct
Establishes direct binding information by recording the relationship between each
symbol reference and the dependency that provides the definition. The runtime
linker uses this information to search directly for the symbol in the associated object
rather than to carry out its default symbol search. Direct binding information can
only be established to dependencies specified with the link-edit. Thus, you should
use the -z defs option. Objects that wish to interpose on symbols in a direct
binding environment should identify themselves as interposers with the -z
interpose option. The use of -B direct enables -z lazyload for all
dependencies.

-B dynamic | static
Options governing library inclusion. -B dynamic is valid in dynamic mode only.
These options may be specified any number of times on the command line as
toggles: if the -B static option is given, no shared objects will be accepted until
-B dynamic is seen. See also the -l option.

ld(1)

OPTIONS

User Commands 637

-B eliminate
Causes any global symbols not assigned to a version definition to be eliminated
from the symbol table. This option achieves the same symbol elimination as the
auto-elimination directive available as part of a mapfile version definition.

-B group
Establishes a shared object and its dependencies as a group. Objects within the
group will be bound to other members of the group at runtime. The runtime
processing of an object containing this flag mimics that which occurs if the object is
added to a process using dlopen(3DL) with the RTLD_GROUP mode. An object that
has an explicit dependency on a object identified as a group, will itself become a
member of the group.

As the group must be self contained, use of the -B group option also asserts the -z
defs option.

-B local
Causes any global symbols, not assigned to a version definition, to be reduced to
local. Version definitions can be supplied via a mapfile and indicate the global
symbols that should remain visible in the generated object. This option achieves the
same symbol reduction as the auto-reduction directive available as part of a mapfile
version definition and may be useful when combining versioned and
non-versioned relocatable objects.

-B reduce
When generating a relocatable object, causes the reduction of symbolic information
defined by any version definitions. Version definitions can be supplied via a mapfile
to indicate the global symbols that should remain visible in the generated object.
When a relocatable object is generated, by default version definitions are only
recorded in the output image. The actual reduction of symbolic information will be
carried out when the object itself is used in the construction of a dynamic
executable or shared object. This option is applied automatically when dynamic
executable or shared object is created.

-B symbolic
In dynamic mode only. When building a shared object, binds references to global
symbols to their definitions, if available, within the object. Normally, references to
global symbols within shared objects are not bound until runtime, even if
definitions are available, so that definitions of the same symbol in an executable or
other shared object can override the object’s own definition. ld will issue warnings
for undefined symbols unless -z defs overrides.

The -B symbolic option is intended for specialized dynamic objects and is not
recommended for general use. To reduce the runtime relocation overhead of an
object, the creation of a version definition is recommended.

-c name
Records the configuration file name for use at runtime. Configuration files may be
employed to alter default search paths, provide a directory cache and provide
alternative object dependencies. See crle(1).

ld(1)

638 man pages section 1: User Commands • Last Revised 11 Dec 2001

-C
Demangles C++ symbol names displayed in diagnostic messages.

-d y | n
When -d y, the default, is specified, ld uses dynamic linking; when -d n is
specified, ld uses static linking. See also -B dynamic|static.

-D token,...
Prints debugging information, as specified by each token, to the standard error. The
special token help indicates the full list of tokens available.

-e epsym
Sets the entry point address for the output file to be that of the symbol epsym.

-f name
Useful only when building a shared object. Specifies that the symbol table of the
shared object is used as an auxiliary filter on the symbol table of the shared object
specified by name. Multiple instances of this option are allowed. This option may
not be combined with the -F option.

-F name
Useful only when building a shared object. Specifies that the symbol table of the
shared object is used as a filter on the symbol table of the shared object specified by
name. Multiple instances of this option are allowed. This option may not be
combined with the -f option.

-G
In dynamic mode only, produces a shared object. Undefined symbols are allowed.

-h name
In dynamic mode only, when building a shared object, records name in the object’s
dynamic section. name will be recorded in dynamic objects that are linked with this
object rather than the object’s file system name. Accordingly, name will be used by
the runtime linker as the name of the shared object to search for at runtime.

-i
Ignores LD_LIBRARY_PATH. This option is useful when an LD_LIBRARY_PATH
setting is in effect to influence the runtime library search, which would interfere
with the link-editing being performed.

-I name
When building an executable, uses name as the path name of the interpreter to be
written into the program header. The default in static mode is no interpreter; in
dynamic mode, the default is the name of the runtime linker, ld.so.1(1). Either
case may be overridden by -I name. exec(2) will load this interpreter when it loads
a.out and will pass control to the interpreter rather than to a.out directly.

-l x
Searches a library libx.so or libx.a, the conventional names for shared object
and archive libraries, respectively. In dynamic mode, unless the -B static option
is in effect, ld searches each directory specified in the library search path for a
libx.so or libx.a file. The directory search stops at the first directory containing
either. ld chooses the file ending in .so if -lx expands to two files with names of

ld(1)

User Commands 639

the form libx.so and libx.a. If no libx.so is found, then ld accepts libx.a.
In static mode, or when the -B static option is in effect, ld selects only the file
ending in .a. ld searches a library when it encounters its name, so the placement
of -l is significant.

-L path
Adds path to the library search directories. ld searches for libraries first in any
directories specified by the -L options and then in the standard directories. This
option is useful only if it precedes the -l options to which it applies on the
command line. The environment variable LD_LIBRARY_PATH may be used to
supplement the library search path (see LD_LIBRARY_PATH below).

-m
Produces a memory map or listing of the input/output sections, together with any
non-fatal multiply-defined symbols, on the standard output.

-M mapfile
Reads mapfile as a text file of directives to ld. This option may be specified multiple
times. If mapfile is a directory, then all regular files, as defined by stat(2), within
the directory will be processed. See Linker and Libraries Guide for a description of
mapfiles. There are mapfiles in /usr/lib/ld that show the default layout of
programs, mapfiles for linking 64–bit programs above or below 4 gigabytes, and a
mapfile for establishing a non-executable stack within an application. See the FILES
section below.

-N string
This option causes a DT_NEEDED entry to be added to the .dynamic section of the
object being built. The value of the DT_NEEDED string will be the string specified on
the command line. This option is position dependent, and the DT_NEEDED
.dynamic entry will be relative to the other dynamic dependencies discovered on
the link-edit line. This option is useful for specifying dependencies within device
driver relocatable objects when combined with the -dy and -r options.

-o outfile
Produces an output object file named outfile. The name of the default object file is
a.out.

-p auditlib
Identifies an audit library, auditlib, that is used to audit this object at runtime. Any
shared object identified as requiring auditing of itself has this requirement inherited
by any object specifying this shared object as a dependency (see -P option).

-P auditlib
Identifies an audit library, auditlib, that is used to audit this object’s dependencies at
runtime. Dependency auditing can also be inherited from dependencies identified
as requiring auditing (see -p option).

-Q y | n
Under -Q y, an ident string is added to the .comment section of the output file to
identify the version of the link-editor used to create the file. This results in multiple

ld(1)

640 man pages section 1: User Commands • Last Revised 11 Dec 2001

ld idents when there have been multiple linking steps, such as when using ld
-r. This is identical with the default action of the cc command. -Q n suppresses
version identification.

-r
Combines relocatable object files to produce one relocatable object file. ld will not
complain about unresolved references. This option cannot be used with the -a
option.

-R path
A colon-separated list of directories used to specify library search directories to the
runtime linker. If present and not NULL, it is recorded in the output object file and
passed to the runtime linker. Multiple instances of this option are concatenated
together with each path separated by a colon.

-s
Strips symbolic information from the output file. Any debugging information, that
is .debug, .line, and .stab sections, and their associated relocation entries will be
removed. Except for relocatable files or shared objects, the symbol table and string
table sections will also be removed from the output object file.

-S supportlib
The shared object supportlib is loaded with the link-editor and given information
regarding the linking process. Support shared objects may also be supplied using
the SGS_SUPPORT environment variable. See Linker and Libraries Guide for more
details.

-t
Turns off the warning for multiply-defined symbols that have different sizes or
alignments.

-u symname
Enters symname as an undefined symbol in the symbol table. This is useful for
loading entirely from an archive library, since initially the symbol table is empty,
and an unresolved reference is needed to force the loading of the first routine. The
placement of this option on the command line is significant; it must be placed
before the library that will define the symbol.

-V
Outputs a message giving information about the version of ld being used.

-Y P,dirlist
Changes the default directories used for finding libraries. dirlist is a colon-separated
path list.

-z absexec
Useful only when building a dynamic executable. Specifies that references to
external absolute symbols should be resolved immediately instead of being left for
resolution at runtime. In very specialized circumstances, this option removes text
relocations that can result in excessive swap space demands by an executable.

ld(1)

User Commands 641

-z allextract | defaultextract | weakextract
Alters the extraction criteria of objects from any archives that follow. By default,
archive members are extracted to satisfy undefined references and to promote
tentative definitions with data definitions. Weak symbol references do not trigger
extraction. Under -z allextract, all archive members are extracted from the
archive. Under -z weakextract, weak references trigger archive extraction. -z
defaultextract provides a means of returning to the default following use of
the former extract options.

-z combreloc
Combines multiple relocation sections. Historically, relocation sections are
maintained in a one-to-one relationship with the sections to which the relocations
will be applied. When building an executable or shared object, ld sorts the entries
of data relocation sections by their symbol reference so as to reduce runtime symbol
lookup. Combining multiple data relocation sections allows optimal sorting and
hence the least relocation overhead when objects are loaded into memory.

-z defs | nodefs
The -z defs option forces a fatal error if any undefined symbols remain at the end
of the link. This is the default when an executable is built, but for historic reasons is
not the default when building a shared object. Use of the -z defs option is
recommended, as it assures the object being built is self-contained, that is, that all
its symbolic references are resolved internally or to the object’s immediate
dependencies.

The -z nodefs option allows undefined symbols. For historic reasons, this is the
default when a shared object is built. When used with executables, the behavior of
references to such undefined symbols is unspecified. Use of the -z nodefs option
is not recommended

-z endfiltee
Marks a filtee so that when processed by a filter it terminates any further filtee
searches by the filter.

-z finiarray=function
Appends an entry to the .finiarray section of the object being built. If no
.finiarray section is present, one is created. The new entry is initialized to point
to function. See Linker and Libraries Guide for more details.

-z groupperm | nogroupperm
Assigns, or deassigns each dependency that follows to a unique group. Assigning a
dependency to a group has the same effect as if the dependency had been built
using the -B group option.

-z ignore | record
Ignores, or records, dynamic dependencies that are not referenced as part of the
link-edit. By default, -z record is in effect.

ld(1)

642 man pages section 1: User Commands • Last Revised 11 Dec 2001

-z initarray=function
Appends an entry to the .initarray section of the object being built. If no
.initarray section is present, one is created. The new entry is initialized to point
to function. See Linker and Libraries Guide for more details.

-z initfirst
Marks the object so that its runtime initialization occurs before the runtime
initialization of any other objects brought into the process at the same time. In
addition, the object runtime finalization will occur after the runtime finalization of
any other objects removed from the process at the same time. This option is only
meaningful when building a shared object.

-z interpose
Marks the object as an interposer. When direct bindings are in effect (see -B
direct), the runtime linker will search for symbols in any interposers before the
object associated to the direct binding.

-z lazyload | nolazyload
Enables or disables the marking of dynamic dependencies to be lazily loaded.
Dynamic dependencies which are marked lazyload will not be loaded at initial
process start-up, but instead will be delayed until the first binding to the object is
made.

-z ld32=arg1,arg2,...
-z ld64=arg1,arg2,...

The class of the link-editor is affected by the class of the output file being created
and by the capabilities of the underlying operating system. This option provides a
means of defining any link-editor argument, such that it will only be interpreted,
respectively, by the 32– or 64–bit class of the link-editor.

For example, support libraries are class specific, so the correct class of support
library can be insured using:

ld ... -z ld32=-Saudit32.so.1 -z ld64=-Saudit64.so.1 ...

Note: The class of link-editor invoked is in part determined from the ELF class of
the first input relocatable file seen on the command line. This determination is
carried out prior to any -z ld[32|64] processing.

-z loadfltr
Marks the object to require that when building a filter, its filtees be processed
immediately at runtime. Normally, filter processing is delayed until a symbol
reference is bound to the filter. The runtime processing of an object that contains
this flag mimics that which occurs if the LD_LOADFLTR environment variable is in
effect. See ld.so.1(1).

-z muldefs
Allows multiple symbol definitions. By default, multiple symbol definitions that
occur between relocatable objects will result in a fatal error condition. This option
suppresses the error condition and allows the first symbol definition to be taken.

ld(1)

User Commands 643

-z nodefaultlib
Marks the object so that the runtime default library search path (used after any
LD_LIBRARY_PATH or runpaths) is ignored. This option implies that all
dependencies of the object can be satisfied from its runpath.

-z nodelete
Marks the object as non-deletable at runtime. The runtime processing of an object
that contains this flag mimics that which occurs if the object is added to a process
using dlopen(3DL) with the RTLD_NODELETE mode.

-z nodlopen
Marks the object as not available to dlopen(3DL), either as the object specified by
the dlopen(), or as any form of dependency required by the object specified by
the dlopen(). This option is only meaningful when building a shared object.

-z nodump
Marks the object as not available to dldump(3DL).

-z nopartial
If there are any partially initialized symbols in the input relocatable object files, the
partially initialized symbols are expanded when the output file is generated.

-z noversion
Does not record any versioning sections. Any version sections or associated
.dynamic section entries will not be generated in the output image.

-z now
Marks the object to override the runtime linker’s default mode and require non-lazy
runtime binding. This is similar to adding the object to the process by using
dlopen(3DL) with the RTLD_NOW mode, or setting the LD_BIND_NOW environment
variable in effect. See ld.so.1(1).

-z origin
Marks the object as requiring immediate $ORIGIN processing at runtime. This
option is only maintained for historic compatibility, as the runtime analysis of
objects to provide for $ORIGIN processing is now default.

-z preinitarray=function
Appends an entry to the .preinitarray section of the object being built. If no
.preinitarray section is present, one is created. The new entry is initialized to
point to function. See Linker and Libraries Guide for more details.

-z redlocsym
Eliminates all local symbols except for the SECT symbols from the symbol table
SHT_SYMTAB. All relocations that refer to local symbols will be updated to refer to
the corresponding SECT symbol.

-z rescan
Rescans the archive files provided to the link-edit. By default, archives are
processed once as they appear on the command line. Archives are traditionally
specified at the end of the command line so that their symbol definitions resolve
any preceding references. However, it is often necessary to specify the archives
multiple times to satisfy their own interdependencies.

ld(1)

644 man pages section 1: User Commands • Last Revised 11 Dec 2001

The -z rescan option causes the entire archive list to be reprocessed in an attempt
to locate additional archive members that resolve symbol references. This archive
rescanning continues until a pass over the archive list occurs in which no new
members are extracted.

-z text
In dynamic mode only, forces a fatal error if any relocations against non-writable,
allocatable sections remain. For historic reasons, this is not the default when
building an executable or shared object. However, its use is recommended to insure
that the text segment of the dynamic object being built is shareable between
multiple running processes, and that the object incurs the least relocation overhead
when loaded into memory.

-z textoff
In dynamic mode only, allows relocations against all allocatable sections, including
non-writable ones. This is the default when building a shared object.

-z textwarn
In dynamic mode only, lists a warning if any relocations against non-writable,
allocatable sections remain. This is the default when building an executable.

-z verbose
This option provides additional warning diagnostics during a link-edit. Presently,
its implementation conveys suspicious use of displacement relocations, but in
future it may be enhanced to provide additional diagnostics deemed too noisy to be
generated by default.

LD_LIBRARY_PATH
A list of directories in which to search for libraries specified with the -l option.
Multiple directories are separated by a colon. In the most general case, it will
contain two directory lists separated by a semicolon:

dirlist1;dirlist2

If ld is called with any number of occurrences of -L, as in:

ld ... -Lpath1 ... -Lpathn ...

then the search path ordering is:

dirlist1 path1 ... pathn dirlist2 LIBPATH

When the list of directories does not contain a semicolon, it is interpreted as dirlist2.

The LD_LIBRARY_PATH environment variable also affects the runtime linkers
searching for dynamic dependencies.

This environment variable can be specified with a _32 or _64 suffix. This makes the
environment variable specific, respectively, to 32-bit or 64-bit processes and
overrides any non-suffixed version of the environment variable that may be in
effect.

ld(1)

ENVIRONMENT
VARIABLES

User Commands 645

LD_NOEXEC_64
Suppresses the automatic execution of the 64-bit link-editor. By default, the
link-editor will execute its 64-bit version when the ELF class of the first input
relocatable file it reads identifies it as a 64-bit object.

LD_OPTIONS
A default set of options to ld. LD_OPTIONS is interpreted by ld just as though its
value had been placed on the command line, immediately following the name used
to invoke ld, as in:

ld $LD_OPTIONS ... other-arguments ...

LD_RUN_PATH
An alternative mechanism for specifying a runpath to the link-editor (see -R
option). If both LD_RUN_PATH and the -R option are specified, -R supersedes.

SGS_SUPPORT
Provides a colon-separated list of shared objects that are loaded with the link-editor
and given information regarding the linking process. This environment variable can
be specified with a _32 or _64 suffix. This makes the environment variable specific,
respectively, to the 32-bit or 64-bit class of ld and overrides any non-suffixed
version of the environment variable that may be in effect. See also the -S option.

Notice that environment variable-names beginning with the characters ’LD_’ are
reserved for possible future enhancements to ld and ld.so.1(1).

libx.so
shared object libraries.

libx.a
archive libraries.

a.out
default output file.

LIBPATH
/usr/lib for 32–bit libraries, or /usr/lib/64 for 64-bit libraries.

/usr/lib/ld/map.bssalign
mapfile providing a template for aligning bss.

/usr/lib/ld/map.default
mapfile showing default layout of 32-bit programs.

/usr/lib/ld/map.noexstk
mapfile showing a non-executable stack definition.

/usr/lib/ld/sparcv9/map.default
mapfile showing default layout of 64-bit SPARCV9 programs.

/usr/lib/ld/sparcv9/map.above4G
mapfile showing suggested layout above 4 gigabytes of 64-bit SPARCV9 programs.

/usr/lib/ld/sparcv9/map.below4G
mapfile showing suggested layout below 4 gigabytes of 64-bit SPARCV9 programs.

ld(1)

FILES

646 man pages section 1: User Commands • Last Revised 11 Dec 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

as(1), crle(1), gprof(1), ld.so.1(1), pvs(1), exec(2), stat(2), dlopen(3DL),
dldump(3DL), elf(3ELF), ar(3HEAD), a.out(4), attributes(5)

Linker and Libraries Guide

Default options applied by ld are maintained for historic reasons. In today’s
programming environment, where dynamic objects dominate, alternative defaults
would often make more sense. However, historic defaults must be maintained to
insure compatibility with existing program development environments. Historic
defaults are called out wherever possible in this manual. For a description of current
recommended options, see the “Link-Editor Quick Reference” in the Linker and
Libraries Guide.

If the file being created by ld already exists, it will be truncated after all input files
have been processed and overridden with the new file contents. ld does not create a
temporary file as part of the link-edit, since multiple instances of large output files
frequently exhaust system resources. The drawback of overriding an existing file
occurs if the file is in use by a running process. In this case, the process may be
prematurely terminated as the output files image is created. This situation can be
avoided by removing the output file before performing the link-edit. This removal is
not detrimental to the running process, as it frees up the file system namespace, not
the actual disk space, for the new output file creation. The disk space of a removed file
is freed when the last process referencing the file terminates.

ld(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 647

ld – link editor, dynamic link editor

/usr/ucb/ld [options]

/usr/ucb/ld is the link editor for the BSD Compatibility Package. /usr/ucb/ld is
identical to /usr/ccs/bin/ld (see ld(1)) except that BSD libraries and routines are
included before the base libraries and routines.

/usr/ucb/ld accepts the same options as /usr/ccs/bin/ld, with the following
exceptions:

-Ldir Add dir to the list of directories searched for libraries by
/usr/ccs/bin/ld. Directories specified with this option are
searched before /usr/ucblib and /usr/lib.

-Y LU,dir Change the default directory used for finding libraries. Warning:
This option may have unexpected results, and should not be used.

/usr/lib

/usr/lib/libx.a

/usr/ucblib

/usr/ucblib/libx.a

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

ar(1), as(1), cc(1B), ld(1), lorder(1), strip(1), tsort(1), attributes(5)

ld(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

648 man pages section 1: User Commands • Last Revised 14 Sep 1992

ldap – LDAP as a naming repository

LDAP refers to Lightweight Directory Access Protocol, which is an industry standard
for accessing directory servers. By initializing the client using ldapclient(1M) and
using the keyword ldap in the name service switch file, /etc/nsswitch.conf,
Solaris clients can obtain naming information from an LDAP server. Information such
as usernames, hostnames, and passwords are stored on the LDAP server in a Directory
Information Tree or DIT. The DIT consists of entries which in turn are composed of
attributes. Each attribute has a type and one or more values.

Solaris LDAP clients use the LDAP v3 protocol to access naming information from
LDAP servers. The LDAP server must support the object classes and attributes defined
in RFC2307bis (draft), which maps the naming service model on to LDAP. As an
alternate to using the schema defined in RFC2307bis (draft), the system can be
configured to use other schema sets and the schema mapping feature is configured to
map between the two. Refer to the System Administration Guide: Naming and Directory
Services (DNS, NIS, and LDAP) for more details.

The ldapclient(1M) utility can make a Solaris machine an LDAP client by setting
up the appropriate directories, files, and configuration information. The LDAP client
caches this configuration information in local cache files. This configuration
information is accessed through the ldap_cachemgr(1M) daemon. This daemon also
refreshes the information in the configuration files from the LDAP server, providing
better performance and security. The ldap_cachemgr must run at all times for the
proper operation of the naming services.

There are two types of configuration information, the information available through a
profile, and the information configured per client. The profile contains all the
information as to how the client accesses the directory. The credential information for
proxy user is configured on a per client basis and is not downloaded through the
profile.

The profile contains server-specific parameters that are required by all clients to locate
the servers for the desired LDAP domain. This information could be the server’s IP
address and the search base Distinguished Name (DN), for instance. It is configured
on the client from the default profile during client initialization and is periodically
updated by the ldap_cachemgr daemon when the expiration time has elapsed.

Client profiles can be stored on the LDAP server and may be used by the
ldapclient utility to initialize an LDAP client. Using the client profile is the easiest
way to configure a client machine. See ldapclient(1M).

Credential information includes client-specific parameters that are used by a client.
This information could be the Bind DN (LDAP "login" name) of the client and the
password. If these parameters are required, they are manually defined during the
initialization through ldapclient(1M).

The naming information is stored in containers on the LDAP server. A container is a
non-leaf entry in the DIT that contains naming service information. Containers are
similar to maps in NIS and tables in NIS+. A default mapping between the NIS

ldap(1)

NAME

DESCRIPTION

User Commands 649

databases and the containers in LDAP is presented below. The location of these
containers as well as their names can be overridden through the use of
serviceSearchDescriptors. For more information see ldapclient(1M).

Database Object Class Container

passwd posixAccount ou=people,dc=...

shadowAccount

group posixGroup ou=Group,dc=...

services ipService ou=Services,dc=...

protocols ipProtocol ou=Protocols,dc=...

rpc oncRpc ou=Rpc,dc=...

hosts ipHost ou=Hosts,dc=...

ipnodes

ethers ieee802Device ou=Ethers,dc=...

bootparams bootableDevice ou=Ethers,dc=...

networks ipNetwork ou=Networks,dc=...

netmasks ipNetwork ou=Networks,dc=...

netgroup nisNetgroup ou=Netgroup,dc=...

aliases mailGroup ou=Aliases,dc=...

publickey nisKeyObject

generic nisObject nisMapName=...,dc=...

printers printerService ou=Printers,dc=...

auth_attr SolarisAuthAttr ou=SolarisAuthAttr,dc=...

prof_attr SolarisProfAttr ou=SolarisProfAttr,dc=...

exec_attr SolarisExecAttr ou=SolarisProfAttr,dc=...

user_attr SolarisUserAttr ou=people,dc=...

audit_attr SolarisAuditAttr ou=people,dc=...

The security model for clients is defined by a combination of the credential level to be
used, the authentication method, and the PAM module to be used, that is, pam_unix
versus pam_ldap. The credential level defines what credentials the client should use
to authenticate to the directory server, and the authentication method defines the
method of choice. Both these can be set with multiple values. The Solaris LDAP
supports the following values for credential level :

ldap(1)

650 man pages section 1: User Commands • Last Revised 7 Jan 2002

anonymous
proxy

The Solaris LDAP supports the following values for authentication method:

none
simple
sasl/CRAM-MD5
sasl/DIGEST-MD5
tls:simple
tls:sasl/CRAM-MD5
tls:sasl/DIGEST-MD5

More protection can be provided by means of access control, allowing the server to
grant access for certain containers or entries. Access control is specified by Access
Control Lists (ACL’s) that are defined and stored in the LDAP server. The Access
Control Lists on the LDAP server are called Access Control Instructions (ACI’s) by the
the iPlanet Directory Server. Each ACL or ACI specifies one or more directory objects,
for example, the cn attribute in a specific container, one or more clients to whom you
grant or deny access, and one or more access rights that determine what the clients
can do to or with the objects. Clients can be users or applications. Access rights can be
specified as read and write, for example. Refer to the System Administration Guide:
Naming and Directory Services (DNS, NIS, and LDAP) regarding the restrictions on
ACL’s and ACI’s when using LDAP as a naming repository.

A sample nsswitch.conf(4) file called nsswitch.ldap is provided in the /etc
directory. This is copied to /etc/nsswitch.conf by the ldapclient(1M) utility.
This file uses LDAP as a repository for the different databases in the nsswitch.conf
file.

The following is a list of the user commands related to LDAP:

idsconfig(1M) Prepares an iPlanet Directory Server to be ready to support
Solaris LDAP clients.‘

ldapaddent(1M) Create LDAP entries from corresponding /etc files.

ldapclient(1M) Initialize LDAP clients, or generate a configuration profile to be
stored in the directory.

ldaplist(1) List the contents of the LDAP naming space.

/var/ldap/ldap_client_cred
/var/ldap/ldap_client_file Files that contain the LDAP configuration of

the client. Do not manually modify these
files. Their content is not guaranteed to be
human readable. Use ldapclient(1M) to
update them.

/etc/nsswitch.conf Configuration file for the name-service
switch

ldap(1)

FILES

User Commands 651

/etc/nsswitch.ldap Sample configuration file for the
name-service switch configured with LDAP
and files

/etc/pam.conf PAM framework configuration file.

ldaplist(1), idsconfig(1M), ldap_cachemgr(1M), ldapaddent(1M),
ldapclient(1M), nsswitch.conf(4), pam.conf(4), pam_authtok_check(5),
pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5), pam_ldap(5),
pam_passwd_auth(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5),
pam_unix_session(5),

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

ldap(1)

SEE ALSO

NOTES

652 man pages section 1: User Commands • Last Revised 7 Jan 2002

ldapdelete – ldap delete entry tool

ldapdelete [-n] [-o] [-v] [-c] [-d debuglevel] [-f file] [-D binddn]
[-w passwd] [-h ldaphost] [-M authentication] [-p ldapport] [dn…]

The ldapdelete utility opens a connection to an LDAP server, then binds and
deletes one or more entries. If one or more dn arguments are provided, entries with
those distinguished names are deleted. If no dn arguments are provided, a list of DNs
is read from file, if the -f option is specified, or from standard input.

The following options are supported:

-c Continuous operation mode. Errors are reported, but
ldapdelete will continue with deletions. The default
is to exit after reporting an error.

-d debuglevel Sets the LDAP debugging level. Useful levels of
debugging for ldapdelete are:

1 Trace

2 Packets

4 Arguments

32 Filters

128 Access control

To request more than one category of debugging
information, add the masks. For example, to request
trace and filter information, specify a debuglevel of 33.

-D binddn Uses the distinguished name binddn to bind to the
directory.

-f file Reads the entry deletion information from file instead
of from standard input.

-h ldaphost Specifies an alternate host on which the slapd server is
running.

-M authentication Specifies the authentication mechanism used to bind to
the directory.

The default authentication method for ldapdelete is
simple bind. simple bind sends the password to the
server in the clear. The password is subject to snooping
if the server is not local. You must use special care
when you use this command with the default
authentication method. If your server supports the

ldapdelete(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 653

challenge response method CRAM-MD5 authentication
method, you can override the default authentication
method by using the -M option with CRAM-MD5 as the
value for authentication.

The bind DN and bind password are mandatory with
this option.

-n Shows what would be done, but does not actually
delete entries. Useful in conjunction with options -v
and -d for debugging.

-o Specifies the security layer for the mechanism (none,
integrity, privacy).

-p ldapport Specifies an alternate TCP port where the slapd server
is listening.

-v Uses verbose mode, with diagnostics written to
standard output.

-w passwd Use passwd as the password for authentication to the
directory. When you use -w passwd to specify the
password to be used for authentication, the password
is visible to other users of the system by means of the
ps command, in script files or in shell history. If you
use the ldapdelete command without this option,
the command will prompt for the password and read it
from standard in. When used without the -w option,
the password will not be visible to other users.

The following operand is supported:

dn Specifies one or several distinguished names of entries to delete.

EXAMPLE 1 Deleting an entry

To delete the entry named with commonName Delete Me directly below the XYZ
Corporation organizational entry, use the following command:

example% ldapdelete -D "cn=Administrator, o=XYZ, c=US" \

"cn=Delete Me, o=XYZ, c=US"

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Stability Level Evolving

ldapdelete(1)

OPERANDS

EXAMPLES

ATTRIBUTES

654 man pages section 1: User Commands • Last Revised 30 Jan 2002

The following exit values are returned:

0 Successful completion.

Non-zero An error occurred. A diagnostic message is written to standard
error.

ldapadd(1), ldapmodify(1), ldapmodrdn(1), ldapsearch(1),
ldap_get_option(3LDAP), ldap_set_option(3LDAP), attributes(5)

ldapdelete(1)

EXIT STATUS

SEE ALSO

User Commands 655

ldaplist – search and list naming information from a LDAP directory using the
configured profile

/usr/bin/ldaplist [-dlv] [database [key]…]

/usr/bin/ldaplist -h

The ldaplist utility searches for and lists the naming information from the LDAP
directory service defined in the LDAP configuration files generated by
ldapclient(1M) during the client initialization phase. The Solaris LDAP client must
be set up in order to use this utility.

The database is either a container name or a database name as defined in
nsswitch.conf(4). A container is a non-leaf entry in the Directory Information Tree
(DIT) that contains naming service information. The container name is the LDAP
Relative Distinguished Name (RDN) of the container relative to the
defaultSearchBase as defined in the configuration files. For example, for a
container named ou=people, the database name is the database specified in
nsswitch.conf. This database is mapped to a container, for example, passwd maps
to ou=people. If an invalid database is specified, it will be mapped to a generic
container, for example, nisMapName=name).

The key is the attribute value to be searched in the database. You can specify more
than one key to be searched in the same database. The key can be specified in either of
two forms: attribute=value or value. In the first case, ldaplist passes the search key to
the server. In the latter case, an attribute is assigned depending on how the database is
specified. If the database is a container name, then the "cn" attribute type is used. If it
is a valid database name as defined in the nsswitch.conf, then a predefined
attribute type is used (see table below). If it is an invalid database name, then cn is
used as the attribute type.

The ldaplist utility relies on the Schema defined in the RFC 2307bis, currently an
IETF draft. The data stored on the LDAP server must be stored based on this Schema,
unless the profile contains schema mapping definitions. For more information on
schema mapping see ldapclient(1M). The following table lists the default mapping
from the database names to the container, the LDAP object class, and the attribute type
used if not defined in the key.

Database Object Class Attribute Type Container

aliases mailGroup cn ou=Aliases

automount nisObject cn nisMapName=auto_*

bootparams bootableDevice cn ou=Ethers

ethers ieee802Device cn ou=Ethers

group posixgroup cn ou=Group

ldaplist(1)

NAME

SYNOPSIS

DESCRIPTION

656 man pages section 1: User Commands • Last Revised 16 Jan 2002

Database Object Class Attribute Type Container

hosts ipHost cn ou=Hosts

ipnodes ipHost cn ou=Hosts

netgroup ipNetgroup cn ou=Netgroup

netmasks ipNetwork ipnetworknumber ou=Networks

networks ipNetwork ipnetworknumber ou=Networks

passwd posixAccount uid ou=People

protocols ipProtocol cn ou=Protocols

publickey nisKeyObject uidnumber ou=People

cn ou=Hosts

rpc oncRpc cn ou=Rpc

services ipService cn ou=Services

printers printerService printer-uri ou=printers

auth_attr SolarisAuthAttr nameT ou=SolarisAuthAttr

prof_attr SolarisProfAttr nameT ou=SolarisProfAttr

exec_attr SolarisExecAttr nameT ou=SolarisProfAttr

user_attr SolarisUserAttr uidT ou=people

audit_user SolarisAuditUser uidT ou=people

� auto_* represents auto_home, auto_direct, …
� If the key starts with a digit, it will be interpreted as an uid number.
� If the key starts with a non-digit, it will be interpreted as a host name.

The ldaplist utility supports substring search by using the wildcard "*" in the key.
For example, "my*" will match any strings that starts with "my". In some shell
environments, keys containing the wildcard may need to be quoted.

If the key is not specified, all the containers in the current search baseDN will be
listed.

The following options are supported:

-d Lists the attributes for the specified database, rather than the entries. By
default, the entries are listed.

-h Lists the database mapping.

-l Lists all the attributes for each entry matching the search criteria. By
default, ldaplist lists only the Distinguished Name of the entries found.

ldaplist(1)

OPTIONS

User Commands 657

-v Sets verbose mode. The ldaplist utility will also print the filter used to
search for the entry. The filter will be prefixed with "+++".

EXAMPLE 1 Listing All Entries in the Hosts Database

example% ldaplist hosts

EXAMPLE 2 Listing All Entries in a Non-Standard Database ou=new

example% ldaplist ou=new

EXAMPLE 3 Finding “user1” in the passwd Database

example% ldaplist passwd user1

EXAMPLE 4 Finding the Entry With Service Port of 4045 in the services Database

example% ldaplist services ipServicePort=4045

EXAMPLE 5 Finding All Users With Username Starting with new in the passwd Database

example% ldaplist passwd ’new*’

EXAMPLE 6 Listing the Attributes for the hosts Database

example% ldaplist -d hosts

The following exit values are returned:

0 Successfully matched some entries.

1 Successfully searched the table and no matches were found.

2 An error occurred. An error message is output.

/var/ldap/ldap_client_file
/var/ldap/ldap_client_cred Files that contain the LDAP configuration of

the client. Do not manually modify these
files. Their content is not guaranteed to be
human readable. To update these files, use
ldapclient(1M)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

Interface Stability Evolving

ldaplist(1)

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

658 man pages section 1: User Commands • Last Revised 16 Jan 2002

ldap(1), ldapadd(1), ldapdelete(1), ldapmodify(1), ldapmodrdn(1),
ldapsearch(1), idsconfig(1M), ldap_cachemgr(1M), ldapaddent(1M),
ldapclient(1M), suninstall(1M), resolv.conf(4), attributes(5)

RFC 2307bis is an IETF informational document in draft stage that defines an approach
for using LDAP as a naming service.

ldaplist(1)

SEE ALSO

NOTES

User Commands 659

ldapmodify, ldapadd – ldap entry addition and modification tools

ldapmodify [-a] [-c] [-r] [-n] [-v] [-F] [-d debuglevel] [-D binddn]
[-w passwd] [-h ldaphost] [-M authentication] [-p ldapport] [-f file]
[-l nb-ldap-connections]

ldapadd [-c] [-n] [-v] [-F] [-d debuglevel] [-D binddn] [-w passwd]
[-h ldaphost] [-p ldapport] [-f file] [-l nb-ldap-connections]

The ldapmodify utility opens a connection to an LDAP server, binds and modifies or
adds entries. The entry information is read from standard input or from file, specified
using the -f option. The ldapadd utility is implemented as a hard link to the
ldapmodify tool. When invoked as ldapadd, the -a (add new entry) option is
turned on automatically.

Both ldapadd and ldapmodify reject duplicate attribute-name/value pairs for the
same entry.

The following options are supported:

-a Adds new entries. The default for ldapmodify is to
modify existing entries. If invoked as ldapadd, this
option is always set.

-c Specifies continuous operation mode. Errors are
reported, but ldapmodify and ldapadd continue
with modifications. The default is to exit after reporting
an error.

-D binddn Uses the distinguished name binddn to bind to the
directory.

-d debuglevel Sets the LDAP debugging level. Useful levels of
debugging for ldapmodify and ldapadd are:

1 Trace

2 Packets

4 Arguments

32 Filters

128 Access control

To request more than one category of debugging
information, add the masks. For example, to request
trace and filter information, specify a debuglevel of 33.

-F Forces application of all changes regardless of the
content of input lines that begin with replica:. By
default, replica: lines are compared against the

ldapmodify(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

660 man pages section 1: User Commands • Last Revised 30 Jan 2002

LDAP server host and port in use to decide whether a
replog record should be applied.

-f file Reads the entry modification information from file
instead of from standard input.

-h ldaphost Specifies an alternate host on which the slapd server is
running.

-l nb-ldap-connections Specifies the number of LDAP connections that
ldapadd or ldapmodify will open to process the
modifications in the directory. The default is one
connection.

-M authentication Specifies the authentication mechanism used to bind to
the directory.

The default authentication method for ldapmodify
and ldapadd is simple bind. simple bind sends the
password to the server in the clear. The password is
subject to snooping if the server is not local. You must
use special care when you use this command with the
default authentication method. If your server supports
the challenge response method CRAM-MD5
authentication method, you can override the default
authentication method by using the -M option with
CRAM-MD5 as the value for authentication.

The bind DN and bind password are mandatory with
this option.

-n Previews modifications, but makes no changes to
entries. Useful in conjunction with -v and -d for
debugging.

-p ldapport Specifies an alternate TCP port where the slapd server
is listening.

-r Replaces existing value with the specified value. This is
the default for ldapmodify. When ldapadd is called,
or if the -a option is specified, the -r option is
ignored.

-v Uses verbose mode, with diagnostics written to
standard output.

-w passwd Use passwd as the password for authentication to the
directory. When you use -w passwd to specify the
password to be used for authentication, the password
is visible to other users of the system by means of the
ps command, in script files or in shell history. If you
use either the ldapmodify command or the ldapadd

ldapmodify(1)

User Commands 661

command without this option, the command will
prompt for the password and read it from standard in.
When used without the -w option, the password will
not be visible to other users.

The format of the content of file (or standard input if no -f option is specified) is
illustrated in the following examples.

EXAMPLE 1 Modifying an entry

The file /tmp/entrymods contains the following modification instructions:

dn: cn=Modify Me, o=XYZ, c=US
changetype: modify
replace: mail
mail: modme@atlanta.xyz.com
-
add: title
title: System Manager
-
add: jpegPhoto
jpegPhoto:< file:///tmp/modme.jpeg
-
delete: description

-

The command:

example% ldapmodify -r -f /tmp/entrymods

modifies the Modify Me entry as follows:

1. The current value of the mail attribute is replaced with the value,
modme@atlanta.xyz.com.

2. A title attribute with the value, System Manager, is added.

3. A jpegPhoto attribute is added, using the contents of the file,
/tmp/modme.jpeg, as the attribute value.

4. The description attribute is removed.

EXAMPLE 2 Creating a new entry

The file, /tmp/newentry, contains the following information for creating a new
entry:

dn: cn=Ann Jones, o=XYZ, c=US
objectClass: person
cn: Ann Jones
cn: Annie Jones
sn: Jones
title: Director of Research and Development
mail: ajones@londonrd.xyz.us.com

uid: ajones

ldapmodify(1)

EXAMPLES

662 man pages section 1: User Commands • Last Revised 30 Jan 2002

EXAMPLE 2 Creating a new entry (Continued)

The command

example% ldapadd -f /tmp/newentry

adds a new entry for Ann Jones, using the information in the file.

EXAMPLE 3 Deleting an entry

The file, /tmp/badentry, contains the following information about an entry to be
deleted:

dn: cn=Ann Jones, o=XYZ, c=US

changetype: delete

The command:

example% ldapmodify -f /tmp/badentry

removes Ann Jones’ entry.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Stability Level Evolving

The following exit values are returned:

0 Successful completion.

Non-zero An error occurred. A diagnostic message is written to standard
error.

ldapdelete(1), ldapmodrdn(1), ldapsearch(1), ldap_get_option(3LDAP),
ldap_set_option(3LDAP), attributes(5)

ldapmodify(1)

ATTRIBUTES

EXIT STATUS

SEE ALSO

User Commands 663

ldapmodrdn – ldap modify entry RDN tool

ldapmodrdn [-r] [-n] [-v] [-c] [-d debuglevel] [-D binddn] [-w passwd]
[-h ldaphost] [-M authentication] [-p ldapport] [-f file] [dn rdn]

ldapmodrdn opens a connection to an LDAP server, binds, and modifies the RDN of
entries. The entry information is read from standard input, from file through the use
of the -f option, or from the command-line pair dn and rdn.

-c Continuous operation mode. Errors are reported, but
ldapmodify continues with modifications. The default
is to exit after reporting an error.

-D binddn Use the distinguished name binddn to bind to the
directory.

-d debuglevel Set the LDAP debugging level. Useful values of
debuglevel for ldapmodrdn are:

1 Trace

2 Packets

4 Arguments

32 Filters

128 Access control

To request more than one category of debugging
information, add the masks. For example, to request
trace and filter information, specify a debuglevel of 33.

-f file Read the entry modification information from file
instead of from standard input or the command-line.

-h ldaphost Specify an alternate host on which the slapd server is
running.

-M authentication Specifies the authentication mechanism used to bind to
the directory.

The default authentication method for ldapmodrdn is
simple bind. simple bind sends the password to the
server in the clear. The password is subject to snooping
if the server is not local. You must use special care
when you use this command with the default
authentication method. If your server supports the
challenge response method CRAM-MD5 authentication
method, you can override the default authentication
method by using the -M option with CRAM-MD5 as the
value for authentication.

ldapmodrdn(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

664 man pages section 1: User Commands • Last Revised 30 Jan 2002

The bind DN and bind password are mandatory with
this option.

-n Show what would be done, but don’t actually change
entries. Useful in conjunction with -v for debugging.

-p ldapport Specify an alternate TCP port where the slapd server is
listening.

-r Remove old RDN values from the entry. By default, old
values are kept.

-v Use verbose mode, with diagnostics written to
standard output.

-w passwd Use passwd as the password for authentication to the
directory. When you use -w passwd to specify the
password to be used for authentication, the password
is visible to other users of the system by means of the
ps command, in script files or in shell history. If you
use the ldapmodrdn command without this option,
the command will prompt for the password and read it
from standard in. When used without the -w option,
the password will not be visible to other users.

If the command-line arguments dn and rdn are given, rdn replaces the RDN of the
entry specified by the DN, dn.

Otherwise, the contents of file (or standard input if the – f option is not specified)
must consist of one or more pair of lines:

Distinguished Name (DN)
Relative Distinguished Name (RDN)

Use one or more blank lines to separate each DN/RDN pair.

The file /tmp/entrymods contains:

cn=Modify Me, o=XYZ, c=US

cn=The New Me

The command:

example% ldapmodify -r -f /tmp/entrymods

changes the RDN of the "Modify Me" entry from "Modify Me" to "The New Me" and
the old cn, "Modify Me" is removed.

See attributes(5) for a description of the following attributes:

ldapmodrdn(1)

Input Format

EXAMPLES

ATTRIBUTES

User Commands 665

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Stability Level Evolving

ldapadd(1), ldapdelete(1), ldapmodify(1), ldapsearch(1), attributes(5)

Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

ldapmodrdn(1)

SEE ALSO

DIAGNOSTICS

666 man pages section 1: User Commands • Last Revised 30 Jan 2002

ldapsearch – ldap search tool

ldapsearch [-n] [-u] [-v] [-t] [-A] [-B] [-L] [-R] [-d debuglevel]
[-F sep] [-f file] [-D binddn] [-w passwd] [-h ldaphost]
[-M authentication] [-p ldapport] [-b searchbase] [-s scope] [-a deref]
[-l time limit] [-z size limit] filter [attrs]

ldapsearch opens a connection to an LDAP server, binds, and performs a search
using the filter filter.

If ldapsearch finds one or more entries, the attributes specified by attrs are retrieved
and the entries and values are printed to standard output. If no attrs are listed, all
attributes are returned.

If one or more entries are found, each entry is written to standard output in the form:

Distinguished Name (DN)
User Friendly Name (if the -u option is used)
attributename=value
attributename=value
attributename=value

...

Multiple entries are separated with a single blank line. If the -F option is used to
specify a different separator character, this character will be used instead of the ‘=’
character. If the -t option is used, the name of a temporary file is returned in place of
the actual value. If the -A option is given, only the "attributename" is returned and not
the attribute value.

-A Retrieve attributes only (no values). This is useful
when you just want to see whether an attribute is
present in an entry and are not interested in the specific
value.

-a deref Specify how aliases dereferencing is done. The possible
values for deref are never, always, search, or find
to specify respectively that aliases are never
dereferenced, always dereferenced, dereferenced when
searching, or dereferenced only when finding the base
object for the search. The default is to never dereference
aliases.

-B Do not suppress display of non-ASCII values. This is
useful when dealing with values that appear in
alternate character sets such as ISO-8859.1. This option
is automatically set by the -L option.

-b searchbase Use searchbase as the starting point for the search
instead of the default.

-D binddn Use the distinguished name binddn to bind to the
directory.

ldapsearch(1)

NAME

SYNOPSIS

DESCRIPTION

Output Format

OPTIONS

User Commands 667

-d debuglevel Set the LDAP debugging level. Useful levels of
debugging for ldapsearch are:

1 Trace

2 Packets

4 Arguments

32 Filters

128 Access control

To request more than one category of debugging
information, add the masks. For example, to request
trace and filter information, specify a debuglevel of 33.

-F sep Use sep as the field separator between attribute names
and values. The default separator is ‘=’. If -L option
has been specified, this option is ignored.

-f file Read a series of lines from file, performing one LDAP
search for each line. In this case, the filter given on the
command line is treated as a pattern where the first
occurrence of %s is replaced with a line from file. If file
is a single - character, then the lines are read from
standard input.

-h ldaphost Specify an alternate host on which the slapd server is
running.

-L Display search results in a modified format. This option
also turns on the -B option, and causes the -F option
to be ignored.

-l timelimit Wait at most timelimit seconds for a search to complete.

-M authentication Specifies the authentication mechanism used to bind to
the directory.

The default authentication method for ldapsearch is
simple bind. simple bind sends the password to the
server in the clear. The password is subject to snooping
if the server is not local. You must use special care
when you use this command with the default
authentication method. If your server supports the
challenge response method CRAM-MD5 authentication
method, you can override the default authentication
method by using the -M option with CRAM-MD5 as the
value for authentication.

The bind DN and bind password are mandatory with
this option.

ldapsearch(1)

668 man pages section 1: User Commands • Last Revised 30 Jan 2002

-n Show what would be done, but do not actually
perform the search. Useful in conjunction with -v and
-d for debugging.

-p ldapport Specify an alternate TCP port where the slapd server is
listening.

-R Do not automatically follow referrals returned while
searching.

-s scope Specify the scope of the search. The possible values of
scope are base, one, or sub to specify respectively a
base object, one-level, or subtree search. The default is
sub.

-t Write retrieved values to a set of temporary files. This
is useful for dealing with non-ASCII values such as
jpegPhoto or audio.

-u Include the user-friendly form of the Distinguished
Name (DN) in the output.

-v Run in verbose mode, with diagnostics written to
standard output.

-w passwd Use passwd as the password for authentication to the
directory. When you use -w passwd to specify the
password to be used for authentication, the password
is visible to other users of the system by means of the
ps command, in script files or in shell history. If you
use the ldapsearch command without this option,
the command will prompt for the password and read it
from standard in. When used without the -w option,
the password will not be visible to other users.

-z sizelimit Retrieve at most sizelimit entries for a search to
complete.

EXAMPLE 1 Performing a Subtree Search

The following command performs a subtree search (using the default search base) for
entries with a commonName of "mark smith". The commonName and
telephoneNumber values will be retrieved and printed to standard output.

example% ldapsearch "cn=mark smith" cn telephoneNumber

The output looks something like this:

cn=Mark D Smith, ou=Sales, ou=Atlanta, ou=People, o=XYZ, c=US
cn=Mark Smith
cn=Mark David Smith
cn=Mark D Smith 1
cn=Mark D Smith

ldapsearch(1)

EXAMPLES

User Commands 669

EXAMPLE 1 Performing a Subtree Search (Continued)

telephoneNumber=+1 123 456-7890
cn=Mark C Smith, ou=Distribution, ou=Atlanta, ou=People, o=XYZ, c=US
cn=Mark Smith
cn=Mark C Smith 1
cn=Mark C Smith

telephoneNumber=+1 123 456-9999

EXAMPLE 2 Performing a Subtree Search Using the Default Search Base

The following command performs a subtree search using the default search base for
entries with user id of "mcs". The user-friendly form of the entry’s DN will be output
after the line that contains the DN itself, and the jpegPhoto and audio values will be
retrieved and written to temporary files.

example%ldapsearch -u -t "uid=mcs" jpegPhoto audio

The output might look like this if one entry with one value for each of the requested
attributes is found:

cn=Mark C Smith, ou=Distribution, ou=Atlanta, ou=People, o=XYZ, c=US
Mark C Smith, Distribution, Atlanta, People, XYZ, US
audio=/tmp/ldapsearch-audio-a19924

jpegPhoto=/tmp/ldapsearch-jpegPhoto-a19924

EXAMPLE 3 Performing a One Level Search

The following command performs a one-level search at the c=US level for all
organizations whose organizationName begins with XY.

example% ldapsearch -L -s one -b "c=US" "o=XY*" o description

Search results are displayed in the LDIF format. The organizationName and
description attribute values will be retrieved and printed to standard output, resulting
in output similar to this:

dn: o=XYZ, c=US
o: XYZ
description: XYZ Corporation
dn: o="XY Trading Company", c=US
o: XY Trading Company
description: Import and export specialists

dn: o=XYInternational, c=US
o: XYInternational
o: XYI

o: XY International

The following exit values are returned:

0 Successful completion.

ldapsearch(1)

EXIT STATUS

670 man pages section 1: User Commands • Last Revised 30 Jan 2002

>0 An error occurred. A diagnostic message is written to standard
error.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Stability Level Evolving

ldapadd(1), ldapdelete(1), ldapmodify(1), ldapmodrdn(1), attributes(5)

ldapsearch(1)

ATTRIBUTES

SEE ALSO

User Commands 671

ldd – list dynamic dependencies of executable files or shared objects

ldd [-d | -r] [-c] [-e envar] [-f] [-i] [-L] [-l] [-s] [-u] [-v]
filename…

The ldd utility lists the dynamic dependencies of executable files or shared objects.
ldd uses the runtime linker, ld.so.1, to generate the diagnostics, since it takes the
object being inspected and prepares it as it would in a running process. By default,
ldd triggers the loading of any lazy dependencies.

If filename is an executable file, ldd lists the path names of all shared objects that
would be loaded when filename is loaded.

If filename is a shared object, ldd lists the path names of all shared objects that would
be loaded when filename is loaded. ldd expects shared objects to have execute
permission. If this is not the case, ldd will issue a warning before attempting to
process the file.

ldd processes its input one file at a time. For each input file, ldd performs one of the
following:

� Lists the object dependencies if they exist.
� Succeeds quietly if dependencies do not exist.
� Prints an error message if processing fails.

ldd can also check the compatibility of filename with the shared objects it uses. With
each of the following options, ldd prints warnings for any unresolved symbol
references that would occur if filename were executed.

-d Check immediate references.

-r Check both immediate and lazy references.

Only one of the above options can be specified during any single invocation of ldd.
immediate references are typically to data items used by the executable or shared object
code, pointers to functions, and even calls to functions made from a position dependent
shared object. lazy references are typically calls to global functions made from a
position independent shared object, or calls to external functions made from the
executable. For more information on these types of reference, see “When Relocations
Are Performed” in the Linker and Libraries Guide. Object loading can also be affected by
relocation processing. See Lazy Loading under USAGE for more details.

-c Disables any configuration file use. Configuration files may be
employed to alter default search paths, provide a directory cache,
and provide alternative object dependencies. See crle(1).

-e envar Sets the environment variable envar. This option is useful for
experimenting with runtime linker environment variables that can
adversely affect ldd itself.

-f Forces ldd to check for an executable file that is not secure. When
ldd is invoked by a super-user, by default it will not process any

ldd(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

672 man pages section 1: User Commands • Last Revised 8 Nov 2001

executable that it finds not secure. An executable is not considered
secure if the interpreter it specifies does not reside under
/usr/lib or /etc/lib, or if the interpreter cannot be
determined. See Security under USAGE.

-i Displays the order of execution of initialization sections. The order
discovered may be affected by use of the -d or -r options. See
Initialization Order under USAGE.

-L Enables lazy loading. This is the default mode of operation when
the object under inspection is loaded as part of a process. In this
case, any lazy dependencies, or filters, are only loaded into the
process when reference is made to a symbol that is defined within
the lazy object. The -d or -r options, together with the -L option,
may be used to inspect the dependencies and their order of
loading since it will occur in a running process.

-l Forces the immediate processing of any filters so that all filtees,
and their dependencies, are listed. The immediate processing of
filters is now the default mode of operation for ldd. However,
under this default any auxiliary filtees that cannot be found are
silently ignored. Under the -l option, missing auxiliary filtees
generate an error message.

-s Displays the search path used to locate shared object
dependencies.

-u Displays any unused dependencies. When a symbol reference is
bound to a dependency, that dependency is deemed used. This
option is therefore only useful when symbol references are being
checked. If the -r option is not in effect, the -d option is enabled.

Objects that are found to be unused when using the -r option
should be removed as dependencies. They provide no references
but result in unnecessary overhead when filename is loaded.
Objects that are found to be unused when using the -d option are
not immediately required when filename is loaded, and are
therefore candidates for lazy loading (see Lazy Loading under
USAGE).

-v Displays all dependency relationships incurred when processing
filename. This option also displays any dependency version
requirements. See pvs(1).

A super-user should use the -f option only if the executable to be examined is known
to be trustworthy, because use of -f on an untrustworthy executable while super-user
may compromise system security. If it is unknown whether or not the executable to be
examined is trustworthy, a super-user should temporarily become a regular user and
invoke ldd as that regular user.

ldd(1)

Security

User Commands 673

Untrustworthy objects can be safely examined with dump(1) and with adb(1), as long
as the :r subcommand is not used. In addition, a non-super-user can use either the :r
subcommand of adb or truss(1) to examine an untrustworthy executable without too
much risk of compromise. To minimize risk when using ldd, adb :r, or truss on an
untrustworthy executable, use the user id "nobody".

Objects that employ lazy loading techniques, either through directly specified lazy
dependencies (see the -z lazyload option of ld(1)), or through filters (see the -f
and -F options of ld(1)), may experience variations in ldd output due to the options
they use. If an object expresses all its dependencies as lazy, the default operation of
ldd will list all dependencies in the order in which they are recorded in that object:

example% ldd main
libelf.so.1 => /usr/lib/libelf.so.1
libnsl.so.1 => /usr/lib/libnsl.so.1

libc.so.1 => /usr/lib/libc.so.1

The lazy loading behavior that occurs when this object is used at runtime may be
enabled using the -L option. In this mode, lazy dependencies are loaded when
reference is made to a symbol that is defined within the lazy object. Therefore,
combining the -L option with use of the -d and -r options will reveal the
dependencies needed to satisfy the immediate and lazy references respectively:

example% ldd -L main
example% ldd -d main

libc.so.1 => /usr/lib/libc.so.1
example% ldd -r main

libc.so.1 => /usr/lib/libc.so.1

libelf.so.1 => /usr/lib/libelf.so.1

Notice that in this example, the order of the dependencies listed is not the same as
displayed from ldd with no options, and even with the -r option, the lazy reference
to dependencies may not occur in the same order as it will in a running program.

Observing lazy loading may also reveal objects that are not required to satisfy any
references. These objects (in this example, libnsl.so.1) are candidates for removal
from the link-line used to build the object being inspected.

Objects that do not explicitly define their required dependencies may observe
variations in the initialization section order displayed by ldd due to the options they
use. For example, a simple application may reveal:

example% ldd -i main
libA.so.1 => ./libA.so.1
libc.so.1 => /usr/lib/libc.so.1
libB.so.1 => ./libB.so.1

init object=./libB.so.1
init object=./libA.so.1

init object=/usr/lib/libc.so.1

whereas, when relocations are applied, the initialization section order is:

ldd(1)

Lazy Loading

Initialization
Order

674 man pages section 1: User Commands • Last Revised 8 Nov 2001

example% ldd -ir main
.........

init object=/usr/lib/libc.so.1
init object=./libB.so.1

init object=./libA.so.1

In this case, libB.so.1 makes reference to a function in /usr/lib/libc.so.1.
However, it has no explicit dependency on this library. Only after a relocation is
discovered is a dependency established, which in turn affects the initialization section
sort order.

Typically, the initialization section sort order established when an application is
executed is equivalent to ldd with the -d option. The optimum order can be obtained
if all objects fully define their dependencies. Use of the ld(1) options -z defs and
-z ignore when building dynamic objects is recommended.

Cyclic dependencies may result when one or more dynamic objects reference each
other. Cyclic dependencies should be avoided, as a unique initialization sort order for
these dependencies can not be established.

Users that prefer a more static analysis of object files may inspect dependencies using
tools such as dump(1) and elfdump(1).

/usr/lib/lddstub Fake executable loaded to check the dependencies of
shared objects.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

adb(1), crle(1), dump(1), elfdump(1), ld(1), ld.so.1(1), pvs(1), truss(1),
dlopen(3DL), attributes(5)

Linker and Libraries Guide

ldd prints the record of shared object path names to stdout. The optional list of
symbol resolution problems is printed to stderr. If filename is not an executable file
or a shared object, or if it cannot be opened for reading, a non-zero exit status is
returned.

ldd does not list shared objects explicitly attached using dlopen(3DL).

ldd(1)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 675

Using the -d or -r option with shared objects can give misleading results. ldd does a
"worst case" analysis of the shared objects. However, in practice some or all of the
symbols reported as unresolved can be resolved by the executable file referencing the
shared object. The runtime linkers preloading mechanism (see LD_PRELOAD) may be
employed to add dependencies to the object being inspected.

ldd uses the same algorithm as the runtime linker to locate shared objects.

ldd(1)

676 man pages section 1: User Commands • Last Revised 8 Nov 2001

ld.so.1 – runtime linker for dynamic objects

/usr/lib/ld.so.1

/etc/lib/ld.so.1

Dynamic applications consist of one or more dynamic objects. They are typically a
dynamic executable and its shared object dependencies. As part of the initialization
and execution of a dynamic application, an interpreter is called to complete the binding
of the application to its shared object dependencies. In Solaris, this interpreter is
referred to as the runtime linker.

During the link-editing of a dynamic executable, a special .interp section, together
with an associated program header, is created. This section contains a pathname
specifying the program’s interpreter. The pathname to the interpreter can be specified
when the executable is being constructed by the -I option to ld(1) the link-editor. The
default name supplied by the link-editor is that of the runtime linker,
/usr/lib/ld.so.1.

During the process of executing a dynamic executable the kernel maps the file and
locates the required interpreter. See exec(2) and mmap(2). The kernel maps this
interpreter and transfers control to it, passing sufficient information to allow the
interpreter to continue binding the application and then run it.

In addition to initializing an application, the runtime linker provides services that
allow the application to extend its address space by mapping additional shared objects
and binding to symbols within them.

The runtime linker performs the following functions:

� It opens and processes any applicable configuration file. Configuration files may be
employed to alter default search paths, provide a directory cache and provide
alternative object dependencies. See crle(1). By default, the configuration file
/var/ld/ld.config is used for 32–bit objects and /var/ld/64/ld.config
for 64–bit objects. Alternative configuration files can be specified with the
LD_CONFIG environment variable, or encoded within a dynamic executable using
the -c option of ld(1).

� It analyzes the application’s dynamic information section (.dynamic) and
determines which shared object dependencies are required.

� It locates and maps in these dependencies, and then it analyzes their dynamic
information sections to determine if any additional shared object dependencies are
required.

� Once all shared object dependencies are located and mapped, the runtime linker
performs any necessary relocations to bind these shared objects in preparation for
process execution.

� It calls any initialization functions provided by the shared object dependencies and,
possibly, by the dynamic executable. By default, these are called in the reverse
order of the topologically sorted dependencies. If cyclic dependencies exist, the
initialization functions are called using the sorted order with the cycle removed.

ld.so.1(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 677

ldd(1) can be used to display the initialization order of shared object
dependencies.

� It passes control to the application.
� During the application’s execution, the runtime linker can be called upon to

perform any delayed function binding.
� It calls any finalization functions on deletion of shared objects from the process. By

default these are called in the order of the topologically sorted dependencies.
� The application can also call upon the runtime linker’s services to acquire

additional shared objects by dlopen(3DL) and bind to symbols within these
objects with dlsym(3DL)

Further details on each of the above topics may be found in the Linker and Libraries
Guide.

The runtime linker uses a prescribed search path for locating the dynamic
dependencies of an object. The default search paths are the runpath recorded in the
object, followed by /usr/lib for 32–bit objects or /usr/lib/64 for 64–bit objects.
This latter component can be modified using a configuration file created with crle(1).
The runpath is specified when the dynamic object is constructed using the -R option
to ld(1). LD_LIBRARY_PATH can be used to indicate directories to be searched before
the default directories.

LD_AUDIT A colon-separated list of objects that will be loaded by
the runtime linker. As each object is loaded, it will be
examined for Link-Auditing interfaces; the routines that
are present will be called as specified in the
Link-Auditing interface described in the Linker and
Libraries Guide. Also, see the -p and -P options of
ld(1).

LD_BIND_NOW The runtime linker’s default mode of performing lazy
binding can be overridden by setting the environment
variable LD_BIND_NOW to any non-null value. This
setting causes the runtime linker to perform both data
reference and function reference relocations during
process initialization, before transferring control to the
application. Also see the -z now option of ld(1).

LD_CONFIG Provides an alternative configuration file.
Configuration files may be employed to alter default
search paths, provide a directory cache and provide
alternate object dependencies. See crle(1).

LD_DEBUG Provides a comma, or colon-separated list of tokens to
cause the runtime linker to print debugging
information to the standard error. The special token
help indicates the full list of tokens available. The
environment variable LD_DEBUG_OUTPUT may also be

ld.so.1(1)

ENVIRONMENT
VARIABLES

678 man pages section 1: User Commands • Last Revised 29 Oct 2001

supplied to specify a file to which the debugging
information is sent. The filename will be suffixed with
the process ID of the application generating the
debugging information.

LD_DEMANGLE Any symbol name used as part of a diagnostic message
is shown as it is defined within an ELF file. When
LD_DEMANGLE is set to any non-null value, the runtime
linker will attempt to decode (demangle) any C++
symbol name.

LD_FLAGS Provides an alternative means of supplying
environment variable information. Any of the LD_XXX
environment variables can specified as a xxx token.
Multiple tokens can be supplied separated by commas.
See EXAMPLES.

LD_LIBRARY_PATH The LD_LIBRARY_PATH environment variable, if set, is
used to enhance the search path that the runtime linker
uses to find dynamic dependencies.
LD_LIBRARY_PATH specifies a colon-separated list of
directories that are to be searched before the default
directories. Also notice that LD_LIBRARY_PATH adds
additional semantics to ld(1).

LD_LOADFLTR Filters are a form of shared object. They allow an
alternative shared object to be selected at runtime and
provide the implementation for any symbols defined
within the filter. See the -f and -F options of ld(1). By
default, the alternative shared object processing is
deferred until symbol resolution occurs against the
filter. When LD_LOADFLTR is set to any non-null value,
the runtime linker will process filters immediately
when they are loaded. Also see the -z loadfltr
option of ld(1).

LD_NOAUDIT Local auditing libraries can be defined within
applications and shared objects. See the -p and -P
options of ld(1). When LD_NOAUDIT is set to any
non-null value, the runtime linker will ignore any local
auditing libraries.

LD_NOAUXFLTR Auxiliary filters are a form of shared object. They allow
an alternative shared object to be selected at runtime
which provides the implementation for any symbols
defined within the filter. See the -f option of ld(1).
When LD_NOAUXFLTR is set to any non-null value, the
runtime linker will disable this alternative shared
object lookup.

ld.so.1(1)

User Commands 679

LD_NOCONFIG By default the runtime linker attempts to open and
process a configuration file. When LD_NOCONFIG is set
to any non-null value, the runtime linker will disable
this configuration file processing.

LD_NODIRCONFIG Provides a subset of LD_NOCONFIG in that any
directory cache information provided in a
configuration file is ignored.

LD_NODIRECT Direct binding information instructs the runtime linker
to search directly for a symbol in an associated object,
rather than carry out the default symbol search model.
See the -B direct option of ld(1). When
LD_NODIRECT is set to any non-null value, the runtime
linker will ignore any direct binding information.

LD_NOENVCONFIG Provides a subset of LD_NOCONFIG in that any
environment variables provided in a configuration file
are ignored.

LD_NOLAZYLOAD Dependencies labeled for lazy loading are not loaded
into memory until explicit reference has been made to
them. See the -z lazyload option of ld(1). When
LD_NOLAZYLOAD is set to any non-null value, the
runtime linker will ignore a dependencies lazy loading
label and load it immediately.

LD_NOOBJALTER Provides a subset of LD_NOCONFIG in that any
alternative object dependencies provided in a
configuration file are ignored.

LD_NOVERSION By default the runtime linker verifies version
dependencies for the primary executable and all of its
dependencies. When LD_NOVERSION is set to any
non-null value, the runtime linker will disable this
version checking.

LD_ORIGIN The immediate processing of $ORIGIN can be triggered
by setting the environment variable LD_ORIGIN to any
non-null value. Before Solaris 9, this option was useful
for applications that invoked chdir(2) prior to locating
dependencies that employed the $ORIGIN string token.
The establishment of the current working directory by
the runtime linker is now default and thus making this
option redundant.

LD_PRELOAD Provides a list of shared objects, separated by spaces,
that are loaded after the program being executed but
before any other shared objects that the program
references. Symbol definitions provided by the
preloaded objects interpose on references made by the

ld.so.1(1)

680 man pages section 1: User Commands • Last Revised 29 Oct 2001

shared objects that the program references, but do not
interpose on the program itself.

LD_PROFILE Defines a shared object that will be profiled by the
runtime linker. When profiling is enabled, a profiling
buffer file is created and mapped. The name of the
buffer file is the name of the shared object being
profiled with a .profile extension. By default, this
buffer is placed under /var/tmp. The environment
variable LD_PROFILE_OUTPUT may also be supplied
to indicate an alternative directory in which to place
the profiling buffer.

This buffer contains profil(2) and call count
information similar to the gmon.out information
generated by programs that have been linked with the
-xpg option of cc. Any applications that use the
named shared object and run while this environment
variable is set will accumulate data in the profile buffer.
See also NOTES. The profile buffer information may be
examined using gprof(1).

Notice that this profiling technique is an alternative to
any that may be provided by the compilation system.
The shared object being profiled does not have to be
instrumented in any way, and LD_PROFILE should not
be combined with a profile-instrumented application.
See the Linker and Libraries Guide for more information
on profiling shared objects.

LD_SIGNAL Provides a numeric signal number that the runtime
linker will use to kill the process in the event of a fatal
runtime error (see kill(2)). By default, SIGKILL is
used. For example, providing the alternative signal
number 6 (SIGABRT), can provide for the creation of a
core file to aid debugging.

Each environment variable can be specified with a _32 or _64 suffix. This makes the
environment variable specific, respectively, to 32–bit or 64–bit processes and overrides
any non-suffixed version of the environment variable that may be in effect.

Notice that environment variable names beginning with the characters ’LD_’ are
reserved for possible future enhancements to ld(1) and ld.so.1.

Secure processes have some restrictions applied to the evaluation of their
dependencies and runpaths to prevent malicious dependency substitution or symbol
interposition.

ld.so.1(1)

SECURITY

User Commands 681

The runtime linker categorizes a process as secure if the user is not a super-user, and
either the real user and effective user identifiers are not equal, or the real group and
effective group identifiers are not equal. See getuid(2), geteuid(2), getgid(2), and
getegid(2).

The default trusted directory known to the runtime linker is /usr/lib/secure for
32-bit objects or /usr/lib/secure/64 for 64-bit objects. The utility crle(1) may be
used to specify additional trusted directories applicable for secure applications.
Administrators who use this technique should ensure that the target directories are
suitably protected from malicious intrusion.

If an LD_LIBRARY_PATH environment variable is in effect for a secure process, then
only the trusted directories specified by this variable will be used to augment the
runtime linker’s search rules.

In a secure process, any runpath specifications provided by the application or any of
its dependencies will be used, provided they are full pathnames, that is, the pathname
starts with a ’/’.

In a secure process, the expansion of the $ORIGIN string is allowed only if it expands
to a trusted directory.

In a secure process, LD_SIGNAL is ignored.

Additional objects may be loaded with a secure process using the LD_PRELOAD, or
LD_AUDIT environment variables. These objects must be specified as full pathnames
or simple file names. Full pathnames are restricted to known trusted directories. Simple
file names, in which no ’/’ appears in the name, are located subject to the search path
restrictions previously described, and thus will only resolve to known trusted
directories.

In a secure process, any dependencies that consist of simple filenames will be
processed using the pathname restrictions previously described. Dependencies that
are expressed as full or relative pathnames will be used as is. Therefore, the developer
of a secure process should ensure that the target directory referenced as a full or
relative pathname dependency is suitably protected from malicious intrusion.

When creating a secure process, it is recommended that relative pathnames not be
used to express dependencies or to construct dlopen(3DL) pathnames. This
restriction should be applied to the application and to all dependencies.

EXAMPLE 1 Using LD_FLAGS to group environment variable information

The following use of LD_FLAGS,

example% LD_FLAGS_32=bind_now,library_path=/lib/one:/lib/two

example% LD_FLAGS_64=library_path=/lib/one/64,preload=foo.so

ld.so.1(1)

EXAMPLES

682 man pages section 1: User Commands • Last Revised 29 Oct 2001

EXAMPLE 1 Using LD_FLAGS to group environment variable information (Continued)

is equivalent to setting the individual environment variables LD_BIND_NOW and
LD_LIBRARY_PATH for 32–bit applications, and LD_LIBRARY_PATH and
LD_PRELOAD for 64–bit applications.

/usr/lib/ld.so.1 Default runtime linker.

/etc/lib/ld.so.1 Alternate runtime linker.

/usr/lib/libc.so.1 Alternate interpreter for SVID ABI
compatibility.

/usr/lib/ld.so AOUT (BCP) runtime linker.

/usr/lib/0@0.so.1 Null character pointer compatibility library.
See NOTES.

/usr/lib/secure LD_PRELOAD location for secure
applications.

/usr/lib/secure/64 LD_PRELOAD location for secure 64–bit
applications.

/usr/lib/64/ld.so.1 Default runtime linker for 64–bit
applications.

/usr/lib/64/0@0.so.1 Null character pointer compatibility library
for the 64–bit applications.

/var/ld/ld.config Default configuration file for 32–bit
applications.

/var/ld/64/ld.config Default configuration file for 64–bit
applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

crle(1), gprof(1), ld(1), ldd(1), exec(2), getegid(2), geteuid(2), getuid(2),
kill(2), mmap(2), profil(2), dladdr(3DL), dlclose(3DL), dldump(3DL),
dlerror(3DL), dlopen(3DL), dlsym(3DL), proc(4), attributes(5)

Linker and Libraries Guide

Care should be exercised when using LD_PROFILE in combination with other process
monitoring techniques (for example, users of proc(4)) as deadlock conditions can
result that leave the profile buffer locked. A locked buffer will block any processes that

ld.so.1(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 683

try to record profiling information. To reduce this likelihood, the runtime linker’s
profile implementation determines if the process is being monitored at startup, and if
so, silently disables profiling of the process. However, this mechanism can not catch
monitoring processes that attach to the process during its execution.

The user compatibility library /usr/lib/0@0.so.1 provides a mechanism that
establishes a value of 0 at location 0. Some applications exist that erroneously assume
a null character pointer should be treated the same as a pointer to a null string. A
segmentation violation will occur in these applications when a null character pointer
is accessed. If this library is added to such an application at runtime using
LD_PRELOAD, it provides an environment that is sympathetic to this errant behavior.
However, the user compatibility library is intended neither to enable the generation of
such applications, nor to endorse this particular programming practice.

ld.so.1(1)

684 man pages section 1: User Commands • Last Revised 29 Oct 2001

let – shell built-in function to evaluate one or more arithmetic expressions

let arg…

Each arg is a separate "arithmetic expression" to be evaluated.

The following exit values are returned:

0 The value of the last expression is non-zero.

1 The value of the last expression is zero.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ksh(1), set(1), typeset(1), attributes(5)

let(1)

NAME

ksh

ksh

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 685

lex – generate programs for lexical tasks

lex [-cntv] [-e | -w] [-V -Q [y | n]] [file…]

The lex utility generates C programs to be used in lexical processing of character
input, and that can be used as an interface to yacc. The C programs are generated
from lex source code and conform to the ISO C standard. Usually, the lex utility
writes the program it generates to the file lex.yy.c; the state of this file is
unspecified if lex exits with a non-zero exit status. See EXTENDED DESCRIPTION for
a complete description of the lex input language.

The following options are supported:

-c Indicate C-language action (default option).

-e Generate a program that can handle EUC characters (cannot be
used with the -w option). yytext[] is of type unsigned
char[].

-n Suppress the summary of statistics usually written with the -v
option. If no table sizes are specified in the lex source code and
the -v option is not specified, then -n is implied.

-t Write the resulting program to standard output instead of
lex.yy.c.

-v Write a summary of lex statistics to the standard error. (See the
discussion of lex table sizes under the heading Definitions in
lex.) If table sizes are specified in the lex source code, and if the
-n option is not specified, the -v option may be enabled.

-w Generate a program that can handle EUC characters (cannot be
used with the -e option). Unlike the -e option, yytext[] is of
type wchar_t[].

-V Print out version information on standard error.

-Q[y|n] Print out version information to output file lex.yy.c by using
-Qy. The -Qn option does not print out version information and is
the default.

The following operand is supported:

file A pathname of an input file. If more than one such file is specified, all
files will be concatenated to produce a single lex program. If no file
operands are specified, or if a file operand is −, the standard input will be
used.

If the -t option is specified, the text file of C source code output of lex will be written
to standard output.

If the -t option is specified informational, error and warning messages concerning the
contents of lex source code input will be written to the standard error.

lex(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

Stdout

Stderr

686 man pages section 1: User Commands • Last Revised 22 Aug 1997

If the -t option is not specified:

1. Informational error and warning messages concerning the contents of lex source
code input will be written to either the standard output or standard error.

2. If the -v option is specified and the -n option is not specified, lex statistics will
also be written to standard error. These statistics may also be generated if table
sizes are specified with a % operator in the Definitions in lex section (see
EXTENDED DESCRIPTION), as long as the -n option is not specified.

A text file containing C source code will be written to lex.yy.c, or to the standard
output if the -t option is present.

Each input file contains lex source code, which is a table of regular expressions with
corresponding actions in the form of C program fragments.

When lex.yy.c is compiled and linked with the lex library (using the -l l
operand with c89 or cc), the resulting program reads character input from the
standard input and partitions it into strings that match the given expressions.

When an expression is matched, these actions will occur:

� The input string that was matched is left in yytext as a null-terminated string; yytext
is either an external character array or a pointer to a character string. As explained
in Definitions in lex, the type can be explicitly selected using the %array or
%pointer declarations, but the default is %array.

� The external int yyleng is set to the length of the matching string.

� The expression’s corresponding program fragment, or action, is executed.

During pattern matching, lex searches the set of patterns for the single longest
possible match. Among rules that match the same number of characters, the rule given
first will be chosen.

The general format of lex source is:

Definitions
%%
Rules
%%

User Subroutines

The first %% is required to mark the beginning of the rules (regular expressions and
actions); the second %% is required only if user subroutines follow.

Any line in the Definitions in lex section beginning with a blank character will be
assumed to be a C program fragment and will be copied to the external definition area
of the lex.yy.c file. Similarly, anything in the Definitions in lex section
included between delimiter lines containing only %{ and %} will also be copied
unchanged to the external definition area of the lex.yy.c file.

lex(1)

Output Files

EXTENDED
DESCRIPTION

User Commands 687

Any such input (beginning with a blank character or within %{ and %} delimiter lines)
appearing at the beginning of the Rules section before any rules are specified will be
written to lex.yy.c after the declarations of variables for the yylex function and
before the first line of code in yylex. Thus, user variables local to yylex can be
declared here, as well as application code to execute upon entry to yylex.

The action taken by lex when encountering any input beginning with a blank
character or within %{ and %} delimiter lines appearing in the Rules section but
coming after one or more rules is undefined. The presence of such input may result in
an erroneous definition of the yylex function.

Definitions in lex appear before the first %% delimiter. Any line in this section not
contained between %{ and %} lines and not beginning with a blank character is
assumed to define a lex substitution string. The format of these lines is:

name substitute

If a name does not meet the requirements for identifiers in the ISO C standard, the
result is undefined. The string substitute will replace the string { name } when it is used
in a rule. The name string is recognized in this context only when the braces are
provided and when it does not appear within a bracket expression or within
double-quotes.

In the Definitions in lex section, any line beginning with a % (percent sign)
character and followed by an alphanumeric word beginning with either s or S defines
a set of start conditions. Any line beginning with a % followed by a word beginning
with either x or X defines a set of exclusive start conditions. When the generated
scanner is in a %s state, patterns with no state specified will be also active; in a %x
state, such patterns will not be active. The rest of the line, after the first word, is
considered to be one or more blank-character-separated names of start conditions.
Start condition names are constructed in the same way as definition names. Start
conditions can be used to restrict the matching of regular expressions to one or more
states as described in Regular expressions in lex.

Implementations accept either of the following two mutually exclusive declarations in
the Definitions in lex section:

%array Declare the type of yytext to be a null-terminated character array.

%pointer Declare the type of yytext to be a pointer to a null-terminated
character string.

Note: When using the %pointer option, you may not also use the yyless function to
alter yytext.

%array is the default. If %array is specified (or neither %array nor %pointer is
specified), then the correct way to make an external reference to yyext is with a
declaration of the form:

lex(1)

Definitions in lex

688 man pages section 1: User Commands • Last Revised 22 Aug 1997

extern char yytext[]

If %pointer is specified, then the correct external reference is of the form:

extern char *yytext;

lex will accept declarations in the Definitions in lex section for setting certain
internal table sizes. The declarations are shown in the following table.

Table Size Declaration in lex

Declaration Description Default

%pn Number of positions 2500

%nn Number of states 500

%a n Number of transitions 2000

%en Number of parse tree nodes 1000

%kn Number of packed character classes 10000

%on Size of the output array 3000

Programs generated by lex need either the -e or -w option to handle input that
contains EUC characters from supplementary codesets. If neither of these options is
specified, yytext is of the type char[], and the generated program can handle only
ASCII characters.

When the -e option is used, yytext is of the type unsigned char[] and yyleng
gives the total number of bytes in the matched string. With this option, the macros
input(), unput(c), and output(c) should do a byte-based I/O in the same way as
with the regular ASCII lex. Two more variables are available with the -e option,
yywtext and yywleng, which behave the same as yytext and yyleng would under
the -w option.

When the -w option is used, yytext is of the type wchar_t[] and yyleng gives
the total number of characters in the matched string. If you supply your own input(),
unput(c), or output(c) macros with this option, they must return or accept EUC
characters in the form of wide character (wchar_t). This allows a different interface
between your program and the lex internals, to expedite some programs.

The Rules in lex source files are a table in which the left column contains regular
expressions and the right column contains actions (C program fragments) to be
executed when the expressions are recognized.

ERE action
ERE action

lex(1)

Rules in lex

User Commands 689

...

The extended regular expression (ERE) portion of a row will be separated from action
by one or more blank characters. A regular expression containing blank characters is
recognized under one of the following conditions:

� The entire expression appears within double-quotes.
� The blank characters appear within double-quotes or square brackets.
� Each blank character is preceded by a backslash character.

Anything in the user subroutines section will be copied to lex.yy.c following
yylex.

The lex utility supports the set of Extended Regular Expressions (EREs) described on
regex(5) with the following additions and exceptions to the syntax:

. . .
Any string enclosed in double-quotes will represent the characters within the
double-quotes as themselves, except that backslash escapes (which appear in the
following table) are recognized. Any backslash-escape sequence is terminated by
the closing quote. For example, " \ 01""1" represents a single string: the octal value 1
followed by the character 1.

<state>r

<state1, state2, . . . >r
The regular expression r will be matched only when the program is in one of the
start conditions indicated by state, state1, and so forth; for more information see
Actions in lex (As an exception to the typographical conventions of the rest of
this document, in this case <state> does not represent a metavariable, but the literal
angle-bracket characters surrounding a symbol.) The start condition is recognized
as such only at the beginning of a regular expression.

r/x
The regular expression r will be matched only if it is followed by an occurrence of
regular expression x. The token returned in yytext will only match r. If the trailing
portion of r matches the beginning of x, the result is unspecified. The r expression
cannot include further trailing context or the $ (match-end-of-line) operator; x
cannot include the ^ (match-beginning-of-line) operator, nor trailing context, nor
the $ operator. That is, only one occurrence of trailing context is allowed in a lex
regular expression, and the ^ operator only can be used at the beginning of such an
expression. A further restriction is that the trailing-context operator / (slash) cannot
be grouped within parentheses.

{name}
When name is one of the substitution symbols from the Definitions section, the
string, including the enclosing braces, will be replaced by the substitute value. The
substitute value will be treated in the extended regular expression as if it were
enclosed in parentheses. No substitution will occur if {name} occurs within a
bracket expression or within double-quotes.

lex(1)

User Subroutines
in lex

Regular
Expressions in lex

690 man pages section 1: User Commands • Last Revised 22 Aug 1997

Within an ERE, a backslash character (\\, \ a, \ b, \ f, \ n, \ r, \ t, \ v) is
considered to begin an escape sequence. In addition, the escape sequences in the
following table will be recognized.

A literal newline character cannot occur within an ERE; the escape sequence \ n can
be used to represent a newline character. A newline character cannot be matched by a
period operator.

Escape Sequences in lex

Escape Sequences in lex

Escape Sequence Description Meaning

\digits A backslash character followed by the longest
sequence of one, two or three octal-digit
characters (01234567). Ifall of the digits are 0,
(that is, representation of the NUL character), the
behavior is undefined.

The character whose
encoding is
represented by the
one-, two- or
three-digit octal
integer. Multi-byte
characters require
multiple,
concatenated escape
sequences of this
type, including the
leading \ for each
byte.

\xdigits A backslash character followed by the longest
sequence of hexadecimal-digit characters
(01234567abcdefABCDEF). If all of the digits are
0, (that is, representation of the NUL character),
the behavior is undefined.

The character whose
encoding is
represented by the
hexadecimal integer.

\c A backslash character followed by any character
not described in this table. (\\, \a, \b, \f, \en,
\r, \t, \v).

The character c,
unchanged.

The order of precedence given to extended regular expressions for lex is as shown in
the following table, from high to low.

Note: The escaped characters entry is not meant to imply that these are operators,
but they are included in the table to show their relationships to the true
operators. The start condition, trailing context and anchoring notations
have been omitted from the table because of the placement restrictions
described in this section; they can only appear at the beginning or ending
of an ERE.

lex(1)

User Commands 691

ERE Precedence in lex

collation-related bracket symbols [= =] [: :] [. .]

escaped characters \<special character>

bracket expression []

quoting ". . ."

grouping ()

definition {name}

single-character RE duplication * + ?

concatenation

interval expression {m,n}

alternation |

The ERE anchoring operators (^ and $) do not appear in the table. With lex regular
expressions, these operators are restricted in their use: the ^ operator can only be used
at the beginning of an entire regular expression, and the $ operator only at the end.
The operators apply to the entire regular expression. Thus, for example, the pattern
(^abc)|(def$) is undefined; it can instead be written as two separate rules, one with
the regular expression ^abc and one with def$, which share a common action via the
special | action (see below). If the pattern were written ^abc|def$, it would match
either of abc or def on a line by itself.

Unlike the general ERE rules, embedded anchoring is not allowed by most historical
lex implementations. An example of embedded anchoring would be for patterns such
as (^)foo($) to match foo when it exists as a complete word. This functionality can be
obtained using existing lex features:

^foo/[\ n]|

" foo"/[\ n] /* found foo as a separate word */

Note also that $ is a form of trailing context (it is equivalent to /\ n and as such
cannot be used with regular expressions containing another instance of the operator
(see the preceding discussion of trailing context).

The additional regular expressions trailing-context operator / (slash) can be used as an
ordinary character if presented within double-quotes, " / "; preceded by a
backslash, \ /; or within a bracket expression, [/]. The start-condition < and >
operators are special only in a start condition at the beginning of a regular expression;
elsewhere in the regular expression they are treated as ordinary characters.

The following examples clarify the differences between lex regular expressions and
regular expressions appearing elsewhere in this document. For regular expressions of
the form r/x, the string matching r is always returned; confusion may arise when the

lex(1)

692 man pages section 1: User Commands • Last Revised 22 Aug 1997

beginning of x matches the trailing portion of r. For example, given the regular
expression a*b/cc and the input aaabcc, yytext would contain the string aaab on this
match. But given the regular expression x*/xy and the input xxxy, the token xxx, not
xx, is returned by some implementations because xxx matches x*.

In the rule ab*/bc, the b* at the end of r will extend r’s match into the beginning of the
trailing context, so the result is unspecified. If this rule were ab/bc, however, the rule
matches the text ab when it is followed by the text bc. In this latter case, the matching
of r cannot extend into the beginning of x, so the result is specified.

The action to be taken when an ERE is matched can be a C program fragment or the
special actions described below; the program fragment can contain one or more C
statements, and can also include special actions. The empty C statement ; is a valid
action; any string in the lex.yy.c input that matches the pattern portion of such a
rule is effectively ignored or skipped. However, the absence of an action is not valid,
and the action lex takes in such a condition is undefined.

The specification for an action, including C statements and special actions, can extend
across several lines if enclosed in braces:

ERE <one or more blanks> { program statement
program statement }

The default action when a string in the input to a lex.yy.c program is not matched
by any expression is to copy the string to the output. Because the default behavior of a
program generated by lex is to read the input and copy it to the output, a minimal
lex source program that has just %% generates a C program that simply copies the
input to the output unchanged.

Four special actions are available:

| ECHO; REJECT; BEGIN

| The action | means that the action for the next rule is the action for
this rule. Unlike the other three actions, | cannot be enclosed in
braces or be semicolon-terminated; it must be specified alone, with
no other actions.

ECHO; Write the contents of the string yytext on the output.

REJECT; Usually only a single expression is matched by a given string in
the input. REJECT means "continue to the next expression that
matches the current input," and causes whatever rule was the
second choice after the current rule to be executed for the same
input. Thus, multiple rules can be matched and executed for one
input string or overlapping input strings. For example, given the
regular expressions xyz and xy and the input xyz, usually only
the regular expression xyz would match. The next attempted
match would start after z. If the last action in the xyz rule is

lex(1)

Actions in lex

User Commands 693

REJECT , both this rule and the xy rule would be executed. The
REJECT action may be implemented in such a fashion that flow of
control does not continue after it, as if it were equivalent to a goto
to another part of yylex. The use of REJECT may result in
somewhat larger and slower scanners.

BEGIN The action:

BEGIN newstate;

switches the state (start condition) to newstate. If the string newstate
has not been declared previously as a start condition in the
Definitions in lex section, the results are unspecified. The
initial state is indicated by the digit 0 or the token INITIAL.

The functions or macros described below are accessible to user code included in the
lex input. It is unspecified whether they appear in the C code output of lex, or are
accessible only through the -l l operand to c89 or cc (the lex library).

int yylex(void) Performs lexical analysis on the input; this is the
primary function generated by the lex utility. The
function returns zero when the end of input is reached;
otherwise it returns non-zero values (tokens)
determined by the actions that are selected.

int yymore(void) When called, indicates that when the next input string
is recognized, it is to be appended to the current value
of yytext rather than replacing it; the value in yyleng is
adjusted accordingly.

intyyless(int n) Retains n initial characters in yytext, NUL-terminated,
and treats the remaining characters as if they had not
been read; the value in yyleng is adjusted accordingly.

int input(void) Returns the next character from the input, or zero on
end-of-file. It obtains input from the stream pointer
yyin, although possibly via an intermediate buffer.
Thus, once scanning has begun, the effect of altering
the value of yyin is undefined. The character read is
removed from the input stream of the scanner without
any processing by the scanner.

int unput(int c) Returns the character c to the input; yytext and yyleng
are undefined until the next expression is matched. The
result of using unput for more characters than have
been input is unspecified.

The following functions appear only in the lex library accessible through the -l l
operand; they can therefore be redefined by a portable application:

lex(1)

694 man pages section 1: User Commands • Last Revised 22 Aug 1997

int yywrap(void)
Called by yylex at end-of-file; the default yywrap always will return 1. If the
application requires yylex to continue processing with another source of input,
then the application can include a function yywrap, which associates another file
with the external variable FILE *yyin and will return a value of zero.

int main(int argc, char *argv[])
Calls yylex to perform lexical analysis, then exits. The user code can contain main
to perform application-specific operations, calling yylex as applicable.

The reason for breaking these functions into two lists is that only those functions in
libl.a can be reliably redefined by a portable application.

Except for input, unput and main, all external and static names generated by lex
begin with the prefix yy or YY.

Portable applications are warned that in the Rules in lex section, an ERE without an
action is not acceptable, but need not be detected as erroneous by lex. This may result
in compilation or run-time errors.

The purpose of input is to take characters off the input stream and discard them as
far as the lexical analysis is concerned. A common use is to discard the body of a
comment once the beginning of a comment is recognized.

The lex utility is not fully internationalized in its treatment of regular expressions in
the lex source code or generated lexical analyzer. It would seem desirable to have the
lexical analyzer interpret the regular expressions given in the lex source according to
the environment specified when the lexical analyzer is executed, but this is not
possible with the current lex technology. Furthermore, the very nature of the lexical
analyzers produced by lex must be closely tied to the lexical requirements of the
input language being described, which will frequently be locale-specific anyway. (For
example, writing an analyzer that is used for French text will not automatically be
useful for processing other languages.)

EXAMPLE 1 Using lex

The following is an example of a lex program that implements a rudimentary scanner
for a Pascal-like syntax:

%{
/* need this for the call to atof() below */
#include <math.h>
/* need this for printf(), fopen() and stdin below */
#include <stdio.h>
%}

DIGIT [0-9]
ID [a-z][a-z0-9]*
%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,
atoi(yytext));

lex(1)

USAGE

EXAMPLES

User Commands 695

EXAMPLE 1 Using lex (Continued)

}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,
atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[^}\n]*"}" /* eat up one-line comments */

[\t\n]+ /* eat up white space */

. printf("Unrecognized character: %s\n", yytext);

%%

int main(int argc, char *argv[])
{

++argv, --argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else
yyin = stdin;

yylex();

}

See environ(5) for descriptions of the following environment variables that affect the
execution of lex: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

yacc(1), attributes(5), environ(5), regex(5)

lex(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

696 man pages section 1: User Commands • Last Revised 22 Aug 1997

If routines such as yyback(), yywrap(), and yylock() in .l (ell) files are to be
external C functions, the command line to compile a C++ program must define the
__EXTERN_C__ macro. For example:

example% CC –D__EXTERN_C__ . . . file

lex(1)

NOTES

User Commands 697

limit, ulimit, unlimit – set or get limitations on the system resources available to the
current shell and its descendents

/usr/bin/ulimit [-f] [blocks]

ulimit [- [HS] [a | cdfnstv]]

ulimit [- [HS] [c | d | f | n | s | t | v]] limit

limit [-h] [resource [limit]]

unlimit [-h] [resource]

ulimit [-HSacdfnstv] [limit]

The ulimit utility sets or reports the file-size writing limit imposed on files written
by the shell and its child processes (files of any size may be read). Only a process with
appropriate privileges can increase the limit.

The Bourne shell built-in function, ulimit, prints or sets hard or soft resource limits.
These limits are described in getrlimit(2).

If limit is not present, ulimit prints the specified limits. Any number of limits may be
printed at one time. The -a option prints all limits.

If limit is present, ulimit sets the specified limit to limit. The string unlimited
requests the largest valid limit. Limits may be set for only one resource at a time. Any
user may set a soft limit to any value below the hard limit. Any user may lower a hard
limit. Only a super-user may raise a hard limit; see su(1M).

The -H option specifies a hard limit. The -S option specifies a soft limit. If neither
option is specified, ulimit will set both limits and print the soft limit.

The following options specify the resource whose limits are to be printed or set. If no
option is specified, the file size limit is printed or set.

-c maximum core file size (in 512-byte blocks)

-d maximum size of data segment or heap (in kbytes)

-f maximum file size (in 512-byte blocks)

-n maximum file descriptor plus 1

-s maximum size of stack segment (in kbytes)

-t maximum CPU time (in seconds)

-v maximum size of virtual memory (in kbytes)

limit(1)

NAME

SYNOPSIS

sh

csh

ksh

/usr/bin/ulimit

sh

698 man pages section 1: User Commands • Last Revised 26 Jun 1998

The C-shell built-in function, limit, limits the consumption by the current process or
any process it spawns, each not to exceed limit on the specified resource. If limit is
omitted, print the current limit; if resource is omitted, display all limits. (Run the
sysdef(1M) command to obtain the maximum possible limits for your system. The
values reported are in hexadecimal, but can be translated into decimal numbers using
the bc(1) command).

-h Use hard limits instead of the current limits. Hard limits impose a ceiling
on the values of the current limits. Only the privileged user may raise the
hard limits.

resource is one of:

cputime Maximum CPU seconds per process.

filesize Largest single file allowed; limited to the size of the filesystem (see
df(1M)).

datasize The maximum size of a process’s heap in kilobytes.

stacksize Maximum stack size for the process (see swap(1M)).

coredumpsize Maximum size of a core dump (file). This is limited to the size of
the filesystem.

descriptors Maximum number of file descriptors (run sysdef()).

memorysize Maximum size of virtual memory.

limit is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).

nk n kilobytes. This is the default for all but cputime.

nm n megabytes or minutes (for cputime).

mm:ss Minutes and seconds (for cputime).

unlimit removes a limitation on resource. If no resource is specified, then all resource
limitations are removed. See the description of the limit command for the list of
resource names.

-h Remove corresponding hard limits. Only the privileged user may
do this.

The Korn shell built-in function, ulimit, sets or displays a resource limit. The
available resources limits are listed below. Many systems do not contain one or more
of these limits. The limit for a specified resource is set when limit is specified. The
value of limit can be a number in the unit specified below with each resource, or the
value unlimited. The -H and -S flags specify whether the hard limit or the soft limit
for the given resource is set. A hard limit cannot be increased once it is set. A soft limit
can be increased up to the value of the hard limit. If neither the -H or -S options is

limit(1)

csh

ksh

User Commands 699

specified, the limit applies to both. The current resource limit is printed when limit is
omitted. In this case, the soft limit is printed unless -H is specified. When more than
one resource is specified, then the limit name and unit is printed before the value.

-a Lists all of the current resource limits.

-c The number of 512-byte blocks on the size of core dumps.

-d The number of K-bytes on the size of the data area.

-f The number of 512-byte blocks on files written by child processes (files of
any size may be read).

-n The number of file descriptors plus 1.

-s The number of K-bytes on the size of the stack area.

-t The number of seconds (CPU time) to be used by each process.

-v The number of K-bytes for virtual memory.

If no option is given, -f is assumed.

The following option is supported by ulimit:

-f Set (or report, if no blocks operand is present), the file size limit in blocks.
The -f option is also the default case.

The following operand is supported by ulimit:

blocks The number of 512-byte blocks to use as the new file size limit.

EXAMPLE 1 Limiting the stack size

To limit the stack size to 512 kilobytes:

% ulimit -s 512
% ulimit -a
% time(seconds) unlimited
file(blocks) 100
data(kbytes) 523256
stack(kbytes) 512
coredump(blocks) 200
nofiles(descriptors) 64
memory(kbytes) unlimited

EXAMPLE 2 Limiting the number of file descriptors

To limit the number of file descriptors to 12:

$ ulimit -n 12
$ ulimit -a
time(seconds) unlimited
file(blocks) 41943
data(kbytes) 523256
stack(kbytes) 8192

limit(1)

OPTIONS

OPERANDS

/usr/bin/ulimit

sh/ksh

700 man pages section 1: User Commands • Last Revised 26 Jun 1998

EXAMPLE 2 Limiting the number of file descriptors (Continued)

coredump(blocks) 200
nofiles(descriptors) 12
vmemory(kbytes) unlimited

EXAMPLE 3 Limiting the core dump file size

To limit the size of a core dump file size to 0 kilobytes:

% limit coredumpsize 0
% limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes
coredumpsize 0 kbytes
descriptors 64
memorysize unlimited

EXAMPLE 4 Removing the limitation for core file size

To remove the above limitation for the core file size:

% unlimit coredumpsize
% limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes
coredumpsize unlimited
descriptors 64
memorysize unlimited

See environ(5) for descriptions of the following environment variables that affect the
execution of ulimit: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned by ulimit:

0 Successful completion.

>0 A request for a higher limit was rejected or an error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

bc(1), csh(1), ksh(1), sh(1), df(1M), su(1M), swap(1M), sysdef(1M), getrlimit(2),
attributes(5), environ(5)

limit(1)

csh

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 701

line – read one line

line

The line utility copies one line (up to and including a new-line) from the standard
input and writes it on the standard output. It returns an exit status of 1 on EOF and
always prints at least a new-line. It is often used within shell files to read from the
user’s terminal.

Exit status is:

0 Successful completion

>0 End-of-file on input.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sh(1), read(2), attributes(5)

line(1)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

702 man pages section 1: User Commands • Last Revised 1 Feb 1995

lint – C program verifier

/usr/ucb/lint [options]

/usr/ucb/lint is the interface to the BSD Compatibility Package C program
verifier. It is a script that looks for the link /usr/ccs/bin/ucblint to the C
program verifier. /usr/ccs/bin/ucblint is available only with the SPROcc
package, whose default location is /opt/SUNWspro. /usr/ucb/lint is identical to
/usr/ccs/bin/ucblint, except that BSD headers are used and BSD libraries are
linked before base libraries. The /opt/SUNWspro/man/man1/lint.1 man page is
available only with the SPROcc package.

/usr/ucb/lint accepts the same options as /usr/ccs/bin/ucblint, with the
following exceptions:

-Idir Search dir for included files whose names do not begin with a
slash (/) prior to searching the usual directories. The directories
for multiple -I options are searched in the order specified. The
preprocessor first searches for #include files in the directory
containing sourcefile, and then in directories named with -I
options (if any), then /usr/ucbinclude, and finally, in
/usr/include.

-Ldir Add dir to the list of directories searched for libraries by
/usr/ccs/bin/ucblint. This option is passed to
/usr/ccs/bin/ld. Directories specified with this option are
searched before /usr/ucblib and /usr/lib.

-Y P, dir Change the default directory used for finding libraries.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/usr/lint/bin/ld link editor

/usr/lib/libc C library

/usr/ucbinclude BSD Compatibility directory for header files

/usr/ucblib BSD Compatibility directory for libraries

/usr/ucblib/libucb BSD Compatibility C library

/usr/lib/libsocket library containing socket routines

/usr/lib/libnsl library containing network functions

/usr/lib/libelf library containing routines to process ELF object files

/usr/lib/libaio library containing asynchronous I/O routines

See attributes(5) for descriptions of the following attributes:

lint(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

User Commands 703

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

ld(1), a.out(4), attributes(5)

lint(1B)

SEE ALSO

704 man pages section 1: User Commands • Last Revised 1 Feb 1995

list_devices – list allocatable devices

list_devices [-s] [-U uid] -l [device]

list_devices [-s] [-U uid] -n [device]

list_devices [-s] [-U uid] -u [device]

The list_devices utility lists the allocatable devices in the system according to
specified qualifications.

The device and all device special files associated with the device are listed. The device
argument is optional and, if it is not present, all relevant devices are listed.

The following options are supported:

-l [device] Lists the pathname(s) of the device special files associated with the
device that are allocatable to the current process. If device is given,
lists only the files associated with the specified device.

-n [device] Lists the pathname(s) of device special files associated with the
device that are allocatable to the current process but are not
currently allocated. If device is given, lists only the files associated
with that device.

-s Silent. Suppresses any diagnostic output.

-u [device] Lists the pathname(s) of device special files, associated with the
device that are allocated to the owner of the current process. If
device is given, list only the files associated with that device.

-U uid Uses the user ID uid instead of the real user ID of the current
process when performing the list_devices operation. Only a
user with the solaris.devices.revoke authorization can use
this option.

The following exit values are returned:

non—zero An error occurred.

/etc/security/device_allocate

/etc/security/device_maps

/etc/security/dev/*

/usr/security/lib/*

See attributes(5) for descriptions of the following attributes:

list_devices(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

User Commands 705

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

allocate(1), deallocate(1), bsmconv(1M), dminfo(1M), device_allocate(4),
device_maps(4), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

list_devices(1)

SEE ALSO

NOTES

706 man pages section 1: User Commands • Last Revised 17 Jan 2001

listusers – list user login information

listusers [-g groups] [-l logins]

Executed without any options, this command lists all user logins sorted by login. The
output shows the login ID and the account field value from the system’s password
database as specified by /etc/nsswitch.conf.

The following options are supported:

-g groups Lists all user logins belonging to group, sorted by login. Multiple
groups can be specified as a comma-separated list.

-l logins Lists the user login or logins specified by logins, sorted by login.
Multiple logins can be specified as a comma-separated list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

nsswitch.conf(4), attributes(5)

A user login is one that has a UID of 100 or greater.

The -l and -g options can be combined. User logins will only be listed once, even if
they belong to more than one of the selected groups.

listusers(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 707

llc2_autoconfig – generate LLC2 configuration files

/usr/lib/llc2/llc2_autoconfig [-f]

The llc2_autoconfig utility is used to generate LLC2 configuration files
(/etc/llc2/default/llc2.*). If there is no configuration file in
/etc/llc2_default/, it detects all the available interfaces in the system and
generates corresponding default configuration files.

If there are existing configuration files in /etc/llc2_default/, it will check if those
interfaces defined in the files still exist. If they do not exist in the system, it will set
llc2_on in those files to 0. After this, it will detect if there are new interfaces in the
system. If there are, it will generate configuration files for them.

The following option is supported:

-f Erases all configuration files in /etc/llc2/default/. Then detects all
the available interfaces in the system and generates corresponding default
configuration files. Use this option with caution.

/etc/llc2/default/llc2.* LLC2 configuration files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWllc

llc2_config(1), llc2(4), attributes(5), llc2(7D)

llc2_autoconfig(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

708 man pages section 1: User Commands • Last Revised 18 May 1999

llc2_config – configure LLC2 interface parameters

/usr/lib/llc2/llc2_config [-P | -U | -d | -q | -i ppa | -r ppa]

The llc2_config utility is used to start/stop the LLC2 subsystem and to configure
LLC2 interface parameters.

The following options are supported:

-d Turns on debug mode. Extra debugging information will be printed out.

-i ppa Initializes the corresponding interface using the file
/etc/llc2/default/llc2.ppa.

-P Reads in all /etc/llc2/default/llc2.* configuration files, opens
those devices defined in the files, and sets up the streams needed for LLC2
to use those devices. Before doing this, llc2_config -q will not show
anything.

-q Queries the LLC2 subsystem. Information similar to the following example
will be printed out for all PPAs (Physical Point of Attachment) available
under the LLC2 module:

PPA State ID MACAddr Type MaxSDU MinSDU Mode

0 up 0000 0800208a217e ethernet 1500 0 3

The fields displayed are described below:

PPA The relative logical position of the interface.

State The state of the interface:

up The interface is initialized and operational.

down The interface was "discovered" by the LLC2
driver, has passed its bootup diagnostics,
and is awaiting initialization.

bad The interface is known to the LLC2 driver,
but failed one or more of the integrity
checks performed at boot time. This might
include detecting Interrupt Request and
shared memory conflicts or failures detected
during the execution of the level 0
diagnostics.

ID The interface ID.

MACAddr The MAC address currently in effect for the interface.

Type The MAC type. Current types supported include:

llc2_config(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 709

csma/cd 10 Megabit Ethernet

ethernet Ethernet type device

tkn-ring 4/16 Megabit Token Ring

fddi 100 Megabit Fiber Distributed Data Interface

MaxSDU The Maximum Service Data Unit size transmitted on
this interface.

Mode The Service Modes supported by this interface. This
field consists of the bitwise logical-ORing of the
supported modes, also defined in
/usr/include/sys/dlpi.h.

-r ppa Uninitializes the corresponding interface. By using this option, and then
using the -i option, the parameters associated with an interface can be
changed.

-U Destroys all streams used by the LLC2 subsystem. This is the reverse of the
-P option. After this is executed, llc2_config -q will not show
anything.

/etc/llc2/default/llc2.* LLC2 configuration files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWllc

llc2_autoconfig(1), llc2(4), attributes(5), llc2(7D)

llc2_config(1)

FILES

ATTRIBUTES

SEE ALSO

710 man pages section 1: User Commands • Last Revised 18 May 1999

llc2_stats – LLC2 Station, SAP, and Connection Statistics

llc2_stats ppa [-r] [-s sap] [-c connection]

The llc2_stats command is used to retrieve statistical information from the
Host-based Logical Link Control Class 2 component of the LLC2 Driver. Statistics are
kept for the station, SAP (Service Access Point), and connection components.

The following options are supported:

-c connection Specifies the connection of interest. Its value is entered
in hexadecimal notation with no leading 0x.

-r Resets the specified counters to zero after reading
them. This option is only valid if the root user is
executing the command.

-s sap Specifies the SAP for this request. It is a single-byte
value, expressed in hexadecimal notation with no
leading 0x. For example, the NetBIOS sap, 240 (0xf0)
would be entered as: -s f0.

The following operand is supported:

ppa The logical number used to address the adapter. The PPA (Physical
Point of Attachment) must be the first argument.

EXAMPLE 1 Station Statistics

The following command will display the station statistics for PPA 4. After the
example, a brief description of each field is presented.

example% /usr/lib/llc2/llc2_stats 4

Station values received:
ppa = 0x00000004 clearFlag = 0x00
of saps (hex) = 0x0002
saps (hex) = 02 aa
state = 0x01
nullSapXidCmdRcvd = 0x00000000
nullSapXidRspSent = 0x00000000
nullSapTestCmdRcvd = 0x00000000
nullSapTestRspSent = 0x00000000
outOfState = 0x00000000
allocFail = 0x00000000
protocolError = 0x00000000

The fields are described as follows:

ppa The logical number used to address the adapter.

clearFlag This flag indicates if the statistics will be reset to zero
after reading (set to a 1) or if the statistics are read only
(set to 0).

llc2_stats(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

User Commands 711

EXAMPLE 1 Station Statistics (Continued)

of saps The number of SAPs currently bound on this station.

saps The array of the station’s Service Access Point (SAP)
logical interface values between the LLC and its
adjacent layers.

state A number indicating the current state of the station
component (0 = down, 1 = up).

nullSapXidCmdRcvd The number of XID command Protocol Data Units
(PDUs) received for the NULL SAP address (sap =
0x00).

nullSapXidRspSent The number of XID response PDUs sent in response to
XID command PDUs received for the null SAP address.

nullSapTestCmdRcvd The number of TEST command PDUs received for the
null SAP address.

nullSapTestRspSent The number of TEST response PDUs sent in response
to TEST command PDUs received for the null SAP
address.

outOfState The number of events received in an invalid state.

allocFail The number of buffer allocation failures.

protocolError The number of LLC protocol errors, that is, the receipt
of malformed PDUs or the receipt of frame X when
frame Y was expected.

EXAMPLE 2 SAP Statistics

In the above display, there are two active SAPs, 0x02 and 0xaa. The following is an
example of a command for retrieving the statistics for SAP 02 and a brief explanation
of each field presented.

example% /usr/lib/llc2/llc2_stats 4 -s 02

Sap values received:
ppa = 0x00000004 clearFlag = 0x00
sap = 0x02
state = 0x01
of cons (hex) = 0x0000000a
connections (hex) = 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009
xidCmdSent = 0x00000000
xidCmdRcvd = 0x00000000
xidRspSent = 0x00000000
xidRspRcvd = 0x00000000
testCmdSent = 0x00000000
testCmdRcvd = 0x00000000
testRspSent = 0x00000000

llc2_stats(1)

712 man pages section 1: User Commands • Last Revised 18 May 1999

EXAMPLE 2 SAP Statistics (Continued)

testRspRcvd = 0x00000000
uiSent = 0x00000000
uiRcvd = 0x00000000
outOfState = 0x00000000
allocFail = 0x00000000
protocolError = 0x00000000

The fields are described as follows:

ppa The logical number used to address the adapter.

clearFlag This flag indicates if the statistics will be reset to zero
after reading (set to a 1) or if the statistics are read only
(set to 0).

sap The specified Service Access Point (SAP) logical
interface value for the station.

state A number indicating the current state of the SAP
component (0 = inactive, 1 = active).

of cons The number of active connections on this SAP.

connections The array of active connection indexes.

xidCmdSent The number of XID command PDUs sent (Source SAP
= this sap).

xidCmdRcvd The number of XID command PDUs received
(Destination SAP = this sap).

xidRspSent The number of XID response PDUs sent (Source SAP =
this sap).

xidRspRcvd The number of XID response PDUs received (Source
SAP = this sap).

testCmdSent The number of TEST command PDUs sent (Source SAP
= this sap).

testCmdRcvd The number of TEST command PDUs received
(Destination SAP = this sap).

testRspSent The number of TEST response PDUs sent (Source SAP
= this sap).

testRspRcvd The number of TEST response PDUs received (Source
SAP = this sap).

uiSent The number of Unnumbered Information Frames sent.

uiRcvd The number of Unnumbered Information Frames
received.

llc2_stats(1)

User Commands 713

EXAMPLE 2 SAP Statistics (Continued)

outOfState The number of events received in an invalid state.

allocFail The number of buffer allocation failures.

protocolError The number of LLC protocol errors, that is, the receipt
of malformed PDUs or the receipt of frame X when
frame Y was expected.

EXAMPLE 3 Connection Statistics

Ten established connections are associated with this SAP. To retrieve the statistics for
connection 1, enter the following command:

example% /usr/lib/llc2/llc2_stats 4 -s 2 -c 1
Connection values received:
ppa = 0x0004 clearFlag = 0x00
sap = 0x02 con = 0x0001 sid = 0x0201
stateOldest = 0x00 stateOlder = 0x00 stateOld = 0x01
state = 0x08
dl_nodeaddr = 0x0080d84008c2 dl_sap = 0x04
flag = 0x50 dataFlag = 0x00 timerOn = 0x18
vs = 0x29 vr = 0x1e nrRcvd = 0x29 k = 0x14
retryCount = 0x0000 numToBeAcked = 0x0000 numToResend = 0x0000
macOutSave = 0x0000 macOutDump = 0x0000
iSent = 0x0ba9 iRcvd = 0x001e
frmrSent = 0x0000 frmrRcvd = 0x0000
rrSent = 0x016a rrRcvd = 0x00c1
rnrSent = 0x0000 rnrRcvd = 0x06fb
rejSent = 0x0000 rejRcvd = 0x0000
sabmeSent = 0x0000 sabmeRcvd = 0x0001
uaSent = 0x0001 uaRcvd = 0x0000 discSent = 0x0000
outOfState = 0x0000 allocFail = 0x0000 protocolError = 0x0000
localBusy = 0x0000 remoteBusy = 0x00b5 maxRetryFail = 0x0000
ackTimerExp = 0x0000 pollTimerExp = 0x0000 rejTimerExp = 0x0000
remBusyTimerExp = 0x0000
inactTimerExp = 0x0000
sendAckTimerExp = 0x0000

ppa The logical number used to address the adapter.

clearFlag This flag indicates if the statistics will be reset to zero
after reading (set to a 1) or if the statistics are read only
(set to 0).

sap The specified Service Access Point (SAP) logical
interface value for the station.

con The specified connection index value for the SAP.

stateOldest A number representing the state of the connection
component prior to stateOlder.

llc2_stats(1)

714 man pages section 1: User Commands • Last Revised 18 May 1999

EXAMPLE 3 Connection Statistics (Continued)

stateOlder A number representing the state of the connection
component prior to stateOld.

stateOld A number representing the state of the connection
component prior to state.

state A number representing the most current state of the
connection component. See Table 1.

sid The Station Identifier composed of the SAP (upper
byte) and connection index (lower byte).

dl_nodeaddr The Data Link Node Address. This is the destination
node’s MAC address.

dl_sap The destination node’s SAP.

flag The connection component processing flag. See Table
3.

dataFlag A number representing the status of the data units from
received I-frame PDUs (0 = not discarded, 1 =
discarded, 2 = busy state entered with REJ PDU
outstanding).

timerOn A number representing the timer activity flag, with
each bit representing an active timer for this
connection. See Table 2 for timer definitions.

vs The sequence number of the next I-frame PDU to send.

vr The expected sequence number of the next I-frame
PDU to be received.

nrRcvd The sequence number plus 1 of the last sent I-frame
PDU acknowledged by the remote node.

k The transmit window size.

retryCount The retryCount is incremented whenever a timer
expiration occurs. These timers protect outbound
frames.

numToBeAcked The number of outbound I-frames awaiting
acknowledgement.

numToResend The number of outbound I-frames to be retransmitted.

macOutSave No longer used.

macOutDump No longer used.

iSent The number of I-frames sent.

llc2_stats(1)

User Commands 715

EXAMPLE 3 Connection Statistics (Continued)

iRcvd The number of I-frames received.

frmrSent The number of Frame Reject PDUs (FRMR) sent.

frmrRcvd The number of Frame Reject PDUs (FRMR) received.

rrSent The number of Receiver Ready PDUs (RR) sent.

rrRcvd The number of Receiver Ready PDUs (RR) received.

rnrSent The number of Receiver Not Ready PDUs (RNR) sent.

rnrRcvd The number of Receiver Not Ready PDUs (RNR)
received.

rejSent The number of Reject PDUs (REJ) sent.

rejRcvd The number of Reject PDUs (REJ) received.

sabmeSent The number of Set Asynchronous Balanced Mode
Extended PDUs (SABME) sent.

sabmeRcvd The number of Set Asynchronous Balanced Mode
Extended PDUs (SABME) received.

uaSent The number of Unnumbered Acknowledgment PDUs
(UA) sent.

uaRcvd The number of Unnumbered Acknowledgment PDUs
(UA) received.

discSent The number of Disconnect PDUs (DISC) sent.

outOfState The number of events received in an invalid state.

allocFail The number of buffer allocation failures.

protocolError The number of LLC protocol errors, that is, the receipt
of malformed PDUs or the receipt of frame X when
frame Y was expected.

localBusy The number of times this component was in local busy
state and could not accept I-frames.

remoteBusy The number of times the remote connection component
was busy and could not accept I-frames.

maxRetryFail The number of failures that occurred because maxRetry
was reached.

ackTimerExp The number of expirations of the Acknowledgement
timer.

pollTimerExp The number of expirations of the Poll timer.

llc2_stats(1)

716 man pages section 1: User Commands • Last Revised 18 May 1999

EXAMPLE 3 Connection Statistics (Continued)

rejTimerExp The number of expirations of the Reject timer.

remBusyTimerExp The number of expirations of the Remote Busy timer.

inactTimerExp The number of expirations of the Inactivity timer.

sendAckTimerExp The number of expirations of the Send
Acknowledgement timer.

Table 1: LLC2 States

STATION

~~DOWN 0x00

~~UP 0x01

SAP

~~INACTIVE 0x00

~~ACTIVE 0x01

CONNECTION

~~ADM 0x00

~~CONN 0x01

~~RESET_WAIT 0x02

~~RESET_CHECK 0x03

~~SETUP 0x04

~~RESET 0x05

~~D_CONN 0x06

~~ERROR 0x07

~~NORMAL 0x08

~~BUSY 0x09

~~REJECT 0x0a

~~AWAIT 0x0b

~~AWAIT_BUSY 0x0c

~~AWAIT_REJECT 0x0d

llc2_stats(1)

User Commands 717

Table 2: timersOn

Acknowledgement 0x80

Poll 0x40

Reject 0x20

Remove Busy 0x10

Inactivity 0x08

Send Acknowledgement 0x04

Table 3: LLC2 Flags

P_FLAG 0x80

F_FLAG 0x40

S_FLAG 0x20

REMOTE_BUSY 0x10

RESEND_PENDING 0x08

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWllc

/dev/llc2 clone device

attributes(5)

For further information on the LLC2 components, states and flags, see the
International Standards Organization document, ISO 8802-2: 1994, Section 7.

llc2_stats(1)

ATTRIBUTES

FILES

SEE ALSO

NOTES

718 man pages section 1: User Commands • Last Revised 18 May 1999

ln – make hard or symbolic links to files

/usr/bin/ln [-fns] source_file [target]

/usr/bin/ln [-fns] source_file… target

/usr/xpg4/bin/ln [-fs] source_file [target]

/usr/xpg/bin/ln [-fs] source_file… target

In the first synopsis form, the ln utility creates a new directory entry (link) for the file
specified by source_file, at the destination path specified by target. If target is not
specified, the link is made in the current directory. This first synopsis form is assumed
when the final operand does not name an existing directory; if more than two
operands are specified and the final is not an existing directory, an error will result.

In the second synopsis form, the ln utility creates a new directory entry for each file
specified by a source_file operand, at a destination path in the existing directory named
by target.

The ln utility may be used to create both hard links and symbolic links. A hard link is
a pointer to a file and is indistinguishable from the original directory entry. Any
changes to a file are effective independent of the name used to reference the file. Hard
links may not span file systems and may not refer to directories.

ln by default creates hard links. source_file is linked to target. If target is a directory,
another file named source_file is created in target and linked to the original source_file.

If target is a file, its contents are overwritten. If /usr/bin/ln determines that the
mode of target forbids writing, it will print the mode (see chmod(1)), ask for a
response, and read the standard input for one line. If the response is affirmative, the
link occurs, if permissible; otherwise, the command exits.

If target is a file and the -f option is not specified, /usr/xpg4/bin/ln will write a
diagnostic message to standard error, do nothing more with the current source_file, and
go on to any remaining source_files.

A symbolic link is an indirect pointer to a file; its directory entry contains the name of
the file to which it is linked. Symbolic links may span file systems and may refer to
directories.

When creating a hard link, and the source file is itself a symbolic link, then the target
will be a hard link to the file referenced by the symbolic link, not to the symbolic link
object itself (source_file).

File permissions for target may be different from those displayed with a -l listing of
the ls(1) command. To display the permissions of target use ls -lL. See stat(2) for
more information.

The following options are supported for both /usr/bin/ln and
/usr/xpg4/bin/ln:

ln(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/bin/ln

/usr/xpg4/bin/ln

OPTIONS

User Commands 719

-f Link files without questioning the user, even if the mode of target forbids
writing. This is the default if the standard input is not a terminal.

-s Create a symbolic link.

If the -s option is used with two arguments, target may be an existing
directory or a non-existent file. If target already exists and is not a directory,
an error is returned. source_file may be any path name and need not exist. If
it exists, it may be a file or directory and may reside on a different file
system from target. If target is an existing directory, a file is created in
directory target whose name is source_file or the last component of
source_file. This file is a symbolic link that references source_file. If target
does not exist, a file with name target is created and it is a symbolic link
that references source_file.

If the -s option is used with more than two arguments, target must be an
existing directory or an error will be returned. For each source_file, a link is
created in target whose name is the last component of source_file; each new
source_file is a symbolic link to the original source_file. The files and target
may reside on different file systems.

The following options are supported for /usr/bin/ln only:

-n If the link is an existing file, do not overwrite the contents of the file. The
-f option overrides this option. This is the default behavior for
/usr/xpg4/bin/ln, and is silently ignored.

The following operands are supported:

source_file A path name of a file to be linked. This can be either a regular or
special file. If the -s option is specified, source_file can also be a
directory.

target The path name of the new directory entry to be created, or of an
existing directory in which the new directory entries are to be
created.

See largefile(5) for the description of the behavior of ln when encountering files
greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of ln: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All the specified files were linked successfully

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ln(1)

/usr/bin/ln

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

720 man pages section 1: User Commands • Last Revised 24 Mar 1999

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

chmod(1), ls(1), stat(2), attributes(5), environ(5), largefile(5), XPG4(5)

A symbolic link to a directory behaves differently than you might expect in certain
cases. While an ls(1) on such a link displays the files in the pointed-to directory, an
‘ls -l’ displays information about the link itself:

example% ln -s dir link
example% ls link
file1 file2 file3 file4
example% ls -l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link -> dir

When you cd(1) to a directory through a symbolic link, you wind up in the pointed-to
location within the file system. This means that the parent of the new working
directory is not the parent of the symbolic link, but rather, the parent of the pointed-to
directory. For instance, in the following case the final working directory is /usr and
not /home/user/linktest.

example% pwd
/home/user/linktest
example% ln -s /usr/tmp symlink
example% cd symlink
example% cd . .
example% pwd
/usr

C shell users can avoid any resulting navigation problems by using the pushd and
popd built-in commands instead of cd.

ln(1)

/usr/bin/ln

/usr/xpg4/bin/ln

SEE ALSO

NOTES

User Commands 721

ln – make hard or symbolic links to files

/usr/ucb/ln [-fs] filename [linkname]

/usr/ucb/ln [-fs] pathname… directory

The /usr/ucb/ln utility creates an additional directory entry, called a link, to a file
or directory. Any number of links can be assigned to a file. The number of links does
not affect other file attributes such as size, protections, data, etc.

filename is the name of the original file or directory. linkname is the new name to
associate with the file or filename. If linkname is omitted, the last component of filename
is used as the name of the link.

If the last argument is the name of a directory, symbolic links are made in that
directory for each pathname argument; /usr/ucb/ln uses the last component of each
pathname as the name of each link in the named directory.

A hard link (the default) is a standard directory entry just like the one made when the
file was created. Hard links can only be made to existing files. Hard links cannot be
made across file systems (disk partitions, mounted file systems). To remove a file, all
hard links to it must be removed, including the name by which it was first created;
removing the last hard link releases the inode associated with the file.

A symbolic link, made with the -s option, is a special directory entry that points to
another named file. Symbolic links can span file systems and point to directories. In
fact, you can create a symbolic link that points to a file that is currently absent from
the file system; removing the file that it points to does not affect or alter the symbolic
link itself.

A symbolic link to a directory behaves differently than you might expect in certain
cases. While an ls(1) on such a link displays the files in the pointed-to directory, an
‘ls -l’ displays information about the link itself:

example% /usr/ucb/ln -s dir link
example% ls link
file1 file2 file3 file4
example% ls -l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link → dir

When you use cd(1) to change to a directory through a symbolic link, you wind up in
the pointed-to location within the file system. This means that the parent of the new
working directory is not the parent of the symbolic link, but rather, the parent of the
pointed-to directory. For instance, in the following case the final working directory is
/usr and not /home/user/linktest.

example% pwd
/home/user/linktest
example% /usr/ucb/ln -s /var/tmp symlink
example% cd symlink
example% cd . .

ln(1B)

NAME

SYNOPSIS

DESCRIPTION

722 man pages section 1: User Commands • Last Revised 11 Mar 1994

example% pwd
/usr

C shell user’s can avoid any resulting navigation problems by using the pushd and
popd built-in commands instead of cd.

-f Force a hard link to a directory. This option is only available to the
super-user, and should be used with extreme caution.

-s Create a symbolic link or links.

See largefile(5) for the description of the behavior of ln when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 The /usr/ucb/ln command

The commands below illustrate the effects of the different forms of the /usr/ucb/ln
command:

example% /usr/ucb/ln file link
example% ls -F file link
file link
example% /usr/ucb/ln -s file symlink
example% ls -F file symlink
file symlink@
example% ls -li file link symlink
10606 -rw-r--r-- 2 user 0 Jan 12 00:06 file
10606 -rw-r--r-- 2 user 0 Jan 12 00:06 link
10607 lrwxrwxrwx 1 user 4 Jan 12 00:06 symlink → file

example% /usr/ucb/ln -s nonesuch devoid
example% ls -F devoid
devoid@
example% cat devoid
devoid: No such file or directory
example% /usr/ucb/ln -s /proto/bin/* /tmp/bin
example% ls -F /proto/bin /tmp/bin
/proto/bin:
x* y* z*

/tmp/bin:
x@ y@ z@

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

cp(1), ls(1), mv(1), rm(1), link(2), readlink(2), stat(2), symlink(2),
attributes(5), largefile(5)

ln(1B)

OPTIONS

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 723

When the last argument is a directory, simple basenames should not be used for
pathname arguments. If a basename is used, the resulting symbolic link points to itself:

example% /usr/ucb/ln -s file /tmp
example% ls -l /tmp/file
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file → file
example% cat /tmp/file
/tmp/file: Too many levels of symbolic links

To avoid this problem, use full pathnames, or prepend a reference to the PWD variable
to files in the working directory:

example% rm /tmp/file
example% /usr/ucb/ln -s $PWD/file /tmp
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file →
/home/user/subdir/file

ln(1B)

NOTES

724 man pages section 1: User Commands • Last Revised 11 Mar 1994

loadkeys, dumpkeys – load and dump keyboard translation tables

loadkeys [filename]

dumpkeys

loadkeys reads the file specified by filename, and modifies the keyboard streams
module’s translation tables. If no file is specified, loadkeys loads the file:
/usr/share/lib/keytables/type_tt/layout_dd, where tt is the value returned
by the KIOCTYPE ioctl, and dd is the value returned by the KIOCLAYOUT ioctl
(see kb(7M)). These keytable files specify only the entries that change between the
specified layout and the default layout for the particular keyboard type. On
self-identifying keyboards, the value returned by the KIOCLAYOUT ioctl is set from
the DIP switches.

dumpkeys writes the current contents of the keyboard streams module’s translation
tables, in the format specified by keytables(4), to the standard output.

/usr/share/lib/keytables/layout_dd
default keytable files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

kbd(1), keytables(4), attributes(5), kb(7M), usbkbm(7M)

loadkeys(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

User Commands 725

locale – get locale-specific information

locale [-a | -m]

locale [-ck] name…

The locale utility writes information about the current locale environment, or all
public locales, to the standard output. For the purposes of this section, a public locale is
one provided by the implementation that is accessible to the application.

When locale is invoked without any arguments, it summarizes the current locale
environment for each locale category as determined by the settings of the environment
variables.

When invoked with operands, it writes values that have been assigned to the
keywords in the locale categories, as follows:

� Specifying a keyword name selects the named keyword and the category
containing that keyword.

� Specifying a category name selects the named category and all keywords in that
category.

The following options are supported:

-a Write information about all available public locales. The available locales
include POSIX, representing the POSIX locale.

-c Write the names of selected locale categories. The -c option increases
readability when more than one category is selected (for example, via more
than one keyword name or via a category name). It is valid both with and
without the -k option.

-k Write the names and values of selected keywords. The implementation
may omit values for some keywords; see OPERANDS.

-m Write names of available charmaps; see localedef(1).

The following operand is supported:

name The name of a locale category, the name of a keyword in a locale category,
or the reserved name charmap. The named category or keyword will be
selected for output. If a single name represents both a locale category name
and a keyword name in the current locale, the results are unspecified;
otherwise, both category and keyword names can be specified as name
operands, in any sequence.

EXAMPLE 1 Examples of the locale utility.

In the following examples, the assumption is that locale environment variables are set
as follows:

LANG=locale_x LC_COLLATE=locale_y

locale(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

726 man pages section 1: User Commands • Last Revised 20 Dec 1996

EXAMPLE 1 Examples of the locale utility. (Continued)

The command locale would result in the following output:

LANG=locale_x
LC_CTYPE="locale_x"
LC_NUMERIC="locale_x"
LC_TIME="locale_x"
LC_COLLATE=locale_y
LC_MONETARY="locale_x"
LC_MESSAGES="locale_x"
LC_ALL=

The command LC_ALL=POSIX locale -ck decimal_point would produce:

LC_NUMERIC
decimal_point="."

The following command shows an application of locale to determine whether a
user-supplied response is affirmative:

if printf "%s\n" "$response" | /usr/xpg4/bin/grep -Eq\
"$(locale yesexpr)"

then
affirmative processing goes here

else
non-affirmative processing goes here

fi

See environ(5) for the descriptions of LANG, LC_ALL, LC_CTYPE, LC_MESSAGES,
and NLSPATH.

The LANG, LC_*, and NLSPATH environment variables must specify the current locale
environment to be written out; they will be used if the -a option is not specified.

The following exit values are returned:

0 All the requested information was found and output successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

CSI Enabled

localedef(1), attributes(5), charmap(5), environ(5), locale(5)

locale(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 727

If LC_CTYPE or keywords in the category LC_CTYPE are specified, only the values in
the range 0x00-0x7f are written out.

If LC_COLLATE or keywords in the category LC_COLLATE are specified, no actual
values are written out.

locale(1)

NOTES

728 man pages section 1: User Commands • Last Revised 20 Dec 1996

localedef – define locale environment

localedef [-c] [-C compiler_options] [-f charmap] [-i sourcefile]
[-L linker_options] [-m model] [-W cc, arg] [-x extensions_file] localename

The localedef utility converts source definitions for locale categories into a format
usable by the functions and utilities whose operational behavior is determined by the
setting of the locale environment variables; see environ(5).

The utility reads source definitions for one or more locale categories belonging to the
same locale from the file named in the -i option (if specified) or from standard input.

Each category source definition is identified by the corresponding environment
variable name and terminated by an END category-name statement. The following
categories are supported.

LC_CTYPE Defines character classification and case conversion.

LC_COLLATE Defines collation rules.

LC_MONETARY Defines the format and symbols used in formatting of
monetary information.

LC_NUMERIC Defines the decimal delimiter, grouping and grouping
symbol for non-monetary numeric editing.

LC_TIME Defines the format and content of date and time
information.

LC_MESSAGES Defines the format and values of affirmative and
negative responses.

The following options are supported:

-c Creates permanent output even if warning messages
have been issued.

-C compiler_options Passes the compiler_options to the C compiler (cc). If
more than one option is specified, then the options
must be enclosed in quotes (" ").

This is an old option. Use the -W cc,arg option instead.

-f charmap Specifies the pathname of a file containing a mapping
of character symbols and collating element symbols to
actual character encodings. This option must be
specified if symbolic names (other than collating
symbols defined in a collating-symbol keyword)
are used. If the -f option is not present, the default
character mapping will be used.

localedef(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 729

-i sourcefile The path name of a file containing the source
definitions. If this option is not present, source
definitions will be read from standard input.

-L linker_options Passes the linker_options to the C compiler (cc) that
follows the C source filename. If more than one option
is specified, then the options must be enclosed in
quotes (" ").

This is an old option. Use the -W cc,arg option instead.

-m model Specifies whether localedef will generate a 64-bit or
a 32-bit locale object.

Specify model as ilp32 to generate a 32-bit locale
object. Specify lp64 to generate a 64-bit locale object. If
the -m option is not specified, localedef generates a
32-bit locale object. And if no other options than -c,
-f, and -i options are specified and if the system
running localedef supports the 64-bit environment,
localedef additionally generates a 64-bit locale
object.

-W cc,arg Passes arg options to the C compiler. Each argument
must be separated from the preceding by only a
comma. (A comma can be part of an argument by
escaping it by an immediately preceding backslash
character; the backslash is removed from the resulting
argument.)

Use this option instead of the -C and -L options.

-x extensions_file Specifies the name of an extension file where various
localedef options are listed. See locale(5).

The following operand is supported:

localename Identifies the locale. If the name contains one or more slash
characters, localename will be interpreted as a path name where the
created locale definitions will be stored. This capability may be
restricted to users with appropriate privileges. (As a consequence
of specifying one localename, although several categories can be
processed in one execution, only categories belonging to the same
locale can be processed.)

localedef creates a temporary C source file that represents the locale’s data.
localedef then calls the C compiler to compile this C source file into a shared object.

localedef(1)

OPERANDS

OUTPUT

730 man pages section 1: User Commands • Last Revised 8 Dec 1998

If the -m ilp32 option is specified, localedef calls the C compiler for generating
32-bit objects and generates a 32-bit locale object. If the -m lp64 option is specified,
localedef calls the C compiler for generating 64-bit objects and generates a 64-bit
locale object.

If the -m option is not specified, localedef calls the C compiler for generating 32-bit
objects and generates a 32-bit locale object. If no other options than -c, -f, and -i
options are specified and if the system running localedef supports the 64-bit
environment, localedef additionally calls the C compiler for generating 64-bit
objects and generates a 64-bit locale object.

If no option to the C compiler is explicitly specified using the -W, -C, or -L options,
localedef calls the C compiler with appropriate C compiler options to generate a
locale object or objects.

If the -m ilp32 option is specified, localedef generates a 32-bit locale object
named:

localename.so.version_number

If the -m lp64 option is specified, localedef generates a 64-bit locale object named:

localename.so.version_number

If the -m option is not specified, localedef generates a 32-bit locale object named:

localename.so.version_number

and, if appropriate, generates a 64-bit locale object named:

64-bit_architecture_name/localename.so.version_number

The shared object for the 32-bit environment must be moved to:

/usr/lib/locale/localename/localename.so.version_number

The shared object for the 64-bit environment on SPARC must be moved to:

/usr/lib/locale/localename/sparcv9/localename.so.version_number

localedef also generates a text file named localename that is used for information
only.

See environ(5) for definitions of the following environment variables that affect the
execution of localedef: LC_CTYPE, LC_MESSAGES, and NLSPATH.

localedef(1)

ENVIRONMENT
VARIABLES

User Commands 731

The following exit values are returned:

0 No errors occurred and the locales were successfully created.

1 Warnings occurred and the locales were successfully created.

2 The locale specification exceeded implementation limits or the coded
character set or sets used were not supported by the implementation, and
no locale was created.

3 The capability to create new locales is not supported by the
implementation.

>3 Warnings or errors occurred and no output was created.

If an error is detected, no permanent output will be created.

/usr/lib/localedef/extensions/generic_eucbc.x
Describes what a generic EUC locale uses in the system. This file is used by default.

/usr/lib/localedef/extensions/single_byte.x
Describes a generic single-byte file used in the system.

/usr/lib/locale/localename/localename.so.version_number
The shared object for the 32-bit environment.

/usr/lib/locale/localename/sparcv9/localename.so.version_number
The shared object for the 64-bit environment on SPARC.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

locale(1), nl_langinfo(3C), strftime(3C), attributes(5), charmap(5),
environ(5), extensions(5), locale(5)

If warnings occur, permanent output will be created if the -c option was specified.
The following conditions will cause warning messages to be issued:

� If a symbolic name not found in the charmap file is used for the descriptions of the
LC_CTYPE or LC_COLLATE categories (for other categories, this will be an error
conditions).

� If optional keywords not supported by the implementation are present in the
source.

localedef(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

WARNINGS

732 man pages section 1: User Commands • Last Revised 8 Dec 1998

logger – add entries to the system log

logger [-i] [-f file] [-p priority] [-t tag] [message] …

The logger command provides a method for adding one-line entries to the system
log file from the command line. One or more message arguments can be given on the
command line, in which case each is logged immediately. If this is unspecified, either
the file indicated with -f or the standard input is added to the log. Otherwise, a file
can be specified, in which case each line in the file is logged. If neither is specified,
logger reads and logs messages on a line-by-line basis from the standard input.

The following options are supported:

-ffile Use the contents of file as the message to log.

-i Log the process ID of the logger process with each line.

-ppriority Enter the message with the specified priority. The message priority
can be specified numerically, or as a facility.level pair. For example,
‘-p local3.info’ assigns the message priority to the info level
in the local3 facility. The default priority is user.notice.

-ttag Mark each line added to the log with the specified tag.

The following operand is supported:

message One of the string arguments whose contents are concatenated
together, in the order specified, separated by single space
characters.

EXAMPLE 1 Examples of the logger command.

The following example:

example% logger System rebooted

logs the message ‘System rebooted’ to the default priority level notice to be
treated by syslogd as are other messages to the facility user.

The next example:

example% logger -p local0.notice -t HOSTIDM -f /dev/idmc

reads from the file /dev/idmc and logs each line in that file as a message with the tag
‘HOSTIDM’ at priority level notice to be treated by syslogd as are other messages to
the facility local0.

See environ(5) for descriptions of the following environment variables that affect the
execution of logger: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

logger(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 733

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

mailx(1), write(1), syslogd(1M), syslog(3C), attributes(5), environ (5)

logger(1)

ATTRIBUTES

SEE ALSO

734 man pages section 1: User Commands • Last Revised 1 Feb 1995

logger – add entries to the system log

/usr/ucb/logger [-f filename] [-i] [-p priority] [-t tag] mm [message]…

The logger utility provides a method for adding one-line entries to the system log
file from the command line. One or more message arguments can be given on the
command line, in which case each is logged immediately. If message is unspecified,
either the file indicated with -f or the standard input is added to the log. Otherwise, a
filename can be specified, in which case each line in the file is logged. If neither is
specified, logger reads and logs messages on a line-by-line basis from the standard
input.

The following options are supported:

-i Log the process ID of the logger process with each line.

-f filename Use the contents of filename as the message to log.

-p priority Enter the message with the specified priority. The message priority
can be specified numerically, or as a facility.level pair. For example,
‘-p local3.info’ assigns the message priority to the info
level in the local3 facility. The default priority is user.notice.

-t tag Mark each line added to the log with the specified tag.

EXAMPLE 1 Logging a message

The command:

example% logger System rebooted

will log the message ‘System rebooted’ to the facility at priority notice to be
treated by syslogd as other messages to the facility notice are.

EXAMPLE 2 Logging messages from a file

The command:

example% logger -p local0.notice -t HOSTIDM -f /dev/idmc

will read from the file /dev/idmc and will log each line in that file as a message with
the tag ‘HOSTIDM’ at priority notice to be treated by syslogd as other messages to
the facility local0 are.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

logger(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

User Commands 735

syslogd(1M), syslog(3C), attributes(5)

logger(1B)

SEE ALSO

736 man pages section 1: User Commands • Last Revised 14 Sep 1992

login – sign on to the system

login [-p] [-d device] [-h hostname | [terminal] | -r hostname] [name
[environ]…]

The login command is used at the beginning of each terminal session to identify
oneself to the system. login is invoked by the system when a connection is first
established, after the previous user has terminated the login shell by issuing the exit
command.

If login is invoked as a command, it must replace the initial command interpreter. To
invoke login in this fashion, type:

exec login

from the initial shell. The C shell and Korn shell have their own builtins of login. See
ksh(1) and csh(1) for descriptions of login builtins and usage.

login asks for your user name, if it is not supplied as an argument, and your
password, if appropriate. Where possible, echoing is turned off while you type your
password, so it will not appear on the written record of the session.

If you make any mistake in the login procedure, the message:

Login incorrect

is printed and a new login prompt will appear. If you make five incorrect login
attempts, all five may be logged in /var/adm/loginlog, if it exists. The TTY line
will be dropped.

If password aging is turned on and the password has "aged" (see passwd(1) for more
information), the user is forced to changed the password. In this case the
/etc/nsswitch.conf file is consulted to determine password repositories (see
nsswitch.conf(4)). The password update configurations supported are limited to
the following five cases.

� passwd: files

� passwd: files nis

� passwd: files nisplus

� passwd: compat (==> files nis)
� passwd: compat (==> files nisplus)

passwd_compat: nisplus

Failure to comply with the configurations will prevent the user from logging onto the
system because passwd(1) will fail. If you do not complete the login successfully
within a certain period of time, it is likely that you will be silently disconnected.

After a successful login, accounting files are updated. Device owner, group, and
permissions are set according to the contents of the /etc/logindevperm file, and
the time you last logged in is printed (see logindevperm(4)).

login(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 737

The user-ID, group-ID, supplementary group list, and working directory are
initialized, and the command interpreter (usually ksh) is started.

The basic environment is initialized to:

HOME=your-login-directory
LOGNAME=your-login-name
PATH=/usr/bin:
SHELL=last-field-of-passwd-entry
MAIL=/var/mail/
TZ=timezone-specification

For Bourne shell and Korn shell logins, the shell executes /etc/profile and
$HOME/.profile, if it exists. For C shell logins, the shell executes /etc/.login,
$HOME/.cshrc, and $HOME/.login. The default /etc/profile and
/etc/.login files check quotas (see quota(1M)), print /etc/motd, and check for
mail. None of the messages are printed if the file $HOME/.hushlogin exists. The
name of the command interpreter is set to − (dash), followed by the last component of
the interpreter’s path name, for example, −sh.

If the login-shell field in the password file (see passwd(4)) is empty, then the default
command interpreter, /usr/bin/sh, is used. If this field is * (asterisk), then the
named directory becomes the root directory. At that point, login is re-executed at the
new level, which must have its own root structure.

The environment may be expanded or modified by supplying additional arguments to
login, either at execution time or when login requests your login name. The
arguments may take either the form xxx or xxx=yyy. Arguments without an = (equal
sign) are placed in the environment as:

Ln=xxx

where n is a number starting at 0 and is incremented each time a new variable name is
required. Variables containing an = (equal sign) are placed in the environment without
modification. If they already appear in the environment, then they replace the older
values.

There are two exceptions: The variables PATH and SHELL cannot be changed. This
prevents people logged into restricted shell environments from spawning secondary
shells that are not restricted. login understands simple single-character quoting
conventions. Typing a \ (backslash) in front of a character quotes it and allows the
inclusion of such characters as spaces and tabs.

Alternatively, you can pass the current environment by supplying the -p flag to
login. This flag indicates that all currently defined environment variables should be
passed, if possible, to the new environment. This option does not bypass any
environment variable restrictions mentioned above. Environment variables specified
on the login line take precedence, if a variable is passed by both methods.

login(1)

738 man pages section 1: User Commands • Last Revised 23 Jan 2002

To enable remote logins by root, edit the /etc/default/login file by inserting a #
(pound sign) before the CONSOLE=/dev/console entry. See FILES.

The login command uses pam(3PAM) for authentication, account management,
session management, and password management. The PAM configuration policy,
listed through /etc/pam.conf, specifies the modules to be used for login. Here is a
partial pam.conf file with entries for the login command using the UNIX
authentication, account management, and session management modules:

login auth required pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_auth.so.1
login auth required pam_dial_auth.so.1

login account requisite pam_roles.so.1
login account required pam_projects.so.1
login account required pam_unix_account.so.1

login session required pam_unix_session.so.1

The Password Management stack looks like the following:

other password required pam_dhkeys.so.1
other password requisite pam_authtok_get.so.1
other password requisite pam_authtok_check.so.1

other password required pam_authtok_store.so.1

If there are no entries for the service, then the entries for the "other" service will be
used. If multiple authentication modules are listed, then the user may be prompted for
multiple passwords.

When login is invoked through rlogind or telnetd, the service name used by
PAM is rlogin or telnet, respectively.

The following options are supported:

-d device login accepts a device option, device. device
is taken to be the path name of the TTY port
login is to operate on. The use of the
device option can be expected to improve
login performance, since login will not
need to call ttyname(3C). The -d option is
available only to users whose UID and
effective UID are root. Any other attempt to
use -d will cause login to quietly exit.

-h hostname [terminal] Used by in.telnetd(1M) to pass
information about the remote host and
terminal type.

-p Used to pass environment variables to the
login shell.

login(1)

SECURITY

OPTIONS

User Commands 739

-r hostname Used by in.rlogind(1M) to pass
information about the remote host.

The following exit values are returned:

0 Successful operation.

non-zero Error.

$HOME/.cshrc initial commands for each csh

$HOME/.hushlogin suppresses login messages

$HOME/.login user’s login commands for csh

$HOME/.profile user’s login commands for sh and ksh

$HOME/.rhosts private list of trusted hostname/username
combinations

/etc/.login system-wide csh login commands

/etc/issue issue or project identification

/etc/logindevperm login-based device permissions

/etc/motd message-of-the-day

/etc/nologin message displayed to users attempting to login during
machine shutdown

/etc/passwd password file

/etc/profile system-wide sh and ksh login commands

/etc/shadow list of users’ encrypted passwords

/usr/bin/sh user’s default command interpreter

/var/adm/lastlog time of last login

/var/adm/loginlog record of failed login attempts

/var/adm/utmpx accounting

/var/adm/wtmpx accounting

/var/mail/your-name mailbox for user your-name

/etc/default/login Default value can be set for the following flags in
/etc/default/login. For example:
TIMEZONE=EST5EDT

TIMEZONE
Sets the TZ environment variable of the shell (see
environ(5)).

HZ
Sets the HZ environment variable of the shell.

login(1)

EXIT STATUS

FILES

740 man pages section 1: User Commands • Last Revised 23 Jan 2002

ULIMIT
Sets the file size limit for the login. Units are disk
blocks. Default is zero (no limit).

CONSOLE
If set, root can login on that device only. This will
not prevent execution of remote commands with
rsh(1). Comment out this line to allow login by
root.

PASSREQ
Determines if login requires a non-null password.

ALTSHELL
Determines if login should set the SHELL
environment variable.

PATH
Sets the initial shell PATH variable.

SUPATH
Sets the initial shell PATH variable for root.

TIMEOUT
Sets the number of seconds (between 0 and 900) to
wait before abandoning a login session.

UMASK
Sets the initial shell file creation mode mask. See
umask(1).

SYSLOG
Determines whether the syslog(3C) LOG_AUTH
facility should be used to log all root logins at level
LOG_NOTICE and multiple failed login attempts
atLOG_CRIT.

DISABLETIME
If present, and greater than zero, the number of
seconds that login will wait after RETRIES failed
attempts or the PAM framework returns
PAM_ABORT. Default is 20 seconds. Minimum is 0
seconds. No maximum is imposed.

SLEEPTIME
If present, sets the number of seconds to wait before
the login failure message is printed to the screen.
This is for any login failure other than PAM_ABORT.
Another login attempt is allowed, providing
RETRIES has not been reached or the PAM
framework is returned PAM_MAXTRIES. Default is 4
seconds. Minimum is 0 seconds. Maximum is 5
seconds.

login(1)

User Commands 741

RETRIES
Sets the number of retries for logging in (see
pam(3PAM)). The default is 5.

SYSLOG_FAILED_LOGINS
Used to determine how many failed login attempts
will be allowed by the system before a failed login
message is logged, using the syslog(3C)
LOG_NOTICE facility. For example, if the variable is
set to 0, login will log all failed login attempts.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), exit(1), ksh(1), mail(1), mailx(1), newgrp(1), passwd(1), rlogin(1),
rsh(1), sh(1), shell_builtins(1), telnet(1), umask(1), in.rlogind(1M),
in.telnetd(1M), logins(1M), quota(1M), su(1M), syslogd(1M), useradd(1M),
userdel(1M), pam(3PAM), rcmd(3SOCKET), syslog(3C), ttyname(3C),
auth_attr(4), exec_attr(4), hosts.equiv(4), issue(4), logindevperm(4),
loginlog(4), nologin(4), nsswitch.conf(4), pam.conf(4), passwd(4),
profile(4), shadow(4), user_attr(4), utmpx(4), wtmpx(4), attributes(5),
environ(5), pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5),
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), termio(7I)

Login incorrect
The user name or the password cannot be matched.

Not on system console
Root login denied. Check the CONSOLE setting in /etc/default/login.

No directory! Logging in with home=/
The user’s home directory named in the passwd(4) database cannot be found or
has the wrong permissions. Contact your system administrator.

No shell
Cannot execute the shell named in the passwd(4) database. Contact your system
administrator.

NO LOGINS: System going down in N minutes
The machine is in the process of being shut down and logins have been disabled.

Users with a UID greater than 76695844 are not subject to password aging, and the
system does not record their last login time.

login(1)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

742 man pages section 1: User Commands • Last Revised 23 Jan 2002

If you use the CONSOLE setting to disable root logins, you should arrange that remote
command execution by root is also disabled. See rsh(1), rcmd(3SOCKET), and
hosts.equiv(4) for further details.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_unix_account(5), pam_unix_auth(5),
pam_unix_session(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), and pam_passwd_auth(5).

login(1)

NOTES

User Commands 743

logname – return user’s login name

logname

The logname utility will write the user’s login name to standard output. The login
name is the string that would be returned by the getlogin(3C) function. Under the
conditions where getlogin() would fail, logname will write a diagnostic message
to standard error and exit with a non-zero exit status.

See environ(5) for descriptions of the following environment variables that affect the
execution of logname: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following error values are returned:

0 Successful completion.

>0 An error occurred.

/etc/profile environment for user at login time

/var/adm/utmpx user and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

env(1), login(1), getlogin(3C), utmpx(4), attributes(5), environ(5)

logname(1)

NAME

SYNOPSIS

DESCRIPTION

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

744 man pages section 1: User Commands • Last Revised 3 Nov 2000

logout – shell built-in function to exit from a login session

logout

Terminate a login shell.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), login(1), attributes(5)

logout(1)

NAME

csh

csh

ATTRIBUTES

SEE ALSO

User Commands 745

look – find words in the system dictionary or lines in a sorted list

/usr/bin/look [-d] [-f] [-tc] string [filename]

The look command consults a sorted filename and prints all lines that begin with
string.

If no filename is specified, look uses /usr/share/lib/dict/words with collating
sequence -df.

look limits the length of a word to search for to 256 characters.

-d Dictionary order. Only letters, digits, TAB and SPACE characters are used
in comparisons.

-f Fold case. Upper case letters are not distinguished from lower case in
comparisons.

-tc Set termination character. All characters to the right of c in string are
ignored.

/usr/share/lib/dict/words spelling list

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

grep(1), sort(1), attributes(5)

look(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

746 man pages section 1: User Commands • Last Revised 29 Mar 1994

lookbib – find references in a bibliographic database

lookbib database

A bibliographic reference is a set of lines, constituting fields of bibliographic
information. Each field starts on a line beginning with a ‘%’, followed by a key-letter,
then a blank, and finally the contents of the field, which may continue until the next
line starting with ‘%’.

The lookbib utility uses an inverted index made by indxbib to find sets of
bibliographic references. It reads keywords typed after the ‘>’ prompt on the terminal,
and retrieves records containing all these keywords. If nothing matches, nothing is
returned except another ‘>’ prompt.

It is possible to search multiple databases, as long as they have a common index made
by indxbib(1). In that case, only the first argument given to indxbib is specified to
lookbib.

If lookbib does not find the index files (the .i[abc] files), it looks for a reference file
with the same name as the argument, without the suffixes. It creates a file with a .ig
suffix, suitable for use with fgrep (see grep(1)). lookbib then uses this fgrep file to
find references. This method is simpler to use, but the .ig file is slower to use than
the .i[abc] files, and does not allow the use of multiple reference files.

x.ia

x.ib

x.ic index files

x.ig reference file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

addbib(1), grep(1), indxbib(1), refer(1), roffbib(1), sortbib(1),
attributes(5)

Probably all dates should be indexed, since many disciplines refer to literature written
in the 1800s or earlier.

lookbib(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

BUGS

User Commands 747

lorder – find ordering relation for an object or library archive

lorder filename…

The input is one or more object or library archive filenames (see ar(1)). The standard
output is a list of pairs of object file or archive member names; the first file of the pair
refers to external identifiers defined in the second. The output may be processed by
tsort(1) to find an ordering of a library suitable for one-pass access by ld. Note that
the link editor ld is capable of multiple passes over an archive in the portable archive
format (see ar(3HEAD)) and does not require that lorder be used when building an
archive. The usage of the lorder command may, however, allow for a more efficient
access of the archive during the link edit process.

The following example builds a new library from existing .o files.

ar -cr library ‘ lorder *.o | tsort ‘

TMPDIR/*symref temporary files

TMPDIR/*symdef temporary files

TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR (see tempnam() in
tmpnam(3C))

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ar(1), ld(1), tsort(1), tmpnam(3C), ar(3HEAD), attributes(5)

lorder will accept as input any object or archive file, regardless of its suffix, provided
there is more than one input file. If there is but a single input file, its suffix must be .o.

The length of the filename for TMPDIR is limited to whatever sed allows.

lorder(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

NOTES

748 man pages section 1: User Commands • Last Revised 29 Oct 1991

lp – submit print request

lp [-c] [-m] [-p] [-s] [-w] [-d destination] [-f form-name]
[-H special-handling] [-n number] [-o option] [-P page-list]
[-q priority-level] [-S character-set | print-wheel] [-t title] [-T content-type
[-r]] [-y mode-list] [file…]

lp -i request-ID… [-c] [-m] [-p] [-s] [-w] [-d destination] [-f form-name]
[-H special-handling] [-n number] [-o option] [-P page-list]
[-q priority-level] [-S character-set | print-wheel] [-t title] [-T content-type
[-r]] [-y mode-list]

The lp utility submits print requests to a destination. There are two formats of the lp
command.

The first form of lp prints files (file) and associated information (collectively called a
print request). If file is not specified, lp assumes the standard input. Use a hyphen (−)
with file to specify the standard input. Files are printed in the order in which they
appear on the command line.

The second form of lp changes print request options. This form of lp can only be
used on a Solaris 2.6 Operating Environment or compatible versions of the LP print
server. The print request identified by request-ID is changed according to the printing
options specified. The printing options available are the same as those with the first
form of the lp. If the request has finished printing when the lp command is executed,
the change is rejected. If the request is in the process of printing, it will be stopped and
restarted from the beginning (unless the -P option has been given).

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

Printers that have a 4.x or BSD-based print server are not configured to handle BSD
protocol extensions. lp handles print requests sent to such destinations differently (see
NOTES).

The following options are supported:

-c Copies file before printing.

Unless -c is specified, users should not remove any file
before the print request has completely printed.
Changes made to file after the print request is made but
before it is printed will be reflected in the printed
output. file will be linked (as opposed to copied).

-d destination Prints file on a specific destination. The -d option is
used to set the destination only when the job is first
created. (Note: To move existing jobs to a different
destination, see lpmove(1M).) destination can be either
a printer or a class of printers (see lpadmin(1M)).

lp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 749

Specify destination using atomic, POSIX-style
(server:destination), or Federated Naming Service (FNS)
(. . ./service/printer/. . .) names. See
printers.conf(4) for information regarding the
naming conventions for atomic and FNS names and
standards(5) for information regarding POSIX.

-f form-name Prints file on form-name. The LP print service ensures
that the form is mounted on the printer. The print
request is rejected if the printer does not support
form-name, if form-name is not defined for the system, or
if the user is not allowed to use form-name (see
lpforms(1M)).

-H special-handling Prints the print request according to the value of
special-handling. The following special-handling values
are acceptable:

hold
Do not print the print request until notified. If
printing has already begun, stop it. Other print
requests will go ahead of a request that has been put
on hold (held print request) until the print request is
resumed.

resume
Resume a held print request. If the print request had
begun to print when held, it will be the next print
request printed, unless it is superseded by an
immediate print request.

immediate
Print the print request next. If more than one print
request is assigned, the most recent print request is
printed next. If a print request is currently printing
on the desired printer, a hold request must be
issued to allow the immediate request to print. The
immediate request is only available to LP
administrators.

-i request-ID Changes options for the print request identified by
request-ID. There must be a space between -i and
request-ID. This option applies only to jobs that are in a
local queue on a print server.

-m Sends mail after file has printed (see mail(1)). By
default, no mail is sent upon normal completion of a
print request.

-n number Prints a specific number of copies of file. Specify number
as a digit. The default for number is 1.

lp(1)

750 man pages section 1: User Commands • Last Revised 1 Dec 2000

-o option Specifies printer-dependent options. Specify several
options by specifying -o option multiple times (-o
option -o option -o option). Printer-dependent options
may also be specified using the -o keyletter once,
followed by a list of options enclosed in double quotes
(-o " option option option"). The following options are
valid:

nobanner
Does not print a banner page with the request. This
option can be disallowed by the LP administrator.

nofilebreak
Prints multiple files without inserting a form feed
between them.

length=numberi | numberc | number
Prints the print request with pages of a specific
length in inches, centimeters, or number of lines.
Append the letter i for inches or c for centimenters
to number. Indicate the number of lines by specifying
number alone. length=66 indicates a page length of
66 lines. length=11i indicates a page length of 11
inches. length=27.94c indicates a page length of
27.94 centimeters.

This option may not be used with the -f option.

width=numberi | numberc | number
Prints the print request with pages of a specific
width in inches, centimeters, or number of columns.
Append the letter i for inches or c for centimeters to
number. Indicate the number of columns by
specifying number alone. width=65 indicates a page
width of 65 columns. width=6.5i indicates a page
width of 6.5 inches. width=10c indicates a page
width of 10 centimeters.

This option may not be used with the -f option.

lpi=number
Prints the print request with the line pitch set to
number lines in an inch. Use number to specify the
number of lines in an inch.

This option may not be used with the -f option.

cpi=n|pica|elite|compressed
Prints the print request with the character pitch set
to number characters in an inch. Use number to
specify the number of characters in an inch. Use

lp(1)

User Commands 751

pica to set character pitch to pica (10 characters per
inch), or elite to set character pitch to elite (12
characters per inch) Use compressed to set
character pitch to as many characters as the printer
can handle. There is no standard number of
characters per inch for all printers; see the
terminfo database (see terminfo(4)) for the
default character pitch for your printer. This option
may not be used with the -f option.

stty=stty-option-list
Prints the request using a list of options valid for the
stty command (see stty(1). Enclose the list in
single quotes (‘’) if it contains blanks.

-P page-list Prints the pages specified in page-list in ascending
order. Specify page-list as a of range of numbers, single
page number, or a combination of both.

The -P option can only be used if there is a filter
available to handle it; otherwise, the print request will
be rejected.

-p Enables notification on completion of the print request.
Delivery of the notification is dependent on additional
software.

-q priority-level Assigns the print request a priority in the print queue.
Specify priority-level as an integer between from 0 and
39. Use 0 to indicate the highest priority; 39 to indicate
the lowest priority. If no priority is specified, the
default priority for a print service is assigned by the LP
administrator. The LP administrator may also assign a
default priority to individual users.

-s Suppresses the display of messages sent from lp.

-S character-set |
-S print-wheel Prints the request using the character-set or print-wheel.

If a form was requested and requires a character set or
print wheel other than the one specified with the -S
option, the request is rejected. Printers using
mountable print wheels or font cartridges use the print
wheel or font cartridge mounted at the time of the print
request, unless the -S option is specified.

Printers Using Print Wheels: If print wheel is not one
listed by the LP administrator as acceptable for the
printer the request is rejected unless the print wheel is
already mounted on the printer.

lp(1)

752 man pages section 1: User Commands • Last Revised 1 Dec 2000

Printers Using Selectable or Programmable Character
Sets: If the -S option is not specified, lp uses the
standard character set. If character-set is not defined in
the terminfo database for the printer (see
terminfo(4)), or is not an alias defined by the LP
administrator, the request is rejected.

-t title Prints a title on the banner page of the output. Enclose
title in quotes if it contains blanks. If title is not not
specified, the name of the file is printed on the banner
page.

-T content-type [-r] Prints the request on a printer that can support the
specified content-type. If no printer accepts this type
directly, a filter will be used to convert the content into
an acceptable type. If the -r option is specified, a filter
will not be used. If -r is specified, and no printer
accepts the content-type directly, the request is rejected.
If the content-type is not acceptable to any printer, either
directly or with a filter, the request is rejected.

-w Writes a message on the user’s terminal after the files
have been printed. If the user is not logged in, then
mail will be sent instead.

-y mode-list Prints the request according to the printing modes
listed in mode-list. The allowed values for mode-list are
locally defined.

This option may be used only if there is a filter
available to handle it; otherwise, the print request will
be rejected.

The following operand is supported:

file The name of the file to be printed. Specify file as a
pathname or as a hyphen (−) to indicate the standard
input. If file is not specified, lp uses the standard input.

See largefile(5) for the description of the behavior of lp when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/var/spool/lp/* LP print queue.

$HOME/.printers User-configurable printer database.

/etc/printers.conf System printer configuration database.

lp(1)

OPERANDS

USAGE

EXIT STATUS

FILES

User Commands 753

printers.conf.byname NIS version of /etc/printers.conf.

printers.org_dir NIS+ version of /etc/printers.conf.

fns.ctx_dir.domain FNS version of /etc/printers.conf.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

CSI Enabled (see NOTES)

cancel(1), enable(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), mail(1),
postprint(1), pr(1), stty(1), accept(1M), lpadmin(1M), lpfilter(1M),
lpforms(1M), lpmove(1M), lpsched(1M), lpshut(1M), lpsystem(1M),
lpusers(1M), nsswitch.conf(4), printers(4), printers.conf(4), terminfo(4),
attributes(5), environ(5), largefile(5), standards(5)

CSI-capability assumes that printer names are composed of ASCII characters.

Print jobs are assumed to contain one type of data. That type of data is either specified
on the command line or autodetected (simple, PostScript) based on the contents of the
first file in the job.

Printers that have a 4.x or BSD-based print server. are not configured to handle BSD
protocol extensions. lp handles print requests sent to such printers in the following
ways:

1. Print requests with more than 52 filenames will be truncated to 52 files. lp displays
a warning message.

2. The -f, -H, -o, -P, -p, -q, -S, -T, and -y options may require a protocol
extension to pass to a print server. If lp cannot handle the print request, it displays
a warning message.

LP administrators enable protocol extensions by setting a printer’s bsdaddr entry
in /etc/printers.conf. Changing the bsdaddr entry in
/etc/printers.conf to:

destination:bsdaddr=server,destination,Solarisgenerates a set of BSD print
protocol extensions that can be processed by a Solaris print server. lp supports
only Solaris protocol extensions at this time.

lp(1)

ATTRIBUTES

SEE ALSO

NOTES

754 man pages section 1: User Commands • Last Revised 1 Dec 2000

lpc – line printer control program

/usr/ucb/lpc [command [parameter…]]

The lpc utility controls the operation of local printers.

Use lpc to perform the following functions:

� start or stop a printer,
� disable or enable a printer’s spooling queue,
� rearrange the order of jobs in a print queue, or
� display the status of a printer print queue and printer daemon.

lpc can be run from the command line or interactively. Specifying lpc with the
optional command and parameter arguments causes lpc to interpret the first argument
as an lpc command, and all other arguments as parameters to that command.
Specifying lpc without arguments causes it to run interactively, prompting the user
for lpc commands with lpc>. By redirecting the standard input, lpc can read
commands from a file.

lpc commands may be typed in their entirety or abbreviated to an unambiguous
substring. Some lpc commands are available to all users; others are available only to
super-users.

All users may execute the following lpc commands:

? [command . . .] | help [command . . .]
Displays a short description of command. command is an lpc command. If command
is not specified, displays a list of lpc commands.

exit | quit
Exits from lpc.

status [all | printer . . .]
Displays the status of print daemons and print queues. all specifies that this
command is performed on all locally attached printers. printer indicates this
command is performed on specific printers. Specify printer as an atomic name. See
printers.conf(4) for information regarding naming conventions for atomic
names.

Only a super-user may execute the following lpc commands:

abort [all | printer . . .]
Terminates an active spooling daemon. Disables printing (by preventing new
daemons from being started by lpr(1B)) for printer. all specifies this command is
performed on all locally attached printers. printer indicates this command is
performed on specific printers. Specify printer as an atomic name. See
printers.conf (4) for information regarding naming conventions for atomic
names.

lpc(1B)

NAME

SYNOPSIS

DESCRIPTION

USAGE

User Commands 755

clean [all | printer . . .]
Removes files created in the print spool directory by the print daemon from printer
’s print queue. all specifies that this command is performed on all locally attached
printers.printer indicates this command is performed on specific printers. Specify
printer as an atomic name. See printers.conf(4) for information regarding
naming conventions for atomic names.

disable [all | printer . . .]
Turns off the print queue for printer. Prevents new printer jobs from being entered
into the print queue for printerby lpr(1B). all specifies that this command is
performed on all locally attached printers. printer indicates this command is
performed on specific printers. Specify printer as an atomic name. See
printers.conf (4) for information regarding naming conventions for atomic
names.

down [all | printer . . .] [message]
Turns the queue for printer off and disables printing on printer. Inserts message in the
printer status file. message does not need to be quoted; multiple arguments to
message are treated as arguments are to echo(1). Use down to take a printer down
and inform users. all specifies that this command is performed on all locally
attached printers. printer indicates this command is performed on specific printers.
Specify printer as an atomic name. See printers.conf(4) for information
regarding naming conventions for atomic names.

enable [all | printer . . .]
Enables lpr(1B) to add new jobs in the spool queue. all specifies that this
command is performed on all locally attached printers. printer indicates this
command is performed on specific printers. Specify printer as an atomic name. See
printers.conf(4) for information regarding naming conventions for atomic
names.

restart [all | printer . . .]
Attempts to start a new printer daemon. restart is useful when a print daemon
dies unexpectedly and leaves jobs in the print queue. all specifies that this
command is performed on all locally attached printers. printer indicates that this
command is performed on specific printers. Specify printer as an atomic name. See
printers.conf(4) for information regarding naming conventions for atomic
names.

start [all | printer . . .]
Enables printing. Starts a spooling daemon for the printer. all specifies that this
command is performed on all locally attached printers. printer indicates the
command is performed on specific printers. Specify printer as an atomic name. See
printers.conf(4) for information regarding naming conventions for atomic
names.

stop [all | printer . . .]
Stops a spooling daemon after the current job is complete. Disables printing at that
time. all specifies that this command is performed on all locally attached printers.

lpc(1B)

756 man pages section 1: User Commands • Last Revised 7 Apr 1999

printer indicates this command is performed on specific printers. Specify printer as
an atomic name. See printers.conf(4) for information regarding naming
conventions for atomic names.

topq printer [request-ID . . .] [user . . .]
Moves request-ID or print jobs belonging to user on printer to the beginning of the
print queue. Specify user as a user’s login name. Specify printer as an atomic name.
See printers.conf(4) for information regarding naming conventions for atomic
names.

up [all | printer . . .]
Turns the queue for printer on and enables printing on printer. Deletes the message
in the printer status file (inserted by down). Use up to undo the effects of down. all
specifies that this command is performed on all locally attached printers. printer
indicates this command is performed on specific printers. Specify printer as an
atomic name. See printers.conf(4) for information regarding naming
conventions for atomic names.

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/var/spool/lp/* LP print queue.

/var/spool/lp/system/pstatus Printer status information file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

echo(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), lpsched(1M), lpshut(1M),
printers.conf(4), attributes(5)

Ambiguous command
Indicates that the lpc command or abbreviation matches more than one command.

?Invalid command
Indicates that the lpc command or abbreviation is not recognized.

?Privileged command
Indicates that the lpc command or abbreviation can be executed only by a
super-user.

lpc: printer : unknown printer to the print service
Indicates that printer does not exist in the LP database. Check that printer was
correctly specified. Use lpstat -p or the status command (see lpstat(1) or
USAGE) to check the status of printers.

lpc(1B)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 757

lpc: error on opening queue to spooler
Indicates that the connection to lpsched failed. Usually means that the printer
server has died or is hung. Use /usr/lib/lp/lpsched to check if the printer
spooler daemon is running.

lpc: Can’t send message to LP print service

lpc: Can’t receive message from LP print service
Indicates that the LP print service stopped. Contact the LP administrator.

lpc: Received unexpected message from LP print service
Indicates a problem with the software. Contact the LP administrator.

lpc(1B)

758 man pages section 1: User Commands • Last Revised 7 Apr 1999

lpq – display the content of a print queue

/usr/ucb/lpq [-P destination] [-l] [+ [interval]] [request-ID…] [user…]

The lpq utility displays the information about the contents of a print queue. A print
queue is comprised of print requests that are waiting in the process of being printed.

lpq displays the following information to the standard output:

� the username of the person associated with a print request,
� the position of a print request in the print queue,
� the name of file or files comprising a print request,
� the job number of a print request, and
� the size of the file requested by a print request. File size is reported in bytes.

Normally, only as much information as will fit on one line is displayed. If the name of
the input file associated with a print request is not available, the input file field
indicates the standard input.

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

The following options are supported:

-P destination Displays information about printer or class of printers (see
lpadmin(1M)) . Specify destination using atomic, POSIX-style
(server:destination), or Federated Naming Service (FNS)
(. . ./service/printer/. . .) names. See printers.conf(4) for
information regarding the naming conventions for atomic and FNS
names, and standards(5) for information regarding POSIX.

-l Displays information in long format. Long format includes the
name of the host from which a print request originated in the
display.

+ [interval] Displays information at specific time intervals. Stops displaying
information when the print queue is empty. Clears the screen
before reporting displaying the print queue. Specify interval as the
number of seconds between displays. If interval is not specified
only executes once.

The following operands are supported:

request-ID The job number associated with a print request.

user The name of the user about whose jobs lpq reports information.
Specify user as a valid username.

The following exit values are returned:

lpq(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

User Commands 759

0 Successful completion.

non-zero An error occurred.

/var/spool/print/[cd]f*
Spooling directory and request files for jobs awaiting transfer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

lp(1), lpc(1B), lpr(1B), lprm(1B), lpstat(1), lpadmin(1M), nsswitch.conf(4),
printers(4), printers.conf(4), attributes(5), standards(5)

lpq(1B)

FILES

ATTRIBUTES

SEE ALSO

760 man pages section 1: User Commands • Last Revised 10 Nov 1999

lpr – submit print requests

/usr/ucb/lpr [-P destination] [-# number] [-C class] [-J job] [-T title]
[-i [indent]] [-1 | -2 | -3 | -4 font] [-w cols] [-m] [-h] [-s]
[-filter_option] [file…]

The lpr utility submits print requests to a destination. lpr prints files (file) and
associated information, collectively called a print request. If file is not specified, lpr
assumes the standard input.

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

Print requests with more than 52 files specified will be truncated to 52 files. lpr
displays a warning message.

The following options are supported:

-P destination Prints file on a specific printer or class of printers(see
lpadmin(1M)). Specify destination using atomic,
POSIX-style (server:destination), or Federated Naming
Service (FNS) (. . ./service/printer/. . .) names.
See printers.conf(4) for information regarding the
naming conventions for atomic and FNS names, and
standards(5) for information regarding POSIX.

-# number Prints a specific number of copies. Specify number as a
positive integer. The default for number is 1.

-C class Prints class as the job classification on the banner page
of the output. Enclose class in double quotes if it
contains blanks. If class is not specified, the name of the
system (as returned by hostname) is printed as the job
classification. See hostname(1).

-J job Prints job as the job name on the banner page of the
output. Enclose job in double quotes if it contains
blanks. If job is not specified, file (or in the case of
multiple files, the first file specified on the command
line) is printed as the job name on the banner page of
the output.

-T title Prints a title on the page header of the output. Enclose
title in double quotes if it contains blanks. The -T
option is ignored unless it is specified with the -p filter
option.

-i indent Indents the output a specific number of SPACE
characters. Use indent to indicate the number of SPACE
characters to be indented. Specify indent as a positive

lpr(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 761

integer. If the optional argument to indent is not
specified, then eight SPACE characters is the default.
The -i option is ignored unless it is specified with the
-p filter option.

−1|−2|−3|−4 font Mounts the specified font in the font position 1, 2, 3, or
4. Specify font as a valid font name.

-w cols Prints file with pages of a specific width. cols indicates
the number of columns wide. The -w option is ignored
unless it is specified with the -p filter option.

-m Sends mail after file has printed. See mail(1). By
default, no mail is sent upon normal completion of a
print request.

-h Suppresses printing of the banner page of the output.

-s Uses full pathnames (as opposed to symbolic links) to
file rather than trying to copy them. This means file
should not be modified or removed until it has
completed printing. Option -s only prevents copies of
local files from being made on the local machine.
Option -s only works with specified files. If the lpr
command is at the end of a pipeline, file is copied to the
spool.

− filter_option Notifies the print spooler that file is not a standard text
file. Enables the spooling daemon to use the
appropriate filters to print file.

filter_options offer a standard user interface. All filter
options may not be available for, or applicable to, all
printers.

Specify filter_option as a single character.

If filter_option is not specified and the printer can
interpret PostScript®, inserting ‘%!’ as the first two
characters of file causes file to be interpreted as
PostScript.

The following filter options are supported:

p Use pr to format the files. See pr(1).

l Print control characters and suppress page
breaks.

t file contains troff (cat phototypesetter)
binary data.

lpr(1B)

762 man pages section 1: User Commands • Last Revised 20 Dec 1999

n file contains ditroff data from device
independent troff.

d file contains tex data in DVI format from
Stanford.

g file contains standard plot data produced by
plot(1B) routines.

v file contains a raster image. printer must
support an appropriate imaging model such
as PostScript in order to print the image.

c file contains data produced by cifplot.

f Interprets the first character of each line as a
standard FORTRAN carriage control
character.

The following operand is supported:

file The name of the file to be printed. Specify file as a pathname. If file
is not specified, lpr uses the standard input.

See largefile(5) for the description of the behavior of lpr when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/var/spool/print/.seq File containing the sequence numbers for
job ID assignment.

/var/spool/print/[cd]f* Spooling directories and files.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

CSI Enabled (see NOTES)

hostname(1), lp(1), lpc(1B), lpq(1B), lprm(1B), lpstat(1), mail(1), plot(1B),
pr(1), troff(1), lpadmin(1M), nsswitch.conf(4), printers(4),
printers.conf(4), attributes(5), largefile(5), standards(5)

lpr: destination |: unknown destination
destination was not found in the LP configuration database. Usually this is a typing
mistake; however, it may indicate that the destination does not exist on the system.

lpr(1B)

OPERANDS

USAGE

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 763

Use lpstat -p to display information about the status of the print service.

lpr is CSI-enabled except for the printer name.

Print jobs are assumed to contain one type of data. That type of data is either specified
on the command line or autodetected (simple, PostScript) based on the contents of the
first file in the job.

lpr(1B)

NOTES

764 man pages section 1: User Commands • Last Revised 20 Dec 1999

lprm – remove print requests from the print queue

/usr/ucb/lprm [-P destination] [-] [request-ID…] [user…]

The lprm utility removes print requests (request-ID) from the print queue.

Without arguments, lprm deletes the current print request. lprm reports the name of
the file associated with print requests that it removes. lprm is silent if there are no
applicable print requests to remove.

Users can only remove print requests associated with their user name. See NOTES. If a
super-user executes lprm and specifies the user operand, lprm removes all print
requests belonging to the specified user.

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

The following options are supported:

-P destination The name of the printer or class of printers (see lpadmin(1M))
from which to remove print requests. Specify destination using
atomic, POSIX-style (server:destination), or Federated Naming
Service (FNS) (. . ./service/printer/. . .) names. See
printers.conf(4) for information regarding the naming
conventions for atomic and FNS names, and standards(5) for
information regarding POSIX.

− If a user specifies this option, removes all print requests owned by
that user. If a super-user specifies this option, removes all requests
in the print queue. Job ownership is determined by the user’s login
name and host name on the machine from which lpr was
executed. See NOTES.

The following operands are supported.

user Removes print requests associated with a specific user. Specify user
as a valid user name. This option can only be used by a super-user.

request-ID Removes a specific print request. Specify request-ID as the job
number (Job) associated with a print request and reported by
lpq. See lpq(1B).

EXAMPLE 1 Removing a print request

The following example removes request-ID 385 from destination killtree:

example% lprm −P killtree 385

The following exit values are returned:

0 Successful completion.

lprm(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

EXIT STATUS

User Commands 765

non-zero An error occurred.

/var/spool/print/[cd]f* Spooling directories and files.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

lp(1), lpc(1B), lpq(1B), lpr(1B), lpstat(1), lpadmin(1M), nsswitch.conf(4),
printers(4), printers.conf(4), attributes(5), standards(5)

Users can only remove print requests associated with their user name. By default,
users can only remove print requests on the host from which the print request was
submitted. If a super-user has set user-equivalence=true in
/etc/printers.conf on the print server, users can remove print requests
associated with their user name on any host. Super-users can remove print requests on
the host from which the print request was submitted. Super-users can also remove
print requests from the print server.

lprm(1B)

FILES

ATTRIBUTES

SEE ALSO

NOTES

766 man pages section 1: User Commands • Last Revised 10 Nov 1999

lpstat – print information about the status of the print service

lpstat [-d] [-r] [-R] [-s] [-t] [-a [list]] [-c [list]] [-f [list] [-l]]
[-o [list]] [-p [list] [-D] [-l]] [-S [list] [-l]] [-u [login- ID
-list]] [-v [list]]

The lpstat utility displays information about the current status of the LP print
service to standard output.

If no options are given, lpstat prints the status of all the user’s print requests made
by lp. (see lp(1)). Any arguments that are not options are assumed to be request-IDs as
returned by lp. The lpstat command prints the status of such requests. options may
appear in any order and may be repeated and intermixed with other arguments. Some
key letters may be followed by an optional list that can be in one of two forms: a list of
items separated from one another by a comma, or a list of items separated from one
another by spaces enclosed in quotes. For example:

example% lpstat -u "user1 user2 user3"

Specifying all after any key letter that takes list as an argument causes all
information relevant to the key letter to be printed. For example, the command:

example% lpstat -o all

prints the status of all output requests.

The omission of a list following such key letters causes all information relevant to the
key letter to be printed. For example, the command:

example% lpstat -o

prints the status of all output requests.

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

The following options are supported on all platforms.

-d Prints the default destination for output requests.

-o [list] Prints the status of output requests. list is a list of
intermixed printer names, class names, and
request-IDs. The key letter -o may be omitted. Specify
printer and class names using atomic, POSIX-style
(server:destination), or Federated Naming Service (FNS)
(. . ./service/printer/. . .) names. See
printers.conf(4) for information regarding the
naming conventions for atomic and FNS names, and
standards(5) for information regarding POSIX.

lpstat(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 767

-r Prints the status of the LP request scheduler.

-R Prints a number showing the position of each request
in the print queue.

-s Prints a status summary, including the status of the LP
scheduler, the default destination, a list of printers and
their associated devices, a list of the machines sharing
print services, a list of all forms currently mounted, and
a list of all recognized character sets and print wheels.

-t Prints all status information. This includes all the
information obtained with the -s option, plus the
acceptance and idle/busy status of all printers.

-u [login-ID-list] Prints the status of output requests for users. The
login-ID-list argument may include any or all of the
following constructs:

login-ID
a user on any system

system_name!login-ID
a user on system system_name

system_name!all
all users on system system_name

all!login-ID
a user on all systems

all
all users on all systems

-v [list] Prints the names of printers and the path names of the
devices associated with them or remote system names
for network printers. list is a list of printer names.

The following options return accurate results only if they are issued from a Solaris 2.6
Operating Environment or compatible version of the LP print server.

-a [list] Reports whether print destinations are accepting
requests. list is a list of intermixed printer names and
class names.

-c [list] Prints name of all classes and their members. list is a
list of class names.

-f [list] [-l] Prints a verification that the forms in list are recognized
by the LP print service. list is a list of forms; the default
is all. The -l option will list the form descriptions.

-p [list] [-D] [-l] Prints the status of printers. list is a list of printer
names. If the -D option is given, a brief description is

lpstat(1)

768 man pages section 1: User Commands • Last Revised 6 Aug 1999

printed for each printer in list. If the -l option is given
and the printer is on the local machine, a full
description of each printer’s configuration is returned,
including the form mounted, the acceptable content
and printer types, a printer description, and the
interface used.

-S [list] [-l] Prints a verification that the character sets or the print
wheels specified in list are recognized by the LP print
service. Items in list can be character sets or print
wheels; the default for the list is all. If the -l option is
given, each line is appended by a list of printers that
can handle the print wheel or character set. The list also
shows whether the print wheel or character set is
mounted, or specifies the built-in character set into
which it maps.

-d Prints the default destination for output requests.

-o [list] Prints the status of output requests. list is a list of
intermixed printer names, class names, and request-IDs.
The key letter -o may be omitted.

-r Prints the status of the LP request scheduler.

-R Prints a number showing the position of each request
in the print queue.

-s Prints a status summary, including the status of the LP
scheduler, the default destination, a list of printers and
their associated devices, a list of the machines sharing
print services, a list of all forms currently mounted, and
a list of all recognized character sets and print wheels.

-t Prints all status information. This includes all the
information obtained with the -s option, plus the
acceptance and idle/busy status of all printers.

-u [login-ID-list] Prints the status of output requests for users. The
login-ID-list argument may include any or all of the
following constructs:

login-ID
a user on any system

system_name!login-ID
a user on system system_name

system_name!all
all users on system system_name

all!login-ID
a user on all systems

lpstat(1)

User Commands 769

all
all users on all systems

-v [list] Prints the names of printers and the path names of the
devices associated with them or remote system names
for network printers. list is a list of printer names.

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/var/spool/print/* LP print queue.

$HOME/.printers User-configurable printer database.

/etc/printers.conf System configuration database.

printers.conf.byname NIS version of /etc/printers.conf.

printers.org_dir NIS+ version of /etc/printers.conf.

fns.ctx_dir.domain FNS version of /etc/printers.conf.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

cancel(1), lp(1), lpq(1B), lpr(1B), lprm(1B), nsswitch.conf(4), printers(4),
printers.conf(4), attributes(5), standards(5)

lpstat(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

770 man pages section 1: User Commands • Last Revised 6 Aug 1999

lptest – generate line printer ripple pattern

/usr/ucb/lptest [length [count]]

The lptest utility writes the traditional ripple test pattern to the standard output. In
96 lines, the ripple test pattern prints all 96 printable ASCII characters in each position.
The ripple test pattern was originally created to test printers. It is also useful for
testing terminals, driving terminal ports, debugging, and performing tasks that
require a quick supply of random data.

This command is obsolete.

length Specifies the length of the output line in characters. 79 characters
is the default.

count Specifies the number of output lines. 200 lines is the default. If
count is specified, length must also be specified.

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

attributes(5)

lptest(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 771

ls – list contents of directory

/usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file…]

/usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file…]

For each file that is a directory, ls lists the contents of the directory. For each file that is
an ordinary file, ls repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current directory is
listed. When several arguments are given, the arguments are first sorted appropriately,
but file arguments appear before directories and their contents.

There are three major listing formats. The default format for output directed to a
terminal is multi−column with entries sorted down the columns. The -1 option allows
single column output and -m enables stream output format. In order to determine
output formats for the -C, -x, and -m options, ls uses an environment variable,
COLUMNS, to determine the number of character positions available on one output line.
If this variable is not set, the terminfo(4) database is used to determine the number
of columns, based on the environment variable, TERM. If this information cannot be
obtained, 80 columns are assumed.

The mode printed under the -l option consists of ten characters. The first character
may be one of the following:

d The entry is a directory.

D The entry is a door.

l The entry is a symbolic link.

b The entry is a block special file.

c The entry is a character special file.

p The entry is a FIFO (or “named pipe”) special file.

s The entry is an AF_UNIX address family socket.

− The entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers
to the owner’s permissions; the next to permissions of others in the user-group of the
file; and the last to all others. Within each set, the three characters indicate permission
to read, to write, and to execute the file as a program, respectively. For a directory,
‘‘execute’’ permission is interpreted to mean permission to search the directory for a
specified file. The character after permissions is ACL indication. A plus sign is
displayed if there is an ACL associated with the file. Nothing is displayed if there are
just permissions.

ls -l (the long list) prints its output as follows for the POSIX locale:

-rwxrwxrwx+ 1 smith dev 10876 May 16 9:42 part2

ls(1)

NAME

SYNOPSIS

DESCRIPTION

772 man pages section 1: User Commands • Last Revised 19 Nov 2001

Reading from right to left, you see that the current directory holds one file, named
part2. Next, the last time that file’s contents were modified was 9:42 A.M. on May 16.
The file contains 10,876 characters, or bytes. The owner of the file, or the user, belongs
to the group dev (perhaps indicating ‘‘development’’), and his or her login name is
smith. The number, in this case 1, indicates the number of links to file part2 (see
cp(1)). The plus sign indicates that there is an ACL associated with the file. Note: If the
-@ option has been specified, the presence of extended attributes will supersede the
presence of an ACL and the plus sign will be replaced with an ’at’ sign (@). Finally, the
dash and letters tell you that user, group, and others have permissions to read, write,
and execute part2.

The execute (x) symbol here occupies the third position of the three-character
sequence. A − in the third position would have indicated a denial of execution
permissions.

The permissions are indicated as follows:

r The file is readable.

w The file is writable.

x The file is executable.

− The indicated permission is not granted.

s The set-user-ID or set-group-ID bit is on, and the corresponding user or
group execution bit is also on.

S Undefined bit-state (the set-user-ID bit is on and the user execution bit is
off).

t The 1000 (octal) bit, or sticky bit, is on (see chmod(1)), and execution is on.

T The 1000 bit is turned on, and execution is off (undefined bit-state).

l Mandatory locking occurs during access (the set-group-ID bit is on and the
group execution bit is off).

L Mandatory locking occurs during access (the set-group-ID bit is on and the
group execution bit is off).

For user and group permissions, the third position is sometimes occupied by a
character other than x or −. s also may occupy this position, referring to the state of
the set-ID bit, whether it be the user’s or the group’s. The ability to assume the same
ID as the user during execution is, for example, used during login when you begin as
root but need to assume the identity of the user you login as.

In the case of the sequence of group permissions, l may occupy the third position. l
refers to mandatory file and record locking. This permission describes a file’s ability to
allow other files to lock its reading or writing permissions during access.

For others permissions, the third position may be occupied by t or T. These refer to
the state of the sticky bit and execution permissions.

ls(1)

/usr/bin/ls

/usr/xpg4/bin/ls

User Commands 773

The following options are supported:

-a Lists all entries, including those that begin with a dot (.), which are
normally not listed.

-A Lists all entries, including those that begin with a dot (.), with the
exception of the working directory (.) and the parent directory (..).

-b Forces printing of non-printable characters to be in the octal \ddd notation.

-c Uses time of last modification of the i-node (file created, mode changed,
and so forth) for sorting (-t) or printing (-l or -n).

-C Multi-column output with entries sorted down the columns. This is the
default output format.

-d If an argument is a directory, lists only its name (not its contents). Often
used with -l to get the status of a directory.

-f Forces each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -l, -t, -s, and -r, and turns on
-a. The order is the order in which entries appear in the directory.

-F Marks directories with a trailing slash (/), doors with a trailing
greater-than sign (>), executable files with a trailing asterisk (*), FIFOs with
a trailing vertical bar (|), symbolic links with a trailing ’at’ sign (@), and
AF_UNIX address family sockets with a trailing equals sign (=).

-g The same as -l, except that the owner is not printed.

-h All sizes are scaled to a human readable format, for example, 14K, 234M,
2.7G, or 3.0T. Scaling is done by repetitively dividing by 1024.

-i For each file, prints the i-node number in the first column of the report.

-l Lists in long format, giving mode, ACL indication, number of links, owner,
group, size in bytes, and time of last modification for each file (see above).
If the file is a special file, the size field instead contains the major and
minor device numbers. If the time of last modification is greater than six
months ago, it is shown in the format ‘month date year’ for the POSIX
locale. When the LC_TIME locale category is not set to the POSIX locale, a
different format of the time field may be used. Files modified within six
months show ‘month date time’. If the file is a symbolic link, the filename
is printed followed by “→” and the path name of the referenced file.

-L If an argument is a symbolic link, lists the file or directory the link
references rather than the link itself.

-m Streams output format. Files are listed across the page, separated by
commas.

-n The same as -l, except that the owner’s UID and group’s GID numbers are
printed, rather than the associated character strings.

-o The same as -l, except that the group is not printed.

ls(1)

OPTIONS

774 man pages section 1: User Commands • Last Revised 19 Nov 2001

-p Puts a slash (/) after each filename if the file is a directory.

-q Forces printing of non-printable characters in file names as the character
question mark (?).

-r Reverses the order of sort to get reverse alphabetic or oldest first as
appropriate.

-R Recursively lists subdirectories encountered.

-s Gives size in blocks, including indirect blocks, for each entry.

-t Sorts by time stamp (latest first) instead of by name. The default is the last
modification time. (See -u and -c.)

-u Uses time of last access instead of last modification for sorting (with the -t
option) or printing (with the -l option).

-@ The same as -l, except that extended attribute information will supersede
ACL information. An @ is displayed after the file permission bits for files
that have extended attributes.

-x Multi-column output with entries sorted across rather than down the page.

−1 Prints one entry per line of output.

Specifying more than one of the options in the following mutually exclusive pairs is
not considered an error: -C and -l (ell), -m and -l (ell), -x and -l (ell), -@ and -l
(ell). The -l option overrides the other option specified in each pair.

Specifying more than one of the options in the following mutually exclusive pairs is
not considered an error: -C and -l (ell), -m and -l (ell), -x and -l (ell), -@ and -l
(ell). The last option specified in each pair determines the output format.

The following operand is supported:

file A path name of a file to be written. If the file specified is not found, a
diagnostic message will be output on standard error.

See largefile(5) for the description of the behavior of ls when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 File permissions

An example of a file’s permissions is:

−rwxr− −r− −

This describes a file that is readable, writable, and executable by the user and readable
by the group and others.

Another example of a file’s permissions is:

−rwsr−xr−x

ls(1)

/usr/bin/ls

/usr/xpg4/bin/ls

OPERANDS

USAGE

EXAMPLES

User Commands 775

EXAMPLE 1 File permissions (Continued)

This describes a file that is readable, writable, and executable by the user, readable and
executable by the group and others, and allows its user-ID to be assumed, during
execution, by the user presently executing it.

Another example of a file’s permissions is:

−rw−rwl− − −

This describes a file that is readable and writable only by the user and the group and
can be locked during access.

EXAMPLE 2 Printing the names of all files

This command prints the names of all files in the current directory, including those
that begin with a dot (.), which normally do not print:

example% ls -a

EXAMPLE 3 Providing file information

Another example of a command line is:

example% ls -aisn

This command provides information on all files, including those that begin with a dot
(a), the i-number—the memory address of the i-node associated with the
file—printed in the left-hand column (i); the size (in blocks) of the files, printed in the
column to the right of the i-numbers (s); finally, the report is displayed in the numeric
version of the long list, printing the UID (instead of user name) and GID (instead of
group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks, is printed.

See environ(5) for descriptions of the following environment variables that affect the
execution of ls: LC_COLLATE, LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and
TZ.

COLUMNS Determines the user’s preferred column position width for writing
multiple text-column output. If this variable contains a string
representing a decimal integer, the ls utility calculates how many
path name text columns to write (see -C) based on the width
provided. If COLUMNS is not set or is invalid, 80 is used. The
column width chosen to write the names of files in any given
directory will be constant. File names will not be truncated to fit
into the multiple text-column output.

ls(1)

ENVIRONMENT
VARIABLES

776 man pages section 1: User Commands • Last Revised 19 Nov 2001

0 All information was written successfully.

>0 An error occurred.

/etc/group group IDs for ls -l and ls -g

/etc/passwd user IDs for ls -l and ls -o

/usr/share/lib/terminfo/?/* terminal information database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

Interface Stability Stable

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

Interface Stability Standard

chmod(1), cp(1), setfacl(1), terminfo(4), attributes(5), environ(5), fsattr(5),
largefile(5), XPG4(5)

Unprintable characters in file names may confuse the columnar output options.

The total block count will be incorrect if there are hard links among the files.

The sort order of ls output is affected by the locale and can be overridden by the
LC_COLLATE environment variable. For example, if LC_COLLATE equals C, dot files
appear first, followed by names beginning with upper-case letters, then followed by
names beginning with lower-case letters. But if LC_COLLATE equals
en_US.ISO8859-1, then leading dots as well as case are ignored in determining the
sort order.

ls(1)

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/ls

/usr/xpg4/bin/ls

SEE ALSO

NOTES

User Commands 777

ls – list the contents of a directory

/usr/ucb/ls [-aAcCdfFgilLqrRstu1] file…

For each filename that is a directory, ls lists the contents of the directory; for each
filename that is a file, ls repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first sorted
appropriately, but file arguments are processed before directories and their contents.

The mode printed under the -l option contains 10 characters interpreted as follows. If
the first character is:

d Entry is a directory.

D Entry is a door.

b Entry is a block-type special file.

c Entry is a character-type special file.

l Entry is a symbolic link.

p Entry is a FIFO (also known as “named pipe”) special file.

s Entry is an AF_UNIX address family socket.

− Entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers
to owner permissions; the next refers to permissions to others in the same user-group;
and the last refers to all others. Within each set, the three characters indicate
permission respectively to read, to write, or to execute the file as a program. For a
directory, “execute” permission is interpreted to mean permission to search the
directory. The permissions are indicated as follows:

r The file is readable.

w The file is writable.

x The file is executable.

− The indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit
set; likewise the owner-execute permission character is given as s if the file has the
set-user-id bit set.

The last character of the mode (normally x or ‘−’) is true if the 1000 bit of the mode is
on. See chmod(1) for the meaning of this mode. The indications of set-ID and 1000 bits
of the mode are capitalized (S and T, respectively) if the corresponding execute
permission is not set.

A plus sign (+) appended to the list of permissions indicates that an ACL is associated
with the file.

ls(1B)

NAME

SYNOPSIS

DESCRIPTION

Permissions Field

778 man pages section 1: User Commands • Last Revised 9 Jun 2000

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks, is printed.

The following options are supported:

-a Lists all entries; in the absence of this option, entries whose names begin
with a ‘.’ are not listed (except for the privileged user, for whom ls
normally prints even files that begin with a ‘.’).

-A Same as -a, except that ‘.’ and ‘. .’ are not listed.

-c Uses time of last edit (or last mode change) for sorting or printing.

-C Forces multi-column output, with entries sorted down the columns; for ls,
this is the default when output is to a terminal.

-d If argument is a directory, lists only its name (not its contents); often used
with -l to get the status of a directory.

-f Forces each argument to be interpreted as a directory and lists the name
found in each slot. This option turns off -l, -t, -s, and -r, and turns on
-a; the order is the order in which entries appear in the directory.

-F Marks directories with a trailing slash (/), doors with a trailing
greater-than sign (>), executable files with a trailing asterisk (*), FIFOs with
a trailing vertical bar (|), symbolic links with a trailing at-sign (@), and
AF_UNIX address family sockets with a trailing equals sign (=).

-g For ls, shows the group ownership of the file in a long output.

-i For each file, prints the i-node number in the first column of the report.

-l Lists in long format, giving mode, ACL indication, number of links, owner,
size in bytes, and time of last modification for each file. If the file is a
special file the size field will instead contain the major and minor device
numbers. If the time of last modification is greater than six months ago, it is
shown in the format ‘month date year’; files modified within six months
show ‘month date time’. If the file is a symbolic link, the pathname of the
linked-to file is printed preceded by ‘—>’.

-L If argument is a symbolic link, lists the file or directory the link references
rather than the link itself.

-q Displays non-graphic characters in filenames as the character ?; for ls, this
is the default when output is to a terminal.

-r Reverses the order of sort to get reverse alphabetic or oldest first as
appropriate.

-R Recursively lists subdirectories encountered.

-s Gives size of each file, including any indirect blocks used to map the file, in
kilobytes.

-t Sorts by time modified (latest first) instead of by name.

ls(1B)

OPTIONS

User Commands 779

-u Uses time of last access instead of last modification for sorting (with the -t
option) and/or printing (with the -l option).

-1 Forces one entry per line output format; this is the default when output is
not to a terminal.

The following operand is supported:

file A path name of a file to be listed. If the file specified is not found, a
diagnostic message will be output on standard error.

See largefile(5) for the description of the behavior of ls when encountering files
greater than or equal to 2 Gbyte (231 bytes).

/etc/group to get group ID for ‘ls -g’

/etc/passwd to get user IDs for ‘ls -l’ and ‘ls -o’

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

ls(1), attributes(5), largefile(5)

NEWLINE and TAB are considered printing characters in filenames.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as ‘ls -s’
is much different than ‘ls -s | lpr’. On the other hand, not doing this setting would
make old shell scripts which used ls almost certain losers.

Unprintable characters in file names may confuse the columnar output options.

ls(1B)

OPERANDS

USAGE

FILES

ATTRIBUTES

SEE ALSO

NOTES

780 man pages section 1: User Commands • Last Revised 9 Jun 2000

m4 – macro processor

/usr/ccs/bin/m4 [-e] [-s] [-B int] [-H int] [-S int] [-T int] [-Dname
[=val]] … [-U name] … [file…]

/usr/xpg4/bin/m4 [-e] [-s] [-B int] [-H int] [-S int] [-T int] [-Dname
[…=val]] [-U name] … [file…]

The m4 utility is a macro processor intended as a front end for C, assembler, and other
languages. Each of the argument files is processed in order; if there are no files, or if a
file is −, the standard input is read. The processed text is written on the standard
output.

Macro calls have the form:

name(arg1,arg2, . . ., argn)

The (must immediately follow the name of the macro. If the name of a defined macro
is not followed by a (, it is deemed to be a call of that macro with no arguments.
Potential macro names consist of alphanumeric characters and underscore (_), where
the first character is not a digit.

Leading unquoted blanks, TABs, and NEWLINEs are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be NULL. Macro evaluation proceeds
normally during the collection of the arguments, and any commas or right parentheses
that happen to turn up within the value of a nested call are as effective as those in the
original input text. After argument collection, the value of the macro is pushed back
onto the input stream and rescanned.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuffered.

-s Enable line sync output for the C preprocessor (#line . . .)

-Bint Change the size of the push-back and argument collection buffers from the
default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199. The
size should be prime.

-Sint Change the size of the call stack from the default of 100slots. Macros take
three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512bytes.

m4(1)

NAME

SYNOPSIS

DESCRIPTION

Macro Syntax

Macro Processing

OPTIONS

User Commands 781

To be effective, the above flags must appear before any file names and before any -D
or -U flags:

-D name[=val] Defines name to val or to NULL in val’s absence.

-Uname Undefines name.

The following operand is supported:

file A path name of a text file to be processed. If no file is given, or if it is −,
the standard input is read.

The m4 utility makes available the following built-in macros. These macros may be
redefined, but once this is done the original meaning is lost. Their values are NULL
unless otherwise stated.

changequote Change quote symbols to the first and second arguments. The
symbols may be up to five characters long. changequote without
arguments restores the original values (that is, ‘ ’).

changecom Change left and right comment markers from the default # and
NEWLINE. With no arguments, the comment mechanism is
effectively disabled. With one argument, the left marker becomes
the argument and the right marker becomes NEWLINE. With two
arguments, both markers are affected. Comment markers may be
up to five characters long.

decr Returns the value of its argument decremented by 1.

define The second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the
replacement text, where n is a digit, is replaced by the n-th
argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all the arguments
separated by commas; $@ is like $*, but each argument is quoted
(with the current quotes).

defn Returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

divert m4 maintains 10 output streams, numbered 0-9. The final output is
the concatenation of the streams in numerical order; initially
stream 0 is the current stream. The divert macro changes the
current output stream to its (digit-string) argument. Output
diverted to a stream other than 0 through 9 is discarded.

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including the next
NEWLINE.

m4(1)

OPERANDS

USAGE

782 man pages section 1: User Commands • Last Revised 18 Mar 1997

dumpdef Prints current names and definitions, for the named items, or for
all if no arguments are given.

errprint Prints its argument on the diagnostic output file.

eval Evaluates its argument as an arithmetic expression, using 32-bit
signed-integer arithmetic. The following operators are supported:
parentheses, unary −, unary +, !, ~, *, /, %, +, −, relationals, bitwise &, |,
&&, and ||. Octal and hex numbers may be specified as in C. The second
argument specifies the radix for the result; the default is 10. The third
argument may be used to specify the minimum number of digits in the
result.

eval Evaluates its argument as an arithmetic expression, using 32-bit
signed-integer arithmetic. The following operators are supported:
parentheses, unary −, unary +, !, ~, *, /, %, +, −, <<, >>, relationals,
bitwise &, |, &&, and ||. Precedence and associativity are as in C.
Octal and hex numbers may also be specified as in C. The second
argument specifies the radix for the result; the default is 10. The
third argument may be used to specify the minimum number of
digits in the result.

ifdef If the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is
NULL. The word unix is predefined.

ifelse This macro has three or more arguments. If the first argument is
the same string as the second, then the value is the third argument.
If not, and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is
either the fourth string, or, if it is not present, NULL.

include Returns the contents of the file named in the argument.

incr Returns the value of its argument incremented by 1. The value of
the argument is calculated by interpreting an initial digit-string as
a decimal number.

index Returns the position in its first argument where the second
argument begins (zero origin), or −1 if the second argument does
not occur.

len Returns the number of characters in its argument.

m4exit This macro causes immediate exit from m4. Argument 1, if given, is
the exit code; the default is 0.

m4wrap Argument 1 will be pushed back at final EOF; example:
m4wrap(‘cleanup()’)

maketemp Fills in a string of “X” characters in its argument with the current
process ID.

m4(1)

/usr/ccs/bin/m4

/usr/xpg4/bin/m4

User Commands 783

popdef Removes current definition of its argument(s), exposing the
previous one, if any.

pushdef Like define, but saves any previous definition.

shift Returns all but its first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies
the effect of the extra scan that will subsequently be performed.

sinclude This macro is identical to include, except that it says nothing if
the file is inaccessible.

substr Returns a substring of its first argument. The second argument is a
zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

syscmd This macro executes the command given in the first argument. No
value is returned.

sysval This macro is the return code from the last call to syscmd.

translit Transliterates the characters in its first argument from the set given
by the second argument to the set given by the third. No
abbreviations are permitted.

traceon This macro with no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for named
macros.

traceoff Turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

undefine Removes the definition of the macro named in its argument.

undivert This macro causes immediate output of text from diversions
named as arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

EXAMPLE 1 Examples of m4 files.

An example of a single m4 input file capable of generating two output files follows.
The file file1.m4 could contain lines such as:

if(VER, 1, do_something)
if(VER, 2, do_something)

The makefile for the program might include:

file1.1.c : file1.m4
m4 -D VER=1 file1.m4 > file1.1.c
...

file1.2.c : file1.m4

m4(1)

EXAMPLES

784 man pages section 1: User Commands • Last Revised 18 Mar 1997

EXAMPLE 1 Examples of m4 files. (Continued)

m4 -D VER=2 file1.m4 > file1.2.c
...

The -U option can be used to undefine VER. If file1.m4 contains:

if(VER, 1, do_something)
if(VER, 2, do_something)
ifndef(VER, do_something)

then the makefile would contain:

file1.0.c : file1.m4
m4 -U VER file1.m4 > file1.0.c
...

file1.1.c : file1.m4
m4 -D VER=1 file1.m4 > file1.1.c
...

file1.2.c : file1.m4
m4 -D VER=2 file1.m4 > file1.2.c
...

See environ(5) for descriptions of the following environment variables that affect the
execution of m4: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred

If the m4exit macro is used, the exit value can be specified by the input file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

as(1), attributes(5), environ(5), XPG4(5)

m4(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/ccs/bin/m4

/usr/xpg4/bin/m4

SEE ALSO

User Commands 785

mach – display the processor type of the current host

mach

The mach command displays the processor-type of the current host.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

arch(1), uname(1), attributes(5)

mach and uname -p return equivalent values; therefore, Independent Software
Vendors (ISV) and others who need to ascertain processor type are encouraged to use
uname with the -p option instead of the mach command. The mach command is
provided for compatibility with previous releases, but generally its use is discouraged.

mach(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

786 man pages section 1: User Commands • Last Revised 18 Jan 1996

machid, sun, iAPX286, i286, i386, i486, i860, pdp11, sparc, u3b, u3b2, u3b5, u3b15, vax,
u370 – get processor type truth value

sun

iAPX286

i386

pdp11

sparc

u3b

u3b2

u3b5

u3b15

vax

u370

The following commands will return a true value (exit code of 0) if you are using an
instruction set that the command name indicates.

sun True if you are on a Sun system.

iAPX286 True if you are on a computer using an iAPX286 processor.

i386 True if you are on a computer using an iAPX386 processor.

pdp11 True if you are on a PDP-11/45™ or PDP-11/70™.

sparc True if you are on a computer using a SPARC-family processor.

u3b True if you are on a 3B20 computer.

u3b2 True if you are on a 3B2 computer.

u3b5 True if you are on a 3B5 computer.

u3b15 True if you are on a 3B15 computer.

vax True if you are on a VAX-11/750™ or VAX-11/780™.

u370 True if you are on an IBM® System/370™ computer.

The commands that do not apply will return a false (non-zero) value. These
commands are often used within makefiles (see make(1S)) and shell scripts (see sh(1))
to increase portability.

See attributes(5) for descriptions of the following attributes:

machid(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

User Commands 787

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

make(1S), sh(1), test(1), true(1), uname(1), attributes(5)

The machid family of commands is obsolete. Use uname -p and uname -m instead.

machid(1)

SEE ALSO

NOTES

788 man pages section 1: User Commands • Last Revised 5 Jul 1990

mail, Mail – interactive message processing system

/usr/ucb/mail …

/usr/ucb/Mail …

/usr/ucb/mail and /usr/ucb/Mail are provided as links to /usr/bin/mailx.
See mailx(1) for more information on the usage of these commands.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

mailx(1),attributes(5)

mail(1B)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

/usr/ucb/mail

/usr/ucb/Mail

SEE ALSO

User Commands 789

mailcompat – provide SunOS compatibility for Solaris mailbox format

mailcompat is a program to provide SunOS 4.x compatability for the Solaris mailbox
format. You would typically run mailcompat to be able to read mail on a workstation
running SunOS 4.x when your mail server is running Solaris.

Enabling mailcompat creates an entry in your .forward file, if it exists. If this file
does not exist, mailcompat will create it. Disabling mailcompat will remove the
entry from the .forward file, and if this was the only entry, will remove the entire
file.

To execute mailcompat, log onto the Solaris mail server and enter mailcompat on
the command line. Answer the queries provided by the program.

See largefile(5) for the description of the behavior of mailcompat when
encountering files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Examples of the mailcompat feature.

The following example enables the mailcompat feature for the user "john".

example% mailcompat
This program can be used to store your mail in a format
that you can read with SunOS 4.X based mail readers
To enable the mailcompat feature a ".forward" file is created.
Would you like to enable the mailcompat feature? Y
Mailcompat feature ENABLED.Run mailcompat with no arguments to remove it
example%

The following example disables the mailcompat feature for the user "john".

example% mailcompat
This program can be used to store your mail in a format
that you can read with SunOS 4.X based mail readers
You have a .forward file in your home directory containing:

"|/usr/bin/mailcompat johns"
Would you like to remove it and disable the mailcompat feature? y
Back to normal reception of mail.
example%

~/.forward list of recipients for forwarding messages

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

mailx(1), attributes(5), largefile(5)

mailcompat(1)

NAME

DESCRIPTION

USAGE

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

790 man pages section 1: User Commands • Last Revised 4 Aug 1994

mailp, digestp, filep, newsp, filofaxp, franklinp, timemanp, timesysp – frontends to the
mp Text to PDL (Printer Description Language) pretty print filter

mailp [options] filename…

newsp [options] filename…

digestp [options] filename…

filep [options] filename…

filofaxp [options] filename…

franklinp [options] filename…

timemanp [options] filename…

timesysp [options] filename…

The mailp utility is a frontend to the mp(1) program. It uses different names to
provide various mp options:

mailp Prints out mail messages.

newsp Prints out USENET news articles.

digestp Prints out USENET digest files.

filep Prints out ordinary ASCII files.

filofaxp Prints out in Filofax personal organiser format.

franklinp Prints out in Franklin Planner personal organiser format.

timemanp Prints out in Time Manager personal organiser format.

timesysp Prints out in Time/System International personal organiser format.

mailp and the associated programs read each filename in sequence and generate a
prettified version of the contents. If no filename arguments are provided, mailp reads
the standard input.

mailp works in two ways. With the -D option, it will work as an X print server client
to produce the PDL of the target printer and spool it. With the -d or -P option, it will
generate and spool PostScript™ output.

The following options are supported:

-d printer Sends output to the named printer. Otherwise, sends output to the
printer named in the PRINTER environment variable.

-D Generates the PDL for the target printer and spools it to the
printer.

-F Instead of printing who the mail article is for, the top header will
contain who the mail article is from. This is a useful option for
people with their own personal printer.

mailp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 791

-h Banner printing is disabled. Most of the information that typically
appears on the banner sheet is output in the mp banners.

-l Formats output in landscape mode. Two pages of text will be
printed per sheet of paper.

-P printer Same as -d option.

-s subject Uses subject as the new subject for the printout. If you are printing
ordinary ASCII files which have been specified on the command
line, the subject will default to the name of each of these files.

The following operand is supported:

filename The name of the file to be read.

If none of the -d, -D, or -P options is used, mailp uses the PRINTER environment
variable to determine the printer to which the output from the mp(1)program is sent. If
the PRINTER variable is not found, the default destination is the PostScript™ printer.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmp

mp(1), attributes(5)

The -P option, which spools the PDL directly to the target printer in mp(1), produces
PostScript™ when used in mailp so as to be backward compatible.

mailp(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

792 man pages section 1: User Commands • Last Revised 30 Oct 2000

mailq – print the mail queue

/usr/bin/mailq [-q subarg] [-v]

The mailq utility displays a summary of the mail messages queued for future
delivery.

The first line displayed for each mail message shows the internal identifier used on
this host for the message, the size of the message in bytes, the date and time the
message was accepted into the queue, and the envelope sender of the message. The
second line of the display shows the error message that caused this message to be
retained in the queue. This line will not be displayed if the message is being processed
for the first time.

The mailq utility used to be identical to sendmail -bp. Now it checks for the
authorization attribute, solaris.mail.mailq. If the check for the invoking user
succeeds, sendmail -bp is executed with the remaining argument vector. Otherwise,
an error message is printed. This authorization attribute is by default enabled for all
users. It can be disabled by modifying the Basic Solaris User entry in prof_attr(4).

The following options are supported:

-qp[time] Similar to -qtime, except that instead of periodically forking a
child to process the queue, sendmail forks a single persistent
child for each queue that alternates between processing the queue
and sleeping. The sleep time is given as the argument. The sleep
time default is 1 second. The process will always sleep at least 5
seconds if the queue was empty in the previous queue run.

-qf Processes saved messages in the queue once and does not fork(),
but runs in the foreground.

-qG name Processes jobs in the queue group called name only.

-q[!]I substr Limits processed jobs to those containing substr as a substring of
the queue id, or not when ! is specified.

-q[!]R substr Limits processed jobs to those containing substr as a substring of
one of the recipients, or not when ! is specified.

-q[!]S substr Limits processed jobs to those containing substr as a substring of
the sender, or not when ! is specified.

-v Prints verbose information. This adds the priority of the message
and a single character indicator (+ or blank) indicating whether a
warning message has been sent on the first line of the message.
Additionally, extra lines may be intermixed with the recipients that
indicate the "controlling user" information. This shows who will
own any programs that are executed on behalf of this message and
the name of the alias this command is expanded from, if any.

0 Successful completion.

mailq(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

User Commands 793

>0 An error occurred.

/etc/security/prof_attr

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmu

sendmail(1M), prof_attr(4), attributes(5)

mailq(1)

FILES

ATTRIBUTES

SEE ALSO

794 man pages section 1: User Commands • Last Revised 19 Sep 2001

mailstats – print statistics collected by sendmail

mailstats [-o] [-c configfile | -C configfile] [-f statisticsfile] [-p] [-P]

The mailstats utility prints out the statistics collected by the sendmail(1M)
program on mailer usage. These statistics are collected if the file indicated by the
StatusFile configuration option of sendmail (defined in
/etc/mail/sendmail.cf) exists. The default statistics file is
/etc/mail/statistics.

To enable mailstats, you must, as root, touch /etc/mail/sendmail.st. See the
StatusFile processing option in sendmail(1M).

mailstats first prints the time that the statistics file was created and the last time it
was modified. Then, the statistics for each mailer are displayed on a single line, each
with the following whitespace-separated fields:

M The mailer number.

msgsfr Number of messages from the mailer.

bytes_from Kbytes from the mailer.

msgsto Number of messages to the mailer.

bytes_to Kbytes to the mailer.

msgsrej Number of messages rejected by the mailer.

msgsdis Number of messages discarded by the mailer.

Mailer The name of the mailer.

After this display, a line totaling the values for all of the mailers is displayed,
separated from the previous information by a line containing only equal sign (=)
characters.

To reinitialize the statistics file once a night, add an entry to root’s crontab(1):

mailstats -p > /dev/null

The following options are supported:

-c configfile
-C configfile Specifies a sendmail configuration file.

-f statisticsfile Specifies a sendmail statistics file.

-o Does not display the name of the mailer in the output.

-p Outputs information in program-readable mode and
clear statistics.

-P Outputs information in program-readable mode
without clearing statistics.

mailstats(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 795

See largefile(5) for the description of the behavior of mailstats when
encountering files greater than or equal to 2 Gbyte (231 bytes).

/dev/null zero-lined file

/etc/mail/statistics default sendmail statistics file

/etc/mail/sendmail.cf default sendmail configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmu

crontab(1), cron(1M), sendmail(1M), attributes(5), largefile(5)

mailstats(1)

USAGE

FILES

ATTRIBUTES

SEE ALSO

796 man pages section 1: User Commands • Last Revised 16 Nov 2001

mailx, mail – interactive message processing system

mailx [-BdeHiInNURvV~] [-f [file | +folder]] [-T file] [-u user]

mailx [-BdFintUv~] [-b bcc] [-c cc] [-h number] [-r address] [-s subject]
recipient…

/usr/ucb/mail …

/usr/ucb/Mail …

The mail utilities listed above provide a comfortable, flexible environment for sending
and receiving mail messages electronically.

When reading mail, the mail utilities provide commands to facilitate saving, deleting,
and responding to messages. When sending mail, the mail utilities allow editing,
reviewing and other modification of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the mailbox for that
user. When the mail utilities are called to read messages, the mailbox is the default
place to find them. As messages are read, they are marked to be moved to a secondary
file for storage, unless specific action is taken, so that the messages need not be seen
again.This secondary file is called the mbox and is normally located in the user’s HOME
directory (see MBOX in ENVIRONMENT VARIABLES for a description of this file).
Messages can be saved in other secondary files named by the user. Messages remain in
a secondary file until forcibly removed.

The user can access a secondary file by using the -f option. Messages in the
secondary file can then be read or otherwise processed using the same Commands as
in the primary mailbox. This gives rise within these pages to the notion of a current
mailbox.

On the command line options start with a dash (−). Any other arguments are taken to
be destinations (recipients). If no recipients are specified, mailx attempts to read
messages from the mailbox.

-B Do not buffer standard input or standard output.

-b bcc Set the blind carbon copy list to bcc. bcc should be enclosed in
quotes if it contains more than one name.

-c cc Set the carbon copy list to cc. cc should be enclosed in quotes if it
contains more than one name.

-d Turn on debugging output. (Neither particularly interesting nor
recommended.)

-e Test for the presence of mail. mailx prints nothing and exits with
a successful return code if there is mail to read.

-F Record the message in a file named after the first recipient.
Overrides the record variable, if set (see Internal
Variables).

mailx(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 797

-f [file] Read messages from file instead of mailbox. If no file is specified,
the mbox is used.

-f [+folder] Use the file folder in the folder directory (same as the folder
command). The name of this directory is listed in the folder
variable.

-H Print header summary only.

-h number The number of network “hops” made so far. This is provided for
network software to avoid infinite delivery loops. This option and
its argument are passed to the delivery program.

-I Include the newsgroup and article-id header lines when printing
mail messages. This option requires the -f option to be specified.

-i Ignore interrupts. See also ignore in Internal Variables.

-N Do not print initial header summary.

-n Do not initialize from the system default mailx.rc or Mail.rc
file. See USAGE.

-r address Use address as the return address when invoking the delivery
program. All tilde commands are disabled. This option and its
argument is passed to the delivery program.

-s subject Set the Subject header field to subject. subject should be enclosed in
quotes if it contains embedded white space.

-T file Message-id and article-id header lines are recorded in file after the
message is read. This option also sets the -I option.

-t Scan the input for To:, Cc:, and Bcc: fields. Any recipients on
the command line will be ignored.

-U Convert UUCP-style addresses to internet standards. Overrides
the conv environment variable.

-u user Read user’s mailbox. This is only effective if user’s mailbox is not
read protected.

-V Print the mailx version number and exit.

-v Pass the -v flag to sendmail(1M).

-~ Interpret tilde escapes in the input even if not reading from a tty.

The following operands are supported:

recipient Addressee of message.

At startup time, mailx executes the system startup file /etc/mail/mailx.rc. If
invoked as mail or Mail, the system startup file /etc/mail/Mail.rc is used
instead.

mailx(1)

OPERANDS

Starting Mail

798 man pages section 1: User Commands • Last Revised 19 Sep 2001

The system startup file sets up initial display options and alias lists and assigns values
to some internal variables. These variables are flags and valued parameters which are
set and cleared using the set and unset commands. See Internal Variables.

With the following exceptions, regular commands are legal inside startup files: !,
Copy, edit, followup, Followup, hold, mail, preserve, reply, Reply, shell, and visual.
An error in the startup file causes the remaining lines in the file to be ignored.

After executing the system startup file, the mail utilities execute the optional personal
startup file $HOME/.mailrc, wherein the user can override the values of the internal
variables as set by the system startup file.

If the -n option is specified, however, the mail utilities do not execute the system
startup file.

Many system administrators include the commands

set appenddeadletter
unset replyall

unset pipeignore

in the system startup files (to be compatible with past Solaris behavior), but this does
not meet standards requirements for mailx. To get standard behavior for mailx,
users should use the -n option or include the following commands in a personal
startup file:

unset appenddeadletter
set replyall

set pipeignore

When reading mail, the mail utilities are in command mode. A header summary of the
first several messages is displayed, followed by a prompt indicating the mail utilities
can accept regular commands (see Commands below). When sending mail, the mail
utilities are in input mode. If no subject is specified on the command line, and the
asksub variable is set, a prompt for the subject is printed.

As the message is typed, the mail utilities read the message and store it in a temporary
file. Commands may be entered by beginning a line with the tilde (~) escape character
followed by a single command letter and optional arguments. See Tilde Escapes
for a summary of these commands.

Each message is assigned a sequential number, and there is at any time the notion of a
current message, marked by a right angle bracket (>) in the header summary. Many
commands take an optional list of messages (message-list) to operate on. In most cases,
the current message is set to the highest-numbered message in the list after the
command is finished executing.

The default for message-list is the current message. A message-list is a list of message
identifiers separated by spaces, which may include:

mailx(1)

Reading Mail

User Commands 799

n Message number n.

. The current message.

^ The first undeleted message.

$ The last message.

* All messages.

+ The next undeleted message.

− The previous undeleted message.

n−m An inclusive range of message numbers.

user All messages from user.

/string All messages with string in the Subject line (case ignored).

:c All messages of type c, where c is one of:

d deleted messages

n new messages

o old messages

r read messages

u unread messages

Notice that the context of the command determines whether this
type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command
involved. Filenames, where expected, are expanded using the normal shell
conventions (see sh(1)). Special characters are recognized by certain commands and
are documented with the commands below.

Recipients listed on the command line may be of three types: login names, shell
commands, or alias groups. Login names may be any network address, including
mixed network addressing. If mail is found to be undeliverable, an attempt is made to
return it to the sender’s mailbox. If the recipient name begins with a pipe symbol (|
), the rest of the name is taken to be a shell command to pipe the message through.
This provides an automatic interface with any program that reads the standard input,
such as lp(1) for recording outgoing mail on paper. Alias groups are set by the alias
command (see Commands below) or in a system startup file (for example,
$HOME/.mailrc). Aliases are lists of recipients of any type.

To forward a specific message, include it in a message to the desired recipients with
the ~f or ~m tilde escapes. See Tilde Escapes below. To forward mail automatically,
add a comma-separated list of addresses for additional recipients to the .forward file
in your home directory. This is different from the format of the alias command,

mailx(1)

Sending Mail

Forwarding Mail

800 man pages section 1: User Commands • Last Revised 19 Sep 2001

which takes a space-separated list instead. Note: Forwarding addresses must be valid,
or the messages will “bounce.” You cannot, for instance, reroute your mail to a new
host by forwarding it to your new address if it is not yet listed in the NIS aliases
domain.

Regular commands are of the form

[command] [message-list] [arguments]

In input mode, commands are recognized by the escape character, tilde(~), and lines
not treated as commands are taken as input for the message. If no command is
specified in command mode, next is assumed. The following is a complete list of mailx
commands:

!shell-command
Escape to the shell. See SHELL in ENVIRONMENT VARIABLES.

comment
NULL command (comment). Useful in mailrc files.

=
Print the current message number.

?
Prints a summary of commands.

alias alias name . . .
group alias name . . .

Declare an alias for the given names. The names are substituted when alias is
used as a recipient. Useful in the mailrc file. With no arguments, the command
displays the list of defined aliases.

alternates name . . .
Declare a list of alternate names for your login. When responding to a message,
these names are removed from the list of recipients for the response. With no
arguments, print the current list of alternate names. See also allnet in Internal
Variables.

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [file]
copy [message-list] file

Copy messages to the file without marking the messages as saved. Otherwise
equivalent to the save command.

Copy [message-list]
Save the specified messages in a file whose name is derived from the author of the
message to be saved, without marking the messages as saved. Otherwise equivalent
to the Save command.

mailx(1)

Commands

User Commands 801

delete [message-list]
Delete messages from the mailbox. If autoprint is set, the next message after the
last one deleted is printed (see Internal Variables).

discard [header-field. . .]
ignore [header-field. . .]

Suppress printing of the specified header fields when displaying messages on the
screen. Examples of header fields to ignore are Status and Received. The fields
are included when the message is saved, unless the alwaysignore variable is set.
The More, Page, Print, and Type commands override this command. If no header is
specified, the current list of header fields being ignored is printed. See also the
undiscard and unignore commands.

dp [message-list]
dt [message-list]

Delete the specified messages from the mailbox and print the next message after
the last one deleted. Roughly equivalent to a delete command followed by a print
command.

echo string . . .
Echo the given strings (like echo(1)).

edit [message-list]
Edit the given messages. Each message is placed in a temporary file and the
program named by the EDITOR variable is invoked to edit it (see ENVIRONMENT
VARIABLES). Default editor is ed(1).

exit
xit

Exit from mailx, without changing the mailbox. No messages are saved in the
mbox (see also quit).

field [message-list] header-file
Display the value of the header field in the specified message.

file [file]
folder [file]

Quit from the current file of messages and read in the specified file. Several special
characters are recognized when used as file names:

% the current mailbox.

%user the mailbox for user.

the previous mail file.

& the current mbox.

+file The named file in the folder directory (listed in the folder variable).

With no arguments, print the name of the current mail file, and the number of
messages and characters it contains.

mailx(1)

802 man pages section 1: User Commands • Last Revised 19 Sep 2001

folders
Print the names of the files in the directory set by the folder variable (see
Internal Variables).

Followup [message]
Respond to a message, recording the response in a file whose name is derived from
the author of the message. Overrides the record variable, if set. If the replyall
variable is set, the actions of Followup and followup are reversed. See also the
followup, Save, and Copy commands and outfolder in Internal Variables,
and the Starting Mail section in USAGE above.

followup [message-list]
Respond to the first message in the message-list, sending the message to the author
of each message in the message-list. The subject line is taken from the first message
and the response is recorded in a file whose name is derived from the author of the
first message. If the replyall variable is set, the actions of followup and
Followup are reversed. See also the Followup, Save, and Copy commands and
outfolder in Internal Variables, and the Starting Mail section in
USAGE above.

from [message-list]
Print the header summary for the specified messages. If no messages are specified,
print the header summary for the current message.

group alias name . . .
alias alias name . . .

Declare an alias for the given names. The names are substituted when alias is
used as a recipient. Useful in the mailrc file.

headers [message]
Print the page of headers which includes the message specified. The screen
variable sets the number of headers per page (see Internal Variables). See also
the z command.

help
Print a summary of commands.

hold [message-list]
preserve [message-list]

Hold the specified messages in the mailbox.

if s | r | t
mail-commands
else
mail-commands
endif

Conditional execution, where s executes following mail-commands, up to an else or
endif, if the program is in send mode, r causes the mail-commands to be executed
only in receive mode, and t causes the mail-commands to be executed only if mailx
is being run from a terminal. Useful in the mailrc file.

mailx(1)

User Commands 803

inc
Incorporate messages that arrive while you are reading the system mailbox. The
new messages are added to the message list in the current mail session. This
command does not commit changes made during the session, and prior messages
are not renumbered.

ignore [header-field . . .]
discard [header-field . . .]

Suppress printing of the specified header fields when displaying messages on the
screen. Examples of header fields to ignore are Status and Cc. All fields are
included when the message is saved. The More, Page, Print and Type commands
override this command. If no header is specified, the current list of header fields
being ignored is printed. See also the undiscard and unignore commands.

list
Print all commands available. No explanation is given.

load
[message] file The specified message is replaced by the message in the named file.
file should contain a single mail message including mail headers (as saved by the
save command).

mail recipient . . .
Mail a message to the specified recipients.

Mail recipient
Mail a message to the specified recipients, and record it in a file whose name is
derived from the author of the message. Overrides the record variable, if set. See
also the Save and Copy commands and outfolder in Internal Variables.

mbox [message-list]
Arrange for the given messages to end up in the standard mbox save file when
mailx terminates normally. See MBOX in ENVIRONMENT VARIABLES for a
description of this file. See also the exit and quit commands.

more [message-list]
page [message-list]

Print the specified messages. If crt is set, the messages longer than the number of
lines specified by the crt variable are paged through the command specified by the
PAGER variable. The default command is pg(1) or if the bsdcompat variable is set,
the default is more(1). See ENVIRONMENT VARIABLES. Same as the print and
type commands.

More [message-list]
Page [message-list]

Print the specified messages on the screen, including all header fields. Overrides
suppression of fields by the ignore command. Same as the Print and Type
commands.

new [message-list]
New [message-list]
unread [message-list]

mailx(1)

804 man pages section 1: User Commands • Last Revised 19 Sep 2001

Unread
[message-list] Take a message list and mark each message as not having been read.

next [message]
Go to the next message matching message. If message is not supplied, this command
finds the next message that was not deleted or saved. A message-list may be
specified, but in this case the first valid message in the list is the only one used. This
is useful for jumping to the next message from a specific user, since the name
would be taken as a command in the absence of a real command. See the discussion
of message-list above for a description of possible message specifications.

pipe [message-list] [shell-command]
| [message-list] [shell-command]

Pipe the message through the given shell-command. The message is treated as if it
were read. If no arguments are given, the current message is piped through the
command specified by the value of the cmd variable. If the page variable is set, a
form feed character is inserted after each message (see Internal Variables).

preserve [message-list]
hold [message-list]

Preserve the specified messages in the mailbox.

print [message-list]
type [message-list]

Print the specified messages. If crt is set, the messages longer than the number of
lines specified by the crt variable are paged through the command specified by the
PAGER variable. The default command is pg(1) or if the bsdcompat variable is set,
the default is more(1). See ENVIRONMENT VARIABLES. Same as the more and
page commands.

Print [message-list]
Type [message-list]

Print the specified messages on the screen, including all header fields. Overrides
suppression of fields by the ignore command. Same as the More and Page
commands.

put [file]
put [message-list] file

Save the specified message in the given file. Use the same conventions as the print
command for which header fields are ignored.

Put [file]
Put [message-list] file

Save the specified message in the given file. Overrides suppression of fields by the
ignore command.

quit
Exit from mailx, storing messages that were read in mbox and unread messages in
the mailbox. Messages that have been explicitly saved in a file are deleted unless
the keepsave variable is set.

mailx(1)

User Commands 805

reply [message-list]
respond [message-list]
replysender [message-list]

Send a response to the author of each message in the message-list. The subject line is
taken from the first message. If record is set to a file, a copy of the reply is added
to that file. If the replyall variable is set, the actions of Reply/Respond and
reply/respond are reversed. The replysender command is not affected by the
replyall variable, but sends each reply only to the sender of each message. See
the Starting Mail section in USAGE above.

Reply [message]
Respond [message]
replyall [message]

Reply to the specified message, including all other recipients of that message. If the
variable record is set to a file, a copy of the reply added to that file. If the
replyall variable is set, the actions of Reply/Respond and reply/respond are
reversed. The replyall command is not affected by the replyall variable, but
always sends the reply to all recipients of the message. See the Starting Mail
section in USAGE above.

retain
Add the list of header fields named to the retained list. Only the header fields in the
retain list are shown on your terminal when you print a message. All other header
fields are suppressed. The set of retained fields specified by the retain command
overrides any list of ignored fields specified by the ignore command. The Type and
Print commands can be used to print a message in its entirety. If retain is executed
with no arguments, it lists the current set of retained fields.

Save [message-list]
Save the specified messages in a file whose name is derived from the author of the
first message. The name of the file is taken to be the author’s name with all network
addressing stripped off. See also the Copy, followup, and Followup commands and
outfolder in Internal Variables.

save [file]
save [message-list] file

Save the specified messages in the given file. The file is created if it does not exist.
The file defaults to mbox. The message is deleted from the mailbox when mailx
terminates unless keepsave is set (see also Internal Variables and the exit
and quit commands).

set
set variable
set variable=string
set variable=number

Define a variable. To assign a value to variable, separate the variable name from the
value by an ‘=’ (there must be no space before or after the ‘=’). A variable may be
given a null, string, or numeric value. To embed SPACE characters within a value,
enclose it in quotes.

mailx(1)

806 man pages section 1: User Commands • Last Revised 19 Sep 2001

With no arguments, set displays all defined variables and any values they might
have. See Internal Variables for a description of all predefined mail
variables.

shell
Invoke an interactive shell. See also SHELL in ENVIRONMENT VARIABLES.

size [message-list]
Print the size in characters of the specified messages.

source file
Read commands from the given file and return to command mode.

top [message-list]
Print the top few lines of the specified messages. If the toplines variable is set, it
is taken as the number of lines to print (see Internal Variables). The default is
5.

touch [message-list]
Touch the specified messages. If any message in message-list is not specifically saved
in a file, it is placed in the mbox, or the file specified in the MBOX environment
variable, upon normal termination. See exit and quit.

Type [message-list]
Print [message-list]

Print the specified messages on the screen, including all header fields. Overrides
suppression of fields by the ignore command.

type [message-list]
print [message-list]

Print the specified messages. If crt is set, the messages longer than the number of
lines specified by the crt variable are paged through the command specified by the
PAGER variable. The default command is pg(1). See ENVIRONMENT VARIABLES.

unalias [alias] . . .
ungroup [alias] . . .

Remove the definitions of the specified aliases.

undelete [message-list]
Restore the specified deleted messages. Will only restore messages deleted in the
current mail session. If autoprint is set, the last message of those restored is
printed (see Internal Variables).

undiscard [header-field . . .]
unignore [header-field . . .]

Remove the specified header fields from the list being ignored. If no header fields
are specified, all header fields are removed from the list being ignored.

unretain [header-field . . .]
Remove the specified header fields from the list being retained. If no header fields
are specified, all header fields are removed from the list being retained.

unread [message-list]
Unread [message-list] Same as the new command.

mailx(1)

User Commands 807

unset variable . . .
Erase the specified variables. If the variable was imported from the environment
(that is, an environment variable or exported shell variable), it cannot be unset from
within mailx.

version
Print the current version and release date of the mailx utility.

visual [message-list]
Edit the given messages with a screen editor. Each messages is placed in a
temporary file and the program named by the VISUAL variable is invoked to edit it
(see ENVIRONMENT VARIABLES). Notice that the default visual editor is vi.

write [message-list] file
Write the given messages on the specified file, minus the header and trailing blank
line. Otherwise equivalent to the save command.

xit
exit

Exit from mailx, without changing the mailbox. No messages are saved in the
mbox (see also quit).

z[+ | −]
Scroll the header display forward or backward one screen−full. The number of
headers displayed is set by the screen variable (see Internal Variables).

The following tilde escape commands can be used when composing mail to send.
These may be entered only from input mode, by beginning a line with the tilde escape
character (~). See escape in Internal Variables for changing this special
character. The escape character can be entered as text by typing it twice.

~ !shell-command Escape to the shell. If present, run shell-command.

~. Simulate end of file (terminate message input).

~ :mail-command
~_ mail-command Perform the command-level request. Valid only when

sending a message while reading mail.

~? Print a summary of tilde escapes.

~A Insert the autograph string Sign into the message (see
Internal Variables).

~a Insert the autograph string sign into the message (see
Internal Variables).

~b name . . . Add the names to the blind carbon copy (Bcc) list. This
is like the carbon copy (Cc) list, except that the names
in the Bcc list are not shown in the header of the mail
message.

~c name . . . Add the names to the carbon copy (Cc) list.

mailx(1)

Tilde Escapes

808 man pages section 1: User Commands • Last Revised 19 Sep 2001

~d Read in the dead-letter file. See DEAD in
ENVIRONMENT VARIABLES for a description of this
file.

~e Invoke the editor on the partial message. See also
EDITOR in ENVIRONMENT VARIABLES.

~f [message-list] Forward the specified message, or the current message
being read. Valid only when sending a message while
reading mail. The messages are inserted into the
message without alteration (as opposed to the ~m
escape).

~F [message-list] Forward the specified message, or the current message
being read, including all header fields. Overrides the
suppression of fields by the ignore command.

~h Prompt for Subject line and To, Cc, and Bcc lists. If
the field is displayed with an initial value, it may be
edited as if you had just typed it.

~i variable Insert the value of the named variable into the text of
the message. For example, ~A is equivalent to ‘~i
Sign.’ Environment variables set and exported in the
shell are also accessible by ~i.

~m [message-list] Insert the listed messages, or the current message being
read into the letter. Valid only when sending a message
while reading mail. The text of the message is shifted to
the right, and the string contained in the
indentprefix variable is inserted as the leftmost
characters of each line. If indentprefix is not set, a
TAB character is inserted into each line.

~M [message-list] Insert the listed messages, or the current message being
read, including the header fields, into the letter. Valid
only when sending a message while reading mail. The
text of the message is shifted to the right, and the string
contained in the indentprefix variable is inserted as
the leftmost characters of each line. If indentprefix
is not set, a TAB character is inserted into each line.
Overrides the suppression of fields by the ignore
command.

~p Print the message being entered.

~q Quit from input mode by simulating an interrupt. If the
body of the message is not null, the partial message is
saved in dead-letter. See DEAD in ENVIRONMENT
VARIABLES for a description of this file.

~R Mark message for return receipt.

mailx(1)

User Commands 809

~r file
~< file
~< ! shell-command Read in the specified file. If the argument begins with

an exclamation point (!), the rest of the string is taken
as an arbitrary shell command and is executed, with
the standard output inserted into the message.

~s string . . . Set the subject line to string.

~t name . . . Add the given names to the To list.

~v Invoke a preferred screen editor on the partial message.
The default visual editor is vi(1). See also VISUAL in
ENVIRONMENT VARIABLES.

~w file Write the message into the given file, without the
header.

~x Exit as with ~q except the message is not saved in
dead-letter.

~| shell-command Pipe the body of the message through the given
shell-command. If the shell-command returns a successful
exit status, the output of the command replaces the
message.

The following variables are internal variables. They may be imported from the
execution environment or set using the set command at any time. The unset
command may be used to erase variables.

allnet All network names whose last component (login name)
match are treated as identical. This causes the
message-list message specifications to behave similarly.
Disabled by default. See also the alternates command
and the metoo and fuzzymatch variables.

alwaysignore Ignore header fields with ignore everywhere, not just
during print or type. Affects the save, Save, copy,
Copy, top, pipe, and write commands, and the ~m and
~f tilde escapes. Enabled by default.

append Upon termination, append messages to the end of the
mbox file instead of prepending them. Although
disabled by default, append is set in the system startup
file (which can be suppressed with the -n command
line option).

appenddeadletter Append to the deadletter file rather than overwrite it.
Although disabled by default, appenddeadletter is
frequently set in the system startup file. See Starting
Mail in USAGE above.

mailx(1)

Internal Variables

810 man pages section 1: User Commands • Last Revised 19 Sep 2001

askbcc Prompt for the Bcc list after the Subject is entered if
it is not specified on the command line with the -b
option. Disabled by default.

askcc Prompt for the Cc list after the Subject is entered if it
is not specified on the command line with the -c
option. Disabled by default.

asksub Prompt for subject if it is not specified on the command
line with the -s option. Enabled by default.

autoinc Automatically incorporate new messages into the
current session as they arrive. This has an affect similar
to issuing the inc command every time the command
prompt is displayed. Disabled by default, but autoinc
is set in the default system startup file for mailx; it is
not set for /usr/ucb/mail or /usr/ucb/Mail.

autoprint Enable automatic printing of messages after delete and
undelete commands. Disabled by default.

bang Enable the special-casing of exclamation points (!) in
shell escape command lines as in vi(1). Disabled by
default.

bsdcompat Set automatically if mailx is invoked as mail or Mail.
Causes mailx to use /etc/mail/Mail.rc as the
system startup file. Changes the default pager to
more(1).

cmd=shell-command Set the default command for the pipe command. No
default value.

conv=conversion Convert uucp addresses to the specified address style,
which can be either:

internet This requires a mail delivery
program conforming to the RFC822
standard for electronic mail
addressing.

optimize Remove loops in uucp(1C) address
paths (typically generated by the
reply command). No rerouting is
performed; mail has no knowledge
of UUCP routes or connections.

Conversion is disabled by default. See also
sendmail(1M) and the -U command-line option.

crt[=number] Pipe messages having more than number lines through
the command specified by the value of the PAGER

mailx(1)

User Commands 811

variable (pg(1) or more(1) by default). If number is not
specified, the current window size is used. Disabled by
default.

debug Enable verbose diagnostics for debugging. Messages
are not delivered. Disabled by default.

dot Take a period on a line by itself, or EOF during input
from a terminal as end-of-file. Disabled by default, but
dot is set in the system startup file (which can be
suppressed with the -n command line option).

fcc By default, mailx will treat any address containing a
slash ("/") character as a local "send to file" address. By
unsetting this option, this behavior is disabled. Enabled
by default.

flipr Reverse the effect of the followup/Followup and
reply/Reply command pairs. If both flipr and
replyall are set, the effect is as if neither was set.

from Extract the author listed in the header summary from
the From: header instead of the UNIX From line.
Enabled by default.

fuzzymatch The from command searches for messages from the
indicated sender. By default, the full sender address
must be specified. By setting this option, only a
sub-string of the sender address need be specified.
Disabled by default.

escape=c Substitute c for the ~ escape character. Takes effect with
next message sent.

folder=directory The directory for saving standard mail files.
User-specified file names beginning with a plus (+) are
expanded by preceding the file name with this
directory name to obtain the real file name. If directory
does not start with a slash (/), $HOME is prepended to
it. There is no default for the folder variable. See also
outfolder below.

header Enable printing of the header summary when entering
mailx. Enabled by default.

hold Preserve all messages that are read in the mailbox
instead of putting them in the standard mbox save file.
Disabled by default.

ignore Ignore interrupts while entering messages. Handy for
noisy dial-up lines. Disabled by default.

mailx(1)

812 man pages section 1: User Commands • Last Revised 19 Sep 2001

ignoreeof Ignore end-of-file during message input. Input must be
terminated by a period (.) on a line by itself or by the
~. command. See also dot above. Disabled by default.

indentprefix=string When indentprefix is set, string is used to mark
indented lines from messages included with ~m. The
default is a TAB character.

keep When the mailbox is empty, truncate it to zero length
instead of removing it. Disabled by default.

iprompt=string The specified prompt string is displayed before each
line on input is requested when sending a message.

keepsave Keep messages that have been saved in other files in
the mailbox instead of deleting them. Disabled by
default.

makeremote When replying to all recipients of a message, if an
address does not include a machine name, it is
assumed to be relative to the sender of the message.
Normally not needed when dealing with hosts that
support RFC822.

metoo If your login appears as a recipient, do not delete it
from the list. Disabled by default.

mustbang Force all mail addresses to be in bang format.

onehop When responding to a message that was originally sent
to several recipients, the other recipient addresses are
normally forced to be relative to the originating
author’s machine for the response. This flag disables
alteration of the recipients’ addresses, improving
efficiency in a network where all machines can send
directly to all other machines (that is, one hop away).
Disabled by default.

outfolder Locate the files used to record outgoing messages in
the directory specified by the folder variable unless
the path name is absolute. Disabled by default. See
folder above and the Save, Copy, followup, and
Followup commands.

page Used with the pipe command to insert a form feed
after each message sent through the pipe. Disabled by
default.

pipeignore Omit ignored header when outputting to the pipe
command. Although disabled by default, pipeignore
is frequently set in the system startup file. See
Starting Mail in USAGE above.

mailx(1)

User Commands 813

postmark Your "real name" to be included in the From line of
messages you send. By default this is derived from the
comment field in your passwd(4) file entry.

prompt=string Set the command mode prompt to string. Default is “? ”,
unless the bsdcompat variable is set, then the default
is “&”.

quiet Refrain from printing the opening message and version
when entering mailx. Disabled by default.

record=file Record all outgoing mail in file. Disabled by default.
See also outfolder above.

replyall Reverse the effect of the reply and Reply and followup
and Followup commands. Although set by default,
replayall is frequently unset in the system startup
file. See flipr and Starting Mail in USAGE above.

returnaddr=string The default sender address is that of the current user.
This variable can be used to set the sender address to
any arbitrary value. Set with caution.

save Enable saving of messages in dead-letter on
interrupt or delivery error. See DEAD for a description
of this file. Enabled by default.

screen=number Sets the number of lines in a screen-full of headers for
the headers command. number must be a positive
number.

The default is set according to baud rate or window
size. With a baud rate less than 1200, number defaults
to 5, if baud rate is exactly 1200, it defaults to 10. If
you are in a window, number defaults to the default
window size minus 4. Otherwise, the default is 20.

sendmail=shell-command Alternate command for delivering messages. Note: In
addition to the expected list of recipients, mail also
passes the -i and -m, flags to the command. Since
these flags are not appropriate to other commands, you
may have to use a shell script that strips them from the
arguments list before invoking the desired command.
Default is /usr/bin/rmail.

sendwait Wait for background mailer to finish before returning.
Disabled by default.

showname Causes the message header display to show the
sender’s real name (if known) rather than their mail

mailx(1)

814 man pages section 1: User Commands • Last Revised 19 Sep 2001

address. Disabled by default, but showname is set in
the /etc/mail/mailx.rc system startup file for
mailx.

showto When displaying the header summary and the message
is from you, print the recipient’s name instead of the
author’s name.

sign=string The variable inserted into the text of a message when
the ~a (autograph) command is given. No default (see
also ~i in Tilde Escapes).

‘

Sign=string The variable inserted into the text of a message when
the ~A command is given. No default (see also ~i in
Tilde Escapes).

toplines=number The number of lines of header to print with the top
command. Default is 5.

verbose Invoke sendmail(1M) with the -v flag.

translate The name of a program to translate mail addresses. The
program receives mail addresses as arguments. The
program produces, on the standard output, lines
containing the following data, in this order:

� the postmark for the sender (see the postmark
variable)

� translated mail addresses, one per line,
corresponding to the program’s arguments. Each
translated address will replace the corresponding
address in the mail message being sent.

� a line containing only "y" or "n". if the line contains
"y" the user will be asked to confirm that the
message should be sent.

The translate program will be invoked for each mail
message to be sent. If the program exits with a
non-zero exit status, or fails to produce enough output,
the message is not sent.

See largefile(5) for the description of the behavior of mailx when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of mailx: HOME, LANG, LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH,
and TERM.

DEAD The name of the file in which to save partial letters in case of
untimely interrupt. Default is $HOME/dead.letter.

mailx(1)

Large File
Behavior

ENVIRONMENT
VARIABLES

User Commands 815

EDITOR The command to run when the edit or ~e command is used.
Default is ed(1).

LISTER The command (and options) to use when listing the contents of the
folder directory. The default is ls(1).

MAIL The name of the initial mailbox file to read (in lieu of the standard
system mailbox). The default is /var/mail/username .

MAILRC The name of the startup file. Default is $HOME/.mailrc.

MAILX_HEAD The specified string is included at the beginning of the body of
each message that is sent.

MAILX_TAIL The specified string is included at the end of the body of each
message that is sent.

MBOX The name of the file to save messages which have been read. The
exit command overrides this function, as does saving the message
explicitly in another file. Default is $HOME/mbox.

PAGER The command to use as a filter for paginating output. This can also
be used to specify the options to be used. Default is pg(1), or if the
bsdcompat variable is set, the default is more(1). See Internal
Variables.

SHELL The name of a preferred command interpreter. Default is sh(1).

VISUAL The name of a preferred screen editor. Default is vi(1).

When the -e option is specified, the following exit values are returned:

0 Mail was found.

>0 Mail was not found or an error occurred.

Otherwise, the following exit values are returned:

0 Successful completion. Notice that this status implies that all messages
were sent, but it gives no assurances that any of them were actually
delivered.

>0 An error occurred

$HOME/.mailrc
personal startup file

$HOME/mbox
secondary storage file

$HOME/.Maillock
lock file to prevent multiple writers of system mailbox

/etc/mail/mailx.rc
optional system startup file for mailx only

mailx(1)

EXIT STATUS

FILES

816 man pages section 1: User Commands • Last Revised 19 Sep 2001

/etc/mail/Mail.rc
BSD compatibility system-wide startup file for /usr/ucb/mail and
/usr/ucb/Mail

/tmp/R[emqsx]*
temporary files

/usr/share/lib/mailx/mailx.help*
help message files

/var/mail/*
post office directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

biff(1B), echo(1), ed(1), ex(1), fmt(1), lp(1), ls(1), mail(1), mail(1B),
mailcompat(1), more(1), pg(1), sh(1), uucp(1C), vacation(1), vi(1),
newaliases(1M), sendmail(1M), aliases(4), passwd(4), attributes(5),
environ(5), largefile(5), standards(5)

Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards need
some time to settle down.

Replies do not always generate correct return addresses. Try resending the errant reply
with onehop set.

mailx does not lock your record file. So, if you use a record file and send two or more
messages simultaneously, lines from the messages may be interleaved in the record
file.

The format for the alias command is a space-separated list of recipients, while the
format for an alias in either the .forward or /etc/aliases is a comma-separated
list.

To read mail on a workstation running Solaris 1.x when your mail server is running
Solaris 2.x, first execute the mailcompat(1) program.

mailx(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 817

make – maintain, update, and regenerate related programs and files

/usr/ccs/bin/make [-d] [-dd] [-D] [-DD] [-e] [-i] [-k] [-n] [-p]
[-P] [-q] [-r] [-s] [-S] [-t] [-V] [-f makefile]… [-K statefile]…
[target…] [macro = value…]

/usr/xpg4/bin/make [-d] [-dd] [-D] [-DD] [-e] [-i] [-k] [-n] [-p]
[-P] [-q] [-r] [-s] [-S] [-t] [-V] [-f makefile]… [target…] [macro
= value…]

The make utility executes a list of shell commands associated with each target,
typically to create or update a file of the same name. makefile contains entries that
describe how to bring a target up to date with respect to those on which it depends,
which are called dependencies. Since each dependency is a target, it may have
dependencies of its own. Targets, dependencies, and sub-dependencies comprise a tree
structure that make traces when deciding whether or not to rebuild a target.

The make utility recursively checks each target against its dependencies, beginning
with the first target entry in makefile if no target argument is supplied on the command
line. If, after processing all of its dependencies, a target file is found either to be
missing, or to be older than any of its dependencies, make rebuilds it. Optionally with
this version of make, a target can be treated as out-of-date when the commands used
to generate it have changed since the last time the target was built.

To build a given target, make executes the list of commands, called a rule. This rule
may be listed explicitly in the target’s makefile entry, or it may be supplied implicitly
by make.

If no target is specified on the command line, make uses the first target defined in
makefile.

If a target has no makefile entry, or if its entry has no rule, make attempts to derive a
rule by each of the following methods, in turn, until a suitable rule is found. Each
method is described under USAGE below.

� Pattern matching rules.
� Implicit rules, read in from a user-supplied makefile.
� Standard implicit rules (also known as suffix rules), typically read in from the file

/usr/share/lib/make/make.rules.
� SCCS retrieval. make retrieves the most recent version from the SCCS history file

(if any). See the description of the .SCCS_GET: special-function target for details.
� The rule from the .DEFAULT: target entry, if there is such an entry in the makefile.

If there is no makefile entry for a target, if no rule can be derived for building it, and if
no file by that name is present, make issues an error message and halts.

The following options are supported:

make(1S)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

818 man pages section 1: User Commands • Last Revised 1 Nov 1999

-d Displays the reasons why make chooses to rebuild a target; make
displays any and all dependencies that are newer. In addition,
make displays options read in from the MAKEFLAGS environment
variable.

-dd Displays the dependency check and processing in vast detail.

-D Displays the text of the makefiles read in.

-DD Displays the text of the makefiles, make.rules file, the state file,
and all hidden-dependency reports.

-e Environment variables override assignments within makefiles.

-f makefile Uses the description file makefile. A ‘−’ as the makefile argument
denotes the standard input. The contents of makefile, when present,
override the standard set of implicit rules and predefined macros.
When more than one ‘-f makefile’ argument pair appears, make
uses the concatenation of those files, in order of appearance.

When no makefile is specified, /usr/ccs/bin/make tries the
following in sequence, except when in POSIX mode (see the
.POSIX Special-Function Targets in the USAGE section below):

� If there is a file named makefile in the working directory,
make uses that file. If, however, there is an SCCS history file
(SCCS/s.makefile) which is newer, make attempts to
retrieve and use the most recent version.

� In the absence of the above file(s), if a file named Makefile is
present in the working directory, make attempts to use it. If
there is an SCCS history file (SCCS/s.Makefile) that is
newer, make attempts to retrieve and use the most recent
version.

When no makefile is specified, /usr/ccs/bin/make in POSIX
mode and /usr/xpg4/bin/make try the following files in
sequence:

� ./makefile, ./Makefile
� s.makefile, SCCS/s.makefile
� s.Makefile, SCCS/s.Makefile

-i Ignores error codes returned by commands. Equivalent to the
special-function target ‘.IGNORE:’.

-k When a nonzero error status is returned by a rule, or when make
cannot find a rule, abandons work on the current target, but
continues with other dependency branches that do not depend on
it.

-K statefile Uses the state file statefile. A ‘−’ as the statefile argument denotes the
standard input. The contents of statefile, when present, override the

make(1S)

User Commands 819

standard set of implicit rules and predefined macros. When more
than one ‘-K statefile’ argument pair appears, make uses the
concatenation of those files, in order of appearance. (See also
.KEEP_STATE and .KEEP_STATE_FILE in the Special-Function
Targets section).

-n No execution mode. Prints commands, but does not execute them.
Even lines beginning with an @ are printed. However, if a
command line contains a reference to the $(MAKE) macro, that
line is always executed (see the discussion of MAKEFLAGS in
Reading Makefiles and the Environment). When in POSIX mode,
lines beginning with a “+” are executed.

-p Prints out the complete set of macro definitions and target
descriptions.

-P Merely reports dependencies, rather than building them.

-q Question mode. make returns a zero or nonzero status code
depending on whether or not the target file is up to date. When in
POSIX mode, lines beginning with a “+” are executed.

-r Does not read in the default makefile
/usr/share/lib/make/make.rules.

-s Silent mode. Does not print command lines before executing them.
Equivalent to the special-function target .SILENT:.

-S Undoes the effect of the -k option. Stops processing when a
non-zero exit status is returned by a command.

-t Touches the target files (bringing them up to date) rather than
performing their rules. This can be dangerous when files are
maintained by more than one person. When the .KEEP_STATE:
target appears in the makefile, this option updates the state file just
as if the rules had been performed. When in POSIX mode, lines
beginning with a “+” are executed.

-V Puts make into SysV mode. Refer to sysV-make(1) for respective
details.

The following operands are supported:

target Target names, as defined in USAGE.

macro=value Macro definition. This definition overrides any regular definition
for the specified macro within the makefile itself, or in the
environment. However, this definition can still be overridden by
conditional macro assignments.

make(1S)

OPERANDS

820 man pages section 1: User Commands • Last Revised 1 Nov 1999

When make first starts, it reads the MAKEFLAGS environment variable to obtain any of
the following options specified present in its value: -d, -D, -e, -i, -k, -n, -p, -q, -r,
-s, -S, or -t. Due to the implementation of POSIX.2 (see POSIX.2(5), the
MAKEFLAGS values will contain a leading ‘−’ character. The make utility then reads the
command line for additional options, which also take effect.

Next, make reads in a default makefile that typically contains predefined macro
definitions, target entries for implicit rules, and additional rules, such as the rule for
retrieving SCCS files. If present, make uses the file make.rules in the current
directory; otherwise it reads the file /usr/share/lib/make/make.rules, which
contains the standard definitions and rules. Use the directive:

include /usr/share/lib/make/make.rulesin your local make.rules file to include
them.

Next, make imports variables from the environment (unless the -e option is in effect),
and treats them as defined macros. Because make uses the most recent definition it
encounters, a macro definition in the makefile normally overrides an environment
variable of the same name. When -e is in effect, however, environment variables are
read in after all makefiles have been read. In that case, the environment variables take
precedence over definitions in the makefile.

Next, make reads any makefiles you specify with -f, or one of makefile or
Makefile as described above and then the state file, in the local directory if it exists.
If the makefile contains a .KEEP_STATE_FILE target, then it reads the state file that
follows the target. Refer to special target .KEEP_STATE_FILE for details.

Next (after reading the environment if -e is in effect), make reads in any macro
definitions supplied as command line arguments. These override macro definitions in
the makefile and the environment both, but only for the make command itself.

make exports environment variables, using the most recently defined value. Macro
definitions supplied on the command line are not normally exported, unless the macro
is also an environment variable.

make does not export macros defined in the makefile. If an environment variable is
set, and a macro with the same name is defined on the command line, make exports its
value as defined on the command line. Unless -e is in effect, macro definitions within
the makefile take precedence over those imported from the environment.

The macros MAKEFLAGS, MAKE, SHELL, HOST_ARCH, HOST_MACH, and TARGET_MACH
are special cases. See Special-Purpose Macros below for details.

A target entry has the following format:

target [: | ::] [dependency] . . . [; command] . . .
[command]
. . .

make(1S)

Reading Makefiles
and the

Environment

Makefile Target
Entries

User Commands 821

The first line contains the name of a target, or a space-separated list of target names,
terminated with a colon or double colon. If a list of targets is given, this is equivalent
to having a separate entry of the same form for each target. The colon(s) may be
followed by a dependency, or a dependency list. make checks this list before building
the target. The dependency list may be terminated with a semicolon (;), which in turn
can be followed by a single Bourne shell command. Subsequent lines in the target
entry begin with a TAB and contain Bourne shell commands. These commands
comprise the rule for building the target.

Shell commands may be continued across input lines by escaping the NEWLINE with
a backslash (\). The continuing line must also start with a TAB.

To rebuild a target, make expands macros, strips off initial TAB characters and either
executes the command directly (if it contains no shell metacharacters), or passes each
command line to a Bourne shell for execution.

The first non-empty line that does not begin with a TAB or ’#’ begins another target or
macro definition.

Start a comment. The comment ends at the next
NEWLINE. If the ‘#’ follows the TAB in a command
line, that line is passed to the shell (which also treats ‘#’
as the start of a comment).

include filename If the word include appears as the first seven letters
of a line and is followed by a SPACE or TAB, the string
that follows is taken as a filename to interpolate at that
line. include files can be nested to a depth of no more
than about 16. If filename is a macro reference, it is
expanded.

: Target list terminator. Words following the colon are
added to the dependency list for the target or targets. If
a target is named in more than one colon-terminated
target entry, the dependencies for all its entries are
added to form that target’s complete dependency list.

:: Target terminator for alternate dependencies. When
used in place of a ‘:’ the double-colon allows a target
to be checked and updated with respect to alternate
dependency lists. When the target is out-of-date with
respect to dependencies listed in the first alternate, it is
built according to the rule for that entry. When
out-of-date with respect to dependencies in another
alternate, it is built according the rule in that other
entry. Implicit rules do not apply to double-colon
targets; you must supply a rule for each entry. If no
dependencies are specified, the rule is always
performed.

make(1S)

Global

Targets and
Dependencies

822 man pages section 1: User Commands • Last Revised 1 Nov 1999

target [+ target. . .] : Target group. The rule in the target entry builds all the
indicated targets as a group. It is normally performed
only once per make run, but is checked for command
dependencies every time a target in the group is
encountered in the dependency scan.

% Pattern matching wild card metacharacter. Like the ‘*’
shell wild card, ‘%’ matches any string of zero or more
characters in a target name or dependency, in the target
portion of a conditional macro definition, or within a
pattern replacement macro reference. Notice that only
one ‘%’ can appear in a target, dependency-name, or
pattern-replacement macro reference.

./pathname make ignores the leading ‘./’ characters from targets
with names given as pathnames relative to “dot,” the
working directory.

= Macro definition. The word to the left of this character is the macro
name; words to the right comprise its value. Leading and trailing
white space characters are stripped from the value. A word break
following the = is implied.

$ Macro reference. The following character, or the parenthesized or
bracketed string, is interpreted as a macro reference: make expands
the reference (including the $) by replacing it with the macro’s
value.

()
{ } Macro-reference name delimiters. A parenthesized or bracketed

word appended to a $ is taken as the name of the macro being
referred to. Without the delimiters, make recognizes only the first
character as the macro name.

$$ A reference to the dollar-sign macro, the value of which is the
character ‘$’. Used to pass variable expressions beginning with $
to the shell, to refer to environment variables which are expanded
by the shell, or to delay processing of dynamic macros within the
dependency list of a target, until that target is actually processed.

\$ Escaped dollar-sign character. Interpreted as a literal dollar sign
within a rule.

+= When used in place of ‘=’, appends a string to a macro definition
(must be surrounded by white space, unlike ‘=’).

:= Conditional macro assignment. When preceded by a list of targets
with explicit target entries, the macro definition that follows takes
effect when processing only those targets, and their dependencies.

:sh = Define the value of a macro to be the output of a command (see
Command Substitutions below).

make(1S)

Macros

User Commands 823

:sh In a macro reference, execute the command stored in the macro,
and replace the reference with the output of that command (see
Command Substitutions below).

+ make will always execute the commands preceded by a “+”, even
when -n is specified.

− make ignores any nonzero error code returned by a command line
for which the first non-TAB character is a ‘−’. This character is not
passed to the shell as part of the command line. make normally
terminates when a command returns nonzero status, unless the -i
or -k options, or the .IGNORE: special-function target is in effect.

@ If the first non-TAB character is a @, make does not print the
command line before executing it. This character is not passed to
the shell.

? Escape command-dependency checking. Command lines starting
with this character are not subject to command dependency
checking.

! Force command-dependency checking. Command-dependency
checking is applied to command lines for which it would
otherwise be suppressed. This checking is normally suppressed for
lines that contain references to the ‘?’ dynamic macro (for
example, ‘$?’).

When any combination of ‘+’, ‘−’, ‘@’, ‘?’, or ‘!’ appear as the first
characters after the TAB, all that are present apply. None are
passed to the shell.

When incorporated in a makefile, the following target names perform
special-functions:

.DEFAULT: If it has an entry in the makefile, the rule for this target
is used to process a target when there is no other entry
for it, no rule for building it, and no SCCS history file
from which to retrieve a current version. make ignores
any dependencies for this target.

.DONE: If defined in the makefile, make processes this target
and its dependencies after all other targets are built.
This target is also performed when make halts with an
error, unless the .FAILED target is defined.

.FAILED: This target, along with its dependencies, is performed
instead of .DONE when defined in the makefile and
make halts with an error.

make(1S)

Rules

Special-Function
Targets

824 man pages section 1: User Commands • Last Revised 1 Nov 1999

.GET_POSIX: This target contains the rule for retrieving the current
version of an SCCS file from its history file in the
current working directory. make uses this rule when it
is running in POSIX mode.

.IGNORE: Ignore errors. When this target appears in the makefile,
make ignores non-zero error codes returned from
commands. When used in POSIX mode, .IGNORE
could be followed by target names only, for which the
errors will be ignored.

.INIT: If defined in the makefile, this target and its
dependencies are built before any other targets are
processed.

.KEEP_STATE: If this target is in effect, make updates the state file,
.make.state, in the current directory. This target also
activates command dependencies, and hidden
dependency checks. If either the .KEEP_STATE: target
appears in the makefile, or the environment variable
KEEP_STATE is set ("setenv KEEP_STATE"), make
will rebuild everything in order to collect dependency
information, even if all the targets were up to date due
to previous make runs. See also the ENVIRONMENT
VARIABLES section. This target has no effect if used in
POSIX mode.

.KEEP_STATE_FILE: This target has no effect if used in POSIX mode. This
target implies .KEEP_STATE. If the target is followed
by a filename, make uses it as the state file. If the target
is followed by a directory name, make looks for a
.make.state file in that directory. If the target is not
followed by any name, make looks for .make.state
file in the current working directory.

.MAKE_VERSION: A target-entry of the form:

Z.MAKE_VERSION: VERSION−number

enables version checking. If the version of make differs
from the version indicated, make issues a warning
message.

.NO_PARALLEL: Currently, this target has no effect, it is, however,
reserved for future use.

.PARALLEL: Currently of no effect, but reserved for future use.

.POSIX: This target enables POSIX mode.

.PRECIOUS: List of files not to delete. make does not remove any of
the files listed as dependencies for this target when

make(1S)

User Commands 825

interrupted. make normally removes the current target
when it receives an interrupt. When used in POSIX
mode, if the target is not followed by a list of files, all
the file are assumed precious.

.SCCS_GET: This target contains the rule for retrieving the current
version of an SCCS file from its history file. To suppress
automatic retrieval, add an entry for this target with an
empty rule to your makefile.

.SCCS_GET_POSIX: This target contains the rule for retrieving the current
version of an SCCS file from its history file. make uses
this rule when it is running in POSIX mode.

.SILENT: Run silently. When this target appears in the makefile,
make does not echo commands before executing them.
When used in POSIX mode, it could be followed by
target names, and only those will be executed silently.

.SUFFIXES: The suffixes list for selecting implicit rules (see The
Suffixes List).

.WAIT: Currently of no effect, but reserved for future use.

In this version of make, you can clear the definition of the following special targets by
supplying entries for them with no dependencies and no rule:

.DEFAULT, .SCCS_GET, and .SUFFIXES

When the .KEEP_STATE: target is effective, make checks the command for building a
target against the state file. If the command has changed since the last make run, make
rebuilds the target.

When the .KEEP_STATE: target is effective, make reads reports from cpp(1) and
other compilation processors for any “hidden” files, such as #include files. If the
target is out of date with respect to any of these files, make rebuilds it.

Entries of the form

macro=value

define macros. macro is the name of the macro, and value, which consists of all
characters up to a comment character or unescaped NEWLINE, is the value. make
strips both leading and trailing white space in accepting the value.

Subsequent references to the macro, of the forms: $(name) or ${name} are replaced by
value. The parentheses or brackets can be omitted in a reference to a macro with a
single-character name.

Macro references can contain references to other macros, in which case nested
references are expanded first.

make(1S)

Clearing Special
Targets

Command
Dependencies

Hidden
Dependencies

Macros

826 man pages section 1: User Commands • Last Revised 1 Nov 1999

Substitutions within macros can be made as follows:

$(name:string1=string2)
where string1 is either a suffix, or a word to be replaced in the macro definition, and
string2 is the replacement suffix or word. Words in a macro value are separated by
SPACE, TAB, and escaped NEWLINE characters.

Pattern matching replacements can also be applied to macros, with a reference of the
form:

$(name: op%os= np%ns)
where op is the existing (old) prefix and os is the existing (old) suffix, np and ns are the
new prefix and new suffix, respectively, and the pattern matched by % (a string of zero
or more characters), is carried forward from the value being replaced. For example:

PROGRAM=fabricate

DEBUG= $(PROGRAM:%=tmp/%−g)sets the value of DEBUG to tmp/fabricate−g.

Notice that pattern replacement macro references cannot be used in the dependency
list of a pattern matching rule; the % characters are not evaluated independently. Also,
any number of % metacharacters can appear after the equal-sign.

Words can be appended to macro values as follows:

macro += word . . .

When the MAKEFLAGS variable is present in the environment, make takes options from
it, in combination with options entered on the command line. make retains this
combined value as the MAKEFLAGS macro, and exports it automatically to each
command or shell it invokes.

Notice that flags passed by way of MAKEFLAGS are only displayed when the -d, or
-dd options are in effect.

The MAKE macro is another special case. It has the value make by default, and
temporarily overrides the -n option for any line in which it is referred to. This allows
nested invocations of make written as:

$(MAKE) . . .

to run recursively, with the -n flag in effect for all commands but make. This lets you
use ‘make -n’ to test an entire hierarchy of makefiles.

For compatibility with the 4.2 BSD make, the MFLAGS macro is set from the
MAKEFLAGS variable by prepending a ‘–’. MFLAGS is not exported automatically.

The SHELL macro, when set to a single-word value such as /usr/bin/csh, indicates
the name of an alternate shell to use. The default is /bin/sh. Notice that make
executes commands that contain no shell metacharacters itself. Built-in commands,
such as dirs in the C shell, are not recognized unless the command line includes a

make(1S)

Suffix Replacement
Macro References

Pattern Replacement
Macro References

Appending to a
Macro

Special-Purpose
Macros

User Commands 827

metacharacter (for instance, a semicolon). This macro is neither imported from, nor
exported to the environment, regardless of -e. To be sure it is set properly, you must
define this macro within every makefile that requires it.

The syntax of the VPATH macro is:

VPATH = [pathname [: pathname] ...]

VPATH specifies a list of directories to search for the files, which are targets or
dependencies, when make is executed. VPATH is also used in order to search for the
include files mentioned in the particular makefile.

When processing a target or a dependency or an include directive, make checks the
existence of the file with the same name in the current directory. If the file is found to
be missing, make will search for this file in the list of directories presented in VPATH
(like the PATH variable in the shell). Unlike the PATH variable, VPATH is used in order
to search for the files with relative pathnames. When make attempts to apply implicit
rules to the target, it also searches for the dependency files using VPATH.

When the file is found using VPATH, internal macros $@, @<, $?, $*, and their
alternative forms (with D or F appended) are set in accordance with the name derived
from VPATH. For instance, if the target subdir/foo.o is found in the directory
/aaa/bbb using VPATH, then the value of the internal macro $@ for this target will be
/aaa/bbb/subdir/foo.o.

If a target or a dependency file is found using VPATH, then any occurrences of the
word that is the same as the target name in the subsequent rules will be replaced with
the actual name of the target derived from VPATH.

For example:

VPATH=./subdir
file.o : file.c

cc -c file.c -o file.o

If file.c is found in ./subdir, then the command

cc -c ./subdir/file.c -o file.o

will be executed.

The following macros are provided for use with cross-compilation:

HOST_ARCH The machine architecture of the host system. By default, this is the
output of the arch(1) command prepended with ‘–’. Under
normal circumstances, this value should never be altered by the
user.

HOST_MACH The machine architecture of the host system. By default, this is the
output of the mach(1), prepended with ‘−’. Under normal
circumstances, this value should never be altered by the user.

TARGET_ARCH The machine architecture of the target system. By default, the
output of mach, prepended with ‘−’.

make(1S)

828 man pages section 1: User Commands • Last Revised 1 Nov 1999

There are several dynamically maintained macros that are useful as abbreviations
within rules. They are shown here as references; if you were to define them, make
would simply override the definition.

$* The basename of the current target, derived as if selected for use with an
implicit rule.

$< The name of a dependency file, derived as if selected for use with an
implicit rule.

$@ The name of the current target. This is the only dynamic macro whose
value is strictly determined when used in a dependency list. (In which case
it takes the form ‘$$@’.)

$? The list of dependencies that are newer than the target.
Command-dependency checking is automatically suppressed for lines that
contain this macro, just as if the command had been prefixed with a ‘?’. See
the description of ‘?’, under Special Character Rules above. You can
force this check with the ! command-line prefix.

$% The name of the library member being processed. (See Library
Maintenance below.)

To refer to the $@ dynamic macro within a dependency list, precede the reference with
an additional ‘$’ character (as in, ‘$$@’). Because make assigns $< and $* as it would
for implicit rules (according to the suffixes list and the directory contents), they may be
unreliable when used within explicit target entries.

These macros can be modified to apply either to the filename part, or the directory
part of the strings they stand for, by adding an upper case F or D, respectively (and
enclosing the resulting name in parentheses or braces). Thus, ‘$(@D)’ refers to the
directory part of the string ‘$@’; if there is no directory part, ‘.’ is assigned. $(@F)
refers to the filename part.

A macro definition of the form:

target-list := macro = value
indicates that when processing any of the targets listed and their dependencies, macro is
to be set to the value supplied. Notice that if a conditional macro is referred to in a
dependency list, the $ must be delayed (use $$ instead). Also, target-list may contain a
% pattern, in which case the macro will be conditionally defined for all targets
encountered that match the pattern. A pattern replacement reference can be used
within the value.

You can temporarily append to a macro’s value with a conditional definition of the
form:

target-list := macro += value

make supplies the macros shown in the table that follows for compilers and their
options, host architectures, and other commands. Unless these macros are read in as
environment variables, their values are not exported by make. If you run make with

make(1S)

Dynamic Macros

Conditional Macro
Definitions

Predefined Macros

User Commands 829

any of these set in the environment, it is a good idea to add commentary to the
makefile to indicate what value each is expected to take. If -r is in effect, make does
not read the default makefile (./make.rules or
/usr/share/lib/make/make.rules) in which these macro definitions are
supplied.

Table of Predefined Macros

Use Macro Default Value

Library AR ar

Archives ARFLAGS rv

Assembler AS as

Commands ASFLAGS

COMPILE.s $(AS) $(ASFLAGS)

COMPILE.S $(CC) $(ASFLAGS) $(CPPFLAGS) -c

C CC cc

Compiler CFLAGS

Commands CPPFLAGS

COMPILE.c $(CC) $(CFLAGS) $(CPPFLAGS) -c

LINK.c $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

C++ CCC CC

Compiler CCFLAGS CFLAGS

Commands CPPFLAGS

COMPILE.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) -c

LINK.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)

COMPILE.C $(CCC) $(CCFLAGS) $(CPPFLAGS) -c

LINK.C $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)

FORTRAN 77 FC f77

Compiler FFLAGS

make(1S)

830 man pages section 1: User Commands • Last Revised 1 Nov 1999

Table of Predefined Macros

Use Macro Default Value

Commands COMPILE.f $(FC) $(FFLAGS) -c

LINK.f $(FC) $(FFLAGS) $(LDFLAGS)

COMPILE.F $(FC) $(FFLAGS) $(CPPFLAGS) -c

LINK.F $(FC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS)

FORTRAN 90 FC f90

Compiler F90FLAGS

Commands COMPILE.f90 $(F90C) $(F90FLAGS) -c

LINK.f90 $(F90C) $(F90FLAGS) $(LDFLAGS)

COMPILE.ftn $(F90C) $(F90FLAGS) $(CPPFLAGS) -c

LINK.ftn $(F90C) $(F90FLAGS) $(CPPFLAGS)
$(LDFLAGS)

Link Editor LD ld

Command LDFLAGS

lex LEX lex

Command LFLAGS

LEX.l $(LEX) $(LFLAGS) -t

lint LINT lint

Command LINTFLAGS

LINT.c $(LINT) $(LINTFLAGS) $(CPPFLAGS)

Modula 2 M2C m2c

Commands M2FLAGS

MODFLAGS

DEFFLAGS

make(1S)

User Commands 831

Table of Predefined Macros

Use Macro Default Value

COMPILE.def $(M2C) $(M2FLAGS) $(DEFFLAGS)

COMPILE.mod $(M2C) $(M2FLAGS) $(MODFLAGS)

Pascal PC pc

Compiler PFLAGS

Commands COMPILE.p $(PC) $(PFLAGS) $(CPPFLAGS) -c

LINK.p $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS)

Ratfor RFLAGS

Compilation COMPILE.r $(FC) $(FFLAGS) $(RFLAGS) -c

Commands LINK.r $(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS)

rm Command RM rm -f

sccs SCCSFLAGS

Command SCCSGETFLAGS -s

yacc YACC yacc

Command YFLAGS

YACC.y $(YACC) $(YFLAGS)

Suffixes List SUFFIXES .o .c .c~ .cc .cc~ .y .y~ .l .l~ .s .s~ .sh
.sh~ .S .S~ .ln .h .h~ .f .f~ .F .F~ .mod
.mod~ .sym .def .def~ .p .p~ .r .r~ .cps
.cps~ .C .C~ .Y .Y~ .L .L .f90 .f90~ .ftn
.ftn~

When a target has no entry in the makefile, make attempts to determine its class (if
any) and apply the rule for that class. An implicit rule describes how to build any
target of a given class, from an associated dependency file. The class of a target can be

make(1S)

Implicit Rules

832 man pages section 1: User Commands • Last Revised 1 Nov 1999

determined either by a pattern, or by a suffix; the corresponding dependency file (with
the same basename) from which such a target might be built. In addition to a
predefined set of implicit rules, make allows you to define your own, either by
pattern, or by suffix.

A target entry of the form:

tp%ts: dp%ds
rule

is a pattern matching rule, in which tp is a target prefix, ts is a target suffix, dp is a
dependency prefix, and ds is a dependency suffix (any of which may be null). The ‘%’
stands for a basename of zero or more characters that is matched in the target, and is
used to construct the name of a dependency. When make encounters a match in its
search for an implicit rule, it uses the rule in that target entry to build the target from
the dependency file. Pattern-matching implicit rules typically make use of the $@ and
$< dynamic macros as placeholders for the target and dependency names. Other,
regular dependencies may occur in the dependency list; however, none of the regular
dependencies may contain ‘%’. An entry of the form:

tp%ts: [dependency . . .] dp%ds [dependency . . .]

rule

is a valid pattern matching rule.

When no pattern matching rule applies, make checks the target name to see if it ends
with a suffix in the known suffixes list. If so, make checks for any suffix rules, as well
as a dependency file with same root and another recognized suffix, from which to
build it.

The target entry for a suffix rule takes the form:

DsTs: rule

where Ts is the suffix of the target, Ds is the suffix of the dependency file, and rule is
the rule for building a target in the class. Both Ds and Ts must appear in the suffixes
list. (A suffix need not begin with a ‘.’ to be recognized.)

A suffix rule with only one suffix describes how to build a target having a null (or no)
suffix from a dependency file with the indicated suffix. For instance, the .c rule could
be used to build an executable program named file from a C source file named
‘file.c’. If a target with a null suffix has an explicit dependency, make omits the
search for a suffix rule.

make(1S)

Pattern Matching
Rules

Suffix Rules

User Commands 833

Table of Standard Implicit (Suffix) Rules for Assembly Files

Implicit Rule Name Command Line

.s.o $(COMPILE.s) -o $@ $<

.s.a $(COMPILE.s) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.s~.o $(GET) $(GFLAGS) -p $< > $*.s

$(COMPILE.s) -o $@ $*.s

.S.o $(COMPILE.S) -o $@ $<

.S.a $(COMPILE.S) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.S~.o $(GET) $(GFLAGS) -p $< > $*.S

$(COMPILE.S) -o $@ $*.S

.S~.a $(GET) $(GFLAGS) -p $< > $*.S

$(COMPILE.S) -o $% $*.S

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for C Files

Implicit Rule Name Command Line

.c $(LINK.c) -o $@ $< $(LDLIBS)

.c.ln $(LINT.c) $(OUTPUT_OPTION) -i $<

make(1S)

834 man pages section 1: User Commands • Last Revised 1 Nov 1999

Table of Standard Implicit (Suffix) Rules for C Files

Implicit Rule Name Command Line

.c.o $(COMPILE.c) $(OUTPUT_OPTION) $<

.c.a $(COMPILE.c) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.c~ $(GET) $(GFLAGS) -p $< > $*.c

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $*.c

.c~.o $(GET) $(GFLAGS) -p $< > $*.c

$(CC) $(CFLAGS) -c $*.c

.c~.ln $(GET) $(GFLAGS) -p $< > $*.c

$(LINT.c) $(OUTPUT_OPTION) -c $*.c

.c~.a $(GET) $(GFLAGS) -p $< > $*.c

$(COMPILE.c) -o $% $*.c

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for C++ Files

Implicit Rule Name Command Line

.cc $(LINK.cc) -o $@ $< $(LDLIBS)

.cc.o $(COMPILE.cc) $(OUTPUT_OPTION) $<

.cc.a $(COMPILE.cc) -o $% $<

make(1S)

User Commands 835

Table of Standard Implicit (Suffix) Rules for C++ Files

Implicit Rule Name Command Line

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.cc~ $(GET) $(GFLAGS) -p $< > $*.cc

$(LINK.cc) -o $@ $*.cc $(LDLIBS)

.cc.o $(COMPILE.cc) $(OUTPUT_OPTION) $<

.cc~.o $(GET) $(GFLAGS) -p $< > $*.cc

$(COMPILE.cc) $(OUTPUT_OPTION) $*.cc

.cc.a $(COMPILE.cc) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.cc~.a $(GET) $(GFLAGS) -p $< > $*.cc

$(COMPILE.cc) -o $% $*.cc

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.C $(LINK.C) -o $@ $< $(LDLIBS)

.C~ $(GET) $(GFLAGS) -p $< > $*.C

$(LINK.C) -o $@ $*.C $(LDLIBS)

.C.o $(COMPILE.C) $(OUTPUT_OPTION) $<

.C~.o $(GET) $(GFLAGS) -p $< > $*.C

make(1S)

836 man pages section 1: User Commands • Last Revised 1 Nov 1999

Table of Standard Implicit (Suffix) Rules for C++ Files

Implicit Rule Name Command Line

$(COMPILE.C) $(OUTPUT_OPTION) $*.C

.C.a $(COMPILE.C) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.C~.a $(GET) $(GFLAGS) -p $< > $*.C

$(COMPILE.C) -o $% $*.C

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for FORTRAN 77 Files

Implicit Rule Name Command Line

.f $(LINK.f) -o $@ $< $(LDLIBS)

.f.o $(COMPILE.f) $(OUTPUT_OPTION) $<

.f.a $(COMPILE.f) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.f $(LINK.f) -o $@ $< $(LDLIBS)

.f~ $(GET) $(GFLAGS) -p $< > $*.f

$(FC) $(FFLAGS) $(LDFLAGS) -o $@ $*.f

.f~.o $(GET) $(GFLAGS) -p $< > $*.f

$(FC) $(FFLAGS) -c $*.f

make(1S)

User Commands 837

Table of Standard Implicit (Suffix) Rules for FORTRAN 77 Files

Implicit Rule Name Command Line

.f~.a $(GET) $(GFLAGS) -p $< > $*.f

$(COMPILE.f) -o $% $*.f

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.F $(LINK.F) -o $@ $< $(LDLIBS)

.F.o $(COMPILE.F) $(OUTPUT_OPTION) $<

.F.a $(COMPILE.F) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.F~ $(GET) $(GFLAGS) -p $< > $*.F

$(FC) $(FFLAGS) $(LDFLAGS) -o $@ $*.F

.F~.o $(GET) $(GFLAGS) -p $< > $*.F

$(FC) $(FFLAGS) -c $*.F

.F~.a $(GET) $(GFLAGS) -p $< > $*.F

$(COMPILE.F) -o $% $*.F

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for FORTRAN 90 Files

Implicit Rule Name Command Line

.f90 $(LINK.f90) -o $@ $< $(LDLIBS)

make(1S)

838 man pages section 1: User Commands • Last Revised 1 Nov 1999

Table of Standard Implicit (Suffix) Rules for FORTRAN 90 Files

Implicit Rule Name Command Line

.f90~ $(GET) $(GFLAGS) -p $< > $*.f90

$(LINK.f90) -o $@ $*.f90 $(LDLIBS)

.f90.o $(COMPILE.f90) $(OUTPUT_OPTION) $<

.f90~.o $(GET) $(GFLAGS) -p $< > $*.f90

$(COMPILE.f90) $(OUTPUT_OPTION) $*.f90

.f90.a $(COMPILE.f90) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.f90~.a $(GET) $(GFLAGS) -p $< > $*.f90

$(COMPILE.f90) -o $% $*.f90

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.ftn $(LINK.ftn) -o $@ $< $(LDLIBS)

.ftn~ $(GET) $(GFLAGS) -p $< > $*.ftn

$(LINK.ftn) -o $@ $*.ftn $(LDLIBS)

.ftn.o $(COMPILE.ftn) $(OUTPUT_OPTION) $<

.ftn~.o $(GET) $(GFLAGS) -p $< > $*.ftn

$(COMPILE.ftn) $(OUTPUT_OPTION) $*.ftn

make(1S)

User Commands 839

Table of Standard Implicit (Suffix) Rules for FORTRAN 90 Files

Implicit Rule Name Command Line

.ftn.a $(COMPILE.ftn) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.ftn~.a $(GET) $(GFLAGS) -p $< > $*.ftn

$(COMPILE.ftn) -o $% $*.ftn

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for lex Files

Implicit Rule Name Command Line

.l $(RM) $*.c

$(LEX.l) $< > $*.c

$(LINK.c) -o $@ $*.c $(LDLIBS)

$(RM) $*.c

.l.c $(RM) $@

$(LEX.l) $< > $@

.l.ln $(RM) $*.c

$(LEX.l) $< > $*.c

$(LINT.c) -o $@ -i $*.c

$(RM) $*.c

.l.o $(RM) $*.c

$(LEX.l) $< > $*.c

$(COMPILE.c) -o $@ $*.c

$(RM) $*.c

make(1S)

840 man pages section 1: User Commands • Last Revised 1 Nov 1999

Table of Standard Implicit (Suffix) Rules for lex Files

Implicit Rule Name Command Line

.l~ $(GET) $(GFLAGS) -p $< > $*.l

$(LEX) $(LFLAGS) $*.l

$(CC) $(CFLAGS) -c lex.yy.c

rm -f lex.yy.c

mv lex.yy.c $@

.l~.c $(GET) $(GFLAGS) -p $< > $*.l

$(LEX) $(LFLAGS) $*.l

mv lex.yy.c $@

.l~.ln $(GET) $(GFLAGS) -p $< > $*.l

$(RM) $*.c

$(LEX.l) $*.l > $*.c

$(LINT.c) -o $@ -i $*.c

$(RM) $*.c

.l~.o $(GET) $(GFLAGS) -p $< > $*.l

$(LEX) $(LFLAGS) $*.l

$(CC) $(CFLAGS) -c lex.yy.c

rm -f lex.yy.c

mv lex.yy.c $@

Table of Standard Implicit (Suffix) Rules for Modula 2 Files

Implicit Rule Name Command Line

.mod $(COMPILE.mod) -o $@ -e $@ $<

.mod.o $(COMPILE.mod) -o $@ $<

make(1S)

User Commands 841

Table of Standard Implicit (Suffix) Rules for Modula 2 Files

Implicit Rule Name Command Line

.def.sym $(COMPILE.def) -o $@ $<

.def~.sym $(GET) $(GFLAGS) -p $< > $*.def

$(COMPILE.def) -o $@ $*.def

.mod~ $(GET) $(GFLAGS) -p $< > $*.mod

$(COMPILE.mod) -o $@ -e $@ $*.mod

.mod~.o $(GET) $(GFLAGS) -p $< > $*.mod

$(COMPILE.mod) -o $@ $*.mod

.mod~.a $(GET) $(GFLAGS) -p $< > $*.mod

$(COMPILE.mod) -o $% $*.mod

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for NeWS Files

Implicit Rule Name Command Line

.cps.h cps $*.cps

.cps~.h $(GET) $(GFLAGS) -p $< > $*.cps

$(CPS) $(CPSFLAGS) $*.cps

Table of Standard Implicit (Suffix) Rules for Pascal Files

Implicit Rule Name Command Line

.p $(LINK.p) -o $@ $< $(LDLIBS)

.p.o $(COMPILE.p) $(OUTPUT_OPTION) $<

make(1S)

842 man pages section 1: User Commands • Last Revised 1 Nov 1999

Table of Standard Implicit (Suffix) Rules for Pascal Files

Implicit Rule Name Command Line

.p~ $(GET) $(GFLAGS) -p $< > $*.p

$(LINK.p) -o $@ $*.p $(LDLIBS)

.p~.o $(GET) $(GFLAGS) -p $< > $*.p

$(COMPILE.p) $(OUTPUT_OPTION) $*.p

.p~.a $(GET) $(GFLAGS) -p $< > $*.p

$(COMPILE.p) -o $% $*.p

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for Ratfor Files

Implicit Rule Name Command Line

.r $(LINK.r) -o $@ $< $(LDLIBS)

.r.o $(COMPILE.r) $(OUTPUT_OPTION) $<

.r.a $(COMPILE.r) -o $% $<

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

.r~ $(GET) $(GFLAGS) -p $< > $*.r

$(LINK.r) -o $@ $*.r $(LDLIBS)

.r~.o $(GET) $(GFLAGS) -p $< > $*.r

$(COMPILE.r) $(OUTPUT_OPTION) $*.r

make(1S)

User Commands 843

Table of Standard Implicit (Suffix) Rules for Ratfor Files

Implicit Rule Name Command Line

.r~.a $(GET) $(GFLAGS) -p $< > $*.r

$(COMPILE.r) -o $% $*.r

$(AR) $(ARFLAGS) $@ $%

$(RM) $%

Table of Standard Implicit (Suffix) Rules for SCCS Files

Implicit Rule Name Command Line

.SCCS_GET sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@ -G$@

.SCCS_GET_POSIX sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@

.GET_POSIX $(GET) $(GFLAGS) s.$@

Table of Standard Implicit (Suffix) Rules for Shell Scripts

Implicit Rule Name Command Line

.sh cat $< >$@

chmod +x $@

.sh~ $(GET) $(GFLAGS) -p $< > $*.sh

cp $*.sh $@

chmod a+x $@

Table of Standard Implicit (Suffix) Rules for yacc Files

Implicit Rule Name Command Line

.y $(YACC.y) $<

$(LINK.c) -o $@ y.tab.c $(LDLIBS)

$(RM) y.tab.c

make(1S)

844 man pages section 1: User Commands • Last Revised 1 Nov 1999

Table of Standard Implicit (Suffix) Rules for yacc Files

Implicit Rule Name Command Line

.y.c $(YACC.y) $<

mv y.tab.c $@

.y.ln $(YACC.y) $<

$(LINT.c) -o $@ -i y.tab.c

$(RM) y.tab.c

.y.o $(YACC.y) $<

$(COMPILE.c) -o $@ y.tab.c

$(RM) y.tab.c

.y~ $(GET) $(GFLAGS) -p $< > $*.y

$(YACC) $(YFLAGS) $*.y

$(COMPILE.c) -o $@ y.tab.c

$(RM) y.tab.c

.y~.c $(GET) $(GFLAGS) -p $< > $*.y

$(YACC) $(YFLAGS) $*.y

mv y.tab.c $@

.y~.ln $(GET) $(GFLAGS) -p $< > $*.y

$(YACC.y) $*.y

$(LINT.c) -o $@ -i y.tab.c

$(RM) y.tab.c

.y~.o $(GET) $(GFLAGS) -p $< > $*.y

$(YACC) $(YFLAGS) $*.y

make(1S)

User Commands 845

Table of Standard Implicit (Suffix) Rules for yacc Files

Implicit Rule Name Command Line

$(CC) $(CFLAGS) -c y.tab.c

rm -f y.tab.c

mv y.tab.o $@

make reads in the standard set of implicit rules from the file
/usr/share/lib/make/make.rules, unless -r is in effect, or there is a
make.rules file in the local directory that does not include that file.

The suffixes list is given as the list of dependencies for the ‘.SUFFIXES:’
special-function target. The default list is contained in the SUFFIXES macro (See Table
of Predefined Macros for the standard list of suffixes). You can define additional
.SUFFIXES: targets; a .SUFFIXES target with no dependencies clears the list of
suffixes. Order is significant within the list; make selects a rule that corresponds to the
target’s suffix and the first dependency-file suffix found in the list. To place suffixes at
the head of the list, clear the list and replace it with the new suffixes, followed by the
default list:

.SUFFIXES:

.SUFFIXES: suffixes $(SUFFIXES)

A tilde (~) indicates that if a dependency file with the indicated suffix (minus the ~) is
under SCCS its most recent version should be retrieved, if necessary, before the target
is processed.

A target name of the form:

lib(member . . .)
refers to a member, or a space-separated list of members, in an ar(1) library.

The dependency of the library member on the corresponding file must be given as an
explicit entry in the makefile. This can be handled by a pattern matching rule of the
form:

lib(%.s): %.s
where .s is the suffix of the member; this suffix is typically .o for object libraries.

A target name of the form:

lib((symbol))
refers to the member of a randomized object library that defines the entry point named
symbol.

Command lines are executed one at a time, each by its own process or shell. Shell
commands, notably cd, are ineffectual across an unescaped NEWLINE in the makefile.
A line is printed (after macro expansion) just before being executed. This is suppressed
if it starts with a ‘@’, if there is a ‘.SILENT:’ entry in the makefile, or if make is run
with the -s option. Although the -n option specifies printing without execution, lines

make(1S)

The Suffixes List

Library
Maintenance

Command
Execution

846 man pages section 1: User Commands • Last Revised 1 Nov 1999

containing the macro $(MAKE) are executed regardless, and lines containing the @
special character are printed. The -t (touch) option updates the modification date of a
file without executing any rules. This can be dangerous when sources are maintained
by more than one person.

make invokes the shell with the -e (exit-on-errors) argument. Thus, with
semicolon-separated command sequences, execution of the later commands depends
on the success of the former. This behavior can be overridden by starting the
command line with a ‘ -’, or by writing a shell script that returns a non-zero status
only as it finds appropriate.

To use the Bourne shell if control structure for branching, use a command line of the
form:

if expression ; \then command ; \ . . . ; \else command ; \ . . . ; \fi

Although composed of several input lines, the escaped NEWLINE characters insure
that make treats them all as one (shell) command line.

To use the Bourne shell for control structure for loops, use a command line of the
form:

for var in list ; \do command; \ . . . ; \done

To refer to a shell variable, use a double-dollar-sign ($$). This prevents expansion of
the dollar-sign by make.

To incorporate the standard output of a shell command in a macro, use a definition of
the form:

MACRO :sh =command

The command is executed only once, standard error output is discarded, and
NEWLINE characters are replaced with SPACEs. If the command has a non-zero exit
status, make halts with an error.

To capture the output of a shell command in a macro reference, use a reference of the
form:

$(MACRO :sh)

where MACRO is the name of a macro containing a valid Bourne shell command line.
In this case, the command is executed whenever the reference is evaluated. As with
shell command substitutions, the reference is replaced with the standard output of the
command. If the command has a non-zero exit status, make halts with an error.

In contrast to commands in rules, the command is not subject for macro substitution;
therefore, a dollar sign ($) need not be replaced with a double dollar sign ($$).

INT, SIGTERM, and QUIT signals received from the keyboard halt make and remove
the target file being processed unless that target is in the dependency list for
.PRECIOUS:.

make(1S)

Bourne Shell
Constructs

Command
Substitutions

Signals

User Commands 847

EXAMPLE 1 Defining dependencies

This makefile says that pgm depends on two files a.o and b.o, and that they in turn
depend on their corresponding source files (a.c and b.c) along with a common file
incl.h:

pgm: a.o b.o
$(LINK.c) -o $@a.o b.o

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c

cc -c b.c

EXAMPLE 2 Using implicit rules

The following makefile uses implicit rules to express the same dependencies:

pgm: a.o b.o cc a.o b.o -o pgma.o b.o: incl.h

See environ(5) for descriptions of the following environment variables that affect the
execution of make: LC_CTYPE, LC_MESSAGES, and NLSPATH.

KEEP_STATE This environment variable has the same effect as the
.KEEP_STATE: special-function target. It enables
command dependencies, hidden dependencies and
writing of the state file.

USE_SVR4_MAKE This environment variable causes make to invoke the
generic System V version of make
(/usr/ccs/lib/svr4.make). See sysV-make(1).

MAKEFLAGS This variable is interpreted as a character string
representing a series of option characters to be used as
the default options. The implementation will accept
both of the following formats (but need not accept
them when intermixed):

1. The characters are option letters without the leading
hyphens or blank character separation used on a
command line.

2. The characters are formatted in a manner similar to
a portion of the make command line: options are
preceded by hyphens and
blank-character-separated. The macro=name macro
definition operands can also be included. The
difference between the contents of MAKEFLAGS and
the command line is that the contents of the variable
will not be subjected to the word expansions (see
wordexp(3C)) associated with parsing the
command line values.

make(1S)

EXAMPLES

ENVIRONMENT
VARIABLES

848 man pages section 1: User Commands • Last Revised 1 Nov 1999

When the command-line options -f or -p are used,
they will take effect regardless of whether they also
appear in MAKEFLAGS. If they otherwise appear in
MAKEFLAGS, the result is undefined.

The MAKEFLAGS variable will be accessed from the
environment before the makefile is read. At that time,
all of the options (except -f and -p) and
command-line macros not already included in
MAKEFLAGS are added to the MAKEFLAGS macro. The
MAKEFLAGS macro will be passed into the environment
as an environment variable for all child processes. If
the MAKEFLAGS macro is subsequently set by the
makefile, it replaces the MAKEFLAGS variable currently
found in the environment.

When the -q option is specified, the make utility will exit with one of the following
values:

0 Successful completion.

1 The target was not up-to-date.

>1 An error occurred.

When the -q option is not specified, the make utility will exit with one of the
following values:

0 Successful completion

>0 An error occurred

makefile
Makefile

current version(s) of make description file

s.makefile
s.Makefile

SCCS history files for the above makefile(s) in the current directory

SCCS/s.makefile
SCCS/s.Makefile

SCCS history files for the above makefile(s)

make.rules
default file for user-defined targets, macros, and implicit rules

/usr/share/lib/make/make.rules
makefile for standard implicit rules and macros (not read if make.rules is)

.make.state
state file in the local directory

make(1S)

EXIT STATUS

FILES

User Commands 849

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

ar(1), arch(1), cd(1), cpp(1), lex(1), mach(1), sccs-get(1), sh(1), sysV-make(1),
yacc(1), wordexp(3C), passwd(4), attributes(5), environ(5), POSIX.2(5)

Solaris Advanced User’s Guide

Don’t know how to make target ’target’
There is no makefile entry for target, and none of make’s implicit rules apply (there
is no dependency file with a suffix in the suffixes list, or the target’s suffix is not in
the list).

*** target removed.
make was interrupted while building target. Rather than leaving a
partially-completed version that is newer than its dependencies, make removes the
file named target.

*** target not removed.
make was interrupted while building target and target was not present in the
directory.

*** target could not be removed, reason
make was interrupted while building target, which was not removed for the
indicated reason.

Read of include file ‘file’ failed
The makefile indicated in an include directive was not found, or was inaccessible.

Loop detected when expanding macro value ‘macro’
A reference to the macro being defined was found in the definition.

Could not write state file ‘file’
You used the .KEEP_STATE: target, but do not have write permission on the state
file.

*** Error code n
The previous shell command returned a nonzero error code.

*** signal message
The previous shell command was aborted due to a signal. If ‘– core dumped’
appears after the message, a core file was created.

make(1S)

ATTRIBUTES

/usr/ccs/bin/make

/usr/xpg4/bin/make

SEE ALSO

DIAGNOSTICS

850 man pages section 1: User Commands • Last Revised 1 Nov 1999

Conditional macro conflict encountered
Displayed only when -d is in effect, this message indicates that two or more
parallel targets currently being processed depend on a target which is built
differently for each by virtue of conditional macros. Since the target cannot
simultaneously satisfy both dependency relationships, it is conflicted.

Some commands return nonzero status inappropriately; to overcome this difficulty,
prefix the offending command line in the rule with a ‘−’.

Filenames with the characters ‘=’, ‘:’, or ‘@’, do not work.

You cannot build file.o from lib(file.o).

Options supplied by MAKEFLAGS should be reported for nested make commands. Use
the -d option to find out what options the nested command picks up from
MAKEFLAGS.

This version of make is incompatible in certain respects with previous versions:

� The -d option output is much briefer in this version. –dd now produces the
equivalent voluminous output.

� make attempts to derive values for the dynamic macros ‘$*’, ‘$<’, and ‘$?’, while
processing explicit targets. It uses the same method as for implicit rules; in some
cases this can lead either to unexpected values, or to an empty value being
assigned. (Actually, this was true for earlier versions as well, even though the
documentation stated otherwise.)

� make no longer searches for SCCS history "(s.)" files.
� Suffix replacement in macro references are now applied after the macro is

expanded.

There is no guarantee that makefiles created for this version of make will work with
earlier versions.

If there is no make.rules file in the current directory, and the file
/usr/share/lib/make/make.rules is missing, make stops before processing any
targets. To force make to run anyway, create an empty make.rules file in the current
directory.

Once a dependency is made, make assumes the dependency file is present for the
remainder of the run. If a rule subsequently removes that file and future targets
depend on its existence, unexpected errors may result.

When hidden dependency checking is in effect, the $? macro’s value includes the
names of hidden dependencies. This can lead to improper filename arguments to
commands when $? is used in a rule.

Pattern replacement macro references cannot be used in the dependency list of a
pattern matching rule.

make(1S)

BUGS

User Commands 851

Unlike previous versions, this version of make strips a leading ‘./’ from the value of
the ‘$@’ dynamic macro.

With automatic SCCS retrieval, this version of make does not support tilde suffix rules.

The only dynamic macro whose value is strictly determined when used in a
dependency list is $@ (takes the form ‘$$@’).

make invokes the shell with the -e argument. This cannot be inferred from the syntax
of the rule alone.

make(1S)

852 man pages section 1: User Commands • Last Revised 1 Nov 1999

man – find and display reference manual pages

man [-] [-adFlrt] [-M path] [-T macro-package] [-s section] name…

man [-M path] -k keyword…

man [-M path] -f file…

The man command displays information from the reference manuals. It displays
complete manual pages that you select by name, or one-line summaries selected either
by keyword (-k), or by the name of an associated file (-f). If no manual page is located,
man prints an error message.

Reference Manual pages are marked up with either nroff(1) or sgml(5) (Standard
Generalized Markup Language) tags. The man command recognizes the type of
markup and processes the file accordingly. The various source files are kept in
separate directories depending on the type of markup.

The online Reference Manual page directories are conventionally located in
/usr/share/man. The nroff sources are located in the /usr/share/man/man*
directories. The SGML sources are located in the /usr/share/man/sman*
directories. Each directory corresponds to a section of the manual. Since these
directories are optionally installed, they may not reside on your host. You may have to
mount /usr/share/man from a host on which they do reside.

If there are preformatted, up-to-date versions in the corresponding cat* or fmt*
directories, man simply displays or prints those versions. If the preformatted version
of interest is out of date or missing, man reformats it prior to display and will store the
preformatted version if cat* or fmt* is writable. The windex database is not updated.
See catman(1M). If directories for the preformatted versions are not provided, man
reformats a page whenever it is requested. man uses a temporary file to store the
formatted text during display.

If the standard output is not a terminal, or if the ‘-’ flag is given, man pipes its output
through cat(1). Otherwise, man pipes its output through more(1) to handle paging
and underlining on the screen.

The following options are supported:

-a Shows all manual pages matching name within the MANPATH
search path. Manual pages are displayed in the order found.

-d Debugs. Displays what a section-specifier evaluates to, method
used for searching, and paths searched by man.

-f file . . . man attempts to locate manual pages related to any of the given
files. It strips the leading path name components from each file, and
then prints one-line summaries containing the resulting basename
or names. This option also uses the windex database.

-F Forces man to search all directories specified by MANPATH or the
man.cf file, rather than using the windex lookup database. This

man(1)

NAME

SYNOPSIS

DESCRIPTION

Source Format

Location of
Manual Pages

OPTIONS

User Commands 853

is useful if the database is not up to date. If the windex database
does not exist, this option is assumed.

-k keyword . . . Prints out one-line summaries from the windex database (table of
contents) that contain any of the given keywords. The windex
database is created using catman(1M).

-l Lists all manual pages found matching name within the search
path.

-M path Specifies an alternate search path for manual pages. path is a
colon-separated list of directories that contain manual page
directory subtrees. For example, if path is
/usr/share/man:/usr/local/man, man searches for name in
the standard location, and then /usr/local/man. When used
with the -k or -f options, the -M option must appear first. Each
directory in the path is assumed to contain subdirectories of the
form man* or sman* , one for each section. This option overrides
the MANPATH environment variable.

-r Reformats the manual page, but does not display it. This replaces
the man - -t name combination.

-s section . . . Specifies sections of the manual for man to search. The directories
searched for name are limited to those specified by section. section
can be a numerical digit (perhaps followed by one or more letters
to match the desired section of the manual, for example,
“3libucb”); a word (for example: local, new, old, public); or
a letter. To specify multiple sections, separate each section with a
comma. This option overrides the MANPATH environment variable
and the man.cf file. See Search Path below for an explanation
of how man conducts its search.

-t man arranges for the specified manual pages to be troffed to a
suitable raster output device (see troff(1)). If both the - and -t
flags are given, man updates the troffed versions of each named
name (if necessary), but does not display them.

-T macro-package Formats manual pages using macro-package rather than the
standard -man macros defined in /usr/share/lib/tmac/an.
See Search Path under USAGE for a complete explanation of the
default search path order.

The following operand is supported:

name A keyword or the name of a standard utility.

Entries in the reference manuals are organized into sections. A section name consists of
a major section name, typically a single digit, optionally followed by a subsection
name, typically one or more letters. An unadorned major section name, for example,
“9”, does not act as an abbreviation for the subsections of that name, such as “9e”,

man(1)

OPERANDS

Manual Page
Sections

854 man pages section 1: User Commands • Last Revised 10 Dec 2001

“9f”, or “9s”. That is, each subsection must be searched separately by man -s. Each
section contains descriptions apropos to a particular reference category, with
subsections refining these distinctions. See the intro manual pages for an explanation
of the classification used in this release.

Before searching for a given name, man constructs a list of candidate directories and
sections. man searches for name in the directories specified by the MANPATH
environment variable. If this variable is not set, /usr/share/man is searched by
default.

Within the manual page directories, man confines its search to the sections specified in
the following order:

� sections specified on the command line with the -s option

� sections embedded in the MANPATH environment variable

� sections specified in the man.cf file for each directory specified in the MANPATH
environment variable

If none of the above exist, man searches each directory in the manual page path, and
displays the first matching manual page found.

The man.cf file has the following format:

MANSECTS=section[,section] . . .

Lines beginning with ‘#’ and blank lines are considered comments, and are ignored.
Each directory specified in MANPATH can contain a manual page configuration file,
specifying the default search order for that directory.

Manual pages are marked up in nroff(1) or sgml(5). Nroff manual pages are
processed by nroff(1) or troff(1) with the -man macro package. Please refer to
man(5) for information on macro usage. SGML—tagged manual pages are processed
by an SGML parser and passed to the formatter.

When formatting an nroff manual page, man examines the first line to determine
whether it requires special processing. If the first line is a string of the form:

’\" X

where X is separated from the ‘"’ by a single SPACE and consists of any combination
of characters in the following list, man pipes its input to troff(1) or nroff(1)
through the corresponding preprocessors.

e eqn(1), or neqn for nroff

r refer(1)

t tbl(1)

v vgrind(1)

man(1)

Search Path

Formatting
Manual Pages

Preprocessing
Nroff Manual

Pages

User Commands 855

If eqn or neqn is invoked, it will automatically read the file /usr/pub/eqnchar (see
eqnchar(5)). If nroff(1) is invoked, col(1) is automatically used.

If the first line of the nroff manual page is a reference to another manual page entry
fitting the pattern:

.so man*/sourcefile

man processes the indicated file in place of the current one. The reference must be
expressed as a path name relative to the root of the manual page directory subtree.

When the second or any subsequent line starts with .so, man ignores it; troff(1) or
nroff(1) processes the request in the usual manner.

Manual pages are identified as being marked up in SGML by the presence of the string
<!DOCTYPE. If the file also contains the string SHADOW_PAGE, the file refers to another
manual page for the content. The reference is made with a file entity reference to the
manual page that contains the text. This is similar to the .so mechanism used in the
nroff formatted man pages.

See environ(5) for descriptions of the following environment variables that affect the
execution of man: LC_CTYPE, LC_MESSAGES, and NLSPATH.

MANPATH A colon-separated list of directories; each directory can be
followed by a comma-separated list of sections. If set, its value
overrides /usr/share/man as the default directory search path,
and the man.cf file as the default section search path. The -M and
-s flags, in turn, override these values.)

PAGER A program to use for interactively delivering man’s output to the
screen. If not set, ‘more -s’ is used. See more(1).

TCAT The name of the program to use to display troffed manual
pages.

TROFF The name of the formatter to use when the -t flag is given. If not
set, troff(1) is used.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/usr/share/man
root of the standard manual page directory subtree

/usr/share/man/man?/*
unformatted nroff manual entries

/usr/share/man/sman?/*
unformatted SGML manual entries

man(1)

Referring to Other
Nroff Manual

Pages

Processing SGML
Manual Pages

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

856 man pages section 1: User Commands • Last Revised 10 Dec 2001

/usr/share/man/cat?/*
nroffed manual entries

/usr/share/man/fmt?/*
troffed manual entries

/usr/share/man/windex
table of contents and keyword database

/usr/share/lib/tmac/an
standard –man macro package

/usr/share/lib/sgml/locale/C/dtd/*
SGML document type definition files

/usr/share/lib/sgml/locale/C/solbook/*
SGML style sheet and entity definitions directories

/usr/share/lib/pub/eqnchar
standard definitions for eqn and neqn

man.cf
default search order by section

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

CSI Enabled (see NOTES)

apropos(1), cat(1), col(1), eqn(1), more(1), nroff(1), refer(1), tbl(1), troff(1),
vgrind(1), whatis(1), catman(1M), attributes(5), environ(5), eqnchar(5),
man(5), sgml(5)

The -f and -k options use the windex database, which is created by catman(1M).

The man command is CSI-capable. However, some utilities invoked by the man
command, namely, troff, eqn, neqn, refer, tbl, and vgrind, are not verified to be
CSI-capable. Because of this, the man command with the -t option may not handle
non-EUC data. Also, using the man command to display man pages that require
special processing through eqn, neqn, refer, tbl, or vgrind may not be
CSI-capable.

The manual is supposed to be reproducible either on a phototypesetter or on an ASCII
terminal. However, on a terminal some information (indicated by font changes, for
instance) is lost.

man(1)

ATTRIBUTES

SEE ALSO

NOTES

BUGS

User Commands 857

Some dumb terminals cannot process the vertical motions produced by the e (see
eqn(1)) preprocessing flag. To prevent garbled output on these terminals, when you
use e, also use t, to invoke col(1) implicitly. This workaround has the disadvantage
of eliminating superscripts and subscripts, even on those terminals that can display
them. Control-q will clear a terminal that gets confused by eqn(1) output.

man(1)

858 man pages section 1: User Commands • Last Revised 10 Dec 2001

mconnect – connect to SMTP mail server socket

mconnect [-p port] [-r] [hostname]

The mconnect utility opens a connection to the mail server on a given host, so that it
can be tested independently of all other mail software. If no host is given, the
connection is made to the local host. Servers expect to speak the Simple Mail Transfer
Protocol (SMTP) on this connection. Exit by typing the quit command. Typing EOF
sends an end of file to the server. An interrupt closes the connection immediately and
exits.

The following options are supported:

-p port Specify the port number instead of the default SMTP port (number
25) as the next argument.

-r "Raw" mode: disable the default line buffering and input handling.
This produces an effect similar to telnet(1) to port number 25.

The following operand is supported:

hostname The name of a given host.

The mconnect command is IPv6–enabled. See ip6(7P).

/etc/mail/sendmail.hf help file for SMTP commands

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

telnet(1), sendmail(1M), attributes(5), ip6(7P)

Postel, Jonathan B., RFC 821, Simple Mail Transfer Protocol, Information Sciences
Institute, University of Southern California, August 1982.

mconnect(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

FILES

ATTRIBUTES

SEE ALSO

User Commands 859

mcs – manipulate the comment section of an object file

/usr/ccs/bin/mcs {-c | -d | -p | -V | -a string | -n name…}file…

The mcs command is used to manipulate a section, by default the .comment section,
in an ELF object file. It is used to add to, delete, print, and compress the contents of a
section in an ELF object file, and print only the contents of a section in a COFF object
file. mcs cannot add, delete, or compress the contents of a section that is contained
within a segment.

If the input file is an archive (see ar(3HEAD)), the archive is treated as a set of
individual files. For example, if the -a option is specified, the string is appended to
the comment section of each ELF object file in the archive; if the archive member is not
an ELF object file, then it is left unchanged.

mcs must be given one or more of the options described below. It applies, in order,
each of the specified options to each file.

The following options are supported:

-a string Appends string to the comment section of the ELF object files. If
string contains embedded blanks, it must be enclosed in quotation
marks.

-c Compresses the contents of the comment section of the ELF object
files. All duplicate entries are removed. The ordering of the
remaining entries is not disturbed.

-d Deletes the contents of the comment section from the ELF object
files. The section header for the comment section is also removed.

-n name Specifies the name of the comment section to access if other than
.comment. By default, mcs deals with the section named
.comment. This option can be used to specify another section. mcs
can take multiple -n options to allow for specification of multiple
section comments.

-p Prints the contents of the comment section on the standard output.
Each section printed is tagged by the name of the file from which it
was extracted, using the format file[member_name]: for archive
files and file: for other files.

-V Prints on standard error the version number of mcs.

EXAMPLE 1 Printing a file’s comment section

The following entry

example% /usr/ccs/bin/mcs -p elf.fileprints the comment section of the file
elf.file.

mcs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

860 man pages section 1: User Commands • Last Revised 15 May 2000

EXAMPLE 2 Appending a string to a comment section

The following entry

example% /usr/ccs/bin/mcs -a xyz elf.fileappends string xyz to elf.file’s
comment section.

/tmp/mcs* temporary files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ar(1), as(1), ld(1), elf(3ELF), tmpnam(3C), a.out(4), ar(3HEAD), attributes(5)

When mcs deletes a section using the -d option, it tries to bind together sections of
type SHT_REL and target sections pointed to by the sh_info section header field. If
one is to be deleted, mcs attempts to delete the other of the pair.

mcs(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 861

mdb – modular debugger

mdb [-fkmuwyAFMS] [±o option] [-p pid] [-s distance] [-I path] [-L path]
[-P prompt] [-R root] [-V dis-version] [object [core] | core |
suffix]

The mdb utility is an extensible utility for low-level debugging and editing of the live
operating system, operating system crash dumps, user processes, user process core
dumps, and object files. For a more detailed description of mdb features, refer to the
manual, Solaris Modular Debugger Guide.

Debugging is the process of analyzing the execution and state of a software program
in order to remove defects. Traditional debugging tools provide facilities for execution
control so that programmers can re-execute programs in a controlled environment and
display the current state of program data or evaluate expressions in the source
language used to develop the program.

Unfortunately, these techniques are often inappropriate for debugging complex
software systems such as an operating system, where bugs may not be reproducible
and program state is massive and distributed, for programs that are highly optimized,
have had their debug information removed, or are themselves low-level debugging
tools, or for customer situations where the developer can only access post-mortem
information.

mdb provides a completely customizable environment for debugging these programs
and scenarios, including a dynamic module facility that programmers can use to
implement their own debugging commands to perform program-specific analysis.
Each mdb module can be used to examine the program in several different contexts,
including live and post-mortem.

The target is the program being inspected by the debugger. mdb currently provides
support for the following types of targets: user processes, user process core files, the
live operating system (via /dev/kmem and /dev/ksyms), operating system crash
dumps, user process images recorded inside an operating system crash dump, ELF
object files, and raw binary files. Each target exports a standard set of properties,
including one or more address spaces, one or more symbol tables, a set of load objects,
and a set of threads that can be examined using the debugger commands described
below.

A debugger command, or dcmd (pronounced dee-command) in mdb terminology, is a
routine in the debugger that can access any of the properties of the current target. mdb
parses commands from standard input, and then executes the corresponding dcmds.
Each dcmd can also accept a list of string or numerical arguments, as shown in the
syntax description below. mdb contains a set of built-in dcmds, described below, that
are always available. You can also extend the capabilities of mdb itself by writing your
own dcmds, as described in the Solaris Modular Debugger Guide.

mdb(1)

NAME

SYNOPSIS

Introduction

Definitions

862 man pages section 1: User Commands • Last Revised 12 Dec 2001

A walker is a set of routines that describe how to walk, or iterate, through the elements
of a particular program data structure. A walker encapsulates the data structure’s
implementation from dcmds and from mdb itself. You can use walkers interactively, or
use them as a primitive to build other dcmds or walkers. As with dcmds, you can
extend mdb by implementing your own walkers as part of a debugger module.

A debugger module, or dmod (pronounced dee-mod), is a dynamically loaded library
containing a set of dcmds and walkers. During initialization, mdb will attempt to load
dmods corresponding to the load objects present in the target. You can subsequently
load or unload dmods at any time while running mdb. mdb ships with a set of
standard dmods for debugging the Solaris kernel. The Solaris Modular Debugger Guide
contains more information on developing your own debugger modules.

A macro file is a text file containing a set of commands to execute. Macro files are
typically used to automate the process of displaying a simple data structure. mdb
provides complete backward compatibility for the execution of macro files written for
adb(1), and the Solaris installation includes a set of macro files for debugging the
Solaris kernel that may be used with either tool.

The debugger processes commands from standard input. If standard input is a
terminal, mdb provides terminal editing capabilities. mdb can also process commands
from macro files and from dcmd pipelines, described below. The language syntax is
designed around the concept of computing the value of an expression (typically a
memory address in the target), and then applying a dcmd to that address. The current
address location is referred to as dot, and its value is referenced using ‘‘.’’.

A metacharacter is one of the following characters:

[] | ! / \ ? = > $: ;
NEWLINE SPACE TAB

A blank is a TAB or a SPACE. A word is a sequence of characters separated by one or
more non-quoted metacharacters. Some of the metacharacters only function as
delimiters in certain contexts, as described below. An identifier is a sequence of letters,
digits, underscores, periods, or backquotes beginning with a letter, underscore, or
period. Identifiers are used as the names of symbols, variables, dcmds, and walkers.
Commands are delimited by a NEWLINE or semicolon (;).

A dcmd is denoted by one of the following words or metacharacters:

/ \ ? = > $character :character ::identifier

dcmds named by metacharacters or prefixed by a single $ or : are provided as built-in
operators, and implement complete compatibility with the command set of the legacy
adb(1) utility. Once a dcmd has been parsed, the /, \, ?, =, >, $, and : characters are
no longer recognized as metacharacters until the termination of the argument list.

mdb(1)

Syntax

User Commands 863

A simple-command is a dcmd followed by a sequence of zero or more blank-separated
words. The words are passed as arguments to the invoked dcmd, except as specified
under Quoting and Arithmetic Expansion below. Each dcmd returns an exit
status that indicates it was either successful, failed, or was invoked with invalid
arguments.

A pipeline is a sequence of one or more simple commands separated by |. Unlike the
shell, dcmds in mdb pipelines are not executed as separate processes. After the
pipeline has been parsed, each dcmd is invoked in order from left to right. Each
dcmd’s output is processed and stored as described under dcmd Pipelines below.
Once the left-hand dcmd is complete, its processed output is used as input for the next
dcmd in the pipeline. If any dcmd does not return a successful exit status, the pipeline
is aborted.

An expression is a sequence of words that is evaluated to compute a 64-bit unsigned
integer value. The words are evaluated using the rules described under Arithmetic
Expansion below.

A command is one of the following:

pipeline [! word . . .] [;]
A simple-command or pipeline can be optionally suffixed with the ! character,
indicating that the debugger should open a pipe(2) and send the standard output
of the last dcmd in the mdb pipeline to an external process created by executing
$SHELL -c followed by the string formed by concatenating the words after the !
character. For more details, refer to Shell Escapes below.

expression pipeline [! word . . .] [;]
A simple-command or pipeline can be prefixed with an expression. Before
execution of the pipeline, the value of dot (the variable denoted by ‘‘.’’) is set to the
value of the expression.

expression , expression pipeline [! word . . .] [;]
A simple-command or pipeline can be prefixed with two expressions. The first is
evaluated to determine the new value of dot, and the second is evaluated to
determine a repeat count for the first dcmd in the pipeline. This dcmd will be
executed count times before the next dcmd in the pipeline is executed. The repeat
count only applies to the first dcmd in the pipeline.

, expression pipeline [! word . . .] [;]
If the initial expression is omitted, dot is not modified but the first dcmd in the
pipeline will be repeated according to the value of the expression.

expression [! word . . .] [;]
A command can consist only of an arithmetic expression. The expression is
evaluated and the dot variable is set to its value, and then the previous dcmd and
arguments are executed using the new value of dot.

mdb(1)

Commands

864 man pages section 1: User Commands • Last Revised 12 Dec 2001

expression, expression [! word . . .] [;]
A command can consist only of a dot expression and repeat count expression. After
dot is set to the value of the first expression, the previous dcmd and arguments are
repeatedly executed the number of times specified by the value of the second
expression.

, expression [! word . . .] [;]
If the initial expression is omitted, dot is not modified but the previous dcmd and
arguments are repeatedly executed the number of times specified by the value of
the count expression.

! word . . . [;]
If the command begins with the ! character, no dcmds are executed and the
debugger simply executes $SHELL -c followed by the string formed by
concatenating the words after the ! character.

A word beginning with // causes that word and all the subsequent characters up to a
NEWLINE to be ignored.

Arithmetic expansion is performed when an mdb command is preceded by an optional
expression representing a start address, or a start address and a repeat count.
Arithmetic expansion can also be performed to compute a numerical argument for a
dcmd. An arithmetic expression can appear in an argument list enclosed in square
brackets preceded by a dollar sign ($[expression]), and will be replaced by the
value of the expression.

Expressions may contain any of the following special words:

integer The specified integer value. Integer values may be
prefixed with 0i or 0I to indicate binary values, 0o or
0O to indicate octal values, 0t or 0T to indicate decimal
values, and 0x or 0X to indicate hexadecimal values
(the default).

0[tT][0-9]+.[0-9]+ The specified decimal floating point value, converted to
its IEEE double-precision floating point representation.

’cccccccc’ The integer value computed by converting each
character to a byte equal to its ASCII value. Up to eight
characters may be specified in a character constant.
Characters are packed into the integer in reverse order
(right-to-left) beginning at the least significant byte.

<identifier The value of the variable named by identifier.

identifier The value of the symbol named by identifier.

(expression) The value of expression.

. The value of dot.

& The most recent value of dot used to execute a dcmd.

mdb(1)

Comments

Arithmetic
Expansion

User Commands 865

+ The value of dot incremented by the current increment.

^ The value of dot decremented by the current
increment.

The increment is a global variable that stores the total bytes read by the last formatting
dcmd. For more information on the increment, refer to the discussion of Formatting
dcmds below.

Unary operators are right associative and have higher precedence than binary
operators. The unary operators are:

#expression Logical negation.

~expression Bitwise complement.

-expression Integer negation.

%expression The value of a pointer-sized quantity at the object file
location corresponding to virtual address expression in
the target’s virtual address space.

%/[csil]/expression The value of a char, short, int, or long-sized quantity at
the object file location corresponding to virtual address
expression in the target’s virtual address space.

%/[1248]/expression The value of a one, two, four, or eight-byte quantity at
the object file location corresponding to virtual address
expression in the target’s virtual address space.

*expression The value of a pointer-sized quantity at virtual address
expression in the target’s virtual address space.

*/[csil]/expression The value of a char, short, int, or long-sized quantity at
virtual address expression in the target’s virtual address
space.

*/[1248]/expression The value of a one, two, four, or eight-byte quantity at
virtual address expression in the target’s virtual address
space.

Binary operators are left associative and have lower precedence than unary operators.
The binary operators, in order of precedence from highest to lowest, are:

* Integer multiplication.

% Integer division.

Left-hand side rounded up to next multiple of right-hand side.

+ Integer addition.

- Integer subtraction.

<< Bitwise shift left.

mdb(1)

866 man pages section 1: User Commands • Last Revised 12 Dec 2001

>> Bitwise shift right.

== Logical equality.

!= Logical inequality.

& Bitwise AND.

^ Bitwise exclusive OR.

| Bitwise inclusive OR.

Each metacharacter described above (see Syntax) terminates a word unless quoted.
Characters can be quoted (forcing mdb to interpret each character as itself without any
special significance) by enclosing them in a pair of single (’) or double (") quote
marks. A single quote cannot appear within single quotes. Inside double quotes, mdb
recognizes the C programming language character escape sequences.

The ! character can be used to create a pipeline between an mdb command and the
user’s shell. If the $SHELL environment variable is set, mdb will fork and exec this
program for shell escapes; otherwise /bin/sh is used. The shell is invoked with the
-c option followed by a string formed by concatenating the words after the !
character. The ! character takes precedence over all other metacharacters, except
semicolon (;) and NEWLINE. Once a shell escape is detected, the remaining characters
up to the next semicolon or NEWLINE are passed as is to the shell. The output of shell
commands may not be piped to mdb dcmds. Commands executed by a shell escape
have their output sent directly to the terminal, not to mdb.

A variable is a variable name, a corresponding integer value, and a set of attributes. A
variable name is a sequence of letters, digits, underscores, or periods. A variable can
be assigned a value using the > dcmd or ::typeset dcmd, and its attributes can be
manipulated using the ::typeset dcmd. Each variable’s value is represented as a
64-bit unsigned integer. A variable may have one or more of the following attributes:
read-only (cannot be modified by the user), persistent (cannot be unset by the user),
and tagged (user-defined indicator).

The following variables are defined as persistent:

0 The most recent value printed using the /, \, ?, or = dcmd.

9 The most recent count used with the $< dcmd.

b The virtual address of the base of the data section.

d The size of the data section in bytes.

e The virtual address of the entry point.

m The initial bytes (magic number) of the target’s primary object file,
or zero if no object file has been read yet.

t The size of the text section in bytes.

mdb(1)

Quoting

Shell Escapes

Variables

User Commands 867

hits The count of the number of times the matched software event
specifier has been matched. See Event Callbacks, below.

thread The thread identifier of the current representative thread. The
value of the identifier depends on the threading model used by the
current target. See Thread Support, below.

In addition, the mdb kernel and process targets will export the current values of the
representative thread’s register set as named variables. The names of these variables
will depend on the target’s platform and instruction set architecture.

As explained in the Syntax description above, a symbol identifier present in an
expression context evaluates to the value of this symbol. The value typically denotes
the virtual address of the storage associated with the symbol in the target’s virtual
address space. A target may support multiple symbol tables including, but not limited
to, a primary executable symbol table, a primary dynamic symbol table, a run-time
link-editor symbol table, and standard and dynamic symbol tables for each of a
number of load objects (such as shared libraries in a user process, or kernel modules in
the Solaris kernel). The target typically searches the primary executable’s symbol
tables first, and then one or more of the other symbol tables. Notice that ELF symbol
tables only contain entries for external, global, and static symbols; automatic symbols
do not appear in the symbol tables processed by mdb.

Additionally, mdb provides a private user-defined symbol table that is searched prior
to any of the target symbol tables. The private symbol table is initially empty, and can
be manipulated using the ::nmadd and ::nmdel dcmds. The ::nm -P option can be
used to display the contents of the private symbol table. The private symbol table
allows the user to create symbol definitions for program functions or data that were
either missing from the original program or stripped out. These definitions are then
used whenever mdb converts a symbolic name to an address, or an address to the
nearest symbol.

As targets contain multiple symbol tables, and each symbol table may include symbols
from multiple object files, different symbols with the same name may exist. mdb uses
the backquote (‘) character as a symbol name scoping operator to allow the
programmer to obtain the value of the desired symbol in this situation. The
programmer can specify the scope used to resolve a symbol name as either:
object‘name, or file‘name, or object‘file‘name. The object identifier refers to the name of
a load object. The file identifier refers to the basename of a source file that has a
symbol of type STT_FILE in the specified object’s symbol table. The object identifier’s
interpretation depends on the target type.

The mdb kernel target expects object to specify the basename of a loaded kernel
module. For example, the symbol name

specfs‘_init

evaluates to the value of the _init symbol in the specfs kernel module.

mdb(1)

Symbol Name
Resolution

868 man pages section 1: User Commands • Last Revised 12 Dec 2001

The mdb process target expects object to specify the name of the executable or of a
loaded shared library. It may take any of the following forms:

1. An exact match (that is, a full pathname): /usr/lib/libc.so.1
2. An exact basename match: libc.so.1
3. An initial basename match up to a ‘‘.’’ suffix: libc.so or libc
4. The literal string a.out is accepted as an alias for the executable.

The process target will also accept any of the four forms described above preceded by
an optional link-map id (lmid). The lmid prefix is specified by an initial "LM" followed
by the link-map id in hexadecimal followed by an additional backquote. For example,
the symbol name

LM0‘libc.so.1‘_init

will evaluate to the value of the _init symbol in the libc.so.1 library that is
loaded on link-map 0 (LM_ID_BASE). The link-map specifier may be necessary to
resolve symbol naming conflicts in the event that the same library is loaded on more
than one link map. For more information on link maps, refer to the Linker and Libraries
Guide and dlopen(3DL). Link-map identifiers will be displayed when symbols are
printed according to the setting of the showlmid option, as described under
OPTIONS, below.

In the case of a naming conflict between symbols and hexadecimal integer values, mdb
will attempt to evaluate an ambiguous token as a symbol first, before evaluating it as
an integer value. For example, the token f may either refer to the decimal integer
value 15 specified in hexadecimal (the default base), or to a global variable named f
in the target’s symbol table. If a symbol with an ambiguous name is present, the
integer value can be specified by using an explicit 0x or 0X prefix.

As described earlier, each mdb dmod provides a set of dcmds and walkers. dcmds and
walkers are tracked in two distinct, global namespaces. mdb also keeps track of a
dcmd and walker namespace associated with each dmod. Identically named dcmds or
walkers within a given dmod are not allowed: a dmod with this type of naming
conflict will fail to load. Name conflicts between dcmds or walkers from different
dmods are allowed in the global namespace. In the case of a conflict, the first dcmd or
walker with that particular name to be loaded is given precedence in the global
namespace. Alternate definitions are kept in a list in load order. The backquote
character (‘) may be used in a dcmd or walker name as a scoping operator to select an
alternate definition. For example, if dmods m1 and m2 each provide a dcmd d, and m1
is loaded prior to m2, then:

::d Executes m1’s definition of d.

::m1‘d Executes m1’s definition of d.

::m2‘d Executes m2’s definition of d.

mdb(1)

dcmd and Walker
Name Resolution

User Commands 869

If module m1 were now unloaded, the next dcmd on the global definition list (m2‘d)
would be promoted to global visibility. The current definition of a dcmd or walker can
be determined using the ::which dcmd, described below. The global definition list
can be displayed using the ::which -v option.

dcmds can be composed into a pipeline using the | operator. The purpose of a
pipeline is to pass a list of values, typically virtual addresses, from one dcmd or
walker to another. Pipeline stages might be used to map a pointer from one type of
data structure to a pointer to a corresponding data structure, to sort a list of addresses,
or to select the addresses of structures with certain properties.

mdb executes each dcmd in the pipeline in order from left to right. The leftmost dcmd
is executed using the current value of dot, or using the value specified by an explicit
expression at the start of the command. When a | operator is encountered, mdb creates
a pipe (a shared buffer) between the output of the dcmd to its left and the mdb parser,
and an empty list of values. As the dcmd executes, its standard output is placed in the
pipe and then consumed and evaluated by the parser, as if mdb were reading this data
from standard input. Each line must consist of an arithmetic expression terminated by
a NEWLINE or semicolon (;). The value of the expression is appended to the list of
values associated with the pipe. If a syntax error is detected, the pipeline is aborted.

When the dcmd to the left of a | operator completes, the list of values associated with
the pipe is then used to invoke the dcmd to the right of the | operator. For each value
in the list, dot is set to this value and the right-hand dcmd is executed. Only the
rightmost dcmd in the pipeline has its output printed to standard output. If any dcmd
in the pipeline produces output to standard error, these messages are printed directly
to standard error and are not processed as part of the pipeline.

The debugger ignores the PIPE and QUIT signals. The INT signal aborts the command
that is currently executing. The debugger intercepts and provides special handling for
the ILL, TRAP, EMT, FPE, BUS, and SEGV signals. If any of these signals are generated
asynchronously (that is, delivered from another process using kill(2)), mdb will
restore the signal to its default disposition and dump core. However, if any of these
signals are generated synchronously by the debugger process itself and a dcmd from
an externally loaded dmod is currently executing, and standard input is a terminal,
mdb will provide a menu of choices allowing the user to force a core dump, quit
without producing a core dump, stop for attach by a debugger, or attempt to resume.
The resume option will abort all active commands and unload the dmod whose dcmd
was active at the time the fault occurred. It can then be subsequently re-loaded by the
user. The resume option provides limited protection against buggy dcmds. Refer to
WARNINGS, Use of the Error Recovery Mechanism, below for information
about the risks associated with the resume option.

The text of the last HISTSIZE (default 128) commands entered from a terminal device
are saved in memory. The in-line editing facility, described next, provides key
mappings for searching and fetching elements from the history list.

mdb(1)

dcmd Pipelines

Signal Handling

Command
Re-entry

870 man pages section 1: User Commands • Last Revised 12 Dec 2001

If standard input is a terminal device, mdb provides some simple emacs-style facilities
for editing the command line. The search, previous, and next commands in edit
mode provide access to the history list. Only strings, not patterns, are matched when
searching. In the table below, the notation for control characters is caret (^) followed
by a character shown in upper case. The notation for escape sequences is M- followed
by a character. For example, M-f (pronounced meta-eff) is entered by depressing ESC
followed by ’f’, or by depressing Meta followed by ’f’ on keyboards that support a
Meta key. A command line is committed and executed using RETURN or NEWLINE.
The edit commands are:

^F Move cursor forward (right) one character.

M-f Move cursor forward one word.

^B Move cursor backward (left) one character.

M-b Move cursor backward one word.

^A Move cursor to start of line.

^E Move cursor to end of line.

^D Delete current character, if the current line is not empty. If the
current line is empty, ^D denotes EOF and the debugger will exit.

M-^H (Meta-backspace) Delete previous word.

^K Delete from the cursor to the end of the line.

^L Clear the screen and reprint the current line.

^T Transpose current character with next character.

^N Fetch the next command from the history. Each time ^N is entered,
the next command forward in time is retrieved.

^P Fetch the previous command from the history. Each time ^P is
entered, the next command backward in time is retrieved.

^R[string] Search backward in the history for a previous command line
containing string. The string should be terminated by a RETURN or
NEWLINE. If string is omitted, the previous history element
containing the most recent string is retrieved.

The editing mode also interprets the following user-defined sequences as editing
commands. User defined sequences can be read or modified using the stty(1)
command.

erase User defined erase character (usually ^H or ^?). Delete previous
character.

intr User defined interrupt character (usually ^C). Abort the current
command and print a new prompt.

mdb(1)

In-line Editing

User Commands 871

kill User defined kill character (usually ^U). Kill the entire current
command line.

quit User defined quit character (usually ^\). Quit the debugger.

suspend User defined suspend character (usually ^Z). Suspend the
debugger.

werase User defined word erase character (usually ^W). Erase the
preceding word.

On keyboards that support an extended keypad with arrow keys, mdb will interpret
these keystrokes as editing commands:

up-arrow Fetch the previous command from the history (same as ^P).

down-arrow Fetch the next command from the history (same as ^N).

left-arrow Move cursor backward one character (same as ^B).

right-arrow Move cursor forward one character (same as ^F).

mdb provides a built-in output pager. The output pager is enabled if the debugger’s
standard output is a terminal device. Each time a command is executed, mdb will
pause after one screenful of output is produced and will display a pager prompt:

>> More [<space>, <cr>, q, n, c, a] ?

The following key sequences are recognized by the pager:

SPACE Display the next screenful of output.

a, A Abort the current top-level command and return to the
prompt.

c, C Continue displaying output without pausing at each
screenful until the current top-level command is
complete.

n, N, NEWLINE, RETURN Display the next line of output.

q, Q, ^C, ^\ Quit (abort) the current dcmd only.

The /, \, ?, and = metacharacters are used to denote the special output formatting
dcmds. Each of these dcmds accepts an argument list consisting of one or more format
characters, repeat counts, or quoted strings. A format character is one of the ASCII
characters shown in the table below. Format characters are used to read and format
data from the target. A repeat count is a positive integer preceding the format
character that is always interpreted in base 10 (decimal). A repeat count may also be
specified as an expression enclosed in square brackets preceded by a dollar sign ($[
]). A string argument must be enclosed in double-quotes (" "). No blanks are
necessary between format arguments.

The formatting dcmds are:

mdb(1)

Output Pager

Formatting dcmds

872 man pages section 1: User Commands • Last Revised 12 Dec 2001

/ Display data from the target’s virtual address space starting at the virtual
address specified by dot.

\ Display data from the target’s physical address space starting at the
physical address specified by dot.

? Display data from the target’s primary object file starting at the object file
location corresponding to the virtual address specified by dot.

= Display the value of dot itself in each of the specified data formats. The =
dcmd is therefore useful for converting between bases and performing
arithmetic.

In addition to dot, mdb keeps track of another global value called the increment. The
increment represents the distance between dot and the address following all the data
read by the last formatting dcmd. For example, if a formatting dcmd is executed with
dot equal to address A, and displays a 4-byte integer, then after this dcmd completes,
dot is still A, but the increment is set to 4. The + character (described under
Arithmetic Expansion above) would now evaluate to the value A + 4, and could
be used to reset dot to the address of the next data object for a subsequent dcmd.

Most format characters increase the value of the increment by the number of bytes
corresponding to the size of the data format, shown in the table. The table of format
characters can be displayed from within mdb using the ::formats dcmd. The format
characters are:

+ increment dot by the count (variable size)

- decrement dot by the count (variable size)

B hexadecimal int (1 byte)

C character using C character notation (1 byte)

D decimal signed int (4 bytes)

E decimal unsigned long long (8 bytes)

F double (8 bytes)

G octal unsigned long long (8 bytes)

H swap bytes and shorts (4 bytes)

I address and disassembled instruction (variable size)

J hexadecimal long long (8 bytes)

K hexadecimal uintptr_t (4 or 8 bytes)

N newline

O octal unsigned int (4 bytes)

mdb(1)

User Commands 873

P symbol (4 or 8 bytes)

Q octal signed int (4 bytes)

R binary int (8 bytes)

S string using C string notation (variable size)

T horizontal tab

U decimal unsigned int (4 bytes)

V decimal unsigned int (1 byte)

W default radix unsigned int (4 bytes)

X hexadecimal int (4 bytes)

Y decoded time32_t (4 bytes)

Z hexadecimal long long (8 bytes)

^ decrement dot by increment * count (variable size)

a dot as symbol+offset

b octal unsigned int (1 byte)

c character (1 byte)

d decimal signed short (2 bytes)

e decimal signed long long (8 bytes)

f float (4 bytes)

g octal signed long long (8 bytes)

h swap bytes (2 bytes)

i disassembled instruction (variable size)

n newline

o octal unsigned short (2 bytes)

p symbol (4 or 8 bytes)

q octal signed short (2 bytes)

r whitespace

s raw string (variable size)

t horizontal tab

u decimal unsigned short (2 bytes)

v decimal signed int (1 byte)

mdb(1)

874 man pages section 1: User Commands • Last Revised 12 Dec 2001

w default radix unsigned short (2 bytes)

x hexadecimal short (2 bytes)

y decoded time64_t (8 bytes)

The /, \, and ? formatting dcmds can also be used to write to the target’s virtual
address space, physical address space, or object file by specifying one of the following
modifiers as the first format character, and then specifying a list of words that are
either immediate values or expressions enclosed in square brackets preceded by a
dollar sign ($[]).

The write modifiers are:

v Write the lowest byte of the value of each expression to the target
beginning at the location specified by dot.

w Write the lowest two bytes of the value of each expression to the target
beginning at the location specified by dot.

W Write the lowest 4 bytes of the value of each expression to the target
beginning at the location specified by dot.

Z Write the complete 8 bytes of the value of each expression to the target
beginning at the location specified by dot.

The /, \, and ? formatting dcmds can also be used to search for a particular integer
value in the target’s virtual address space, physical address space, and object file,
respectively, by specifying one of the following modifiers as the first format character,
and then specifying a value and optional mask. The value and mask are each specified
as either immediate values or expressions enclosed in square brackets preceded by a
dollar sign. If only a value is specified, mdb reads integers of the appropriate size and
stops at the address containing the matching value. If a value V and mask M are
specified, mdb reads integers of the appropriate size and stops at the address
containing a value X where (X & M) == V. At the completion of the dcmd, dot is
updated to the address containing the match. If no match is found, dot is left at the
last address that was read.

The search modifiers are:

l Search for the specified 2-byte value.

L Search for the specified 4-byte value.

M Search for the specified 8-byte value.

mdb(1)

User Commands 875

Notice that for both user and kernel targets, an address space is typically composed of
a set of discontiguous segments. It is not legal to read from an address that does not
have a corresponding segment. If a search reaches a segment boundary without
finding a match, it will abort when the read past the end of the segment boundary
fails.

mdb provides facilities for controlling and tracing the execution of a live running
program. Currently, only the user process target provides support for execution
control. mdb provides a simple model of execution control: a target process can be
started from within the debugger using ::run, or mdb can attach to an existing
process using :A, ::attach, or the -p command-line option, as described below. A
list of traced software events can be specified by the user. Each time a traced event
occurs in the target process, all threads in the target stop, the thread that triggered the
event is chosen as the representative thread, and control returns to the debugger. Once
the target program is set running, control can be asynchronously returned to the
debugger by typing the user-defined interrupt character (typically ^C).

A software event is a state transition in the target program that is observed by the
debugger. For example, the debugger may observe the transition of a program counter
register to a value of interest (a breakpoint) or the delivery of a particular signal.

A software event specifier is a description of a class of software events that is used by the
debugger to instrument the target program in order to observe these events. The
::events dcmd is used to list the software event specifiers. A set of standard
properties is associated with each event specifier, as described under ::events,
below.

The debugger can observe a variety of different software events, including
breakpoints, watchpoints, signals, machine faults, and system calls. New specifiers can
be created using ::bp, ::fltbp, ::sigbp, ::sysbp, or ::wp. Each specifier has an
associated callback (an mdb command string to execute as if it had been typed at the
command prompt) and a set of properties, as described below. Any number of
specifiers for the same event may be created, each with different callbacks and
properties. The current list of traced events and the properties of the corresponding
event specifiers can be displayed using the ::events dcmd. The event specifier
properties are defined as part of the description of the ::events and ::evset
dcmds, below.

The execution control built-in dcmds, described below, are always available, but will
issue an error message indicating they are not supported if applied to a target that
does not support execution control. For more information about the interaction of
exec, attach, release, and job control with debugger execution control, refer to NOTES,
below.

The ::evset dcmd and event tracing dcmds allow you to associate an event callback
(using the -c option) with each event specifier. The event callbacks are strings that
represent mdb commands to execute when the corresponding event occurs in the
target. These commands are executed as if they had been typed at the command

mdb(1)

Execution Control

Event Callbacks

876 man pages section 1: User Commands • Last Revised 12 Dec 2001

prompt. Before executing each callback, the dot variable is set to the value of the
representative thread’s program counter and the "hits" variable is set to the number
of times this specifier has been matched, including the current match.

If the event callbacks themselves contain one or more commands to continue the target
(for example, ::cont or ::step), these commands do not immediately continue the
target and wait for it to stop again. Instead, inside of an event callback, the continue
dcmds note that a continue operation is now pending, and then return immediately.
Therefore, if multiple dcmds are included in an event callback, the step or continue
dcmd should be the last command specified. Following the execution of all event
callbacks, the target will immediately resume execution if all matching event callbacks
requested a continue. If conflicting continue operations are requested, the operation
with the highest precedence determines what type of continue will occur. The order of
precedence from highest to lowest is: step, step-over (next), step-out, continue.

mdb provides facilities to examine the stacks and registers of each thread associated
with the target. The persistent "thread" variable contains the current representative
thread identifier. The format of the thread identifier depends on the target. The
::regs and ::fpregs dcmds can be used to examine the register set of the
representative thread, or of another thread if its register set is currently available. In
addition, the register set of the representative thread is exported as a set of named
variables. The user can modify the value of one or more registers by applying the >
dcmd to the corresponding named variable.

The mdb kernel target exports the virtual address of the corresponding internal thread
structure as the identifier for a given thread. The Solaris Modular Debugger Guide
provides more information on debugging support for threads in the Solaris kernel.
The mdb process target provides proper support for examination of multi-threaded
user processes that use the native lwp_* interfaces, /usr/lib/libthread.so or
/usr/lib/lwp/libthread.so. When debugging a live user process, mdb will
detect if a single threaded process dlopens or closes libthread and will
automatically adjust its view of the threading model on-the-fly. The process target
thread identifiers will correspond to either the lwpid_t, thread_t, or pthread_t of
the representative, depending on the threading model used by the application.

If mdb is debugging a user process target and the target makes use of
compiler-supported thread-local storage, mdb will automatically evaluate symbol
names referring to thread-local storage to the address of the storage corresponding to
the current representative thread. The ::tls built-in dcmd can be used to display the
value of the symbol for threads other than the representative thread.

mdb provides a set of built-in dcmds that are always defined. Some of these dcmds are
only applicable to certain targets: if a dcmd is not applicable to the current target, it
will fail and print a message indicating "command is not supported by current target".
In many cases, mdb provides a mnemonic equivalent (::identifier) for the legacy
adb(1) dcmd names. For example, ::quit is provided as the equivalent of $q.
Programmers who are experienced with adb(1) or who appreciate brevity or arcana
may prefer the $ or : forms of the built-ins. Programmers who are new to mdb may

mdb(1)

Thread Support

Built-in dcmds

User Commands 877

prefer the more verbose :: form. The built-ins are shown in alphabetical order. If a $
or : form has a ::identifier equivalent, it is shown underneath the
::identifier form. The built-in dcmds are:

> variable-name
>/modifier/variable-name

Assign the value of dot to the specified named variable. Some variables are
read-only and may not be modified. If the > is followed by a modifier character
surrounded by / /, then the value is modified as part of the assignment. The
modifier characters are:

c unsigned char quantity (1-byte)

s unsigned short quantity (2-byte)

i unsigned int quantity (4-byte)

l unsigned long quantity (4-byte in 32-bit, 8-byte in 64-bit)

Notice that these operators do not perform a cast. Instead, they fetch the specified
number of low-order bytes (on little-endian architectures) or high-order bytes
(big-endian architectures). Modifiers are provided for backwards compatibility; the
mdb */modifier/ and %/modifier/ syntax should be used instead.

$< macro-name
Read and execute commands from the specified macro file. The filename may be
given as an absolute or relative path. If the filename is a simple name (that is, if it
does not contain a ’/’), mdb will search for it in the macro file include path. If
another macro file is currently being processed, this file is closed and replaced with
the new file.

$<< macro-name
Read and execute commands from the specified macro file (as with $<), but do not
close the current open macro file.

$?
Print the process-ID and current signal of the target if it is a user process or core
file, and then print the general register set of the representative thread.

[address] $C [count]
Print a C stack backtrace, including stack frame pointer information. If the dcmd is
preceded by an explicit address, a backtrace beginning at this virtual memory
address is displayed. Otherwise the stack of the representative thread is displayed.
If an optional count value is given as an argument, no more than count arguments
are displayed for each stack frame in the output.

[base] $d
Get or set the default output radix. If the dcmd is preceded by an explicit
expression, the default output radix is set to the given base; otherwise the current
radix is printed in base 10 (decimal). The default radix is base 16 (hexadecimal).

mdb(1)

878 man pages section 1: User Commands • Last Revised 12 Dec 2001

$e
Print a list of all known external (global) symbols of type object or function, the
value of the symbol, and the first 4 (32-bit mdb) or 8 (64-bit mdb) bytes stored at this
location in the target’s virtual address space. The ::nm dcmd provides more
flexible options for displaying symbol tables.

$P prompt-string
Set the prompt to the specified prompt-string. The default prompt is ’> ’. The prompt
can also be set using ::set -P or the -P command-line option.

distance $s
Get or set the symbol matching distance for address-to-symbol-name conversions.
The symbol matching distance modes are discussed along with the -s
command-line option under OPTIONS, below. The symbol matching distance may
also be modified using the ::set -s option. If no distance is specified, the current
setting is displayed.

$v
Print a list of the named variables that have non-zero values. The ::vars dcmd
provides other options for listing variables.

width $w
Set the output page width to the specified value. Typically, this command is not
necessary as mdb queries the terminal for its width and handles resize events.

$W
Re-open the target for writing, as if mdb had been executed with the -w option on
the command line. Write mode can also be enabled with the ::set -w option.

[pid] ::attach [core | pid]
[pid] :A [core | pid]

If the user process target is active, attach to and debug the specified process-ID or
core file. The core file pathname should be specified as a string argument. The
process-ID may be specified as the string argument, or as the value of the
expression preceding the dcmd. Recall that the default base is hexadecimal, so
decimal PIDs obtained using pgrep(1) or ps(1) should be preceded with "0t" when
specified as expressions.

[address] ::bp [+/-dDesT] [-c cmd] [-n count] sym ...
address :b [cmd ...]

Set a breakpoint at the specified locations. The ::bp dcmd sets a breakpoint at each
address or symbol specified, including an optional address specified by an explicit
expression preceding the dcmd, and each string or immediate value following the
dcmd. The arguments may either be symbol names or immediate values denoting a
particular virtual address of interest. If a symbol name is specified, it may refer to a
symbol that cannot yet be evaluated in the target process. That is, it may consist of
an object name and function name in a load object that has not yet been opened. In
this case, the breakpoint is deferred and it will not be active in the target until an
object matching the given name is loaded. The breakpoint will be automatically
enabled when the load object is opened. Breakpoints on symbols defined in a
shared library should always be set using a symbol name and not using an address

mdb(1)

User Commands 879

expression, as the address may refer to the corresponding Procedure Linkage Table
(PLT) entry instead of the actual symbol definition. Breakpoints set on PLT entries
may be overwritten by the run-time link-editor when the PLT entry is subsequently
resolved to the actual symbol definition. The -d, -D, -e, -s, -t, -T, -c, and -n
options have the same meaning as they do for the ::evset dcmd, as described
below. If the :b form of the dcmd is used, a breakpoint is only set at the virtual
address specified by the expression preceding the dcmd. The arguments following
the :b dcmd are concatenated together to form the callback string. If this string
contains meta-characters, it must be quoted.

::cat filename ...
Concatenate and display files. Each filename may specified as a relative or absolute
pathname. The file contents will be printed to standard output, but will not be
passed to the output pager. This dcmd is intended to be used with the | operator;
the programmer can initiate a pipeline using a list of addresses stored in an external
file.

::cont [SIG]
:c [SIG]

Suspend the debugger, continue the target program, and wait for it to terminate or
stop following a software event of interest. If the target is already running because
the debugger was attached to a running program with the -o nostop option
enabled, this dcmd simply waits for the target to terminate or stop after an event of
interest. If an optional signal name or number (see signal(3HEAD)) is specified as
an argument, the signal is immediately delivered to the target as part of resuming
its execution. If the SIGINT signal is traced, control may be asynchronously
returned to the debugger by typing the user-defined interrupt character (usually
^C). This SIGINT signal will be automatically cleared and will not be observed by
the target the next time it is continued. If no target program is currently running,
::cont will start a new program running as if by ::run.

address ::context
address $p

Context switch to the specified process. A context switch operation is only valid
when using the kernel target. The process context is specified using the address of its
proc structure in the kernel’s virtual address space. The special context address "0"
is used to denote the context of the kernel itself. mdb can only perform a context
switch when examining a crash dump if the dump contains the physical memory
pages of the specified user process (as opposed to just kernel pages). The kernel
crash dump facility can be configured to dump all pages or the pages of the current
user process using dumpadm(1M). The ::status dcmd can be used to display the
contents of the current crash dump.

When the user requests a context switch from the kernel target, mdb constructs a
new target representing the specified user process. Once the switch occurs, the new
target interposes its dcmds at the global level: thus the / dcmd will now format and
display data from the virtual address space of the user process, the ::mappings
dcmd will display the mappings in the address space of the user process, and so on.
The kernel target can be restored by executing 0::context.

mdb(1)

880 man pages section 1: User Commands • Last Revised 12 Dec 2001

::dcmds
List the available dcmds and print a brief description for each one.

[address] ::delete [id | all]
[address] :d [id | all]

Delete the event specifiers with the given id number. The id number argument is
interpreted in decimal by default. If an optional address is specified preceding the
dcmd, all event specifiers that are associated with the given virtual address are
deleted (for example, all breakpoints or watchpoints affecting that address). If the
special argument "all" is given, all event specifiers are deleted, except those that
are marked sticky (T flag). The ::events dcmd displays the current list of event
specifiers.

[address] ::dis [-fw] [-n count] [address]
Disassemble starting at or around the address specified by the final argument, or the
current value of dot. If the address matches the start of a known function, the entire
function is disassembled. Otherwise, a "window" of instructions before and after
the specified address is printed in order to provide context. By default, instructions
are read from the target’s virtual address space. If the -f option is present,
instructions are read from the target’s object file instead. The -f option is enabled
by default if the debugger is not currently attached to a live process, core file, or
crash dump. The -w option can be used to force "window"-mode, even if the
address is the start of a known function. The size of the window defaults to ten
instructions; the number of instructions can be specified explicitly using the -n
option.

::disasms
List the available disassembler modes. When a target is initialized, mdb will attempt
to select the appropriate disassembler mode. The user can change the mode to any
of the modes listed using the ::dismode dcmd.

::dismode [mode]
$V [mode]

Get or set the disassembler mode. If no argument is specified, print the current
disassembler mode. If a mode argument is specified, switch the disassembler to the
specified mode. The list of available disassemblers can be displayed using the
::disasms dcmd.

::dmods [-l] [module-name]
List the loaded debugger modules. If the -l option is specified, the list of the
dcmds and walkers associated with each dmod is printed below its name. The
output can be restricted to a particular dmod by specifying its name as an
additional argument.

[address] ::dump [-eqrstu] [-f|-p]
[-g bytes] [-w paragraphs]
Print a hexadecimal and ASCII memory dump of the 16-byte aligned region of
memory containing the address specified by dot. If a repeat count is specified for
::dump, this is interpreted as a number of bytes to dump rather than a number of
iterations. The ::dump dcmd also recognizes the following options:

mdb(1)

User Commands 881

-e Adjusts for endian-ness. The -e option assumes 4-byte words.
The -g option can be used to change the default word size.

-f Reads data from the object file location corresponding to the
given virtual address instead of from the target’s virtual
address space. The -f option is enabled by default if the
debugger is not currently attached to a live process, core file, or
crash dump.

-g bytes Displays bytes in groups of bytes. The default group size is 4
bytes. The group size must be a power of two that divides the
line width.

-p Interprets address as a physical address location in the target’s
address space instead of a virtual address.

-q Does not print an ASCII decoding of the data.

-r Numbers lines relative to the start address instead of with the
explicit address of each line. This option implies the -u option.

-s Elides repeated lines.

-t Only reads from and displays the contents of the specified
addresses, instead of reading and printing entire lines.

-u Unaligns output instead of aligning the output at a paragraph
boundary.

-w paragraphs Displays paragraphs at 16-byte paragraphs per line. The default
number of paragraphs is one. The maximum value accepted for
-w is 16.

::echo [string | value ...]
Print the arguments separated by blanks and terminated by a NEWLINE to standard
output. Expressions enclosed in $[] will be evaluated to a value and printed in
the default base.

::eval command
Evaluate and execute the specified string as a command. If the command contains
metacharacters or whitespace, it should be enclosed in double or single quotes.

::events [-av]
$b [-av]

Display the list of software event specifiers. Each event specifier is assigned a
unique ID number that can be used to delete or modify it at a later time. The
debugger may also have its own internal events enabled for tracing. These events
will only be displayed if the -a option is present. If the -v option is present, a more
verbose display, including the reason for any specifier inactivity, will be shown.
Here is some sample output:

> ::events
ID S TA HT LM Description Action

----- - -- -- -- -------------------------------- ------

mdb(1)

882 man pages section 1: User Commands • Last Revised 12 Dec 2001

[1] - T 1 0 stop on SIGINT -
[2] - T 0 0 stop on SIGQUIT -
[3] - T 0 0 stop on SIGILL -
...
[11] - T 0 0 stop on SIGXCPU -
[12] - T 0 0 stop on SIGXFSZ -
[13] - 2 0 stop at libc‘printf ::echo printf
>

The following table explains the meaning of each column. A summary of this
information is available using ::help events.

ID The event specifier identifier. The identifier will be shown in
square brackets [] if the specifier is enabled, in parentheses (
) if the specifier is disabled, or in angle brackets < > if the
target program is currently stopped on an event that matches
the given specifier.

S The event specifier state. The state will be one of the following
symbols:

- The event specifier is idle. When no target program
is running, all specifiers are idle. When the target
program is running, a specifier may be idle if it
cannot be evaluated (for example, a deferred
breakpoint in a shared object that is not yet loaded).

+ The event specifier is active. When the target is
continued, events of this type will be detected by the
debugger.

* The event specifier is armed. This state means that
the target is currently running with instrumentation
for this type of event. This state is only visible if the
debugger is attached to a running program with the
-o nostop option.

! The event specifier was not armed due to an
operating system error. The ::events -v option
can be used to display more information about the
reason the instrumentation failed.

TA The Temporary, Sticky, and Automatic event specifier
properties. One or more of the following symbols may be
shown:

t The event specifier is temporary, and will be deleted
the next time the target stops, regardless of whether
it is matched.

mdb(1)

User Commands 883

T The event specifier is sticky, and will be not be
deleted by ::delete all or :z. The specifier can
be deleted by explicitly specifying its id number to
::delete.

d The event specifier will be automatically disabled
when the hit count is equal to the hit limit.

D The event specifier will be automatically deleted
when the hit count is equal to the hit limit.

s The target will automatically stop when the hit
count is equal to the hit limit.

HT The current hit count. This column displays the number of
times the corresponding software event has occurred in the
target since the creation of this event specifier.

LM The current hit limit. This column displays the limit on the hit
count at which the auto-disable, auto-delete, or auto-stop
behavior will take effect. These behaviors can be configured
using the ::evset dcmd, described below.

Description A description of the type of software event that is matched by
the given specifier.

Action The callback string to execute when the corresponding software
event occurs. This callback is executed as if it had been typed at
the command prompt.

[id] ::evset [+/-dDestT] [-c cmd] [-n count] id ...
Modify the properties of one or more software event specifiers. The properties are
set for each specifier identified by the optional expression preceding the dcmd and
an optional list of arguments following the dcmd. The argument list is interpreted
as a list of decimal integers, unless an explicit radix is specified. The ::evset
dcmd recognizes the following options:

-d Disables the event specifier when the hit count reaches the hit limit. If
the +d form of the option is given, this behavior is disabled. Once an
event specifier is disabled, the debugger will remove any corresponding
instrumentation and will ignore the corresponding software events until
the specifier is subsequently re-enabled. If the -n option is not present,
the specifier is disabled immediately.

-D Deletes the event specifier when the hit count reaches the hit limit. If the
+D form of the option is given, this behavior is disabled. The -D option
takes precedence over the -d option. The hit limit can be configured
using the -n option.

-e Enables the event specifier. If the +e form of the option is given, the
specifier is disabled.

mdb(1)

884 man pages section 1: User Commands • Last Revised 12 Dec 2001

-s Stops the target program when the hit count reaches the hit limit. If the
+s form of the option is given, this behavior is disabled. The -s
behavior tells the debugger to act as if the ::cont were issued
following each execution of the specifier’s callback, except for the Nth
execution, where N is the current value of the specifier’s hit limit. The
-s option takes precedence over both the -D option and the -d option.

-t Marks the event specifier as temporary. Temporary specifiers are
automatically deleted the next time the target stops, regardless of
whether it stopped as the result of a software event corresponding to the
given specifier. If the +t form of the option is given, the temporary
marker is removed. The -t option takes precedence over the -T option.

-T Marks the event specifier as sticky. Sticky specifiers will not be deleted
by ::delete all or :z. They can be deleted by specifying the
corresponding specifier ID as an explicit argument to ::delete. If the
+T form of the option is given, the sticky property is removed. The
default set of event specifiers are all initially marked sticky.

-c Executes the specified cmd string each time the corresponding software
event occurs in the target program. The current callback string can be
displayed using ::events.

-n Sets the current value of the hit limit to count. If no hit limit is currently
set and the -n option does not accompany -s or D, the hit limit will be
set to one.

A summary of this information is available using ::help evset.

::files
$f

Print a list of the known source files (symbols of type STT_FILE present in the
various target symbol tables).

[flt] ::fltbp [+/-dDestT] [-c cmd] [-n count] flt ...
Trace the specified machine faults. The faults are identified using an optional fault
number preceding the dcmd, or a list of fault names or numbers (see
<sys/fault.h>) following the dcmd. The -d, -D, -e, -s, -t, -T, -c, and -n
options have the same meaning as they do for the ::evset dcmd.

[thread] ::fpregs
[thread] $x, $X, $y, $Y

Print the floating-point register set of the representative thread. If a thread is
specified, the floating point registers of that thread are displayed. The thread
expression should be one of the thread identifiers described under Thread
Support, above.

::formats
List the available output format characters for use with the /, \, ?, and = formatting
dcmds. The formats and their use is described under Formatting dcmds, above.

mdb(1)

User Commands 885

::grep command
Evaluate the specified command string, and then print the old value of dot if the
new value of dot is non-zero. If the command contains whitespace or
metacharacters, it must be quoted. The ::grep dcmd can be used in pipelines to
filter a list of addresses.

::help [dcmd-name]
With no arguments, the ::help dcmd prints a brief overview of the help facilities
available in mdb. If a dcmd-name is specified, mdb will print a usage summary for
that dcmd.

signal :i
If the target is a live user process, ignore the specified signal and allow it to be
delivered transparently to the target. All event specifiers that are tracing delivery of
the specified signal will be deleted from the list of traced events. By default, the set
of ignored signals is initialized to the complement of the set of signals that cause a
process to dump core by default (see signal(3HEAD)), except for SIGINT, which
is traced by default.

$i
Display the list of signals that are ignored by the debugger and that will be handled
directly by the target. More information on traced signals can be obtained using the
::events dcmd.

::kill
:k

Forcibly terminate the target if it is a live user process. The target will also be
forcibly terminated when the debugger exits if it was created by the debugger using
::run.

$l
Print the LWPID of the representative thread, if the target is a user process.

$L
Print the LWPIDs of each LWP in the target, if the target is a user process.

[address] ::list type member [variable-name]
Walk through the elements of a linked list data structure and print the address of
each element in the list. The address of the first element in the list can be specified
using an optional address. Otherwise, the list is assumed to start at the current
value of dot. The type parameter must name a C struct or union type and is used to
describe the type of the list elements so that mdb can read in objects of the
appropriate size. The member parameter is used to name the member of type that
contains a pointer to the next list element. The ::list dcmd will continue iterating
until a NULL pointer is encountered, the first element is reached again (a circular
list), or an error occurs while reading an element. If the optional variable-name is
specified, the specified variable will be assigned the value returned at each step of
the walk when mdb invokes the next stage of a pipeline. The ::list dcmd may
only be used with objects that contain symbolic debugging information designed
for use with mdb. Refer to NOTES, Symbolic Debugging Information, below
for more information.

mdb(1)

886 man pages section 1: User Commands • Last Revised 12 Dec 2001

::load [-s] module-name
Load the specified dmod. The module name may be given as an absolute or relative
path. If module-name is a simple name (that is, does not contain a ’/’), mdb will
search for it in the module library path. Modules with conflicting names may not be
loaded; the existing module must be unloaded first. If the -s option is present, mdb
will remain silent and not issue any error messages if the module is not found or
could not be loaded.

::log [-d | [-e] filename]
$> [filename]

Enable or disable the output log. mdb provides an interactive logging facility where
both the input commands and standard output can be logged to a file while still
interacting with the user. The -e option enables logging to the specified file, or
re-enables logging to the previous log file if no filename is given. The -d option
disables logging. If the $> dcmd is used, logging is enabled if a filename argument
is specified; otherwise, logging is disabled. If the specified log file already exists,
mdb appends any new log output to the file.

::map command
Map the value of dot to a corresponding value using the command specified as a
string argument, and then print the new value of dot. If the command contains
whitespace or metacharacters, it must be quoted. The ::map dcmd can be used in
pipelines to transform the list of addresses into a new list of addresses.

[address] ::mappings [name]
[address] $m [name]

Print a list of each mapping in the target’s virtual address space, including the
address, size, and description of each mapping. If the dcmd is preceded by an
address, mdb will only show the mapping that contains the given address. If a string
name argument is given, mdb will only show the mapping matching that
description.

::next [SIG]
:e [SIG]

Step the target program one instruction, but step over subroutine calls. If an
optional signal name or number (see signal(3HEAD)) is specified as an argument,
the signal is immediately delivered to the target as part of resuming its execution. If
no target program is currently running, ::next will start a new program running
as if by ::run and stop at the first instruction.

[address] ::nm [-DPdghnopuvx] [-t types]
[-f format] [object]
Print the symbol tables associated with the current target. If an optional address
preceding the dcmd is specified, only the symbol table entry for the symbol
corresponding to address is displayed. If an object is specified, only the symbol table
for this load object is displayed. The ::nm dcmd also recognizes the following
options:

-D Prints .dynsym (dynamic symbol table) instead of
.symtab.

mdb(1)

User Commands 887

-P Prints the private symbol table instead of .symtab.

-d Prints value and size fields in decimal.

-g Prints only global symbols.

-h Suppresses the header line.

-n Sorts symbols by name.

-o Prints value and size fields in octal.

-p Prints symbols as a series of ::nmadd commands.
This option can be used with -P to produce a macro
file that can be subsequently read into the debugger
with $<.

-u Prints only undefined symbols.

-v Sorts symbols by value.

-x Prints value and size fields in hexadecimal.

-t type[,type ...] Prints only symbols of the specified type(s). The
valid type argument strings are:

noty STT_NOTYPE

objt STT_OBJECT

func STT_FUNC

sect STT_SECTION

file STT_FILE

comm STT_COMMON

tls STT_TLS

regi STT_SPARC_REGISTER

-f format[,format ...] Prints only the specified symbol information. The
valid format argument strings are:

ndx symbol table index

val symbol value

size size in bytes

type symbol type

bind binding

oth other

shndx section index

name symbol name

mdb(1)

888 man pages section 1: User Commands • Last Revised 12 Dec 2001

ctype C type for symbol (if known)

obj object which defines symbol

value ::nmadd [-fo] [-e end] [-s size] name
Add the specified symbol name to the private symbol table. mdb provides a private,
configurable symbol table that can be used to interpose on the target’s symbol table,
as described under Symbol Name Resolution above. The ::nmadd dcmd also
recognizes the following options:

-e Sets the size of the symbol to end - value.

-f Sets the type of the symbol to STT_FUNC.

-o Sets the type of the symbol to STT_OBJECT.

-s Sets the size of the symbol to size.

::nmdel name
Delete the specified symbol name from the private symbol table.

::objects
Print a map of the target’s virtual address space, showing only those mappings that
correspond to the primary mapping (usually the text section) of each of the known
load objects.

::offsetof type member
Print the offset of the specified member of the specified type. The type should be the
name of a C structure. The offset is printed in bytes, unless the member is a
bit-field, in which case the offset may be printed in bits. The output is always
suffixed with the appropriate units for clarity. The type name may use the
backquote (‘) scoping operator described under Symbol Name Resolution,
above. The ::offsetof dcmd may only be used with objects that contain
symbolic debugging information designed for use with mdb. Refer to NOTES,
Symbolic Debugging Information, below for more information.

address ::print [-aCdLptx] [-c lim]
[-l lim] [type [member ...]]
Print the data structure at the specified virtual address using the given type
information. The type parameter may name a C struct, union, enum, fundamental
integer type, or a pointer to any of these types. If the type name contains
whitespace (for example, “struct foo”), it must be enclosed in single or double
quotes. The type name may use the backquote (‘) scoping operator described
under Symbol Name Resolution, above. If the type is a structured type, the
::print dcmd will recursively print each member of the struct or union. If the
type argument is not present and a static or global STT_OBJECT symbol matches
the address, ::print will infer the appropriate type automatically. If the type
argument is specified, it may be followed by an optional list of member expressions,
in which case only those members and submembers of the specified type are
displayed. If type contains other structured types, each member string may refer to
a sub-structure element by forming a list of member names separated by period
(’.’) delimiters. The ::print dcmd may only be used with objects that contain
symbolic debugging information designed for use with mdb. Refer to NOTES,

mdb(1)

User Commands 889

Symbolic Debugging Information, below for more information. After
displaying the data structure, ::print increments dot by the size of type in bytes.

If the -a option is present, the address of each member is displayed. If the -p
option is present, ::print interprets address as a physical memory address instead
of a virtual memory address. If the -t option is present, the type of each member is
displayed. If the -d or -x options are present, all integers are displayed in decimal
(-d) or hexadecimal (-x). By default, a heuristic is used to determine if the value
should be displayed in decimal or hexadecimal. The number of characters in a
character array that will be read and displayed as a string can be limited with the
-c option. If the -C option is present, no limit is enforced. The number of elements
in a standard array that will be read and displayed can be limited with the -l
option. If the -L option is present, no limit is enforced and all array elements are
shown. The default values for -c and -l can be modified using ::set or the -o
command-line option as described under OPTIONS, below.

::quit
$q

Quit the debugger.

[thread] ::regs
[thread] $r

Print the general purpose register set of the representative thread. If a thread is
specified, the general purpose register set of that thread is displayed. The thread
expression should be one of the thread identifiers described under Thread
Support, above.

::release [-a]
:R [-a]

Release the previously attached process or core file. If the -a option is present, the
process is released and left stopped and abandoned. It can subsequently be
continued by prun(1) (see proc(1)) or it can be resumed by applying mdb or
another debugger. By default, a released process is forcibly terminated if it was
created by mdb using ::run, or it is released and set running if it was attached to
by mdb using the -p option or using the ::attach or :A dcmds.

::run [args . . .]
:r [args . . .]

Start a new target program running with the specified arguments and attach to it.
The arguments are not interpreted by the shell. If the debugger is already
examining a live running program, it will first detach from this program as if by
::release.

::set [-wF] [+/-o option] [-s distance] [-I path]
[-L path] [-P prompt]
Get or set miscellaneous debugger properties. If no options are specified, the
current set of debugger properties is displayed. The ::set dcmd recognizes the
following options:

-F Forcibly takes over the next user process that ::attach is applied to, as
if mdb had been executed with the -F option on the command line.

mdb(1)

890 man pages section 1: User Commands • Last Revised 12 Dec 2001

-I Sets the default path for locating macro files. The path argument may
contain any of the special tokens described for the -I command-line
option under OPTIONS below.

-L Sets the default path for locating debugger modules. The path argument
may contain any of the special tokens described for the -I
command-line option under OPTIONS below.

-o Enables the specified debugger option. If the +o form is used, the option
is disabled. The option strings are described along with the -o
command-line option under OPTIONS below.

-P Sets the command prompt to the specified prompt string.

-s Sets the symbol matching distance to the specified distance. Refer to the
description of the -s command-line option under OPTIONS below for
more information.

-w Re-opens the target for writing, as if mdb had been executed with the -w
option on the command line.

[signal] ::sigbp [+/-dDestT] [-c cmd] [-n count] SIG ...
[signal] :t [+/-dDestT] [-c cmd] [-n count] SIG ...

Trace delivery of the specified signals. The signals are identified using an optional
signal number preceding the dcmd, or a list of signal names or numbers (see
signal(3HEAD)) following the dcmd. The -d, -D, -e, -s, -t, -T, -c, and -n
options have the same meaning as they do for the ::evset dcmd. Initially, the set
of signals that cause the process to dump core by default (see signal(3HEAD))
and SIGINT are traced.

::sizeof type
Print the size of the specified type in bytes. The type parameter may name a C struct,
union, enum, fundamental integer type, or a pointer to any of these types. The type
name may use the backquote (‘) scoping operator described under Symbol Name
Resolution, above. The ::sizeof dcmd may only be used with objects that
contain symbolic debugging information designed for use with mdb. Refer to
NOTES, Symbolic Debugging Information, below for more information.

[address] ::stack [count]
[address] $c [count]

Print a C stack backtrace. If the dcmd is preceded by an explicit address, a backtrace
beginning at this virtual memory address is displayed. Otherwise the stack of the
representative thread is displayed. If an optional count value is given as an
argument, no more than count arguments are displayed for each stack frame in the
output.

::status
Print a summary of information related to the current target.

::step [over | out] [SIG]
:s [SIG]
:u [SIG]

mdb(1)

User Commands 891

Step the target program one instruction. If an optional signal name or number (see
signal(3HEAD)) is specified as an argument, the signal is immediately delivered
to the target as part of resuming its execution. If the optional "over" argument is
specified, ::step will step over subroutine calls. The ::step over argument is
the same as the ::next dcmd. If the optional "out" argument is specified, the
target program will continue until the representative thread returns from the
current function. If no target program is currently running, ::step out will start a
new program running as if by ::run and stop at the first instruction. The :s dcmd
is the same as ::step. The :u dcmd is the same as ::step out.

[syscall] ::sysbp [+/-dDestT] [-io] [-c cmd]
[-n count] syscall...
Trace entry to or exit from the specified system calls. The system calls are identified
using an optional system call number preceding the dcmd, or a list of system call
names or numbers (see <sys/syscall.h>) following the dcmd. If the -i option
is specified (the default), the event specifiers trigger on entry into the kernel for
each system call. If the -o option is specified, the event specifiers trigger on exit out
from the kernel. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same
meaning as they do for the ::evset dcmd.

thread ::tls symbol
Print the address of the storage for the specified thread-local storage (TLS) symbol
in the context of the specified thread. The thread expression should be one of the
thread identifiers described under Thread Support, above. The symbol name
may use any of the scoping operators described under Symbol Name
Resolution, above.

::typeset [+/-t] variable-name . . .
Set attributes for named variables. If one or more variable names are specified, they
are defined and set to the value of dot. If the -t option is present, the user-defined
tag associated with each variable is set. If the +t option is present, the tag is
cleared. If no variable names are specified, the list of variables and their values is
printed.

::unload module-name
Unload the specified dmod. The list of active dmods may be printed using the
::dmods dcmd. Built-in modules may not be unloaded. Modules that are busy
(that is, provide dcmds that are currently executing) may not be unloaded.

::unset variable-name . . .
Unset (remove) the specified variable(s) from the list of defined variables. Some
variables exported by mdb are marked as persistent, and may not be unset by the
user.

::vars [-npt]
Print a listing of named variables. If the -n option is present, the output is
restricted to variables that currently have non-zero values. If the -p option is
present, the variables are printed in a form suitable for re-processing by the
debugger using the $< dcmd. This option can be used to record the variables to a

mdb(1)

892 man pages section 1: User Commands • Last Revised 12 Dec 2001

macro file and then restore these values later. If the -t option is present, only the
tagged variables are printed. Variables can be tagged using the -t option of the
::typeset dcmd.

::version
Print the debugger version number.

address ::vtop [-a as]
Print the physical address mapping for the specified virtual address, if possible.
The ::vtop dcmd is only available when examining a kernel target, or when
examining a user process inside a kernel crash dump (after a ::context dcmd has
been issued).

When examining a kernel target from the kernel context, the -a option can be used
to specify the address (as) of an alternate address space structure that should be
used for the virtual to physical translation. By default, the kernel’s address space is
used for translation. This option is available for active address spaces even when
the dump content only contains kernel pages.

[address] ::walk walker-name [variable-name]
Walk through the elements of a data structure using the specified walker. The
available walkers can be listed using the ::walkers dcmd. Some walkers operate
on a global data structure and do not require a starting address. For example, walk
the list of proc structures in the kernel. Other walkers operate on a specific data
structure whose address must be specified explicitly. For example, given a pointer
to an address space, walk the list of segments. When used interactively, the ::walk
dcmd will print the address of each element of the data structure in the default
base. The dcmd can also be used to provide a list of addresses for a pipeline. The
walker name may use the backquote (‘) scoping operator described under dcmd
and Walker Name Resolution, above. If the optional variable-name is specified,
the specified variable will be assigned the value returned at each step of the walk
when mdb invokes the next stage of the pipeline.

::walkers
List the available walkers and print a brief description for each one.

::whence [-v] name . . .
::which [-v] name ...

Print the dmod that exports the specified dcmds and walkers. These dcmds can be
used to determine which dmod is currently providing the global definition of the
given dcmd or walker. Refer to the section on dcmd and Walker Name
Resolution above for more information on global name resolution. The -v option
will cause the dcmd to print the alternate definitions of each dcmd and walker in
order of precedence.

addr [,len]::wp [+/-dDestT] [-rwx] [-c cmd] [-n count]
addr [,len] :a [cmd . . .]
addr [,len] :p [cmd . . .]
addr [,len] :w [cmd . . .]

Set a watchpoint at the specified address. The length in bytes of the watched region
may be set by specifying an optional repeat count preceding the dcmd. If no length

mdb(1)

User Commands 893

is explicitly set, the default is one byte. The ::wp dcmd allows the watchpoint to be
configured to trigger on any combination of read (-r option), write (-w option), or
execute (-x option) access. The -d, -D, -e, -s, -t, -T, -c, and -n options have the
same meaning as they do for the ::evset dcmd. The :a dcmd sets a read access
watchpoint at the specified address. The :p dcmd sets an execute access
watchpoint at the specified address. The :w dcmd sets a write access watchpoint at
the specified address. The arguments following the :a, :p, and :w dcmds are
concatenated together to form the callback string. If this string contains
meta-characters, it must be quoted.

::xdata
List the external data buffers exported by the current target. External data buffers
represent information associated with the target that can not be accessed through
standard target facilities (that is, an address space, symbol table, or register set).
These buffers may be consumed by dcmds; for more information, refer to the Solaris
Modular Debugger Guide.

:z
Delete all event specifiers from the list of traced software events. Event specifiers
can also be deleted using ::delete.

The following options are supported:

-A Disables automatic loading of mdb modules. By default, mdb
attempts to load debugger modules corresponding to the active
shared libraries in a user process or core file, or to the loaded
kernel modules in the live operating system or an operating
system crash dump.

-f Forces raw file debugging mode. By default, mdb attempts to infer
whether the object and core file operands refer to a user executable
and core dump or to a pair of operating system crash dump files.
If the file type cannot be inferred, the debugger will default to
examining the files as plain binary data. The -f option forces mdb
to interpret the arguments as a set of raw files to examine.

-F Forcibly takes over the specified user process, if necessary. By
default, mdb refuses to attach to a user process that is already
under the control of another debugging tool, such as truss(1).
With the -F option, mdb attaches to these processes anyway. This
may produce unexpected interactions between mdb and the other
tools attempting to control the process.

-I path Sets default path for locating macro files. Macro files are read
using the $< or $<< dcmds. The path is a sequence of directory
names delimited by colon (:) characters. The -I include path
and -L library path (see below) may also contain any of the
following tokens:

%i Expands to the current instruction set architecture (ISA)
name (’sparc’, ’sparcv9’, or ’i386’).

mdb(1)

OPTIONS

894 man pages section 1: User Commands • Last Revised 12 Dec 2001

%o Expands to the old value of the path being modified.
This is useful for appending or prepending directories
to an existing path.

%p Expands to the current platform string (either uname
-i or the platform string stored in the process core file
or crash dump).

%r Expands to the pathname of the root directory. An
alternate root directory may be specified using the -R
option. If no -R option is present, the root directory is
derived dynamically from the path to the mdb
executable itself. For example, if /bin/mdb is executed,
the root directory will be /. If
/net/hostname/bin/mdb were executed, the root
directory would be derived as /net/hostname.

%t Expands to the name of the current target. This will
either be the literal string ’proc’ (a user process or user
process core file), ’kvm’ (a kernel crash dump or the live
operating system), or ’raw’ (a raw file).

The default include path for 32-bit mdb is:

%r/usr/platform/%p/lib/adb:%r/usr/lib/adb

The default include path for 64-bit mdb is:

%r/usr/platform/%p/lib/adb/%i:%r/usr/lib/adb/%i

-k Forces kernel debugging mode. By default, mdb attempts to infer
whether the object and core file operands refer to a user executable
and core dump, or to a pair of operating system crash dump files.
The -k option forces mdb to assume these files are operating
system crash dump files. If no object or core operand is specified,
but the -k option is specified, mdb defaults to an object file of
/dev/ksyms and a core file of /dev/kmem. Access to /dev/kmem
is restricted to group sys.

-L path Sets default path for locating debugger modules. Modules are
loaded automatically on startup or using the ::load dcmd. The
path is a sequence of directory names delimited by colon (:)
characters. The -L library path may also contain any of the tokens
shown for -I above.

-m Disables demand-loading of kernel module symbols. By default,
mdb processes the list of loaded kernel modules and performs
demand loading of per-module symbol tables. If the -m option is
specified, mdb will not attempt to process the kernel module list or

mdb(1)

User Commands 895

provide per-module symbol tables. As a result, mdb modules
corresponding to active kernel modules will not be loaded on
startup.

-M Preloads all kernel module symbols. By default, mdb performs
demand-loading for kernel module symbols: the complete symbol
table for a module is read when an address is that module’s text or
data section is referenced. With the -M option, mdb loads the
complete symbol table of all kernel modules during startup.

-o option Enables the specified debugger option. If the +o form of the option
is used, the specified option is disabled. Unless noted below, each
option is off by default. mdb recognizes the following option
arguments:

adb
Enables stricter adb(1) compatibility. The prompt will be set to
the empty string and many mdb features, such as the output
pager, will be disabled.

array_mem_limit=limit
Sets the default limit on the number of array members that
::print will display. If limit is the special token none, all
array members will be displayed by default.

array_str_limit=limit
Sets the default limit on the number of characters that ::print
will attempt to display as an ASCII string when printing a char
array. If limit is the special token none, the entire char array will
be displayed as a string by default.

follow_exec_mode=mode
Sets the debugger behavior for following an exec(2) system
call. The mode should be one of the following named constants:

ask If stdout is a terminal device, the debugger stops
after the exec(2) system call has returned and then
prompts the user to decide whether to follow the
exec or stop. If stdout is not a terminal device, the
ask mode defaults to stop.

follow The debugger follows the exec by automatically
continuing the target process and resetting all of its
mappings and symbol tables based on the new
executable. The follow behavior is discussed in
more detail under NOTES, Interaction with
Exec, below.

stop The debugger stops following return from the exec
system call. The stop behavior is discussed in more
detail under NOTES, Interaction with Exec,
below.

mdb(1)

896 man pages section 1: User Commands • Last Revised 12 Dec 2001

follow_fork_mode=mode
Sets the debugger behavior for following a fork(2), fork1(2),
or vfork(2) system call. The mode should be one of the
following named constants:

ask If stdout is a terminal device, the debugger stops
after the fork(2) system call has returned and then
prompts the user to decide whether to follow the
parent or child. If stdout is not a terminal device, the
ask mode defaults to parent.

parent The debugger follows the parent process, and
detaches from the child process and sets it running.

child The debugger follows the child process, and
detaches from the parent process and sets it running.

ignoreeof
The debugger will not exit when an EOF sequence (^D) is
entered at the terminal. The ::quit dcmd must be used to
quit.

nostop
Does not stop a user process when attaching to it when the -p
option is specified or when the ::attach or :A dcmds are
applied. The nostop behavior is described in more detail under
NOTES, Process Attach and Release, below.

pager
Enables the output pager (default).

repeatlast
If a NEWLINE is entered as the complete command at the
terminal, mdb repeats the previous command with the current
value of dot. This option is implied by -o adb.

showlmid
mdb provides support for symbol naming and identification in
user applications that make use of link maps other than
LM_ID_BASE and LM_ID_LDSO, as described in Symbol Name
Resolution, above. Symbols on link maps other than
LM_ID_BASE or LM_ID_LDSO will be shown as
LMlmid‘library‘symbol, where lmid is the link-map ID in
the default output radix (16). The user may optionally configure
mdb to show the link-map ID scope of all symbols and objects,
including those associated with LM_ID_BASE and
LM_ID_LDSO, by enabling the showlmid option. Built-in
dcmds that deal with object file names will display link-map
IDs according to the value of showlmid above, including ::nm,
::mappings, $m, and ::objects.

mdb(1)

User Commands 897

-p pid Attaches to and stops the specified process-id. mdb will use the
/proc/pid/object/a.out file as the executable file pathname.

-P prompt Sets the command prompt. The default prompt is ’> ’.

-R root Sets root directory for pathname expansion. By default, the root
directory is derived from the pathname of the mdb executable
itself. The root directory is substituted in place of the %r token
during pathname expansion.

-s distance Sets the symbol matching distance for address-to-symbol-name
conversions to the specified distance. By default, mdb sets the
distance to zero, which enables a smart-matching mode. Each ELF
symbol table entry includes a value V and size S, representing the
size of the function or data object in bytes. In smart mode, mdb
matches an address A with the given symbol if A is in the range [
V, V + S). If any non-zero distance is specified, the same algorithm
is used, but S in the expression above is always the specified
absolute distance and the symbol size is ignored.

-S Suppresses processing of the user’s ~/.mdbrc file. By default, mdb
reads and processes the macro file .mdbrc if one is present in the
user’s home directory, as defined by $HOME. If the -S option is
present, this file will not be read.

-u Forces user debugging mode. By default, mdb attempts to infer
whether the object and core file operands refer to a user executable
and core dump, or to a pair of operating system crash dump files.
The -u option forces mdb to assume these files are not operating
system crash dump files.

-V version Sets disassembler version. By default, mdb attempts to infer the
appropriate disassembler version for the debug target. The
disassembler can be set explicitly using the -V option. The
::disasms dcmd lists the available disassembler versions.

-w Opens the specified object and core files for writing.

-y Sends explicit terminal initialization sequences for tty mode. Some
terminals, such as cmdtool(1), require explicit initialization
sequences to switch into a tty mode. Without this initialization
sequence, terminal features such as standout mode may not be
available to mdb.

The following operands are supported:

object Specifies an ELF format object file to examine. mdb provides the ability to
examine and edit ELF format executables (ET_EXEC), ELF dynamic library
files (ET_DYN), ELF relocatable object files (ET_REL), and operating system
unix.X symbol table files.

mdb(1)

OPERANDS

898 man pages section 1: User Commands • Last Revised 12 Dec 2001

core Specifies an ELF process core file (ET_CORE), or an operating system crash
dump vmcore.X file. If an ELF core file operand is provided without a
corresponding object file, mdb will attempt to infer the name of the
executable file that produced the core using several different algorithms. If
no executable is found, mdb will still execute, but some symbol information
may be unavailable.

suffix Specifies the numerical suffix representing a pair of operating system crash
dump files. For example, if the suffix is ’3’, mdb infers that it should
examine the files ’unix.3’ and ’vmcore.3’. The string of digits will not be
interpreted as a suffix if an actual file of the same name is present in the
current directory.

The following exit values are returned:

0 Debugger completed execution successfully.

1 A fatal error occurred.

2 Invalid command line options were specified.

HISTSIZE This variable is used to determine the maximum length of the
command history list. If this variable is not present, the default
length is 128.

HOME This variable is used to determine the pathname of the user’s
home directory, where a .mdbrc file may reside. If this variable is
not present, no .mdbrc processing will occur.

SHELL This variable is used to determine the pathname of the shell used
to process shell escapes requested using the ! meta-character. If
this variable is not present, /bin/sh is used.

$HOME/.mdbrc
User mdb initialization file. The .mdbrc file, if present, is processed after the debug
target has been initialized, but before module auto-loading is performed or any
commands have been read from standard input.

/dev/kmem
Kernel virtual memory image device. This device special file is used as the core file
when examining the live operating system.

/dev/ksyms
Kernel symbol table device. This device special file is used as the object file when
examining the live operating system.

/proc/pid/*
Process information files that are read when examining and controlling user
processes.

/usr/lib/adb
/usr/platform/platform-name/lib/adb

mdb(1)

EXIT STATUS

ENVIRONMENT
VARIABLES

FILES

User Commands 899

Default directories for macro files that are read with the $< and $<< dcmds.
platform-name is the name of the platform, derived either from information in a core
file or crash dump, or from the current machine as if by uname -i (see uname(1)).

/usr/lib/mdb
/usr/platform/platform-name/lib/mdb

Default directories for debugger modules that are loaded using the ::load dcmd.
platform-name is the name of the platform, derived either from information in a core
file or crash dump, or from the current machine as if by uname -i (see uname(1)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmdb (32-bit)

SUNWmdbx (64-bit)

Interface Stability Evolving

adb(1), cmdtool(1), gcore(1), proc(1), pgrep(1), ps(1), stty(1), truss(1),
uname(1), coreadm(1M), dumpadm(1M), savecore(1M), exec(2), fork(2),
_lwp_self(2), pipe(2), vfork(2), dlopen(3DL), elf(3ELF), libkvm(3LIB),
libthread_db(3LIB), libthread(3LIB), signal(3C), signal(3HEAD),
thr_self(3THR), threads(3THR), core(4), proc(4), attributes(5),
largefile(5), ksyms(7D), mem(7D)

Linker and Libraries Guide

Solaris Modular Debugger Guide

The debugger and its dmods execute in the same address space, and thus it is quite
possible that a buggy dmod can cause mdb to dump core or otherwise misbehave. The
mdb resume capability, described above under Signal Handling, provides a limited
recovery mechanism for these situations. However, it is not possible for mdb to know
definitively whether the dmod in question has corrupted only its own state, or the
debugger’s global state. Therefore a resume operation cannot be guaranteed to be safe,
or to prevent a subsequent crash of the debugger. The safest course of action following
a resume is to save any important debug information, and then quit and restart the
debugger.

The use of the debugger to modify (that is, write to) the address space of live running
operating system is extremely dangerous, and may result in a system panic in the
event the user damages a kernel data structure.

mdb does not provide support for examining process core files that were generated by
a release of Solaris preceding Solaris 2.6. If a core file from one operating system
release is examined on a different operating system release, the run-time link-editor
debugging interface (librtld_db) may not be able to initialize. In this case, symbol

mdb(1)

ATTRIBUTES

SEE ALSO

Use of the Error
Recovery

Mechanism

Use of the
Debugger to

Modify the Live
Operating System

Limitations on
Examining Process

Core Files

900 man pages section 1: User Commands • Last Revised 12 Dec 2001

information for shared libraries will not be available. Furthermore, since shared
mappings are not present in user core files, the text section and read-only data of
shared libraries may not match the data that was present in the process at the time it
dumped core. Core files from Solaris Intel systems may not be examined on Solaris
SPARC systems, and vice-versa.

Crash dumps from Solaris 7 and earlier releases may only be examined with the aid of
the libkvm from the corresponding operating system release. If a crash dump from
one operating system release is examined using the dmods from a different operating
system release, changes in the kernel implementation may prevent some dcmds or
walkers from working properly. mdb will issue a warning message if it detects this
condition. Crash dumps from Solaris Intel systems may not be examined on Solaris
SPARC systems, and vice-versa.

mdb provides support for debugging both 32-bit and 64-bit programs. Once it has
examined the target and determined its data model, mdb automatically re-executes the
mdb binary that has the same data model as the target, if necessary. This approach
simplifies the task of writing debugger modules, because the modules that are loaded
will use the same data model as the primary target. Only the 64-bit debugger may be
used to debug 64-bit target programs. The 64-bit debugger can only be used on a
system that is running the 64-bit operating environment.

The debugger may also need to re-execute itself when debugging a 32-bit process that
execs a 64-bit process, or vice-versa. The handling of this situation is discussed in more
detail under Interaction with Exec, below.

When a controlled process performs a successful exec(2), the behavior of the
debugger is controlled by the ::set -o follow_exec_mode option, as described
above. If the debugger and victim process have the same data model, then the "stop"
and "follow" modes determine whether mdb automatically continues the target or
returns to the debugger prompt following the exec. If the debugger and victim process
have a different data model, then the "follow" behavior causes mdb to automatically
re-exec the mdb binary with the appropriate data model and to re-attach to the process,
still stopped on return from the exec. Not all debugger state is preserved across this
re-exec.

If a 32-bit victim process execs a 64-bit program, then "stop" returns to the command
prompt, but the debugger is no longer able to examine the process because it is now
using the 64-bit data model. To resume debugging, execute the ::release -a dcmd,
quit mdb, and then execute mdb -p pid to re-attach the 64-bit debugger to the process.

If a 64-bit victim process execs a 32-bit program, then "stop" will return to the
command prompt, but the debugger will only provide limited capabilities for
examining the new process. All built-in dcmds will work as advertised, but loadable
dcmds will not since they do not perform data model conversion of structures. The
user should release and re-attach the debugger to the process as described above in
order to restore full debugging capabilities.

mdb(1)

Limitations on
Examining Crash

Dump Files

Relationship
Between 32-bit and

64-bit Debugger

Interaction with
Exec

User Commands 901

If the debugger is attached to a process that is stopped by job control (that is, it
stopped in response to SIGTSTP, SIGTTIN, or SIGTTOU), the process may not be able
to be set running again when it is continued by a continue dcmd. If the victim process
is a member of the same session (that is, it shares the same controlling terminal as
mdb), mdb attempts to bring the associated process group to the foreground and to
continue the process with SIGCONT to resume it from job control stop. When mdb is
detached from such a process, it restores the process group to the background before
exiting. If the victim process is not a member of the same session, mdb cannot safely
bring the process group to the foreground, so it continues the process with respect to
the debugger, but the process remains stopped by job control. mdb prints a warning in
this case, and the user must issue an "fg" command from the appropriate shell in
order to resume the process.

When mdb attaches to a running process, the process is stopped and remains stopped
until one of the continue dcmds is applied, or the debugger quits. If the -o nostop
option is enabled prior to attaching the debugger to a process with -p, or prior to
issuing an ::attach or :A command, mdb attaches to the process but does not stop
it. While the process is still running, it may be inspected as usual (albeit with
inconsistent results) and breakpoints or other tracing flags may be enabled. If the :c
or ::cont dcmds are executed while the process is running, the debugger waits for
the process to stop. If no traced software events occur, the user can send an interrupt
(^C) after :c or ::cont to force the process to stop and return control to the
debugger.

mdb releases the current running process (if any) when the :R, ::release, :r,
::run, $q, or ::quit dcmds are executed, or when the debugger terminates as the
result of an EOF or signal. If the process was originally created by the debugger using
:r or ::run, it will be forcibly terminated as if by SIGKILL when it is released. If the
process was already running prior to attaching mdb to it, it will be set running again
when it is released. A process may be released and left stopped and abandoned using
the ::release -a option.

The ::list, ::offsetof, ::print, and ::sizeof dcmds require that one or more
load objects contain compressed symbolic debugging information suitable for use with
mdb. This information is currently only available for certain Solaris kernel modules.

The Solaris Modular Debugger Guide provides a more detailed description of mdb
features, as well as information for debugger module developers.

The header file <sys/mdb_modapi.h> contains prototypes for the functions in the
MDB Module API, and the SUNWmdbdm package provides source code for an
example module in the directory /usr/demo/mdb.

mdb(1)

Interaction with
Job Control

Process Attach and
Release

Symbolic
Debugging

Information

Developer
Information

902 man pages section 1: User Commands • Last Revised 12 Dec 2001

mesg – permit or deny messages

mesg [-n | -y | n | y]

The mesg utility will control whether other users are allowed to send messages via
write(1), talk(1), or other utilities to a terminal device. The terminal device affected
is determined by searching for the first terminal in the sequence of devices associated
with standard input, standard output, and standard error, respectively. With no
arguments, mesg reports the current state without changing it. Processes with
appropriate privileges may be able to send messages to the terminal independent of
the current state.

The following options are supported:

-n|n Deny permission to other users to send message to the terminal. See
write(1).

-y|y Grant permission to other users to send messages to the terminal.

See environ(5) for descriptions of the following environment variables that affect the
execution of mesg: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 if messages are receivable.

1 if messages are not receivable.

2 on error.

/dev/tty* terminal devices

/dev/pts/* terminal devices

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

talk(1), write(1), attributes(5), environ(5)

mesg(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 903

message – puts its arguments on FMLI message line

message [-t] [-b [num]] [-o] [-w] [string]

message [-f] [-b [num]] [-o] [-w] [string]

message [-p] [-b [num]] [-o] [-w] [string]

The message command puts string out on the FMLI message line. If there is no string,
the stdin input to message will be used. The output of message has a duration
(length of time it remains on the message line). The default duration is "transient": it or
one of two other durations can be requested with the mutually-exclusive options
below.

Messages displayed with message -p will replace (change the value of) any message
currently displayed or stored via use of the permanentmsg descriptor. Likewise,
message -f will replace any message currently displayed or stored via use of the
framemsg descriptor. If more than one message in a frame definition file is specified
with the -p option, the last one specified will be the permanent duration message.

The string argument should always be the last argument.

-t Explicitly defines a message to have transient duration. Transient messages
remain on the message line only until the user presses another key or a
CHECKWORLD occurs. The descriptors itemmsg , fieldmsg ,
invalidmsg , choicemsg , the default-if-not-defined value of
oninterrupt , and FMLI generated error messages (that is, from syntax
errors) also output transient duration messages. Transient messages take
precedence over both frame messages and permanent messages.

-f Defines a message to have "frame" duration. Frame messages remain on the
message line as long as the frame in which they are defined is current. The
descriptor framemsg also outputs a frame duration message. Frame
messages take precedence over permanent messages.

-p Defines a message to have "permanent" duration. Permanent messages
remain on the message line for the length of the FMLI session, unless
explicitly replaced by another permanent message or temporarily
superseded by a transient message or frame message. A permanent
message is not affected by navigating away from, or by closing, the frame
which generated the permanent message. The descriptor permanentmsg
also outputs a permanent duration message.

-b[num] Rings the terminal bell num times, where num is an integer from 1 to 10.
The default value is 1. If the terminal has no bell, the screen will flash num
times instead, if possible.

-o Forces message to duplicate its message to stdout .

-w Turns on the working indicator.

message(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

904 man pages section 1: User Commands • Last Revised 5 Jul 1990

EXAMPLE 1 A sample output of message on the message line:

When a value entered in a field is invalid, ring the bell 3 times and then display
Invalid Entry: Try again! on the message line:

invalidmsg=‘message -b 3 "Invalid Entry: Try again!"‘

Display a message that tells the user what is being done:

done=‘message EDITOR has been set in your environment‘ close

Display a message on the message line and stdout for each field in a form (a
pseudo-"field duration" message).

fieldmsg="‘message -o -f "Enter a filename."‘"

Display a blank transient message (effect is to "remove" a permanent or frame
duration message).

done=‘message ""‘ nop

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sleep(1), attributes(5)

If message is coded more than once on a single line, it may appear that only the
right-most instance is interpreted and displayed. Use sleep(1) between uses of
message in this case, to display multiple messages.

message -f should not be used in a stand-alone backquoted expression or with the
init descriptor because the frame is not yet current when these are evaluated.

In cases where ‘message -f "string"‘ is part of a stand-alone backquoted
expression, the context for evaluation of the expression is the previously current
frame. The previously current frame can be the frame that issued the open command
for the frame containing the backquoted expression, or it can be a frame given as an
argument when fmli was invoked. That is, the previously current frame is the one
whose frame message will be modified.

Permanent duration messages are displayed when the user navigates to the command
line.

message(1F)

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 905

mixerctl – audio mixer control command line application

/usr/sbin/mixerctl [-a | -d dev] [-iv] [-e | -o]

Some audio devices support the audio mixer functionality. See mixer(7I) for a
complete description of the audio mixer. The mixerctl command is used to control
the mode of the audio mixer and to get information about the audio mixer and the
audio device. See audio(7I) for details.

The following options are supported. If none are specified, option -i is assumed:

-a The command applies to all audio devices.

-d dev The dev argument specifies an alternate audio control device
for the command to use.

-e Enables the audio mixer function if the audio device supports it. If
supported, the audio mixer may be enabled at any time. The
command silently ignores the enable option if the audio mixer is
already enabled.

-i Prints the audio device type information for the device and
indicates whether the audio device uses the audio mixer. If the
device does use the audio mixer, this option displays the audio
mixer’s mode.

-o Turns off the audio mixer function if the audio device supports it.
If supported, the audio mixer may be turned off if only one
process has the device opened with the O_RDWR flag, or, if two
different processes have the device opened, one with the
O_RDONLY flag and the other with the O_WRONLY flag. (See
open(2).) The command silently ignores the disable option if the
audio mixer function is already disabled.

-v Verbose mode. Prints the audio_info_t structure for the device,
along with the device type information. This option implies the -i
option.

AUDIODEV If the -d and -a options are not specified, the AUDIODEV
environment variable is consulted. If set, AUDIODEV will contain
the full path name of the user’s default audio device. The default
audio device will be converted into a control device, and then
used. If the AUDIODEV variable is not set, /dev/audioctl is
used.

/dev/audioctl

/dev/sound/{0...n}ctl

See attributes(5) for descriptions of the following attributes:

mixerctl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

906 man pages section 1: User Commands • Last Revised 12 Mar 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, IA

Availability SUNWauda

Stability Level Evolving

audioconvert(1), audioplay(1), audiorecord(1), open(2), attributes(5),
usb_ac(7D), audio(7I), audio_support(7I), mixer(7I)

mixerctl(1)

SEE ALSO

User Commands 907

mkdir – make directories

mkdir [-m mode] [-p] dir…

The mkdir command creates the named directories in mode 777 (possibly altered by
the file mode creation mask umask(1)).

Standard entries in a directory (for instance, the files “.”, for the directory itself, and
“. .”, for its parent) are made automatically. mkdir cannot create these entries by
name. Creation of a directory requires write permission in the parent directory.

The owner-ID and group-ID of the new directories are set to the process’s effective
user-ID and group-ID, respectively. mkdir calls the mkdir(2) system call.

To change the setgid bit on a newly created directory, you must use chmod g+s or
chmod g-s after executing mkdir.

The setgid bit setting is inherited from the parent directory.

The following options are supported:

-m mode This option allows users to specify the mode to be used for new
directories. Choices for modes can be found in chmod(1).

-p With this option, mkdir creates dir by creating all the non-existing
parent directories first. The mode given to intermediate directories
will be the difference between 777 and the bits set in the file mode
creation mask. The difference, however, must be at least 300 (write
and execute permission for the user).

The following operand is supported:

dir A path name of a directory to be created.

See largefile(5) for the description of the behavior of mkdir when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Using mkdir

The following example:

example% mkdir -p ltr/jd/jan

creates the subdirectory structure ltr/jd/jan.

See environ(5) for descriptions of the following environment variables that affect the
execution of mkdir: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All the specified directories were created successfully or the -p option was
specified and all the specified directories now exist.

mkdir(1)

NAME

SYNOPSIS

DESCRIPTION

setgid and mkdir

OPTIONS

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

908 man pages section 1: User Commands • Last Revised 1 Feb 1995

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

rm(1), sh(1), umask(1), intro(2), mkdir(2), attributes(5), environ(5),
largefile(5)

mkdir(1)

ATTRIBUTES

SEE ALSO

User Commands 909

mkmsgs – create message files for use by gettxt

mkmsgs [-o] [-i locale] inputstrings msgfile

The mkmsgs utility is used to create a file of text strings that can be accessed using the
text retrieval tools (see gettxt(1), srchtxt(1), exstr(1), and gettxt(3C)). It will
take as input a file of text strings for a particular geographic locale (see
setlocale(3C)) and create a file of text strings in a format that can be retrieved by
both gettxt(1) and gettxt(3C). By using the -i option, you can install the created
file under the /usr/lib/locale/locale/LC_MESSAGES directory (locale corresponds
to the language in which the text strings are written).

inputstrings is the name of the file that contains the original text strings. msgfile is the
name of the output file where mkmsgs writes the strings in a format that is readable by
gettxt(1) and gettxt(3C). The name of msgfile can be up to 14 characters in length,
but may not contain either \0 (null) or the ASCII code for / (slash) or : (colon).

The input file contains a set of text strings for the particular geographic locale. Text
strings are separated by a newline character. Nongraphic characters must be
represented as alphabetic escape sequences. Messages are transformed and copied
sequentially from inputstrings to msgfile. To generate an empty message in msgfile,
leave an empty line at the correct place in inputstrings.

Strings can be changed simply by editing the file inputstrings. New strings must be
added only at the end of the file; then a new msgfile file must be created and installed
in the correct place. If this procedure is not followed, the retrieval function will
retrieve the wrong string and software compatibility will be broken.

The following options are supported:

-o Overwrite msgfile, if it exists.

-i locale Install msgfile in the /usr/lib/locale/locale/LC_MESSAGES
directory. Only someone who is super user or a member of group
bin can create or overwrite files in this directory. Directories under
/usr/lib/locale will be created if they do not exist.

EXAMPLE 1 Using the mkmsgs command.

The following example shows an input message source file C.str:

File %s:\t cannot be opened\n
%s: Bad directory\n

.

.

.
write error\n

.

.

mkmsgs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

910 man pages section 1: User Commands • Last Revised 26 Jul 1994

EXAMPLE 1 Using the mkmsgs command. (Continued)

EXAMPLE 2 Using Input Strings From C.str to Create Text Strings in a File

The following command uses the input strings from C.str to create text strings in the
appropriate format in the file UX in the current directory:

example% mkmsgs C.str UX

EXAMPLE 3 Using Input Strings From FR.str to Create Text Strings in a File

The following command uses the input strings from FR.str to create text strings in
the appropriate format in the file UX in the directory
/usr/lib/locale/fr/LC_MESSAGES:

example% mkmsgs –i fr FR.str UX

These text strings would be accessed if you had set the environment variable
LC_MESSAGES=fr and then invoked one of the text retrieval tools listed at the
beginning of the DESCRIPTION section.

/usr/lib/locale/locale/LC_MESSAGES/*
message files created by mkmsgs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

exstr(1), gettxt(1), srchtxt(1), gettxt(3C), setlocale(3C), attributes(5)

mkmsgs(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 911

mkstr – create an error message file by massaging C source files

/usr/ucb/mkstr [-] messagefile prefix filename…

The mkstr utility creates files of error messages. You can use mkstr to make
programs with large numbers of error diagnostics much smaller, and to reduce system
overhead in running the program — as the error messages do not have to be
constantly swapped in and out.

mkstr processes each of the specified filenames, placing a massaged version of the
input file in a file with a name consisting of the specified prefix and the original source
file name. A typical example of using mkstr would be:

mkstr pistrings processed *.c

This command would cause all the error messages from the C source files in the
current directory to be placed in the file pistrings and processed copies of the
source for these files to be placed in files whose names are prefixed with processed.

To process the error messages in the source to the message file, mkstr keys on the
string ‘error("’ in the input stream. Each time it occurs, the C string starting at the
‘"’ is placed in the message file followed by a null character and a NEWLINE
character; the null character terminates the message so it can be easily used when
retrieved, the NEWLINE character makes it possible to sensibly cat the error message
file to see its contents. The massaged copy of the input file then contains a lseek
pointer into the file which can be used to retrieve the message, that is:

char efilname[] = "/usr/lib/pi_strings";
int efil = −1;

error(a1, a2, a3, a4)
{

char
buf[256];
if (efil < 0) {

efil = open(efilname, 0);
if (efil < 0) {

oops:
perror (efilname);
exit (1);

}
}
if (lseek(efil, (long) a1, 0) | | read(efil, buf, 256) <= 0)

goto oops;
printf(buf, a2, a3, a4);

}

− Place error messages at the end of the specified message file for
recompiling part of a large mkstred program.

See attributes(5) for descriptions of the following attributes:

mkstr(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

912 man pages section 1: User Commands • Last Revised 14 Sep 1992

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

xstr(1), attributes(5)

mkstr(1B)

SEE ALSO

User Commands 913

more, page – browse or page through a text file

/usr/bin/more [-cdflrsuw] [-lines] [+ linenumber] [+/ pattern] [file…]

/usr/bin/page [-cdflrsuw] [-lines] [+ linenumber] [+/ pattern] [file…]

/usr/xpg4/bin/more [-cdeisu] [-n number] [-p command] [-t tagstring]
[file…]

/usr/xpg4/bin/more [-cdeisu] [-n number] [+ command] [-t tagstring]
[file…]

The more utility is a filter that displays the contents of a text file on the terminal, one
screenful at a time. It normally pauses after each screenful. /usr/bin/more then
prints --More-- and /usr/xpg4/bin/more then prints file at the bottom of the
screen. If more is reading from a file rather than a pipe, the percentage of characters
displayed so far is also shown.

The more utility scrolls up to display one more line in response to a RETURN
character. more displays another screenful in response to a SPACE character. Other
commands are listed below.

The page utility clears the screen before displaying the next screenful of text. page
only provides a one-line overlap between screens.

The more utility sets the terminal to NOECHO mode, so that the output can be
continuous. Commands that you type do not normally show up on your terminal,
except for the / and ! commands.

The /usr/bin/more utility exits after displaying the last specified file.
/usr/xpg4/bin/more prompts for a command at the last line of the last specified
file.

If the standard output is not a terminal, more acts just like cat(1), except that a
header is printed before each file in a series.

The following options are supported for both /usr/bin/more and
/usr/xpg4/bin/more:

-c Clears before displaying. Redraws the screen instead of scrolling for faster
displays. This option is ignored if the terminal does not have the ability to
clear to the end of a line.

-d Displays error messages rather than ringing the terminal bell if an
unrecognized command is used. This is helpful for inexperienced users.

-s Squeeze. Replaces multiple blank lines with a single blank line. This is
helpful when viewing nroff(1) output on the screen.

The following options are supported for /usr/bin/more only:

more(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

/usr/bin/more

914 man pages section 1: User Commands • Last Revised 18 Mar 1997

-f Does not fold long lines. This is useful when lines contain
nonprinting characters or escape sequences, such as those
generated when nroff(1) output is piped through ul(1).

-l Does not treat FORMFEED characters (Control-l) as page breaks. If
-l is not used, more pauses to accept commands after any line
containing a ^L character (Control-l). Also, if a file begins with a
FORMFEED, the screen is cleared before the file is printed.

-r Normally, more ignores control characters that it does not
interpret in some way. The -r option causes these to be displayed
as ^C where C stands for any such control character.

-u Suppresses generation of underlining escape sequences. Normally,
more handles underlining, such as that produced by nroff(1), in
a manner appropriate to the terminal. If the terminal can perform
underlining or has a stand-out mode, more supplies appropriate
escape sequences as called for in the text file.

-w Normally, more exits when it comes to the end of its input. With
-w, however, more prompts and waits for any key to be struck
before exiting.

-lines Displays the indicated number of lines in each screenful, rather
than the default (the number of lines in the terminal screen less
two).

+linenumber Start up at linenumber.

+/pattern Start up two lines above the line containing the regular expression
pattern. Note: Unlike editors, this construct should not end with a
‘/.’ If it does, then the trailing slash is taken as a character in the
search pattern.

The following options are supported for /usr/xpg4/bin/more only:

-e Exits immediately after writing the last line of the last file in the
argument list.

-i Performs pattern matching in searches without regard to case.

-n number Specifies the number of lines per screenful. The number argument
is a positive decimal integer. The -n option overrides any values
obtained from the environment.

-p command
+command For each file examined, initially executes the more command in the

command argument. If the command is a positioning command,
such as a line number or a regular expression search, set the
current position to represent the final results of the command,
without writing any intermediate lines of the file. For example, the
two commands:

more(1)

/usr/xpg4/bin/more

User Commands 915

more -p 1000j file

more -p 1000G fileare equivalent and start the display with the
current position at line 1000, bypassing the lines that j would
write and scroll off the screen if it had been issued during the file
examination. If the positioning command is unsuccessful, the first
line in the file will be the current position.

-t tagstring Writes the screenful of the file containing the tag named by the
tagstring argument. See the ctags(1) utility.

-u Treats a backspace character as a printable control character,
displayed as a ^H (Control-h), suppressing backspacing and the
special handling that produces underlined or standout-mode text
on some terminal types. Also, does not ignore a carriage-return
character at the end of a line.

If both the -t tagstring and -p command (or the obsolescent +command) options are
given, the -t tagstring is processed first.

more uses the terminal’s terminfo(4) entry to determine its display characteristics.

more looks in the environment variable MORE for any preset options. For instance, to
page through files using the -c mode by default, set the value of this variable to -c.
(Normally, the command sequence to set up this environment variable is placed in the
.login or .profile file).

The commands take effect immediately. It is not necessary to type a carriage return
unless the command requires a file, command, tagstring, or pattern. Up to the time when
the command character itself is given, the user may type the line kill character to
cancel the numerical argument being formed. In addition, the user may type the erase
character to redisplay the ‘--More--(xx%)’ or file message.

In the following commands, i is a numerical argument (1 by default).

iSPACE Display another screenful, or i more lines if i is specified.

iRETURN Display another line, or i more lines, if specified.

ib
i^B (Control-b) Skip back i screenfuls and then print a screenful.

id
i^D (Control-d) Scroll forward one half screenful or i more lines. If i is

specified, the count becomes the default for subsequent d and u
commands.

if Skip i screens full and then print a screenful.

h Help. Give a description of all the more commands.

^L (Control-l) Refresh.

more(1)

Environment

Commands

916 man pages section 1: User Commands • Last Revised 18 Mar 1997

in Search for the i th occurrence of the last pattern entered.

q
Q Exit from more.

is Skip i lines and then print a screenful.

v Drop into the vi editor at the current line of the current file.

iz Same as SPACE, except that i, if present, becomes the new default
number of lines per screenful.

= Display the current line number.

i/pattern Search forward for the i th occurrence of the regular expression
pattern. Display the screenful starting two lines before the line that
contains the i th match for the regular expression pattern, or the
end of a pipe, whichever comes first. If more is displaying a file
and there is no match, its position in the file remains unchanged.
Regular expressions can be edited using erase and kill characters.
Erasing back past the first column cancels the search command.

!command Invoke a shell to execute command . The characters % and !, when
used within command are replaced with the current filename and
the previous shell command, respectively. If there is no current
filename, % is not expanded. Prepend a backslash to these
characters to escape expansion.

:f Display the current filename and line number.

i:n Skip to the i th next filename given in the command line, or to the
last filename in the list if i is out of range.

i:p Skip to the i th previous filename given in the command line, or to
the first filename if i is out of range. If given while more is
positioned within a file, go to the beginning of the file. If more is
reading from a pipe, more simply rings the terminal bell.

:q
:Q Exit from more (same as q or Q).

The following commands are available only in /usr/bin/more:

’ Single quote. Go to the point from which the last search started. If no
search has been performed in the current file, go to the beginning of the
file.

. Dot. Repeat the previous command.

^ \ Halt a partial display of text. more stops sending output, and displays the
usual --More-- prompt. Some output is lost as a result.

The following commands are available only in /usr/xpg4/bin/more:

i^F (Control-f) Skip i screens full and print a screenful. (Same as if.)

more(1)

/usr/bin/more

/usr/xpg4/bin/more

User Commands 917

^G (Control-g) Display the current line number (same as =).

ig Go to line number i with the default of the first line in the file.

iG Go to line number i with the default of the Last line in the file.

ij Display another line, or i more lines, if specified. (Same as
iRETURN.)

ik Scroll backwards one or i lines, if specified.

mletter Mark the current position with the name letter.

N Reverse direction of search.

r Refresh the screen.

R Refresh the screen, discarding any buffered input.

iu
i^U (Control-u) Scroll backwards one half a screen of i lines, if

specified. If i is specified, the count becomes the new default for
subsequent d and u commands.

ZZ Exit from more (same as q).

:e file Examine (display) a new file. If no file is specified, the current file
is redisplayed.

:t tagstring Go to the tag named by the tagstring argument and scroll/rewrite
the screen with the tagged line in the current position. See the
ctags utility.

’letter Return to the position that was previously marked with the name
letter.

’’ Return to the position from which the last move of more than a
screenful was made. Defaults to the beginning of the file.

i?[!]pattern Search backward in the file for the ith line containing the pattern.
The ! specifies to search backward for the ith line that does not
contain the pattern.

i/!pattern Search forward in the file for the ith line that does not contain the
pattern.

![command] Invoke a shell or the specified command.

See largefile(5) for the description of the behavior of more and page when
encountering files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of more: LC_COLLATE (/usr/xpg4/bin/more only), LC_CTYPE,
LC_MESSAGES, NLSPATH, and TERM.

more(1)

Large File
Behavior

ENVIRONMENT
VARIABLES

918 man pages section 1: User Commands • Last Revised 18 Mar 1997

The following environment variables also affect the execution of
/usr/xpg4/bin/more:

COLUMNS Overrides the system selected horizontal screen size.

EDITOR Used by the v command to select an editor.

LINES Overrides the system selected vertical screen size. The -n option
has precedence over LINES in determining the number of lines in
a screen.

MORE A string specifying options as described in the OPTIONS section,
above. As in a command line, The options must be separated by
blank characters and each option specification must start with a −.
Any command line options are processed after those specified in
MORE as though the command line were: more $MORE options
operands

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/usr/lib/more.help help file for /usr/bin/more and /usr/bin/page
only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Not enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

cat(1), csh(1), ctags(1), man(1), nroff(1), script(1), sh(1), ul(1), environ(4),
terminfo(4), attributes(5), environ(5), largefile(5)

regcomp(3C)

regex(5), XPG4(5)

Skipping backwards is too slow on large files.

This utility will not behave correctly if the terminal is not set up properly.

more(1)

/usr/xpg4/bin/more

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/more
/usr/bin/page

/usr/xpg4/bin/more

SEE ALSO

/usr/bin/more
/usr/bin/page

/usr/xpg4/bin/more

/usr/bin/more

/usr/xpg4/bin/more

User Commands 919

mp – text to PDL (Printer Description Language) pretty print filter

mp [-A4] [-C] [-D target_printer_name] [-F] [-L localename] [-P
target_spool_printer] [-PS] [-US] [-a] [-c chars] [-d] [-e] [-ff]
[-fp] [-l] [-ll] [-m] [-M] [-n] [-o] [-p prologue] [-s subject]
[-tm] [-ts] [-u config_file_path] [-v] [-w words] [-z point_size] [-?]
[filename…]

The mp program, when called without the -D or -P option, reads each filename in
sequence and generates a prettified version of the contents in PostScript™ format, sent
to standard output. If no filename argument is provided, mp reads the standard input.
If the standard input is a terminal, input is terminated by an EOF signal, usually
Control-d.

The -D and -P options require the target printer name as an argument and produce
the Printer Description Language (PDL) of the target printer. The -D option causes the
PDL to output to stdout and the -P option causes the PDL to be directly spooled to the
printer. In the absence of these options, mp will product default PostScript™ output.

The mp program accepts international text files of various Solaris locales and produces
output which is proper for the specified locale. The output will also contain proper
text layout. For instance, the output will contain bidirectional text rendering, and also
shaping, since the complex text layout (CTL) is supported in mp.

Mail items, news articles, ordinary ASCII files, complete mail folders, and digests are
all acceptable input formats for mp. The output format includes grayscale lozenges, or
the outline of the same dimensions as the lozenges, containing banner information at
the top and bottom of every page.

The following options are supported:

-a Formats the file as a news article. The top banner
contains the text: "Article from newsgroup", where
newsgroup is the first news group found on the
“Newsgroups:” line.

-A4 Uses A4 paper size (8.26 x 11.69 inches).

-c chars The maximum number of characters to extract from the
gecos field of the user’s /etc/passwd entry. The
default is 18.

-C Instead of using "\nFrom" to denote the start of new
mail messages, mp will look for (and use) the value of
the Content-Length: mail header. If the
Content-Length doesn’t take you to the next "\nFrom",
then it is wrong, and mp falls back to looking for the
next "\nFrom" in the mail folder.

-d Formats the file as a digest.

mp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

920 man pages section 1: User Commands • Last Revised 10 Dec 2001

-D target_printer_name Produces the PDL for the target printer. Requires X
Print Server connection.

-e Assumes the ELM mail frontend intermediate file
format. Used when printing messages from within
ELM (using the "p" command), especially for printing
tagged messages. This option must be specified in your
ELM option setup.

-ff Formats the file for use with a Filofax personal
organizer.

-fp Formats the file for use with a Franklin Planner
personal organizer.

-F Instead of printing who the mail article is for, the top
header will contain who the mail article is from. A
useful option for people with their own personal
printer.

-l Formats output in landscape mode. Two pages of text
will be printed per sheet of paper.

-ll Formats output in landscape mode. One page of text
will be printed per sheet of paper. This is useful for
printing files with longer than normal lines.

-L localename Provides the locale of the file to be printed. If this
command line option is not present, then mp looks for
the MP_LANG environment variable. If that is not
present, then the LANG environment variable is used. If
none of these options are present, then mp tries to
determine the locale it is running in, and if it cannot,
then it assumes it is running in the C locale.

-m Formats the file as a mail folder, printing multiple
messages.

-M Forces mp to use the mp.conf file for printing output
even if a prolog.ps file exists for that locale. Useful
when printing to non-native PostScript™ printers.

-n Turns off the gray bars and associated information from
header and footer. Used to get output similar to output
of ’lp filename’.

-o Formats the file as an ordinary ASCII file.

-p prologue Employs the file prologue as the PostScript/Xprt
prologue file, overriding any previously defined file
names. This file specifies the format of the print output.
For PostScript output, the prologue file will have a .ps
extension. For Xprt clients (when the -D option is

mp(1)

User Commands 921

specified), this file will have an .xpr extension. These
files are defined in the SUPPLIED PROLOGUE FILES
section below.

-P target_spool_printer Spools the PDL to the target printer. No output is sent
to stdout. Requires X Print Server connection.

-PS If the mail or digest message just has PostScript as the
text of the message, this is normally just passed straight
through. Specifying this option causes PostScript to be
printed as text.

-s subject Uses subject as the new subject for the printout. If you
are printing ordinary ASCII files that have been
specified on the command line, the subject will default
to the name of each of these files.

-tm Formats the file for use with the Time Manager
personal organizer.

-ts Formats the file for use with the Time/System
International personal organizer.

-US Uses US paper size (8.5 x 11 inches). This is the default
paper size.

-u config_file_path Specifies an alternate configuration file to the default
file
/usr/lib/lp/locale/locale_name/mp/mp.conf.
The absolute file path name must be used.

-v Prints the version number of this release of mp.

-w words The maximum number of words to extract from the
gecos field of the user’s /etc/passwd entry. The
default is 3.

-z point_size Prints the output text in the point size specified by
point_size. The internal default is 12 points for portrait
printing and 9 points for landscape printing.

-? Prints the usage line for mp (notice that the ? character
must be escaped if using csh(1)).

The following operand is supported:

filename The name of the file to be read.

XPDISPLAY If either the -D or -P option is specified in the command line and
there is no XPDISPLAY variable set in the environment, the print
server startup script will start an Xprt server at port 2100 in the
machine in which the client is running. The script will terminate
the print server once the job is over. If XPDISPLAY is set, the mp

mp(1)

OPERANDS

ENVIRONMENT
VARIABLES

922 man pages section 1: User Commands • Last Revised 10 Dec 2001

client will try to contact the print server running at XPDISPLAY. In
this case, no attempt will be made to start the server if it is not
running.

MP_PROLOGUE Used to determine the directory where the page formatting files
(.xpr or .ps) are kept. These files determine page decorations,
number of logical pages per physical page, landscape or portrait
format, and so forth. In the absence of MP_PROLOGUE, the default
location of the directory is /usr/lib/lp/locale/C/mp.

MP_LANG
LANG If neither of the -D or -P options is specified, a prologue file is

prepended to the output to be printed. The prologue file is called
/usr/openwin/lib/locale/localename/print/prolog.ps or
/usr/lib/lp/locale/localename/mp/prolog.ps, where
localename is the value of the MP_LANG or LANG environment
variable, if present. If both variables are present, the file
/usr/openwin/lib/locale/localename/print/prolog.ps is
given preference due to backward compatibility reasons. If either
of these files are not present, and the -D option is not specified, a
configuration file of the locale called
/usr/lib/lp/locale/localename/mp/mp.conf is used as the
source of the configuration information that substitutes the
prologue information for printing. The presence of prolog.ps
disables mp.conf for backward compatibility.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

The following prologue files are provided. Files with .ps extensions are for the
PostScript output. Files with .xpr extensions are for the Print Server client. .xpr files
are created for 300dpi printers and will scale to other resolution values.

mp.common.ps Common prologue file for all other .ps files in this
directory.

mp.pro.ps
mp.pro.xpr Used by default.

mp.pro.ff.ps
mp.pro.ff.xpr Used if the -ff option is in effect.

mp.pro.fp.ps
mp.pro.fp.xpr Used if the -fp option is in effect.

mp.pro.tm.ps
mp.pro.tm.xpr Used if the -tm option is in effect.

mp(1)

EXIT STATUS

SUPPLIED
PROLOGUE

FILES

User Commands 923

mp.pro.ts.ps
mp.pro.ts.xpr Used if the -ts option is in effect.

mp.pro.alt.ps
mp.pro.alt.xpr An alternative modification of the default prologue file

which outputs the page number in the right corner of
the bottom banner.

mp.pro.l.ps
mp.pro.l.xpr Prologue file used for landscape outputs.

mp.pro.ll.ps
mp.pro.ll.xpr Prologue file used for landscape outputs, when

printing files with longer than normal lines.

mp.pro.altl.ps
mp.pro.altl.xpr Alternate prologue file used for landscape outputs.

.cshrc
Initialization file for csh(1).

.mailrc
Initialization file for mail(1).

/usr/bin/mp
Executable.

/usr/lib/lp/locale/C/mp/mp.conf
Default configuration file.

/usr/lib/lp/locale/C/mp/mp.common.ps
Common prologue file for all other .ps files in this directory. Not for .xpr files.

/usr/lib/lp/locale/C/mp/mp.pro.ps
/usr/lib/lp/locale/C/mp/mp.pro.xpr

Default prologue files for mail printing.

/usr/lib/lp/locale/C/mp/mp.pro.l.ps
/usr/lib/lp/locale/C/mp/mp.pro.l.xpr

Default prologue files for landscape format.

/usr/lib/lp/locale/C/mp/mp.pro.ll.ps
/usr/lib/lp/locale/C/mp/mp.pro.ll.xpr

Default prologue files for landscape format with one column per page. Useful when
printing files with long lines.

/usr/lib/lp/locale/C/mp/mp.pro.altl.ps
/usr/lib/lp/locale/C/mp/mp.pro.altl.xpr

Alternate prologue files for landscape format.

/usr/lib/lp/locale/C/mp/mp.pro.alt.ps
/usr/lib/lp/locale/C/mp/mp.pro.alt.xpr

Alternative "default" prologue files. Insert page numbers in the bottom right corner
of each page.

mp(1)

FILES

924 man pages section 1: User Commands • Last Revised 10 Dec 2001

/usr/lib/lp/locale/C/mp/mp.pro.ff.ps
/usr/lib/lp/locale/C/mp/mp.pro.ff.xpr

Default prologue files for Filofax format.

/usr/lib/lp/locale/C/mp/mp.pro.fp.ps
/usr/lib/lp/locale/C/mp/mp.pro.fp.xpr

Default prologue files for Franklin Planner format.

/usr/lib/lp/locale/C/mp/mp.pro.tm.ps
/usr/lib/lp/locale/C/mp/mp.pro.tm.xpr

Default prologue files for Time Manager format.

/usr/lib/lp/locale/C/mp/mp.pro.ts.ps
/usr/lib/lp/locale/C/mp/mp.pro.ts.xpr

Default prologue files for Time/System International format.

/usr/openwin/lib/locale/localename/print/prolog.ps
/usr/lib/lp/locale/localename/mp/prolog.ps

Default locale-specific prologued file as an alternative to the mp.conf file. See
ENVIRONMENT VARIABLES for more detail on the relationship.

The structure and format for mp.conf and .xpr files are documented in the
International Language Environments Guide. Refer to this document if you need to use
alternate fonts, including Printer Resident Fonts, or if you want to make changes to
output format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmp

csh(1), mail(1), mailtool(1), attributes(5)

International Language Environments Guide

mp(1)

ATTRIBUTES

SEE ALSO

User Commands 925

mpss.so.1 – shared object for setting preferred page size

mpss.so.1

The mpss.so.1 shared object provides a means by which the preferred stack and/or
heap page size can be selectively configured for launched processes and their
descendants. To enable mpss.so.1, the following string needs to be present in the
environment (see ld.so.1(1)) along with one or more MPSS (Multiple Page Size
Support) environment variables:

LD_PRELOAD=$LD_PRELOAD:mpss.so.1

Once preloaded, the mpss.so.1 shared object reads the following environment
variables to determine any preferred page size requirements and any processes these
may be specific to.

MPSSHEAP=size
MPSSSTACK=size MPSSHEAP and MPSSSTACK specify the preferred page

sizes for the heap and stack, respectively. The specified
page size(s) are applied to all created processes.

size must be a supported page size (see pagesize(1))
or 0, in which case the system will select an
appropriate page size (see memcntl(2)).

size can be qualified with K, M, G, or T to specify
Kilobytes, Megabytes, Gigabytes, or Terabytes
respectively.

MPSSCFGFILE=config-file config-file is a text file which contains one or more mpss
configuration entries of the form:

exec-name:heap-size:stack-size

exec-name specifies the name of an application or
executable. The corresponding preferred page size(s)
are set for newly created processes (see
getexecname(3C)) that match the first exec-name
found in the file.

exec-name can be a full pathname, a base name or a
pattern string. See File Name Generation in sh(1)
for a discussion of pattern matching.

If heap-size and/or stack-size are not specified, the
corresponding preferred page size(s) will not be set.

MPSSCFGFILE takes precedence over MPSSHEAP and
MPSSSTACK.

MPSSERRFILE=pathname By default, error messages are logged via syslog(3C)
using level LOG_ERR and facility LOG_USER. If

mpss.so.1(1)

NAME

SYNOPSIS

DESCRIPTION

ENVIRONMENT
VARIABLES

926 man pages section 1: User Commands • Last Revised 11 Dec 2001

MPSSERRFILE contains a valid pathname (such as
/dev/stderr), error messages will be logged there
instead.

EXAMPLE 1 Configuring preferred page sizes using MPSSCFGFILE

The following Bourne shell commands (see sh(1)) configure the preferred page sizes
to a select set of applications with exec names that begin with foo, using the
MPSSCFGFILE environment variable. The MPSS configuration file, mpsscfg, is
assumed to have been previously created via a text editor like vi(1). The cat(1)
command is only dumping out the contents.

example$ LD_PRELOAD=$LD_PRELOAD:mpss.so.1
example$ MPSSCFGFILE=mpsscfg
example$ export LD_PRELOAD MPSSCFGFILE
example$ cat $MPSSCFGFILE

foo*:512K:64K

Once the application has been started, pmap (see proc(1)) can be used to view the
actual page sizes configured:

example$ foobar &

example$ pmap -s ‘pgrep foobar‘

If the desired page size is not configured (shown in the pmap output), it may be due to
errors in the MPSS configuration file or environment variables. Check the error log (by
default: /var/adm/messages) for errors.

If no errors can be found, resource or alignment constraints may be responsible. See
the NOTES section.

EXAMPLE 2 Configuring preferred page sizes using MPSSHEAP and MPSSSTACK

The following Bourne shell commands configure 512K heap and 64K stack preferred
page sizes for all applications using the MPSSHEAP and MPSSSTACK environment
variables.

example$ LD_PRELOAD=$LD_PRELOAD:mpss.so.1
example$ MPSSHEAP=512K
example$ MPSSSTACK=64K

example$ export LD_PRELOAD MPSSHEAP MPSSSTACK

EXAMPLE 3 Precedence rules (continuation from Example 2)

The preferred page size configuration in MPSSCFGFILE overrides MPSSHEAP and
MPSSTACK. Appending the following commands to those in Example 2 would mean
that all applications will be configured with 512K heap and 64K stack preferred page
sizes with the exception of those applications, the ls command, and all applications
beginning with ora, in the configuration file.

mpss.so.1(1)

EXAMPLES

User Commands 927

EXAMPLE 3 Precedence rules (continuation from Example 2) (Continued)

example$ MPSSCFGFILE=mpsscfg2
example$ export MPSSCFGFILE
example$ cat $MPSSCFGFILE
ls::

ora*:4m:4m

/usr/lib/ld/map.bssalign A template link-editor mapfile for
aligning bss (see NOTES).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu (32–bit)

SUNWesxu (64–bit)

Interface Stability Evolving

cat(1), ld(1), ld.so.1(1), pagesize(1), ppgsz(1), proc(1), sh(1), vi(1), exec(2),
fork(2), memcntl(2), getexecname(3C), getpagesize(3C), syslog(3C), proc(4),
attributes(5)

The heap and stack preferred page sizes are inherited. A child process has the same
preferred page sizes as its parent. On exec(2), the preferred page sizes are set back to
the default system page size unless a preferred page size has been configured via the
mpss shared object.

ppgsz(1), a proc tool, can also be used to set the preferred stack and/or heap page
sizes. It cannot selectively configure the page size for descendents based on name
matches.

See also NOTES under ppgsz(1).

mpss.so.1(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

928 man pages section 1: User Commands • Last Revised 11 Dec 2001

msgfmt – create a message object from a message file

msgfmt [-D dir | -−directory=dir] [-f | -−use-fuzzy] [-g]
[-o output-file | -−output-file=output-file] [-s] [-−strict] [-v]
[-−verbose] filename.po…

The msgfmt utility creates message object files from portable object files (filename.po),
without changing the portable object files.

The .po file contains messages displayed to users by system commands or by
application programs. .po files can be edited. The messages in these files can be
rewritten in any language supported by the system.

The xgettext(1) command can be used to create .po files from script or programs.

msgfmt interprets data as characters according to the current setting of the LC_CTYPE
locale category or according to the codeset specified in the .po file.

The following options are supported:

-D dir
-−directory=dir Adds dir to the list for input files search.

-f
-−use-fuzzy Uses fuzzy entries in output. If this option is not

specified, fuzzy entries are not included into the
output. These options are ignored if Solaris message
catalogs are processed.

-g Directs the utility to generate the GNU-compatible
message catalog file. This option cannot be specified
with the -s option.

-o output-file
-−output=output-file Specifies the output file name as output-file. All domain

directives and duplicate msgids in the .po file are
ignored.

-s Directs the utility to generate the Solaris message
catalog file. This option cannot be specified with the -g
option.

-−strict Directs the utility to append the suffix .mo to the
generating message object file name if it doesn’t have
this suffix. This option is ignored if Solaris message
catalogs are processed.

-v
-−verbose Verbose. Lists duplicate message identifiers if Solaris

message catalog files are processed. Message strings are
not redefined.

msgfmt(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 929

If GNU-compatible message files are processed, this
option detects and diagnoses input file anomalies
which might represent translation errors. The msgid
and msgstr strings are studied and compared. It is
considered abnormal if one string starts or ends with a
newline while the other does not. Also, if the string
represents a format string used in a printf-like function,
both strings should have the same number of % format
specifiers, with matching types. If the flag c-format
appears in the special comment ’#’ for this entry, a
check is performed.

The format of portable object files (.po files) is defined as follows. Each .po file
contains one or more lines, with each line containing either a comment or a statement.
Comments start the line with a pound sign (#) and end with the newline character. All
comments (except special comments described later) and empty lines are ignored. The
format of a statement is:

directive value

Each directive starts at the beginning of the line and is separated from value by white
space (such as one or more space or tab characters). value consists of one or more
quoted strings separated by white space. Use any of the following types of directives
for the Solaris message file:

domain domainname
msgid message_identifier
msgstr message_string

For a GNU-compatible message file, use any of the following types of directives:

domain domainname
msgid message_identifier
msgid_plural untranslated_string_plural
msgstr message_string
msgstr[n] message_string

The behavior of the domain directive is affected by the options used. See OPTIONS
for the behavior when the -o or -−output-file options are specified. If the -o or
-−output-file options are not specified, the behavior of the domain directive is as
follows:

� All msgids from the beginning of each .po file to the first domain directive are put
into a default message object file. The default message object file is named
messages.mo, if the Solaris message catalog file format is used to generate the
message object file or if the -−strict option is specified. Otherwise, the default
message object file is named messages.

msgfmt(1)

USAGE

930 man pages section 1: User Commands • Last Revised 17 Sep 2001

� When msgfmt encounters a domain domainname directive in the .po file, all
following msgids until the next domain directive are put into the message object
file, named domainname.mo, if the Solaris message catalog file format is used to
generate the message object file or if the -−strict option is specified. Otherwise,
the msgids are put into the message object file named domainname.

� Duplicate msgids are defined in the scope of each domain. That is, a msgid is
considered a duplicate only if the identical msgid exists in the same domain.

� All duplicate msgids are ignored.

The msgid directive specifies the value of a message identifier associated with the
directive that follows it. The msgid_plural directive specifies the plural form
message specified to the plural message handling functions ngettext(),
dngettext(), or dcngettext(). The message_identifier string identifies a target
string to be used at retrieval time. Each statement containing a msgid directive must
be followed by a statement containing a msgstr directive or msgstr[n] directives.

The msgstr directive specifies the target string associated with the message_identifier
string declared in the immediately preceding msgid directive.

The directive msgstr[n] (where n = 0, 1, 2, ...) specifies the target string to be used
with plural form handling functions ngettext(), dngettext(), and
dcngetttext().

Message strings can contain the escape sequences \n for newline, \t for tab, \v for
vertical tab, \b for backspace, \r for carriage return, \f for formfeed, \\ for
backslash, \" for double quote, \a for alarm, \ddd for octal bit pattern, and \xDD for
hexadecimal bit pattern.

Comments for a GNU-compatible message file should be in one of the following
formats (the msgfmt utility will ignore these comments when processing Solaris
message files):

translator-comments
#. automatic-comments
#: reference..
#, flag

The ’#:’ comments indicate the location of the msgid string in the source files in
filename:line format. The ’#’, ’#.’, and ’#:’ comments are informative only and are
silently ignored by the msgfmt utility. The ’#,’ comments require one or more flags
separated by the comma character. The following flags can be specified:

fuzzy This flag can be inserted by the translator. It shows that the
msgstr string might not be a correct translation (anymore). Only
the translator can judge if the translation requires further
modification or is acceptable as is. Once satisfied with the
translation, the translator removes this fuzzy flag. If this flag is

msgfmt(1)

User Commands 931

specified, the msgfmt utility will not generate the entry for the
immediately following msgid in the output message catalog.

c-format
no-c-format The c-format flag indicates that the msgid string is used as a

format string by printf-like functions. In case the c-format flag is
given for a string, the msgfmt utility does some more tests to
check the validity of the translation.

In the GNU-compatible message file, the msgid entry with empty string ("") is called
the header entry and treated specially. If the message string for the header entry
contains nplurals=value, the value indicates the number of plural forms. For
example, if nplurals=4, there are four plural forms. If nplurals is defined, the
same line should contain plural=expression, separated by a semicolon character. The
expression is a C language expression to determine which version of msgstr[n] is to be
used based on the value of n, the last argument of ngettext(), dngettext(), or
dcngettext(). For example,

nplurals=2; plural= n == 1 ? 0 : 1

indicates that there are two plural forms in the language. msgstr[0] is used if n == 1,
otherwise msgstr[1] is used. For another example:

nplurals=3; plural= n == 1 ? 0 : n == 2 ? 1 : 2

indicates that there are three plural forms in the language. msgstr[0] is used if n == 1,
msgstr[1] is used if n == 2, otherwise msgstr[2] is used.

If the header entry contains a charset=codeset string, the codeset is used to indicate
the codeset to be used to encode the message strings. If the output string’s codeset is
different from the message string’s codeset, codeset conversion from the message
string’s codeset to the output string’s codeset will be performed upon the call of
gettext(), dgettext(), dcgettext(), ngettext(), dngettext(), and
dcngettext() for the GNU-compatible message catalogs. The output string’s
codeset is determined by the current locale’s codeset (the return value of
nl_langinfo(CODESET)) by default, and can be changed by the call of
bind_textdomain_codeset().

The msgfmt utility can generate the message object both in Solaris message catalog
file format and in GNU-compatible message catalog file format. If the -s option is
specified and the input file is a Solaris .po file, the msgfmt utility generates the
message object in Solaris message catalog file format. If the -g option is specified and
the input file is a GNU .po file, the msgfmt utility generates the message object in
GNU-compatible message catalog file format. If neither the -s nor -g option is
specified, the msgfmt utility determines the message catalog file format as follows:

� If the .po file contains a valid GNU header entry (having an empty string for
msgid), the msgfmt utility uses the GNU-compatible message catalog file format.

� Otherwise, the msgfmt utility uses the Solaris message catalog file format.

msgfmt(1)

Message catalog
file format

932 man pages section 1: User Commands • Last Revised 17 Sep 2001

If the msgfmt utility determined that the Solaris message catalog file format is used,
as above, but found the .po file contains directives that are specific to the
GNU-compatible message catalog file format, such as msgid_plural and msgstr[n],
the msgfmt utility handles those directives as invalid specifications.

EXAMPLE 1 Creating message objects from message files

In this example, module1.po and module2.po are portable message objects files.

example% cat module1.po
default domain "messages.mo"
msgid "msg 1"
msgstr "msg 1 translation"
#
domain "help_domain"
msgid "help 2"
msgstr "help 2 translation"
#
domain "error_domain"
msgid "error 3"
msgstr "error 3 translation"
example% cat module2.po
default domain "messages.mo"
msgid "mesg 4"
msgstr "mesg 4 translation"
#
domain "error_domain"
msgid "error 5"
msgstr "error 5 translation"
#
domain "window_domain"
msgid "window 6"
msgstr "window 6 translation"

The following command will produce the output files messages.mo,
help_domain.mo, and error_domain.mo in Solaris message catalog file format:

example% msgfmt module1.po

The following command will produce the output files messages.mo,
help_domain.mo, error_domain.mo, and window_domain.mo in Solaris message
catalog file format:

example% msgfmt module1.po module2.po

The following command will produce the output file hello.mo in Solaris message
catalog file format:

example% msgfmt -o hello.mo module1.po module2.po

See environ(5) for descriptions of the following environmental variables that affect
the execution of msgfmt: LC_CTYPE, LC_MESSAGES, and NLSPATH.

See attributes(5) for descriptions of the following attributes:

msgfmt(1)

EXAMPLES

ENVIRONMENT
VARIABLES

ATTRIBUTES

User Commands 933

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

CSI Enabled

xgettext(1), gettext(3C), setlocale(3C), attributes(5), environ(5)

Installing message catalogs under the C locale is pointless, since they are ignored for
the sake of efficiency.

msgfmt(1)

SEE ALSO

NOTES

934 man pages section 1: User Commands • Last Revised 17 Sep 2001

mt – magnetic tape control

mt [-f tapename] command… [count]

The mt utility sends commands to a magnetic tape drive. If -f tapename is not
specified, the environment variable TAPE is used. If TAPE does not exist, mt uses the
device /dev/rmt/0n.

The following option is supported:

-f tapename Specifies the raw tape device.

The following operands are supported:

count The number of times that the requested operation is to be
performed. By default, mt performs command once. Multiple
operations of command may be performed by specifying count.

command Available commands that can be sent to a magnetic tape drive.
Only as many characters as are required to uniquely identify a
command need be specified.

eof, weof Write count EOF marks at the current position
on the tape.

fsf Forward space over count EOF marks. The tape
is positioned on the first block of the file.

fsr Forward space count records.

bsf Back space over count EOF marks. The tape is
positioned on the beginning-of-tape side of the
EOF mark.

bsr Back space count records.

nbsf Back space count files. The tape is positioned
on the first block of the file. This is equivalent
to count+1 bsf’s followed by one fsf.

asf Absolute space to count file number. This is
equivalent to a rewind followed by a fsf
count.

If count is specified with any of the following commands, the count
is ignored and the command is performed only once.

eom Space to the end of recorded media
on the tape. This is useful for
appending files onto previously
written tapes.

rewind Rewind the tape.

mt(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 935

offline, rewoffl Rewind the tape and, if
appropriate, take the drive unit
off-line by unloading the tape. It
cycles through all four tapes.

status Print status information about the
tape unit.

retension Rewind the cartridge tape
completely, then wind it forward to
the end of the reel and back to
beginning-of-tape to smooth out
tape tension.

reserve Allow the tape drive to remain
reserved after closing the device.
The drive must then be explicitly
released.

release Re-establish the default behavior of
releasing at close.

forcereserve Break the reservation of the tape
drive held by another host and then
reserve the tape drive. This
command can be executed only
with super-user privileges.

erase Erase the entire tape. Erasing a tape
may take a long time depending on
the device and/or tape. Refer to the
device specific manual for time
details.

0 All operations were successful.

1 Command was unrecognized or mt was unable to open the specified tape
drive.

2 An operation failed.

/dev/rmt/* magnetic tape interface

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

tar(1), tcopy(1), ar(3HEAD), environ(4), attributes(5), mtio(7I), st(7D)

mt(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

936 man pages section 1: User Commands • Last Revised 13 Nov 1996

Not all devices support all options. Some options are hardware-dependent. Refer to
the corresponding device manual page.

mt is architecture sensitive. Heterogeneous operation (that is, SPARC to IA or the
reverse) is not supported.

mt(1)

BUGS

User Commands 937

mv – move files

/usr/bin/mv [-fi] source target_file

/usr/bin/mv [-fi] source… target_dir

/usr/xpg4/bin/mv [-fi] source target_file

/usr/xpg4/bin/mv [-fi] source… target_dir

In the first synopsis form, the mv utility moves the file named by the source operand to
the destination specified by the target_file. source and target_file may not have the same
name. If target_file does not exist, mv creates a file named target_file. If target_file exists,
its contents are overwritten. This first synopsis form is assumed when the final
operand does not name an existing directory.

In the second synopsis form, mv moves each file named by a source operand to a
destination file in the existing directory named by the target_dir operand. The
destination path for each source is the concatenation of the target directory, a single
slash character (/), and the last path name component of the source. This second form
is assumed when the final operand names an existing directory.

If mv determines that the mode of target_file forbids writing, it will print the mode (see
chmod(2)), ask for a response, and read the standard input for one line. If the response
is affirmative, the mv occurs, if permissible; otherwise, the command exits. Notice that
the mode displayed may not fully represent the access permission if target is
associated with an ACL. When the parent directory of source is writable and has the
sticky bit set, one or more of the following conditions must be true:

� the user must own the file
� the user must own the directory
� the file must be writable by the user
� the user must be a privileged user

If source is a file and target_file is a link to another file with links, the other links remain
and target_file becomes a new file.

If source and target_file/target_dir are on different file systems, mv copies the source and
deletes the original. Any hard links to other files are lost. mv will attempt to duplicate
the source file characteristics to the target, that is, the owner and group id, permission
modes, modification and access times, ACLs, and extended attributes, if applicable.
For symbolic links, mv will preserve only the owner and group of the link itself.

If unable to preserve owner and group id, mv will clear S_ISUID and S_ISGID bits in
the target. mv will print a diagnostic message to stderr if unable to clear these bits,
though the exit code will not be affected. mv may be unable to preserve extended
attributes if the target file system does not have extended attribute support.
/usr/xpg4/bin/mv will print a diagnostic message to stderr for all other failed
attempts to duplicate file characteristics. The exit code will not be affected.

mv(1)

NAME

SYNOPSIS

DESCRIPTION

938 man pages section 1: User Commands • Last Revised 7 Jun 2001

In order to preserve the source file characteristics, users must have the appropriate file
access permissions. This includes being super-user or having the same owner id as the
destination file.

The following options are supported:

-f mv will move the file(s) without prompting even if it is writing over an
existing target. Note that this is the default if the standard input is not a
terminal.

-i mv will prompt for confirmation whenever the move would overwrite an
existing target. An affirmative answer means that the move should proceed.
Any other answer prevents mv from overwriting the target.

Specifying both the -f and the -i options is not considered an error. The -f option
will override the -i option.

Specifying both the -f and the -i options is not considered an error. The last option
specified will determine the behavior of mv.

The following operands are supported:

source A path name of a file or directory to be moved.

target_file A new path name for the file or directory being moved.

target_dir A path name of an existing directory into which to move the input
files.

See largefile(5) for the description of the behavior of mv when encountering files
greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of mv: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were moved successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

Interface Stability Stable

mv(1)

OPTIONS

/usr/bin/mv

/usr/xpg4/bin/mv

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/mv

User Commands 939

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

Interface Stability Standard

cp(1), cpio(1), ln(1), rm(1), setfacl(1), chmod(2), attributes(5), environ(5),
fsattr(5), largefile(5), XPG4(5)

A -- permits the user to mark explicitly the end of any command line options,
allowing mv to recognize filename arguments that begin with a -. As an aid to BSD
migration, mv will accept - as a synonym for --. This migration aid may disappear in
a future release.

mv(1)

/usr/xpg4/bin/mv

SEE ALSO

NOTES

940 man pages section 1: User Commands • Last Revised 7 Jun 2001

nawk – pattern scanning and processing language

/usr/bin/nawk [-F ERE] [-v assignment]’program’ | -f progfile… [argument…]

/usr/xpg4/bin/awk [-F ERE] [-v assignment…]’program’ | -f progfile…
[argument…]

The /usr/bin/nawk and /usr/xpg4/bin/awk utilities execute programs written in
the nawk programming language, which is specialized for textual data manipulation.
A nawk program is a sequence of patterns and corresponding actions. The string
specifying program must be enclosed in single quotes (’) to protect it from
interpretation by the shell. The sequence of pattern - action statements can be specified
in the command line as program or in one, or more, file(s) specified by the -f progfile
option. When input is read that matches a pattern, the action associated with the
pattern is performed.

Input is interpreted as a sequence of records. By default, a record is a line, but this can
be changed by using the RS built-in variable. Each record of input is matched to each
pattern in the program. For each pattern matched, the associated action is executed.

The nawk utility interprets each input record as a sequence of fields where, by default,
a field is a string of non-blank characters. This default white-space field delimiter
(blanks and/or tabs) can be changed by using the FS built-in variable or the -F ERE
option. The nawk utility denotes the first field in a record $1, the second $2, and so
forth. The symbol $0 refers to the entire record; setting any other field causes the
reevaluation of $0. Assigning to $0 resets the values of all fields and the NF built-in
variable.

The following options are supported:

-F ERE Define the input field separator to be the extended regular
expression ERE, before any input is read (can be a character).

-f progfile Specifies the pathname of the file progfile containing a nawk
program. If multiple instances of this option are specified, the
concatenation of the files specified as progfile in the order specified
is the nawk program. The nawk program can alternatively be
specified in the command line as a single argument.

-v assignment The assignment argument must be in the same form as an
assignment operand. The assignment is of the form var=value,
where var is the name of one of the variables described below. The
specified assignment occurs before executing the nawk program,
including the actions associated with BEGIN patterns (if any).
Multiple occurrences of this option can be specified.

The following operands are supported:

program If no -f option is specified, the first operand to nawk is the text of
the nawk program. The application supplies the program operand

nawk(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 941

as a single argument to nawk. If the text does not end in a newline
character, nawk interprets the text as if it did.

argument Either of the following two types of argument can be intermixed:

file A pathname of a file that contains the input to
be read, which is matched against the set of
patterns in the program. If no file operands are
specified, or if a file operand is −, the standard
input is used.

assignment An operand that begins with an underscore or
alphabetic character from the portable
character set, followed by a sequence of
underscores, digits and alphabetics from the
portable character set, followed by the =
character specifies a variable assignment rather
than a pathname. The characters before the =
represent the name of a nawk variable; if that
name is a nawk reserved word the behavior is
undefined. The characters following the equal
sign is interpreted as if they appeared in the
nawk program preceded and followed by a
double-quote (") character, as a STRING token
, except that if the last character is an
unescaped backslash, it is interpreted as a
literal backslash rather than as the first
character of the sequence "\". The variable is
assigned the value of that STRING token. If the
value is considered a numericstring, the
variable is assigned its numeric value. Each
such variable assignment is performed just
before the processing of the following file, if
any. Thus, an assignment before the first file
argument is executed after the BEGIN actions
(if any), while an assignment after the last file
argument is executed before the END actions (if
any). If there are no file arguments,
assignments are executed before processing the
standard input.

Input files to the nawk program from any of the following sources:

� any file operands or their equivalents, achieved by modifying the nawk variables
ARGV and ARGC

� standard input in the absence of any file operands

� arguments to the getline function

nawk(1)

INPUT FILES

942 man pages section 1: User Commands • Last Revised 10 Feb 1999

must be text files. Whether the variable RS is set to a value other than a newline
character or not, for these files, implementations support records terminated with the
specified separator up to {LINE_MAX} bytes and may support longer records.

If -f progfile is specified, the files named by each of the progfile option-arguments must
be text files containing an nawk program.

The standard input are used only if no file operands are specified, or if a file operand is
−.

A nawk program is composed of pairs of the form:

pattern { action }

Either the pattern or the action (including the enclosing brace characters) can be
omitted. Pattern-action statements are separated by a semicolon or by a newline.

A missing pattern matches any record of input, and a missing action is equivalent to
an action that writes the matched record of input to standard output.

Execution of the nawk program starts by first executing the actions associated with all
BEGIN patterns in the order they occur in the program. Then each file operand (or
standard input if no files were specified) is processed by reading data from the file
until a record separator is seen (a newline character by default), splitting the current
record into fields using the current value of FS , evaluating each pattern in the
program in the order of occurrence, and executing the action associated with each
pattern that matches the current record. The action for a matching pattern is executed
before evaluating subsequent patterns. Last, the actions associated with all END
patterns is executed in the order they occur in the program.

Expressions describe computations used in patterns and actions. In the following table,
valid expression operations are given in groups from highest precedence first to
lowest precedence last, with equal-precedence operators grouped between horizontal
lines. In expression evaluation, where the grammar is formally ambiguous, higher
precedence operators are evaluated before lower precedence operators. In this table
expr, expr1, expr2, and expr3 represent any expression, while lvalue represents any
entity that can be assigned to (that is, on the left side of an assignment operator).

Syntax Name Type of Result Associativity

(expr) Grouping type of expr n/a

$expr Field reference string n/a

++ lvalue Pre-increment numeric n/a

−−lvalue Pre-decrement numeric n/a

lvalue ++ Post-increment numeric n/a

nawk(1)

EXTENDED
DESCRIPTION

Expressions in
nawk

User Commands 943

Syntax Name Type of Result Associativity

lvalue −− Post-decrement numeric n/a

expr ^ expr Exponentiation numeric right

! expr Logical not numeric n/a

+ expr Unary plus numeric n/a

− expr Unary minus numeric n/a

expr * expr Multiplication numeric left

expr / expr Division numeric left

expr % expr Modulus numeric left

expr + expr Addition numeric left

expr − expr Subtraction numeric left

expr expr String concatenation string left

expr < expr Less than numeric none

expr <= expr Less than or equal to numeric none

expr != expr Not equal to numeric none

expr == expr Equal to numeric none

expr > expr Greater than numeric none

expr >= expr Greater than or equal
to

numeric none

expr ~ expr ERE match numeric none

expr !~ expr ERE non-match numeric none

expr in array Array membership numeric left

(index) in Multi-dimension
array

numeric left

array membership

expr && expr Logical AND numeric left

expr | | expr Logical OR numeric left

expr1 ? expr2 Conditional
expression

type of selected right

: expr3 expr2 or expr3

lvalue ^= expr Exponentiation numeric right

nawk(1)

944 man pages section 1: User Commands • Last Revised 10 Feb 1999

Syntax Name Type of Result Associativity

assignment

lvalue %= expr Modulus assignment numeric right

lvalue *= expr Multiplication numeric right

assignment

lvalue /= expr Division assignment numeric right

lvalue += expr Addition assignment numeric right

lvalue −= expr Subtraction
assignment

numeric right

lvalue = expr Assignment type of expr right

Each expression has either a string value, a numeric value or both. Except as stated for
specific contexts, the value of an expression is implicitly converted to the type needed
for the context in which it is used. A string value is converted to a numeric value by
the equivalent of the following calls:

setlocale(LC_NUMERIC, "");
numeric_value = atof(string_value);

A numeric value that is exactly equal to the value of an integer is converted to a string
by the equivalent of a call to the sprintf function with the string %d as the fmt
argument and the numeric value being converted as the first and only expr argument.
Any other numeric value is converted to a string by the equivalent of a call to the
sprintf function with the value of the variable CONVFMT as the fmt argument and
the numeric value being converted as the first and only expr argument.

A string value is considered to be a numeric string in the following case:

1. Any leading and trailing blank characters is ignored.

2. If the first unignored character is a + or −, it is ignored.

3. If the remaining unignored characters would be lexically recognized as a NUMBER
token, the string is considered a numeric string.

If a − character is ignored in the above steps, the numeric value of the numeric string is
the negation of the numeric value of the recognized NUMBER token. Otherwise the
numeric value of the numeric string is the numeric value of the recognized NUMBER
token. Whether or not a string is a numeric string is relevant only in contexts where
that term is used in this section.

When an expression is used in a Boolean context, if it has a numeric value, a value of
zero is treated as false and any other value is treated as true. Otherwise, a string value
of the null string is treated as false and any other value is treated as true. A Boolean
context is one of the following:

nawk(1)

User Commands 945

� the first subexpression of a conditional expression.
� an expression operated on by logical NOT, logical AND, or logical OR.
� the second expression of a for statement.
� the expression of an if statement.
� the expression of the while clause in either a while or do . . . while

statement.
� an expression used as a pattern (as in Overall Program Structure).

The nawk language supplies arrays that are used for storing numbers or strings.
Arrays need not be declared. They are initially empty, and their sizes changes
dynamically. The subscripts, or element identifiers, are strings, providing a type of
associative array capability. An array name followed by a subscript within square
brackets can be used as an lvalue and as an expression, as described in the grammar.
Unsubscripted array names are used in only the following contexts:

� a parameter in a function definition or function call.
� the NAME token following any use of the keyword in.

A valid array index consists of one or more comma-separated expressions, similar to
the way in which multi-dimensional arrays are indexed in some programming
languages. Because nawk arrays are really one-dimensional, such a comma-separated
list is converted to a single string by concatenating the string values of the separate
expressions, each separated from the other by the value of the SUBSEP variable.

Thus, the following two index operations are equivalent:

var[expr1, expr2, ... exprn]

var[expr1 SUBSEP expr2 SUBSEP ... SUBSEP exprn]

A multi-dimensioned index used with the in operator must be put in parentheses. The
in operator, which tests for the existence of a particular array element, does not create
the element if it does not exist. Any other reference to a non-existent array element
automatically creates it.

Variables can be used in an nawk program by referencing them. With the exception of
function parameters, they are not explicitly declared. Uninitialized scalar variables
and array elements have both a numeric value of zero and a string value of the empty
string.

Field variables are designated by a $ followed by a number or numerical expression.
The effect of the field number expression evaluating to anything other than a
non-negative integer is unspecified; uninitialized variables or string values need not
be converted to numeric values in this context. New field variables are created by
assigning a value to them. References to non-existent fields (that is, fields after $NF)
produce the null string. However, assigning to a non-existent field (for example,
$(NF+2) = 5) increases the value of NF, create any intervening fields with the null
string as their values and cause the value of $0 to be recomputed, with the fields being
separated by the value of OFS. Each field variable has a string value when created. If

nawk(1)

Variables and
Special Variables

946 man pages section 1: User Commands • Last Revised 10 Feb 1999

the string, with any occurrence of the decimal-point character from the current locale
changed to a period character, is considered a numeric string (see Expressions in
nawk above), the field variable also has the numeric value of the numeric string.

nawk sets the following special variables:

ARGC The number of elements in the ARGV array.

ARGV An array of command line arguments, excluding options and the program
argument, numbered from zero to ARGC−1.

The arguments in ARGV can be modified or added to; ARGC can be altered.
As each input file ends, nawk treats the next non-null element of ARGV, up
to the current value of ARGC−1, inclusive, as the name of the next input file.
Setting an element of ARGV to null means that it is not treated as an input
file. The name − indicates the standard input. If an argument matches the
format of an assignment operand, this argument is treated as an assignment
rather than a file argument.

CONVFMT The printf format for converting numbers to strings (except for
output statements, where OFMT is used); %.6g by default.

ENVIRON The variable ENVIRON is an array representing the value of the
environment. The indices of the array are strings consisting of the
names of the environment variables, and the value of each array
element is a string consisting of the value of that variable. If the
value of an environment variable is considered a numeric string,
the array element also has its numeric value.

In all cases where nawk behavior is affected by environment
variables (including the environment of any commands that nawk
executes via the system function or via pipeline redirections with
the print statement, the printf statement, or the getline
function), the environment used is the environment at the time
nawk began executing.

FILENAME A pathname of the current input file. Inside a BEGIN action the
value is undefined. Inside an END action the value is the name of
the last input file processed.

FNR The ordinal number of the current record in the current file. Inside
a BEGIN action the value is zero. Inside an END action the value is
the number of the last record processed in the last file processed.

FS Input field separator regular expression; a space character by
default.

NF The number of fields in the current record. Inside a BEGIN action,
the use of NF is undefined unless a getline function without a
var argument is executed previously. Inside an END action, NF
retains the value it had for the last record read, unless a

nawk(1)

/usr/xpg4/bin/awk

User Commands 947

subsequent, redirected, getline function without a var argument
is performed prior to entering the END action.

NR The ordinal number of the current record from the start of input.
Inside a BEGIN action the value is zero. Inside an END action the
value is the number of the last record processed.

OFMT The printf format for converting numbers to strings in output
statements "%.6g" by default. The result of the conversion is
unspecified if the value of OFMT is not a floating-point format
specification.

OFS The print statement output field separator; a space character by
default.

ORS The print output record separator; a newline character by
default.

LENGTH The length of the string matched by the match function.

RS The first character of the string value of RS is the input record
separator; a newline character by default. If RS contains more than
one character, the results are unspecified. If RS is null, then records
are separated by sequences of one or more blank lines: leading or
trailing blank lines do not produce empty records at the beginning
or end of input, and the field separator is always newline, no
matter what the value of FS.

RSTART The starting position of the string matched by the match function,
numbering from 1. This is always equivalent to the return value of
the match function.

SUBSEP The subscript separator string for multi-dimensional arrays; the
default value is 1

The nawk utility makes use of the extended regular expression notation (see regex(5))
except that it allows the use of C-language conventions to escape special characters
within the EREs, namely \\, \a, \b, \f, \n, \r, \t, \v, and those specified in the
following table. These escape sequences are recognized both inside and outside
bracket expressions. Note that records need not be separated by newline characters
and string constants can contain newline characters, so even the \n sequence is valid
in nawk EREs. Using a slash character within the regular expression requires escaping
as shown in the table below:

Escape
Sequence

Description Meaning

\" Backslash quotation-mark Quotation-mark character

\/ Backslash slash Slash character

nawk(1)

Regular
Expressions

948 man pages section 1: User Commands • Last Revised 10 Feb 1999

\ddd A backslash character followed by the
longest sequence of one, two, or three
octal-digit characters (01234567). If all of
the digits are 0, (that is, representation of
the NULL character), the behavior is
undefined.

The character encoded by the one-, two-
or three-digit octal integer. Multi-byte
characters require multiple,
concatenated escape sequences,
including the leading \ for each byte.

\c A backslash character followed by any
character not described in this table or
special characters (\\, \a, \b, \f, \n,
\r, \t, \v).

Undefined

A regular expression can be matched against a specific field or string by using one of
the two regular expression matching operators, ~ and ! ~. These operators interpret
their right-hand operand as a regular expression and their left-hand operand as a
string. If the regular expression matches the string, the ~ expression evaluates to the
value 1, and the ! ~ expression evaluates to the value 0. If the regular expression
does not match the string, the ~ expression evaluates to the value 0, and the ! ~
expression evaluates to the value 1. If the right-hand operand is any expression other
than the lexical token ERE, the string value of the expression is interpreted as an
extended regular expression, including the escape conventions described above. Note
that these same escape conventions also are applied in the determining the value of a
string literal (the lexical token STRING), and is applied a second time when a string
literal is used in this context.

When an ERE token appears as an expression in any context other than as the
right-hand of the ~ or ! ~ operator or as one of the built-in function arguments
described below, the value of the resulting expression is the equivalent of:

$0 ~ /ere/

The ere argument to the gsub, match, sub functions, and the fs argument to the
split function (see String Functions) is interpreted as extended regular
expressions. These can be either ERE tokens or arbitrary expressions, and are
interpreted in the same manner as the right-hand side of the ~ or ! ~ operator.

An extended regular expression can be used to separate fields by using the -F ERE
option or by assigning a string containing the expression to the built-in variable FS.
The default value of the FS variable is a single space character. The following
describes FS behavior:

1. If FS is a single character:

� If FS is the space character, skip leading and trailing blank characters; fields are
delimited by sets of one or more blank characters.

� Otherwise, if FS is any other character c, fields are delimited by each single
occurrence of c.

nawk(1)

User Commands 949

2. Otherwise, the string value of FS is considered to be an extended regular
expression. Each occurrence of a sequence matching the extended regular
expression delimits fields.

Except in the gsub, match, split, and sub built-in functions, regular expression
matching is based on input records; that is, record separator characters (the first
character of the value of the variable RS, a newline character by default) cannot be
embedded in the expression, and no expression matches the record separator
character. If the record separator is not a newline character, newline characters
embedded in the expression can be matched. In those four built-in functions, regular
expression matching are based on text strings. So, any character (including the
newline character and the record separator) can be embedded in the pattern and an
appropriate pattern will match any character. However, in all nawk regular expression
matching, the use of one or more NUL characters in the pattern, input record or text
string produces undefined results.

A pattern is any valid expression, a range specified by two expressions separated by
comma, or one of the two special patterns BEGIN or END.

The nawk utility recognizes two special patterns, BEGIN and END. Each BEGIN pattern
is matched once and its associated action executed before the first record of input is
read (except possibly by use of the getline function in a prior BEGIN action) and
before command line assignment is done. Each END pattern is matched once and its
associated action executed after the last record of input has been read. These two
patterns have associated actions.

BEGIN and END do not combine with other patterns. Multiple BEGIN and END
patterns are allowed. The actions associated with the BEGIN patterns are executed in
the order specified in the program, as are the END actions. An END pattern can precede
a BEGIN pattern in a program.

If an nawk program consists of only actions with the pattern BEGIN, and the BEGIN
action contains no getline function, nawk exits without reading its input when the
last statement in the last BEGIN action is executed. If an nawk program consists of
only actions with the pattern END or only actions with the patterns BEGIN and END,
the input is read before the statements in the END actions are executed.

An expression pattern is evaluated as if it were an expression in a Boolean context. If
the result is true, the pattern is considered to match, and the associated action (if any)
is executed. If the result is false, the action is not executed.

A pattern range consists of two expressions separated by a comma. In this case, the
action is performed for all records between a match of the first expression and the
following match of the second expression, inclusive. At this point, the pattern range
can be repeated starting at input records subsequent to the end of the matched range.

An action is a sequence of statements. A statement may be one of the following:

if (expression) statement [else statement]
while (expression) statement

nawk(1)

Patterns

Special Patterns

Expression
Patterns

Pattern Ranges

Actions

950 man pages section 1: User Commands • Last Revised 10 Feb 1999

do statement while (expression)
for (expression ; expression ; expression) statement
for (var in array) statement
delete array[subscript] #delete an array element
break
continue
{ [statement] . . . }
expression # commonly variable = expression
print [expression-list] [>expression]
printf format [,expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Any single statement can be replaced by a statement list enclosed in braces. The
statements are terminated by newline characters or semicolons, and are executed
sequentially in the order that they appear.

The next statement causes all further processing of the current input record to be
abandoned. The behavior is undefined if a next statement appears or is invoked in a
BEGIN or END action.

The exit statement invokes all END actions in the order in which they occur in the
program source and then terminate the program without reading further input. An
exit statement inside an END action terminates the program without further
execution of END actions. If an expression is specified in an exit statement, its
numeric value is the exit status of nawk, unless subsequent errors are encountered or a
subsequent exit statement with an expression is executed.

Both print and printf statements write to standard output by default. The output
is written to the location specified by output_redirection if one is supplied, as follows:

> expression>> expression| expressionIn all cases, the expression is evaluated to produce a
string that is used as a full pathname to write into (for > or >>) or as a command to be
executed (for |). Using the first two forms, if the file of that name is not currently
open, it is opened, creating it if necessary and using the first form, truncating the file.
The output then is appended to the file. As long as the file remains open, subsequent
calls in which expression evaluates to the same string value simply appends output to
the file. The file remains open until the close function, which is called with an
expression that evaluates to the same string value.

The third form writes output onto a stream piped to the input of a command. The
stream is created if no stream is currently open with the value of expression as its
command name. The stream created is equivalent to one created by a call to the
popen(3C) function with the value of expression as the command argument and a value
of w as the mode argument. As long as the stream remains open, subsequent calls in
which expression evaluates to the same string value writes output to the existing
stream. The stream will remain open until the close function is called with an
expression that evaluates to the same string value. At that time, the stream is closed as
if by a call to the pclose function.

nawk(1)

Output Statements

User Commands 951

These output statements take a comma-separated list of expression s referred in the
grammar by the non-terminal symbols expr_list, print_expr_list or
print_expr_list_opt. This list is referred to here as the expression list, and each
member is referred to as an expression argument.

The print statement writes the value of each expression argument onto the indicated
output stream separated by the current output field separator (see variable OFS
above), and terminated by the output record separator (see variable ORS above). All
expression arguments is taken as strings, being converted if necessary; with the
exception that the printf format in OFMT is used instead of the value in CONVFMT.
An empty expression list stands for the whole input record ($0).

The printf statement produces output based on a notation similar to the File Format
Notation used to describe file formats in this document Output is produced as
specified with the first expression argument as the string format and subsequent
expression arguments as the strings arg1 to argn, inclusive, with the following
exceptions:

1. The format is an actual character string rather than a graphical representation.
Therefore, it cannot contain empty character positions. The space character in the
format string, in any context other than a flag of a conversion specification, is
treated as an ordinary character that is copied to the output.

2. If the character set contains a Delta character and that character appears in the
format string, it is treated as an ordinary character that is copied to the output.

3. The escape sequences beginning with a backslash character is treated as sequences of
ordinary characters that are copied to the output. Note that these same sequences
is interpreted lexically by nawk when they appear in literal strings, but they is not
treated specially by the printf statement.

4. A field width or precision can be specified as the * character instead of a digit string.
In this case the next argument from the expression list is fetched and its numeric
value taken as the field width or precision.

5. The implementation does not precede or follow output from the d or u conversion
specifications with blank characters not specified by the format string.

6. The implementation does not precede output from the o conversion specification
with leading zeros not specified by the format string.

7. For the c conversion specification: if the argument has a numeric value, the
character whose encoding is that value is output. If the value is zero or is not the
encoding of any character in the character set, the behavior is undefined. If the
argument does not have a numeric value, the first character of the string value will
be output; if the string does not contain any characters the behavior is undefined.

8. For each conversion specification that consumes an argument, the next expression
argument will be evaluated. With the exception of the c conversion, the value will
be converted to the appropriate type for the conversion specification.

9. If there are insufficient expression arguments to satisfy all the conversion
specifications in the format string, the behavior is undefined.

nawk(1)

952 man pages section 1: User Commands • Last Revised 10 Feb 1999

10. If any character sequence in the format string begins with a % character, but does
not form a valid conversion specification, the behavior is unspecified.

Both print and printf can output at least {LINE_MAX} bytes.

The nawk language has a variety of built-in functions: arithmetic, string, input/output
and general.

The arithmetic functions, except for int, are based on the ISO C standard. The
behavior is undefined in cases where the ISO C standard specifies that an error be
returned or that the behavior is undefined. Although the grammar permits built-in
functions to appear with no arguments or parentheses, unless the argument or
parentheses are indicated as optional in the following list (by displaying them within
the [] brackets), such use is undefined.

atan2(y,x) Return arctangent of y/x.

cos(x) Return cosine of x, where x is in radians.

sin(x) Return sine of x, where x is in radians.

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

sqrt(x) Return the square root of x.

int(x) Truncate its argument to an integer. It will be truncated toward 0
when x > 0.

rand() Return a random number n, such that 0 ≤ n < 1.

srand([expr]) Set the seed value for rand to expr or use the time of day if expr is
omitted. The previous seed value will be returned.

The string functions in the following list shall be supported. Although the grammar
permits built-in functions to appear with no arguments or parentheses, unless the
argument or parentheses are indicated as optional in the following list (by displaying
them within the [] brackets), such use is undefined.

gsub(ere,repl[, in]) Behave like sub (see below), except that it
will replace all occurrences of the regular
expression (like the ed utility global
substitute) in $0 or in the in argument,
when specified.

index(s,t) Return the position, in characters,
numbering from 1, in string s where string t
first occurs, or zero if it does not occur at
all.

length[([s])] Return the length, in characters, of its
argument taken as a string, or of the whole
record, $0, if there is no argument.

nawk(1)

Functions

Arithmetic
Functions

String Functions

User Commands 953

match(s,ere) Return the position, in characters,
numbering from 1, in string s where the
extended regular expression ere occurs, or
zero if it does not occur at all. RSTART will
be set to the starting position (which is the
same as the returned value), zero if no
match is found; RLENGTH will be set to the
length of the matched string, −1 if no match
is found.

split(s,a[, fs]) Split the string s into array elements a[1],
a[2], ..., a[n], and return n. The separation
will be done with the extended regular
expression fs or with the field separator FS
if fs is not given. Each array element will
have a string value when created. If the
string assigned to any array element, with
any occurrence of the decimal-point
character from the current locale changed to
a period character, would be considered a
numeric string; the array element will also
have the numeric value of the numeric
string. The effect of a null string as the value
of fs is unspecified.

sprintf(fmt,expr,expr,...) Format the expressions according to the
printf format given by fmt and return the
resulting string.

sub(ere,repl[, in]) Substitute the string repl in place of the first
instance of the extended regular expression
ERE in string in and return the number of
substitutions. An ampersand (&)
appearing in the string repl will be replaced
by the string from in that matches the
regular expression. For each occurrence of
backslash (\) encountered when scanning
the string repl from beginning to end, the
next character is taken literally and loses its
special meaning (for example, \& will be
interpreted as a literal ampersand
character). Except for & and \, it is
unspecified what the special meaning of
any such character is. If in is specified and it
is not an lvalue the behavior is undefined. If
in is omitted, nawk will substitute in the
current record ($0).

nawk(1)

954 man pages section 1: User Commands • Last Revised 10 Feb 1999

substr(s,m[, n]) Return the at most n-character substring of s
that begins at position m, numbering from
1. If n is missing, the length of the substring
will be limited by the length of the string s.

tolower(s) Return a string based on the string s. Each
character in s that is an upper-case letter
specified to have a tolower mapping by
the LC_CTYPE category of the current locale
will be replaced in the returned string by
the lower-case letter specified by the
mapping. Other characters in s will be
unchanged in the returned string.

toupper(s) Return a string based on the string s. Each
character in s that is a lower-case letter
specified to have a toupper mapping by
the LC_CTYPE category of the current locale
will be replaced in the returned string by
the upper-case letter specified by the
mapping. Other characters in s will be
unchanged in the returned string.

All of the preceding functions that take ERE as a parameter expect a pattern or a string
valued expression that is a regular expression as defined below.

The input/output and general functions are:

close(expression) Close the file or pipe opened by a print or
printf statement or a call to getline
with the same string-valued expression. If
the close was successful, the function will
return 0; otherwise, it will return non-zero.

expression|getline[var] Read a record of input from a stream piped
from the output of a command. The stream
will be created if no stream is currently
open with the value of expression as its
command name. The stream created will be
equivalent to one created by a call to the
popen function with the value of expression
as the command argument and a value of r
as the mode argument. As long as the stream
remains open, subsequent calls in which
expression evaluates to the same string value
will read subsequent records from the file.
The stream will remain open until the
close function is called with an expression
that evaluates to the same string value. At

nawk(1)

Input/Output and
General Functions

User Commands 955

that time, the stream will be closed as if by a
call to the pclose function. If var is
missing, $0 and NF will be set; otherwise,
var will be set.

The getline operator can form ambiguous
constructs when there are operators that are
not in parentheses (including concatenate)
to the left of the | (to the beginning of the
expression containing getline). In the
context of the $ operator, | behaves as if it
had a lower precedence than $. The result
of evaluating other operators is unspecified,
and all such uses of portable applications
must be put in parentheses properly.

getline Set $0 to the next input record from the
current input file. This form of getline
will set the NF, NR, and FNR variables.

getline var Set variable var to the next input record
from the current input file. This form of
getline will set the FNR and NR variables.

getline [var] < expression Read the next record of input from a named
file. The expression will be evaluated to
produce a string that is used as a full
pathname. If the file of that name is not
currently open, it will be opened. As long as
the stream remains open, subsequent calls
in which expression evaluates to the same
string value will read subsequent records
from the file. The file will remain open until
the close function is called with an
expression that evaluates to the same string
value. If var is missing, $0 and NF will be
set; otherwise, var will be set.

The getline operator can form ambiguous
constructs when there are binary operators
that are not in parentheses (including
concatenate) to the right of the < (up to the
end of the expression containing the
getline). The result of evaluating such a
construct is unspecified, and all such uses of
portable applications must be put in
parentheses properly.

nawk(1)

956 man pages section 1: User Commands • Last Revised 10 Feb 1999

system(expression) Execute the command given by expression in
a manner equivalent to the system(3C)
function and return the exit status of the
command.

All forms of getline will return 1 for successful input, 0 for end of file, and −1 for an
error.

Where strings are used as the name of a file or pipeline, the strings must be textually
identical. The terminology ‘‘same string value’’ implies that ‘‘equivalent strings’’, even
those that differ only by space characters, represent different files.

The nawk language also provides user-defined functions. Such functions can be
defined as:

function name(args, . . .) { statements }A function can be referred to anywhere in an
nawk program; in particular, its use can precede its definition. The scope of a function
will be global.

Function arguments can be either scalars or arrays; the behavior is undefined if an
array name is passed as an argument that the function uses as a scalar, or if a scalar
expression is passed as an argument that the function uses as an array. Function
arguments will be passed by value if scalar and by reference if array name. Argument
names will be local to the function; all other variable names will be global. The same
name will not be used as both an argument name and as the name of a function or a
special nawk variable. The same name must not be used both as a variable name with
global scope and as the name of a function. The same name must not be used within
the same scope both as a scalar variable and as an array.

The number of parameters in the function definition need not match the number of
parameters in the function call. Excess formal parameters can be used as local
variables. If fewer arguments are supplied in a function call than are in the function
definition, the extra parameters that are used in the function body as scalars will be
initialized with a string value of the null string and a numeric value of zero, and the
extra parameters that are used in the function body as arrays will be initialized as
empty arrays. If more arguments are supplied in a function call than are in the
function definition, the behavior is undefined.

When invoking a function, no white space can be placed between the function name
and the opening parenthesis. Function calls can be nested and recursive calls can be
made upon functions. Upon return from any nested or recursive function call, the
values of all of the calling function’s parameters will be unchanged, except for array
parameters passed by reference. The return statement can be used to return a value.
If a return statement appears outside of a function definition, the behavior is
undefined.

nawk(1)

User-defined
Functions

User Commands 957

In the function definition, newline characters are optional before the opening brace
and after the closing brace. Function definitions can appear anywhere in the program
where a pattern-action pair is allowed.

The index, length, match, and substr functions should not be confused with
similar functions in the ISO C standard; the nawk versions deal with characters, while
the ISO C standard deals with bytes.

Because the concatenation operation is represented by adjacent expressions rather than
an explicit operator, it is often necessary to use parentheses to enforce the proper
evaluation precedence.

See largefile(5) for the description of the behavior of nawk when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The nawk program specified in the command line is most easily specified within
single-quotes (for example, ’program’) for applications using sh, because nawk
programs commonly contain characters that are special to the shell, including
double-quotes. In the cases where a nawk program contains single-quote characters, it
is usually easiest to specify most of the program as strings within single-quotes
concatenated by the shell with quoted single-quote characters. For example:

awk ’/’\’’/ { print "quote:", $0 }’prints all lines from the standard input
containing a single-quote character, prefixed with quote:.

The following are examples of simple nawk programs:

EXAMPLE 1 Write to the standard output all input lines for which field 3 is greater than 5:

$3 > 5

EXAMPLE 2 Write every tenth line:

(NR % 10) == 0

EXAMPLE 3 Write any line with a substring matching the regular expression:

/(G|D)(2[0-9][[:alpha:]]*)/

EXAMPLE 4 Print any line with a substring containing a G or D, followed by a sequence of
digits and characters:

This example uses character classes digit and alpha to match
language-independent digit and alphabetic characters, respectively.

/(G|D)([[:digit:][:alpha:]]*)/

nawk(1)

USAGE

EXAMPLES

958 man pages section 1: User Commands • Last Revised 10 Feb 1999

EXAMPLE 4 Print any line with a substring containing a G or D, followed by a sequence of
digits and characters: (Continued)

EXAMPLE 5 Write any line in which the second field matches the regular expression and the
fourth field does not:

$2 ~ /xyz/ && $4 !~ /xyz/

EXAMPLE 6 Write any line in which the second field contains a backslash:

$2 ~ /\\/

EXAMPLE 7 Write any line in which the second field contains a backslash (alternate method):

Note that backslash escapes are interpreted twice, once in lexical processing of the
string and once in processing the regular expression.

$2 ~ "\\\\"

EXAMPLE 8 Write the second to the last and the last field in each line, separating the fields by
a colon:

{OFS=":";print $(NF-1), $NF}

EXAMPLE 9 Write the line number and number of fields in each line:

The three strings representing the line number, the colon and the number of fields are
concatenated and that string is written to standard output.

{print NR ":" NF}

EXAMPLE 10 Write lines longer than 72 characters:

{length($0) > 72}

EXAMPLE 11 Write first two fields in opposite order separated by the OFS:

{ print $2, $1 }

EXAMPLE 12 Same, with input fields separated by comma or space and tab characters, or
both:

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

EXAMPLE 13 Add up first column, print sum and average:

{s += $1 }
END {print "sum is ", s, " average is", s/NR}

nawk(1)

User Commands 959

EXAMPLE 13 Add up first column, print sum and average: (Continued)

EXAMPLE 14 Write fields in reverse order, one per line (many lines out for each line in):

{ for (i = NF; i > 0; --i) print $i }

EXAMPLE 15 Write all lines between occurrences of the strings “start” and “stop”:

/start/, /stop/

EXAMPLE 16 Write all lines whose first field is different from the previous one:

$1 != prev { print; prev = $1 }

EXAMPLE 17 Simulate the echo command:

BEGIN {
for (i = 1; i < ARGC; ++i)

printf "%s%s", ARGV[i], i==ARGC-1?"\n":""
}

EXAMPLE 18 Write the path prefixes contained in the PATH environment variable, one per
line:

BEGIN {
n = split (ENVIRON["PATH"], path, ":")
for (i = 1; i <= n; ++i)

print path[i]
}

EXAMPLE 19 Print the file “input”, filling in page numbers starting at 5:

If there is a file named input containing page headers of the form

Page#

and a file named program that contains

/Page/{ $2 = n++; }
{ print }

then the command line

nawk -f program n=5 input

will print the file input, filling in page numbers starting at 5.

See environ(5) for descriptions of the following environment variables that affect
execution: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

LC_NUMERIC Determine the radix character used when interpreting numeric
input, performing conversions between numeric and string values
and formatting numeric output. Regardless of locale, the period

nawk(1)

ENVIRONMENT
VARIABLES

960 man pages section 1: User Commands • Last Revised 10 Feb 1999

character (the decimal-point character of the POSIX locale) is the
decimal-point character recognized in processing awk programs
(including assignments in command-line arguments).

The following exit values are returned:

0 All input files were processed successfully.

>0 An error occurred.

The exit status can be altered within the program by using an exit expression.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

awk(1), ed(1), egrep(1), grep(1), lex(1), sed(1), popen (3C), printf(3C),
system(3C), attributes(5), environ(5), largefile(5), regex(5), XPG4(5)

Aho, A. V., B. W. Kernighan, and P. J. Weinberger, The AWK Programming Language,
Addison-Wesley, 1988.

If any file operand is specified and the named file cannot be accessed, nawk will write
a diagnostic message to standard error and terminate without any further action.

If the program specified by either the program operand or a progfile operand is not a
valid nawk program (as specified in EXTENDED DESCRIPTION), the behavior is
undefined.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression
to be treated as a number add 0 to it; to force it to be treated as a string concatenate the
null string ("") to it.

nawk(1)

EXIT STATUS

ATTRIBUTES

/usr/bin/nawk

/usr/xpg4/bin/awk

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 961

nca, snca – the Solaris Network Cache and Accelerator (NCA)

The Solaris Network Cache and Accelerator (“NCA”) is a kernel module designed to
provide improved web server performance. The kernel module, ncakmod, services
HTTP requests. To improve the performance of servicing HTTP requests, the NCA
kernel module maintains an in-kernel cache of web pages. If the NCA kernel module
cannot service the request itself, it passes the request to the http daemon (httpd). It
uses either a sockets interface, with family type designated PF_NCA, or a private
Solaris doors interface that is based on the Solaris doors RPC mechanism, to pass the
request.

To use the sockets interface, the web server must open a socket of family type PF_NCA.
The PF_NCA family supports only SOCK_STREAM and protocol 0, otherwise an error
occurs.

The following features are not presently supported:

� You cannot initiate a connection from a PF_NCA type socket. The
connect(3SOCKET) interface on PF_NCA will fail.

� System calls that are associated with type SO_DGRAM, such as send(), sendto(),
sendmsg(), recv(), recvfrom(), and recvmsg(), will fail.

� You cannot set TCP or IP options on a PF_NCA type socket through
setsockopt(3SOCKET).

The NCA cache consistency is maintained by honoring HTTP headers that deal with a
given content type and expiration date, much the same way as a proxy cache.

For configuration information, see System Administration Guide, Volume 3

When native PF_NCA socket support does not exist in the web server, the
ncad_addr(4) interface must be used to provide NCA support in that web server.

NCA is intended to be run on a dedicated web server. Running other large processes
while running NCA might cause undesirable behavior.

NCA supports the logging of in-kernel cache hits. See ncalogd.conf(4). NCA stores
logs in a binary format. Use the ncab2clf(1) utility to convert the log from a binary
format to the Common Log File format.

/etc/nca/ncakmod.conf Lists configuration parameters for NCA.

/etc/nca/ncalogd.conf Lists configuration parameters for NCA
logging.

/etc/nca/nca.if Lists the physical interfaces on which NCA
will run.

/etc/hostname.{}{0-9} Lists all physical interfaces configured on
the server.

nca(1)

NAME

DESCRIPTION

FILES

962 man pages section 1: User Commands • Last Revised 28 Sep 2001

/etc/hosts Lists all host names associated with the
server. Entries in this file must match with
entries in /etc/hostname.{}{0–9} for
NCA to function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar (32–bit)

SUNWncarx (64–bit)

Interface Stability Evolving

ncab2clf(1), ncakmod(1), close(2), read(2), write(2), sendfilev(3EXT),
accept(3SOCKET), bind(3SOCKET)connect(3SOCKET), door_bind(3DOOR),
door_call(3DOOR), door_create(3DOOR), getsockopt(3SOCKET),
listen(3SOCKET), setsockopt(3SOCKET), shutdown(3SOCKET),
socket(3HEAD), socket(3SOCKET), ncad_addr(4), nca.if(4), ncakmod.conf(4),
ncalogd.conf(4), attributes(5)

System Administration Guide, Volume 3

nca(1)

ATTRIBUTES

SEE ALSO

User Commands 963

ncab2clf – convert binary log file to Common Log File format

/usr/bin/ncab2clf [-Dhv] [-i input-file] [-o output-file] [-b size] [-n
number] [-s datetime]

The ncab2clf command is used to convert the log file generated by the Solaris
Network Cache and Accelerator (“NCA”) from binary format, to Common Log File
(“CLF”) format. If no input-file is specified, ncab2clf uses stdin. If no output-file is
specified, the output goes to stdout.

-b Specifies the binary-log-file blocking in kilobytes; the default is 64
Kbyte.

-D Specifies that direct I/O be disabled.

-h Prints usage message.

-i input-file Specifies the input file.

-n number Output number CLF records.

-o output-file Specifies the output file.

-s datetime Skip any records before the date and time specified in datetime. You
can specify the date and time in CLF format or in the format
specified by the touch(1) utility. CLF format is the dominant
format, so ncab2clf first analyzes datetime assuming CLF.

-v Provides verbose output.

EXAMPLE 1 Converting a Binary File to a Common Log File Format

The following example converts the binary file /var/nca/logs/nca.blf to a file
/var/nca/logs/nca.clf, which is in Common Log File format.

example% ncab2clf -D -i /var/nca/logs/nca.blf -o /var/nca/logs/nca.clf

EXAMPLE 2 Converting Multiple Log Files

The following script may be used to convert multiple log files. The directory
designated by “*” must only contain log files.

!/bin/ksh
for filename in *
do

ncab2clf -D < $filename > $filename.clf
done

EXAMPLE 3 Using -s and -n on a Raw Device

The following example shows how ncab2clf can be used on a raw device. If not
using the -n option, the default is to convert all records from the starting location to
the end of the file. The date and time specified with -s, below, is in CLF format.

ncab2clf(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

964 man pages section 1: User Commands • Last Revised 28 Sep 2001

EXAMPLE 3 Using -s and -n on a Raw Device (Continued)

example% ncab2clf -s ’10/Apr/2001:09:23:13’ -n 100 < /dev/dsk/c2t1d0s6

The following exit values are returned:

0 The file converted successfully

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncau

Interface Stability Evolving

nca(1), ncakmod(1), nca.if(4), ncakmod.conf(4), ncalogd.conf(4),
attributes(5)

System Administration Guide, Volume 3

The binary log files generated by NCA can become very large. When converting these
large binary files, use the -b option to the ncab2clf command to help performance.

Direct I/O is a benefit to the user if the data being written does not come in as large
chunks. However, if the user wishes to convert the log file in large chunks using the
-b option, then direct I/O should be disabled by using the -D option.

ncab2clf(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 965

ncakmod – start or stop the NCA kernel module

/etc/init.d/ncakmod start | stop

ncakmod is used to start or stop the Solaris Network Cache and Accelerator (“NCA”)
kernel module.

When the start option is specified at the command-line, the NCA kernel module will
be activated for all physical interfaces listed in the nca.if file. When the ncakmod
command is invoked with the stop option, the NCA kernel module will print the
following message:

To stop NCA, please set the status configuration parameter
to disable in ncakmod.conf and then reboot your system. See
the ncakmod.conf(4) manual page for more information.

Note that in order to properly stop NCA on your system, you must first edit the
ncakmod.conf(4) file and set the status field to “disable,” then reboot your system.

start Starts the NCA kernel module.

stop Describes the current method for stopping the NCA feature.

EXAMPLE 1 Starting and Stopping the NCA Feature

The following command is used to start the NCA feature:

example% /etc/init.d/ncakmod start

/etc/init.d/ncakmod The NCA kernel module startup script.

/etc/nca/ncakmod.conf Specifies configuration options for the NCA
kernel module.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

nca(1), ncab2clf(1), ncad_addr(4), nca.if(4), ncakmod.conf(4),
ncalogd.conf(4), attributes(5)

ncakmod(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

966 man pages section 1: User Commands • Last Revised 28 Sep 2001

netscape – start Netscape Communicator for Solaris

/usr/dt/bin/netscape [options] [arguments]

Netscape Communicator for Solaris is comprised of a comprehensive set of
components that integrates browsing, email, web-based word processing, chat, and
group scheduling to allow users to easily communicate, share, and access information.

Any argument that is not a switch is interpreted as either a file or URL. The following
options are supported:

-component-bar
Shows only the Component Bar.

-composer
Opens all command line URLs in Composer.

-discussions
Shows Collabra Discussions.

-display dpy
Specifies the X server to use for display.

-dont-force-window-stacking
Ignores the alwaysraised, alwayslowered, and z-lock JavaScript window.open()
attributes.

-dont-save-geometry-prefs
Does not save window geometry preferences for the session.

-edit
See -composer.

-geometry =WxH+X+Y
Positions and sizes the Netscape window.

-help
Shows the command line options for Netscape.

-iconic
Minimizes Netscape after start up.

-id window-id
Identifies an X window to receive -remote commands. If you do not specify a
window, the first window found is used.

-ignore-geometry-prefs
Ignores saved window geometry preferences for the current session.

-install
Installs private colormap.

netscape(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 967

-irix-session-management
Enables IRIX session management. On SGI systems, IRIX session management is
enabled by default. IRIX session management is available on other platforms and
may work with session managers other than the IRIX desktop. See
-no-irix-session-management.

-mail
Same as -messenger.

-messenger
Shows the Messenger Mailbox (Inbox).

-mono
Forces a one-bit deep image display.

-ncols N
Sets the maximum number of colors to allocate for images when not using
-install.

-nethelp
Starts NetHelp, Netscape’s online help system.

-news
Same as -discussions.

-no-about-splash
Bypasses the startup license page.

-no-install
Uses the default colormap.

-no-irix-session-management
Disables IRIX session management. See -irix-session-management.

-no-session-management
Disables session management. Session management is enabled by default. See
-session-management.

-noraise
Does not display the remote window on top when using -remote commands. See
-raise and -remote.

-raise
Displays the remote window on top when using -remote commands. See
-noraise and -remote.

-remote remote-command
Connects to and controls an existing process. You can issue multiple -remote
options on the same command line. The commands are executed sequentially
unless a command fails. If there is no Netscape process currently running, this
command fails. If the command fails, an error message will be reported to stderr
and it will exit with a nonzero status. See REMOTE ACTIONS section below and
EXAMPLES.

netscape(1)

968 man pages section 1: User Commands • Last Revised 26 Jan 2001

The following options exist for finer-grained control of the -remote commands:

-id X_window_ID If there is more than one Netscape Navigator
window open, this option selects the window to
control. If you do not use this option, the first
window found is controlled. See EXAMPLES.

-raise
-noraise Controls whether the -remote command causes the

Netscape window to raise/not raise itself to the top.
The default is raise.

You can use -raise and -noraise options with
the addBookmark and openURL arguments. See
EXAMPLES.

-session-management
Enables session management. Session management is enabled by default. See
-no-session-management.

-version
Displays the version number and build date.

-visual id-or-number
Uses the specified server visual.

-xrm resource-spec
Sets the specified X resource.

When Netscape Navigator is invoked with the -remote argument, it does not open a
window, but instead connects to and controls an already existing process. The
argument to the -remote switch is an Xt action to invoke, with optional arguments.
Remote control is implemented using X properties, so the two processes need not be
running on the same machine, and need not share a file system. See
http://home.netscape.com/newsref/std/x-remote.html.

All of Netscape’s action names are the same as its resource names. For example, if
you wanted to know the name of the action that corresponds to the ‘‘Add Bookmark’’
menu item, you could look in Netscape for ‘‘Add Bookmark’’ and see that the
resource that is set to that string is addBookmark. That is the name of the Action as
well. Note: To find the Netscape file, use the full path name which is, by default,
/usr/dt/appconfig/netscape/lib/locale/C/app-defaults/Netscape.

You can use Actions in Translation tables in the usual Xt manner, but you can also
invoke them directly via the -remote option, like this:

netscape -remote ’addBookmark()’That command will cause the existing Netscape
Navigator process to add its current URL to the bookmarks, just as if you had selected
that menu item.

To open a document, enter:

netscape(1)

REMOTE
ACTIONS

User Commands 969

netscape -remote ’openURL(http://home.netscape.com)’

Invoking an action with no arguments has the same effect as selecting the
corresponding menu item. However, with some actions you can pass the following
arguments:

addBookmark() Adds the current document to the
Bookmark list.

addBookmark(URL) Adds the specified document to the
Bookmark list. See EXAMPLES.

addBookmark(URL, title) Adds the specified document and title to
the Bookmark list.

mailto() Opens the mail dialog box with an empty
To: field.

mailto(a, b. c) Inserts the specified address(es) in the
default To: field.

openFile() Opens a dialog box that prompts for a file.

openFile(filename) Opens the specified file.

openURL() Opens a dialog box that prompts for a URL.

openURL(URL) Opens the specified document. See
EXAMPLES.

openURL(URL, new window) Opens a new window displaying the
specified document.

saveAs() Opens a dialog box that prompts for a URL.

saveAs(output_file) Writes HTML to the specified file.

saveAs(output_file, type) Writes the type to the specified file (HTML,
text, or PostScript).

If a command fails, an error message is reported to stderr and the command exits with
a nonzero status.

The following are all examples of using the -remote command option. For more
information and examples, see
http://home.netscape.com/newsref/std/x-remote.html

EXAMPLE 1 Selecting among open Netscape windows

example% netscape -id 0x3c00124 -remote ’openURL(http://www.sun.com)’

netscape(1)

EXIT STATUS

EXAMPLES

970 man pages section 1: User Commands • Last Revised 26 Jan 2001

EXAMPLE 2 Adding a bookmark without raising a window

To add a bookmark without raising a window, followed by opening a URL and raising
the window, enter:

example% netscape -noraise -remote ’addBookmark(http://www.sun.com)’ \

-raise -remote ’openURL(http://home.netscape.com)’

EXAMPLE 3 Adding a specified document to the Bookmark list

example% netscape -remote ’addBookmark(http://www.sun.com)’

EXAMPLE 4 Opening a specified document

example% netscape -remote ’openURL(http://www.sun.com)’

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability NSCPcom

attributes(5)

Refer to the Netscape Communicator online help for more information.

netscape(1)

ATTRIBUTES

SEE ALSO

User Commands 971

newform – change the format of a text file

newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f]
[-cchar] [-ln] [filename…]

newform reads lines from the named filenames, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformatted in
accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be repeated, and
may be intermingled with the optional filenames. Command line options are processed
in the order specified. This means that option sequences like ‘‘-e15 -l60’’ will yield
results different from ‘‘-l60 -e15’’. Options are applied to all filenames on the
command line.

The following options are supported:

-s Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a * and any characters to the right
of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
saved internally until all other options specified are applied to that
line. The characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72
(or truncated to column 72), and the leading digits placed starting
at column 73, the command would be:

newform -s -i -l -a -e filename

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs(1). In addition, tabspec may be –, in which
newform assumes that the tab specification is to be found in the
first line read from the standard input (see fspec(4)). If no tabspec
is given, tabspec defaults to −8. A tabspec of −0 expects no tabs; if
any are found, they are treated as −1.

-otabspec Output tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to −8. A tabspec of
−0 means that no spaces will be converted to tabs on output.

newform(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

972 man pages section 1: User Commands • Last Revised 21 Jul 1997

-bn Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see −ln). Default is
to truncate the number of characters necessary to obtain the
effective line length. The default value is used when -b with no n
is used. This option can be used to delete the sequence numbers
from a COBOL program as follows:

newform -l1 -b7 filename

-en Same as -bn except that characters are truncated from the end of
the line.

-pn Prefix n characters (see -cchar) to the beginning of a line when the
line length is less than the effective line length. Default is to prefix
the number of characters necessary to obtain the effective line
length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab specification format line on the standard output
before any other lines are output. The tab specification format line
which is printed will correspond to the format specified in the
last -o option. If no -o option is specified, the line which is
printed will contain the default specification of −8.

-cchar Change the prefix/append character to char. Default character for
char is a space.

-ln Set the effective line length to n characters. If n is not entered, -l
defaults to 72. The default line length without the -l option is 80
characters. Note: Tabs and backspaces are considered to be one
character (use -i to expand tabs to spaces).

The −l1 must be used to set the effective line length shorter than
any existing line in the file so that the -b option is activated.

The following operand is supported:

filename Input file

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

newform(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

User Commands 973

Availability SUNWesu

csplit(1), tabs(1), fspec(4), attributes(5)

All diagnostics are fatal.

usage: . . .
newform was called with a bad option.

"not -s format"
There was no tab on one line.

"can’t open file"
Self-explanatory.

"internal line too long"
A line exceeds 512 characters after being expanded in the internal work buffer.

"tabspec in error"
A tab specification is incorrectly formatted, or specified tab stops are not ascending.

"tabspec indirection illegal"
A tabspec read from a file (or standard input) may not contain a tabspec referencing
another file (or standard input).

newform normally only keeps track of physical characters; however, for the -i and
-o options, newform will keep track of backspaces in order to line up tabs in the
appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the standard input (by
use of -i– or -o–).

If the -f option is used, and the last -o option specified was -o–, and was preceded
by either a -o– or a -i–, the tab specification format line will be incorrect.

newform(1)

SEE ALSO

DIAGNOSTICS

NOTES

974 man pages section 1: User Commands • Last Revised 21 Jul 1997

newgrp – log in to a new group

/usr/bin/newgrp [-| -l] [group]

newgrp [argument]

*newgrp [argument]

The newgrp command logs a user into a new group by changing a user’s real and
effective group ID. The user remains logged in and the current directory is unchanged.
The execution of newgrp always replaces the current shell with a new shell, even if
the command terminates with an error (unknown group).

Any variable that is not exported is reset to null or its default value. Exported
variables retain their values. System variables (such as PS1, PS2, PATH, MAIL, and
HOME), are reset to default values unless they have been exported by the system or the
user. For example, when a user has a primary prompt string (PS1) other than $
(default) and has not exported PS1, the user’s PS1 will be set to the default prompt
string $, even if newgrp terminates with an error. Note that the shell command
export (see sh(1) and set(1)) is the method to export variables so that they retain
their assigned value when invoking new shells.

With no operands and options, newgrp changes the user’s group IDs (real and
effective) back to the group specified in the user’s password file entry. This is a way to
exit the effect of an earlier newgrp command.

A password is demanded if the group has a password and the user is not listed in
/etc/group as being a member of that group. The only way to create a password for
a group is to use passwd(1), then cut and paste the password from /etc/shadow to
/etc/group. Group passwords are antiquated and not often used.

Equivalent to exec newgrp argument where argument represents the options and/or
operand of the newgrp command.

Equivalent to exec to/bin/newgrp argument where argument represents the options
and/or operand of the newgrp command.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

The following option is supported:

newgrp(1)

NAME

Command

sh Built-in

ksh Built-in

Command

sh Built-in

ksh Built-in

OPTIONS

User Commands 975

-l | − Change the environment to what would be expected if the user
actually logged in again as a member of the new group.

The following operands are supported:

group A group name from the group database or a non-negative numeric
group ID. Specifies the group ID to which the real and effective
group IDs will be set. If group is a non-negative numeric string and
exists in the group database as a group name (see getgrnam(3C)),
the numeric group ID associated with that group name will be
used as the group ID.

argument sh and ksh only. Options and/or operand of the newgrp
command.

See environ(5) for descriptions of the following environment variables that affect the
execution of newgrp: LC_CTYPE, LC_MESSAGES, and NLSPATH.

If newgrp succeeds in creating a new shell execution environment, whether or not the
group identification was changed successfully, the exit status will be the exit status of
the shell. Otherwise, the following exit value is returned:

>0 An error occurred.

/etc/group system’s group file

/etc/passwd system’s password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

login(1), ksh(1), set(1), sh(1), intro(3), getgrnam(3C), group(4), passwd(4),
attributes(5), environ(5)

newgrp(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

976 man pages section 1: User Commands • Last Revised 1 Feb 1995

news – print news items

news [-a] [-n] [-s] [items]

news is used to keep the user informed of current events. By convention, these events
are described by files in the directory /var/news.

When invoked without arguments, news prints the contents of all current files in
/var/news, most recent first, with each preceded by an appropriate header. news
stores the ‘‘currency’’ time as the modification date of a file named .news_time in
the user’s home directory (the identity of this directory is determined by the
environment variable $HOME); only files more recent than this currency time are
considered ‘‘current.’’

-a Print all items, regardless of currency. In this case, the stored time is not
changed.

-n Report the names of the current items without printing their contents, and
without changing the stored time.

-s report how many current items exist, without printing their names or
contents, and without changing the stored time. It is useful to include such
an invocation of news in one’s .profile file, or in the system’s
/etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next item
is started. Another delete within one second of the first causes the program to
terminate.

See environ(5) for a description of the LC_CTYPE environment variable that affects
the execution of news.

/etc/profile

/var/news/*

$HOME/.news_time

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

profile(4), attributes(5), environ(5)

news(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

User Commands 977

newtask – create new task or change task or project of running process

newtask [-c pid | [-Fl] [command…]] [-p project] [-v]

The newtask command executes the user’s default shell or a specified command,
placing the executed command in a new task owned by the specified project. The
user’s default shell is the one specified in the passwd database, and is determined via
getpwnam().

Alternatively, newtask may be used to change the task of an already running process.
A project may also be specified in this form of the command. This may be desirable for
processes that are mission critical and cannot be restarted in order to put them into a
new project.

In the case that extended accounting is active, the newtask command may
additionally cause the creation of a task accounting record marking the completion of
the preceding system task.

The following options are supported:

-c pid Changes the task or project of a running process. The invoking user must
either own the process or have super-user privileges.

If the project is being changed, the process owner must be a member of the
specified project. When the project is changed for a running process, its
pool binding as well as resource controls are modified to match the
configuration of the new project. Controls not explicitly specified in the
project entry will be preserved.

This option is incompatible with the -F and -l options.

-F Creates a finalized task, within which further newtask or settaskid(2)
invocations would fail. Finalized tasks may be useful at some sites for
simplifying the attribution of resource consumption.

-l Changes the environment to what would be expected if the user dactually
logged in again as a member of the new project.

-p Changes the project ID of the new task to that associated with the given
project name. The invoking user must be a valid member of the requested
project for the command to succeed. If no project name is specified, the
new task is started in the invoking user’s current project.

-v Verbose: displays the system task id as the new system task is begun.

The following operands are supported:

project The project to which resource usage by the created task should be
charged. The requested project must be defined in the project
databases defined in nsswitch.conf(4).

command The command to be executed as the new task. If no command is
given, the user’s login shell is invoked. (If the login shell is not

newtask(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

978 man pages section 1: User Commands • Last Revised 19 Dec 2001

available, /bin/sh is invoked.)

EXAMPLE 1 Creating a new shell

The following example creates a new shell in the canada project, displaying the task
id:

example$ id -p
uid=565(gh) gid=10(staff) projid=10(default)
example$ newtask -v -p canada
38
example$ id -p

uid=565(gh) gid=10(staff) projid=82(canada)

EXAMPLE 2 Running the date command

The following example runs the date command in the russia project:

example$ newtask -p russia date

Tue Aug 31 11:12:10 PDT 1999

EXAMPLE 3 Changing the project of an existing process

The following example changes the project of the existing process with a pid of 9999
to russia:

example$ newtask -c 9999 -p russia

The following exit values are returned:

0 Successful execution.

1 A fatal error occurred during execution.

2 Invalid command line options were specified.

/etc/project Local database containing valid project definitions for this
machine.

/proc/pid/* Process information and control files.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

proc(1), id(1M), poolbind(1M), execvp(2), setrctl(2), settaskid(2),
setproject(3PROJECT), nsswitch.conf(4), proc(4), project(4),
attributes(5)

newtask(1)

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 979

nice – invoke a command with an altered scheduling priority

/usr/bin/nice [-increment | -n increment]command [argument…]

/usr/xpg4/bin/nice [-increment | -n increment]command [argument…]

nice [-increment | +increment] [command]

The nice utility invokes command, requesting that it be run with a different system
scheduling priority. The priocntl(1) command is a more general interface to
scheduler functions.

The invoking process (generally the user’s shell) must be in a scheduling class that
supports nice.

If the C shell (see csh(1)) is used, the full path of the command must be specified;
otherwise, the csh built-in version of nice will be invoked. See csh Builtin below.

If nice executes commands with arguments, it uses the default shell /usr/bin/sh
(see sh(1)).

If nice executes commands with arguments, it uses /usr/xpg4/bin/sh (see
ksh(1)).

nice is also a csh built-in command with behavior different from the utility versions.
See csh(1) for description.

The following options are supported:

-increment | -n increment
increment must be in the range 1-19; if not specified, an increment of 10 is
assumed. An increment greater than 19 is equivalent to 19.

The super-user may run commands with priority higher than normal by using a
negative increment such as –10. A negative increment assigned by an unprivileged
user is ignored.

The following operands are supported:

command The name of a command that is to be invoked. If command names
any of the special built-in utilities (see shell_builtins(1)), the
results are undefined.

argument Any string to be supplied as an argument when invoking
command.

See environ(5) for descriptions of the following environment variables that affect the
execution of nice: LC_CTYPE, LC_MESSAGES, PATH, and NLSPATH.

If command is invoked, the exit status of nice will be the exit status of command;
otherwise, nice will exit with one of the following values:

1-125 An error occurred.

nice(1)

NAME

SYNOPSIS

csh Builtin

DESCRIPTION

/usr/bin/nice

/usr/xpg4/bin/nice

csh Builtin

OPTIONS

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

980 man pages section 1: User Commands • Last Revised 2 Jan 2002

126 command was found but could not be invoked.

127 command could not be found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

csh(1), ksh(1), nohup(1), priocntl(1), sh(1), shell_builtins(1), nice(2),
attributes(5), environ(5), XPG4(5)

nice(1)

ATTRIBUTES

/usr/bin/nice

/usr/xpg4/bin/nice

SEE ALSO

User Commands 981

nis+, NIS+, nis – a new version of the network information name service

NIS+ is a new version of the network information nameservice. This version differs in
several significant ways from version 2, which is referred to as NIS or YP in earlier
releases. Specific areas of enhancement include the ability to scale to larger networks,
security, and the administration of the service.

The man pages for NIS+ are broken up into three basic categories. Those in section 1
are the user commands that are most often executed from a shell script or directly
from the command line. Section 1M man pages describe utility commands that can be
used by the network administrator to administer the service itself. The NIS+
programming API is described by man pages in section 3NSL.

All commands and functions that use NIS version 2 are prefixed by the letters yp as in
ypmatch(1), ypcat(1), yp_match(3NSL), and yp_first(3NSL). Commands and
functions that use the new replacement software NIS+ are prefixed by the letters nis
as in nismatch(1), nischown(1), nis_list(3NSL), and nis_add_entry(3NSL). A
complete list of NIS+ commands is in the LIST OF COMMANDS section.

This man page introduces the NIS+ terminology. It also describes the NIS+ namespace,
authentication, and authorization policies.

The naming model of NIS+ is based upon a tree structure. Each node in the tree
corresponds to an NIS+ object. There are six types of NIS+ objects: directory, table,
group, link, entry, and private.

Each NIS+ namespace will have at least one NIS+ directory object. An NIS+ directory
is like a UNIX file system directory which contains other NIS+ objects including NIS+
directories. The NIS+ directory that forms the root of the NIS+ namespace is called the
root directory. There are two special NIS+ directories: org_dir and groups_dir.
The org_dir directory consists of all the system-wide administration tables, such as
passwd, hosts, and mail_aliases. The groups_dir directory consists of NIS+
group objects which are used for access control. The collection of org_dir,
groups_dir and their parent directory is referred to as an NIS+ domain. NIS+
directories can be arranged in a tree-like structure so that the NIS+ namespace can
match the organizational or administrative hierarchy.

NIS+ tables (not files), contained within NIS+ directories, store the actual information
about some particular type. For example, the hosts system table stores information
about the IP address of the hosts in that domain. NIS+ tables are multicolumn and the
tables can be searched through any of the searchable columns. Each table object
defines the schema for its table. The NIS+ tables consist of NIS+ entry objects. For each
entry in the NIS+ table, there is an NIS+ entry object. NIS+ entry objects conform to
the schema defined by the NIS+ table object.

NIS+ group objects are used for access control at group granularity. NIS+ group
objects, contained within the groups_dir directory of a domain, contain a list of all
the NIS+ principals within a certain NIS+ group. An NIS+ principal is a user or a
machine making NIS+ requests.

nis+(1)

NAME

DESCRIPTION

NIS+
NAMESPACE

NIS+ Directory
Object

NIS+ Table Object

NIS+ Group
Object

982 man pages section 1: User Commands • Last Revised 10 Dec 2001

NIS+ link objects are like UNIX symbolic file-system links—they are typically used for
shortcuts in the NIS+ namespace.

Refer to nis_objects(3NSL) for more information about the NIS+ objects.

The NIS+ service defines two forms of names, simple names and indexed names. Simple
names are used by the service to identify NIS+ objects contained within the NIS+
namespace. Indexed names are used to identify NIS+ entries contained within NIS+
tables. Furthermore, entries within NIS+ tables are returned to the caller as NIS+
objects of type entry. NIS+ objects are implemented as a union structure which is
described in the file <rpcsvc/nis_object.x>. The differences between the various
types and the meanings of the components of these objects are described in
nis_objects(3NSL).

Simple names consist of a series of labels that are separated by the ‘.’(dot) character.
Each label is composed of printable characters from the ISO Latin 1 set. Each label can
be of any nonzero length, provided that the fully qualified name is fewer than
NIS_MAXNAMELEN octets including the separating dots. (See <rpcsvc/nis.h> for
the actual value of NIS_MAXNAMELEN in the current release.) Labels that contain
special characters (see Grammar) must be quoted.

The NIS+ namespace is organized as a singly rooted tree. Simple names identify nodes
within this tree. These names are constructed such that the leftmost label in a name
identifies the leaf node and all of the labels to the right of the leaf identify that object’s
parent node. The parent node is referred to as the leaf’s directory. This is a naming
directory and should not be confused with a file system directory.

For example, the name example.simple.name. is a simple name with three labels, where
example is the leaf node in this name, the directory of this leaf is simple.name. which by
itself is a simple name. The leaf of which is simple and its directory is simply name.

The function nis_leaf_of(3NSL) returns the first label of a simple name. The
function nis_domain_of(3NSL) returns the name of the directory that contains the
leaf. Iterative use of these two functions can break a simple name into each of its label
components.

The name ‘.’ (dot) is reserved to name the global root of the namespace. For systems
that are connected to the Internet, this global root will be served by a Domain Name
Service. When an NIS+ server is serving a root directory whose name is not ‘.’(dot)
this directory is referred to as a local root.

NIS+ names are said to be fully qualified when the name includes all of the labels
identifying all of the directories, up to the global root. Names without the trailing dot
are called partially qualified.

Indexed names are compound names that are composed of a search criterion and a
simple name. The search criterion component is used to select entries from a table; the
simple name component is used to identify the NIS+ table that is to be searched. The
search criterion is a series of column names and their desired values enclosed in
bracket ‘[]’ characters. These criteria take the following form:

nis+(1)

NIS+ Link Object

NIS+ NAMES

Simple Names

Indexed Names

User Commands 983

[column_name=value, column_name =value , ...]

A search criterion is combined with a simple name to form an indexed name by
concatenating the two parts, separated by a ‘,’(comma) character as follows.

[search-criterion],table.directory

When multiple column name/value pairs are present in the search criterion, only
those entries in the table that have the appropriate value in all columns specified are
returned. When no column name/value pairs are specified in the search criterion, [],
all entries in the table are returned.

The following text represents a context-free grammar that defines the set of legal NIS+
names. The terminals in this grammar are the characters ‘.’ (dot), ‘[’ (open bracket), ‘]’
(close bracket), ‘,’ (comma), ‘=’ (equals) and whitespace. Angle brackets (‘<’ and ‘>’),
which delineate non-terminals, are not part of the grammar. The character ‘|’ (vertical
bar) is used to separate alternate productions and should be read as ‘‘this production
OR this production’’.

name ::= . | <simple name> | <indexed name>

simple name ::= <string>. | <string>.<simple name>

indexed name ::= <search criterion>,<simple name>

search criterion ::= [<attribute list>]

attribute list ::= <attribute> | <attribute>,<attribute list>

attribute ::= <string> = <string>

string ::= ISO Latin 1 character set except the character ’/’ (slash). The
initial character may not be a terminal character or the
characters ’@’ (at), ’+’ (plus), or (‘−’) hyphen.

Terminals that appear in strings must be quoted with ‘"’ (double quote). The ‘"’
character may be quoted by quoting it with itself ‘""’.

The NIS+ service only accepts fully qualified names. However, since such names may
be unwieldy, the NIS+ commands in section 1 employ a set of standard expansion
rules that will attempt to fully qualify a partially qualified name. This expansion is
actually done by the NIS+ library function nis_getnames(3NSL) which generates a
list of names using the default NIS+ directory search path or the NIS_PATH
environment variable. The default NIS+ directory search path includes all the names
in its path. nis_getnames() is invoked by the functions nis_lookup(3NSL) and
nis_list(3NSL) when the EXPAND_NAME flag is used.

nis+(1)

Grammar

Name Expansion

984 man pages section 1: User Commands • Last Revised 10 Dec 2001

The NIS_PATH environment variable contains an ordered list of simple names. The
names are separated by the ‘:’ (colon) character. If any name in the list contains colons,
the colon should be quoted as described in the Grammar section. When the list is
exhausted, the resolution function returns the error NIS_NOTFOUND. This may mask
the fact that the name existed but a server for it was unreachable. If the name
presented to the list or lookup interface is fully qualified, the EXPAND_NAME flag is
ignored.

In the list of names from the NIS_PATH environment variable, the ’$’ (dollar sign)
character is treated specially. Simple names that end with the label ’$’ have this
character replaced by the default directory (see nis_local_directory(3NSL)).
Using "$" as a name in this list results in this name being replaced by the list of
directories between the default directory and the global root that contain at least two
labels.

Below is an example of this expansion. Given the default directory of
some.long.domain.name., and the NIS_PATH variable set to fred.bar.:org_dir.$:$.
This path is initially broken up into the list:

1 fred.bar.

2 org_dir.$

3 $

The dollar sign in the second component is replaced by the default directory. The
dollar sign in the third component is replaced with the names of the directories
between the default directory and the global root that have at least two labels in them.
The effective path value becomes:

1 fred.bar.

2a org_dir.some.long.domain.name.

3a some.long.domain.name.

3b long.domain.name.

3c domain.name.

Each of these simple names is appended to the partially qualified name that was
passed to the nis_lookup(3NSL) or nis_list(3NSL) interface. Each is tried in turn
until NIS_SUCCESS is returned or the list is exhausted.

If the NIS_PATH variable is not set, the path ‘‘$’’ is used.

The library function nis_getnames(3NSL) can be called from user programs to
generate the list of names that would be attempted. The program nisdefaults(1)
with the -s option can also be used to show the fully expanded path.

Normally, all the entries for a certain type of information are stored within the table
itself. However, there are times when it is desirable for the table to point to other
tables where entries can be found. For example, you may want to store all the IP

nis+(1)

Concatenation
Path

User Commands 985

addresses in the host table for their own domain, and yet want to be able to resolve
hosts in some other domain without explicitly specifying the new domain name. NIS+
provides a mechanism for concatenating different but related tables with a "NIS+
Concatenation Path". With a concatenation path, you can create a sort of flat
namespace from a hierarchical structure. You can also create a table with no entries
and just point the hosts or any other table to its parent domain. Note that with such a
setup, you are moving the administrative burden of managing the tables to the parent
domain. The concatenation path will slow down the request response time because
more tables and more servers are searched. It will also decrease the availability if all
the servers are incapacitated for a particular directory in the table path.

The NIS+ Concatenation Path is also referred to as the "table path". This path is set up
at table creation time through nistbladm(1). You can specify more than one table to
be concatenated and they will be searched in the given order. Note that the NIS+ client
libraries, by default, will not follow the concatenation path set in site-specific tables.
Refer to nis_list(3NSL) for more details.

The NIS+ service defines two additional disjoint namespaces for its own use. These
namespaces are the NIS+ Principal namespace, and the NIS+ Group namespace. The
names associated with the group and principal namespaces are syntactically identical
to simple names. However, the information they represent cannot be obtained by
directly presenting these names to the NIS+ interfaces. Instead, special interfaces are
defined to map these names into NIS+ names so that they may then be resolved.

NIS+ principal names are used to uniquely identify users and machines that are
making NIS+ requests. These names have the form:

principal.domain

Here domain is the fully qualified name of an NIS+ directory where the named
principal’s credentials can be found. See Directories and Domains for more
information on domains. Note that in this name, principal, is not a leaf in the NIS+
namespace.

Credentials are used to map the identity of a host or user from one context such as a
process UID into the NIS+ context. They are stored as records in an NIS+ table named
cred, which always appears in the org_dir subdirectory of the directory named in the
principal name.

This mapping can be expressed as a replacement function:

principal.domain –>[cname=principal.domain],cred.org_dir.domain

This latter name is an NIS+ name that can be presented to the nis_list(3NSL)
interface for resolution. NIS+ principal names are administered using the
nisaddcred(1M) command.

nis+(1)

Namespaces

Principal Names

986 man pages section 1: User Commands • Last Revised 10 Dec 2001

The cred table contains five columns named cname, auth_name, auth_type, public_data,
and private_data. There is one record in this table for each identity mapping for an
NIS+ principal. The current service supports three types of mappings:

LOCAL This mapping is used to map from the UID of a given process to
the NIS+ principal name associated with that UID. If no mapping
exists, the name nobody is returned. When the effective UID of the
process is 0 (for example, the superuser), the NIS+ name
associated with the host is returned. Note that UIDs are sensitive
to the context of the machine on which the process is executing.

DES This mapping is used to map to and from a Secure RPC
‘‘netname’’ into an NIS+ principal name. See secure_rpc(3NSL)
for more information on netnames. Note that since netnames
contain the notion of a domain, they span NIS+ directories.

DHnnn-m Example: DH640-0, DH1024-0. Analogous to DES mappings, these
are used to map netnames and NIS+ principal names for extended
Diffie-Hellman keys. See nisauthconf(1M) for further
information.

The NIS+ client library function nis_local_principal(3NSL) uses the cred.org_dir
table to map the UNIX notion of an identity, a process’ UID, into an NIS+ principal
name. Shell programs can use the program nisdefaults(1) with the -p switch to
return this information.

Mapping from UIDs to an NIS+ principal name is accomplished by constructing a
query of the form:

[auth_type=LOCAL, auth_name=uid],cred.org_dir.default-domain.

This query will return a record containing the NIS+ principal name associated with
this UID, in the machine’s default domain.

The NIS+ service uses the DES mapping to map the names associated with Secure RPC
requests into NIS+ principal names. RPC requests that use Secure RPC include the
netname of the client making the request in the RPC header. This netname has the
form:

unix.UID@domain

The service constructs a query using this name of the form:

[auth_type=DES, auth_name=netname],cred.org_dir.domain.

where the domain part is extracted from the netname rather than using the default
domain. This query is used to look up the mapping of this netname into an NIS+
principal name in the domain where it was created.

nis+(1)

User Commands 987

This mechanism of mapping UID and netnames into an NIS+ principal name
guarantees that a client of the NIS+ service has only one principal name. This
principal name is used as the basis for authorization which is described below. All
objects in the NIS+ namespace and all entries in NIS+ tables must have an owner
specified for them. This owner field always contains an NIS+ principal name.

Like NIS+ principal names, NIS+ group names take the form:

group_name.domain

All objects in the NIS+ namespace and all entries in NIS+ tables may optionally have a
group owner specified for them. This group owner field, when filled in, always contains
the fully qualified NIS+ group name.

The NIS+ client library defines several interfaces (nis_groups(3NSL)) for dealing
with NIS+ groups. These interfaces internally map NIS+ group names into an NIS+
simple name which identifies the NIS+ group object associated with that group name.
This mapping can be shown as follows:

group.domain −> group.groups_dir.domain

This mapping eliminates collisions between NIS+ group names and NIS+ directory
names. For example, without this mapping, a directory with the name
engineering.foo.com., would make it impossible to have a group named
engineering.foo.com.. This is due to the restriction that within the NIS+ namespace, a
name unambiguously identifies a single object. With this mapping, the NIS+ group
name engineering.foo.com. maps to the NIS+ object name engineering.groups_dir.foo.com.

The contents of a group object is a list of NIS+ principal names, and the names of
other NIS+ groups. See nis_groups(3NSL) for a more complete description of their
use.

NIS+ defines a security model to control access to information managed by the
service. The service defines access rights that are selectively granted to individual
clients or groups of clients. Principal names and group names are used to define
clients and groups of clients that may be granted or denied access to NIS+
information. These principals and groups are associated with NIS+ domains as
defined below.

The security model also uses the notion of a class of principals called nobody, which
contains all clients, whether or not they have authenticated themselves to the service.
The class world includes any client who has been authenticated.

Some directories within the NIS+ namespace are referred to as NIS+ Domains.
Domains are those NIS+ directories that contain the subdirectories groups_dir and
org_dir. Further, the subdirectory org_dir should contain the table named cred. NIS+
Group names and NIS+ Principal names always include the NIS+ domain name after
their first label.

nis+(1)

Group Names

NIS+ SECURITY

Directories and
Domains

988 man pages section 1: User Commands • Last Revised 10 Dec 2001

The NIS+ name service uses Secure RPC for the integrity of the NIS+ service. This
requires that users of the service and their machines must have a Secure RPC key pair
associated with them. This key is initially generated with either the nisaddcred(1M)
or nisclient(1M) commands and modified with the chkey(1) or nispasswd(1)
commands.

The use of Secure RPC allows private information to be stored in the name service that
will not be available to untrusted machines or users on the network.

In addition to the Secure RPC key, users need a mapping of their UID into an NIS+
principal name. This mapping is created by the system administrator using either the
nisclient(1M) or the nisaddcred(1M) command.

Users that will be using machines in several NIS+ domains must insure that they have
a local credential entry in each of those domains. This credential should be created
with the NIS+ principal name of the user in the user’s ‘‘home’’ domain. For the
purposes of NIS+ and Secure RPC, the home domain is defined to be the one where
the user’s Secure RPC key pair is located.

Although extended Diffie-Hellman keys use an alternative to Secure RPC,
administration is done through the same commands. See nisauthconf(1M).

The NIS+ service defines four access rights that can be granted or denied to clients of
the service. These rights are read, modify, create, and destroy. These rights are specified
in the object structure at creation time and may be modified later with the
nischmod(1) command. In general, the rights granted for an object apply only to that
object. However, for purposes of authorization, rights granted to clients reading
directory and table objects are granted to those clients for all of the objects ‘‘contained’’
by the parent object. This notion of containment is abstract. The objects do not actually
contain other objects within them. Note that group objects do contain the list of
principals within their definition.

Access rights are interpreted as follows:

read This right grants read access to an object. For directory and table
objects, having read access on the parent object conveys read
access to all of the objects that are direct children of a directory, or
entries within a table.

modify This right grants modification access to an existing object. Read
access is not required for modification. However, in many
applications, one will need to read an object before modifying it.
Such modify operations will fail unless read access is also granted.

create This right gives a client permission to create new objects where
one had not previously existed. It is only used in conjunction with
directory and table objects. Having create access for a table allows
a client to add additional entries to the table. Having create access
for a directory allows a client to add new objects to an NIS+
directory.

nis+(1)

Authentication

Authorization

User Commands 989

destroy This right gives a client permission to destroy or remove an
existing object or entry. When a client attempts to destroy an entry
or object by removing it, the service first checks to see if the table
or directory containing that object grants the client destroy access.
If it does, the operation proceeds, if the containing object does not
grant this right then the object itself is checked to see if it grants
this right to the client. If the object grants the right, then the
operation proceeds; otherwise the request is rejected.

Each of these rights may be granted to any one of four different categories.

owner A right may be granted to the owner of an object. The owner is the
NIS+ principal identified in the owner field. The owner can be
changed with the nischown(1) command. Note that if the owner
does not have modification access rights to the object, the owner
cannot change any access rights to the object, unless the owner has
modification access rights to its parent object.

group owner A right may be granted to the group owner of an object. This grants
the right to any principal that is identified as a member of the
group associated with the object. The group owner may be
changed with the nischgrp(1) command. The object owner need
not be a member of this group.

world A right may be granted to everyone in the world. This grants the
right to all clients who have authenticated themselves with the
service.

nobody A right may be granted to the nobody principal. This has the effect
of granting the right to any client that makes a request of the
service, regardless of whether they are authenticated or not.

Note that for bootstrapping reasons, directory objects that are NIS+ domains, the
org_dir subdirectory and the cred table within that subdirectory must have read access
to the nobody principal. This makes navigation of the namespace possible when a client
is in the process of locating its credentials. Granting this access does not allow the
contents of other tables within org_dir to be read (such as the entries in the password
table) unless the table itself gives "real" access rights to the nobody principal.

Additional capabilities are provided for granting access rights to clients for directories.
These rights are contained within the object access rights (OAR) structure of the
directory. This structure allows the NIS+ service to grant rights that are not granted by
the directory object to be granted for objects contained by the directory of a specific
type.

An example of this capability is a directory object which does not grant create access
to all clients, but does grant create access in the OAR structure for group type objects to
clients who are members of the NIS+ group associated with the directory. In this
example the only objects that could be created as children of the directory would have
to be of the type group.

nis+(1)

Directory
Authorization

990 man pages section 1: User Commands • Last Revised 10 Dec 2001

Another example is a directory object that grants create access only to the owner of the
directory, and then additionally grants create access through the OAR structure for
objects of type table, link, group, and private to any member of the directory’s group.
This has the effect of giving nearly complete create access to the group with the
exception of creating subdirectories. This restricts the creation of new NIS+ domains
because creating a domain requires creating both a groups_dir and org_dir subdirectory.

Note that there is currently no command line interface to set or change the OAR of the
directory object.

As with directories, additional capabilities are provided for granting access to entries
within tables. Rights granted to a client by the access rights field in a table object apply
to the table object and all of the entry objects ‘‘contained’’ by that table. If an access
right is not granted by the table object, it may be granted by an entry within the table.
This holds for all rights except create.

For example, a table may not grant read access to a client performing a
nis_list(3NSL) operation on the table. However, the access rights field of entries
within that table may grant read access to the client. Note that access rights in an entry
are granted to the owner and group owner of the entry and not the owner or group of
the table. When the list operation is performed, all entries that the client has read
access to are returned. Those entries that do not grant read access are not returned. If
none of the entries that match the search criterion grant read access to the client
making the request, no entries are returned and the result status contains the
NIS_NOTFOUND error code.

Access rights that are granted by the rights field in an entry are granted for the entire
entry. However, in the table object an additional set of access rights is maintained for
each column in the table. These rights apply to the equivalent column in the entry. The
rights are used to grant access when neither the table nor the entry itself grant access.
The access rights in a column specification apply to the owner and group owner of the
entry rather than the owner and group owner of the table object.

When a read operation is performed, if read access is not granted by the table and is
not granted by the entry but is granted by the access rights in a column, that entry is
returned with the correct values in all columns that are readable and the string *NP*
(No Permission) in columns where read access is not granted.

As an example, consider a client that has performed a list operation on a table that
does not grant read access to that client. Each entry object that satisfied the search
criterion specified by the client is examined to see if it grants read access to the client.
If it does, it is included in the returned result. If it does not, then each column is
checked to see if it grants read access to the client. If any columns grant read access to
the client, data in those columns is returned. Columns that do not grant read access
have their contents replaced by the string *NP*. If none of the columns grant read
access, then the entry is not returned.

nis+(1)

Table
Authorization

User Commands 991

Most NIS+ operations have implied access control through the permissions on the
objects that they manipulate. For example, in order to read an entry in a table, you
must have read permission on that entry. However, some NIS+ operations by default
perform no access checking at all and so are allowed for anyone.

Operation Example of commands that use the operation

NIS_CHECKPOINT nisping -C

NIS_CPTIME nisping, rpc.nisd

NIS_MKDIR nismkdir

NIS_PING nisping, rpc.nisd

NIS_RMDIR nisrmdir

NIS_SERVSTATE nisbackup, nisrestore

NIS_STATUS nisstat, rpc.nispasswdd

See nisopaccess(1) for a description of how to enforce access control to these NIS+
operations.

The following lists all commands and programming functions related to NIS+:

nisaddent(1M) add /etc files and NIS maps into their
corresponding NIS+ tables

niscat(1) display NIS+ tables and objects

nischgrp(1) change the group owner of a NIS+ object

nischmod(1) change access rights on a NIS+ object

nischown(1) change the owner of a NIS+ object

nischttl(1) change the time to live value of a NIS+
object

nisdefaults(1) display NIS+ default values

niserror(1) display NIS+ error messages

nisgrep(1) utilities for searching NIS+ tables

nisgrpadm(1) NIS+ group administration command

nisln(1) symbolically link NIS+ objects

nisls(1) list the contents of a NIS+ directory

nismatch(1) utilities for searching NIS+ tables

nismkdir(1) create NIS+ directories

nisopaccess(1) access control for protocol operations

nispasswd(1) change NIS+ password information

nis+(1)

Protocol Operation
Authorization

LIST OF
COMMANDS

NIS+ User
Commands

992 man pages section 1: User Commands • Last Revised 10 Dec 2001

nisrm(1) remove NIS+ objects from the namespace

nisrmdir(1) remove NIS+ directories

nisshowcache(1M) NIS+ utility to print out the contents of the
shared cache file

nistbladm(1) NIS+ table administration command

nistest(1) return the state of the NIS+ namespace
using a conditional expression

aliasadm(1M) manipulate the NIS+ aliases map

nis_cachemgr(1M) NIS+ utility to cache location information
about NIS+ servers

nisaddcred(1M) create NIS+ credentials

nisaddent(1M) create NIS+ tables from corresponding /etc
files or NIS+ maps

nisauthconf(1M) configure extended Diffie-Hellman keys

nisbackup(1M) backup NIS+ directories

nisclient(1M) initialize NIS+ credentials for NIS+
principals

nisd(1M) NIS+ service daemon

nisd_resolv(1M) NIS+ service daemon

nisinit(1M) NIS+ client and server initialization utility

nislog(1M) display the contents of the NIS+ transaction
log

nisping(1M) send ping to NIS+ servers

nispopulate(1M) populate the NIS+ tables in a NIS+ domain

nisprefadm(1M) NIS+ utility to set server preferences for
NIS+ clients

nisrestore(1M) restore NIS+ directory backup

nisserver(1M) set up NIS+ servers

nissetup(1M) initialize a NIS+ domain

nisshowcache(1M) NIS+ utility to print out the contents of the
shared cache file

nisstat(1M) report NIS+ server statistics

nisupdkeys(1M) update the public keys in a NIS+ directory
object

nis+(1)

NIS+
Administrative

Commands

User Commands 993

rpc.nisd(1M) NIS+ service daemon

rpc.nisd_resolv(1M) NIS+ service daemon

sysidns(1M) system configuration

nis_add(3NSL) NIS+ namespace functions

nis_add_entry(3NSL) NIS+ table functions

nis_addmember(3NSL) NIS+ group manipulation functions

nis_checkpoint(3NSL) misellaneous NIS+ log administration
functions

nis_clone_object(3NSL) NIS+ subroutines

nis_creategroup(3NSL) NIS+ group manipulation functions

nis_destroy_object(3NSL) NIS+ subroutines

nis_destroygroup(3NSL) NIS+ group manipulation functions

nis_dir_cmp(3NSL) NIS+ subroutines

nis_domain_of(3NSL) NIS+ subroutines

nis_error(3NSL) display NIS+ error messages

nis_first_entry(3NSL) NIS+ table functions

nis_freenames(3NSL) NIS+ subroutines

nis_freeresult(3NSL) NIS+ namespace functions

nis_freeservlist(3NSL) miscellaneous NIS+ functions

nis_freetags(3NSL) miscellaneous NIS+ functions

nis_getnames(3NSL) NIS+ subroutines

nis_getservlist(3NSL) miscellaneous NIS+ functions

nis_groups(3NSL) NIS+ group manipulation functions

nis_ismember(3NSL) NIS+ group manipulation functions

nis_leaf_of(3NSL) NIS+ subroutines

nis_lerror(3NSL) display some NIS+ error messages

nis_list(3NSL) NIS+ table functions

nis_local_directory(3NSL) NIS+ local names

nis_local_group(3NSL) NIS+ local names

nis_local_host(3NSL) NIS+ local names

nis_local_names(3NSL) NIS+ local names

nis+(1)

NIS+
Programming API

994 man pages section 1: User Commands • Last Revised 10 Dec 2001

nis_local_principal(3NSL) NIS+ local names

nis_lookup(3NSL) NIS+ namespace functions

nis_mkdir(3NSL) miscellaneous NIS+ functions

nis_modify(3NSL) NIS+ namespace functions

nis_modify_entry(3NSL) NIS+ table functions

nis_name_of(3NSL) NIS+ subroutines

nis_names(3NSL) NIS+ namespace functions

nis_next_entry(3NSL) NIS+ table functions

nis_objects(3NSL) NIS+ object formats

nis_perror(3NSL) display NIS+ error messages

nis_ping(3NSL) miscellaneous NIS+ log administration
functions

nis_print_group_entry(3NSL) NIS+ group manipulation functions

nis_print_object(3NSL) NIS+ subroutines

nis_remove(3NSL) NIS+ namespace functions

nis_remove_entry(3NSL) NIS+ table functions

nis_removemember(3NSL) NIS+ group manipulation functions

nis_rmdir(3NSL) miscellaneous NIS+ functions

nis_server(3NSL) miscellaneous NIS+ functions

nis_servstate(3NSL) miscellaneous NIS+ functions

nis_sperrno(3NSL) display NIS+ error messages

nis_sperror(3NSL) display NIS+ error messages

nis_sperror_r(3NSL) display NIS+ error messages

nis_stats(3NSL) miscellaneous NIS+ functions

nis_subr(3NSL) NIS+ subroutines

nis_tables(3NSL) NIS+ table functions

nis_verifygroup(3NSL) NIS+ group manipulation functions

nisfiles(4) NIS+ database files and directory structure

<rpcsvc/nis_object.x> protocol description of an NIS+ object

<rpcsvc/nis.x> defines the NIS+ protocol using the RPC
language as described in the ONC+
Developer’s Guide

nis+(1)

NIS+ Files and
Directories

FILES

User Commands 995

<rpcsvc/nis.h> should be included by all clients of the
NIS+ service

nischown(1), nisdefaults(1), nismatch(1), nisopaccess(1), nispasswd(1),
newkey(1M), nisaddcred(1M), nisauthconf(1M), nisclient(1M),
nispopulate(1M), nisserver(1M), nis_add_entry(3NSL),
nis_domain_of(3NSL), nis_getnames(3NSL), nis_groups(3NSL),
nis_leaf_of(3NSL), nis_list(3NSL), nis_local_directory(3NSL),
nis_lookup(3NSL), nis_objects(3NSL)

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)
Describes how to make the transition from NIS to NIS+.

ONC+ Developer’s Guide
Describes the application programming interfaces for networks including NIS+.

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)
Describes how to plan for and configure an NIS+ namespace.

System Administration Guide, Volume 3
Describes IPv6 extensions to Solaris name services.

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nis+(1)

SEE ALSO

NOTES

996 man pages section 1: User Commands • Last Revised 10 Dec 2001

niscat – display NIS+ tables and objects

niscat [-AhLMv] [-s sep] tablename…

niscat [-ALMP] -o name…

In the first synopsis, niscat displays the contents of the NIS+ tables named by
tablename. In the second synopsis, it displays the internal representation of the NIS+
objects named by name.

Columns without values in the table are displayed by two adjacent separator
characters.

The following options are supported:

-A Display the data within the table and all of the data in tables in the
initial table’s concatenation path.

-h Display the header line prior to displaying the table. The header
consists of the ‘#’ (hash) character followed by the name of each
column. The column names are separated by the table separator
character.

-L Follow links. When this option is specified, if tablename or name
names a LINK type object, the link is followed and the object or
table named by the link is displayed.

-M Master server only. This option specifies that the request should be
sent to the master server of the named data. This guarantees that
the most up-to-date information is seen at the possible expense of
increasing the load on the master server and increasing the
possibility of the NIS+ server being unavailable or busy for
updates.

-P Follow concatenation path. This option specifies that the request
should follow the concatenation path of a table if the initial search
is unsuccessful. This option is only useful when using an indexed
name for name and the -o option.

-v Display binary data directly. This option displays columns
containing binary data on the standard output. Without this option
binary data is displayed as the string *BINARY*.

-o name Display the internal representation of the named NIS+ object(s). If
name is an indexed name (see nismatch(1)), then each of the
matching entry objects is displayed. This option is used to display
access rights and other attributes of individual columns.

-s sep This option specifies the character to use to separate the table
columns. If no character is specified, the default separator for the
table is used.

niscat(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 997

EXAMPLE 1 Using the niscat Command

This example displays the contents of the hosts table.

example% niscat -h hosts.org_dir
cname name addr comment
client1 client1 129.144.201.100 Joe Smith
crunchy crunchy 129.144.201.44 Jane Smith

crunchy softy 129.144.201.44

The string *NP* is returned in those fields where the user has insufficient access rights.

Display the passwd.org_dir on the standard output.

example% niscat passwd.org_dir

Display the contents of table frodo and the contents of all tables in its concatenation
path.

example% niscat -A frodo

Display the entries in the table groups.org_dir as NIS+ objects. Note that the
brackets are protected from the shell by single quotes.

example% niscat -o ’[]groups.org_dir’

Display the table object of the passwd.org_dir table.

example% niscat -o passwd.org_dir

The previous example displays the passwd table object and not the passwd table. The
table object include information such as the number of columns, column type,
searchable or not searchable separator, access rights, and other defaults.

Display the directory object for org_dir, which includes information such as the
access rights and replica information.

example% niscat -o org_dir

NIS_PATH If this variable is set, and the NIS+ table name is not
fully qualified, each directory specified will be searched
until the table is found (see nisdefaults(1)).

niscat returns the following values:

0 Successful completion

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

niscat(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

998 man pages section 1: User Commands • Last Revised 10 Dec 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nisdefaults(1), nismatch(1), nistbladm(1), nis_objects(3NSL),
nis_tables(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

niscat(1)

SEE ALSO

NOTES

User Commands 999

nischgrp – change the group owner of a NIS+ object

nischgrp [-AfLP] group name…

nischgrp changes the group owner of the NIS+ objects or entries specified by name
to the specified NIS+ group. Entries are specified using indexed names (see
nismatch(1)). If group is not a fully qualified NIS+ group name, it will be resolved
using the directory search path (see nisdefaults(1)).

The only restriction on changing an object’s group owner is that you must have
modify permissions for the object.

This command will fail if the master NIS+ server is not running.

The NIS+ server will check the validity of the group name prior to effecting the
modification.

The following options are supported:

-A Modify all entries in all tables in the concatenation path that match the
search criterion specified in name. This option implies the -P switch.

-f Force the operation and fail silently if it does not succeed.

-L Follow links and change the group owner of the linked object or entries
rather than the group owner of the link itself.

-P Follow the concatenation path within a named table. This option only
makes sense when either name is an indexed name or the -L switch is also
specified and the named object is a link pointing to entries.

EXAMPLE 1 Using the nischgrp Command

The following two examples show how to change the group owner of an object to a
group in a different domain, and how to change it to a group in the local domain,
respectively.

example% nischgrp newgroup.remote.domain. object

example% nischgrp my-buds object

This example shows how to change the group owner for a password entry.

example% nischgrp admins ’[uid=99],passwd.org_dir’

In the previous example, admins is a NIS+ group in the same domain.

The next two examples change the group owner of the object or entries pointed to by a
link, and the group owner of all entries in the hobbies table.

example% nischgrp -L my-buds linkname

example% nischgrp my-buds ’[],hobbies’

nischgrp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

1000 man pages section 1: User Commands • Last Revised 10 Dec 2001

NIS_PATH If this variable is set, and the NIS+ name is
not fully qualified, each directory specified
will be searched until the object is found
(see nisdefaults(1)).

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischmod(1), nischown(1), nisdefaults(1), nisgrpadm(1),
nismatch(1), nis_objects(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nischgrp(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1001

nischmod – change access rights on a NIS+ object

nischmod [-AfLP] mode name…

nischmod changes the access rights (mode) of the NIS+ objects or entries specified by
name to mode. Entries are specified using indexed names (see nismatch(1)). Only
principals with modify access to an object may change its mode.

mode has the following form:

rights [, rights] . . .

rights has the form:

[who] op permission [op permission] . . .

who is a combination of:

n Nobody’s permissions.

o Owner’s permissions.

g Group’s permissions.

w World’s permissions.

a All, or owg.

If who is omitted, the default is a.

op is one of:

+ To grant the permission.

− To revoke the permission.

= To set the permissions explicitly.

permission is any combination of:

r Read.

m Modify.

c Create.

d Destroy.

Unlike the system chmod(1) command, this command does not accept an octal
notation.

The following options are supported:

-A Modify all entries in all tables in the concatenation path that match the
search criteria specified in name. This option implies the -P switch.

nischmod(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1002 man pages section 1: User Commands • Last Revised 10 Dec 2001

-f Force the operation and fail silently if it does not succeed.

-L Follow links and change the permission of the linked object or entries
rather than the permission of the link itself.

-P Follow the concatenation path within a named table. This option is only
applicable when either name is an indexed name or the -L switch is also
specified and the named object is a link pointing to an entry.

EXAMPLE 1 Using the nischmod Command

This example gives everyone read access to an object. (that is, access for owner, group,
and all).

example% nischmod a+r object

This example denies create and modify privileges to group and unauthenticated
clients (nobody).

example% nischmod gn−cm object

In this example, a complex set of permissions are set for an object.

example% nischmod o=rmcd,g=rm,w=rc,n=r object

This example sets the permissions of an entry in the password table so that the group
owner can modify them.

example% nischmod g+m ’[uid=55],passwd.org_dir’

The next example changes the permissions of a linked object.

example% nischmod -L w+mr linkname

NIS_PATH If this variable is set, and the NIS+ name is
not fully qualified, each directory specified
will be searched until the object is found
(see nisdefaults(1)).

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nischmod(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

User Commands 1003

chmod(1), nis+(1), nischgrp(1), nischown(1), nisdefaults(1), nismatch(1),
nis_objects(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nischmod(1)

SEE ALSO

NOTES

1004 man pages section 1: User Commands • Last Revised 10 Dec 2001

nischown – change the owner of a NIS+ object

nischown [-AfLP] owner name…

nischown changes the owner of the NIS+ objects or entries specified by name to
owner. Entries are specified using indexed names (see nismatch(1)). If owner is not a
fully qualified NIS+ principal name (see nisaddcred(1M)), the default domain (see
nisdefaults(1)) will be appended to it.

The only restriction on changing an object’s owner is that you must have modify
permissions for the object. Note: If you are the current owner of an object and you
change ownership, you may not be able to regain ownership unless you have modify
access to the new object.

The command will fail if the master NIS+ server is not running.

The NIS+ server will check the validity of the name before making the modification.

The following options are supported:

-A Modify all entries in all tables in the concatenation path that match the
search criteria specified in name. It implies the -P option.

-f Force the operation and fail silently if it does not succeed.

-L Follow links and change the owner of the linked object or entries rather
than the owner of the link itself.

-P Follow the concatenation path within a named table. This option is only
meaningful when either name is an indexed name or the -L option is also
specified and the named object is a link pointing to entries.

EXAMPLE 1 Using the nischown Command

The following two examples show how to change the owner of an object to a principal
in a different domain, and to change it to a principal in the local domain, respectively.

example% nischown bob.remote.domain. object

example% nischown skippy object

The next example shows how to change the owner of an entry in the passwd table.

example% nischown bob.remote.domain. ’[uid=99],passwd.org_dir’

This example shows how to change the object or entries pointed to by a link.

example% nischown -L skippy linkname

NIS_PATH If this variable is set, and the NIS+ name is
not fully qualified, each directory specified
will be searched until the object is found
(see nisdefaults(1)).

nischown(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ENVIRONMENT
VARIABLES

User Commands 1005

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischgrp(1), nischmod(1), nischttl(1), nisdefaults(1),
nisaddcred(1M), nismatch(1), nis_objects(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nischown(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

1006 man pages section 1: User Commands • Last Revised 10 Dec 2001

nischttl – change the time to live value of a NIS+ object

nischttl [-AfLP] time name…

nischttl changes the time to live value (ttl) of the NIS+ objects or entries specified
by name to time. Entries are specified using indexed names (see nismatch(1)).

The time to live value is used by object caches to expire objects within their cache.
When an object is read into the cache, this value is added to the current time in
seconds yielding the time when the cached object would expire. The object may be
returned from the cache until the current time is earlier than the calculated expiration
time. When the expiration time has been reached, the object will be flushed from the
cache.

The time to live time may be specified in seconds or in days, hours, minutes, seconds
format. The latter format uses a suffix letter of d, h, m, or s to identify the units of time.
See the examples below for usage.

The command will fail if the master NIS+ server is not running.

Setting a high ttl value allows objects to stay persistent in caches for a longer period
of time and can improve performance. However, when an object changes, in the worst
case, the number of seconds in this attribute must pass before that change is visible to
all clients. Setting a ttl value of 0 means that the object should not be cached at all.

A high ttl value is a week, a low value is less than a minute. Password entries should
have ttl values of about 12 hours (easily allows one password change per day),
entries in the RPC table can have ttl values of several weeks (this information is
effectively unchanging).

Only directory and group objects are cached in this implementation.

The following options are supported:

-A Modify all tables in the concatenation path that match the search criterion
specified in name. This option implies the -P switch.

-f Force the operation and fail silently if it does not succeed.

-L Follow links and change the time to live of the linked object or entries
rather than the time to live of the link itself.

-P Follow the concatenation path within a named table. This option only
makes sense when either name is an indexed name or the -L switch is also
specified and the named object is a link pointing to entries.

EXAMPLE 1 Changing the ttl of an Object

The following example shows how to change the ttl of an object using the seconds
format and the days, hours, minutes, seconds format. The ttl of the second object is
set to 1 day and 12 hours.

nischttl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

User Commands 1007

EXAMPLE 1 Changing the ttl of an Object (Continued)

example% nischttl 184000 object

example% nischttl 1d12h object

EXAMPLE 2 Changing the ttl for a password Entry

This example shows how to change the ttl for a password entry.

example% nischttl 1h30m ’[uid=99],passwd.org_dir’

EXAMPLE 3 Changing the ttl of Entries Pointed to by a Link

The next two examples change the ttl of the object or entries pointed to by a link,
and the ttl of all entries in the hobbies table.

example% nischttl -L 12h linkname

example% nischttl 3600 ’[],hobbies’

NIS_PATH If this variable is set, and the NIS+ name is not fully
qualified, each directory specified will be searched
until the object is found. See nisdefaults(1).

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischgrp(1), nischmod(1), nischown(1), nisdefaults(1), nismatch(1),
nis_objects(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nischttl(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

1008 man pages section 1: User Commands • Last Revised 10 Dec 2001

nisdefaults – display NIS+ default values

nisdefaults [-adghprstv]

The nisdefaults utility prints the default values that are returned by calls to the
NIS+ local name functions (see nis_local_names(3NSL)). With no options
specified, all defaults will be printed in a verbose format. With options, only that
option is displayed in a terse form suitable for shell scripts. See the example below.

The following options are supported:

-a Print all defaults in a terse format.

-d Print the default domain name.

-g Print the default group name.

-h Print the default host name.

-p Print the default principal name.

-r Print the default access rights with which new objects will be created.

-s Print the default directory search path.

-t Print the default time to live value.

-v Print the defaults in a verbose format. This prepends an identifying string
to the output.

EXAMPLE 1 Printing NIS+ defaults

The following prints the NIS+ defaults for a root process on machine example in the
foo.bar. domain:

example# nisdefaults
Principal Name : example.foo.bar.
Domain Name : foo.bar.
Host Name : example.foo.bar.
Group Name :
Access Rights : − − − −rmcdr− − −r − − −
Time to live : 12:00:00

Search Path : foo.bar.

EXAMPLE 2 Setting a variable in the shell script

This example sets a variable in a shell script to the default domain:

DOMAIN=‘nisdefaults -d‘

EXAMPLE 3 Printing the default time to live in verbose format

This example prints out the default time to live in a verbose format:

nisdefaults(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

User Commands 1009

EXAMPLE 3 Printing the default time to live in verbose format (Continued)

example% nisdefaults -tv

Time to live : 12:00:00

EXAMPLE 4 Printing the time to live in terse format

This example prints out the time to live in the terse format:

example% nisdefaults -t

43200

Several environment variables affect the defaults associated with a process.

NIS_DEFAULTS This variable contains a defaults string that will
override the NIS+ standard defaults. The defaults
string is a series of tokens separated by colons. These
tokens represent the default values to be used for the
generic object properties. All of the legal tokens are
described below.

ttl=time
This token sets the default time to live for objects
that are created. The value time is specified in the
format as defined by the nischttl (1) command.
The default value is 12 hours.

owner=ownername
This token specifies that the NIS+ principal
ownername should own created objects. The default
for this value is the principal who is executing the
command.

group=groupname
This token specifies that the group groupname should
be the group owner for created objects. The default
is NULL.

access=rights
This token specifies the set of access rights that are
to be granted for created objects. The value rights is
specified in the format as defined by the
nischmod(1) command. The default value is:
− − − −rmcdr− − −r− − −.

NIS_GROUP This variable contains the name of the local NIS+
group. If the name is not fully qualified, the default
domain will be appended to it.

NIS_PATH This variable overrides the default NIS+ directory
search path. It contains an ordered list of directories

nisdefaults(1)

ENVIRONMENT
VARIABLES

1010 man pages section 1: User Commands • Last Revised 10 Dec 2001

separated by ’:’ (colon) characters. The ’$’ (dollar sign)
character is treated specially. Directory names that end
in ’$’ have the default domain appended to them, and a
’$’ by itself is replaced by the list of directories between
the default domain and the global root that are at least
two levels deep. The default NIS+ directory search path
is ’$’.

Refer to the Name Expansion subsection in nis+(1)
for more details.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nischmod(1), nischttl(1), nis+(1), nis_local_names(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisdefaults(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1011

niserror – display NIS+ error messages

niserror error-num

niserror prints the NIS+ error associated with status value error-num on the
standard output. It is used by shell scripts to translate NIS+ error numbers that are
returned into text messages.

EXAMPLE 1 Using niserror

The following example prints the error associated with the error number 20:

example% niserror 20

Not Found, no such name

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nis_error(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

niserror(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

1012 man pages section 1: User Commands • Last Revised 10 Dec 2001

nisgrpadm – NIS+ group administration command

nisgrpadm -a | -r | -t [-s] group principal…

nisgrpadm -d | -l [-M] [-s] group

nisgrpadm -c [-D defaults] [-M] [-s] group

The nisgrpadm utility is used to administer NIS+ groups. This command administers
both groups and the groups’ membership lists. nisgrpadm can create, destroy, or list
NIS+ groups. nisgrpadm can be used to administer a group’s membership list. It can
add or delete principals to the group, or test principals for membership in the group.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named a.b.c.d. is represented by a NIS+
group object named a.groups_dir.b.c.d.; the functions described here all expect
the name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name. For example:
wickedwitch.west.oz.

� An implicit ("domain") member, written *.west.oz., means that all principals in
the given domain belong to this member. No other forms of wildcarding are
allowed; wickedwitch.*.oz. is invalid, as is wickedwitch.west.*. . Note
that principals in subdomains of the given domain are not included.

� A recursive ("group") member, written @cowards.oz., refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

Principal names must be fully qualified, whereas groups can be abbreviated on all
operations except create.

The following options are supported:

-a Adds the list of NIS+ principals specified to group. The principal
name should be fully qualified.

-c Creates group in the NIS+ namespace. The NIS+ group name
should be fully qualified.

-d Destroys (removes) group from the namespace.

-D defaults When creating objects, this option specifies a different set of
defaults to be used during this operation. The defaults string is a
series of tokens separated by colons. These tokens represent the

nisgrpadm(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1013

default values to be used for the generic object properties. All of
the legal tokens are described below.

ttl=time This token sets the default time to
live for objects that are created by
this command. The value time is
specified in the format as defined
by the nischttl(1) command. The
default value is 12 hours.

owner=ownername This token specifies that the NIS+
principal ownername should own
the created object. Normally this
value is the same as the principal
who is executing the command.

group=groupname This token specifies that the group
groupname should be the group
owner for the object that is created.
The default value is NULL.

access=rights This token specifies the set of access
rights that are to be granted for the
given object. The value rights is
specified in the format as defined
by the nischmod(1) command. The
default value is
− − − −rmcdr− − −r− − −.

-l Lists the membership list of the specified group. (See -M option.)

-M Master server only. Sends the lookup to the master server of the
named data. This guarantees that the most up to date information
is seen at the possible expense that the master server may be busy.
Note that the -M flag is applicable only with the -l flag.

-r Removes the list of principals specified from group. The principal
name should be fully qualified.

-s Work silently. Results are returned using the exit status of the
command. This status can be translated into a text string using the
niserror(1) command.

-t Displays whether the principals specified are members in group.

EXAMPLE 1 Creating a group

This example shows how to create a group in the foo.com. domain:

example% nisgrpadm -c my_buds.foo.com.

nisgrpadm(1)

Administering
Groups

1014 man pages section 1: User Commands • Last Revised 10 Dec 2001

EXAMPLE 2 How to remove a group

This example shows how to remove the group from the current domain.

example% nisgrpadm –d freds_group

EXAMPLE 3 Adding to the group

This example shows how one would add two principals, bob and betty, to the group
my_buds.foo.com.:

example% nisgrpadm -a my_buds.foo.com. bob.bar.com. betty.foo.com.

EXAMPLE 4 How to remove a principal from the group

This example shows how to remove betty from freds_group:

example% nisgrpadm -r freds_group betty.foo.com.

NIS_DEFAULTS This variable contains a defaults string that
will override the NIS+ standard defaults.

NIS_PATH If this variable is set, and the NIS+ group
name is not fully qualified, each directory
specified will be searched until the group is
found (see nisdefaults(1)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischgrp(1), nischmod(1), nischttl(1), nisdefaults(1), niserror(1),
nis_groups(3NSL), attributes(5)

NIS_SUCCESS On success, this command returns an exit status of 0.

NIS_PERMISSION When you do not have the needed access right to
change the group, the command returns this error.

NIS_NOTFOUND This is returned when the group does not exist.

NIS_TRYAGAIN This error is returned when the server for the group’s
domain is currently checkpointing or otherwise in a
read-only state. The command should be retried at a
later date.

NIS_MODERROR This error is returned when the group was modified by
someone else during the execution of the command.

nisgrpadm(1)

Administering
Members

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 1015

Reissue the command and optionally recheck the
group’s membership list.

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisgrpadm(1)

NOTES

1016 man pages section 1: User Commands • Last Revised 10 Dec 2001

nisln – symbolically link NIS+ objects

nisln [-L] [-D defaults] name linkname

The nisln command links a NIS+ object named name to a NIS+ name linkname. If
name is an indexed name (see nismatch(1)), the link points to entries within a NIS+
table. Clients wishing to look up information in the name service can use the
FOLLOW_LINKS flag to force the client library to follow links to the name they point
to. Further, all of the NIS+ administration commands accept the -L switch indicating
they should follow links (see nis_names(3NSL) for a description of the
FOLLOW_LINKS flag).

When creating the link, nisln verifies that the linked object exists. Once created, the
linked object may be deleted or replaced and the link will not be affected. At that time
the link will become invalid and attempts to follow it will return
NIS_LINKNAMEERROR to the client. When the path attribute in tables specifies a link
rather than another table, the link will be followed if the flag FOLLOW_LINKS was
present in the call to nis_list() (see nis_tables(3NSL)) and ignored if the flag is
not present. If the flag is present and the link is no longer valid, a warning is sent to
the system logger and the link is ignored.

The following options are supported:

-L When present, this option specifies that this command should
follow links. If name is itself a link, then this command will follow
it to the linked object that it points to. The new link will point to
that linked object rather than to name.

-D defaults Specify a different set of defaults to be used for the creation of the
link object. The defaults string is a series of tokens separated by
colons. These tokens represent the default values to be used for the
generic object properties. All of the legal tokens are described
below.

ttl=time This token sets the default time to
live for objects that are created by
this command. The value time is
specified in the format as defined
by the nischttl(1) command. The
default is 12 hours.

owner=ownername This token specifies that the NIS+
principal ownername should own
the created object. The default for
this value is the the principal who
is executing the command.

group=groupname This token specifies that the group
groupname should be the group

nisln(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1017

owner for the object that is created.
The default is NULL.

access=rights This token specifies the set of access
rights that are to be granted for the
given object. The value rights is
specified in the format as defined
by the nischmod(1) command. The
default value is
− − − −rmcdr− − −r− − −.

EXAMPLE 1 Creating a link

In this example we create a link in the domain foo.com. named hosts that points to
the object hosts.bar.com.:

example% nisln hosts.bar.com. hosts.foo.com.

In this example we make a link example.sun.com. that points to an entry in the hosts
table in eng.sun.com:

EXAMPLE 2 Making a link that points to an entry in the hosts table

example% nisln ’[name=example],hosts.eng.sun.com.’ example.sun.com.

NIS_PATH If this variable is set, and the NIS+ name is not fully
qualified, each directory specified will be searched
until the object is found (see nisdefaults(1)).

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nisdefaults(1), nismatch(1), nisrm(1), nistbladm(1), nis_names(3NSL),
nis_tables(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisln(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

1018 man pages section 1: User Commands • Last Revised 10 Dec 2001

nisls – list the contents of a NIS+ directory

nisls [-dglLmMR] [name…]

For each name that is a NIS+ directory, nisls lists the contents of the directory. For
each name that is a NIS+ object other than a directory, nisls simply echos the name. If
no name is specified, the first directory in the search path is listed. See
nisdefaults(1).

The following options are supported:

-d Treat NIS+ directories like other NIS+ objects, rather than listing their
contents.

-g Display group owner instead of owner when listing in long format.

-l List in long format. This option displays additional information about the
objects such as their type, creation time, owner, and access rights.

The access rights are listed in the following order in long mode: nobody,
owner, group owner, and world.

-L This option specifies that links are to be followed. If name actually points to
a link, it is followed to the linked object.

-m Display modification time instead of creation time when listing in long
format.

-M Master only. This specifies that information is to be returned from the
master server of the named object. This guarantees that the most up to date
information is seen at the possible expense that the master server may be
busy.

-R List directories recursively. This option will reiterate the list for each
subdirectory found in the process of listing each name.

NIS_PATH If this variable is set, and the NIS+ name is not fully
qualified, each directory specified will be searched
until the object is found. See nisdefaults(1).

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nisls(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

User Commands 1019

nisdefaults(1), nisgrpadm(1), nismatch(1), nistbladm(1),
nis_objects(3NSL), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisls(1)

SEE ALSO

NOTES

1020 man pages section 1: User Commands • Last Revised 10 Dec 2001

nismatch, nisgrep – utilities for searching NIS+ tables

nismatch [-AchMoPv] [-s sep] key tablename

nismatch [-AchMoPv] [-s sep] colname = key… tablename

nismatch [-AchMoPv] [-s sep] indexedname

nisgrep [-AchiMov] [-s sep] keypat tablename

nisgrep [-AchiMov] [-s sep] colname = keypat… tablename

The utilities nismatch and nisgrep can be used to search NIS+ tables. The
command nisgrep differs from the nismatch command in its ability to accept
regular expressions keypat for the search criteria rather than simple text matches.

Because nisgrep uses a callback function, it is not constrained to searching only
those columns that are specifically made searchable at the time of table creation. This
makes it more flexible, but slower, than nismatch.

In nismatch, the server does the searching, whereas in nisgrep the server returns
all the readable entries and then the client does the pattern-matching.

In both commands, the parameter tablename is the NIS+ name of the table to be
searched. If only one key or key pattern is specified without the column name, then it
is applied searching the first column. Specific named columns can be searched by
using the colname=key syntax. When multiple columns are searched, only entries that
match in all columns are returned. This is the equivalent of a logical join operation.

nismatch accepts an additional form of search criteria, indexedname, which is a NIS+
indexed name of the form:

[colname=value, . . .],tablename

The following options are supported:

-A All data. Return the data within the table and all of the data in
tables in the initial table’s concatenation path.

-c Print only a count of the number of entries that matched the search
criteria.

-h Display a header line before the matching entries that contains the
names of the table’s columns

-i Ignore upper/lower case distinction during comparisons.

-M Master server only. Send the lookup to the master server of the
named data. This guarantees that the most up to date information
is seen at the possible expense that the master server may be busy.

-o Display the internal representation of the matching NIS+ object(s).

nismatch(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1021

-P Follow concatenation path. Specify that the lookup should follow
the concatenation path of a table if the initial search is
unsuccessful.

-s sep This option specifies the character to use to separate the table
columns. If no character is specified, the default separator for the
table is used.

-v Verbose. Do not suppress the output of binary data when
displaying matching entries. Without this option binary data is
displayed as the string *BINARY*.

EXAMPLE 1 Searching a table for a username

This example searches a table named passwd in the org_dir subdirectory of the
zotz.com. domain. It returns the entry that has the username of skippy. In this
example, all the work is done on the server:

example% nismatch name=skippy passwd.org_dir.zotz.com.

EXAMPLE 2 Finding users using specific shells

This example is similar to the one above, except that it uses nisgrep to find all users
in the table named passwd that are using either ksh(1) or csh(1):

example% nisgrep ’shell=[ck]sh’ passwd.org_dir.zotz.com.

NIS_PATH If this variable is set, and the NIS+ table name is not
fully qualified, each directory specified will be searched
until the table is found (see nisdefaults(1)).

The following exit values are returned:

0 Successfully matches some entries.

1 Successfully searches the table and no matches are found.

2 An error condition occurs. An error message is also printed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

niscat(1), nisdefaults(1), nisls(1), nistbladm(1), nis_objects(3NSL),
attributes(5)

No memory
An attempt to allocate some memory for the search failed.

nismatch(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

1022 man pages section 1: User Commands • Last Revised 10 Dec 2001

tablename is not a table
The object with the name tablename was not a table object.

Can’t compile regular expression
The regular expression in keypat was malformed.

column not found: colname
The column named colname does not exist in the table named tablename.

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nismatch(1)

NOTES

User Commands 1023

nismkdir – create NIS+ directories

nismkdir [-D defaults] [-m hostname] [-s hostname] dirname

The nismkdir command creates new NIS+ subdirectories within an existing domain.
It can also be used to create replicated directories. Without options, this command will
create a subdirectory with the same master and the replicas as its parent directory.

It is advisable to use nisserver(1M) to create an NIS+ domain which consists of the
specified directory along with the org_dir and groups_dir subdirectories.

The two primary aspects that are controlled when making a directory are its access
rights, and its degree of replication.

A host that serves a NIS+ directory must be a NIS+ client in a directory above the one
it is serving. The exceptions to this rule are the root NIS+ servers, which are both
clients and servers of the same NIS+ directory.

When the host’s default domain is different from the default domain on the client
where the command is executed, the hostname supplied as an argument to the -s or
-m options must be fully qualified.

Special per-server and per-directory access restrictions may apply when this command
updates the serving lists of the affected NIS+ servers. See nisopaccess(1).

The following options are supported:

-D defaults Specify a different set of defaults to be used when creating new
directories. The defaults string is a series of tokens separated by
colons. These tokens represent the default values to be used for the
generic object properties. All of the legal tokens are described
below.

ttl=time This token sets the default time to
live for objects that are created by
this command. The value time is
specified in the format as defined
by the nischttl (1) command.
The default value is 12h (12 hours).

owner=ownername This token specifies that the NIS+
principal ownername should own
the created object. The default for
this value is the principal who is
executing the command.

group=groupname This token specifies that the group
groupname should be the group
owner for the object that is created.
The default value is NULL.

nismkdir(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1024 man pages section 1: User Commands • Last Revised 10 Dec 2001

access=rights This token specifies the set of access
rights that are to be granted for the
given object. The value rights is
specified in the format as defined
by the nischmod(1) command. The
default value is
− − − −rmcdr− − −r− − −.

-m hostname If the directory named by dirname does not exist, then a new
directory that is not replicated is created with host hostname as its
master server.

If the directory name by dirname does exist, then the host named
by hostname is made its master server.

-s hostname Specify that the host hostname will be a replica for an existing
directory named dirname.

The following operand is supported:

dirname The fully qualified NIS+ name of the directory that has to be
created.

EXAMPLE 1 Using the nismkdir Command

To create a new directory bar under the foo.com. domain that shares the same
master and replicas as the foo.com. directory one would use the command:

example% nismkdir bar.foo.com.

To create a new directory bar.foo.com. that is not replicated under the foo.com.
domain one would use the command:

example% nismkdir -m myhost.foo.com. bar.foo.com.

To add a replica server of the bar.foo.com. directory, one would use the command:

example% nismkdir -s replica.foo.com. bar.foo.com.

NIS_DEFAULTS This variable contains a defaults string that
will override the NIS+ standard defaults. If
the -D switch is used those values will then
override both the NIS_DEFAULTS variable
and the standard defaults.

NIS_PATH If this variable is set, and the NIS+ directory
name is not fully qualified, each directory
specified will be searched until the directory
is found (see nisdefaults(1)).

The following exit values are returned:

nismkdir(1)

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 1025

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischmod(1), nischttl(1), nisdefaults(1), nisls(1), nisopaccess(1),
nisrmdir(1), nisserver(1M), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nismkdir(1)

ATTRIBUTES

SEE ALSO

NOTES

1026 man pages section 1: User Commands • Last Revised 10 Dec 2001

nisopaccess – NIS+ operation access control administration command

nisopaccess [-v] directory operation rights

nisopaccess [-v] [-r] directory operation

nisopaccess [-v] [-l] directory [operation]

Most NIS+ operations have implied access control through the permissions on the
objects that they manipulate. For example, in order to read an entry in a table, you
must have read permission on that entry. However, some NIS+ operations by default
perform no access checking at all and are allowed to all:

Operation Example of commands that use the operation

NIS_CHECKPOINT nisping -C

NIS_CPTIME nisping, rpc.nisd

NIS_MKDIR nismkdir

NIS_PING nisping, rpc.nisd

NIS_RMDIR nisrmdir

NIS_SERVSTATE nisbackup, nisrestore

NIS_STATUS nisstat, rpc.nispasswdd

The nisopaccess command can be used to enforce access control on these
operations on a per NIS+ directory basis.

The directory argument should be the fully qualified name, including the trailing dot,
of the NIS+ directory to which nisopaccess will be applied. As a short-hand, if the
directory name does not end in a trailing dot, for example “org_dir”, then the
domain name is appended. The domain name is also appended to partial paths such
as “org_dir.xyz”.

You can use upper or lower case for the operation argument; however, you cannot mix
cases. The “NIS_” prefix may be omitted. For example, NIS_PING can be specified as
NIS_PING, nis_ping, PING, or ping.

The rights argument is specified in the format defined by the nischmod(1) command.
Since only the read ("r") rights are used to determine who has the right to perform the
operation, the modify and delete rights may be used to control who can change access
to the operation.

The access checking performed for each operation is as follows. When an operation
requires access be checked on all directories served by its rpc.nisd(1M), access is
denied if even one of the directories prohibits the operation.

NIS_CHECKPOINT Check specified directory, or all directories if there is no
directory argument (as is the case when NIS_CHECKPOINT is

nisopaccess(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 1027

issued by the “nisping -Ca” command).. Return
NIS_PERMISSION when access is denied.

NIS_CPTIME Check specified directory. It returns 0 when access is denied.

NIS_MKDIR Check parent of specified directory. Returns NIS_PERMISSION
when access is denied.

If the parent directory is not available locally, that is, it is not
served by this rpc.nisd(1M), NIS_MKDIR access is allowed,
though the operation will be executed only if this rpc.nisd is
a known replica of the directory.

You should note that the NIS_MKDIR operation does not create
a NIS+ directory; it adds a directory to the serving list for this
rpc.nisd, if appropriate.

NIS_PING Check specified directory. No return value.

NIS_RMDIR Check specified directory. NIS_PERMISSION is returned when
access denied.

The NIS_RMDIR operation does not remove a NIS+ directory;
it deletes the directory from the serving list for this rpc.nisd,
if appropriate.

NIS_SERVSTATE Check access on all directories served by this rpc.nisd. If
access is denied for a tag, "<permission denied>" is
returned instead of the tag value.

NIS_STATUS Same as for NIS_SERVSTATE.

Note that older clients may not supply authentication information for some of the
operations listed above. These clients are treated as "nobody" when access checking is
performed.

The access control is implemented by creating a NIS+ table called
“proto_op_access” in each NIS+ directory to which access control should be
applied. The table can be manipulated using normal NIS+ commands. However,
nisopaccess is the only supported interface for NIS+ operation access control.

The following options are supported:

-l List the access control for a single operation, or for all operations
that have access control enabled.

-r Remove access control for a certain operation on the specified
directory.

-v Verbose mode.

nisopaccess(1)

OPTIONS

1028 man pages section 1: User Commands • Last Revised 10 Dec 2001

EXAMPLE 1 Enabling Access Control for the NIS_PING Operation

To enable access control for the NIS_PING operation on "org_dir.‘domainname‘."
such that only the owner of the directory can perform a NIS_PING, or change the
NIS_PING rights:

example% nisopaccess org_dir NIS_PING o=rmcd,g=,w=,n=

EXAMPLE 2 Listing the Access to NIS_PING

To list the access to the NIS_PING operation for org_dir:

example% nisopaccess -l org_dir NIS_PING

NIS_PING ----rmcd-------- owner.dom.ain. group.dom.ain.

EXAMPLE 3 Removing Access Control for NIS_PING

To remove access control for NIS_PING on org_dir:

example% nisopaccess -r org_dir NIS_PING

The following exit values are returned:

0 Successful operation.

other Operation failed. The status is usually the return status from a
NIS+ command such as nistbladm.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischmod(1), nistbladm(1), rpc.nisd(1M), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisopaccess(1)

EXAMPLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1029

nispasswd – change NIS+ password information

nispasswd [-ghs] [-D domainname] [username]

nispasswd -a

nispasswd [-D domainname] [-d [username]]

nispasswd [-l] [-f] [-n min] [-x max] [-w warn] [-D domainname]
username

The nispasswd utility changes a password, gecos (finger) field (-g option), home
directory (-h option), or login shell (-s option) associated with the username (invoker
by default) in the NIS+ passwd table.

Additionally, the command can be used to view or modify aging information
associated with the user specified if the invoker has the right NIS+ privileges.

nispasswd uses secure RPC to communicate with the NIS+ server, and therefore,
never sends unencrypted passwords over the communication medium.

nispasswd does not read or modify the local password information stored in the
/etc/passwd and /etc/shadow files.

When used to change a password, nispasswd prompts non-privileged users for their
old password. It then prompts for the new password twice to forestall typing
mistakes. When the old password is entered, nispasswd checks to see if it has “aged”
sufficiently. If “aging” is insufficient, nispasswd terminates; see getspnam(3C).

The old password is used to decrypt the username’s secret key. If the password does
not decrypt the secret key, nispasswd prompts for the old secure-RPC password. It
uses this password to decrypt the secret key. If this fails, it gives the user one more
chance. The old password is also used to ensure that the new password differs from
the old by at least three characters. Assuming aging is sufficient, a check is made to
ensure that the new password meets construction requirements described below.
When the new password is entered a second time, the two copies of the new password
are compared. If the two copies are not identical, the cycle of prompting for the new
password is repeated twice. The new password is used to re-encrypt the user’s secret
key. Hence, it also becomes their secure-RPC password. Therefore, the secure-RPC
password is no longer a different password from the user’s password.

Passwords must be constructed to meet the following requirements:

� Each password must have at least six characters. Only the first eight characters are
significant.

� Each password must contain at least two alphabetic characters and at least one
numeric or special character. In this case, "alphabetic" refers to all upper or lower
case letters.

� Each password must differ from the user’s login username and any reverse or
circular shift of that login username. For comparison purposes, an upper case letter
and its corresponding lower case letter are equivalent.

nispasswd(1)

NAME

SYNOPSIS

DESCRIPTION

1030 man pages section 1: User Commands • Last Revised 10 Dec 2001

� New passwords must differ from the old by at least three characters. For
comparison purposes, an upper case letter and its corresponding lower case letter
are equivalent.

Network administrators, who own the NIS+ password table, may change any
password attributes if they establish their credentials (see keylogin(1)) before
invoking nispasswd. Hence, nispasswd does not prompt these privileged-users for
the old password and they are not forced to comply with password aging and
password construction requirements.

Any user may use the -d option to display password attributes for his or her own
login name. The format of the display will be:

username status mm/dd/yy min max warn

or, if password aging information is not present,

username status

where

username The login ID of the user.

status The password status of username: "PS" stands for password exists
or locked, "LK" stands for locked, and "NP" stands for no
password.

mm/dd/yy The date password was last changed for username. (Note that all
password aging dates are determined using Greenwich Mean Time
(Universal Time) and, therefore, may differ by as much as a day in
other time zones.)

min The minimum number of days required between password
changes for username.

max The maximum number of days the password is valid for username.

warn The number of days relative to max before the password expires
that the username will be warned.

The use of nispasswd is strongly discouraged. It is a wrapper around the passwd(1)
command.

Using passwd(1) with the -r nisplus option will achieve the same result and will be
consistent across all the different name services available. This is the recommended
way to change the password in NIS+.

The login program, file access display programs (for example, ls -l), and network
programs that require user passwords, for example, rlogin(1), ftp(1), and so on, use
the standard getpwnam(3C) and getspnam(3C) interfaces to get password
information. These programs will get the NIS+ password information, which is
modified by nispasswd, only if the passwd: entry in the /etc/nsswitch.conf
file includes nisplus. See nsswitch.conf(4) for more details.

nispasswd(1)

User Commands 1031

The following options are supported:

-a Shows the password attributes for all entries. This will show only
the entries in the NIS+ passwd table in the local domain that the
invoker is authorized to "read".

-d [username] Displays password attributes for the caller or the user specified if
the invoker has the right privileges.

-D domainname Consults the passwd.org_dir table in domainname. If this
option is not specified, the default domainname returned by
nis_local_directory() will be used. This domainname is the
same as that returned by domainname(1M).

-f Forces the user to change password at the next login by expiring
the password for username.

-g Changes the gecos (finger) information.

-h Changes the home directory.

-l Locks the password entry for username. Subsequently, login(1)
would disallow logins with this NIS+ password entry.

-n min Sets minimum field for username. The min field contains the
minimum number of days between password changes for
username. If min is greater than max, the user may not change the
password. Always use this option with the -x option, unless max
is set to -1 (aging turned off). In that case, min need not be set.

-s Changes the login shell. By default, only the NIS+ administrator
can change the login shell. The user will be prompted for the new
login shell.

-w warn Sets warn field for username. The warn field contains the number of
days before the password expires that the user will be warned
whenever he or she attempts to login.

-x max Sets maximum field for username. The max field contains the
number of days that the password is valid for username. The aging
for username will be turned off immediately if max is set to -1. If it
is set to 0, then the user is forced to change the password at the
next login session and aging is turned off.

The following exit values are returned:

0 Success.

1 Permission denied.

2 Invalid combination of options.

3 Unexpected failure. NIS+ passwd table unchanged.

4 NIS+ passwd table missing.

nispasswd(1)

OPTIONS

EXIT STATUS

1032 man pages section 1: User Commands • Last Revised 10 Dec 2001

5 NIS+ is busy. Try again later.

6 Invalid argument to option.

7 Aging is disabled.

8 No memory.

9 System error.

10 Account expired.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

keylogin(1), login(1), nis+(1), nistbladm(1), passwd(1), rlogin(1),
domainname(1M), nisserver(1M), getpwnam(3C), getspnam(3C),
nis_local_directory(3NSL), nsswitch.conf(4), passwd(4), shadow(4),
attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nispasswd(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1033

nisrm – remove NIS+ objects from the namespace

nisrm [-if] name…

The nisrm command removes NIS+ objects named name from the NIS+ namespace.

This command will fail if the NIS+ master server is not running.

This command will not remove directories. See nisrmdir(1). Nor will it remove
non-empty tables. See nistbladm(1).

The following options are supported:

-i Interactive mode. Like the system rm(1) command the nisrm command
will ask for confirmation prior to removing an object. If the name specified
by name is a non-fully qualified name this option is forced on. This
prevents the removal of unexpected objects.

-f Force. The removal is attempted, and if it fails for permission reasons, a
nischmod(1) is attempted and the removal retried. If the command fails, it
fails silently.

The following operand is supported:

name A NIS+ named object.

EXAMPLE 1 Using the nisrm Command

Remove the objects foo, bar, and baz from the namespace:

example% nisrm foo bar baz

NIS_PATH If this variable is set, and the NIS+ name is
not fully qualified, each directory specified
will be searched until the object is found.
See nisdefaults(1).

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischmod(1), nisdefaults(1), nisrmdir(1), nistbladm(1), rm(1),
attributes(5)

nisrm(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1034 man pages section 1: User Commands • Last Revised 10 Dec 2001

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisrm(1)

NOTES

User Commands 1035

nisrmdir – remove NIS+ directories

nisrmdir [-if] [-s hostname] dirname

nisrmdir deletes existing NIS+ subdirectories. It can remove a directory outright, or
simply remove replicas from serving a directory.

This command modifies the object that describes the directory dirname, and then
notifies each replica to remove the directory named dirname. If the notification of any
of the affected replicas fails, the directory object is returned to its original state unless
the -f option is present.

This command will fail if the NIS+ master server is not running.

The following options are supported:

-i Interactive mode. Like the system rm(1) command the nisrmdir
command will ask for confirmation prior to removing a directory.
If the name specified by dirname is a non-fully qualified name this
option is forced on. This prevents the removal of unexpected
directories.

-f Force the command to succeed even though it may not be able to
contact the affected replicas. This option should be used when a
replica is known to be down and will not be able to respond to the
removal notification. When the replica is finally rebooted it will
read the updated directory object, note that it is no longer a replica
for that directory, and stop responding to lookups on that
directory. Cleanup of the files that held the now removed directory
can be accomplished manually by removing the appropriate files
in the /var/nis directory. See nisfiles(4) for more
information.

-s hostname Specify that the host hostname should be removed as a replica for
the directory named dirname. If this option is not present all
replicas and the master server for a directory are removed and the
directory is removed from the namespace.

Special per-server and per-directory access restrictions may apply when this command
updates the serving lists of the affected NIS+ servers. For more information, see
nisopaccess(1).

The following operand is supported:

dirname An existing NIS+ directory.

EXAMPLE 1 Using the nisrmdir Command

To remove a directory bar under the foo.com. domain, one would use the
command:

example% nisrmdir bar.foo.com.

nisrmdir(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

1036 man pages section 1: User Commands • Last Revised 10 Dec 2001

EXAMPLE 1 Using the nisrmdir Command (Continued)

To remove a replica that is serving directory bar.foo.com. one would use the
command:

example% nisrmdir -s replica.foo.com. bar.foo.com.

To force the removal of directory bar.foo.com. from the namespace, one would use
the command:

example% nisrmdir -f bar.foo.com.

NIS_PATH If this variable is set, and the NIS+ directory name is not fully
qualified, each directory specified will be searched until the
directory is found. See nisdefaults(1).

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nisdefaults(1), nisopaccess(1),nisrm(1), nisfiles(4),
attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisrmdir(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1037

nistbladm – NIS+ table administration command

nistbladm -a | -A [-D defaults] colname = value… tablename

nistbladm -a | -A [-D defaults] indexedname

nistbladm -c [-D defaults] [-p path] [-s sep] type colname = [flags] [,
access…] tablename

nistbladm -d tablename

nistbladm -e | -E colname = value… indexedname

nistbladm -m colname = value… indexedname

nistbladm -r | -R [colname = value…] tablename

nistbladm -r | -R indexedname

nistbladm -u [-p path] [-s sep] [-t type] [colname = access…] tablename

The nistbladm command is used to administer NIS+ tables. There are five primary
operations that it performs: creating and deleting tables, adding entries to, modifying
entries within, and removing entries from tables.

Though NIS+ does not place restrictions on the size of tables or entries, the size of data
has an impact on the performance and the disk space requirements of the NIS+ server.
NIS+ is not designed to store huge pieces of data, such as files; instead, pointers to
files should be stored in NIS+.

NIS+ design is optimized to support 10,000 objects with a total size of 10M bytes. If
the requirements exceed the above, it is suggested that the domain hierarchy be
created, or the data stored in the tables be pointers to the actual data, instead of the
data itself.

When creating tables, a table type, type, and a list of column definitions must be
provided.

type is a string that is stored in the table and later used by the service to verify that
entries being added to it are of the correct type.

Syntax for column definitions is:

colname=[flags][,access]

flags is a combination of:

S Searchable. Specifies that searches can be done on the column’s values (see
nismatch(1)).

I Case-insensitive (only makes sense in combination with S). Specifies that
searches should ignore case.

C Crypt. Specifies that the column’s values should be encrypted.

nistbladm(1)

NAME

SYNOPSIS

DESCRIPTION

1038 man pages section 1: User Commands • Last Revised 10 Dec 2001

B Binary data (does not make sense in combination with S). If not set, the
column’s values are expected to be null terminated ASCII strings.

X XDR encoded data (only makes sense in combination with B).

access is specified in the format as defined by the nischmod(1) command.

When manipulating entries, this command takes two forms of entry name. The first
uses a series of space separated colname=value pairs that specify column values in the
entry. The second is a NIS+ indexed name, indexedname, of the form:

[colname=value, . . .],tablename

The following options are supported:

-a | A Adds entries to a NIS+ table. The difference between the lowercase
‘a’ and the uppercase ‘A’ is in the treatment of preexisting entries.
The entry’s contents are specified by the column=value pairs on the
command line. Values for all columns must be specified when
adding entries to a table.

Normally, NIS+ reports an error if an attempt is made to add an
entry to a table that would overwrite an entry that already exists.
This prevents multiple parties from adding duplicate entries and
having one of them get overwritten. If you wish to force the add,
the uppercase ‘A’ specifies that the entry is to be added, even if it
already exists. This is analogous to a modify operation on the
entry.

-c Creates a table named tablename in the namespace. The table that is
created must have at least one column and at least one column
must be searchable.

-d tablename Destroys the table named tablename. The table that is being
destroyed must be empty. The table’s contents can be deleted with
the -R option below.

-e |E Edits the entry in the table that is specified by indexdname.
indexdname must uniquely identify a single entry. It is possible to
edit the value in a column that would change the indexed name of
an entry.

The change (colname=value) may affect other entries in the table if
the change results in an entry whose indexed name is different
from indexedname and which matches that of another existing
entry. In this case, the -e option will fail and an error will be
reported. The -E option will force the replacement of the existing
entry by the new entry (effectively removing two old entries and
adding a new one).

nistbladm(1)

OPTIONS

User Commands 1039

-m A synonym for -E. This option has been superseded by the -E
option.

-r |R Removes entries from a table. The xentry is specified by either a
series of column=value pairs on the command line, or an indexed
name that is specified as entryname. The difference between the
interpretation of the lowercase ‘r’ versus the uppercase ‘R’ is in the
treatment of non-unique entry specifications. Normally the NIS+
server will disallow an attempt to remove an entry when the
search criterion specified for that entry resolves to more than one
entry in the table. However, it is sometimes desirable to remove
more than one entry, as when you are attempting to remove all of
the entries from a table. In this case, using the uppercase ‘R’ will
force the NIS+ server to remove all entries matching the passed
search criterion. If that criterion is null and no column values
specified, then all entries in the table will be removed.

-u Updates attributes of a table. This allows the concatenation path
(-p), separation character (specified with the (-s)), column access
rights, and table type string (-t) of a table to be changed. Neither
the number of columns, nor the columns that are searchable may
be changed.

-D defaults When creating objects, this option specifies a different set of
defaults to be used during this operation. The defaults string is a
series of tokens separated by colons. These tokens represent the
default values to be used for the generic object properties. All of
the legal tokens are described below.

ttl=time This token sets the default time to
live for objects that are created by
this command. The value time is
specified in the format as defined
by the nischttl(1) command. The
default value is 12 hours.

owner=ownername This token specifies that the NIS+
principal ownername should own
the created object. Normally this
value is the same as the principal
who is executing the command.

group=groupname This token specifies that the group
groupname should be the group
owner for the object that is created.
The default value is NULL.

access=rights This token specifies the set of access
rights that are to be granted for the
given object. The value rights is

nistbladm(1)

1040 man pages section 1: User Commands • Last Revised 10 Dec 2001

specified in the format as defined
by the nischmod(1) command. The
default value is
− − − −rmcdr− − −r− − −.

-p path When creating or updating a table, this option specifies the table’s
search path. When a nis_list() function is invoked, the user
can specify the flag FOLLOW_PATH to tell the client library to
continue searching tables in the table’s path if the search criteria
used does not yield any entries. The path consists of an ordered
list of table names, separated by colons. The names in the path
must be fully qualified.

-s sep When creating or updating a table, this option specifies the table’s
separator character. The separator character is used by niscat(1)
when displaying tables on the standard output. Its purpose is to
separate column data when the table is in ASCII form. The default
value is a space.

-t type When updating a table, this option specifies the table’s type string.

EXAMPLE 1 Creating an Unmodifiable Table

This example creates a table named hobbies in the directory foo.com. of the type
hobby_tbl with two searchable columns, name and hobby.

example% nistbladm -c hobby_tbl name=S,\

a+r,o+m hobby=S,a+r hobbies.foo.com.

The column name has read access for all (that is, owner, group, and world) and
modify access for only the owner. The column hobby is readable by all, but not
modifiable by anyone.

In this example, if the access rights had not been specified, the table’s access rights
would have come from either the standard defaults or the NIS_DEFAULTS variable
(see below).

EXAMPLE 2 Adding Entries to the Table

To add entries to this table:

example% nistbladm -a name=bob hobby=skiing hobbies.foo.com.
example% nistbladm -a name=sue hobby=skiing hobbies.foo.com.
example% nistbladm -a name=ted hobby=swimming hobbies.foo.com.

EXAMPLE 3 Adding the Concatenation Path

In the following example, the common root domain is foo.com (NIS+ requires at least
two components to define the root domain) and the concatenation path for the
subdomains bar and baz are added:

nistbladm(1)

EXAMPLES

User Commands 1041

EXAMPLE 3 Adding the Concatenation Path (Continued)

example% nistbladm -u -p hobbies.bar.foo.com.:hobbies.baz.foo.com. hobbies

EXAMPLE 4 Deleting Skiers from the List

To delete the skiers from our list:

example% nistbladm -R hobby=skiing hobbies.foo.com.

Note: The use of the -r option would fail because there are two entries with the value
of skiing.

EXAMPLE 5 Naming a Column with no Flags Set

To create a table with a column that is named with no flags set, you supply only the
name and the equals (=) sign as follows:

example% nistbladm -c notes_tbl name=S,a+r,o+m note= notes.foo.com.

This example created a table, named notes.foo.com., of type notes_tbl with two columns
name and note. The note column is not searchable.

EXAMPLE 6 Protecting Terminal Characters

When entering data for columns in the form of a value string, it is essential that
terminal characters be protected by single or double quotes. These are the characters
equals (=), comma (,), left bracket ([), right bracket (]), and space (). These characters
are parsed by NIS+ within an indexed name. These characters are protected by
enclosing the entire value in double quote (") characters as follows:

example% nistbladm -a fullname="Joe User" nickname=Joe nicknames

If there is any doubt about how the string will be parsed, it is better to enclose it in
quotes.

NIS_DEFAULTS This variable contains a defaults string that
will be override the NIS+ standard defaults.
If the -D switch is used those values will
then override both the NIS_DEFAULTS
variable and the standard defaults.

NIS_PATH If this variable is set, and the NIS+ table
name is not fully qualified, each directory
specified will be searched until the table is
found. See nisdefaults(1).

The following exit values are returned:

nistbladm(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

1042 man pages section 1: User Commands • Last Revised 10 Dec 2001

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), niscat(1), nischmod(1), nischown(1), nischttl(1), nisdefaults(1),
nismatch(1), nissetup(1M), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

To modify one of the entries, say, for example, from “bob” to “robert”:

example% nistbladm -m name=robert [name=bob],hobbies

Notice that “[name=bob],hobbies” is an indexed name, and that the characters ‘[’
(open bracket) and ‘]’ (close bracket) are interpreted by the shell. When typing entry
names in the form of NIS+ indexed names, the name must be protected by using
single quotes.

It is possible to specify a set of defaults such that you cannot read or modify the table
object later.

nistbladm(1)

ATTRIBUTES

SEE ALSO

NOTES

WARNINGS

User Commands 1043

nistest – return the state of the NIS+ namespace using a conditional expression

nistest [-ALMP] [-a rights | -t type]object

nistest [-ALMP] [-a rights] indexedname

nistest -c dir1 op dir2

nistest provides a way for shell scripts and other programs to test for the existence,
type, and access rights of objects and entries. Entries are named using indexed names.
See nismatch(1). With the -c option, directory names can be compared to test where
they lie in relation to each other in the namespace.

The following options are supported:

-a rights This option is used to verify that the current process has the
desired or required access rights on the named object or entries.
The access rights are specified in the same way as the
nischmod(1) command.

-A All data. This option specifies that the data within the table and all
of the data in tables in the initial table’s concatenation path be
returned. This option is only valid when using indexed names or
following links.

-L Follow links. If the object named by object or the tablename
component of indexedname names a LINK type object, the link is
followed when this switch is present.

-M Master server only. This option specifies that the lookup should be
sent to the master server of the named data. This guarantees that
the most up to date information is seen at the possible expense
that the master server may be busy.

-P Follow concatenation path. This option specifies that the lookup
should follow the concatenation path of a table if the initial search
is unsuccessful. This option is only valid when using indexed
names or following links.

-t type This option tests the type of object. The value of type can be one of
the following:

D Return true if the object is a directory object.

G Return true if the object is a group object.

L Return true if the object is a link object.

P Return true if the object is a private object.

T Return true if the object is a table object.

-c Test whether or not two directory names have a certain
relationship to each other, for example, higher than (ht) or lower
than (lt). The complete list of values for op can be displayed by

nistest(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1044 man pages section 1: User Commands • Last Revised 10 Dec 2001

using the -c option with no arguments.

EXAMPLE 1 Using the nistest Command

When testing for access rights, nistest returns success (0) if the specified rights are
granted to the current user. Thus, testing for access rights:

example% nistest -a w=mr skippy.domain

Tests that all authenticated NIS+ clients have read and modify access to the object
named skippy.domain.

Testing for access on a particular entry in a table can be accomplished using the
indexed name syntax. The following example tests to see if an entry in the password
table can be modified:

example% nistest -a o=m ’[uid=99],passwd.org_dir’

To test if a directory lies higher in the namespace than another directory, use the -c
option with an op of ht (higher than) as in the following example (which would return
true):

example% nistest -c dom.com. ht lower.dom.com.

NIS_PATH If this variable is set, and the NIS+ name is
not fully qualified, each directory specified
will be searched until the object is found.
See nisdefaults(1).

The following exit values are returned:

0 Successful operation.

1 Failure due to object not present, not of specified type, and/or no such
access.

2 Failure due to illegal usage.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

nis+(1), nischmod(1), nisdefaults(1), nismatch(1), attributes(5)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nistest(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1045

nl – line numbering filter

/usr/bin/nl [-p] [-b [type]] [-d [delim]] [-f [type]] [-h [type]] [-i
[incr]] [-l [num]] [-n [format]] [-s [sep]] [-w [width]] [-v
[startnum]] [file]

/usr/xpg4/bin/nl [-p] [-b type] [-d delim] [-f type] [-h type] [-i incr]
[-l num] [-n format] [-s sep] [-w width] [-v startnum] [file]

The nl command reads lines from the named file, or the standard input if no file
is named, and reproduces the lines on the standard output. Lines are numbered on the
left in accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset at the start
of each logical page. A logical page consists of a header, a body, and a footer section.
Empty sections are valid. Different line numbering options are independently
available for header, body, and footer. For example, -bt (the default) numbers
non-blank lines in the body section and does not number any lines in the header and
footer sections.

The start of logical page sections are signaled by input lines containing nothing but the
following delimiter character(s):

Line contents Start Of

\ : \ : \ : header

\ : \ : body

\ : footer

Unless optioned otherwise, nl assumes the text being read is in a single logical page
body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The specified default is used when
the option is not entered on the command line. /usr/xpg4/bin/nl options require
option arguments. A SPACE character may separate options from option arguments.
/usr/bin/nl options may have option arguments. If option-arguments of
/usr/bin/nl options are not specified, these options result in the default. The
supported options are:

-btype Specifies which logical page body lines are to be numbered.
Recognized types and their meanings are:

a number all lines

t number all non-empty lines.

n no line numbering

nl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1046 man pages section 1: User Commands • Last Revised 28 Mar 1995

pexp number only lines that contain the regular expression
specified in exp; see NOTES below.

Default type for logical page body is t (text lines numbered).

-ftype Same as -btype except for footer. Default type for logical page
footer is n (no lines numbered).

-ddelim The two delimiter characters specifying the start of a logical page
section may be changed from the default characters (\ :) to two
user-specified characters. If only one character is entered, the
second character remains the default character (:). No space should
appear between the -d and the delimiter characters. To enter a
backslash, use two backslashes.

-htype Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

-iincr incr is the increment value used to number logical page lines.
Default incr is 1.

-lnum num is the number of blank lines to be considered as one. For
example, −l2 results in only the second adjacent blank being
numbered (if the appropriate -ha, -ba, and/or -fa option is set).
Default num is 1.

-nformat format is the line numbering format. Recognized values are:

ln left justified, leading zeroes suppressed

rn right justified, leading zeroes suppressed

rz right justified, leading zeroes kept

Default format is rn (right justified).

-p Do not restart numbering at logical page delimiters.

-ssep sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a TAB.

-vstartnum startnum is the initial value used to number logical page lines.
Default startnum is 1.

-wwidth width is the number of characters to be used for the line number.
Default width is 6.

The following operand is supported:

file A path name of a text file to be line-numbered.

nl(1)

OPERANDS

User Commands 1047

EXAMPLE 1 An example of the nl command.

The command:

example% nl -v10 -i10 -d!+ filename1

will cause the first line of the page body to be numbered 10, the second line of the
page body to be numbered 20, the third 30, and so forth. The logical page delimiters
are !+.

See environ(5) for descriptions of the following environment variables that affect the
execution of nl: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/usr/lib/locale/locale/LC_COLLATE/CollTable
collation table generated by localedef

/usr/lib/locale/locale/LC_COLLATE/coll.so
shared object containing string transformation library routines

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

pr(1), attributes(5), environ(5), regex(5), regexp(5)

Internationalized Regular Expressions are used in the POSIX and "C" locales. In other
locales, Internationalized Regular Expressions are used if the following two conditions
are met:

� /usr/lib/locale/locale/LC_COLLATE/CollTable is present
� /usr/lib/locale/locale/LC_COLLATE/coll.so is not present;

otherwise, Simple Regular Expressions are used.

Internationalized Regular Expressions are explained on regex(5). Simple Regular
Expressions are explained on regexp(5).

nl(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/nl

/usr/xpg4/bin/nl

SEE ALSO

NOTES

1048 man pages section 1: User Commands • Last Revised 28 Mar 1995

nm – print name list of an object file

/usr/ccs/bin/nm [-ACDhlnPprRsTuVv] [-efox] [-g | -u] [-t format]
file…

/usr/xpg4/bin/nm [-ACDhlnPprRsTuVv] [-efox] [-g | -u] [-t format]
file…

The nm utility displays the symbol table of each ELF object file that is specified by file.

If no symbolic information is available for a valid input file, the nm utility will report
that fact, but not consider it an error condition.

The output of nm may be controlled using the following options:

-A Writes the full path name or library name of an object on each line.

-C Demangles C++ symbol names before printing them out.

-D Displays the SHT_DYNSYM symbol information. This is the symbol
table used by ld.so.1 and is present even in stripped dynamic
executables. By default, the SHT_SYMTAB symbol table is
displayed.

-e See NOTES below.

-f See NOTES below.

-g Writes only external (global) symbol information.

-h Does not display the output heading data.

-l Distinguishes between WEAK and GLOBAL symbols by appending a
* to the key letter for WEAK symbols.

-n Sorts external symbols by name before they are printed.

-o Prints the value and size of a symbol in octal instead of decimal
(equivalent to -t o).

-p Produces easy to parse, terse output. Each symbol name is
preceded by its value (blanks if undefined) and one of the letters:

A Absolute symbol.

B bss (uninitialized data space) symbol.

C COMMON symbol.

D Data object symbol.

F File symbol.

N Symbol has no type.

L Thread-Local storage symbol.

S Section symbol.

nm(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1049

T Text symbol.

U Undefined.

If the symbol’s binding attribute is:

LOCAL The key letter is lower case.

WEAK The key letter is upper case. If the -l modifier
is specified, the upper case key letter is
followed by a *

GLOBAL The key letter is upper case.

-P Writes information in a portable output format, as specified in
Standard Output.

-r Prepends the name of the object file or archive to each output line.

-R Prints the archive name (if present), followed by the object file and
symbol name. If the -r option is also specified, this option is
ignored.

-s Prints section name instead of section index.

-t format Writes each numeric value in the specified format. The format is
dependent on the single character used as the format
option-argument:

d The offset is written in decimal (default).

o The offset is written in octal.

x The offset is written in hexadecimal.

-T See NOTES below.

-u Prints undefined symbols only.

-u Prints long listing for each undefined symbol. See OUTPUT below.

-v Sorts external symbols by value before they are printed.

-V Prints the version of the nm command executing on the standard
error output.

-x Prints the value and size of a symbol in hexadecimal instead of
decimal (equivalent to -t x).

Options may be used in any order, either singly or in combination, and may appear
anywhere in the command line. When conflicting options are specified (such as -v
and -n, or -o and -x) the first is taken and the second ignored with a warning
message to the user. (See -R for exception.)

The following operand is supported:

file A path name of an object file, executable file or object-file library.

nm(1)

/usr/ccs/bin/nm

/usr/xpg4/bin/nm

OPERANDS

1050 man pages section 1: User Commands • Last Revised 28 Sep 2001

For each symbol, the following information will be printed:

Index The index of the symbol. (The index appears in brackets.)

Value The value of the symbol is one of the following:

� A section offset for defined symbols in a relocatable file.
� Alignment constraints for symbols whose section index is

SHN_COMMON.
� A virtual address in executable and dynamic library files.

Size The size in bytes of the associated object.

Type A symbol is of one of the following types:

NOTYPE No type was specified.

OBJECT A data object such as an array or variable.

FUNC A function or other executable code.

REGI A register symbol (SPARC only).

SECTION A section symbol.

FILE Name of the source file.

COMMON An uninitialized common block.

TLS A variable associated with Thread-Local
storage.

Bind The symbol’s binding attributes.

LOCAL symbols Have a scope limited to the object
file containing their definition.

GLOBAL symbols Are visible to all object files being
combined.

WEAK symbols Are essentially global symbols with
a lower precedence than GLOBAL.

Other A field reserved for future use, currently containing 0.

Shndx Except for three special values, this is the section header table
index in relation to which the symbol is defined. The following
special values exist:

ABS Indicates the symbol’s value will not change
through relocation.

COMMON Indicates an unallocated block and the value
provides alignment constraints.

UNDEF Indicates an undefined symbol.

Name The name of the symbol.

nm(1)

Standard Output

User Commands 1051

Object Name The name of the object or library if -A is specified.

If the -P option is specified, the previous information is displayed using the following
portable format. The three versions differ depending on whether -t d, -t o, or -t x
was specified, respectively:

"%s%s %s %d %d\n", <library/object name>, name, type, value, size "%s%s %s
%o %o\n", <library/object name>, name, type, value, size "%s%s %s %x %x\n",
<library/object name>, name, type, value, size

where <library/object name> is formatted as follows:

� If -A is not specified, <library/object name> is an empty string.

� If -A is specified and the corresponding file operand does not name a library:

"%s: ", file

� If -A is specified and the corresponding file operand names a library. In this case,
<object file> names the object file in the library containing the symbol being
described:

"%s[%s]: ", file, <object file>

If -A is not specified, then if more than one file operand is specified or if only one file
operand is specified and it names a library, nm will write a line identifying the object
containing the following symbols before the lines containing those symbols, in the
form:

� If the corresponding file operand does not name a library:

"%s:\n", file

� If the corresponding file operand names a library; in this case, <object file> is the
name of the file in the library containing the following symbols:

"%s[%s]:\n", file, <object file>

If -P is specified, but -t is not, the format is as if -t x had been specified.

See environ(5) for descriptions of the following environment variables that affect the
execution of nm: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

nm(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

1052 man pages section 1: User Commands • Last Revised 28 Sep 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

ar(1), as(1), dump(1), ld(1), ld.so.1(1), ar(3HEAD), a.out(4), attributes(5),
environ(5), XPG4(5)

The following options are obsolete because of changes to the object file format and will
be deleted in a future release.

-e Prints only external and static symbols. The symbol table now contains
only static and external symbols. Automatic symbols no longer appear in
the symbol table. They do appear in the debugging information produced
by cc -g, which may be examined using dump(1).

-f Produces full output. Redundant symbols (such as .text, .data, and so
forth), which existed previously, do not exist and producing full output
will be identical to the default output.

-T By default, nm prints the entire name of the symbols listed. Since symbol
names have been moved to the last column, the problem of overflow is
removed and it is no longer necessary to truncate the symbol name.

nm(1)

/usr/ccs/bin/nm

/usr/xpg4/bin/nm

SEE ALSO

NOTES

User Commands 1053

nohup – run a command immune to hangups

/usr/bin/nohup command [argument…]

/usr/bin/nohup -p [-Fa] pid [pid…]

/usr/bin/nohup -g [-Fa] gpid [gpid…]

/usr/xpg4/bin/nohup command [argument…]

The nohup utility invokes the named command with the arguments supplied. When
the command is invoked, nohup arranges for the SIGHUP signal to be ignored by the
process.

When invoked with the -p or -g flags, nohup arranges for processes already running
as identified by a list of process IDs or a list of process group IDs to become immune
to hangups.

The nohup utility can be used when it is known that command will take a long time to
run and the user wants to log out of the terminal. When a shell exits, the system sends
its children SIGHUP signals, which by default cause them to be killed. All stopped,
running, and background jobs will ignore SIGHUP and continue running, if their
invocation is preceded by the nohup command or if the process programmatically has
chosen to ignore SIGHUP.

/usr/bin/nohup
Processes run by /usr/bin/nohup are immune to SIGHUP (hangup) and
SIGQUIT (quit) signals.

/usr/bin/nohup -p [-Fa]
Processes specified by ID are made immune to SIGHUP and SIGQUIT, and all
output to the controlling terminal is redirected to nohup.out. If -F is specified,
nohup will force control of each process. If -a is specified, nohup will change the
signal disposition of SIGHUP and SIGQUIT even if the process has installed a
handler for either signal.

/usr/bin/nohup -g [-Fa]
Every process in the same process group as the processes specified by ID are made
immune to SIGHUP and SIGQUIT, and all output to the controlling terminal is
redirected to nohup.out. If -F is specified, nohup will force control of each
process. If -a is specified, nohup will change the signal disposition of SIGHUP and
SIGQUIT even if the process has installed a handler for either signal.

/usr/xpg4/bin/nohup
Processes run by /usr/xpg4/bin/nohup are immune to SIGHUP.

The nohup utility does not arrange to make processes immune to a SIGTERM
(terminate) signal, so unless they arrange to be immune to SIGTERM or the shell
makes them immune to SIGTERM, they will receive it.

nohup(1)

NAME

SYNOPSIS

DESCRIPTION

1054 man pages section 1: User Commands • Last Revised 16 Nov 2001

If nohup.out is not writable in the current directory, output is redirected to
$HOME/nohup.out. If a file is created, the file will have read and write permission
(600, see chmod(1)). If the standard error is a terminal, it is redirected to the
standard output, otherwise it is not redirected. The priority of the process run by
nohup is not altered.

The following options are supported:

-a Always changes the signal disposition of target processes. This option is
valid only when specified with -p or -g.

-F Force. Grabs the target processes even if another process has control. This
option is valid only when specified with -p or -g.

-g Operates on a list of process groups. This option is not valid with -p.

-p Operates on a list of processes. This option is not valid with -g.

The following operands are supported:

pid A decimal process ID to be manipulated by nohup -p.

pgid A decimal process group ID to be manipulated by nohup -g.

command The name of a command that is to be invoked. If the command
operand names any of the special shell_builtins(1) utilities,
the results are undefined.

argument Any string to be supplied as an argument when invoking the
command operand.

EXAMPLE 1 Applying nohup to pipelines or command lists

It is frequently desirable to apply nohup to pipelines or lists of commands. This can be
done only by placing pipelines and command lists in a single file, called a shell script.
One can then issue:

example$ nohup sh file

and the nohup applies to everything in file. If the shell script file is to be executed
often, then the need to type sh can be eliminated by giving file execute permission.

Add an ampersand and the contents of file are run in the background with interrupts
also ignored (see sh(1)):

example$ nohup file &

EXAMPLE 2 Applying nohup -p to a process

example$ long_running_command &

example$ nohup -p ‘pgrep long_running_command‘

nohup(1)

OPTIONS

OPERANDS

EXAMPLES

User Commands 1055

EXAMPLE 3 Applying nohup -g to a process group

example$ make &
example$ ps -o sid -p $$

SID
81079

example$ nohup -g ‘pgrep -s 81079 make‘

See environ(5) for descriptions of the following environment variables that affect the
execution of nohup: LC_CTYPE, LC_MESSAGES, PATH, and NLSPATH.

HOME Determine the path name of the user’s home directory: if the output file
nohup.out cannot be created in the current directory, the nohup
command will use the directory named by HOME to create the file.

The following exit values are returned:

126 command was found but could not be invoked.

127 An error occurred in nohup, or command could not be found

Otherwise, the exit values of nohup will be those of the command operand.

nohup.out The output file of the nohup execution if standard
output is a terminal and if the current directory is
writable.

$HOME/nohup.out The output file of the nohup execution if standard
output is a terminal and if the current directory is not
writable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

batch(1), chmod(1), csh(1), ksh(1), nice(1), pgrep(1), proc(1), ps(1), sh(1),
shell_builtins(1), signal(3C), proc(4), attributes(5), environ(5), XPG4(5)

If you are running the Korn shell (ksh(1)) as your login shell, and have nohup’ed jobs
running when you attempt to log out, you will be warned with the message

nohup(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/nohup

/usr/xpg4/bin/nohup

SEE ALSO

WARNINGS

1056 man pages section 1: User Commands • Last Revised 16 Nov 2001

You have jobs running.

You will then need to log out a second time to actually log out. However, your
background jobs will continue to run.

The C-shell (csh(1)) has a built-in command nohup that provides immunity from
SIGHUP, but does not redirect output to nohup.out. Commands executed with ‘&’
are automatically immune to HUP signals while in the background.

nohup does not recognize command sequences. In the case of the following command,

example$ nohup command1; command2

the nohup utility applies only to command1. The command,

example$ nohup (command1; command2)

is syntactically incorrect.

nohup(1)

NOTES

User Commands 1057

nroff – format documents for display or line-printer

nroff [-ehiq] [-mname] [-nN] [-opagelist] [-raN] [-sN] [-Tname]
[-uN]

The nroff utility formats text in the named files for typewriter-like devices. See also
troff(1).

If no file argument is present, nroff reads the standard input. An argument consisting
of a ‘−’ is taken to be a file name corresponding to the standard input.

The following options are supported. Options may appear in any order so long as they
appear before the files.

-e Produces equally-spaced words in adjusted lines, using full
terminal resolution.

-h Uses output TAB characters during horizontal spacing to speed
output and reduces output character count. TAB settings are
assumed to be every 8 nominal character widths.

-i Reads the standard input after the input files are exhausted.

-q Does not print output that was read from an .rd request.

-mname Prepends the macro file /usr/share/lib/tmac/tmac.name to
the input files.

-nN Numbers first generated page N.

-opagelist Prints only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range N-M means
pages N through M; an initial -N means from the beginning to
page N; and a final N− means from N to the end.

-raN Sets register a (one-character) to N.

-sN Stops every N pages. nroff will halt prior to every N pages
(default N=1) to allow paper loading or changing, and will resume
upon receipt of a NEWLINE.

-Tname Prepares output for a device of the specified name. Known names
are:

37 Teletype Corporation Model 37 terminal — this
is the default.

lp | tn300 GE — any line printer or terminal without
half-line capability.

300 DASI-300.

300-12 DASI-300 — 12-pitch.

300S DASI-300S.

nroff(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1058 man pages section 1: User Commands • Last Revised 21Jul 2000

300S-12 DASI-300S.

382 DASI-382 (fancy DTC 382).

450 DASI-450 (Diablo Hyterm).

450-12 DASI-450 (Diablo Hyterm) — 12-pitch.

832 AJ 832.

-uN Set the emboldening factor for the font mounted in position 3 to N.
If N is missing, then set the emboldening factor to 0.

EXAMPLE 1 Formatting with a macro package

The following command formats users.guide using the -me macro package, and
stopping every 4 pages:

example% nroff −s4 −me users.guide

See environ(5) for descriptions of the following environment variables that affect the
execution of nroff: LC_CTYPE, LC_MESSAGES, and NLSPATH.

/usr/tmp/trtmp* temporary file (see NOTES)

/usr/share/lib/tmac/tmac.* standard macro files

/usr/share/lib/nterm/* terminal driving tables for nroff

/usr/share/lib/nterm/README index to terminal description files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

CSI Enabled

checknr(1), col(1), eqn(1), man(1), tbl(1), troff(1), attributes(5), environ(5),
me(5), ms(5), term(5)

/usr/tmp is currently a symbolic link to /var/tmp.

Previous documentation incorrectly described the numeric register yr as being the
"Last two digits of current year". yr is in actuality the number of years since 1900. To
correctly obtain the last two digits of the current year through the year 2099, the
definition given below of string register yy may be included in a document and
subsequently used to display a two-digit year. Notice that any other available one- or
two-character register name may be substituted for yy.

.\" definition of new string register yy--last two digits of year

.\" use yr (# of years since 1900) if it is < 100

nroff(1)

EXAMPLES

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1059

.ie \n(yr<100 .ds yy \n(yr

.el \{ .\" else, subtract 100 from yr, store in ny

.nr ny \n(yr-100

.ie \n(ny>9 \{ .\" use ny if it is two digits

.ds yy \n(ny

.\" remove temporary number register ny

.rr ny \}

.el \{.ds yy 0

.\" if ny is one digit, append it to 0

.as yy \n(ny

.rr ny \} \}

nroff(1)

1060 man pages section 1: User Commands • Last Revised 21Jul 2000

od – octal dump

/usr/bin/od [-bcCDdFfOoSsvXx] [-] [file] [offset_string]

/usr/bin/od [-bcCDdFfOoSsvXx] [-A address_base] [-j skip] [-N count]
[-t type_string…] [-] [file…]

/usr/xpg4/bin/od [-bcCDdFfOoSsvXx] [-] [file] [offset_string]

/usr/xpg4/bin/od [-bcCDdFfOoSsvXx] [-A address_base] [-j skip]
[-N count] [-t type_string…] [-] [file…]

The od command copies sequentially each input file to standard output and
transforms the input data according to the output types specified by the -t or
-bcCDdFfOoSsvXx options. If no output type is specified, the default output is as if
-t o2 had been specified. Multiple types can be specified by using multiple
-bcCDdFfOoSstvXx options. Output lines are written for each type specified in the
order in which the types are specified. If no file is specified, the standard input is used.
The [offset_string] operand is mutually exclusive from the -A, -j, -N, and -t options.
For the purposes of this description, the following terms are used:

word Refers to a 16-bit unit, independent of the word size of
the machine.

long word Refers to a 32-bit unit.

double long word Refers to a 64-bit unit.

The following options are supported:

-A address_base Specify the input offset base. The address_base option-argument
must be a character. The characters d, o and x specify that the
offset base will be written in decimal, octal or hexadecimal,
respectively. The character n specifies that the offset will not be
written. Unless -A n is specified, the output line will be preceded
by the input offset, cumulative across input files, of the next byte
to be written. In addition, the offset of the byte following the last
byte written will be displayed after all the input data has been
processed. Without the -A address_base option and the [offset_string]
operand, the input offset base is displayed in octal.

-b Interpret bytes in octal. This is equivalent to -t o1.

-c Display single-byte characters. Certain non-graphic characters
appear as C-language escapes:

null \0
backspace \b
form-feed \f
new-line \n
return \r
tab \t

Others appear as 3-digit octal numbers. For example:

od(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

/usr/bin/od

User Commands 1061

echo "hello world" | od −c
0000000 h e l l o w o r l d \n

0000014

-c Interpret bytes as single-byte or multibyte characters according to
the current setting of the LC_CTYPE locale category. Printable
multibyte characters are written in the area corresponding to the
first byte of the character; the two character sequence ** is written
in the area corresponding to each remaining byte in the character,
as an indication that the character is continued. Non-graphic
characters appear the same as they would using the -C option.

-C Interpret bytes as single-byte or multibyte characters according to
the current setting of the LC_CTYPE locale category. Printable
multibyte characters are written in the area corresponding to the
first byte of the character; two character sequence ** are written in
the area corresponding to each remaining byte in the character, as
an indication that the character is continued. Certain non-graphic
characters appear as C escapes:

null \0
backspace \b
form-feed \f
new-line \n
return \r
tab \t

Other non-printable characters appear as one three-digit octal
number for each byte in the character.

-d Interpret words in unsigned decimal. This is equivalent to -t u2.

-D Interpret long words in unsigned decimal. This is equivalent to -t
u4.

-f Interpret long words in floating point. This is equivalent to -t f4.

-F Interpret double long words in extended precision. This is
equivalent to -t f8.

-j skip Jump over skip bytes from the beginning of the input. The od
command will read or seek past the first skip bytes in the
concatenated input files. If the combined input is not at least skip
bytes long, the od command will write a diagnostic message to
standard error and exit with a non-zero exit status.

By default, the skip option-argument is interpreted as a decimal
number. With a leading 0x or 0X, the offset is interpreted as a
hexadecimal number; otherwise, with a leading 0, the offset will be
interpreted as an octal number. Appending the character b, k, or m
to offset will cause it to be interpreted as a multiple of 512, 1024
or 1 048 576 bytes, respectively. If the skip number is

od(1)

/usr/xpg4/bin/od

1062 man pages section 1: User Commands • Last Revised 18 Mar 1997

hexadecimal, any appended b is considered to be the final
hexadecimal digit. The address is displayed starting at 0000000,
and its base is not implied by the base of the skip option-argument.

-N count Format no more than count bytes of input. By default, count is
interpreted as a decimal number. With a leading 0x or 0X, count is
interpreted as a hexadecimal number; otherwise, with a leading 0,
it is interpreted as an octal number. If count bytes of input (after
successfully skipping, if -jskip is specified) are not available, it
will not be considered an error; the od command will format the
input that is available. The base of the address displayed is not
implied by the base of the count option-argument.

-o Interpret words in octal. This is equivalent to -t o2.

-O Interpret long words in unsigned octal. This is equivalent to -t o4.

-s Interpret words in signed decimal. This is equivalent to -t d2.

-S Interpret long words in signed decimal. This is equivalent to -t
d4.

-t type_string Specify one or more output types. The type_string option-argument
must be a string specifying the types to be used when writing the
input data. The string must consist of the type specification
characters:

a Named character. Interpret bytes as named characters.
Only the least significant seven bits of each byte will be
used for this type specification. Bytes with the values
listed in the following table will be written using the
corresponding names for those characters.

Named Characters in od

Value Name Value Name Value Name Value Name

\000 nul \001 soh \002 stx \003 etx

\004 eot \005 enq \006 ack \007 bel

\010 bs \011 ht \012 lf \013 vt

\014 ff \015 cr \016 so \017 si

\020 dle \021 dc1 \022 dc2 \023 dc3

\024 dc4 \025 nak \026 syn \027 etb

\030 can \031 em \032 sub \033 esc

\034 fs \035 gs \036 rs \037 us

od(1)

User Commands 1063

Value Name Value Name Value Name Value Name

\040 sp \177 del

c Character. Interpret bytes as single-byte or multibyte
characters specified by the current setting of the
LC_CTYPE locale category. Printable multibyte
characters are written in the area corresponding to the
first byte of the character; the two character sequence
** is written in the area corresponding to each
remaining byte in the character, as an indication that
the character is continued. Certain non-graphic
characters appear as C escapes: \0, \a, \b, \f, \n, \r,
\t, \v. Other non-printable characters appear as one
three-digit octal number for each byte in the character.

The type specification characters d, f, o, u, and x can be followed
by an optional unsigned decimal integer that specifies the number
of bytes to be transformed by each instance of the output type.

f Floating point. Can be followed by an optional
F, D, or L indicating that the conversion should
be applied to an item of type float, double,
or long double, respectively.

d, o, u, and x Signed decimal, octal, unsigned decimal, and
hexadecimal, respectively. Can be followed by
an optional C, S, I, or L indicating that the
conversion should be applied to an item of
type char, short, int, or long, respectively.

Multiple types can be concatenated within the same type_string
and multiple -t options can be specified. Output lines are written
for each type specified in the order in which the type specification
characters are specified.

-v Show all input data (verbose). Without the -v option, all groups of
output lines that would be identical to the immediately preceding
output line (except for byte offsets), will be replaced with a line
containing only an asterisk (*).

-x Interpret words in hex. This is equivalent to -t x2.

-X Interpret long words in hex. This is equivalent to -t x4.

The following operands are supported for both /usr/bin/od and
/usr/xpg4/bin/od:

− Use the standard input in addition to any files specified. When this
operand is not given, the standard input is used only if no file

od(1)

OPERANDS

1064 man pages section 1: User Commands • Last Revised 18 Mar 1997

operands are specified.

The following operands are supported for /usr/bin/od only:

file A path name of a file to be read. If no file operands are
specified, the standard input will be used. If there are
no more than two operands, none of the -A, -j, -N, or
-t options is specified, and any of the following are
true:

1. the first character of the last operand is a plus sign
(+)

2. the first character of the second operand is numeric
3. the first character of the second operand is x and

the second character of the second operand is a
lower-case hexadecimal character or digit

4. the second operand is named "x"
5. the second operand is named "."

then the corresponding operand is assumed to be an
offset operand rather than a file operand.

Without the -N count option, the display continues
until an end-of-file is reached.

[+][0] offset [.][b|B]
[+][0][offset] [.]
[+][0x|x][offset]
[+][0x|x] offset[B] The offset_string operand specifies the byte offset in the

file where dumping is to commence. The offset is
interpreted in octal bytes by default. If offset begins
with "0", it is interpreted in octal. If offset begins with
"x" or "0x", it is interpreted in hexadecimal and any
appended "b" is considered to be the final hexadecimal
digit. If "." is appended, the offset is interpreted in
decimal. If "b" or "B" is appended, the offset is
interpreted in units of 512 bytes. If the file argument
is omitted, the offset argument must be preceded by a
plus sign (+). The address is displayed starting at the
given offset. The radix of the address will be the same
as the radix of the offset, if specified, otherwise it will
be octal. Decimal overrides octal, and it is an error to
specify both hexadecimal and decimal conversions in
the same offset operand.

The following operands are supported for /usr/xpg4/bin/od only:

file Same as /usr/bin/od, except only one of the first two
conditions must be true.

od(1)

/usr/bin/od

/usr/xpg4/bin/od

User Commands 1065

[+] [0] offset [.] [b|B]
+ [offset] [.]
[+][0x][offset]
[+][0x] offset [B]
+x [offset]
+xoffset [B] Description of offset_string is the same as for

/usr/bin/od.

See environ(5) for descriptions of the following environment variables that affect the
execution of od: LC_CTYPE, LC_MESSAGES, LC_NUMERIC, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

sed(1), attributes(5), environ(5), XPG4(5)

od(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/od

/usr/xpg4/bin/od

SEE ALSO

1066 man pages section 1: User Commands • Last Revised 18 Mar 1997

on – execute a command on a remote system, but with the local environment

on [-i] [-d] [-n] host command [argument] …

The on program is used to execute commands on another system, in an environment
similar to that invoking the program. All environment variables are passed, and the
current working directory is preserved. To preserve the working directory, the
working file system must be either already mounted on the host or be exported to it.
Relative path names will only work if they are within the current file system; absolute
path names may cause problems.

The standard input is connected to the standard input of the remote command, and
the standard output and the standard error from the remote command are sent to the
corresponding files for the on command.

-i Interactive mode. Use remote echoing and special character processing.
This option is needed for programs that expect to be talking to a terminal.
All terminal modes and window size changes are propagated.

-d Debug mode. Print out some messages as work is being done.

-n No Input. This option causes the remote program to get EOF when it reads
from the standard input, instead of passing the standard input from the
standard input of the on program. For example, -n is necessary when
running commands in the background with job control.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnfscu

chkey(1), rlogin(1), rsh(1), telnet(1), attributes(5)

unknown host Host name not found.

cannot connect to server Host down or not running the server.

can’t find Problem finding the working directory.

can’t locate mount point Problem finding current file system.

RPC: Authentication error The server requires DES authentication and
you do not have a secret key registered with
keyserv. Perhaps you logged in without a
password. Try to keylogin. If that fails try to
set your publickey with chkey.

Other diagnostic messages may be passed back from the server.

on(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 1067

When the working directory is remote mounted over NFS, a CTRL-Z hangs the
window.

Root cannot use on.

on(1)

BUGS

1068 man pages section 1: User Commands • Last Revised 6 Nov 2000

optisa – determine which variant instruction set is optimal to use

optisa instruction_set…

optisa prints which instruction_set out of the ones specified in the command will
perform best on this machine. In this case, ‘‘best’’ is defined by the order in which
instruction set names are returned by isalist(1). Possible values for instruction_set
are given in isalist(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

The following exit values are returned:

0 One of the instruction_set values you specified is printed by this command.

1 There is no output; that is, this machine cannot use any instruction_set that
you specified with the optisa command.

isalist(1), uname(1), attributes(5), isalist(5)

optisa is preferable to uname -p or uname -m (see uname(1)) in determining which
of several binary versions of a given program should be used on the given machine.

optisa(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

EXIT STATUS

SEE ALSO

NOTES

User Commands 1069

pack, pcat, unpack – compress and expand files

pack [-f] [-] file…

pcat file…

unpack file…

The pack command attempts to store the specified files in a compressed form.
Wherever possible (and useful), each input file file is replaced by a packed file
file.z with the same access modes, access and modified dates, and owner as those
of file. If pack is successful, file will be removed.

The amount of compression obtained depends on the size of the input file and the
character frequency distribution. Because a decoding tree forms the first part of each
.z file, it is usually not worthwhile to pack files smaller than three blocks, unless the
character frequency distribution is very skewed, which may occur with printer plots
or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules, which
use a larger character set and have a more uniform distribution of characters, show
little compression, the packed versions being about 90% of the original size.

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

� the file appears to be already packed
� the file name has more than 14 − 2 bytes
� the file has links
� the file is a directory
� the file cannot be opened
� the file is empty
� no disk storage blocks will be saved by packing
� a file called file.z already exists
� the .z file cannot be created
� an I/O error occurred during processing.

The last segment of the file name must contain no more than 14 − 2 bytes to allow
space for the appended .z extension. Directories cannot be compressed.

The pcat command does for packed files what cat(1) does for ordinary files, except
that pcat cannot be used as a filter. The specified files are unpacked and written to
the standard output.

pcat returns the number of files it was unable to unpack. Failure may occur if:

� the file cannot be opened;
� the file does not appear to be the output of pack.

pack(1)

NAME

SYNOPSIS

pack

pcat

1070 man pages section 1: User Commands • Last Revised 20 Dec 1996

The unpack command expands files created by pack. For each file specified in the
command, a search is made for a file called file.z (or just file, if file ends in .z).
If this file appears to be a packed file, it is replaced by its expanded version. The new
file has the .z suffix stripped from its name, and has the same access modes, access
and modification dates, and owner as those of the packed file.

unpack returns a value that is the number of files it was unable to unpack. Failure
may occur for the same reasons that it may in pcat, as well as for the following:

� a file with the ‘‘unpacked’’ name already exists;
� the unpacked file cannot be created.
� the filename (excluding the .z extension) has more than 14 bytes.

The following options are supported by pack:

-f Forces packing of file. This is useful for causing an entire directory to be
packed even if some of the files will not benefit. Packed files can be
restored to their original form using unpack or pcat.

The following operands are supported:

file A path name of a file to be packed, unpacked, or pcated; file can
include or omit the .z suffix.

− pack uses Huffman (minimum redundancy) codes on a
byte-by-byte basis. If the − argument is used, an internal flag is set
that causes the number of times each byte is used, its relative
frequency, and the code for the byte to be printed on the standard
output. Additional occurrences of − in place of file will cause the
internal flag to be set and reset.

See largefile(5) for the description of the behavior of pack, pcat, and unpack
when encountering files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Viewing a Packed File

To view a packed file named file.z use:

example% pcat file.z

or just:

example% pcat file

EXAMPLE 2 Making and Unpacked Copy:

To make an unpacked copy, say nnn, of a packed file named file.z (without
destroying file.z) use the command:

example% pcat file >nnn

pack(1)

unpack

OPTIONS

OPERANDS

USAGE

EXAMPLES

User Commands 1071

See environ(5) for descriptions of the following environment variables that affect the
execution of pack, pcat, and unpack: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred. The number of files the command failed to
pack/unpack is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

cat(1), compress(1), zcat(1), attributes(5), environ(5), largefile(5)

pack(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1072 man pages section 1: User Commands • Last Revised 20 Dec 1996

pagesize – display the size or sizes of a page of memory

/usr/bin/pagesize [-a]

The pagesize utility prints the default size of a page of memory in bytes, as returned
by getpagesize(3C). This program is useful in constructing portable shell scripts.

The following option is supported:

-a Prints out all possible hardware address translation sizes supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

getpagesize(3C), getpagesizes(3C), attributes(5)

pagesize(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

User Commands 1073

pargs – print process arguments, environment variables, or auxiliary vector

pargs [-aceFx] [pid | core…]

The pargs utility examines a target process or process core file and prints arguments,
environment variables and values, or the process auxiliary vector.

pargs outputs unprintable characters as escaped octal in the format \xxx, unless the
character is one of the characters specified in the "Escape Sequences" section of
formats(5), in which case the character is printed as specified in that section.

pargs attempts to be sensitive to the locale of the target process. If the target process
and the pargs process do not share a common character encoding, pargs attempts to
employ the iconv(3C) facility to generate a printable version of the extracted strings.
In the event that such a conversion is impossible, strings are displayed as 7-bit ASCII.

The following options are supported:

-a Prints process arguments as contained in argv[] (default).

-c Treats strings in the target process as though they were encoded in 7-bit
ASCII, regardless of the locale of the target. The use of iconv(3C) is
suppressed.

-e Prints process environment variables and values as pointed at by the
_environ symbol or by pr_envp in /proc/pid/psinfo.

-F Force. Grabs the target process even if another process has control.

-x Prints process auxiliary vector.

The following operands are supported:

pid Process ID list.

core Process core file.

The following exit values are returned:

0 Successful operation.

non-zero An error has occurred (such as no such process,
permission denied, or invalid option).

/proc/pid/* Process information and control files.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu (32-bit)

SUNWesxu (64-bit)

pargs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

1074 man pages section 1: User Commands • Last Revised 14 Dec 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

proc(1), iconv(3C), proc(4), ascii(5), attributes(5), environ(5), formats(5)

pargs(1)

SEE ALSO

User Commands 1075

passwd – change login password and password attributes

passwd [-r files | -r ldap | -r nis | -r nisplus] [name]

passwd [-r files] [-egh] [name]

passwd [-r files] -s [-a]

passwd [-r files] -s [name]

passwd [-r files] [-d | -l] [-f] [-n min] [-w warn] [-x max] name

passwd -r ldap [-egh] [name]

passwd -r nis [-egh] [name]

passwd -r nisplus [-egh] [-D domainname] [name]

passwd -r nisplus -s [-a]

passwd -r nisplus [-D domainname] -s [name]

passwd -r nisplus [-l] [-f] [-n min] [-w warn] [-x max]
[-D domainname] name

The passwd command changes the password or lists password attributes associated
with the user’s login name. Additionally, privileged users may use passwd to install or
change passwords and attributes associated with any login name.

When used to change a password, passwd prompts everyone for their old password,
if any. It then prompts for the new password twice. When the old password is entered,
passwd checks to see if it has "aged" sufficiently. If "aging" is insufficient, passwd
terminates; see pwconv(1M), nistbladm(1), and shadow(4) for additional
information.

When LDAP, NIS, or NIS+ is in effect on a system, passwd changes the NIS or NIS+
database. The NIS or NIS+ password may be different from the password on the local
machine. If NIS or NIS+ is running, use passwd -r to change password information
on the local machine.

The pwconv command creates and updates /etc/shadow with information from
/etc/passwd. pwconv relies on a special value of ’x’ in the password field of
/etc/passwd. This value of ’x’ indicates that the password for the user is already in
/etc/shadow and should not be modified.

If aging is sufficient, a check is made to ensure that the new password meets
construction requirements. When the new password is entered a second time, the two
copies of the new password are compared. If the two copies are not identical, the cycle
of prompting for the new password is repeated for, at most, two more times.

Passwords must be constructed to meet the following requirements:

� Each password must have PASSLENGTH characters, where PASSLENGTH is defined
in /etc/default/passwd and is set to 6. Only the first eight characters are
significant.

passwd(1)

NAME

SYNOPSIS

DESCRIPTION

1076 man pages section 1: User Commands • Last Revised 10 Dec 2001

� Each password must contain at least two alphabetic characters and at least one
numeric or special character. In this case, "alphabetic" refers to all upper or lower
case letters.

� Each password must differ from the user’s login name and any reverse or circular
shift of that login name. For comparison purposes, an upper case letter and its
corresponding lower case letter are equivalent.

� New passwords must differ from the old by at least three characters. For
comparison purposes, an upper case letter and its corresponding lower case letter
are equivalent.

If all requirements are met, by default, the passwd command will consult
/etc/nsswitch.conf to determine in which repositories to perform password
update. It searches the passwd and passwd_compat entries. The sources
(repositories) associated with these entries will be updated. However, the password
update configurations supported are limited to the following cases. Failure to comply
with the configurations will prevent users from logging onto the system. The
password update configurations are:

� passwd: files

� passwd: files ldap

� passwd: files nis

� passwd: files nisplus

� passwd: compat (==> files nis)
� passwd: compat (==> files ldap)

passwd_compat: ldap

� passwd: compat (==> files nisplus)

passwd_compat: nisplus

Network administrators, who own the NIS+ password table, may change any
password attributes.

In the files case, super-users (for instance, real and effective uid equal to 0, see
id(1M) and su(1M)) may change any password. Hence, passwd does not prompt
privileged users for the old password. Privileged users are not forced to comply with
password aging and password construction requirements. A privileged user can create
a null password by entering a carriage return in response to the prompt for a new
password. (This differs from passwd -d because the "password" prompt will still be
displayed.) If NIS is in effect, superuser on the root master can change any password
without being prompted for the old NIS passwd, and is not forced to comply with
password construction requirements.

Normally, passwd entered with no arguments will change the password of the current
user. When a user logs in and then invokes su(1M) to become super-user or another
user, passwd will change the original user’s password, not the password of the
super-user or the new user.

passwd(1)

User Commands 1077

Any user may use the -s option to show password attributes for his or her own login
name, provided they are using the -r nisplus argument. Otherwise, the -s argument
is restricted to the superuser.

The format of the display will be:

name status mm/dd/yy min max warn

or, if password aging information is not present,

name status

where

name The login ID of the user.

status The password status of name: PS stands for passworded or locked,
LK stands for locked, and NP stands for no password.

mm/dd/yy The date password was last changed for name. Notice that all
password aging dates are determined using Greenwich Mean Time
(Universal Time) and therefore may differ by as much as a day in
other time zones.

min The minimum number of days required between password
changes for name. MINWEEKS is found in /etc/default/passwd
and is set to NULL.

max The maximum number of days the password is valid for name.
MAXWEEKS is found in /etc/default/passwd and is set to
NULL.

warn The number of days relative to max before the password expires
and the name will be warned.

passwd uses pam(3PAM) for password management. The PAM configuration policy,
listed through /etc/pam.conf, specifies the password modules to be used for
passwd. Here is a partial pam.conf file with entries for the passwd command using
the passwd-auth module:

passwd auth required pam_passwd_auth.so.1

If there are no entries for the passwd service, then the entries for the "other" service
will be used. If multiple password modules are listed, then the user may be prompted
for multiple passwords.

The following options are supported:

-a Shows password attributes for all entries. Use only with the -s
option. name must not be provided. For the nisplus repository,
this will show only the entries in the NIS+ password table in the
local domain that the invoker is authorized to "read". For the
files repository, this is restricted to the superuser.

passwd(1)

Security

OPTIONS

1078 man pages section 1: User Commands • Last Revised 10 Dec 2001

-D domainname Consults the passwd.org_dir table in domainname. If this
option is not specified, the default domainname returned by
nis_local_directory(3NSL) will be used. This domain name
is the same as that returned by domainname(1M).

-e Changes the login shell. For the files repository, this only works
for the super-user. Normal users may change the ldap, nis, or
nisplus repositories. The choice of shell is limited by the
requirements of getusershell(3C). If the user currently has a
shell that is not allowed by getusershell, only root may change
it.

-g Changes the gecos (finger) information. For the files repository,
this only works for the superuser. Normal users may change the
ldap, nis, or nisplus repositories.

-h Changes the home directory.

-r Specifies the repository to which an operation is applied. The
supported repositories are files, ldap, nis, or nisplus.

-s name Shows password attributes for the login name. For the nisplus
repository, this works for everyone. However for the files
repository, this only works for the superuser. It does not work at
all for the nis repository which does not support password aging.

Only a privileged user can use the following options:

-d Deletes password for name. The login name will not be prompted
for password. It is only applicable to the files repository.

-f Forces the user to change password at the next login by expiring
the password for name.

-l Locks password entry for name.

-n min Sets minimum field for name. The min field contains the minimum
number of days between password changes for name. If min is
greater than max, the user may not change the password. Always
use this option with the -x option, unless max is set to −1 (aging
turned off). In that case, min need not be set.

-w warn Sets warn field for name. The warn field contains the number of
days before the password expires and the user is warned. This
option is not valid if password aging is disabled.

-x max Sets maximum field for name. The max field contains the number of
days that the password is valid for name. The aging for name will
be turned off immediately if max is set to −1. If it is set to 0, then
the user is forced to change the password at the next login session
and aging is turned off.

The following operand is supported:

passwd(1)

Privileged User
Options

OPERANDS

User Commands 1079

name User login name.

If any of the LC_* variables, that is, LC_CTYPE, LC_MESSAGES, LC_TIME,
LC_COLLATE, LC_NUMERIC, and LC_MONETARY (see environ(5)), are not set in the
environment, the operational behavior of passwd for each corresponding locale
category is determined by the value of the LANG environment variable. If LC_ALL is
set, its contents are used to override both the LANG and the other LC_* variables. If
none of the above variables is set in the environment, the "C" (U.S. style) locale
determines how passwd behaves.

LC_CTYPE Determines how passwd handles characters. When LC_CTYPE is
set to a valid value, passwd can display and handle text and
filenames containing valid characters for that locale. passwd can
display and handle Extended Unix Code (EUC) characters where
any individual character can be 1, 2, or 3 bytes wide. passwd can
also handle EUC characters of 1, 2, or more column widths. In the
"C" locale, only characters from ISO 8859-1 are valid.

LC_MESSAGES Determines how diagnostic and informative messages are
presented. This includes the language and style of the messages,
and the correct form of affirmative and negative responses. In the
"C" locale, the messages are presented in the default form found in
the program itself (in most cases, U.S. English).

The passwd command exits with one of the following values:

0 Success.

1 Permission denied.

2 Invalid combination of options.

3 Unexpected failure. Password file unchanged.

4 Unexpected failure. Password file(s) missing.

5 Password file(s) busy. Try again later.

6 Invalid argument to option.

7 Aging option is disabled.

8 No memory.

9 System error.

10 Account expired.

/etc/oshadow

/etc/shells

/etc/passwd Password file.

/etc/shadow Shadow password file.

passwd(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

1080 man pages section 1: User Commands • Last Revised 10 Dec 2001

/etc/default/passwd Default values can be set for the following flags in
/etc/default/passwd. For example: MAXWEEKS=26

MAXWEEKS Maximum time period that
password is valid.

MINWEEKS Minimum time period before the
password can be changed.

PASSLENGTH Minimum length of password, in
characters.

WARNWEEKS Time period until warning of date
of password’s ensuing expiration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

finger(1), login(1), nistbladm(1), domainname(1M), eeprom(1M), id(1M),
passmgmt(1M), pwconv(1M), su(1M), useradd(1M), userdel(1M), usermod(1M),
crypt(3C), getpwnam(3C), getspnam(3C), getusershell(3C),
nis_local_directory(3NSL), pam(3PAM), loginlog(4), nsswitch.conf(4),
pam.conf(4), passwd(4), shadow(4), attributes(5), environ(5),
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_ldap(5), pam_unix(5), pam_unix_account(5),
pam_unix_auth(5), pam_unix_session(5)

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_unix_account(5), pam_unix_auth(5),
pam_unix_session(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), and pam_passwd_auth(5).

The nispasswd and ypasswd commands are wrappers around passwd. Use of
nispasswd and ypasswd is discouraged. Use passwd -r repository_name instead.

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

passwd(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1081

paste – merge corresponding or subsequent lines of files

paste [-s] [-d list] file…

The paste utility will concatenate the corresponding lines of the given input files, and
write the resulting lines to standard output.

The default operation of paste will concatenate the corresponding lines of the input
files. The NEWLINE character of every line except the line from the last input file will
be replaced with a TAB character.

If an EOF (end-of-file) condition is detected on one or more input files, but not all
input files, paste will behave as though empty lines were read from the files on
which EOF was detected, unless the -s option is specified.

The following options are supported:

-d list Unless a backslash character (\) appears in list, each character in
list is an element specifying a delimiter character. If a backslash
character appears in list, the backslash character and one or more
characters following it are an element specifying a delimiter
character as described below. These elements specify one or more
delimiters to use, instead of the default TAB character, to replace
the NEWLINE character of the input lines. The elements in list are
used circularly; that is, when the list is exhausted the first element
from the list is reused.

When the -s option is specified:

� The last newline character in a file will not be modified.
� The delimiter will be reset to the first element of list after each

file operand is processed.

When the option is not specified:

� The NEWLINE characters in the file specified by the last file
will not be modified.

� The delimiter will be reset to the first element of list each time a
line is processed from each file.

If a backslash character appears in list, it and the character
following it will be used to represent the following delimiter
characters:

\n Newline character.

\t Tab character.

\\ Backslash character.

\0 Empty string (not a null character). If \0 is immediately
followed by the character x, the character X, or any

paste(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1082 man pages section 1: User Commands • Last Revised 20 Dec 1996

character defined by the LC_CTYPE digit keyword,
the results are unspecified.

If any other characters follow the backslash, the results are
unspecified.

-s Concatenate all of the lines of each separate input file in command
line order. The NEWLINE character of every line except the last
line in each input file will be replaced with the TAB character,
unless otherwise specified by the -d option.

The following operand is supported:

file A path name of an input file. If − is specified for one or more of the files,
the standard input will be used; the standard input will be read one line at
a time, circularly, for each instance of −. Implementations support pasting
of at least 12 file operands.

See largefile(5) for the description of the behavior of paste when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 List a directory in one column.

ls | paste -d" " −

EXAMPLE 2 List a directory in four columns.

ls | paste − − − −

EXAMPLE 3 Combine pairs of lines from a file into single lines.

paste -s -d"\ t\ n" file

See environ(5) for descriptions of the following environment variables that affect the
execution of paste: LC_CTYPE and LC_MESSAGES.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

paste(1)

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

User Commands 1083

cut(1), grep(1), pr(1), attributes(5), environ(5), largefile(5)

"line too long" Output lines are restricted to 511 characters.

"too many files" Except for -s option, no more than 12 input files may
be specified.

"no delimiters" The -d option was specified with an empty list.

"cannot open file" The specified file cannot be opened.

paste(1)

SEE ALSO

DIAGNOSTICS

1084 man pages section 1: User Commands • Last Revised 20 Dec 1996

patch – apply changes to files

patch [-blNR] [-c | -e | -n | -u] [-d dir] [-D define] [-i patchfile]
[-o outfile] [-p num] [-r rejectfile] [file]

The patch command reads a source (patch) file containing any of the three forms of
difference (diff) listings produced by the diff(1) command (normal, context or in the
style of ed(1)) and apply those differences to a file. By default, patch reads from the
standard input.

patch attempts to determine the type of the diff listing, unless overruled by a -c,
-e, or -n option.

If the patch file contains more than one patch, patch will attempt to apply each of
them as if they came from separate patch files. (In this case the name of the patch file
must be determinable for each diff listing.)

The following options are supported:

-b Saves a copy of the original contents of each modified file, before
the differences are applied, in a file of the same name with the
suffix .orig appended to it. If the file already exists, it will be
overwritten. If multiple patches are applied to the same file, the
.orig file will be written only for the first patch. When the -o
outfile option is also specified, file.orig will not be created but, if
outfile already exists, outfile.orig will be created.

-c Interprets the patch file as a context difference (the output of the
command diff when the -c or -C options are specified).

-d dir Changes the current directory to dir before processing as described
in EXTENDED DESCRIPTION.

-D define Marks changes with the C preprocessor construct:

#ifdef define
. . .

#endif

The option-argument define will be used as the differentiating symbol.

-e Interprets the patch file as an ed script, rather than a diff script.

-i patchfile Reads the patch information from the file named by the path name
patchfile, rather than the standard input.

-l (The letter ell.) Causes any sequence of blank characters in the
difference script to match any sequence of blank characters in the
input file. Other characters will be matched exactly.

-n Interprets the script as a normal difference.

-N Ignores patches where the differences have already been applied to
the file; by default, already-applied patches are rejected.

patch(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1085

-o outfile Instead of modifying the files (specified by the file operand or the
difference listings) directly, writes a copy of the file referenced by
each patch, with the appropriate differences applied, to outfile.
Multiple patches for a single file will be applied to the
intermediate versions of the file created by any previous patches,
and will result in multiple, concatenated versions of the file being
written to outfile.

-p num For all path names in the patch file that indicate the names of files
to be patched, deletes num path name components from the
beginning of each path name. If the path name in the patch file is
absolute, any leading slashes are considered the first component
(that is, -p 1 removes the leading slashes). Specifying -p 0 causes
the full path name to be used. If -p is not specified, only the
basename (the final path name component) is used.

-R Reverses the sense of the patch script. That is, assumes that the
difference script was created from the new version to the old
version. The -R option cannot be used with ed scripts. patch
attempts to reverse each portion of the script before applying it.
Rejected differences will be saved in swapped format. If this
option is not specified, and until a portion of the patch file is
successfully applied, patch attempts to apply each portion in its
reversed sense as well as in its normal sense. If the attempt is
successful, the user will be prompted to determine if the -R option
should be set.

-r rejectfile Overrides the default reject file name. In the default case, the reject
file will have the same name as the output file, with the suffix
.rej appended to it. See Patch Application.

-u Interprets the patch file as a unified context difference, that is, the
output of the command diff when the -u or -U options are
specified.

The following operand is supported:

file A path name of a file to patch.

The -R option will not work with ed scripts because there is too little information to
reconstruct the reverse operation.

The -p option makes it possible to customize a patch file to local user directory
structures without manually editing the patch file. For example, if the file name in the
patch file was /curds/whey/src/blurfl/blurfl.c:

� Setting -p 0 gives the entire path name unmodified.

� Setting -p 1 gives:

curds/whey/src/blurfl/blurfl.c

patch(1)

OPERANDS

USAGE

1086 man pages section 1: User Commands • Last Revised 28 Sep 2001

� Without the leading slash, -p 4 gives:

blurfl/blurfl.c

� Not specifying -p at all gives:

blurfl.c

When using -b in some file system implementations, the saving of a .orig file may
produce unwanted results. In the case of 12–, 13–, or 14-character file names, on file
systems supporting 14-character maximum file names, the .orig file will overwrite
the new file.

See environ(5) for descriptions of the following environment variables that affect the
execution of patch: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

The output of patch the save files (.orig suffixes) and the reject files (.rej suffixes)
will be text files.

A patch file may contain patching instructions for more than one file. File names are
determined as specified in Patch Determination. When the -b option is specified,
for each patched file, the original will be saved in a file of the same name with the
suffix .orig appended to it.

For each patched file, a reject file may also be created as noted in Patch
Application. In the absence of an -r option, the name of this file will be formed by
appending the suffix .rej to the original file name.

The patch file must contain zero or more lines of header information followed by one
or more patches. Each patch must contain zero or more lines of file name identification
in the format produced by diff -c, and one or more sets of diff output, which are
customarily called hunks.

patch recognizes the following expression in the header information:

Index:pathname The file to be patched is named pathname.

If all lines (including headers) within a patch begin with the same leading sequence of
blank characters, patch will remove this sequence before proceeding. Within each
patch, if the type of difference is context, patch recognizes the following expressions:

* * * filename timestamp
The patches arose from filename.

− − − filename timestamp
The patches should be applied to filename.

Each hunk within a patch must be the diff output to change a line range within the
original file. The line numbers for successive hunks within a patch must occur in
ascending order.

patch(1)

ENVIRONMENT
VARIABLES

OUTPUT FILES

EXTENDED
DESCRIPTION

Patch File Format

User Commands 1087

If no file operand is specified, patch performs the following steps to obtain a path
name:

1. If the patch contains the strings *** and − − −, patch strips components from the
beginning of each path name (depending on the presence or value of the -p
option), then tests for the existence of both files in the current directory (or
directory specified with the -d option).

2. If both files exist, patch assumes that no path name can be obtained from this
step. If the header information contains a line with the string Index:, patch strips
components from the beginning of the path name (depending on -p), then tests for
the existence of this file in the current directory (or directory specified with the -d
option).

3. If an SCCS directory exists in the current directory, patch will attempt to perform
a get -e SCCS/s.filename command to retrieve an editable version of the file.

4. If no path name can be obtained by applying the previous steps, or if the path
names obtained do not exist, patch will write a prompt to standard output and
request a file name interactively from standard input.

If the -c, -e, -n, or -u option is present, patch will interpret information within each
hunk as a context difference, an ed difference, a normal difference, or a unified context
difference, respectively. In the absence of any of these options, patch determines the
type of difference based on the format of information within the hunk.

For each hunk, patch begins to search for the place to apply the patch at the line
number at the beginning of the hunk, plus or minus any offset used in applying the
previous hunk. If lines matching the hunk context are not found, patch scans both
forwards and backwards at least 1000 bytes for a set of lines that match the hunk
context.

If no such place is found and it is a context difference, then another scan will take
place, ignoring the first and last line of context. If that fails, the first two and last two
lines of context will be ignored and another scan will be made. Implementations may
search more extensively for installation locations.

If no location can be found, patch will append the hunk to the reject file. The rejected
hunk will be written in context-difference format regardless of the format of the patch
file. If the input was a normal or ed -style difference, the reject file may contain
differences with zero lines of context. The line numbers on the hunks in the reject file
may be different from the line numbers in the patch file since they will reflect the
approximate locations for the failed hunks in the new file rather than the old one.

If the type of patch is an ed diff, the implementation may accomplish the patching by
invoking the ed command.

The following exit values are returned:

0 Successful completion.

1 One or more lines were written to a reject file.

patch(1)

File Name
Determination

Patch Application

EXIT STATUS

1088 man pages section 1: User Commands • Last Revised 28 Sep 2001

>1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ed(1), diff(1), attributes(5), environ(5)

patch(1)

ATTRIBUTES

SEE ALSO

User Commands 1089

pathchk – check path names

pathchk [-p] path…

The pathchk command will check that one or more path names are valid (that is,
they could be used to access or create a file without causing syntax errors) and
portable (that is, no filename truncation will result). More extensive portability checks
are provided by the -p option.

By default, pathchk will check each component of each path operand based on the
underlying file system. A diagnostic will be written for each path operand that:

� is longer than PATH_MAX bytes.

� contains any component longer than NAME_MAX bytes in its containing directory

� contains any component in a directory that is not searchable

� contains any character in any component that is not valid in its containing
directory.

The format of the diagnostic message is not specified, but will indicate the error
detected and the corresponding path operand.

It will not be considered an error if one or more components of a path operand do not
exist as long as a file matching the path name specified by the missing components
could be created that does not violate any of the checks specified above.

The following option is supported:

-p Instead of performing checks based on the underlying file system, write a
diagnostic for each path operand that:

� is longer than _POSIX_PATH_MAX bytes
� contains any component longer than _POSIX_NAME_MAX bytes
� contains any character in any component that is not in the portable

filename character set.

The following operand is supported:

path A path to be checked.

See largefile(5) for the description of the behavior of pathchk when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Examples of the pathchk command.

To verify that all paths in an imported data interchange archive are legitimate and
unambiguous on the current system:

pax -f archive | sed -e ’/ == .*/s///’ | xargs pathchk
if [$? -eq 0]
then

pax -r -f archive
else

pathchk(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

1090 man pages section 1: User Commands • Last Revised 1 Feb 1995

EXAMPLE 1 Examples of the pathchk command. (Continued)

echo Investigate problems before importing files.
exit 1

fi

To verify that all files in the current directory hierarchy could be moved to any system
conforming to the X/Open specification that also supports the pax(1) command:

find . -print | xargs pathchk -p
if [$? −eq 0]
then

pax -w -f archive .
else

echo Portable archive cannot be created.
exit 1

fi

To verify that a user-supplied path names a readable file and that the application can
create a file extending the given path without truncation and without overwriting any
existing file:

case $- in
C) reset="";;
*) reset="set +C"

set -C;;
esac
test -r "$path" && pathchk "$path.out" &&

rm "$path.out" > "$path.out"
if [$? -ne 0]; then

printf "%s: %s not found or %s.out fails \
creation checks.\n" $0 "$path" "$path"

$reset # reset the noclobber option in case a trap
on EXIT depends on it

exit 1
fi
$reset
PROCESSING < "$path" > "$path.out"

The following assumptions are made in this example:

1. PROCESSING represents the code that will be used by the application to use $path
once it is verified that $path.out will work as intended.

2. The state of the noclobber option is unknown when this code is invoked and
should be set on exit to the state it was in when this code was invoked. (The reset
variable is used in this example to restore the initial state.)

3. Note the usage of:

rm "$path.out" > "$path.out"

a. The pathchk command has already verified, at this point, that
$path.out will not be truncated.

b. With the noclobber option set, the shell will verify that $path.out
does not already exist before invoking rm.

pathchk(1)

User Commands 1091

EXAMPLE 1 Examples of the pathchk command. (Continued)

c. If the shell succeeded in creating $path.out, rm will remove it so that
the application can create the file again in the PROCESSING step.

d. If the PROCESSING step wants the file to exist already when it is
invoked, the:

rm "$path.out" > "$path.out"

should be replaced with:

> "$path.out"

which will verify that the file did not already exist, but leave
$path.out in place for use by PROCESSING.

See environ(5) for descriptions of the following environment variables that affect the
execution of pathchk: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All path operands passed all of the checks.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

pax(1), test(1), attributes(5), environ(5), largefile(5)

pathchk(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1092 man pages section 1: User Commands • Last Revised 1 Feb 1995

pathconv – search FMLI criteria for filename

pathconv [-f] [-v alias]

pathconv [-t] [-l] [-nnum] [-v string]

The pathconv function converts an alias to its pathname. By default, it takes the alias
as a string from the standard input.

-f If -f is specified, the full path will be returned (this is the default).

-t If -t is specified, pathconv will truncate a pathname specified in string in
a format suitable for display as a frame title. This format is a shortened
version of the full pathname, created by deleting components of the path
from the middle of the string until it is under DISPLAYW — 6 characters in
length, and then inserting ellipses (. . .) between the remaining pieces.
Ellipses are also used to show truncation at the ends of the strings if
necessary, unless the -l option is given.

-l If -l is specified, < and > will be used instead of ellipses (. . .) to
indicate truncation at the ends of the string generated by the -t option.
Using -l allows display of the longest possible string while still notifying
users it has been truncated.

-nnum If -n is specified, num is the maximum length of the string (in characters)
generated by the -t option. The argument num can be any integer from 1
to 255.

-valias | string If the -v option is used, then alias or string can be specified when
pathconv is called. The argument alias must be an alias defined in the
alias_file named when fmli was invoked. The argument string can only be
used with the -t option and must be a pathname.

EXAMPLE 1 A sample that uses pathconv to construct the menu title. It searches for MYPATH
in the alias_file named when fmli command.

Here is a menu descriptor that uses pathconv to construct the menu title. It searches
for MYPATH in the alias_file named when fmli was invoked:

menu=‘pathconv -v MYPATH/ls‘
.
.
.

where there is a line in alias_file that defines MYPATH. For example,
MYPATH=$HOME/bin:/usr/bin.

Here is a menu descriptor that takes alias from the standard input.

menu=‘echo MYPATH/ls | pathconv‘
.
.
.

pathconv(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

User Commands 1093

EXAMPLE 1 A sample that uses pathconv to construct the menu title. It searches for MYPATH
in the alias_file named when fmli command. (Continued)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

fmli(1), attributes(5)

pathconv(1F)

ATTRIBUTES

SEE ALSO

1094 man pages section 1: User Commands • Last Revised 5 Jul 1990

pax – portable archive interchange

pax [-cdnv] [-f archive] [-s replstr] … [pattern…]

pax -r [-cdiknuv] [-f archive] [-o options…] [-p string] … [-s replstr] …
[pattern…]

pax -w [-dituvX@] [-b blocksize] [-a] [-f archive] [-o options] …
[-s replstr] … [-x format] [file…]

pax -r -w [-diklntuvX@] [-p string] … [-s replstr] … [file…] directory

The pax command reads, writes and writes lists of the members of archive files and
copy directory hierarchies. A variety of archive formats are supported. See the -x
format option.

The action to be taken depends on the presence of the -r and -w options. The four
combinations of -r and -w are referred to as the four modes of operation: list, read,
write, and copy modes, corresponding respectively to the four forms shown in the
SYNOPSIS.

list In list mode (when neither -r nor -w are specified), pax writes the names
of the members of the archive file read from the standard input, with path
names matching the specified patterns, to standard output. If a named file
has extended attributes, the extended attributes are also listed. If a named
file is of type directory, the file hierarchy rooted at that file will be written
out as well.

read In read mode (when -r is specified, but -w is not), pax extracts the
members of the archive file read from the standard input, with path names
matching the specified patterns. If an extracted file is of type directory, the
file hierarchy rooted at that file will be extracted as well. The extracted files
is created relative to the current file hierarchy.

The ownership, access and modification times, and file mode of the
restored files are discussed under the -p option.

write In write mode (when -w is specified, but -r is not), pax writes the contents
of the file operands to the standard output in an archive format. If no file
operands are specified, a list of files to copy, one per line, will be read from
the standard input. A file of type directory will include all of the files in the
file hierarchy rooted at the file.

copy In copy mode (when both -r and -w are specified), pax copies the file
operands to the destination directory.

If no file operands are specified, a list of files to copy, one per line, will be
read from the standard input. A file of type directory will include all of the
files in the file hierarchy rooted at the file.

pax(1)

NAME

SYNOPSIS

DESCRIPTION

Modes of
Operations

User Commands 1095

The effect of the copy is as if the copied files were written to an archive file
and then subsequently extracted, except that there may be hard links
between the original and the copied files. If the destination directory is a
subdirectory of one of the files to be copied, the results are unspecified. It is
an error if directory does not exist, is not writable by the user, or is not a
directory.

In read or copy modes, if intermediate directories are necessary to extract an archive
member, pax will perform actions equivalent to the mkdir(2) function, called with the
following arguments:

� the intermediate directory used as the path argument

� the octal value of 777 or rwx (read, write, and execute permissions) as the mode
argument (see chmod(1)).

If any specified pattern or file operands are not matched by at least one file or
archive member, pax will write a diagnostic message to standard error for each one
that did not match and exit with a non-zero exit status.

The supported archive formats are automatically detected on input. The default
output archive format is tar(1).

If the selected archive format supports the specification of linked files, it is an error if
these files cannot be linked when the archive is extracted. Any of the various names in
the archive that represent a file can be used to select the file for extraction.

The following options are supported:

-r Reads an archive file from standard input.

-w Writes files to the standard output in the specified archive format.

-a Appends files to the end of the archive. This option will not work
for some archive devices, such as 1/4-inch streaming tapes and
8mm tapes.

-b blocksize Blocks the output at a positive decimal integer number of bytes
per write to the archive file. Devices and archive formats may
impose restrictions on blocking. Blocking is automatically
determined on input. Portable applications must not specify a
blocksize value larger than 32256. Default blocking when creating
archives depends on the archive format. See the -x option below.

-c Matches all file or archive members except those specified by the
pattern or file operands.

-d Causes files of type directory being copied or archived or archive
members of type directory being extracted to match only the file or
archive member itself and not the file hierarchy rooted at the file.

pax(1)

OPTIONS

1096 man pages section 1: User Commands • Last Revised 7 Jun 2001

-f archive Specifies the path name of the input or output archive, overriding
the default standard input (in list or read modes) or standard
output (write mode).

-i Interactively renames files or archive members. For each archive
member matching a pattern operand or file matching a file operand,
a prompt will be written to the file /dev/tty. The prompt will
contain the name of the file or archive member. A line will then be
read from /dev/tty. If this line is blank, the file or archive
member will be skipped. If this line consists of a single period, the
file or archive member will be processed with no modification to
its name. Otherwise, its name will be replaced with the contents of
the line. The pax command will immediately exit with a non-zero
exit status if end-of-file is encountered when reading a response or
if /dev/tty cannot be opened for reading and writing.

-k Prevents the overwriting of existing files.

-l Links files. In copy mode, hard links will be made between the
source and destination file hierarchies whenever possible.

-n Selects the first archive member that matches each pattern operand.
No more than one archive member will be matched for each
pattern, although members of type directory will still match the file
hierarchy rooted at that file.

-o options Reserved for special format-specific options.

-p string Specifies one or more file characteristic options (privileges). The
string option-argument must be a string specifying file
characteristics to be retained or discarded on extraction. The string
consists of the specification characters a, e, m, o, and p. Multiple
characteristics can be concatenated within the same string and
multiple -p options can be specified. The meaning of the
specification characters are as follows:

a Does not preserve file access times.

e Preserves the user ID, group ID, file mode bits, access
time, and modification time.

m Does not preserve file modification times.

o Preserves the user ID and group ID.

p Preserves the file mode bits. Other,
implementation-dependent file-mode attributes may be
preserved.

pax(1)

User Commands 1097

In the preceding list, ‘‘preserve’’ indicates that an attribute stored
in the archive will be given to the extracted file, subject to the
permissions of the invoking process. Otherwise, the attribute will
be determined as part of the normal file creation action.

If neither the e nor the o specification character is specified, or the
user ID and group ID are not preserved for any reason, pax will
not set the setuid and setgid bits of the file mode.

If the preservation of any of these items fails for any reason, pax
will write a diagnostic message to standard error. Failure to
preserve these items will affect the final exit status, but will not
cause the extracted file to be deleted.

If file-characteristic letters in any of the string option-arguments
are duplicated or conflict with each other, the ones given last will
take precedence. For example, if -p eme is specified, file
modification times will be preserved.

-s replstr Modifies file or archive member names named by pattern or file
operands according to the substitution expression replstr, which is
based on the ed(1) s (substitution) command, using the regular
expression syntax on the regex(5) manual page. The concepts of
‘‘address’’ and ‘‘line’’ are meaningless in the context of the pax
command, and must not be supplied. The format is:

-s / old/new/ [gp]

where, as in ed, old is a basic regular expression and new can
contain an ampersand (&) or a \n backreference, where n is a digit.
The old string also is permitted to contain newline characters.

Any non-null character can be used as a delimiter (/ shown
here). Multiple -s expressions can be specified; the expressions
will be applied in the order specified, terminating with the first
successful substitution. The optional trailing g is as defined in the
ed command. The optional trailing p causes successful
substitutions to be written to standard error. File or archive
member names that substitute to the empty string are ignored
when reading and writing archives.

-t Causes the access times of the archived files to be the same as they
were before being read by pax.

-u Ignores files that are older (having a less recent file modification
time) than a pre-existing file or archive member with the same
name.

pax(1)

1098 man pages section 1: User Commands • Last Revised 7 Jun 2001

read mode An archive member with the same name as a
file in the file system will be extracted if the
archive member is newer than the file.

write mode An archive file member with the same name as
a file in the file system will be superseded if
the file is newer than the archive member.

copy mode The file in the destination hierarchy will be
replaced by the file in the source hierarchy or
by a link to the file in the source hierarchy if
the file in the source hierarchy is newer.

-v In list mode, produces a verbose table of contents (see Standard
Output). Otherwise, writes archive member path names and
extended attributes to standard error (see Standard Error).

-x format Specifies the output archive format. The pax command recognizes
the following formats:

cpio The extended cpio(1) interchange format. See
the IEEE 1003.1(1990) specifications. The
default blocksize for this format for character
special archive files is 5120. Implementations
support all blocksize values less than or equal to
32256 that are multiples of 512.

This archive format allows files with UIDs and
GIDs up to 262143 to be stored in the archive.
Files with UIDs and GIDs greater than this
value will be archived with the UID and GID
of 60001.

ustar The extended tar(1) interchange format. See
the IEEE 1003.1(1990) specifications. The
default blocksize for this format for character
special archive files is 10240. Implementations
support all blocksize values less than or equal to
32256 that are multiples of 512.

Any attempt to append to an archive file in a
format different from the existing archive
format will cause pax to exit immediately with
a non-zero exit status.

This archive format allows files with UIDs and
GIDs up to 2097151 to be stored in the archive.
Files with UIDs and GIDs greater than this
value will be archived with the UID and GID
of 60001.

pax(1)

User Commands 1099

xustar Similar to ustar. Will also allow archiving
and extracting files whose size is greater than
8GB; whose UID, GID, devmajor, or devminor
values are greater than 2097151; whose path
(including filename) is greater than 255
characters; or whose linkname is greater than
100 characters. This option should not be used
if the archive is to be extracted by an archiver
that cannot handle the larger values.

-X When traversing the file hierarchy specified by a path name, pax
will not descend into directories that have a different device ID
(st_dev, see stat(2)).

-@ When traversing the file hierarchy specified by a path name, pax
will descend into the attribute directory for any file with extended
attributes. Extended attributes go into the archive as special files.
When this flag is used during file extraction, any extended
attributes associated with a file being extracted are also extracted.
Extended attribute files can only be extracted from an archive as
part of a normal file extract. Attempts to explicitly extract attribute
records are ignored.

The options that operate on the names of files or archive members (-c, -i, -n, -s, -u
and -v) interact as follows. In read mode, the archive members are selected based on
the user-specified pattern operands as modified by the -c, -n and -u options. Then,
any -s and -i options will modify, in that order, the names of the selected files. The
-v option will write names resulting from these modifications.

In write mode, the files are selected based on the user-specified path names as
modified by the -n and -u options. Then, any -s and -i options will, in that order,
modify the names of these selected files. The -v option will write names resulting
from these modifications.

If both the -u and -n options are specified, pax does not consider a file selected
unless it is newer than the file to which it is compared.

The following operands are supported:

directory The destination directory path name for copy mode.

file A path name of a file to be copied or archived.

pattern A pattern matching one or more path names of archive members.
A pattern must conform to the pattern matching notation found on
the fnmatch(5) manual page. The default, if no pattern is
specified, is to select all members in the archive.

In write mode, if -f is not specified, the standard output will be the archive formatted
according to cpio or ustar. (See -x format.)

pax(1)

OPERANDS

Standard Output

1100 man pages section 1: User Commands • Last Revised 7 Jun 2001

In list mode, the table of contents of the selected archive members will be written to
standard output using the following format:

"%s\n" <pathname>

If the -v option is specified in list mode, the table of contents of the selected archive
members will be written to standard output using the following formats:

For path names representing hard links to previous members of the archive:

"%s==%s\n" <ls -l listing>, linkname

For all other path names:

<pathname> "%s\n" <ls -l listing>

where <ls -l listing> is the format specified by the ls command with the -l option.
When writing path names in this format, it is unspecified what is written for fields for
which the underlying archive format does not have the correct information, although
the correct number of blank-character-separated fields will be written.

In list mode, standard output will not be buffered more than a line at a time.

If -v is specified in read, write or copy modes, pax will write the path names it
processes to the standard error output using the following format:

"%s\n" <pathname>

These path names will be written as soon as processing is begun on the file or archive
member, and will be flushed to standard error. The trailing newline character, which
will not be buffered, will be written when the file has been read or written.

If the -s option is specified, and the replacement string has a trailing p, substitutions
will be written to standard error in the following format:

"%s>>%s\n" <original pathname>, <new pathname>

In all operating modes of pax, optional messages of unspecified format concerning the
input archive format and volume number, the number of files, blocks, volumes and
media parts as well as other diagnostic messages may be written to standard error.

In all formats, for both standard output and standard error, it is unspecified how
non-printable characters in path names or linknames are written.

If pax cannot create a file or a link when reading an archive or cannot find a file when
writing an archive, or cannot preserve the user ID, group ID, or file mode when the -p
option is specified, a diagnostic message will be written to standard error and a
non-zero exit status will be returned, but processing will continue. In the case where
pax cannot create a link to a file, pax will not, by default, create a second copy of the
file.

pax(1)

Standard Error

ERRORS

User Commands 1101

If the extraction of a file from an archive is prematurely terminated by a signal or
error, pax may have only partially extracted the file or (if the -n option was not
specified) may have extracted a file of the same name as that specified by the user, but
which is not the file the user wanted. Additionally, the file modes of extracted
directories may have additional bits from the read, write, execute mask set as well as
incorrect modification and access times.

The -p (privileges) option was invented to reconcile differences between historical
tar(1) and cpio(1) implementations. In particular, the two utilities use -m in
diametrically opposed ways. The -p option also provides a consistent means of
extending the ways in which future file attributes can be addressed, such as for
enhanced security systems or high-performance files. Although it may seem complex,
there are really two modes that will be most commonly used:

-p e ‘‘Preserve everything’’. This would be used by the historical superuser,
someone with all the appropriate privileges, to preserve all aspects of the
files as they are recorded in the archive. The e flag is the sum of o and p,
and other implementation-dependent attributes.

-p p ‘‘Preserve’’ the file mode bits. This would be used by the user with regular
privileges who wished to preserve aspects of the file other than the
ownership. The file times are preserved by default, but two other flags are
offered to disable these and use the time of extraction.

See largefile(5) for the description of the behavior of pax when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Copying the contents of the current directory

The following command:

example% pax -w -f /dev/rmt/1m .

copies the contents of the current directory to tape drive 1, medium density. (This
assumes historical System V device naming procedures. The historical BSD device
name would be /dev/rmt9).

EXAMPLE 2 Copying the directory hierarchy

The following commands:

example% mkdir newdir

example% pax -rw olddir newdir

copy the olddir directory hierarchy to newdir.

pax(1)

USAGE

EXAMPLES

1102 man pages section 1: User Commands • Last Revised 7 Jun 2001

EXAMPLE 3 Reading an archive extracted relative to the current directory

The following command:

example% pax -r -s ’,^//*usr//*,,’ -f a.pax

reads the archive a.pax, with all files rooted in /usr in the archive extracted relative
to the current directory.

See environ(5) for descriptions of the following environment variables that affect the
execution of pax: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

LC_COLLATE Determine the locale for the behaviour of ranges, equivalence
classes, and multi-character collating elements used in the pattern
matching expressions for the pattern operand, the basic regular
expression for the -s option, and the extended regular expression
defined for the yesexpr locale keyword in the LC_MESSAGES
category.

The following exit values are returned:

0 All files were processed successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Stable

chmod(1), cpio(1), ed(1), tar(1), mkdir(2), stat(2), attributes(5), environ(5),
fnmatch(5), fsattr(5), largefile(5), regex(5)

pax(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1103

perl – Practical Extraction and Report Language

perl [-sTuU] [-hv] [-V[:configvar]] [-cw] [-d[:debugger]]
[-D[number/list]] [-pna] [-Fpattern] [-l[octal]] [-0[octal]] [-Idir]
[-m[-]module] [-M[-]’module...’] [-P] [-S] [-x[dir]]
[-i[extension]] [-e ’command’] [--] [programfile] [argument]…

For ease of access, the Perl manual has been split up into several sections:

perl Perl overview (this section)
perlfaq Perl frequently asked questions
perltoc Perl documentation table of contents
perlbook Perl book information

perlsyn Perl syntax
perldata Perl data structures
perlop Perl operators and precedence
perlsub Perl subroutines
perlfunc Perl builtin functions
perlreftut Perl references short introduction
perldsc Perl data structures intro
perlrequick Perl regular expressions quick start
perlpod Perl plain old documentation
perlstyle Perl style guide
perltrap Perl traps for the unwary

perlrun Perl execution and options
perldiag Perl diagnostic messages
perllexwarn Perl warnings and their control
perldebtut Perl debugging tutorial
perldebug Perl debugging

perlvar Perl predefined variables
perllol Perl data structures: arrays of arrays
perlopentut Perl open() tutorial
perlretut Perl regular expressions tutorial

perlre Perl regular expressions, the rest of the story
perlref Perl references, the rest of the story

perlform Perl formats
perlboot Perl OO tutorial for beginners
perltoot Perl OO tutorial, part 1
perltootc Perl OO tutorial, part 2
perlobj Perl objects
perlbot Perl OO tricks and examples
perltie Perl objects hidden behind simple variables

perlipc Perl interprocess communication
perlfork Perl fork() information
perlnumber Perl number semantics
perlthrtut Perl threads tutorial

perlport Perl portability guide
perllocale Perl locale support
perlunicode Perl unicode support

perl(1)

NAME

SYNOPSIS

DESCRIPTION

1104 man pages section 1: User Commands • Last Revised 7 Dec 2001

perlsec Perl security

perlmod Perl modules: how they work
perlmodlib Perl modules: how to write and use
perlmodinstall Perl modules: how to install from CPAN
perlnewmod Perl modules: preparing a new module for distribution

perlfaq1 General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

perlcompile Perl compiler suite intro

perlembed Perl ways to embed perl in your C or C++ application
perldebguts Perl debugging guts and tips
perlxstut Perl XS tutorial
perlxs Perl XS application programming interface
perlclib Internal replacements for standard C library functions
perlguts Perl internal functions for those doing extensions
perlcall Perl calling conventions from C
perlutil utilities packaged with the Perl distribution
perlfilter Perl source filters
perldbmfilter Perl DBM filters
perlapi Perl API listing (autogenerated)
perlintern Perl internal functions (autogenerated)
perlapio Perl internal IO abstraction interface
perltodo Perl things to do
perlhack Perl hackers guide

perlhist Perl history records
perldelta Perl changes since previous version
perl5005delta Perl changes in version 5.005
perl5004delta Perl changes in version 5.004

perlsolaris Perl notes for Solaris

(If you’re intending to read these straight through for the first time, the suggested
order will tend to reduce the number of forward references.)

The manpages listed above are installed in the /usr/perl5/man/ directory.

Extensive additional documentation for Perl modules is available. This additional
documentation is also in the /usr/local/lib/perl5/man directory. Some of this
additional documentation is distributed as standard with Perl, but you’ll also find
documentation for any customer-installed third-party modules there.

Notice that running catman(1M) on the Perl manual pages is not supported. For other
Solaris-specific details, see the NOTES section below.

perl(1)

User Commands 1105

You can also use the supplied /usr/perl5/bin/perldoc script to view Perl
information.

If something strange has gone wrong with your program and you’re not sure where
you should look for help, try the -w switch first. It will often point out exactly where
the trouble is.

Perl is a language optimized for scanning arbitrary text files, extracting information
from those text files, and printing reports based on that information. It’s also a good
language for many system management tasks. The language is intended to be practical
(easy to use, efficient, complete) rather than beautiful (tiny, elegant, minimal).

Perl combines (in the author’s opinion, anyway) some of the best features of C, sed,
awk, and sh, so people familiar with those languages should have little difficulty with
it. (Language historians will also note some vestiges of csh, Pascal, and even
BASIC-PLUS.) Expression syntax corresponds quite closely to C expression syntax.
Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data--if
you’ve got the memory, Perl can slurp in your whole file as a single string. Recursion
is of unlimited depth. And the tables used by hashes (sometimes called "associative
arrays") grow as necessary to prevent degraded performance. Perl can use
sophisticated pattern matching techniques to scan large amounts of data quickly.
Although optimized for scanning text, Perl can also deal with binary data, and can
make dbm files look like hashes. Setuid Perl scripts are safer than C programs through
a dataflow tracing mechanism that prevents many stupid security holes.

If you have a problem that would ordinarily use sed or awk or sh, but it exceeds their
capabilities or must run a little faster, and you don’t want to write the silly thing in C,
then Perl may be for you. There are also translators to turn your sed and awk scripts
into Perl scripts.

But wait, there’s more...

Begun in 1993 (see the perlhist man page), Perl version 5 is nearly a complete
rewrite that provides the following additional benefits:

• Modularity and reusability using innumerable modules
Described in the perlmod man page, the perlmodlib man page, and the
perlmodinstall man page.

• Embeddable and Extensible
Described in the perlembed man page, the perlxstut man page, the perlxs
man page, the perlcall man page, the perlguts man page, and the xsubpp
man page.

• Roll-your-own magic variables
(Including multiple simultaneous DBM implementations) Described in the
perltie man page and the AnyDBM_File man page.

• Subroutines can now be overridden,
autoloaded, and prototyped. Described in the perlsub man page.

perl(1)

1106 man pages section 1: User Commands • Last Revised 7 Dec 2001

• Arbitrarily nested data structures
and anonymous functions. Described in the perlreftut man page, the perlref
man page, the perldsc man page, and the perllol man page.

• Object-oriented programming
Described in the perlobj man page, the perltoot man page, and the perlbot
man page.

• Compilability into C code or Perl bytecode
Described in the B man page and the B::Bytecode man page.

• Support for light-weight processes (threads)
Described in the perlthrtut man page and the Thread man page. Notice that
the Perl shipped as part of Solaris does NOT have threads support enabled. If you
require threads support, you should build and install your own Perl version (see
the NOTES section below).

• Support for internationalization, localization,
and Unicode. Described in the perllocale man page and the utf8 man page.

• Lexical scoping
Described in the perlsub man page.

• Regular expression enhancements
Described in the perlre man page, with additional examples in the perlop man
page.

• Enhanced debugger and interactive Perl environment,
with integrated editor support. Described in the perldebug man page.

• POSIX 1003.1 compliant
Described in the POSIX man page.

Okay, that’s definitely enough hype.

Perl is available for most operating systems, including virtually all Unix-like
platforms. See the Supported Platforms entry in the perlport man page for a
listing.

The Perl shipped with Solaris is installed under /usr/perl5 rather than the default
/usr/local location. This is so that it can coexist with a customer-installed Perl in
the default /usr/local location.

Any additional modules that you choose to install will be placed in the
/usr/perl5/site_perl/5.6.1 directory. The /usr/perl5/vendor_perl
directory is reserved for SMI-provided modules.

Notice that the Perl utility scripts such as perldoc and perlbug are in the
/usr/perl5/bin directory, so if you wish to use them you need to include
/usr/perl5/bin in your PATH environment variable.

See also the perlrun man page.

perl(1)

AVAILABILITY

ENVIRONMENT

User Commands 1107

Larry Wall , with the help of oodles of other folks.

"@INC" Locations of Perl libraries

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u SUNWpl5m

SUNWpl5p

SUNWopl5u SUNWopl5m

SUNWopl5p

Interface Stability

• Script interface Evolving

• XSUB interface Evolving

• Binary interface Unstable

• Directory layout Evolving

a2p awk to perl translator

s2p sed to perl translator

http://www.perl.com/ The Perl Home Page

http://www.perl.com/CPAN The Comprehensive Perl Archive

The "use warnings" pragma (and the -w switch) produces some lovely diagnostics.

See the perldiag man page for explanations of all Perl’s diagnostics. The "use
diagnostics" pragma automatically turns Perl’s normally terse warnings and errors
into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the
next token or token type that was to be examined. (In a script passed to Perl via -e
switches, each -e is counted as one line.)

Setuid scripts have additional constraints that can produce error messages such as
"Insecure dependency". See the perlsec man page.

Did we mention that you should definitely consider using the -w switch?

Solaris 9 contains two versions of Perl, 5.005_03 (as shipped in Solaris 8) and 5.6.1.
/bin/perl is a link to the 5.6.1 interpreter, and /usr/perl5/bin is a link to the
/usr/perl5/5.6.1/bin directory. It is likely that version 5.005_03 will be removed
in a future release of Solaris.

perl(1)

AUTHOR

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1108 man pages section 1: User Commands • Last Revised 7 Dec 2001

Perl 5.6.1 has been built to be largefile-aware and to use 64-bit integers, although the
interpreter itself is a 32-bit application (LP32). To view detailed configuration
information, use perl -V and perlbug -dv.

Notice that 5.6.1 is binary incompatible with the 5.005_03 version, primarily due to the
addition of largefile/64-bit integer support. Existing customer-installed XSUB-based
modules will require recompilation, and non-XSUB modules will require
reinstallation.

If you have any applications that require 5.005_03, you should make sure they
explicitly use /usr/perl5/5.005_03/bin/perl. It is also possible to make
5.005_03 the default Perl version, although this is not recommended. The steps for this
would be (as root):

rm /usr/bin/perl
ln -s ../perl5/5.00503/bin/perl /usr/bin/perl
rm /usr/perl5/bin
ln -s ./5.00503/bin /usr/perl5/bin
rm /usr/perl5/man
ln -s ./5.00503/man /usr/perl5/man
rm /usr/perl5/pod

ln -s ./5.00503/pod /usr/perl5/pod

If you wish to build and install your own version of Perl, you should NOT remove the
5.6.1 version of perl under /usr/perl5, as it is required by several system utilities. If
you do not want to use the 5.005_03 version, you may remove that if you wish. The
Perl package names are as follows:

SUNWpl5u Perl 5.6.1
SUNWpl5p Perl 5.6.1 (POD Documentation)
SUNWpl5m Perl 5.6.1 (Manual pages)
SUNWopl5u Perl 5.005_03
SUNWopl5p Perl 5.005_03 (POD Documentation)

SUNWopl5m Perl 5.005_03 (Manual pages)

The Perl motto is "There’s more than one way to do it." Divining how many more is
left as an exercise to the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See
the Camel Book for why.

The -w switch is not mandatory.

Perl is at the mercy of your machine’s definitions of various operations such as type
casting, atof(), and floating-point output with sprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so
does Perl. (This doesn’t apply to sysread() and syswrite().)

perl(1)

BUGS

User Commands 1109

While none of the built-in data types have any arbitrary size limits (apart from
memory size), there are still a few arbitrary limits: a given variable name may not be
longer than 251 characters. Line numbers displayed by diagnostics are internally
stored as short integers, so they are limited to a maximum of 65535 (higher numbers
usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as
output by the myconfig program in the Perl source tree, or by perl -V) to
<perlbug@perl.org>.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone I
said that.

perl(1)

1110 man pages section 1: User Commands • Last Revised 7 Dec 2001

pfexec, pfsh, pfcsh, pfksh – execute a command in a profile

/usr/bin/pfexec command

/usr/bin/pfsh [options] [argument …]

/usr/bin/pfcsh [options] [argument …]

/usr/bin/pfksh [options] [argument …]

The pfexec program is used to execute commands with the attributes specified by
the user’s profiles in the exec_attr(4) database. It is invoked by the profile shells,
pfsh, pfcsh, and pfksh which are linked to the Bourne shell, C shell, and Korn
shell, respectively.

Profiles are searched in the order specified in the user’s entry in the user_attr(4)
database. If the same command appears in more than one profile, the profile shell uses
the first matching entry.

pfexec is used to execute commands with predefined process attributes, such as
specific user or group IDs.

Refer to the sh(1), csh(1), and ksh(1) man pages for complete usage descriptions of
the profile shells.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), profiles(1), sh(1), exec_attr(4), prof_attr(4), user_attr(4),
attributes(5)

pfexec(1)

NAME

SYNOPSIS

DESCRIPTION

USAGE

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1111

pg – files perusal filter for CRTs

pg [-number] [-p string] [-cefnrs] [+ linenumber] [+/ pattern /]
[filename…]

The pg command is a filter that allows the examination of filenames one screenful at a
time on a CRT. If the user types a RETURN, another page is displayed; other
possibilities are listed below.

This command is different from previous paginators in that it allows you to back up
and review something that has already passed. The method for doing this is explained
below.

To determine terminal attributes, pg scans the terminfo(4) data base for the terminal
type specified by the environment variable TERM. If TERM is not defined, the terminal
type dumb is assumed.

-number An integer specifying the size (in lines) of the window that pg is to
use instead of the default. (On a terminal containing 24 lines, the
default window size is 23).

-p string pg uses string as the prompt. If the prompt string contains a %d,
the first occurrence of %d in the prompt will be replaced by the
current page number when the prompt is issued. The default
prompt string is ‘‘:’’.

-c Home the cursor and clear the screen before displaying each page.
This option is ignored if clear_screen is not defined for this
terminal type in the terminfo(4) data base.

-e pg does not pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (for instance,
escape sequences for underlining) generate undesirable results.
The -f option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a <newline>
character. This option causes an automatic end of command as
soon as a command letter is entered.

-r Restricted mode. The shell escape is disallowed. pg prints an error
message but does not exit.

-s pg prints all messages and prompts in the standard output mode
(usually inverse video).

+linenumber Start up at linenumber.

+/pattern/ Start up at the first line containing the regular expression pattern.

The following operands are supported:

pg(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

1112 man pages section 1: User Commands • Last Revised 25 Feb 1996

filename A path name of a text file to be displayed. If no filename is given, or
if it is −, the standard input is read.

The responses that may be typed when pg pauses can be divided into three categories:
those causing further perusal, those that search, and those that modify the perusal
environment.

Commands that cause further perusal normally take a preceding address, an optionally
signed number indicating the point from which further text should be displayed. This
address is interpreted in either pages or lines depending on the command. A signed
address specifies a point relative to the current page or line, and an unsigned address
specifies an address relative to the beginning of the file. Each command has a default
address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+1)<newline> or <blank> This causes one page to be displayed. The address is
specified in pages.

(+1) l With a relative address this causes pg to simulate
scrolling the screen, forward or backward, the number
of lines specified. With an absolute address this
command prints a screenful beginning at the specified
line.

(+1) d or ^D Simulates scrolling half a screen forward or backward.

if Skip i screens of text.

iz Same as <newline> except that i, if present, becomes the
new default number of lines per screenful.

The following perusal commands take no address.

. or ^L Typing a single period causes the current page of text to be
redisplayed.

$ Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the text. The
regular expressions are described on the regex(5) manual page. They must always be
terminated by a <newline>, even if the -n option is specified.

i/pattern/ Search forward for the ith (default i=1) occurrence of pattern.
Searching begins immediately after the current page and continues
to the end of the current file, without wrap-around.

i^pattern^

i?pattern? Search backwards for the ith (default i=1) occurrence of pattern.
Searching begins immediately before the current page and
continues to the beginning of the current file, without

pg(1)

Commands

User Commands 1113

wrap-around. The ^ notation is useful for Adds 100 terminals
which will not properly handle the ?.

After searching, pg will normally display the line found at the top of the screen. This
can be modified by appending m or b to the search command to leave the line found in
the middle or at the bottom of the window from now on. The suffix t can be used to
restore the original situation.

The user of pg can modify the environment of perusal with the following commands:

in Begin perusing the ith next file in the command line. The i is an
unsigned number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is an
unsigned number, default is 1.

iw Display another window of text. If i is present, set the window size
to i.

s filename Save the input in the named file. Only the current file being
perused is saved. The white space between the s and filename is
optional. This command must always be terminated by a
<newline>, even if the -n option is specified.

h Help by displaying an abbreviated summary of available
commands.

q or Q Quit pg.

!command Command is passed to the shell, whose name is taken from the
SHELL environment variable. If this is not available, the default
shell is used. This command must always be terminated by a
<newline>, even if the -n option is specified.

At any time when output is being sent to the terminal, the user can hit the quit key
(normally CTRL-\) or the interrupt (break) key. This causes pg to stop sending output,
and display the prompt. The user may then enter one of the above commands in the
normal manner. Unfortunately, some output is lost when this is done, because any
characters waiting in the terminal’s output queue are flushed when the quit signal
occurs.

If the standard output is not a terminal, then pg acts just like cat(1), except that a
header is printed before each file (if there is more than one).

See largefile(5) for the description of the behavior of pg when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 An example of the pg command.

The following command line uses pg to read the system news:

example% news | pg -p "(Page %d):"

pg(1)

Large File
Behavior

EXAMPLES

1114 man pages section 1: User Commands • Last Revised 25 Feb 1996

See environ(5) for descriptions of the following environment variables that affect the
execution of pg: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following environment variables affect the execution of pg:

COLUMNS Determine the horizontal screen size. If unset or NULL, use the
value of TERM, the window size, baud rate, or some combination
of these, to indicate the terminal type for the screen size
calculation.

LINES Determine the number of lines to be displayed on the screen. If
unset or NULL, use the value of TERM, the window size, baud
rate, or some combination of these, to indicate the terminal type
for the screen size calculation.

SHELL Determine the name of the command interpreter executed for a
!command.

TERM Determine terminal attributes. Optionally attempt to search a
system-dependent database, keyed on the value of the TERM
environment variable. If no information is available, a terminal
incapable of cursor-addressable movement is assumed.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/tmp/pg* temporary file when input is from a pipe

/usr/share/lib/terminfo/?/* terminal information database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

cat(1), grep(1), more(1), terminfo(4), attributes(5), environ(5), largefile(5),
regex(5)

While waiting for terminal input, pg responds to BREAK, CTRL-C, and CTRL−\ by
terminating execution. Between prompts, however, these signals interrupt pg’s current
task and place the user in prompt mode. These should be used with caution when
input is being read from a pipe, since an interrupt is likely to terminate the other
commands in the pipeline.

The terminal /, ^, or ? may be omitted from the searching commands.

pg(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1115

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O
options, terminal settings may not be restored correctly.

pg(1)

1116 man pages section 1: User Commands • Last Revised 25 Feb 1996

pgrep, pkill – find or signal processes by name and other attributes

pgrep [-flvx] [-n | -o] [-d delim] [-P ppidlist] [-g pgrplist] [-s sidlist]
[-u euidlist] [-U uidlist] [-G gidlist] [-J projidlist] [-t termlist]
[-T taskidlist] [pattern]

pkill [-signal] [-fvx] [-n | -o] [-P ppidlist] [-g pgrplist] [-s sidlist]
[-u euidlist] [-U uidlist] [-G gidlist] [-J projidlist] [-t termlist]
[-T taskidlist] [pattern]

The pgrep utility examines the active processes on the system and reports the process
IDs of the processes whose attributes match the criteria specified on the command
line. Each process ID is printed as a decimal value and is separated from the next ID
by a delimiter string, which defaults to a newline. For each attribute option, the user
can specify a set of possible values separated by commas on the command line. For
example,

pgrep -G other,daemon

matches processes whose real group ID is other OR daemon. If multiple criteria
options are specified, pgrep matches processes whose attributes match the logical
AND of the criteria options. For example,

pgrep -G other,daemon -U root,daemon

matches processes whose attributes are:

(real group ID is other OR daemon) AND
(real user ID is root OR daemon)

pkill functions identically to pgrep, except that each matching process is signaled as
if by kill(1) instead of having its process ID printed. A signal name or number may
be specified as the first command line option to pkill.

The following options are supported:

-d delim Specifies the output delimiter string to be printed between each
matching process ID. If no -d option is specified, the default is a
newline character. The -d option is only valid when specified as
an option to pgrep.

-f The regular expression pattern should be matched against the full
process argument string (obtained from the pr_psargs field of
the /proc/nnnnn/psinfo file). If no -f option is specified, the
expression is matched only against the name of the executable file
(obtained from the pr_fname field of the /proc/nnnnn/psinfo
file).

-g pgrplist Matches only processes whose process group ID is in the given list.
If group 0 is included in the list, this is interpreted as the process
group ID of the pgrep or pkill process.

pgrep(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1117

-G gidlist Matches only processes whose real group ID is in the given list.
Each group ID may be specified as either a group name or a
numerical group ID.

-J projidlist Matches only processes whose project ID is in the given list. Each
project ID may be specified as either a project name or a numerical
project ID.

-l Long output format. Prints the process name along with the
process ID of each matching process. The process name is obtained
from the pr_psargs or pr_fname field, depending on whether
the -f option was specified (see above). The -l option is only
valid when specified as an option to pgrep.

-n Matches only the newest (most recently created) process that meets
all other specified matching criteria. Cannot be used with option
-o.

-o Matches only the oldest (earliest created) process that meets all
other specified matching criteria. Cannot be used with option -n.

-P ppidlist Matches only processes whose parent process ID is in the given
list.

-s sidlist Matches only processes whose process session ID is in in the given
list. If ID 0 is included in the list, this is interpreted as the session
ID of the pgrep or pkill process.

-t termlist Matches only processes which are associated with a terminal in the
given list. Each terminal is specified as the suffix following
"/dev/" of the terminal’s device path name in /dev. For example,
term/a or pts/0.

-T taskidlist Matches only processes whose task ID is in the given list. If ID 0 is
included in the list, this is interpreted as the task ID of the pgrep
or pkill process.

-u euidlist Matches only processes whose effective user ID is in the given list.
Each user ID may be specified as either a login name or a
numerical user ID.

-U uidlist Matches only processes whose real user ID is in the given list. Each
user ID may be specified as either a login name or a numerical
user ID.

-v Reverses the sense of the matching. Matches all processes except
those which meet the specified matching criteria.

-x Considers only processes whose argument string or executable file
name exactly matches the specified pattern to be matching
processes. The pattern match is considered to be exact when all
characters in the process argument string or executable file name
match the pattern.

pgrep(1)

1118 man pages section 1: User Commands • Last Revised 5 Dec 2001

-signal Specifies the signal to send to each matched process. If no signal is
specified, SIGTERM is sent by default. The value of signal can be
one of the symbolic names defined in signal(3HEAD) without
the SIG prefix, or the corresponding signal number as a decimal
value. The -signal option is only valid when specified as the first
option to pkill.

The following operand is supported:

pattern Specifies an Extended Regular Expression (ERE) pattern to match
against either the executable file name or full process argument
string. See regex(5) for a complete description of the ERE syntax.

EXAMPLE 1 Obtaining a process ID

Obtain the process ID of sendmail:

example% pgrep -x -u root sendmail
283

EXAMPLE 2 Terminating a process

Terminate the most recently created xterm:

example% pkill -n xterm

The following exit values are returned:

0 One or more processes were matched.

1 No processes were matched.

2 Invalid command line options were specified.

3 A fatal error occurred.

/proc/nnnnn/psinfo Process information files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

kill(1), proc(1), ps(1), truss(1), kill(2), signal(3HEAD), proc(4),
attributes(5), regex(5)

Both utilities match the ERE pattern argument against either the pr_fname or
pr_psargs fields of the /proc/nnnnn/psinfo files. The lengths of these strings are
limited according to definitions in <sys/procfs.h>. Patterns which can match
strings longer than the current limits may fail to match the intended set of processes.

pgrep(1)

OPERANDS

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1119

If the pattern argument contains ERE meta-characters which are also shell
meta-characters, it may be necessary to enclose the pattern with appropriate shell
quotes.

Defunct processes are never matched by either pgrep or pkill.

The current pgrep or pkill process will never consider itself a potential match.

pgrep(1)

1120 man pages section 1: User Commands • Last Revised 5 Dec 2001

pkginfo – display software package information

pkginfo [-q | -x | -l] [-p | -i] [-r] [-a arch] [-v version]
[-c category…] [pkginst…]

pkginfo [-d device] [-R root_path] [-q | -x | -l] [-a arch] [-v version]
[-c category…] [pkginst…]

pkginfo displays information about software packages that are installed on the
system (with the first synopsis) or that reside on a particular device or directory (with
the second synopsis).

Without options, pkginfo lists the primary category, package instance, and the names
of all completely installed and partially installed packages. It displays one line for
each package selected.

The -p and -i options are meaningless if used in conjunction with the -d option.

The options -q, -x, and -l are mutually exclusive.

-a arch Specify the architecture of the package as arch.

-c category Display packages that match category. Categories are defined with
the CATEGORY parameter in the pkginfo(4) file. If more than one
category is supplied, the package needs to match only one
category in the list. The match is not case specific.

-d device Defines a device, device, on which the software resides. device can
be an absolute directory pathname or the identifiers for tape,
floppy disk, removable disk, and so forth. The special token spool
may be used to indicate the default installation spool directory
(/var/spool/pkg).

-i Display information for fully installed packages only.

-l Specify long format, which includes all available information
about the designated package(s).

-p Display information for partially installed packages only.

-q Do not list any information. Used from a program to check
whether or not a package has been installed.

-r List the installation base for relocatable packages.

-R root_path Defines the full path name of a directory to use as the root_path. All
files, including package system information files, are relocated to a
directory tree starting in the specified root_path.

-v version Specify the version of the package as version. The version is
defined with the VERSION parameter in the pkginfo(4) file. All
compatible versions can be requested by preceding the version
name with a tilde (≈). Multiple white spaces are replaced with a
single white space during version comparison.

pkginfo(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1121

-x Designate an extracted listing of package information. The listing
contains the package abbreviation, package name, package
architecture (if available) and package version (if available).

pkginst A package designation by its instance. An instance can be the
package abbreviation or a specific instance (for example, inst.1
or inst.2). All instances of a package can be requested by
inst.*. The asterisk character (*) is a special character to some
shells and may need to be escaped. In the C-Shell, "*" must be
surrounded by single quotes (’) or preceded by a backslash (\).

0 Successful completion.

>0 An error occurred.

/var/spool/pkg default installation spool directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

pkgtrans(1), pkgadd(1M), pkgask(1M), pkgchk(1M), pkgrm(1M), pkginfo(4),
attributes(5)

Application Packaging Developer’s Guide

pkginfo(1)

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1122 man pages section 1: User Commands • Last Revised 6 Nov 2000

pkgmk – produce an installable package

pkgmk [-o] [-a arch] [-b base_src_dir] [-d device] [-f prototype] [-l limit]
[-p pstamp] [-r root_path] [-v version] [variable=value…] [pkginst]

The pkgmk utility produces an installable package to be used as input to the
pkgadd(1M) command. The package contents will be in directory structure format.

The command uses the package prototype(4) file as input and creates a pkgmap(4)
file. The contents for each entry in the prototype file is copied to the appropriate
output location. Information concerning the contents (checksum, file size, modification
date) is computed and stored in the pkgmap file, along with attribute information
specified in the prototype file.

pkgmk searches for the files listed in the prototype(4) file as described in the
following conditions. Note: If a prototype file contains the explicit location of the file to
include in the package, then the following search explanations do not apply.

1. If neither -b nor -r options are specified, the file name component of each file path
listed in the prototype(4) file is expected to be found in the same directory as the
prototype(4) file

2. If -b is specified as a relative path (without a leading “/”), then base_src_dir is
prepended to the relative file paths from the prototype(4) file. The resulting path
is searched for in the root_path directories. If a root_path is not specified, it defaults
to “/”.

3. If -b is specified as an absolute path (with a leading “/”), then base_src_dir is
prepended to the relative paths from the prototype(4) file and the result is the
location of the file. root_path is not searched.

4. If -r is specified, then full file paths are used from the prototype(4) file. Relative
paths have base_src_dir prepended. If base_src_dir is not specified, it defaults to "".
The resulting path is searched for in each directory of the root_path.

If you created your prototype file using "pkgproto a/relative/path" or
"pkgproto a/relative/path=install/path", then you should use the -r
root_path option to specify the location of a/relative/path so that pkgmk can
correctly locate your source files.

The following options are supported:

-a arch Overrides the architecture information provided in the
pkginfo(4) file with arch.

-b base_src_dir Prepends the indicated base_src_dir to locate relocatable objects on
the source machine. Use this option to search for all objects in the
prototype file. pkgmk expects to find the objects in /base_src_dir or
to locate the objects by use of the -b and -r options, respectively.

-d device Creates the package on device. device can be an absolute directory
pathname or the identifiers for a floppy disk or removable disk

pkgmk(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1123

(for example, /dev/diskette). The default device is the
installation spool directory (/var/spool/pkg).

-f prototype Uses the file prototype as input to the command. The default
prototype filename is [Pp]rototype.

-l limit Specifies the maximum size in 512 byte blocks of the output device
as limit. By default, if the output file is a directory or a
mountable device, pkgmk will employ the df(1M) command to
dynamically calculate the amount of available space on the output
device. This option is useful in conjunction with pkgtrans(1) to
create a package with a datastream format.

-o Overwrites the same instance; package instance will be
overwritten if it already exists.

-p pstamp Overrides the production stamp definition in the pkginfo(4) file
with pstamp.

-r root_path Uses the indicated root_path with the source pathname appended
to locate objects on the source machine, using a comma (,) as the
separator for the path elements. If this option is specified, look for
the full destination path in each of the directories specified. If
neither -b nor -r is specified, look for the leaf filename in the
current directory.

-v version Overrides the version information provided in the pkginfo(4) file
with version.

variable=value Places the indicated variable in the packaging environment. (See
prototype(4) for definitions of variable specifications.)

The following operand is supported:

pkginst A package designation by its instance. An instance can be the
package abbreviation or a specific instance (for example, inst.1
or inst.2). All instances of a package can be requested by
inst.*. The asterisk character (*) is a special character to some
shells and may need to be escaped. In the C-Shell, "*" must be
surrounded by single quotes (’) or preceded by a backslash (\).

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

pkgmk(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

1124 man pages section 1: User Commands • Last Revised 10 Jan 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

pkgparam(1), pkgproto(1), pkgtrans(1), uname(1), df(1M), pkgadd(1M),
pkginfo(4), pkgmap(4), prototype(4), attributes(5)

Application Packaging Developer’s Guide

Architecture information is provided on the command line with the -a option or in
the prototype(4) file. If no architecture information is supplied, pkgmk uses the
output of uname -m (see uname(1)).

Version information is provided on the command line with the -v option or in the
pkginfo(4) file. If no version information is supplied, a default based on the current
date will be provided.

Command line definitions for both architecture and version override the
prototype(4) definitions.

pkgmk(1)

SEE ALSO

NOTES

User Commands 1125

pkgparam – display package parameter values

pkgparam [-v] [-d device] [-R root_path] pkginst [param…]

pkgparam -f filename [-v] [param…]

pkgparam displays the value associated with the parameter or parameters requested
on the command line. The values are located in either the pkginfo(4) file for pkginst
or from the specific file named with the -f option.

One parameter value is shown per line. Only the value of a parameter is given unless
the -v option is used. With this option, the output of the command is in this format:

parameter1=’value1’
parameter2=’value2’
parameter3=’value3’

If no parameters are specified on the command line, values for all parameters
associated with the package are shown.

Options and arguments for this command are:

-d device Specify the device on which a pkginst is stored. It can be a directory
pathname or the identifiers for tape, floppy disk, or removable
disk (for example, /var/tmp, /dev/diskette, and
/dev/dsk/c1d0s0). The special token spool may be used to
represent the default installation spool directory
(/var/spool/pkg).

-f filename Read filename for parameter values.

-R root_path Defines the full path name of a subdirectory to use as the root_path.
All files, including package system information files, are relocated
to a directory tree starting in the specified root_path.

-v Verbose mode. Display name of parameter and its value.

pkginst Defines a specific package instance for which parameter values
should be displayed.

param Defines a specific parameter whose value should be displayed.

If parameter information is not available for the indicated package, the command exits
with a non-zero status.

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

pkgparam(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ERRORS

EXIT STATUS

ATTRIBUTES

1126 man pages section 1: User Commands • Last Revised 6 Nov 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

pkgmk(1), pkgproto(1), pkgtrans(1), pkginfo(4), attributes(5)

Application Packaging Developer’s Guide

With the -f option, you can specify the file from which parameter values should be
extracted. This file should be in the same format as a pkginfo(4) file. For example,
such a file might be created during package development and used while testing
software during this stage.

pkgparam(1)

SEE ALSO

NOTES

User Commands 1127

pkgproto – generate prototype file entries for input to pkgmk command

pkgproto [-i] [-c class] [path1]

pkgproto [-i] [-c class] [path1=path2…]

pkgproto scans the indicated paths and generates prototype(4) file entries that
may be used as input to the pkgmk(1) command.

If no paths are specified on the command line, standard input is assumed to be a list of
paths. If the pathname listed on the command line is a directory, the contents of the
directory is searched. However, if input is read from stdin, a directory specified as a
pathname will not be searched.

-i Ignores symbolic links and records the paths as ftype=f (a file)
versus ftype=s (symbolic link).

-c class Maps the class of all paths to class.

path1 Pathname where objects are located.

path2 Pathname which should be substituted on output for path1.

EXAMPLE 1 Examples of the use of pkgproto.1.

The following two examples show uses of pkgproto and a partial listing of the
output produced.

Example 1:

example% pkgproto /bin=bin /usr/bin=usrbin /etc=etc
f none bin/sed=/bin/sed 0775 bin bin
f none bin/sh=/bin/sh 0755 bin daemon
f none bin/sort=/bin/sort 0755 bin bin
f none usrbin/sdb=/usr/bin/sdb 0775 bin bin
f none usrbin/shl=/usr/bin/shl 4755 bin bin
d none etc/master.d 0755 root daemon
f none etc/master.d/kernel=/etc/master.d/kernel 0644 root daemon
f none etc/rc=/etc/rc 0744 root daemon

Example 2:

example% find / -type d -print | pkgproto
d none / 755 root root
d none /bin 755 bin bin
d none /usr 755 root root
d none /usr/bin 775 bin bin
d none /etc 755 root root
d none /tmp 777 root root

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

pkgproto(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

EXIT STATUS

ATTRIBUTES

1128 man pages section 1: User Commands • Last Revised 6 Nov 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

pkgmk(1), pkgparam(1), pkgtrans(1), prototype(4), attributes(5)

Application Packaging Developer’s Guide

By default, pkgproto creates symbolic link entries for any symbolic link encountered
(ftype=s). When you use the -i option, pkgproto creates a file entry for symbolic
links (ftype=f). The prototype(4) file would have to be edited to assign such file
types as v (volatile), e (editable), or x (exclusive directory). pkgproto detects linked
files. If multiple files are linked together, the first path encountered is considered the
source of the link.

By default, pkgproto prints prototype entries on the standard output. However, the
output should be saved in a file (named Prototype or prototype, for convenience)
to be used as input to the pkgmk(1) command.

pkgproto(1)

SEE ALSO

NOTES

User Commands 1129

pkgtrans – translate package format

pkgtrans [-inos] device1 device2 [pkginst…]

pkgtrans translates an installable package from one format to another. It translates:

� a file system format to a datastream
� a datastream to a file system format
� one file system format to another file system format

The options and arguments for this command are:

-i Copy only the pkginfo(4) and pkgmap(4) files.

-n Create a new instance of the package on the destination device if any
instance of this package already exists, up to the number specified by the
MAXINST variable in the pkginfo(4) file.

-o Overwrite the same instance on the destination device; package instance
will be overwritten if it already exists.

-s Indicates that the package should be written to device2 as a datastream
rather than as a file system. The default behavior is to write a file system
format on devices that support both formats.

device1 Indicates the source device. The package or packages on this
device will be translated and placed on device2.

device2 Indicates the destination device. Translated packages will be
placed on this device.

pkginst Specifies which package instance or instances on device1 should be
translated. The token all may be used to indicate all packages.
pkginst.* can be used to indicate all instances of a package. If
no packages are defined, a prompt shows all packages on the
device and asks which to translate.

The asterisk character (*) is a special character to some shells and
may need to be escaped. In the C-Shell, "*" must be surrounded by
single quotes (’) or preceded by a backslash (\).

EXAMPLE 1 Examples of the pkgtrans command.

The following example translates all packages on the floppy drive /dev/diskette
and places the translations on /tmp:

example% pkgtrans /dev/diskette /tmp all

The next example translates packages pkg1 and pkg2 on /tmp and places their
translations (that is, a datastream) on the 9track1 output device:

example% pkgtrans /tmp 9track1 pkg1 pkg2

pkgtrans(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

1130 man pages section 1: User Commands • Last Revised 6 Nov 2000

EXAMPLE 1 Examples of the pkgtrans command. (Continued)

The next example translates pkg1 and pkg2 on /tmp and places them on the diskette
in a datastream format:

example% pkgtrans -s /tmp /dev/diskette pkg1 pkg2

The MAXINST variable is set in the pkginfo(4) file and declares the maximum
number of package instances.

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), installf(1M), pkgadd(1M),
pkgask(1M), pkgrm(1M), removef(1M), pkginfo(4), pkgmap(4), attributes(5)

Application Packaging Developer’s Guide

Device specifications can be either the special node name (for example,
/dev/diskette) or a device alias (for example, diskette1). The device spool
indicates the default spool directory. Source and destination devices cannot be the
same.

By default, pkgtrans will not translate any instance of a package if any instance of
that package already exists on the destination device. Using the -n option creates a
new instance if an instance of this package already exists. Using the -o option
overwrites an instance of this package if it already exists. Neither of these options are
useful if the destination device is a datastream.

pkgtrans(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1131

plimit – get or set the resource limits of running processes

plimit [-km] pid…

plimit {-cdfnstv} soft,hard… pid…

If one or more of the cdfnstv options is specified, plimit sets the soft (current) limit
and/or the hard (maximum) limit of the indicated resource(s) in the processes
identified by the process-ID list, pid. Otherwise plimit reports the resource limits of
the processes identified by the process-ID list, pid.

Only the owner of a process or the super-user is permitted either to get or to set the
resource limits of a process. Only the super-user can increase the hard limit.

The following options are supported:

-k On output, show file sizes in kilobytes (1024 bytes) rather than in 512-byte
blocks.

-m On output, show file and memory sizes in megabytes (1024*1024 bytes).

The remainder of the options are used to change specified resource limits. They each
accept an argument of the form:

soft,hard

where soft specifies the soft (current) limit and hard specifies the hard (maximum)
limit. If the hard limit is not specified, the comma may be omitted. If the soft limit is
an empty string, only the hard limit is set. Each limit is either the literal string
unlimited, or a number, with an optional scaling factor, as follows:

nk n kilobytes

nm n megabytes (minutes for CPU time)

nh n hours (for CPU time only)

mm:ss minutes and seconds (for CPU time only)

The soft limit cannot exceed the hard limit.

-c soft,hard Set core file size limits (default unit is 512-byte blocks).

-d soft,hard Set data segment (heap) size limits (default unit is kilobytes).

-f soft,hard Set file size limits (default unit is 512-byte blocks).

-n soft,hard Set file descriptor limits (no default unit).

-s soft,hard Set stack segment size limits (default unit is kilobytes).

-t soft,hard Set CPU time limits (default unit is seconds).

-v soft,hard Set virtual memory size limits (default unit is kilobytes).

plimit(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1132 man pages section 1: User Commands • Last Revised 8 Jun 1998

The following operands are supported.

pid Process ID list.

plimit returns the exit value zero on success, non-zero on failure (such as no such
process, permission denied, or invalid option).

/proc/pid/* process information and control files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

ulimit(1), proc(1), getrlimit(2), setrlimit(2), proc(4), attributes(5),

plimit(1)

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 1133

plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa, t300,
t300s, t4013, t450, tek, vplot, hp7221plot – graphics filters for various plotters

/usr/ucb/plot [-Tterminal]

The plot utility reads plotting instructions (see plot(4B)) from the standard input
and produces plotting instructions suitable for a particular terminal on the standard
output.

If no terminal is specified, the environment variable TERM is used. The default terminal
is tek.

Except for ver, the following terminal-types can be used with ‘lpr -g’ (see lpr(1B))
to produce plotted output:

2648 | 2648a | h8 | hp2648 | hp2648a
Hewlett Packard 2648 graphics terminal.

hp7221 | hp7 | h7 |
Hewlett Packard 7221 plotter.

300
DASI 300 or GSI terminal (Diablo mechanism).

300s | 300S
DASI 300s terminal (Diablo mechanism).

450
DASI Hyterm 450 terminal (Diablo mechanism).

4013
Tektronix 4013 storage scope.

4014 | tek
Tektronix 4014 and 4015 storage scope with Enhanced Graphics Module. (Use 4013
for Tektronix 4014 or 4015 without the Enhanced Graphics Module).

aed
AED 512 color graphics terminal.

bgplot | bitgraph
BBN bitgraph graphics terminal.

crt
Any crt terminal capable of running vi(1).

dumb | un | unknown
Dumb terminals without cursor addressing or line printers.

gigi | vt125
DEC vt125 terminal.

implot
Imagen plotter.

plot(1B)

NAME

SYNOPSIS

DESCRIPTION

ENVIRONMENT
VARIABLES

1134 man pages section 1: User Commands • Last Revised 3 Aug 1994

var
Benson Varian printer-plotter

ver
Versatec D1200A printer-plotter. The output is scan-converted and suitable input to
‘lpr -v’.

/usr/ucb/aedplot

/usr/ucb/atoplot

/usr/ucb/bgplot

/usr/ucb/crtplot

/usr/ucb/dumbplot

/usr/ucb/gigiplot

/usr/ucb/hp7221plot

/usr/ucb/hpplot

/usr/ucb/implot

/usr/ucb/plot

/usr/ucb/plottoa

/usr/ucb/t300

/usr/ucb/t300s

/usr/ucb/t4013

/usr/ucb/t450

/usr/ucb/tek

/usr/ucb/vplot

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

graph(1), tplot(1), vi(1), lpr(1B), plot(4B), attributes (5)

plot(1B)

FILES

ATTRIBUTES

SEE ALSO

User Commands 1135

pmap – display information about the address space of a process

/usr/bin/pmap [-rslF] [pid | core…]

/usr/bin/pmap -x [-slF] [pid | core…]

/usr/bin/pmap -S [-lF] [pid | core…]

The pmap utility prints information about the address space of a process.

The following options are supported:

-a Prints anonymous and swap reservations for shared mappings.

-F Force. Grabs the target process even if another process has control.

-r Prints the process’s reserved addresses.

-s Prints HAT page size information.

The pmap utility prints information about the address space of a process.

Process Mappings

/usr/bin/pmap [-rslF] [pid | core] ...

By default, pmap displays the mappings in the virtual address order they are
mapped into the process. The mapping size, flags and mapped object name are
shown.

Process anon/locked mapping details

/usr/bin/pmap -x [-aslF] [pid | core] ...

The -x option displays additional information per mapping. The size of each
mapping, the amount of resident physical memory, the amount of anonymous
memory, and the amount of memory locked is shown with this option.

Swap Reservations

/usr/bin/pmap -S [-alF] [pid | core] ...

The -S option displays swap reservation information per mapping.

One line of output is printed for each mapping within the process, unless the -s
option is specified, where one line is printed for a contiguous mapping of each
hardware translation page size.

Virtual Address
The first column of output represents the starting virtual address of each mapping.
Virtual addresses are displayed in ascending order.

Virtual Mapping Size
The virtual size of each mapping.

pmap(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

DISPLAY
FORMATS

1136 man pages section 1: User Commands • Last Revised 30 Nov 2001

Resident Physical Memory
The amount of physical memory resident for each mapping, including that which is
shared with other address spaces.

Anonymous Memory
The amount of anonymous memory is reported for each mapping. Anonymous
memory shared with other address spaces is not included, unless the -a option is
specified.

Anonymous memory is reported for the process heap, stack, for ’copy on write’
pages with mappings mapped with MAP_PRIVATE.

Locked
The number of pages locked within the mapping. Typical examples are memory
locked with mlock() and System V shared memory created with
SHM_SHARE_MMU.

Permissions/Flags
The virtual memory permissions are shown for each mapping. Valid permissions
are:

r: The mapping may be read by the process.

w: The mapping may be written by the process.

x: Instructions that reside within the mapping may be executed by the
process.

Flags showing additional information for each mapping may be displayed:

s: The mapping is shared such that changes made in the observed address
space are committed to the mapped file, and are visible from all other
processes sharing the mapping.

R: Swap space is not reserved for this mapping. Mappings created with
MAP_NORESERVE and System V ISM shared memory mappings do not
reserve swap space.

Mapping Name
A descriptive name for each mapping. The following major types of names are
displayed for mappings:

� A mapped file: For mappings between a process and a file, the pmap command
attempts to resolve the file name for each mapping. If the file name cannot be
resolved, pmap displays the major and minor number of the device containing
the file, and the file system inode number of the file.

� Anonymous memory: Memory not relating to any named object or file within the
file system is reported as [anon].

The pmap command displays common names for certain known anonymous
memory mappings, such as:

[heap] The process heap.

pmap(1)

User Commands 1137

[stack] The process stack.

If the common name for the mapping is unknown, pmap displays [anon] as the
mapping name.

� System V Shared Memory: Mappings created using System V shared memory system
calls are reported with the names shown below:

shmid=n: The mapping is a System V shared memory mapping. The
shared memory identifier that the mapping was created with is
reported.

ism shmid=n: The mapping is an "Intimate Shared Memory" variant of
System V shared memory. ISM mappings are created with the
SHM_SHARE_MMU flag set, in accordance with shmat(2) (see
shmop(2)).

dism shmid=n: The mapping is a pageable variant of ISM. Pageable ISM is
created with the SHM_PAGEABLE flag set in accordance with
shmat(2) (see shmop(2)).

� Other: Mappings of other objects, including devices such as frame buffers. No
mapping name is shown for other mapped objects.

EXAMPLE 1 Displaying process mappings

By default, pmap prints one line for each mapping within the address space of the
target process. The following example displays the address space of a typical bourne
shell:

example$ pmap 102905
102905: sh
00010000 192K r-x-- /usr/bin/ksh
00040000 8K rwx-- /usr/bin/ksh
00042000 40K rwx-- [heap]
FF180000 664K r-x-- /usr/lib/libc.so.1
FF236000 24K rwx-- /usr/lib/libc.so.1
FF23C000 8K rwx-- /usr/lib/libc.so.1
FF250000 8K rwx-- [anon]
FF260000 16K r-x-- /usr/lib/en_US.ISO8859-1.so.2
FF272000 16K rwx-- /usr/lib/en_US.ISO8859-1.so.2
FF280000 560K r-x-- /usr/lib/libnsl.so.1
FF31C000 32K rwx-- /usr/lib/libnsl.so.1
FF324000 32K rwx-- /usr/lib/libnsl.so.1
FF340000 16K r-x-- /usr/lib/libc_psr.so.1
FF350000 16K r-x-- /usr/lib/libmp.so.2
FF364000 8K rwx-- /usr/lib/libmp.so.2
FF380000 40K r-x-- /usr/lib/libsocket.so.1
FF39A000 8K rwx-- /usr/lib/libsocket.so.1
FF3A0000 8K r-x-- /usr/lib/libdl.so.1
FF3B0000 8K rwx-- [anon]
FF3C0000 152K r-x-- /usr/lib/ld.so.1
FF3F6000 8K rwx-- /usr/lib/ld.so.1
FFBFC000 16K rw--- [stack]

total 1880K

pmap(1)

EXAMPLES

1138 man pages section 1: User Commands • Last Revised 30 Nov 2001

EXAMPLE 2 Displaying memory allocation and mapping types

The -x option can be used to provide information about the memory allocation and
mapping types per mapping. The amount of resident, non-shared anonymous, and
locked memory is shown for each mapping:

example$ pmap -x 102908
102908: sh
Address Kbytes Resident Anon Locked Mode Mapped File
00010000 88 88 - - r-x-- sh
00036000 8 8 8 - rwx-- sh
00038000 16 16 16 - rwx-- [heap]
FF260000 16 16 - - r-x-- en_US.ISO8859-1.so.2
FF272000 16 16 - - rwx-- en_US.ISO8859-1.so.2
FF280000 664 624 - - r-x-- libc.so.1
FF336000 32 32 8 - rwx-- libc.so.1
FF360000 16 16 - - r-x-- libc_psr.so.1
FF380000 24 24 - - r-x-- libgen.so.1
FF396000 8 8 - - rwx-- libgen.so.1
FF3A0000 8 8 - - r-x-- libdl.so.1
FF3B0000 8 8 8 - rwx-- [anon]
FF3C0000 152 152 - - r-x-- ld.so.1
FF3F6000 8 8 8 - rwx-- ld.so.1
FFBFE000 8 8 8 - rw--- [stack]
-------- ----- ----- ----- ------

total Kb 1072 1032 56 -

The amount of incremental memory used by each additional instance of a process can
be estimated by using the resident and anonymous memory counts of each mapping.

In the above example, the bourne shell has a resident memory size of 1032Kbytes.
However, a large amount of the physical memory used by the shell is shared with
other instances of shell. Another identical instance of the shell will share physical
memory with the other shell where possible, and allocate anonymous memory for any
non-shared portion. In the above example, each additional bourne shell uses
approximately 56Kbytes of additional physical memory.

A more complex example shows the output format for a process containing different
mapping types. In this example, the mappings are as follows:

0001000: Executable text, mapped from ’maps’ program

0002000: Executable data, mapped from ’maps’ program

0002200: Program heap

0300000: A mapped file, mapped MAP_SHARED
0400000: A mapped file, mapped MAP_PRIVATE

0500000: A mapped file, mapped MAP_PRIVATE | MAP_NORESERVE

0600000: Anonymous memory, created by mapping /dev/zero

0700000: Anonymous memory, created by mapping /dev/zero

pmap(1)

User Commands 1139

EXAMPLE 2 Displaying memory allocation and mapping types (Continued)

with MAP_NORESERVE

0800000: A DISM shared memory mapping, created with SHM_PAGEABLE
with 8MB locked via mlock(2)

0900000: A DISM shared memory mapping, created with SHM_PAGEABLE,
with 4MB of its pages touched.

0A00000: A DISM shared memory mapping, created with SHM_PAGEABLE,
with none of its pages touched.

0B00000: An ISM shared memory mapping, created with SHM_SHARE_MMU

example$ pmap -xs 15492
15492: ./maps
Address Kbytes RSS Anon Locked Mode Mapped File
00010000 8 8 - - r-x-- maps
00020000 8 8 8 - rwx-- maps
00022000 20344 16248 16248 - rwx-- [heap]
03000000 1024 1024 - - rw-s- dev:0,2 ino:4628487
04000000 1024 1024 512 - rw--- dev:0,2 ino:4628487
05000000 1024 1024 512 - rw--R dev:0,2 ino:4628487
06000000 1024 1024 1024 - rw--- [anon]
07000000 512 512 512 - rw--R [anon]
08000000 8192 8192 - 8192 rwxs- [dism shmid=0x5]
09000000 8192 4096 - - rwxs- [dism shmid=0x4]
0A000000 8192 8192 - 8192 rwxsR [ism shmid=0x2]
0B000000 8192 8192 - 8192 rwxsR [ism shmid=0x3]
FF280000 680 672 - - r-x-- libc.so.1
FF33A000 32 32 32 - rwx-- libc.so.1
FF390000 8 8 - - r-x-- libc_psr.so.1
FF3A0000 8 8 - - r-x-- libdl.so.1
FF3B0000 8 8 8 - rwx-- [anon]
FF3C0000 152 152 - - r-x-- ld.so.1
FF3F6000 8 8 8 - rwx-- ld.so.1
FFBFA000 24 24 24 - rwx-- [stack]
-------- ------- ------- ------- -------

total Kb 50464 42264 18888 16384

EXAMPLE 3 Displaying Page Size Information

The -s option can be used to display the hardware translation page sizes for each
portion of the address space. (See memcntl(2) for futher information on Solaris
multiple page size support).

In the example below, we can see that the majority of the mappings are using an
8K-Byte page size, while the heap is using a 4M-Byte page size.

Notice that non-contiguous regions of resident pages of the same page size are
reported as separate mappings. In the example below, the libc.so library is reported
as separate mappings, since only some of the libc.so text is resident:

pmap(1)

1140 man pages section 1: User Commands • Last Revised 30 Nov 2001

EXAMPLE 3 Displaying Page Size Information (Continued)

example$ pmap -xs 15492
15492: ./maps
Address Kbytes RSS Anon Locked Pgsz Mode Mapped File
00010000 8 8 - - 8K r-x-- maps
00020000 8 8 8 - 8K rwx-- maps
00022000 3960 3960 3960 - 8K rwx-- [heap]
00400000 8192 8192 8192 - 4M rwx-- [heap]
00C00000 4096 - - - - rwx-- [heap]
01000000 4096 4096 4096 - 4M rwx-- [heap]
03000000 1024 1024 - - 8K rw-s- dev:0,2 ino:4628487
04000000 512 512 512 - 8K rw--- dev:0,2 ino:4628487
04080000 512 512 - - - rw--- dev:0,2 ino:4628487
05000000 512 512 512 - 8K rw--R dev:0,2 ino:4628487
05080000 512 512 - - - rw--R dev:0,2 ino:4628487
06000000 1024 1024 1024 - 8K rw--- [anon]
07000000 512 512 512 - 8K rw--R [anon]
08000000 8192 8192 - 8192 - rwxs- [dism shmid=0x5]
09000000 4096 4096 - - 8K rwxs- [dism shmid=0x4]
0A000000 4096 - - - - rwxs- [dism shmid=0x2]
0B000000 8192 8192 - 8192 4M rwxsR [ism shmid=0x3]
FF280000 136 136 - - 8K r-x-- libc.so.1
FF2A2000 120 120 - - - r-x-- libc.so.1
FF2C0000 128 128 - - 8K r-x-- libc.so.1
FF2E0000 200 200 - - - r-x-- libc.so.1
FF312000 48 48 - - 8K r-x-- libc.so.1
FF31E000 48 40 - - - r-x-- libc.so.1
FF33A000 32 32 32 - 8K rwx-- libc.so.1
FF390000 8 8 - - 8K r-x-- libc_psr.so.1
FF3A0000 8 8 - - 8K r-x-- libdl.so.1
FF3B0000 8 8 8 - 8K rwx-- [anon]
FF3C0000 152 152 - - 8K r-x-- ld.so.1
FF3F6000 8 8 8 - 8K rwx-- ld.so.1
FFBFA000 24 24 24 - 8K rwx-- [stack]
-------- ------- ------- ------- -------

total Kb 50464 42264 18888 16384

EXAMPLE 4 Displaying swap reservations

The -S option can be used to describe the swap reservations for a process. The
amount of swap space reserved is displayed for each mapping within the process.
Swap reservations are reported as zero for shared mappings, since they are accounted
for only once system wide.

example$ pmap -S 15492
15492: ./maps
Address Kbytes Swap Mode Mapped File
00010000 8 - r-x-- maps
00020000 8 8 rwx-- maps
00022000 20344 20344 rwx-- [heap]
03000000 1024 - rw-s- dev:0,2 ino:4628487
04000000 1024 1024 rw--- dev:0,2 ino:4628487
05000000 1024 512 rw--R dev:0,2 ino:4628487
06000000 1024 1024 rw--- [anon]

pmap(1)

User Commands 1141

EXAMPLE 4 Displaying swap reservations (Continued)

07000000 512 512 rw--R [anon]
08000000 8192 - rwxs- [dism shmid=0x5]
09000000 8192 - rwxs- [dism shmid=0x4]
0A000000 8192 - rwxs- [dism shmid=0x2]
0B000000 8192 - rwxsR [ism shmid=0x3]
FF280000 680 - r-x-- libc.so.1
FF33A000 32 32 rwx-- libc.so.1
FF390000 8 - r-x-- libc_psr.so.1
FF3A0000 8 - r-x-- libdl.so.1
FF3B0000 8 8 rwx-- [anon]
FF3C0000 152 - r-x-- ld.so.1
FF3F6000 8 8 rwx-- ld.so.1
FFBFA000 24 24 rwx-- [stack]
-------- ------- -------

total Kb 50464 23496

The swap reservation information can be used to estimate the amount of virtual swap
used by each additional process. Each process consumes virtual swap from a global
virtual swap pool. Global swap reservations are reported by the ’avail’ field of the
swap(1M) command.

The following exit values are returned:

0 Successful operation.

non-zero An error has occurred.

/proc/* process files

/usr/proc/lib/* proc tools supporting files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu (32-bit)

SUNWesxu (64-bit)

Interface Stability

Command Syntax Evolving

Output Format(s) Unstable

ldd(1), mdb(1), proc(1), ps(1), swap(1M), memcntl(2), shmop(2), dlopen(3DL),
proc(4), attributes(5)

pmap(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1142 man pages section 1: User Commands • Last Revised 30 Nov 2001

postdaisy – PostScript translator for Diablo 630 daisy-wheel files

postdaisy [-c num] [-f num] [-h num] [-m num] [-n num] [-o list]
[-p mode] [-r num] [-s num] [-v num] [-x num] [-y num] [file…]

/usr/lib/lp/postscript/postdaisy

The postdaisy filter translates Diablo 630 daisy-wheel files into PostScript and writes
the results on the standard output. If no files are specified, or if − is one of the input
files, the standard input is read.

-c num Print num copies of each page. By default only one copy is printed.

-f name Print files using font name. Any PostScript font can be used, although the
best results will be obtained only with constant-width fonts. The default
font is Courier.

-h num Set the initial horizontal motion index to num. Determines the character
advance and the default point size, unless the -s option is used. The
default is 12.

-m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin, which is located near the upper left corner of each page.
The default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can be any
positive integer. By default, num is set to 1.

-o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is
an expression of logical pages rather than physical sheets of paper. For
example, if you are printing two logical pages to a sheet, and you specified
a range of 4, then two sheets of paper would print, containing four page
layouts. If you specified a page range of 3-4, when requesting two logical
pages to a sheet; then only page 3 and page 4 layouts would print, and they
would appear on one physical sheet of paper.

-p mode Print files in either portrait or landscape mode. Only the first character of
mode is significant. The default mode is portrait.

-r num Selects carriage return and line feed behavior. If num is 1, a line feed
generates a carriage return. If num is 2, a carriage return generates a line
feed. Setting num to 3 enables both modes.

-s num Use point size num instead of the default value set by the initial horizontal
motion index.

-v num Set the initial vertical motion index to num. The default is 8.

-x num Translate the origin num inches along the positive x axis. The default
coordinate system has the origin fixed near the upper left corner of the

postdaisy(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1143

page, with positive x to the right and positive y down the page. Positive
num moves everything right. The default offset is 0.25 inches.

-y num Translate the origin num inches along the positive y axis. Positive num
moves text up the page. The default offset is −0.25 inches.

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/usr/lib/lp/postscript/forms.ps

/usr/lib/lp/postscript/ps.requests

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(1), dpost(1), postdmd(1), postio(1), postmd(1), postprint(1),
postreverse(1), posttek(1), attributes(5)

postdaisy(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1144 man pages section 1: User Commands • Last Revised 9 Sep 1996

postdmd – PostScript translator for DMD bitmap files

postdmd [-b num] [-c num] [-f] [-m num] [-n num] [-o list] [-p mode]
[-x num] [-y num] [file…]

/usr/lib/lp/postscript/postdmd

postdmd translates DMD bitmap files, as produced by dmdps, or files written in the
Ninth Edition bitfile(9.5) format into PostScript and writes the results on the
standard output. If no files are specified, or if − is one of the input files, the standard
input is read.

-b num Pack the bitmap in the output file using num byte patterns. A value of 0
turns off all packing of the output file. By default, num is 6.

-c num Print num copies of each page. By default only one copy is printed.

-f Flip the sense of the bits in files before printing the bitmaps.

-m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin, which by default is located at the center of each page. The
default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can be any
positive integer. By default num is set to 1.

-o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is
an expression of logical pages rather than physical sheets of paper. For
example, if you are printing two logical pages to a sheet, and you specified
a range of 4, then two sheets of paper would print, containing four page
layouts. If you specified a page range of 3-4, when requesting two logical
pages to a sheet; then only page 3 and page 4 layouts would print, and they
would appear on one physical sheet of paper.

-p mode Print files in either portrait or landscape mode. Only the first character of
mode is significant. The default mode is portrait.

-x num Translate the origin num inches along the positive x axis. The default
coordinate system has the origin fixed at the center of the page, with
positive x to the right and positive y up the page. Positive num moves
everything right. The default offset is 0 inches.

-y num Translate the origin num inches along the positive y axis. Positive num
moves everything up the page. The default offset is 0.

Only one bitmap is printed on each logical page, and each of the input files must
contain complete descriptions of at least one bitmap. Decreasing the pattern size using
the -b option may help throughput on printers with fast processors (such as PS-810s),
while increasing the pattern size will often be the right move on older models (such as
PS-800s).

postdmd(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1145

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/usr/lib/lp/postscript/forms.ps

/usr/lib/lp/postscript/ps.requests

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(1), dpost(1), postdaisy(1), postio(1), postmd(1), postprint(1),
postreverse(1), posttek(1), attributes(5)

postdmd(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1146 man pages section 1: User Commands • Last Revised 9 Sep 1996

postio – serial interface for PostScript printers

postio -l line [-D] [-i] [-q] [-t] [-S] [-b speed] [-B num] [-L file]
[-P string] [-R num] [file…]

/usr/lib/lp/postscript/postio

postio sends files to the PostScript printer attached to line. If no files are specified the
standard input is sent.

The first group of options should be sufficient for most applications:

-D Enable debug mode. Guarantees that everything read on line will
be added to the log file (standard error by default).

-q Prevents status queries while files are being sent to the printer.
When status queries are disabled a dummy message is appended
to the log file before each block is transmitted.

-b speed Transmit data over line at baud rate speed. Recognized baud rates
are 1200, 2400, 4800, 9600, and 19200. The default speed is 9600
baud.

-B num Set the internal buffer size for reading and writing files to num
bytes. By default num is 2048 bytes.

-l line Connect to the printer attached to line. In most cases there is no
default and postio must be able to read and write line. If the
line does not begin with a / it may be treated as a Datakit
destination.

-L file Data received on line gets put in file. The default log file is
standard error. Printer or status messages that don’t show a
change in state are not normally written to file but can be forced
out using the -D option.

-P string Send string to the printer before any of the input files. The default
string is simple PostScript code that disables timeouts.

-R num Run postio as a single process if num is 1 or as separate read and
write processes if num is 2. By default postio runs as a single
process.

The next two options are provided for users who expect to run postio on their own.
Neither is suitable for use in spooler interface programs:

-i Run the program in interactive mode. Any files are sent first and followed
by the standard input. Forces separate read and write processes and
overrides many other options. To exit interactive mode use your interrupt
or quit character. To get a friendly interactive connection with the printer
type executive on a line by itself.

postio(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1147

-t Data received on line and not recognized as printer or status information
is written to the standard output. Forces separate read and write processes.
Convenient if you have a PostScript program that will be returning useful
data to the host.

The last option is not generally recommended and should only be used if all else fails
to provide a reliable connection:

-S Slow the transmission of data to the printer. Severely limits throughput,
runs as a single process, disables the -q option, limits the internal buffer
size to 1024 bytes, can use an excessive amount of CPU time, and does
nothing in interactive mode.

The best performance will usually be obtained by using a large internal buffer (the -B
option) and by running the program as separate read and write processes (the -R 2
option). Inability to fork the additional process causes postio to continue as a single
read/write process. When one process is used, only data sent to the printer is flow
controlled.

The options are not all mutually exclusive. The -i option always wins, selecting its
own settings for whatever is needed to run interactive mode, independent of anything
else found on the command line. Interactive mode runs as separate read and write
processes and few of the other options accomplish anything in the presence of the -i
option. The -t option needs a reliable two way connection to the printer and therefore
tries to force separate read and write processes. The -S option relies on the status
query mechanism, so -q is disabled and the program runs as a single process.

In most cases postio starts by making a connection to line and then attempts to
force the printer into the IDLE state by sending an appropriate sequence of ^T (status
query), ^C (interrupt), and ^D (end of job) characters. When the printer goes IDLE, files
are transmitted along with an occasional ^T (unless the -q option was used). After all
the files are sent the program waits until it’s reasonably sure the job is complete.
Printer generated error messages received at any time except while establishing the
initial connection (or when running interactive mode) cause postio to exit with a
non-zero status. In addition to being added to the log file, printer error messages are
also echoed to standard error.

EXAMPLE 1 Examples of the postio command.

Run as a single process at 9600 baud and send file1 and file2 to the printer attached to
/dev/tty01:

example% postio -l /dev/tty01 file1 file2

Same as above except two processes are used, the internal buffer is set to 4096 bytes,
and data returned by the printer gets put in file log:

example% postio -R 2 -B 4096 -l/dev/tty01 -L log file1 file2

Establish an interactive connection with the printer at Datakit destination my/printer:

postio(1)

EXAMPLES

1148 man pages section 1: User Commands • Last Revised 9 Sep 1996

EXAMPLE 1 Examples of the postio command. (Continued)

example% postio -i -l my/printer

Send file program to the printer connected to /dev/tty22, recover any data in file
results, and put log messages in file log:

example% postio -t -l /dev/tty22 -L log program >results

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(1), dpost(1), postdaisy(1), postdmd(1), postmd(1), postprint(1),
postreverse(1), posttek(1), attributes(5)

The input files are handled as a single PostScript job. Sending several different jobs,
each with their own internal end of job mark (^D) is not guaranteed to work properly.
postio may quit before all the jobs have completed and could be restarted before the
last one finishes.

All the capabilities described above may not be available on every machine or even
across the different versions of the UNIX system that are currently supported by the
program.

There may be no default line, so using the -l option is strongly recommended. If
omitted, postio may attempt to connect to the printer using the standard output. If
Datakit is involved, the -b option may be ineffective and attempts by postio to
impose flow control over data in both directions may not work. The -q option can
help if the printer is connected to RADIAN. The -S option is not generally
recommended and should be used only if all other attempts to establish a reliable
connection fail.

postio(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1149

postmd – matrix display program for PostScript printers

postmd [-b num] [-c num] [-d dimen] [-g list] [-i list] [-m num]
[-n num] [-o list] [-p mode] [-w window] [-x num] [-y num] [file…]

/usr/lib/lp/postscript/postmd

The postmd filter reads a series of floating point numbers from files, translates them
into a PostScript gray scale image, and writes the results on the standard output. In a
typical application, the numbers might be the elements of a large matrix, written in
row major order, while the printed image could help locate patterns in the matrix. If
no files are specified, or if – is one of the input files, the standard input is read.

The following options are supported:

-b num Packs the bitmap in the output file using num byte patterns. A
value of 0 turns off all packing of the output file. By default, num is
6.

-c num Prints num copies of each page. By default, only one copy is
printed.

-d dimen Sets the default matrix dimensions for all input files to dimen. The
dimen string can be given as rows or rowsx columns. If columns is
omitted it will be set to rows. By default, postmd assumes each
matrix is square and sets the number of rows and columns to the
square root of the number of elements in each input file.

-g list list is a comma- or space-separated string of integers, each lying
between 0 and 255 inclusive, that assigns PostScript gray scales to
the regions of the real line selected by the -i option. 255
corresponds to white, and 0, to black. The postmd filter assigns a
default gray scale that omits white (that is, 255) and gets darker as
the regions move from left to right along the real line.

-i list list is a comma-, space-, or slash(/)-separated string of N floating
point numbers that partition the real line into 2N+1 regions. The
list must be given in increasing numerical order. The partitions are
used to map floating point numbers read from the input files into
gray scale integers that are either assigned automatically by
postmd or arbitrarily selected using the -g option. The default
interval list is –1,0,1, which partions the real line into seven
regions.

-m num Magnifies each logical page by the factor num. Pages are scaled
uniformly about the origin which, by default, is located at the
center of each page. The default magnification is 1.0.

-n num Prints num logical pages on each piece of paper, where num can be
any positive integer. By default, num is set to 1.

postmd(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1150 man pages section 1: User Commands • Last Revised 9 Sep 1996

-o list Prints pages whose numbers are given in the comma separated
list. The list contains single numbers N and ranges N1 – N2. A
missing N1 means the lowest numbered page, a missing N2 means
the highest. The page range is an expression of logical pages rather
than physical sheets of paper. For example, if you are printing two
logical pages to a sheet, and you specified a range of 4, then two
sheets of paper would print, containing four page layouts. If you
specified a page range of 3-4, when requesting two logical pages
to a sheet; then only page 3 and page 4 layouts would print, and
they would appear on one physical sheet of paper.

-p mode Prints files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

-w window window is a comma- or space-separated list of four positive
integers that select the upper left and lower right corners of a
submatrix from each of the input files. Row and column indices
start at 1 in the upper left corner and the numbers in the input files
are assumed to be written in row major order. By default, the
entire matrix is displayed.

-x num Translates the origin num inches along the positive x axis. The
default coordinate system has the origin fixed at the center of the
page, with positive x to the right and positive y up the page.
Positive num moves everything right. The default offset is 0 inches.

-y num Translates the origin num inches along the positive y axis. Positive
num moves everything up the page. The default offset is 0.

Only one matrix is displayed on each logical page, and each of the input files must
contain complete descriptions of exactly one matrix. Matrix elements are floating point
numbers arranged in row major order in each input file. White space, including
newlines, is not used to determine matrix dimensions. By default, postmd assumes
each matrix is square and sets the number of rows and columns to the square root of
the number of elements in the input file. Supplying default dimensions on the
command line with the -d option overrides this default behavior, and in that case the
dimensions apply to all input files.

An optional header can be supplied with each input file and is used to set the matrix
dimensions, the partition of the real line, the gray scale map, and a window into the
matrix. The header consists of keyword/value pairs, each on a separate line. It begins
on the first line of each input file and ends with the first unrecognized string, which
should be the first matrix element. Values set in the header take precedence, but apply
only to the current input file. Recognized header keywords are dimension,
interval, grayscale, and window. The syntax of the value string that follows each
keyword parallels what is accepted by the -d, -i, -g, and -w options.

postmd(1)

User Commands 1151

EXAMPLE 1 Generating an interval list

For example, suppose file initially contains the 1000 numbers in a 20x50 matrix. Then
you can produce exactly the same output by completing three steps.

1. First, issue the following command line:

example% postmd –d20x50 –i"–100 100" –g0,128,254,128,0 file

2. Second, prepend the following header to file:

example% postmd -d20x50 -i"−100 100" -g0,128,254,128,0 file

3. Third, issue the following command line:

example% postmd file

The interval list partitions the real line into five regions and the gray scale list maps
numbers less than –100 or greater than 100 into 0 (that is, black), numbers equal to
–100 or 100 into 128 (that is, 50 percent black), and numbers between –100 and 100 into
254 (that is, almost white).

/usr/lib/lp/postscript/forms.ps

/usr/lib/lp/postscript/ps.requests

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

dpost(1), postdaisy(1), postdmd(1), postio(1), postprint(1), postreverse(1),
posttek(1), attributes(5)

The largest matrix that can be adequately displayed is a function of the interval and
gray scale lists, the printer resolution, and the paper size. A 600 by 600 matrix is an
optimistic upper bound for a two element interval list (that is, five regions) using 8.5
by 11 inch paper on a 300 dpi printer.

Using white (that is, 255) in a gray scale list is not recommended and won’t show up
in the legend and bar graph that postmd displays below each image.

postmd(1)

EXAMPLES

FILES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

1152 man pages section 1: User Commands • Last Revised 9 Sep 1996

postplot – PostScript translator for plot(4B) graphics files

postplot [-c num] [-f name] [-m num] [-n num] [-o list] [-p mode]
[-w num] [-x num] [-y num] [filename…]

/usr/lib/lp/postscript/postplot

The postplot filter translates plot(1B) graphics filenames into PostScript and writes
the results on the standard output. If no filenames are specified, or if − is one of the
input filenames, the standard input is read.

The following options are supported:

-c num Print num copies of each page. By default, only one copy is printed.

-f name Print text using font name. Any PostScript font can be used, although the
best results will be obtained only with constant width fonts. The default
font is Courier.

-m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin which, by default, is located at the center of each page. The
default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can be any
positive integer. By default, num is set to 1.

-o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest.

-p mode Print filenames in either portrait or landscape mode. Only the first character
of mode is significant. The default mode is landscape.

-w num Set the line width used for graphics to num points, where a point is
approximately 1/72 of an inch. By default, num is set to 0 points, which
forces lines to be one pixel wide.

-x num Translate the origin num inches along the positive x axis. The default
coordinate system has the origin fixed at the center of the page, with
positive x to the right and positive y up the page. Positive num moves
everything right. The default offset is 0.0 inches.

-y num Translate the origin num inches along the positive y axis. Positive num
moves everything up the page. The default offset is 0.0.

The following operand is supported:

filename The graphics filename to be translated

The following exit value is returned:

0 filename(s) were successfully processed.

postplot(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

User Commands 1153

/usr/lib/lp/postscript/forms.ps

/usr/lib/lp/postscript/postplot.ps

/usr/lib/lp/postscript/ps.requests

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlps

download(1), dpost(1), plot(1B), postdaisy(1), postdmd(1), postio(1),
postmd(1), postprint(1), postreverse(1), plot(4B), attributes(5)

The default line width is too small for write-white print engines, such as the one used
by the PS-2400.

postplot(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

1154 man pages section 1: User Commands • Last Revised 17 Jun 1992

postprint – PostScript translator for text files

postprint [-c num] [-f name] [-l num] [-m num] [-n num] [-o list]
[-p mode] [-r num] [-s num] [-t num] [-x num] [-y num] [file…]

/usr/lib/lp/postscript/postprint

The postprint filter translates text files into PostScript and writes the results on the
standard output. If no files are specified, or if − is one of the input files, the standard
input is read.

-c num Print num copies of each page. By default, only one copy is printed.

-f name Print files using font name. Any PostScript font can be used, although the
best results will be obtained only with constant width fonts. The default
font is Courier.

-l num Set the length of a page to num lines. By default, num is 66. Setting num to
0 is allowed, and will cause postprint to guess a value, based on the
point size that’s being used.

-m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin, which is located near the upper left corner of each page.
The default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can be any
positive integer. By default, num is set to 1.

-o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is
an expression of logical pages rather than physical sheets of paper. For
example, if you are printing two logical pages to a sheet, and you specified
a range of 4, then two sheets of paper would print, containing four page
layouts. If you specified a page range of 3-4, when requesting two logical
pages to a sheet; then only page 3 and page 4 layouts would print, and they
would appear on one physical sheet of paper.

-p mode Print files in either portrait or landscape mode. Only the first character of
mode is significant. The default mode is portrait.

-r num Selects carriage return behavior. Carriage returns are ignored if num is 0,
cause a return to column 1 if num is 1, and generate a newline if num is 2.
The default num is 0.

-s num Print files using point size num. When printing in landscape mode num is
scaled by a factor that depends on the imaging area of the device. The
default size for portrait mode is 10. Note that increasing point size
increases virtual image size, so you either need to load larger paper, or use
the −l0 option to scale the number of lines per page.

-t num Assume tabs are set every num columns, starting with the first column. By
default, tabs are set every 8 columns.

postprint(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1155

-x num Translate the origin num inches along the positive x axis. The default
coordinate system has the origin fixed near the upper left corner of the
page, with positive x to the right and positive y down the page. Positive
num moves everything to the right. The default offset is 0.25 inches.

-y num Translate the origin num inches along the positive y axis. Positive num
moves text up the page. The default offset is −0.25 inches.

A new logical page is started after 66 lines have been printed on the current page, or
whenever an ASCII form feed character is read. The number of lines per page can be
changed using the -l option. Unprintable ASCII characters are ignored, and lines that
are too long are silently truncated by the printer.

EXAMPLE 1 Examples of postprint.

To print file1 and file2 in landscape mode, issue the following command:

example% postprint -pland file1 file2

To print three logical pages on each physical page in portrait mode:

example% postprint -n3 file

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/usr/lib/lp/postscript/forms.ps

/usr/lib/lp/postscript/ps.requests

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1),
postreverse(1), posttek(1), attributes(5)

postprint(1)

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1156 man pages section 1: User Commands • Last Revised 9 Sep 1996

postreverse – reverse the page order in a PostScript file

postreverse [-o list] [-r] [file]

/usr/lib/lp/postscript/postreverse

The postreverse filter reverses the page order in files that conform to Adobe’s
Version 1.0 or Version 2.0 file structuring conventions, and writes the results on the
standard output. Only one input file is allowed and if no file is specified, the
standard input is read.

The postreverse filter can handle a limited class of files that violate page
independence, provided all global definitions are bracketed by %%BeginGlobal and
%%EndGlobal comments. In addition, files that mark the end of each page with
%%EndPage: label ordinal comments will also reverse properly, provided the
prologue and trailer sections can be located. If postreverse fails to find an
%%EndProlog or %%EndSetup comment, the entire file is copied, unmodified, to
the standard output.

Because global definitions are extracted from individual pages and put in the
prologue, the output file can be minimally conforming, even if the input file was
not.

-o list Select pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is
an expression of logical pages rather than physical sheets of paper. For
example, if you are printing two logical pages to a sheet, and you specified
a range of 4, then two sheets of paper would print, containing four page
layouts. If you specified a page range of 3-4, when requesting two logical
pages to a sheet; then only page 3 and page 4 layouts would print, and they
would appear on one physical sheet of paper.

-r Do not reverse the pages in file.

EXAMPLE 1 Examples of postreverse.

o select pages 1 to 100 from file and reverse the pages:

example% postreverse -o1−100 file

To print four logical pages on each physical page and reverse all the pages:

example% postprint -n4 file | postreverse

To produce a minimally conforming file from output generated by dpost without
reversing the pages:

example% dpost file | postreverse -r

The following exit values are returned:

0 Successful completion.

postreverse(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

EXIT STATUS

User Commands 1157

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1),
postprint(1), posttek(1), attributes(5)

No attempt has been made to deal with redefinitions of global variables or procedures.
If standard input is used, the input file will be read three times before being
reversed.

postreverse(1)

ATTRIBUTES

SEE ALSO

NOTES

1158 man pages section 1: User Commands • Last Revised 9 Sep 1996

posttek – PostScript translator for Tektronix 4014 files

posttek [-c num] [-f name] [-m num] [-n num] [-o list] [-p mode]
[-w num] [-x num] [-y num] [file…]

/usr/lib/lp/postscript/posttek

The posttek filter translates Tektronix 4014 graphics files into PostScript and writes
the results on the standard output. If no files are specified, or if − is one of the input
files, the standard input is read.

-c num Print num copies of each page. By default, only one copy is printed.

-f name Print text using font name. Any PostScript font can be used, although the
best results will be obtained only with constant width fonts. The default
font is Courier.

-m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin which, by default, is located at the center of each page. The
default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can be any
positive integer. By default, num is set to 1.

-o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is
an expression of logical pages rather than physical sheets of paper. For
example, if you are printing two logical pages to a sheet, and you specified
a range of 4, then two sheets of paper would print, containing four page
layouts. If you specified a page range of 3-4, when requesting two logical
pages to a sheet; then only page 3 and page 4 layouts would print, and they
would appear on one physical sheet of paper.

-p mode Print files in either portrait or landscape mode. Only the first character of
mode is significant. The default mode is landscape.

-w num Set the line width used for graphics to num points, where a point is
approximately 1/72 of an inch. By default, num is set to 0 points, which
forces lines to be one pixel wide.

-x num Translate the origin num inches along the positive x axis. The default
coordinate system has the origin fixed at the center of the page, with
positive x to the right and positive y up the page. Positive num moves
everything right. The default offset is 0.0 inches.

-y num Translate the origin num inches along the positive y axis. Positive num
moves everything up the page. The default offset is 0.0.

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

posttek(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

User Commands 1159

/usr/lib/lp/postscript/forms.ps

/usr/lib/lp/postscript/ps.requests

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1),
postprint(1), postreverse(1), attributes(5)

The default line width is too small for write-white print engines, such as the one used
by the PS-2400.

posttek(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

1160 man pages section 1: User Commands • Last Revised 9 Sep 1996

ppgsz – set preferred stack and/or heap page size

/usr/bin/ppgsz [-F] -o option[,option] cmd | -p pid…

The ppgsz utility sets the preferred stack and/or heap page size for the target
process(es), that is, the launched cmd or the process(es) in the pid list. ppgsz stops the
target process(es) while changing the page size. See memcntl(2).

The following options are supported:

-F Force. Sets the preferred page size options(s) for target process(es)
even if controlled by other process(es). Caution should be
exercised when using the -F flag. See proc(1).

-p pid Sets the preferred page size option(s) for the target process(es) in
the process-id (pid) list following the -p option. The pid list can
also consist of names in the /proc directory. Only the process
owner or the super-user is permitted to set page size.

cmd is interpreted if -p is not specified. ppgsz launches cmd and
applies page size option(s) to the new process.

The heap and stack preferred page sizes are inherited. Child
process(es) created (see fork(2)) from the launched process or the
target process(es) in the pid list after ppgsz completes will inherit
the preferred heap and stack page sizes. The preferred page sizes
are set back to the default system page size on exec(2) (see
getpagesize(3C)).

-o option[,option] The options are:

heap=size This option specifies the preferred page size for
the heap of the target process(es). heap is
defined to be the bss (uninitialized data) and
the brk area that immediately follows the bss
(see brk(2)). The preferred heap page size is
set for the existing heap and for any additional
heap memory allocated in the future. See
NOTES.

stack=size This option specifies the preferred page size for
the stack of the target process(es). The
preferred stack page size is set for the existing
stack and newly allocated parts of the stack as
it expands.

At least one of the above options must be specified.

size must be a supported page size (see pagesize(1)) or 0, in
which case the system will select an appropriate page size (see
memcntl(2)).

ppgsz(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1161

size defaults to bytes and can be specified in octal (0), decimal, or
hexadecimal (0x). The numeric value can be qualified with K, M, G,
or T to specify Kilobytes, Megabytes, Gigabytes, or Terabytes,
respectively. 4194304, 0x400000, 4096K, 0x1000K, and 4M are
different ways to specify 4 Megabytes.

EXAMPLE 1 Setting the preferred heap and stack page size

The following example sets the preferred heap page size to 4M and the preferred stack
page size to 512K for all ora—owned processes running commands that begin with
ora:

example% ppgsz -o heap=4M,stack=512K -p ‘pgrep -u ora ’^ora’‘

If cmd is specified and successfully invoked (see exec(2)), the exit status of ppgsz will
be the exit status of cmd. Otherwise, ppgsz will exit with one of the following values:

0 Successfully set preferred page size(s) for processes in the pid list.

125 An error occurred in ppgsz. Errors include: invalid argument,
invalid page size(s) specified, and failure to set preferred page
size(s) for one or more processes in the pid list or cmd.

126 cmd was found but could not be invoked.

127 cmd could not be found.

/proc/* Process files.

/usr/lib/ld/map.bssalignA template link-editor mapfile for aligning bss (see NOTES).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu (32–bit)

SUNWesxu (64–bit)

Interface Stability Evolving

ld(1), mpss.so.1(1), pagesize(1), pgrep(1), pmap(1), proc(1), brk(2), exec(2),
fork(2), memcntl(2), sbrk(2), getpagesize(3C), proc(4), attributes(5)

Linker and Libraries Guide

Due to resource constraints, the setting of the preferred page size does not necessarily
guarantee that the target process(es) will get the preferred page size. Use pmap(1) to
view the actual heap and stack page sizes of the target process(es) (see pmap -s
option).

ppgsz(1)

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

1162 man pages section 1: User Commands • Last Revised 11 Dec 2001

Large pages are required to be mapped at addresses that are multiples of the size of
the large page. Given that the heap is typically not large page aligned, the starting
portions of the heap (below the first large page aligned address) are mapped with the
system memory page size. See getpagesize(3C).

To provide a heap that will be mapped with a large page size, an application can be
built using a link-editor (ld(1)) mapfile containing the bss segment declaration
directive. Refer to the section “Mapfile Option” in the Linker and Libraries Guide for
more details of this directive and the template mapfile provided in
/usr/lib/ld/map.bssalign. Users are cautioned that an alignment specification
may be machine-specific and may lose its benefit on different hardware platforms. A
more flexible means of requesting the most optimal underlying page size may evolve
in future releases.

mpss.so.1(1), a preloadable shared object, can also be used to set the preferred stack
and/or heap page sizes.

ppgsz(1)

User Commands 1163

pr – print files

/usr/bin/pr [+ page] [-column] [-adFmrt] [-e [char] [gap]] [-h header]
[-i [char] [gap]] [-l lines] [-n [char] [width]] [-o offset] [-s
[char]] [-w width] [-fp] [file…]

/usr/xpg4/bin/pr [+ page] [-column | -c column] [-adFmrt] [-e [char]
[gap]] [-h header] [-i [char] [gap]] [-l lines] [-n [char] [width]]
[-o offset] [-s [char]] [-w width] [-fp] [file…]

The pr utility is a printing and pagination filter. If multiple input files are specified,
each is read, formatted, and written to standard output. By default, the input is
separated into 66-line pages, each with:

� a 5-line header that includes the page number, date, time and the path name of the
file

� a 5-line trailer consisting of blank lines

If standard output is associated with a terminal, diagnostic messages will be deferred
until the pr utility has completed processing.

When options specifying multi-column output are specified, output text columns will
be of equal width; input lines that do not fit into a text column will be truncated. By
default, text columns are separated with at least one blank character.

The following options are supported. In the following option descriptions, column,
lines, offset, page, and width are positive decimal integers; gap is a non-negative
decimal integer. Some of the option-arguments are optional, and some of the
option-arguments cannot be specified as separate arguments from the preceding
option letter. In particular, the -s option does not allow the option letter to be
separated from its argument, and the options -e, -i, and -n require that both
arguments, if present, not be separated from the option letter.

The following options are supported for both /usr/bin/pr and
/usr/xpg4/bin/pr:

+page Begin output at page number page of the formatted
input.

-column Produce multi-column output that is arranged in
column columns (default is 1) and is written down each
column in the order in which the text is received from
the input file. This option should not be used with -m.
The -e and -i options will be assumed for multiple
text-column output. Whether or not text columns are
produced with identical vertical lengths is unspecified,
but a text column will never exceed the length of the
page (see the -l option). When used with -t, use the
minimum number of lines to write the output.

pr(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1164 man pages section 1: User Commands • Last Revised 18 Mar 1997

-a Modify the effect of the -column option so that the
columns are filled across the page in a round-robin
order (for example, when column is 2, the first input
line heads column 1, the second heads column 2, the
third is the second line in column 1, and so forth).

-d Produce output that is double-spaced; append an extra
NEWLINE character following every NEWLINE
character found in the input.

-e [char][gap] Expand each input TAB character to the next greater
column position specified by the formula n *gap+1,
where n is an integer >0. If gap is 0 or is omitted, it
defaults to 8. All TAB characters in the input will be
expanded into the appropriate number of SPACE
characters. If any non-digit character, char, is specified,
it will be used as the input tab character.

-f Use a FORMFEED character for new pages, instead of
the default behavior that uses a sequence of NEWLINE
characters. Pause before beginning the first page if the
standard output is associated with a terminal.

-h header Use the string header to replace the contents of the file
operand in the page header.

-l lines Override the 66-line default and reset the page length
to lines. If lines is not greater than the sum of both the
header and trailer depths (in lines), pr will suppress
both the header and trailer, as if the -t option were in
effect.

-m Merge files. Standard output will be formatted so pr
writes one line from each file specified by file, side
by side into text columns of equal fixed widths, in
terms of the number of column positions.
Implementations support merging of at least nine
files.

-n [char][width] Provide width-digit line numbering (default for width is
5). The number will occupy the first width column
positions of each text column of default output or each
line of -m output. If char (any non-digit character) is
given, it will be appended to the line number to
separate it from whatever follows (default for char is a
TAB character).

-o offset Each line of output will be preceded by offset <space>s.
If the -o option is not specified, the default offset is 0.
The space taken will be in addition to the output line
width (see -w option below).

pr(1)

User Commands 1165

-p Pause before beginning each page if the standard
output is directed to a terminal (pr will write an
ALERT character to standard error and wait for a
carriage-return character to be read on /dev/tty).

-r Write no diagnostic reports on failure to open files.

-s [char] Separate text columns by the single character char
instead of by the appropriate number of SPACE
characters (default for char is the TAB character).

-t Write neither the five-line identifying header nor the
five-line trailer usually supplied for each page. Quit
writing after the last line of each file without spacing to
the end of the page.

-w width Set the width of the line to width column positions for
multiple text-column output only. If the -w option is
not specified and the -s option is not specified, the
default width is 72. If the -w option is not specified
and the -s option is specified, the default width is 512.

For single column output, input lines will not be
truncated.

The following options are supported for /usr/bin/pr only:

-F Fold the lines of the input file. When used in multi-column mode
(with the -a or -m options), lines will be folded to fit the current
column’s width; otherwise, they will be folded to fit the current
line width (80 columns).

-i [char][gap]In output, replace SPACE characters with TAB characters wherever
one or more adjacent SPACE characters reach column positions
gap+1, 2*gap+1, 3*gap+1, and so forth. If gap is 0 or is omitted,
default TAB settings at every eighth column position are assumed.
If any non-digit character, char, is specified, it will be used as the
output TAB character.

The following options are supported for /usr/xpg4/bin/pr only:

-F Use a FORMFEED character for new pages, instead of the default
behavior that uses a sequence of NEWLINE characters.

-i [char][gap]In output, replace multiple SPACE characters with TAB characters
wherever two or more adjacent SPACE characters reach column
positions gap+1, 2*gap+1, 3*gap+1, and so forth. If gap is 0 or is
omitted, default TAB settings at every eighth column position are
assumed. If any non-digit character, char, is specified, it will be
used as the output TAB character.

The following operand is supported:

pr(1)

/usr/bin/pr

/usr/xpg4/bin/pr

OPERANDS

1166 man pages section 1: User Commands • Last Revised 18 Mar 1997

file A path name of a file to be written. If no file operands are specified, or if
a file operand is −, the standard input will be used.

EXAMPLE 1 Print a numbered list of all files in the current directory:

ls -a | pr -n -h "Files in $(pwd)."

EXAMPLE 2 Print file1 and file2 as a double-spaced, three-column listing headed by “file
list”:

pr -3d -h "file list" file1 file2

EXAMPLE 3 Write file1 on file2, expanding tabs to columns 10, 19, 28, . . . :

pr -e9 -t <file1 >file2

See environ(5) for descriptions of the following environment variables that affect the
execution of pr: LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

expand(1), lp(1), attributes(5), environ(5), XPG4(5)

pr(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/pr

/usr/xpg4/bin/pr

SEE ALSO

User Commands 1167

praliases – display system mail aliases

praliases [-c configfile] [-f aliasfile] [key]

The praliases utility displays system mail aliases. When no key is given,
praliases displays the current system aliases, one per line, in no particular order.
The form is key:value. If a key is given, only that key is looked up and the
appropriate key:value is displayed if found.

The following options are supported:

-c configfile Specifies a sendmail configuration file.

-f aliasfile Reads the specified file aliasfile instead of the default sendmail
system aliases file.

The following operands are supported:

key A specific alias key to look up.

The following exit values are returned:

0 Successful operation.

>0 An error occurred.

/etc/mail/aliases Default sendmail system aliases file

/etc/mail/aliases.db Database versions of the
/etc/mail/aliases file

/etc/mail/aliases.dir
/etc/mail/aliases.pag Database versions of the

/etc/mail/aliases file

/etc/mail/sendmail.cf Default sendmail configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmu

mailq(1), newaliases(1M), sendmail(1M), attributes(5)

praliases(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1168 man pages section 1: User Commands • Last Revised 19 Sep 2001

prctl – get or set the resource controls of running processes, tasks, and projects

prctl [-t [basic | privileged | system]] [-e | -d action] [-rx] [-n
name [-v value]] [-i idtype] [id…]

The prctl utility allows the examination and modification of the resource controls
associated with an active process, task, or project on the system. It allows access to the
basic and privileged limits on the specified entity.

The following options are supported:

-d | -e action Disables (-d) or enables (-e) the specified
action on the specified resource control. The
special token all is valid with the disable
option to deactivate all actions on the given
resource control value.

The other defined actions for a resource are
deny and signal=signum. The deny
action indicates that the resource control
encountered will attempt to deny granting
the resource to the process, task, or project
on a request for resources in excess of the
value provided by the -v option for the
new resource control. In the
signal=signum action, signum is a signal
number (or string representation of a
signal). deny actions may not be activated
or deactivated if global flags indicate that
the deny action is unchangeable.

-i idtype Specifies the type of the id operands. Valid
idtypes are process, task, or project.
The default id type, if the -i option is
omitted, is process.

-n name Specifies the name of the resource control to
get or set. If the name is unspecified, all
resource controls are retrieved.

-r Replaces the first resource control value
(matching with the -t privilege) with
the new value specified through the -v
option.

-t [basic | privileged | system] Specifies which resource control type to set.
Unless the "lowerable" flag is set for a
resource control, only invocations by users
(or setuid programs) who have privileges
equivalent to those of root can modify
privileged resource controls. See

prctl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1169

rctlblk_set_value(3C) for a description
of the RCTL_GLOBAL_LOWERABLE flag. If
the type is not specified, basic is assumed.
For a get operation, the values of all
resource control types, including system,
are displayed if no type is specified.

-v value Specifies the value for the resource control
for a set operation. If no value is specified,
then the modification (deletion, action
enabling or disabling) will be carried out on
the lowest-valued resource control with the
given type.

-x Deletes the specified resource control value.
If the delete option is not provided, the
default operation of prctl is to modify a
resource control value of matching value
and privilege, or insert a new value with
the given privilege. The matching criteria
are discussed more fully in setrctl(2).

If none of the -d, -e, -v, or -x options is specified, the invocation is considered a get
operation.

The following operand is supported:

id The ID of the entity (process, task, or project) to interrogate. If the
invoking user’s credentials are unprivileged and the entity being
interrogated possesses different credentials, the operation will fail. If no id
is specified, an error message is returned.

EXAMPLE 1 Displaying current resource control settings for a specific process

example$ pgrep sort
111759
example$ prctl 111759
111759: /usr/bin/sort
process.max-address-space [lowerable deny no-local-action]

18446744073709551615 privileged deny
18446744073709551615 system deny

process.max-file-descriptor [lowerable deny]
256 basic deny

65536 privileged deny
2147483647 system deny

process.max-core-size [lowerable deny no-local-action]
18446744073709551615 privileged deny

18446744073709551615 system deny
process.max-stack-size [lowerable deny no-local-action]

8388608 basic deny
9223372036854775807 privileged deny
9223372036854775807 system deny

process.max-data-size [lowerable deny no-local-action]

prctl(1)

OPERANDS

EXAMPLES

1170 man pages section 1: User Commands • Last Revised 28 Aug 2001

EXAMPLE 1 Displaying current resource control settings for a specific process (Continued)

18446744073709551615 privileged deny
18446744073709551615 system deny

process.max-file-size [lowerable deny file-size]
9223372036854775807 privileged signal=XFSZ deny
9223372036854775807 system deny

process.max-cpu-time [lowerable no-deny cpu-time]
18446744073709551615 privileged signal=XCPU
18446744073709551615 system deny [infinite]

task.max-cpu-time [no-deny cpu-time]
18446744073709551615 system deny [infinite]

task.max-lwps
2147483647 system deny

project.cpu-shares [no-basic no-local-action]
10 privileged none

65535 system deny

EXAMPLE 2 Displaying, replacing, and verifying the value of a specific control on an existing
project

example# prctl -n project.cpu-shares -i project group.staff
111788: ksh
project.cpu-shares [no-basic no-local-action]

1 privileged none
65535 system deny

prctl -n project.cpu-shares -v 10 -r -i project group.staff
prctl -n project.cpu-shares -i project group.staff
111788: ksh
project.cpu-shares [no-basic no-local-action]

10 privileged none

65535 system deny

The following exit values are returned:

0 Success.

1 Fatal error encountered.

2 Invalid command line options were specified.

/proc/pid/* process information and control files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

rctladm(1M), setrctl(2), rctlblk_get_local_action(3C), attributes(5)

prctl(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 1171

preap – force a defunct process to be reaped by its parent

preap [-F] pid…

A defunct (or zombie) process is one whose exit status has yet to be reaped by its
parent. The exit status is reaped via the wait(2), waitid(2), or waitpid(2) system
call. In the normal course of system operation, zombies may occur, but are typically
short-lived. This may happen if a parent exits without having reaped the exit status of
some or all of its children. In that case, those children are reparented to PID 1. See
init(1M), which periodically reaps such processes.

An irresponsible parent process may not exit for a very long time and thus leave
zombies on the system. Since the operating system destroys nearly all components of a
process before it becomes defunct, such defunct processes do not normally impact
system operation. However, they do consume a small amount of system memory.

preap forces the parent of the process specified by pid to waitid(2) for pid, if pid
represents a defunct process.

preap will attempt to prevent the administrator from unwisely reaping a child
process which might soon be reaped by the parent, if:

� The process is a child of init(1M).
� The parent process is stopped and might wait on the child when it is again allowed

to run.
� The process has been defunct for less than one minute.

The following option is supported:

-F Forces the parent to reap the child, overriding safety checks.

The following operand is supported:

pid Process ID list.

The following exit values are returned by preap, which prints the exit status of each
target process reaped:

0 Successfully operation.

non-zero Failure, such as no such process, permission denied, or invalid option.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu (32–bit)

SUNWesxu (64–bit)

proc(1), init(1M), wait(2), waitid(2), waitpid(2), proc(4), attributes(5)

preap(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

1172 man pages section 1: User Commands • Last Revised 26 Mar 2001

preap should be applied sparingly and only in situations in which the administrator
or developer has confirmed that defunct processes will not be reaped by the parent
process. Otherwise, applying preap may damage the parent process in unpredictable
ways.

preap(1)

WARNINGS

User Commands 1173

prex – control tracing and manipulate probe points in a process or the kernel

prex [-o trace_file_name] [-l libraries] [-s kbytes_size] cmd [cmd-args…]

prex [-o trace_file_name] [-l libraries] [-s kbytes_size] -p pid

prex -k [-s kbytes_size]

The prex command is the part of the Solaris tracing architecture that controls probes
in a process or the kernel. See tracing(3TNF) for an overview of this tracing
architecture, including example source code using it.

prex is the application used for external control of probes. It automatically preloads
the libtnfprobe library. prex locates all the probes in a target executable or the
kernel and provides an interface for the user to manipulate them. It allows a probe to
be turned on for tracing, debugging, or both. Tracing generates a TNF (Trace Normal
Form) trace file that can be converted to ASCII by tnfdump(1) and used for
performance analysis. Debugging generates a line to standard error whenever the
probe is hit at run time.

prex does not work on static executables. It only works on dynamic executables.

There are three ways to invoke prex:

1. Use prex to start the target application cmd. In this case, the target application
need not be built with a dependency on libtnfprobe. See TNF_PROBE(3TNF).
prex sets the environment variable LD_PRELOAD to load libtnfprobe into the
target process. See ld(1). prex then uses the environment variable PATH to find
the target application.

2. Attach prex to a running application. In this case, the running target application
should have libtnfprobe already linked in. Alternatively, the user may
manually set LD_PRELOAD to include libtnfprobe.so.1 prior to invoking the
target.

3. Use prex with the -k option to set prex to kernel mode. prex can then be used
to control probes in the Solaris kernel. In kernel mode, additional commands are
defined, and some commands that are valid in other modes are invalid. See
Kernel Mode below.

In a future release of prex, the command language may be moved to a syntax that is
supported by an existing scripting language like ksh(1). In the meantime, the interface
to prex is uncommitted.

� Commands should be in ASCII.

� Each command is terminated with the NEWLINE character.

� A command can be continued onto the next line by ending the previous line with
the backslash (“\”) character.

� Tokens in a command must be separated by whitespace (one or more spaces or
tabs).

� The "#" character implies that the rest of the line is a comment.

prex(1)

NAME

SYNOPSIS

DESCRIPTION

Invoking prex

Control File
Format and
Command
Language

1174 man pages section 1: User Commands • Last Revised 1 Nov 2000

Command Result

% prex a.out Attaches prex to your program and starts
prex.

prex> enable $all Enables all the probes.

prex> quit resume Quits prex and resumes execution of
program.

There are two different methods of communicating with prex:

� By specifications in a control file. During start-up, prex searches for a file named
.prexrc in the directories specified below. prex does not stop at the first one it
finds. This way a user can override any defaults that are set up. The search order is:

$HOME/
./

� By typing commands at the prex prompt.

The command language for both methods is the same and is specified in USAGE. The
commands that return output will not make sense in a control file. The output will go
to standard output.

When using prex on a target process, the target will be in one of two states, running
or stopped. This can be detected by the presence or absence of the prex> prompt. If
the prompt is absent, it means that the target process is running. Typing Control-C will
stop the target pr ocess and return the user to the prompt. There is no guarantee that
Control-C will return to a prex prompt immediately. For example, if the target
process is stopped on a job control stop (SIGSTOP), then Control-C in prex will wait
until the target has been continued (SIGCONT). See Signals to Target Program
below for more information on signals and the target process.

The following options are supported:

-k kernel mode: prex is used to control probes in the
Solaris kernel. In kernel mode, additional commands
are defined, and some commands valid in other modes
are invalid. See Kernel Mode below.

-l libraries The libraries mentioned are linked in to the target
application using LD_PRELOAD (see ld(1)). This option
cannot be used when attaching to a running process.
The argument to the -l option should be a
space-separated string enclosed in double quotes. Each
token in the string is a library name. It follows the
LD_PRELOAD rules on how libraries should be
specified and where they will be found.

prex(1)

Basic prex
Commands

Control File Search
Path

OPTIONS

User Commands 1175

-o trace_file_name File to be used for the trace output. trace_file_name is
assumed to be relative to the current working directory
of prex (that is, the directory that the user was in
when prex was started).

If prex attaches to a process that is already tracing, the
new trace_file_name (if provided) will not be used. If no
trace_file_name is specified, the default is
/$TMPDIR/trace-pid where pid is the process id of
the target program. If TMPDIR is not set, /tmp is used.

-s kbytes_size Maximum size of the output trace file in Kbytes. The
default size of the trace kbytes_size is 4096 (210) bytes or
4 Mbytes for normal usage, and 384 or 384 kbytes in
kernel mode. The minimum size that can be specified is
128 Kbytes. The trace file can be thought of as a least
recently used circular buffer. Once the file has been
filled, newer events will overwrite the older ones.

Probes are specified by a list of space-separated selectors. Selectors are of the form:

attribute=value

(See TNF_PROBE(3TNF)). The “attribute=” is optional. If it is not specified, it defaults
to “keys=”.

The attribute or value (generically called “spec”) can be any of the following:

IDENT Any sequence of letters, digits, _ , \ , ., % not beginning with a
digit. IDENT implies an exact match.

QUOTED_STR Usually used to escape reserved words (any commands in the
command language). QUOTED_STR implies an exact match and has
to be enclosed in single quotes (’ ’).

REGEXP An ed(1) regular expression pattern match. REGEXP has to be
enclosed in slashes (/ /), A / can be included in a REGEXP by
escaping it with a backslash \ .

The following grammar explains the syntax.

selector_list ::= | /* empty */
selector_list selector

selector ::= spec=spec | /* whitespace around ‘=’ opt */
spec

spec ::= IDENT |
QUOTED_STR |
REGEXP

The terminals in the above grammar are:

prex(1)

Grammar

1176 man pages section 1: User Commands • Last Revised 1 Nov 2000

IDENT = [a-zA-Z_\.%]{[a-zA-Z0-9_\.%]}+
QUOTED_STR = ’[^\n’]*’ /* any string in single quotes */
REGEXP = /[^\n/]*/ /* regexp’s have to be in / / */

This is a list of the remaining grammar that is needed to understand the syntax of the
command language (defined in next subsection):

filename ::= QUOTED_STR /* QUOTED_STR defined above */
spec_list ::= /* empty */ |

spec_list spec /* spec defined above */
fcn_handle ::= &IDENT /* IDENT defined above */
set_name ::= $IDENT /* IDENT defined above */

1. Set Creation and Set Listing

create $set_name selector_list
list sets # list the defined setscreate can be used to define a
set which contains probes that match the selector_list. The set $all is pre-defined
as /.*/ and it matches all the probes.

2. Function Listing

list fcns # list the available fcn_handleThe user can list the different
functions that can be connected to probe points. Currently, only the debug function
called &debug is available.

3. Commands to Connect and Disconnect Probe Functions

connect &fcn_handle $set_name
connect &fcn_handle selector_list
clear $set_name
clear selector_listThe connect command is used to connect probe functions (which
must be prefixed by ‘&’) to probes. The probes are specified either as a single set
(with a ‘$’), or by explicitly listing the probe selectors in the command. The probe
function has to be one that is listed by the list fcns command. This command
does not enable the probes. The clear command is used to disconnect all
connected probe functions from the specified probes.

4. Commands to Toggle the Tracing Mode

trace $set_name
trace selector_list
untrace $set_name
untrace selector_listThe trace and untrace commands are used to toggle the
tracing action of a probe point (that is, whether a probe will emit a trace record or
not if it is hit). This command does not enable the probes specified. Probes have
tracing on by default. The most efficient way to turn off tracing is by using the
disable command. untrace is useful if you want debug output but no tracing. If
so, set the state of the probe to enabled, untraced, and the debug function
connected.

prex(1)

Command
Language

User Commands 1177

5. Commands to Enable and Disable Probes

enable $set_name
enable selector_list
disable $set_name
disable selector_listThe enable and disable commands are used to control
whether the probes perform the action that they have been set up for. To trace a
probe, it has to be both enabled and traced (using the trace command). Probes are
disabled by default. The list history command is used to list the probe control
commands issued: connect, clear, trace, untrace, enable, and disable.
These are the commands that are executed whenever a new shared object is
brought in to the target program by dlopen(3DL). See the subsection, dlopen’ed
Libraries, below for more information. The following table shows the actions
that result from specific combinations of tracing, enabling, and connecting:

Enabled or Tracing State Debug State Results
Disabled (On/Off) (Connected/Cleared) In
--
Enabled On Connected Tracing and

Debugging

Enabled On Cleared Tracing only

Enabled Off Connected Debugging only

Enabled Off Cleared Nothing

Disabled On Connected Nothing

Disabled On Cleared Nothing

Disabled Off Connected Nothing

Disabled Off Cleared Nothing

6. List History

list history # lists probe control command historyThe list history
command displays a list of the probe control commands previously issued in the
tracing session, for example, connect, clear, trace, disable. Commands in
the history list are executed wherever a new shared object is brought into the target
program by dlopen(3DL).

7. Commands to List Probes, List Values, or List Trace File Name

list spec_list probes $set_name # list probes $all
list spec_list probes selector_list # list name probes file=test.c
list values spec_list # list values keys given in spec_list
list tracefile # list tracefileThe first two commands list the

prex(1)

1178 man pages section 1: User Commands • Last Revised 1 Nov 2000

selected attributes and values of the specified probes. They can be used to check
the state of a probe. The third command lists the various values associated with the
selected attributes. The fourth command lists the current tracefile.

8. Help Command

help topicTo get a list of the help topics that are available, invoke the help
command with no arguments. If a topic argument is specified, help is printed for
that topic.

9. Source a File

source filenameThe source command can be used to source a file of prex
commands. source can be nested (that is, a file can source another file). filename is
a quoted string.

10. Process Control

continue # resumes the target process
quit kill # quit prex, kill target
quit resume # quit prex, continue target
quit suspend # quit prex, leave target suspended

quit # quit prex (continue or kill target)The default quit will
continue the target process if prex attached to it. Instead, if prex had started the
target program, quit will kill the target process.

Probes in shared objects that are brought in by dlopen(3DL) are automatically set up
according to the command history of prex. When a shared object is removed by a
dlclose(3DL), prex again needs to refresh its understanding of the probes in the
target program. This implies that there is more work to do for dlopen(3DL) and
dlclose(3DL) —so they will take slightly longer. If a user is not interested in this
feature and doesn’t want to interfere with dlopen(3DL) and dlclose(3DL), detach
prex from the target to inhibit this feature.

prex does not interfere with signals that are delivered directly to the target program.
However, prex receives all signals normally generated from the terminal, for
example, Control-C (SIGINT), and Control-Z (SIGSTOP), and does not forward them
to the target program. To signal the target program, use the kill(1) command from a
shell.

Process managing applications like dbx, truss(1), and prex cannot operate on the
same target program simultaneously. prex will not be able to attach to a target which
is being controlled by another application. A user can trace and debug a program
serially by the following method: first attach prex to target (or start target through
prex), set up the probes using the command language, and then type quit
suspend. The user can then attach dbx to the suspended process and debug it. A user

prex(1)

dlopen’ed
Libraries

Signals to Target
Program

Interactions with
Other Applications

User Commands 1179

can also suspend the target by sending it a SIGSTOP signal, and then by typing quit
resume to prex. In this case, the user should also send a SIGCONT signal after
invoking dbx on the stopped process (else dbx will be hung).

There are a few failure points that are possible when writing out events to a trace file,
for example, system call failures. These failures result in a failure code being set in the
target process. The target process continues normally, but no trace records are written.
Whenever a user enters Control-C to prex to get to a prex prompt, prex will check
the failure code in the target and inform the user if there was a tracing failure.

If the target program does a fork(2), any probes that the child encounters will cause
events to be logged to the same trace file. Events are annotated with a process id, so it
will be possible to determine which process a particular event came from. In
multi-threaded programs, there is a race condition with a thread doing a fork while
the other threads are still running. For the trace file not to get corrupted, the user
should either use fork1(2), or make sure that all other threads are quiescent when
doing a fork(2),

If the target program itself (not any children it may fork(2)) does an exec(2), prex
detaches from the target and exits. The user can reconnect prex with prex -p pid.

A vfork(2) is generally followed quickly by an exec(2) in the child, and in the
interim, the child borrows the parent’s process while the parent waits for the exec(2).
Any events logged by the child from the parent process will appear to have been
logged by the parent.

Invoking prex with the -k flag causes prex to run in kernel mode. In kernel mode,
prex controls probes in the Solaris kernel. See tnf_kernel_probes(4) for a list of
available probes in the Solaris kernel. A few prex commands are unavailable in kernel
mode; many other commands are valid in kernel mode only.

The -l, -o, and -p command-line options are not valid in kernel mode (that is, they
may not be combined with the -k flag).

The rest of this section describes the differences in the prex command language when
running prex in kernel mode.

1. prex will not stop the kernel

When prex attaches to a running user program, it stops the user program.
Obviously, it cannot do this when attaching to the kernel. Instead, prex provides a
‘‘tracing master switch’’: no probes will have any effect unless the tracing master
switch is on. This allows the user to iteratively select probes to enable, then enable
them all at once by turning on the master switch.

The command

ktrace [on | off]is used to inspect and set the value of the master switch.
Without an argument, prex reports the current state of the master switch. Since
prex will not stop or kill the kernel, the

prex(1)

Failure of Event
Writing

Operations

Target Executing a
Fork or exec

Kernel Mode

1180 man pages section 1: User Commands • Last Revised 1 Nov 2000

quit resumeand

quit killcommands are not valid in kernel mode.

2. No functions may be attached to probes in the kernel

In particular, the debug function is unavailable in kernel mode.

3. Trace output is written to an in-core buffer

In kernel mode, a trace output file is not generated directly, in order to allow
probes to be placed in time-critical code. Instead, trace output is written to an
in-core buffer, and copied out by a separate program, tnfxtract(1).

The in-core buffer is not automatically created. The following prex command
controls buffer allocation and deallocation:

buffer [alloc [size] | dealloc]Without an argument, the buffer
command reports the size of the currently allocated buffer, if any. With an
argument of alloc [size], prex allocates a buffer of the given size. size is in bytes,
with an optional suffix of ’k’ or ’m’ specifying a multiplier of 1024 or 1048576,
respectively. If no size is specified, the size specified on the command line with the
-s option is used as a default. If the -s command line option was not used, the
‘‘default default’’ is 384 kilobytes. With an argument of dealloc, prex deallocates
the trace buffer in the kernel. prex will reject attempts to turn the tracing master
switch on when no buffer is allocated, and to deallocate the buffer when the tracing
master switch is on. prex will refuse to allocate a buffer when one is already
allocated; use buffer dealloc first. prex will not allocate a buffer larger than
one-half of a machine’s physical memory.

4. prex supports per-process probe enabling in the kernel

In kernel mode, it is possible to select a set of processes for which probes are
enabled. No trace output will be written when other processes traverse these probe
points. This is called "process filter mode". By default, process filter mode is off,
and all processes cause the generation of trace records when they hit an enabled
probe.

Some kernel events such as interrupts cannot be associated with a particular user
process. By convention, these events are considered to be generated by process id
0.

prex provides commands to turn process filter mode on and off, to get the current
status of the process filter mode switch, to add and delete processes (by process id)
from the process filter set, and to list the current process filter set.

The process filter set is maintained even when process filter mode is off, but has no
effect unless process filter mode is on.

When a process in the process filter set exits, its process id is automatically deleted
from the process filter set.

The command:

prex(1)

User Commands 1181

pfilter [on | off | add pidlist | delete pidlist]controls the process filter switch,
and process filter set membership. With no arguments, pfilter prints the current
process filter set and the state of the process filter mode switch:

on or off set the state of the process filter mode switch.

add pidlist
delete pidlist add or delete processes from the process filter set. pidlist is a

comma-separated list of one or more process ids.

See tracing(3TNF) for complete examples showing, among other things, the use of
prex to do simple probe control.

When either the process or kernel is started, all probes are disabled.

EXAMPLE 1 Set creation and set listing

create $out name=/out/ # $out = probes with "out" in
value of "name" attribute

create $foo /page/ name=biodone # $foo = union of
probes with "page" in value of keys attribute
probes with "biodone" as value of "name" attribute

list sets # list the defined sets

list fcns # list the defined probe fcns

EXAMPLE 2 Commands to trace and connect probe functions

trace foobar=’on’ # exact match on foobar attribute
trace $all # trace all probes (predefined set $all)

connect &debug $foo # connect debug func to probes in $foo

EXAMPLE 3 Commands to enable and disable probes

enable $all # enable all probes
enable /vm/ name=alloc # enable the specified probes
disable $foo # disable probes in set $foo

list history # list probe control commands issued

EXAMPLE 4 Process control

continue # resumes the target process
^C # stop target; give control to prex
quit resume # exit prex, leave process running

and resume execution of program

EXAMPLE 5 Kernel mode

buffer alloc 2m # allocate a 2 Megabyte buffer
enable $all # enable all probes
trace $all # trace all probes
ktrace on # turn tracing on
ktrace off # turn tracing back off

prex(1)

EXAMPLES

1182 man pages section 1: User Commands • Last Revised 1 Nov 2000

EXAMPLE 5 Kernel mode (Continued)

pfilter on # turn process filter mode on
pfilter add 1379 # add pid 1379 to process filter
ktrace on # turn tracing on

(only pid 1379 will be traced)

.prexrc local prex initialization file

~/.prexrc user’s prex initialization file

/proc/nnnnn process files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc (32-bit)

SUNWtnfcx (64-bit)

ed(1), kill(1), ksh(1), ld(1), tnfdump(1), tnfxtract(1), truss(1), exec(2),
fork(2), fork1(2), vfork(2), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF),
dlclose(3DL), dlopen(3DL), gethrtime(3C), libtnfctl(3TNF),
tnf_process_disable(3TNF), tracing(3TNF), tnf_kernel_probes(4),
attributes(5)

Currently, the only probe function that is available is the &debug function. When this
function is executed, it prints out the arguments sent in to the probe as well as the
value associated with the sunw%debug attribute in the detail field (if any) to stderr.

For example, for the following probe point:

TNF_PROBE_2(input_values, "testapp main",
"sunw%debug ’have read input values successfully’",
tnf_long, int_input, x,
tnf_string, string_input, input);

If x was 100 and input was the string "success", then the output of the debug probe
function would be:

probe input_values; sunw%debug "have read input values successfully";
int_input=100; string_input="success";

Some non-SPARC hardware lacks a true high-resolution timer, causing gethrtime()
to return the same value multiple times in succession. This can lead to problems in
how some tools interpret the trace file. This situation can be improved by interposing
a version of gethrtime(), which causes these successive values to be artificially
incremented by one nanosecond:

prex(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1183

hrtime_t
gethrtime()
{

static mutex_t lock;
static hrtime_t (*real_gethrtime)(void) = NULL;
static hrtime_t last_time = 0;

hrtime_t this_time;

if (real_gethrtime == NULL) {
real_gethrtime =

(hrtime_t (*)(void)) dlsym(RTLD_NEXT, "gethrtime");
}
this_time = real_gethrtime();

mutex_lock(&lock);
if (this_time <= last_time)

this_time = ++last_time;
else

last_time = this_time;
mutex_unlock(&lock);

return (this_time);
}

Of course, this does not increase the resolution of the timer, so timestamps for
individual events are still relatively inaccurate. But this technique maintains ordering,
so that if event A causes event B, B never appears to happen before or at the same time
as A.

dbx is available with the Sun Workshop Products.

prex should issue a notification when a process id has been automatically deleted
from the filter set.

There is a known bug in prex which can result in this message:

Tracing shut down in target program due to an internal

error - Please restart prex and target

When prex runs as root, and the target process is not root, and the tracefile is placed
in a directory where it cannot be removed and re-created (a directory with the sticky
bit on, like /tmp),mm then the target process will not be able to open the tracefile
when it needs to. This results in tracing being disabled.

Changing any of the circumstances listed above should fix the problem. Either don’t
run prex as root, or run the target process as root, or specify the tracefile in a
directory other than /tmp.

prex(1)

BUGS

1184 man pages section 1: User Commands • Last Revised 1 Nov 2000

print – shell built-in function to output characters to the screen or window

print [-Rnprsu [n]] [arg…]

The shell output mechanism. With no flags or with flag − or –, the arguments are
printed on standard output as described by echo(1).

The following options are supported:

-n suppresses new-line from being added to the output.

-R

-r (raw mode) ignore the escape conventions of echo. The -R option
will print all subsequent arguments and options other than -n.

-p causes the arguments to be written onto the pipe of the process
spawned with |& instead of standard output.

-s causes the arguments to be written onto the history file instead of
standard output.

-u [n] flag can be used to specify a one digit file descriptor unit number n
on which the output will be placed. The default is 1.

The following exit values are returned:

0 Successful operation.

>0 Output file is not open for writing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

echo(1), ksh(1), attributes(5)

print(1)

NAME

ksh

ksh

OPTIONS

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1185

printenv – display environment variables currently set

/usr/ucb/printenv [variable]

printenv prints out the values of the variables in the environment. If a variable is
specified, only its value is printed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

csh(1), echo(1), sh(1), stty(1), tset(1B), attributes (5), environ(5)

If a variable is specified and it is not defined in the environment, printenv returns an
exit status of 1.

printenv(1B)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

1186 man pages section 1: User Commands • Last Revised 14 Sep 1992

printf – write formatted output

printf format [argument…]

The printf command writes formatted operands to the standard output. The
argument operands are formatted under control of the format operand.

The following operands are supported:

format A string describing the format to use to write the remaining
operands. The format operand is used as the format string
described on the formats(5) manual page, with the following
exceptions:

� A SPACE character in the format string, in any context other
than a flag of a conversion specification, is treated as an
ordinary character that is copied to the output.

� A character in the format string is treated as a character, not as
a SPACE character.

� In addition to the escape sequences described on the
formats(5) manual page (\\, \a, \b, \f, \n, \r, \t, \v),
\ddd, where ddd is a one-, two- or three-digit octal number, is
written as a byte with the numeric value specified by the octal
number.

� The program does not precede or follow output from the d or u
conversion specifications with blank characters not specified by
the format operand.

� The program does not precede output from the o conversion
specification with zeros not specified by the format operand.

� An additional conversion character, b, is supported as follows.
The argument is taken to be a string that may contain
backslash-escape sequences. The following backslash-escape
sequences are supported:

– the escape sequences listed on the formats(5) manual page
(\\, \a, \b, \f, \n, \r, \t, \v), which are converted to the
characters they represent

– \0ddd, where ddd is a zero-, one-, two- or three-digit octal
number that is converted to a byte with the numeric value
specified by the octal number

– \c, which is written and causes printf to ignore any
remaining characters in the string operand containing it,
any remaining string operands and any additional
characters in the format operand.

The interpretation of a backslash followed by any other sequence
of characters is unspecified.

printf(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

User Commands 1187

Bytes from the converted string are written until the end of the
string or the number of bytes indicated by the precision
specification is reached. If the precision is omitted, it is taken to be
infinite, so all bytes up to the end of the converted string are
written. For each specification that consumes an argument, the
next argument operand is evaluated and converted to the
appropriate type for the conversion as specified below. The
format operand is reused as often as necessary to satisfy the
argument operands. Any extra c or s conversion specifications are
evaluated as if a null string argument were supplied; other extra
conversion specifications are evaluated as if a zero argument were
supplied. If the format operand contains no conversion
specifications and argument operands are present, the results are
unspecified. If a character sequence in the format operand begins
with a % character, but does not form a valid conversion
specification, the behavior is unspecified.

argument The strings to be written to standard output, under the control of
format. The argument operands are treated as strings if the
corresponding conversion character is b, c or s; otherwise, it is
evaluated as a C constant, as described by the ISO C standard,
with the following extensions:

� A leading plus or minus sign is allowed.
� If the leading character is a single- or double-quote, the value is

the numeric value in the underlying codeset of the character
following the single- or double-quote.

If an argument operand cannot be completely converted into an
internal value appropriate to the corresponding conversion
specification, a diagnostic message is written to standard error and
the utility does not exit with a zero exit status, but continues
processing any remaining operands and writes the value
accumulated at the time the error was detected to standard output.

Note that this printf utility, like the printf(3C) function on which it is based,
makes no special provision for dealing with multi-byte characters when using the %c
conversion specification or when a precision is specified in a %b or %s conversion
specification. Applications should be extremely cautious using either of these features
when there are multi-byte characters in the character set.

Field widths and precisions cannot be specified as *.

For compatibility with previous versions of SunOS 5.x, the $ format specifier is
supported for formats containing only %s specifiers.

printf(1)

USAGE

1188 man pages section 1: User Commands • Last Revised 28 Mar 1995

The %b conversion specification is not part of the ISO C standard; it has been added
here as a portable way to process backslash escapes expanded in string operands as
provided by the echo utility. See also the USAGE section of the echo(1) manual page
for ways to use printf as a replacement for all of the traditional versions of the echo
utility.

If an argument cannot be parsed correctly for the corresponding conversion
specification, the printf utility reports an error. Thus, overflow and extraneous
characters at the end of an argument being used for a numeric conversion are to be
reported as errors.

It is not considered an error if an argument operand is not completely used for a c or
s conversion or if a string operand’s first or second character is used to get the
numeric value of a character.

EXAMPLE 1 Printing a series of prompts

To alert the user and then print and read a series of prompts:

printf "\aPlease fill in the following: \nName: "
read name
printf "Phone number: "
read phone

EXAMPLE 2 Printing a table of calculations

To read out a list of right and wrong answers from a file, calculate the percentage
correctly, and print them out. The numbers are right-justified and separated by a
single tab character. The percentage is written to one decimal place of accuracy:

while read right wrong ; do
percent=$(echo "scale=1;($right*100)/($right+$wrong)" | bc)
printf "%2d right\t%2d wrong\t(%s%%)\n" \

$right $wrong $percent
done < database_file

EXAMPLE 3 Printing number strings

The command:

printf "%5d%4d\n" 1 21 321 4321 54321

produces:

1 21
3214321

54321 0

Note that the format operand is used three times to print all of the given strings and
that a 0 was supplied by printf to satisfy the last %4d conversion specification.

printf(1)

EXAMPLES

User Commands 1189

EXAMPLE 4 Tabulating conversion errors

The printf utility tells the user when conversion errors are detected while producing
numeric output; thus, the following results would be expected on an implementation
with 32-bit twos-complement integers when %d is specified as the format operand:

Arguments Standard Diagnostic

5a 5 printf: 5a not completely converted

9999999999 2147483647 printf: 9999999999: Results too large

-9999999999 -2147483648 printf: -9999999999: Results too large

ABC 0 printf: ABC expected numeric value

Note that the value shown on standard output is what would be expected as the
return value from the function strtol(3C). A similar correspondence exists between
%u and strtoul(3C), and %e, %f and %g and strtod(3C).

EXAMPLE 5 Printing output for a specific locale

In a locale using the ISO/IEC 646:1991 standard as the underlying codeset, the
command:

printf "%d\n" 3 +3 -3 \’3 \"+3 "’-3"

produces:

3 Numeric value of constant 3

3 Numeric value of constant 3

−3 Numeric value of constant −3

51 Numeric value of the character ‘3’ in the ISO/IEC 646:1991 standard codeset

43 Numeric value of the character ‘+’ in the ISO/IEC 646:1991 standard codeset

45 Numeric value of the character ‘−’ in the SO/IEC 646:1991 standard codeset

Note that in a locale with multi-byte characters, the value of a character is intended to
be the value of the equivalent of the wchar_t representation of the character.

If an argument operand cannot be completely converted into an internal value
appropriate to the corresponding conversion specification, a diagnostic message is
written to standard error and the utility does exit with a zero exit status, but continues
processing any remaining operands and writes the value accumulated at the time the
error was detected to standard output.

printf(1)

1190 man pages section 1: User Commands • Last Revised 28 Mar 1995

See environ(5) for descriptions of the following environment variables that affect the
execution of printf: LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and
NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

CSI enabled

awk(1), bc(1), echo(1), printf(3C), strtod(3C), strtol(3C), strtoul(3C),
attributes(5), environ(5), formats(5)

printf(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1191

priocntl – display or set scheduling parameters of specified process(es)

priocntl -l

priocntl -d [-i idtype] [idlist]

priocntl -s [-c class] [class-specific options] [-i idtype] [idlist]

priocntl -e [-c class] [class-specific options] command [argument(s)]

The priocntl command displays or sets scheduling parameters of the specified
process(es). It can also be used to display the current configuration information for the
system’s process scheduler or execute a command with specified scheduling
parameters.

Processes fall into distinct classes with a separate scheduling policy applied to each
class. The process classes currently supported are the real-time class, time-sharing
class, interactive class, fair-share class, and the fixed priority class. The characteristics
of these classes and the class-specific options they accept are described below in the
USAGE section under the headings Real-Time Class, Time-Sharing Class,
Inter-Active Class, Fair-Share Class, and Fixed-Priority Class. With
appropriate permissions, the priocntl command can change the class and other
scheduling parameters associated with a running process.

In the default configuration, a runnable real-time process runs before any other
process. Therefore, inappropriate use of real-time processes can have a dramatic
negative impact on system performance.

If an idlist is present, it must appear last on the command line and the elements of the
list must be separated by white space. If no idlist is present, an idtype argument of pid,
ppid, pgid, sid, taskid, class, uid, gid, or projid specifies the process ID,
parent process ID, process group ID, session ID, task ID, class, user ID, group ID, or
project ID, respectively, of the priocntl command itself.

The command

priocntl -d [-i idtype] [idlist]

displays the class and class-specific scheduling parameters of the process(es) specified
by idtype and idlist.

The command

priocntl -s [-c class] [class-specific options] \

[-i idtype] [idlist]

sets the class and class-specific parameters of the specified processes to the values
given on the command line. The -c class option specifies the class to be set. (The valid
class arguments are RT for real-time, TS for time-sharing, IA for inter-active, FSS for
fair-share, or FX for fixed-priority.)

priocntl(1)

NAME

SYNOPSIS

DESCRIPTION

1192 man pages section 1: User Commands • Last Revised 28 Sep 2001

The class-specific parameters to be set are specified by the class-specific options as
explained under the appropriate heading below. If the -c class option is omitted, idtype
and idlist must specify a set of processes which are all in the same class, otherwise an
error results. If no class-specific options are specified, the process’s class-specific
parameters are set to the default values for the class specified by -c class (or to the
default parameter values for the process’s current class if the -c class option is also
omitted).

In order to change the scheduling parameters of a process using priocntl the real or
effective user ID (respectively, groupID) of the user invoking priocntl must match
the real or effective user ID (respectively, groupID) of the receiving process or the
effective user ID of the user must be super-user. These are the minimum permission
requirements enforced for all classes. An individual class may impose additional
permissions requirements when setting processes to that class or when setting
class-specific scheduling parameters.

When idtype and idlist specify a set of processes, priocntl acts on the processes in
the set in an implementation-specific order. If priocntl encounters an error for one
or more of the target processes, it may or may not continue through the set of
processes, depending on the nature of the error.

If the error is related to permissions, priocntl prints an error message and then
continues through the process set, resetting the parameters for all target processes for
which the user has appropriate permissions. If priocntl encounters an error other
than permissions, it does not continue through the process set but prints an error
message and exits immediately.

A special sys scheduling class exists for the purpose of scheduling the execution of
certain special system processes (such as the swapper process). It is not possible to
change the class of any process to sys. In addition, any processes in the sys class that
are included in the set of processes specified by idtype and idlist are disregarded by
priocntl. For example, if idtype were uid, an idlist consisting of a zero would specify
all processes with a UID of 0, except processes in the sys class and (if changing the
parameters using the -s option) the init process.

The init process (process ID 1) is a special case. In order for the priocntl
command to change the class or other scheduling parameters of the init process,
idtype must be pid and idlist must be consist of only a 1. The init process may be
assigned to any class configured on the system, but the time-sharing class is almost
always the appropriate choice. (Other choices may be highly undesirable; see the
System Administration Guide: Basic Administration for more information.)

The command

priocntl -e [-c class] [class-specific options] command \

[argument . . .]

executes the specified command with the class and scheduling parameters specified
on the command line (arguments are the arguments to the command). If the -c class
option is omitted the command is run in the user’s current class.

priocntl(1)

User Commands 1193

The following options are supported:

-c class Specifies the class to be set. (The valid class arguments are RT for
real-time, TS for time-sharing, IA for inter-active, FSS for
fair-share, or FX for fixed-priority.) If the specified class is not
already configured, it will be automatically configured.

-d Displays the scheduling parameters associated with a set of
processes.

-e Executes a specified command with the class and scheduling
parameters associated with a set of processes.

-i idtype This option, together with the idlist arguments (if any), specifies
one or more processes to which the priocntl command is to
apply. The interpretation of idlist depends on the value of idtype.
The valid idtype arguments and corresponding interpretations of
idlist are as follows:

-i pid idlist is a list of process IDs. The priocntl
command applies to the specified processes.

-i ppid idlist is a list of parent process IDs. The
priocntl command applies to all processes
whose parent process ID is in the list.

-i pgid idlist is a list of process group IDs. The
priocntl command applies to all processes in
the specified process groups.

-i sid idlist is a list of session IDs. The priocntl
command applies to all processes in the
specified sessions.

-i taskid idlist is a list of task IDs. The priocntl
command applies to all processes in the
specified tasks.

-i class idlist consists of a single class name (RT for
real-time, TS for time-sharing, IA for
inter-active, FSS for fair-share, or FX for
fixed-priority). The priocntl command
applies to all processes in the specified class.

-i uid idlist is a list of user IDs. The priocntl
command applies to all processes with an
effective user ID equal to an ID from the list.

-i gid idlist is a list of group IDs. The priocntl
command applies to all processes with an
effective group ID equal to an ID from the list.

priocntl(1)

OPTIONS

1194 man pages section 1: User Commands • Last Revised 28 Sep 2001

-i projid idlist is a list of project IDs. The priocntl
command applies to all processes with an
effective project ID equal to an ID from the list.

-i all The priocntl command applies to all
existing processes. No idlist should be specified
(if one is specified, it is ignored). The
permission restrictions described below still
apply.

If the -i idtype option is omitted when using the -d or -s options
the default idtype of pid is assumed.

-l Displays a list of the classes currently configured in the system
along with class-specific information about each class. The format
of the class-specific information displayed is described under
USAGE.

-s Sets the scheduling parameters associated with a set of processes.

The valid class-specific options for setting real-time parameters are:

-p rtpri Sets the real-time priority of the specified process(es) to
rtpri.

-t tqntm [-r res] Sets the time quantum of the specified process(es) to
tqntm. You may optionally specify a resolution as
explained below.

-q tqsig Sets the real-time time quantum signal of the specified
process(es) to tqsig.

The valid class-specific options for setting time-sharing parameters are:

-m tsuprilim Sets the user priority limit of the specified process(es) to tsuprilim.

-p tsupri Sets the user priority of the specified process(es) to tsupri.

The valid class-specific options for setting inter-active parameters are:

-m iauprilim Sets the user priority limit of the specified process(es) to iauprilim.

-p iaupri Sets the user priority of the specified process(es) to iaupri.

The valid class-specific options for setting fair-share parameters are:

-m fssuprilim Sets the user priority limit of the specified process(es) to fssuprilim.

-p fssupri Sets the user priority of the specified process(es) to fssupri.

The valid class-specific options for setting fixed-priority parameters are:

-m fxuprilim Sets the user priority limit of the specified process(es) to fxuprilim.

-p fxupri Sets the user priority of the specified process(es) to fxupri.

priocntl(1)

User Commands 1195

-t tqntm [-r res] Sets the time quantum of the specified process(es) to tqntm.
You may optionally specify a resolution as explained below.

The real-time class provides a fixed priority preemptive scheduling policy for those
processes requiring fast and deterministic response and absolute user/application
control of scheduling priorities. If the real-time class is configured in the system, it
should have exclusive control of the highest range of scheduling priorities on the
system. This ensures that a runnable real-time process is given CPU service before any
process belonging to any other class.

The real-time class has a range of real-time priority (rtpri) values that may be assigned
to processes within the class. Real-time priorities range from 0 to x, where the value of
x is configurable and can be displayed for a specific installation that has already
configured a real-time scheduler, by using the command

priocntl -l

The real-time scheduling policy is a fixed priority policy. The scheduling priority of a
real-time process never changes except as the result of an explicit request by the
user/application to change the rtpri value of the process.

For processes in the real-time class, the rtpri value is, for all practical purposes,
equivalent to the scheduling priority of the process. The rtpri value completely
determines the scheduling priority of a real-time process relative to other processes
within its class. Numerically higher rtpri values represent higher priorities. Since the
real-time class controls the highest range of scheduling priorities in the system, it is
guaranteed that the runnable real-time process with the highest rtpri value is always
selected to run before any other process in the system.

In addition to providing control over priority, priocntl provides for control over the
length of the time quantum allotted to processes in the real-time class. The time
quantum value specifies the maximum amount of time a process may run, assuming
that it does not complete or enter a resource or event wait state (sleep). Notice that if
another process becomes runnable at a higher priority, the currently running process
may be preempted before receiving its full time quantum.

The command

priocntl -d [-i idtype] [idlist]

displays the real-time priority, time quantum (in millisecond resolution), and time
quantum signal value for each real-time process in the set specified by idtype and idlist.

Any combination of the -p, -t [-r], and -q options may be used with priocntl -s
or priocntl -e for the real-time class. If an option is omitted and the process is
currently real-time, the associated parameter is unaffected. If an option is omitted
when changing the class of a process to real-time from some other class, the associated
parameter is set to a default value. The default value for rtpri is 0 and the default for
time quantum is dependent on the value of rtpri and on the system configuration; see
rt_dptbl(4).

priocntl(1)

Real-Time Class

1196 man pages section 1: User Commands • Last Revised 28 Sep 2001

When using the -t tqntm option, you may optionally specify a resolution using the -r
res option. (If no resolution is specified, millisecond resolution is assumed.) If res is
specified, it must be a positive integer between 1 and 1,000,000,000 inclusively
and the resolution used is the reciprocal of res in seconds. For example, specifying -t
10 -r 100 would set the resolution to hundredths of a second and the resulting time
quantum length would be 10/100 seconds (one tenth of a second). Although very fine
(nanosecond) resolution may be specified, the time quantum length is rounded up by
the system to the next integral multiple of the system clock’s resolution. Requests for
time quantums of zero or quantums greater than the (typically very large)
implementation-specific maximum quantum result in an error.

The real-time time quantum signal can be used to notify runaway real-time processes
about the consumption of their time quantum. Those processes, which are monitored
by the real-time time quantum signal, receive the configured signal in the event of
time quantum expiration. The default value (0) of the time quantum signal tqsig will
denote no signal delivery. A positive value will denote the delivery of the signal
specified by the value. Like kill(1) and other commands operating on signals, the -q
tqsig option is also able to handle symbolically named signals, like XCPU or KILL.

In order to change the class of a process to real-time (from any other class), the user
invoking priocntl must have super-user privilege. In order to change the rtpri value
or time quantum of a real-time process, the user invoking priocntl must either be
super-user, or must currently be in the real-time class (shell running as a real-time
process) with a real or effective user ID matching the real or effective user ID of the
target process.

The real-time priority, time quantum, and time quantum signal are inherited across the
fork(2) and exec(2) system calls. When using the time quantum signal with a user
defined signal handler across the exec(2) system call, the new image must install an
appropriate user defined signal handler before the time quantum expires. Otherwise,
unpredicable behavior would result.

The time-sharing scheduling policy provides for a fair and effective allocation of the
CPU resource among processes with varying CPU consumption characteristics. The
objectives of the time-sharing policy are to provide good response time to interactive
processes and good throughput to CPU-bound jobs, while providing a degree of
user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (tsupri) values that
may be assigned to processes within the class. User priorities range from −x to +x,
where the value of x is configurable. The range for a specific installation can be
displayed by using the command

priocntl -l

The purpose of the user priority is to provide some degree of user/application control
over the scheduling of processes in the time-sharing class. Raising or lowering the
tsupri value of a process in the time-sharing class raises or lowers the scheduling

priocntl(1)

Time-Sharing
Class

User Commands 1197

priority of the process. It is not guaranteed, however, that a time-sharing process with
a higher tsupri value will run before one with a lower tsupri value. This is because the
tsupri value is just one factor used to determine the scheduling priority of a
time-sharing process. The system may dynamically adjust the internal scheduling
priority of a time-sharing process based on other factors such as recent CPU usage.

In addition to the system-wide limits on user priority (displayed with priocntl -l),
there is a per process user priority limit (tsuprilim), which specifies the maximum
tsupri value that may be set for a given process.

The command

priocntl -d [-i idtype] [idlist]

displays the user priority and user priority limit for each time-sharing process in the
set specified by idtype and idlist.

Any time-sharing process may lower its own tsuprilim (or that of another process with
the same user ID). Only a time-sharing process with super-user privilege may raise a
tsuprilim. When changing the class of a process to time-sharing from some other class,
super-user privilege is required in order to set the initial tsuprilim to a value greater
than zero.

Any time-sharing process may set its own tsupri (or that of another process with the
same user ID) to any value less than or equal to the process’s tsuprilim. Attempts to set
the tsupri above the tsuprilim (and/or set the tsuprilim below the tsupri) result in the
tsupri being set equal to the tsuprilim.

Any combination of the -m and -p options may be used with priocntl -s or
priocntl -e for the time-sharing class. If an option is omitted and the process is
currently time-sharing, the associated parameter is normally unaffected. The exception
is when the -p option is omitted and -m is used to set a tsuprilim below the current
tsupri. In this case, the tsupri is set equal to the tsuprilim which is being set. If an option
is omitted when changing the class of a process to time-sharing from some other class,
the associated parameter is set to a default value. The default value for tsuprilim is 0
and the default for tsupri is to set it equal to the tsuprilim value which is being set.

The time-sharing user priority and user priority limit are inherited across the fork(2)
and exec(2) system calls.

The inter-active scheduling policy provides for a fair and effective allocation of the
CPU resource among processes with varying CPU consumption characteristics while
providing good responsiveness for user interaction. The objectives of the inter-active
policy are to provide good response time to interactive processes and good
throughput to CPU-bound jobs. The priorities of processes in the inter-active class can
be changed in the same manner as those in the time-sharing class, though the
modified priorities will continue to be adjusted to provide good responsiveness for
user interaction.

priocntl(1)

Inter-Active Class

1198 man pages section 1: User Commands • Last Revised 28 Sep 2001

The inter-active user priority limit, iaupri, is equivalent to tsupri. The inter-active per
process user priority, iauprilim, is equivalent to tsuprilim.

Inter-active class processes that have the iamode (“interactive mode”) bit set are given a
priority boost value of 10, which is factored into the user mode priority of the process
when that calculation is made, that is, every time a process’s priority is adjusted. This
feature is used by the X windowing system, which sets this bit for those processes that
run inside of the current active window to give them a higher priority.

The fair-share scheduling policy provides a fair allocation of system CPU resources
among projects, independent of the number of processes they own. Projects are given
"shares" to control their entitlement to CPU resources. Resource usage is remembered
over time, so that entitlement is reduced for heavy usage, and increased for light
usage, with respect to other projects. CPU time is scheduled among processes
according to their owner’s entitlements, independent of the number of processes each
project owns.

The FSS scheduling class supports the notion of per-process user priority and user
priority limit for compatibility with the time-share scheduler. The fair share scheduler
attempts to provide an evenly graded effect across the whole range of user priorities.
Processes with positive fssupri values receive time slices less frequently than normal,
while negative nice processes receive time slices more frequently than normal. Notice
that user priorities do not interfere with shares. That is, changing a fssupri value of a
process is not going to affect its project’s overall CPU usage which only relates to the
amount of shares it is allocated compared to other projects.

The priorities of processes in the fair-share class can be changed in the same manner as
those in the time-share class.

The fixed-priority class provides a fixed priority preemptive scheduling policy for
those processes requiring that the scheduling priorities do not get dynamically
adjusted by the system and that the user/application have control of the scheduling
priorities.

The fixed-priority class shares the same range of scheduling priorities with the
time-sharing class, by default. The fixed-priority class has a range of fixed-priority
user priority (fxupri) values that may be assigned to processes within the class. User
priorities range from 0 to x, where the value of x is configurable. The range for a
specific installation can be displayed by using the command

priocntl -l

The purpose of the user priority is to provide user/application control over the
scheduling of processes in the fixed-priority class. For processes in the fixed-priority
class, the fxupri value is, for all practical purposes, equivalent to the scheduling
priority of the process. The fxupri value completely determines the scheduling priority
of a fixed-priority process relative to other processes within its class. Numerically
higher fxupri values represent higher priorities.

priocntl(1)

Fair-Share Class

Fixed-Priority
Class

User Commands 1199

In addition to the system-wide limits on user priority (displayed with priocntl -l),
there is a per process user priority limit (fxuprilim), which specifies the maximum
fxupri value that may be set for a given process.

Any fixed-priority process may lower its own fxuprilim (or that of another process
with the same user ID). Only a process with super-user privilege may raise a fxuprilim.
When changing the class of a process to fixed-priority from some other class,
super-user privilege is required in order to set the initial fxuprilim to a value greater
than zero.

Any fixed-priority process may set its own fxupri (or that of another process with the
same user ID) to any value less than or equal to the process’s fxuprilim. Attempts to set
the fxupri above the fxuprilim (and/or set the fxuprilim below the fxupri) result in the
fxupri being set equal to the fxuprilim.

In addition to providing control over priority, priocntl provides for control over the
length of the time quantum allotted to processes in the fixed-priority class. The time
quantum value specifies the maximum amount of time a process may run, before
surrendering the CPU, assuming that it does not complete or enter a resource or event
wait state (sleep). Notice that if another process becomes runnable at a higher priority,
the currently running process may be preempted before receiving its full time
quantum.

Any combination of the -m, -p, and -t options may be used with priocntl -s or
priocntl -e for the fixed-priority class. If an option is omitted and the process is
currently fixed-priority, the associated parameter is normally unaffected. The
exception is when the -p option is omitted and the -m option is used to set a fxuprilim
below the current fxupri. In this case, the fxupri is set equal to the fxuprilim which is
being set. If an option is omitted when changing the class of a process to fixed-priority
from some other class, the associated parameter is set to a default value. The default
value for fxuprilim is 0. The default for fxupri is to set it equal to the fxuprilim value
which is being set. The default for time quantum is dependent on the fxupri and on the
system configuration. See fx_dptbl(4).

The time quantum of processes in the fixed-priority class can be changed in the same
manner as those in the real-time class.

The fixed-priority user priority, user priority limit, and time quantum are inherited
across the fork(2) and exec(2) system calls.

Real-Time Class examples follow:

EXAMPLE 1 Setting the class of any non-real-time processes

This example sets the class of any non-real-time processes selected by idtype and idlist
to real-time and sets their real-time priority to the default value of 0. The real-time
priorities of any processes currently in the real-time class are unaffected. The time
quantums of all of the specified processes are set to 1/10 seconds.

priocntl(1)

EXAMPLES

1200 man pages section 1: User Commands • Last Revised 28 Sep 2001

EXAMPLE 1 Setting the class of any non-real-time processes (Continued)

example% priocntl -s -c RT -t 1 -r 10 -i idtype idlist

EXAMPLE 2 Executing a command in real-time

This example executes command in the real-time class with a real-time priority of 15
and a time quantum of 20 milliseconds:

example% priocntl -e -c RT -p 15 -t 20 command

EXAMPLE 3 Executing a command in real-time with a specified quantum signal

This example executes command in the real-time class with a real-time priority of 11, a
time quantum of 250 milliseconds, and where the specified real-time quantum signal
is SIGXCPU:

example% priocntl -e -c RT -p 11 -t 250 -q XCPU command

Time-Sharing Class examples follow:

EXAMPLE 4 Setting the class of non-time-sharing processes

This example sets the class of any non-time-sharing processes selected by idtype and
idlist to time-sharing and sets both their user priority limit and user priority to 0.
Processes already in the time-sharing class are unaffected.

example% priocntl -s -c TS -i idtype idlist

EXAMPLE 5 Executing a command in the time-sharing class

This example executes command with the arguments arguments in the time-sharing
class with a user priority limit of 0 and a user priority of −15:

example% priocntl -e -c TS -m 0 -p -15 command [arguments]

EXAMPLE 6 Executing a command in fixed-priority class

This example executes a command in the fixed-priority class with a user priority limit
of 20 and user priority of 10 and time quantum of 250 milliseconds:

example% priocntl -e -c FX -m 20 -p 10 -t 250 command

The following exit values are returned:

For options -d, -l, and -s:

0 Successful operation.

priocntl(1)

EXIT STATUS

User Commands 1201

1 Error condition.

For option -e:

Return of the Exit Status of the executed command denotes successful operation.
Otherwise,

1 Command could not be executed at the specified priority.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

kill(1), nice(1), ps(1), exec(2), fork(2), priocntl(2), fx_dptbl(4),
rt_dptbl(4), attributes(5), FSS(7)

System Administration Guide: Basic Administration

priocntl prints the following error messages:

Process(es) not found
None of the specified processes exists.

Specified processes from different classes
The -s option is being used to set parameters, the -c class option is not present,
and processes from more than one class are specified.

Invalid option or argument
An unrecognized or invalid option or option argument is used.

priocntl(1)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

1202 man pages section 1: User Commands • Last Revised 28 Sep 2001

proc, pflags, pcred, pldd, psig, pstack, pfiles, pwdx, pstop, prun, pwait, ptree, ptime –
proc tools

/usr/bin/pflags [-r] [pid | core…]

/usr/bin/pcred [pid | core…]

/usr/bin/pldd [-F] [pid | core…]

/usr/bin/psig [-n] pid…

/usr/bin/pstack [-F] [pid | core…]

/usr/bin/pfiles [-F] pid…

/usr/bin/pwdx [-F] pid…

/usr/bin/pstop pid…

/usr/bin/prun pid…

/usr/bin/pwait [-v] pid…

/usr/bin/ptree [-a] [pid | user…]

/usr/bin/ptime command [arg…]

The proc tools are utilities that exercise features of /proc (see proc(4)). Most of them
take a list of process-ids (pid). The tools that do take process-ids also accept
/proc/nnn as a process-id, so the shell expansion /proc/* can be used to specify all
processes in the system.

Some of the proc tools can also be applied to core files (see core(4)). The tools that
apply to core files accept a list of either process IDs or names of core files or both.

pflags Print the /proc tracing flags, the pending and held signals, and
other /proc status information for each lwp in each process.

pcred Print the credentials (effective, real, saved UIDs and GIDs) of each
process.

pldd List the dynamic libraries linked into each process, including
shared objects explicitly attached using dlopen(3DL). See also
ldd(1).

psig List the signal actions and handlers of each process. See
signal(3HEAD).

pstack Print a hex+symbolic stack trace for each lwp in each process.

pfiles Report fstat(2) and fcntl(2) information for all open files in
each process.

pwdx Print the current working directory of each process.

pstop Stop each process (PR_REQUESTED stop).

prun Set each process running (inverse of pstop).

proc(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 1203

pwait Wait for all of the specified processes to terminate.

ptree Print the process trees containing the specified pids or users, with
child processes indented from their respective parent processes.
An argument of all digits is taken to be a process-id, otherwise it is
assumed to be a user login name. Default is all processes.

ptime Time the command, like time(1), but using microstate accounting
for reproducible precision. Unlike time(1), children of the
command are not timed.

The following options are supported:

-a (ptree only) All. Includes children of process 0.

-F Force. Grabs the target process even if another process has control.

-n (psig only) Displays signal handler addresses rather than names.

-r (pflags only) If the process is stopped, displays its machine registers.

-v (pwait only) Verbose. Reports terminations to standard output.

These proc tools stop their target processes while inspecting them and reporting the
results: pfiles, pldd, and pstack. A process can do nothing while it is stopped.
Thus, for example, if the X server is inspected by one of these proc tools running in a
window under the X server’s control, the whole window system can become
deadlocked because the proc tool would be attempting to print its results to a window
that cannot be refreshed. Logging in from from another system using rlogin(1) and
killing the offending proc tool would clear up the deadlock in this case.

Caution should be exercised when using the -F flag. Imposing two controlling
processes on one victim process can lead to chaos. Safety is assured only if the primary
controlling process, typically a debugger, has stopped the victim process and the
primary controlling process is doing nothing at the moment of application of the proc
tool in question.

Some of the proc tools can also be applied to core files, as shown by the synopsis
above. A core file is a snapshot of a process’s state and is produced by the kernel prior
to terminating a process with a signal or by the gcore(1) utility. Some of the proc
tools may need to derive the name of the executable corresponding to the process
which dumped core or the names of shared libraries associated with the process.
These files are needed, for example, to provide symbol table information for
pstack(1). If the proc tool in question is unable to locate the needed executable or
shared library, some symbol information will be unavailable for display. Similarly, if a
core file from one operating system release is examined on a different operating
system release, the run-time link-editor debugging interface (librtld_db) may not
be able to initialize. In this case, symbol information for shared libraries will not be
available.

The following exit values are returned:

proc(1)

OPTIONS

USAGE

EXIT STATUS

1204 man pages section 1: User Commands • Last Revised 3 Dec 2001

0 Successful operation.

non-zero An error has occurred.

/proc/* process files

/usr/proc/lib/* proc tools supporting files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu (32-bit)

SUNWesxu (64-bit)

gcore(1), ldd(1), pargs(1), pgrep(1), pkill(1), plimit(1), pmap(1), preap(1),
ps(1), pwd(1), rlogin(1), time(1), truss(1), wait(1), fcntl(2), fstat(2),
dlopen(3DL), signal(3HEAD), core(4), proc(4), attributes(5)

proc(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 1205

prof – display profile data

prof [-ChsVz] [-a | c | n | t] [-o | x] [-g | l] [-m mdata] [prog]

The prof command interprets a profile file produced by the monitor function. The
symbol table in the object file prog (a.out by default) is read and correlated with a
profile file (mon.out by default). For each external text symbol the percentage of time
spent executing between the address of that symbol and the address of the next is
printed, together with the number of times that function was called and the average
number of milliseconds per call.

The mutually exclusive options -a, -c, -n, and -t determine the type of sorting of the
output lines:

-a Sort by increasing symbol address.

-c Sort by decreasing number of calls.

-n Sort lexically by symbol name.

-t Sort by decreasing percentage of total time (default).

The mutually exclusive options -o and -x specify the printing of the address of each
symbol monitored:

-o Print each symbol address (in octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol name.

The mutually exclusive options -g and -l control the type of symbols to be reported.
The -l option must be used with care; it applies the time spent in a static function to
the preceding (in memory) global function, instead of giving the static function a
separate entry in the report. If all static functions are properly located, this feature can
be very useful. If not, the resulting report may be misleading.

Assume that A and B are global functions and only A calls static function S. If S is
located immediately after A in the source code (that is, if S is properly located), then,
with the -l option, the amount of time spent in A can easily be determined, including
the time spent in S. If, however, both A and B call S, then, if the -l option is used, the
report will be misleading; the time spent during B’s call to S will be attributed to A,
making it appear as if more time had been spent in A than really had. In this case,
function S cannot be properly located.

-g List the time spent in static (non-global) functions separately. The -g option
function is the opposite of the -l function.

-l Suppress printing statically declared functions. If this option is given, time
spent executing in a static function is allocated to the closest global
function loaded before the static function in the executable. This option is
the default. It is the opposite of the -g function and should be used with
care.

The following options may be used in any combination:

prof(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1206 man pages section 1: User Commands • Last Revised 1 Nov 1999

-C Demangle C++ symbol names before printing them out.

-h Suppress the heading normally printed on the report. This is
useful if the report is to be processed further.

-m mdata Use file mdata instead of mon.out as the input profile file.

-s Print a summary of several of the monitoring parameters and
statistics on the standard error output.

-V Print prof version information on the standard error output.

-z Include all symbols in the profile range, even if associated with
zero number of calls and zero time.

A program creates a profile file if it has been link edited with the -p option of cc(1B).
This option to the cc(1B) command arranges for calls to monitor at the beginning
and end of execution. It is the call to monitor at the end of execution that causes the
system to write a profile file. The number of calls to a function is tallied if the -p
option was used when the file containing the function was compiled.

A single function may be split into subfunctions for profiling by means of the MARK
macro. See prof(5).

PROFDIR The name of the file created by a profiled program is controlled by
the environment variable PROFDIR. If PROFDIR is not set,
mon.out is produced in the directory current when the program
terminates. If PROFDIR=string, string/pid.progname is produced,
where progname consists of argv[0] with any path prefix
removed, and pid is the process ID of the program. If PROFDIR is
set, but null, no profiling output is produced.

mon.out default profile file

a.out default namelist (object) file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

cc(1B), gprof(1), exit(2), pcsample(2), profil(2), malloc(3C),
malloc(3MALLOC), monitor(3C), attributes(5), prof(5)

The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes. Even
if a program seems to be the only one using the machine, hidden background or
asynchronous processes may blur the data. In rare cases, the clock ticks initiating
recording of the program counter may "beat" with loops in a program, grossly
distorting measurements. Call counts are always recorded precisely, however.

prof(1)

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1207

Only programs that call exit or return from main are guaranteed to produce a profile
file, unless a final call to monitor is explicitly coded.

The times for static functions are attributed to the preceding external text symbol if the
-g option is not used. However, the call counts for the preceding function are still
correct; that is, the static function call counts are not added to the call counts of the
external function.

If more than one of the options -t, -c, -a, and -n is specified, the last option
specified is used and the user is warned.

LD_LIBRARY_PATH must not contain /usr/lib as a component when compiling a
program for profiling. If LD_LIBRARY_PATH contains /usr/lib, the program will
not be linked correctly with the profiling versions of the system libraries in
/usr/lib/libp. See gprof(1).

Functions such as mcount(), _mcount(), moncontrol(), _moncontrol(),
monitor(), and _monitor() may appear in the prof report. These functions are
part of the profiling implementation and thus account for some amount of the runtime
overhead. Since these functions are not present in an unprofiled application, time
accumulated and call counts for these functions may be ignored when evaluating the
performance of an application.

64–bit profiling may be used freely with dynamically linked executables, and profiling
information is collected for the shared objects if the objects are compiled for profiling.
Care must be applied to interpret the profile output, since it is possible for symbols
from different shared objects to have the same name. If duplicate names are seen in the
profile output, it is better to use the -s (summary) option, which prefixes a module id
before each symbol that is duplicated. The symbols can then be mapped to
appropriate modules by looking at the modules information in the summary.

If the -a option is used with a dynamically linked executable, the sorting occurs on a
per-shared-object basis. Since there is a high likelihood of symbols from differed
shared objects to have the same value, this results in an output that is more
understandable. A blank line separates the symbols from different shared objects, if the
-s option is given.

32–bit profiling may be used with dynamically linked executables, but care must be
applied. In 32–bit profiling, shared objects cannot be profiled with prof. Thus, when a
profiled, dynamically linked program is executed, only the "main" portion of the
image is sampled. This means that all time spent outside of the "main" object, that is,
time spent in a shared object, will not be included in the profile summary; the total
time reported for the program may be less than the total time used by the program.

Because the time spent in a shared object cannot be accounted for, the use of shared
objects should be minimized whenever a program is profiled with prof. If desired,
the program should be linked to the profiled version of a library (or to the standard

prof(1)

64–bit profiling

32–bit profiling

1208 man pages section 1: User Commands • Last Revised 1 Nov 1999

archive version if no profiling version is available), instead of the shared object to get
profile information on the functions of a library. Versions of profiled libraries may be
supplied with the system in the /usr/lib/libp directory. Refer to compiler driver
documentation on profiling.

Consider an extreme case. A profiled program dynamically linked with the shared C
library spends 100 units of time in some libc routine, say, malloc(). Suppose
malloc() is called only from routine B and B consumes only 1 unit of time. Suppose
further that routine A consumes 10 units of time, more than any other routine in the
"main" (profiled) portion of the image. In this case, prof will conclude that most of
the time is being spent in A and almost no time is being spent in B. From this it will be
almost impossible to tell that the greatest improvement can be made by looking at
routine B and not routine A. The value of the profiler in this case is severely degraded;
the solution is to use archives as much as possible for profiling.

prof(1)

User Commands 1209

profiles – print execution profiles for a user

profiles [-l] [user …]

The profiles command prints on standard output the names of the execution
profiles that have been assigned to you or to the optionally-specified user or role
name. Profiles are a bundling mechanism used to enumerate the commands and
authorizations needed to peform a specific function. Along with each listed executable
are the process attributes, such as the effective user and group IDs, with which the
process runs when started by a privileged command interpreter. The profile shells are
pfcsh, pfksh, and pfexec. See the pfexec(1) man page. Profiles can contain other
profiles defined in prof_attr(4).

Multiple profiles can be combined to construct the appropriate access control. When
profiles are assigned, the authorizations are added to the existing set. If the same
command appears in multiple profiles, the first occurrence, as determined by the
ordering of the profiles, is used for process-attribute settings. For convenience, a wild
card can be specified to match all commands.

When profiles are interpreted, the profile list is loaded from user_attr(4). If any
default profile is defined in /etc/security/policy.conf (see policy.conf(4)),
the list of default profiles will be added to the list loaded from user_attr(4).
Matching entries in prof_attr(4) provide the authorizations list, and matching
entries in exec_attr(4) provide the commands list.

-l Lists the commands in each profile followed by the special process
attributes such as user and group IDs.

EXAMPLE 1 Sample output

The output of the profiles command has the following form:

example% profiles tester01 tester02tester01 : Audit Management, All Commands
tester02 : Device Management, All Commands

example%

EXAMPLE 2 Using the list option

example% profiles -l tester01 tester02tester01 :
Audit Management:

/usr/sbin/audit euid=root
/usr/sbin/auditconfig euid=root egid=sys

All Commands:
*

tester02 :
Device Management:

/usr/bin/allocate: euid=root
/usr/bin/deallocate: euid=root

All Commands
*

example%

profiles(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

1210 man pages section 1: User Commands • Last Revised 11 Feb 2000

EXAMPLE 2 Using the list option (Continued)

The following exit values are returned:

0 Successful completion.

1 An error occurred.

/etc/security/exec_attr

/etc/security/prof_attr

/etc/user_attr

/etc/security/policy.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

auths(1), pfexec(1), roles(1), getprofattr(3SECDB), exec_attr(4),
policy.conf(4), prof_attr(4), user_attr(4), attributes(5)

profiles(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

User Commands 1211

projects – print project membership of user

projects [-dv] [user]

The projects command prints on standard output the projects to which the
invoking user or an optionally specified user belongs. Each user belongs to some set of
projects specified in the project(4) file and possibly in the associated NIS maps and
LDAP databases for project information.

The following options are supported:

-d Prints only default project.

-v Prints project descriptions along with project names.

The following operand is supported:

user Displays project memberships for the specified user.

EXAMPLE 1 Displaying membership for a specified user

example$ projects paul
default beatles wings
example$ projects ringo
default beatles
example$ projects -d paul

beatles

The following exit values are returned:

0 Successful completion.

1 A fatal error occurred during execution.

2 Invalid command line options were specified.

/etc/project Local database containing valid project definitions for this
machine.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

getdefaultproj(3PROJECT), getprojent(3PROJECT), project(4),
attributes(5)

projects(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1212 man pages section 1: User Commands • Last Revised 21 Sep 2001

ps – report process status

ps [-aAcdefjlLPy] [-g grplist] [-n namelist] [-o format]… [-p proclist]
[-s sidlist] [-t term] [-u uidlist] [-U uidlist] [-G gidlist]

The ps command prints information about active processes. Without options, ps
prints information about processes that have the same effective user ID and the same
controlling terminal as the invoker. The output contains only the process ID, terminal
identifier, cumulative execution time, and the command name. Otherwise, the
information that is displayed is controlled by the options.

Some options accept lists as arguments. Items in a list can be either separated by
commas or else enclosed in quotes and separated by commas or spaces. Values for
proclist and grplist must be numeric.

The following options are supported:

-a Lists information about all processes most frequently requested:
all those except session leaders and processes not associated with a
terminal.

-A Lists information for all processes. Identical to -e, below.

-c Prints information in a format that reflects scheduler properties as
described in priocntl(1). The -c option affects the output of the
-f and -l options, as described below.

-d Lists information about all processes except session leaders.

-e Lists information about every process now running.

-f Generates a full listing. (See below for significance of columns in a
full listing.)

-g grplist Lists only process data whose group leader’s ID number(s)
appears in grplist. (A group leader is a process whose process ID
number is identical to its process group ID number.)

-G gidlist Lists information for processes whose real group ID numbers are
given in gidlist. The gidlist must be a single argument in the form
of a blank- or comma-separated list.

-j Prints session ID and process group ID.

-l Generates a long listing. (See below.)

-L Prints information about each light weight process (lwp) in each
selected process. (See below.)

-n namelist Specifies the name of an alternative system namelist file in place of
the default. This option is accepted for compatibility, but is
ignored.

-o format Prints information according to the format specification given in
format. This is fully described in DISPLAY FORMATS. Multiple -o

ps(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1213

options can be specified; the format specification will be
interpreted as the space-character-separated concatenation of all
the format option-arguments.

-ps proclist Lists only process data whose process ID numbers are given in
proclist.

-P Prints the number of the processor to which the process or lwp is
bound, if any, under an additional column header, PSR.

-s sidlist Lists information on all session leaders whose IDs appear in sidlist.

-t term Lists only process data associated with term. Terminal identifiers
are specified as a device file name, and an identifier. For example,
term/a, or pts/0.

-u uidlist Lists only process data whose effective user ID number or login
name is given in uidlist. In the listing, the numerical user ID will be
printed unless you give the -f option, which prints the login
name.

-U uidlist Lists information for processes whose real user ID numbers or
login names are given in uidlist. The uidlist must be a single
argument in the form of a blank- or comma-separated list.

-y Under a long listing (-l), omits the obsolete F and ADDR columns
and includes an RSS column to report the resident set size of the
process. Under the -y option, both RSS and SZ (see below) will be
reported in units of kilobytes instead of pages.

Many of the options shown are used to select processes to list. If any are specified, the
default list will be ignored and ps will select the processes represented by the
inclusive OR of all the selection-criteria options.

Under the -f option, ps tries to determine the command name and arguments given
when the process was created by examining the user block. Failing this, the command
name is printed, as it would have appeared without the -f option, in square brackets.

The column headings and the meaning of the columns in a ps listing are given below;
the letters f and l indicate the option (full or long, respectively) that causes the
corresponding heading to appear; all means that the heading always appears. Note:
These two options determine only what information is provided for a process; they do
not determine which processes will be listed.

F (l) Flags (hexadecimal and additive) associated with the process.
These flags are available for historical purposes; no meaning
should be currently ascribed to them.

S (l) The state of the process:

O Process is running on a processor.

S Sleeping: process is waiting for an event to complete.

ps(1)

DISPLAY
FORMATS

1214 man pages section 1: User Commands • Last Revised 10 Dec 2001

R Runnable: process is on run queue.

Z Zombie state: process terminated and parent not
waiting.

T Process is stopped, either by a job control signal or
because it is being traced.

UID (f,l) The effective user ID number of the process (the login name is
printed under the -f option).

PID (all) The process ID of the process (this datum is necessary in order to
kill a process).

PPID (f,l) The process ID of the parent process.

C (f,l) Processor utilization for scheduling (obsolete). Not printed when
the -c option is used.

CLS (f,l) Scheduling class. Printed only when the -c option is used.

PRI (l) The priority of the process. Without the -c option, higher numbers
mean lower priority. With the -c option, higher numbers mean
higher priority.

NI (l) Nice value, used in priority computation. Not printed when the -c
option is used. Only processes in the certain scheduling classes
have a nice value.

ADDR (l) The memory address of the process.

SZ (l) The total size of the process in virtual memory, including all
mapped files and devices, in pages. See pagesize(1).

WCHAN (l) The address of an event for which the process is sleeping (if blank,
the process is running).

STIME (f) The starting time of the process, given in hours, minutes, and
seconds. (A process begun more than twenty-four hours before the
ps inquiry is executed is given in months and days.)

TTY (all) The controlling terminal for the process (the message, ?, is printed
when there is no controlling terminal).

TIME (all) The cumulative execution time for the process.

CMD (all) The command name (the full command name and its arguments,
up to a limit of 80 characters, are printed under the -f option).

The following two additional columns are printed when the -j option is specified:

PGID The process ID of the process group leader.

SID The process ID of the session leader.

The following two additional columns are printed when the -L option is specified:

ps(1)

User Commands 1215

LWP The lwp ID of the lwp being reported.

NLWP The number of lwps in the process (if -f is also specified).

Under the -L option, one line is printed for each lwp in the process and the
time-reporting fields STIME and TIME show the values for the lwp, not the process. A
traditional single-threaded process contains only one lwp.

A process that has exited and has a parent, but has not yet been waited for by the
parent, is marked <defunct>.

The -o option allows the output format to be specified under user control.

The format specification must be a list of names presented as a single argument,
blank- or comma-separated. Each variable has a default header. The default header
can be overridden by appending an equals sign and the new text of the header. The
rest of the characters in the argument will be used as the header text. The fields
specified will be written in the order specified on the command line, and should be
arranged in columns in the output. The field widths will be selected by the system to
be at least as wide as the header text (default or overridden value). If the header text is
null, such as -o user=, the field width will be at least as wide as the default header
text. If all header text fields are null, no header line will be written.

The following names are recognized in the POSIX locale:

user The effective user ID of the process. This will be the textual user
ID, if it can be obtained and the field width permits, or a decimal
representation otherwise.

ruser The real user ID of the process. This will be the textual user ID, if it
can be obtained and the field width permits, or a decimal
representation otherwise.

group The effective group ID of the process. This will be the textual
group ID, if it can be obtained and the field width permits, or a
decimal representation otherwise.

rgroup The real group ID of the process. This will be the textual group ID,
if it can be obtained and the field width permits, or a decimal
representation otherwise.

pid The decimal value of the process ID.

ppid The decimal value of the parent process ID.

pgid The decimal value of the process group ID.

pcpu The ratio of CPU time used recently to CPU time available in the
same period, expressed as a percentage. The meaning of ‘‘recently’’
in this context is unspecified. The CPU time available is
determined in an unspecified manner.

vsz The total size of the process in virtual memory, in kilobytes.

ps(1)

-o format

1216 man pages section 1: User Commands • Last Revised 10 Dec 2001

nice The decimal value of the system scheduling priority of the process.
See nice(1).

etime In the POSIX locale, the elapsed time since the process was started,
in the form:

[[dd-]hh:]mm:ss

where

dd is the number of days

hh is the number of hours

mm is the number of minutes

ss is the number of seconds

The dd field will be a decimal integer. The hh, mm and ss fields will
be two-digit decimal integers padded on the left with zeros.

time In the POSIX locale, the cumulative CPU time of the process in the
form:

[dd-]hh:mm:ss

The dd, hh, mm, and ss fields will be as described in the etime
specifier.

tty The name of the controlling terminal of the process (if any) in the
same format used by the who(1) command.

comm The name of the command being executed (argv[0] value) as a
string.

args The command with all its arguments as a string. The
implementation may truncate this value to the field width; it is
implementation-dependent whether any further truncation occurs.
It is unspecified whether the string represented is a version of the
argument list as it was passed to the command when it started, or
is a version of the arguments as they may have been modified by
the application. Applications cannot depend on being able to
modify their argument list and having that modification be
reflected in the output of ps. The Solaris implementation limits the
string to 80 bytes; the string is the version of the argument list as it
was passed to the command when it started.

The following names are recognized in the Solaris implementation:

f Flags (hexadecimal and additive) associated with the process.

s The state of the process.

c Processor utilization for scheduling (obsolete).

ps(1)

User Commands 1217

uid The effective user ID number of the process as a decimal integer.

ru+id The real user ID number of the process as a decimal integer.

gid The effective group ID number of the process as a decimal integer.

rgid The real group ID number of the process as a decimal integer.

projid The project ID number of the process as a decimal integer.

project The project ID of the process as a textual value if that value can be
obtained; otherwise as a decimal integer.

sid The process ID of the session leader.

taskid The task ID of the process.

class The scheduling class of the process.

pri The priority of the process. Higher numbers mean higher priority.

opri The obsolete priority of the process. Lower numbers mean higher
priority.

lwp The decimal value of the lwp ID. Requesting this formatting
option causes one line to be printed for each lwp in the process.

nlwp The number of lwps in the process.

psr The number of the processor to which the process or lwp is bound.

pset The ID of the processor set to which the process or lwp is bound.

addr The memory address of the process.

osz The total size of the process in virtual memory, in pages.

wchan The address of an event for which the process is sleeping (if −, the
process is running).

stime The starting time or date of the process, printed with no blanks.

rss The resident set size of the process, in kilobytes.

pmem The ratio of the process’s resident set size to the physical memory
on the machine, expressed as a percentage.

fname The first 8 bytes of the base name of the process’s executable file.

Only comm and args are allowed to contain blank characters; all others, including the
Solaris implementation variables, are not.

The following table specifies the default header to be used in the POSIX locale
corresponding to each format specifier.

ps(1)

1218 man pages section 1: User Commands • Last Revised 10 Dec 2001

Format Default Format Default

Specifier Header Specifier Header

args COMMAND ppid PPID

comm COMMAND rgroup RGROUP

etime ELAPSED ruser RUSER

group GROUP time TIME

nice NI tty TT

pcpu %CPU user USER

pgid PGID vsz VSZ

pid PID

The following table lists the Solaris implementation format specifiers and the default
header used with each.

Format Default Format Default

Specifier Header Specifier Header

addr ADDR projid PROJID

c C project PROJECT

class CLS psr PSR

f F rgid RGID

fname COMMAND rss RSS

gid GID ruid RUID

lwp LWP s S

nlwp NLWP sid SID

opri PRI stime STIME

osz SZ taskid TASKID

pmem %MEM uid UID

pri PRI wchan WCHAN

EXAMPLE 1 An example of the ps command

The command:

example% ps -o user,pid,ppid=MOM -o args

ps(1)

EXAMPLES

User Commands 1219

EXAMPLE 1 An example of the ps command (Continued)

writes the following in the POSIX locale:

USER PID MOM COMMAND

helene 34 12 ps -o uid,pid,ppid=MOM -o args

The contents of the COMMAND field need not be the same due to possible truncation.

See environ(5) for descriptions of the following environment variables that affect the
execution of ps: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

COLUMNS Override the system-selected horizontal screen size,
used to determine the number of text columns to
display.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/dev/pts/*

/dev/term/* terminal (‘‘tty’’) names searcher files

/etc/passwd UID information supplier

/proc/* process control files

/tmp/ps_data internal data structure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled (see USAGE)

kill(1), nice(1), pagesize(1), pgrep(1), priocntl(1), who(1), getty(1M),
proc(4), ttysrch(4), attributes(5), environ(5)

Things can change while ps is running. The snapshot it gives is true only for a
split-second, and it may not be accurate by the time you see it. Some data printed for
defunct processes is irrelevant.

If no options to select processes are specified, ps will report all processes associated
with the controlling terminal. If there is no controlling terminal, there will be no report
other than the header.

ps(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

1220 man pages section 1: User Commands • Last Revised 10 Dec 2001

ps -ef or ps -o stime may not report the actual start of a tty login session, but
rather an earlier time, when a getty was last respawned on the tty line.

ps is CSI-enabled except for login names (usernames).

ps(1)

User Commands 1221

ps – display the status of current processes

/usr/ucb/ps [-aceglnrSuUvwx] [-t term] [num]

The ps command displays information about processes. Normally, only those
processes that are running with your effective user ID and are attached to a controlling
terminal (see termio(7I)) are shown. Additional categories of processes can be added
to the display using various options. In particular, the -a option allows you to include
processes that are not owned by you (that do not have your user ID), and the -x
option allows you to include processes without controlling terminals. When you
specify both -a and -x, you get processes owned by anyone, with or without a
controlling terminal. The -r option restricts the list of processes printed to running
and runnable processes.

ps displays in tabular form the process ID, under PID; the controlling terminal (if
any), under TT; the cpu time used by the process so far, including both user and
system time, under TIME; the state of the process, under S; and finally, an indication of
the COMMAND that is running.

The state is given by a single letter from the following:

O Process is running on a processor.

S Sleeping. Process is waiting for an event to complete.

R Runnable. Process is on run queue.

Z Zombie state. Process terminated and parent not waiting.

T Traced. Process stopped by a signal because parent is tracing it.

The following options must all be combined to form the first argument:

-a Includes information about processes owned by others.

-c Displays the command name rather than the command arguments.

-e Displays the environment as well as the arguments to the command.

-g Displays all processes. Without this option, ps only prints interesting
processes. Processes are deemed to be uninteresting if they are process
group leaders. This normally eliminates top-level command interpreters
and processes waiting for users to login on free terminals.

-l Displays a long listing, with fields F, PPID, CP, PRI, NI, SZ, RSS, and
WCHAN as described below.

-n Produces numerical output for some fields. In a user listing, the USER field
is replaced by a UID field.

-r Restricts output to running and runnable processes.

-S Displays accumulated CPU time used by this process and all of its reaped
children.

ps(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1222 man pages section 1: User Commands • Last Revised 19 Apr 2000

-t term Lists only process data associated with the terminal, term. Terminal
identifiers may be specified in one of two forms: the device’s file name (for
example, tty04 or term/14) or, if the device’s file name starts with tty,
just the digit identifier (for example, 04).

-u Displays user-oriented output. This includes fields USER, %CPU, %MEM, SZ,
RSS, and START as described below.

-U Updates a private database where ps keeps system information.

-v Displays a version of the output containing virtual memory. This includes
fields SIZE, %CPU, %MEM, and RSS, described below.

-w Uses a wide output format (132 columns rather than 80); if repeated, that is,
–ww, use arbitrarily wide output. This information is used to decide how
much of long commands to print.

-x Includes processes with no controlling terminal.

num A process number may be given, in which case the output is restricted to
that process. This option must be supplied last.

Fields that are not common to all output formats:

USER Name of the owner of the process.

%CPU CPU use of the process; this is a decaying average over up to a
minute of previous (real) time.

NI Process scheduling increment (see getpriority(3C) and
nice(3UCB)).

SIZE The total size of the process in virtual memory, including all
mapped files and devices, in kilobyte units.

SZ Same as SIZE.

RSS Real memory (resident set) size of the process, in kilobyte units.

UID Numerical user-ID of process owner.

PPID Numerical ID of parent of process.

CP Short-term CPU utilization factor (used in scheduling).

PRI The priority of the process (higher numbers mean lower priority).

START The starting time of the process, given in hours, minutes, and
seconds. A process begun more than 24 hours before the ps
inquiry is executed is given in months and days.

WCHAN The address of an event for which the process is sleeping (if blank,
the process is running).

%MEM The ratio of the process’s resident set size to the physical memory
on the machine, expressed as a percentage.

ps(1B)

DISPLAY
FORMATS

User Commands 1223

F Flags (hexadecimal and additive) associated with the process.
These flags are available for historical purposes; no meaning
should be currently ascribed to them.

A process that has exited and has a parent, but has not yet been waited for by the
parent, is marked <defunct> ; otherwise, ps tries to determine the command name
and arguments given when the process was created by examining the user block.

/dev

/dev/kmem kernel virtual memory

/dev/mem memory

/dev/swap default swap device

/dev/tty*

/etc/passwd UID information supplier

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

kill(1), ps(1), whodo(1M), getpriority(3C), nice(3UCB), proc(4),
attributes(5), termio(7I)

Things can change while ps is running; the picture it gives is only a close
approximation to the current state. Some data printed for defunct processes is
irrelevant.

ps(1B)

FILES

ATTRIBUTES

SEE ALSO

NOTES

1224 man pages section 1: User Commands • Last Revised 19 Apr 2000

pvs – display the internal version information of dynamic objects

pvs [-Cdlnorsv] [-N name] file…

The pvs utility displays any internal version information contained within an ELF file.
Commonly, these files are dynamic executables and shared objects, and possibly
relocatable objects. This version information can fall into one of two categories:

� version definitions
� version dependencies

Version definitions describe the interfaces made available by an ELF file. Each version
definition is associated to a set of global symbols provided by the file. Version
definitions may be assigned to a file during its creation by the link-editor using the -M
option and the associated mapfile directives (see the Linker and Libraries Guide for more
details).

Version dependencies describe the binding requirements of dynamic objects on the
version definitions of any shared object dependencies. When a dynamic object is built
with a shared object, the link-editor records information within the dynamic object
indicating that the shared object is a dependency. This dependency must be satisfied at
runtime. If the shared object also contains version definitions, then those version
definitions that satisfy the global symbol requirements of the dynamic object will also
be recorded in the dynamic object being created. At process initialization, the runtime
linker will use any version dependencies as a means of validating the interface
requirements of the dynamic objects used to construct the process.

The following options are supported. If neither the -d or -r options are specified,
both will be enabled.

-C Demangles C++ symbol names.

-d Prints version definition information.

-l When used with the -s option, prints any symbols that have been reduced
from global to local binding due to versioning. By convention, these
symbol entries are located in the .symtab section, and fall between the FILE
symbol representing the output file, and the FILE symbol representing the
first input file used to generate the output file. These reduced symbol
entries are assigned the fabricated version definition _REDUCED_. No
reduced symbols will be printed if the file has been stripped (see
strip(1)), or if the symbol entry convention cannot be determined.

-n Normalizes version definition information. By default, all version
definitions within the object are displayed. However, version definitions
may inherit other version definitions, and under normalization only the
head of each inheritance list is displayed.

-N name Prints only the information for the given version definition name and any of
its inherited version definitions (when used with the -d option), or for the
given dependency file name (when used with the -r option).

pvs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1225

-o Creates one-line version definition output. By default, file, version
definitions, and any symbol output is indented to ease human inspection.
This option prefixes each output line with the file and version definition
name and may be more useful for analysis with automated tools.

-r Prints version dependency (requirements) information.

-s Prints the symbols associated with each version definition. Any data
symbols are accompanied with the size, in bytes, of the data item.

-v Verbose output. Indicates any weak version definitions, and any version
definition inheritance. When used with the -N and -d options, the
inheritance of the base version definition is also shown. When used with
the -s option, the version symbol definition is also shown.

The following operands are supported.

file The ELF file about which internal version information is displayed.

EXAMPLE 1 Displaying version definitions

The following example displays the version definitions of libelf.so.1:

% pvs -d /usr/lib/libelf.so.1
libelf.so.1;
SUNW_1.1

EXAMPLE 2 Creating a one-liner display

A normalized, one-liner display, suitable for creating a mapfile version control
directive, can be created using the -n and -o options:

% pvs -don /usr/lib/libelf.so.1
/usr/lib/libelf.so.1 - SUNW_1.1;

EXAMPLE 3 Displaying version requirements

The following example displays the version requirements of ldd and pvs:

% pvs -r /usr/bin/ldd /usr/bin/pvs
/usr/bin/ldd:

libelf.so.1 (SUNW_1.1);
libc.so.1 (SUNW_1.1);

/usr/bin/pvs:
libelf.so.1 (SUNW_1.1);
libc.so.1 (SUNW_1.1);

If the requested version information is not found, a non-zero value is returned;
otherwise a 0 value is returned.

Version information is determined not found when any of the following is true:

� the -d option is specified and no version definitions are found;

pvs(1)

OPERANDS

EXAMPLES

EXIT STATUS

1226 man pages section 1: User Commands • Last Revised 17 Nov 2000

� the -r option is specified and no version requirements are found;

� neither the -d nor -r option is specified and no version definitions or version
requirements are found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

ld(1), ldd(1), strip(1), elf(3ELF), attributes(5)

Linker and Libraries Guide

pvs(1)

ATTRIBUTES

SEE ALSO

User Commands 1227

pwd – return working directory name

/usr/bin/pwd

pwd writes an absolute path name of the current working directory to standard
output.

Both the Bourne shell, sh(1), and the Korn shell, ksh(1), also have a built-in pwd
command.

See environ(5) for descriptions of the following environment variables that affect the
execution of pwd: LC_MESSAGES and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

If an error is detected, output will not be written to standard output, a diagnostic
message will be written to standard error, and the exit status will not be 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

cd(1), ksh(1), sh(1), shell_builtins(1), attributes(5), environ(5)

‘‘Cannot open ..’’ and ‘‘Read error in ..’’ indicate possible file system trouble
and should be referred to a UNIX system administrator.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd(1) command with a full path name to correct this situation.

pwd(1)

NAME

SYNOPSIS

DESCRIPTION

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1228 man pages section 1: User Commands • Last Revised 28 Mar 1995

ranlib – convert archives to random libraries

/usr/ccs/bin/ranlib archive

The ranlib utility was used in SunOS 4.x to add a table of contents to archive
libraries, which converted each archive to a form that could be linked more rapidly.
This is no longer needed, as the ar(1) command automatically provides all the
functionality ranlib used to provide.

This script is provided as a convenience for software developers who need to maintain
Makefiles that are portable across a variety of operating systems.

ranlib has exit status 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ar(1), ar(3HEAD), attributes(5)

ranlib(1)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1229

rcp – remote file copy

rcp [-p] filename1 filename2

rcp [-pr] filename… directory

The rcp command copies files between machines. Each filename or directory argument
is either a remote file name of the form:

hostname:pathor a local file name (containing no ":" (colon) characters, or "/" (backslash)
before any ":" (colon) characters).

The hostname can be an IPv4 or IPv6 address string. See inet(7P) and inet6(7P).
Since IPv6 addresses already contain colons, the hostname should be enclosed in a pair
of square brackets when an IPv6 address is used. Otherwise, the first occurrence of a
colon can be interpreted as the separator between hostname and path. For example,

[1080::8:800:200C:417A]:tmp/file

If a filename is not a full path name, it is interpreted relative to your home directory on
hostname. A path on a remote host may be quoted using \ , " , or ’ , so that the
metacharacters are interpreted remotely.

rcp does not prompt for passwords; your current local user name must exist on
hostname and allow remote command execution by rsh(1).

rcp handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form

username@hostname:filenameto use username rather than your current local user name as the
user name on the remote host. rcp also supports Internet domain addressing of the
remote host, so that:

username@host.domain:filenamespecifies the username to be used, the hostname, and the
domain in which that host resides. File names that are not full path names will be
interpreted relative to the home directory of the user named username, on the remote
host.

The following options are supported:

-p Attempts to give each copy the same modification times, access times,
modes, and ACLs if applicable as the original file.

-r Copies each subtree rooted at filename; in this case the destination must be a
directory.

See largefile(5) for the description of the behavior of rcp when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The rcp command is IPv6–enabled. See ip6(7P).

rcp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

1230 man pages section 1: User Commands • Last Revised 6 Nov 2000

$HOME/.profile

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

CSI Enabled

cpio(1), ftp(1), rlogin(1), rsh(1), setfacl(1), tar(1), hosts.equiv(4),
attributes(5), largefile(5), inet(7P), inet6(7P), ip6(7P)

rcp is meant to copy between different hosts; attempting to rcp a file onto itself, as
with:

example% rcp tmp/file myhost:/tmp/fileresults in a severely corrupted file.

rcp may not correctly fail when the target of a copy is a file instead of a directory.

rcp can become confused by output generated by commands in a $HOME/.profile
on the remote host.

rcp requires that the source host have permission to execute commands on the remote
host when doing third-party copies.

rcp does not properly handle symbolic links. Use tar or cpio piped to rsh to obtain
remote copies of directories containing symbolic links or named pipes. See tar(1) and
cpio(1).

If you forget to quote metacharacters intended for the remote host, you will get an
incomprehensible error message.

rcp will fail if you copy ACLs to a file system that does not support ACLs.

rcp is CSI-enabled except for the handling of username, hostname, and domain.

rcp(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1231

rdist – remote file distribution program

rdist [-b] [-D] [-h] [-i] [-n] [-q] [-R] [-v] [-w] [-y] [-d macro =
value] [-f distfile] [-m host]…

rdist [-b] [-D] [-h] [-i] [-n] [-q] [-R] [-v] [-w] [-y] -c pathname…
[login @] hostname [: destpath]

The rdist utility maintains copies of files on multiple hosts. It preserves the owner,
group, mode, and modification time of the master copies, and can update programs
that are executing. (Note: rdist does not propagate ownership or mode changes
when the file contents have not changed.) Normally, a copy on a remote host is
updated if its size or modification time differs from the original on the local host.
(With the -y option (younger mode), only the modification times are checked, not the
size. See OPTIONS below.)

There are two forms of the rdist command. In the first form shown in the SYNOPSIS
section above, rdist reads the indicated distfile for instructions on updating files
and/or directories. If distfile is ‘−’, the standard input is used. If no -f option is
present, rdist first looks in its working directory for distfile, and then for
Distfile, for instructions.

The second form shown in SYNOPSIS uses the -c option and specifies paths as
command line options.

In order to be able to use rdist across machines, each host machine must have a
/etc/host.equiv file, or the user must have an entry in the .rhosts file in the
home directory. See hosts.equiv(4) for more information.

The following options are supported:

-b
Binary comparison. Performs a binary comparison and updates files if they differ,
rather than merely comparing dates and sizes.

-c pathname . . . [login @]hostname[:destpath]
Copies each pathname to the named host; if destpath is specified, it will not update
any pathname on the named host. (Relative filenames are taken as relative to your
home directory.) If the ‘login @’ prefix is given, the update is performed with the
user ID of login. If the ‘:destpath’ is given, the remote file is installed as that
pathname.

-d macro=value
Defines macro to have value. This option is used to define or override macro
definitions in the distfile. value can be the empty string, one name, or a list of names
surrounded by parentheses and separated by white space.

-D
Enables debugging.

rdist(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1232 man pages section 1: User Commands • Last Revised 6 Nov 2000

-f distfile
Uses the description file distfile. A ‘−’ as the distfile argument denotes the standard
input.

-h
Follows symbolic links. Copies the file that the link points to rather than the link
itself.

-i
Ignores unresolved links. rdist will normally try to maintain the link structure of
files being transferred and warn the user if all the links cannot be found.

-m host
Limits which machines are to be updated. Multiple -m arguments can be given to
limit updates to a subset of the hosts listed in the distfile.

-n
Prints the commands without executing them. This option is useful for debugging a
distfile.

-q
Quiet mode. Does not display the files being updated on the standard output.

-R
Removes extraneous files. If a directory is being updated, removes files on the
remote host that do not correspond to those in the master (local) directory. This is
useful for maintaining truly identical copies of directories.

-v
Verifies that the files are up to date on all the hosts. Any files that are out of date are
displayed, but no files are updated, nor is any mail sent.

-w
Whole mode. The whole file name is appended to the destination directory name.
Normally, only the last component of a name is used when renaming files. This
preserves the directory structure of the files being copied, instead of flattening the
directory structure. For instance, renaming a list of files such as dir1/dir2 to
dir3 would create files dir3/dir1 and dir3/dir2 instead of dir3 and dir3.
When the -w option is used with a filename that begins with ~, everything except
the home directory is appended to the destination name.

-y
Younger mode. Does not update remote copies that are younger than the master
copy, but issues a warning message instead. Only modification times are checked.
No comparison of size is made.

NEWLINE, TAB, and SPACE characters are all treated as white space; a mapping
continues across input lines until the start of the next mapping: either a single filename
followed by a ‘->’ or the opening parenthesis of a filename list.

Comments begin with # and end with a NEWLINE.

rdist(1)

White Space
Characters

Comments

User Commands 1233

The distfile contains a sequence of entries that specify the files to be copied, the
destination files to be copied, the destination hosts, and what operations to perform to
do the updating. Each entry has one of the following formats:

variable_name ’=’ name_list
[label:] source_list ’->’ destination_list command_list
[label:] source_list ’::’ time_stamp_file command_listThe first format is used for defining
variables. The second format is used for distributing files to other hosts. The third
format is used for making lists of files that have been changed since some given date.
The source list specifies a list of files and/or directories on the local host that are to be
used as the master copy for distribution. The destination list is the list of hosts to
which these files are to be copied. Each file in the source list is added to a list of
changes if the file is out of date on the host that is being updated (second format) or if
the file is newer than the time stamp file (third format). Labels are optional. They are
used to identify a command for partial updates. The colon (:) is used after an optional
label, while the double colon (::) is used for making lists of files that have been
changed since a certain date (specified by the date/time of the time_stamp file).
Typically, only notify is used with the ’::’ format of the command line.

rdist has a limited macro facility. Macros are only expanded in filename or hostname
lists, and in the argument lists of certain primitives. Macros cannot be used to stand
for primitives or their options, or the ‘->’ or ‘::’ symbols.

A macro definition is a line of the form:

macro = value

A macro reference is a string of the form:

${macro}

although (as with make(1S)) the braces can be omitted if the macro name consists of
just one character.

The shell meta-characters: [,], {, }, * and ? are recognized and expanded (on the
local host only) just as they are with csh(1). Metacharacters can be escaped by
prepending a backslash.

The ~ character is also expanded in the same way as with csh; however, it is
expanded separately on the local and destination hosts.

File names that do not begin with ‘ / ’ or ‘ ~ ’ are taken to be relative to user’s home
directory on each destination host; they are not relative to the current working
directory. Multiple file names must be enclosed within parentheses.

The following primitives can be used to specify actions rdist is to take when
updating remote copies of each file.

rdist(1)

Distfiles

Macros

Metacharacters

Filenames

Primitives

1234 man pages section 1: User Commands • Last Revised 6 Nov 2000

install [-b] [-h] [-i] [-R] [-v] [-w] [-y] [newname]
Copy out of date files and directories (recursively). If no newname operand is given,
the name of the local file is given to the remote host’s copy. If absent from the
remote host, parent directories in a filename’s path are created. To help prevent
disasters, a non-empty directory on a target host is not replaced with a regular file
or a symbolic link by rdist. However, when using the -R option, a non-empty
directory is removed if the corresponding filename is completely absent on the
master host.

The options for install have the same semantics as their command line
counterparts, but are limited in scope to a particular map. The login name used on
the destination host is the same as the local host unless the destination name is of
the format login@host. In that case, the update is performed under the username
login.

notify address . . .
Send mail to the indicated email address of the form:

user@host

that lists the files updated and any errors that may have occurred. If an address
does not contain a ‘@host ’ suffix, rdist uses the name of the destination host to
complete the address.

except filename . . .
Omit from updates the files named as arguments.

except_pat pattern . . .
Omit from updates the filenames that match each regular-expression pattern (see
ed(1) for more information on regular expressions). Note that ‘\’ and ‘$’
characters must be escaped in the distfile. Shell variables can also be used within a
pattern, however shell filename expansion is not supported.

special [filename] . . . "command-line "
Specify a Bourne shell, sh(1) command line to execute on the remote host after each
named file is updated. If no filename argument is present, the command-line is
performed for every updated file, with the shell variable FILE set to the file’s name
on the local host. The quotation marks allow command-line to span input lines in the
distfile; multiple shell commands must be separated by semicolons (;).

The default working directory for the shell executing each command-line is the user’s
home directory on the remote host.

The rdist command is IPv6–enabled. See ip6(7P).

EXAMPLE 1 A sample distfile

The following sample distfile instructs rdist to maintain identical copies of a shared
library, a shared-library initialized data file, several include files, and a directory, on
hosts named hermes and magus. On magus, commands are executed as super-user.

rdist(1)

IPv6

EXAMPLES

User Commands 1235

EXAMPLE 1 A sample distfile (Continued)

rdist notifies merlin@druid whenever it discovers that a local file has changed
relative to a timestamp file. (Parentheses are used when the source or destination list
contains zero or more names separated by white-space.)

HOSTS = (hermes root@magus)

FILES = (/usr/local/lib/libcant.so.1.1
/usrlocal/lib/libcant.sa.1.1 /usr/local/include/{*.h}
/usr/local/bin)

(${FILES}) -> (${HOSTS})
install −R ;

${FILES} :: /usr/local/lib/timestamp

notify merlin@druid ;

~/.rhosts user’s trusted hosts and users

/etc/host.equiv system trusted hosts and users

/tmp/rdist* temporary file for update lists

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

csh(1), ed(1), make(1S), sh(1), stat(2), hosts.equiv(4), attributes(5), ip6(7P)

A complaint about mismatch of rdist version numbers may really stem from some
problem with starting your shell, for example, you are in too many groups.

The super-user does not have its accustomed access privileges on NFS mounted file
systems. Using rdist to copy to such a file system may fail, or the copies may be
owned by user “nobody”.

Source files must reside or be mounted on the local host.

There is no easy way to have a special command executed only once after all files in a
directory have been updated.

Variable expansion only works for name lists; there should be a general macro facility.

rdist aborts on files that have a negative modification time (before Jan 1, 1970).

There should be a “force” option to allow replacement of non-empty directories by
regular files or symlinks. A means of updating file modes and owners of otherwise
identical files is also needed.

rdist(1)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

BUGS

1236 man pages section 1: User Commands • Last Revised 6 Nov 2000

read – read a line from standard input

/usr/bin/read [-r] var…

read name…

set variable = $<

read [-prsu [n]] [name ? prompt] [name…]

The read utility will read a single line from standard input.

By default, unless the -r option is specified, backslash (\) acts as an escape character.
If standard input is a terminal device and the invoking shell is interactive, read will
prompt for a continuation line when:

� The shell reads an input line ending with a backslash, unless the -r option is
specified.

� A here-document is not terminated after a newline character is entered.

The line will be split into fields as in the shell; the first field will be assigned to the first
variable var, the second field to the second variable var, and so forth. If there are fewer
var operands specified than there are fields, the leftover fields and their intervening
separators will be assigned to the last var. If there are fewer fields than vars, the
remaining vars will be set to empty strings.

The setting of variables specified by the var operands will affect the current shell
execution environment. If it is called in a subshell or separate utility execution
environment, such as one of the following:

(read foo)
nohup read ...

find . -exec read ... \;

it will not affect the shell variables in the caller’s environment.

The standard input must be a text file.

One line is read from the standard input and, using the internal field separator, IFS
(normally space or tab), to delimit word boundaries, the first word is assigned to the
first name, the second word to the second name, etc., with leftover words assigned to
the last name. Lines can be continued using \newline. Characters other than
newline can be quoted by preceding them with a backslash. These backslashes are
removed before words are assigned to names, and no interpretation is done on the
character that follows the backslash. The return code is 0, unless an EOF is
encountered.

The notation:

set variable = $<

loads one line of standard input as the value for variable. (See csh(1)).

read(1)

NAME

SYNOPSIS

sh

csh

ksh

/usr/bin/read

sh

csh

User Commands 1237

The shell input mechanism. One line is read and is broken up into fields using the
characters in IFS as separators. The escape character, (\), is used to remove any
special meaning for the next character and for line continuation. In raw mode, -r, the
\ character is not treated specially. The first field is assigned to the first name, the
second field to the second name, etc., with leftover fields assigned to the last name. The
-p option causes the input line to be taken from the input pipe of a process spawned
by the shell using |&. If the -s flag is present, the input will be saved as a command in
the history file. The flag -u can be used to specify a one digit file descriptor unit n to
read from. The file descriptor can be opened with the exec special command. The
default value of n is 0. If name is omitted then REPLY is used as the default name. The
exit status is 0 unless the input file is not open for reading or an end-of-file is
encountered. An end-of-file with the -p option causes cleanup for this process so that
another can be spawned. If the first argument contains a ?, the remainder of this word
is used as a prompt on standard error when the shell is interactive. The exit status is 0
unless an end-of-file is encountered.

The following option is supported:

-r Do not treat a backslash character in any special way. Consider each
backslash to be part of the input line.

The following operand is supported:

var The name of an existing or non-existing shell variable.

EXAMPLE 1 An example of the read command.

The following example for /usr/bin/read prints a file with the first field of each
line moved to the end of the line.

while read -r xx yy
do

printf "%s %s\n" "$yy" "$xx"
done < input_file

See environ(5) for descriptions of the following environment variables that affect the
execution of read: LC_CTYPE, LC_MESSAGES, and NLSPATH.

IFS Determine the internal field separators used to delimit fields.

PS2 Provide the prompt string that an interactive shell will write to standard
error when a line ending with a backslash is read and the -r option was
not specified, or if a here-document is not terminated after a newline
character is entered.

The following exit values are returned:

0 Successful completion.

>0 End-of-file was detected or an error occurred.

See attributes(5) for descriptions of the following attributes:

read(1)

ksh

OPTIONS

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

1238 man pages section 1: User Commands • Last Revised 28 Mar 1995

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), line(1), set(1), sh(1), attributes(5), environ(5)

read(1)

SEE ALSO

User Commands 1239

readfile, longline – reads file, gets longest line

readfile filename

longline [filename]

The readfile function reads filename and copies it to stdout. No translation of
NEWLINE is done. It keeps track of the longest line it reads and if there is a
subsequent call to longline, the length of that line, including the NEWLINE
character, is returned.

The longline function returns the length, including the NEWLINE character, of the
longest line in filename. If filename is not specified, it uses the file named in the last call
to readfile.

EXAMPLE 1 Typical use of readfile and longline

Here is a typical use of readfile and longline in a text frame definition file:

.

.

.
text="‘readfile myfile‘"
columns=‘longline‘

.

.

.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

cat(1), attributes(5)

If filename does not exist, readfile will return FALSE (that is, the expression will
have an error return).

longline returns 0 if a readfile has not previously been issued.

More than one descriptor can call readfile in the same frame definition file. In text
frames, if one of those calls is made from the text descriptor, then a subsequent use
of longline will always get the longest line of the file read by the readfile
associated with the text descriptor, even if it was not the most recent use of
readfile.

readfile(1F)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1240 man pages section 1: User Commands • Last Revised 5 Jul 1990

readonly – shell built-in function to protect the value of the given variable from
reassignment

readonly [name…]

**readonly [name [= value]…]

The given names are marked readonly and the values of the these names may not be
changed by subsequent assignment. If no arguments are given, a list of all readonly
names is printed.

The given names are marked readonly and these names cannot be changed by
subsequent assignment.

On this man page, ksh(1) commands that are preceded by one or two ** (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ksh(1), sh(1), typeset(1), attributes(5)

readonly(1)

NAME

sh

ksh

sh

ksh

ATTRIBUTES

SEE ALSO

User Commands 1241

refer – expand and insert references from a bibliographic database

refer [-ben] [-ar] [-cstring] [-kx] [-lm,n] [-p filename] [-skeys]
filename…

refer is a preprocessor for nroff(1), or troff(1), that finds and formats references.
The input files (standard input by default) are copied to the standard output, except
for lines between ‘. [’ and ‘.]’ command lines, Such lines are assumed to contain
keywords as for lookbib(1), and are replaced by information from a bibliographic
data base. The user can avoid the search, override fields from it, or add new fields. The
reference data, from whatever source, is assigned to a set of troff strings. Macro
packages such as ms(5) print the finished reference text from these strings. A flag is
placed in the text at the point of reference. By default, the references are indicated by
numbers.

When refer is used with eqn(1), neqn, or tbl(1), refer should be used first in the
sequence, to minimize the volume of data passed through pipes.

-b Bare mode — do not put any flags in text (neither numbers or
labels).

-e Accumulate references instead of leaving the references where
encountered, until a sequence of the form:

.[
$LIST$
.]

is encountered, and then write out all references collected so far.
Collapse references to the same source.

-n Do not search the default file.

-ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones).
If r is omitted, all author names are reversed.

-cstring Capitalize (with SMALL CAPS) the fields whose key-letters are in
string.

-kx Instead of numbering references, use labels as specified in a
reference data line beginning with the characters %x; By default, x
is L.

-lm,n Instead of numbering references, use labels from the senior
author’s last name and the year of publication. Only the first m
letters of the last name and the last n digits of the date are used. If
either of m or n is omitted, the entire name or date, respectively, is
used.

-p filename Take the next argument as a file of references to be searched. The
default file is searched last.

refer(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1242 man pages section 1: User Commands • Last Revised 14 Sep 1992

-skeys Sort references by fields whose key-letters are in the keys string,
and permute reference numbers in the text accordingly. Using this
option implies the -e option. The key-letters in keys may be
followed by a number indicating how many such fields are used,
with a + sign taken as a very large number. The default is AD,
which sorts on the senior author and date. To sort on all authors
and then the date, for instance, use the options ‘-sA+T’.

/usr/lib/refer directory of programs

/usr/lib/refer/papers directory of default publication lists and indexes

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

addbib(1), eqn(1), indxbib(1), lookbib(1), nroff(1), roffbib(1), sortbib(1),
tbl(1), troff(1), attributes(5)

refer(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 1243

regcmp – regular expression compile

regcmp [-] filename…

The regcmp command performs a function similar to regcmp and, in most cases,
precludes the need for calling regcmp from C programs. Bypassing regcmp saves on
both execution time and program size. The command regcmp compiles the regular
expressions in filename and places the output in filename.i.

− If the − option is used, the output is placed in filename.c. The format of
entries in filename is a name (C variable) followed by one or more blanks
followed by one or more regular expressions enclosed in double quotes.
The output of regcmp is C source code. Compiled regular expressions are
represented as extern char vectors. filename.i files may thus be
#included in C programs, or filename.c files may be compiled and later
loaded. In the C program that uses the regcmp output,
regex(abc,line) applies the regular expression named abc to line.
Diagnostics are self-explanatory.

EXAMPLE 1 Examples of the regcmp command.

name "([A−Za−z][A−Za−z0−9_]*)$0"

telno " \({0,1}([2−9][01][1−9])$0\){0,1} *"

"([2−9][0−9]{2})$1[−]{0,1}"

"([0−9]{4})$2"

The three arguments to telno shown above must all be entered on one line.

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

applies the regular expression named telno to line.

A general description of the usage of the LC_* environmental variables can be found
in environ(5).

LC_CTYPE Determines how regcmp handles characters. When LC_CTYPE is
set to a valid value, regcmp can display and handle text and
filenames containing valid characters for that locale.

LC_MESSAGES Determines how diagnostic and informative messages are
presented. This includes the language and style of the messages,
and the correct form of affirmative and negative responses. In the
"C" locale, the messages are presented in the default form found in
the program itself (in most cases, U.S. English).

See attributes(5) for descriptions of the following attributes:

regcmp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ENVIRONMENT
VARIABLES

ATTRIBUTES

1244 man pages section 1: User Commands • Last Revised Dec 20 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

CSI Enabled

regcmp(3C), attributes(5), environ(5)

regcmp(1)

SEE ALSO

User Commands 1245

regex – match patterns against a string

regex [-e] [-v "string"] [pattern template] … pattern [template]

The regex command takes a string from the standard input, and a list of pattern /
template pairs, and runs regex() to compare the string against each pattern until there
is a match. When a match occurs, regex writes the corresponding template to the
standard output and returns TRUE. The last (or only) pattern does not need a template.
If that is the pattern that matches the string, the function simply returns TRUE. If no
match is found, regex returns FALSE.

The argument pattern is a regular expression of the form described in regex(). In
most cases, pattern should be enclosed in single quotes to turn off special meanings of
characters. Note that only the final pattern in the list may lack a template.

The argument template may contain the strings $m0 through $m9, which will be
expanded to the part of pattern enclosed in (. . .)$0 through (. . .)$9
constructs (see examples below). Note that if you use this feature, you must be sure to
enclose template in single quotes so that FMLI does not expand $m0 through $m9 at
parse time. This feature gives regex much of the power of cut(1), paste(1), and
grep(1), and some of the capabilities of sed(1). If there is no template, the default is
$m0$m1$m2$m3$m4$m5$m6$m7$m8$m9.

The following options are supported:

-e Evaluates the corresponding template and writes the result to the
standard output.

-v "string" Uses string instead of the standard input to match against patterns.

EXAMPLE 1 Cutting letters out of a string

To cut the 4th through 8th letters out of a string (this example will output strin and
return TRUE):

‘regex -v "my string is nice" ’^.{3}(.{5})$0’ ’$m0’‘

EXAMPLE 2 Validating input in a form

In a form, to validate input to field 5 as an integer:

valid=‘regex -v "$F5" ’^[0-9]+$’‘

EXAMPLE 3 Translating an environment variable in a form

In a form, to translate an environment variable which contains one of the numbers 1,
2, 3, 4, 5 to the letters a, b, c, d, e:

value=‘regex -v "$VAR1" 1 a 2 b 3 c 4 d 5 e ’.*’ ’Error’‘

Note the use of the pattern ’.*’ to mean "anything else".

regex(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

1246 man pages section 1: User Commands • Last Revised 12 Jul 1999

EXAMPLE 4 Using backquoted expressions

In the example below, all three lines constitute a single backquoted expression. This
expression, by itself, could be put in a menu definition file. Since backquoted
expressions are expanded as they are parsed, and output from a backquoted
expression (the cat command, in this example) becomes part of the definition file
being parsed, this expression would read /etc/passwd and make a dynamic menu
of all the login ids on the system.

‘cat /etc/passwd | regex ’^([^:]*)$0.*$’ ’
name=$m0
action=‘message "$m0 is a user"‘’‘

If none of the patterns match, regex returns FALSE, otherwise TRUE.

Patterns and templates must often be enclosed in single quotes to turn off the special
meanings of characters. Especially if you use the $m0 through $m9 variables in the
template, since FMLI will expand the variables (usually to "") before regex even sees
them.

Single characters in character classes (inside []) must be listed before character
ranges, otherwise they will not be recognized. For example, [a-zA-Z_/] will not find
underscores (_) or slashes (/), but [_/a-zA-Z] will.

The regular expressions accepted by regcmp differ slightly from other utilities (that is,
sed, grep, awk, ed, and so forth).

regex with the -e option forces subsequent commands to be ignored. In other words,
if a backquoted statement appears as follows:

‘regex -e ...; command1; command2‘

command1 and command2 would never be executed. However, dividing the
expression into two:

‘regex -e ...‘‘command1; command2‘

would yield the desired result.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

awk(1), cut(1), grep(1), paste(1), sed(1), regcmp(3C), attributes(5)

regex(1F)

DIAGNOSTICS

NOTES

ATTRIBUTES

SEE ALSO

User Commands 1247

reinit – runs an initialization file

reinit filename

The reinit command is used to change the values of descriptors defined in the
initialization file that was named when fmli was invoked and/or define additional
descriptors. FMLI will parse and evaluate the descriptors in filename, and then
continue running the current application. The argument filename must be the name of a
valid FMLI initialization file.

The reinit command does not re-display the introductory frame or change the
layout of screen labels for function keys.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

reinit(1F)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

1248 man pages section 1: User Commands • Last Revised 5 Jul 1990

renice – alter priority of running processes

renice [-n increment] [-i idtype] ID…

renice [-n increment] [-g | -p | -u]ID…

renice priority [-p] pid… [-g gid…] [-p pid…] [-u user…]

renice priority -g gid… [-g gid…] [-p pid…] [-u user…]

renice priority -u user… [-g gid…] [-p pid…] [-u user…]

The renice command alters the scheduling priority of one or more running
processes. By default, the processes to be affected are specified by their process IDs.

If the first operand is a number within the valid range of priorities (−20 to 20),
renice will treat it as a priority (as in all but the first synopsis form); otherwise,
renice will treat it as an ID (as in the first synopsis form).

Users other than the privileged user may only alter the priority of processes they own,
and can only monotonically increase their “nice value” within the range 0 to 19. This
prevents overriding administrative fiats. The privileged user may alter the priority of
any process and set the priority to any value in the range −20 to 19. Useful priorities
are: 19 (the affected processes will run only when nothing else in the system wants to);
0 (the “base” scheduling priority),; and any negative value (to make things go very
fast). 20 is an acceptable nice value, but will be rounded down to 19.

renice supports the following option features:

� The first operand, priority, must precede the options and can have the appearance
of a multi-digit option.

� The -g, -p, and -u options can each take multiple option-arguments.

� The pid option-argument can be used without its -p option.

� The -i option can be used to specify the ID type for the ID list. This is preferred in
specifying ID type over the use of the -g | -p | -u syntax, which is now obsolete.
See NOTES.

The following options are supported:

-g Interprets all operands or just the gid arguments as unsigned
decimal integer process group IDs.

-i This option, together with the ID list arguments, specifies a class of
processes to which the renice command is to apply. The
interpretation of the ID list depends on the value of idtype. The
valid idtype arguments are: pid, pgid, uid, gid, sid, taskid,
and projid.

-n increment Specifies how the system scheduling priority of the specified
process or processes is to be adjusted. The increment
option-argument is a positive or negative decimal integer that will
be used to modify the system scheduling priority of the specified

renice(1)

NAME

SYNOPSIS

DESCRIPTION

Altering Process
Priority

OPTIONS

User Commands 1249

process or processes. Positive increment values cause a lower
system scheduling priority. Negative increment values may require
appropriate privileges and will cause a higher system scheduling
priority.

-p Interprets all operands or just the pid arguments as unsigned
decimal integer process IDs. The -p option is the default if no
options are specified.

-u Interprets all operands or just the user argument as users. If a user
exists with a user name equal to the operand, then the user ID of
that user will be used in further processing. Otherwise, if the
operand represents an unsigned decimal integer, it will be used as
the numeric user ID of the user.

The following operands are supported:

ID A process ID, process group ID or user name/user ID, depending
on the option selected.

priority The value specified is taken as the actual system scheduling
priority, rather than as an increment to the existing system
scheduling priority. Specifying a scheduling priority higher than
that of the existing process may require appropriate privileges.

EXAMPLE 1 Adjusting the scheduling priority of process IDs

Adjust the system scheduling priority so that process IDs 987 and 32 would have a
lower scheduling priority:

example% renice -n 5 -p 987 32

EXAMPLE 2 Adjusting the scheduling priority of group IDs

Adjust the system scheduling priority so that group IDs 324 and 76 would have a
higher scheduling priority, if the user has the appropriate privileges to do so:

example% renice -n -4 -g 324 76

EXAMPLE 3 Adjusting the scheduling priority of a user ID and user name

Adjust the system scheduling priority so that numeric user ID 8 and user sas would
have a lower scheduling priority:

example% renice -n 4 -u 8 sas

See environ(5) for descriptions of the following environment variables that affect the
execution of renice: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

renice(1)

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

1250 man pages section 1: User Commands • Last Revised 17 Jan 2001

0 Successful completion.

>0 An error occurred.

/etc/passwd map user names to user IDs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

nice(1), passwd(1), priocntl(1), attributes(5), environ(5)

The renice syntax

renice [-n increment] [-i idtype] ID ...is preferred over the old syntax

renice [-n increment] [-g | -p| -u] ID ...which is now obsolete.

If you make the priority very negative, then the process cannot be interrupted.

To regain control you must make the priority greater than 0.

Users other than the privileged user cannot increase scheduling priorities of their own
processes, even if they were the ones that decreased the priorities in the first place.

The priocntl command subsumes the function of renice.

renice(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1251

reset – reset the current form field to its default values

reset

The reset function changes the entry in a field of a form to its default value; that is,
the value displayed when the form was opened.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

reset(1F)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

1252 man pages section 1: User Commands • Last Revised 5 Jul 1990

rlogin – remote login

rlogin [-8EL] [-ec] [-l username] hostname

rlogin establishes a remote login session from your terminal to the remote machine
named hostname.

Hostnames are listed in the hosts database, which may be contained in the
/etc/hosts and /etc/inet/ipnodes files, the Network Information Service (NIS)
hosts map, the Internet domain name server, or a combination of these. Each host
has one official name (the first name in the database entry), and optionally one or more
nicknames. Either official hostnames or nicknames may be specified in hostname.

Each remote machine may have a file named /etc/hosts.equiv containing a list of
trusted hostnames with which it shares usernames. Users with the same username on
both the local and remote machine may rlogin from the machines listed in the
remote machine’s /etc/hosts.equiv file without supplying a password. Individual
users may set up a similar private equivalence list with the file .rhosts in their home
directories. Each line in this file contains two names: a hostname and a username
separated by a space. An entry in a remote user’s .rhosts file permits the user
named username who is logged into hostname to log in to the remote machine as the
remote user without supplying a password. If the name of the local host is not found
in the /etc/hosts.equiv file on the remote machine, and the local username and
hostname are not found in the remote user’s .rhosts file, then the remote machine
will prompt for a password. Hostnames listed in /etc/hosts.equiv and .rhosts
files must be the official hostnames listed in the hosts database; nicknames may not be
used in either of these files.

For security reasons, the .rhosts file must be owned by either the remote user or by
root.

The remote terminal type is the same as your local terminal type (as given in your
environment TERM variable). The terminal or window size is also copied to the remote
system if the server supports the option, and changes in size are reflected as well. All
echoing takes place at the remote site, so that (except for delays) the remote login is
transparent. Flow control using CTRL-S and CTRL-Q and flushing of input and output
on interrupts are handled properly.

The following options are supported:

-8 Pass eight-bit data across the net instead of seven-bit data.

-ec Specify a different escape character, c, for the line used to
disconnect from the remote host.

-E Stop any character from being recognized as an escape character.

-l username Specify a different username for the remote login. If you do not use
this option, the remote username used is the same as your local
username.

-L Allow the rlogin session to be run in “litout” mode.

rlogin(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1253

Lines that you type which start with the tilde character are “escape sequences” (the
escape character can be changed using the -e option):

~. Disconnect from the remote host. This is not the same as a logout,
because the local host breaks the connection with no warning to
the remote end.

~susp Suspend the login session (only if you are using a shell with Job
Control). susp is your “suspend” character, usually CTRL-Z; see
tty(1).

~dsusp Suspend the input half of the login, but output will still be seen
(only if you are using a shell with Job Control). dsusp is your
“deferred suspend” character, usually CTRL-Y; see tty(1).

hostname The remote machine on which rlogin establishes the remote login
session.

/etc/passwd contains information about users’ accounts

/usr/hosts/* for hostname version of the command

/etc/hosts.equiv list of trusted hostnames with shared usernames

/etc/nologin message displayed to users attempting to login during
machine shutdown

$HOME/.rhosts private list of trusted hostname/username
combinations

/etc/hosts hosts database

/etc/inet/ipnodes hosts database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

rsh(1), stty(1), tty(1), in.named(1M), hosts(4),ipnodes(4). hosts.equiv(4),
nologin(4), attributes(5)

The following message indicates that the machine is in the process of being shutdown
and logins have been disabled:

NO LOGINS: System going down in N minutes

When a system is listed in hosts.equiv, its security must be as good as local
security. One insecure system listed in hosts.equiv can compromise the security of
the entire system.

rlogin(1)

Escape Sequences

OPERANDS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1254 man pages section 1: User Commands • Last Revised 6 Nov 2000

The Network Information Service (NIS) was formerly known as Sun Yellow Pages
(YP.) The functionality of the two remains the same; only the name has changed.

This implementation can only use the TCP network service.

rlogin(1)

User Commands 1255

rm, rmdir – remove directory entries

/usr/bin/rm [-f] [-i] file…

/usr/bin/rm -rR [-f] [-i] dirname… [file…]

/usr/xpg4/bin/rm [-fiRr] file…

/usr/bin/rmdir [-ps] dirname…

The rm utility removes the directory entry specified by each file argument. If a file has
no write permission and the standard input is a terminal, the full set of permissions
(in octal) for the file are printed followed by a question mark. This is a prompt for
confirmation. If the answer begins with y (for yes), the file is deleted, otherwise the file
remains.

If file is a symbolic link, the link will be removed, but the file or directory to which it
refers will not be deleted. Users do not need write permission to remove a symbolic
link, provided they have write permissions in the directory.

If multiple files are specified and removal of a file fails for any reason, rm will write a
diagnostic message to standard error, do nothing more to the current file, and go on to
any remaining files.

If the standard input is not a terminal, the utility will operate as if the -f option is in
effect.

The rmdir utility will remove the directory entry specified by each dirname operand,
which must refer to an empty directory.

Directories will be processed in the order specified. If a directory and a subdirectory of
that directory are specified in a single invocation of rmdir, the subdirectory must be
specified before the parent directory so that the parent directory will be empty when
rmdir tries to remove it.

The following options are supported for /usr/bin/rm and /usr/xpg4/bin/rm:

-r Recursively removes directories and subdirectories in the argument list.
The directory will be emptied of files and removed. The user is normally
prompted for removal of any write-protected files which the directory
contains. The write-protected files are removed without prompting,
however, if the -f option is used, or if the standard input is not a terminal
and the -i option is not used.

Symbolic links that are encountered with this option will not be traversed.

If the removal of a non-empty, write-protected directory is attempted, the
utility will always fail (even if the -f option is used), resulting in an error
message.

-R Same as -r option.

rm(1)

NAME

SYNOPSIS

/usr/bin/rm
/usr/xpg4/bin/rm

/usr/bin/rmdir

OPTIONS

1256 man pages section 1: User Commands • Last Revised 26 Jan 2001

The following options are supported for /usr/bin/rm only:

-f Removes all files (whether write-protected or not) in a directory without
prompting the user. In a write-protected directory, however, files are never
removed (whatever their permissions are), but no messages are displayed.
If the removal of a write-protected directory is attempted, this option will
not suppress an error message.

-i Interactive. With this option, rm prompts for confirmation before removing
any files. It overrides the -f option and remains in effect even if the
standard input is not a terminal.

The following options are supported for /usr/xpg4/bin/rm only:

-f Does not prompt for confirmation. Does not write diagnostic messages or
modify the exit status in the case of non-existent operands. Any previous
occurrences of the -i option will be ignored.

-i Prompts for confirmation. Any occurrences of the -f option will be
ignored.

The following options are supported for /usr/bin/rmdir only:

-p Allows users to remove the directory dirname and its parent directories
which become empty. A message is printed to standard error if all or part
of the path could not be removed.

-s Suppresses the message printed on the standard error when -p is in effect.

The following operands are supported:

file A path name of a directory entry to be removed.

dirname A path name of an empty directory to be removed.

See largefile(5) for the description of the behavior of rm and rmdir when
encountering files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Removing directories

The following command:

example% rm a.out core

removes the directory entries a.out and core.

EXAMPLE 2 Removing a directory without prompting

The following command:

example% rm -rf junk

rm(1)

/usr/bin/rm

/usr/xpg4/bin/rm

/usr/bin/rmdir

OPERANDS

USAGE

/usr/bin/rm
/usr/xpg4/bin/rm

User Commands 1257

EXAMPLE 2 Removing a directory without prompting (Continued)

removes the directory junk and all its contents, without prompting.

EXAMPLE 3 Removing empty directories

If a directory a in the current directory is empty, except that it contains a directory b,
and a/b is empty except that it contains a directory c,

example% rmdir -p a/b/c

will remove all three directories.

See environ(5) for descriptions of the following environment variables that affect the
execution of rm and rmdir: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 If the -f option was not specified, all the named directory entries were
removed; otherwise, all the existing named directory entries were removed.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

rmdir(2), unlink(2), attributes(5), environ(5), largefile(5), XPG4(5)

All messages are generally self-explanatory.

It is forbidden to remove the files "." and ". ." in order to avoid the consequences of
inadvertently doing something like the following:

example% rm -r .*

rm(1)

/usr/bin/rmdir

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/rm
/usr/bin/rmdir

/usr/xpg4/bin/rm

SEE ALSO

DIAGNOSTICS

1258 man pages section 1: User Commands • Last Revised 26 Jan 2001

A − permits the user to mark explicitly the end of any command line options, allowing
rm to recognize file arguments that begin with a −. As an aid to BSD migration, rm will
accept − − as a synonym for −. This migration aid may disappear in a future release. If
a − − and a − both appear on the same command line, the second will be interpreted
as a file.

rm(1)

NOTES

User Commands 1259

rmformat – removable rewritable media format utility

rmformat [-DeHpUv] [-b label] [-c blockno] [-Fquick | long | force]
[-R enable | disable] [-s filename] [-w enable | disable] [-W
enable | disable] [devname]

rmformat -V read | write devname

The rmformat utility is used to format, label, partition, and perform other
miscellaneous functions on removable, rewritable media that include floppy drives,
IOMEGA Zip/Jaz products, and the PCMCIA memory and ata cards. This utility can
also be used for the verification and surface analysis and for repair of the bad sectors
found during verification if the drive or the driver supports bad block management.

rmformat provides functionality to read/write protect the media with or without a
password. The password protection enabling or disabling is possible only with
selective rewritable media such as the IOMEGA Zip/Jaz products.

After formatting, rmformat writes the label, which covers the full capacity of the
media as one slice on floppy and PCMCIA memory cards to maintain compatibility
with the behavior of fdformat. On Zip/Jaz devices, the driver exports one slice
covering the full capacity of the disk as default. rmformat does not write the label on
Zip/Jaz media, unless explicitly requested. The partition information can be changed
with the help of other options provided by rmformat.

The following options are supported:

-b label Labels the media with a SUNOS label. A SUNOS
volume label name is restricted to 8 characters. For
writing a DOS Volume label, the user should use
mkfs_pcfs(1M).

-c blockno Corrects and repairs the given block. This correct and
repair option may not be applicable to all devices
supported by rmformat, as some devices may have a
drive with bad block management capability and
others may have this option implemented in the driver.
If the drive or driver supports bad block management,
a best effort is made to rectify the bad block. If the bad
block still cannot be rectified, a message is displayed to
indicate the failure to repair. The block number can be
provided in decimal, octal, or hexadecimal format.

The normal floppy and PCMCIA memory and ata
cards do not support bad block management.

-D Formats a 720KB (3.5 inch) double density diskette.
This is the default for double density type drives. This
option is needed if the drive is a high or
extended-density type.

rmformat(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1260 man pages section 1: User Commands • Last Revised 31 Oct 2001

-e Ejects the media upon completion. This feature may
not be available if the drive does not support
motorized eject.

-F quick | long | force Formats the media.

The quick option starts a format without certification
or format with limited certification of certain tracks on
the media.

The long option starts a complete format. For some
devices this might include the certification of the whole
media by the drive itself.

The force option to format is provided to start a long
format without user confirmation before the format is
started. For drives which have a password protection
mechanism, it clears the password while formatting.
This feature is useful when a password is no longer
available. On those media which do not have such
password protection, force starts a long format.

In legacy media such as floppy drives, all options start
a long format depending on the mode (Extended
Density mode, High Density mode, or Double Density
mode) with which the floppy drive operates by default.
On PCMCIA memory cards, all options start a long
format.

-H Formats a 1.44 MB (3.5 inch) high density diskette. This
is the default for high density type drives. It is needed
if the drive is the Extended Density type.

-p Prints the protection status of the media. This option
prints information whether the media is write, read, or
password protected.

-R enable | disable Enables read/write protection with a password or
disables the password read/write protection. This
always works in interactive mode, as the password is
requested from the user in an interactive manner to
maintain security.

A password length of 32 bytes (maximum) is allowed
for the IOMEGA products that support this feature.
This option is applicable only for IOMEGA products.
IOMEGA products do not allow read/write protection

rmformat(1)

User Commands 1261

without a password. On the devices which do not have
such software read/write protect facility, warnings
indicating the non-availability of this feature are
provided.

-s filename Enables the user to lay out the partition information in
the SUNOS label.

The user should provide a file as input with
information about each slice in a format providing byte
offset, size required, tags, and flags, as follows:

slices: n = offset, size [, flags, tags]

where n is the slice number, offset is the byte offset at
which the slice n starts, and size is the required size for
slice n. Both offset and size must be a multiple of 512
bytes. These numbers can be represented as decimal,
hexadecimal, or octal numbers. No floating point
numbers are accepted. Details about maximum number
of slices can be obtained from the System
Administration Guide: Basic Administration.

To specify the size or offset in kilobytes, megabytes, or
gigabytes, add KB, MB, GB, respectively. A number
without a suffix is assumed to be a byte offset. The flags
are represented as follows:

wm = read-write, mountable
wu = read-write, unmountable

ru = read-only, unmountable

The tags are represented as follows: unassigned,
boot, root, swap, usr, backup, stand, var, home,
alternates.

The tags and flags can be omitted from the four tuple
when finer control on those values is not required. It is
required to omit both or include both. If the tags and
flags are omitted from the four tuple for a particular
slice, a default value for each is assumed. The default
value for flags is wm and for tags is unassigned.

Either full tag names can be provided or an
abbreviation for the tags can be used. The abbreviations
can be the first two or more letters from the standard
tag names. rmformat is case insensitive in handling
the defined tags & flags.

Slice specifications are separated by :

rmformat(1)

1262 man pages section 1: User Commands • Last Revised 31 Oct 2001

For example:

slices: 0 = 0, 30MB, "wm", "home" :
1 = 30MB, 51MB :
2 = 0, 100MB, "wm", "backup" :

6 = 81MB, 19MB

rmformat does the necessary checking to detect any
overlapping partitions or illegal requests to addresses
beyond the capacity of the media under consideration.
There can be only one slice information entry for each
slice n. If multiple slice information entries for the same
slice n is provided, an approriate error message is
displayed. The slice 2 be the backup slice covering the
whole disk capacity. The pound sign character, #, can
be used to describe a line of comments in the input file.
If the line starts with #, then rmformat ignores all the
characters following # until the end of the line.

Partitioning some of the media with very small
capacity is permitted, but be cautious in using this
option on such devices.

-U Performs umount on any file systems and then
formats. See mount(1M). This option unmounts all the
mounted slices and issues a long format on the device
requested.

-V read | write Verifies each block of media after format. The write
verification is a destructive mechanism. The user is
queried for confirmation before the verification is
started. The output of this option is a list of block
numbers, which are identified as bad.

The read verification only verifies the blocks and report
the blocks which are prone to errors.

The list of block numbers displayed can be used with
the -c option for repairing.

-w enable | disable Enables or disables the write protection on media. On
devices that do not have a software write protect
facility, a message indicating non-availability of this
feature is displayed.

-W enable | disable Enables or disables write protection with password.
This option always works in interactive mode, as a
password is requested from the user to maintain
security.

rmformat(1)

User Commands 1263

A maximum password length of 32 bytes is allowed for
IOMEGA products that support this feature. On
devices that do not have the write protection with
password, the software displays appropriate messages
indicating the non-availability of such features.

The following operands are supported:

devname devname can be provided as absolute device pathname
or relative pathname for the device from the current
working directory or the nickname as exported by the
System Volume manager. See vold(1M).

For floppy device /dev/rdiskette0 (for system
without volume management) or floppy0 (system
with volume management) can be used. To use the first
drive, specify /dev/rdiskette1 (for system without
volume management), or floppy1 (system with
volume management) to use the second drive.

For system without volume management running, user
can also provide the absolute device pathname as
/dev/rdsk/c?t?d?s? or the appropriate relative
device pathname from the current working directory.

EXAMPLE 1 Formatting a diskette

example$ rmformat -F quick /dev/rdiskette
Formatting will erase all the data on disk.

Do you want to continue? (y/n)y

EXAMPLE 2 Formatting a Zip drive

example$ rmformat -F quick /vol/dev/aliases/zip0
Formatting will erase all the data on disk.

Do you want to continue? (y/n)y

EXAMPLE 3 Formatting a diskette for a UFS file system

The following example formats a diskette and creates a UFS file system:

example$ rmformat -F quick /vol/dev/aliases/floppy0
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$ su
/usr/sbin/newfs /vol/dev/aliases/floppy0
newfs: construct a new file system /dev/rdiskette: (y/n)? y
/dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors

1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 640, 1184, 1792, 2336,

#

rmformat(1)

OPERANDS

EXAMPLES

1264 man pages section 1: User Commands • Last Revised 31 Oct 2001

EXAMPLE 4 Formatting removable media for a PCFS file system

The following example shows how to create an alternate fdisk partition:

example$ rmformat -F quick /dev/rdsk/c0t4d0s2:c
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$ su
fdisk /dev/rdsk/c0t4d0s2:c
mkfs -F pcfs /dev/rdsk/c0t4d0s2:c
Construct a new FAT file system on /dev/rdsk/c0t4d0s2:c: (y/n)? y

#

The following example describes how to create a PCFS file system without an fdisk
partition:

example$ rmformat -F quick /dev/rdiskette
Formatting will erase all the data on disk.
Do you want to continue? (y/n)y
example$ su
mkfs -F pcfs -o nofdisk,size=2 /dev/rdiskette
Construct a new FAT file system on /dev/rdiskette: (y/n)? y

#

EXAMPLE 5 Enabling or disabling read or write protection

The following example shows how to enable write protection and set a password on a
Zip drive:

example$ rmformat -W enable /vol/dev/aliases/zip0
Please enter password (32 chars maximum): xxx
Please reenter password: xxx

The following example shows how to disable write protection and remove the
password on a Zip drive:

example$ rmformat -W disable /vol/dev/aliases/zip0

Please enter password (32 chars maximum): xxx

The following example shows how to enable read protection and set a password on a
Zip drive:

example$ rmformat -R enable /vol/dev/aliases/zip0
Please enter password (32 chars maximum): xxx
Please reenter password: xxx

The following example shows how to disable read protection and remove the
password on a Zip drive:

example$ rmformat -R disable /vol/dev/aliases/zip0

Please enter password (32 chars maximum): xxx

/vol/dev/diskette0 Directory providing block device access for
the media in floppy drive 0.

rmformat(1)

FILES

User Commands 1265

/vol/dev/rdiskette0 Directory providing character device access
for the media in floppy drive 0.

/vol/dev/aliases Directory providing symbolic links to the
character devices for the different media
under the control of volume management
using appropriate alias.

/vol/dev/aliases/floppy0 Symbolic link to the character device for the
media in floppy drive 0.

/vol/dev/aliases/zip0 Symbolic link to the character device for the
media in Zip drive 0.

/vol/dev/aliases/jaz0 Symbolic link to the character device for the
media in Jaz drive 0.

/dev/rdiskette Symbolic link providing character device
access for the media in the primary floppy
drive, usually drive 0.

/vol/dev/dsk Directory providing block device access for
the PCMCIA memory and ata cards and
removable media devices.

/vol/dev/rdsk Directory providing character device access
for the PCMCIA memory and ata cards and
removable media devices.

/vol/dev/aliases/pcmemS Symbolic link to the character device for the
PCMCIA memory card in socket S, where S
represents a PCMCIA socket number.

/vol/dev/aliases/rmdisk0 Symbolic link to the generic removable
media device that is not a Zip, Jaz,
CD-ROM, floppy, DVD-ROM, PCMCIA
memory card, and so forth.

/dev/rdsk Directory providing character device access
for the PCMCIA memory and ata cards and
other removable devices.

/dev/dsk Directory providing block device access for
the PCMCIA memory and ata cards and
other removable media devices.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

rmformat(1)

ATTRIBUTES

1266 man pages section 1: User Commands • Last Revised 31 Oct 2001

cpio(1), eject(1), fdformat(1), tar(1), volcancel(1), volcheck(1),
volmissing(1), volrmmount(1), format(1M), mkfs_pcfs(1M), mount(1M),
newfs(1M), prtvtoc(1M), rmmount(1M), rpc.smserved(1M), vold(1M),
rmmount.conf(4), vold.conf(4), attributes(5), pcfs(7FS), udfs(7FS)

A rewritable media or PCMCIA memory card or PCMCIA ata card containing a ufs
file system created on a SPARC-based system (using newfs(1M)) is not identical to a
rewritable media or PCMCIA memory card containing a ufs file system created on an
IA based system. Do not interchange any removable media containing ufs between
these platforms; use cpio(1) or tar(1) to transfer files on diskettes or memory cards
between them. For interchangeable filesystems refer to pcfs(7FS) and udfs(7FS).

Currently, bad sector mapping is not supported on floppy diskettes or PCMCIA
memory cards. Therefore, a diskette or memory card is unusable if rmformat finds an
error (bad sector).

rmformat(1)

SEE ALSO

NOTES

BUGS

User Commands 1267

roffbib – format and print a bibliographic database

roffbib [-e] [-h] [-m filename] [-np] [-olist] [-Q] [-raN] [-sN]
[-Tterm] [-V] [-x] [filename] …

roffbib prints out all records in a bibliographic database, in bibliography format
rather than as footnotes or endnotes. Generally it is used in conjunction with
sortbib(1):

example% sortbib database | roffbib

roffbib accepts all options understood by nroff(1) except -i and -q.

-e Produce equally-spaced words in adjusted lines using full terminal
resolution.

-h Use output tabs during horizontal spacing to speed output and
reduce output character count. TAB settings are assumed to be
every 8 nominal character widths.

-m filename Prepend the macro file /usr/share/lib/tmac/tmac.name to
the input files. There should be a space between the -m and the
macro filename. This set of macros will replace the ones defined in
/usr/share/lib/tmac/tmac.bib.

-np Number first generated page p.

-olist Print only page numbers that appear in the comma-separated list
of numbers and ranges. A range N−M means pages N through M;
an initial -N means from the beginning to page N; a final N−
means from page N to end.

-Q Queue output for the phototypesetter. Page offset is set to 1 inch.

-raN Set register a (one-character) to N. The command-line argument
-rN1 will number the references starting at 1.

Four command-line registers control formatting style of the
bibliography, much like the number registers of ms(5). The flag
-rV2 will double space the bibliography, while -rV1 will double
space references but single space annotation paragraphs. The line
length can be changed from the default 6.5 inches to 6 inches with
the -rL6i argument, and the page offset can be set from the
default of 0 to one inch by specifying -rO1i (capital O, not zero).

-sN Halt prior to every N pages for paper loading or changing (default
N =1). To resume, enter NEWLINE or RETURN.

-Tterm Specify term as the terminal type.

-V Send output to the Versatec. Page offset is set to 1 inch.

roffbib(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1268 man pages section 1: User Commands • Last Revised 14 Sep 1992

-x If abstracts or comments are entered following the %X field key,
roffbib will format them into paragraphs for an annotated
bibliography. Several %X fields may be given if several annotation
paragraphs are desired.

/usr/share/lib/tmac/tmac.bib file of macros used by nroff/troff

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

addbib(1), indxbib(1), lookbib(1), nroff(1) refer(1), sortbib(1), troff(1),
attributes(5)

Users have to rewrite macros to create customized formats.

roffbib(1)

FILES

ATTRIBUTES

SEE ALSO

BUGS

User Commands 1269

roles – print roles granted to a user

roles [user …]

The command roles prints on standard output the roles that you or the
optionally-specified user have been granted. Roles are special accounts that
correspond to a functional responsibility rather than to an actual person (referred to as
a normal user).

Each user may have zero or more roles. Roles have most of the attributes of normal
users and are identified like normal users in passwd(4) and shadow(4). Each role
must have an entry in the user_attr(4) file that identifies it as a role. Roles can have
their own authorizations and profiles. See auths(1) and profiles(1).

Roles are not allowed to log into a system as a primary user. Instead, a user must log
in as him— or herself and assume the role. The actions of a role are attributable to the
normal user. When auditing is enabled, the audited events of the role contain the audit
ID of the original user who assumed the role.

A role may not assume itself or any other role. Roles are not hierarchical. However,
rights profiles (see prof_attr(4)) are hierarchical and can be used to achieve the
same effect as hierarchical roles.

Roles must have valid passwords and one of the shells that interprets profiles: either
pfcsh, pfksh, or pfsh. See pfexec(1).

Role assumption may be performed using su(1M), rlogin(1), or some other service
that supports the PAM_RUSER variable. Successful assumption requires knowledge of
the role’s password and membership in the role. Role assignments are specified in
user_attr(4).

EXAMPLE 1 Sample output

The output of the roles command has the following form:

example% roles tester01 tester02tester01 : admin
tester02 : secadmin, root

example%

The following exit values are returned:

0 Successful completion.

1 An error occurred.

/etc/user_attr

/etc/security/auth_attr

/etc/security/prof_attr

See attributes(5) for descriptions of the following attributes:

roles(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

1270 man pages section 1: User Commands • Last Revised 14 Feb 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

auths(1), pfexec(1), profiles(1), rlogin(1), su(1M), getauusernam(3BSM),
auth_attr(4), passwd(4), prof_attr(4), shadow(4), user_attr(4),
attributes(5)

roles(1)

SEE ALSO

User Commands 1271

rpcgen – an RPC protocol compiler

rpcgen infile

rpcgen [-a] [-A] [-b] [-C] [-D name [= value]] [-i size] [-I
[-K seconds]] [-L] [-M] [-N] [- T] [-v] [-Y pathname] infile

rpcgen [-c | -h | -l | -m | -t | -Sc | -Ss | -Sm] [-o outfile] [infile]

rpcgen [-s nettype] [-o outfile] [infile]

rpcgen [-n netid] [-o outfile] [infile]

The rpcgen utility is a tool that generates C code to implement an RPC protocol. The
input to rpcgen is a language similar to C known as RPC Language (Remote
Procedure Call Language).

The rpcgen utility is normally used as in the first synopsis where it takes an input file
and generates three output files. If the infile is named proto.x, then rpcgen
generates a header in proto.h, XDR routines in proto_xdr.c, server-side stubs in
proto_svc.c, and client-side stubs in proto_clnt.c. With the -T option, it also
generates the RPC dispatch table in proto_tbl.i.

rpcgen can also generate sample client and server files that can be customized to suit
a particular application. The -Sc, -Ss, and -Sm options generate sample client, server
and makefile, respectively. The -a option generates all files, including sample files. If
the infile is proto.x, then the client side sample file is written to proto_client.c,
the server side sample file to proto_server.c and the sample makefile to
makefile.proto.

The server created can be started both by the port monitors (for example, inetd or
listen) or by itself. When it is started by a port monitor, it creates servers only for
the transport for which the file descriptor 0 was passed. The name of the transport
must be specified by setting up the environment variable PM_TRANSPORT. When the
server generated by rpcgen is executed, it creates server handles for all the transports
specified in the NETPATH environment variable, or if it is unset, it creates server
handles for all the visible transports from the /etc/netconfig file. Note: the
transports are chosen at run time and not at compile time. When the server is
self-started, it backgrounds itself by default. A special define symbol RPC_SVC_FG can
be used to run the server process in foreground.

The second synopsis provides special features which allow for the creation of more
sophisticated RPC servers. These features include support for user-provided
#defines and RPC dispatch tables. The entries in the RPC dispatch table contain:

� pointers to the service routine corresponding to that procedure
� a pointer to the input and output arguments
� the size of these routines

A server can use the dispatch table to check authorization and then to execute the
service routine. A client library may use the dispatch table to deal with the details of
storage management and XDR data conversion.

rpcgen(1)

NAME

SYNOPSIS

DESCRIPTION

1272 man pages section 1: User Commands • Last Revised 7 Dec 2001

The other three synopses shown above are used when one does not want to generate
all the output files, but only a particular one. See the EXAMPLES section below for
examples of rpcgen usage. When rpcgen is executed with the -s option, it creates
servers for that particular class of transports. When executed with the -n option, it
creates a server for the transport specified by netid. If infile is not specified, rpcgen
accepts the standard input.

All the options mentioned in the second synopsis can be used with the other three
synopses, but the changes will be made only to the specified output file.

The C preprocessor cc -E is run on the input file before it is actually interpreted by
rpcgen. For each type of output file, rpcgen defines a special preprocessor symbol
for use by the rpcgen programmer:

RPC_HDR defined when compiling into headers

RPC_XDR defined when compiling into XDR routines

RPC_SVC defined when compiling into server-side stubs

RPC_CLNT defined when compiling into client-side stubs

RPC_TBL defined when compiling into RPC dispatch tables

Any line beginning with ‘‘%’’ is passed directly into the output file, uninterpreted by
rpcgen, except that the leading ‘‘%” is stripped off. To specify the path name of the C
preprocessor, use the -Y flag.

For every data type referred to in infile, rpcgen assumes that there exists a routine
with the string xdr_ prepended to the name of the data type. If this routine does not
exist in the RPC/XDR library, it must be provided. Providing an undefined data type
allows customization of XDR routines.

The following options are supported:

-a Generates all files, including sample files.

-A Enables the Automatic MT mode in the server main program. In
this mode, the RPC library automatically creates threads to service
client requests. This option generates multithread-safe stubs by
implicitly turning on the -M option. Server multithreading modes
and parameters can be set using the rpc_control(3NSL) call.
rpcgen generated code does not change the default values for the
Automatic MT mode.

-b Backward compatibility mode. Generates transport-specific RPC
code for older versions of the operating system.

-c Compiles into XDR routines.

-C Generates header and stub files which can be used with ANSI C
compilers. Headers generated with this flag can also be used with
C++ programs.

rpcgen(1)

OPTIONS

User Commands 1273

-Dname[=value] Defines a symbol name. Equivalent to the #define directive in the
source. If no value is given, value is defined as 1. This option may
be specified more than once.

-h Compiles into C data-definitions (a header). The -T option can be
used in conjunction to produce a header which supports RPC
dispatch tables.

-i size Size at which to start generating inline code. This option is useful
for optimization. The default size is 5.

-I Compiles support for inetd(1M) in the server side stubs. Such
servers can be self-started or can be started by inetd. When the
server is self-started, it backgrounds itself by default. A special
define symbol RPC_SVC_FG can be used to run the server process
in foreground, or the user may simply compile without the -I
option.

If there are no pending client requests, the inetd servers exit after
120 seconds (default). The default can be changed with the -K
option. All of the error messages for inetd servers are always
logged with syslog(3C).

Note: This option is supported for backward compatibility only. It
should always be used in conjunction with the -b option which
generates backward compatibility code. By default (that is, when
-b is not specified), rpcgen generates servers that can be invoked
through portmonitors.

-K seconds By default, services created using rpcgen and invoked through
port monitors wait 120 seconds after servicing a request before
exiting. That interval can be changed using the -K flag. To create a
server that exits immediately upon servicing a request, use -K 0.
To create a server that never exits, the appropriate argument is -K
−1.

When monitoring for a server, some portmonitors, like
listen(1M), always spawn a new process in response to a service
request. If it is known that a server will be used with such a
monitor, the server should exit immediately on completion. For
such servers, rpcgen should be used with -K 0.

-l Compiles into client-side stubs.

-L When the servers are started in foreground, uses syslog(3C) to
log the server errors instead of printing them on the standard
error.

rpcgen(1)

1274 man pages section 1: User Commands • Last Revised 7 Dec 2001

-m Compiles into server-side stubs, but do not generate a “main”
routine. This option is useful for doing callback-routines and for
users who need to write their own “main” routine to do
initialization.

-M Generates multithread-safe stubs for passing arguments and
results between rpcgen-generated code and user written code.
This option is useful for users who want to use threads in their
code.

-N This option allows procedures to have multiple arguments. It also
uses the style of parameter passing that closely resembles C. So,
when passing an argument to a remote procedure, you do not
have to pass a pointer to the argument, but can pass the argument
itself. This behavior is different from the old style of
rpcgen-generated code. To maintain backward compatibility, this
option is not the default.

-n netid Compiles into server-side stubs for the transport specified by netid.
There should be an entry for netid in the netconfig database.
This option may be specified more than once, so as to compile a
server that serves multiple transports.

-o outfile Specifies the name of the output file. If none is specified, standard
output is used (-c, -h, -l, -m, -n, -s, -Sc, -Sm, -Ss, and -t
modes only).

-s nettype Compiles into server-side stubs for all the transports belonging to
the class nettype. The supported classes are netpath, visible,
circuit_n, circuit_v, datagram_n, datagram_v, tcp, and
udp (see rpc(3NSL) for the meanings associated with these
classes). This option may be specified more than once. Note: The
transports are chosen at run time and not at compile time.

-Sc Generates sample client code that uses remote procedure calls.

-Sm Generates a sample Makefile which can be used for compiling the
application.

-Ss Generates sample server code that uses remote procedure calls.

-t Compiles into RPC dispatch table.

-T Generates the code to support RPC dispatch tables.

The options -c, -h, -l, -m, -s, -Sc, -Sm, -Ss, and -t are used
exclusively to generate a particular type of file, while the options
-D and -T are global and can be used with the other options.

-v Displays the version number.

-Y pathname Gives the name of the directory where rpcgen will start looking
for the C preprocessor.

rpcgen(1)

User Commands 1275

The following operand is supported:

infile input file

EXAMPLE 1 Generating the output files and dispatch table

The following entry

example% rpcgen -T prot.x

generates all the five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c, and
prot_tbl.i.

EXAMPLE 2 Sending headers to standard output

The following example sends the C data-definitions (header) to the standard output:

example% rpcgen -h prot.x

EXAMPLE 3 Sending a test version

To send the test version of the -DTEST, server side stubs for all the transport
belonging to the class datagram_n to standard output, use:

example% rpcgen -s datagram_n -DTEST prot.x

EXAMPLE 4 Creating server side stubs

To create the server side stubs for the transport indicated by netid tcp, use:

example% rpcgen -n tcp -o prot_svc.c prot.x

0 Successful operation.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

cc(1B), inetd(1M), listen(1M), rpc(3NSL), rpc_control(3NSL),
rpc_svc_calls(3NSL), syslog(3C), netconfig(4), attributes(5)

The rpcgen chapter in the ONC+ Developer’s Guide manual.

rpcgen(1)

OPERANDS

EXAMPLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1276 man pages section 1: User Commands • Last Revised 7 Dec 2001

rpm2cpio – convert Red Hat Package (RPM) to cpio archive

rpm2cpio [file.rpm]

The rpm2cpio utility converts the .rpm file specified as its sole argument to a cpio
archive on standard output. (See NOTES.) If no argument is given, an rpm stream is
read from standard input. In both cases, rpm2cpio will fail and print a usage message
if the standard output is a terminal. Therefore, the output is usually redirected to a file
or piped through the cpio(1) utility.

EXAMPLE 1 Converting an rpm file

example% rpm2cpio Device3Dfx-1.1-2.src.rpm | cpio -itv
CPIO archive found!
-rw-r--r-- 1 root root 2635 Sep 13 16:39 1998, 3dfx.gif
-rw-r--r-- 1 root root 11339 Sep 27 16:03 1998, Dev3Dfx.tar.gz
-rw-r--r-- 1 root root 1387 Sep 27 16:04 1998, Device3Dfx-1.1-2.spec

31 blocks

EXAMPLE 2 Converting from standard input

example% rpm2cpio < Device3Dfx-1.1-2.src.rpm | cpio -itv
CPIO archive found!
-rw-r--r-- 1 root root 2635 Sep 13 16:39 1998, 3dfx.gif
-rw-r--r-- 1 root root 11339 Sep 27 16:03 1998, Dev3Dfx.tar.gz
-rw-r--r-- 1 root root 1387 Sep 27 16:04 1998, Device3Dfx-1.1-2.spec

31 blocks

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrpm

cpio(1), attributes(5)

rpm2cpio handles versions 3 and 4 RPMs.

rpm2cpio(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1277

rsh, remsh, remote_shell – remote shell

rsh [-n] [-l username] hostname command

rsh hostname [-n] [-l username] command

remsh [-n] [-l username] hostname command

remsh hostname [-n] [-l username] command

hostname [-n] [-l username] command

rsh connects to the specified hostname and executes the specified command. rsh copies
its standard input to the remote command, the standard output of the remote
command to its standard output, and the standard error of the remote command to its
standard error. Interrupt, quit, and terminate signals are propagated to the remote
command. rsh normally terminates when the remote command does.

If you omit command, instead of executing a single command, rsh logs you in on the
remote host using rlogin(1).

rsh will not return the exit status code of command.

Shell metacharacters which are not quoted are interpreted on the local machine, while
quoted metacharacters are interpreted on the remote machine. See EXAMPLES.

If there is no locale setting in the initialization file of the login shell (.cshrc, . . .) for a
particular user, rsh always executes the command in the "C" locale instead of using
the default locale of the remote machine.

The following options are supported:

-l username Uses username as the remote username instead of your local
username. In the absence of this option, the remote username is
the same as your local username.

-n Redirects the input of rsh to /dev/null. You sometimes need
this option to avoid unfortunate interactions between rsh and the
shell which invokes it. For example, if you are running rsh and
invoke a rsh in the background without redirecting its input away
from the terminal, it will block even if no reads are posted by the
remote command. The -n option will prevent this.

The type of remote shell (sh, rsh, or other) is determined by the user’s entry in the
file /etc/passwd on the remote system.

The following operand is supported:

command The command to be executed on the specified hostname.

See largefile(5) for the description of the behavior of rsh and remsh when
encountering files greater than or equal to 2 Gbyte (231 bytes).

rsh(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

1278 man pages section 1: User Commands • Last Revised 1 Jun 2001

The rsh and remsh commands are IPv6–enabled. See ip6(7P).

Hostnames are given in the hosts database, which may be contained in the
/etc/hosts file, the Internet domain name database, or both. Each host has one
official name (the first name in the database entry) and optionally one or more
nicknames. Official hostnames or nicknames may be given as hostname.

If the name of the file from which rsh is executed is anything other than rsh, rsh
takes this name as its hostname argument. This allows you to create a symbolic link to
rsh in the name of a host which, when executed, will invoke a remote shell on that
host. By creating a directory and populating it with symbolic links in the names of
commonly used hosts, then including the directory in your shell’s search path, you can
run rsh by typing hostname to your shell.

If rsh is invoked with the basename remsh, rsh will check for the existence of the file
/usr/bin/remsh. If this file exists, rsh will behave as if remsh is an alias for rsh. If
/usr/bin/remsh does not exist, rsh will behave as if remsh is a host name.

Each remote machine may have a file named /etc/hosts.equiv containing a list of
trusted hostnames with which it shares usernames. Users with the same username on
both the local and remote machine may run rsh from the machines listed in the
remote machine’s /etc/hosts file. Individual users may set up a similar private
equivalence list with the file .rhosts in their home directories. Each line in this file
contains two names: a hostname and a username separated by a space. The entry
permits the user named username who is logged into hostname to use rsh to access the
remote machine as the remote user. If the name of the local host is not found in the
/etc/hosts.equiv file on the remote machine, and the local username and
hostname are not found in the remote user’s .rhosts file, then the access is denied.
The hostnames listed in the /etc/hosts.equiv and .rhosts files must be the
official hostnames listed in the hosts database; nicknames may not be used in either
of these files.

rsh will not prompt for a password if access is denied on the remote machine unless
the command argument is omitted.

EXAMPLE 1 Using rsh to append files

The following command:

example% rsh lizard cat lizard.file >> example.file

appends the remote file lizard.file from the machine called lizard to the file
called example.file on the machine called example, while the command:

example% rsh lizard cat lizard.file ">>" lizard.file2

appends the file lizard.file on the machine called lizard to the file
lizard.file2 which also resides on the machine called lizard.

rsh(1)

EXAMPLES

User Commands 1279

The following exit values are returned:

0 Successful completion.

1 An error occurred.

/etc/hosts Internet host table

/etc/hosts.equiv trusted remote hosts and users

/etc/passwd system password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

CSI enabled

on(1), rlogin(1), telnet(1), vi(1), in.named(1M), hosts(4), hosts.equiv(4),
ipnodes(4), attributes(5), largefile(5), ip6(7P)

When a system is listed in hosts.equiv, its security must be as good as local
security. One insecure system listed in hosts.equiv can compromise the security of
the entire system.

You cannot run an interactive command (such as vi(1)). Use rlogin if you wish to do
this.

Stop signals stop the local rsh process only. This is arguably wrong, but currently
hard to fix for reasons too complicated to explain here.

The current local environment is not passed to the remote shell.

Sometimes the -n option is needed for reasons that are less than obvious. For
example, the command:

example% rsh somehost dd if=/dev/nrmt0 bs=20b | tar xvpBf −will put your shell into
a strange state. Evidently, what happens is that the tar terminates before the rsh. The
rsh then tries to write into the ‘‘broken pipe’’ and, instead of terminating neatly,
proceeds to compete with your shell for its standard input. Invoking rsh with the -n
option avoids such incidents.

This bug occurs only when rsh is at the beginning of a pipeline and is not reading
standard input. Do not use the -n if rsh actually needs to read standard input. For
example,

example% tar cf − . | rsh sundial dd of=/dev/rmt0 obs=20bdoes not produce the
bug. If you were to use the -n in a case like this, rsh would incorrectly read from
/dev/null instead of from the pipe.

rsh(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

1280 man pages section 1: User Commands • Last Revised 1 Jun 2001

run – run an executable

run [-s] [-e] [-n] [-t string] program

The run command runs program, using the PATH variable to find it. By default, when
program has completed, the user is prompted (Press ENTER to continue:), before
being returned to FMLI. The argument program is a system executable followed by its
options (if any).

The following options are supported:

-e If -e is specified, the user will be prompted before
returning to FMLI only if there is an error condition

-n If -n is specified, the user will never be prompted
before returning to FMLI (useful for programs like vi,
in which the user must do some specific action to exit
in the first place).

-s The -s option means "silent", implying that the screen
will not have to be repainted when program has
completed. Note that the -s option should only be
used when program does not write to the terminal. In
addition, when -s is used, program cannot be
interrupted, even if it recognizes interrupts.

-tstring If -t is specified, string is the name this process will
have in the pop-up menu generated by the frm-list
command. This feature requires the executable
facesuspend (see face(1)) to suspend the process
and return to the FMLI application.

EXAMPLE 1 Sample output of run command

Here is a menu that uses run:

menu="Edit special System files"
name="Password file"
action=‘run -e vi /etc/passwd‘
name="Group file"
action=‘run -e vi /etc/group‘
name="My .profile"
action=‘run -n vi $HOME/.profile‘

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

run(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

User Commands 1281

face(1), attributes(5)

run(1F)

SEE ALSO

1282 man pages section 1: User Commands • Last Revised 17 Nov 1999

runat – execute command in extended attribute name space

/usr/bin/runat file [command]

The runat utility is used to execute shell commands in a file’s hidden attribute
directory. Effectively, this utility changes the current working directory to be the
hidden attribute directory associated with the file argument and then executes the
specified command in the bourne shell (/bin/sh). If no command argument is
provided, an interactive shell is spawned. The environment variable $SHELL defines
the shell to be spawned. If this variable is undefined, the default shell, /bin/sh, is
used.

The file argument can be any file, including a directory, that can support extended
attributes. It is not necessary that this file have any attributes (or be prepared in any
way) before invoking the runat command.

The following operands are supported:

file Any file, including a directory, that can support extended
attributes.

command The command to be executed in an attribute directory.

A non-zero exit status will be returned if runat cannot access the file argument, or the
file argument does not support extended attributes.

See fsattr(5) for a detailed description of extended file attributes.

The process context created by the runat command has its current working directory
set to the hidden directory containing the file’s extended attributes. The parent of this
directory (the ".." entry) always refers to the file provided on the command line. As
such, it may not be a directory. Therefore, commands (such as pwd) that depend upon
the parent entry being well-formed (that is, refering to a directory) may fail.

In the absence of the command argument, runat will spawn a new interactive shell
with its current working directory set to be the provided file’s hidden attribute
directory. Notice that some shells (such as zsh and tcsh) are not well behaved when
the directory parent is not a directory, as described above. These shells should not be
used with runat.

EXAMPLE 1 Using runat to list extended attributes on a file

example% runat file.1 ls -l

example% runat file.1 ls

EXAMPLE 2 Creating extended attributes

example% runat file.2 cp /tmp/attrdata attr.1

example% runat file.2 cat /tmp/attrdata > attr.1

runat(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

ERRORS

USAGE

EXAMPLES

User Commands 1283

EXAMPLE 3 Copying an attribute from one file to another

example% runat file.2 cat attr.1 | runat file.1 "cat > attr.1"

EXAMPLE 4 Using runat to spawn an interactive shell

example% runat file.3 /bin/sh

This spawns a new shell in the attribute directory for file.3. Notice that the shell
will not be able to determine what your current directory is. To leave the attribute
directory, either exit the spawned shell or change directory (cd) using an absolute
path.

Recommended methods for performing basic attribute operations:

display
runat file ls [options]

read
runat file cat attribute

create/modify
runat file cp absolute-file-path attribute

delete
runat file rm attribute

permission changes

runat file chmod mode attribute
runat file chgrp group attribute
runat file chown owner attribute

interactive shell

runat file /bin/sh
or set your $SHELL to /bin/sh and
runat file

The above list of commands are known to work with runat. While many other
commands may work, there is no guarantee that any beyond this list will work. Any
command that relies on being able to determine its current working directory is likely
to fail. Examples of such commands follow:

EXAMPLE 5 Using man in an attribute directory

example% runat file.1 man runat

getcwd: Not a directory

EXAMPLE 6 Spawning a tcsh shell in an attribute directory

example% runat file.3 /usr/bin/tcsh
tcsh: Not a directory

tcsh: Trying to start from "/home/user"

runat(1)

1284 man pages section 1: User Commands • Last Revised 22 Jun 2001

EXAMPLE 6 Spawning a tcsh shell in an attribute directory (Continued)

A new tcsh shell has been spawned with the current working directory set to the
user’s home directory.

EXAMPLE 7 Spawning a zsh shell in an attribute directory

example% runat file.3 /usr/bin/zsh
example%

While the command appears to have worked, zsh has actually just changed the
current working directory to ’/’. This can be seen by using /bin/pwd:

example% /bin/pwd

/

SHELL Specifies the command shell to be invoked by runat.

The following exit values are returned:

125 The attribute directory of the file referenced by the file argument cannot be
accessed.

126 The exec of the provided command argument failed.

Otherwise, the exit status returned is the exit status of the shell invoked to execute the
provided command.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

Interface Stability Evolving

open(2), attributes(5), fsattr(5)

It is not always obvious why a command fails in runat when it is unable to
determine the current working directory. The errors resulting can be confusing and
ambiguous (see the tcsh and zsh examples above).

runat(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1285

rup – show host status of remote machines (RPC version)

rup [-hlt]

rup [host…]

rup gives a status similar to uptime for remote machines. It broadcasts on the local
network, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this order can be
changed by specifying one of the options listed below.

When host arguments are given, rather than broadcasting rup will only query the list
of specified hosts.

A remote host will only respond if it is running the rstatd daemon, which is
normally started up from inetd(1M).

-h Sort the display alphabetically by host name.

-l Sort the display by load average.

-t Sort the display by up time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

ruptime(1), inetd(1M), attributes(5)

Solaris 9 Installation Guide

Broadcasting does not work through gateways.

rup(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

BUGS

1286 man pages section 1: User Commands • Last Revised 6 Nov 2000

rup – show host status of remote machines (RPC version)

rup [-hlt]

rup [host…]

rup gives a status similar to uptime for remote machines. It broadcasts on the local
network, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this order can be
changed by specifying one of the options listed below.

When host arguments are given, rather than broadcasting rup only queries the list of
specified hosts.

A remote host will only respond if it is running the rstatd daemon, which is
normally started up from inetd(1M).

-h Sort the display alphabetically by host name.

-l Sort the display by load average.

-t Sort the display by up time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

ruptime(1), inetd(1M), attributes(5)

Broadcasting does not work through gateways.

rup(1C)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

BUGS

User Commands 1287

ruptime – show host status of local machines

ruptime [-ar] [-l | -t | -u]

The ruptime utility gives a status line like uptime (see uptime(1)) for each machine
on the local network; these are formed from packets broadcast by each host on the
network approximately every three minutes.

Machines for which no status report has been received for 11 minutes are shown as
being down.

Normally, the listing is sorted by host name, but this order can be changed by
specifying one of the options listed below.

The following options are supported:

-a Counts even those users who have been idle for an hour or more.

-r Reverses the sorting order.

-l | -t | -u These options are mutually exclusive. The use of one overrides the
previous one(s).

-l Sorts the display by load average.

-t Sorts the display by up time.

-u Sorts the display by number of users.

/var/spool/rwho/whod.* data files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

uptime(1), rwho(1), in.rwhod(1M), attributes(5)

ruptime(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

1288 man pages section 1: User Commands • Last Revised 6 Nov 2000

rusage – print resource usage for a command

/usr/ucb/rusage command

The rusage command is similar to time(1). It runs the given command, which must
be specified; that is, command is not optional as it is in the C shell’s timing facility.
When the command is complete, rusage displays the real (wall clock), the system
CPU, and the user CPU times which elapsed during execution of the command, plus
other fields in the rusage structure, all on one long line. Times are reported in
seconds and hundredths of a second.

EXAMPLE 1 The format of rusage output

The example below shows the format of rusage output.

example% rusage wc /usr/share/man/man1/csh (1)
3045 13423 78071 /usr/share/man/man1/csh (1)
2.26 real 0.80 user 0.36 sys 11 pf 38 pr 0 sw 11 rb 0 wb 16 vcx 37

icx 24 mx 0 ix 1230 id 9 is

example%

Each of the fields identified corresponds to an element of the rusage structure, as
described in getrusage(3C), as follows:

real elapsed real time

user ru_utime user time used

sys ru_stime system time used

pf ru_majflt page faults requiring physical I/O

pr ru_minflt page faults not requiring physical I/O

sw ru_nswap swaps

rb ru_inblock block input operations

wb ru_oublock block output operations

vcx ru_nvcsw voluntary context switches

icx ru_nivcsw involuntary context switches

mx ru_maxrss maximum resident set size

ix ru_ixrss currently 0

id ru_idrss integral resident set size

is ru_isrss currently 0

See attributes(5) for descriptions of the following attributes:

rusage(1B)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

User Commands 1289

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

csh(1), time(1), getrusage(3C), attributes(5)

When the command being timed is interrupted, the timing values displayed may be
inaccurate.

rusage(1B)

SEE ALSO

BUGS

1290 man pages section 1: User Commands • Last Revised 14 Sep 1992

rusers – who is logged in on remote machines

rusers [-ahilu] host…

The rusers command produces output similar to who(1), but for remote machines.
The listing is in the order that responses are received, but this order can be changed by
specifying one of the options listed below.

The default is to print out the names of the users logged in. When the -l flag is given,
additional information is printed for each user:

userid hostname:terminal login_date login_time idle_time login_host

If hostname and login host are the same value, the login_host field is not displayed.
Likewise, if hostname is not idle, the idle_time is not displayed.

A remote host will only respond if it is running the rusersd daemon, which may be
started up from inetd(1M) or listen(1M).

-a Give a report for a machine even if no users are logged on.

-h Sort alphabetically by host name.

-i Sort by idle time.

-l Give a longer listing in the style of who(1).

-u Sort by number of users.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

who(1), inetd(1M), listen(1M), pmadm(1M), sacadm(1M), attributes(5)

rusers(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

User Commands 1291

rwho – who is logged in on local machines

rwho [-a]

The rwho command produces output similar to who(1), but for all machines on your
network. If no report has been received from a machine for 5 minutes, rwho assumes
the machine is down, and does not report users last known to be logged into that
machine.

If a user has not typed to the system for a minute or more, rwho reports this idle time.
If a user has not typed to the system for an hour or more, the user is omitted from the
output of rwho unless the -a flag is given.

-a Report all users whether or not they have typed to the system in the past
hour.

/var/spool/rwho/whod.* information about other machines

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmds

finger(1), ruptime(1), who(1), in.rwhod(1M), attributes(5)

rwho does not work through gateways.

The directory /var/spool/rwho must exist on the host from which rwho is run.

This service takes up progressively more network bandwith as the number of hosts on
the local net increases. For large networks, the cost becomes prohibitive.

The rwho service daemon, in.rwhod(1M), must be enabled for this command to
return useful results.

rwho(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

NOTES

1292 man pages section 1: User Commands • Last Revised 6 Nov 2000

sag – system activity graph

sag [-e time] [-f file] [-i sec] [-s time] [-T term] [-x spec] [-y spec]

The sag utility graphically displays the system activity data stored in a binary data
file by a previous sar(1) run. Any of the sar data items may be plotted singly or in
combination, as cross plots or versus time. Simple arithmetic combinations of data
may be specified. sag invokes sar and finds the desired data by string-matching the
data column header (run sar to see what is available). The sag utility requires a
graphic terminal to draw the graph, and uses tplot(1) to produce its output. When
running Solaris 2.x and OpenWindows, perform the following steps:

1. Run an "xterm" as a Tektronics terminal: prompt# xterm -t

2. In the "xterm" window, run sag specifying a tek terminal: prompt# sag -T tek
options

The following options are supported and passed through to sar (see sar(1)):

-e time Select data up to time. Default is 18:00.

-f file Use file as the data source for sar. Default is the current daily data file
/usr/adm/sa/sadd.

-i sec Select data at intervals as close as possible to sec seconds.

-s time Select data later than time in the form hh [:mm]. Default is 08:00.

-T term Produce output suitable for terminal term. See tplot(1) for known
terminals. Default for term is $TERM.

-x spec x axis specification with spec in the form:

name [op name] . . . [lo hi]

name is either a string that will match a column header in the sar report,
with an optional device name in square brackets, for example,
r+w/s[dsk−1], or an integer value. op is + − * or / surrounded by blank
spaces. Up to five names may be specified. Parentheses are not recognized.
Contrary to custom, + and − have precedence over * and /. Evaluation is
left to right. Thus, A/A+B*100 is evaluated as (A/(A+B))*100, and
A+B/C+D is (A+B)/(C+D). lo and hi are optional numeric scale limits. If
unspecified, they are deduced from the data.

Enclose spec in double-quotes (" ") if it includes white space.

A single spec is permitted for the x axis. If unspecified, time is used.

-y spec y axis specification with spec in the same form as for -x. Up to 5 spec
arguments separated by a semi-colon (;) may be given for -y. The -y
default is:

-y"%usr0100;%usr+%sys0100;%usr+%sys+%wio0100"

sag(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1293

EXAMPLE 1 Examples of the sag command.

To see today’s CPU utilization:

example$ sag

To see activity over 15 minutes of all disk drives:

example$ TS=‘date +%H:%M‘
example$ sar -o /tmp/tempfile 60 15
example$ TE=‘date +%H:%M‘
example$ sag -f /tmp/tempfile -s $TS -e $TE -y "r+w/s[dsk]"

/usr/adm/sa/sadd daily data file for day dd

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu

sar(1), tplot(1), attributes(5)

sag(1)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

1294 man pages section 1: User Commands • Last Revised 4 Mar 1998

sar – system activity reporter

sar [-aAbcdgkmpqruvwy] [-o filename] t [n]

sar [-aAbcdgkmpqruvwy] [-e time] [-f filename] [-i sec] [-s time]

In the first instance, sar samples cumulative activity counters in the operating system
at n intervals of t seconds, where t should be 5 or greater. If t is specified with more
than one option, all headers are printed together and the output may be difficult to
read. (If the sampling interval is less than 5, the activity of sar itself may affect the
sample.) If the -o option is specified, it saves the samples in filename in binary format.
The default value of n is 1.

In the second instance, no sampling interval is specified. sar extracts data from a
previously recorded filename, either the one specified by the -f option or, by default,
the standard system activity daily data file /var/adm/sa/sadd for the current day
dd. The starting and ending times of the report can be bounded using the -e and -s
arguments with time specified in the form hh[:mm[:ss]]. The -i option selects records at
sec second intervals. Otherwise, all intervals found in the data file are reported.

The following options modify the subsets of information reported by sar.

-a Report use of file access system routines: iget/s, namei/s, dirblk/s

-A Report all data. Equivalent to -abcdgkmpqruvwy.

-b Report buffer activity:

bread/s, bwrit/s
transfers per second of data between system buffers and disk or
other block devices.

lread/s, lwrit/s
accesses of system buffers.

%rcache, %wcache
cache hit ratios, that is, (1−bread/lread) as a percentage.

pread/s, pwrit/s
transfers using raw (physical) device mechanism.

-c Report system calls:

scall/s
system calls of all types.

sread/s, swrit/s, fork/s, exec/s
specific system calls.

rchar/s, wchar/s
characters transferred by read and write system calls. No
incoming or outgoing exec(2) and fork(2) calls are reported.

-d Report activity for each block device (for example, disk or tape
drive) with the exception of XDC disks and tape drives. When

sar(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1295

data is displayed, the device specification dsk- is generally used to
represent a disk drive. The device specification used to represent a
tape drive is machine dependent. The activity data reported is:

%busy, avque
portion of time device was busy servicing a transfer request,
average number of requests outstanding during that time.

read/s, write/s, blks/s
number of read/write transfers from or to device, number of
bytes transferred in 512-byte units.

avwait
average wait time in milliseconds.

avserv
average service time in milliseconds.

For more general system statistics, use iostat(1M), sar(1M), or
vmstat(1M).

See System Administration Guide: Basic Administration for naming
conventions for disks.

-e time Select data up to time. Default is 18:00.

-f filename Use filename as the data source for sar. Default is the current daily
data file /var/adm/sa/sadd.

-g Report paging activities:

pgout/s page-out requests per second.

ppgout/s pages paged-out per second.

pgfree/s pages per second placed on the free list by the
page stealing daemon.

pgscan/s pages per second scanned by the page stealing
daemon.

%ufs_ipf the percentage of UFS inodes taken off the
freelist by iget which had reusable pages
associated with them. These pages are flushed
and cannot be reclaimed by processes. Thus,
this is the percentage of igets with page
flushes.

-i sec Select data at intervals as close as possible to sec seconds.

-k Report kernel memory allocation (KMA) activities:

sml_mem, alloc, fail
information about the memory pool reserving and allocating
space for small requests: the amount of memory in bytes KMA

sar(1)

1296 man pages section 1: User Commands • Last Revised 25 Oct 2001

has for the small pool, the number of bytes allocated to satisfy
requests for small amounts of memory, and the number of
requests for small amounts of memory that were not satisfied
(failed).

lg_mem, alloc, fail
information for the large memory pool (analogous to the
information for the small memory pool).

ovsz_alloc, fail
the amount of memory allocated for oversize requests and the
number of oversize requests which could not be satisfied
(because oversized memory is allocated dynamically, there is
not a pool).

-m Report message and semaphore activities:

msg/s, sema/s primitives per second.

-o filename Save samples in file, filename, in binary format.

-p Report paging activities:

atch/s page faults per second that are satisfied by
reclaiming a page currently in memory
(attaches per second).

pgin/s page-in requests per second.

ppgin/s pages paged-in per second.

pflt/s page faults from protection errors per second
(illegal access to page) or "copy-on-writes".

vflt/s address translation page faults per second
(valid page not in memory).

slock/s faults per second caused by software lock
requests requiring physical I/O.

-q Report average queue length while occupied, and percent of time
occupied:

runq-sz, %runocc run queue of processes in memory
and runnable.

swpq-sz, %swpocc these are no longer reported by
sar.

-r Report unused memory pages and disk blocks:

freemem average pages available to user
processes.

freeswap disk blocks available for page
swapping.

sar(1)

User Commands 1297

-s time Select data later than time in the form hh[:mm]. Default is 08:00.

-u Report CPU utilization (the default):

%usr, %sys, %wio, %idle
portion of time running in user mode, running in system mode,
idle with some process waiting for block I/O, and otherwise
idle.

-v Report status of process, i-node, file tables:

proc-sz, inod-sz, file-sz, lock-sz
entries/size for each table, evaluated once at sampling point.

ov
overflows that occur between sampling points for each table.

-w Report system swapping and switching activity:

swpin/s, swpot/s, bswin/s, bswot/s
number of transfers and number of 512-byte units transferred
for swapins and swapouts (including initial loading of some
programs).

pswch/s
process switches.

-y Report TTY device activity:

rawch/s, canch/s, outch/s
input character rate, input character rate processed by canon,
output character rate.

rcvin/s, xmtin/s, mdmin/s
receive, transmit and modem interrupt rates.

EXAMPLE 1 Viewing system activity

To see today’s CPU activity so far:

example% sar

EXAMPLE 2 Watching system activity evolve

To watch CPU activity evolve for 10 minutes and save data:

example% sar -o temp 60 10

EXAMPLE 3 Reviewing disk and tape activity

To later review disk and tape activity from that period:

example% sar -d -f temp

/var/adm/sa/sadd daily data file, where dd are digits representing the day
of the month

sar(1)

EXAMPLES

FILES

1298 man pages section 1: User Commands • Last Revised 25 Oct 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu

sag(1), iostat(1M), sar(1M), vmstat(1M), exec(2), fork(2), attributes(5)

System Administration Guide: Basic Administration

The sum of CPU utilization might vary slightly from 100 because of rounding errors in
the production of a percentage figure.

sar(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1299

sccs – front end for the Source Code Control System (SCCS)

/usr/ccs/bin/sccs [-r] [-drootprefix] [-psubdir] subcommand [option…]
[file…]

/usr/xpg4/bin/sccs [-r] [-d rootprefix] [-p subdir] subcommand [option…]
[file…]

The sccs command is a comprehensive, straightforward front end to the various
utility programs of the Source Code Control System (SCCS).

sccs applies the indicated subcommand to the history file associated with each of the
indicated files.

The name of an SCCS history file is derived by prepending the ‘s.’ prefix to the
filename of a working copy. The sccs command normally expects these ‘s.files’ to
reside in an SCCS subdirectory. Thus, when you supply sccs with a file argument, it
normally applies the subcommand to a file named s.file in the SCCS subdirectory. If
file is a path name, sccs looks for the history file in the SCCS subdirectory of that file’s
parent directory. If file is a directory, however, sccs applies the subcommand to every
s.file file it contains. Thus, the command:

example% sccs get program.c

would apply the get subcommand to a history file named SCCS/s.program.c,
while the command:

example% sccs get SCCS

would apply it to every s.file in the SCCS subdirectory.

Options for the sccs command itself must appear before the subcommand argument.
Options for a given subcommand must appear after the subcommand argument. These
options are specific to each subcommand, and are described along with the
subcommands themselves (see Subcommands below).

The sccs command also includes the capability to run ‘‘setuid’’ to provide additional
protection. However, this does not apply to subcommands such as sccs-admin(1),
since this would allow anyone to change the authorizations of the history file.
Commands that would do so always run as the real user.

The following options are supported:

-drootprefix

-d rootprefix Define the root portion of the path name for SCCS history files.
The default root portion is the current directory. rootprefix is
prepended to the entire file argument, even if file is an absolute
path name. -d overrides any directory specified by the
PROJECTDIR environment variable (see ENVIRONMENT
VARIABLES below).

sccs(1)

NAME

SYNOPSIS

DESCRIPTION

Running Setuid

OPTIONS

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

1300 man pages section 1: User Commands • Last Revised 28 Sep 2001

-psubdir

-p subdir Define the (sub)directory within which a history file is expected to
reside. SCCS is the default. (See EXAMPLES, below).

-r Run sccs with the real user ID, rather than set to the effective user
ID.

The following operands are supported:

subcommand An SCCS utility name or the name of one of the pseudo-utilities
listed in USAGE.

options An option or option-argument to be passed to subcommand.

operands An operand to be passed to subcommand.

Many of the following sccs subcommands invoke programs that reside in
/usr/ccs/bin. Many of these subcommands accept additional arguments that are
documented in the reference page for the utility program the subcommand invokes.

admin Modify the flags or checksum of an SCCS history file. Refer to
sccs-admin(1) for more information about the admin utility.
While admin can be used to initialize a history file, you may find
that the create subcommand is simpler to use for this purpose.

cdc -rsid [-y[comment]]

cdc -rsid | -rsid [-y[comment]]
Annotate (change) the delta commentary. Refer to sccs-cdc(1). The fix
subcommand can be used to replace the delta, rather than merely annotating the
existing commentary.

-rsid

-r sid | -rsid Specify the SCCS delta ID (SID) to which the change
notation is to be added. The SID for a given delta is a
number, in Dewey decimal format, composed of two or
four fields: the release and level fields, and for branch
deltas, the branch and sequence fields. For instance, the
SID for the initial delta is normally 1.1.

-y[comment]” Specify the comment with which to annotate the delta
commentary. If -y is omitted, sccs prompts for a
comment. A null comment results in an empty
annotation.

check [-b] [-u[username]]

check [-b] [-u [username] | -U]
Check for files currently being edited. Like info and tell, but returns an exit
code, rather than producing a listing of files. check returns a non-zero exit status if
anything is being edited.

sccs(1)

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

OPERANDS

Subcommands

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

User Commands 1301

-b Ignore branches.

-u[username]

-u [username]| -U Check only files being edited by you. When
username is specified, check only files being edited
by that user. For /usr/xpg4/bin/sccs, the -U
option is equivalent to -u <current_user>.

clean [-b]
Remove everything in the current directory that can be retrieved from an SCCS
history. Does not remove files that are being edited.

-b Do not check branches to see if they are being edited. ‘clean -b’ is
dangerous when branch versions are kept in the same directory.

comb
Generate scripts to combine deltas. Refer to sccs-comb(1).

create
Create (initialize) history files. create performs the following steps:

� Renames the original source file to ,program.c in the current directory.
� Create the history file called s.program.c in the SCCS subdirectory.
� Performs an ‘sccs get’ on program.c to retrieve a read-only copy of the

initial version.

deledit [-s] [-y[comment]]
Equivalent to an ‘sccs delta’ and then an ‘sccs edit’. deledit checks in a
delta, and checks the file back out again, but leaves the current working copy of the
file intact.

-s Silent. Do not report delta numbers or statistics.

-y[comment] Supply a comment for the delta commentary. If -y is omitted,
delta prompts for a comment. A null comment results in an
empty comment field for the delta.

delget [-s] [-y[comment]]
Perform an ‘sccs delta’ and then an ‘sccs get’ to check in a delta and retrieve
read-only copies of the resulting new version. See the deledit subcommand for a
description of -s and -y. sccs performs a delta on all the files specified in the
argument list, and then a get on all the files. If an error occurs during the delta,
the get is not performed.

delta [-s] [-y[comment]]
Check in pending changes. Records the line-by-line changes introduced while the
file was checked out. The effective user ID must be the same as the ID of the person
who has the file checked out. Refer to sccs-delta(1). See the deledit
subcommand for a description of -s and -y.

sccs(1)

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

1302 man pages section 1: User Commands • Last Revised 28 Sep 2001

diffs [-C] [-I] [-cdate-time] [-rsid] diff-options

diffs [-C] [-I] [-c date-time | -cdate-time]
[-r sid | -rsid] diff-options

Compare (in diff (1) format) the working copy of a file that is checked out for
editing, with a version from the SCCS history. Use the most recent checked-in
version by default. The diffs subcommand accepts the same options as diff.

Any -r, -c, -i, -x, and -t options are passed to subcommand get. A -C option is
passed to diff as -c. An -I option is passed to diff as -i.

-cdate-time

-c date-time | -cdate-time
Use the most recent version checked in before the indicated date and time for
comparison. date-time takes the form: yy[mm[dd[hh[mm[ss]]]]]. Omitted units
default to their maximum possible values; that is -c7502 is equivalent to
-c750228235959.

-rsid

-r sid | -rsid Use the version corresponding to the indicated delta for
comparison.

edit Retrieve a version of the file for editing. ‘sccs edit’ extracts a
version of the file that is writable by you, and creates a p.file in
the SCCS subdirectory as lock on the history, so that no one else
can check that version in or out. ID keywords are retrieved in
unexpanded form. edit accepts the same options as get, below.
Refer to sccs-get(1) for a list of ID keywords and their
definitions.

enter Similar to create, but omits the final ‘sccs get’. This may be
used if an ‘sccs edit’ is to be performed immediately after the
history file is initialized.

fix -rsid

fix -r sid | -rsid Revise a (leaf) delta. Remove the indicated delta from
the SCCS history, but leave a working copy of the
current version in the directory. This is useful for
incorporating trivial updates for which no audit record
is needed, or for revising the delta commentary. fix
must be followed by a -r option, to specify the SID of
the delta to remove. The indicated delta must be the
most recent (leaf) delta in its branch. Use fix with
caution since it does not leave an audit trail of
differences (although the previous commentary is
retained within the history file).

sccs(1)

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

User Commands 1303

get [-ekmps] [-Gnewname] [-cdate-time] [-r[sid]]

get [-ekmps] [-G newname | -Gnewname]
[-c date-time | -cdate-time] [-r sid | -rsid]

Retrieve a version from the SCCS history. By default, this is a read-only working
copy of the most recent version; ID keywords are in expanded form. Refer to
sccs-get(1), which includes a list of ID keywords and their definitions.

-e Retrieve a version for editing. Same as sccs edit.

-G newname | -Gnewname Use newname as the name of the retrieved version.

-k Retrieve a writable copy but do not check out the
file. ID keywords are unexpanded.

-m Precede each line with the SID of the delta in which
it was added.

-p Produce the retrieved version on the standard
output. Reports that would normally go to the
standard output (delta IDs and statistics) are
directed to the standard error.

-s Silent. Do not report version numbers or statistics.

-cdate-time

-c date-time | -cdate-time
Retrieve the latest version checked in prior to the date and time indicated by the
date-time argument. date-time takes the form: yy[mm[dd[hh[mm[ss]]]]].

-r[sid] Retrieve the version corresponding to the indicated SID. If no
sid is specified, the latest sid for the specified file is retrieved.

-r sid | -rsid Retrieve the version corresponding to the indicated SID.

help
message-code|sccs-command

help stuck Supply more information about SCCS diagnostics. help displays a
brief explanation of the error when you supply the code displayed
by an SCCS diagnostic message. If you supply the name of an
SCCS command, it prints a usage line. help also recognizes the
keyword stuck. Refer to sccs-help(1).

info [-b] [-u[username]]

info [-b] [-u [username] | -U]
Display a list of files being edited, including the version number checked out, the
version to be checked in, the name of the user who holds the lock, and the date and
time the file was checked out.

-b Ignore branches.

sccs(1)

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

1304 man pages section 1: User Commands • Last Revised 28 Sep 2001

-u[username]

-u [username] | -U List only files checked out by you. When username is
specified, list only files checked out by that user. For
/usr/xpg4/bin/sccs, the -U option is equivalent
to -u <current_user>.

print Print the entire history of each named file. Equivalent to an ‘sccs
prs -e’ followed by an ‘sccs get -p -m’.

prs [-el] [-cdate-time] [-rsid]

prs [-el] [-c date-time | -cdate-time] [-r sid | -r sid]
Peruse (display) the delta table, or other portion of an s.file. Refer to sccs-prs(1).

-e Display delta table information for all deltas earlier than the one
specified with -r (or all deltas if none is specified).

-l Display information for all deltas later than, and including, that
specified by -c or -r.

-cdate-time

-c date-time | -cdate-time Specify the latest delta checked in before the
indicated date and time. The date-time argument
takes the orm: yy[mm[dd[hh[mm[ss]]]]].

-rsid

-r sid | -rsid Specify a given delta by SID.

prt [-y]
Display the delta table, but omit the MR field (see sccsfile(4) for more
information on this field). Refer to sccs-prt(1).

-y Display the most recent delta table entry. The format is a single output
line for each file argument, which is convenient for use in a pipeline
with awk(1) or sed(1).

rmdel -rsid

rmdel -r sid
Remove the indicated delta from the history file. That delta must be the most recent
(leaf) delta in its branch. Refer to sccs-rmdel(1).

sact
Show editing activity status of an SCCS file. Refer to sccs-sact(1).

sccsdiff -rold-sid -rnew-sid diff-options
Compare two versions corresponding to the indicated SIDs (deltas) using diff.
Refer to sccs-sccsdiff(1).

tell [-b] [-u[username]]

tell [-b] [-u [username] | -U]
Display the list of files that are currently checked out, one file per line.

sccs(1)

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

User Commands 1305

-b Ignore branches.

-u[username]

-u [username] | -U List only files checked out to you. When username is
specified, list only files checked out to that user. For
/usr/xpg4/bin/sccs, the -U option is equivalent
to -u <current_user>.

unedit “Undo” the last edit or ‘get -e’, and return the working copy to
its previous condition. unedit backs out all pending changes
made since the file was checked out.

unget Same as unedit. Refer to sccs-unget(1).

val Validate the history file. Refer to sccs-val(1).

what Display any expanded ID keyword strings contained in a binary
(object) or text file. Refer to what(1) for more information.

EXAMPLE 1 Checking out, editing, and checking in a file

To check out a copy of program.c for editing, edit it, and then check it back in:

example% sccs edit program.c
1.1
new delta 1.2
14 lines

example% vi program.c
your editing session

example% sccs delget program.c
comments? clarified cryptic diagnostic
1.2
3 inserted
2 deleted
12 unchanged
1.2

15 lines

EXAMPLE 2 Defining the root portion of the command pathname

sccs converts the command:

example% sccs -d/usr/src/include get stdio.h

to:

/usr/ccs/bin/get /usr/src/include/SCCS/s.stdio.h

sccs(1)

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

EXAMPLES

1306 man pages section 1: User Commands • Last Revised 28 Sep 2001

EXAMPLE 3 Defining the resident subdirectory

The command:

example% sccs -pprivate get include/stdio.h

becomes:

/usr/ccs/bin/get include/private/s.stdio.h

EXAMPLE 4 Initializing a history file

To initialize the history file for a source file named program.c, make the SCCS
subdirectory, and then use ‘sccs create’:

example% mkdir SCCS
example% sccs create program.c
program.c:
1.1

14 lines

After verifying the working copy, you can remove the backup file that starts with a
comma:

example% diff program.c ,program.c

example% rm ,program.c

EXAMPLE 5 Retrieving a file from another directory

To retrieve a file from another directory into the current directory:

example% sccs get /usr/src/sccs/cc.c

or:

example% sccs -p/usr/src/sccs/ get cc.c

EXAMPLE 6 Checking out all files

To check out all files under SCCS in the current directory:

example% sccs edit SCCS

EXAMPLE 7 Checking in all files

To check in all files currently checked out to you:

example% sccs delta ‘sccs tell -u‘

sccs(1)

User Commands 1307

EXAMPLE 8 Entering multiple lines of comments

If using -y to enter a comment, for most shells, enclose the comment in single or
double quotes. In the following example, Myfile is checked in with a two-line
comment:

example% sccs deledit Myfile -y"Entering a
multi-line comment"
No id keywords (cm7)
1.2
2 inserted
0 deleted
14 unchanged
1.2

new delta 1.3

Displaying the SCCS history of Myfile:

example% sccs prt Myfile

SCCS/s.Myfile:

D 1.2 01/04/20 16:37:07 me 2 1 00002/00000/00014
Entering a
multi-line comment

D 1.1 01/04/15 13:23:32 me 1 0 00014/00000/00000

date and time created 01/04/15 13:23:32 by me

If -y is not used and sccs prompts for a comment, the newlines must be escaped
using the backslash character (\):

example% sccs deledit Myfile
comments? Entering a \
multi-line comment
No id keywords (cm7)
1.2
0 inserted
0 deleted
14 unchanged
1.2

new delta 1.3

See environ(5) for descriptions of the following environment variables that affect the
execution of sccs: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PROJECTDIR If contains an absolute path name (beginning with a slash), sccs
searches for SCCS history files in the directory given by that
variable.

If PROJECTDIR does not begin with a slash, it is taken as the name
of a user, and sccs searches the src or source subdirectory of
that user’s home directory for history files. If such a directory is
found, it is used. Otherwise, the value is used as a relative path

sccs(1)

ENVIRONMENT
VARIABLES

1308 man pages section 1: User Commands • Last Revised 28 Sep 2001

name.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

SCCS SCCS subdirectory

SCCS/d.file temporary file of differences

SCCS/p.file lock (permissions) file for checked-out versions

SCCS/q.file temporary file

SCCS/s.file SCCS history file

SCCS/x.file temporary copy of the s.file

SCCS/z.file temporary lock file

/usr/ccs/bin/* SCCS utility programs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

awk(1), diff(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1),
sccs-get(1), sccs-help(1), sccs-prs(1), sccs-rmdel(1), sccs-sact(1),
sccs-sccsdiff(1), sccs-unget(1), sccs-val(1), sed(1), what(1), sccsfile(4),
attributes(5), XPG4(5)

sccs(1)

EXIT STATUS

FILES

ATTRIBUTES

/usr/ccs/bin/sccs

/usr/xpg4/bin/sccs

SEE ALSO

User Commands 1309

sccs-admin, admin – create and administer SCCS history files

/usr/ccs/bin/admin [-bhnz] [-a username | groupid…] [-d flag] …
[-e username | groupid…] [-f flag [value]] … [-i [filename]]
[-m mr-list] [-rrelease] [-t [description-file]] [-y [comment]] s.filename…

The admin command creates or modifies the flags and other parameters of SCCS
history files. Filenames of SCCS history files begin with the ‘s.’ prefix, and are
referred to as s.files, or ‘‘history’’ files.

The named s.file is created if it does not exist already. Its parameters are initialized or
modified according to the options you specify. Parameters not specified are given
default values when the file is initialized, otherwise they remain unchanged.

If a directory name is used in place of the s.filename argument, the admin command
applies to all s.files in that directory. Unreadable s.files produce an error. The use of
‘−’ as the s.filename argument indicates that the names of files are to be read from the
standard input, one s.file per line.

The following options are supported:

-b
Force encoding of binary data. Files that contain ASCII NUL or other control
characters, or that do not end with a NEWLINE, are recognized as binary data files.
The contents of such files are stored in the history file in encoded form. See
uuencode(1C) for details about the encoding. This option is normally used in
conjunction with -i to force admin to encode initial versions not recognized as
containing binary data.

-h
Check the structure of an existing s.file (see sccsfile(4)), and compare a newly
computed check-sum with one stored in the first line of that file. -h inhibits writing
on the file; and so nullifies the effect of any other options.

-n
Create a new SCCS history file.

-z
Recompute the file check-sum and store it in the first line of the s.file. Caution: it is
important to verify the contents of the history file (see sccs-val(1), and the print
subcommand in sccs(1)), since using -z on a truly corrupted file may prevent
detection of the error.

-a username | groupid
Add a user name, or a numerical group ID, to the list of users who may check
deltas in or out. If the list is empty, any user is allowed to do so.

-d flag
Delete the indicated flag from the SCCS file. The -d option may be specified only
for existing s.files. See -f for the list of recognized flags.

sccs-admin(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1310 man pages section 1: User Commands • Last Revised 1 Nov 1999

-e username | groupid
Erase a user name or group ID from the list of users allowed to make deltas.

-f flag [value]
Set the indicated flag to the (optional) value specified. The following flags are
recognized:

b Enable branch deltas. When b is set, branches can be
created using the -b option of the SCCS get
command (see sccs-get(1)).

cceil Set a ceiling on the releases that can be checked out.
ceil is a number less than or equal to 9999. If c is not
set, the ceiling is 9999.

ffloor Set a floor on the releases that can be checked out.
The floor is a number greater than 0 but less than
9999. If f is not set, the floor is 1.

dsid The default delta number, or SID, to be used by an
SCCS get command.

i Treat the ‘No id keywords (ge6)’ message issued
by an SCCS get or delta command as an error
rather than a warning.

j Allow concurrent updates.

la
l release[, release . . .] Lock the indicated list of releases against deltas. If a

is used, lock out deltas to all releases. An SCCS ‘get
-e’ command fails when applied against a locked
release.

n Create empty releases when releases are skipped.
These null (empty) deltas serve as anchor points for
branch deltas.

qvalue Supply a value to which the keyword is to expand
when a read-only version is retrieved with the SCCS
get command.

mmodule Supply a value for the module name to which the
sccs-admin.1 keyword is to expand. If the m flag
is not specified, the value assigned is the name of
the SCCS file with the leading s. removed.

ttype Supply a value for the module type to which the
keyword is to expand.

v[program] Specify a validation program for the MR numbers
associated with a new delta. The optional program
specifies the name of an MR number validity

sccs-admin(1)

User Commands 1311

checking program. If this flag is set when creating an
SCCS file, the -m option must also be used, in which
case the list of MRs may be empty.

-i[filename]
Initialize the history file with text from the indicated file. This text constitutes the
initial delta, or set of checked-in changes. If filename is omitted, the initial text is
obtained from the standard input. Omitting the -i option altogether creates an
empty s.file. You can only initialize one s.file with text using -i. This option
implies the -n option.

-m mr-list
Insert the indicated Modification Request (MR) numbers into the commentary for
the initial version. When specifying more than one MR number on the command
line, mr-list takes the form of a quoted, space-separated list. A warning results if the
v flag is not set or the MR validation fails.

-rrelease
Specify the release for the initial delta. -r may be used only in conjunction with -i.
The initial delta is inserted into release 1 if this option is omitted. The level of the
initial delta is always 1; initial deltas are named 1.1 by default.

-t[description-file]
Insert descriptive text from the file description-file. When -t is used in conjunction
with -n, or -i to initialize a new s.file, the description-file must be supplied. When
modifying the description for an existing file: a -t option without a description-file
removes the descriptive text, if any; a -t option with a description-file replaces the
existing text.

-y[comment]
Insert the indicated comment in the ‘‘Comments:’’ field for the initial delta. Valid
only in conjunction with -i or -n. If -y option is omitted, a default comment line is
inserted that notes the date and time the history file was created.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

s.* history file

SCCS/s.* history file in SCCS subdirectory

z.* temporary lock file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs-admin(1)

EXIT STATUS

FILES

ATTRIBUTES

1312 man pages section 1: User Commands • Last Revised 1 Nov 1999

sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1),
sccs-rmdel(1), sccs-val(1), sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

The last component of all SCCS filenames must have the ‘s.’ prefix. New SCCS files
are given mode 444 (see chmod(1)). All writing done by admin is to a temporary file
with an x. prefix, created with mode 444 for a new SCCS file, or with the same mode
as an existing SCCS file. After successful execution of admin, the existing s. file is
removed and replaced with the x.file. This ensures that changes are made to the SCCS
file only when no errors have occurred.

It is recommended that directories containing SCCS files have permission mode 755,
and that the s.files themselves have mode 444. The mode for directories allows only
the owner to modify the SCCS files contained in the directories, while the mode of the
s.files prevents all modifications except those performed using SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be
changed to 644 by the owner to allow use of a text editor. However, extreme care must
be taken when doing this. The edited file should always be processed by an ‘admin
-h’ to check for corruption, followed by an ‘admin -z’ to generate a proper
check-sum. Another ‘admin -h’ is recommended to ensure that the resulting s.file is
valid.

admin also uses a temporary lock s.file, starting with the ‘z.’ prefix, to prevent
simultaneous updates to the s.file. See sccs-get(1) for further information about the
‘z.file’.

sccs-admin(1)

SEE ALSO

DIAGNOSTICS

WARNINGS

User Commands 1313

sccs-cdc, cdc – change the delta commentary of an SCCS delta

/usr/ccs/bin/cdc -rsid [-mmr-list] [-y [comment]] s.filename…

cdc annotates the delta commentary for the SCCS delta ID (SID) specified by the -r
option in each named s.file.

If the v flag is set in the s.file, you can also use cdc to update the Modification
Request (MR) list.

If you checked in the delta, or, if you own the file and directory and have write
permission, you can use cdc to annotate the commentary.

Rather than replacing the existing commentary, cdc inserts the new comment you
supply, followed by a line of the form:

*** CHANGED *** yy/mm/dd hh/mm/ss username

above the existing commentary.

If a directory is named as the s.filename argument, the cdc command applies to all
s.files in that directory. Unreadable s.files produce an error; processing continues
with the next file (if any). If ‘−’ is given as the s.filename argument, each line of the
standard input is taken as the name of an SCCS history file to be processed, and the -m
and -y options must be used.

-rsid Specify the SID of the delta to change.

-mmr-list Specify one or more MR numbers to add or delete. When
specifying more than one MR on the command line, mr-list takes
the form of a quoted, space-separated list. To delete an MR
number, precede it with a ! character (an empty MR list has no
effect). A list of deleted MRs is placed in the comment section of
the delta commentary. If -m is not used and the standard input is a
terminal, cdc prompts with MRs? for the list (before issuing the
comments? prompt). -m is only useful when the v flag is set in the
s.file. If that flag has a value, it is taken to be the name of a
program to validate the MR numbers. If that validation program
returns a non-zero exit status, cdc terminates and the delta
commentary remains unchanged.

-y[comment] Use comment as the annotation in the delta commentary. The
previous comments are retained; the comment is added along with
a notation that the commentary was changed. A null comment
leaves the commentary unaffected. If -y is not specified and the
standard input is a terminal, cdc prompts with comments? for
the text of the notation to be added. An unescaped NEWLINE
character terminates the annotation text.

sccs-cdc(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1314 man pages section 1: User Commands • Last Revised 1 Nov 1999

EXAMPLE 1 Changing the annotated commentary

The following command:

example% cdc -r1.6 -y"corrected commentary" s.program.c

produces the following annotated commentary for delta 1.6 in s.program.c:

D 1.6 88/07/05 23:21:07 username 9 0 00001/00000/00000
MRs:
COMMENTS:
corrected commentary
*** CHANGED *** 88/07/07 14:09:41 username

performance enhancements in main()

z.file temporary lock file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-admin(1), sccs-comb(1), sccs-delta(1), sccs-help(1),
sccs-prs(1), sccs-prt(1), sccs-rmdel(1), what(1), sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

sccs-cdc(1)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 1315

sccs-comb, comb – combine SCCS deltas

/usr/ccs/bin/comb [-os] [-csid-list] [-psid] s.filename…

comb generates a shell script (see sh(1)) that you can use to reconstruct the indicated
s.files. This script is written to the standard output.

If a directory name is used in place of the s.filename argument, the comb command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

If no options are specified, comb preserves only the most recent (leaf) delta in a
branch, and the minimal number of ancestors needed to preserve the history.

The following options are supported:

-o For each ‘get -e’ generated, access the reconstructed file at the
release of the delta to be created. Otherwise, the reconstructed file
is accessed at the most recent ancestor. The use of -o may decrease
the size of the reconstructed s.file. It may also alter the shape of
the delta tree of the original file.

-s Generate scripts to gather statistics, rather than combining deltas.
When run, the shell scripts report: the file name, size (in blocks)
after combining, original size (also in blocks), and the percentage
size change, computed by the formula:

100 * (original − combined) / original

This option can be used to calculate the space that will be saved,
before actually doing the combining.

-csid-list Include the indicated list of deltas. All other deltas are omitted.
sid-list is a comma-separated list of SCCS delta IDs (SIDs). To
specify a range of deltas, use a ‘−’ separator instead of a comma,
between two SIDs in the list.

-pSID The SID of the oldest delta to be preserved.

s. COMB reconstructed SCCS file

comb????? temporary file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs-comb(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

1316 man pages section 1: User Commands • Last Revised 1 Nov 1999

sccs(1), sccs-admin(1), sccs-cdc(1), sccs-delta(1), sccs-help(1),
sccs-prs(1), sccs-prt(1), sccs-rmdel(1), sccs-sccsdiff(1), what(1),
sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

comb may rearrange the shape of the tree of deltas. It may not save any space; in fact,
it is possible for the reconstructed file to actually be larger than the original.

sccs-comb(1)

SEE ALSO

DIAGNOSTICS

BUGS

User Commands 1317

sccs-delta, delta – make a delta to an SCCS file

/usr/ccs/bin/delta [-dnps] [-g sid-list | -gsid-list] [-m mr-list |
-mmr-list] [-r sid | -rsid] [-y [comment]] s.filename…

/usr/xpg4/bin/delta [-dnps] [-g sid-list | -gsid-list] [-m mr-list |
-mmr-list] [-r sid | -rsid] [-y [comment]] s.filename…

delta checks in a record of the line-by-line differences made to a checked-out version
of a file under SCCS control. These changes are taken from the writable working copy
that was retrieved using the SCCS get command (see sccs-get(1)). This working
copy does not have the ‘s.’ prefix, and is also referred to as a g-file.

If a directory name is used in place of the s.filename argument, the delta command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line
(requires -y, and in some cases, -m).

delta may issue prompts on the standard output depending upon the options
specified and the flags that are set in the s.file (see sccs-admin(1), and the -m and
-y options below, for details).

The SID of the delta is not echoed to stdout.

The following options are supported:

-d Use command diff(1) instead of bdiff(1).
Returns exit status 2 if s.filename argument
is not specified.

-n Retain the edited g-file, which is normally
removed at the completion of processing.

-p Display line-by-line differences (in diff(1)
format) on the standard output.

-s Silent. Do not display warning or
confirmation messages. Do not suppress
error messages (which are written to
standard error).

-g sid-list | -gsid-list Specify a list of deltas to omit when the file
is accessed at the SCCS version ID (SID)
created by this delta. sid-list is a
comma-separated list of SIDs. To specify a
range of deltas, use a ‘−’ separator instead
of a comma, between two SIDs in the list.

-m mr-list | -mmr-list If the SCCS file has the v flag set (see
sccs-admin(1)), you must supply one or
more Modification Request (MR) numbers

sccs-delta(1)

NAME

SYNOPSIS

DESCRIPTION

/usr/xpg4/bin/delta

OPTIONS

1318 man pages section 1: User Commands • Last Revised 1 Nov 1999

for the new delta. When specifying more
than one MR number on the command line,
mr-list takes the form of a quoted,
space-separated list. If -m is not used and
the standard input is a terminal, delta
prompts with MRs? for the list (before
issuing the comments? prompt). If the v
flag in the s.file has a value, it is taken to
be the name of a program to validate the
MR numbers. If that validation program
returns a non-zero exit status, delta
terminates without checking in the changes.

-r sid | -rsid When two or more versions are checked
out, specify the version to check in. This
SID value can be either the SID specified on
the get command line, or the SID of the
new version to be checked in as reported by
get. A diagnostic results if the specified SID
is ambiguous, or if one is required but not
supplied.

-y[comment] Supply a comment for the delta table
(version log). A null comment is accepted,
and produces an empty commentary in the
log. If -y is not specified and the standard
input is a terminal, delta prompts with
‘comments?’. An unescaped NEWLINE
terminates the comment.

The following exit values are returned:

0 Successful completion.

1 An error occurred and the -d option had not been specified.

2 An error occurred, the -d option had been specified, and the s.filename
argument was not specified.

d.file temporary file of differences

p.file lock file for a checked-out version

q.file temporary file

s.file SCCS history file

x.file temporary copy of the s.file

z.file temporary file

See attributes(5) for descriptions of the following attributes:

sccs-delta(1)

EXIT STATUS

FILES

ATTRIBUTES

User Commands 1319

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

bdiff(1), diff(1), sccs-admin(1), sccs-cdc(1), sccs-get(1), sccs-help(1),
sccs-prs(1), sccs-prt(1), sccs-rmdel(1), sccs-sccsdiff(1), sccs-unget(1),
sccs(1), what(1), sccsfile(4), attributes(5), XPG4(5)

Use the SCCS help command for explanations (see sccs-help(1)).

Lines beginning with an ASCII SOH character (binary 001) cannot be placed in the
SCCS file unless the SOH is escaped. This character has special meaning to SCCS (see
sccsfile(4)) and produces an error.

sccs-delta(1)

/usr/ccs/bin/delta

/usr/xpg4/bin/delta

SEE ALSO

DIAGNOSTICS

WARNINGS

1320 man pages section 1: User Commands • Last Revised 1 Nov 1999

sccs-get, get – retrieve a version of an SCCS file

/usr/ccs/bin/get [-begkmnpst] [-l [p]] [-asequence] [-c date-time |
-cdate-time] [-Gg-file] [-i sid-list | -isid-list] [-r [sid]] [-x sid-list |
-xsid-list]s.filename…

/usr/xpg4/bin/get [-begkmnpst] [-l [p]] [-asequence] [-c date-time |
-cdate-time] [-Gg-file] [-i sid-list | -isid-list] [-r sid | -rsid]
[-x sid-list | -xsid-list]s.filename…

The get utility retrieves a working copy from the SCCS history file, according to the
specified options.

For each s.filename argument, get displays the SCCS delta ID (SID) and number of
lines retrieved.

If a directory name is used in place of the s.filename argument, the get command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

The retrieved file normally has the same filename base as the s.file, less the prefix,
and is referred to as the g-file.

For each file processed, get responds (on the standard output) with the SID being
accessed, and with the number of lines retrieved from the s.file.

The following options are supported:

-b Create a new branch. Used with the -e option to
indicate that the new delta should have an SID in a
new branch. Instead of incrementing the level for
version to be checked in, get indicates in the p.file
that the delta to be checked in should either initialize a
new branch and sequence (if there is no existing branch
at the current level), or increment the branch
component of the SID. If the b flag is not set in the
s.file, this option is ignored.

-e Retrieve a version for editing. With this option, get
places a lock on the s.file, so that no one else can
check in changes to the version you have checked out.
If the j flag is set in the s.file, the lock is advisory: get
issues a warning message. Concurrent use of ‘get -e’
for different SIDs is allowed;however, get will not
check out a version of the file if a writable version is
present in the directory. All SCCS file protections stored
in the s.file, including the release ceiling, floor, and
authorized user list, are honored by ‘get -e’.

sccs-get(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1321

-g Get the SCCS version ID, without retrieving the version
itself. Used to verify the existence of a particular SID.

-k Suppress expansion of ID keywords. -k is implied by
the -e.

-m Precede each retrieved line with the SID of the delta in
which it was added to the file. The SID is separated
from the line with a TAB.

-n Precede each line with the %M% ID keyword and a TAB.
When both the -m and -n options are used, the ID
keyword precedes the SID, and the line of text.

-p Write the text of the retrieved version to the standard
output. All messages that normally go to the standard
output are written to the standard error instead.

-s Suppress all output normally written on the standard
output. However, fatal error messages (which always
go to the standard error) remain unaffected.

-t Retrieve the most recently created (top) delta in a given
release (for example: -r1).

-l]& p] Retrieve a summary of the delta table (version log) and
write it to a listing file, with the ‘l.’ prefix (called
‘l.file’). When -lp is used, write the summary onto
the standard output.

-asequence Retrieve the version corresponding to the indicated
delta sequence number. This option is used primarily
by the SCCS comb command (see sccs-comb(1)); for
users, -r is an easier way to specify a version. -a
supersedes -r when both are used.

-c date-time | -cdate-time Retrieve the latest version checked in prior to the date
and time indicated by the date-time argument. date-time
takes the form:

yy[mm[dd[hh[mm[ss]]]]]

Units omitted from the indicated date and time default
to their maximum possible values; that is -c7502 is
equivalent to -c750228235959. Values of yy in the
range 69−99 refer to the twentieth century. Values in
the range 00−68 refer to the twenty-first century. Any
number of non-numeric characters may separate the
various 2 digit components. If white-space characters
occur, the date-time specification must be quoted.

-Gnewname Use newname as the name of the retrieved version.

sccs-get(1)

1322 man pages section 1: User Commands • Last Revised 1 Nov 1999

-i sid-list | -isid-list Specify a list of deltas to include in the retrieved
version. The included deltas are noted in the standard
output message. sid-list is a comma-separated list of
SIDs. To specify a range of deltas, use a ‘−’ separator
instead of a comma, between two SIDs in the list.

-r[sid] Retrieve the version corresponding to the indicated SID
(delta).

The SID for a given delta is a number, in Dewey
decimal format, composed of two or four fields: the
release and level fields, and for branch deltas, the branch
and sequence fields. For instance, if 1.2 is the SID, 1 is
the release, and 2 is the level number. If 1.2.3.4 is the
SID, 3 is the branch and 4 is the sequence number.

You need not specify the entire SID to retrieve a version
with get. When you omit -r altogether, or when you
omit both release and level, get normally retrieves the
highest release and level. If the d flag is set to an SID in
the s.file and you omit the SID, get retrieves the
default version indicated by that flag.

When you specify a release but omit the level, get
retrieves the highest level in that release. If that release
does not exist, get retrieves highest level from the
next-highest existing release.

Similarly with branches, if you specify a release, level
and branch, get retrieves the highest sequence in that
branch.

-r sid | -rsid Same as for /usr/ccs/bin/get except that SID is
mandatory.

-x sid-list | -xsid-list Exclude the indicated deltas from the retrieved version.
The excluded deltas are noted in the standard output
message. sid-list is a comma-separated list of SIDs. To
specify a range of deltas, use a ‘−’ separator instead of a
comma, between two SIDs in the list.

The output format for /usr/ccs/bin/get is as follows:

"%s\n%d lines\n", <SID>, <number of lines>

The output format for /usr/xpg4/bin/get is as follows:

"%s\n%d\n", <SID>, <number of lines>

sccs-get(1)

/usr/ccs/bin/get

/usr/xpg4/bin/get

/usr/ccs/bin/get

/usr/xpg4/bin/get

User Commands 1323

In the absence of -e or -k, get expands the following ID keywords by replacing them
with the indicated values in the text of the retrieved source.

Keyword Value

%A% Shorthand notation for an ID line with data for what(1):
%Z%%Y% %M% %I%%Z%

%B% SID branch component

%C% Current line number. Intended for identifying messages output by the program
such as ‘‘this shouldn’t have happened’’ type errors. It is not intended to be used on
every line to provide sequence numbers.

%D% Current date: yy/mm/dd

%E% Date newest applied delta was created: yy/mm/dd

%F% SCCS s.file name

%G% Date newest applied delta was created: mm/dd/yy

%H% Current date: mm/dd/yy

%I% SID of the retrieved version: %R%.%L%.%B%.%S%

%L% SID level component

%M% Module name: either the value of the m flag in the s.file (see sccs-admin(1)),
or the name of the s.file less the prefix

%P% Fully qualified s.file name

%Q% Value of the q flag in the s.file

%R% SID Release component

%S% SID Sequence component

%T% Current time: hh:mm:ss

%U% Time the newest applied delta was created: hh:mm:ss

%W% Shorthand notation for an ID line with data for what: %Z%%M% %I%

%Y% Module type: value of the t flag in the s.file

%Z% 4-character string: ‘@(#)’, recognized by what

The table below explains how the SCCS identification string is determined for
retrieving and creating deltas.

sccs-get(1)

ID Keywords

ID String

1324 man pages section 1: User Commands • Last Revised 1 Nov 1999

Determination of SCCS Identification String

SID (1)
Specified

-b Option Used
(2)

Other Conditions SID Retrieved SID of Delta to be
Created

none (3) no R defaults to mR mR.mL mR.(mL+1)

none (3) yes R defaults to mR mR.mL mR.mL.(mB+1).1

R no R > mR mR.mL R.1 (4)

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R = mR mR.mL mR.mL.(mB+1).1

R − R < mR and R does
not exist

hR.mL (5) hR.mL.(mB+1).1

R − Trunk succ. (6) in
release > R and R
exists

R.mL R.mL.(mB+1).1

R.L no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L.(mB+1).1

R.L − Trunk succ. in release
≥ R

R.L R.L.(mB+1).1

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1

R.L.B.S − Branch succ. R.L.B.S R.L.(mB+1).1

(1) ‘R’, ‘L’, ‘B’, and ‘S’ are the ‘release’, ‘level’, ‘branch’, and ‘sequence’
components of the SID, respectively; ‘m’ means ‘maximum’. Thus, for
example, ‘R.mL’ means ‘the maximum level number within release R’;
‘R.L.(mB+1).1’ means ‘the first sequence number on the new branch (that is,
maximum branch number plus one) of level L within release R’. Note: if the
SID specified is of the form ‘R.L’, ‘R.L.B’, or ‘R.L.B.S’, each of the specified
components must exist.

(2) The -b option is effective only if the b flag is present in the file. An entry of
‘−’ means ‘irrelevant’.

sccs-get(1)

User Commands 1325

(3) This case applies if the d (default SID) flag is not present in the file. If the d
flag is present in the file, the SID obtained from the d flag is interpreted as
if it had been specified on the command line. Thus, one of the other cases
in this table applies.

(4) Forces creation of the first delta in a new release.

(5) ‘hR’ is the highest existing release that is lower than the specified,
nonexistent, release R.

(6) Successor.

‘‘g-file’’ version retrieved by get

l.file file containing extracted delta table info

p.file permissions (lock) file

z.file temporary copy of s.file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

sccs(1), sccs-admin(1), sccs-delta(1), sccs-help(1), sccs-prs(1),
sccs-prt(1), sccs-sact(1), sccs-unget(1), what(1), sccsfile(4),
attributes(5), XPG4(5)

Use the SCCS help command for explanations (see sccs-help(1)).

If the effective user has write permission (either explicitly or implicitly) in the
directory containing the SCCS files, but the real user does not, only one file may be
named when using -e.

sccs-get(1)

FILES

ATTRIBUTES

/usr/ccs/bin/get

/usr/xpg4/bin/get

SEE ALSO

DIAGNOSTICS

BUGS

1326 man pages section 1: User Commands • Last Revised 1 Nov 1999

sccs-help, help – ask for help regarding SCCS error or warning messages

/usr/ccs/bin/help [argument…]

The help utility retrieves information to further explain errors messages and
warnings from SCCS commands. It also provides some information about SCCS
command usage. If no arguments are given, help prompts for one.

An argument may be a message number (which normally appears in parentheses
following each SCCS error or warning message), or an SCCS command name. help
responds with an explanation of the message or a usage line for the command.

When all else fails, try ‘/usr/ccs/bin/help stuck’.

/usr/lib/help directory containing files of message text

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1),
sccs-get(1), sccs-prs(1), sccs-prt(1), sccs-rmdel(1), sccs-sact(1),
sccs-sccsdiff(1), sccs-unget(1), sccs-val(1), what(1), sccsfile(4),
attributes(5)

sccs-help(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

User Commands 1327

sccs-prs, prs – display selected portions of an SCCS history

/usr/ccs/bin/prs [-ael] [-cdate-time] [-ddataspec] [-rsid] s.filename…

The prs utility displays part or all of the SCCS file (see sccsfile(4)) in a user
supplied format.

If a directory name is used in place of the s.filename argument, the prs command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

In the absence of options, prs displays the delta table (version log). In the absence of
-d, or -l, prs displays the entry for each delta indicated by the other options.

-a Includes all deltas, including those marked as removed (see
sccs-rmdel(1)).

-e Requests information for all deltas created earlier than, and
including, the delta indicated with -r or -c.

-l Requests information for all deltas created later than, and
including, the delta indicated with -r or -c.

-cdate-time Either options -e or -l must be used with this option.
-cdate-time displays information on the deltas checked in either
prior to and including the date and time indicated by the date-time
argument (option -e); or later than and including the date and
time indicated (option -l). date-time takes the form:

yy[mm[dd[hh[mm[ss]]]]]

Units omitted from the indicated date and time default to their
maximum possible values; that is -c7502 is equivalent to
-c750228235959. Any number of non-numeric characters may
separate the various 2 digit components. If white-space characters
occur, the date-time specification must be quoted. Values of yy in
the range 69−99 refer to the twentieth century. Values in the range
of 00−68 refer to the twenty-first century.

-ddataspec Produce a report according to the indicated data specification.
dataspec consists of a (quoted) text string that includes embedded
data keywords of the form: ‘:key:’ (see Data Keywords, below).
prs expands these keywords in the output it produces. To specify
a TAB character in the output, use \t; to specify a NEWLINE in
the output, use \n.

-rsid Specifies the SCCS delta ID (SID) of the delta for which
information is desired. If no SID is specified, the most recently
created delta is used.

sccs-prs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1328 man pages section 1: User Commands • Last Revised 1 Nov 1999

Data keywords specify which parts of an SCCS file are to be retrieved. All parts of an
SCCS file (see sccsfile(4)) have an associated data keyword. A data keyword may
appear any number of times in a data specification argument to -d. These data
keywords are listed in the table below:

Keyword Data Item File Section* Value Format**

:A: a format for the what string: N/A :Z::Y: :M: :I::Z: S

:B: branch number D nnnn S

:BD: body B text M

:BF: branch flag F yes or no S

:CB: ceiling boundary F :R: S

:C: comments for delta D text M

:D: date delta created D :Dy:/:Dm:/:Dd: S

:Dd: day delta created D nn S

:Dg: deltas ignored (seq #) D :DS: :DS: . . . S

:DI: seq-no. of deltas included,
excluded, ignored

D :Dn:/:Dx:/:Dg: S

:DL: delta line statistics D :Li:/:Ld:/:Lu: S

:Dm: month delta created D nn S

:Dn: deltas included (seq #) D :DS: :DS: . . . S

:DP: predecessor delta seq-no. D nnnn S

:Ds: default SID F :I: S

:DS: delta sequence number D nnnn S

:Dt: delta information D :DT: :I: :D: :T: :P:
:DS: :DP:

S

:DT: delta type D D or R S

:Dx: deltas excluded (seq #) D :DS: . . . S

:Dy: year delta created D nn S

:F: s.file name N/A text S

:FB: floor boundary F :R: S

:FD: file descriptive text C text M

:FL: flag list F text M

sccs-prs(1)

Data Keywords

User Commands 1329

Keyword Data Item File Section* Value Format**

:GB: gotten body B text M

:I: SCCS delta ID (SID) D :R:.:L:.:B:.:S: S

:J: joint edit flag F yes or no S

:KF: keyword error/warning flag F yes or no S

:L: level number D nnnn S

:Ld: lines deleted by delta D nnnnn S

:Li: lines inserted by delta D nnnnn S

:LK: locked releases F :R: . . . S

:Lu: lines unchanged by delta D nnnnn S

:M: module name F text S

:MF: MR validation flag F yes or no S

:MP: MR validation program F text S

:MR: MR numbers for delta D text M

:ND: null delta flag F yes or no S

:Q: user defined keyword F text S

:P: user who created delta D username S

:PN: s.file’s pathname N/A text S

:R: release number D nnnn S

:S: sequence number D nnnn S

:T: time delta created D :Th:::Tm:::Ts: S

:Th: hour delta created D nn S

:Tm: minutes delta created D nn S

:Ts: seconds delta created D nn S

:UN: user names U text M

:W: a form of what string N/A :Z::M:\t:I: S

:Y: module type flag F text S

:Z: what string delimiter N/A @(#) S

*B = body, D = delta table, F = flags, U = user names

**S = simple format, M = multi-line format

sccs-prs(1)

1330 man pages section 1: User Commands • Last Revised 1 Nov 1999

EXAMPLE 1 Displaying delta entries

The following command:

example% /usr/ccs/bin/prs -e -d":I:\t:P:" program.c

produces:

1.6 username
1.5 username. . .

/tmp/pr????? temporary file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prt(1),
sccs-sact(1), sccs-sccsdiff(1), what(1), sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

sccs-prs(1)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 1331

sccs-prt, prt – display delta table information from an SCCS file

/usr/ccs/bin/prt [-abdefistu] [-cdate-time] [-rdate-time] [-ysid]
s.filename…

prt prints selected portions of an SCCS file. By default, it prints the delta table
(version log).

If a directory name is used in place of the s.filename argument, the prt command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

If any option other than -y, -c, or -r is supplied, the name of each file being
processed (preceded by one NEWLINE and followed by two NEWLINE characters)
appears above its contents.

If none of the -u, -f, -t, or -b options are used, -d is assumed. -s, -i are mutually
exclusive, as are -c and -r.

-a Display log entries for all deltas, including those marked as
removed.

-b Print the body of the s.file.

-d Print delta table entries. This is the default.

-e Everything. This option implies -d, -i, -u, -f, and -t.

-f Print the flags of each named s.file.

-i Print the serial numbers of included, excluded, and ignored deltas.

-s Print only the first line of the delta table entries; that is, only up to
the statistics.

-t Print the descriptive text contained in the s.file.

-u Print the user-names and/or numerical group IDs of users allowed
to make deltas.

-cdate-time Exclude delta table entries that are specified cutoff date and time.
Each entry is printed as a single line, preceded by the name of the
SCCS file. This format (also produced by -r , and -y) makes it
easy to sort multiple delta tables in chronological order. When
both -y and -c, or -y and -r are supplied, prt stops printing
when the first of the two conditions is met.

-rdate-time Exclude delta table entries that are newer than the specified cutoff
date and time.

-ysid Exclude delta table entries made prior to the SID specified. If no
delta in the table has the specified SID, the entire table is printed. If
no SID is specified, the most recent delta is printed.

sccs-prt(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1332 man pages section 1: User Commands • Last Revised 5 Oct 1990

The following format is used to print those portions of the s.file that are specified by
the various options.

� NEWLINE

� Type of delta (D or R)

� SPACE

� SCCS delta ID (SID)

� TAB

� Date and time of creation in the form: yy/mm/dd hh/mm/ss

� SPACE

� Username the delta’s creator

� TAB

� Serial number of the delta

� SPACE

� Predecessor delta’s serial number

� TAB

� Line-by-line change statistics in the form: inserted/deleted/unchanged

� NEWLINE

� List of included deltas, followed by a NEWLINE (only if there were any such
deltas and the -i options was used)

� List of excluded deltas, followed by a NEWLINE (only if there were any such
deltas and the -i options was used)

� List of ignored deltas, followed by a NEWLINE (only if there were any such deltas
and the -i options was used)

� List of modification requests (MRs), followed by a NEWLINE (only if any MR
numbers were supplied).

� Lines of the delta commentary (if any), followed by a NEWLINE.

EXAMPLE 1 Examples of prt.

The following command:

example% /usr/ccs/bin/prt -y program.c

produces a one-line display of the delta table entry for the most recent version:

s.program.c: D 1.6 88/07/06 21:39:39 username 5 4
00159/00080/00636. . .

See attributes(5) for descriptions of the following attributes:

sccs-prt(1)

Output Format

EXAMPLES

ATTRIBUTES

User Commands 1333

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1),
sccs-sact(1), sccs-sccsdiff(1), what(1), sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

sccs-prt(1)

SEE ALSO

DIAGNOSTICS

1334 man pages section 1: User Commands • Last Revised 5 Oct 1990

sccs-rmdel, rmdel – remove a delta from an SCCS file

/usr/ccs/bin/rmdel -rsid s.filename…

rmdel removes the delta specified by the SCCS delta ID (SID) supplied with -r. The
delta to be removed must be the most recent (leaf) delta in its branch. In addition, the
SID must not be that of a version checked out for editing: it must not appear in any
entry of the version lock file (p.file).

If you created the delta, or, if you own the file and directory and have write
permission, you can remove it with rmdel.

If a directory name is used in place of the s.filename argument, the rmdel command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

The following option is supported:

-rsid Remove the version corresponding to the indicated SID (delta).

p.file permissions file

s.file history file

z.file temporary copy of the s.file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1),
sccs-help(1), sccs-prs(1), sccs-prt(1), sccs-sccsdiff(1), sccs-unget(1),
what(1), sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

sccs-rmdel(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 1335

sccs-sact, sact – show editing activity status of an SCCS file

/usr/ccs/bin/sact s.filename…

sact informs the user of any SCCS files that are checked out for editing.

The output for each named file consists of five fields separated by SPACE characters.

� SID of a delta that currently exists in the SCCS file, to which changes will be made
to make the new delta

� SID for the new delta to be created

� Username of the person who has the file checked out for editing.

� Date that the version was checked out.

� Time that the version was checked out.

If a directory name is used in place of the s.filename argument, the sact command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1),
what(1), sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

sccs-sact(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

1336 man pages section 1: User Commands • Last Revised 1 Nov 1999

sccs-sccsdiff, sccsdiff – compare two versions of an SCCS file

/usr/ccs/bin/sccsdiff [-p] -rsid -rsid [diff-options] s.filename

sccsdiff compares two versions of an SCCS file and displays the differences
between the two versions. Any number of SCCS files may be specified. The options
specified apply to all named s.files.

The following options are supported:

-p Pipe output for each file through pr(1).

-rsid Specify a version corresponding to the indicated SCCS delta ID
(SID) for comparison. Versions are passed to diff(1) in the order
given.

diff-options Pass options to diff(1), including: -b, -c, -e, -f, -h, -u, -C
number, -U number, and -D string.

/tmp/get????? temporary files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

diff(1), sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1),
sccs-prt(1), what(1), sccsfile(4), attributes(5)

filename: No differences If the two versions are the same.

Use the SCCS help command for explanations of other messages. See sccs-help(1).

sccs-sccsdiff(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 1337

sccs-unget, unget – undo a previous get of an SCCS file

/usr/ccs/bin/unget [-ns] [-rsid] s.filename…

unget undoes the effect of a ‘get -e’ done prior to the creation of the pending
delta.

If a directory name is used in place of the s.filename argument, the unget command
applies to all s.files in that directory. Unreadable s.files produce an error; processing
continues with the next file (if any). The use of ‘−’ as the s.filename argument indicates
that the names of files are to be read from the standard input, one s.file per line.

-n Retain the retrieved version, which is otherwise removed.

-s Suppress display of the SCCS delta ID (SID).

-rsid When multiple versions are checked out, specify which pending delta to
abort. A diagnostic results if the specified SID is ambiguous, or if it is
necessary but omitted from the command line.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1),
sccs-rmdel(1), sccs-sact(1), sccs-sccsdiff(1), what(1), sccsfile(4),
attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

sccs-unget(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

1338 man pages section 1: User Commands • Last Revised 11 Oct 1990

sccs-val, val – validate an SCCS file

/usr/ccs/bin/val -

/usr/ccs/bin/val [-s] [-m name] [-rsid] [-y type] s.filename…

val determines if the specified s.files meet the characteristics specified by the
indicated arguments. val can process up to 50 files on a single command line.

val has a special argument, ‘−’, which reads the standard input until the end-of-file
condition is detected. Each line read is independently processed as if it were a
command line argument list.

val generates diagnostic messages on the standard output for each command line and
file processed and also returns a single 8−bit code upon exit as described below.

The 8-bit code returned by val is a disjunction of the possible errors, that is, it can be
interpreted as a bit string where (moving from left to right) the bits set are interpreted
as follows:

bit 0 = missing file argument
bit 1 = unknown or duplicate option
bit 2 = corrupted s.file
bit 3 = can not open file or file not in s.file format
bit 4 = the SCCS delta ID (SID) is invalid or ambiguous
bit 5 = the SID does not exist
bit 6 = mismatch between and -y argument
bit 7 = mismatch between sccs-val.1 -m argument

val can process two or more files on a given command line, and in turn can process
multiple command lines (when reading the standard input). In these cases, an
aggregate code is returned which is the logical OR of the codes generated for each
command line and file processed.

The following options are supported:

-s Silent. Suppress the normal error or warning messages.

-m name Compare name with the sccs-val.1 ID keyword in the s.file.

-rsid Check to see if the indicated SID is ambiguous, invalid, or absent from the
s.file.

-y type Compare type with the ID keyword.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs-val(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

User Commands 1339

sccs(1), sccs-admin(1), sccs-delta(1), sccs-get(1), sccs-help(1), what(1),
sccsfile(4), attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

sccs-val(1)

SEE ALSO

DIAGNOSTICS

1340 man pages section 1: User Commands • Last Revised 1 Nov 1999

scp – secure copy (remote file copy program)

scp [-pqrvC46] [-S program] [-P port] [-c cipher] [-i identity_file] [-o
option] [[user1@]host1:]file1 [[user2@]host2:]file2 […]

The scp utility copies files between hosts on a network. It uses ssh(1) for data
transfer, and uses the same authentication and provides the same security as ssh(1).
Unlike rcp(1), scp will ask for passwords or passphrases if they are needed for
authentication.

Any file name may contain a host and user specification to indicate that the file is to be
copied to/from that host. Copies between two remote hosts are permitted.

The following options are supported:

-4 Forces scp to use IPv4 addresses only.

-6 Forces scp to use IPv6 addresses only.

-B Selects batch mode. (Prevents asking for passwords or
passphrases.)

-c cipher Selects the cipher to use for encrypting the data transfer. This
option is directly passed to ssh(1).

-C Compression enable. Passes the -C flag to ssh(1) to enable
compression.

-i identity_file Selects the file from which the identity (private key) for RSA
authentication is read. This option is directly passed to ssh(1).

-o option The given option is directly passed to ssh(1).

-p Preserves modification times, access times, and modes from the
original file.

-P port Specifies the port to connect to on the remote host. Notice that this
option is written with a capital ‘P’, because -p is already reserved
for preserving the times and modes of the file in rcp(1).

-q Disables the progress meter.

-r Recursively copies entire directories.

-S program Specifies the name of the program to use for the encrypted
connection. The program must understand ssh(1) options.

-v Verbose mode. Causes scp and ssh(1) to print debugging
messages about their progress. This is helpful in debugging
connection, authentication, and configuration problems.

The following operands are supported:

host1, host2,... The name(s) of the host from or to which the file is to be copied.

file1, file2,... The file(s) to be copied.

scp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 1341

The following exit values are returned:

0 Successful completion.

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

rcp(1), ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), sshd(1M),
attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is
/var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating
environment has been installed anywhere other than the default, modify the given
path to access the file at the installed location.

scp is based on the rcp(1) program in the BSD source code from the Regents of the
University of California. The authors are Timo Rinne and Tatu Ylonen.

scp(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

AUTHORS

1342 man pages section 1: User Commands • Last Revised 25 Feb 2002

script – make record of a terminal session

script [-a] [filename]

script makes a record of everything printed on your screen. The record is written to
filename. If no file name is given, the record is saved in the file typescript.

The script command forks and creates a sub-shell, according to the value of
$SHELL, and records the text from this session. The script ends when the forked shell
exits or when CTRL-D is typed.

-a Append the session record to filename, rather than overwrite it.

script places everything that appears on the screen in filename, including prompts.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

attributes(5)

script(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

NOTES

ATTRIBUTES

SEE ALSO

User Commands 1343

sdiff – print differences between two files side-by-side

sdiff [-l] [-s] [-o output] [-w n] filename1 filename2

sdiff uses the output of the diff command to produce a side-by-side listing of two
files indicating lines that are different. Lines of the two files are printed with a blank
gutter between them if the lines are identical, a < in the gutter if the line appears only
in filename1, a > in the gutter if the line appears only in filename2, and a | for lines that
are different. (See the EXAMPLES section below.)

-l Print only the left side of any lines that are identical.to

-s Do not print identical lines.

-o output Use the argument output as the name of a third file that is created
as a user-controlled merge of filename1 and filename2. Identical lines
of filename1 and filename2 are copied to output. Sets of differences,
as produced by diff, are printed; where a set of differences share
a common gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the
following user-typed commands:

l Append the left column to the output file.

r Append the right column to the output file.

s Turn on silent mode; do not print identical lines.

v Turn off silent mode.

e l Call the editor with the left column.

e r Call the editor with the right column.

e b Call the editor with the concatenation of left and right.

e Call the editor with a zero length file.

q Exit from the program.

On exit from the editor, the resulting file is concatenated to the end
of the output file.

-w n Use the argument n as the width of the output line. The default
line length is 130 characters.

See largefile(5) for the description of the behavior of sdiff when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 An example of the sdiff command.

A sample output of sdiff follows.

x | y
a a
b <

sdiff(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

EXAMPLES

1344 man pages section 1: User Commands • Last Revised 20 Dec 1996

EXAMPLE 1 An example of the sdiff command. (Continued)

c <
d d

> c

If any of the LC_* variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment,
the operational behavior of sdiff for each corresponding locale category is
determined by the value of the LANG environment variable. If LC_ALL is set, its
contents are used to override both the LANG and the other LC_* variables. If none of
the above variables is set in the environment, the "C" locale determines how sdiff
behaves.

LC_CTYPE Determines how sdiff handles characters. When LC_CTYPE is
set to a valid value, sdiff can display and handle text and
filenames containing valid characters for that locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

diff(1), ed(1), attributes(5), environ(5), largefile(5)

sdiff(1)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

User Commands 1345

sed – stream editor

/usr/bin/sed [-n] script [file…]

/usr/bin/sed [-n] [-e script]… [-f script_file]… [file…]

/usr/xpg4/bin/sed [-n] script [file…]

/usr/xpg4/bin/sed [-n] [-e script]… [-f script_file]… [file…]

The sed utility is a stream editor that reads one or more text files, makes editing
changes according to a script of editing commands, and writes the results to standard
output. The script is obtained from either the script operand string, or a combination of
the option-arguments from the -e script and -f script_file options.

The sed utility is a text editor. It cannot edit binary files or files containing ASCII NUL
(\0) characters or very long lines.

The following options are supported:

-e script script is an edit command for sed. See USAGE below for more
information on the format of script. If there is just one -e option
and no -f options, the flag -e may be omitted.

-f script_file Take the script from script_file. script_file consists of editing
commands, one per line.

-n Suppress the default output.

Multiple -e and -f options may be specified. All commands are added to the script in
the order specified, regardless of their origin.

The following operands are supported:

file A path name of a file whose contents will be read and edited. If
multiple file operands are specified, the named files will be read in
the order specified and the concatenation will be edited. If no file
operands are specified, the standard input will be used.

script A string to be used as the script of editing commands. The
application must not present a script that violates the restrictions of
a text file except that the final character need not be a NEWLINE
character.

A script consists of editing commands, one per line, of the following form:

[address [, address]] command [arguments]

Zero or more blank characters are accepted before the first address and before
command. Any number of semicolons are accepted before the first address.

sed(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

1346 man pages section 1: User Commands • Last Revised 23 Jul 1998

In normal operation, sed cyclically copies a line of input (less its terminating
NEWLINE character) into a pattern space (unless there is something left after a D
command), applies in sequence all commands whose addresses select that pattern
space, and copies the resulting pattern space to the standard output (except under -n)
and deletes the pattern space. Whenever the pattern space is written to standard
output or a named file, sed will immediately follow it with a NEWLINE character.

Some of the commands use a hold space to save all or part of the pattern space for
subsequent retrieval. The pattern and hold spaces will each be able to hold at least 8192
bytes.

An address is either empty, a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address, which
consists of a /regular expression/ as described on the regexp(5) manual page.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern
space that matches the first address through the next pattern space that matches the
second address. Thereafter the process is repeated, looking again for the first address.
(If the second address is a number less than or equal to the line number selected by
the first address, only the line corresponding to the first address is selected.)

Typically, address are separated from each other by a comma (,). They may also be
separated by a semicolon (;).

sed supports the basic regular expressions described on the regexp(5) manual page,
with the following additions:

\cREc In a context address, the construction \cREc, where c is any character other
than a backslash or NEWLINE character, is identical to /RE/. If the
character designated by c appears following a backslash, then it is
considered to be that literal character, which does not terminate the RE. For
example, in the context address \xabc\xdefx, the second x stands for
itself, so that the regular expression is abcxdef.

\n The escape sequence \n matches a NEWLINE character embedded in the
pattern space. A literal NEWLINE character must not be used in the regular
expression of a context address or in the substitute command.

Editing commands can be applied only to non-selected pattern spaces by use of the
negation command ! (described below).

In the following list of functions the maximum number of permissible addresses for
each function is indicated.

The r and w commands take an optional rfile (or wfile) parameter, separated from the
command letter by one or more blank characters.

sed(1)

sed Addresses

sed Regular
Expressions

sed Editing
Commands

User Commands 1347

Multiple commands can be specified by separating them with a semicolon (;) on the
same command line.

The text argument consists of one or more lines, all but the last of which end with \ to
hide the NEWLINE. Each embedded NEWLINE character in the text must be preceded
by a backslash. Other backslashes in text are removed and the following character is
treated literally. Backslashes in text are treated like backslashes in the replacement
string of an s command, and may be used to protect initial blanks and tabs against the
stripping that is done on every script line. The rfile or wfile argument must terminate
the command line and must be preceded by exactly one blank. The use of the wfile
parameter causes that file to be initially created, if it does not exist, or will replace the
contents of an existing file. There can be at most 10 distinct wfile arguments.

Regular expressions match entire strings, not just individual lines, but a NEWLINE
character is matched by \n in a sed RE; a NEWLINE character is not allowed in an RE.
Also note that \n cannot be used to match a NEWLINE character at the end of an input
line; NEWLINE characters appear in the pattern space as a result of the N editing
command.

Two of the commands take a command-list, which is a list of sed commands separated
by NEWLINE characters, as follows:

{ command
command
}

The { can be preceded with blank characters and can be followed with white space.
The commands can be preceded by white space. The terminating } must be preceded
by a NEWLINE character and can be preceded or followed by <blank>s. The braces
may be preceded or followed by <blank>s. The command may be preceded by
<blank>s, but may not be followed by <blank>s.

The following table lists the functions, with the maximum number of permissible
addresses.

Max Address Command Description

1 a\ text Append by executing N command or beginning a
new cycle. Place text on the output before reading the
next input line.

2 b label Branch to the : command bearing the label . If label is
empty, branch to the end of the script. Labels are
recognized unique up to eight characters.

2 c\ text Change. Delete the pattern space. Place text on the
output. Start the next cycle.

2 d Delete the pattern space. Start the next cycle.

sed(1)

1348 man pages section 1: User Commands • Last Revised 23 Jul 1998

Max Address Command Description

2 D Delete the initial segment of the pattern space
through the first new-line. Start the next cycle. (See
the N command below.)

2 g Replace the contents of the pattern space by the
contents of the hold space.

2 G Append the contents of the hold space to the pattern
space.

2 h Replace the contents of the hold space by the contents
of the pattern space.

2 H Append the contents of the pattern space to the hold
space.

1 i\ text Insert. Place text on the standard output.

2 l /usr/bin/sed: List the pattern space on the
standard output in an unambiguous form.
Non-printable characters are displayed in octal
notation and long lines are folded.

/usr/xpg4/bin/sed: List the pattern space on the
standard output in an unambiguous form.
Non-printable characters are displayed in octal
notation and long lines are folded. The characters
(\\, \a, \b, \f, \r, \t, and \v) are written as the
corresponding escape sequences. Non-printable
characters not in that table will be written as one
three-digit octal number (with a preceding backslash
character) for each byte in the character (most
significant byte first). If the size of a byte on the
system is greater than nine bits, the format used for
non-printable characters is implementation
dependent.

Long lines are folded, with the point of folding
indicated by writing a backslash followed by a
NEWLINE; the length at which folding occurs is
unspecified, but should be appropriate for the output
device. The end of each line is marked with a $.

2 n Copy the pattern space to the standard output if
default output is not suppressed. Replace the pattern
space with the next line of input.

sed(1)

User Commands 1349

Max Address Command Description

2 N Append the next line of input to the pattern space
with an embedded new-line. (The current line
number changes.) If no next line of input is available,
the N command verb shall branch to the end of the
script and quit without starting a new cycle and
without writing the pattern space.

2 p Print. Copy the pattern space to the standard output.

2 P Copy the initial segment of the pattern space through
the first new-line to the standard output.

1 q Quit. Branch to the end of the script. Do not start a
new cycle.

2 r rfile Read the contents of rfile. Place them on the output
before reading the next input line. If rfile does not
exist or cannot be read, it is treated as if it were an
empty file, causing no error condition.

2 t label Test. Branch to the : command bearing the label if
any substitutions have been made since the most
recent reading of an input line or execution of a t. If
label is empty, branch to the end of the script.

2 w wfile Write. Append the pattern space to wfile. The first
occurrence of w will cause wfile to be cleared.
Subsequent invocations of w will append. Each time
the sed command is used, wfile is overwritten.

2 x Exchange the contents of the pattern and hold spaces.

2 ! command Don’t. Apply the command (or group, if command is
{) only to lines not selected by the address(es).

0 : label This command does nothing; it bears a label for b and
t commands to branch to.

1 = Place the current line number on the standard output
as a line.

2 {command-list} Execute command-list only when the pattern space is
selected.

0 An empty command is ignored.

0 # If a # appears as the first character on a line of a
script file, then that entire line is treated as a
comment, with one exception: if a # appears on the
first line and the character after the # is an n, then the
default output will be suppressed. The rest of the line
after #n is also ignored. A script file must contain at
least one non-comment line.

sed(1)

1350 man pages section 1: User Commands • Last Revised 23 Jul 1998

Max Addr Command (Using strings) and Description

2 s/regular expression/replacement/flags

Substitute the replacement string for instances of the regular expression in the
pattern space. Any character other than backslash or newline can be used
instead of a slash to delimit the RE and the replacement. Within the RE and
the replacement, the RE delimiter itself can be used as a literal character if it is
preceded by a backslash.

An ampersand (&) appearing in the replacement will be replaced by the string
matching the RE. The special meaning of & in this context can be suppressed
by preceding it by backslash. The characters \n, where n is a digit, will be
replaced by the text matched by the corresponding backreference expression.
For each backslash (\) encountered in scanning replacement from beginning to
end, the following character loses its special meaning (if any). It is unspecified
what special meaning is given to any character other than &, \ or digits.

A line can be split by substituting a NEWLINE character into it. The
application must escape the NEWLINE character in the replacement by
preceding it with backslash. A substitution is considered to have been
performed even if the replacement string is identical to the string that it
replaces.

flags is zero or more of:

n n= 1 - 512. Substitute for just the nth occurrence of the regular expression.

g Global. Substitute for all nonoverlapping instances of the regular expression
rather than just the first one. If both g and n are specified, the results are
unspecified.

p Print the pattern space if a replacement was made.

P Copy the initial segment of the pattern space through the first new-line to
the standard output.

w wfile Write. Append the pattern space to wfile if a replacement was made.
The first occurrence of w will cause wfile to be cleared. Subsequent invocations
of w will append. Each time the sed command is used, wfile is overwritten.

2 y/ string1 / string2 /

Transform. Replace all occurrences of characters in string1 with the
corresponding characters in string2. string1 and string2 must have the same
number of characters, or if any of the characters in string1 appear more than
once, the results are undefined. Any character other than backslash or
NEWLINE can be used instead of slash to delimit the strings. Within string1
and string2, the delimiter itself can be used as a literal character if it is
preceded by a backslash. For example, y/abc/ABC/ replaces a with A, b with
B, and c with C.

See largefile(5) for the description of the behavior of sed when encountering files
greater than or equal to 2 Gbyte (231 bytes).

sed(1)

User Commands 1351

EXAMPLE 1 An example sed script

This sed script simulates the BSD cat -s command, squeezing excess blank lines
from standard input.

sed −n ’
Write non-empty lines.
/./ {

p
d
}

Write a single empty line, then look for more empty lines.
/^$/ p
Get next line, discard the held <newline> (empty line),
and look for more empty lines.
:Empty
/^$/ {

N
s/.//
b Empty
}

Write the non-empty line before going back to search
for the first in a set of empty lines.

p

’

See environ(5) for descriptions of the following environment variables that affect the
execution of sed: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Not enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

awk(1), ed(1), grep(1), attributes(5), environ(5), largefile(5), regexp(5),
XPG4(5)

sed(1)

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/sed

/usr/xpg4/bin/sed

SEE ALSO

1352 man pages section 1: User Commands • Last Revised 23 Jul 1998

sed – stream editor

sed [-n] [-e script] [-f sfilename] [filename]…

The sed utility copies the filenames (standard input default) to the standard output,
edited according to a script of commands.

The following options are supported:

-n Suppresses the default output.

-e script script is an edit command for sed. If there is just one -e option
and no -f options, the -e flag may be omitted.

-f sfilename Takes the script from sfilename.

sed scripts consist of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space (unless
there is something left after a D command), sequentially applies all commands with
addresses matching that pattern space until reaching the end of the script, copies the
pattern space to the standard output (except under -n), and finally, deletes the pattern
space.

Some commands use a hold space to save all or part of the pattern space for subsequent
retrieval.

An address is either:

� a decimal number linecount, which is cumulative across input files;

� a $, which addresses the last input line;

� or a context address, which is a /regular expression/ as described on the regexp(5)
manual page, with the following exceptions:

\?RE? In a context address, the construction \ ?regular expression?,
where ? is any character, is identical to /regular expression/.
Note: in the context address \xabc\xdefx, the second x
stands for itself, so that the regular expression is abcxdef.

\n Matches a NEWLINE embedded in the pattern space.

. Matches any character except the NEWLINE ending the pattern
space.

null A command line with no address selects every pattern space.

address Selects each pattern space that matches.

address1 , address2 Selects the inclusive range from the first pattern space
matching address1 to the first pattern space matching address2.

sed(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

sed Scripts

User Commands 1353

Selects only one line if address1 is greater than or equal to
address2.

If the first nonwhite character in a line is a ‘#’ (pound sign), sed treats that line as a
comment, and ignores it. If, however, the first such line is of the form:

#n

sed runs as if the -n flag were specified.

The maximum number of permissible addresses for each function is indicated in
parentheses in the list below.

An argument denoted text consists of one or more lines, all but the last of which end
with \ to hide the NEWLINE. Backslashes in text are treated like backslashes in the
replacement string of an s command, and may be used to protect initial SPACE and
TAB characters against the stripping that is done on every script line.

An argument denoted rfilename or wfilename must terminate the command line and
must be preceded by exactly one SPACE. Each wfilename is created before processing
begins. There can be at most 10 distinct wfilename arguments.

(1) a\
text Append: place text on the output before reading the next input

line.

(2) b label Branch to the ‘:’ command bearing the label. Branch to the end of
the script if label is empty.

(2) c\
text Change: delete the pattern space. With 0 or 1 address or at the end

of a 2 address range, place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first
NEWLINE. Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the
hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the
pattern space.

(2) H Append the contents of the pattern space to the hold space.

(1) i\
text Insert: place text on the standard output.

sed(1B)

Comments

Functions

1354 man pages section 1: User Commands • Last Revised 28 Mar 1995

(2) l List the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two digit ASCII and
long lines are folded.

(2) n Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.

(2) N Append the next line of input to the pattern space with an
embedded newline. (The current line number changes.)

(2) p Print: copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first
NEWLINE to the standard output.

(1) q Quit: branch to the end of the script. Do not start a new cycle.

(2) r rfilename Read the contents of rfilename. Place them on the output before
reading the next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of ‘/’. For a fuller description see
regexp(5). flags is zero or more of:

n n= 1 − 512. Substitute for just the nth occurrence of the
regularexpression.

g Global: substitute for all nonoverlapping instances of the regular
expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfilename Write: append the pattern space to wfilename if a replacement
was made.

(2) t label Test: branch to the ‘:’ command bearing the label if any
substitutions have been made since the most recent reading of
an input line or execution of a t. If label is empty, branch to the
end of the script.

(2) w wfilename Write: append the pattern space to wfilename.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/string1/string2/ Transform: replace all occurrences of characters in string1 with
the corresponding character in string2. The lengths of string1
and string2 must be equal.

(2)! function Do not: apply the function (or group, if function is ‘{’)
only to lines not selected by the address(es).

(0) : label This command does nothing; it bears a label for b and t
commands to branch to. Note: the maximum length of label is
seven characters.

sed(1B)

User Commands 1355

(1) = Place the current line number on the standard output as a line.

(2) { Execute the following commands through a matching ‘}’ only
when the pattern space is selected. Commands are separated
by ‘;’.

(0) An empty command is ignored.

See largefile(5) for the description of the behavior of sed when encountering files
greater than or equal to 2 Gbyte (231 bytes).

Too many commands
The command list contained more than 200 commands.

Too much command text
The command list was too big for sed to handle. Text in the a, c, and i commands,
text read in by r commands, addresses, regular expressions and replacement
strings in s commands, and translation tables in y commands all require sed to
store data internally.

Command line too long
A command line was longer than 4000 characters.

Too many line numbers
More than 256 decimal number linecounts were specified as addresses in the
command list.

Too many files in w commands
More than 10 different files were specified in w commands or w options for s
commands in the command list.

Too many labels
More than 50 labels were specified in the command list.

Unrecognized command
A command was not one of the ones recognized by sed.

Extra text at end of command
A command had extra text after the end.

Illegal line number
An address was neither a decimal number linecount, a $, nor a context address.

Space missing before filename
There was no space between an r or w command, or the w option for a s command,
and the filename specified for that command.

Too many {’s
There were more { than } in the list of commands to be executed.

Too many }’s
There were more } than { in the list of commands to be executed.

No addresses allowed
A command that takes no addresses had an address specified.

sed(1B)

Large Files

DIAGNOSTICS

1356 man pages section 1: User Commands • Last Revised 28 Mar 1995

Only one address allowed
A command that takes one address had two addresses specified.

"\digit" out of range
The number in a \n item in a regular expression or a replacement string in ans
command was greater than 9.

Bad number
One of the endpoints in a range item in a regular expression (that is, an item of the
form {n} or {n,m}) was not a number.

Range endpoint too large
One of the endpoints in a range item in a regular expression was greater than 255.

More than 2 numbers given in \{ \}
More than two endpoints were given in a range expression.

} expected after \
A \ appeared in a range expression and was not followed by a }.

First number exceeds second in \{ \}
The first endpoint in a range expression was greater than the second.

Illegal or missing delimiter
The delimiter at the end of a regular expression was absent.

\(\) imbalance
There were more \(than \), or more \) than \(, in a regular expression.

[] imbalance
There were more [than], or more] than [, in a regular expression.

First RE may not be null
The first regular expression in an address or in a s command was null (empty).

Ending delimiter missing on substitution
The ending delimiter in a s command was absent.

Ending delimiter missing on string
The ending delimiter in a y command was absent.

Transform strings not the same size
The two strings in a y command were not the same size.

Suffix too large - 512 max
The suffix in a s command, specifying which occurrence of the regular expression
should be replaced, was greater than 512.

Label too long
A label in a command was longer than 8 characters.

Duplicate labels
The same label was specified by more than one : command.

sed(1B)

User Commands 1357

File name too long
The filename specified in a r or w command, or in the w option for a s command,
was longer than 1024 characters.

Output line too long
An output line was longer than 4000 characters long.

Too many appends or reads after line n
More than 20 a or r commands were to be executed for line n.

Hold space overflowed.
More than 4000 characters were to be stored in the hold space.

usr/ucb/sed BSD sed

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

awk(1), grep(1), lex(1), attributes(5), largefile(5), regexp(5)

There is a combined limit of 200 -e and -f arguments. In addition, there are various
internal size limits which, in rare cases, may overflow. To overcome these limitations,
either combine or break out scripts, or use a pipeline of sed commands.

sed(1B)

FILES

ATTRIBUTES

SEE ALSO

BUGS

1358 man pages section 1: User Commands • Last Revised 28 Mar 1995

set, unset, setenv, unsetenv, export – shell built-in functions to determine the
characteristics for environmental variables of the current shell and its descendents

set [--aefhkntuvx [argument]]…

unset [name…]

export [name…]

set [var [= value]]

set var [n] = word

unset pattern

setenv [VAR [word]]

unsetenv variable

set [±aefhkmnopstuvx] [±o option]… [±A name] [arg…]

unset [-f] name…

**export [name [=value]]…

The set built-in command has the following options:

-- Do not change any of the flags; useful in setting $1 to −.

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exits with a non-zero exit status.

-f Disable file name generation.

-h Locate and remember function commands as functions are defined
(function commands are normally located when the function is executed).

-k All keyword arguments are placed in the environment for a command, not
just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Using + rather than − causes these flags to be turned off. These flags can also be used
upon invocation of the shell. The current set of flags may be found in $−. The
remaining arguments are positional parameters and are assigned, in order, to $1, $2,
. . . . If no arguments are given the values of all names are printed.

For each name, unset removes the corresponding variable or function value. The
variables PATH, PS1, PS2, MAILCHECK, and IF cannot be unset.

set(1)

NAME

sh

csh

ksh

sh

User Commands 1359

With the export built-in, the given names are marked for automatic export to the
environment of subsequently executed commands. If no arguments are given, variable
names that have been marked for export during the current shell’s execution are listed.
Function names are not exported.

With no arguments, set displays the values of all shell variables. Multiword values
are displayed as a parenthesized list. With the var argument alone, set assigns an
empty (null) value to the variable var. With arguments of the form var = value set
assigns value to var, where value is one of:

word A single word (or quoted string).

(wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set
var[n]=word replaces the n’th word in a multiword value with word.

unset removes variables whose names match (filename substitution) pattern. All
variables are removed by ‘unset *’; this has noticeably distasteful side effects.

With no arguments, setenv displays all environment variables. With the VAR
argument, setenv sets the environment variable VAR to an empty (null) value. (By
convention, environment variables are normally given upper-case names.) With both
VAR and word arguments specified, setenv sets VAR to word, which must be either a
single word or a quoted string. The PATH variable can take multiple word arguments,
separated by colons (see EXAMPLES). The most commonly used environment
variables, USER, TERM, and PATH, are automatically imported to and exported from
the csh variables user, term, and path. Use setenv if you need to change these
variables. In addition, the shell sets the PWD environment variable from the csh
variable cwd whenever the latter changes.

The environment variables LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY take immediate effect when changed within the C
shell. See environ(5) for descriptions of these environment variables.

unsetenv removes variable from the environment. As with unset, pattern matching
is not performed.

The flags for the set built-in have meaning as follows:

-A Array assignment. Unset the variable name and assign values sequentially
from the list arg. If +A is used, the variable name is not unset first.

-a All subsequent variables that are defined are automatically exported.

-e If a command has a non-zero exit status, execute the ERR trap, if set, and
exit. This mode is disabled while reading profiles.

-f Disables file name generation.

-h Each command becomes a tracked alias when first encountered.

set(1)

csh

ksh

1360 man pages section 1: User Commands • Last Revised 28 Apr 1997

-k All variable assignment arguments are placed in the environment for a
command, not just those that precede the command name.

-m Background jobs will run in a separate process group and a line will print
upon completion. The exit status of background jobs is reported in a
completion message. On systems with job control, this flag is turned on
automatically for interactive shells.

-n Read commands and check them for syntax errors, but do not execute
them. Ignored for interactive shells.

-o The following argument can be one of the following option names:

allexport Same as -a.

errexit Same as -e.

bgnice All background jobs are run at a lower priority. This is
the default mode. emacs Puts you in an emacs style
in-line editor for command entry.

gmacs Puts you in a gmacs style in-line editor for command
entry.

ignoreeof The shell will not exit on end-of-file. The command
exit must be used.

keyword Same as -k.

markdirs All directory names resulting from file name generation
have a trailing / appended.

monitor Same as -m.

noclobber Prevents redirection > from truncating existing files.
Require >| to truncate a file when turned on.

noexec Same as -n.

noglob Same as -f.

nolog Do not save function definitions in history file.

nounset Same as -u.

privileged Same as -p.

verbose Same as -v.

trackall Same as -h.

vi Puts you in insert mode of a vi style in-line editor until
you hit escape character 033. This puts you in control
mode. A return sends the line.

viraw Each character is processed as it is typed in vi mode.

set(1)

User Commands 1361

xtrace Same as -x.

If no option name is supplied then the current option settings are printed.

-p Disables processing of the $HOME/.profile file and uses the file
/etc/suid_profile instead of the ENV file. This mode is on whenever
the effective uid is not equal to the real uid, or when the effective gid is not
equal to the real gid. Turning this off causes the effective uid and gid to be
set to the real uid and gid.

-s Sort the positional parameters lexicographically.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

− Turns off -x and -v flags and stops examining arguments for flags.

– Do not change any of the flags; useful in setting $1 to a value beginning
with −. If no arguments follow this flag then the positional parameters are
unset.

Using + rather than − causes these flags to be turned off. These flags can also be used
upon invocation of the shell. The current set of flags may be found in $−. Unless -A is
specified, the remaining arguments are positional parameters and are assigned, in
order, to $1 $2 If no arguments are given then the names and values of all
variables are printed on the standard output.

The variables given by the list of names are unassigned, i.e., their values and attributes
are erased. readonly variables cannot be unset. If the -f, flag is set, then the names
refer to function names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND,
RANDOM, SECONDS, TMOUT, and _ removes their special meaning even if they are
subsequently assigned.

When using unset, the variables given by the list of names are unassigned, i.e., their
values and attributes are erased. readonly variables cannot be unset. If the -f, flag is
set, then the names refer to function names. Unsetting ERRNO, LINENO,
MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their
special meaning even if they are subsequently assigned.

With the export built-in, the given names are marked for automatic export to the
environment of subsequently-executed commands.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

set(1)

1362 man pages section 1: User Commands • Last Revised 28 Apr 1997

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

The following example sets the PATH variable to search for files in the /bin,
/usr/bin, /usr/sbin, and /usr/ucb/bin directories, in that order.

setenv PATH "/bin:/usr/bin:/usr/sbin:usr/ucb/bin"

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), read(1), sh(1), typeset(1), attributes(5), environ(5)

set(1)

csh

ATTRIBUTES

SEE ALSO

User Commands 1363

set, unset – set and unset local or global environment variables

set [-l variable [=value]] …

set [-e variable [=value]] …

set [-ffile variable [=value]…] …

unset -l variable…

unset -f file variable…

The set command sets variable in the environment, or adds variable=value to file. If
variable is not equated it to a value, set expects the value to be on stdin. The unset
command removes variable. Note that the FMLI predefined, read-only variables (such
as ARG1), may not be set or unset.

Note that at least one of the above options must be used for each variable being set or
unset. If you set a variable with the -ffilename option, you must thereafter include
filename in references to that variable. For example, ${(file)VARIABLE}.

FMLI inherits the UNIX environment when invoked.

-l Sets or unsets the specified variable in the local environment. Variables set
with -l will not be inherited by processes invoked from FMLI.

-e Sets the specified variable in the UNIX environment. Variables set with -e
will be inherited by any processes started from FMLI. Note that these
variables cannot be unset.

-ffile Sets or unsets the specified variable in the global environment. The
argument file is the name, or pathname, of a file containing lines of the
form variable=value. file will be created if it does not already exist. Note
that no space intervenes between -f and file.

EXAMPLE 1 A sample output of set command.

Storing a selection made in a menu:

name=Selection 2
action=‘set -l SELECTION=2‘close

Variables set to be available to the UNIX environment (those set using the -e option)
can only be set for the current fmli process and the processes it calls.

When using the -f option, unless file is unique to the process, other users of FMLI
on the same machine will be able to expand these variables, depending on the
read/write permissions on file.

A variable set in one frame may be referenced or unset in any other frame. This
includes local variables.

See attributes(5) for descriptions of the following attributes:

set(1F)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

NOTES

ATTRIBUTES

1364 man pages section 1: User Commands • Last Revised 5 Jul 1990

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

env(1), sh(1), attributes(5)

set(1F)

SEE ALSO

User Commands 1365

setcolor – redefine or create a color

setcolor color red_level green_level blue_level

The setcolor command takes four arguments: color, which must be a string naming
the color; and the arguments red_level, green_level, and blue_level, which must be
integer values defining, respectively, the intensity of the red, green, and blue
components of color. Intensities must be in the range of 0 to 1000. If you are redefining
an existing color, you must use its current name (default color names are: black,
blue, green, cyan, red, magenta, yellow, and white). setcolor returns the
color’s name string.

EXAMPLE 1 A sample output of setcolor command.

The following is an example of the arguments that setcolor takes:

‘setcolor blue 100 24 300‘

BUILT-IN FMLI

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

setcolor(1F)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

1366 man pages section 1: User Commands • Last Revised 5 Jul 1990

setfacl – modify the Access Control List (ACL) for a file or files

setfacl [-r] -s acl_entries file

setfacl [-r] -md acl_entries file

setfacl [-r] -f acl_filefile

For each file specified, setfacl will either replace its entire ACL, including the
default ACL on a directory, or it will add, modify, or delete one or more ACL entries,
including default entries on directories.

When the setfacl command is used, it may result in changes to the file permission
bits. When the user ACL entry for the file owner is changed, the file owner class
permission bits will be modified. When the group ACL entry for the file group class is
changed, the file group class permission bits will be modified. When the other ACL
entry is changed, the file other class permission bits will be modified.

If you use the chmod(1) command to change the file group owner permissions on a file
with ACL entries, both the file group owner permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask permissions may
change the effective permissions for additional users and groups who have ACL
entries on the file.

A directory may contain default ACL entries. If a file or directory is created in a
directory that contains default ACL entries, the newly created file will have
permissions generated according to the intersection of the default ACL entries and the
permissions requested at creation time. The umask(1) will not be applied if the
directory contains default ACL entries. If a default ACL is specified for a specific user
(or users), the file will have a regular ACL created. Otherwise, only the mode bits will
be initialized according to the intersection described above. The default ACL should
be thought of as the maximum discretionary access permissions that may be granted.

For the -m and -s options, acl_entries are one or more comma-separated ACL entries.

An ACL entry consists of the following fields separated by colons:

entry_type Type of ACL entry on which to set file permissions. For example,
entry_type can be user (the owner of a file) or mask (the ACL
mask).

uid or gid User name or user identification number. Or, group name or group
identification number.

perms Represents the permissions that are set on entry_type. perms can be
indicated by the symbolic characters rwx or a number (the same
permissions numbers used with the chmod command).

The following table shows the valid ACL entries (default entries may only be specified
for directories):

setfacl(1)

NAME

SYNOPSIS

DESCRIPTION

acl_entries Syntax

User Commands 1367

ACL Entry Description

u[ser]::perms File owner permissions.

g[roup]::perms File group owner permissions.

o[ther]:perms Permissions for users other than the file owner or members
of file group owner.

m[ask]:perms The ACL mask. The mask entry indicates the maximum
permissions allowed for users (other than the owner) and
for groups. The mask is a quick way to change permissions
on all the users and groups.

u[ser]:uid:perms Permissions for a specific user. For uid, you can specify
either a user name or a numeric UID.

g[roup]:gid:perms Permissions for a specific group. For gid, you can specify
either a group name or a numeric GID.

d[efault]:u[ser]::perms Default file owner permissions.

d[efault]:g[roup]::perms Default file group owner permissions.

d[efault]:o[ther]:perms Default permissions for users other than the file owner or
members of the file group owner.

d[efault]:m[ask]:perms Default ACL mask.

d[efault]:u[ser]:uid:perms Default permissions for a specific user. For uid, you can
specify either a user name or a numeric UID.

d[efault]:g[roup]:gid:perms Default permissions for a specific group. For gid, you can
specify either a group name or a numeric GID.

For the -d option, acl_entries are one or more comma-separated ACL entries without
permissions. Note that the entries for file owner, file group owner, ACL mask, and
others may not be deleted.

The options have the following meaning:

-d acl_entries Deletes one or more entries from the file. The entries for the file
owner, the file group owner, and others may not be deleted from
the ACL. Notice that deleting an entry does not necessarily have
the same effect as removing all permissions from the entry.

-f acl_file Seta a file’s ACL with the ACL entries contained in the file named
acl_file. The same constraints on specified entries hold as with the
-s option. The entries are not required to be in any specific order
in the file. Also, if you specify a dash ’-’ for acl_file, standard input
is used to set the file’s ACL.

setfacl(1)

OPTIONS

1368 man pages section 1: User Commands • Last Revised 11 Dec 2001

The character "#" in acl_file may be used to indicate a comment. All
characters, starting with the "#" until the end of the line, will be
ignored. Note that if the acl_file has been created as the output of
the getfacl(1) command, any effective permissions, which will
follow a "#", will be ignored.

-m acl_entries Adds one or more new ACL entries to the file, and/or modifies
one or more existing ACL entries on the file. If an entry already
exists for a specified uid or gid, the specified permissions will
replace the current permissions. If an entry does not exist for the
specified uid or gid, an entry will be created. When using the -m
option to modify a default ACL, you must specify a complete
default ACL (user, group, other, mask, and any additional entries)
the first time.

-r Recalculates the permissions for the ACL mask entry. The
permissions specified in the ACL mask entry are ignored and
replaced by the maximum permissions necessary to grant the
access to all additional user, file group owner, and additional
group entries in the ACL. The permissions in the additional user,
file group owner, and additional group entries are left unchanged.

-s acl_entries Sets a file’s ACL. All old ACL entries are removed and replaced
with the newly specified ACL. The entries need not be in any
specific order. They will be sorted by the command before being
applied to the file.

Required entries:

� Exactly one user entry specified for the file owner.
� Exactly one group entry for the file group owner.
� Exactly one other entry specified.

If there are additional user and group entries:

� Exactly one mask entry specified for the ACL mask that
indicates the maximum permissions allowed for users (other
than the owner) and groups.

� Must not be duplicate user entries with the same uid.
� Must not be duplicate group entries with the same gid.

If file is a directory, the following default ACL entries may be
specified:

� Exactly one default user entry for the file owner.
� Exactly one default group entry for the file group owner.
� Exactly one default mask entry for the ACL mask.
� Exactly one default other entry.

setfacl(1)

User Commands 1369

There may be additional default user entries and additional
default group entries specified, but there may not be duplicate
additional default user entries with the same uid, or duplicate
default group entries with the same gid.

EXAMPLE 1 Adding read permission only

The following example adds one ACL entry to file abc, which gives user shea read
permission only.

setfacl -m user:shea:r−− abc

EXAMPLE 2 Replacing a file’s entire ACL

The following example replaces the entire ACL for the file abc, which gives shea read
access, the file owner all access, the file group owner read access only, the ACL mask
read/write access, and others no access.

setfacl -s user:shea:rwx,user::rwx,group::rw−,mask:r--,other:−−− abc

Notice that after this command, the file permission bits are rwxr−−−−−. Even though
the file group owner was set with read/write permissions, the ACL mask entry limits
it to have only read permissions. The mask entry also specifies the maximum
permissions available to all additional user and group ACL entries. Once again, even
though the user shea was set with all access, the mask limits it to have only read
permissions. The ACL mask entry is a quick way to limit or open access to all the user
and group entries in an ACL. For example, by changing the mask entry to read/write,
both the file group owner and user shea would be given read/write access.

EXAMPLE 3 Setting the same ACL on two files

The following example sets the same ACL on file abc as the file xyz.

getfacl xyz | setfacl -f − abc

/etc/passwd password file

/etc/group group file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

getfacl(1), umask(1), aclcheck(3SEC), aclsort(3SEC), group(4), passwd(4),
attributes(5), chmod(1)

setfacl(1)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

1370 man pages section 1: User Commands • Last Revised 11 Dec 2001

setpgrp – set process group ID

setpgrp command [arg…]

If the current process is not already a session leader, the setpgrp utility sets the
process group ID and session ID to the current process ID and does an exec() of
command and its argument(s), if any.

The following operands are supported:

command The name of a command to be invoked.

arg An option or argument to command.

The following exit values are returned:

1 Error executing the setpgrp utility or during exec() of
command.

Otherwise, the exit status will be that of command.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

exec(2), setpgrp(2), attributes(5)

setpgrp(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1371

sftp – secure file transfer program

sftp [-vC] [-o ssh_option] [hostname | user@hostname]

The sftp utility is an interactive file transfer program with a user interface similar to
ftp(1) that uses the ssh(1) command to create a secure connection to the server.

sftp implements the SSH File Transfer Protocol as defined in IETF
draft-ietf-secsh-filexfer. There is no relationship between the protocol used
by sftp and the FTP protocol (RFC959) provided by ftp(1).

The following options are supported:

-C Enables compression, using the -C flag in ssh(1).

-o ssh_option Specifies an option to be directly passed to ssh(1).

-v Raises logging level. This option is also passed to ssh(1).

The following operands are supported:

hostname | user@hostname
The name of the host to which sftp connects and logs into.

Once in interactive mode, sftp understands a set of commands similar to those of
ftp(1). Commands are case insensitive and pathnames may be enclosed in quotes if
they contain spaces.

cd path
Changes remote directory to path.

lcd path
Changes local directory to path.

chgrp grp path
Changes group of file path to grp. grp must be a numeric GID.

chmod mode path
Changes permissions of file path to mode.

chown own path
Changes owner of file path to own. own must be a numeric UID.

help
Displays help text.

get [flags] remote-path [local-path]
Retrieves the remote-path and stores it on the local machine. If the local path name is
not specified, it is given the same name it has on the remote machine. If the -P flag
is specified, then the file’s full permission and access time are copied too.

lls [ls-options [path]]
Displays local directory listing of either path or current directory if path is not
specified.

sftp(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

INTERACTIVE
COMMANDS

1372 man pages section 1: User Commands • Last Revised 25 Feb 2001

lmkdir path
Creates local directory specified by path.

lpwd
Prints local working directory.

ls [path]
Displays remote directory listing of either path or current directory if path is not
specified.

lumask umask
Sets local umask to umask.

mkdir path
Creates remote directory specified by path.

put [flags] local-path [local-path]
Uploads local-path and stores it on the remote machine. If the remote path name is
not specified, it is given the same name it has on the local machine. If the -P flag is
specified, then the file’s full permission and access time are copied too.

pwd
Displays remote working directory.

exit
Quits sftp.

quit
Quits sftp.

rename oldpath newpath
Renames remote file from oldpath to newpath.

rmdir path
Removes remote directory specified by path.

rm path
Deletes remote file specified by path.

! command
Executes command in local shell.

!
Escapes to local shell.

?
Synonym for help.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

sftp(1)

EXIT STATUS

ATTRIBUTES

User Commands 1373

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

ftp(1), scp(1), ssh(1), ssh-add(1), ssh-keygen(1), sshd(1M), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is
/var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating
environment has been installed anywhere other than the default, modify the given
path to access the file at the installed location.

Damien Miller

sftp(1)

SEE ALSO

AUTHOR

1374 man pages section 1: User Commands • Last Revised 25 Feb 2001

sh, jsh – standard and job control shell and command interpreter

/usr/bin/sh [-acefhiknprstuvx] [argument…]

/usr/xpg4/bin/sh [± abCefhikmnoprstuvx] [± o option…] [-c string]
[arg…]

/usr/bin/jsh [-acefhiknprstuvx] [argument…]

The /usr/bin/sh utility is a command programming language that executes
commands read from a terminal or a file.

The /usr/xpg4/bin/sh utility is a standards compliant shell. This utility provides
all the functionality of ksh(1), except in cases discussed in ksh(1) where differences in
behavior exist.

The jsh utility is an interface to the shell that provides all of the functionality of sh
and enables job control (see Job Control section below).

Arguments to the shell are listed in the Invocation section below.

A blank is a tab or a space. A name is a sequence of ASCII letters, digits, or underscores,
beginning with a letter or an underscore. A parameter is a name, a digit, or any of the
characters *, @, #, ?, −, $, and !.

A simple-command is a sequence of non-blank words separated by blanks. The first word
specifies the name of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command. The command
name is passed as argument 0 (see exec(2)). The value of a simple-command is its exit
status if it terminates normally, or (octal) 200+status if it terminates abnormally. See
signal(3HEAD) for a list of status values.

A pipeline is a sequence of one or more commands separated by |. The standard output
of each command but the last is connected by a pipe(2) to the standard input of the
next command. Each command is run as a separate process. The shell waits for the last
command to terminate. The exit status of a pipeline is the exit status of the last
command in the pipeline.

A list is a sequence of one or more pipelines separated by ;, &, &&, or | |, and
optionally terminated by ; or &. Of these four symbols, ; and & have equal
precedence, which is lower than that of && and | |. The symbols && and | | also
have equal precedence. A semicolon (;) causes sequential execution of the preceding
pipeline, that is, the shell waits for the pipeline to finish before executing any commands
following the semicolon. An ampersand (&) causes asynchronous execution of the
preceding pipeline, that is, the shell does not wait for that pipeline to finish. The
symbol && (| |) causes the list following it to be executed only if the preceding
pipeline returns a zero (non-zero) exit status. An arbitrary number of newlines may
appear in a list, instead of semicolons, to delimit commands.

sh(1)

NAME

SYNOPSIS

DESCRIPTION

Definitions

Commands

User Commands 1375

A command is either a simple-command or one of the following. Unless otherwise stated,
the value returned by a command is that of the last simple-command executed in the
command.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word taken from the
in word list. If in word . . . is omitted, then the for command executes the do list
once for each positional parameter that is set (see Parameter Substitution
section below). Execution ends when there are no more words in the list.

case word in [pattern [| pattern]) list ; ;] . . . esac
A case command executes the list associated with the first pattern that matches
word. The form of the patterns is the same as that used for file-name generation (see
File Name Generation section), except that a slash, a leading dot, or a dot
immediately following a slash need not be matched explicitly.

if list ; then list ; [elif list ; then list ;] . . . [else list ;] fi

The list following if is executed and, if it returns a zero exit status, the list following
the first then is executed. Otherwise, the list following elif is executed and, if its
value is zero, the list following the next then is executed. Failing that, the else list is
executed. If no else list or then list is executed, then the if command returns a zero
exit status.

while list do list done A while command repeatedly executes the
while list and, if the exit status of the last
command in the list is zero, executes the do
list; otherwise the loop terminates. If no
commands in the do list are executed, then
the while command returns a zero exit
status; until may be used in place of
while to negate the loop termination test.

(list) Execute list in a sub-shell.

{ list;} list is executed in the current (that is,
parent) shell. The { must be followed by a
space.

name () { list;} Define a function which is referenced by
name. The body of the function is the list of
commands between { and }. The { must be
followed by a space. Execution of functions
is described below (see Execution
section). The { and } are unnecessary if the
body of the function is a command as
defined above, under Commands.

The following words are only recognized as the first word of a command and when
not quoted:

sh(1)

1376 man pages section 1: User Commands • Last Revised 18 Oct 2001

if then else elif fi case esac for while until do done { }

A word beginning with # causes that word and all the following characters up to a
newline to be ignored.

The shell reads commands from the string between two grave accents (‘‘) and the
standard output from these commands may be used as all or part of a word. Trailing
newlines from the standard output are removed.

No interpretation is done on the string before the string is read, except to remove
backslashes (\) used to escape other characters. Backslashes may be used to escape a
grave accent (‘) or another backslash (\) and are removed before the command string
is read. Escaping grave accents allows nested command substitution. If the command
substitution lies within a pair of double quotes (" . . . ‘ . . . ‘ . . . "), a
backslash used to escape a double quote (\") will be removed; otherwise, it will be left
intact.

If a backslash is used to escape a newline character (\newline), both the backslash
and the newline are removed (see the later section on Quoting). In addition,
backslashes used to escape dollar signs (\$) are removed. Since no parameter
substitution is done on the command string before it is read, inserting a backslash to
escape a dollar sign has no effect. Backslashes that precede characters other than \, ‘,
", newline, and $ are left intact when the command string is read.

The character $ is used to introduce substitutable parameters. There are two types of
parameters, positional and keyword. If parameter is a digit, it is a positional parameter.
Positional parameters may be assigned values by set. Keyword parameters (also
known as variables) may be assigned values by writing:

name=value [name=value] . . .

Pattern-matching is not performed on value. There cannot be a function and a variable
with the same name.

${parameter} The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by
a letter, digit, or underscore that is not to be interpreted
as part of its name. If parameter is * or @, all the
positional parameters, starting with $1, are substituted
(separated by spaces). Parameter $0 is set from
argument zero when the shell is invoked.

${parameter:−word} If parameter is set and is non-null, substitute its value;
otherwise substitute word.

${parameter:=word} If parameter is not set or is null set it to word; the value
of the parameter is substituted. Positional parameters
may not be assigned in this way.

sh(1)

Comments Lines

Command
Substitution

Parameter
Substitution

User Commands 1377

${parameter:?word} If parameter is set and is non-null, substitute its value;
otherwise, print word and exit from the shell. If word is
omitted, the message “parameter null or not set” is
printed.

${parameter:+word} If parameter is set and is non-null, substitute word;
otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so
that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:−‘pwd‘}

If the colon (:) is omitted from the above expressions, the shell only checks whether
parameter is set or not.

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.

− Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last synchronously executed
command.

$ The process number of this shell.

! The process number of the last background command invoked.

The following parameters are used by the shell. The parameters in this section are also
referred to as environment variables.

HOME The default argument (home directory) for the cd command, set to
the user’s login directory by login(1) from the password file (see
passwd(4)).

PATH The search path for commands (see Execution section below).

CDPATH The search path for the cd command.

MAIL If this parameter is set to the name of a mail file and the MAILPATH
parameter is not set, the shell informs the user of the arrival of
mail in the specified file.

MAILCHECK This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the MAILPATH
or MAIL parameters. The default value is 600 seconds (10
minutes). If set to 0, the shell will check before each prompt.

MAILPATH A colon-separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified

sh(1)

1378 man pages section 1: User Commands • Last Revised 18 Oct 2001

files. Each file name can be followed by % and a message that will
be printed when the modification time changes. The default
message is, you have mail.

PS1 Primary prompt string, by default “ $ ”.

PS2 Secondary prompt string, by default “ > ”.

IFS Internal field separators, normally space, tab, and newline (see
Blank Interpretation section).

SHACCT If this parameter is set to the name of a file writable by the user,
the shell will write an accounting record in the file for each shell
procedure executed.

SHELL When the shell is invoked, it scans the environment (see
Environment section below) for this name.

See environ(5) for descriptions of the following environment variables that affect the
execution of sh: LC_CTYPE and LC_MESSAGES.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, and IFS. Default
values for HOME and MAIL are set by login(1).

After parameter and command substitution, the results of substitution are scanned for
internal field separator characters (those found in IFS) and split into distinct
arguments where such characters are found. Explicit null arguments ("" or ’’) are
retained. Implicit null arguments (those resulting from parameters that have no values)
are removed.

A command’s input and output may be redirected using a special notation interpreted
by the shell. The following may appear anywhere in a simple-command or may precede
or follow a command and are not passed on as arguments to the invoked command.
Note: Parameter and command substitution occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does
not exist, it is created; otherwise, it is truncated to zero length.

>>word Use file word as standard output. If the file exists, output is
appended to it by first seeking to the EOF. Otherwise, the file is
created.

< >word Open file word for reading and writing as standard input.

<<[−]word After parameter and command substitution is done on word, the
shell input is read up to the first line that literally matches the
resulting word, or to an EOF. If, however, the hyphen (−) is
appended to <<:

sh(1)

Blank
Interpretation

Input/Output
Redirection

User Commands 1379

1. leading tabs are stripped from word before the shell input is
read (but after parameter and command substitution is done on
word);

2. leading tabs are stripped from the shell input as it is read and
before each line is compared with word; and

3. shell input is read up to the first line that literally matches the
resulting word, or to an EOF.

If any character of word is quoted (see Quoting section later), no
additional processing is done to the shell input. If no characters of
word are quoted:

1. parameter and command substitution occurs;
2. (escaped) \newlines are removed; and
3. \ must be used to quote the characters \, $, and ‘.

The resulting document becomes the standard input.

<&digit Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.

<&− The standard input is closed. Similarly for the standard output
using >&−.

If any of the above is preceded by a digit, the file descriptor which will be associated
with the file is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

... 1>xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the file
associated with file descriptor 1 (that is, xxx). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

Using the terminology introduced on the first page, under Commands, if a command is
composed of several simple commands, redirection will be evaluated for the entire
command before it is evaluated for each simple command. That is, the shell evaluates
redirection for the entire list, then each pipeline within the list, then each command
within each pipeline, then each list within each command.

If a command is followed by &, the default standard input for the command is the
empty file, /dev/null. Otherwise, the environment for the execution of a command
contains the file descriptors of the invoking shell as modified by input/output
specifications.

sh(1)

1380 man pages section 1: User Commands • Last Revised 18 Oct 2001

Before a command is executed, each command word is scanned for the characters *, ?,
and [. If one of these characters appears the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that match the pattern. If no file name is
found that matches the pattern, the word is left unchanged. The character . at the start
of a file name or immediately following a /, as well as the character / itself, must be
matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters. A pair of characters
separated by − matches any character lexically between the pair,
inclusive. If the first character following the opening [is a !, any
character not enclosed is matched.

Notice that all quoted characters (see below) must be matched explicitly in a filename.

The following characters have a special meaning to the shell and cause termination of
a word unless quoted:

; & () | ^ < > newline space tab

A character may be quoted (that is, made to stand for itself) by preceding it with a
backslash (\) or inserting it between a pair of quote marks (’ ’ or ""). During
processing, the shell may quote certain characters to prevent them from taking on a
special meaning. Backslashes used to quote a single character are removed from the
word before the command is executed. The pair \newline is removed from a word
before command and parameter substitution.

All characters enclosed between a pair of single quote marks (’ ’), except a single
quote, are quoted by the shell. Backslash has no special meaning inside a pair of single
quotes. A single quote may be quoted inside a pair of double quote marks (for
example, " ’"), but a single quote can not be quoted inside a pair of single quotes.

Inside a pair of double quote marks (""), parameter and command substitution occurs
and the shell quotes the results to avoid blank interpretation and file name generation.
If $* is within a pair of double quotes, the positional parameters are substituted and
quoted, separated by quoted spaces ("$1 $2 . . ."). However, if $@ is within a pair of
double quotes, the positional parameters are substituted and quoted, separated by
unquoted spaces ("$1" "$2" . . .). \ quotes the characters \, ‘, , (comma), and $.
The pair \newline is removed before parameter and command substitution. If a
backslash precedes characters other than \, ‘, , (comma), $, and newline, then the
backslash itself is quoted by the shell.

When used interactively, the shell prompts with the value of PS1 before reading a
command. If at any time a newline is typed and further input is needed to complete a
command, the secondary prompt (that is, the value of PS2) is issued.

sh(1)

File Name
Generation

Quoting

Prompting

User Commands 1381

The environment (see environ(5)) is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The shell interacts with
the environment in several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the corresponding value. If the user
modifies the value of any of these parameters or creates new parameters, none of these
affects the environment unless the export command is used to bind the shell’s
parameter to the environment (see also set -a). A parameter may be removed from
the environment with the unset command. The environment seen by any executed
command is thus composed of any unmodified name-value pairs originally inherited
by the shell, minus any pairs removed by unset, plus any modifications or additions,
all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one
or more assignments to parameters. Thus:

TERM=450 command

and

(export TERM; TERM=450; command

are equivalent as far as the execution of command is concerned if command is not a
Special Command. If command is a Special Command, then

TERM=450 command

will modify the TERM variable in the current shell.

If the -k flag is set, all keyword arguments are placed in the environment, even if they
occur after the command name. The following example first prints a=b c and c:

echo a=b c

a=b c

set −k

echo a=b c

c

The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &. Otherwise, signals have the values inherited by the shell
from its parent, with the exception of signal 11 (but see also the trap command
below).

Each time a command is executed, the command substitution, parameter substitution,
blank interpretation, input/output redirection, and filename generation listed above
are carried out. If the command name matches the name of a defined function, the
function is executed in the shell process (note how this differs from the execution of

sh(1)

Environment

Signals

Execution

1382 man pages section 1: User Commands • Last Revised 18 Oct 2001

shell script files, which require a sub-shell for invocation). If the command name does
not match the name of a defined function, but matches one of the Special
Commands listed below, it is executed in the shell process.

The positional parameters $1, $2, . . . are set to the arguments of the function. If the
command name matches neither a Special Command nor the name of a defined
function, a new process is created and an attempt is made to execute the command via
exec(2).

The shell parameter PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default path
is /usr/bin. The current directory is specified by a null path name, which can appear
immediately after the equal sign, between two colon delimiters anywhere in the path
list, or at the end of the path list. If the command name contains a / the search path is
not used. Otherwise, each directory in the path is searched for an executable file. If the
file has execute permission but is not an a.out file, it is assumed to be a file
containing shell commands. A sub-shell is spawned to read it. A parenthesized
command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by the
shell (to help avoid unnecessary execs later). If the command was found in a relative
directory, its location must be re-determined whenever the current directory changes.
The shell forgets all remembered locations whenever the PATH variable is changed or
the hash -r command is executed (see below).

Input/output redirection is now permitted for these commands. File descriptor 1 is
the default output location. When Job Control is enabled, additional Special
Commands are added to the shell’s environment (see Job Control section below).

:
No effect; the command does nothing. A zero exit code is returned.

. filename
Read and execute commands from filename and return. The search path specified by
PATH is used to find the directory containing filename.

bg [%jobid . . .]
When Job Control is enabled, the bg command is added to the user’s environment
to manipulate jobs. Resumes the execution of a stopped job in the background. If
%jobid is omitted the current job is assumed. (See Job Control section below for
more detail.)

break [n]
Exit from the enclosing for or while loop, if any. If n is specified, break n levels.

cd [argument]
Change the current directory to argument. The shell parameter HOME is the default
argument. The shell parameter CDPATH defines the search path for the directory
containing argument. Alternative directory names are separated by a colon (:). The
default path is <null> (specifying the current directory). Note: The current
directory is specified by a null path name, which can appear immediately after the

sh(1)

Special Commands

User Commands 1383

equal sign or between the colon delimiters anywhere else in the path list. If
argument begins with a / the search path is not used. Otherwise, each directory in
the path is searched for argument.

chdir [dir]
chdir changes the shell’s working directory to directory dir. If no argument is
given, change to the home directory of the user. If dir is a relative pathname not
found in the current directory, check for it in those directories listed in the CDPATH
variable. If dir is the name of a shell variable whose value starts with a /, change to
the directory named by that value.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is specified,
resume at the n-th enclosing loop.

echo [arguments . . .]
The words in arguments are written to the shell’s standard output, separated by
space characters. See echo(1) for fuller usage and description.

eval [argument . . .]
The arguments are read as input to the shell and the resulting command(s)
executed.

exec [argument . . .]
The command specified by the arguments is executed in place of this shell without
creating a new process. Input/output arguments may appear and, if no other
arguments are given, cause the shell input/output to be modified.

exit [n]
Causes the calling shell or shell script to exit with the exit status specified by n. If n
is omitted the exit status is that of the last command executed (an EOF will also
cause the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment of
subsequently executed commands. If no arguments are given, variable names that
have been marked for export during the current shell’s execution are listed.
(Variable names exported from a parent shell are listed only if they have been
exported again during the current shell’s execution.) Function names are not
exported.

fg [%jobid . . .]
When Job Control is enabled, the fg command is added to the user’s environment
to manipulate jobs. This command resumes the execution of a stopped job in the
foreground and also moves an executing background job into the foreground. If
%jobid is omitted, the current job is assumed. (See Job Control section below for
more detail.)

getopts
Use in shell scripts to support command syntax standards (see intro(1)). This
command parses positional parameters and checks for legal options. See
getoptcvt(1) for usage and description.

sh(1)

1384 man pages section 1: User Commands • Last Revised 18 Oct 2001

hash [-r] [name . . .]
For each name, the location in the search path of the command specified by name is
determined and remembered by the shell. The -r option causes the shell to forget
all remembered locations. If no arguments are given, information about
remembered commands is presented. Hits is the number of times a command has
been invoked by the shell process. Cost is a measure of the work required to locate a
command in the search path. If a command is found in a "relative" directory in the
search path, after changing to that directory, the stored location of that command is
recalculated. Commands for which this will be done are indicated by an asterisk (*)
adjacent to the hits information. Cost will be incremented when the recalculation is
done.

jobs [-p|-l] [%jobid ...]
jobs -x command [arguments]

Reports all jobs that are stopped or executing in the background. If %jobid is
omitted, all jobs that are stopped or running in the background will be reported.
(See Job Control section below for more detail.)

kill [-sig] %job . . .
kill -l

Sends either the TERM (terminate) signal or the specified signal to the specified jobs
or processes. Signals are either given by number or by names (as given in
signal(3HEAD) stripped of the prefix “SIG” with the exception that SIGCHD is
named CHLD). If the signal being sent is TERM (terminate) or HUP (hangup), then the
job or process will be sent a CONT (continue) signal if it is stopped. The argument
job can be the process id of a process that is not a member of one of the active jobs.
See Job Control section below for a description of the format of job. In the second
form, kill -l, the signal numbers and names are listed. (See kill(1)).

login [argument . . .]
Equivalent to ‘exec login argument. . . .’ See login(1) for usage and description.

newgrp [argument]
Equivalent to exec newgrp argument. See newgrp(1) for usage and description.

pwd
Print the current working directory. See pwd(1) for usage and description.

read name . . .
One line is read from the standard input and, using the internal field separator, IFS
(normally space or tab), to delimit word boundaries, the first word is assigned to
the first name, the second word to the second name, and so forth, with leftover
words assigned to the last name. Lines can be continued using \newline.
Characters other than newline can be quoted by preceding them with a backslash.
These backslashes are removed before words are assigned to names, and no
interpretation is done on the character that follows the backslash. The return code is
0, unless an EOF is encountered.

sh(1)

User Commands 1385

readonly [name . . .]
The given names are marked readonly and the values of the these names may not
be changed by subsequent assignment. If no arguments are given, a list of all
readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the
return status is that of the last command executed.

set [-aefhkntuvx [argument . . .]]

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exits with a non-zero exit status.

-f Disable file name generation.

-h Locate and remember function commands as functions are defined
(function commands are normally located when the function is
executed).

-k All keyword arguments are placed in the environment for a command,
not just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

– Do not change any of the flags; useful in setting $1 to −.

Using + rather than − causes these flags to be turned off. These flags can also be used
upon invocation of the shell. The current set of flags may be found in $−. The
remaining arguments are positional parameters and are assigned, in order, to $1, $2,
. . . If no arguments are given, the values of all names are printed.

shift [n]
The positional parameters from $n+1 . . . are renamed $1 If n is not given, it is
assumed to be 1.

stop pid . . .
Halt execution of the process number pid. (see ps(1)).

suspend
Stops the execution of the current shell (but not if it is the login shell).

test
Evaluate conditional expressions. See test(1) for usage and description.

times
Print the accumulated user and system times for processes run from the shell.

sh(1)

1386 man pages section 1: User Commands • Last Revised 18 Oct 2001

trap [argument n [n2 . . .]]
The command argument is to be read and executed when the shell receives numeric
or symbolic signal(s) (n). (Note: argument is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in order of signal
number or corresponding symbolic names. Any attempt to set a trap on a signal
that was ignored on entry to the current shell is ineffective. An attempt to trap on
signal 11 (memory fault) produces an error. If argument is absent, all trap(s) n are
reset to their original values. If argument is the null string, this signal is ignored by
the shell and by the commands it invokes. If n is 0, the command argument is
executed on exit from the shell. The trap command with no arguments prints a list
of commands associated with each signal number.

type [name . . .]
For each name, indicate how it would be interpreted if used as a command name.

ulimit [[-HS] [-a | -cdfnstv]]
ulimit [[-HS] [-c | -d | -f | -n | -s | -t | -v]] limit

ulimit prints or sets hard or soft resource limits. These limits are described in
getrlimit(2).

If limit is not present, ulimit prints the specified limits. Any number of limits
may be printed at one time. The -a option prints all limits.

If limit is present, ulimit sets the specified limit to limit. The string
unlimited requests the largest valid limit. Limits may be set for only one resource
at a time. Any user may set a soft limit to any value below the hard limit. Any user
may lower a hard limit. Only a super-user may raise a hard limit. (See su(1M).)

The -H option specifies a hard limit. The -S option specifies a soft limit. If neither
option is specified, ulimit will set both limits and print the soft limit.

The following options specify the resource whose limits are to be printed or set. If
no option is specified, the file size limit is printed or set.

-c maximum core file size (in 512-byte blocks)

-d maximum size of data segment or heap (in kbytes)

-f maximum file size (in 512-byte blocks)

-n maximum file descriptor plus 1

-s maximum size of stack segment (in kbytes)

-t maximum CPU time (in seconds)

-v maximum size of virtual memory (in kbytes)

Run the sysdef(1M) command to obtain the maximum possible limits for your
system. The values reported are in hexadecimal, but can be translated into decimal
numbers using the bc(1) utility. See swap(1M).)

sh(1)

User Commands 1387

As an example of ulimit, to limit the size of a core file dump to 0 Megabytes, type
the following:

ulimit -c 0

umask [nnn]
The user file-creation mask is set to nnn (see umask(1)). If nnn is omitted, the
current value of the mask is printed.

unset [name . . .]
For each name, remove the corresponding variable or function value. The variables
PATH, PS1, PS2, MAILCHECK, and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report its termination
status. If n is omitted, all your shell’s currently active background processes are
waited for and the return code will be zero.

If the shell is invoked through exec(2) and the first character of argument zero is −,
commands are initially read from /etc/profile and from $HOME/.profile, if
such files exist. Thereafter, commands are read as described below, which is also the
case when the shell is invoked as /usr/bin/sh. The flags below are interpreted by
the shell on invocation only. Note: Unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the
remaining arguments are passed as positional parameters to that command file:

-c string If the -c flag is present commands are read from string.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this case,
TERMINATE is ignored (so that kill 0 does not kill an
interactive shell) and INTERRUPT is caught and ignored (so that
wait is interruptible). In all cases, QUIT is ignored by the shell.

-p If the -p flag is present, the shell will not set the effective user and
group IDs to the real user and group IDs.

-r If the -r flag is present the shell is a restricted shell (see rsh(1M)).

-s If the -s flag is present or if no arguments remain, commands are
read from the standard input. Any remaining arguments specify
the positional parameters. Shell output (except for Special
Commands) is written to file descriptor 2.

The remaining flags and arguments are described under the set command above.

When the shell is invoked as jsh, Job Control is enabled in addition to all of the
functionality described previously for sh. Typically, Job Control is enabled for the
interactive shell only. Non-interactive shells typically do not benefit from the added
functionality of Job Control.

sh(1)

Invocation

Job Control (jsh)

1388 man pages section 1: User Commands • Last Revised 18 Oct 2001

With Job Control enabled, every command or pipeline the user enters at the terminal
is called a job. All jobs exist in one of the following states: foreground, background, or
stopped. These terms are defined as follows:

1. A job in the foreground has read and write access to the controlling terminal.

2. A job in the background is denied read access and has conditional write access to
the controlling terminal (see stty(1)).

3. A stopped job is a job that has been placed in a suspended state, usually as a result
of a SIGTSTP signal (see signal(3HEAD)).

Every job that the shell starts is assigned a positive integer, called a job number which
is tracked by the shell and will be used as an identifier to indicate a specific job.
Additionally, the shell keeps track of the current and previous jobs. The current job is the
most recent job to be started or restarted. The previous job is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%jobid

where jobid may be specified in any of the following formats:

% or + For the current job.

− For the previous job.

?<string> Specify the job for which the command line uniquely contains
string.

n For job number n.

pref Where pref is a unique prefix of the command name. For example,
if the command ls -l name were running in the background, it
could be referred to as %ls. pref cannot contain blanks unless it is
quoted.

When Job Control is enabled, the following commands are added to the user’s
environment to manipulate jobs:

bg [%jobid . . .]
Resumes the execution of a stopped job in the background. If %jobid is omitted the
current job is assumed.

fg [%jobid . . .]
Resumes the execution of a stopped job in the foreground, also moves an executing
background job into the foreground. If %jobid is omitted the current job is assumed.

jobs [-p|-l] [%jobid . . .]
jobs -x command [arguments]

Reports all jobs that are stopped or executing in the background. If %jobid is
omitted, all jobs that are stopped or running in the background will be reported.
The following options will modify/enhance the output of jobs:

sh(1)

User Commands 1389

-l Report the process group ID and working directory of the jobs.

-p Report only the process group ID of the jobs.

-x Replace any jobid found in command or arguments with the corresponding
process group ID, and then execute command passing it arguments.

kill [-signal] %jobid
Builtin version of kill to provide the functionality of the kill command for
processes identified with a jobid.

stop %jobid . . .
Stops the execution of a background job(s).

suspend
Stops the execution of the current shell (but not if it is the login shell).

wait [%jobid . . .]
wait builtin accepts a job identifier. If %jobid is omitted wait behaves as described
above under Special Commands.

See largefile(5) for the description of the behavior of sh and jsh when
encountering files greater than or equal to 2 Gbyte (231 bytes).

Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. If the shell is being used non-interactively execution of the shell file is
abandoned. Otherwise, the shell returns the exit status of the last command executed
(see also the exit command above).

If the shell is invoked as jsh and an attempt is made to exit the shell while there are
stopped jobs, the shell issues one warning:

There are stopped jobs.

This is the only message. If another exit attempt is made, and there are still stopped
jobs they will be sent a SIGHUP signal from the kernel and the shell is exited.

$HOME/.profile

/dev/null

/etc/profile

/tmp/sh*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sh(1)

Large File
Behavior

EXIT STATUS

jsh Only

FILES

ATTRIBUTES

/usr/bin/jsh

1390 man pages section 1: User Commands • Last Revised 18 Oct 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

intro(1), bc(1), echo(1), getoptcvt(1), kill(1), ksh(1), login(1), newgrp(1),
ps(1), pwd(1), set(1), shell_builtins(1), stty(1), test(1), umask(1), wait(1),
rsh(1M), su(1M), swap(1M), sysdef(1M), dup(2), exec(2), fork(2), getrlimit(2),
pipe(2), ulimit(2), setlocale(3C), signal(3HEAD), passwd(4), profile(4),
attributes(5), environ(5), largefile(5), XPG4(5)

The use of setuid shell scripts is strongly discouraged.

Words used for filenames in input/output redirection are not interpreted for filename
generation (see File Name Generation section above). For example, cat file1
>a* will create a file named a*.

Because commands in pipelines are run as separate processes, variables set in a
pipeline have no effect on the parent shell.

If you get the error message, “cannot fork,too many processes”, try using the
wait(1) command to clean up your background processes. If this doesn’t help, the
system process table is probably full or you have too many active foreground
processes. There is a limit to the number of process ids associated with your login, and
to the number the system can keep track of.

Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was
found, the shell will continue to exec the original command. Use the hash command
to correct this situation.

The Bourne shell has a limitation on the effective UID for a process. If this UID is less
than 100 (and not equal to the real UID of the process), then the UID is reset to the real
UID of the process.

Because the shell implements both foreground and background jobs in the same
process group, they all receive the same signals, which can lead to unexpected
behavior. It is, therefore, recommended that other job control shells be used, especially
in an interactive environment.

sh(1)

/usr/xpg4/bin/sh

SEE ALSO

WARNINGS

NOTES

User Commands 1391

When the shell executes a shell script that attempts to execute a non-existent
command interpreter, the shell returns an erroneous diagnostic message that the shell
script file does not exist.

sh(1)

1392 man pages section 1: User Commands • Last Revised 18 Oct 2001

shell – run a command using shell

shell command [command] …

The shell function concatenate its arguments, separating each by a space, and passes
this string to the shell ($SHELL if set, otherwise /usr/bin/sh).

EXAMPLE 1 A sample output of shell command.

Since the Form and Menu Language does not directly support background processing,
the shell function can be used instead.

‘shell "build prog > /dev/null &"‘

If you want the user to continue to be able to interact with the application while the
background job is running, the output of an executable run by shell in the
background must be redirected: to a file if you want to save the output, or to
/dev/null if you don’t want to save it (or if there is no output), otherwise your
application may appear to be hung until the background job finishes processing.

shell can also be used to execute a command that has the same name as an FMLI
built-in function.

The arguments to shell will be concatenate using spaces, which may or may not do
what is expected. The variables set in local environments will not be expanded by the
shell because "local" means "local to the current process."

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sh(1), attributes(5)

shell(1F)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

NOTES

ATTRIBUTES

SEE ALSO

User Commands 1393

shell_builtins, case, for, foreach, function, if, repeat, select, switch, until, while – shell
command interpreter built-in commands

The shell command interpreters csh(1), ksh(1), and sh(1) have special built-in
commands. The commands case, for, foreach, function, if, repeat, select,
switch, until, and while are commands in the syntax recognized by the shells.
They are described in the Commands section of the manual pages of the respective
shells. The remaining commands listed in the table below are built into the shells for
reasons such as efficiency or data sharing between command invocations. They are
described on their respective manual pages.

Command Shell

alias csh, ksh

bg csh, ksh, sh

break csh, ksh, sh

case csh, ksh, sh

cd csh, ksh, sh

chdir csh, sh

continue csh, ksh, sh

dirs csh

echo csh, ksh, sh

eval csh, ksh, sh

exec csh, ksh, sh

exit csh, ksh, sh

export ksh, sh

fc ksh

fg csh, ksh, sh

for ksh, sh

foreach csh

function ksh

getopts ksh, sh

glob csh

goto csh

hash ksh, sh

shell_builtins(1)

NAME

DESCRIPTION

1394 man pages section 1: User Commands • Last Revised 14 Dec 2001

Command Shell

hashstat csh

history csh

if csh, ksh, sh

jobs csh, ksh, sh

kill csh, ksh, sh

let ksh

limit csh

login csh, ksh, sh

logout csh, ksh, sh

nice csh

newgrp ksh, sh

notify csh

onintr csh

popd csh

print ksh

pushd csh

pwd ksh, sh

read ksh, sh

readonly ksh, sh

rehash csh

repeat csh

return ksh, sh

select ksh

set csh, ksh, sh

setenv csh

shift csh, ksh, sh

source csh

stop csh, ksh, sh

suspend csh, ksh, sh

shell_builtins(1)

User Commands 1395

Command Shell

switch csh

test ksh, sh

time csh

times ksh, sh

trap ksh, sh

type ksh, sh

typeset ksh

ulimit ksh, sh

umask csh, ksh, sh

unalias csh, ksh

unhash csh

unlimit csh

unset csh, ksh, sh

unsetenv csh

until ksh, sh

wait csh, ksh, sh

whence ksh

while csh, ksh, sh

Input/output redirection is now permitted for these commands. File descriptor 1 is
the default output location. When Job Control is enabled, additional Special Commands
are added to the shell’s environment.

In addition to these built-in reserved command words, sh also uses:

: No effect; the command does nothing. A zero exit code is returned.

.filename Read and execute commands from filename and return. The search
path specified by PATH is used to find the directory containing
filename.

Built-in commands are executed within the C shell. If a built-in command occurs as
any component of a pipeline except the last, it is executed in a subshell. In addition to
these built-in reserved command words, csh also uses:

: Null command. This command is interpreted, but performs no
action.

shell_builtins(1)

Bourne Shell, sh,
Special Commands

C shell, csh

1396 man pages section 1: User Commands • Last Revised 14 Dec 2001

Input/Output redirection is permitted. Unless otherwise indicated, the output is
written on file descriptor 1 and the exit status, when there is no syntax error, is zero.

Commands that are preceded by one or two * (asterisks) are treated specially in the
following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

In addition to these built-in reserved command words, ksh also uses:

* : [arg . . .] The command only expands parameters.

* .file [arg . . .] Read the complete file then execute the commands. The commands
are executed in the current shell environment. The search path
specified by PATH is used to find the directory containing file. If
any arguments arg are given, they become the positional
parameters. Otherwise, the positional parameters are unchanged.
The exit status is the exit status of the last command executed. the
loop termination test.

intro(1), alias(1), break(1), cd(1), chmod(1), csh(1), echo(1), exec(1), exit(1),
find(1), getoptcvt(1), getopts(1), glob(1), hash(1), history(1), jobs(1),
kill(1), ksh(1), let(1), limit(1), login(1), logout(1), newgrp(1), nice(1),
nohup(1), print(1), pwd(1), read(1), readonly(1), set(1), sh(1), shift(1),
suspend(1), test(1B), time(1), times(1), trap(1), typeset(1), umask(1), wait(1),
chdir(2), chmod(2), creat(2), umask(2), getopt(3C), profile(4), environ(5)

shell_builtins(1)

Korn Shell, ksh,
Special Commands

SEE ALSO

User Commands 1397

shift – shell built-in function to traverse either a shell’s argument list or a list of
field-separated words

shift [n]

shift [variable]

* shift [n]

The positional parameters from $n+1 . . . are renamed $1 If n is not given, it is
assumed to be 1.

The components of argv, or variable, if supplied, are shifted to the left, discarding the
first component. It is an error for the variable not to be set or to have a null value.

The positional parameters from $n+1 $n+1 . . . are renamed $1 . . ., default n
is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative
number less than or equal to $#.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), sh(1), attributes(5)

shift(1)

NAME

sh

csh

ksh

sh

csh

ksh

ATTRIBUTES

SEE ALSO

1398 man pages section 1: User Commands • Last Revised 15 Apr 1994

shutdown – close down the system at a given time

/usr/ucb/shutdown [-fhknr] time [warning-message…]

shutdown provides an automated procedure to notify users when the system is to be
shut down. time specifies when shutdown will bring the system down; it may be the
word now (indicating an immediate shutdown), or it may specify a future time in one
of two formats: +number and hour:min. The first form brings the system down in
number minutes, and the second brings the system down at the time of day indicated
in 24-hour notation.

At intervals that get closer as the apocalypse approaches, warning messages are
displayed at terminals of all logged-in users, and of users who have remote mounts on
that machine.

At shutdown time a message is written to the system log daemon, syslogd(1M),
containing the time of shutdown, the instigator of the shutdown, and the reason. Then
a terminate signal is sent to init, which brings the system down to single-user mode.

As an alternative to the above procedure, these options can be specified:

-f Arrange, in the manner of fastboot(1B), that when the system is
rebooted, the file systems will not be checked.

-h Execute halt(1M).

-k Simulate shutdown of the system. Do not actually shut down the system.

-n Prevent the normal sync(2) before stopping.

-r Execute reboot(1M).

/etc/rmtab remote mounted file system table

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

fastboot(1B), login(1), halt(1M), reboot(1M), syslogd(1M), sync(2), rmtab(4),
attributes(5)

Only allows you to bring the system down between now and 23:59 if you use the
absolute time for shutdown.

shutdown(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1399

size – print section sizes in bytes of object files

size [-f] [-F] [-n] [-o] [-V] [-x] filename…

The size command produces segment or section size information in bytes for each
loaded section in ELF object files. size prints out the size of the text, data, and bss
(uninitialized data) segments (or sections) and their total.

size processes ELF object files entered on the command line. If an archive file is input
to the size command, the information for each object file in the archive is displayed.

When calculating segment information, the size command prints out the total file
size of the non-writable segments, the total file size of the writable segments, and the
total memory size of the writable segments minus the total file size of the writable
segments.

If it cannot calculate segment information, size calculates section information. When
calculating section information, it prints out the total size of sections that are
allocatable, non-writable, and not NOBITS, the total size of the sections that are
allocatable, writable, and not NOBITS, and the total size of the writable sections of
type NOBITS. NOBITS sections do not actually take up space in the filename.

If size cannot calculate either segment or section information, it prints an error
message and stops processing the file.

The following options are supported:

-f Prints out the size of each allocatable section, the name of the section, and
the total of the section sizes. If there is no section data, size prints out an
error message and stops processing the file.

-F Prints out the size of each loadable segment, the permission flags of the
segment, then the total of the loadable segment sizes. If there is no segment
data, size prints an error message and stops processing the file.

-n Prints out non-loadable segment or non-allocatable section sizes. If
segment data exists, size prints out the memory size of each loadable
segment or file size of each non-loadable segment, the permission flags,
and the total size of the segments. If there is no segment data, size prints
out, for each allocatable and non-allocatable section, the memory size, the
section name, and the total size of the sections. If there is no segment or
section data, size prints an error message and stops processing.

-o Prints numbers in octal, not decimal.

-V Prints the version information for the size command on the standard
error output.

-x Prints numbers in hexadecimal, not decimal.

The examples below are typical size output.

size(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

1400 man pages section 1: User Commands • Last Revised 16 Oct 1996

EXAMPLE 1

example% size filename
2724 + 88 + 0 = 2812

EXAMPLE 2

example% size -f filename
26(.text) + 5(.init) + 5(.fini) = 36

EXAMPLE 3

example% size -F filename
2724(r-x) + 88(rwx) + 0(rwx) = 2812 ... (If statically linked)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

as(1), cc(1B), ld(1), ar(3HEAD), a.out(4), attributes(5)

Since the size of bss sections is not known until link-edit time, the size command will
not give the true total size of pre-linked objects.

size(1)

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1401

sleep – suspend execution for an interval

sleep time

The sleep utility will suspend execution for at least the integral number of seconds
specified by the time operand.

The following operands are supported:

time A non-negative decimal integer specifying the number of seconds for
which to suspend execution.

EXAMPLE 1 Example of the sleep command.

To execute a command after a certain amount of time:

(sleep 105; command)&
or to execute a command every so often:

while true
do

command
sleep 37

done

See environ(5) for descriptions of the following environment variables that affect the
execution of sleep: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The execution was successfully suspended for at least time seconds, or a
SIGALRM signal was received (see NOTES).

>0 An error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

wait(1), alarm(2), sleep(3C), wait(3UCB), attributes(5), environ(5)

If the sleep utility receives a SIGALRM signal, one of the following actions will be
taken:

� Terminate normally with a zero exit status.
� Effectively ignore the signal.

The sleep utility will take the standard action for all other signals.

sleep(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

1402 man pages section 1: User Commands • Last Revised 1 Feb 1995

smart2cfg – Compaq Smart-2 EISA/PCI and Smart-2SL PCI Array Controller ioctl
utility

smart2cfg -c [controller_num]

smart2cfg -d [controller_num]

smart2cfg -h

smart2cfg -l logical_drive_num [controller_num]

smart2cfg -p physical_drive_num bus_num [controller_num]

The smart2cfg utility issues controller-specific ioctls to the Compaq Smart-2
EISA/PCI and Smart-2SL PCI array controller using the smartii(7D) driver.

smart2cfg provides information about the Smart-2 and Smart-2SL controllers
installed on the system, the Logical and Physical drives as well as the details of the
ReadWrite cache present on each controller. The utility is text based and is driven by
command line arguments. smart2cfg and the smartii(7D) driver communicate
using ioctls. smart2cfg also supports multiple commands.

The following options are supported:

-c controller_num
Prints cache details of the cache on controller controller_num.

-d controller_num
Prints details of all the physical disks, all the logical drives, and the cache on
controller controller_num.

-h
Provides on-line help for the smart2cfg utility.

-l logical_drive_num controller_num
Prints logical drive details of the drive logical_drive_num on controller
controller_num.

-p physical_drive_num bus_num controller_num
Prints physical drive details of the disk physical_drive_num on bus bus_num on
controller controller_num.

EXAMPLE 1 Providing details of the physical disk

To provide details of the physical disk with SCSI ID 0, on Bus 0, on controller 0:

example% smart2cfg -p -0 0 0

EXAMPLE 2 Providing logical drive details

To provide logical drive details of logical drive 0 on controller 0:

example% smart2cfg -l 0 0

smart2cfg(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

User Commands 1403

EXAMPLE 3 Providing cache details

To provide cache details of controller 0:

example% smart2cfg -c 0

EXAMPLE 4 Providing information of all physical disks, logical drives, and cache on a
controller

To provide information on all physical disks, logical drives, and cache on controller 0:

smart2cfg -d

EXAMPLE 5 Providing details of the disk

To provide details of the disk with SCSI ID 0, on Bus 0, on controller 0, and logical
drive details of logical drive 0 on controller 1:

example% smart2cfg -p 0 0 0 −l 0 1

/devices/eisa/smartii@<instance>,<ioaddr>:ioctlnode

/devices/pci@0,<bus_num>/pci1014,22@<device_num>/pcie11,4030@0:ioctlnode

/devices/pci@0,<bus_num>/pci1014,22@<device_num>/pcie11,4031@0:ioctlnode

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), smartii(7D)

If the controller is not specified, the first controller is taken as default.

smart2cfg(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

1404 man pages section 1: User Commands • Last Revised 20 Jun 1997

soelim – resolve and eliminate .so requests from nroff or troff input

soelim [filename…]

soelim reads the specified files or the standard input and performs the textual
inclusion implied by the nroff(1) directives of the form

.so somefile

when they appear at the beginning of input lines. This is useful since programs such
as tbl(1) do not normally do this; it allows the placement of individual tables in
separate files to be run as a part of a large document.

An argument consisting of ‘−’ is taken to be a file name corresponding to the standard
input.

Note: Inclusion can be suppressed by using ‘ ’ ’ instead of ‘ . ’, that is,

’ so /usr/share/lib/tmac/tmac.s

EXAMPLE 1 A sample of the soelim command.

A sample usage of soelim would be

example% soelim exum?.n | tbl | nroff -ms | col | lpr

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

more(1), nroff(1), tbl(1), attributes(5)

soelim(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 1405

solregis – Solaris user registration

/usr/dt/bin/solregis [-dc]

The solregis command initiates the Solaris user registration procedure. This allows
users to register with Sun Microsystems and receive information about Solaris.
Normally, solregis is executed in conditional mode as a part of desktop login so
that users are prompted at desktop start up time to register, unless they have already
done so.

The following options are supported:

-d Delay display of the initial screen until a window manager has asserted
control of the X display.

-c Conditional mode. If specified, solregis will exit without any dialog
displayed if: (1) $HOME/.solregis/disable exists, (2) DISABLE=1 is
specified in /etc/default/solregis, or (3) the user has already
registered.

The following resources can control the behavior and appearance of solregis:

Name Class Value Type Default

disable Disable Boolean False

localeChoices LocaleChoices Int 1

action0 Action String /usr/dt/bin/hotjava

initialURL0 URL String file:///usr/dt/app-config \

/solregis/EReg.html

localeChoicen LocaleChoice String null

actionn Action String null for n>0

initialURLn URL String null for n>0

printContext PrintContext String thisorgunit

disable If TRUE, when executed in conditional mode
solregis simply exits without displaying anything.

localeChoices Specifies the number of localeChoicen, actionn
and initialURLn sets. The first set is 0, so if
localeChoices is 1, localeChoice0, action0,and
initialURL0 are the only active resources. If
localeChoices is 1, none of the localeChoicen
strings are displayed, and action0, and so forth. are

solregis(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

1406 man pages section 1: User Commands • Last Revised 23 Dec 1996

used. If localeChoices is greater than 1, each
localeChoicen string is made an element in an
exclusive choice list and the index of the selected item
controls which actionn and initialURLn resources
are applied.

localeChoicen Specifies the string presented to the user for this choice.

actionn Specifies the file name of the command to be executed
(normally expected to be a World Wide Web browser)
when the user selects "Register Now", or the special
string "print". If "print" is specified, the initialURLn
string must be a file name on the local system, naming
a file which is to be printed after prompting the user
for a print destination.

initialURLn Specifies the argument to be passed to actionn for
initial registration. This will normally be the Universal
Resource Locator for the initial page to be displayed by
the World Wide Web browser.

printContext XFN naming context under which the printers to
display to the user if the special "print" action are
named, in the service/printer context. For example, if
the default printContext "thisorgunit" is used, the
printers in thisorgunit/service/printer are
displayed.

See environ(5) for descriptions of the following environment variables that affect the
execution of solregis: HOME, LANG, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/etc/default/solregis
Default values.

/$HOME/.solregis/uprops
User registration information.

/$HOME/.solregis/disable
Users disabled from registration.

/usr/dt/app-defaults/C/Solregis
Default locale resources.

/usr/dt/app-defaults/$LANG/Solregis
Default localized resources.

solregis(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

User Commands 1407

/etc/dt/app-defaults/C/Solregis
Default installation resources.

/usr/dt/app-defaults/$LANG/Solregis
Localized installation resources.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsregu

attributes(5), environ(5)

solregis(1)

ATTRIBUTES

SEE ALSO

1408 man pages section 1: User Commands • Last Revised 23 Dec 1996

sort – sort, merge, or sequence check text files

/usr/bin/sort [-bcdfimMnru] [-k keydef] [-o output] [-S kmem]
[-t char] [-T directory] [-y [kmem]] [-z recsz] [+pos1 [-pos2]] [file…]

/usr/xpg4/bin/sort [-bcdfimMnru] [-k keydef] [-o output] [-S kmem]
[-t char] [-T directory] [-y [kmem]] [-z recsz] [+pos1 [-pos2]] [file…]

The sort command sorts lines of all the named files together and writes the result on
the standard output.

Comparisons are based on one or more sort keys extracted from each line of input. By
default, there is one sort key, the entire input line. Lines are ordered according to the
collating sequence of the current locale.

The following options alter the default behavior:

-c Checks that the single input file is ordered as specified by the
arguments and the collating sequence of the current locale. The
exit code is set and no output is produced unless the file is out of
sort.

-c Same as /usr/bin/sort except no output is produced under any
circumstances.

-m Merges only. The input files are assumed to be already sorted.

-o output Specifies the name of an output file to be used instead of the
standard output. This file can be the same as one of the input files.

-S kmem Specifies the maximum amount of swap-based memory used for
sorting, in kilobytes (the default unit). kmem can also be specified
directly as a number of bytes (b), kilobytes (k), megabytes (m),
gigabytes (g), or terabytes (t); or as a percentage (%) of the
installed physical memory.

-T directory Specifies the directory in which to place temporary files.

-u Unique: suppresses all but one in each set of lines having equal
keys. If used with the -c option, checks that there are no lines with
duplicate keys in addition to checking that the input file is sorted.

-y kmem (obsolete). This option was used to specify the amount of main
memory initially used by sort. Its functionality is not appropriate
for a virtual memory system; memory usage for sort is now
specified using the -S option.

-z recsz (obsolete). This option was used to prevent abnormal termination
when lines longer than the system-dependent default buffer size
are encountered. Because sort automatically allocates buffers
large enough to hold the longest line, this option has no effect.

sort(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

/usr/bin/sort

/usr/xpg4/bin/sort

User Commands 1409

The default sort order depends on the value of LC_COLLATE. If LC_COLLATE is set to
C, sorting will be in ASCII order. If LC_COLLATE is set to en_US, sorting is case
insensitive except when the two strings are otherwise equal and one has an uppercase
letter earlier than the other. Other locales will have other sort orders.

The following options override the default ordering rules. When ordering options
appear independent of any key field specifications, the requested field ordering rules
are applied globally to all sort keys. When attached to a specific key (see Sort Key
Options), the specified ordering options override all global ordering options for that
key. In the obsolescent forms, if one or more of these options follows a +pos1 option, it
will affect only the key field specified by that preceding option.

-d ‘‘Dictionary’’ order: only letters, digits, and blanks (spaces and
tabs) are significant in comparisons.

-f Folds lower-case letters into upper case.

-i Ignores non-printable characters.

-M Compares as months. The first three non-blank characters of the
field are folded to upper case and compared. For example, in
English the sorting order is "JAN" < "FEB" < . . . < "DEC". Invalid
fields compare low to "JAN". The -M option implies the -b option
(see below).

-n Restricts the sort key to an initial numeric string, consisting of
optional blank characters, optional minus sign, and zero or more
digits with an optional radix character and thousands separators
(as defined in the current locale), which will be sorted by
arithmetic value. An empty digit string is treated as zero. Leading
zeros and signs on zeros do not affect ordering.

-r Reverses the sense of comparisons.

The treatment of field separators can be altered using the following options:

-b Ignores leading blank characters when determining the starting
and ending positions of a restricted sort key. If the -b option is
specified before the first sort key option, it is applied to all sort key
options. Otherwise, the -b option can be attached independently
to each -k field_start, field_end, or +pos1 or −pos2 option-argument
(see below).

-t char Use char as the field separator character. char is not considered to
be part of a field (although it can be included in a sort key). Each
occurrence of char is significant (for example, <char><char>
delimits an empty field). If -t is not specified, blank characters are
used as default field separators; each maximal non-empty
sequence of blank characters that follows a non-blank character is
a field separator.

sort(1)

Ordering Options

Field Separator
Options

1410 man pages section 1: User Commands • Last Revised 19 Nov 2001

Sort keys can be specified using the options:

-k keydef The keydef argument is a restricted sort key field definition. The
format of this definition is:

-k field_start [type] [,field_end [type]]

where:

field_start and field_end
define a key field restricted to a portion of the line.

type
is a modifier from the list of characters bdfiMnr. The b
modifier behaves like the -b option, but applies only to the
field_start or field_end to which it is attached and characters
within a field are counted from the first non-blank character in
the field. (This applies separately to first_character and
last_character.) The other modifiers behave like the
corresponding options, but apply only to the key field to which
they are attached. They have this effect if specified with
field_start, field_end or both. If any modifier is attached to a
field_start or to a field_end, no option applies to either.

When there are multiple key fields, later keys are compared only
after all earlier keys compare equal. Except when the -u option is
specified, lines that otherwise compare equal are ordered as if
none of the options -d, -f, -i, -n or -k were present (but with -r
still in effect, if it was specified) and with all bytes in the lines
significant to the comparison.

The notation:

-k field_start[type][,field_end[type]]

defines a key field that begins at field_start and ends at field_end
inclusive, unless field_start falls beyond the end of the line or after
field_end, in which case the key field is empty. A missing field_end
means the last character of the line.

A field comprises a maximal sequence of non-separating characters
and, in the absence of option -t, any preceding field separator.

The field_start portion of the keydef option-argument has the form:

field_number[.first_character]

Fields and characters within fields are numbered starting with 1.
field_number and first_character, interpreted as positive decimal
integers, specify the first character to be used as part of a sort key.
If .first_character is omitted, it refers to the first character of the
field.

sort(1)

Sort Key Options

User Commands 1411

The field_end portion of the keydef option-argument has the form:

field_number[.last_character]

The field_number is as described above for field_start. last_character,
interpreted as a non-negative decimal integer, specifies the last
character to be used as part of the sort key. If last_character
evaluates to zero or .last_character is omitted, it refers to the last
character of the field specified by field_number.

If the -b option or b type modifier is in effect, characters within a
field are counted from the first non-blank character in the field.
(This applies separately to first_character and last_character.)

[+pos1 [-pos2]] (obsolete). Provide functionality equivalent to the -kkeydef option.

pos1 and pos2 each have the form m.n optionally followed by one
or more of the flags bdfiMnr. A starting position specified by
+m.n is interpreted to mean the n+1st character in the m+1st field.
A missing .n means .0, indicating the first character of the m+1st
field. If the b flag is in effect n is counted from the first non-blank
in the m+1st field; +m.0b refers to the first non-blank character in
the m+1st field.

A last position specified by −m.n is interpreted to mean the nth
character (including separators) after the last character of the mth
field. A missing .n means .0, indicating the last character of the
mth field. If the b flag is in effect n is counted from the last leading
blank in the m+1st field; −m.1b refers to the first non-blank in the
m+1st field.

The fully specified +pos1 −pos2 form with type modifiers T and U:

+w.xT -y.zU

is equivalent to:

undefined (z==0 & U contains b & -t is present)
-k w+1.x+1T,y.0U (z==0 otherwise)

-k w+1.x+1T,y+1.zU (z > 0)

Implementations support at least nine occurrences of the sort keys
(the -k option and obsolescent +pos1 and −pos2) which are
significant in command line order. If no sort key is specified, a
default sort key of the entire line is used.

The following operand is supported:

file A path name of a file to be sorted, merged or checked. If no file operands
are specified, or if a file operand is −, the standard input will be used.

sort(1)

OPERANDS

1412 man pages section 1: User Commands • Last Revised 19 Nov 2001

See largefile(5) for the description of the behavior of sort when encountering files
greater than or equal to 2 Gbyte (231 bytes).

In the following examples, first the preferred and then the obsolete way of specifying
sort keys are given as an aid to understanding the relationship between the two
forms.

EXAMPLE 1 Sorting with the second field as a sort key

Either of the following commands sorts the contents of infile with the second field
as the sort key:

example% sort -k 2,2 infile

example% sort +1 −2 infile

EXAMPLE 2 Sorting in reverse order

Either of the following commands sorts, in reverse order, the contents of infile1 and
infile2, placing the output in outfile and using the second character of the
second field as the sort key (assuming that the first character of the second field is the
field separator):

example% sort -r -o outfile -k 2.2,2.2 infile1 infile2

example% sort -r -o outfile +1.1 −1.2 infile1 infile2

EXAMPLE 3 Sorting using a specified character in one of the files

Either of the following commands sorts the contents of infile1 and infile2 using
the second non-blank character of the second field as the sort key:

example% sort -k 2.2b,2.2b infile1 infile2

example% sort +1.1b −1.2b infile1 infile2

EXAMPLE 4 Sorting by numeric user ID

Either of the following commands prints the passwd(4) file (user database) sorted by
the numeric user ID (the third colon-separated field):

example% sort -t : -k 3,3n /etc/passwd

example% sort -t : +2 −3n /etc/passwd

EXAMPLE 5 Printing sorted lines excluding lines that duplicate a field

Either of the following commands prints the lines of the already sorted file infile,
suppressing all but one occurrence of lines having the same third field:

example% sort -um -k 3.1,3.0 infile

example% sort -um +2.0 −3.0 infile

sort(1)

USAGE

EXAMPLES

User Commands 1413

EXAMPLE 6 Sorting by host IP address

Either of the following commands prints the hosts(4) file (IPv4 hosts database),
sorted by the numeric IP address (the first four numeric fields):

example$ sort -t . -k 1,1n -k 2,2n -k 3,3n -k 4,4n /etc/hosts

example$ sort -t . +0 -1n +1 -2n +2 -3n +3 -4n /etc/hosts

Since ’.’ is both the field delimiter and, in many locales, the decimal separator, failure
to specify both ends of the field will lead to results where the second field is
interpreted as a fractional portion of the first, and so forth.

See environ(5) for descriptions of the following environment variables that affect the
execution of sort: LC_COLLATE, LC_MESSAGES, and NLSPATH.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of
text data as characters (for example, single- versus multi-byte
characters in arguments and input files) and the behavior of
character classification for the -b, -d, -f, -i and -n options.

LC_NUMERIC Determine the locale for the definition of the radix character and
thousands separator for the -n option.

The following exit values are returned:

0 All input files were output successfully, or -c was specified and the input
file was correctly sorted.

1 Under the -c option, the file was not ordered as specified, or if the -c and
-u options were both specified, two input lines were found with equal
keys.

>1 An error occurred.

/var/tmp/stm??? temporary files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

sort(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/sort

/usr/xpg4/bin/sort

1414 man pages section 1: User Commands • Last Revised 19 Nov 2001

comm(1), join(1), uniq(1), nl_langinfo(3C), strftime(3C), hosts(4), passwd(4),
attributes(5), environ(5), largefile(5), XPG4(5)

Comments and exits with non-zero status for various trouble conditions (for example,
when input lines are too long), and for disorders discovered under the -c option.

When the last line of an input file is missing a new-line character, sort appends
one, prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

One can tune sort performance for a specific scenario using the -S option. However,
one should note in particular that sort has greater knowledge of how to use a finite
amount of memory for sorting than the virtual memory system. Thus, a sort invoked
to request an extremely large amount of memory via the -S option could perform
extremely poorly.

As noted, certain of the field modifiers (such as -M and -d) cause the interpretation of
input data to be done with reference to locale-specific settings. The results of this
interpretation can be unexpected if one’s expectations are not aligned with the
conventions established by the locale. In the case of the month keys, sort does not
attempt to compensate for "approximate" month abbreviations. The precise month
abbreviations from nl_langinfo(3C) or strftime(3C) are the only ones recognized.
For printable or dictionary order, if these concepts are not well-defined by the locale,
an empty sort key may be the result, leading to the next key being the significant one
for determining the appropriate ordering.

sort(1)

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 1415

sortbib – sort a bibliographic database

sortbib [-s KEYS] database…

sortbib sorts files of records containing refer key-letters by user-specified keys.
Records may be separated by blank lines, or by ‘.[’ and ‘.]’ delimiters, but the two
styles may not be mixed together. This program reads through each database and pulls
out key fields, which are sorted separately. The sorted key fields contain the file
pointer, byte offset, and length of corresponding records. These records are delivered
using disk seeks and reads, so sortbib may not be used in a pipeline to read
standard input.

The most common key-letters and their meanings are given below.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced

%F Footnote number or label (supplied by refer)

%G Government order number

%H Header commentary, printed before reference

%I Issuer (publisher)

%J Journal containing article

%K Keywords to use in locating reference

%L Label field used by -k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%O Other commentary, printed at end of reference

%P Page number(s)

%Q Corporate or Foreign Author (unreversed)

%R Report, paper, or thesis (unpublished)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract — used by roffbib, not by refer

%Y,Z Ignored by refer

sortbib(1)

NAME

SYNOPSIS

DESCRIPTION

1416 man pages section 1: User Commands • Last Revised 14 Sep 1992

By default, sortbib alphabetizes by the first %A and the %D fields, which contain the
senior author and date.

sortbib sorts on the last word on the %A line, which is assumed to be the author’s
last name. A word in the final position, such as ‘jr.’ or ‘ed.’, will be ignored if the
name beforehand ends with a comma. Authors with two-word last names or unusual
constructions can be sorted correctly by using the nroff convention ‘\0’ in place of a
blank. A %Q field is considered to be the same as %A, except sorting begins with the
first, not the last, word. sortbib sorts on the last word of the %D line, usually the
year. It also ignores leading articles (like ‘A’ or ‘The’) when sorting by titles in the %T
or %J fields; it will ignore articles of any modern European language. If a
sort-significant field is absent from a record, sortbib places that record before other
records containing that field.

No more than 16 databases may be sorted together at one time. Records longer than
4096 characters will be truncated.

-sKEYS Specify new KEYS. For instance, -sATD will sort by author, title, and date,
while -sA+D will sort by all authors, and date. Sort keys past the fourth are
not meaningful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

addbib(1), indxbib(1), lookbib(1), refer(1), roffbib(1), attributes(5)

Records with missing author fields should probably be sorted by title.

sortbib(1)

OPTIONS

ATTRIBUTES

SEE ALSO

BUGS

User Commands 1417

sotruss – trace shared library procedure calls

/usr/bin/sotruss [-f] [-F bindfromlist] [-T bindtolist] [-o outputfile]
executable [executable arguments…]

sotruss executes the specified command and produces a trace of the library calls that
it performs. Each line of the trace output reports what bindings are occurring between
dynamic objects as each procedure call is executed. sotruss traces all of the
procedure calls that occur between dynamic objects via the Procedure Linkage Table, so
only those procedure calls which are bound via the Procedure Linkage Table will be
traced. See Linker and Libraries Guide

-F bindfromlist A colon-separated list of libraries that are to be traced.
Only calls from these libraries will be traced. The
default is to trace calls from the main executable only.

-T bindtolist A colon-separated list of libraries that are to be traced.
Only calls to these libraries will be traced. The default
is to trace all calls.

-o outputfile sotruss output will be directed to the outputfile. If this
option is combined with the -f option then the pid of
the executing program will be placed at the end of the
filename. By default sotruss output is placed on
stderr.

-f Follow all children created by fork() and print
truss output on each child process. This option will
also cause a pid to be output on each truss output
line.

EXAMPLE 1 An example of sotruss.

A simple example shows the tracing of a simple ls command:

% sotruss ls | more
ls -> libc.so.1:*atexit(0xef7d7d1c, 0x23c00, 0x0)
ls -> libc.so.1:*atexit(0x1392c, 0xef7d7d1c, 0xef621bb0)
ls -> libc.so.1:*setlocale(0x6, 0x1396c, 0xef621ba8)
ls -> libc.so.1:*textdomain(0x13970, 0x1396c, 0xef621ba8)
ls -> libc.so.1:*time(0x0, 0xef61f6fc, 0xef621ba8)
ls -> libc.so.1:*isatty(0x1, 0xef61f6fc, 0x0)
ls -> libc.so.1:*getopt(0x1, 0xeffff8fc, 0x13980)
ls -> libc.so.1:*malloc(0x100, 0x0, 0x0)
ls -> libc.so.1:*malloc(0x9000, 0x0, 0x0)
ls -> libc.so.1:*lstat64(0x23ee8, 0xeffff7a0, 0x0)
. . .
ls -> libc.so.1:*printf(0x13a64, 0x26208, 0x23ef0)
ls -> libc.so.1:*printf(0x13a64, 0x26448, 0x23ef0)

ls -> libc.so.1:*exit(0x0, 0x24220, 0x2421c)

See attributes(5) for descriptions of the following attributes:

sotruss(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

1418 man pages section 1: User Commands • Last Revised 12 May 1997

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

ld.so.1(1), truss(1), whocalls(1), fork(2), attributes(5)

Linker and Libraries Guide

sotruss(1)

SEE ALSO

User Commands 1419

spell, hashmake, spellin, hashcheck – report spelling errors

spell [-bilvx] [+ local_file] [file] …

/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling_list

The spell command collects words from the named files and looks them up in a
spelling list. Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, or suffixes) from words in the spelling list are written to the
standard output.

If there are no file arguments, words to check are collected from the standard input.
spell ignores most troff(1), tbl(1), and eqn(1) constructs. Copies of all output
words are accumulated in the history file (spellhist), and a stop list filters out
misspellings (for example, their=thy−y+ier) that would otherwise pass.

By default, spell (like deroff(1)) follows chains of included files (.so and .nx
troff(1) requests), unless the names of such included files begin with /usr/lib.

The standard spelling list is based on many sources, and while more haphazard than
an ordinary dictionary, is also more effective in respect to proper names and popular
technical words. Coverage of the specialized vocabularies of biology, medicine and
chemistry is light.

Three programs help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spellin Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output.

hashcheck Reads a compressed spelling_list and recreates the nine-digit hash
codes for all the words in it. It writes these codes on the standard
output.

The following options are supported:

-b Check British spelling. Besides preferring "centre," "colour,"
"programme," "speciality," "travelled," and so forth, this option
insists upon −ise in words like "standardise."

-i Cause deroff(1) to ignore .so and .nx commands. If deroff(1)
is not present on the system, then this option is ignored.

-l Follow the chains of all included files.

-v Print all words not literally in the spelling list, as well as plausible
derivations from the words in the spelling list.

spell(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1420 man pages section 1: User Commands • Last Revised 14 Dec 1995

-x Print every plausible stem, one per line, with = preceding each
word.

+local_file Specify a set of words that are correct spellings (in addition to
spell’s own spelling list) for each job. local_file is the name of a
user-provided file that contains a sorted list of words, one per line.
Words found in local_file are removed from spell’s output. Use
sort(1) to order local_file in ASCII collating sequence. If this
ordering is not followed, some entries in local_file may be ignored.

The following operands are supported:

file A path name of a text file to check for spelling errors. If no files are named,
words are collected from the standard input.

See environ(5) for descriptions of the following environment variables that affect the
execution of spell: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

D_SPELL=/usr/lib/spell/hlist[ab]
hashed spelling lists, American & British

S_SPELL=/usr/lib/spell/hstop
hashed stop list

H_SPELL=/var/adm/spellhist
history file

/usr/share/lib/dict/words
master dictionary

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

deroff(1), eqn(1), sort(1), tbl(1), troff(1), attributes(5), environ(5)

Misspelled words can be monitored by default by setting the H_SPELL variable in
/usr/bin/spell to the name of a file that has permission mode 666.

spell works only on English words defined in the U.S. ASCII codeset.

Because copies of all output are accumulated in the spellhist file, spellhist may
grow quite large and require purging.

spell(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1421

The spelling list’s coverage is uneven; new installations may wish to monitor the
output for several months to gather local additions.

British spelling was done by an American.

spell(1)

BUGS

1422 man pages section 1: User Commands • Last Revised 14 Dec 1995

spline – interpolate smooth curve

spline [-aknpx] …

spline takes pairs of numbers from the standard input as abcissas and ordinates of a
function. It produces a similar set, which is approximately equally spaced and
includes the input set, on the standard output. The cubic spline output (R. W.
Hamming, Numerical Methods for Scientists and Engineers,2nd ed., 349ff) has two
continuous derivatives, and sufficiently many points to look smooth when plotted, for
example by graph(1).

-a Supply abscissas automatically (they are missing from the input); spacing is
given by the next argument, or is assumed to be 1 if next argument is not a
number.

-k The constant k used in the boundary value computation

(2nd deriv. at end) = k*(2nd deriv. next to end)

is set by the next argument. By default k = 0.

-n Space output points so that approximately n intervals occur between the
lower and upper x limits. (Default n = 100.)

-p Make output periodic, that is, match derivatives at ends. First and last
input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these
limits are calculated from the data. Automatic abcissas start at lower limit
(default 0).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

graph(1), attributes(5)

R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed.

When data is not strictly monotonic in x, spline reproduces the input without
interpolating extra points.

A limit of 1000 input points is enforced silently.

spline(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

BUGS

User Commands 1423

split – split a file into pieces

split [-linecount | -l linecount] [-a suffixlength] [file [name]]

split [-b n | nk | nm] [-a suffixlength] [file [name]]

The split utility reads file and writes it in linecount-line pieces into a set of
output-files. The name of the first output-file is name with aa appended, and so on
lexicographically, up to zz (a maximum of 676 files). The maximum length of name is 2
characters less than the maximum filename length allowed by the filesystem. See
statvfs(2). If no output name is given, x is used as the default (output-files will be
called xaa, xab, and so forth).

The following options are supported:

−linecount | -l linecount Number of lines in each piece. Defaults to 1000 lines.

-a suffixlength Uses suffixlength letters to form the suffix portion of the
filenames of the split file. If -a is not specified, the
default suffix length is 2. If the sum of the name
operand and the suffixlength option-argument would
create a filename exceeding NAME_MAX bytes, an error
will result; split will exit with a diagnostic message
and no files will be created.

-b n Splits a file into pieces n bytes in size.

-b nk Splits a file into pieces n*1024 bytes in size.

-b nm Splits a file into pieces n*1 048 576 bytes in size.

The following operands are supported:

file The path name of the ordinary file to be split. If no input file is given or file
is −, the standard input will be used.

name The prefix to be used for each of the files resulting from the split
operation. If no name argument is given, x will be used as the prefix of the
output files. The combined length of the basename of prefix and suffixlength
cannot exceed NAME_MAX bytes; see OPTIONS.

See largefile(5) for the description of the behavior of split when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of split: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

split(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

1424 man pages section 1: User Commands • Last Revised 16 Apr 1999

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

csplit(1), statvfs(2), attributes(5), environ(5), largefile(5)

split(1)

SEE ALSO

User Commands 1425

srchtxt – display contents of, or search for a text string in, message data bases

srchtxt [-s] [-l locale] [-m msgfile ,…] [text]

The srchtxt utility is used to display all the text strings in message data bases, or to
search for a text string in message data bases (see mkmsgs(1)). These data bases are
files in the directory /usr/lib/locale/locale/LC_MESSAGES (see setlocale(3C)),
unless a file name given with the -m option contains a /. The directory locale can be
viewed as the name of the language in which the text strings are written. If the -l
option is not specified, the files accessed will be determined by the value of the
environment variable LC_MESSAGES. If LC_MESSAGES is not set, the files accessed
will be determined by the value of the environment variable LANG. If LANG is not set,
the files accessed will be in the directory /usr/lib/locale//C/LC_MESSAGES ,
which contains default strings.

If no text argument is present, then all the text strings in the files accessed will be
displayed.

If the -s option is not specified, the displayed text is prefixed by message sequence
numbers. The message sequence numbers are enclosed in angle brackets:
<msgfile:msgnum>.

msgfile name of the file where the displayed text occurred

msgnum sequence number in msgfile where the displayed text occurred

This display is in the format used by gettxt(1) and gettxt(3C).

-s Suppress printing of the message sequence numbers of the
messages being displayed.

-l locale Access files in the directory
/usr/lib/locale/locale/LC_MESSAGES. If -m msgfile is also
supplied, lOCALE is ignored for msgfiles containing a /.

-m msgfile Access files specified by one or more msgfiles. If msgfile contains a /
character, then msgfile is interpreted as a pathname; otherwise, it
will be assumed to be in the directory determined as described
above. To specify more than one msgfile, separate the file names
using commas.

text Search for the text string specified by text and display each one
that matches. text can take the form of a regular expression; see
regexp(5).

EXAMPLE 1 Using srchtxt

If message files have been installed in a locale named french by using mkmsgs(1),
then you could display the entire set of text strings in the french locale
(/usr/lib/locale/french/LC_MESSAGES/*) by typing:

example% srchtxt −l french

srchtxt(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

1426 man pages section 1: User Commands • Last Revised 20 Dec 1996

EXAMPLE 1 Using srchtxt (Continued)

EXAMPLE 2 Using srchtxt

If a set of error messages associated with the operating system have been installed in
the file UX in the french locale (/usr/lib/locale/french/LC_MESSAGE/UX),
then, using the value of the LANG environment variable to determine the locale to be
searched, you could search that file in that locale for all error messages dealing with
files by typing:

example% setenv LANG=french; export LANG
example% srchtxt -m UX "[Ff]ichier"

If /usr/lib/locale/french/LC_MESSAGES/UX contained the following strings:

Erreur E/S\n
Liste d’arguments trop longue\n
Fichier inexistant\n
Argument invalide\n
Trop de fichiers ouverts\n
Fichier trop long\n
Trop de liens\n
Argument hors du domaine\n
Identificateur supprim\n
Etreinte fatale\n

.

.

.

then the following strings would be displayed:

<UX:3>Fichier inexistant\n
<UX:5>Trop de fichiers ouverts\n
<UX:6>Fichier trop long\n

EXAMPLE 3 Using srchtxt

If a set of error messages associated with the operating system have been installed in
the file UX and a set of error messages associated with the INGRESS data base product
have been installed in the file ingress, both in the german locale, then you could
search for the pattern [Dd]atei in both the files UX and ingress in the german
locale by typing:

example% srchtxt -l german -m UX,ingress "[Dd]atei"

See environ(5) for a description of the LC_CTYPE environment variable that affects
the execution of srchtxt.

/usr/lib/locale/C/LC_MESSAGES/*
default files created by mkmsgs(1)

/usr/lib/locale/locale/LC_MESSAGES/*
message files created by mkmsgs(1)

srchtxt(1)

ENVIRONMENT
VARIABLES

FILES

User Commands 1427

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

exstr(1), gettxt(1), locale(1), mkmsgs(1), gettxt(3C), setlocale(3C),
attributes(5), environ(5), locale(5), regexp(5)

The error messages produced by srchtxt are intended to be self-explanatory. They
indicate an error in the command line or errors encountered while searching for a
particular locale and/or message file.

srchtxt(1)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

1428 man pages section 1: User Commands • Last Revised 20 Dec 1996

ssh – OpenSSH secure shell client (remote login program)

ssh [-l login_name] [hostname | user@hostname] [command]

ssh -afgknqtvxACNPTX246 [-c cipher_spec] [-e escape_char] [-i identity_file]
[-l login_name] [-o option] [-p port] [-L port:host:hostport] [-R
port:host:hostport] [hostname | user@hostname] [command]

ssh (Secure Shell) is a program for logging into a remote machine and for executing
commands on a remote machine. It is intended to replace rlogin and rsh, and to
provide secure encrypted communications between two untrusted hosts over an
insecure network. X11 connections and arbitrary TCP/IP ports can also be forwarded
over the secure channel.

ssh connects and logs into the specified hostname. The user must prove his or her
identity to the remote machine using one of several methods depending on the
protocol version used:

First, if the machine the user logs in from is listed in /etc/hosts.equiv or
/etc/shosts.equiv on the remote machine, and the user names are the same on
both sides, the user is immediately permitted to log in. Second, if .rhosts or
.shosts exists in the user’s home directory on the remote machine and contains a
line containing the name of the client machine and the name of the user on that
machine, the user is permitted to log in. This form of authentication alone is normally
not allowed by the server because it is not secure.

The second (and primary) authentication method is the rhosts or hosts.equiv
method combined with RSA-based host authentication. It means that if the login
would be permitted by $HOME/.rhosts, $HOME/.shosts, /etc/hosts.equiv, or
/etc/shosts.equiv, and if additionally the server can verify the client’s host key
(see /etc/ssh_known_hosts in the FILES section), only then is login permitted.
This authentication method closes security holes due to IP spoofing, DNS spoofing,
and routing spoofing.

Note to the administrator: /etc/hosts.equiv, $HOME/.rhosts, and the
rlogin/rsh protocol in general, are inherently insecure and should be disabled if
security is desired.

As a third authentication method, ssh supports RSA-based authentication. The
scheme is based on public-key cryptography. There are cryptosystems where
encryption and decryption are done using separate keys, and it is not possible to
derive the decryption key from the encryption key. RSA is one such system. The idea
is that each user creates a public/private key pair for authentication purposes. The
server knows the public key, and only the user knows the private key. The file
$HOME/.ssh/authorized_keys lists the public keys that are permitted for logging
in. When the user logs in, the ssh program tells the server which key pair it would
like to use for authentication. The server checks if this key is permitted, and if so,
sends the user (actually the ssh program running on behalf of the user) a challenge in

ssh(1)

NAME

SYNOPSIS

DESCRIPTION

SSH protocol
version 1

User Commands 1429

the form of a random number, encrypted by the user’s public key. The challenge can
only be decrypted using the proper private key. The user’s client then decrypts the
challenge using the private key, proving that he or she knows the private key but
without disclosing it to the server.

ssh implements the RSA authentication protocol automatically. The user creates his or
her RSA key pair by running ssh-keygen(1). This stores the private key in
$HOME/.ssh/identity and the public key in $HOME/.ssh/identity.pub in the
user’s home directory. The user should then copy the identity.pub to
$HOME/.ssh/authorized_keys in his or her home directory on the remote
machine (the authorized_keys file corresponds to the conventional
$HOME/.rhosts file, and has one key per line, though the lines can be very long).
After this, the user can log in without giving the password. RSA authentication is
much more secure than rhosts authentication.

The most convenient way to use RSA authentication may be with an authentication
agent. See ssh-agent(1) for more information.

If other authentication methods fail, ssh prompts the user for a password. The
password is sent to the remote host for checking. However, since all communications
are encrypted, the password cannot be seen by someone listening on the network.

When a user connects using the protocol version 2, different authentication methods
are available. At first, the client attempts to authenticate using the public key method.
If this method fails, password authentication is tried.

The public key method is similar to RSA authentication described in the previous
section except that the DSA algorithm is used instead of the patented RSA algorithm.
The client uses his private DSA key $HOME/.ssh/id_dsa to sign the session
identifier and sends the result to the server. The server checks whether the matching
public key is listed in $HOME/.ssh/authorized_keys and grants access if both the
key is found and the signature is correct. The session identifier is derived from a
shared Diffie-Hellman value and is known only to the client and the server.

If public key authentication fails or is not available, a password can be sent encrypted
to the remote host for proving the user’s identity. This protocol 2 implementation does
not yet support Kerberos or S/Key authentication.

Protocol 2 provides additional mechanisms for confidentiality (the traffic is encrypted
using 3DES, Blowfish, CAST128 or Arcfour) and integrity (hmac-sha1, hmac-md5).
Notice that protocol 1 lacks a strong mechanism for ensuring the integrity of the
connection.

When the user’s identity has been accepted by the server, the server either executes the
given command, or logs into the machine and gives the user a normal shell on the
remote machine. All communication with the remote command or shell will be
automatically encrypted.

ssh(1)

SSH protocol
version 2

Login session and
remote execution

1430 man pages section 1: User Commands • Last Revised 25 Feb 2002

If a pseudo-terminal has been allocated (normal login session), the user can disconnect
with ~., and suspend ssh with ~^Z. All forwarded connections can be listed with ~#.
If the session blocks waiting for forwarded X11 or TCP/IP connections to terminate,
ssh can be backgrounded with ~&, although this should not be used while the user
shell is active, as it can cause the shell to hang. All available escapes can be listed with
~?.

A single tilde character can be sent as ~~ (or by following the tilde by a character other
than those described above). The escape character must always follow a newline to be
interpreted as special. The escape character can be changed in configuration files or on
the command line.

If no pseudo tty has been allocated, the session is transparent and can be used to
reliably transfer binary data. On most systems, setting the escape character to “none”
will also make the session transparent even if a tty is used.

The session terminates when the command or shell in the remote machine exits and all
X11 and TCP/IP connections have been closed. The exit status of the remote program
is returned as the exit status of ssh.

If the user is using X11 (the DISPLAY environment variable is set), the connection to
the X11 display is automatically forwarded to the remote side in such a way that any
X11 programs started from the shell (or command) will go through the encrypted
channel, and the connection to the real X server will be made from the local machine.
The user should not manually set DISPLAY. Forwarding of X11 connections can be
configured on the command line or in configuration files.

The DISPLAY value set by ssh will point to the server machine, but with a display
number greater than zero. This is normal behavior, because ssh creates a “proxy” X
server on the server machine for forwarding the connections over the encrypted
channel.

ssh will also automatically set up Xauthority data on the server machine. For this
purpose, it will generate a random authorization cookie, store it in Xauthority on the
server, and verify that any forwarded connections carry this cookie and replace it by
the real cookie when the connection is opened. The real authentication cookie is never
sent to the server machine (and no cookies are sent in the plain).

If the user is using an authentication agent, the connection to the agent is
automatically forwarded to the remote side unless disabled on the command line or in
a configuration file.

Forwarding of arbitrary TCP/IP connections over the secure channel can be specified
either on the command line or in a configuration file. One possible application of
TCP/IP forwarding is a secure connection to an electronic purse. Another possible
application is going through firewalls.

ssh automatically maintains and checks a database containing identifications for all
hosts it has ever been used with. RSA host keys are stored in
$HOME/.ssh/known_hosts in the user’s home directory. Additionally, the file

ssh(1)

X11 and TCP
forwarding

Server
authentication

User Commands 1431

/etc/ssh_known_hosts is automatically checked for known hosts. Any new hosts
are automatically added to the user’s file. If a host’s identification ever changes, ssh
warns about this and disables password authentication to prevent a trojan horse from
getting the user’s password. Another purpose of this mechanism is to prevent
man-in-the-middle attacks which could otherwise be used to circumvent the
encryption. The StrictHostKeyChecking option (see below) can be used to
prevent logins to machines whose host key is not known or has changed.

The following options are supported:

-2
Forces ssh to try protocol version 2 only.

-4
Forces ssh to use IPv4 addresses only.

-6
Forces ssh to use IPv6 addresses only.

-a
Disables forwarding of the authentication agent connection.

-A
Enables forwarding of the authentication agent connection. This can also be
specified on a per-host basis in a configuration file.

-c blowfish | 3des
Selects the cipher to use for encrypting the session. 3des is used by default. It is
believed to be secure. 3des (triple-des) is an encrypt-decrypt-encrypt triple with
three different keys. It is presumably more secure than the des cipher, which is no
longer fully supported in ssh. blowfish is a fast block cipher, it appears very
secure and is much faster than 3des.

-c 3des-cbc,blowfish-cbc,aes128-cbc
Additionally, for protocol version 2 a comma-separated list of ciphers can be
specified in order of preference. Protocol version 2 supports 3DES, Blowfish, and
AES 128 in CBC mode.

-C
Requests compression of all data (including stdin, stdout, stderr, and data for
forwarded X11 and TCP/IP connections). The compression algorithm is the same
used by gzip(1). (The gzip man page is available in the SUNWsfman package.) The
“level” can be controlled by the CompressionLevel option (see below).
Compression is desirable on modem lines and other slow connections, but will only
slow down things on fast networks. The default value can be set on a host-by-host
basis in the configuration files. See the Compress option below.

-e ch | ^ch | none
Sets the escape character for sessions with a pty (default: ‘~’). The escape character
is only recognized at the beginning of a line. The escape character followed by a dot
(“.”) closes the connection. If followed by control-Z, the escape character suspends

ssh(1)

OPTIONS

1432 man pages section 1: User Commands • Last Revised 25 Feb 2002

the connection. If followed by itself, the escape character sends itself once. Setting
the character to “none” disables any escapes and makes the session fully
transparent.

-f
Requests ssh to go to background just before command execution. This is useful if
ssh is going to ask for passwords or passphrases, but the user wants it in the
background. This implies the -n option. The recommended way to start X11
programs at a remote site is with something like ssh -f host xterm.

-g
Allows remote hosts to connect to local forwarded ports.

-i identity_file
Selects the file from which the identity (private key) for RSA authentication is read.
Default is $HOME/.ssh/identity in the user’s home directory. Identity files may
also be specified on a per-host basis in the configuration file. It is possible to have
multiple -i options (and multiple identities specified in configuration files).

-l login_name
Specifies the user to log in as on the remote machine. This also may be specified on
a per-host basis in the configuration file.

-L port:host:hostport
Specifies that the given port on the local (client) host is to be forwarded to the given
host and port on the remote side. This works by allocating a socket to listen to the
port on the local side. Then, whenever a connection is made to this port, the
connection is forwarded over the secure channel and a connection is made to host
port hostport from the remote machine. Port forwardings can also be specified in the
configuration file. Only root can forward privileged ports. IPv6 addresses can be
specified with an alternative syntax: port/host/hostport.

-n
Redirects stdin from /dev/null (actually, prevents reading from stdin). This must
be used when ssh is run in the background. A common trick is to use this to run
X11 programs on a remote machine. For example,

ssh -n shadows.cs.hut.fi emacs &

will start an emacs on shadows.cs.hut.fi, and the X11 connection will be
automatically forwarded over an encrypted channel. The ssh program will be put
in the background. This does not work if ssh needs to ask for a password or
passphrase. See also the -f option.)

-N
Does not execute a remote command. This is useful if you just want to forward
ports (protocol version 2 only).

-o option
Can be used to give options in the format used in the configuration file. This is
useful for specifying options for which there is no separate command-line flag. The
option has the same format as a line in the configuration file.

ssh(1)

User Commands 1433

-p port
Specifies the port to connect to on the remote host. This can be specified on a
per-host basis in the configuration file.

-P
Uses a non-privileged port for outgoing connections. This can be used if your
firewall does not permit connections from privileged ports. Notice that this option
turns off RhostsAuthentication and RhostsRSAAuthentication.

-q
Quiet mode. Causes all warning and diagnostic messages to be suppressed. Only
fatal errors are displayed.

-R port:host:hostport
Specifies that the given port on the remote (server) host is to be forwarded to the
given host and port on the local side. This works by allocating a socket to listen to
the port on the remote side. Then, whenever a connection is made to this port, the
connection is forwarded over the secure channel and a connection is made to host
port hostport from the local machine. Port forwardings can also be specified in the
configuration file. Privileged ports can be forwarded only when logging in as root
on the remote machine.

-t
Forces pseudo-tty allocation. This can be used to execute arbitrary screen-based
programs on a remote machine, which can be very useful, for example, when
implementing menu services.

-T
Disables pseudo-tty allocation (protocol version 2 only).

-v
Verbose mode. Causes ssh to print debugging messages about its progress. This is
helpful in debugging connection, authentication, and configuration problems.
Multiple -v options increase the verbosity. Maximum is 3.

-x
Disables X11 forwarding.

-X
Enables X11 forwarding. This can also be specified on a per-host basis in a
configuration file.

ssh will normally set the following environment variables:

DISPLAY The DISPLAY variable indicates the location of the X11 server. It is
automatically set by ssh to point to a value of the form hostname:n
where hostname indicates the host where the shell runs, and n is an
integer greater than or equal to 1. ssh uses this special value to
forward X11 connections over the secure channel. The user should
normally not set DISPLAY explicitly, as that will render the X11
connection insecure (and will require the user to manually copy
any required authorization cookies).

ssh(1)

ENVIRONMENT
VARIABLES

1434 man pages section 1: User Commands • Last Revised 25 Feb 2002

HOME Set to the path of the user’s home directory.

LOGNAME Synonym for USER. Set for compatibility with systems that use this
variable.

MAIL Set to point to the user’s mailbox.

PATH Set to the default PATH, as specified when compiling ssh.

SSH_AUTH_SOCK Indicates the path of a unix-domain socket used to communicate
with the agent.

SSH_CLIENT Identifies the client end of the connection. The variable contains
three space-separated values: client ip-address, client port number,
and server port number.

SSH_TTY This is set to the name of the tty (path to the device) associated
with the current shell or command. If the current session has no
tty, this variable is not set.

TZ The timezone variable is set to indicate the present timezone if it
was set when the daemon was started, that is, the daemon passes
the value on to new connections.

USER Set to the name of the user logging in.

Additionally, ssh reads $HOME/.ssh/environment and adds lines of the format
VARNAME=value to the environment

The following exit values are returned:

0 Successful completion.

1 An error occurred.

$HOME/.ssh/known_hosts
Records host keys for all hosts the user has logged into that are not in
/etc/ssh_known_hosts. See sshd(1M).

$HOME/.ssh/identity
$HOME/.ssh/id_dsa

Contains the RSA and the DSA authentication identity of the user. These files
contain sensitive data and should be readable by the user but not accessible by
others (read/write/execute). Notice that ssh ignores a private key file if it is
accessible by others. It is possible to specify a passphrase when generating the key.
The passphrase will be used to encrypt the sensitive part of this file using 3DES.

$HOME/.ssh/identity.pub
$HOME/.ssh/id_dsa.pub

Contains the public key for authentication, that is, the public part of the identity file
in human-readable form. The contents of the $HOME/.ssh/identity.pub file
should be added to $HOME/.ssh/authorized_keys on all machines where you
wish to log in using RSA authentication. The contents of the
$HOME/.ssh/id_dsa.pub file should be added to

ssh(1)

EXIT STATUS

FILES

User Commands 1435

$HOME/.ssh/authorized_keys on all machines where you wish to log in using
DSA authentication. These files are not sensitive and can, but need not, be readable
by anyone. These files are never used automatically and are not necessary. They are
provided only for the convenience of the user.

$HOME/.ssh/config
This is the per-user configuration file. The format of this file is described above.
This file is used by the ssh client. This file does not usually contain any sensitive
information, but the recommended permissions are read/write for the user and not
accessible by others.

$HOME/.ssh/authorized_keys
Lists the DSA keys that can be used for logging in as this user. This file is not highly
sensitive, but the recommended permissions are read/write for the user and not
accessible by others.

/etc/ssh/ssh_known_hosts
Systemwide list of known host keys. /etc/ssh_known_hosts contains RSA keys.
This file should be prepared by the system administrator to contain the public host
keys of all machines in the organization and should be world-readable. The file
contains public keys, one per line, in the following format, with fields separated by
spaces: system name, number of bits in modulus, public exponent, modulus, and
optional comment field. When different names are used for the same machine, all
such names should be listed, separated by commas. See sshd(1M).

The canonical system name (as returned by name servers) is used by sshd(1M) to
verify the client host when logging in. Other names are needed because ssh does
not convert the user-supplied name to a canonical name before checking the key, to
prevent someone with access to the name servers from being able able to fool host
authentication.

/etc/ssh/ssh_config
Systemwide configuration file. This file provides defaults for those values that are
not specified in the user’s configuration file, and for those users who do not have a
configuration file.

This file must be world-readable.

$HOME/.rhosts
This file is used in .rhosts authentication to list the host/user pairs that are
permitted to log in. (Notice that this file is also used by rlogin and rsh, which
makes using this file insecure.) Each line of the file contains a host name (in the
canonical form returned by name servers), and then a user name on that host,
separated by a space. On some machines, this file may need to be world-readable if
the user’s home directory is on an NFS partition, because sshd(1M) reads it as root.
Additionally, this file must be owned by the user and must not have write
permissions for anyone else. The recommended permission for most machines is
read/write for the user and not accessible by others.

ssh(1)

1436 man pages section 1: User Commands • Last Revised 25 Feb 2002

Notice that, by default, sshd(1M) will be installed so that it requires successful RSA
host authentication before permitting .rhosts authentication. If your server
machine does not have the client’s host key in /etc/ssh_known_hosts, you can
store it in $HOME/.ssh/known_hosts. The easiest way to do this is to connect
back to the client from the server machine using ssh. This will automatically add
the host key to $HOME/.ssh/known_hosts.

$HOME/.shosts
This file is used exactly the same way as .rhosts. The purpose for having this file
is to be able to use rhosts authentication with ssh without permitting login with
rlogin(1) or rsh(1).

/etc/hosts.equiv
This file is used during .rhosts authentication. It contains canonical hosts names,
one per line. (See sshd(1M) for the full format description.). If the client host is
found in this file, login is automatically permitted, provided that client and server
user names are the same. In addition, successful RSA host authentication is
normally required. This file should only be writable by root.

/etc/ssh/shosts.equiv
This file is processed exactly as /etc/hosts.equiv. This file may be useful to
permit logins using ssh but not using rsh or rlogin.

/etc/ssh/sshrc
Commands in this file are executed by ssh when the user logs in just before the
user’s shell or command is started. See sshd(1M) for more information.

$HOME/.ssh/rc
Commands in this file are executed by ssh when the user logs in just before the
user’s shell or command is started. See sshd(1M) for more information.

$HOME/.ssh/environment
Contains additional definitions for environment variables. See ENVIRONMENT
VARIABLES.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

rlogin(1), rsh(1), scp(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), telnet(1),
sshd(1M), ssh_config(4), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is
/var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating
environment has been installed anywhere other than the default, modify the given
path to access the file at the installed location.

ssh(1)

ATTRIBUTES

SEE ALSO

User Commands 1437

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.
Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song
removed many bugs, added newer features and created Open SSH. Markus Friedl
contributed the support for SSH protocol versions 1.4 and 2.0.

ssh(1)

AUTHORS

1438 man pages section 1: User Commands • Last Revised 25 Feb 2002

ssh-add – add RSA or DSA identities for the authentication agent

ssh-add [-lLdD] [file …]

The ssh-add utility adds RSA or DSA identities to the authentication agent,
ssh-agent(1). When run without arguments, it attempts to add all of the files
$HOME/.ssh/identity (RSA v1), $HOME/.ssh/id_rsa (RSA v2), and
$HOME/.ssh/id_dsa (DSA v2) that exist. If more than one of the private keys exists,
an attempt to decrypt each with the same passphrase will be made before reprompting
for a different passphrase. The passphrase is read from the user’s tty or by running the
program defined in SSH_ASKPASS (see below).

The authentication agent must be running.

The following options are supported:

-d Instead of adding the identity, this option removes the identity from the
agent.

-D Deletes all identities from the agent.

-l Lists fingerprints of all identities currently represented by the agent.

-L Lists public key parameters of all identities currently represented by the
agent.

DISPLAY
SSH_ASKPASS If ssh-add needs a passphrase, it will read the passphrase from

the current terminal if it was run from a terminal. If ssh-add does
not have a terminal associated with it but DISPLAY and
SSH_ASKPASS are set, it will execute the program specified by
SSH_ASKPASS and open an X11 window to read the passphrase.
This is particularly useful when calling ssh-add from a .Xsession
or related script.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

These files should not be readable by anyone but the user. Notice that ssh-add
ignores a file if it is accessible by others. It is possible to specify a passphrase when
generating the key; that passphrase will be used to encrypt the private part of this file.

If these files are stored on a network file system it is assumed that either the protection
provided in the file themselves or the transport layer of the network file system
provides sufficient protection for the site policy. If this is not the case, then it is
recommended the key files are stored on removable media or locally on the relevant
hosts.

Recommended names for the DSA and RSA key files:

ssh-add(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

User Commands 1439

$HOME/.ssh/identity Contains the RSA authentication identity of
the user for protocol version 1.

$HOME/.ssh/identity.pub Contains the public part of the RSA
authentication identity of the user for
protocol version 1.

$HOME/.ssh/id_dsa Contains the private DSA authentication
identity of the user.

$HOME/.ssh/id_dsa.pub Contains the public part of the DSA
authentication identity of the user.

$HOME/.ssh/id_rsa Contains the private RSA authentication
identity of the user.

$HOME/.ssh/id_rsa.pub Contains the public part of the RSA
authentication identity of the user.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

ssh(1), ssh-agent(1), ssh-keygen(1), sshd(1M), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is
/var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating
environment has been installed anywhere other than the default, modify the given
path to access the file at the installed location.

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.
Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song
removed many bugs, added newer features and created Open SSH. Markus Friedl
contributed the support for SSH protocol versions 1.4 and 2.0.

ssh-add(1)

ATTRIBUTES

SEE ALSO

AUTHORS

1440 man pages section 1: User Commands • Last Revised 25 Feb 2002

ssh-agent – authentication agent

ssh-agent [-c | -s] [-k] [command [args…]]

ssh-agent is a program to hold private keys used for public key authentication
(RSA, DSA). ssh-agent is often started at the beginning of a login session. All other
windows or programs are started as clients to the ssh-agent program. Through use
of environment variables, the agent can be located and automatically used for
authentication when logging in to other machines using ssh(1). (See System
Administration Guide: Security Services.)

If a command line is given, this is executed as a subprocess of the agent. When the
command dies, so does the agent.

The agent initially does not have any private keys. Keys are added using ssh-add(1),
which sends the identity to the agent. Several identities can be stored in the agent; the
agent can automatically use any of these identities. Use the -l option in ssh-add(1)
to display the identities currently held by the agent.

The agent is run in the user’s local host. Authentication data need not be stored on any
other machine, and authentication passphrases never go over the network. However,
if the connection to the agent is forwarded over SSH remote logins, the user can use
the privileges given by the identities anywhere in the network in a secure way.

There are two main ways to get an agent setup. Either you let the agent start a new
subcommand into which some environment variables are exported, or you let the
agent print the needed shell commands (either sh(1) or csh(1) syntax can be
generated) which can be evalled in the calling shell. Later, use ssh(1) to look at these
variables and use them to establish a connection to the agent.

A unix-domain socket is created (/tmp/ssh-XXXXXXXX/agent.pid) and the name of
this socket is stored in the SSH_AUTH_SOCK environment variable. The socket is made
accessible only to the current user. This method is easily abused by root or another
instance of the same user.

The SSH_AGENT_PID environment variable holds the agent’s PID.

The agent exits automatically when the command given on the command line
terminates.

The following options are supported:

-c Generates C-shell commands on stdout. This is the default if SHELL
indicates that it is a csh style of shell.

-k Kills the current agent (given by the SSH_AGENT_PID environment
variable).

-s Generates Bourne shell commands on stdout. This is the default if SHELL
does not indicate that it is a csh style of shell.

The following exit values are returned:

ssh-agent(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

User Commands 1441

0 Successful completion.

1 An error occurred.

/tmp/ssh-XXXXXXXX/agent.pid
Unix-domain sockets used to contain the connection to the authentication agent.
These sockets should only be readable by the owner. The sockets are removed when
the agent exits.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

ssh(1), ssh-add(1), ssh-keygen(1), sshd(1M), attributes(5)

System Administration Guide: Security Services

To view license terms, attribution, and copyright for OpenSSH, the default path is
/var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating
environment has been installed anywhere other than the default, modify the given
path to access the file at the installed location.

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.
Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song
removed many bugs, added newer features and created Open SSH. Markus Friedl
contributed the support for SSH protocol versions 1.4 and 2.0.

ssh-agent(1)

FILES

ATTRIBUTES

SEE ALSO

AUTHORS

1442 man pages section 1: User Commands • Last Revised 25 Feb 2002

ssh-http-proxy-connect – Secure Shell proxy for HTTP

/usr/lib/ssh/ssh-http-proxy-connect [-h http_proxy_host] [-p
http_proxy_port] connect_host connect_port

A proxy command for ssh(1) that uses HTTP CONNECT. Typical use is where
connections external to a network are only allowed via a proxy web server.

The following options are supported:

-h http_proxy_host Specifies the proxy web server through which to
connect. Overrides the HTTPPROXY and http_proxy
environment variables if they are set.

-p http_proxy_port Specifies the port on which the proxy web server runs.
If not specified, port 80 is assumed. Overrides the
HTTPPROXYPORT and http_proxy environment
variables if they are set.

The following operands are supported:

http_proxy_host The host name or IP address (IPv4 or IPv6) of the
proxy.

http_proxy_port The numeric port number to connect to on
http_proxy_host.

connect_host The name of the remote host to which the proxy web
server is to connect you.

connect_port The numeric port number of the proxy web server to
connect you to on http_proxy_host.

The recommended way to use a proxy connection command is to configure the
ProxyCommand in ssh_config(4) (see Example 1 and Example 2). Example 3 shows
how the proxy command can be specified on the command line when running ssh(1).

EXAMPLE 1 Setting the proxy from the environment

The following example uses ssh-http-proxy-connect in ssh_config(4) when
the proxy is set from the environment:

Host playtime.foo.com
ProxyCommand /usr/lib/ssh/ssh-http-proxy-connect \

playtime.foo.com 22

EXAMPLE 2 Overriding proxy environment variables

The following example uses ssh-http-proxy-connect in ssh_config(4) to
override (or if not set) proxy environment variables:

Host playtime.foo.com
ProxyCommand /usr/lib/ssh/ssh-http-proxy-connect -h webcache \

ssh-http-proxy-connect(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

User Commands 1443

EXAMPLE 2 Overriding proxy environment variables (Continued)

-p 8080 playtime.foo.com 22

EXAMPLE 3 Using the command line

The following example uses ssh-http-proxy-connect from the ssh(1) command
line:

example$ ssh -o’ProxyCommand="/usr/lib/ssh/ssh-http-proxy-connect \

-h webcache -p 8080 playtime.foo.com 22"’ playtime.foo.com

HTTPPROXY Takes the http_proxy_host operand to specify the default
proxy host. Overrides http_proxy if both are set.

HTTPPROXYPORT Takes the http_proxy_port operand to specify the default
proxy port. Ignored if HTTPPROXY is not set.

http_proxy URL format for specifying proxy host and port.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

Interface Stability Stable

ssh(1), ssh-socks5–proxy-connect(1), ssh_config(4), attributes(5)

ssh-http-proxy-connect(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1444 man pages section 1: User Commands • Last Revised 24 Oct 2001

ssh-keygen – authentication key generation

ssh-keygen [-q] [-t type] [-b bits] [-N new_passphrase] [-C comment] [-f
output_keyfile]

ssh-keygen -p [-P old_passphrase] [-N new_passphrase] [-f keyfile]

ssh-keygen -x [-f input_keyfile]

ssh-keygen -X [-f input_keyfile]

ssh-keygen -y [-f input_keyfile]

ssh-keygen -c [-P passphrase] [-C comment] [-f keyfile]

ssh-keygen -l [-f input_keyfile]

ssh-keygen -R

The ssh-keygen utility generates and manages authentication keys for ssh(1).
ssh-keygen defaults to generating an RSA key for use by protocol 2.0.

Each user wishing to use SSH with RSA or DSA authentication normally runs this
once to create the authentication key in $HOME/.ssh/identity or
$HOME/.ssh/id_dsa. The system administrator may also use this to generate host
keys.

Ordinarily, this program generates the key and asks for a file in which to store the
private key. The public key is stored in a file with the same name but with the ‘‘.pub’’
extension appended. The program also asks for a passphrase. The passphrase may be
empty to indicate no passphrase (host keys must have empty passphrases), or it may
be a string of arbitrary length. Good passphrases are 10-30 characters long and are not
simple sentences or otherwise easy to guess. (English prose has only 1-2 bits of
entropy per word, and provides very poor passphrases.) The passphrase can be
changed later by using the -p option.

There is no way to recover a lost passphrase. If the passphrase is lost or forgotten, you
will have to generate a new key and copy the corresponding public key to other
machines.

For RSA, there is also a comment field in the key file that is only for convenience to the
user to help identify the key. The comment can tell what the key is for, or whatever is
useful. The comment is initialized to ‘‘user@host’’ when the key is created, but can
be changed using the -c option.

After a key is generated, instructions below detail where to place the keys to activate
them.

The following options are supported:

ssh-keygen(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1445

-b bits Specifies the number of bits in the key to create. The minimum
number is 512 bits. Generally, 1024 bits is considered sufficient.
Key sizes above that no longer improve security but make things
slower. The default is 1024 bits.

-c Requests changing the comment in the private and public key files.
The program will prompt for the file containing the private keys,
for the passphrase if the key has one, and for the new comment.

-C comment Provides the new comment.

-f Specifies the filename of the key file.

-l Shows the fingerprint of the specified private or public key file.

-N new_passphrase Provides the new passphrase.

-p Requests changing the passphrase of a private key file instead of
creating a new private key. The program will prompt for the file
containing the private key, for the old passphrase, and will prompt
twice for the new passphrase.

-P passphrase Provides the (old) passphrase.

-q Silences ssh-keygen. Used by /etc/rc when creating a new
key.

-R If RSA support is functional, immediately exits with code 0. If RSA
support is not functional, exits with code 1. This flag will be
removed once the RSA patent expires.

-t type Specifies the algorithm used for the key, where type is one of rsa,
dsa, and rsa1. Type rsa1 is used only for the SSHv1 protocol

-x Reads a private OpenSSH DSA format file and prints an
SSH2-compatible public key to stdout.

-X Reads an unencrypted SSH2-compatible private (or public) key file
and prints an OpenSSH compatible private (or public) key to
stdout.

-y Reads a private OpenSSH DSA format file and prints an OpenSSH
DSA public key to stdout.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

$HOME/.ssh/identity
Contains the RSA authentication identity of the user. This file should not be
readable by anyone but the user. It is possible to specify a passphrase when
generating the key; that passphrase will be used to encrypt the private part of this

ssh-keygen(1)

EXIT STATUS

FILES

1446 man pages section 1: User Commands • Last Revised 8 Feb 2002

file using 3DES. This file is not automatically accessed by ssh-keygen, but it is
offered as the default file for the private key. sshd(1M) will read this file when a
login attempt is made.

$HOME/.ssh/identity.pub
Contains the public key for authentication. The contents of this file should be added
to $HOME/.ssh/authorized_keys on all machines where you wish to log in
using RSA authentication. There is no need to keep the contents of this file secret.

$HOME/.ssh/id_dsa
Contains the DSA authentication identity of the user. This file should not be
readable by anyone but the user. It is possible to specify a passphrase when
generating the key; that passphrase will be used to encrypt the private part of this
file using 3DES. This file is not automatically accessed by ssh-keygen but it is
offered as the default file for the private key. sshd(1M) will read this file when a
login attempt is made.

$HOME/.ssh/id_dsa.pub
Contains the public key for authentication. The contents of this file should be added
to $HOME/.ssh/authorized_keys on all machines where you wish to log in
using DSA authentication. There is no need to keep the contents of this file secret.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshcu

ssh(1), ssh-add(1), ssh-agent(1), sshd(1M), attributes(5)

To view license terms, attribution, and copyright for OpenSSH, the default path is
/var/sadm/pkg/SUNWsshdr/install/copyright. If the Solaris operating
environment has been installed anywhere other than the default, modify the given
path to access the file at the installed location.

ssh-keygen(1)

ATTRIBUTES

SEE ALSO

User Commands 1447

ssh-socks5-proxy-connect – Secure Shell proxy for SOCKS5

/usr/lib/ssh/ssh-socks5-proxy-connect [-h socks5_proxy_host] [-p
socks5_proxy_port] connect_host connect_port

A proxy command for ssh(1) that uses SOCKS5 (RFC 1928). Typical use is where
connections external to a network are only allowed via a socks gateway server.

This proxy command does not provide any of the SOCKS5 authentication mechanisms
defined in RFC 1928. Only anonymous connections are possible.

The following options are supported:

-h socks5_proxy_host Specifies the proxy web server through which to
connect. Overrides the SOCKS5_SERVER environment
variable.

-p socks5_proxy_port Specifies the port on which the proxy web server runs.
If not specified, port 80 is assumed. Overrides the
SOCKS5_PORT environment variable.

The following operands are supported:

socks5_proxy_host The host name or IP address (IPv4 or IPv6) of the
proxy.

socks5_proxy_port The numeric port number to connect to on
socks5_proxy_host.

connect_host The name of the remote host to which the socks
gateway is to connect you.

connect_port The numeric port number of the socks gateway to
connect you to on connect_host.

The recommended way to use a proxy connection command is to configure the
ProxyCommand in ssh_config(4) (see Example 1 and Example 2). Example 3 shows
how the proxy command can be specified on the command line when running ssh(1).

EXAMPLE 1 Setting the proxy from the environment

The following example uses ssh-socks5-proxy-connect in ssh_config(4) when
the proxy is set from the environment:

Host playtime.foo.com
ProxyCommand /usr/lib/ssh/ssh-socks5-proxy-connect \

playtime.foo.com 22

EXAMPLE 2 Overriding proxy environment variables

The following example uses ssh-socks5-proxy-connect in ssh_config(4) to
override (or if not set) proxy environment variables:

ssh-socks5-proxy-connect(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

1448 man pages section 1: User Commands • Last Revised 24 Oct 2001

EXAMPLE 2 Overriding proxy environment variables (Continued)

Host playtime.foo.com
ProxyCommand /usr/lib/ssh/ssh-socks5-proxy-connect -h socks-gw \

-p 1080 -n 192.168.100.2 playtime.foo.com 22

EXAMPLE 3 Using the command line

The following example uses ssh-socks5-proxy-connect from the ssh(1)
command line:

example$ ssh -o’ProxyCommand=/usr/lib/ssh/ssh-socks5-proxy-connect \

-h socks-gw -p 1080 playtime.foo.com 22’ playtime.foo.com

SOCKS5_SERVER Takes socks5_proxy_host operand to specify the default
proxy host.

SOCKS5_PORT Takes socks5_proxy_port operand to specify the default
proxy port.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

Interface Stability Stable

ssh(1), ssh-http–proxy-connect(1), ssh_config(4), attributes(5)

ssh-socks5-proxy-connect(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1449

strchg, strconf – change or query stream configuration

strchg -h module1 [, module2…]

strchg -p [-a | -u module]

strchg -f filename

strconf [-m | -t module]

These commands are used to alter or query the configuration of the stream associated
with the user’s standard input. The strchg command pushes modules on and/or
pops modules off the stream. The strconf command queries the configuration of the
stream. Only the super-user or owner of a STREAMS device may alter the
configuration of that stream.

Invoked without any arguments, strconf prints a list of all the modules in the
stream as well as the topmost driver. The list is printed with one name per line where
the first name printed is the topmost module on the stream (if one exists) and the last
item printed is the name of the driver.

The following options apply to strchg and, -h, -f, and -p are mutually exclusive.

-h module1 [, module2. . .]
Mnemonic for push, pushes modules onto a stream. It takes as arguments the
names of one or more pushable streams modules. These modules are pushed in
order; that is, module1 is pushed first, module2 is pushed second, etc.

-p
Mnemonic for pop, pops modules off the stream. With the -p option alone, strchg
pops the topmost module from the stream.

-a module
Pop all the modules above the topmost driver off the stream. This option requires
the -p option.

-u module
All modules above, but not including module are popped off the stream. This option
requires the -p option.

-f filename
Specify a filename that contains a list of modules representing the desired
configuration of the stream. Each module name must appear on a separate line
where the first name represents the topmost module and the last name represents
the module that should be closest to the driver. strchg will determine the current
configuration of the stream and pop and push the necessary modules in order to
end up with the desired configuration.

The following options apply to strconf and, -m and -t are mutually exclusive.

-m module Determine if the named module is present on a stream. If it is,
strconf prints the message yes and returns zero. If not,

strchg(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1450 man pages section 1: User Commands • Last Revised 20 Dec 1996

strconf prints the message no and returns a non-zero value. The
-t and -m options are mutually exclusive.

-t module Print only the topmost module (if one exists). The -t and -m
options are mutually exclusive.

EXAMPLE 1 Using the strchg Command

The following command pushes the module ldterm on the stream associated with
the user’s standard input:

example% strchg -h ldterm

The following command pops the topmost module from the stream associated with
/dev/term/24. The user must be the owner of this device or the super user.

example% strchg -p < /dev/term/24

If the file fileconf contains the following:

ttcompat
ldterm
ptem

then the command

example% strchg -f fileconf

will configure the user’s standard input stream so that the module ptem is pushed
over the driver, followed by ldterm and ttcompat closest to the stream head.

The strconf command with no arguments lists the modules and topmost driver on
the stream; for a stream that has only the module ldterm pushed above the zs driver,
it would produce the following output:

ldterm
zs

The following command asks if ldterm is on the stream:

example% strconf -m ldterm

and produces the following output while returning an exit status of 0:

yes

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5), streamio(7I)

strchg(1)

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 1451

strchg returns zero on success. It prints an error message and returns non-zero status
for various error conditions, including usage error, bad module name, too many
modules to push, failure of an ioctl on the stream, or failure to open filename from the
-f option.

strconf returns zero on success (for the -m or -t option, "success" means the named
or topmost module is present). It returns a non-zero status if invoked with the -m or
-t option and the module is not present. It prints an error message and returns
non-zero status for various error conditions, including usage error or failure of an
ioctl on the stream.

If the user is neither the owner of the stream nor the super-user, the strchg command
will fail. If the user does not have read permissions on the stream and is not the super
user, the strconf command will fail.

If modules are pushed in the wrong order, one could end up with a stream that does
not function as expected. For ttys, if the line discipline module is not pushed in the
correct place, one could have a terminal that does not respond to any commands.

strchg(1)

DIAGNOSTICS

NOTES

1452 man pages section 1: User Commands • Last Revised 20 Dec 1996

strings – find printable strings in an object or binary file

strings [-a | -] [-t format | -o] [-n number | -number] [file…]

The strings utility looks for ASCII strings in a binary file. A string is any sequence of
4 or more printing characters ending with a newline or a null character.

strings is useful for identifying random object files and many other things.

The following options are supported:

-a | − Look everywhere in the file for strings. If this flag is
omitted, strings only looks in the initialized data
space of object files.

-n number | -number Use a number as the minimum string length rather than
the default, which is 4.

-o Equivalent to -t d option.

-t format Write each string preceded by its byte offset from the
start of the file. The format is dependent on the single
character used as the format option-argument:

d The offset will be written in decimal.

o The offset will be written in octal.

x The offset will be written in hexadecimal.

The following operand is supported:

file A path name of a regular file to be used as input. If no file operand is
specified, the strings utility will read from the standard input.

See environ(5) for descriptions of the following environment variables that affect the
execution of strings: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

CSI Enabled

od(1), attributes(5), environ(5)

strings(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1453

The algorithm for identifying strings is extremely primitive.

For backwards compatibility, the options -a and − are interchangeable.

strings(1)

NOTES

1454 man pages section 1: User Commands • Last Revised 20 Dec 1996

strip – strip symbol table, debugging and line number information from an object file

/usr/ccs/bin/strip [-blrVx] file…

The strip command removes the symbol table, debugging information, and line
number information from ELF object files. Once this stripping process has been done,
no symbolic debugging access will be available for that file; therefore, this command is
normally run only on production modules that have been debugged and tested.

If strip is executed on a common archive file (see ar(3HEAD)) in addition to
processing the members, strip will remove the archive symbol table. The archive
symbol table must be restored by executing the ar(1) command with the -s option
before the archive can be linked by the ld(1) command. strip will produce
appropriate warning messages when this situation arises.

strip is used to reduce the file storage overhead taken by the object file.

The amount of information stripped from the ELF object file can be controlled by
using any of the following options:

-b Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

-l Strip line number information only; do not strip the symbol table or
debugging information.

-r Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

-V Print, on standard error, the version number of strip.

-x Do not strip the symbol table; debugging and line number information
may be stripped.

The following operand is supported:

file A path name referring to an executable file.

See environ(5) for descriptions of the following environment variables that affect the
execution of strip: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/tmp/strp* temporary files

See attributes(5) for descriptions of the following attributes:

strip(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

User Commands 1455

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

ar(1), as(1), ld(1), elf(3ELF), tmpnam(3C), a.out(4), ar(3HEAD), attributes(5),
environ(5)

The symbol table section will not be removed if it is contained within a segment, or
the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are contained
within a segment, or their associated relocation section is contained within a segment.

strip(1)

SEE ALSO

NOTES

1456 man pages section 1: User Commands • Last Revised 1 Feb 1995

stty – set the options for a terminal

/usr/bin/stty [-a] [-g]

/usr/bin/stty [modes]

/usr/xpg4/bin/stty [-a | -g]

/usr/xpg4/bin/stty [modes]

The stty utility sets certain terminal I/O options for the device that is the current
standard input. Without arguments, stty reports the settings of certain options.

In this report, if a character is preceded by a caret (^), then the value of that option is
the corresponding control character (for example, “^h” is Control-H; in this case, recall
that Control-H is the same as the ‘‘back-space’’ key). The sequence “^” means that an
option has a null value.

See termio(7I) for detailed information about the modes listed from Control Modes
through Local Modes. For detailed information about the modes listed under
Hardware Flow Control Modes and Clock Modes, below, see termiox(7I).

Operands described in the Combination Modes section are implemented using
options in the earlier sections. Notice that many combinations of options make no
sense, but no sanity checking is performed. Hardware flow control and clock modes
options may not be supported by all hardware interfaces.

The following options are supported:

-a Writes to standard output all of the option settings for the terminal.

-g Reports current settings in a form that can be used as an argument to
another stty command. Emits termios-type output if the underlying
driver supports it. Otherwise, it emits termio-type output.

The following mode operands are supported:

parenb(-parenb) Enable (disable) parity generation and detection.

parext(-parext) Enable (disable) extended parity generation and
detection for mark and space parity.

parodd(-parodd) Select odd (even) parity, or mark (space) parity if
parext is enabled.

cs5 cs6 cs7 cs8 Select character size (see termio(7I)).

0 Hang up line immediately.

hupcl (-hupcl) Hang up (do not hang up) connection on last close.

hup (-hup) Same as hupcl(-hupcl).

cstopb (-cstopb) Use two (one) stop bits per character.

cread (-cread) Enable (disable) the receiver.

stty(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

Control Modes

User Commands 1457

crtscts (-crtscts) Enable output hardware flow control. Raise the RTS
(Request to Send) modem control line. Suspends
output until the CTS (Clear to Send) line is raised.

crtsxoff (-crtsxoff) Enable input hardware flow control. Raise the RTS
(Request to Send) modem control line to receive data.
Suspends input when RTS is low.

clocal (-clocal) Assume a line without (with) modem control.

defeucw Set the widths of multibyte characters to the values
defined in the current locale specified by LC_CTYPE.
Internally, width is expressed in terms of bytes per
character, and screen or display columns per character.

110 300 600 1200 1800
2400 4800 9600 19200
38400 357600 76800 115200 153600
230400 307200 460800 Set terminal baud rate to the number given,

if possible. (All speeds are not supported by
all hardware interfaces.)

ispeed 0 110 300 600 1200
1800 2400 4800 9600 19200
38400 57600 76800 115200
153600 230400 307200 460800 Set terminal input baud rate to the number

given, if possible. (Not all hardware
supports split baud rates.) If the input baud
rate is set to 0, the input baud rate will be
specified by the value of the output baud
rate.

ospeed 0 110 300 600 1200
1800 2400 4800 9600 19200
38400 57600 76800 115200
153600 230400 307200 460800 Set terminal output baud rate to the number

given, if possible. (Not all hardware
supports split baud rates.) If the output
baud rate is set to 0, the line will be hung
up immediately.

ignbrk (-ignbrk) Ignore (do not ignore) break on input.

brkint (-brkint) Signal (do not signal) INTR on break.

ignpar (-ignpar) Ignore (do not ignore) parity errors.

parmrk (-parmrk) Mark (do not mark) parity errors (see termio(7I)).

inpck (-inpck) Enable (disable) input parity checking.

istrip (-istrip) Strip (do not strip) input characters to seven bits.

stty(1)

Input Modes

1458 man pages section 1: User Commands • Last Revised 10 Dec 2001

inlcr (-inlcr) Map (do not map) NL to CR on input.

igncr (-igncr) Ignore (do not ignore) CR on input.

icrnl (-icrnl) Map (do not map) CR to NL on input.

iuclc (-iuclc) Map (do not map) upper-case alphabetics to lower case
on input.

ixon (-ixon) Enable (disable) START/STOP output control. Output
is stopped by sending STOP control character and
started by sending the START control character.

ixany (-ixany) Allow any character (only DC1) to restart output.

ixoff (-ixoff) Request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

imaxbel (-imaxbel) Echo (do not echo) BEL when the input line is too long.

opost (-opost) Post-process output (do not post-process output; ignore
all other output modes).

olcuc (-olcuc) Map (do not map) lower-case alphabetics to upper case
on output.

onlcr (-onlcr) Map (do not map) NL to CR-NL on output.

ocrnl (-ocrnl) Map (do not map) CR to NL on output.

onocr (-onocr) Do not (do) output CRs at column zero.

onlret (-onlret) On the terminal NL performs (does not perform) the
CR function.

ofill (-ofill) Use fill characters (use timing) for delays.

ofdel (-ofdel) Fill characters are DELs (NULs).

cr0 cr1 cr2 cr3 Select style of delay for carriage returns (see
termio(7I)).

nl0 nl1 Select style of delay for line-feeds (see termio(7I)).

tab0 tab1 tab2 tab3 Select style of delay for horizontal tabs (see
termio(7I)).

bs0 bs1 Select style of delay for backspaces (see termio(7I)).

ff0 ff1 Select style of delay for form-feeds (see termio(7I)).

vt0 vt1 Select style of delay for vertical tabs (see termio(7I)).

isig(-isig) Enable (disable) the checking of characters against the
special control characters INTR, QUIT, SWTCH, and
SUSP.

stty(1)

Output Modes

Local Modes

User Commands 1459

icanon (-icanon) Enable (disable) canonical input (ERASE and KILL
processing). Does not set MIN or TIME.

xcase (-xcase) Canonical (unprocessed) upper/lower-case
presentation.

echo (-echo) Echo back (do not echo back) every character typed.

echoe (-echoe) Echo (do not echo) ERASE character as a
backspace-space-backspace string. Note: This mode
will erase the ERASEed character on many CRT
terminals; however, it does not keep track of column
position and, as a result, it may be confusing for
escaped characters, tabs, and backspaces.

echok(-echok) Echo (do not echo) NL after KILL character.

lfkc (-lfkc) The same as echok(-echok); obsolete.

echonl (-echonl) Echo (do not echo) NL.

noflsh (-noflsh) Disable (enable) flush after INTR, QUIT, or SUSP.

stwrap (-stwrap) Disable (enable) truncation of lines longer than 79
characters on a synchronous line.

tostop (-tostop) Send (do not send) SIGTTOU when background
processes write to the terminal.

echoctl (-echoctl) Echo (do not echo) control characters as ^char, delete as
^?.

echoprt (-echoprt) Echo (do not echo) erase character as character is
‘‘erased’’.

echoke (-echoke) BS-SP-BS erase (do not BS-SP-BS erase) entire line on
line kill.

flusho (-flusho) Output is (is not) being flushed.

pendin (-pendin) Retype (do not retype) pending input at next read or
input character.

iexten (-iexten) Enable (disable) special control characters not currently
controlled by icanon, isig, ixon, or ixoff: VEOLZ,
VSWTCH, VREPRINT, VDISCARD, VDSUSP, VWERASE,
and VLNEXT.

stflush (-stflush) Enable (disable) flush on a synchronous line after every
write(2).

stappl (-stappl) Use application mode (use line mode) on a
synchronous line.

rtsxoff (-rtsxoff) Enable (disable) RTS hardware flow control on input.

stty(1)

Hardware Flow
Control Modes

1460 man pages section 1: User Commands • Last Revised 10 Dec 2001

ctsxon (-ctsxon) Enable (disable) CTS hardware flow control on output.

dtrxoff (-dtrxoff) Enable (disable) DTR hardware flow control on input.

cdxon (-cdxon) Enable (disable) CD hardware flow control on output.

isxoff (-isxoff) Enable (disable) isochronous hardware flow control on
input.

xcibrg Get transmit clock from internal baud rate generator.

xctset Get the transmit clock from transmitter signal element timing
(DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

xcrset Get transmit clock from receiver signal element timing (DCE
source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

rcibrg Get receive clock from internal baud rate generator.

rctset Get receive clock from transmitter signal element timing (DCE
source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

rcrset Get receive clock from receiver signal element timing (DCE source)
lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

tsetcoff Transmitter signal element timing clock not provided.

tsetcrbrg Output receive baud rate generator on transmitter signal element
timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin
24.

tsetctbrg Output transmit baud rate generator on transmitter signal element
timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin
24.

tsetctset Output transmitter signal element timing (DCE source) on
transmitter signal element timing (DTE source) lead, CCITT V.24
circuit 113, EIA-232-D pin 24.

tsetcrset Output receiver signal element timing (DCE source) on transmitter
signal element timing (DTE source) lead, CCITT V.24 circuit 113,
EIA-232-D pin 24.

rsetcoff Receiver signal element timing clock not provided.

rsetcrbrg Output receive baud rate generator on receiver signal element
timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D
pin.

rsetctbrg Output transmit baud rate generator on receiver signal element
timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D
pin.

rsetctset Output transmitter signal element timing (DCE source) on receiver
signal element timing (DTE source) lead, CCITT V.24 circuit 128,
no EIA-232-D pin.

stty(1)

Clock Modes

User Commands 1461

rsetcrset Output receiver signal element timing (DCE source) on receiver
signal element timing (DTE source) lead, CCITT V.24 circuit 128,
no EIA-232-D pin.

control-character c Set control-character to c, where:

control-character
is ctab, discard, dsusp, eof, eol, eol2, erase,
intr, kill, lnext, quit, reprint, start, stop,
susp, swtch, or werase (ctab is used with
-stappl, see termio(7I)).

c
If c is a single character, the control character will be
set to that character.

In the POSIX locale, if c is preceded by a caret (^)
indicating an escape from the shell and is one of
those listed in the ^c column of the following table,
then its value used (in the Value column) is the
corresponding control character (for example, ‘‘^d’’
is a CTRL-D). ‘‘^?’’ is interpreted as DEL and ‘‘^−’’
is interpreted as undefined.

^c Value ^c Value ^c Value

a, A <SOH> l, L <FF> w, W <ETB>

b, B <STX> m, M <CR> x, X <CAN>

c, C <ETX> n, N <SO> y, Y

d, D <EOT> o, O <SI> z, Z <SUB>

e, E <ENQ> p, P <DLE> [<ESC>

f, F <ACK> q, Q <DC1> \ <FS>

g, G <BEL> r, R <DC2>] <GS>

h, H <BS> s, S <DC3> ^ <RS>

i, I <HT> t, T <DC4> _ <US>

j, J <LF> u, U <NAK> ?

k, K <VT> v, V <SYN>

min number
time number Set the value of min or time to number. MIN and TIME

are used in Non-Canonical mode input processing
(-icanon).

stty(1)

Control
Assignments

1462 man pages section 1: User Commands • Last Revised 10 Dec 2001

line i Set line discipline to i (0< i <127).

saved settings Set the current terminal characteristics to the saved
settings produced by the -g option.

evenp or parity Enable parenb and cs7, or disable parodd.

oddp Enable parenb, cs7, and parodd.

spacep Enable parenb, cs7, and parext.

markp Enable parenb, cs7, parodd, and parext.

-parity, or -evenp Disable parenb, and set cs8.

-oddp Disable parenb and parodd, and set cs8.

-spacep Disable parenb and parext, and set cs8.

-markp Disable parenb, parodd, and parext, and set cs8.

raw (-raw or cooked) Enable (disable) raw input and output. Raw mode is
equivalent to setting:

stty cs8 -icanon min 1 time 0 -isig -xcase \

-inpck -opost

nl (-nl) Unset (set) icrnl, onlcr. In addition -nl unsets
inlcr, igncr, ocrnl, and onlret.

nl (-nl) Set (unset) icrnl. In addition, -nl unsets inlcr,
igncr, ocrnl, and onlret; -nl sets onlcr, and nl
unsets onlcr.

lcase (-lcase) Set (unset) xcase, iuclc, and olcuc.

LCASE (-LCASE) Same as lcase (-lcase).

tabs (-tabs or tab3) Preserve (expand to spaces) tabs when printing.

ek Reset ERASE and KILL characters back to normal #
and @.

sane Resets all modes to some reasonable values.

term Set all modes suitable for the terminal type term, where
term is one of tty33, tty37, vt05, tn300, ti700, or
tek.

async Set normal asynchronous communications where clock
settings are xcibrg, rcibrg, tsetcoff and
rsetcoff.

rows n Set window size to n rows.

columns n Set window size to n columns.

stty(1)

Combination
Modes

/usr/bin/stty

/usr/xpg4/bin/stty

Window Size

User Commands 1463

cols n Set window size to n columns. Note that cols is a shorthand alias
for columns.

ypixels n Set vertical window size to n pixels.

xpixels n Set horizontal window size to n pixels.

The -g flag is designed to facilitate the saving and restoring of terminal state from the
shell level. For example, a program may:

saveterm="$(stty -g)" # save terminal state
stty (new settings) # set new state
. . . # . . .

stty $saveterm # restore terminal state

Since the -a format is so loosely specified, scripts that save and restore terminal
settings should use the -g option.

See environ(5) for descriptions of the following environment variables that affect the
execution of stty: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

tabs(1), ioctl(2), write(2), getwidth(3C), attributes(5), environ(5),
ldterm(7M), termio(7I), termiox(7I)

stty(1)

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/stty

/usr/xpg4/bin/stty

SEE ALSO

1464 man pages section 1: User Commands • Last Revised 10 Dec 2001

stty – set the options for a terminal

/usr/ucb/stty [-a] [-g] [-h] [modes]

stty sets certain terminal I/O options for the device that is the current standard
output; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret (^), then the value of that option is
the corresponding CTRL character (for example, ‘‘^h’’ is CTRL-H; in this case, recall
that CTRL-H is the same as the ‘‘back-space’’ key.) The sequence ‘‘^’’’ means that an
option has a null value.

-a Report all of the option settings.

-g Report current settings in a form that can be used as an argument
to another stty command.

-h Report all the option settings with the control characters in an easy
to read column format.

Options in the last group are implemented using options in the previous groups. Note:
Many combinations of options make no sense, but no sanity checking is performed.
Hardware flow control and clock modes options may not be supported by all
hardware interfaces. The options are selected from the following:

all Reports the same option settings as stty without arguments, but
with the control characters in column format.

everything Everything stty knows about is printed. Same as -h option.

speed The terminal speed alone is reported on the standard output.

size The terminal (window) sizes are printed on the standard output,
first rows and then columns. This option is only appropriate if
currently running a window system.

size and speed always report on the settings of /dev/tty, and
always report the settings to the standard output.

parenb (-parenb)
Enable (disable) parity generation and detection.

parext (-parext)
Enable (disable) extended parity generation and detection for mark and space
parity.

parodd (-parodd)
Select odd (even) parity, or mark (space) parity if parext is enabled.

cs5 cs6 cs7 cs8
Select character size (see termio(7I)).

0
Hang up line immediately.

stty(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Special Requests

Control Modes

User Commands 1465

110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb
Set terminal baud rate to the number given, if possible. (All speeds are not
supported by all hardware interfaces.)

ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400
extb

Set terminal input baud rate to the number given, if possible. (Not all hardware
supports split baud rates.) If the input baud rate is set to zero, the input baud rate
will be specified by the value of the output baud rate.

ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400
extb

Set terminal output baud rate to the number given, if possible. (Not all hardware
supports split baud rates.) If the baud rate is set to zero, the line will be hung up
immediately.

hupcl (-hupcl)
Hang up (do not hang up) connection on last close.

hup (-hup)
Same as hupcl (-hupcl).

cstopb (-cstopb)
Use two (one) stop bits per character.

cread (-cread)
Enable (disable) the receiver.

clocal (-clocal)
Assume a line without (with) modem control.

crtscts (-crtscts)
Enable hardware flow control. Raise the RTS (Request to Send) modem control line.
Suspends output until the CTS (Clear to Send) line is raised.

loblk (-loblk)
Block (do not block) output from a non-current layer.

ignbrk (-ignbrk) Ignore (do not ignore) break on input.

brkint (-brkint) Signal (do not signal) INTR on break.

ignpar (-ignpar) Ignore (do not ignore) parity errors.

parmrk (-parmrk) Mark (do not mark) parity errors (see termio(7I)).

inpck (-inpck) Enable (disable) input parity checking.

istrip (-istrip) Strip (do not strip) input characters to seven bits.

inlcr (-inlcr) Map (do not map) NL to CR on input.

igncr (-igncr) Ignore (do not ignore) CR on input.

icrnl (-icrnl) Map (do not map) CR to NL on input.

stty(1B)

Input Modes

1466 man pages section 1: User Commands • Last Revised 6 Jan 1993

iuclc (-iuclc) Map (do not map) upper-case alphabetics to lower case
on input.

ixon (-ixon) Enable (disable) START/STOP output control. Output
is stopped by sending an STOP and started by sending
an START.

ixany (-ixany) Allow any character (only START) to restart output.

decctlq (-decctlq) Same as -ixany.

ixoff (-ixoff) Request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

tandem (-tandem) Same as ixoff.

imaxbel (-imaxbel) Echo (do not echo) BEL when the input line is too long.

iexten (-iexten) Enable (disable) extended (implementation-defined)
functions for input data.

opost (-opost) Post-process output (do not post-process output; ignore
all other output modes).

olcuc (-olcuc) Map (do not map) lower-case alphabetics to upper case
on output.

onlcr (-onlcr) Map (do not map) NL to CR-NL on output.

ocrnl (-ocrnl) Map (do not map) CR to NL on output.

onocr (-onocr) Do not (do) output CRs at column zero.

onlret (-onlret) On the terminal NL performs (does not perform) the
CR function.

ofill (-ofill) Use fill characters (use timing) for delays.

ofdel (-ofdel) Fill characters are DELs (NULs).

cr0 cr1 cr2 cr3 Select style of delay for carriage returns (see
termio(7I)).

nl0 nl1 Select style of delay for line-feeds (see termio(7I)).

tab0 tab1 tab2 tab3 Select style of delay for horizontal tabs (see
termio(7I)).

bs0 bs1 Select style of delay for backspaces (see termio(7I)).

ff0 ff1 Select style of delay for form-feeds (see termio(7I)).

vt0 vt1 Select style of delay for vertical tabs (see termio(7I)).

isig (-isig) Enable (disable) the checking of characters against the
special control characters INTR, QUIT, and SWTCH.

stty(1B)

Output Modes

Local Modes

User Commands 1467

icanon (-icanon) Enable (disable) canonical input (ERASE and KILL
processing). Does not set MIN or TIME.

cbreak (-cbreak) Equivalent to -icanon min 1 time 0.

xcase (-xcase) Canonical (unprocessed) upper/lower-case
presentation.

echo (-echo) Echo back (do not echo back) every character typed.

echoe (-echoe) Echo (do not echo) ERASE character as a
backspace-space-backspace string. Note: This mode
will erase the ERASEed character on many CRT
terminals; however, it does not keep track of column
position and, as a result, may be confusing on escaped
characters, tabs, and backspaces.

crterase (-crterase) Same as echoe.

echok (-echok) Echo (do not echo) NL after KILL character.

lfkc (-lfkc) The same as echok (-echok); obsolete.

echonl (-echonl) Echo (do not echo) NL.

noflsh (-noflsh) Disable (enable) flush after INTR, QUIT, or SWTCH.

stwrap (-stwrap) Disable (enable) truncation of lines longer than 79
characters on a synchronous line. (Does not apply to
the 3B2.)

tostop (-tostop) Send (do not send) SIGTTOU for background processes.

echoctl (-echoctl) Echo (do not echo) control characters as ^char, delete as
^?

ctlecho (-ctlecho) Same as echoctl.

echoprt (-echoprt) Echo (do not echo) erase character as character is
‘‘erased’’.

prterase (-prterase) Same as echoprt.

echoke (-echoke) BS-SP-BS erase (do not BS-SP-BS erase) entire line on
line kill.

crtkill (-crtkill) Same as echoke.

flusho (-flusho) Output is (is not) being flushed.

pendin (-pendin) Retype (do not retype) pending input at next read or
input character.

stflush (-stflush) Enable (disable) flush on a synchronous line after every
write(2). (Does not apply to the 3B2.)

stty(1B)

1468 man pages section 1: User Commands • Last Revised 6 Jan 1993

stappl (-stappl) Use application mode (use line mode) on a
synchronous line. (Does not apply to the 3B2.)

rtsxoff (-rtsxoff) Enable (disable) RTS hardware flow control on input.

ctsxon (-ctsxon) Enable (disable) CTS hardware flow control on output.

dterxoff (-dterxoff) Enable (disable) DTER hardware flow control on input.

rlsdxon (-rlsdxon) Enable (disable) RLSD hardware flow control on
output.

isxoff (-isxoff) Enable (disable) isochronous hardware flow control on
input.

xcibrg Get transmit clock from internal baud rate generator.

xctset Get the transmit clock from transmitter signal element
timing (DCE source) lead, CCITT V.24 circuit 114,
EIA-232-D pin 15.

xcrset Get transmit clock from receiver signal element timing
(DCE source) lead, CCITT V.24 circuit 115, EIA-232-D
pin 17.

rcibrg Get receive clock from internal baud rate generator.

rctset Get receive clock from transmitter signal element
timing (DCE source) lead, CCITT V.24 circuit 114,
EIA-232-D pin 15.

rcrset Get receive clock from receiver signal element timing
(DCE source) lead, CCITT V.24 circuit 115, EIA-232-D
pin 17.

tsetcoff Transmitter signal element timing clock not provided.

tsetcrc Output receive clock on transmitter signal element
timing (DTE source) lead, CCITT V.24 circuit 113,
EIA-232-D pin 24, clock source.

tsetcxc Output transmit clock on transmitter signal element
timing (DTE source) lead, CCITT V.24 circuit 113,
EIA-232-D pin 24, clock source.

rsetcoff Receiver signal element timing clock not provided.

rsetcrc Output receive clock on receiver signal element timing
(DTE source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin, clock source.

rsetcxc Output transmit clock on receiver signal element
timing (DTE source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin, clock source.

stty(1B)

Hardware Flow
Control Modes

Clock Modes

User Commands 1469

control-character c Set control-character to c, where control-character is intr,
quit, erase, kill, eof, eol, eol2, swtch, start,
stop, susp, dsusp, rprnt, flush, werase, lnext
min, ctab, time, or brk) (ctab is used with
-stappl; min and time are used with -icanon; see
termio(7I)). If c is preceded by an (escaped from the
shell) caret (^), then the value used is the
corresponding CTRL character (for example, ‘‘^d’’ is a
CTRL-d); ‘‘^?’’ is interpreted as DEL and ‘‘^−’’ is
interpreted as undefined.

line i Set line discipline to i (0 < i < 127).

evenp or parity Enable parenb and cs7.

-evenp, or -parity Disable parenb, and set cs8.

even (-even) Same as evenp (-evenp).

oddp Enable parenb, cs7, and parodd.

-oddp Disable parenb and parodd, and set cs8.

odd (-odd) Same as oddp (-oddp).

spacep Enable parenb, cs7, and parext.

-spacep Disable parenb and parext, and set cs8.

markp Enable parenb, cs7, parodd, and parext.

-markp Disable parenb, parodd, and parext, and set cs8.

raw (-raw or cooked) Enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, SWTCH, EOT, or output post
processing).

nl (-nl) Unset (set) icrnl, onlcr. In addition -nl unsets
inlcr, igncr, ocrnl, and onlret.

lcase (-lcase) Set (unset) xcase, iuclc, and olcuc.

LCASE (-LCASE) Same as lcase (-lcase).

tabs (-tabs or tab3) Preserve (expand to spaces) tabs when printing.

ek Reset ERASE and KILL characters back to normal #
and @.

sane Resets all modes to some reasonable values.

term Set all modes suitable for the terminal type term, where
term is one of tty33, tty37, vt05, tn300, ti700, or
tek.

stty(1B)

Control
Assignments

Combination
Modes

1470 man pages section 1: User Commands • Last Revised 6 Jan 1993

async Set normal asynchronous communications where clock
settings are xcibrg, rcibrg, tsetcoff and
rsetcoff.

litout (-litout) Disable (enable) parenb, istrip, and opost, and set
cs8 (cs7).

pass8 (-pass8) Disable (enable) parenb and istrip, and set cs8
(cs7).

crt Set options for a CRT (echoe, echoctl, and, if >=
1200 baud, echoke.)

dec Set all modes suitable for Digital Equipment Corp.
operating systems users ERASE, KILL, and INTR
characters to ^?, ^U, and ^C, decctlq, and crt.)

rowsn Set window size to n rows.

columnsn Set window size to n columns.

colsn An alias for columns n.

ypixelsn Set vertical window size to n pixels.

xpixelsn Set horizontal window size to n pixels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

tabs(1), ioctl(2), attributes(5), termio(7I), termiox(7I)

stty(1B)

Window Size

ATTRIBUTES

SEE ALSO

User Commands 1471

sum – print checksum and block count for a file

sum [-r] [file…]

The sum utility calculates and prints a 16-bit checksum for the named file and the
number of 512-byte blocks in the file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission line.

The following options are supported:

-r Use an alternate (machine-dependent) algorithm in computing the
checksum.

The following operands are supported:

file A path name of a file. If no files are named, the standard input is used.

See largefile(5) for the description of the behavior of sum when encountering files
greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of sum: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned.

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

cksum(1), sum(1B), wc(1), attributes(5), environ(5), largefile(5)

“Read error” is indistinguishable from end of file on most devices; check the block
count.

Portable applications should use cksum(1).

sum and usr/ucb/sum (see sum(1B)) return different checksums.

sum(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1472 man pages section 1: User Commands • Last Revised 7 Nov 1995

sum – calculate a checksum for a file

/usr/ucb/sum file…

sum calculates and displays a 16-bit checksum for the named file and displays the size
of the file in kilobytes. It is typically used to look for bad spots, or to validate a file
communicated over some transmission line. The checksum is calculated by an
algorithm which may yield different results on machines with 16-bit ints and
machines with 32-bit ints, so it cannot always be used to validate that a file has been
transferred between machines with different-sized ints.

See largefile(5) for the description of the behavior of sum when encountering files
greater than or equal to 2 Gbyte (231 bytes).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

sum(1), wc(1), attributes(5), largefile(5)

Read error is indistinguishable from EOF on most devices; check the block count.

sum and /usr/bin/sum (see sum(1)) return different checksums.

This utility is obsolete.

sum(1B)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 1473

suspend – shell built-in function to halt the current shell

suspend

suspend

suspend

Stops the execution of the current shell (but not if it is the login shell).

Stop the shell in its tracks, much as if it had been sent a stop signal with ^Z. This is
most often used to stop shells started by su.

Stops the execution of the current shell (but not if it is the login shell).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), kill(1), ksh(1), sh(1), su(1M), attributes(5)

suspend(1)

NAME

sh

csh

ksh

sh

csh

ksh

ATTRIBUTES

SEE ALSO

1474 man pages section 1: User Commands • Last Revised 15 Apr 1994

symorder – rearrange a list of symbols

symorder [-s] objectfile symbolfile

symorder was used in SunOS 4.x specifically to cut down on the overhead of getting
symbols from vmunix. This is no longer applicable as kernel symbol entries are
dynamically obtained through /dev/ksyms.

This script is provided as a convenience for software developers who need to maintain
scripts that are portable across a variety of operating systems.

symorder has exit status 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

nlist(3ELF), attributes(5), ksyms(7D).

symorder(1)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1475

sysV-make – maintain, update, and regenerate groups of programs

/usr/lib/svr4.make [-f makefile] [-eiknpqrst] [names]

This is the “vanilla” System V version of make. If the environment variable
USE_SVR4_MAKE is set, then the command make will invoke this version of make.
(See also the ENVIRONMENT section.)

make allows the programmer to maintain, update, and regenerate groups of computer
programs. make executes commands in makefile to update one or more target names
(names are typically programs). If the -f option is not present, then makefile,
Makefile, and the Source Code Control System (SCCS) files s.makefile and
s.Makefile are tried in order. If makefile is ‘−’ the standard input is taken. More than
one -f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prerequisite
files of a target are added recursively to the list of targets. Missing files are deemed to
be outdated.

The following list of four directives can be included in makefile to extend the options
provided by make. They are used in makefile as if they were targets:

.DEFAULT: If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

.IGNORE: Same effect as the -i option.

.PRECIOUS: Dependents of the .PRECIOUS entry will not be removed when
quit or interrupt are hit.

.SILENT: Same effect as the -s option.

The options for make are listed below:

-e Environment variables override assignments within makefiles.

-f makefile Description filename (makefile is assumed to be the name of a
description file).

-i Ignore error codes returned by invoked commands.

-k Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

-n No execute mode. Print commands, but do not execute them. Even
command lines beginning with an ‘@’ are printed.

-p Print out the complete set of macro definitions and target
descriptions.

-q Question. make returns a zero or non-zero status code depending
on whether or not the target file has been updated.

-r Do not use the built-in rules.

sysV-make(1)

NAME

SYNOPSIS

DESCRIPTION

Options

1476 man pages section 1: User Commands • Last Revised 1 Nov 1999

-s Silent mode. Do not print command lines before executing.

-t Touch the target files (causing them to be updated) rather than
issue the usual commands.

The makefile invoked with the -f option is a carefully structured file of explicit
instructions for updating and regenerating programs, and contains a sequence of
entries that specify dependencies. The first line of an entry is a blank-separated,
non-null list of targets, then a ‘:’, then a (possibly null) list of prerequisite files or
dependencies. Text following a ‘;’ and all following lines that begin with a tab are
shell commands to be executed to update the target. The first non-empty line that does
not begin with a tab or ‘#’ begins a new dependency or macro definition. Shell
commands may be continued across lines with a backslash-new-line (\-NEWLINE)
sequence. Everything printed by make (except the initial TAB) is passed directly to the
shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Number-sign (#) and NEWLINE surround comments including contained
‘\−NEWLINE’ sequences.

The following makefile says that pgm depends on two files a.o and b.o, and that they
in turn depend on their corresponding source files (a.c and b.c) and a common file
incl.h:

pgm: a.o b.o
cc a.o b.o -o pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The SHELL
environment variable can be used to specify which shell make should use to execute
commands. The default is /usr/bin/sh. The first one or two characters in a
command can be the following: ‘@’, ‘−’, ‘@−’, or ‘−@’. If ‘@’ is present, printing of the
command is suppressed. If ‘−’ is present, make ignores an error. A line is printed when
it is executed unless the -s option is present, or the entry .SILENT: is included in
makefile, or unless the initial character sequence contains a @. The -n option specifies

sysV-make(1)

Creating the
makefile

User Commands 1477

printing without execution; however, if the command line has the string $(MAKE) in
it, the line is always executed (see the discussion of the MAKEFLAGS macro in the make
Environment sub-section below). The -t (touch) option updates the modified date of
a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is
present, if the entry .IGNORE: is included in makefile, or if the initial character
sequence of the command contains ‘−’, the error is ignored. If the -k option is present,
work is abandoned on the current entry, but continues on other branches that do not
depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a dependent of the
directive .PRECIOUS.

The environment is read by make. All variables are assumed to be macro definitions
and are processed as such. The environment variables are processed before any
makefile and after the internal rules; thus, macro assignments in a makefile override
environment variables. The -e option causes the environment to override the macro
assignments in a makefile. Suffixes and their associated rules in the makefile will
override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any legal
input option (except -f and -p) defined for the command line. Further, upon
invocation, make “invents” the variable if it is not in the environment, puts the current
options into it, and passes it on to invocations of commands. Thus, MAKEFLAGS
always contains the current input options. This feature proves very useful for
“super-makes”. In fact, as noted above, when the -n option is used, the command
$(MAKE) is executed anyway; hence, one can perform a make -n recursively on a
whole software system to see what would have been executed. This result is possible
because the -n is put in MAKEFLAGS and passed to further invocations of $(MAKE).
This usage is one way of debugging all of the makefiles for a software project without
actually doing anything.

If the string include appears as the first seven letters of a line in a makefile, and is
followed by a blank or a tab, the rest of the line is assumed to be a filename and will
be read by the current invocation, after substituting for any macros.

Entries of the form string1 = string2 are macro definitions. string2 is defined as all
characters up to a comment character or an unescaped NEWLINE. Subsequent
appearances of $(string1[:subst1=[subst2]]) are replaced by string2. The parentheses are
optional if a single-character macro name is used and there is no substitute sequence.
The optional :subst1=subst2 is a substitute sequence. If it is specified, all
non-overlapping occurrences of subst1 in the named macro are replaced by subst2.
Strings (for the purposes of this type of substitution) are delimited by BLANKs, TABs,
NEWLINE characters, and beginnings of lines. An example of the use of the substitute
sequence is shown in the Libraries sub-section below.

sysV-make(1)

make Environment

Include Files

Macros

1478 man pages section 1: User Commands • Last Revised 1 Nov 1999

There are five internally maintained macros that are useful for writing rules for
building targets.

$* The macro $* stands for the filename part of the current dependent with
the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It
is the module that is outdated with respect to the target (the
“manufactured” dependent file name). Thus, in the .c.o rule, the $<
macro would evaluate to the .c file. An example for making optimized .o
files from .c files is:

.c.o:
cc -c -O $*.c

or:

.c.o:
cc -c -O $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are outdated with respect to the
target, and essentially those modules that must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to lib and
$% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to “directory part” for D
and “file part” for F. Thus, $(@D) refers to the directory part of the string $@. If there
is no directory part, ./ is generated. The only macro excluded from this alternative
form is $?.

Certain names (for instance, those ending with .o) have inferable prerequisites such
as .c, .s, etc. If no update commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled to make the target. In this
case, make has inference rules that allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use. The current default
inference rules are:

.c .c~ .f .f~ .s .s~ .sh .sh~ .C .C~

.c.a .c.o .c~.a .c~.c .c~.o .f.a .f.o .f~.a .f~.f .f~.o

.h~.h .l.c .l.o .l~.c .l~.l .l~.o .s.a .s.o .s~.a .s~.o

sysV-make(1)

Internal Macros

Suffixes

User Commands 1479

.s~.s .sh~.sh .y.c .y.o .y~.c .y~.o .y~.y .C.a .C.o .C~.a

.C~.C .C~.o .L.C .L.o .L~.C .L~.L .L~.o .Y.C .Y.o .Y~.C

.Y~.o .Y~.Y

The internal rules for make are contained in the source file make.rules for the make
program. These rules can be locally modified. To print out the rules compiled into the
make on any machine in a form suitable for recompilation, the following command is
used:

make -pf − 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file (see sccsfile(4)). Thus, the rule
.c~.o would transform an SCCS C source file into an object file (.o). Because the s.
of the SCCS files is a prefix, it is incompatible with the make suffix point of view.
Hence, the tilde is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (for example, .c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This feature is useful for building targets from
only one source file, for example, shell procedures and simple C programs.

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant: the first possible name for which both a file and a rule exist is inferred as a
prerequisite. The default list is:

.SUFFIXES: .o .c .c~ .y .y~ .l .l~ .s .s~ .sh .sh~ .h .h~ .f .f~ .C

.C~ .Y .Y~ .L .L~

Here again, the above command for printing the internal rules will display the list of
suffixes implemented on the current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suffixes.

The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -o pgm

a.o b.o: incl.h

This abbreviation is possible because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc(1B). Again, the previous method for
examining the current rules is recommended.

sysV-make(1)

Inference Rules

1480 man pages section 1: User Commands • Last Revised 1 Nov 1999

The inference of prerequisites can be controlled. The rule to create a file with suffix .o
from a file with suffix .c is specified as an entry with .c.o: as the target and no
dependents. Shell commands associated with the target define the rule for making a
.o file from a .c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library. Thus,
lib(file.o) and $(LIB)(file.o) both refer to an archive library that contains
file.o. (This example assumes the LIB macro has been previously defined.) The
expression $(LIB)(file1.o file2.o) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix from which the archive
member is to be made. An unfortunate by-product of the current implementation
requires the XX to be different from the suffix of the archive member. Thus, one cannot
have lib(file.o) depend upon file.o explicitly. The most common use of the
archive interface follows. Here, we assume the source files are all C type source:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<

$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)

$(AR) $(ARFLAGS) lib $?
rm $?
@echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined to
be the set of object filenames (inside lib) whose C source files are outdated. The
substitution mode translates the .o to .c. (Unfortunately, one cannot as yet transform
to .c~; however, this transformation may become possible in the future.) Also note
the disabling of the .c.a: rule, which would have created each object file, one by one.
This particular construct speeds up archive library maintenance considerably. This
type of construct becomes very cumbersome if the archive library contains a mix of
assembly programs and C programs.

USE_SVR4_MAKE If this environment variable is set, then the make command will
invoke this System V version of make. If this variable is not set,
then the default version of make(1S) is invoked.

USE_SVR4_MAKE can be set as follows (Bourne shell):

$ USE_SVR4_MAKE=‘‘’’; export USE_SVR4_MAKE

sysV-make(1)

Libraries

ENVIRONMENT
VARIABLES

User Commands 1481

or (C shell):

% setenv USE_SVR4_MAKE

[Mm]akefile
s.[Mm]akefile

default makefiles

/usr/bin/sh
default shell for make

/usr/share/lib/make/make.rules
default rules for make

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

cc(1B), cd(1), make(1S), sh(1), printf(3C), sccsfile(4), attributes(5)

Some commands return non-zero status inappropriately; use -i or the ‘-’ command
line prefix to overcome the difficulty.

Filenames containing the characters ‘=’, ‘:’, and ‘@’ will not work. Commands that are
directly executed by the shell, notably cd(1), are ineffectual across NEWLINEs in
make. The syntax lib(file1.o file2.o file3.o) is illegal. You cannot build
lib(file.o) from file.o.

sysV-make(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

1482 man pages section 1: User Commands • Last Revised 1 Nov 1999

tabs – set tabs on a terminal

tabs [-n | −−file [[-code] | -a | -a2 | -c | -c2 | -c3 | -f | -p | -s
| -u]] [+m [n]] [-T type]

tabs [-T type] [+ m [n]] n1 [, n2 ,…]

tabs sets the tab stops on the user’s terminal according to a tab specification, after
clearing any previous settings. The user’s terminal must have remotely settable
hardware tabs.

The following options are supported. If a given flag occurs more than once, the last
value given takes effect:

-T type tabs needs to know the type of terminal in order to set tabs and
margins. type is a name listed in term(5). If no -T flag is
supplied, tabs uses the value of the environment variable TERM.
If the value of TERM is NULL or TERM is not defined in the
environment (see environ(5)), tabs uses ansi+tabs as the
terminal type to provide a sequence that will work for many
terminals.

+m[n] The margin argument may be used for some terminals. It causes
all tabs to be moved over n columns by making column n+1 the
left margin. If +m is given without a value of n, the value assumed
is 10. For a TermiNet, the first value in the tab list should be 1, or
the margin will move even further to the right. The normal
(leftmost) margin on most terminals is obtained by +m0. The
margin for most terminals is reset only when the +m flag is given
explicitly.

Four types of tab specification are accepted. They are described below: canned,
repetitive (-n), arbitrary (n1,n2,...), and file (–file).

If no tab specification is given, the default value is −8, that is, UNIX system
‘‘standard’’ tabs. The lowest column number is 1. Note: For tabs, column 1 always
refers to the leftmost column on a terminal, even one whose column markers begin at
0, for example, the DASI 300, DASI 300s, and DASI 450.

Use one of the codes listed below to select a canned set of tabs. If more than one code
is specified, the last code option will be used. The legal codes and their meanings are
as follows:

-a 1,10,16,36,72 Assembler, IBM S/370, first format

-a2 1,10,16,40,72

Assembler, IBM S/370, second format

-c 1,8,12,16,20,55

COBOL, normal format

tabs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Tab Specification

Canned -code

User Commands 1483

-c2 1,6,10,14,49

COBOL compact format (columns 1-6 omitted). Using this code, the first
typed character corresponds to card column 7, one space gets you to
column 8, and a tab reaches column 12. Files using this tab setup should
include a format specification as follows (see fspec(4)):

<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs than -c2.
This is the recommended format for COBOL. The appropriate format
specification is (see fspec(4)):

<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23

FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PL/I

-s 1,10,55

SNOBOL

-u 1,12,20,44

UNIVAC 1100 Assembler

-n A repetitive specification requests tabs at columns 1+n, 1+2*n, etc., where n
is a single-digit decimal number. Of particular importance is the value 8:
this represents the UNIX system ‘‘standard’’ tab setting, and is the most
likely tab setting to be found at a terminal. When −0 is used, the tab stops
are cleared and no new ones are set.

See OPERANDS.

–file If the name of a file is given, tabs reads the first line of the file,
searching for a format specification (see fspec(4)). If it finds one
there, it sets the tab stops according to it, otherwise it sets them as
−8. This type of specification may be used to make sure that a
tabbed file is printed with correct tab settings, and would be used
with the pr command:

example% tabs – file; pr file

Tab and margin setting is performed via the standard output.

tabs(1)

Repetitive

Arbitrary

File

1484 man pages section 1: User Commands • Last Revised 1 Feb 1995

The following operand is supported:

n1[,n2, . . .] The arbitrary format consists of tab-stop values separated by
commas or spaces. The tab-stop values must be positive decimal
integers in ascending order. Up to 40 numbers are allowed. If any
number (except the first one) is preceded by a plus sign, it is taken
as an increment to be added to the previous value. Thus, the
formats 1,10,20,30, and 1,10,+10,+10 are considered identical.

EXAMPLE 1 Using the tabs Command

The following command is an example using -code (canned specification) to set tabs
to the settings required by the IBM assembler: columns 1, 10, 16, 36, 72:

example% tabs -a

The next command is an example of using -n (repetitive specification), where n is 8,
causes tabs to be set every eighth position: 1+(1*8), 1+(2*8), . . . which evaluate to
columns 9, 17, . . . :

example% tabs −8

This command uses n1,n2,. . . (arbitrary specification) to set tabs at columns 1, 8, and
36:

example% tabs 1,8,36

The last command is an example of using –file (file specification) to indicate that tabs
should be set according to the first line of $HOME/fspec.list/att4425 (see fspec(4)).

example% tabs –$HOME/fspec.list/att4425

See environ(5) for descriptions of the following environment variables that affect the
execution of tabs: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TERM Determine the terminal type. If this variable is unset or null, and if the -T
option is not specified, terminal type ansi+tabs will be used.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

tabs(1)

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

User Commands 1485

expand(1), newform(1), pr(1), stty(1), tput(1), fspec(4), terminfo(4),
attributes(5), environ(5), term(5)

There is no consistency among different terminals regarding ways of clearing tabs and
setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to set
64.

The tabspec used with the tabs command is different from the one used with the
newform command. For example, tabs −8 sets every eighth position; whereas
newform −i−8 indicates that tabs are set every eighth position.

tabs(1)

SEE ALSO

NOTES

1486 man pages section 1: User Commands • Last Revised 1 Feb 1995

tail – deliver the last part of a file

/usr/bin/tail [± number [lbcr]] [file]

/usr/bin/tail [-lbcr] [file]

/usr/bin/tail [± number [lbcf]] [file]

/usr/bin/tail [-lbcf] [file]

/usr/xpg4/bin/tail [-f | -r] [-c number | -n number] [file]

/usr/xpg4/bin/tail [± number [l | b | c] [f]] [file]

/usr/xpg4/bin/tail [± number [l] [f | r]] [file]

The tail utility copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at a point in the file indicated by the -cnumber, -nnumber, or ±number
options (if +number is specified, begins at distance number from the beginning; if
-number is specified, from the end of the input; if number is NULL, the value 10 is
assumed). number is counted in units of lines or byte according to the -c or -n
options, or lines, blocks, or bytes, according to the appended option l, b, or c. When
no units are specified, counting is by lines.

The following options are supported for both /usr/bin/tail and
/usr/xpg4/bin/tail. The -r and -f options are mutually exclusive. If both are
specified on the command line, the -f option will be ignored.

-b Units of blocks.

-c Units of bytes.

-f Follow. If the input-file is not a pipe, the program will not terminate after
the line of the input-file has been copied, but will enter an endless loop,
wherein it sleeps for a second and then attempts to read and copy further
records from the input-file. Thus it may be used to monitor the growth of a
file that is being written by some other process.

-l Units of lines.

-r Reverse. Copies lines from the specified starting point in the file in reverse
order. The default for r is to print the entire file in reverse order.

The following options are supported for /usr/xpg4/bin/tail only:

-c number The number option-argument must be a decimal integer whose
sign affects the location in the file, measured in bytes, to begin the
copying:

+ Copying starts relative to the beginning of the file.

− Copying starts relative to the end of the file.

none Copying starts relative to the end of the file.

tail(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

/usr/xpg4/bin/tail

User Commands 1487

The origin for counting is 1; that is, -c+1 represents the first byte
of the file, -c−1 the last.

-n number Equivalent to -cnumber, except the starting location in the file is
measured in lines instead of bytes. The origin for counting is 1;
that is, -n+1 represents the first line of the file, -n−1 the last.

The following operand is supported:

file A path name of an input file. If no file operands are specified, the
standard input will be used.

See largefile(5) for the description of the behavior of tail when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Using the tail Command

The following command will print the last ten lines of the file fred, followed by any
lines that are appended to fred between the time tail is initiated and killed.

example% tail -f fred

The next command will print the last 15 bytes of the file fred, followed by any lines
that are appended to fred between the time tail is initiated and killed:

example% tail -15cf fred

See environ(5) for descriptions of the following environment variables that affect the
execution of tail: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

tail(1)

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/tail

/usr/xpg4/bin/tail

1488 man pages section 1: User Commands • Last Revised 18 Mar 1997

cat(1), head(1), more(1), pg(1), dd(1M), attributes(5), environ(5),
largefile(5), XPG4(5)

Piped tails relative to the end of the file are stored in a buffer, and thus are limited in
length. Various kinds of anomalous behavior may happen with character special files.

tail(1)

SEE ALSO

NOTES

User Commands 1489

talk – talk to another user

talk address [terminal]

The talk utility is a two-way, screen-oriented communication program.

When first invoked, talk sends a message similar to:

Message from TalkDaemon@ her_machine at time . . .
talk: connection requested by your_address
talk: respond with: talk your_address

to the specified address. At this point, the recipient of the message can reply by typing:

talk your_address

Once communication is established, the two parties can type simultaneously, with
their output displayed in separate regions of the screen. Characters are processed as
follows:

� Typing the alert character will alert the recipient’s terminal.
� Typing Control-L will cause the sender’s screen regions to be refreshed.
� Typing the erase and kill characters will affect the sender’s terminal in the manner

described by the termios(3C) interface.
� Typing the interrupt or end-of-file (EOF) characters will terminate the local talk

utility. Once the talk session has been terminated on one side, the other side of
the talk session will be notified that the talk session has been terminated and
will be able to do nothing except exit.

� Typing characters from LC_CTYPE classifications print or space will cause those
characters to be sent to the recipient’s terminal.

� When and only when the stty iexten local mode is enabled, additional special
control characters and multi-byte or single-byte characters are processed as
printable characters if their wide character equivalents are printable.

� Typing other non-printable characters will cause them to be written to the
recipient’s terminal as follows: control characters will appear as a caret (^)
followed by the appropriate ASCII character, and characters with the high-order bit
set will appear in “meta” notation. For example, ‘\003’ is displayed as ‘^C’ and
‘\372’ as ‘M−z’.

Permission to be a recipient of a talk message can be denied or granted by use of the
mesg(1) utility. However, a user’s privilege may further constrain the domain of
accessibility of other users’ terminals. Certain commands, such as pr(1), disallow
messages in order to prevent interference with their output. talk will fail when the
user lacks the appropriate privileges to perform the requested action.

talk(1)

NAME

SYNOPSIS

DESCRIPTION

1490 man pages section 1: User Commands • Last Revised 6 Nov 2000

Certain block-mode terminals do not have all the capabilities necessary to support the
simultaneous exchange of messages required for talk. When this type of exchange
cannot be supported on such terminals, the implementation may support an exchange
with reduced levels of simultaneous interaction or it may report an error describing
the terminal-related deficiency.

The following operands are supported:

address The recipient of the talk session. One form of address is the
username, as returned by the who(1) utility. If you wish to talk to
someone on your own machine, then username is just the person’s
login name. If you wish to talk to a user on another host, then
username is one of the following forms:

host!user
host.user
host:user
user@host

although user@host is perhaps preferred.

terminal If the recipient is logged in more than once, terminal can be used to
indicate the appropriate terminal name. If terminal is not specified,
the talk message will be displayed on one or more accessible
terminals in use by the recipient. The format of terminal will be the
same as that returned by who.

See environ(5) for descriptions of the following environment variables that affect the
execution of talk: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TERM Determine the name of the invoker’s terminal type. If this variable
is unset or null, an unspecified terminal type will be used.

The following exit values are returned:

0 Successful completion.

>0 An error occurred, or talk was invoked on a terminal incapable of
supporting it.

/etc/hosts host name database

/var/adm/utmpx user and accounting information for talk

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmds

talk(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

User Commands 1491

mail(1), mesg(1), pr(1), stty(1), who(1), write(1), termios(3C), attributes(5),
environ(5)

Typing Control-L redraws the screen, while the erase, kill, and word kill characters
will work in talk as normal. To exit, type an interrupt character; talk then moves
the cursor to the bottom of the screen and restores the terminal to its previous state.

talk(1)

SEE ALSO

NOTES

1492 man pages section 1: User Commands • Last Revised 6 Nov 2000

tar – create tape archives and add or extract files

tar c [bBeEfFhiklnopPqvwX@ [0-7]] [block] [tarfile] [exclude-file]
{-I include-file | -C directory | file | file…}

tar r [bBeEfFhiklnqvw@ [0-7]] [block] {-I include-file | -C directory | file
| file…}

tar t [BefFhiklnqvX [0-7]] [tarfile] [exclude-file] {-I include-file | file…}

tar u [bBeEfFhiklnqvw@ [0-7]] [block] [tarfile] file…

tar x [BefFhiklmnopqvwX [0-7]] [tarfile] [exclude-file] [file…]

The tar command archives and extracts files to and from a single file called a tarfile. A
tarfile is usually a magnetic tape, but it can be any file. tar’s actions are controlled by
the key argument. The key is a string of characters containing exactly one function
letter (c, r, t , u, or x) and zero or more function modifiers (letters or digits),
depending on the function letter used. The key string contains no SPACE characters.
Function modifier arguments are listed on the command line in the same order as their
corresponding function modifiers appear in the key string.

The -I include-file, -C directory file, and file arguments specify which files or directories
are to be archived or extracted. In all cases, appearance of a directory name refers to
the files and (recursively) subdirectories of that directory. Arguments appearing within
braces ({ }) indicate that one of the arguments must be specified.

The following options are supported:

-I include-file Opens include-file containing a list of files, one per line,
and treats it as if each file appeared separately on the
command line. Be careful of trailing white spaces. Also
beware of leading white spaces, since, for each line in
the included file, the entire line (apart from the
newline) will be used to match against the initial string
of files to include. In the case where excluded files (see
X function modifier) are also specified, they take
precedence over all included files. If a file is specified in
both the exclude-file and the include-file (or on the
command line), it will be excluded.

-C directory file Performs a chdir (see cd(1)) operation on directory
and performs the c (create) or r (replace) operation on
file. Use short relative path names for file. If file is ‘.’,
archive all files in directory. This option enables
archiving files from multiple directories not related by
a close common parent.

The following operands are supported:

tar(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

User Commands 1493

file A path name of a regular file or directory to be archived (when the c, r or u
functions are specified), extracted (x) or listed (t). When file is the path
name of a directory, the action applies to all of the files and (recursively)
subdirectories of that directory.

When a file is archived, and the E flag (see Function Modifiers) is not
specified, the filename cannot exceed 256 characters. In addition, it must be
possible to split the name between parent directory names so that the
prefix is no longer than 155 characters and the name is no longer than 100
characters. If E is specified, a name of up to PATH_MAX characters may be
specified.

For example, a file whose basename is longer than 100 characters could not
be archived without using the E flag. A file whose directory portion is 200
characters and whose basename is 50 characters could be archived (without
using E) if a slash appears in the directory name somewhere in character
positions 151-156.

The function portion of the key is specified by one of the following letters:

c Create. Writing begins at the beginning of the tarfile, instead of at the end.

r Replace. The named files are written at the end of the tarfile. A file created
with extended headers must be updated with extended headers (see E flag
under Function Modifiers). A file created without extended headers
cannot be modified with extended headers.

t Table of Contents. The names of the specified files are listed each time they
occur in the tarfile. If no file argument is given, the names of all files and
any associated extended attributes in the tarfile are listed. With the v
function modifier, additional information for the specified files is
displayed.

u Update. The named files are written at the end of the tarfile if they are not
already in the tarfile, or if they have been modified since last written to that
tarfile. An update can be rather slow. A tarfile created on a 5.x system
cannot be updated on a 4.x system. A file created with extended headers
must be updated with extended headers (see E flag under Function
Modifiers). A file created without extended headers cannot be modified
with extended headers.

x Extract or restore. The named files are extracted from the tarfile and written
to the directory specified in the tarfile, relative to the current directory. Use
the relative path names of files and directories to be extracted.

Absolute path names contained in the tar archive are unpacked using the
absolute path names, that is, the leading forward slash (/) is not stripped
off.

tar(1)

Function Letters

1494 man pages section 1: User Commands • Last Revised 27 Jun 2001

If a named file matches a directory whose contents has been written to the
tarfile, this directory is recursively extracted. The owner, modification time,
and mode are restored (if possible); otherwise, to restore owner, you must
be the super-user. Character-special and block-special devices (created by
mknod(1M)) can only be extracted by the super-user. If no file argument is
given, the entire content of the tarfile is extracted. If the tarfile contains
several files with the same name, each file is written to the appropriate
directory, overwriting the previous one. Filename substitution wildcards
cannot be used for extracting files from the archive. Rather, use a command
of the form:

tar xvf ... /dev/rmt/0 `tar tf ... /dev/rmt/0 | \

grep ’pattern’ `

When extracting tapes created with the r or u functions, directory modification times
may not be set correctly. These same functions cannot be used with many tape drives
due to tape drive limitations such as the absence of backspace or append capabilities.

When using the r, u, or x functions or the X function modifier, the named files must
match exactly the corresponding files in the tarfile. For example, to extract ./thisfile,
you must specify ./thisfile, and not thisfile. The t function displays how each file was
archived.

The characters below may be used in conjunction with the letter that selects the
desired function.

b Blocking Factor. Use when reading or writing to raw magnetic
archives (see f below). The block argument specifies the number of
512-byte tape blocks to be included in each read or write operation
performed on the tarfile. The minimum is 1, the default is 20. The
maximum value is a function of the amount of memory available
and the blocking requirements of the specific tape device involved
(see mtio(7I) for details.) The maximum cannot exceed
INT_MAX/512 (4194303).

When a tape archive is being read, its actual blocking factor will be
automatically detected, provided that it is less than or equal to the
nominal blocking factor (the value of the block argument, or the
default value if the b modifier is not specified). If the actual
blocking factor is greater than the nominal blocking factor, a read
error will result. See Example 5 in EXAMPLES.

B Block. Force tar to perform multiple reads (if necessary) to read
exactly enough bytes to fill a block. This function modifier enables
tar to work across the Ethernet, since pipes and sockets return
partial blocks even when more data is coming. When reading from
standard input, ’−’, this function modifier is selected by default to
ensure that tar can recover from short reads.

tar(1)

Function Modifiers

User Commands 1495

e Error. Exit immediately with a positive exit status if any
unexpected errors occur. The SYSV3 environment variable
overrides the default behavior. (See ENVIRONMENT VARIABLES
section below.)

E Write a tarfile with extended headers. (Used with c, r, or u
options; ignored with t or x options.) When a tarfile is written
with extended headers, the modification time is maintained with a
granularity of microseconds rather than seconds. In addition,
filenames no longer than PATH_MAX characters that could not be
archived without E, and file sizes greater than 8GB, are supported.
The E flag is required whenever the larger files and/or files with
longer names, or whose UID/GID exceed 2097151, are to be
archived, or if time granularity of microseconds is desired.

f File. Use the tarfile argument as the name of the tarfile. If f is
specified, /etc/default/tar is not searched. If f is omitted,
tar will use the device indicated by the TAPE environment
variable, if set; otherwise, it will use the default values defined in
/etc/default/tar. The number matching the archiveN string
is used as the output device with the blocking and size
specifications from the file. For example,

tar -c 2/tmp/*

writes the output to the device specified as archive2 in
/etc/default/tar.

If the name of the tarfile is ’−’, tar writes to the standard output or
reads from the standard input, whichever is appropriate. tar can
be used as the head or tail of a pipeline. tar can also be used to
move hierarchies with the command:

example% cd fromdir; tar cf − .| (cd todir; tar xfBp −)

F With one F argument, tar excludes all directories named SCCS
and RCS from the tarfile. With two arguments, FF, tar excludes
all directories named SCCS and RCS, all files with .o as their
suffix, and all files named errs, core, and a.out. The SYSV3
environment variable overrides the default behavior. (See
ENVIRONMENT VARIABLES section below.)

h Follow symbolic links as if they were normal files or directories.
Normally, tar does not follow symbolic links.

i Ignore directory checksum errors.

k size Requires tar to use the size argument as the size of an archive in
kilobytes. This is useful when the archive is intended for a fixed
size device such as floppy disks. Large files are then split across
volumes if they do not fit in the specified size.

tar(1)

1496 man pages section 1: User Commands • Last Revised 27 Jun 2001

l Link. Output error message if unable to resolve all links to the files
being archived. If l is not specified, no error messages are printed.

m Modify. The modification time of the file is the time of extraction.
This function modifier is valid only with the x function.

n The file being read is a non-tape device. Reading of the archive is
faster since tar can randomly seek around the archive.

o Ownership. Assign to extracted files the user and group identifiers
of the user running the program, rather than those on tarfile. This
is the default behavior for users other than root. If the o function
modifier is not set and the user is root, the extracted files will take
on the group and user identifiers of the files on tarfile (see
chown(1) for more information). The o function modifier is only
valid with the x function.

p Restore the named files to their original modes, and ACLs if
applicable, ignoring the present umask(1). This is the default
behavior if invoked as super-user with the x function letter
specified. If super-user, SETUID, and sticky information are also
extracted, and files are restored with their original owners and
permissions, rather than owned by root. When this function
modifier is used with the c function, ACLs are created in the tarfile
along with other information. Errors will occur when a tarfile with
ACLs is extracted by previous versions of tar.

P Suppress the addition of a trailing "/" on directory entries in the
archive.

q Stop after extracting the first occurrence of the named file. tar will
normally continue reading the archive after finding an occurrence
of a file.

v Verbose. Output the name of each file preceded by the function
letter. With the t function, v provides additional information
about the tarfile entries. The listing is similar to the format
produced by the -l option of the ls(1) command.

w What. Output the action to be taken and the name of the file, then
await the user’s confirmation. If the response is affirmative, the
action is performed; otherwise, the action is not performed. This
function modifier cannot be used with the t function.

X Exclude. Use the exclude-file argument as a file containing a list of
relative path names for files (or directories) to be excluded from
the tarfile when using the functions c, x, or t. Be careful of trailing
white spaces. Also beware of leading white spaces, since, for each
line in the excluded file, the entire line (apart from the newline)
will be used to match against the initial string of files to exclude.
Multiple X arguments may be used, with one exclude-file per

tar(1)

User Commands 1497

argument. In the case where included files (see -I include-file
option) are also specified, the excluded files take precedence over
all included files. If a file is specified in both the exclude-file and the
include-file (or on the command line), it will be excluded.

@ Include extended attributes in archive. By default, tar does not
place extended attributes in the archive. With this flag, tar will
look for extended attributes on the files to be placed in the archive
and add them to the archive. Extended attributes go in the archive
as special files with a special type label. When this modifier is used
with the x function, extended attributes are extracted from the
tape along with the normal file data. Extended attribute files can
only be extracted from an archive as part of a normal file extract.
Attempts to explicitly extract attribute records are ignored.

[0-7] Select an alternative drive on which the tape is mounted. The
default entries are specified in /etc/default/tar. If no digit or
f function modifier is specified, the entry in /etc/default/tar
with digit "0" is the default.

See largefile(5) for the description of the behavior of tar when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The automatic determination of the actual blocking factor may be fooled when reading
from a pipe or a socket (see the B function modifier below).

1/4" streaming tape has an inherent blocking factor of one 512-byte block. It can be
read or written using any blocking factor.

This function modifier works for archives on disk files and block special devices,
among others, but is intended principally for tape devices.

For information on tar header format, see archives(4).

EXAMPLE 1 Creating an archive of your home directory

The following is an example using tar to create an archive of your home directory on
a tape mounted on drive /dev/rmt/0:

example% cd
example% tar cvf /dev/rmt/0 .

messages from tar

The c function letter means create the archive. The v function modifier outputs
messages explaining what tar is doing. The f function modifier indicates that the
tarfile is being specified (/dev/rmt/0 in this example). The dot (.) at the end of the
command line indicates the current directory and is the argument of the f function
modifier.

Display the table of contents of the tarfile with the following command:

tar(1)

USAGE

EXAMPLES

1498 man pages section 1: User Commands • Last Revised 27 Jun 2001

EXAMPLE 1 Creating an archive of your home directory (Continued)

example% tar tvf /dev/rmt/0

The output will be similar to the following for the POSIX locale:

rw−r−−r−− 1677/40 2123 Nov 7 18:15 1985 ./test.c
...

example%

The columns have the following meanings:

� column 1 is the access permissions to ./test.c

� column 2 is the user-id/group-id of ./test.c

� column 3 is the size of ./test.c in bytes

� column 4 is the modification date of ./test.c. When the LC_TIME category is
not set to the POSIX locale, a different format and date order field may be used.

� column 5 is the name of ./test.c

To extract files from the archive:

example% tar xvf /dev/rmt/0
messages from tar

example%

If there are multiple archive files on a tape, each is separated from the following one
by an EOF marker. To have tar read the first and second archives from a tape with
multiple archives on it, the non-rewinding version of the tape device name must be
used with the f function modifier, as follows:

example% tar xvfp /dev/rmt/0n read first archive from tape
messages from tar
example% tar xvfp /dev/rmt/0n read second archive from tape
messages from tar

example%

Notice that in some earlier releases, the above scenario did not work correctly, and
intervention with mt(1) between tar invocations was necessary. To emulate the old
behavior, use the non-rewind device name containing the letter b for BSD behavior.
See the Close Operations section of the mtio(7I) manual page.

EXAMPLE 2 Archiving files from /usr/include and from /etc to default tape drive 0

To archive files from /usr/include and from /etc to default tape drive 0:

example% tar c -C /usr include -C /etc .

The table of contents from the resulting tarfile would produce output like the
following:

tar(1)

User Commands 1499

EXAMPLE 2 Archiving files from /usr/include and from /etc to default tape drive 0
(Continued)

include/
include/a.out.h
and all the other files in /usr/include ...

./chown and all the other files in /etc

To extract all files in the include directory:

example% tar xv include
x include/, 0 bytes, 0 tape blocks \

and all files under include ...

EXAMPLE 3 Transferring files across the network

The following is an example using tar to transfer files across the network. First, here
is how to archive files from the local machine (example) to a tape on a remote system
(host):

example% tar cvfb − 20 files | \
rsh host dd of=/dev/rmt/0 obs=20b

messages from tar

example%

In the example above, we are creating a tarfile with the c key letter, asking for verbose
output from tar with the v function modifier, specifying the name of the output tarfile
using the f function modifier (the standard output is where the tarfile appears, as
indicated by the ‘−’ sign), and specifying the blocksize (20) with the b function
modifier. If you want to change the blocksize, you must change the blocksize
arguments both on the tar command and on the dd command.

EXAMPLE 4 Retrieving files from a tape on the remote system back to the local system

The following is an example that uses tar to retrieve files from a tape on the remote
system back to the local system:

example% rsh -n host dd if=/dev/rmt/0 bs=20b | \
tar xvBfb − 20 files

messages from tar

example%

In the example above, we are extracting from the tarfile with the x key letter, asking for
verbose output from tar with the v function modifier, telling tar it is reading from a
pipe with the B function modifier, specifying the name of the input tarfile using the f
function modifier (the standard input is where the tarfile appears, as indicated by the
‘−’ sign), and specifying the blocksize (20) with the b function modifier.

tar(1)

1500 man pages section 1: User Commands • Last Revised 27 Jun 2001

EXAMPLE 5 Creating an archive of the home directory

The following example creates an archive of the home directory on /dev/rmt/0 with
an actual blocking factor of 19:

example% tar cvfb /dev/rmt/0 19 $HOME

To recognize this archive’s actual blocking factor without using the b function
modifier:

example% tar tvf /dev/rmt/0
tar: blocksize = 19

...

To recognize this archive’s actual blocking factor using a larger nominal blocking
factor:

example% tar tvf /dev/rmt/0 30
tar: blocksize = 19

...

Attempt to recognize this archive’s actual blocking factor using a nominal blocking
factor that is too small:

example% tar tvf /dev/rmt/0 10

tar: tape read error

SYSV3 This variable is used to override the default behavior of tar,
provide compatibility with INTERACTIVE UNIX Systems and
SCO UNIX installation scripts, and should not be used in new
scripts. (It is intended for compatibility purposes only.) When set,
the following options behave differently:

-F filename Uses filename to obtain a list of command line
switches and files on which to operate.

-e Prevents files from being split across volumes.
If there is insufficient room on one volume,
tar prompts for a new volume. If the file will
not fix on the new volume, tar exits with an
error.

See environ(5) for descriptions of the following environment variables that affect the
execution of tar: LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

tar(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 1501

/dev/rmt/[0-7][b][n]

/dev/rmt/[0-7]l[b][n]

/dev/rmt/[0-7]m[b][n]

/dev/rmt/[0-7]h[b][n]

/dev/rmt/[0-7]u[b][n]

/dev/rmt/[0-7]c[b][n]

/etc/default/tar Settings may look like this:

archive0=/dev/rmt/0
archive1=/dev/rmt/0n
archive2=/dev/rmt/1
archive3=/dev/rmt/1n
archive4=/dev/rmt/0
archive5=/dev/rmt/0n
archive6=/dev/rmt/1
archive7=/dev/rmt/1n

/tmp/tar*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

Interface Stability Stable

ar(1), basename(1), cd(1), chown(1), cpio(1), csh(1), dirname(1), ls(1), mt(1),
pax(1), setfacl(1), umask(1), mknod(1M), vold(1M), archives(4),
attributes(5), environ(5), fsattr(5), largefile(5), mtio(7I)

Diagnostic messages are output for bad key characters and tape read/write errors, and
for insufficient memory to hold the link tables.

There is no way to access the n-th occurrence of a file.

Tape errors are handled ungracefully.

When the Volume Management daemon is running, accesses to floppy devices
through the conventional device names (for example, /dev/rdiskette) may not
succeed. See vold(1M) for further details.

tar(1)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1502 man pages section 1: User Commands • Last Revised 27 Jun 2001

The tar archive format allows UIDs and GIDs up to 2097151 to be stored in the
archive header. Files with UIDs and GIDs greater than this value will be archived with
the UID and GID of 60001.

If an archive is created that contains files whose names were created by processes
running in multiple locales, a single locale that uses a full 8-bit codeset (for example,
the en_US locale) should be used both to create the archive and to extract files from
the archive.

Neither the -r option nor the -u option can be used with quarter-inch archive tapes,
since these tape drives cannot backspace.

tar(1)

User Commands 1503

tbl – format tables for nroff or troff

tbl [-me] [-mm] [-ms] [filename]…

tbl is a preprocessor for formatting tables for nroff(1) or troff(1). The input
filenames are copied to the standard output, except that lines between .TS and .TE
command lines are assumed to describe tables and are reformatted.

If no arguments are given, tbl reads the standard input, so tbl may be used as a
filter. When tbl is used with eqn(1) or neqn, the tbl command should be first, to
minimize the volume of data passed through pipes.

-me Copy the -me macro package to the front of the output file.

-mm Copy the -mm macro package to the front of the output file.

-ms Copy the -ms macro package to the front of the output file.

EXAMPLE 1 Using tbl

As an example, letting ‘@’ (at-sign) represent a TAB, which should be typed as an
actual TAB character in the input file

.TS
c s s
c c s
c c c
l n n.
Household Population
Town@Households
@Number@Size
Bedminster@789@3.26
Bernards Twp.@3087@3.74
Bernardsville@2018@3.30
Bound Brook@3425@3.04
Branchburg@1644@3.49
.TE

yields

Household Population

Town Households

Number Size

Bedminster 789 3.26

Bernards Twp. 3087 3.74

Bernardsville 2018 3.30

Bound Brook 3425 3.04

Branchburg 1644 3.49

tbl(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

1504 man pages section 1: User Commands • Last Revised 2 Aug 1994

/usr/share/lib/tmac/e -me macros

/usr/share/lib/tmac/m -mm macros

/usr/share/lib/tmac/s -ms macros

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

eqn(1), nroff(1), troff(1), attributes(5)

tbl(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 1505

tcopy – copy a magnetic tape

tcopy source [destination]

The tcopy utility copies the magnetic tape mounted on the tape drive specified by the
source argument. The only assumption made about the contents of a tape is that
there are two tape marks at the end.

When only a source drive is specified, tcopy scans the tape, and displays information
about the sizes of records and tape files. If a destination is specified, tcopy makes a
copies the source tape onto the destination tape, with blocking preserved. As it copies,
tcopy produces the same output as it does when only scanning a tape.

The tcopy utility requires the use of Berkeley-compatible device names. For example,

example% tcopy /dev/rmt/1b /dev/rmt/2b

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

mt(1), ioctl(2), attributes(5)

tcopy will only run on systems supporting an associated set of ioctl(2) requests.

tcopy(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

1506 man pages section 1: User Commands • Last Revised 10 Mar 2000

tee – replicate the standard output

tee [-ai] [file…]

The tee utility will copy standard input to standard output, making a copy in zero or
more files. tee will not buffer its output. The options determine if the specified files
are overwritten or appended to.

The following options are supported.

-a Append the output to the files rather than overwriting them.

-i Ignore interrupts.

The following operands are supported:

file A path name of an output file. Processing of at least 13 file operands will
be supported.

See largefile(5) for the description of the behavior of tee when encountering files
greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of tee: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The standard input was successfully copied to all output files.

>0 The number of files that could not be opened or whose status could not be
obtained.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

cat(1), attributes(5), environ(5), largefile(5),

tee(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1507

telnet – user interface to a remote system using the TELNET protocol

telnet [-8ELcdr] [-e escape_char] [-l user] [-n file] [[[!] @hop1
[@hop2…] @] host [port]]

The telnet utility communicates with another host using the TELNET protocol. If
telnet is invoked without arguments, it enters command mode, indicated by its
prompt, telnet>. In this mode, it accepts and executes its associated commands. See
USAGE, telnet Commands, below. If it is invoked with arguments, it performs an
open command with those arguments.

If, for example, a host is specified as @hop1@hop2@host, the connection goes through
hosts hop1 and hop2, using loose source routing to end at host. If a leading ! is used,
the connection follows strict source routing. Note that when telnet uses IPv6, it can
only use loose source routing, and the connection ignores the !.

Once a connection has been opened, telnet enters input mode. In this mode, text
typed is sent to the remote host. The input mode entered will be either "line mode",
"character at a time", or "old line by line", depending upon what the remote system
supports.

In "line mode", character processing is done on the local system, under the control of
the remote system. When input editing or character echoing is to be disabled, the
remote system will relay that information. The remote system will also relay changes
to any special characters that happen on the remote system, so that they can take effect
on the local system.

In "character at a time" mode, most text typed is immediately sent to the remote host
for processing.

In "old line by line" mode, all text is echoed locally, and (normally) only completed
lines are sent to the remote host. The "local echo character" (initially ^E) may be used
to turn off and on the local echo. (Use this mostly to enter passwords without the
password being echoed.).

If the "line mode" option is enabled, or if the localchars toggle is TRUE (the default
in "old line by line" mode), the user’s quit, intr, and flush characters are trapped
locally, and sent as TELNET protocol sequences to the remote side. If "line mode" has
ever been enabled, then the user’s susp and eof are also sent as TELNET protocol
sequences. quit is then sent as a TELNET ABORT instead of BREAK. The options
toggle autoflush and toggle autosynch cause this action to flush subsequent
output to the terminal (until the remote host acknowledges the TELNET sequence);
and to flush previous terminal input, in the case of quit and intr.

While connected to a remote host, the user can enter telnet command mode by
typing the telnet escape character (initially ^]). When in command mode, the
normal terminal editing conventions are available. Pressing RETURN at the telnet
command prompt causes telnet to exit command mode.

The following options are supported:

telnet(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1508 man pages section 1: User Commands • Last Revised 6 Nov 2000

-8 Specifies an 8-bit data path. Negotiating the TELNET BINARY
option is attempted for both input and output.

-c Disables the reading of the user’s telnetrc file. (See the toggle
skiprc command on this reference page.)

-d Sets the initial value of the debug toggle to TRUE.

-e escape_char Sets the initial escape character to escape_char. escape_char may also
be a two character sequence consisting of ’^’ followed by one
character. If the second character is ’?’, the DEL character is
selected. Otherwise, the second character is converted to a control
character and used as the escape character. If the escape character
is the null string (that is, -e ’’), it is disabled.

-E Stops any character from being recognized as an escape character.

-l user When connecting to a remote system that understands the
ENVIRON option, then user will be sent to the remote system as the
value for the ENVIRON variable USER.

-L Specifies an 8-bit data path on output. This causes the BINARY
option to be negotiated on output.

-n tracefile Opens tracefile for recording trace information. See the set tracefile
command below.

-r Specifies a user interface similar to rlogin. In this mode, the
escape character is set to the tilde (~) character, unless modified by
the -e option. The rlogin escape character is only recognized
when it is preceded by a carriage return. In this mode, the telnet
escape character, normally ’^]’, must still precede a telnet
command. The rlogin escape character can also be followed by
’.\r’ or ’^Z’, and, like rlogin(1), closes or suspends the
connection, respectively. This option is an uncommitted interface
and may change in the future.

The commands described in this section are available with telnet. It is necessary to
type only enough of each command to uniquely identify it. (This is also true for
arguments to the mode, set, toggle, unset, environ, and display commands.)

open [-l user] [[!] @hop1 [@hop2 ...]@host [port]
Open a connection to the named host. If no port number is specified, telnet will
attempt to contact a TELNET server at the default port. The host specification may
be either a host name (see hosts(4), ipnodes(4)) or an Internet address specified
in the "dot notation" (see inet(7P) or inet6(7P)). If the host is specified as
@hop1@hop2@host, the connection goes through hosts hop1 and hop2, using loose
source routing to end at host. The “@” symbol is required as a separator between
the hosts specified. If a leading ! is used with IPv4, the connection follows strict
source routing.

telnet(1)

telnet Commands

User Commands 1509

The -l option passes the user as the value of the ENVIRON variable USER to the
remote system.

close
Close any open TELNET session and exit telnet. An EOF (in command mode) will
also close a session and exit.

quit
Same as close.

z
Suspend telnet. This command only works when the user is using a shell that
supports job control, such as sh(1).

mode type
The remote host is asked for permission to go into the requested mode. If the
remote host is capable of entering that mode, the requested mode will be entered.
The argument type is one of the following:

character Disable the TELNET LINEMODE option, or, if the
remote side does not understand the LINEMODE
option, then enter "character at a time" mode.

line Enable the TELNET LINEMODE option, or, if the
remote side does not understand the LINEMODE
option, then attempt to enter "old-line-by-line"
mode.

isig (-isig) Attempt to enable (disable) the TRAPSIG mode of
the LINEMODE option. This requires that the
LINEMODE option be enabled.

edit (-edit) Attempt to enable (disable) the EDIT mode of the
LINEMODE option. This requires that the LINEMODE
option be enabled.

softtabs (-softtabs) Attempt to enable (disable) the SOFT_TAB mode of
the LINEMODE option. This requires that the
LINEMODE option be enabled.

litecho (-litecho) Attempt to enable (disable) the LIT_ECHO mode of
the LINEMODE option. This requires that the
LINEMODE option be enabled.

? Prints out help information for the mode command.

status
Show the current status of telnet. This includes the peer one is connected to, as
well as the current mode.

display
[argument . . .] Display all, or some, of the set and toggle values (see toggle
argument. . .).

telnet(1)

1510 man pages section 1: User Commands • Last Revised 6 Nov 2000

?
[command] Get help. With no arguments, telnet prints a help summary. If a
command is specified, telnet will print the help information for just that
command.

send argument . . .
Send one or more special character sequences to the remote host. The following are
the arguments that can be specified (more than one argument may be specified at a
time):

escape Send the current telnet escape character (initially ^]).

synch Send the TELNET SYNCH sequence. This sequence discards all
previously typed, but not yet read, input on the remote system.
This sequence is sent as TCP urgent data and may not work if
the remote system is a 4.2 BSD system. If it does not work, a
lower case "r" may be echoed on the terminal.

brk or break Send the TELNET BRK (Break) sequence, which may have
significance to the remote system.

ip Send the TELNET IP (Interrupt Process) sequence, which aborts
the currently running process on the remote system.

abort Send the TELNET ABORT (Abort Process) sequence.

ao Send the TELNET AO (Abort Output) sequence, which flushes
all output from the remote system to the user’s terminal.

ayt Send the TELNET AYT (Are You There) sequence, to which the
remote system may or may not respond.

ec Send the TELNET EC (Erase Character) sequence, which erases
the last character entered.

el Send the TELNET EL (Erase Line) sequence, which should
cause the remote system to erase the line currently being
entered.

eof Send the TELNET EOF (End Of File) sequence.

eor Send the TELNET EOR (End Of Record) sequence.

ga Send the TELNET GA (Go Ahead) sequence, which probably has
no significance for the remote system.

getstatus If the remote side supports the TELNET STATUS command,
getstatus will send the subnegotiation to request that the
server send its current option status.

nop Send the TELNET NOP (No Operation) sequence.

susp Send the TELNET SUSP (Suspend Process) sequence.

telnet(1)

User Commands 1511

do option
dont option
will option
wont option Send the TELNET protocol option negotiation indicated. Option

may be the text name of the protocol option, or the number
corresponding to the option. The command will be silently
ignored if the option negotiation indicated is not valid in the
current state. If the option is given as ’help’ or ’?’, the list of
option names known is listed. This command is mostly useful
for unusual debugging situations.

? Print out help information for the send command.

set argument [value]
unset argument

Set any one of a number of telnet variables to a specific value. The special value
"off" turns off the function associated with the variable. The values of variables may
be interrogated with the display command. If value is omitted, the value is taken
to be true, or "on". If the unset form is used, the value is taken to be false, or “off.“
The variables that may be specified are:

echo This is the value (initially ^E) that, when in "line by line" mode,
toggles between local echoing of entered characters for normal
processing, and suppressing echoing of entered characters, for
example, entering a password.

escape This is the telnet escape character (initially ^]) that enters
telnet command mode when connected to a remote system.

interrupt If telnet is in localchars mode (see toggle, localchars)
and the interrupt character is typed, a TELNET IP sequence
(see send and ip) is sent to the remote host. The initial value
for the interrupt character is taken to be the terminal’s intr
character.

quit If telnet is in localchars mode and the quit character is
typed, a TELNET BRK sequence (see send, brk) is sent to the
remote host. The initial value for the quit character is taken to
be the terminal’s quit character.

flushoutput If telnet is in localchars mode and the flushoutput
character is typed, a TELNET AO sequence (see send, ao) is sent
to the remote host. The initial value for the flush character is
taken to be the terminal’s flush character.

erase If telnet is in localchars mode and operating in "character
at a time" mode, then when the erase character is typed, a
TELNET EC sequence (see send, ec) is sent to the remote
system. The initial value for the erase character is taken to be
the terminal’s erase character.

telnet(1)

1512 man pages section 1: User Commands • Last Revised 6 Nov 2000

kill If telnet is in localchars mode and operating in "character
at a time" mode, then when the kill character is typed, a
TELNET EL sequence (see send, el) is sent to the remote
system. The initial value for the kill character is taken to be
the terminal’s kill character.

eof If telnet is operating in "line by line" mode, entering the eof
character as the first character on a line sends this character to
the remote system. The initial value of eof is taken to be the
terminal’s eof character.

ayt If telnet is in localchars mode, or LINEMODE is enabled,
and the status character is typed, a TELNET AYT ("Are You
There") sequence is sent to the remote host. (See send, ayt
above.) The initial value for ayt is the terminal’s status
character.

forw1
forw2 If telnet is operating in LINEMODE, and the forw1 or forw2

characters are typed, this causes the forwarding of partial lines
to the remote system. The initial values for the forwarding
characters come from the terminal’s eol and eol2 characters.

lnext If telnet is operating in LINEMODE or "old line by line" mode,
then the lnext character is assumed to be the terminal’s lnext
character. The initial value for the lnext character is taken to
be the terminal’s lnext character.

reprint If telnet is operating in LINEMODE or "old line by line" mode,
then the reprint character is assumed to be the terminal’s
reprint character. The initial value for reprint is taken to be
the terminal’s reprint character.

rlogin This is the rlogin escape character. If set, the normal telnet
escape character is ignored, unless it is preceded by this
character at the beginning of a line. The rlogin character, at
the beginning of a line followed by a "." closes the connection.
When followed by a ^Z, the rlogin command suspends the
telnet command. The initial state is to disable the rlogin
escape character.

start If the TELNET TOGGLE-FLOW-CONTROL option has been
enabled, then the start character is taken to be the terminal’s
start character. The initial value for the kill character is
taken to be the terminal’s start character.

stop If the TELNET TOGGLE-FLOW-CONTROL option has been
enabled, then the stop character is taken to be the terminal’s
stop character. The initial value for the kill character is taken
to be the terminal’s stop character.

telnet(1)

User Commands 1513

susp If telnet is in localchars mode, or LINEMODE is enabled,
and the suspend character is typed, a TELNET SUSP sequence
(see send, susp above) is sent to the remote host. The initial
value for the suspend character is taken to be the terminal’s
suspend character.

tracefile This is the file to which the output, generated when the
netdata or the debug option is TRUE, will be written. If
tracefile is set to "-", then tracing information will be written
to standard output (the default).

worderase If telnet is operating in LINEMODE or "old line by line" mode,
then this character is taken to be the terminal’s worderase
character. The initial value for the worderase character is
taken to be the terminal’s worderase character.

? Displays the legal set and unset commands.

slc state
The slc (Set Local Characters) command is used to set or change the state of
special characters when the TELNET LINEMODE option has been enabled. Special
characters are characters that get mapped to TELNET commands sequences (like ip
or quit) or line editing characters (like erase and kill). By default, the local
special characters are exported. The following values for state are valid:

check Verifies the settings for the current special characters. The
remote side is requested to send all the current special character
settings. If there are any discrepancies with the local side, the
local settings will switch to the remote values.

export Switches to the local defaults for the special characters. The
local default characters are those of the local terminal at the
time when telnet was started.

import Switches to the remote defaults for the special characters. The
remote default characters are those of the remote system at the
time when the TELNET connection was established.

? Prints out help information for the slc command.

toggle argument . . .
Toggle between TRUE and FALSE the various flags that control how telnet
responds to events. More than one argument may be specified. The state of these
flags may be interrogated with the display command. Valid arguments are:

autoflush If autoflush and localchars are both TRUE, then when the
ao, intr, or quit characters are recognized (and transformed
into TELNET sequences; see set for details), telnet refuses to
display any data on the user’s terminal until the remote system
acknowledges (using a TELNET Timing Mark option) that it has
processed those TELNET sequences. The initial value for this

telnet(1)

1514 man pages section 1: User Commands • Last Revised 6 Nov 2000

toggle is TRUE if the terminal user has not done an "stty noflsh".
Otherwise, the value is FALSE (see stty(1)).

autosynch If autosynch and localchars are both TRUE, then when
either the interrupt or quit characters are typed (see set
for descriptions of interrupt and quit), the resulting
TELNET sequence sent is followed by the TELNET SYNCH
sequence. This procedure should cause the remote system to
begin throwing away all previously typed input until both of
the TELNET sequences have been read and acted upon. The
initial value of this toggle is FALSE.

binary Enable or disable the TELNET BINARY option on both input
and output.

inbinary Enable or disable the TELNET BINARY option on input.

outbinary Enable or disable the TELNET BINARY option on output.

crlf Determines how carriage returns are sent. If the value is TRUE,
then carriage returns will be sent as <CR><LF>. If the value is
FALSE, then carriage returns will be send as <CR><NUL>. The
initial value for this toggle is FALSE.

crmod Toggle RETURN mode. When this mode is enabled, most
RETURN characters received from the remote host will be
mapped into a RETURN followed by a line feed. This mode
does not affect those characters typed by the user, only those
received from the remote host. This mode is useful only for
remote hosts that send RETURN but never send LINEFEED.
The initial value for this toggle is FALSE.

debug Toggle socket level debugging (only available to the
super-user). The initial value for this toggle is FALSE.

localchars If this toggle is TRUE, then the flush, interrupt, quit,
erase, and kill characters (see set) are recognized locally,
and transformed into appropriate TELNET control sequences,
respectively ao, ip, brk, ec, and el (see send). The initial
value for this toggle is TRUE in "line by line" mode, and FALSE
in "character at a time" mode. When the LINEMODE option is
enabled, the value of localchars is ignored, and assumed
always to be TRUE. If LINEMODE has ever been enabled, then
quit is sent as abort, and eof and suspend are sent as eof
and susp (see send above).

netdata Toggle the display of all network data (in hexadecimal format).
The initial value for this toggle is FALSE.

options Toggle the display of some internal TELNET protocol processing
(having to do with telnet options). The initial value for this
toggle is FALSE.

telnet(1)

User Commands 1515

prettydump When the netdata toggle is enabled, if prettydump is
enabled, the output from the netdata command will be
formatted in a more user readable format. Spaces are put
between each character in the output. The beginning of any
TELNET escape sequence is preceded by an asterisk (*) to aid in
locating them.

skiprc When the skiprc toggle is TRUE, TELNET skips the reading of
the .telnetrc file in the user’s home directory when
connections are opened. The initial value for this toggle is
FALSE.

termdata Toggles the display of all terminal data (in hexadecimal format).
The initial value for this toggle is FALSE.

? Display the legal toggle commands.

environ argument . . .
The environ command is used to manipulate variables that may be sent through
the TELNET ENVIRON option. The initial set of variables is taken from the users
environment. Only the DISPLAY and PRINTER variables are exported by default.
Valid arguments for the environ command are:

define variable value Define variable to have a value of value. Any
variables defined by this command are
automatically exported. The value may be enclosed
in single or double quotes, so that tabs and spaces
may be included.

undefine variable Remove variable from the list of environment
variables.

export variable Mark the variable to be exported to the remote side.

unexport variable Mark the variable to not be exported unless explicitly
requested by the remote side.

list List the current set of environment variables. Those
marked with an asterisk (*) will be sent
automatically. Other variables will be sent only if
explicitly requested.

? Prints out help information for the environ
command.

logout
Sends the telnet logout option to the remote side. This command is similar to a
close command. However, if the remote side does not support the logout option,
nothing happens. If, however, the remote side does support the logout option, this
command should cause the remote side to close the TELNET connection. If the
remote side also supports the concept of suspending a user’s session for later
reattachment, the logout argument indicates that the remote side should

telnet(1)

1516 man pages section 1: User Commands • Last Revised 6 Nov 2000

terminate the session immediately.

$HOME/.telnetrc
file that contains commands to be executed before initiating a telnet session

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnetc

rlogin(1), sh(1), stty(1), hosts(4), ipnodes(4), nologin(4), telnetrc(4),
attributes(5), inet(7P), inet6(7P)

NO LOGINS: System going down in N minutes
The machine is in the process of being shut down and logins have been disabled.

On some remote systems, echo has to be turned off manually when in "line by line"
mode.

In "old line by line" mode, or LINEMODE, the terminal’s EOF character is only
recognized (and sent to the remote system) when it is the first character on a line.

telnet(1)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

User Commands 1517

test – evaluate condition(s)

/usr/bin/test [condition]

[[condition]]

test [condition]

[[condition]]

test [condition]

[[condition]]

test [condition]

[[condition]]

The test utility evaluates the condition and indicates the result of the evaluation by its
exit status. An exit status of zero indicates that the condition evaluated as true and an
exit status of 1 indicates that the condition evaluated as false.

In the first form of the utility shown using the SYNOPSIS:

test [condition]

the square brackets denote that condition is an optional operand and are not to be
entered on the command line.

In the second form of the utility shown using the SYNOPSIS:

[[condition]]

the first open square bracket, [, is the required utility name. condition is optional, as
denoted by the inner pair of square brackets. The final close square bracket,], is a
required operand.

See largefile(5) for the description of the behavior of test when encountering files
greater than or equal to 2 Gbyte (231 bytes).

The test and [utilities evaluate the condition condition and, if its value is true, set
exit status to 0. Otherwise, a non-zero (false) exit status is set. test and [also set a
non-zero exit status if there are no arguments. When permissions are tested, the
effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the last SYNOPSIS line)
must be separate arguments to these commands. Normally these arguments are
separated by spaces.

The primaries listed below with two elements of the form:

-primary_operator primary_operand

test(1)

NAME

SYNOPSIS

sh

csh

ksh

DESCRIPTION

OPERANDS

1518 man pages section 1: User Commands • Last Revised 10 Sep 2001

are known as unary primaries. The primaries with three elements in either of the two
forms:

primary_operand -primary_operator primary_operand
primary_operand primary_operator primary_operand

are known as binary primaries.

If any file operands except for -h and -L primaries refer to symbolic links, the
symbolic link is expanded and the test is performed on the resulting file.

If you test a file you own (the -r -w or -x tests), but the permission tested does not
have the owner bit set, a non-zero (false) exit status will be returned even though the
file may have the group or other bit set for that permission.

The = and != primaries have a higher precedence than the unary primaries. The = and
!= primaries always expect arguments; therefore, = and != cannot be used as an
argument to the unary primaries.

The following primaries can be used to construct condition:

-a file True, if file exists. (Not available in sh).

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-e file True if file exists.

-f file True if file exists and is a regular file. Alternatively, if
/usr/bin/sh users specify /usr/ucb before
/usr/bin in their PATH environment variable, then
test will return true if file exists and is
(not−a−directory). The csh test and [built-ins
always use this alternative behavior.

-g file True if file exists and its set group ID flag is set.

-G file True if file exists and its group matches the effective
group ID of this process. (Not available in sh.)

-h file True if file exists and is a symbolic link.

-k file True if file exists and has its sticky bit set.

-L file True, if file exists and is a symbolic link.

-n string True if the length of string is non-zero.

-o option True if option named option is on. (Not available in csh
or sh.)

test(1)

User Commands 1519

-O file True if file exists and is owned by the effective user ID
of this process. (Not available in sh.)

-p file True if file is a named pipe (FIFO).

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-S file True if file exists and is a socket. (Not available in sh.)

-t [file_descriptor] True if the file whose file descriptor number is
file_descriptor is open and is associated with a terminal.
If file_descriptor is not specified, 1 is used as a default
value.

-u file True if file exists and its set-user-ID flag is set.

-w file True if file exists and is writable. True will indicate only
that the write flag is on. The file will not be writable on
a read-only file system even if this test indicates true.

-x file True if file exists and is executable. True will indicate
only that the execute flag is on. If file is a directory, true
indicates that file can be searched.

-z string True if the length of string string is zero.

file1-nt file2 True, if file1 exists and is newer than file2. (Not
available in sh.)

file1-ot file2 True, if file1 exists and is older than file2. (Not available
in sh.)

file1-ef file2 True, if file1 and file2 exist and refer to the same file.
(Not available in sh.)

string True if the string string is not the null string.

string1 = string2 True if the strings string1 and string2 are identical.

string1 != string2 True if the strings string1 and string2 are not identical.

n1 -eq n2 True if the integers n1 and n2 are algebraically equal.

n1 -ne n2 True if the integers n1 and n2 are not algebraically
equal.

n1 -gt n2 True if the integer n1 is algebraically greater than the
integer n2.

n1 -ge n2 True if the integer n1 is algebraically greater than or
equal to the integer n2.

n1 -lt n2 True if the integer n1 is algebraically less than the
integer n2.

test(1)

1520 man pages section 1: User Commands • Last Revised 10 Sep 2001

n1 -le n2 True if the integer n1 is algebraically less than or equal
to the integer n2.

condition1 -a condition2 True if both condition1 and condition2 are true. The -a
binary primary is left associative and has higher
precedence than the -o binary primary.

condition1 -o condition2 True if either condition1 or condition2 is true. The -o
binary primary is left associative.

These primaries can be combined with the following operators:

! condition True if condition is false.

(condition) True if condition is true. The parentheses () can be
used to alter the normal precedence and associativity.
Notice also that parentheses are meaningful to the shell
and, therefore, must be quoted.

The algorithm for determining the precedence of the operators and the return value
that will be generated is based on the number of arguments presented to test.
(However, when using the [. . .] form, the right-bracket final argument will not be
counted in this algorithm.)

In the following list, $1, $2, $3 and $4 represent the arguments presented to test as
a condition, condition1, or condition2.

0 arguments: Exit false (1).

1 argument: Exit true (0) if $1 is not null; otherwise, exit false.

2 arguments:

� If $1 is !, exit true if $2 is null, false if $2 is not null.
� If $1 is a unary primary, exit true if the unary test is true, false

if the unary test is false.
� Otherwise, produce unspecified results.

3 arguments:

� If $2 is a binary primary, perform the binary test of $1 and $3.
� If $1 is !, negate the two-argument test of $2 and $3.
� Otherwise, produce unspecified results.

4 arguments:

� If $1 is !, negate the three-argument test of $2, $3, and $4.
� Otherwise, the results are unspecified.

Scripts should be careful when dealing with user-supplied input that could be
confused with primaries and operators. Unless the application writer knows all the
cases that produce input to the script, invocations like test "$1" -a "$2" should
be written as test "$1" && test "$2" to avoid problems if a user supplied values
such as $1 set to ! and $2 set to the null string. That is, in cases where maximal

test(1)

USAGE

User Commands 1521

portability is of concern, replace test expr1 -a expr2 with test expr1 &&
test expr2, and replace test expr1 -o expr2 with test expr1 || test
expr2. But notice that, in test, -a has higher precedence than -o, while && and ||
have equal precedence in the shell.

Parentheses or braces can be used in the shell command language to effect grouping.

Parentheses must be escaped when using sh. For example:

test \(expr1 -a expr2 \) -o expr3

This command is not always portable outside XSI-conformant systems. The following
form can be used instead:

(test expr1 && test expr2) || test expr3

The two commands:

test "$1"

test ! "$1"

could not be used reliably on some historical systems. Unexpected results would occur
if such a string condition were used and $1 expanded to !, (, or a known unary
primary. Better constructs are, respectively,

test -n "$1"

test -z "$1"

Historical systems have also been unreliable given the common construct:

test "$response" = "expected string"

One of the following is a more reliable form:

test "X$response" = "Xexpected string"

test "expected string" = "$response"

Notice that the second form assumes that expected string could not be confused
with any unary primary. If expected string starts with −, (, ! or even =, the first
form should be used instead. Using the preceding rules without the marked
extensions, any of the three comparison forms is reliable, given any input. (However,
observe that the strings are quoted in all cases.)

Because the string comparison binary primaries, = and !=, have a higher precedence
than any unary primary in the >4 argument case, unexpected results can occur if
arguments are not properly prepared. For example, in

test -d $1 -o -d $2

test(1)

1522 man pages section 1: User Commands • Last Revised 10 Sep 2001

If $1 evaluates to a possible directory name of =, the first three arguments are
considered a string comparison, which causes a syntax error when the second -d is
encountered. is encountered. One of the following forms prevents this; the second is
preferred:

test \(-d "$1" \) -o \(-d "$2" \)

test -d "$1" || test -d "$2"

Also in the >4 argument case:

test "$1" = "bat" -a "$2" = "ball"

Syntax errors will occur if $1 evaluates to (or !. One of the following forms prevents
this; the third is preferred:

test "X$1" = "Xbat" -a "X$2" = "Xball"
test "$1" = "bat" && test "$2" = "ball"

test "X$1" = "Xbat" && test "X$2" = "Xball"

In the if command examples, three conditions are tested, and if all three evaluate as
true or successful, then their validities are written to the screen. The three tests are:

� if a variable set to 1 is greater than 0,
� if a variable set to 2 is equal to 2, and
� if the word "root" is included in the text file /etc/passwd.

EXAMPLE 1 Using /usr/bin/test

Perform a mkdir if a directory does not exist:

test ! -d tempdir && mkdir tempdir

Wait for a file to become non-readable:

while test -r thefile
do

sleep 30
done

echo’"thefile" is no longer readable’

Perform a command if the argument is one of three strings (two variations), using the
open bracket version [of the test command:

if ["$1" = "pear"] || ["$1" = "grape"] || ["$1" = "apple"]
then

command
fi
case "$1" in

pear|grape|apple) command;;

esac

test(1)

EXAMPLES

/usr/bin/test

User Commands 1523

The two forms of the test built-in follow the Bourne shell’s if example.

EXAMPLE 2 Using the sh built-in

ZERO=0 ONE=1 TWO=2 ROOT=root

if [$ONE -gt $ZERO]

[$TWO -eq 2]

grep $ROOT /etc/passwd >&1 > /dev/null # discard output

then

echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is" \
"a user-name in the password file"

else

echo "At least one of the three test conditions is false"

fi

EXAMPLE 3 Using the test built-in

Examples of the test built-in:

test `grep $ROOT /etc/passwd >&1 /dev/null` # discard output

echo $? # test for success
[`grep nosuchname /etc/passwd >&1 /dev/null`]

echo $? # test for failure

EXAMPLE 4 Using the csh built-in

@ ZERO = 0; @ ONE = 1; @ TWO = 2; set ROOT = root
grep $ROOT /etc/passwd >&1 /dev/null # discard output

$status must be tested for immediately following grep
if ("$status" == "0" && $ONE > $ZERO && $TWO == 2) then

echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is" \
"a user-name in the password file"

endif

EXAMPLE 5 Using the ksh built-in

ZERO=0 ONE=1 TWO=$((ONE+ONE)) ROOT=root
if ((ONE > ZERO)) # arithmetical comparison
[[$TWO = 2]] # string comparison
[`grep $ROOT /etc/passwd >&1 /dev/null`] # discard output

then
echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is" \

"a user-name in the password file"

else
echo "At least one of the three test conditions is false"

test(1)

The test built-in

csh

ksh

1524 man pages section 1: User Commands • Last Revised 10 Sep 2001

EXAMPLE 5 Using the ksh built-in (Continued)

fi

See environ(5) for descriptions of the following environment variables that affect the
execution of test: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 condition evaluated to true.

1 condition evaluated to false or condition was missing.

>1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), ksh(1), sh(1), test(1B), attributes(5), environ(5), largefile(5)

The not−a−directory alternative to the -f option is a transition aid for BSD
applications and may not be supported in future releases.

test(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1525

test – condition evaluation command

/usr/ucb/test expression

expression

test evaluates the expression expression and, if its value is true, sets 0 (true) exit
status; otherwise, a non-zero (false) exit status is set. test also sets a non-zero exit
status if there are no arguments. When permissions are tested, the effective user ID of
the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS
line) must be separate arguments to the test command; normally these items are
separated by spaces.

The following primitives are used to construct expression:

-r filename True if filename exists and is readable.

-w filename True if filename exists and is writable.

-x filename True if filename exists and is executable.

-f filename True if filename exists and is a regular file. Alternatively, if
/usr/bin/sh users specify /usr/ucb before /usr/bin in their
PATH environment variable, then test will return true if filename
exists and is (not−a−directory). This is also the default for
/usr/bin/csh users.

-d filename True if filename exists and is a directory.

-c filename True if filename exists and is a character special file.

-b filename True if filename exists and is a block special file.

-p filename True if filename exists and is a named pipe (fifo).

-u filename True if filename exists and its set-user- ID bit is set.

-g filename True if filename exists and its set-group- ID bit is set.

-k filename True if filename exists and its sticky bit is set.

-s filename True if filename exists and has a size greater than zero.

-t[fildes] True if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

-z s1 True if the length of string s1 is zero.

-n s1 True if the length of the string s1 is non-zero.

s1 = s2 True if strings s1 and s2 are identical.

s1 != s2 True if strings s1 and s2 are not identical.

s1 True if s1 is not the null string.

test(1B)

NAME

SYNOPSIS

DESCRIPTION

Primitives

1526 man pages section 1: User Commands • Last Revised 1 Apr 1996

n1 −eq n2 True if the integers n1 and n2 are algebraically equal. Any of the
comparisons −ne, −gt, −ge, −lt, and −le may be used in place of
−eq.

These primaries may be combined with the following operators:

! Unary negation operator.

-a Binary and operator.

-o Binary or operator (-a has higher precedence than -o).

(expression) Parentheses for grouping. Notice also that parentheses are
meaningful to the shell and, therefore, must be quoted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

find(1), sh(1), attributes(5)

The not−a−directory alternative to the -f option is a transition aid for BSD
applications and may not be supported in future releases.

If you test a file you own (the -r , -w , or -x tests), but the permission tested does
not have the owner bit set, a non-zero (false) exit status will be returned even though
the file may have the group or other bit set for that permission. The correct exit status
will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n operators,
and = and != always expect arguments; therefore, = and != cannot be used with the
-r through -n operators.

If more than one argument follows the -r through -n operators, only the first
argument is examined; the others are ignored, unless a -a or a -o is the second
argument.

test(1B)

Operators

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1527

test – condition evaluation command

test expression

expression

test evaluates the expression expression and if its value is true, sets a 0 (TRUE) exit
status; otherwise, a non-zero (FALSE) exit status is set; test also sets a non-zero exit
status if there are no arguments. When permissions are tested, the effective user ID of
the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS
line) must be separate arguments to test. Normally these items are separated by
spaces.

The following primitives are used to construct expression:

-r filename True if filename exists and is readable.

-w filename True if filename exists and is writable.

-x filename True if filename exists and is executable.

-f filename True if filename exists and is a regular file.

-d filename True if filename exists and is a directory.

-c filename True if filename exists and is a character
special file.

-b filename True if filename exists and is a block special
file.

-p filename True if filename exists and is a named pipe
(FIFO).

-u filename True if filename exists and its set-user-ID bit
is set.

-g filename True if filename exists and its set-group-ID
bit is set.

-k filename True if filename exists and its sticky bit is set.

-s filename True if filename exists and has a size greater
than 0.

-t[fildes] True if the open file whose file descriptor
number is fildes (1 by default) is associated
with a terminal device.

-z s1 True if the length of string s1 is 0.

-n s1 True if the length of the string s1 is
non-zero.

test(1F)

NAME

SYNOPSIS

DESCRIPTION

Primitives

1528 man pages section 1: User Commands • Last Revised 5 Jul 1990

s1 = s2 True if strings s1 and s2 are identical.

s1 != s2 True if strings s1 and s2 are not identical.

s1 True if s1 is not the null string.

n1 −eq n2 True if the integers n1 and n2 are
algebraically equal. Any of the comparisons
−ne, −gt, −ge, −lt, and −le may be used
in place of −eq.

These primaries may be combined with the following operators:

!
Unary negation operator.

-a
Binary and operator.

-o
Binary or operator (-a has higher precedence than -o).

‘(expression)‘
Parentheses for grouping. Notice also that parentheses are meaningful to the shell
and, therefore, must be quoted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

find(1), sh(1), attributes(5)

If you test a file you own (the -r , -w , or -x tests), but the permission tested does
not have the owner bit set, a non-zero (false) exit status will be returned even though
the file may have the group or other bit set for that permission. The correct exit status
will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n operators,
and = and != always expect arguments; therefore, = and != cannot be used with the
-r through -n operators.

If more than one argument follows the -r through -n operators, only the first
argument is examined; the others are ignored, unless a -a or a -o is the second
argument.

test(1F)

Operators

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1529

tftp – trivial file transfer program

tftp [host [port]]

tftp is the user interface to the Internet TFTP (Trivial File Transfer Protocol), which
allows users to transfer files to and from a remote machine. The remote host and
optional port may be specified on the command line, in which case tftp uses host as
the default host, and if specified, port as the default port, for future transfers. See the
connect command below.

Once tftp is running, it issues the prompt tftp> and recognizes the following
commands:

connect host-name [port]
Set the host, and optionally port, for transfers. The TFTP protocol, unlike the FTP
protocol, does not maintain connections between transfers; thus, the connect
command does not actually create a connection, but merely remembers what host is
to be used for transfers. You do not have to use the connect command; the remote
host can be specified as part of the get or put commands.

mode transfer-mode
Set the mode for transfers; transfer-mode may be one of ascii or binary. The
default is ascii.

put filename
put localfile remotefile
put filename1 filename2 . . . filenameN remote-directory

Transfer a file, or a set of files, to the specified remote file or directory. The
destination can be in one of two forms: a filename on the remote host if the host has
already been specified, or a string of the form:

host:filename

to specify both a host and filename at the same time. If the latter form is used, the
specified host becomes the default for future transfers. If the remote-directory form
is used, the remote host is assumed to be running the UNIX system.

The host can be a host name (see hosts(4) or ipnodes(4)) or an IPv4 or IPv6
address string (see inet(7P) or inet6(7P)). Since IPv6 addresses already contain
“:”s, the host should be enclosed in square brackets when an IPv6 address is used.
Otherwise, the first occurrence of a colon will be interpreted as the separator
between the host and the filename. For example,

[1080::8:800:200c:417A]:myfile

Files may be written only if they already exist and are publicly writable. See
in.tftpd(1M).

get filename
get remotename localname
get filename1 filename2 filename3 . . . filenameN

tftp(1)

NAME

SYNOPSIS

DESCRIPTION

USAGE

Commands

1530 man pages section 1: User Commands • Last Revised 2 Jan 2002

Get a file or set of files (three or more) from the specified remote sources. source
can be in one of two forms: a filename on the remote host if the host has already
been specified, or a string of the form:

host:filename

to specify both a host and filename at the same time. If the latter form is used, the
last host specified becomes the default for future transfers. See the put command
regarding specifying a host.

quit
Exit tftp. An EOF also exits.

verbose
Toggle verbose mode.

trace
Toggle packet tracing.

status
Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii
Shorthand for mode ascii.

binary
Shorthand for mode binary.

blksize transfer-blocksize
The value of the transfer blocksize option to negotiate with the server. A value of 0
disables the negotiation of this option.

srexmt server-retransmission-timeout
The value of the retransmission timeout option to request that the server uses. A
value of 0 disables the negotiation of this option.

tsize
A toggle that sends the transfer size option to the server. By default, the option is
not sent. The transfer size option is not sent with a write request when the
transfer-mode is ascii.

? [command-name . . .]
Print help information.

See attributes(5) for descriptions of the following attributes:

tftp(1)

ATTRIBUTES

User Commands 1531

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtftp

in.tftpd(1M), hosts(4), ipnodes(4),attributes(5),inet(7P), inet6(7P)

Malkin, G. and Harkin, A. RFC 2347, TFTP Option Extension. The Internet Society. May
1998

Malkin, G. and Harkin, A. RFC 2348, TFTP Blocksize Option. The Internet Society. May
1998

Malkin, G. and Harkin, A. RFC 2349, TFTP Timeout Interval and Transfer Size Options.
The Internet Society. May 1998

Sollins, K.R. RFC 1350, The TFTP Protocol (Revision 2). Network Working Group. July
1992.

The default transfer-mode is ascii. This differs from pre-SunOS 4.0 and pre-4.3BSD
systems, so explicit action must be taken when transferring non-ASCII binary files
such as executable commands.

Because there is no user-login or validation within the TFTP protocol, many remote
sites restrict file access in various ways. Approved methods for file access are specific
to each site, and therefore cannot be documented here.

When using the get command to transfer multiple files from a remote host, three or
more files must be specified. If two files are specified, the second file is used as a local
file.

tftp(1)

SEE ALSO

NOTES

1532 man pages section 1: User Commands • Last Revised 2 Jan 2002

time – time a simple command

time [-p] utility [argument. ..]

The time utility invokes utility operand with argument, and writes a message to
standard error that lists timing statistics for utility. The message includes the following
information:

� The elapsed (real) time between invocation of utility and its termination.
� The User CPU time, equivalent to the sum of the tms_utime and tms_cutime fields

returned by the times(2) function for the process in which utility is executed.
� The System CPU time, equivalent to the sum of the tms_stime and tms_cstime fields

returned by the times() function for the process in which utility is executed.

When time is used as part of a pipeline, the times reported are unspecified, except
when it is the sole command within a grouping command in that pipeline. For
example, the commands on the left are unspecified; those on the right report on
utilities a and c, respectively.

time a | b | c { time a } | b | c
a | b | time c a | b | (time c)

The following option is supported:

-p Write the timing output to standard error in the following format:

real %f\nuser %f\nsys %f\n < real seconds>, <user seconds>,
<system seconds>

The following operands are supported:

utility The name of the utility that is to be invoked.

argument Any string to be supplied as an argument when invoking utility.

The time utility returns exit status 127 if an error occurs so that applications can
distinguish “failure to find a utility” from “invoked utility exited with an error
indication.” The value 127 was chosen because it is not commonly used for other
meanings; most utilities use small values for “normal error conditions” and the values
above 128 can be confused with termination due to receipt of a signal. The value 126
was chosen in a similar manner to indicate that the utility could be found, but not
invoked.

EXAMPLE 1 Using The time Coommand

It is frequently desirable to apply time to pipelines or lists of commands. This can be
done by placing pipelines and command lists in a single file; this file can then be
invoked as a utility, and the time applies to everything in the file.

Alternatively, the following command can be used to apply time to a complex
command:

time(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

User Commands 1533

EXAMPLE 1 Using The time Coommand (Continued)

time sh -c ’complex-command-line’

EXAMPLE 2 Using time In The csh Shell

The following two examples show the differences between the csh version of time
and the version in /usr/bin/time. These examples assume that csh is the shell in
use.

example% time find / -name csh.1 -print
/usr/share/man/man1/csh.1
95.0u 692.0s 1:17:52 16% 0+0k 0+0io 0pf+0w

See csh(1) for an explanation of the format of time output.

example% /usr/bin/time find / -name csh.1 -print
/usr/share/man/man1/csh.1
real 1:23:31.5
user 1:33.2
sys 11:28.2

See environ(5) for descriptions of the following environment variables that affect the
execution of time: LC_CTYPE, LC_MESSAGES, LC_NUMERIC, NLSPATH, and PATH.

If utility is invoked, the exit status of time will be the exit status of utility; otherwise,
the time utility will exit with one of the following values:

1−125 An error occurred in the time utility.

126 utility was found but could not be invoked.

127 utility could not be found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), shell_builtins(1), timex(1), times(2), attributes(5), environ(5)

When the time command is run on a multiprocessor machine, the total of the values
printed for user and sys can exceed real. This is because on a multiprocessor
machine it is possible to divide the task between the various processors.

When the command being timed is interrupted, the timing values displayed may not
always be accurate.

time(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

1534 man pages section 1: User Commands • Last Revised 1 Feb 1995

Elapsed time is accurate to the second, while the CPU times are measured to the 100th
second. Thus the sum of the CPU times can be up to a second larger than the elapsed
time.

time(1)

BUGS

User Commands 1535

times – shell built-in function to report time usages of the current shell

times

times

Print the accumulated user and system times for processes run from the shell.

Print the accumulated user and system times for the shell and for processes run from
the shell.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ksh(1), sh(1), time(1), attributes(5)

times(1)

NAME

sh

ksh

sh

ksh

ATTRIBUTES

SEE ALSO

1536 man pages section 1: User Commands • Last Revised 15 Apr 1994

timex – time a command; report process data and system activity

timex [-o] [-p [-fhkmrt]] [-s] command

The given command is executed; the elapsed time, user time and system time spent in
execution are reported in seconds. Optionally, process accounting data for the
command and all its children can be listed or summarized, and total system activity
during the execution interval can be reported.

The output of timex is written on standard error.

The following options are supported:

-o Report the total number of blocks read or written and total characters
transferred by command and all its children. This option works only if the
process accounting software is installed.

-p List process accounting records for command and all its children. This
option works only if the process accounting software is installed.
Suboptions f, h, k, m, r, and t modify the data items reported. The options
are as follows:

-f Print the fork(2)/ exec(2) flag and system exit status columns
in the output.

-h Instead of mean memory size, show the fraction of total
available CPU time consumed by the process during its
execution. This ‘‘hog factor’’ is computed as (total
CPU time)/(elapsed time).

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time)).

-t Show separate system and user CPU times. The number of
blocks read or written and the number of characters transferred
are always reported.

-s Report total system activity (not just that due to command) that occurred
during the execution interval of command. All the data items listed in
sar(1) are reported.

EXAMPLE 1 Examples of timex.

A simple example:

example% timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

example% timex -opskmt sh
session commands

EOT

timex(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

User Commands 1537

EXAMPLE 1 Examples of timex. (Continued)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu

sar(1), time(1), exec(2), fork(2), times(2), attributes(5)

Process records associated with command are selected from the accounting file
/var/adm/pacct by inference, since process genealogy is not available. Background
processes having the same user ID, terminal ID, and execution time window will be
spuriously included.

timex(1)

ATTRIBUTES

SEE ALSO

NOTES

1538 man pages section 1: User Commands • Last Revised 14 Sep 1992

tip – connect to remote system

tip [-v] [-speed-entry] {hostname | phone-number | device}

The tip utility establishes a full-duplex terminal connection to a remote host. Once
the connection is established, a remote session using tip behaves like an interactive
session on a local terminal.

The remote file contains entries describing remote systems and line speeds used by
tip.

Each host has a default baud rate for the connection, or you can specify a speed with
the -speed-entry command line argument.

When phone-number is specified, tip looks for an entry in the remote file of the form:

tip -speed-entry

When tip finds such an entry, it sets the connection speed accordingly. If it finds no
such entry, tip interprets -speed-entry as if it were a system name, resulting in an
error message.

If you omit -speed-entry, tip uses the tip0 entry to set a speed for the connection.

When device is specified, tip attempts to open that device, but will do so using the
access privileges of the user, rather than tip’s usual access privileges (setuid uucp).
The user must have read/write access to the device. The tip utility interprets any
character string beginning with the slash character (/) as a device name.

When establishing the connection, tip sends a connection message to the remote
system. The default value for this message can be found in the remote file.

When tip attempts to connect to a remote system, it opens the associated device with
an exclusive-open ioctl(2) call. Thus, only one user at a time may access a device.
This is to prevent multiple processes from sampling the terminal line. In addition, tip
honors the locking protocol used by uucp(1C).

When tip starts up, it reads commands from the file .tiprc in your home directory.

-v Display commands from the .tiprc file as they are executed.

Typed characters are normally transmitted directly to the remote machine, which does
the echoing as well.

At any time that tip prompts for an argument (for example, during setup of a file
transfer), the line typed may be edited with the standard erase and kill characters. A
null line in response to a prompt, or an interrupt, aborts the dialogue and returns you
to the remote machine.

A tilde (~) appearing as the first character of a line is an escape signal which directs
tip to perform some special action. tip recognizes the following escape sequences:

tip(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

Commands

User Commands 1539

~^D
~. Drop the connection and exit (you may still be logged in on the

remote machine). Note: If you rlogin and then run tip on the
remote host, you must type ~~. (tilde tilde dot) to end the tip
session. If you type ~. (tilde dot), it terminates the rlogin.

~c [name] Change directory to name. No argument implies change to your
home directory.

~! Escape to an interactive shell on the local machine. Exiting the
shell returns you to tip.

~> Copy file from local to remote.

~< Copy file from remote to local.

~p from [to] Send a file to a remote host running the UNIX system. When you
use the put command, the remote system runs the command string

cat > to

while tip sends it the from file. If the to file is not specified, the
from file name is used. This command is actually a
UNIX-system-specific version of the ‘~>’ command.

~t from [to] Take a file from a remote host running the UNIX system. As in the
put command the to file defaults to the from file name if it is not
specified. The remote host executes the command string

cat from ; echo ^A

to send the file to tip.

~| Pipe the output from a remote command to a local process. The
command string sent to the local system is processed by the shell.

~C Connect a program to the remote machine. The command string
sent to the program is processed by the shell. The program inherits
file descriptors 0 as remote line input, 1 as remote line output, and
2 as tty standard error.

~$ Pipe the output from a local process to the remote host. The
command string sent to the local system is processed by the shell.

~# Send a BREAK to the remote system.

~s Set a variable (see the discussion below).

~^Z Stop tip. Only available when run under a shell that supports job
control, such as the C shell.

~^Y Stop only the “local side” of tip. Only available when run under a
shell that supports job control, such as the C shell. The “remote
side” of tip, that is, the side that displays output from the remote
host, is left running.

tip(1)

1540 man pages section 1: User Commands • Last Revised 28 Nov 2001

~? Get a summary of the tilde escapes.

Copying files requires some cooperation on the part of the remote host. When a ~> or
~< escape is used to send a file, tip prompts for a file name (to be transmitted or
received) and a command to be sent to the remote system, in case the file is being
transferred from the remote system. While tip is transferring a file, the number of
lines transferred will be continuously displayed on the screen. A file transfer may be
aborted with an interrupt.

tip may be used to dial up remote systems using a number of auto-call unit’s (ACUs).
When the remote system description contains the du capability, tip uses the call-unit
(cu), ACU type (at), and phone numbers (pn) supplied. Normally, tip displays
verbose messages as it dials.

Depending on the type of auto-dialer being used to establish a connection, the remote
host may have garbage characters sent to it upon connection. The user should never
assume that the first characters typed to the foreign host are the first ones presented to
it. The recommended practice is to immediately type a kill character upon
establishing a connection (most UNIX systems either support @ or Control-U as the
initial kill character).

tip currently supports the Ventel MD-212+ modem and DC Hayes-compatible
modems.

When tip initializes a Hayes-compatible modem for dialing, it sets up the modem to
auto-answer. Normally, after the conversation is complete, tip drops DTR, which
causes the modem to "hang up."

Most modems can be configured so that when DTR drops, they re-initialize
themselves to a preprogrammed state. This can be used to reset the modem and
disable auto-answer, if desired.

Additionally, it is possible to start the phone number with a Hayes S command so that
you can configure the modem before dialing. For example, to disable auto-answer, set
up all the phone numbers in /etc/remote using something like
pn=S0=0DT5551212. The S0=0 disables auto-answer.

Descriptions of remote hosts are normally located in the system-wide file
/etc/remote. However, a user may maintain personal description files (and phone
numbers) by defining and exporting the REMOTE shell variable. The remote file must
be readable by tip, but a secondary file describing phone numbers may be
maintained readable only by the user. This secondary phone number file is
/etc/phones, unless the shell variable PHONES is defined and exported. The phone
number file contains lines of the form:

system-name phone-number

tip(1)

Auto-call Units

Remote Host
Description

User Commands 1541

Each phone number found for a system is tried until either a connection is established,
or an end of file is reached. Phone numbers are constructed from ‘0123456789−=*’,
where the ‘=’ and ‘*’ are used to indicate a second dial tone should be waited for
(ACU dependent).

tip maintains a set of variables which are used in normal operation. Some of these
variables are read-only to normal users (root is allowed to change anything of
interest). Variables may be displayed and set through the ~s escape. The syntax for
variables is patterned after vi(1) and mail(1). Supplying all as an argument to the
~s escape displays all variables that the user can read. Alternatively, the user may
request display of a particular variable by attaching a ? to the end. For example, ‘~s
escape?’ displays the current escape character.

Variables are numeric (num), string (str), character (char), or Boolean (bool) values.
Boolean variables are set merely by specifying their name. They may be reset by
prepending a ! to the name. Other variable types are set by appending an = and the
value. The entire assignment must not have any blanks in it. A single set command
may be used to interrogate as well as set a number of variables.

Variables may be initialized at run time by placing set commands (without the ~s
prefix) in a .tiprc file in one’s home directory. The -v option makes tip display the
sets as they are made. Comments preceded by a # sign can appear in the .tiprc file.

Finally, the variable names must either be completely specified or an abbreviation may
be given. The following list details those variables known to tip.

beautify (bool) Discard unprintable characters when a session is being
scripted; abbreviated be. If the nb capability is present, beautify
is initially set to off. Otherwise, beautify is initially set to on.

baudrate (num) The baud rate at which the connection was established;
abbreviated ba. If a baud rate was specified on the command line,
baudrate is initially set to the specified value. Or, if the br
capability is present, baudrate is initially set to the value of that
capability. Otherwise, baudrate is set to 300 baud. Once tip has
been started, baudrate can only changed by the super-user.

dialtimeout (num) When dialing a phone number, the time (in seconds) to wait
for a connection to be established; abbreviated dial.
dialtimeout is initially set to 60 seconds, and can only changed
by the super-user.

disconnect (str) The string to send to the remote host to disconnect from it;
abbreviated di. If the di capability is present, disconnect is
initially set to the value of that capability. Otherwise, disconnect
is set to a null string ("").

echocheck (bool) Synchronize with the remote host during file transfer by
waiting for the echo of the last character transmitted; abbreviated

tip(1)

tip Internal
Variables

1542 man pages section 1: User Commands • Last Revised 28 Nov 2001

ec. If the ec capability is present, echocheck is initially set to on.
Otherwise, echocheck is initially set to off.

eofread (str) The set of characters which signify an end-of-transmission
during a ~< file transfer command; abbreviated eofr. If the ie
capability is present, eofread is initially set to the value of that
capability. Otherwise, eofread is set to a null string ("").

eofwrite (str) The string sent to indicate end-of-transmission during a ~>
file transfer command; abbreviated eofw. If the oe capability is
present, eofread is initially set to the value of that capability.
Otherwise, eofread is set to a null string ("").

eol (str) The set of characters which indicate an end-of-line. tip will
recognize escape characters only after an end-of-line. If the el
capability is present, eol is initially set to the value of that
capability. Otherwise, eol is set to a null string ("").

escape (char) The command prefix (escape) character; abbreviated es. If
the es capability is present, escape is initially set to the value of
that capability. Otherwise, escape is set to ‘ ~ ’.

etimeout (num) The amount of time, in seconds, that tip should wait for
the echo-check response when echocheck is set; abbreviated et.
If the et capability is present, etimeout is initially set to the
value of that capability. Otherwise, etimeout is set to 10 seconds.

exceptions (str) The set of characters which should not be discarded due to
the beautification switch; abbreviated ex. If the ex capability is
present, exceptions is initially set to the value of that capability.
Otherwise, exceptions is set to ‘\t\n\f\b’.

force (char) The character used to force literal data transmission;
abbreviated fo. If the fo capability is present, force is initially
set to the value of that capability. Otherwise, force is set to \377
(which disables it).

framesize (num) The amount of data (in bytes) to buffer between file system
writes when receiving files; abbreviated fr. If the fs capability is
present, framesize is initially set to the value of that capability.
Otherwise, framesize is set to 1024.

halfduplex (bool) Do local echoing because the host is half-duplex;
abbreviated hdx. If the hd capability is present, halfduplex is
initially set to on. Otherwise, halfduplex is initially set to off.

hardwareflow (bool) Do hardware flow control; abbreviated hf. If the hf
capability is present, hardwareflow is initially set to on.
Otherwise, hardwareflowcontrol is initially set to off.

tip(1)

User Commands 1543

host (str) The name of the host to which you are connected; abbreviated
ho. host is permanently set to the name given on the command
line or in the HOST environment variable.

localecho (bool) A synonym for halfduplex; abbreviated le.

log (str) The name of the file to which to log information about
outgoing phone calls. log is initially set to /var/adm/aculog,
and can only be inspected or changed by the super-user.

parity (str) The parity to be generated and checked when talking to the
remote host; abbreviated par. The possible values are:

none>
zero Parity is not checked on input, and the parity bit is set

to zero on output.

one Parity is not checked on input, and the parity bit is set
to one on output.

even Even parity is checked for on input and generated on
output.

odd Odd parity is checked for on input and generated on
output.

If the pa capability is present, parity is initially set to the value
of that capability; otherwise, parity is set to none.

phones The file in which to find hidden phone numbers. If the
environment variable PHONES is set, phones is set to the value of
PHONES. Otherwise, phones is set to /etc/phones. The value of
phones cannot be changed from within tip.

prompt (char) The character which indicates an end-of-line on the remote
host; abbreviated pr. This value is used to synchronize during
data transfers. The count of lines transferred during a file transfer
command is based on receipt of this character. If the pr capability
is present, prompt is initially set to the value of that capability.
Otherwise, prompt is set to \n.

raise (bool) Upper case mapping mode; abbreviated ra. When this
mode is enabled, all lower case letters will be mapped to upper
case by tip for transmission to the remote machine. If the ra
capability is present, raise is initially set to on. Otherwise, raise
is initially set to off.

raisechar (char) The input character used to toggle upper case mapping
mode; abbreviated rc. If the rc capability is present, raisechar
is initially set to the value of that capability. Otherwise,
raisechar is set to \377 (which disables it).

tip(1)

1544 man pages section 1: User Commands • Last Revised 28 Nov 2001

rawftp (bool) Send all characters during file transfers; do not filter
non-printable characters, and do not do translations like \n to \r.
Abbreviated raw. If the rw capability is present, rawftp is
initially set to on. Otherwise, rawftp is initially set to off.

record (str) The name of the file in which a session script is recorded;
abbreviated rec. If the re capability is present, record is initially
set to the value of that capability. Otherwise, record is set to
tip.record.

remote The file in which to find descriptions of remote systems. If the
environment variable REMOTE is set, remote is set to the value of
REMOTE. Otherwise, remote is set to /etc/remote. The value of
remote cannot be changed from within tip.

script (bool) Session scripting mode; abbreviated sc. When script is
on, tip will record everything transmitted by the remote machine
in the script record file specified in record. If the beautify
switch is on, only printable ASCII characters will be included in
the script file (those characters between 040 and 0177). The
variable exceptions is used to indicate characters which are an
exception to the normal beautification rules. If the sc capability is
present, script is initially set to on. Otherwise, script is
initially set to off.

tabexpand (bool) Expand TAB characters to SPACE characters during file
transfers; abbreviated tab. When tabexpand is on, each tab is
expanded to eight SPACE characters. If the tb capability is
present, tabexpand is initially set to on. Otherwise, tabexpand
is initially set to off.

tandem (bool) Use XON/XOFF flow control to limit the rate that data is sent
by the remote host; abbreviated ta. If the nt capability is present,
tandem is initially set to off. Otherwise, tandem is initially set to
on.

verbose (bool) Verbose mode; abbreviated verb; When verbose mode is
enabled, tip prints messages while dialing, shows the current
number of lines transferred during a file transfer operations, and
more. If the nv capability is present, verbose is initially set to
off. Otherwise, verbose is initially set to on.

SHELL (str) The name of the shell to use for the ~! command; default
value is /bin/sh, or taken from the environment.

HOME (str) The home directory to use for the ~c command. Default value
is taken from the environment.

EXAMPLE 1 Using the tip command

An example of the dialog used to transfer files is given below.

tip(1)

EXAMPLES

User Commands 1545

EXAMPLE 1 Using the tip command (Continued)

arpa% tip monet
[connected]
...(assume we are talking to a UNIX system)...
ucbmonet login: sam
Password:
monet% cat sylvester.c
~> Filename: sylvester.c
32 lines transferred in 1 minute 3 seconds
monet%
monet% ~< Filename: reply.c
List command for remote host: cat reply.c
65 lines transferred in 2 minutes
monet%
...(or, equivalently)...
monet% ~p sylvester.c
...(actually echoes as ~[put] sylvester.c)...
32 lines transferred in 1 minute 3 seconds
monet%
monet% ~t reply.c
...(actually echoes as ~[take] reply.c)...
65 lines transferred in 2 minutes
monet%
...(to print a file locally)...
monet% ~|Local command: pr h sylvester.c | lpr
List command for remote host: cat sylvester.c
monet% ~^D
[EOT]
...(back on the local system)...

The following environment variables are read by tip.

REMOTE The location of the remote file.

PHONES The location of the file containing private phone numbers.

HOST A default host to connect to.

HOME One’s log-in directory (for chdirs).

SHELL The shell to fork on a ‘~!’ escape.

/etc/phones

/etc/remote

/var/spool/locks/LCK. .*
lock file to avoid conflicts with UUCP

/var/adm/aculog
file in which outgoing calls are logged

~/.tiprc
initialization file

tip(1)

ENVIRONMENT
VARIABLES

FILES

1546 man pages section 1: User Commands • Last Revised 28 Nov 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

cu(1C), mail(1), uucp(1C), vi(1), ioctl(2), attributes(5)

There are two additional variables, chardelay and linedelay, that are currently
not implemented.

tip(1)

ATTRIBUTES

SEE ALSO

BUGS

User Commands 1547

tnfdump – convert binary TNF file to ASCII

tnfdump [-r] [-x] tnf_file…

The tnfdump utility converts the specified binary TNF trace files to ASCII. The ASCII
output can be used to do performance analysis. The default mode (without the -r
option) prints all the event records (that were generated by TNF_PROBE(3TNF)) and
the event descriptor records only. It also orders the events by time.

The following option is supported:

-r Does a raw conversion of TNF to ASCII. The output is a literal transalation
of the binary TNF file and includes all the records in the file. This output is
useful only if you have a good understanding of TNF. A sample output is
listed in EXAMPLES below.

-x Prints all TNF unsigned type argument values in hexadecimal format
instead of decimal format.

tnfdump returns 0 on succcessful exit.

EXAMPLE 1 Converting a file into ASCII

To convert the file /tmp/trace-2130 into ASCII, use the tnfdump command and
the name of the binary trace file. Be aware that the tnfdump output goes to stdout
by default.

example% tnfdump /tmp/trace-2130

probe tnf_name: "inloop" tnf_string: "keys cookie main loop;\
file cookie2.c;line 50;sunw%debug in the loop"

probe tnf_name: "end" tnf_string: "keys cookie main end;\
file cookie2.c;line 41;sunw%debug exiting program"

------------- ----------- ---- ------ --- ---------- ----------------
Elapsed (ms) Delta (ms) PID LWPID TID CPU Probe Data/

Name Description . . .
------------- ----------- ---- ------ --- ---------- ----------------

0.000000 0.000000 8792 1 0 - inloop loop_count: 0
total_iterations: 0

0.339000 0.339000 8792 1 0 - inloop loop_count: 1
total_iterations: 1

0.350500 0.011500 8792 1 0 - inloop loop_count: 2
total_iterations: 2

0.359500 0.009000 8792 1 0 - inloop loop_count: 3
total_iterations: 3

0.369500 0.010000 8792 1 0 - inloop loop_count: 4
total_iterations: 4

7775.969500 7775.600000 8792 1 0 - inloop loop_count: 0
total_iterations: 5

7776.016000 0.046500 8792 1 0 - inloop loop_count: 1
total_iterations: 6

7776.025000 0.009000 8792 1 0 - inloop loop_count: 2
total_iterations: 7

7776.034000 0.009000 8792 1 0 - inloop loop_count: 3
total_iterations: 8

tnfdump(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

RETURN VALUES

EXAMPLES

1548 man pages section 1: User Commands • Last Revised 22 Jan 2001

EXAMPLE 1 Converting a file into ASCII (Continued)

7776.043000 0.009000 8792 1 0 - inloop loop_count: 4
total_iterations: 9

7776.052000 0.009000 8792 1 0 - inloop loop_count: 5
total_iterations: 10

7776.061000 0.009000 8792 1 0 - inloop loop_count: 6
total_iterations: 11

9475.979500 1699.918500 8792 1 0 - end node_struct:
{ type: node_tnf

cur_sum: 9 max_cnt: 12 }

All probes that are encountered during execution have a description of it printed out.
The description is one per line prefixed by the keyword ’probe’. The name of the
probe is in double quotes after the keyword ’tnf_name’. The description of this probe
is in double quotes after the keyword ’tnf_string’.

A heading is printed after all the description of the probes are printed. The first
column gives the elapsed time in milli-seconds since the first event. The second
column gives the elapsed time in milli-seconds since the previous event. The next four
columns are the process id, lwp id, thread id, and cpu number. The next column is the
name of the probe that generated this event. This can be matched to the probe
description explained above. The last column is the data that the event contains,
formatted as arg_name_n (see TNF_PROBE(3TNF)) followed by a colon and the
value of that argument. The format of the value depends on its type. tnf_opaque
arguments are printed in hexadecimal. All other integers are printed in decimal.
Strings are printed in double quotes and user-defined records are enclosed in braces ‘{
}’. The first field of a user defined record indicates its TNF type (see
TNF_DECLARE_RECORD(3TNF)). The rest of the fields are the members of the record.

A ‘-’ in any column indicates that there is no data for that particular column.

EXAMPLE 2 To do a raw conversion of a file into ASCII

To do a raw conversion of the file /tmp/trace-4000 into ASCII, use:

example% tnfdump -r /tmp/trace-4000

The output will look like the following:

0x10e00 : {
tnf_tag 0x109c0 tnf_block_header

generation 1
bytes_valid 320

A_lock 0
B_lock 0

next_block 0x0
}

0x10e10 : {
tnf_tag 0x10010 probe1

tnf_tag_arg 0x10e24 <tnf_sched_rec>
time_delta 128

tnfdump(1)

User Commands 1549

EXAMPLE 2 To do a raw conversion of a file into ASCII (Continued)

test_ulong 4294967295
test_long -1

}
0x10e24 : {

tnf_tag 0x10cf4 tnf_sched_rec
tid 0

lwpid 1
pid 13568

time_base 277077875828500
}

0x10e3c : {
tnf_tag 0x11010 probe2

tnf_tag_arg 0x10e24 <tnf_sched_rec>
time_delta 735500

test_str 0x10e48 "string1"
}

0x10e48 : {
tnf_tag 0x1072c tnf_string

tnf_self_size 16
chars "string1"

}
0x10e58 : {

tnf_tag 0x110ec probe3
tnf_tag_arg 0x10e24 <tnf_sched_rec>
time_delta 868000

test_ulonglong 18446744073709551615
test_longlong -1

test_float 3.142857
}

. . .

. . .

. . .
0x110ec : {

tnf_tag 0x10030 tnf_probe_type
tnf_tag_code 42

tnf_name 0x1110c "probe3"
tnf_properties 0x1111c <tnf_properties>
tnf_slot_types 0x11130 <tnf_slot_types>
tnf_type_size 32
tnf_slot_names 0x111c4 <tnf_slot_names>

tnf_string 0x11268 "keys targdebug main;\
file targdebug.c;line 61;"

}
0x1110c : {

tnf_tag 0x10068 tnf_name
tnf_self_size 16

chars "probe3"
}

0x1111c : {
tnf_tag 0x100b4 tnf_properties

tnf_self_size 20
0 0x101a0 tnf_tagged
1 0x101c4 tnf_struct
2 0x10b84 tnf_tag_arg

tnfdump(1)

1550 man pages section 1: User Commands • Last Revised 22 Jan 2001

EXAMPLE 2 To do a raw conversion of a file into ASCII (Continued)

}
0x11130 : {

tnf_tag 0x10210 tnf_slot_types
tnf_self_size 28

0 0x10bd0 tnf_probe_event
1 0x10c20 tnf_time_delta
2 0x1114c tnf_uint64
3 0x10d54 tnf_int64
4 0x11188 tnf_float32

}

The first number is the file offset of the record. The record is enclosed in braces ‘{ }’.
The first column in a record is the slot name (for records whose fields do not have
names, it is the type name). The second column in the record is the value of that slot if
it is a scalar (only scalars that are of type tnf_opaque are printed in hex), or the offset
of the record if it is a reference to another record.

The third column in a record is optional. It does not exist for scalar slots of records. If
it exists, the third column is a type name with or without angle brackets, or a string in
double quotes. Unadorned names indicate a reference to the named metatag record
(that is, a reference to a record with that name in the tnf_name field). Type names in
angled brackets indicate a reference to a record that is an instance of that type (that is,
a reference to a record with that name in the tnf_tag field). The content of strings are
printed out in double quotes at the reference site.

Records that are arrays have their array elements follow the header slots, and are
numbered 0, 1, 2, and so on, except strings where the string is written as the ’chars’
(pseudo-name) slot.

Records that are events (generated by TNF_PROBE(3TNF)) will have a slot name of
tnf_tag_arg as their second field which is a reference to the schedule record.
Schedule records describe more information about the event like the thread-id,
process-id, and the time_base. The time_delta of an event can be added to the
time_base of the schedule record that the event references, to give an absolute time.
This time is expressed as nanoseconds since some arbitrary time in the past (see
gethrtime(3C)).

EXAMPLE 3 Printing TNF unsigned arguments in hexadecimal

To print TNF unsigned arguments in hexadecimal for the file /tmp/trace-2192,
use:

example% tnfdump -x /tmp/trace-2192

The output will look like the following:

probe tnf_name: "start" tnf_string: "keys cookie main;
file test17.c;line 20;sunw%debug starting main"
probe tnf_name: "inloop" tnf_string: "keys cookie main

tnfdump(1)

User Commands 1551

EXAMPLE 3 Printing TNF unsigned arguments in hexadecimal (Continued)

loop;file test17.c;line 41;sunw%debug in the loop"
probe tnf_name: "final" tnf_string: "keys cookie main
final;file test17.c;line 32;sunw%debug in the final"
------------ ----------- ---- ----- --- --------- ---------------------

Elapsed Delta PID LWPID TID CPU Probe Data/Description ...
(ms) (ms) Name

------------ ----------- ---- ----- --- --------- ---------------------
0.000000 0.000000 6280 1 1 - start

2455.211311 2455.211311 6280 1 1 - inloop loop_count: 0x0
total_iterations: 0x0

2455.215768 0.004457 6280 1 1 - inloop loop_count: 0x1
total_iterations: 0x1

2455.217041 0.001273 6280 1 1 - inloop loop_count: 0x2
total_iterations: 0x2

2455.218285 0.001244 6280 1 1 - inloop loop_count: 0x3
total_iterations: 0x3

2455.219600 0.001315 6280 1 1 - inloop loop_count: 0x4
total_iterations: 0x4

4058.815125 1603.595525 6280 1 1 - inloop loop_count: 0x0
total_iterations: 0x5

4058.818699 0.003574 6280 1 1 - inloop loop_count: 0x1
total_iterations: 0x6

4058.819931 0.001232 6280 1 1 - inloop loop_count: 0x2
total_iterations: 0x7

4058.821264 0.001333 6280 1 1 - inloop loop_count: 0x3
total_iterations: 0x8

4058.822520 0.001256 6280 1 1 - inloop loop_count: 0x4
total_iterations: 0x9

4058.823781 0.001261 6280 1 1 - inloop loop_count: 0x5
total_iterations: 0xa

4058.825037 0.001256 6280 1 1 - inloop loop_count: 0x6
total_iterations: 0xb

13896.655450 9837.830413 6280 1 1 - final loop_count16: 0x258
total_iterations8: 0xb0

::
::
::

Notice that the loop_count and the total_iterations are TNF unsigned
arguments. Their values are printed in hexadecimal when requested by option -x.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

prex(1), gethrtime(3C), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF),
tnf_process_disable(3TNF), attributes(5)

tnfdump(1)

ATTRIBUTES

SEE ALSO

1552 man pages section 1: User Commands • Last Revised 22 Jan 2001

tnfxtract – extract kernel probes output into a trace file

tnfxtract [-d dumpfile -n namelist] tnf_file

The tnfxtract utility collects kernel trace output from an in-core buffer in the Solaris
kernel, or from the memory image of a crashed system, and generates a binary TNF
trace file like those produced directly by user programs being traced.

Either both or neither of the -d and -n options must be specified. If neither is
specified, trace output is extracted from the running kernel. If both are specified, the
-d argument names the file containing the (crashed) system memory image, and the
-n argument names the file containing the symbol table for the system memory
image.

The TNF trace file tnf_file produced is exactly the same size as the in-core buffer; it is
essentially a snapshot of that buffer. It is legal to run tnfxtract while kernel tracing
is active, i.e., while the in-core buffer is being written. tnfxtract insures that the
output file it generates is low-level consistent, i.e., that only whole probes are written
out, and that internal data structures in the buffer are not corrupted because the buffer
is being concurrently written.

The TNF trace file generated is suitable as input to tnfdump(1), which will generate
an ASCII file.

The following options are supported:

-d dumpfile Use dumpfile as the system memory image, instead of the running
kernel. The dumpfile is normally the path name of a file generated
by the savecore utility.

-n namelist Use namelist as the file containing the symbol table information for
the given dumpfile.

The following operand is supported:

tnf_file output file generated by tnfxtract based on kernel trace output
from an in-core buffer in the Solaris kernel.

EXAMPLE 1 Extracting probes from a running kernel

Extract probes from the running kernel into ktrace.out:

example% tnfxtract ktrace.out

EXAMPLE 2 Extracting probes from a kernel crash dump

Extract probes from a kernel crash dump into ktrace.out:

example% tnfxtract -d /var/crash/‘uname -n‘/vmcore.0 \
-n /var/crash/‘uname -n‘/unix.0 ktrace.out

The following exit values are returned:

tnfxtract(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

EXIT STATUS

User Commands 1553

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc (32-bit)

SUNWtnfcx (64-bit)

prex(1), tnfdump(1), savecore(1M), tnf_kernel_probes(4), attributes(5)

tnfxtract(1)

ATTRIBUTES

SEE ALSO

1554 man pages section 1: User Commands • Last Revised 4 Aug 1995

touch, settime – change file access and modification times

touch [-acm] [-r ref_file | -t time]file…

touch [-acm] [date_time] file…

settime [-f ref_file] [date_time] file…

The touch utility sets the access and modification times of each file. The file operand
is created if it does not already exist.

The time used can be specified by -t time, by the corresponding time fields of the file
referenced by -r ref_file, or by the date_time operand. If none of these are specified,
touch uses the current time (the value returned by the time(2) function).

If neither the -a nor -m options are specified, touch updates both the modification
and access times.

A user with write access to a file, but who is not the owner of the file or a super-user,
can change the modification and access times of that file only to the current time.
Attempts to set a specific time with touch will result in an error.

The settime utility is equivalent to touch -c [date_time] file.

The following options are supported for the touch utility:

-a Changes the access time of file. Does not change the modification
time unless -m is also specified.

-c Does not create a specified file if it does not exist. Does not write
any diagnostic messages concerning this condition.

-m Changes the modification time of file. Does not change the access
time unless -a is also specified.

-r ref_file Uses the corresponding times of the file named by ref_file instead
of the current time.

-t time Uses the specified time instead of the current time. time will be a
decimal number of the form:

[[CC]YY]MMDDhhmm [.SS]where each two digits represent the
following:

MM The month of the year [01-12].

DD The day of the month [01-31].

hh The hour of the day [00-23].

mm The minute of the hour [00-59].

CC The first two digits of the year.

YY The second two digits of the year.

touch(1)

NAME

SYNOPSIS

DESCRIPTION

touch

User Commands 1555

SS The second of the minute [00-61].

Both CC and YY are optional. If neither is given, the current year
will be assumed. If YY is specified, but CC is not, CC will be
derived as follows:

If YY is: CC becomes:

69-99 19

00-38 20

39-68 ERROR

The resulting time will be affected by the value of the TZ
environment variable. If the resulting time value precedes the
Epoch, touch will exit immediately with an error status. The
range of valid times is the Epoch to January 18, 2038.

The range for SS is [00-61] rather than [00-59] because of leap
seconds. If SS is 60 or 61, and the resulting time, as affected by the
TZ environment variable, does not refer to a leap second, the
resulting time will be one or two seconds after a time where SS is
59. If SS is not given, it is assumed to be 0.

The following option is supported for the settime utility:

-f ref_file Uses the corresponding times of the file named by ref_file instead
of the current time.

The following operands are supported for the touch and settime utilities:

file A path name of a file whose times are to be modified.

date_time Uses the specified date_time instead of the current time. This
operand is a decimal number of the form:

MMDDhhmm[YY]where each two digits represent the following:

MM The month of the year [01-12].

DD The day of the month [01-31].

hh The hour of the day [00-23].

mm The minute of the hour [00-59].

YY The second two digits of the year.

touch(1)

settime

OPERANDS

1556 man pages section 1: User Commands • Last Revised 22 Jun 2001

YY is optional. If it is omitted, the current year will be
assumed. If YY is specified, the year will be derived as
follows:

YY Corresponding Year

69-99 1969-1999

00-38 2000-2038

39-68 ERROR

If no -r option is specified, no -t option is specified, at least two
operands are specified, and the first operand is an eight- or
ten-digit decimal integer, the first operand will be assumed to be a
date_time operand; otherwise, the first operand will be assumed to
be a file operand.

See largefile(5) for the description of the behavior of touch when encountering
files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of touch: LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone to be used for interpreting the time
option-argument or the date_time operand.

The following exit values are returned:

0 The touch utility executed successfully and all requested changes were
made.

>0 An error occurred. The touch utility returned the number of files for
which the times could not be successfully modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

time(2), attributes(5), environ(5), largefile(5)

Users familiar with the BSD environment will find that for the touch utility, the -f
option is accepted but ignored. The -f option is unnecessary because touch will
succeed for all files owned by the user regardless of the permissions on the files.

touch(1)

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1557

touch – change file access and modification times

/usr/ucb/touch [-acfm] file…

touch sets the access and modification times of each file to the current time. file is
created if it does not already exist.

-a Change the access time of file. Do not change the modification time
unless -m is also specified.

-c Do not create file if it does not exist.

-f Attempt to force the touch in spite of read and write permissions on file.

-m Change the modification time of file. Do not change the access time
unless -a is also specified.

See largefile(5) for the description of the behavior of touch when encountering
files greater than or equal to 2 Gbyte (231 bytes).

The following exit values are returned:

0 touch executed successfully and all requested changes were made.

>0 An error occurred. touch returns the number of files for which the times
could not be successfully modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

touch(1), attributes(5), largefile(5)

touch(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

EXIT STATUS

ATTRIBUTES

SEE ALSO

1558 man pages section 1: User Commands • Last Revised 26 Oct 1995

tplot, t300, t300s, t4014, t450, tek, ver – graphics filters for various plotters

/usr/bin/tplot [-T terminal]

tplot reads plotting instructions from the standard input and produces plotting
instructions suitable for a particular terminal on the standard output.

If no terminal is specified, the environment variable TERM is used. The default terminal
is tek.

Except for ver, the following terminal-types can be used with ‘lpr -g’ (see lpr) to
produce plotted output:

300 DASI 300 or GSI terminal (Diablo® mechanism).

300s | 300S DASI 300s terminal (Diablo mechanism).

450 DASI Hyterm 450 terminal (Diablo mechanism).

4014 | tek Tektronix 4014 and 4015 storage scope with Enhanced Graphics
Module. (Use 4013 for Tektronix 4014 or 4015 without the
Enhanced Graphics Module).

ver Versatec® D1200A printer-plotter. The output is scan-converted
and suitable input to ‘lpr -v’.

/usr/lib/t300

/usr/lib/t300s

/usr/lib/t4014

/usr/lib/t450

/usr/lib/tek

/usr/lib/vplot

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

lp(1), vi(1), attributes(5)

tplot(1)

NAME

SYNOPSIS

DESCRIPTION

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

User Commands 1559

tput – initialize a terminal or query terminfo database

tput [-T type] capname [parm…]

tput -S <<

tput uses the terminfo database to make the values of terminal-dependent
capabilities and information available to the shell (see sh(1)); to clear, initialize or reset
the terminal; or to return the long name of the requested terminal type. tput outputs
a string if the capability attribute (capname) is of type string, or an integer if the
attribute is of type integer. If the attribute is of type boolean, tput simply sets the exit
status (0 for TRUE if the terminal has the capability, 1 for FALSE if it does not), and
produces no output. Before using a value returned on standard output, the user
should test the exit status ($?, see sh(1)) to be sure it is 0. See the EXIT STATUS
section.

The following options are supported:

-Ttype Indicates the type of terminal. Normally this option is
unnecessary, because the default is taken from the environment
variable TERM. If -T is specified, then the shell variables LINES
and COLUMNS and the layer size will not be referenced.

-S Allows more than one capability per invocation of tput. The
capabilities must be passed to tput from the standard input
instead of from the command line (see the example in the
EXAMPLES section). Only one capname is allowed per line. The -S
option changes the meaning of the 0 and 1 boolean and string exit
statuses (see the EXIT STATUS section).

The following operands are supported:

capname Indicates the capability attribute from the terminfo database. See
terminfo(4) for a complete list of capabilities and the capname
associated with each.

The following strings will be supported as operands by the
implementation in the "C" locale:

clear Display the clear-screen sequence.

init If the terminfo database is present and an
entry for the user’s terminal exists (see -Ttype,
above), the following will occur:

1. if present, the terminal’s initialization
strings will be output (is1, is2, is3, if,
iprog),

2. any delays (for instance, newline) specified
in the entry will be set in the tty driver,

tput(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

1560 man pages section 1: User Commands • Last Revised 1 Feb 1995

3. tabs expansion will be turned on or off
according to the specification in the entry,
and

4. if tabs are not expanded, standard tabs will
be set (every 8 spaces). If an entry does not
contain the information needed for any of
the four above activities, that activity will
silently be skipped.

reset Instead of putting out initialization strings, the
terminal’s reset strings will be output if present
(rs1, rs2, rs3, rf). If the reset strings are not
present, but initialization strings are, the
initialization strings will be output. Otherwise,
reset acts identically to init.

longname If the terminfo database is present and an
entry for the user’s terminal exists (see -Ttype
above), then the long name of the terminal will
be put out. The long name is the last name in
the first line of the terminal’s description in the
terminfo database (see term(5)).

parm If the attribute is a string that takes parameters, the argument parm
will be instantiated into the string. An all numeric argument will
be passed to the attribute as a number.

EXAMPLE 1 Using the tput command.

This example initializes the terminal according to the type of terminal in the
environment variable TERM. This command should be included in everyone’s .profile
after the environment variable TERM has been exported, as illustrated on the
profile(4) manual page.

example% tput init

The next example resets an AT&T 5620 terminal, overriding the type of terminal in the
environment variable TERM:

example% tput -T5620 reset

The following example sends the sequence to move the cursor to row 0, column 0 (the
upper left corner of the screen, usually known as the "home" cursor position).

example% tput cup 0 0

The next example echos the clear-screen sequence for the current terminal.

example% tput clear

The next command prints the number of columns for the current terminal.

example% tput cols

The following command prints the number of columns for the 450 terminal.

tput(1)

EXAMPLES

User Commands 1561

EXAMPLE 1 Using the tput command. (Continued)

example% tput -T450 cols

The next example sets the shell variables bold, to begin stand-out mode sequence,
and offbold, to end standout mode sequence, for the current terminal. This might be
followed by a prompt:

echo "${bold}Please type in your name: ${offbold}\c"
example% bold=’tput smso’
example% offbold=’tput rmso’

This example sets the exit status to indicate if the current terminal is a hardcopy
terminal.

example% tput hc

This next example sends the sequence to move the cursor to row 23, column 4.

example% tput cup 23 4

The next command prints the long name from the terminfo database for the type of
terminal specified in the environment variable TERM.

example% tput longname

This last example shows tput processing several capabilities in one invocation. This
example clears the screen, moves the cursor to position 10, 10 and turns on bold (extra
bright) mode. The list is terminated by an exclamation mark (!) on a line by itself.

example% tput -S <<!
> clear
> cup 10 10
> bold
> !

See environ(5) for descriptions of the following environment variables that affect the
execution of tput: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TERM Determine the terminal type. If this variable is unset or null, and if the -T
option is not specified, an unspecified default terminal type will be used.

The following exit values are returned:

0

� If capname is of type boolean and -S is not specified, indicates TRUE.
� If capname is of type string and -S is not specified, indicates capname is

defined for this terminal type.
� If capname is of type boolean or string and -S is specified, indicates that

all lines were successful.
� capname is of type integer.
� The requested string was written successfully.

1

� If capname is of type boolean and -S is not specified, indicates FALSE.

tput(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

1562 man pages section 1: User Commands • Last Revised 1 Feb 1995

� If capname is of type string and -S is not specified, indicates that
capname is not defined for this terminal type.

2 Usage error.

3 No information is available about the specified terminal type.

4 The specified operand is invalid.

>4 An error occurred.

−1 capname is a numeric variable that is not specified in the terminfo
database; for instance, tput -T450 lines and tput -T2621 xmc.

/usr/include/curses.h curses(3CURSES) header

/usr/include/term.h terminfo header

/usr/lib/tabset/* tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and
tabs); for more information, see the "Tabs
and Initialization" section of terminfo(4)

/usr/share/lib/terminfo/?/* compiled terminal description database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

clear(1), sh(1), stty(1), tabs(1), curses(3CURSES), profile(4), terminfo(4),
attributes(5), environ(5), term(5)

tput(1)

FILES

ATTRIBUTES

SEE ALSO

User Commands 1563

tr – translate characters

/usr/bin/tr [-cs] string1 string2

/usr/bin/tr -s | -d [-c] string1

/usr/bin/tr -ds [-c] string1 string2

/usr/xpg4/bin/tr [-cs] string1 string2

/usr/xpg4/bin/tr -s | -d [-c] string1

/usr/bin/xpg4/tr -ds [-c] string1 string2

The tr utility copies the standard input to the standard output with substitution or
deletion of selected characters. The options specified and the string1 and string2
operands control translations that occur while copying characters and single-character
collating elements.

The following options are supported:

-c Complements the set of characters specified by string1.

-d Deletes all occurrences of input characters that are specified by string1.

-s Replaces instances of repeated characters with a single character.

When the -d option is not specified:

� Each input character found in the array specified by string1 is replaced by the
character in the same relative position in the array specified by string2. When the
array specified by string2 is shorter that the one specified by string1, the results are
unspecified.

� If the -c option is specified, the complements of the characters specified by string1
(the set of all characters in the current character set, as defined by the current
setting of LC_CTYPE, except for those actually specified in the string1 operand) are
placed in the array in ascending collation sequence, as defined by the current
setting of LC_COLLATE.

� Because the order in which characters specified by character class expressions or
equivalence class expressions is undefined, such expressions should only be used if
the intent is to map several characters into one. An exception is case conversion, as
described previously.

When the -d option is specified:

� Input characters found in the array specified by string1 will be deleted.

� When the -c option is specified with -d, all characters except those specified by
string1 will be deleted. The contents of string2 will be ignored, unless the -s option
is also specified.

� The same string cannot be used for both the -d and the -s option; when both
options are specified, both string1 (used for deletion) and string2 (used for
squeezing) are required.

tr(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1564 man pages section 1: User Commands • Last Revised 1 Jun 2001

When the -s option is specified, after any deletions or translations have taken place,
repeated sequences of the same character will be replaced by one occurrence of the
same character, if the character is found in the array specified by the last operand. If
the last operand contains a character class, such as the following example:

tr -s ’[:space:]’

the last operand’s array will contain all of the characters in that character class.
However, in a case conversion, as described previously, such as

tr -s ’[:upper:]’ ’[:lower:]’

the last operand’s array will contain only those characters defined as the second
characters in each of the toupper or tolower character pairs, as appropriate. (See
toupper(3C) and tolower(3C)).

An empty string used for string1 or string2 produces undefined results.

The following operands are supported:

string1

string2 Translation control strings. Each string represents a set of
characters to be converted into an array of characters used for the
translation.

The operands string1 and string2 (if specified) define two arrays of characters. The
constructs in the following list can be used to specify characters or single-character
collating elements. If any of the constructs result in multi-character collating elements,
tr will exclude, without a diagnostic, those multi-character elements from the
resulting array.

character Any character not described by one of the conventions below
represents itself.

\ octal Octal sequences can be used to represent characters with specific
coded values. An octal sequence consists of a backslash followed
by the longest sequence of one-, two-, or three-octal-digit
characters (01234567). The sequence causes the character whose
encoding is represented by the one-, two- or three-digit octal
integer to be placed into the array. Multi-byte characters require
multiple, concatenated escape sequences of this type, including the
leading \ for each byte.

\ character The backslash-escape sequences \a, \b, \f, \n, \r, \t, and \v are
supported. The results of using any other character, other than an
octal digit, following the backslash are unspecified.

tr(1)

OPERANDS

User Commands 1565

c-c

[c-c] Represents the range of collating elements between the range
endpoints, inclusive, as defined by the current setting of the
LC_COLLATE locale category. The starting endpoint must precede
the second endpoint in the current collation order. The characters
or collating elements in the range are placed in the array in
ascending collation sequence.

[:class:] Represents all characters belonging to the defined character class,
as defined by the current setting of the LC_CTYPE locale category.
The following character class names will be accepted when
specified in string1:

alnum blank digit lower punct upper
alpha cntrl graph print space xdigit

In addition, character class expressions of the form [:name:] are
recognized in those locales where the name keyword has been
given a charclass definition in the LC_CTYPE category.

Note: /usr/bin/tr supports character class expressions only in
singlebyte locales. Use /usr/xpg4/bin/tr to support these
expressions in any locale.

When both the -d and -s options are specified, any of the
character class names will be accepted in string2. Otherwise, only
character class names lower or upper are valid in string2 and
then only if the corresponding character class upper and lower,
respectively, is specified in the same relative position in string1.
Such a specification is interpreted as a request for case conversion.
When [:lower:] appears in string1 and [:upper:] appears in
string2, the arrays will contain the characters from the toupper
mapping in the LC_CTYPE category of the current locale. When
[:upper:] appears in string1 and [:lower:] appears in string2,
the arrays will contain the characters from the tolower mapping
in the LC_CTYPE category of the current locale. The first character
from each mapping pair will be in the array for string1 and the
second character from each mapping pair will be in the array for
string2 in the same relative position.

Except for case conversion, the characters specified by a character
class expression are placed in the array in an unspecified order.

If the name specified for class does not define a valid character
class in the current locale, the behavior is undefined.

[=equiv=] Represents all characters or collating elements belonging to the
same equivalence class as equiv, as defined by the current setting of
the LC_COLLATE locale category. An equivalence class expression

tr(1)

/usr/xpg4/bin/tr

/usr/bin/tr

1566 man pages section 1: User Commands • Last Revised 1 Jun 2001

is allowed only in string1, or in string2 when it is being used by the
combined -d and -s options. The characters belonging to the
equivalence class are placed in the array in an unspecified order.

[x*n] Represents n repeated occurrences of the character x. Because this
expression is used to map multiple characters to one, it is only
valid when it occurs in string2. If n is omitted or is 0, it is
interpreted as large enough to extend the string2-based sequence
to the length of the string1-based sequence. If n has a leading 0, it
is interpreted as an octal value. Otherwise, it is interpreted as a
decimal value.

See largefile(5) for the description of the behavior of tr when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLE 1 Creating a list of words

The following example creates a list of all words in file1, one per line in file2, where a
word is taken to be a maximal string of letters.

tr −cs "[:alpha:]" "[\n*]" <file1 >file2

EXAMPLE 2 Translating characters

This example translates all lower-case characters in file1 to upper-case and writes
the results to standard output.

tr "[:lower:]" "[:upper:]" <file1

Notice that the caveat expressed in the corresponding example in XPG3 is no longer in
effect. This case conversion is now a special case that employs the tolower and
toupper classifications, ensuring that proper mapping is accomplished (when the
locale is correctly defined).

EXAMPLE 3 Identifying equivalent characters

This example uses an equivalence class to identify accented variants of the base
character e in file1, which are stripped of diacritical marks and written to file2.

tr "[=e=]" e <file1 >file2

See environ(5) for descriptions of the following environment variables that affect the
execution of tr: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input was processed successfully.

>0 An error occurred.

tr(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 1567

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Not enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

ed(1), sed(1), sh(1), tolower(3C), toupper(3C), ascii(5), attributes(5),
environ(5), largefile(5), XPG4(5)

Unlike some previous versions, /usr/xpg4/bin/tr correctly processes NUL
characters in its input stream. NUL characters can be stripped by using tr -d
’\000’.

tr(1)

ATTRIBUTES

/usr/bin/tr

/usr/xpg4/bin/tr

SEE ALSO

NOTES

1568 man pages section 1: User Commands • Last Revised 1 Jun 2001

tr – translate characters

/usr/ucb/tr [-cds] [string1 [string2]]

The tr utility copies the standard input to the standard output with substitution or
deletion of selected characters. The arguments string1 and string2 are considered sets
of characters. Any input character found in string1 is mapped into the character in the
corresponding position within string2. When string2 is short, it is padded to the length
of string1 by duplicating its last character.

In either string the notation:

a−b

denotes a range of characters from a to b in increasing ASCII order. The character \ ,
followed by 1, 2 or 3 octal digits stands for the character whose ASCII code is given by
those digits. As with the shell, the escape character \ , followed by any other
character, escapes any special meaning for that character.

Any combination of the options -c, -d, or -s may be used:

-c Complement the set of characters in string1 with respect to the universe of
characters whose ASCII codes are 01 through 0377 octal.

-d Delete all input characters in string1.

-s Squeeze all strings of repeated output characters that are in string2 to single
characters.

EXAMPLE 1 Creating a list of all the words in a filename

The following example creates a list of all the words in filename1, one per line, in
filename2, where a word is taken to be a maximal string of alphabetics. The second
string is quoted to protect ‘ \ ’ from the shell. 012 is the ASCII code for NEWLINE.

example% tr -cs A−Za−z ’\012’ < filename1> filename2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

ed(1), ascii(5), attributes(5)

Will not handle ASCII NUL in string1 or string2. tr always deletes NUL from input.

tr(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1569

trap, onintr – shell built-in functions to respond to (hardware) signals

trap [argument n [n2…]]

onintr [-| label]

*trap [arg sig [sig2…]]

The trap command argument is to be read and executed when the shell receives
numeric or symbolic signal(s) (n). (Note: argument is scanned once when the trap is set
and once when the trap is taken.) Trap commands are executed in order of signal
number or corresponding symbolic names. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is ineffective. An attempt to trap on signal 11
(memory fault) produces an error. If argument is absent all trap(s) n are reset to their
original values. If argument is the null string this signal is ignored by the shell and by
the commands it invokes. If n is 0 the command argument is executed on exit from the
shell. The trap command with no arguments prints a list of commands associated
with each signal number.

onintr controls the action of the shell on interrupts. With no arguments, onintr
restores the default action of the shell on interrupts. (The shell terminates shell scripts
and returns to the terminal command input level). With the − argument, the shell
ignores all interrupts. With a label argument, the shell executes a goto label when an
interrupt is received or a child process terminates because it was interrupted.

trap uses arg as a command to be read and executed when the shell receives signal(s)
sig. (Note that arg is scanned once when the trap is set and once when the trap is
taken.) Each sig can be given as a number or as the name of the signal. trap
commands are executed in order of signal number. Any attempt to set a trap on a
signal that was ignored on entry to the current shell is ineffective. If arg is omitted or is
−, then the trap(s) for each sig are reset to their original values. If arg is the null (the
empty string, e.g., "") string then this signal is ignored by the shell and by the
commands it invokes. If sig is ERR then arg will be executed whenever a command has
a non-zero exit status. If sig is DEBUG then arg will be executed after each command. If
sig is 0 or EXIT for a trap set outside any function then the command arg is executed
on exit from the shell. The trap command with no arguments prints a list of
commands associated with each signal number.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

trap(1)

NAME

sh

csh

ksh

sh

csh

ksh

1570 man pages section 1: User Commands • Last Revised 23 Oct 1994

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), exit(1), ksh(1), sh(1), attributes(5)

trap(1)

ATTRIBUTES

SEE ALSO

User Commands 1571

troff – typeset or format documents

troff [-a] [-f] [-Fdir] [-i] [-mname] [-nN] [-olist] [-raN] [-sN]
[-Tdest] [-uN] [-z] [filename…]

troff formats text in the filenames for typesetting or laser printing. Input to troff is
expected to consist of text interspersed with formatting requests and macros. If no
filename argument is present, troff reads standard input. A minus sign (−) as a
filename indicates that standard input should be read at that point in the list of input
files.

The output of troff is usually piped through dpost(1) to create a printable
postscript file (see EXAMPLES).

The following options are supported. They may appear in any order, but all must
appear before the first filename.

-a Send an ASCII approximation of formatted output to standard
output. (Note: a rough ASCII version can also be printed out on
ordinary terminals with an old and rarely used command,
/usr/bin/ta.)

-f Do not print a trailer after the final page of output or cause the
postprocessor to relinquish control of the device.

-Fdir Search directory dir for font width or terminal tables instead of the
system default directory.

-i Read standard input after all input files are exhausted.

-mname Prepend the macro file /usr/share/lib/tmac/name to the
input filenames. Note: most references to macro packages include
the leading m as part of the name; for example, the man(5) macros
reside in /usr/share/lib/tmac/an. The macro directory can
be changed by setting the TROFFMACS environment variable to a
specific path. Be certain to include the trailing ’ / ’ (slash) at the
end of the path.

-nN Number the first generated page N.

-olist Print only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range N−M means
pages N through M; an initial −N means from the beginning to
page N; and a final N− means from N to the end.

-q Quiet mode in nroff; ignored in troff.

-raN Set register a (one-character names only) to N.

-sN Stop the phototypesetter every N pages. On some devices, troff
produces a trailer so you can change cassettes; resume by pressing
the typesetter’s start button.

troff(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1572 man pages section 1: User Commands • Last Revised 22 Jul 1998

-Tdest Prepare output for typesetter dest. The following values can be
supplied for dest:

post A PostScript printer; this is the default value. The
output of the -T option must go through dpost(1)
before it is sent to a PostScript printer to obtain the
proper output.

aps Autologic APS-5.

-uN Set the emboldening factor for the font mounted in position 3 to N.
If N is missing, then set the emboldening factor to 0.

-z Suppress formatted output. Only diagnostic messages and
messages output using the .tm request are output.

The following operand is supported:

filename The file containing text to be processed by troff.

EXAMPLE 1 Using troff

The following example shows how to print an input text file mytext, coded with
formatting requests and macros. The input file contains equations and tables and must
go through the tbl(1) and eqn(1) preprocessors before it is formatted by troff with
ms macros, processed by dpost(1), and printed by lp(1):

tbl mytext | eqn | troff -ms | dpost | lp

/tmp/trtmp temporary file

/usr/share/lib/tmac/* standard macro files

/usr/lib/font/* font width tables for alternate mounted
troff fonts

/usr/share/lib/nterm/* terminal driving tables for nroff

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

checknr(1), col(1), dpost(1), eqn(1), lp(1), man(1), nroff(1), tbl(1),
attributes(5), man(5), me(5), ms(5)

troff is not 8-bit clean because it is by design based on 7-bit ASCII.

troff(1)

OPERANDS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1573

Previous documentation incorrectly described the numeric register yr as being the
"Last two digits of current year". yr is in actuality the number of years since 1900. To
correctly obtain the last two digits of the current year through the year 2099, the
definition given below of string register yy may be included in a document and
subsequently used to display a two-digit year. Note that any other available one- or
two-character register name may be substituted for yy.

.\" definition of new string register yy--last two digits of year

.\" use yr (# of years since 1900) if it is < 100

.ie \n(yr<100 .ds yy \n(yr

.el \{ .\" else, subtract 100 from yr, store in ny

.nr ny \n(yr-100

.ie \n(ny>9 \{ .\" use ny if it is two digits

.ds yy \n(ny

.\" remove temporary number register ny

.rr ny \}

.el \{.ds yy 0

.\" if ny is one digit, append it to 0

.as yy \n(ny

.rr ny \} \}

troff(1)

1574 man pages section 1: User Commands • Last Revised 22 Jul 1998

true, false – provide truth values

true

false

true does nothing, successfully. false does nothing, unsuccessfully. They are
typically used in a shell script sh as:

while true
do

command
done

which executes command forever.

true has exit status 0.

false always will exit with a non-zero value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sh(1), attributes(5)

true(1)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1575

truss – trace system calls and signals

truss [-fcaeildD] [- [tTvx] [!] syscall ,…] [- [sS] [!] signal ,…] [-
[mM] [!] fault ,…] [- [rw] [!] fd ,…] [- [uU] [!] lib ,… : [:] [!]
func ,…] [-o outfile]command | -p pid…

The truss utility executes the specified command and produces a trace of the system
calls it performs, the signals it receives, and the machine faults it incurs. Each line of
the trace output reports either the fault or signal name or the system call name with its
arguments and return value(s). System call arguments are displayed symbolically
when possible using defines from relevant system headers; for any path name pointer
argument, the pointed-to string is displayed. Error returns are reported using the error
code names described in intro(3).

Optionally (see the -u option), truss will also produce an entry/exit trace of
user-level function calls executed by the traced process, indented to indicate nesting.

The following options are recognized. For those options that take a list argument, the
name all can be used as a shorthand to specify all possible members of the list. If the
list begins with a !, the meaning of the option is negated (for example, exclude rather
than trace). Multiple occurrences of the same option may be specified. For the same
name in a list, subsequent options (those to the right) override previous ones (those to
the left).

-p
Interprets the command arguments to truss as a list of process-ids for existing
processes (see ps(1)) rather than as a command to be executed. truss takes control
of each process and begins tracing it provided that the userid and groupid of the
process match those of the user or that the user is a privileged user. Processes may
also be specified by their names in the /proc directory, for example,
/proc/12345.

-f
Follows all children created by fork() or vfork() and includes their signals,
faults, and system calls in the trace output. Normally, only the first-level command
or process is traced. When -f is specified, the process-id is included with each line
of trace output to indicate which process executed the system call or received the
signal.

-c
Counts traced system calls, faults, and signals rather than displaying the trace
line-by-line. A summary report is produced after the traced command terminates or
when truss is interrupted. If -f is also specified, the counts include all traced
system calls, faults, and signals for child processes.

-a
Shows the argument strings that are passed in each exec() system call.

-e
Shows the environment strings that are passed in each exec() system call.

truss(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1576 man pages section 1: User Commands • Last Revised 15 Jul 1998

-i
Do not display interruptible sleeping system calls. Certain system calls, such as
open() and read() on terminal devices or pipes, can sleep for indefinite periods
and are interruptible. Normally, truss reports such sleeping system calls if they
remain asleep for more than one second. The system call is reported again a second
time when it completes. The -i option causes such system calls to be reported only
once, when they complete.

-l
Includes the id of the responsible lightweight process (LWP) with each line of trace
output. If -f is also specified, both the process-id and the LWP-id are included.

-d
Includes a time stamp on each line of trace output. The time stamp appears as a
field containing seconds . fraction at the start of the line. This represents a time in
seconds relative to the beginning of the trace. The first line of the trace output will
show the base time from which the individual time stamps are measured, both as
seconds since the epoch (see time(2)) and as a date string (see ctime(3C) and
date(1)). The times that are reported are the times that the event in question
occurred. For all system calls, the event is the completion of the system call, not the
start of the system call.

-D
Includes a time delta on each line of trace output. The value appears as a field
containing seconds . fraction and represents the elapsed time for the LWP that
incurred the event since the last reported event incurred by that LWP. Specifically,
for system calls, this is not the time spent within the system call.

-t [!]syscall, . . .
System calls to trace or exclude. Those system calls specified in the
comma-separated list are traced. If the list begins with a !, the specified system
calls are excluded from the trace output. Default is -tall.

-T [!]syscall, . . .
System calls that stop the process. The specified system calls are added to the set
specified by -t. If one of the specified system calls is encountered, truss leaves
the process stopped and abandoned. That is, truss releases the process and exits
but leaves the process in the stopped state at completion of the system call in
question. A debugger or other process inspection tool (see proc(1)) can then be
applied to the stopped process. truss can be reapplied to the stopped process with
the same or different options to continue tracing. Default is -T!all.

A process left stopped in this manner cannot be restarted by the application of
kill -CONT because it is stopped on an event of interest via /proc, not by the
default action of a stopping signal (see signal(3HEAD)). The prun(1) command
described in proc(1) can be used to set the stopped process running again.

-v [!]syscall, . . .
Verbose. Displays the contents of any structures passed by address to the specified
system calls (if traced by -t). Input values as well as values returned by the

truss(1)

User Commands 1577

operating system are shown. For any field used as both input and output, only the
output value is shown. Default is -v!all.

-x [!]syscall, . . .
Displays the arguments to the specified system calls (if traced by -t) in raw form,
usually hexadecimal, rather than symbolically. This is for unredeemed hackers who
must see the raw bits to be happy. Default is -x!all.

-s [!]signal, . . .
Signals to trace or exclude. Those signals specified in the comma-separated list are
traced. The trace output reports the receipt of each specified signal, even if the
signal is being ignored (not blocked). (Blocked signals are not received until they
are unblocked.) Signals may be specified by name or number (see
<sys/signal.h>). If the list begins with a !, the specified signals are excluded
from the trace output. Default is -sall.

-S [!]signal, . . .
Signals that stop the process. The specified signals are added to the set specified by
-s. If one of the specified signals is received, truss leaves the process stopped and
abandoned (see the -T option). Default is -S!all.

-m [!]fault, . . .
Machine faults to trace or exclude. Those faults specified in the comma-separated
list are traced. Faults may be specified by name or number (see <sys/fault.h>).
If the list begins with a !, the specified faults are excluded from the trace output.
Default is -mall -m!fltpage.

-M [!]fault, . . .
Machine faults that stop the process. The specified faults are added to the set
specified by -m. If one of the specified faults is incurred, truss leaves the process
stopped and abandoned (see the -T option). Default is -M!all.

-r [!]fd, . . .
Shows the full contents of the I/O buffer for each read() on any of the specified
file descriptors. The output is formatted 32 bytes per line and shows each byte as an
ASCII character (preceded by one blank) or as a 2-character C language escape
sequence for control characters such as horizontal tab (\ t) and newline (\ n). If
ASCII interpretation is not possible, the byte is shown in 2-character hexadecimal
representation. (The first 12 bytes of the I/O buffer for each traced read() are
shown even in the absence of -r.) Default is -r!all.

-w [!]fd, . . .
Shows the contents of the I/O buffer for each write() on any of the specified file
descriptors (see the -r option). Default is -w!all.

-u [!]lib, . . . :[:][!]func, . . .
User-level function call tracing. lib, . . . is a comma-separated list of dynamic library
names, excluding the ‘‘.so.n’’ suffix. func, . . . is a comma-separated list of function
names. In both cases the names can include name-matching metacharacters *,?,[]
with the same meanings as those of sh(1) but as applied to the library/function
name spaces, not to files. An empty library or function list defaults to *, trace all
libraries or functions in a library. A leading ! on either list specifies an exclusion

truss(1)

1578 man pages section 1: User Commands • Last Revised 15 Jul 1998

list, names of libraries or functions not to be traced. Excluding a library excludes all
functions in that library; any function list following a library exclusion list is
ignored.

A single : separating the library list from the function list means to trace calls into
the libraries from outside the libraries, but omit calls made to functions in a library
from other functions in the same library. A double : : means to trace all calls,
regardless of origin.

Library patterns do not match either the executable file or the dynamic linker
unless there is an exact match (l* will not match ld.so.1). To trace functions in
either of these objects, the names must be specified exactly, as in: truss -u a.out
-u ld . . . a.out is the literal name to be used for this purpose; it does not stand
for the name of the executable file. Tracing a.out function calls implies all calls
(default is : :).

Multiple -u options may be specified and they are honored left-to-right. If the
process is linked with -lthread, the id of the thread that performed the function
call is included in the trace output for the call. truss searches the dynamic symbol
table in each library to find function names and will also search the standard
symbol table if it has not been stripped.

-U [!]lib, . . . :[:][!]func, . . .
User-level function calls that stop the process. The specified functions are added to
the set specified by -u. If one of the specified functions is called, truss leaves the
process stopped and abandoned (see the -T option).

-o outfile
File to be used for the trace output. By default, the output goes to standard error.

See man pages section 2: System Calls for system call names accepted by the -t, -T, -v,
and -x options. System call numbers are also accepted.

If truss is used to initiate and trace a specified command and if the -o option is used
or if standard error is redirected to a non-terminal file, then truss runs with hangup,
interrupt, and quit signals ignored. This facilitates tracing of interactive programs that
catch interrupt and quit signals from the terminal.

If the trace output remains directed to the terminal, or if existing processes are traced
(the -p option), then truss responds to hangup, interrupt, and quit signals by
releasing all traced processes and exiting. This enables the user to terminate excessive
trace output and to release previously-existing processes. Released processes continue
normally, as though they had never been touched.

EXAMPLE 1 Tracing a command

This example produces a trace of the find(1) command on the terminal:

example$ truss find . -print >find.out

truss(1)

EXAMPLES

User Commands 1579

EXAMPLE 1 Tracing a command (Continued)

EXAMPLE 2 Tracing common system calls

To see only a trace of the open, close, read, and write system calls:

example$ truss -t open,close,read,write find . -print >find.out

EXAMPLE 3 Tracing a shell script

This produces a trace of the spell(1) command on the file truss.out:

example$ truss -f -o truss.out spell document

spell is a shell script, so the -f flag is needed to trace not only the shell but also the
processes created by the shell. (The spell script runs a pipeline of eight processes.)

EXAMPLE 4 Abbreviating output

A particularly boring example is:

example$ truss nroff -mm document >nroff.out

because 97% of the output reports lseek(), read(), and write() system calls. To
abbreviate it:

example$ truss -t ! lseek,read,write nroff -mm document >nroff.out

EXAMPLE 5 Tracing library calls from outside the C library

This example traces all user-level calls made to any function in the C library from
outside the C library:

example$ truss -u libc . . .

EXAMPLE 6 Tracing library calls from within the C library

This example includes calls made to functions in the C library from within the C
library itself:

example$ truss -u libc : : . . .

EXAMPLE 7 Tracing library calls other than the C library

This example traces all user-level calls made to any library other than the C library:

example$ truss -u ’*’ -u !libc . . .

EXAMPLE 8 Tracing printf and scanf function calls

This example traces all user-level calls to functions in the printf and scanf family
contained in the C library:

truss(1)

1580 man pages section 1: User Commands • Last Revised 15 Jul 1998

EXAMPLE 8 Tracing printf and scanf function calls (Continued)

example$ truss -u ’libc : *printf,*scanf’ . . .

EXAMPLE 9 Tracing any user-level function call

This example traces every user-level function call from anywhere to anywhere:

example$ truss -u a.out -u ld : : -u : : . . .

EXAMPLE 10 Tracing a system call verbosely

This example verbosely traces the system call activity of process #1, init(1M) (if you
are a privileged user):

example# truss -p -v all 1

Interrupting truss returns init to normal operation.

/proc/* process files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo (32-bit)

SUNWtoox (64-bit)

date(1), find(1), proc(1), ps(1), sh(1), spell(1), init (1M), intro(3), exec(2),
fork(2), lseek(2), open(2), read(2), time(2), vfork(2), write(2), ctime(3C),
threads(3THR), proc(4), attributes(5), signal(3HEAD)

man pages section 2: System Calls

Some of the system calls described in man pages section 2: System Calls differ from the
actual operating system interfaces. Do not be surprised by minor deviations of the
trace output from the descriptions in that document.

Every machine fault (except a page fault) results in the posting of a signal to the LWP
that incurred the fault. A report of a received signal will immediately follow each
report of a machine fault (except a page fault) unless that signal is being blocked.

The operating system enforces certain security restrictions on the tracing of processes.
In particular, any command whose object file (a.out) cannot be read by a user cannot
be traced by that user; set-uid and set-gid commands can be traced only by a
privileged user. Unless it is run by a privileged user, truss loses control of any
process that performs an exec() of a set-id or unreadable object file; such processes
continue normally, though independently of truss, from the point of the exec().

truss(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1581

To avoid collisions with other controlling processes, truss will not trace a process
that it detects is being controlled by another process via the /proc interface. This
allows truss to be applied to proc(4)-based debuggers as well as to another instance
of itself.

The trace output contains tab characters under the assumption that standard tab stops
are set (every eight positions).

The trace output for multiple processes or for a multithreaded process (one that
contains more than one LWP) is not produced in strict time order. For example, a
read() on a pipe may be reported before the corresponding write(). For any one
LWP (a traditional process contains only one), the output is strictly time-ordered.

When tracing more than one process, truss runs as one controlling process for each
process being traced. For the example of the spell command shown above, spell
itself uses 9 process slots, one for the shell and 8 for the 8-member pipeline, while
truss adds another 9 processes, for a total of 18.

Not all possible structures passed in all possible system calls are displayed under the
-v option.

truss(1)

1582 man pages section 1: User Commands • Last Revised 15 Jul 1998

tset, reset – establish or restore terminal characteristics

tset [-InQrs] [-ec] [-kc] [-m [port-ID [baudrate] : type…]] [type]

reset [-] [-ec] [-I] [-kc] [-n] [-Q] [-r] [-s] [-m [indent] [test
baudrate] : type…] [type]

The tset utility sets up your terminal, typically when you first log in. It does terminal
dependent processing such as setting erase and kill characters, setting or resetting
delays, sending any sequences needed to properly initialized the terminal, and the
like. tset first determines the type of terminal involved, and then does necessary
initializations and mode settings. If a port is not wired permanently to a specific
terminal (not hardwired) it is given an appropriate generic identifier such as dialup.

reset clears the terminal settings by turning off CBREAK and RAW modes, output
delays and parity checking, turns on NEWLINE translation, echo and TAB expansion,
and restores undefined special characters to their default state. It then sets the modes
as usual, based on the terminal type (which will probably override some of the above).
See stty(1) for more information. All arguments to tset may be used with reset.
reset also uses rs= and rf= to reset the initialization string and file. This is useful
after a program dies and leaves the terminal in a funny state. Often in this situation,
characters will not echo as you type them. You may have to type LINEFEED reset
LINEFEED since RETURN may not work.

When no arguments are specified, tset reads the terminal type from the TERM
environment variable and re-initializes the terminal, and performs initialization of
mode, environment and other options at login time to determine the terminal type and
set up terminal modes.

When used in a startup script (.profile for sh(1) users or .login for csh(1) users)
it is desirable to give information about the type of terminal you will usually use on
ports that are not hardwired. Any of the alternate generic names given in the file
/etc/termcap are possible identifiers. Refer to the -m option below for more
information. If no mapping applies and a final type option, not preceded by a -m, is
given on the command line then that type is used.

It is usually desirable to return the terminal type, as finally determined by tset, and
information about the terminal’s capabilities, to a shell’s environment. This can be
done using the −, -s, or -S options.

For the Bourne shell, put this command in your .profile file:

eval ‘tset -s options...‘

or using the C shell, put these commands in your .login file:

set noglob

eval ‘tset -s options...‘unset noglob

With the C shell, it is also convenient to make an alias in your .cshrc file:

alias ts ’eval ‘tset -s \!*‘’

tset(1B)

NAME

SYNOPSIS

DESCRIPTION

User Commands 1583

This also allows the command:

ts 2621

to be invoked at any time to set the terminal and environment. It is not possible to get
this aliasing effect with a Bourne shell script, because shell scripts cannot set the
environment of their parent. If a process could set its parent’s environment, none of
this nonsense would be necessary in the first place.

Once the terminal type is known, tset sets the terminal driver mode. This normally
involves sending an initialization sequence to the terminal, setting the single character
erase (and optionally the line-kill (full line erase)) characters, and setting special
character delays. TAB and NEWLINE expansion are turned off during transmission of
the terminal initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the
erase character is ‘#’, the erase character is changed as if -e had been used.

− The name of the terminal finally decided upon is output on the
standard output. This is intended to be captured by the shell and
placed in the TERM environment variable.

-ec Set the erase character to be the named character c on all terminals.
Default is the BACKSPACE key on the keyboard, usually ^H
(CTRL-H). The character c can either be typed directly, or entered
using the circumflex-character notation used here.

-ic Set the interrupt character to be the named character c on all
terminals. Default is ^C (CTRL-C). The character c can either be
typed directly, or entered using the circumflex-character notation
used here.

-I Suppress transmitting terminal-initialization strings.

-kc Set the line kill character to be the named character c on all
terminals. Default is ^U (CTRL-U). The kill character is left alone if
-k is not specified. Control characters can be specified by prefixing
the alphabetical character with a circumflex (as in CTRL-U) instead
of entering the actual control key itself. This allows you to specify
control keys that are currently assigned.

-n Specify that the new tty driver modes should be initialized for this
terminal. Probably useless since stty new is the default.

-Q Suppress printing the ‘Erase set to’ and ‘Kill set to’
messages.

-r In addition to other actions, reports the terminal type.

-s Output commands to set and export TERM. This can be used with

set noglob
eval ‘tset -s . . .‘
unset noglob

tset(1B)

OPTIONS

1584 man pages section 1: User Commands • Last Revised 15 Feb 1995

to bring the terminal information into the environment. Doing so
makes programs such as vi(1) start up faster. If the SHELL
environment variable ends with csh, C shell commands are
output, otherwise Bourne shell commands are output.

-m [port-ID [baudrate] : type] . . .
Specify (map) a terminal type when connected to a generic port (such as dialup or
plugboard) identified by port-ID. The baudrate argument can be used to check the
baudrate of the port and set the terminal type accordingly. The target rate is
prefixed by any combination of the following operators to specify the conditions
under which the mapping is made:

> Greater than

@ Equals or ‘‘at’’

< Less than

! It is not the case that (negates the above operators)

? Prompt for the terminal type. If no response is given, then type is
selected by default.

In the following example, the terminal type is set to adm3a if the port is a dialup with
a speed of greater than 300 or to dw2 if the port is a dialup at 300 baud or less. In the
third case, the question mark preceding the terminal type indicates that the user is to
verify the type desired. A NULL response indicates that the named type is correct.
Otherwise, the user’s response is taken to be the type desired.

tset -m ’dialup>300:adm3a’ -m ’dialup:dw2’ -m ’plugboard:?adm3a’

To prevent interpretation as metacharacters, the entire argument to -m should be
enclosed in single quotes. When using the C shell, exclamation points should be
preceded by a backslash (\).

These examples all use the ‘−’ option. A typical use of tset in a .profile or .login
will also use the -e and -k options, and often the -n or -Q options as well. These
options have been omitted here to keep the examples short.

EXAMPLE 1 Selecting a terminal

To select a 2621, you might put the following sequence of commands in your .login
file (or .profile for Bourne shell users).

set noglob
eval ‘tset -s 2621‘
unset noglob

If you want to make the selection based only on the baud rate, you might use the
following:

set noglob
eval ‘tset -s -m ’>1200:wy’ 2621‘
unset noglob

tset(1B)

EXAMPLES

User Commands 1585

EXAMPLE 1 Selecting a terminal (Continued)

EXAMPLE 2 Selecting terminals according to speed or baud rate

If you have a switch which connects to various ports (making it impractical to identify
which port you may be connected to), and use various terminals from time to time,
you can select from among those terminals according to the speed or baud rate. In the
example below, tset will prompt you for a terminal type if the baud rate is greater
than 1200 (say, 9600 for a terminal connected by an RS-232 line), and use a Wyse® 50
by default. If the baud rate is less than or equal to 1200, it will select a 2621. Note the
placement of the question mark, and the quotes to protect the > and ? from
interpretation by the shell.

set noglob
eval ‘tset -s -m ’switch>1200:?wy’ -m ’switch<=1200:2621’‘
unset noglob

EXAMPLE 3 Selecting the terminal used most often

The following entry is appropriate if you always dial up, always at the same baud
rate, on many different kinds of terminals, and the terminal you use most often is an
adm3a.

set noglob
eval ‘tset -s ?adm3a‘
unset noglob

EXAMPLE 4 Selecting a terminal with specific settings

The following example quietly sets the erase character to BACKSPACE, and kill to
CTRL-U. If the port is switched, it selects a Concept™ 100 for speeds less than or equal
to 1200, and asks for the terminal type otherwise (the default in this case is a Wyse 50).
If the port is a direct dialup, it selects Concept 100 as the terminal type. If logging in
over the ARPANET, the terminal type selected is a Datamedia® 2500 terminal or
emulator. Note the backslash escaping the NEWLINE at the end of the first line in the
example.

set noglob
eval ‘tset -e -k^U -Q -s -m ’switch<=1200:concept100’ -m\

’switch:?wy’ -m dialup:concept100 -m arpanet:dm2500‘
unset noglob

tset(1B)

1586 man pages section 1: User Commands • Last Revised 15 Feb 1995

EXAMPLE 4 Selecting a terminal with specific settings (Continued)

.login

.profile

/etc/termcap

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

csh(1), sh(1), stty(1), vi(1), attributes(5), environ(5)

The tset command is one of the first commands a user must master when getting
started on a UNIX system. Unfortunately, it is one of the most complex, largely
because of the extra effort the user must go through to get the environment of the
login shell set. Something needs to be done to make all this simpler, either the login
program should do this stuff, or a default shell alias should be made, or a way to set
the environment of the parent should exist.

This program cannot intuit personal choices for erase, interrupt and line kill
characters, so it leaves these set to the local system standards.

It could well be argued that the shell should be responsible for ensuring that the
terminal remains in a sane state; this would eliminate the need for the reset
program.

tset(1B)

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1587

tsort – topological sort

/usr/ccs/bin/tsort [file]

The tsort command produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input file.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of
different items indicate ordering. Pairs of identical items indicate presence, but not
ordering.

The following operand is supported:

file A path name of a text file to order. If no file operand is given, the
standard input is used.

EXAMPLE 1 An example of the tsort command.

The command:

tsort <<EOF
a b c c d e
g g
f g e f
EOF

produces the output:

a
b
c
d
e
f
g

See environ(5) for descriptions of the following environment variables that affect the
execution of tsort: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

lorder(1), attributes(5), environ(5)

tsort(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1588 man pages section 1: User Commands • Last Revised 1 Feb 1995

Odd data: there are an odd number of fields in the input file.

tsort(1)

DIAGNOSTICS

User Commands 1589

tty – return user’s terminal name

tty [-l] [-s]

The tty utility writes to the standard output the name of the terminal that is open as
standard input. The name that is used is equivalent to the string that would be
returned by the ttyname(3C) function.

The following options are supported:

-l Prints the synchronous line number to which the user’s terminal is
connected, if it is on an active synchronous line.

-s Inhibits printing of the terminal path name, allowing one to test just the
exit status.

See environ(5) for descriptions of the following environment variables that affect the
execution of tty: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Standard input is a terminal.

1 Standard input is not a terminal.

>1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

isatty(3C), ttyname(3C), attributes(5), environ(5)

not on an active synchronous line
The standard input is not a synchronous terminal and -l is specified.

not a tty
The standard input is not a terminal and -s is not specified.

The -s option is useful only if the exit status is wanted. It does not rely on the ability
to form a valid path name. Portable applications should use test -t.

tty(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1590 man pages section 1: User Commands • Last Revised 1 Feb 1995

type – write a description of command type

type name…

The type utility indicates how each name operand would be interpreted if used as a
command. type displays information about each operand identifying the operand as
a shell built-in, function, alias, hashed command, or keyword, and where applicable,
may display the operand’s path name.

There is also a shell built-in version of type that is similar to the type utility.

The following operand is supported:

name A name to be interpreted.

See environ(5) for descriptions of the following environment variables that affect the
execution of type: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the location of name.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

typeset(1), attributes(5), environ(5)

type(1)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1591

typeset, whence – shell built-in functions to set/get attributes and values for shell
variables and functions

typeset [± HLRZfilrtux [n]] [name [= value]]…

whence [-pv] name…

typeset sets attributes and values for shell variables and functions. When typeset
is invoked inside a function, a new instance of the variables name is created. The
variables value and type are restored when the function completes. The following list
of attributes may be specified:

-H This flag provides UNIX to host-name file mapping on non-UNIX
machines.

-L Left justify and remove leading blanks from value. If n is non-zero it defines
the width of the field; otherwise, it is determined by the width of the value
of first assignment. When the variable is assigned to, it is filled on the right
with blanks or truncated, if necessary, to fit into the field. Leading zeros are
removed if the -Z flag is also set. The -R flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it defines the
width of the field, otherwise it is determined by the width of the value of
first assignment. The field is left filled with blanks or truncated from the
end if the variable is reassigned. The -L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank character is a
digit and the -L flag has not been set. If n is non-zero it defines the width
of the field; otherwise, it is determined by the width of the value of first
assignment.

-f The names refer to function names rather than variable names. No
assignments can be made and the only other valid flags are -t, -u and -x.
The flag -t turns on execution tracing for this function. The flag -u causes
this function to be marked undefined. The FPATH variable will be searched
to find the function definition when the function is referenced. The flag -x
allows the function definition to remain in effect across shell procedures
invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is non-zero it
defines the output arithmetic base; otherwise, the first assignment
determines the output base.

-l All upper-case characters are converted to lower-case. The upper-case flag,
-u is turned off.

-r The given names are marked readonly and these names cannot be
changed by subsequent assignment.

-t Tags the variables. Tags are user definable and have no special meaning to
the shell.

typeset(1)

NAME

SYNOPSIS

DESCRIPTION

1592 man pages section 1: User Commands • Last Revised 1 Feb 1995

-u All lower-case characters are converted to upper-case characters. The
lower-case flag, -l is turned off.

-x The given names are marked for automatic export to the environment of
subsequently-executed commands.

The -i attribute can not be specified along with -R, -L, -Z, or -f.

Using + rather than − causes these flags to be turned off. If no name arguments are
given but flags are specified, a list of names (and optionally the values) of the variables
which have these flags set is printed. (Using + rather than − keeps the values from
being printed.) If no names and flags are given, the names and attributes of all variables
are printed.

For each name, whence indicates how it would be interpreted if used as a command
name.

The -v flag produces a more verbose report.

The -p flag does a path search for name even if name is an alias, a function, or a
reserved word.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ksh(1), set(1), sh(1), attributes(5)

typeset(1)

ATTRIBUTES

SEE ALSO

User Commands 1593

ucblinks – adds /dev entries to give SunOS 4.x compatible names to SunOS 5.x
devices

/usr/ucb/ucblinks [-e rulebase] [-r rootdir]

ucblinks creates symbolic links under the /dev directory for devices whose SunOS
5.x names differ from their SunOS 4.x names. Where possible, these symbolic links
point to the device’s SunOS 5.x name rather than to the actual /devices entry.

ucblinks does not remove unneeded compatibility links; these must be removed by
hand.

ucblinks should be called each time the system is reconfiguration-booted, after any
new SunOS 5.x links that are needed have been created, since the reconfiguration may
have resulted in more compatibility names being needed.

In releases prior to SunOS 5.4, ucblinks used a nawk rule-base to construct the
SunOS 4.x compatible names. ucblinks no longer uses nawk for the default
operation, although nawk rule-bases can still be specifed with the -e option. The nawk
rule-base equivalent to the SunOS 5.4 default operation can be found in
/usr/ucblib/ucblinks.awk.

-e rulebase Specify rulebase as the file containing nawk(1) pattern-action
statements.

-r rootdir Specify rootdir as the directory under which dev and devices will
be found, rather than the standard root directory /.

/usr/ucblib/ucblinks.awk sample rule-base for compatibility links

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

devlinks(1M), disks(1M), ports(1M), tapes(1M), attributes(5)

ucblinks(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

1594 man pages section 1: User Commands • Last Revised 13 Apr 1994

ul – do underlining

ul [-i] [-t terminal] [filename…]

ul reads the named filenames (or the standard input if none are given) and translates
occurrences of underscores to the sequence which indicates underlining for the
terminal in use, as specified by the environment variable TERM. ul uses the
/usr/share/lib/terminfo entry to determine the appropriate sequences for
underlining. If the terminal is incapable of underlining, but is capable of a standout
mode then that is used instead. If the terminal can overstrike, or handles underlining
automatically, ul degenerates to cat(1). If the terminal cannot underline, underlining
is ignored.

-t terminal Override the terminal kind specified in the environment. If the
terminal cannot underline, underlining is ignored. If the terminal
name is not found, no underlining is attempted.

-i Indicate underlining by a separate line containing appropriate
dashes ‘−’; this is useful when you want to look at the underlining
which is present in an nroff(1) output stream on a CRT-terminal.

ul returns exit code 1 if the file specified is not found.

/usr/share/lib/terminfo/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

cat(1), man(1), nroff(1), attributes(5)

nroff usually generates a series of backspaces and underlines intermixed with the
text to indicate underlining. ul makes attempt to optimize the backward motion.

ul(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

BUGS

User Commands 1595

umask – get or set the file mode creation mask

/usr/bin/umask [-S] [mask]

umask [ooo]

umask [ooo]

umask [-S] [mask]

The umask utility sets the file mode creation mask of the current shell execution
environment to the value specified by the mask operand. This mask affects the initial
value of the file permission bits of subsequently created files. If umask is called in a
subshell or separate utility execution environment, such as one of the following:

(umask 002)
nohup umask ...

find . -exec umask ...

it does not affect the file mode creation mask of the caller’s environment. For this
reason, the /usr/bin/umask utility cannot be used to change the umask in an
ongoing session. Its usefulness is limited to checking the caller’s umask. To change the
umask of an ongoing session you must use one of the shell builtins.

If the mask operand is not specified, the umask utility writes the value of the invoking
process’s file mode creation mask to standard output.

The user file-creation mode mask is set to ooo. The three octal digits refer to
read/write/execute permissions for owner, group, and other, respectively (see
chmod(1), chmod(2), and umask(2)). The value of each specified digit is subtracted
from the corresponding ‘‘digit’’ specified by the system for the creation of a file (see
creat(2)). For example, umask 022 removes write permission for group and other
(files normally created with mode 777 become mode 755; files created with mode 666
become mode 644).

� If ooo is omitted, the current value of the mask is printed.
� umask is recognized and executed by the shell.
� umask can be included in the user’s .profile (see profile(4)) and invoked at

login to automatically set the user’s permissions on files or directories created.

See the description above for the Bourne shell (sh)umask built-in.

The user file-creation mask is set to mask. mask can either be an octal number or a
symbolic value as described in chmod(1). If a symbolic value is given, the new umask
value is the complement of the result of applying mask to the complement of the
previous umask value. If mask is omitted, the current value of the mask is printed.

The following option is supported:

-S Produces symbolic output.

umask(1)

NAME

SYNOPSIS

sh

csh

ksh

DESCRIPTION

sh

csh

ksh

OPTIONS

1596 man pages section 1: User Commands • Last Revised 31 Oct 2001

The default output style is unspecified, but will be recognized on a subsequent
invocation of umask on the same system as a mask operand to restore the previous file
mode creation mask.

The following operand is supported:

mask A string specifying the new file mode creation mask. The string is treated in
the same way as the mode operand described in the chmod(1) manual page.

For a symbolic_mode value, the new value of the file mode creation mask is
the logical complement of the file permission bits portion of the file mode
specified by the symbolic_mode string.

In a symbolic_mode value, the permissions op characters + and − are
interpreted relative to the current file mode creation mask. + causes the bits
for the indicated permissions to be cleared in the mask. − causes the bits of
the indicated permissions to be set in the mask.

The interpretation of mode values that specify file mode bits other than the
file permission bits is unspecified.

The file mode creation mask is set to the resulting numeric value.

The default output of a prior invocation of umask on the same system with
no operand will also be recognized as a mask operand. The use of an
operand obtained in this way is not obsolescent, even if it is an octal
number.

When the mask operand is not specified, the umask utility will write a message to
standard output that can later be used as a umask mask operand.

If -S is specified, the message will be in the following format:

"u=%s,g=%s,o=%s\n", owner permissions, group permissions, \

other permissions

where the three values will be combinations of letters from the set {r, w, x}. The
presence of a letter will indicate that the corresponding bit is clear in the file mode
creation mask.

If a mask operand is specified, there will be no output written to standard output.

EXAMPLE 1 Using the umask command

Either of the commands:

umask a=rx,ug+w

umask 002

sets the mode mask so that subsequently created files have their S_IWOTH bit cleared.

umask(1)

OPERANDS

OUTPUT

EXAMPLES

User Commands 1597

EXAMPLE 1 Using the umask command (Continued)

After setting the mode mask with either of the above commands, the umask command
can be used to write the current value of the mode mask:

$ umask

0002

The output format is unspecified, but historical implementations use the obsolescent
octal integer mode format.

$ umask -S

u=rwx,g=rwx,o=rx

Either of these outputs can be used as the mask operand to a subsequent invocation of
the umask utility.

Assuming the mode mask is set as above, the command:

umask g-w

sets the mode mask so that subsequently created files have their S_IWGRP and
S_IWOTH bits cleared.

The command:

umask –-w

sets the mode mask so that subsequently created files have all their write bits cleared.
Notice that mask operands r, w, x, or anything beginning with a hyphen (−), must be
preceded by – to keep it from being interpreted as an option.

See environ(5) for descriptions of the following environment variables that affect the
execution of umask: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The file mode creation mask was successfully changed, or no mask operand
was supplied.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

chmod(1), csh(1), ksh(1), sh(1), chmod(2), creat(2), umask(2), profile(4),
attributes(5), environ(5)

umask(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1598 man pages section 1: User Commands • Last Revised 31 Oct 2001

uname – print name of current system

uname [-aimnprsvX]

uname [-S system_name]

The uname utility prints information about the current system on the standard output.
When options are specified, symbols representing one or more system characteristics
will be written to the standard output. If no options are specified, uname prints the
current operating system’s name. The options print selected information returned by
uname(2), sysinfo(2), or both.

The following options are supported:

-a Prints basic information currently available from the system.

-i Prints the name of the hardware implementation (platform).

-m Prints the machine hardware name (class). Use of this option is
discouraged; use uname -p instead. See NOTES section below.

-n Prints the nodename (the nodename is the name by which the
system is known to a communications network).

-p Prints the current host’s ISA or processor type.

-r Prints the operating system release level.

-s Prints the name of the operating system. This is the default.

-S system_name The nodename may be changed by specifying a system name
argument. The system name argument is restricted to SYS_NMLN
characters. SYS_NMLN is an implementation specific value defined
in <sys/utsname.h>. Only the super-user is allowed this
capability. This change does not persist across reboots of the
system. Use sys-unconfig(1M) to change a host’s name
permanently.

-v Prints the operating system version.

-X Prints expanded system information, one information element per
line, as expected by SCO UNIX. The displayed information
includes:

� system name, node, release, version, machine, and number of
CPUs.

� BusType, Serial, and Users (set to "unknown" in Solaris)
� OEM# and Origin# (set to 0 and 1, respectively)

EXAMPLE 1 Printing the OS name and release level

The following command:

example% uname −srprints the operating system name and release level, separated by
one SPACE character.

uname(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

User Commands 1599

SYSV3 This variable is used to override the default behavior of uname.
This is necessary to make it possible for some INTERACTIVE
UNIX Systems and SCO UNIX programs and scripts to work
properly. Many scripts use uname to determine the SYSV3 type or
the version of the OS to ensure software is compatible with that
OS. Setting SYSV3 to an empty string will make uname print the
following default values:

nodename nodename 3.2 2 i386

The individual elements that uname displays can also be modified
by setting SYSV3 in the following format:

os,sysname,node,rel,ver,mach

os Operating system (IUS or SCO).

sysname System name.

node Nodename as displayed by the -n option.

rel Release level as displayed by the -r option.

ver Version number as displayed by the -v option.

mach Machine name as displayed by -m option.

Do not put spaces between the elements. If an element is omitted,
the current system value will be used.

See environ(5) for descriptions of the following environment variables that affect the
execution of uname: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

arch(1), isalist(1), sys-unconfig(1M), sysinfo(2), uname(2), nodename(4),
attributes(5), environ (5)

uname(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

1600 man pages section 1: User Commands • Last Revised 9 Jun 2000

Independent software vendors (ISVs) and others who need to determine detailed
characteristics of the platform on which their software is either being installed or
executed should use the uname command.

To determine the operating system name and release level, use uname -sr. To
determine only the operating system release level, use uname -r. Notice that
operating system release levels are not guaranteed to be in x.y format (such as 5.3, 5.4,
5.5, and so forth); future releases could be in the x.y.z format (such as 5.3.1, 5.3.2, 5.4.1,
and so forth).

In SunOS 4.x releases, the arch(1) command was often used to obtain information
similar to that obtained by using the uname command. The arch(1) command output
"sun4" was often incorrectly interpreted to signify a SunOS SPARC system. If
hardware platform information is desired, use uname -sp.

The arch -k and uname -m commands return equivalent values; however, the use of
either of these commands by third party programs is discouraged, as is the use of the
arch command in general. To determine the machine’s Instruction Set Architecture
(ISA or processor type), use uname with the -p option.

uname(1)

NOTES

User Commands 1601

unifdef – resolve and remove ifdef’ed lines from C program source

unifdef [-clt] [-Dname] [-Uname] [-iDname] [-iUname] … [filename]

unifdef removes ifdefed lines from a file while otherwise leaving the file alone. It
is smart enough to deal with the nested ifdefs, comments, single and double quotes
of C syntax, but it does not do any including or interpretation of macros. Neither does
it strip out comments, though it recognizes and ignores them. You specify which
symbols you want defined with -D options, and which you want undefined with -U
options. Lines within those ifdefs will be copied to the output, or removed, as
appropriate. Any ifdef, ifndef, else, and endif lines associated with filename will
also be removed.

ifdefs involving symbols you do not specify are untouched and copied out along
with their associated ifdef, else, and endiff1 lines.

If an ifdefX occurs nested inside another ifdefX, then the inside ifdef is treated
as if it were an unrecognized symbol. If the same symbol appears in more than one
argument, only the first occurrence is significant.

unifdef copies its output to the standard output and will take its input from the
standard input if no filename argument is given.

The following options are supported:

-c Complement the normal operation. Lines that would have been removed
or blanked are retained, and vice versa.

-l Replace ‘‘lines removed’’ lines with blank lines.

-t Plain text option. unifdef refrains from attempting to recognize
comments and single and double quotes.

-Dname Lines associated with the defined symbol name.

-Uname Lines associated with the undefined symbol name.

-iDname Ignore, but print out, lines associated with the defined symbol name. If you
use ifdefs to delimit non-C lines, such as comments or code which is
under construction, then you must tell unifdef which symbols are used
for that purpose so that it will not try to parse for quotes and comments
within them.

-iUname Ignore, but print out, lines associated with the undefined symbol name.

The following exit values are returned:

0 Successful operation.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

unifdef(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

ATTRIBUTES

1602 man pages section 1: User Commands • Last Revised 14 Jan 1992

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

diff(1), attributes(5)

Premature EOF Inappropriate else or endif.

unifdef(1)

SEE ALSO

DIAGNOSTICS

User Commands 1603

uniq – report or filter out repeated lines in a file

uniq [-c | -d | -u] [-f fields] [-s char] [input_file [output_file]]

uniq [-c | -d | -u] [-n] [+ m] [input_file [output_file]]

The uniq utility will read an input file comparing adjacent lines, and write one copy
of each input line on the output. The second and succeeding copies of repeated
adjacent input lines will not be written.

Repeated lines in the input will not be detected if they are not adjacent.

The following options are supported:

-c Precede each output line with a count of the number of times the
line occurred in the input.

-d Suppress the writing of lines that are not repeated in the input.

-f fields Ignore the first fields fields on each input line when doing
comparisons, where fields is a positive decimal integer. A field is
the maximal string matched by the basic regular expression:

[[:blank:]]*[^[:blank:]]*If fields specifies more fields than appear
on an input line, a null string will be used for comparison.

-s chars Ignore the first chars characters when doing comparisons, where
chars is a positive decimal integer. If specified in conjunction with
the -f option, the first chars characters after the first fields fields
will be ignored. If chars specifies more characters than remain on
an input line, a null string will be used for comparison.

-u Suppress the writing of lines that are repeated in the input.

-n Equivalent to -f fields with fields set to n.

+m Equivalent to -s chars with chars set to m.

The following operands are supported:

input_file A path name of the input file. If input_file is not specified, or if the
input_file is −, the standard input will be used.

output_file A path name of the output file. If output_file is not specified, the
standard output will be used. The results are unspecified if the file
named by output_file is the file named by input_file.

EXAMPLE 1 Using The uniq Command

The following example lists the contents of the uniq.test file and outputs a copy of
the repeated lines.

example% cat uniq.test
This is a test.

uniq(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

1604 man pages section 1: User Commands • Last Revised 20 Dec 1996

EXAMPLE 1 Using The uniq Command (Continued)

This is a test.
TEST.
Computer.
TEST.
TEST.
Software.

example% uniq -d uniq.test
This is a test.
TEST.
example%

The next example outputs just those lines that are not repeated in the uniq.test file.

example% uniq -u uniq.test
TEST.
Computer.
Software.
example%

The last example outputs a report with each line preceded by a count of the number of
times each line occurred in the file:

example% uniq -c uniq.test
2 This is a test.
1 TEST.
1 Computer.
2 TEST.
1 Software.

example%

See environ(5) for descriptions of the following environment variables that affect the
execution of uniq: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

comm(1), pack(1), pcat(1), sort(1), uncompress(1), attributes(5), environ(5)

uniq(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

User Commands 1605

units – converts quantities expressed in standard scales to other scales

units

units converts quantities expressed in various standard scales to their equivalents in
other scales. It works interactively in this fashion:

You have:~~inch
You want:~~cm

* 2.540000e+00
/ 3.937008e−01

A quantity is specified as a multiplicative combination of units optionally preceded by
a numeric multiplier. Powers are indicated by suffixed positive integers, division by
the usual sign:

You have:~~15 lbs force/in2
You want:~~atm

* 1.020689e+00
/ 9.797299e−01

units only does multiplicative scale changes; thus it can convert Kelvin to Rankine,
but not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric prefixes
are recognized, together with a generous leavening of exotica and a few constants of
nature including:

pi ratio of circumference to diameter,

c speed of light,

e charge on an electron,

g acceleration of gravity,

force same as g,

mole Avogadro’s number,

water pressure head per unit height of water,

au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run together,
(for example, lightyear). British units that differ from their U.S. counterparts are
prefixed thus: brgallon. For a complete list of units, type:

cat /usr/share/lib/unittab

/usr/share/lib/unittab

See attributes(5) for descriptions of the following attributes:

units(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

1606 man pages section 1: User Commands • Last Revised 14 Sep 1992

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

attributes(5)

units(1)

SEE ALSO

User Commands 1607

unix2dos – convert text file from ISO format to DOS format

unix2dos [-ascii] [-iso] [-7] [-437 | -850 | -860 | -863 |
-865]originalfile convertedfile

The unix2dos utility converts ISO standard characters to the corresponding
characters in the DOS extended character set.

This command may be invoked from either DOS or SunOS. However, the filenames
must conform to the conventions of the environment in which the command is
invoked.

If the original file and the converted file are the same, unix2dos will rewrite the
original file after converting it.

The following options are supported:

-ascii Adds carriage returns and converts end of file characters in SunOS
format text files to conform to DOS requirements.

-iso This is the default. Converts ISO standard characters to the
corresponding character in the DOS extended character set.

-7 Converts 8 bit SunOS characters to 7 bit DOS characters.

On non-i386 systems, unix2dos will attempt to obtain the keyboard type to
determine which code page to use. Otherwise, the default is US. The user may
override the code page with one of the following options:

-437 Use US code page

-850 Use multilingual code page

-860 Use Portuguese code page

-863 Use French Canadian code page

-865 Use Danish code page

The following operands are required:

originalfile The original file in ISO format that is being converted to DOS
format.

convertedfile The new file in DOS format that has been converted from the
original ISO file format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

unix2dos(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ATTRIBUTES

1608 man pages section 1: User Commands • Last Revised 14 Sep 2000

dos2unix(1), ls(1), attributes(5)

File filename not found, or no read permission
The input file you specified does not exist, or you do not have read permission.
Check with the SunOS command, ls -l (see ls(1)).

Bad output filename filename, or no write permission
The output file you specified is either invalid, or you do not have write permission
for that file or the directory that contains it. Check also that the drive or diskette is
not write-protected.

Error while writing to temporary file
An error occurred while converting your file, possibly because there is not enough
space on the current drive. Check the amount of space on the current drive using
the DIR command. Also be certain that the default diskette or drive is
write-enabled (not write-protected). Notice that when this error occurs, the original
file remains intact.

Translated tmpfile name = filename.
Could not rename tmpfile to filename.

The program could not perform the final step in converting your file. Your
converted file is stored under the name indicated on the second line of this
message.

unix2dos(1)

SEE ALSO

DIAGNOSTICS

User Commands 1609

uptime – show how long the system has been up

uptime

The uptime command prints the current time, the length of time the system has been
up, and the average number of jobs in the run queue over the last 1, 5 and 15 minutes.
It is, essentially, the first line of a w(1) command.

Below is an example of the output uptime provides:

example% uptime
10:47am up 27 day(s), 50 mins, 1 user, load average: 0.18, 0.26, 0.20

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

w(1), who(1), whodo(1M), attributes(5)

who -b gives the time the system was last booted.

uptime(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

1610 man pages section 1: User Commands • Last Revised 18 Mar 1994

users – display a compact list of users logged in

/usr/ucb/users [filename]

The users utility lists the login names of the users currently on the system in a
compact, one-line format.

Specifying filename tells users where to find its information; by default it checks
/var/adm/utmpx.

Typing users is equivalent to typing who -q.

EXAMPLE 1 Listing current users

example% users
paul george ringoexample%

/var/adm/utmpx

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

who(1), attributes(5)

users(1B)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

User Commands 1611

uucp, uulog, uuname – UNIX-to-UNIX system copy

uucp [-c | -C] [-d | -f] [-ggrade] [-jmr] [-nuser] [-sfile]
[-xdebug_level] source-file destination-file

uulog [-ssys] [-fsystem] [-x] [-number] system

uuname [-c | -l]

uucp copies files named by the source-file arguments to the destination-file argument.

uulog queries a log file of uucp or uuxqt transactions in file
/var/uucp/.Log/uucico/system or /var/uucp/.Log/uuxqt/system.

uuname lists the names of systems known to uucp.

The following options are supported by uucp:

-c Do not copy local file to the spool directory for transfer
to the remote machine (default).

-C Force the copy of local files to the spool directory for
transfer.

-d Make all necessary directories for the file copy
(default).

-f Do not make intermediate directories for the file copy.

-g grade grade can be either a single letter, number, or a string of
alphanumeric characters defining a service grade. The
uuglist command can determine whether it is
appropriate to use the single letter, number, or a string
of alphanumeric characters as a service grade. The
output from the uuglist command will be a list of
service grades that are available, or a message that says
to use a single letter or number as a grade of service.

-j Print the uucp job identification string on standard
output. This job identification can be used by uustat
to obtain the status of a uucp job or to terminate a
uucp job. The uucp job is valid as long as the job
remains queued on the local system.

-m Send mail to the requester when the copy is complete.

-n user Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-s file Report status of the transfer to file. This option is
accepted for compatibility, but it is ignored because it is
insecure.

uucp(1C)

NAME

SYNOPSIS

uucp

uulog

uuname

uucp

1612 man pages section 1: User Commands • Last Revised 28 Mar 1995

-x debug_level Produce debugging output on standard output.
debug_level is a number between 0 and 9; as it increases
to 9, more detailed debugging information is given.
This option may not be available on all systems.

The following options cause uulog to print logging information:

-s sys Print information about file transfer work involving
system sys.

-f system Do a "tail -f" of the file transfer log for system. (You
must hit BREAK to exit this function.)

Other options used in conjunction with the above options are:

-x Look in the uuxqt log file for the given system.

-number Execute a tail command of number lines.

The following options are supported by uuname:

-c Display the names of systems known to cu. The two lists are the same,
unless your machine is using different Systems files for cu and uucp. See
the Sysfiles file.

-l Display the local system name.

The source file name may be a path name on your machine, or may have the form:

system-name!pathname

where system-name is taken from a list of system names that uucp knows about.
source_file is restricted to no more than one system-name. The destination system-name
may also include a list of system names such as

system-name!system-name! . . . !system-name!pathname

In this case, an attempt is made to send the file, using the specified route, to the
destination. Care should be taken to ensure that intermediate nodes in the route are
willing to forward information (see NOTES below for restrictions).

For C-Shell users, the ‘‘!’’ character must be surrounded by single quotes (’), or
preceded by a backslash (\).

The shell metacharacters ?, * and [. . .] appearing in pathname will be
expanded on the appropriate system.

Pathnames may be one of the following:

(1) An absolute pathname.

uucp(1C)

uulog

uuname

OPERANDS

User Commands 1613

(2) A pathname preceded by ~user where user is a login name on the specified
system and is replaced by that user’s login directory.

(3) A pathname preceded by ~/destination where destination is appended to
/var/spool/uucppublic. (Note: This destination will be treated as a
filename unless more than one file is being transferred by this request or
the destination is already a directory. To ensure that the destination is a
directory, follow it with a ’/’. For example ~/dan/ as the destination will
make the directory /var/spool/uucppublic/dan if it does not exist
and put the requested file(s) in that directory).

Anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system, the copy will fail. If the
destination-file is a directory, the last part of the source-file name is used.

Invoking uucp with shell wildcard characters as the remote source-file invokes the
uux(1C) command to execute the uucp command on the remote machine. The remote
uucp command spools the files on the remote machine. After the first session
terminates, if the remote machine is configured to transfer the spooled files to the local
machine, the remote machine will initiate a call and send the files; otherwise, the user
must "call" the remote machine to transfer the files from the spool directory to the local
machine. This call can be done manually using Uutry(1M), or as a side effect of
another uux(1C) or uucp call.

Note that the local machine must have permission to execute the uucp command on
the remote machine in order for the remote machine to send the spooled files.

uucp removes execute permissions across the transmission and gives 0666 read and
write permissions (see chmod(2)).

See environ(5) for descriptions of the following environment variables that affect the
execution of uucp: LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and
NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/etc/uucp/* other data files

/var/spool/uucp spool directories

/usr/lib/uucp/* other program files

/var/spool/uucppublic/* public directory for receiving and sending

See attributes(5) for descriptions of the following attributes:

uucp(1C)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

1614 man pages section 1: User Commands • Last Revised 28 Mar 1995

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

mail(1), uuglist(1C), uustat(1C), uux(1C), Uutry(1M), uuxqt(1M), chmod(2),
attributes(5)

For security reasons, the domain of remotely accessible files may be severely
restricted. You will probably not be able to access files by path name; ask a responsible
person on the remote system to send them to you. For the same reasons you will
probably not be able to send files to arbitrary path names. As distributed, the remotely
accessible files are those whose names begin /var/spool/uucppublic (equivalent
to ~/).

All files received by uucp will be owned by uucp.

The -m option will only work when sending files or receiving a single file. Receiving
multiple files specified by special shell characters ?, &, and [. . .] will not
activate the -m option.

The forwarding of files through other systems may not be compatible with the
previous version of uucp. If forwarding is used, all systems in the route must have
compatible versions of uucp.

Protected files and files that are in protected directories that are owned by the
requester can be sent by uucp. However, if the requester is root, and the directory is
not searchable by "other" or the file is not readable by "other", the request will fail.

Strings that are passed to remote systems may not be evaluated in the same locale as
the one in use by the process that invoked uucp on the local system.

Configuration files must be treated as C (or POSIX) locale text files.

uucp(1C)

SEE ALSO

NOTES

User Commands 1615

uuencode, uudecode – encode a binary file, or decode its encoded representation

uuencode [source-file] decode_pathname

uudecode [-p] [encoded-file]

uuencode converts a binary file into an encoded representation that can be sent using
mail(1). It encodes the contents of source-file, or the standard input if no source-file
argument is given. The decode_pathname argument is required. The decode_pathname is
included in the encoded file’s header as the name of the file into which uudecode is
to place the binary (decoded) data. uuencode also includes the permission modes of
source-file, (except setuid , setgid, and sticky-bits), so that decode_pathname is
recreated with those same permission modes.

uudecode reads an encoded-file, strips off any leading and trailing lines added by
mailer programs, and recreates the original binary data with the filename and the
mode specified in the header.

The encoded file is an ordinary portable character set text file; it can be edited by any
text editor. It is best only to change the mode or decode_pathname in the header to avoid
corrupting the decoded binary.

-p decode encoded-file and send it to standard output. This allows uudecode
to be used in a pipeline.

The following operands are supported by uuencode:

decode_pathname The pathname of the file into which the uudecode
utility will place the decoded file. If there are characters
in decode_pathname that are not in the portable filename
character set the results are unspecified.

source-file A pathname of the file to be encoded.

The following operand is supported by uudecode:

encoded-file The pathname of a file containing the output of uuencode.

See largefile(5) for the description of the behavior of uuencode and uudecode
when encountering files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of uuencode and uudecode: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The standard output is a text file (encoded in the character set of the current locale)
that begins with the line:

"begin%s%s\n", < mode >, decode_pathname

and ends with the line:

end\n

uuencode(1C)

NAME

SYNOPSIS

uuencode

uudecode

uudecode

uuencode

uudecode

USAGE

ENVIRONMENT
VARIABLES

stdout

1616 man pages section 1: User Commands • Last Revised 28 Mar 1995

In both cases, the lines have no preceding or trailing blank characters.

The algorithm that is used for lines in between begin and end takes three octets as
input and writes four characters of output by splitting the input at six-bit intervals
into four octets, containing data in the lower six bits only. These octets are converted
to characters by adding a value of 0x20 to each octet, so that each octet is in the range
0x20−0x5f, and then it is assumed to represent a printable character. It then will be
translated into the corresponding character codes for the codeset in use in the current
locale. (For example, the octet 0x41, representing A , would be translated to A in the
current codeset, such as 0xc1 if it were EBCDIC.)

Where the bits of two octets are combined, the least significant bits of the first octet are
shifted left and combined with the most significant bits of the second octet shifted
right. Thus the three octets A, B, C are converted into the four octets:

0x20 + ((A >> 2) & 0x3F)
0x20 + (((A << 4) ((B >> 4) & 0xF)) & 0x3F)
0x20 + (((B << 2) ((C >> 6) & 0x3)) & 0x3F)
0x20 + ((C) & 0x3F)

These octets are then translated into the local character set.

Each encoded line contains a length character, equal to the number of characters to be
decoded plus 0x20 translated to the local character set as described above, followed by
the encoded characters. The maximum number of octets to be encoded on each line is
45.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

mail(1), mailx(1), uucp(1C), uux(1C), attributes(5), largefile(5)

The encoded file’s size is expanded by 35% (3 bytes become 4, plus control
information), causing it to take longer to transmit than the equivalent binary.

The user on the remote system who is invoking uudecode (typically uucp) must have
write permission on the file specified in the decode_pathname.

If you uuencode then uudecode a file in the same directory, you will overwrite the
original file.

uuencode(1C)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1617

uuglist – print the list of service grades that are available on this UNIX system

uuglist [-u]

uuglist prints the list of service grades that are available on the system to use with
the -g option of uucp(1C) and uux(1C).

-u List the names of the service grades that the user is allowed to use with the
-g option of the uucp and uux commands.

/etc/uucp/Grades contains the list of service grades

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

uucp(1C), uux(1C), attributes(5)

uuglist(1C)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

1618 man pages section 1: User Commands • Last Revised 14 Sep 1992

uustat – uucp status inquiry and job control

uustat [[-m] | [-p] | [-q] | [-k jobid [-n]] | [-r jobid [-n]]]

uustat [-a] [-s system [-j]] [-u user] [-S qric]

uustat -t system [-c] [-d number]

uustat functions in the following three areas:

1.) Displays the general status of, or cancels, previously specified uucp
commands.

2.) Provides remote system performance information, in terms of average
transfer rates or average queue times.

3.) Provides general remote system-specific and user-specific status of uucp
connections to other systems.

These options obtain general status of, or cancel, previously specified uucp
commands:

-a List all jobs in queue.

-j List the total number of jobs displayed. The -j option can be used in
conjunction with the -a or the -s option.

-kjobid Kill the uucp request whose job identification is jobid. The killed uucp
request must belong to the user issuing the uustat command unless the
user is the super-user or uucp administrator. If the job is killed by the
super-user or uucp administrator, electronic mail is sent to the user.

-m Report the status of accessibility of all machines.

-n Suppress all standard output, but not standard error. The -n option is used
in conjunction with the -k and -r options.

-p Execute the command ps -flp for all the process-ids that are in the lock
files.

-q List the jobs queued for each machine. If a status file exists for the machine,
its date, time and status information are reported. In addition, if a number
appears in parentheses next to the number of C or X files, it is the age in
days of the oldest C./X. file for that system. The Retry field represents
the number of hours until the next possible call. The Count is the number
of failure attempts. Note: For systems with a moderate number of
outstanding jobs, this could take 30 seconds or more of real-time to execute.
An example of the output produced by the -q option is:

eagle 3C 04/07-11:07 NO DEVICES AVAILABLE
mh3bs3 2C 07/07-10:42 SUCCESSFUL

uustat(1C)

NAME

SYNOPSIS

DESCRIPTION

General Status

User Commands 1619

This indicates the number of command files that are waiting for each
system. Each command file may have zero or more files to be sent (zero
means to call the system and see if work is to be done). The date and time
refer to the previous interaction with the system followed by the status of
the interaction.

-rjobid Rejuvenate jobid. The files associated with jobid are touched so that their
modification time is set to the current time. This prevents the cleanup
daemon from deleting the job until the jobs’ modification time reaches the
limit imposed by the daemon.

These options provide remote system performance information, in terms of average
transfer rates or average queue times; the -c and -d options can only be used in
conjunction with the -t option:

-tsystem Report the average transfer rate or average queue time for the past
60 minutes for the remote system. The following parameters can
only be used with this option:

-c Average queue time is calculated when the -c parameter is
specified and average transfer rate when -c is not specified. For
example, the command:

example% uustat -teagle -d50 -c

produces output in the following format:

average queue time to eagle for last 50 minutes: 5
seconds

The same command without the -c parameter produces output in
the following format:

average transfer rate with eagle for last 50
minutes: 2000.88 bytes/sec

-dnumber number is specified in minutes. Used to override the 60 minute
default used for calculations. These calculations are based on
information contained in the optional performance log and
therefore may not be available. Calculations can only be made
from the time that the performance log was last cleaned up.

These options provide general remote system-specific and user-specific status of uucp
connections to other systems. Either or both of the following options can be specified
with uustat. The -j option can be used in conjunction with the -s option to list the
total number of jobs displayed:

-ssystem Report the status of all uucp requests for remote system system.

uustat(1C)

Remote System
Status

User- or
System-Specific

Status

1620 man pages section 1: User Commands • Last Revised 28 Mar 1995

-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eagleN1bd7 4/07-11:07 S eagle dan 522 /home/dan/A
eagleC1bd8 4/07-11:07 S eagle dan 59 D.3b2al2ce4924

4/07-11:07 S eagle dan rmail mike

With the above two options, the first field is the jobid of the job. This is followed by the
date/time. The next field is an S if the job is sending a file or an R if the job is
requesting a file. The next field is the machine where the file is to be transferred. This
is followed by the user-id of the user who queued the job. The next field contains the
size of the file, or in the case of a remote execution (rmail is the command used for
remote mail), the name of the command. When the size appears in this field, the file
name is also given. This can either be the name given by the user or an internal name
(for example, D.3b2alce4924) that is created for data files associated with remote
executions (rmail in this example).

-Sqric Report the job state:

q for queued jobs
r for running jobs
i for interrupted jobs
c for completed jobs

A job is queued if the transfer has not started. A job is running when the
transfer has begun. A job is interrupted if the transfer began but was
terminated before the file was completely transferred. A completed job is a
job that successfully transferred. The completed state information is
maintained in the accounting log, which is optional and therefore may be
unavailable. The parameters can be used in any combination, but at least
one parameter must be specified. The -S option can also be used with -s
and -u options. The output for this option is exactly like the output for -s
and -u except that the job states are appended as the last output word.
Output for a completed job has the following format:

eagleC1bd3 completed

When no options are given, uustat writes to standard output the status of all uucp
requests issued by the current user.

See environ(5) for descriptions of the following environment variables that affect the
execution of uustat: LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/var/spool/uucp/* spool directories

uustat(1C)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

User Commands 1621

/var/uucp/.Admin/account accounting log

/var/uucp/.Admin/perflog performance log

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

uucp(1C), attributes(5)

The -t option produces no message when the data needed for the calculations is not
being recorded.

After the user has issued the uucp request, if the file to be transferred is moved,
deleted or was not copied to the spool directory (-C option) when the uucp request
was made, uustat reports a file size of −99999. This job will eventually fail because
the file(s) to be transferred can not be found.

uustat(1C)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

1622 man pages section 1: User Commands • Last Revised 28 Mar 1995

uuto, uupick – public UNIX-to-UNIX system file copy

uuto [-mp] source-file… destination

uupick [-s system]

uuto sends source-file to destination. uuto uses the uucp(1C) facility to send files,
while it allows the local system to control the file access. A source-file name is a path
name on your machine. Destination has the form:

system[!system] ... !user

where system is taken from a list of system names that uucp knows about. User is the
login name of someone on the specified system.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system,
where PUBDIR is a public directory defined in the uucp source. By default, this
directory is /var/spool/uucppublic. Specifically the files are sent to

PUBDIR/receive/user/mysystem/files.

The recipient is notified by mail(1) of the arrival of files.

uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or directory) found,
the following message is printed on standard output:

from system sysname: [file file-name] [dir dirname] ?

uupick then reads a line from standard input to determine the disposition of the file:

<new-line> Go to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir. If dir is not
specified as a complete path name (in which $HOME is
legitimate), a destination relative to the current
directory is assumed. If no destination is given, the
default is the current directory.

a [dir] Same as m above, except it moves all the files sent from
system.

p Print the content of the file.

q Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

uuto(1C)

NAME

SYNOPSIS

uuto

uupick

User Commands 1623

* Print a command summary.

The following options are supported by uuto:

-m Send mail to the sender when the copy is complete.

-p Copy the source file into the spool directory before transmission.

The following option is supported by uupick:

-s system Search only the PUBDIR for files sent from system.

The following operands are supported for uuto:

destination A string of the form:

system-name ! user

where system-name is taken from a list of system names that uucp
knows about; see uuname. The argument user is the login name of
someone on the specified system. The destination system-name can
also be a list of names such as

system-name ! system-name ! . . . ! system-name ! user

in which case, an attempt is made to send the file via the specified
route to the destination. Care should be taken to ensure that
intermediate nodes in the route are willing to forward information.

source-file A pathname of a file on the local system to be copied to destination.

See environ(5) for descriptions of the following environment variables that affect the
execution of uuto and uupick: LC_TYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

PUBDIR /var/spool/uucppublic public directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

mail(1), uucp(1C), uustat(1C), uux(1C), uucleanup(1M), attributes(5)

uuto(1C)

uuto

uupick

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

1624 man pages section 1: User Commands • Last Revised 28 Mar 1995

In order to send files that begin with a dot (for instance, .profile), the files must be
qualified with a dot. For example, the following files are correct:

.profile .prof* .profil?

The following files are incorrect:

prof ?profile

uuto(1C)

NOTES

User Commands 1625

uux – UNIX-to-UNIX system command execution

uux [-] [-bcCjnprz] [-aname] [-ggrade] [-sfilename] [-xdebug_level]
command-string

uux will gather zero or more files from various systems, execute a command on a
specified system and then send standard output to a file on a specified system.

Note: For security reasons, most installations limit the list of commands executable on
behalf of an incoming request from uux, permitting only the receipt of mail (see
mail(1)). (Remote execution permissions are defined in /etc/uucp/Permissions.)

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by
system-name!. A null system-name is interpreted as the local system.

File names may be one of the following:

� An absolute path name.
� A path name preceded by ~xxx, where xxx is a login name on the specified system

and is replaced by that user’s login directory.

Anything else is prefixed by the current directory.

As an example, the command:

example% uux "!diff sys1!/home/dan/filename1
sys2!/a4/dan/filename2 > !~/dan/filename.diff"

will get the filename1 and filename2 files from the ‘‘sys1’’ and ‘‘sys2’’ machines, execute
a diff(1) command and put the results in filename.diff in the local PUBDIR/dan/
directory. PUBDIR is a public directory defined in the uucp source. By default, this
directory is /var/spool/uucppublic.

Any special shell characters such as <, >, ; , | should be quoted either by quoting
the entire command-string, or quoting the special characters as individual arguments.
The redirection operators >>, <<, >| and >& cannot be used.

uux will attempt to get all appropriate files to the specified system where they will be
processed. For files that are output files, the file name must be escaped using
parentheses. For example, the command:

example% uux "a!cut -f1 b!/usr/filename > c!/usr/filename"

gets "/usr/filename" from system "b" and sends it to system "a", performs a cut
command on that file and sends the result of the cut command to system "c".

uux will notify you if the requested command on the remote system was disallowed.
This notification can be turned off by the -n option. The response comes by remote
mail from the remote machine.

uux(1C)

NAME

SYNOPSIS

DESCRIPTION

1626 man pages section 1: User Commands • Last Revised 28 Mar 1995

− The standard input to uux is made the standard input
to the command-string.

-aname Use name as the user job identification replacing the
initiator user-id. (Notification will be returned to
user-id name.)

-b Return whatever standard input was provided to the
uux command if the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer
to the remote machine (default).

-C Force the copy of local files to the spool directory for
transfer.

-g grade grade can be either a single letter, number, or a string of
alphanumeric characters defining a service grade. The
uuglist(1C) command determines whether it is
appropriate to use the single letter, number, or a string
of alphanumeric characters as a service grade. The
output from the uuglist command will be a list of
service grades that are available or a message that says
to use a single letter or number as a grade of service.

-j Output the jobid string on the standard output which is
the job identification. This job identification can be
used by uustat(1C) to obtain the status or terminate a
job.

-n Do not notify the user if the command fails.

-p Same as −: The standard input to uux is made the
standard input to the command-string.

-r Do not start the file transfer, just queue the job.

-s filename Report status of the transfer in filename. This option is
accepted for compatibility, but it is ignored because it is
insecure.

-x debug_level Produce debugging output on the standard output.
debug_level is a number between 0 and 9; as it increases
to 9, more detailed debugging information is given.

-z Send success notification to the user.

See environ(5) for descriptions of the following environment variables that affect the
execution of uux: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

uux(1C)

OPTIONS

ENVIRONMENT
VARIABLES

EXIT STATUS

User Commands 1627

>0 An error occurred.

/etc/uucp/* other data and programs

/etc/uucp/Permissions remote execution permissions

/usr/lib/uucp/* other programs

/var/spool/uucp spool directories

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

cut(1), mail(1), uucp(1C), uuglist(1C), uustat(1C), attributes(5)

The execution of commands on remote systems takes place in an execution directory
known to the uucp system.

All files required for the execution will be put into this directory unless they already
reside on that machine. Therefore, the simple file name (without path or machine
reference) must be unique within the uux request. The following command will NOT
work:

example% uux "a!diff b!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"

But the command:

example% uux "a!diff a!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"

will work. (If diff is a permitted command.)

Protected files and files that are in protected directories that are owned by the
requester can be sent in commands using uux. However, if the requester is root, and
the directory is not searchable by "other", the request will fail.

The following restrictions apply to the shell pipeline processed by uux:

� In gathering files from different systems, pathname expansion in not performed by
uux. Thus, a request such as

uux "c89 remsys!~/*.c"

would attempt to copy the file named literally *.c to the local system.

� Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.

� The use of the shell metacharacter * will probably not do what you want it to do.

� The shell tokens << and >> are not implemented.

uux(1C)

FILES

ATTRIBUTES

SEE ALSO

NOTES

1628 man pages section 1: User Commands • Last Revised 28 Mar 1995

� The redirection operators >>, <<, >| and >& cannot be used.

� The reserved word ! cannot be used at the head of the pipeline to modify the exit
status.

� Alias substitution is not performed.

uux(1C)

User Commands 1629

vacation – reply to mail automatically

vacation [-I]

vacation [-a alias] [-f database_file] [-j] [-m message_file] [-s sender]
[-tN] username

The vacation utility automatically replies to incoming mail.

The installation consists of an interactive program which sets up vacation’s basic
configuration.

To install vacation, type it with no arguments on the command line. The program
creates a .vacation.msg file, which contains the message that is automatically sent
to all senders when vacation is enabled, and starts an editor for you to modify the
message. (See USAGE section.) Which editor is invoked is determined by the VISUAL
or EDITOR environment variable, or vi(1) if neither of those environment variables
are set.

A .forward file is also created if one does not exist in your home directory. Once
created, the .forward file will contain a line of the form:

\username, "|/usr/bin/vacation username"One copy of an incoming message is sent to the
username and another copy is piped into vacation.

If a .forward file is present in your home directory, it will ask whether you want to
remove it, which disables vacation and ends the installation.

The program automatically creates .vacation.pag and .vacation.dir, which
contain a list of senders when vacation is enabled.

The presence of the .forward file determines whether or not vacation is disabled
or enabled. To disable vacation, remove the .forward file, or move it to a new
name.

The -I option clears the vacation log files, .vacation.pag and .vacation.dir,
erasing the list of senders from a previous vacation session. (See OPTIONS section.)

vacation provides configuration options that are not part of the installation, these
being -a, -f, -j, -m, -s, and -t. (See OPTIONS section.)

The following options are supported:

-I Initializes the .vacation.pag and .vacation.dir files and
enables vacation. If the -I flag is not specified, and a user
argument is given, vacation reads the first line from the
standard input (for a From: line, no colon). If absent, it produces
an error message.

Options -a, -f, -j, -m, -t, and -s are configuration options to be used in conjunction
with vacation in the .forward file, not on the command line. For example,

vacation(1)

NAME

SYNOPSIS

DESCRIPTION

Installation

Activation and
Deactivation

Initialization

Additional
Configuration

OPTIONS

1630 man pages section 1: User Commands • Last Revised 12 Jun 2000

\username, "|/usr/bin/vacation -t1m username"repeats replies to the sender every
minute.

-a alias Indicates that alias is one of the valid aliases for the user running
vacation, so that mail addressed to that alias generates a reply.

-f file Uses file instead of .vacation as the base name for the database
file.

-j Does not check whether the recipient appears in the To: or the
Cc: line. Warning: use of this option can result in vacation replies
being sent to mailing lists and other inappropriate places; its use is
therefore strongly discouraged.

-m file Uses file instead of .vacation.msg as the message to send for
the reply.

-s sender Replies to sender instead of the value read from the UNIX From
line of the incoming message.

-tN Changes the interval between repeat replies to the same sender.
The default is 1 week. A trailing s, m, h, d, or w scales N to seconds,
minutes, hours, days, or weeks, respectively.

.vacation.msg should include a header with at least a Subject: line (it should not
include a To: line). For example:

Subject: I am on vacation
I am on vacation until July 22. If you have something urgent,
please contact Joe Jones (jones@fB0).

--John

If the string $SUBJECT appears in the .vacation.msg file, it is replaced with the
subject of the original message when the reply is sent; thus, a .vacation.msg file
such as

Subject: I am on vacation
I am on vacation until July 22.
Your mail regarding "$SUBJECT" will be read when I return.
If you have something urgent, please contact
Joe Jones (jones@fB0).

--Johnwill include the subject of the message in the reply.

No message is sent if the To: or the Cc: line does not list the user to whom the
original message was sent or one of a number of aliases for them, if the initial From
line includes the string −REQUEST@, or if a Precedence: bulk or Precedence:
junk line is included in the header.

vacation will also not respond to mail from either postmaster or
Mailer-Daemon.

vacation(1)

Files

User Commands 1631

~/.forward

~/.vacation.msg

A list of senders is kept in the dbm format files .vacation.pag and
.vacation.dir in your home directory. These files are dbm files and cannot be
viewed directly with text editors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

vi(1), sendmail(1M), dbm(3UCB), getusershell(3C), aliases(4), shells(4),
attributes(5)

vacation(1)

FILES

ATTRIBUTES

SEE ALSO

1632 man pages section 1: User Commands • Last Revised 12 Jun 2000

vc – version control

vc [-a] [-t] [-c char] [-s] [keyword=value… keyword=value]

This command is obsolete and will be removed in the next release.

The vc command copies lines from the standard input to the standard output under
control of its arguments and of ‘‘control statements’’ encountered in the standard
input. In the process of performing the copy operation, user-declared keywords may be
replaced by their string value when they appear in plain text and/or control
statements.

The copying of lines from the standard input to the standard output is conditional,
based on tests (in control statements) of keyword values specified in control
statements or as vc command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon (:),
except as modified by the -c keyletter (see below). Input lines beginning with a
backslash (\) followed by a control character are not control lines and are copied to the
standard output with the backslash removed. Lines beginning with a backslash
followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A
value is any ASCII string that can be created with ed; a numeric value is an unsigned
string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a keyletter (see
below) forces replacement of keywords in all lines of text. An uninterpreted control
character may be included in a value by preceding it with \. If a literal \ is desired,
then it too must be preceded by \.

The following options are supported:

-a Forces replacement of keywords surrounded by control characters with
their assigned value in all text lines and not just in vc statements.

-t All characters from the beginning of a line up to and including the first tab
character are ignored for the purpose of detecting a control statement. If a
control statement is found, all characters up to and including the tab are
discarded.

-cchar Specifies a control character to be used in place of the ‘‘:’’ default.

-s Silences warning messages (not error) that are normally printed on the
diagnostic output.

vc recognizes the following version control statements:

:dcl keyword[, ..., keyword] Declare keywords. All keywords must be
declared.

vc(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1633

:asg keyword=value Assign values to keywords. An asg
statement overrides the assignment for the
corresponding keyword on the vc
command line and all previous asg
statements for that keyword. Keywords that
are declared but are not assigned values
have null values.

:if condition
. . .
:end Skip lines of the standard input. If the

condition is true, all lines between the if
statement and the matching end statement
are copied to the standard output. If the
condition is false, all intervening lines are
discarded, including control statements.
Note: Intervening if statements and
matching end statements are recognized
solely for the purpose of maintaining the
proper if-end matching.

The syntax of a condition is:

<cond> ::= [‘‘not’’] <or>

<or> ::= <and> | <and> ‘‘|’’
<or>

<and> ::= <exp> | <exp> ‘‘&’’
<and>

<exp> ::= ‘‘(’’ <or> ‘‘)’’ |
<value> <op> <value>

<op> ::= ‘‘=’’ | ‘‘!=’’ | ‘‘<’’ |
‘‘>’’

<value> ::= <arbitrary ASCII
string> | <numeric
string>

The available operators and their meanings
are:

= equal

!= not equal

& and

| or

> greater than

vc(1)

1634 man pages section 1: User Commands • Last Revised 5 Jul 1990

< less than

() used for logical groupings

not may only occur immediately
after the if, and when present,
inverts the value of the entire
condition

The > and < operate only on unsigned
integer values (for example, : 012 > 12 is
false). All other operators take strings as
arguments (for example, : 012 != 12 is
true).

The precedence of the operators (from
highest to lowest) is:

= != > < all of equal precedence

&

|

Parentheses may be used to alter the order
of precedence.

Values must be separated from operators or
parentheses by at least one blank or tab.

::text Replace keywords on lines that are copied
to the standard output. The two leading
control characters are removed, and
keywords surrounded by control characters
in text are replaced by their value before the
line is copied to the output file. This action
is independent of the -a keyletter.

:on
:off Turn on or off keyword replacement on all

lines.

:ctl char Change the control character to char.

:msg message Print message on the diagnostic output.

:err message Print message followed by:

ERROR: err statement on line ...
(915)

vc(1)

User Commands 1635

on the diagnostic output. vc halts
execution, and returns an exit code of 1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

ed(1), attributes(5)

vc(1)

ATTRIBUTES

SEE ALSO

1636 man pages section 1: User Commands • Last Revised 5 Jul 1990

vgrind – grind nice program listings

vgrind [-2fntwx] [-d defs-file] [-h header] [-l language] [-s n]
[-o pagelist] [-P printer] [-T output-device] filename…

The vgrind utility formats the program sources named by the filename arguments in a
nice style using troff(1). Comments are placed in italics, keywords in bold face, and
as each function is encountered its name is listed on the page margin.

vgrind runs in two basic modes, filter mode or regular mode. In filter mode, vgrind
acts as a filter in a manner similar to tbl(1). The standard input is passed directly to
the standard output except for lines bracketed by the troff-like macros:

.vS starts processing

.vE ends processing

These lines are formatted as described above. The output from this filter can be passed
to troff for output. There need be no particular ordering with eqn(1) or tbl(1).

In regular mode, vgrind accepts input filenames, processes them, and passes them to
troff for output. Use a hyphen (‘−’) to specify standard input; otherwise, vgrind
will exit without attempting to read from the standard input. Filenames must be
specified after all other option arguments.

In regular mode, if the -t or -P option is specified, the output is:

� emitted (in troff format) to stdout if the -t option is specified.

� printed (as PostScript) to the named printer if the -P option is specified.

Otherwise, the output is:

� printed (as PostScript) on the system default printer, if one is defined, and the
command’s stdout is a tty.

� emitted (as PostScript) to stdout if it is not a tty (that is, if stdout is a pipe or a
redirect to a file).

In both modes, vgrind passes any lines beginning with a decimal point without
conversion.

The following options are supported:

-2 Produces two-column output. Specifying this option changes the
default point size to 8 (as if the -s8 option were supplied). It also
arranges for output to appear in landscape mode.

-f Forces filter mode.

-n Does not make keywords boldface.

-w Considers TAB characters to be spaced four columns apart instead
of the usual eight.

vgrind(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1637

-x Outputs the index file in a “pretty” format. The index file itself is
produced whenever vgrind is run with a file called index that is
present in the current directory. The index of function definitions
can then be run off by giving vgrind the -x option and the file
index as argument.

-d defs-file Specifies an alternate language definitions file (default is
/usr/lib/vgrindefs).

-h header Specifies a header to appear in the center of every output page.
Use quotes to specify headers with embedded spaces.

-l language Specifies the language to use. Among the languages currently
known are: Bourne shell (-lsh), C (-lc, the default), C++
(-lc++), C shell (-lcsh), emacs MLisp (-lml), FORTRAN (-lf),
Icon (-lI), ISP (-i), LDL (-lLDL), Model (-lm), Pascal (-lp), and
RATFOR (-lr).

-P printer Sends output to the named printer.

-s n Specifies a point size to use on output (exactly the same as the
argument of a troff .ps point size request).

vgrind passes the following options to the formatter specified by the TROFF
environment variable. See ENVIRONMENT VARIABLES.

-t Similar to the same option in troff; that is, formatted text goes to
the standard output.

-o pagelist Prints only those pages whose page numbers appear in the
comma-separated pagelist of numbers and ranges. A range N−M
means pages N through M; an initial -N means from the beginning
to page N; and a final N− means from N to the end.

-T output-device Formats output for the specified output-device.

The following operand is supported:

filename Name of the program source to be processed by vgrind. Use ‘−’ to
specify the standard input.

In regular mode, vgrind feeds its intermediate output to the text formatter given by
the value of the TROFF environment variable, or to /usr/bin/troff if this variable
is not defined in the environment. This mechanism allows for local variations in
troff’s name.

index
file where source for index is created

/usr/lib/vgrindefs
language descriptions

vgrind(1)

OPERANDS

ENVIRONMENT
VARIABLES

FILES

1638 man pages section 1: User Commands • Last Revised 3 Mar 2000

/usr/lib/vfontedpr
preprocessor

/usr/share/lib/tmac/tmac.vgrind
macro package

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

csh(1), ctags(1), eqn(1), tbl(1), troff(1), attributes(5), vgrindefs(5)

vgrind assumes that a certain programming style is followed:

C Function names can be preceded on a line only by SPACE, TAB, or
an asterisk (*). The parenthesized arguments must also be on the
same line.

FORTRAN Function names need to appear on the same line as the keywords
function or subroutine.

MLisp Function names should not appear on the same line as the
preceding defun.

Model Function names need to appear on the same line as the keywords
is beginproc.

Pascal Function names need to appear on the same line as the keywords
function or procedure.

If these conventions are not followed, the indexing and marginal function name
comment mechanisms will fail.

More generally, arbitrary formatting styles for programs usually give unsightly results.
To prepare a program for vgrind output, use TAB rather than SPACE characters to
align source code properly, since vgrind uses variable width fonts.

The mechanism of ctags(1) in recognizing functions should be used here.

The -w option is annoying, but there is no other way to achieve the desired effect.

The macros defined in tmac.vgrind do not coexist gracefully with those of other
macro packages, making filter mode difficult to use effectively.

vgrind does not process certain special characters in csh(1) scripts correctly.

vgrind(1)

ATTRIBUTES

SEE ALSO

BUGS

User Commands 1639

The tmac.vgrind formatting macros wire in the page height and width used in
two-column mode, effectively making two column output useless for paper sizes other
than the standard American size of 8.5 inches by 11 inches. For other paper sizes, it is
necessary to edit the size values given in tmac.vgrind. A better solution would be to
create a troff output device specification intended specifically for landscape output
and record size information there.

vgrind(1)

1640 man pages section 1: User Commands • Last Revised 3 Mar 2000

vi, view, vedit – screen-oriented (visual) display editor based on ex

/usr/bin/vi [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t tag] [-v]
[-V] [-x] [-wn] [-C] [+command | -c command]filename…

/usr/bin/view [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t tag]
[-v] [-V] [-x] [-wn] [-C] [+command | -c command]filename…

/usr/bin/vedit [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t tag]
[-v] [-V] [-x] [-wn] [-C] [+command | -c command]filename…

/usr/xpg4/bin/vi [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t tag]
[-v] [-V] [-x] [-wn] [-C] [+command | -c command]filename…

/usr/xpg4/bin/view [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t
tag] [-v] [-V] [-x] [-wn] [-C] [+command | -c command]filename…

/usr/xpg4/bin/vedit [-| -s] [-l] [-L] [-R] [-r [filename]] [-S] [-t
tag] [-v] [-V] [-x] [-wn] [-C] [+command | -c command]filename…

vi (visual) is a display-oriented text editor based on an underlying line editor ex. It is
possible to use the command mode of ex from within vi and to use the command
mode of vi from within ex. The visual commands are described on this manual page;
how to set options (like automatically numbering lines and automatically starting a
new output line when you type carriage return) and all ex line editor commands are
described on the ex(1) manual page.

When using vi, changes you make to the file are reflected in what you see on your
terminal screen. The position of the cursor on the screen indicates the position within
the file.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. It is the same as vi except that the
report flag is set to 1, the showmode and novice flags are set, and magic is turned
off. These defaults make it easier to learn how to use vi.

The following invocation options are interpreted by vi (previously documented
options are discussed in the NOTES section of this manual page):

− | -s Suppress all interactive user feedback. This
is useful when processing editor scripts.

-C Encryption option; same as the -x option,
except that vi simulates the C command of
ex. The C command is like the X command
of ex, except that all text read in is assumed
to have been encrypted.

-l Set up for editing LISP programs.

-L List the name of all files saved as the result
of an editor or system crash.

vi(1)

NAME

SYNOPSIS

DESCRIPTION

Invocation
Options

User Commands 1641

-r filename Edit filename after an editor or system crash.
(Recovers the version of filename that was in
the buffer when the crash occurred.)

-R Readonly mode; the readonly flag is set,
preventing accidental overwriting of the
file.

-S This option is used in conjunction with the
-t tag option to tell vi that the tags file
may not be sorted and that, if the binary
search (which relies on a sorted tags file) for
tag fails to find it, the much slower linear
search should also be done. Since the linear
search is slow, users of large tags files
should ensure that the tags files are sorted
rather than use this flag. Creation of tags
files normally produces sorted tags files. See
ctags(1) for more information on tags files.

-t tag Edit the file containing the tag, tag, and
position the editor at its definition.

-v Start up in display editing state using vi.
You can achieve the same effect by simply
typing the vi command itself.

-V Verbose. When ex commands are read by
means of standard input, the input will be
echoed to standard error. This may be
useful when processing ex commands
within shell scripts.

-wn Set the default window size to n. This is
useful when using the editor over a slow
speed line.

-x Encryption option; when used, vi simulates
the X command of ex and prompts the user
for a key. This key is used to encrypt and
decrypt text using the algorithm of the
crypt command. The X command makes
an educated guess to determine whether
text read in is encrypted or not. The
temporary buffer file is encrypted also,
using a transformed version of the key
typed in for the -x option. If an empty
encryption key is entered (that is, if the
return key is pressed right after the
prompt), the file will not be encrypted. This

vi(1)

1642 man pages section 1: User Commands • Last Revised 18 Jun 1998

is a good way to decrypt a file erroneously
encrypted with a mistyped encryption key,
such as a backspace or undo key.

+command | -c command Begin editing by executing the specified
editor command (usually a search or
positioning command).

If both the -t tag and the -c command options are given, the -t tag option will be
processed first. That is, the file containing tag is selected by -t and then the command
is executed.

The following operands are supported:

filename A file to be edited.

Command Normal and initial mode. Other modes return to command mode
upon completion. ESC (escape) is used to cancel a partial
command.

Input Entered by setting any of the following options:

a A i I o O c C s S RArbitrary text may then be entered.
Input mode is normally terminated with the ESC character, or,
abnormally, with an interrupt.

Last line Reading input for : / ? or !. Terminate by typing a carriage
return. An interrupt cancels termination.

In the descriptions, CR stands for carriage return and ESC stands for the escape key.

←
→
down-arrow
up-arrow arrow keys move the cursor

h j k l same as arrow keys

itextESC insert text

cwnewESC change word to new

easESC pluralize word (end of word; append s; escape from input state)

x delete a character

dw delete a word

dd delete a line

3dd delete 3 lines

u undo previous change

vi(1)

/usr/xpg4/bin/vi

OPERANDS

vi Modes

Sample commands

User Commands 1643

ZZ exit vi, saving changes

:q!CR quit, discarding changes

/textCR search for text

^U ^D scroll up or down

:cmdCR any ex or ed command

Numbers may be typed as a prefix to some commands. They are interpreted in one of
these ways:

line/column number z G |

scroll amount ^D ^U

repeat effect most of the rest

ESC end insert or incomplete command

DEL (delete or rubout) interrupts

ZZ if file modified, write and exit; otherwise, exit

:wCR write back changes

:w!CR forced write, if permission originally not valid

:qCR quit

:q!CR quit, discard changes

:e nameCR edit file name

:e!CR reedit, discard changes

:e + nameCR edit, starting at end

:e +nCR edit, starting at line n

:e #CR edit alternate file

:e! #CR edit alternate file, discard changes

:w nameCR write file name

:w! nameCR overwrite file name

:shCR run shell, then return

:!cmdCR run cmd, then return

:nCR edit next file in arglist

:n argsCR specify new arglist

^G show current file and line

:ta tagCR position cursor to tag

vi(1)

Counts before vi
commands

Interrupting,
canceling

File manipulation

1644 man pages section 1: User Commands • Last Revised 18 Jun 1998

In general, any ex or ed command (such as substitute or global) may be typed,
preceded by a colon and followed by a carriage return.

F forward screen

^B backward screen

^D scroll down half screen

^U scroll up half screen

nG go to the beginning of the specified line (end default), where n is a
line number

/pat next line matching pat

?pat previous line matching pat

n repeat last / or ? command

N reverse last / or ? command

/pat/+n nth line after pat

?pat?−n nth line before pat

]] next section/function

[[previous section/function

(beginning of sentence

) end of sentence

{ beginning of paragraph

} end of paragraph

% find matching () or { }

^L clear and redraw window

^R clear and redraw window if ^L is → key

zCR redraw screen with current line at top of window

z−CR redraw screen with current line at bottom of window

z.CR redraw screen with current line at center of window

/pat/z−CR move pat line to bottom of window

zn.CR use n−line window

^E scroll window down one line

^Y scroll window up one line

`` move cursor to previous context

´´ move cursor to first non-white space in line

vi(1)

Positioning within
file

Adjusting the
screen

Marking and
returning

User Commands 1645

mx mark current position with the ASCII lower-case letter x

`x move cursor to mark x

´x move cursor to first non-white space in line marked by x

H top line on screen

L last line on screen

M middle line on screen

+ next line, at first non-white space character

− previous line, at first non-white space character

CR return, same as +

down-arrow
or j next line, same column

up-arrow
or k previous line, same column

^ first non-white space character

0 beginning of line

$ end of line

l or → forward

h or ← backward

^H same as ← (backspace)

space same as → (space bar)

fx find next x

Fx find previous x

tx move to character following the next x

Tx move to character following the previous x

; repeat last f, F, t, or T

, repeat inverse of last f, F, t, or T

n| move to column n

% find matching () or { }

w forward a word

b back a word

e end of word

) to next sentence

vi(1)

Line positioning

Character
positioning

Words, sentences,
paragraphs

1646 man pages section 1: User Commands • Last Revised 18 Jun 1998

} to next paragraph

(back a sentence

{ back a paragraph

W forward a blank-delimited word

B back a blank-delimited word

E end of a blank-delimited word

^H erase last character (backspace)

^W erase last word

erase your erase character, same as ^H (backspace)

kill your kill character, erase this line of input

\ quotes your erase and kill characters

ESC ends insertion, back to command mode

CTRL−C interrupt, suspends insert mode

^D backtab one character; reset left margin of autoindent

^^D caret (^) followed by control-d (^D); backtab to beginning of line;
do not reset left margin of autoindent

0^D backtab to beginning of line; reset left margin of autoindent

^V quote non-printable character

a append after cursor

A append at end of line

i insert before cursor

I insert before first non-blank

o open line below

O open line above

rx replace single character with x

RtextESC replace characters

Operators are followed by a cursor motion and affect all text that would have been
moved over. For example, since w moves over a word, dw deletes the word that would
be moved over. Double the operator, for example dd, to affect whole lines.

d delete

c change

y yank lines to buffer

vi(1)

Corrections during
insert

Insert and replace

Operators

User Commands 1647

< left shift

> right shift

! filter through command

C change rest of line (c$)

D delete rest of line (d$)

s substitute characters (cl)

S substitute lines (cc)

J join lines

x delete characters (dl)

X delete characters before cursor dh)

Y yank lines (yy)

Put inserts the text most recently deleted or yanked; however, if a buffer is named
(using the ASCII lower-case letters a - z), the text in that buffer is put instead.

3yy yank 3 lines

3yl yank 3 characters

p put back text after cursor

P put back text before cursor

"xp put from buffer x

“xy yank to buffer x

“xd delete into buffer x

u undo last change

U restore current line

. repeat last change

“dp retrieve d’th last delete

See largefile(5) for the description of the behavior of vi and view when
encountering files greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of vi: LC_CTYPE, LC_TIME, LC_MESSAGES, and NLSPATH.

/var/tmp default directory where temporary work
files are placed; it can be changed using the
directory option (see the ex(1)
command)

/usr/share/lib/terminfo/?/* compiled terminal description database

vi(1)

Miscellaneous
Operations

Yank and Put

Undo, Redo,
Retrieve

USAGE

ENVIRONMENT
VARIABLES

FILES

1648 man pages section 1: User Commands • Last Revised 18 Jun 1998

/usr/lib/.COREterm/?/* subset of compiled terminal description
database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Not enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI Enabled

intro(1), ctags(1), ed(1), edit(1), ex(1), attributes(5), environ(5),
largefile(5), standards(5)

Solaris Advanced User’s Guide

vi and ex were developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and Computer
Science.

Two options, although they continue to be supported, have been replaced in the
documentation by options that follow the Command Syntax Standard (see intro(1)).
An -r option that is not followed with an option-argument has been replaced by -L
and +command has been replaced by -c command.

The message file too large to recover with -r option, which is seen when
a file is loaded, indicates that the file can be edited and saved successfully, but if the
editing session is lost, recovery of the file with the -r option will not be possible.

The editing environment defaults to certain configuration options. When an editing
session is initiated, vi attempts to read the EXINIT environment variable. If it exists,
the editor uses the values defined in EXINIT; otherwise the values set in
$HOME/.exrc are used. If $HOME/.exrc does not exist, the default values are used.

To use a copy of .exrc located in the current directory other than $HOME, set the exrc
option in EXINIT or $HOME/.exrc . Options set in EXINIT can be turned off in a
local .exrc only if exrc is set in EXINIT or $HOME/.exrc.

Tampering with entries in /usr/share/lib/terminfo/?/* or
/usr/share/lib/terminfo/?/* (for example, changing or removing an entry) can
affect programs such as vi that expect the entry to be present and correct. In
particular, removing the "dumb" terminal may cause unexpected problems.

vi(1)

ATTRIBUTES

/usr/bin/vedit

/usr/xpg4/bin/vedit

SEE ALSO

AUTHOR

NOTES

User Commands 1649

Software tabs using ^T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete
character operations in the terminal.

The standard Solaris version of vi will be replaced by the POSIX.2-conforming
version (see standards(5)) in the future. Scripts which use the ex family of
addressing and features should use the /usr/xpg4/bin version of these utilities.

vi(1)

1650 man pages section 1: User Commands • Last Revised 18 Jun 1998

vipw – edit the password file

/usr/ucb/vipw

vipw edits the password file while setting the appropriate locks, and does any
necessary processing after the password file is unlocked. If the password file is already
being edited, then you will be told to try again later. The vi(1) editor will be used
unless the environment variable VISUAL or EDITOR indicates an alternate editor.

vipw performs a number of consistency checks on the password entry for root, and
will not allow a password file with a “mangled” root entry to be installed. It also
checks the /etc/shells file to verify the login shell for root.

/etc/ptmp

/etc/shells

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

passwd(1), vi(1), passwd(4), attributes(5)

vipw(1B)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

User Commands 1651

volcancel – cancel user’s request for removable media that is not currently in drive

/usr/lib/vold/volcancel [-n] [volume]

volcancel cancels a user’s request to access a particular floppy or CD-ROM file
system. This command is useful when the removable media containing the file system
is not currently in the drive.

Use the path /vol/rdsk/name_of_volume to specify the volume. If called without a
volume name to cancel, volcancel checks for Volume Management running.

-n Display the nickname to the device name translation table.

EXAMPLE 1 A sample of the volcancel command.

To cancel a request to access an unnamed CD-ROM, use

example% /usr/lib/vold/volcancel vol/rdsk/unnamed_cdrom

To check if volume management is running, use:

example% /usr/lib/vold/volcancel || echo volmgmt not running

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

rmmount(1M), volcheck(1), vold(1M), volmissing(1), rmmount.conf(4),
vold.conf(4), attributes(5), volfs(7FS)

volcancel(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

SEE ALSO

1652 man pages section 1: User Commands • Last Revised 7 Apr 1994

volcheck – checks for media in a drive and by default checks all floppy media

volcheck [-v] [-i secs] [-t secs] pathname

The volcheck utility tells Volume Management to look at each dev/pathname in
sequence and determine if new media has been inserted in the drive.

The default action is to volcheck all checkable media managed by volume
management.

The following options are supported:

-i secs Set the frequency of device checking to secs seconds. The default is 2
seconds. The minimum frequency is 1 second.

-t secs Check the named device(s) for the next secs seconds. The maximum
number of seconds allowed is 28800, which is 8 hours. The frequency of
checking is specified by -i. There is no default total time.

-v Verbose.

The following operands are supported:

pathname The path name of a media device.

EXAMPLE 1 A sample of the volcheck command.

The following example

example% volcheck −v /dev/diskette
/dev/diskette has media

asks Volume Management to examine the floppy drive for new media.

The following example

example% volcheck −i 2 −t 600 /dev/diskette1 &

asks Volume Management if there is a floppy in the floppy drive every 2 seconds for
600 seconds (10 minutes).

/dev/volctl Volume Management control port

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

eject(1), volcancel(1), volmissing(1) rmmount(1M), vold(1M),
rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)

volcheck(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

User Commands 1653

Due to a hardware limitation in many floppy drives, the act of checking for media
causes mechanical action in the floppy drive. Continuous polling of the
floppy drive will cause the drive to wear out. It is recommended that
polling the drive only be performed during periods of high use.

volcheck(1)

WARNINGS

1654 man pages section 1: User Commands • Last Revised 21 Feb 1997

volmissing – notify user that volume requested is not in the CD-ROM or floppy drive

/usr/lib/vold/volmissing [-c] [-p] [-s] [-m alias]

volmissing informs a user when a requested volume is not available. Depending on
the option selected, users are notified through their console window, syslogd(1M), or
a mail message.

volmissing -p is the default action taken by vold(1M), the Volume Management
daemon, when it needs to notify a user that the requested volume is not available. If
you want to change this default event, modify the /etc/vold.conf file. See
vold.conf(4).

You can change the notification method for your system by editing the vold.conf
configuration file and providing a new option for volmissing in the notify entry
under the Events category.

-c Send a message to the user’s console requesting the volume be
inserted. To end the notification without inserting the requested
volume, use volcancel(1).

-p All volmissing events will be handled through a GUI, provided
a window system is running on the console. If this option is
specified, and no window system is running, all messages go to
the system console.

-s Send one message to the syslogd(1M).

-m alias Send a mail message to the specified mail alias about the missing
volume.

/etc/vold.conf
Volume Management daemon configuration file. Directs the Volume Management
daemon to control certain devices, and causes action to be taken when specific
criteria is met.

/usr/lib/vold/volmissing_popup
Pop-up used when the -p option is supplied and a window system is running.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

volcancel(1), volcheck(1), rmmount(1M), syslogd(1M), vold(1M),
rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)

volmissing(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

User Commands 1655

volrmmount – call rmmount to mount or unmount media

volrmmount [-i | -e] [name | nickname]

volrmmount [-d]

The volrmmount utility calls rmmount(1M) to, in effect, simulate an insertion (-i) or
an ejection (-e). Simulating an insertion often means that rmmount will mount the
media. Conversely, simulating an ejection often means that rmmount will unmount
the media. However, these actions can vary depending on the rmmount configuration
and media type (see rmmount.conf(4)).

For example, if you use the default /etc/rmmount.conf and insert a music CD, it
will not be mounted. However, you can configure rmmount so that it calls workman
whenever a music CD is inserted.

This command allows you to override Volume Management’s usual handling of media
(see EXAMPLES below).

The following options are supported:

-i Simulates an insertion of the specified media by calling rmmount.

-e Simulates an ejection of the specified media by calling rmmount.

-d Displays the name of the default device for volrmmount to handle. This
device is used if no name or nickname is supplied.

The following operands are supported:

name The name that Volume Management recognizes as the device’s
name. See volfs(7FS).

nickname A shortened version of the device’s name. Following is the list of
recognized nicknames:

Nickname Path

fd /dev/rdiskette

fd0 /dev/rdiskette

fd1 /dev/rdiskette1

diskette /dev/rdiskette

diskette0 /dev/rdiskette0

diskette1 /dev/rdiskette1

rdiskette /dev/rdiskette

rdiskette0 /dev/rdiskette0

volrmmount(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

1656 man pages section 1: User Commands • Last Revised 30 Aug 2000

Nickname Path

rdiskette1 /dev/rdiskette1

floppy /dev/rdiskette

floppy0 /dev/rdiskette0

floppy1 /dev/rdiskette1

cdrom0 /vol/dev/rdsk/cXtYdZ/label

zip0 /vol/dev/rdsk/cXtYdZ/label

jaz0 /vol/dev/rdsk/cXtYdZ/label

rmdisk0 /vol/dev/rdsk/cXtYdZ/label

EXAMPLE 1 Using the volrmmount command

When Volume Management finds a floppy that contains a filesystem, it calls rmmount
to mount it. If you wish to run tar(1) or cpio(1) on that floppy, it must first be
unmounted. To unmount the floppy use:

example% volrmmount −e floppy0

After volrmmount unmounts the floppy, if you wish to re-mount it (rather than
ejecting it and reinserting it) use:

example% volrmmount −i floppy0

Notice that if you are using a named floppy, you can use its name in place of
floppy0.

/dev/volctl Volume Management control port

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

cpio(1), eject(1), tar(1), rmmount(1M), vold(1M), rmmount.conf(4),
attributes(5), volfs(7FS)

Volume Management (vold) must be running to use this command.

volrmmount(1)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1657

vsig – synchronize a co-process with the controlling FMLI application

vsig

The vsig executable sends a SIGUSR2 signal to the controlling FMLI process. This
signal/alarm causes FMLI to execute the FMLI built-in command checkworld which
causes all posted objects with a reread descriptor evaluating to TRUE to be reread.
vsig takes no arguments.

EXAMPLE 1 A sample output of vsig command.

The following is a segment of a shell program:

echo "Sending this string to an FMLI process"
vsig

The vsig executable will flush the output buffer before it sends the SIGUSR2 signal to
make sure the string is actually in the pipe created by the cocreate function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

coproc(1F), kill(1), kill(2), signal(3C), attributes(5)

Because vsig synchronize with FMLI, it should be used rather than kill to send a
SIGUSR2 signal to FMLI.

vsig(1F)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

1658 man pages section 1: User Commands • Last Revised 5 Jul 1990

w – display information about currently logged-in users

w [-hlsuw] [user]

The w command displays a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time, the length of time
the system has been up, the number of users logged into the system, and the average
number of jobs in the run queue over the last 1, 5 and 15 minutes.

The fields displayed are: the user’s login name, the name of the tty the user is on, the
time of day the user logged on (in hours:minutes), the idle time—that is, the number of
minutes since the user last typed anything (in hours:minutes), the CPU time used by all
processes and their children on that terminal (in minutes:seconds), the CPU time used
by the currently active processes (in minutes:seconds), and the name and arguments of
the current process.

The following options are supported:

-h Suppresses the heading.

-l Produces a long form of output, which is the default.

-s Produces a short form of output. In the short form, the tty is abbreviated,
the login time and CPU times are left off, as are the arguments to
commands.

-u Produces the heading line which shows the current time, the length of time
the system has been up, the number of users logged into the system, and
the average number of jobs in the run queue over the last 1, 5 and 15
minutes.

-w Produces a long form of output, which is also the same as the default.

user Name of a particular user for whom login information is displayed. If
specified, output is restricted to that user.

EXAMPLE 1 Sample Output From the w Command

example% w
10:54am up 27 day(s), 57 mins, 1 user, load average: 0.28, 0.26, 0.22
User tty login@ idle JCPU PCPU what

ralph console 7:10am 1 10:05 4:31 w

example% w
10:54am up 27 day(s), 57 mins, 1 user, load average: 0.28, 0.26, 0.22
User tty login@ idle JCPU PCPU what

ralph console 7:10am 1 10:05 4:31 w

See environ(5) for descriptions of the following environment variables that affect the
execution of w: LC_CTYPE, LC_MESSAGES, and LC_TIME.

/var/adm/utmpx user and accounting information

w(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

FILES

User Commands 1659

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ps(1), who(1), whodo(1M), utmpx(4), attributes(5), environ(5)

The notion of the ‘‘current process’’ is unclear. The current algorithm is ‘the highest
numbered process on the terminal that is not ignoring interrupts, or, if there is none,
the highest numbered process on the terminal’. This fails, for example, in critical
sections of programs like the shell and editor, or when faulty programs running in the
background fork and fail to ignore interrupts. In cases where no process can be found,
w prints −.

The CPU time is only an estimate, in particular, if someone leaves a background
process running after logging out, the person currently on that terminal is ‘‘charged’’
with the time.

Background processes are not shown, even though they account for much of the load
on the system.

Sometimes processes, typically those in the background, are printed with null or
garbaged arguments. In these cases, the name of the command is printed in
parentheses.

w does not know about the conventions for detecting background jobs. It will
sometimes find a background job instead of the right one.

w(1)

ATTRIBUTES

SEE ALSO

NOTES

1660 man pages section 1: User Commands • Last Revised 3 Nov 2000

wait – await process completion

wait [pid…]

wait [pid…]

wait [% jobid…]

wait

The shell itself executes wait, without creating a new process. If you get the error
message cannot fork, too many processes, try using the wait command to
clean up your background processes. If this doesn’t help, the system process table is
probably full or you have too many active foreground processes. (There is a limit to
the number of process IDs associated with your login, and to the number the system
can keep track of.)

Not all the processes of a pipeline with three or more stages are children of the shell,
and thus cannot be waited for.

Wait for your background process whose process ID is pid and report its termination
status. If pid is omitted, all your shell’s currently active background processes are
waited for and the return code will be 0. The wait utility accepts a job identifier,
when Job Control is enabled (jsh), and the argument, jobid, is preceded by a percent
sign (%).

If pid is not an active process ID, the wait utility will return immediately and the
return code will be 0.

Wait for your background processes.

When an asynchronous list is started by the shell, the process ID of the last command
in each element of the asynchronous list becomes known in the current shell execution
environment.

If the wait utility is invoked with no operands, it will wait until all process IDs
known to the invoking shell have terminated and exit with an exit status of 0.

If one or more pid or jobid operands are specified that represent known process IDs (or
jobids), the wait utility will wait until all of them have terminated. If one or more pid
or jobid operands are specified that represent unknown process IDs (or jobids), wait
will treat them as if they were known process IDs (or jobids) that exited with exit
status 127. The exit status returned by the wait utility will be the exit status of the
process requested by the last pid or jobid operand.

The known process IDs are applicable only for invocations of wait in the current shell
execution environment.

The following operands are supported:

One of the following:

wait(1)

NAME

/bin/sh

/bin/jsh
/bin/ksh

/usr/xpg4/bin/sh

/bin/csh

DESCRIPTION

/bin/sh,
/bin/jsh

csh

ksh

OPERANDS

User Commands 1661

pid The unsigned decimal integer process ID of a command, for which the
utility is to wait for the termination.

jobid A job control job ID that identifies a background process group to be
waited for. The job control job ID notation is applicable only for invocations
of wait in the current shell execution environment, and only on systems
supporting the job control option.

On most implementations, wait is a shell built-in. If it is called in a subshell or
separate utility execution environment, such as one of the following,

(wait)
nohup wait . . .

find . -exec wait . . . \;it will return immediately because there will be no known
process IDs to wait for in those environments.

EXAMPLE 1 Using A Script To Identify The Termination Signal

For Although the exact value used when a process is terminated by a signal is
unspecified, if it is known that a signal terminated a process, a script can still reliably
figure out which signal is using kill, as shown by the following (/bin/ksh and
/usr/xpg4/bin/sh):

sleep 1000&
pid=$!
kill -kill $pid
wait $pid
echo $pid was terminated by a SIG$(kill -l $(($?−128))) signal.

EXAMPLE 2 Returning The Exit Status Of A Process

If the following sequence of commands is run in less than 31 seconds (/bin/ksh and
/usr/xpg4/bin/sh):

sleep 257 | sleep 31 &

jobs -l %%

then either of the following commands will return the exit status of the second sleep
in the pipeline:

wait <pid of sleep 31>
wait %%

See environ(5) for descriptions of the following environment variables that affect the
execution of wait: LC_CTYPE, LC_MESSAGES, and NLSPATH.

See attributes(5) for descriptions of the following attributes:

wait(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

ATTRIBUTES

1662 man pages section 1: User Commands • Last Revised 12 Dec 1997

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), jobs(1), ksh(1), sh(1), attributes(5), environ(5)

wait(1)

SEE ALSO

User Commands 1663

wc – display a count of lines, words and characters in a file

wc [-c | -m | -C] [-lw] [file…]

The wc utility reads one or more input files and, by default, writes the number of
newline characters, words and bytes contained in each input file to the standard
output.

The utility also writes a total count for all named files, if more than one input file is
specified.

wc considers a word to be a non-zero-length string of characters delimited by white
space (for example, SPACE, TAB). See iswspace(3C) or isspace(3C).

The following options are supported:

-c Count bytes.

-m Count characters.

-C Same as -m.

-l Count lines.

-w Count words delimited by white space characters or new line characters.
Delimiting characters are Extended Unix Code (EUC) characters from any
code set defined by iswspace().

If no option is specified the default is -lwc (count lines, words, and bytes.)

The following operand is supported:

file A path name of an input file. If no file operands are specified, the standard
input will be used.

See largefile(5) for the description of the behavior of wc when encountering files
greater than or equal to 2 Gbyte (231 bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of wc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

wc(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

1664 man pages section 1: User Commands • Last Revised 20 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

cksum(1), isspace(3C), iswalpha(3C), iswspace(3C), setlocale(3C),
attributes(5), environ(5), largefile(5)

wc(1)

SEE ALSO

User Commands 1665

what – extract SCCS version information from a file

what [-s] filename…

what searches each filename for occurrences of the pattern @(#) that the SCCS get
command (see sccs-get(1)) substitutes for the @(#) ID keyword, and prints what
follows up to a ", >, NEWLINE, \, or null character.

The following option is supported:

-s Stop after the first occurrence of the pattern.

EXAMPLE 1 Extracting SCCS version information

If a C program in file program.c contains

char sccsid[] = " @(#)identification information ";

and program.c is compiled to yield program.o and a.out, the command:

example% what program.c program.o a.outproduces:

program.c: identification information

program.o: identification information

a.out: identification information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

sccs(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1),
sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1), sccs-rmdel(1),
sccs-sact(1), sccs-sccsdiff(1), sccs-unget(1), sccs-val(1), sccsfile(4),
attributes(5)

Use the SCCS help command for explanations (see sccs-help(1)).

There is a remote possibility that a spurious occurrence of the ‘@(#)’ pattern could be
found by what.

what(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

BUGS

1666 man pages section 1: User Commands • Last Revised 1 Nov 1999

whatis – display a one-line summary about a keyword

whatis command…

whatis looks up a given command and displays the header line from the manual
section. You can then run the man(1) command to get more information. If the line
starts ‘name(section) . . .’ you can do ‘man -s section name’ to get the
documentation for it. Try ‘whatis ed’ and then you should do ‘man -s 1 ed’ to get
the manual page for ed(1).

whatis is actually just the -f option to the man(1) command.

whatis uses the /usr/share/man/windex database. This database is created by
catman(1M). If this database does not exist, whatis will fail.

/usr/share/man/windex Table of contents and keyword database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

CSI enabled

apropos(1), man(1), catman(1M), attributes(5)

whatis(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

User Commands 1667

whereis – locate the binary, source, and manual page files for a command

/usr/ucb/whereis [-bmsu] [-BMS directory… -f] filename…

The whereis utility locates source/binary and manuals sections for specified files.
The supplied names are first stripped of leading pathname components and any
(single) trailing extension of the form .ext, for example, .c. Prefixes of s. resulting
from use of source code control are also dealt with. whereis then attempts to locate
the desired program in a list of standard places:

etc
/sbin
/usr/bin
/usr/ccs/bin
/usr/ccs/lib
/usr/lang
/usr/lbin
/usr/lib
/usr/sbin
/usr/ucb
/usr/ucblib
/usr/ucbinclude
/usr/games
/usr/local
/usr/local/bin
/usr/new
/usr/old
/usr/hosts
/usr/include
/usr/etc

The following options are supported:

-b Searches only for binaries.

-B Changes or otherwise limits the places where whereis searches for
binaries.

-f Terminates the last directory list and signals the start of file names, and
must be used when any of the -B, -M, or -S options are used.

-m Searches only for manual sections.

-M Changes or otherwise limits the places where whereis searches for
manual sections.

-s Searches only for sources.

-S Changes or otherwise limit the places where whereis searches for sources.

-u Searches for unusual entries. A file is said to be unusual if it does not have
one entry of each requested type. Thus ‘whereis -m -u *’ asks for
those files in the current directory which have no documentation.

whereis(1B)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1668 man pages section 1: User Commands • Last Revised 10 Jan 2000

EXAMPLE 1 Finding files

Find all files in /usr/bin which are not documented in /usr/share/man/man1
with source in /usr/src/cmd:

example% cd /usr/ucb

example% whereis -u -M /usr/share/man/man1 -S /usr/src/cmd -f *

/usr/src/*

/usr/{doc,man}/*

/etc, /usr/{lib,bin,ucb,old,new,local}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

chdir(2), attributes(5)

Since whereis uses chdir(2) to run faster, pathnames given with the -M, -S, or -B
must be full; that is, they must begin with a ‘/’.

whereis(1B)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

BUGS

User Commands 1669

which – locate a command; display its pathname or alias

which [filename…]

which takes a list of names and looks for the files which would be executed had these
names been given as commands. Each argument is expanded if it is aliased, and
searched for along the user’s path. Both aliases and path are taken from the user’s
.cshrc file.

~/.cshrc source of aliases and path values

/usr/bin/which

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

csh(1), attributes(5)

A diagnostic is given for names which are aliased to more than a single word, or if an
executable file with the argument name was not found in the path.

which is not a shell built-in command; it is the UNIX command, /usr/bin/which

Only aliases and paths from ~/.cshrc are used; importing from the current
environment is not attempted. Must be executed by csh(1), since only csh knows
about aliases.

To compensate for ~/.cshrc files in which aliases depend upon the prompt variable
being set, which sets this variable to NULL. If the ~/.cshrc produces output or
prompts for input when prompt is set, which may produce some strange results.

which(1)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

BUGS

1670 man pages section 1: User Commands • Last Revised 26 Sep 1992

who – who is on the system

/usr/bin/who [-abdHlmpqrstTu] [file]

/usr/bin/who -q [-n x] [file]

/usr/bin/who am i

/usr/bin/who am I

/usr/xpg4/bin/who [-abdHlmpqrtTu] [file]

/usr/xpg4/bin/who -q [-n x] [file]

/usr/xpg4/bin/who -s [-bdHlmpqrtu] [file]

/usr/xpg4/bin/who am i

/usr/xpg4/bin/who am I

The who utility can list the user’s name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command interpreter (shell) for
each current UNIX system user. It examines the /var/adm/utmpx file to obtain its
information. If file is given, that file (which must be in utmpx(4) format) is examined.
Usually, file will be /var/adm/wtmpx, which contains a history of all the logins since
the file was last created.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit]

where:

name User’s login name

state Capability of writing to the terminal

line Name of the line found in /dev

time Time since user’s login

idle Time elapsed since the user’s last activity

pid User’s process id

comment Comment line in inittab(4)

exit Exit status for dead processes

The following options are supported:

-a Processes /var/adm/utmpx or the named file with -b, -d, -l, -p, -r, -t,
-T, and -u options turned on.

-b Indicates the time and date of the last reboot.

who(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1671

-d Displays all processes that have expired and not been respawned by init.
The exit field appears for dead processes and contains the termination
and exit values (as returned by wait(3UCB)), of the dead process. This can
be useful in determining why a process terminated.

-H Outputs column headings above the regular output.

-l Lists only those lines on which the system is waiting for someone to login.
The name field is LOGIN in such cases. Other fields are the same as for user
entries except that the state field does not exist.

-m Outputs only information about the current terminal.

-n x Takes a numeric argument, x, which specifies the number of users to
display per line. x must be at least 1. The -n option can only be used with
-q.

-p Lists any other process that is currently active and has been previously
spawned by init. The name field is the name of the program executed by
init as found in /sbin/inittab. The state, line, and idle fields have no
meaning. The comment field shows the id field of the line from
/sbin/inittab that spawned this process. See inittab(4).

-q (Quick who) Displays only the names and the number of users currently
logged on. When this option is used, all other options are ignored.

-r Indicates the current run-level of the init process.

-s (Default) Lists only the name, line, and time fields.

-T Same as the -s option, except that the state idle, pid, and comment, fields are
also written. state is one of the following characters:

+ The terminal allows write access to other users.

− The terminal denies write access to other users.

? The terminal write-access state cannot be determined.

-T Same as the -s option, except that the state field is also written. state is one
of the characters listed under the /usr/bin/who version of this option. If
the -u option is used with -T, the idle time is added to the end of the
previous format.

-t Indicates the last change to the system clock (using the date utility) by
root. See su(1M) and date(1).

-u Lists only those users who are currently logged in. The name is the user’s
login name. The line is the name of the line as found in the directory /dev.
The time is the time that the user logged in. The idle column contains the
number of hours and minutes since activity last occurred on that particular
line. A dot (.) indicates that the terminal has seen activity in the last
minute and is therefore ‘‘current.’’ If more than twenty-four hours have
elapsed or the line has not been used since boot time, the entry is marked

who(1)

/usr/bin/who

/usr/xpg4/bin/who

1672 man pages section 1: User Commands • Last Revised 3 Nov 2000

old. This field is useful when trying to determine whether a person is
working at the terminal or not. The pid is the process-ID of the user’s shell.
The comment is the comment field associated with this line as found in
/sbin/inittab (see inittab(4)). This can contain information about
where the terminal is located, the telephone number of the dataset, type of
terminal if hard-wired, and so forth.

The following operands are supported:

am i
am I In the "C" locale, limits the output to describing the invoking user,

equivalent to the -m option. The am and i or I must be separate
arguments.

file Specifies a path name of a file to substitute for the database of logged-on
users that who uses by default.

See environ(5) for descriptions of the following environment variables that affect the
execution of who: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

/sbin/inittab Script for init

/var/adm/utmpx Current user and accounting information

/var/adm/wtmpx Historic user and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

date(1), login(1), mesg(1), init(1M), su(1M), wait(3UCB), inittab(4), utmpx(4),
attributes(5), environ(5), XPG4(5)

Super user: After a shutdown to the single-user state, who returns a prompt; since
/var/adm/utmpx is updated at login time and there is no login in single-user state,
who cannot report accurately on this state. who am i, however, returns the correct
information.

who(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

/usr/bin/who

/usr/xpg4/bin/who

SEE ALSO

NOTES

User Commands 1673

whoami – display the effective current username

/usr/ucb/whoami

whoami displays the login name corresponding to the current effective user ID. If you
have used su to temporarily adopt another user, whoami will report the login name
associated with that user ID. whoami gets its information from the geteuid and
getpwuid library routines (see getuid and getpwnam(3C), respectively).

/etc/passwd username data base

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

su(1M), who(1), getuid(2), getpwnam(3C), attributes(5)

whoami(1B)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

1674 man pages section 1: User Commands • Last Revised 14 Sep 1992

whocalls – report on the calls to a specific procedure

/usr/ccs/bin/whocalls [-l wholib] [-s] funcname executable [arguments…]

whocalls is a simple example of a utility based on the Link-Auditing functionality of
ld.so.1(1) that permits the tracking of a given function call. See the Linker and
Libraries Guide for a detailed description of the Link-Auditing mechanism. The
executable is run as normal with any associated arguments. Each time the procedure
funcname is called, both the arguments to that procedure and a stack trace are
displayed on standard output.

The following options are supported:

-l wholib Specifies an alternate who.so Link-Auditing library to use.

-s When available, examines and uses the .symtab symbol table for
local symbols. This is a little more expensive than using the
.dynsym symbol table, but can produce more detailed stack trace
information.

EXAMPLE 1 Tracking function calls

This example tracks the calls to printf() made by a simple helloworld program:

example% whocalls printf helloworld
printf(0x106e4, 0xef625310, 0xef621ba8)

helloworld:main+0x10
helloworld:_start+0x5c

Hello World

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

ld.so.1(1), sotruss(1), attributes(5)

Linker and Libraries Guide

whocalls(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

SEE ALSO

User Commands 1675

whois – Internet user name directory service

whois [-h host] identifier

whois searches for an Internet directory entry for an identifier which is either a name
(such as ‘‘Smith’’) or a handle (such as ‘‘SRI-NIC’’). To force a name-only search,
precede the name with a period; to force a handle-only search, precede the handle
with an exclamation point.

To search for a group or organization entry, precede the argument with * (an asterisk).
The entire membership list of the group will be displayed with the record.

You may of course use an exclamation point and asterisk, or a period and asterisk
together.

EXAMPLE 1 Using The whois Command

The command:

example% whois Smith

looks for the name or handle SMITH.

The command:

example% whois !SRI-NIC

looks for the handle SRI-NIC only.

The command:

example% whois .Smith, John

looks for the name JOHN SMITH only.

Adding . . . to the name or handle argument will match anything from that point;
that is, ZU . . . will match ZUL, ZUM, and so on.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

attributes(5)

whois(1)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

1676 man pages section 1: User Commands • Last Revised 6 Nov 2000

write – write to another user

write user [terminal]

The write utility reads lines from the user’s standard input and writes them to the
terminal of another user. When first invoked, it writes the message:

Message from sender-login-id (sending-terminal) [date]...

to user. When it has successfully completed the connection, the sender’s terminal will
be alerted twice to indicate that what the sender is typing is being written to the
recipient’s terminal.

If the recipient wants to reply, this can be accomplished by typing

write sender-login-id [sending-terminal]upon receipt of the initial message. Whenever a line of
input as delimited by a NL, EOF, or EOL special character is accumulated while in
canonical input mode, the accumulated data will be written on the other user’s
terminal. Characters are processed as follows:

� Typing the alert character will write the alert character to the recipient’s terminal.
� Typing the erase and kill characters will affect the sender’s terminal in the manner

described by the termios(3C) interface.
� Typing the interrupt or end-of-file characters will cause write to write an

appropriate message (EOT\n in the "C" locale) to the recipient’s terminal and exit.
� Typing characters from LC_CTYPE classifications print or space will cause those

characters to be sent to the recipient’s terminal.
� When and only when the stty iexten local mode is enabled, additional special

control characters and multi-byte or single-byte characters are processed as
printable characters if their wide character equivalents are printable.

� Typing other non-printable characters will cause them to be written to the
recipient’s terminal as follows: control characters will appear as a ‘^’ followed by
the appropriate ASCII character, and characters with the high-order bit set will
appear in “meta” notation. For example, ‘\003’ is displayed as ‘^C’ and ‘\372’ as
‘M−z’.

To write to a user who is logged in more than once, the terminal argument can be used
to indicate which terminal to write to; otherwise, the recipient’s terminal is the first
writable instance of the user found in /usr/adm/utmpx, and the following
informational message will be written to the sender’s standard output, indicating
which terminal was chosen:

user is logged on more than one place.
You are connected to terminal.
Other locations are:terminalPermission to be a recipient of a write message can be
denied or granted by use of the mesg utility. However, a user’s privilege may further
constrain the domain of accessibility of other users’ terminals. The write utility will
fail when the user lacks the appropriate privileges to perform the requested action.

write(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 1677

If the character ! is found at the beginning of a line, write calls the shell to execute
the rest of the line as a command.

write runs setgid() (see setuid(2)) to the group ID tty, in order to have write
permissions on other user’s terminals.

The following protocol is suggested for using write: when you first write to another
user, wait for them to write back before starting to send. Each person should end a
message with a distinctive signal (that is, (o) for ‘‘over’’) so that the other person
knows when to reply. The signal (oo) (for ‘‘over and out’’) is suggested when
conversation is to be terminated.

The following operands are supported:

user User (login) name of the person to whom the message will be
written. This operand must be of the form returned by the who(1)
utility.

terminal Terminal identification in the same format provided by the who
utility.

See environ(5) for descriptions of the following environment variables that affect the
execution of write: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.

>0 The addressed user is not logged on or the addressed user denies
permission.

/var/adm/utmpx user and accounting information for write

/usr/bin/sh Bourne shell executable file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

mail(1), mesg(1), pr(1), sh(1), talk(1), who(1), setuid (2), termios(3C),
attributes(5), environ(5)

user is not logged on
The person you are trying to write to is not logged on.

Permission denied
The person you are trying to write to denies that permission (with mesg).

write(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

1678 man pages section 1: User Commands • Last Revised 3 Nov 2000

Warning: cannot respond, set mesg -y
Your terminal is set to mesg n and the recipient cannot respond to you.

Can no longer write to user
The recipient has denied permission (mesg n) after you had started writing.

write(1)

User Commands 1679

xargs – construct argument lists and invoke utility

xargs [-t] [-p] [-e [eofstr]] [-E eofstr] [-I replstr] [-i [replstr]]
[-L number] [-l [number]] [-n number [-x]] [-s size] [utility
[argument. ..]]

The xargs utility constructs a command line consisting of the utility and argument
operands specified followed by as many arguments read in sequence from standard
input as will fit in length and number constraints specified by the options. The xargs
utility then invokes the constructed command line and waits for its completion. This
sequence is repeated until an end-of-file condition is detected on standard input or an
invocation of a constructed command line returns an exit status of 255.

Arguments in the standard input must be separated by unquoted blank characters, or
unescaped blank characters or newline characters. A string of zero or more
non-double-quote (") and non-newline characters can be quoted by enclosing them in
double-quotes. A string of zero or more non-apostrophe (’) and non-newline
characters can be quoted by enclosing them in apostrophes. Any unquoted character
can be escaped by preceding it with a backslash (\). The utility will be executed one or
more times until the end-of-file is reached. The results are unspecified if the utility
named by utility attempts to read from its standard input.

The generated command line length will be the sum of the size in bytes of the utility
name and each argument treated as strings, including a null byte terminator for each
of these strings. The xargs utility will limit the command line length such that when
the command line is invoked, the combined argument and environment lists will not
exceed {ARG_MAX}−2048 bytes. Within this constraint, if neither the -n nor the -s
option is specified, the default command line length will be at least {LINE_MAX}.

The following options are supported:

-e[eofstr] Use eofstr as the logical end-of-file string. Underscore (_) is
assumed for the logical EOF string if neither -e nor -E is used.
When the -eofstr option-argument is omitted, the logical EOF
string capability is disabled and underscores are taken literally.
The xargs utility reads standard input until either end-of-file or
the logical EOF string is encountered.

-E eofstr Specify a logical end-of-file string to replace the default
underscore. The xargs utility reads standard input until either
end-of-file or the logical EOF string is encountered.

-I replstr Insert mode. utility will be executed for each line from standard
input, taking the entire line as a single argument, inserting it in
argument s for each occurrence of replstr. A maximum of five
arguments in arguments can each contain one or more instances of
replstr. Any blank characters at the beginning of each line are
ignored. Constructed arguments cannot grow larger than 255
bytes. Option -x is forced on. The -I and -i options are mutually
exclusive; the last one specified takes effect.

xargs(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1680 man pages section 1: User Commands • Last Revised 1 Feb 1995

-i[replstr] This option is equivalent to -I replstr. The string { } is assumed
for replstr if the option-argument is omitted.

-L number The utility will be executed for each non-empty number lines of
arguments from standard input. The last invocation of utility will
be with fewer lines of arguments if fewer than number remain. A
line is considered to end with the first newline character unless the
last character of the line is a blank character; a trailing blank
character signals continuation to the next non-empty line,
inclusive. The -L, -l, and -n options are mutually exclusive; the
last one specified takes effect.

-l[number] (The letter ell.) This option is equivalent to -L number. If number is
omitted, 1 is assumed. Option -x is forced on.

-n number Invoke utility using as many standard input arguments as possible,
up to number (a positive decimal integer) arguments maximum.
Fewer arguments will be used if:

� The command line length accumulated exceeds the size
specified by the -s option (or {LINE_MAX} if there is no -s
option), or

� The last iteration has fewer than number, but not zero, operands
remaining.

-p Prompt mode. The user is asked whether to execute utility at each
invocation. Trace mode (-t) is turned on to write the command
instance to be executed, followed by a prompt to standard error.
An affirmative response (specific to the user’s locale) read from
/dev/tty will execute the command; otherwise, that particular
invocation of utility is skipped.

-s size Invoke utility using as many standard input arguments as possible
yielding a command line length less than size (a positive decimal
integer) bytes. Fewer arguments will be used if:

� The total number of arguments exceeds that specified by the -n
option, or

� The total number of lines exceeds that specified by the -L
option, or

� End of file is encountered on standard input before size bytes
are accumulated.

Values of size up to at least {LINE_MAX} bytes are supported,
provided that the constraints specified in DESCRIPTION are met.
It is not considered an error if a value larger than that supported
by the implementation or exceeding the constraints specified in
DESCRIPTION is given; xargs will use the largest value it
supports within the constraints.

xargs(1)

User Commands 1681

-t Enable trace mode. Each generated command line will be written to
standard error just prior to invocation.

-x Terminate if a command line containing number arguments (see the -n
option above) or number lines (see the -L option above) will not fit in the
implied or specified size (see the -s option above).

The following operands are supported:

utility The name of the utility to be invoked, found by search path using
the PATH environment variable; see environ(5). If utility is
omitted, the default is the echo(1) utility. If the utility operand
names any of the special built-in utilities in shell_builtins(1),
the results are undefined.

argument An initial option or operand for the invocation of utility.

The 255 exit status allows a utility being used by xargs to tell xargs to terminate if
it knows no further invocations using the current data stream will succeed. Thus,
utility should explicitly exit with an appropriate value to avoid accidentally
returning with 255.

Note that input is parsed as lines; blank characters separate arguments. If xargs is
used to bundle output of commands like find dir -print or ls into commands to be
executed, unexpected results are likely if any filenames contain any blank characters
or newline characters. This can be fixed by using find to call a script that converts
each file found into a quoted string that is then piped to xargs. Note that the quoting
rules used by xargs are not the same as in the shell. They were not made consistent
here because existing applications depend on the current rules and the shell syntax is
not fully compatible with it. An easy rule that can be used to transform any string into
a quoted form that xargs will interpret correctly is to precede each character in the
string with a backslash (\).

On implementations with a large value for {ARG_MAX}, xargs may produce
command lines longer than {LINE_MAX}. For invocation of utilities, this is not a
problem. If xargs is being used to create a text file, users should explicitly set the
maximum command line length with the -s option.

The xargs utility returns exit status 127 if an error occurs so that applications can
distinguish “failure to find a utility” from “invoked utility exited with an error
indication.” The value 127 was chosen because it is not commonly used for other
meanings; most utilities use small values for “normal error conditions” and the values
above 128 can be confused with termination due to receipt of a signal. The value 126
was chosen in a similar manner to indicate that the utility could be found, but not
invoked.

EXAMPLE 1 Using The xargs Command

The following will move all files from directory $1 to directory $2, and echo each
move command just before doing it:

xargs(1)

OPERANDS

USAGE

EXAMPLES

1682 man pages section 1: User Commands • Last Revised 1 Feb 1995

EXAMPLE 1 Using The xargs Command (Continued)

ls $1 | xargs -I {} -t mv $1/{} $2/{}

The following command will combine the output of the parenthesised commands onto
one line, which is then written to the end of file log:

(logname; date; printf "%s\n" "$0 $*") | xargs >>log

The following command will invoke diff with successive pairs of arguments
originally typed as command line arguments (assuming there are no embedded blank
characters in the elements of the original argument list):

printf "%s\n" "$*" | xargs -n 2 -x diff

The user is asked which files in the current directory are to be archived. The files are
archived into arch ; a, one at a time, or b, many at a time:

ls | xargs -p -L 1 ar -r arch
ls | xargs -p -L 1 | xargs ar -r arch

The following will execute with successive pairs of arguments originally typed as
command line arguments:

echo $* | xargs -n 2 diff

See environ(5) for descriptions of the following environment variables that affect the
execution of xargs: LC_COLLATE, LC_CTYPE, LC_MESSAGES, NLSPATH, and PATH.

The following exit values are returned:

0 All invocations of utility returned exit status 0.

1−125 A command line meeting the specified requirements could not be
assembled, one or more of the invocations of utility returned a
non-zero exit status, or some other error occurred.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

If a command line meeting the specified requirements cannot be assembled, the utility
cannot be invoked, an invocation of the utility is terminated by a signal, or an
invocation of the utility exits with exit status 255, the xargs utility will write a
diagnostic message and exit without processing any remaining input.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

xargs(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

User Commands 1683

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI enabled

echo(1), shell_builtins(1), attributes(5), environ(5)

xargs(1)

SEE ALSO

1684 man pages section 1: User Commands • Last Revised 1 Feb 1995

xgettext – extract gettext call strings from C programs

xgettext [-ns] [-a [-x exclude-file]] [-c comment-tag] [-d default-domain]
[-j] [-m prefix] [-M suffix] [-p pathname] -| filename…

xgettext -h

The xgettext utility is used to automate the creation of portable message files (.po).
A .po file contains copies of “C” strings that are found in ANSI C source code in
filename or the standard input if ‘−’ is specified on the command line. The .po file can
be used as input to the msgfmt(1) utility, which produces a binary form of the
message file that can be used by application during run-time.

xgettext writes msgid strings from gettext(3C) calls in filename to the default
output file messages.po. The default output file name can be changed by -d option.
msgid strings in dgettext() calls are written to the output file domainname.po
where domainname is the first parameter to the dgettext() call.

By default, xgettext creates a .po file in the current working directory, and each
entry is in the same order that the strings are extracted from filenames. When the -p
option is specified, the .po file is created in the pathname directory. An existing .po
file is overwritten.

Duplicate msgids are written to the .po file as comment lines. When the -s option is
specified, the .po is sorted by the msgid string, and all duplicated msgids are removed.
All msgstr directives in the .po file are empty unless the -m option is used.

The following options are supported:

-n Add comment lines to the output file indicating file
name and line number in the source file where each
extracted string is encountered. These lines appear
before each msgid in the following format:

File: filename, line: line-number

-s Generate output sorted by msgids with all duplicate
msgids removed.

-a Extract all strings, not just those found in
gettext(3C), and dgettext() () calls. Only one .po
file is created.

-c comment-tag The comment block beginning with comment-tag as the
first token of the comment block is added to the output
.po file as # delimited comments. For multiple
domains, xgettext directs comments and messages to
the prevailing text domain.

-d default-domain Rename default output file from messages.po to
default-domain .po.

xgettext(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1685

-j Join messages with existing message files. If a .po file
does not exist, it is created. If a .po file does exist, new
messages are appended. Any duplicate msgids are
commented out in the resulting .po file. Domain
directives in the existing .po file are ignored. Results
not guaranteed if the existing message file has been
edited.

-m prefix Fill in the msgstr with prefix. This is useful for
debugging purposes. To make msgstr identical to msgid,
use an empty string ("") for prefix.

-M suffix Fill in the msgstr with suffix. This is useful for
debugging purposes.

-p pathname Specify the directory where the output files will be
placed. This option overrides the current working
directory.

-x exclude-file Specify a .po file that contains a list of msgids that are
not to be extracted from the input files. The format of
exclude-file is identical to the .po file. However, only
the msgid directive line in exclude-file is used. All other
lines are simply ignored. The -x option can only be
used with the -a option.

-h Print a help message on the standard output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

msgfmt(1), gettext(3C), attributes(5)

xgettext is not able to extract cast strings, for example ANSI C casts of literal strings
to (const char *). This is unnecessary anyway, since the prototypes in
<libintl.h> already specify this type.

In messages and translation notes, lines greater than 2048 characters are truncated to
2048 characters and a warning message is printed to stderr.

xgettext(1)

ATTRIBUTES

SEE ALSO

NOTES

1686 man pages section 1: User Commands • Last Revised 23 Mar 1999

xstr – extract strings from C programs to implement shared strings

xstr -c filename [-v] [-l array]

xstr [-l array]

xstr filename [-v] [-l array]

xstr maintains a file called strings into which strings in component parts of a large
program are hashed. These strings are replaced with references to this common area.
This serves to implement shared constant strings, which are most useful if they are
also read-only.

The command:

example% xstr −c filename

extracts the strings from the C source in name, replacing string references by
expressions of the form &xstr[number] for some number. An appropriate declaration
of xstr is prepended to the file. The resulting C text is placed in the file x.c, to then
be compiled. The strings from this file are placed in the strings data base if they are
not there already. Repeated strings and strings which are suffixes of existing strings do
not cause changes to the data base.

After all components of a large program have been compiled, a file declaring the
common xstr space called xs.c can be created by a command of the form:

example% xstr

This xs.c file should then be compiled and loaded with the rest of the program. If
possible, the array can be made read-only (shared) saving space and swap overhead.

xstr can also be used on a single file. A command:

example% xstr filename

creates files x.c and xs.c as before, without using or affecting any strings file in
the same directory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield
strings or if there is conditional code which contains strings which may not, in fact, be
needed. xstr reads from the standard input when the argument ‘−’ is given. An
appropriate command sequence for running xstr after the C preprocessor is:

example% cc −E name.c | xstr −c −
example% cc −c x.c
example% mv x.o name.o

xstr does not touch the file strings unless new items are added; thus make(1S) can
avoid remaking xs.o unless truly necessary.

xstr(1)

NAME

SYNOPSIS

DESCRIPTION

User Commands 1687

−c filename Take C source text from filename.

-v Verbose: display a progress report indicating where
new or duplicate strings were found.

−l array Specify the named array in program references to
abstracted strings. The default array name is xstr.

strings data base of strings

x.c massaged C source

xs.c C source for definition of array “xstr*(rq

/tmp/xs* temp file when xstr filename doesn’t touch strings

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

make(1S), attributes(5)

If a string is a suffix of another string in the data base, but the shorter string is seen
first by xstr both strings will be placed in the data base, when just placing the longer
one there would do.

Be aware that xstr indiscriminately replaces all strings with expressions of the form
&xstr[number] regardless of the way the original C code might have used the string.
For example, you will encounter a problem with code that uses sizeof() to
determine the length of a literal string because xstr will replace the literal string with
a pointer that most likely will have a different size than the string’s. To circumvent this
problem:

� use strlen() instead of sizeof(); note that sizeof() returns the size of the
array (including the null byte at the end), whereas strlen() doesn’t count the
null byte. The equivalent of sizeof("xxx") really is (strlen("xxx"))+1.

� use #define for operands of sizeof() and use the define’d version. xstr
ignores #define statements. Make sure you run xstr on filename before you run
it on the preprocessor.

You will also encounter a problem when declaring an initialized character array of the
form

char x[] = "xxx";

xstr will replace xxx with an expression of the form &xstr[number] which will not
compile. To circumvent this problem, use static char *x = "xxx" instead of
static char x[] = "xxx".

xstr(1)

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

BUGS

NOTES

1688 man pages section 1: User Commands • Last Revised 14 Sep 1992

yacc – yet another compiler-compiler

/usr/ccs/bin/yacc [-dltVv] [-b file_prefix] [-Q [y | n]] [-P parser]
[-p sym_prefix] file

The yacc command converts a context-free grammar into a set of tables for a simple
automaton that executes an LALR(1) parsing algorithm. The grammar may be
ambiguous. Specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a function
yyparse(). This program must be loaded with the lexical analyzer program,
yylex(), as well as main() and yyerror(), an error handling routine. These
routines must be supplied by the user. The lex(1) command is useful for creating
lexical analyzers usable by yacc.

The following options are supported:

-b file_prefix Use file_prefix instead of y as the prefix for all output files. The
code file y.tab.c, the header file y.tab.h (created when -d is
specified), and the description file y.output (created when -v is
specified), will be changed to file_prefix.tab.c, file_prefix.tab.h,
and file_prefix.output, respectively.

-d Generates the file y.tab.h with the #define statements that
associate the yacc user-assigned “token codes” with the
user-declared “token names”. This association allows source files
other than y.tab.c to access the token codes.

-l Specifies that the code produced in y.tab.c will not contain any
#line constructs. This option should only be used after the
grammar and the associated actions are fully debugged.

-P parser Allows you to specify the parser of your choice instead of
/usr/ccs/bin/yaccpar. For example, you can specify:

example% yacc -P ~/myparser parser.y

-p sym_prefix Uses sym_prefix instead of yy as the prefix for all external names
produced by yacc. The names affected include the functions
yyparse(), yylex() and yyerror(), and the variables yylval,
yychar and yydebug. (In the remainder of this section, the six
symbols cited are referenced using their default names only as a
notational convenience.) Local names may also be affected by the
-p option. However, the -p option does not affect #define
symbols generated by yacc.

-Q[y|n] The -Qy option puts the version stamping information in
y.tab.c. This allows you to know what version of yacc built the
file. The -Qn option (the default) writes no version information.

yacc(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

User Commands 1689

-t Compiles runtime debugging code by default. Runtime debugging
code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when
y.tab.c is compiled. Whether or not the -t option is used, the
runtime debugging code is under the control of YYDEBUG , a
preprocessor symbol. If YYDEBUG has a non-zero value, then the
debugging code is included. If its value is 0, then the code will not
be included. The size and execution time of a program produced
without the runtime debugging code will be smaller and slightly
faster.

-V Prints on the standard error output the version information for
yacc.

-v Prepares the file y.output, which contains a description of the
parsing tables and a report on conflicts generated by ambiguities
in the grammar.

The following operand is required:

file A path name of a file containing instructions for which a parser is to be
created.

EXAMPLE 1 Accessing the yacc library

Access to the yacc library is obtained with library search operands to cc. To use the
yacc library main:

example% cc y.tab.c -ly

Both the lex library and the yacc library contain main. To access the yacc main:

example% cc y.tab.c lex.yy.c -ly -ll

This ensures that the yacc library is searched first, so that its main is used.

The historical yacc libraries have contained two simple functions that are normally
coded by the application programmer. These library functions are similar to the
following code:

#include <locale.h>
int main(void)
{

extern int yyparse();

setlocale(LC_ALL, "");

/* If the following parser is one created by lex, the
application must be careful to ensure that LC_CTYPE
and LC_COLLATE are set to the POSIX locale. */

(void) yyparse();
return (0);

}

yacc(1)

OPERANDS

EXAMPLES

1690 man pages section 1: User Commands • Last Revised 20 Dec 1996

EXAMPLE 1 Accessing the yacc library (Continued)

#include <stdio.h>

int yyerror(const char *msg)
{

(void) fprintf(stderr, "%s\n", msg);
return (0);

}

See environ(5) for descriptions of the following environment variables that affect the
execution of yacc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

yacc can handle characters from EUC primary and supplementary codesets as
one-token symbols. EUC codes may only be single character quoted terminal symbols.
yacc expects yylex() to return a wide character (wchar_t) value for these
one-token symbols.

The following exit values are returned:

0 Successful completion.

>0 An error occurred.

y.output state transitions of the generated parser

y.tab.c source code of the generated parser

y.tab.h header file for the generated parser

yacc.acts temporary file

yacc.debug temporary file

yacc.tmp temporary file

yaccpar parser prototype for C programs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

cc(1B), lex(1), attributes(5), environ(5)

The number of reduce-reduce and shift-reduce conflicts is reported on the standard
error output. A more detailed report is found in the y.output file. Similarly, if some
rules are not reachable from the start symbol, this instance is also reported.

yacc(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

User Commands 1691

Because file names are fixed, at most one yacc process can be active in a given
directory at a given time.

Users are encouraged to avoid using ’$’ as part of any identifier name.

yacc(1)

NOTES

1692 man pages section 1: User Commands • Last Revised 20 Dec 1996

yes – generate repetitive affirmative output

yes [expletive…]

The yes utility repeatedly outputs y, or if expletive is given, it is output repeatedly,
followed by a newline. Multiple arguments are output separated by spaces and
followed by a newline. To terminate, type an interrupt character.

yes can be used to respond programatically to programs that require an interactive
response.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

attributes(5)

yes(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

User Commands 1693

ypcat – print values in a NIS database

ypcat [-kx] [-d ypdomain] mname

The ypcat command prints out values in the NIS name service map specified by
mname, which may be either a map name or a map nickname. Since ypcat uses the
NIS network services, no NIS server is specified.

Refer to ypfiles(4) for an overview of the NIS name service.

-k Display the keys for those maps in which the values are null or the
key is not part of the value. None of the maps derived from files
that have an ASCII version in /etc fall into this class.

-d ypdomain Specify a domain other than the default domain.

-x Display map nicknames.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

ypmatch(1), ypfiles(4), attributes(5)

ypcat(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

1694 man pages section 1: User Commands • Last Revised 23 Jan 1995

ypmatch – print the value of one or more keys from a NIS map

ypmatch [-k] [-t] [-d domain] key [key…] mname

ypmatch -x

ypmatch prints the values associated with one or more keys from the NIS’s name
services map specified by mname, which may be either a map name or a map
nickname.

Multiple keys can be specified; all keys will be searched for in the same map. The keys
must be the same case and length. No pattern matching is available. If a key is not
matched, a diagnostic message is produced.

The following options are supported:

-k Before printing the value of a key, print the key itself, followed by
a colon (:).

-t Inhibit map nickname translation.

-d domain Specify a domain other than the default domain.

-x Display the map nickname table. This lists the nicknames the
command knows of, and indicates the map name associated with
each nickname.

The following operand is supported:

mname The NIS’s name services map

The following exit values are returned:

0 Successful operation.

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

ypcat(1), ypfiles(4), attributes(5)

ypmatch will fail with an RPC error message on yp operation if enough file
descriptors are not available. The number of file descriptors should be increased if this
occurs.

ypmatch(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

User Commands 1695

yppasswd – change your network password in the NIS database

yppasswd [username]

The yppasswd utility changes the network password associated with the user
username in the Network Information Service (NIS) database. If the user has done a
keylogin(1), and a publickey/secretkey pair exists for the user in the NIS
publickey.byname map, yppasswd also re-encrypts the secretkey with the new
password. The NIS password may be different from the local one on your own
machine.

yppasswd prompts for the old NIS password, and then for the new one. You must
type in the old password correctly for the change to take effect. The new password
must be typed twice, to forestall mistakes.

New passwords must be at least four characters long, if they use a sufficiently rich
alphabet, and at least six characters long if monocase. These rules are relaxed if you
are insistent enough. Only the owner of the name or the super-user may change a
password; superuser on the root master will not be prompted for the old password,
and does not need to follow password construction requirements.

The NIS password daemon, rpc.yppasswdd must be running on your NIS server in
order for the new password to take effect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

keylogin(1), login(1), nis+(1), nispasswd(1), passwd(1), getpwnam(3C),
getspnam(3C), secure_rpc(3NSL), nsswitch.conf(4), attributes(5)

Even after the user has successfully changed his or her password using this command,
the subsequent login(1) using the new password will be successful only if the user’s
password and shadow information is obtained from NIS. See getpwnam(3C),
getspnam(3C), and nsswitch.conf(4).

The use of yppasswd is discouraged, as it is now only a wrapper around the
passwd(1) command, which should be used instead. Using passwd(1) with the -r
nis option (see nis+(1)) will achieve the same results, and will be consistent across
all the different name services available.

The update protocol passes all the information to the server in one RPC call, without
ever looking at it. Thus, if you type your old password incorrectly, you will not be
notified until after you have entered your new password.

yppasswd(1)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

BUGS

1696 man pages section 1: User Commands • Last Revised 28 Nov 2001

ypwhich – return name of NIS server or map master

ypwhich [-d domain] [[-t] -m [mname] | [-Vn]hostname]

ypwhich -x

ypwhich returns the name of the NIS server that supplies the NIS name services to a
NIS client, or which is the master for a map. If invoked without arguments, it gives the
NIS server for the local machine. If hostname is specified, that machine is queried to
find out which NIS master it is using.

Refer to ypfiles(4) for an overview of the NIS name services.

-d domain Use domain instead of the default domain.

-t This option inhibits map nickname translation.

-m mname Find the master NIS server for a map. No hostname can be
specified with -m. mname can be a mapname, or a nickname for a
map. When mname is omitted, produce a list of available maps.

-x Display the map nickname translation table.

−Vn Version of ypbind, V3 is default.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

ypfiles(4), attributes(5)

ypwhich(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

User Commands 1697

ypwhich(1)

1698 man pages section 1: User Commands • Last Revised 7 Apr 1995

Index

A
a new version of the network information name

service — nis+, 982
a new version of the network information name

service — NIS+, 982
a new version of the network information name

service — nis, 982
accounting

search and print files — acctcom, 28
acctcom — search and print process accounting

files, 28
adb — debugger, 31
addbib — create or extend bibliography, 32
adds /dev entries to give SunOS 4.x compatible

names to SunOS 5.x devices —
ucblinks, 1594

alias — shell built-in functions to create your
own pseudonym or shorthand for a
command or series of commands, 34

aliases
collected by sendmail — praliases, 1168

allocate — allocate devices, 37
answerbook2 — online documentation

system, 40
appcert — examine application-level products

for unstable use of Solaris interfaces, 41
apply changes to files — patch, 1085
apptrace — trace application function calls to

Solaris shared libraries, 48
apropos — locate commands by keyword, 53
ar — maintain portable archive or library, 55
arch — display architecture of current host, 59

archive
maintain a portable one across all machines

— ar, 55
archives

create tape archives, and add or extract files
— tar, 1493

as — assembler, 60
asa — convert FORTRAN carriage-control

output to printable form, 64
assembler

— as, 60
at — execute commands at a later time, 66, 247
atq — display the jobs queued to run at

specified times, 72
atrm — remove jobs spooled by at or batch, 73
audio file formats

convert — audioconvert, 74
audio files

play — audioplay, 78
record — audiorecord, 80

audioconvert — convert audio file formats, 74
audioplay — play audio files, 78
audiorecord — record an audio file, 80
authentication agent — ssh-agent, 1441
authentication key generation —

ssh-keygen, 1445
auths — print authorizations granted to a

user, 83
awk — pattern scanning and processing

language, 85

1699

B
banner — make posters, 90
basename — display portions of

pathnames, 93
basename — strips affixes from path names, 91
batch — execute commands at a later time, 66,

247
bc — arbitrary precision arithmetic

language, 94
bdiff — display line-by-line differences between

pairs of large text files, 98
bfs — big file scanner, 99

bfs Commands, 99
bg — shell built-in functions to control process

execution, 552
bibliography

create an inverted index to a bibliographic
database — indexbib, 541

create or extend — addbib, 32
expand and insert references from a

bibliographic database — refer, 1242
find references in a bibliographic database —

lookbib, 747
format and print a bibliographic database —

roffbib, 1268
sort a bibliographic database —

sortbib, 1416
biff — mail notifier, 103
big file scanner — bfs, 99
binary file transmission

decode binary file — uudecode, 1616
encode binary file — uuencode, 1616

binary files
find printable strings — strings, 1453
locate — whereis, 1668

block count
for a file — sum, 1472

blocks, count a in file — sum, 1473
Bourne shell

— sh, 1375
Bourne shell commands

login command, 1385
Bourne shell variables, 1378

— CDPATH, 1378
— HOME, 1378
— IFS, 1379
— MAIL, 1378
— MAILCHECK, 1378

Bourne shell variables (continued)
— MAILPATH, 1378
— PATH, 1378
— PS1, 1379
— PS2, 1379
— SHACCT, 1379
— SHELL, 1379

break — shell built-in functions to escape from
or advance within a controlling while, for,
foreach, or until loop, 104

build programs — make, 818

C
C compiler, 113
C language

C preprocessor — cpp, 196
C language program

resolve and remove ifdef’ed lines from C
program source — unifdef, 1602

C program verifier — lint, 703
C programming language

create C error messages — mkstr, 912
extract strings from C code — xstr, 1687
formats program in nice style using troff —

vgrind, 1637
C shell

aliases — csh, 226
built-in commands — csh, 232
command and filename substitution —

csh, 228
command execution — csh, 231
command line parsing — csh, 223
command substitution — csh, 228
control flow — csh, 231
environment variables and shell variables —

csh, 241
event designators — csh, 224
expressions and operators — csh, 229
filename completion — csh, 222
filename substitution — csh, 229
history substitution — csh, 223
I/O redirection — csh, 226
initialization and termination — csh, 221
interactive operation — csh, 221
job control — csh, 232
lexical structure — csh, 223

1700 man pages section 1: User Commands • May 2002

C shell (continued)
modifiers — csh, 225
noninteractive operation — csh, 221
quick substitution — csh, 226
signal handling — csh, 231
status reporting — csh, 232
variable substitution — csh, 227
word designators — csh, 224

C shell commands
— :, 232
— %, 240
— @, 240
— alias, 233
— bg, 233
— break, 233
— breaksw, 233
— case, 233
— cd, 233
— chdir, 233
— continue, 233
— default, 233
— dirs, 233
— echo, 233
— else, 235
— end, 234
— endif, 235
— eval, 233
— exec, 234
— exit, 234
— fg, 234
— foreach, 234
— glob, 234
— goto, 234
— hashstat, 234
— history, 234
— if, 235
— jobs, 235
— kill, 235
— limit, 235
— login, 236
— logout, 236
— nice, 236
— nohup, 236
— notify, 237
— onintr, 237
— popd, 237
— pushd, 237
— rehash, 237

C shell commands (continued)
— repeat, 237
— set, 237
— setenv, 237
— shift, 238
— source, 238
— stop, 238
— suspend, 239
— switch, 239
— time, 239
— umask, 239
— unalias, 239
— unhash, 239
— unlimit, 240
— unset, 240
— unsetenv, 240
— wait, 240
— while, 240

cal — display a calendar, 106
calculator, desk

— dc, 268
calendar — reminder service, 107
calendar

display — cal, 106
call-graph, display profile data — gprof, 508
call rmmount to mount or unmount media —

volrmmount, 1656
cancel — cancel print requests, 109
cancel user’s request for removable media that

is not currently in drive — volcancel, 1652
cat — concatenate and display files, 111
cc — C compiler, 113
cd — shell built-in functions to change the

current working directory, 115
CD read and write — cdrw, 118
CDPATH variable — sh, 1378
cdrw — CD read and write, 118
change a user’s Kerberos password —

kpasswd, 580
change file access and modification times —

touch, 1591
change file access and modification times

— settime, 1555
— touch, 1555

character translation — tr, 1564, 1569
chdir — shell built-in functions to change the

current working directory, 115
check spelling — spell, 1420

Index 1701

check for media in a drive — volcheck, 1653
check path names — pathchk, 1090
checkeq — check eqn constructs, 341
checknr — check nroff/troff files, 124
chgrp — change the group ownership of a

file, 125
chmod — change the permissions mode of a

file, 129
chown — change owner of file, 135, 137
cksum — write file checksums and sizes, 159
clear — clear terminal screen, 167
cmp — compare two files, 168
cocheck — (FMLI utility) communicate with a

process, 180
cocreate — (FMLI utility) communicate with a

process, 180
code formatter

formats program in nice style using troff —
vgrind, 1637

code set
conversion utility — iconv, 538

codestroy — (FMLI utility) communicate with a
process, 180

col — filters reverse line-feeds from two-column
nroff text, 170

comm — select or reject lines common to two
files, 172

command — execute a simple command, 174
command

describe — whatis, 1667
command options

parse — getopt, 492
parse — getoptcvt, 494

commands
display the last commands executed, in

reverse order — lastcomm, 634
locate a command; display its pathname or

alias — which, 1670
locate by keyword — apropos, 53

communications
connect to remote system — cu, 255
connect to remote system — tip, 1539
decode binary files — uudecode, 1616
encode binary files — uuencode, 1616
system to system command execution —

uux, 1626
talk to another user — talk, 1490
UNIX-to-UNIX copy — uucp, 1612

communications (continued)
user interface to a remote system using the
TELNET protocol — telnet, 1508
UUCP list of names — uuname, 1612
UUCP log — uulog, 1612
write to another user — write, 1677

Compaq Smart-2 EISA/PCI and Smart-2SL PCI
Array Controller ioctl utility —
smart2cfg, 1403

compare two files — diff, 278
compilers

C compiler — cc, 113
C program verifier — lint, 703
regular expression compile — regcmp, 1244
RPC protocol compiler — rpcgen, 1272

compress — compress files, 177
concatenate

files and display them — cat, 111
configure LLC2 interface parameters —

llc2_config, 709
configure runtime linking environment —

crle, 206
connect to remote system

— cu, 255
construct argument lists and invoke utility —

xargs, 1680
continue — shell built-in functions to escape

from or advance within a controlling while,
for, foreach, or until loop, 104

control
audio mixer control — mixerctl, 906

control line printer — lpc, 755
control tracing and manipulate probe points in

a process or the kernel — prex, 1174
convert binary log file to Common Log File

format — ncab2clf, 964
convert binary TNF file to ASCII —

tnfdump, 1548
convert FORTRAN carriage-control output to

printable form — asa, 64
convert Red Hat Package (RPM) to cpio archive

— rpm2cpio, 1277
convert units — units, 1606
coproc — (FMLI utility) communicate with a

process, 180
copy

archives — cpio, 188
files — cp, 184

1702 man pages section 1: User Commands • May 2002

core image
of running processes — gcore, 453

coreceive — (FMLI utility) communicate with a
process, 180

cosend — (FMLI utility) communicate with a
process, 180

count blocks in file — sum, 1473
count lines, words, characters in file —

wc, 1664
cp — copy files, 184
cpio — copy archives, 188
cpp — C preprocessor, 196
cputrack — monitor process and LWP behavior

using CPU performance counters, 202
create

bibliography — addbib, 32
create a tags file for use with ex and vi —

ctags, 252
create new task or change task or project of

running process — newtask, 978
crle — configure runtime linking

environment, 206
crontab — user crontab file, 216
crypt — encrypt, 220
csh — shell command interpreter with a C-like

syntax, 221
csplit — split files based on context, 247
ct — spawn login to a remote terminal, 250
ctags — create a tags file for use with ex and

vi, 252
cu — connect to remote system, 255
curve, smooth

interpolate — spline, 1423
cut — cut out selected fields of each line of a

file, 261

D
date — display date and/or set date, 264
date

prompts for a date — ckdate, 138
provides error message for date —

errdate, 138
provides help message for date —

helpdate, 138
validates a date — valdate, 138

deallocate — deallocate devices, 272

debug tools
debugger — adb, 31

decode binary file — uudecode, 1616
decode files

— crypt, 220
decrypt — crypt, 220
define locale environment — localedef, 729
dependencies, dynamic

of executable files or shared objects —
ldd, 672

deroff — remove nroff, troff, tbl and eqn
constructs, 274

describe command — whatis, 1667
describe instruction set architectures —

isainfo, 549
desk calculator

— dc, 268
determine which variant instruction set is

optimal to use — optisa, 1069
devices

allocation — allocate, 37
deallocation — deallocate, 272
eject media device from drive — eject, 331
list_devices — list_devices, 705

df — display status of disk space on file
systems, 275

dhcpinfo — display value of parameters
received through DHCP, 276

dictionary, system
find words — look, 746

diff — compare two files, 278
diff

3-way — diff3, 282
big — bdiff, 98

diff command
side-by-side — sdiff, 1344

diff3 — display line-by-line differences between
three text files, 282

diffmk — mark differences between versions of
a troff input file, 284

digestp — frontends to the mp Text to PDL
(Printer Description Language) pretty print
filter, 791

dircmp — compares contents of
directories, 285

directories
compare contents — dircmp, 285
list contents — ls, 772

Index 1703

directories (continued)
list contents of — ls, 778
make — mkdir, 908
make link to — ln, 722
print working directory name — pwd, 1228
remove — rmdir, 1256

dirname — delivers all but last level of path
name, 91

dirs — shell built-in functions to change the
current working directory, 115

dis — object code disassembler, 286
disable — disable LP printers, 337
disassembler

object code — dis, 286
disk usage

summary — du, 297
display editor — vi, 1641
display

a list of all valid user names — dispuid, 289
architecture of current host — arch, 59
call-graph profile data — gprof, 508
contents of directory — ls, 772
current news — news, 977
— date, 264
disk usage — du, 300
dynamic dependencies of executable files or

shared objects — ldd, 672
effective user name — whoami, 1674
file names — ls, 778
first few lines of files — head, 525
group membership of user — groups, 520
how long the system has been up —

uptime, 1610
identifier of current host — hostid, 536
last commands executed, in reverse order —

lastcomm, 634
list of all valid group names — dispgid, 288
login and logout information about users

and terminals — last, 632
name of current host — hostname, 537
name of the user running the process —

logname, 744
printer queue — lpq, 759
process status — ps, 1222
processor type of current host — mach, 786
selected lines from file — sed, 1353
size or sizes of a page of memory —

pagesize, 1073

display (continued)
status of disk space on file system — df, 275
status of local hosts — ruptime, 1288
status of network hosts — rup, 1286
users on system — users, 1611
working directory name — pwd, 1228

display discretionary file information —
getfacl, 486

display information about currently logged-in
users — w, 1659

display information about the address space of
a process — pmap, 1136

display names and references bound in FNS
context — fnlist, 426

display package parameter values —
pkgparam, 1126

display profile data — prof, 1206
display reference bound to FNS name —

fnlookup, 428
display the internal versioning information of

dynamic objects — pvs, 1225
display the native instruction sets executable on

this platform — isalist, 551
display value of parameters received through

DHCP — dhcpinfo, 276
document production

check spelling — spell, 1420
check nroff/troff files — checknr, 124
create an inverted index to a bibliographic

database — indexbib, 541
create or extend bibliography — addbib, 32
eliminate .so’s from nroff input —

soelim, 1405
expand and insert references from a

bibliographic database — refer, 1242
filters reverse line-feeds from two-column

nroff text — col, 170
find references in a bibliographic database —

lookbib, 747
format and print a bibliographic database —

roffbib, 1268
format documents for display or line-printer

— nroff, 1058
format tables for nroff or troff — tbl, 1504
mark differences between versions of a troff

input file — diffmk, 284
remove nroff, troff, tbl and eqn constructs —

deroff, 274

1704 man pages section 1: User Commands • May 2002

document production (continued)
simple text formatters — fmt, 415
sort a bibliographic database —

sortbib, 1416
troff postprocessor for PostScript printers —

dpost, 294
typeset mathematics — eqn, 341
typeset or format documents — troff, 1572

DOS
convert text file from DOS format to ISO

format — dos2unix, 290
convert text file from ISO format to DOS

format — unix2dos, 1608
dos2unix — convert text file from DOS format

to ISO format, 290
download — host resident PostScript font

downloader, 292
download — prepends host resident PostScript

fonts to files, 292
dpost — troff postprocessor for PostScript

printers, 294
draw graph — graph, 513
du — summarize disk usage, 297
du — display disk usage per directory or

file, 300
dump — dump selected parts of an object

file, 302
dump selected parts of an object file —

dump, 302
dump selected parts of an object file —

elfdump, 335
dumpcs — show codeset table for the current

locale, 305
dumpkeys — dump keyboard translation

tables, 725

E
echo — echo arguments, 306
echo — (FMLI utility) put string on virtual

output, 311
echo — echo arguments to standard

output, 310
ed — text editor, 312
edit — text editor, 324
editing text

sed — stream editor, 1353

egrep — search a file for a pattern using full
regular expressions, 328

eject — eject media device from drive, 331
elfdump — dump selected parts of an object

file, 335
enable — enable LP printers, 337
encode binary file — uuencode, 1616
encode files

— crypt, 220
encryption key, user

change — chkey, 127
env — set environment for command

invocation, 339
environment

display variables — printenv, 1186
set terminal characteristics — tset, 1583

environment variables, global
FMLI, 1364

eqn — mathematical typesetting, 341
eqn

remove nroff, troff, tbl and eqn constructs —
deroff, 274

equations
typeset mathematics — eqn, 341

error — analyze error messages, 346
eval — shell built-in functions to execute other

commands, 359
evaluate condition(s) — test, 1518
ex — text editor, 350
examine application-level products for unstable

use of Solaris interfaces — appcert, 41
exec — shell built-in functions to execute other

commands, 359
execute a command in a profile — pfcsh, 1111
execute a command in a profile — pfexec, 1111
execute a command in a profile — pfksh, 1111
execute a command in a profile — pfsh, 1111
execute commands at a later time — at, 66, 247
execute commands at a later time — batch

batch, 66, 247
execute a simple command — command, 174
execute command in extended attribute name

space — runat, 1283
exit — shell built-in functions to enable the

execution of the shell to advance beyond its
sequence of steps, 361

expand — expand TAB characters to SPACE
characters, 363

Index 1705

export — shell built-in functions to determine
the characteristics for environmental
variables of the current shell and its
descendents, 1359

exportfs — translates exportfs options to
share/unshare commands, 365

expr — evaluate arguments as an
expression, 366

expr — evaluate expressions, 369
expression evaluation — expr, 369
exstr — extract strings from source files, 372
extract kernel probes output into a trace file —

tnfxtract, 1553
extract strings from C code — xstr, 1687

F
face — executable for the Framed Access

Command Environment Interface, 376
factor — obtain the prime factors of a

number, 377
false — provide truth values, 1575
fastboot — reboot system without checking

disks, 378
fasthalt — halt system without checking

disks, 378
fc — shell built-in functions to re-use previous

command-lines from the current shell, 527
fdformat — format floppy diskette or PCMCIA

memory card, 379
fg — shell built-in functions to control process

execution, 552
fgrep — search file for fixed-character

string, 383
file — determine file type, 385
file

change ownership — chown, 137
determine type of — file, 387
display names — ls, 778
files perusal filter for CRTs — pg, 1112
make link to — ln, 722
print — lpr, 761
strip affixes — basename, 93
sum — sum and count blocks in file, 1473
update last modified date of — touch, 1558

file — get file type, 387

file system
display status of disk space — df, 275
make hard or symbolic links to files —

ln, 719
where am I — pwd, 1228

file transfer program
— ftp, 440

filep — frontends to the mp Text to PDL (Printer
Description Language) pretty print
filter, 791

files
change owner of file — chown, 135
change the permissions mode of a file —

chmod, 129
compare two files — cmp, 168
compress — compress, 177
compress files — pack, 1070
compress files — pcat, 1070
concatenate and display — cat, 111
copy — cp, 184
copy archives — cpio, 188
crypt — encrypt/decrypt, 220
cut out selected fields of each line of a file —

cut, 261
display uncompressed files but leaves

compressed files intact — zcat, 177
display a count of lines, words and

characters in a file — wc, 1664
display first few lines — head, 525
display last part — tail, 1487
display line-by-line differences between pairs

of large text files — bdiff, 98
display line-by-line differences between three

text files — diff3, 282
expand compressed files — unpack, 1070
extract SCCS version information from a file

— what, 1666
— find, 396
mark differences between versions of a troff

input file — diffmk, 284
merge same lines of several files or

subsequent lines of one file —
paste, 1082

move — mv, 938
print checksum and block count for a file —

sum, 1472
print differences between two files

side-by-side — sdiff, 1344

1706 man pages section 1: User Commands • May 2002

files (continued)
remove — rm, 1256
search a file for a pattern — grep, 515
search file for fixed-character string —

fgrep, 383
search for a pattern using full regular

expressions — egrep, 328
sort or merge — sort, 1409
split a file into pieces — split, 1424
strip affixes from path names —

basename, 91
transfer to and from a remote machine —

tftp, 1530
uncompress — uncompress, 177

filesync — synchronize files and
directories, 389
Multiple Nomadic Machines, 391
Rules File, 390

filofaxp — frontends to the mp Text to PDL
(Printer Description Language) pretty print
filter, 791

find — find files, 396
find or signal processes by name and other

attributes
— pgrep, 1117
— pkill, 1117

fmlcut — (FMLI utility) cut out columns from a
table or fields from each line of a file, 406

fmlexpr — (FMLI utility) evaluate arguments as
an expression, 408

fmlgrep — (FMLI utility) search afile for a
pattern, 410

FMLI
cocheck — communicate with a

process, 180
cocreate — communicate with a

process, 180
codestroy — communicate with a

process, 180
coproc — communicate with a process, 180
coreceive — communicate with a

process, 180
cosend — communicate with a process, 180
echo — put string on virtual output, 311
fmlcut — cut out columns from a table or

fields from each line of a file, 406
fmlexpr — evaluate arguments as an

expression, 408

FMLI (continued)
fmlgrep — search afile for a pattern, 410
fmli — invoke fmli, 412
getfrm — returns the current frameID

number, 490
getitems — returns a list of currently marked

menu items, 491
indicator — displays application specific

alarms or working indicator, or both, on
FMLI banner line, 540

message — puts arguments on FMLI
message line, 904

pathconv — converts an alias to its
pathname, 1093

readfile, longline — reads file, gets longest
line, 1240

regex — match patterns against a
string, 1246

reinit — changes the descriptors in the
initialization file, 1248

reset — (FLMI utility) changes the entry in a
field of a form to its default value, 1252

run — runs a program, 1281
set, unset — set and unset local or global

environment variables, 1364
setcolor — redefine or create a color, 1366
shell — run a command using shell, 1393
test — evaluates the expression

expression, 1528
vsig — synchronize a co-process with the

controlling FMLI application, 1658
fmt — simple text formatters, 415
fnattr — update and examine attributes

associated with FNS named object, 421
fnlist — display names and references bound in

FNS context, 426
fnlookup — display reference bound to FNS

name, 428
fnrename — rename the binding of an FNS

name, 429
FNS

display names and references — fnlist, 426
display reference bound to FNS name —

fnlookup, 428
search for FNS objects — fnsearch, 430
update attributes — fnattr, 421

fnsearch — search for FNS objects with
specified attributes, 430

Index 1707

FNS (continued)
Displaying Selected Attributes, 432
Extended Operations, 434
Filter Arguments, 432
Grammar of Filter Expressions, 434
Logical Operators, 431
Relational Operators, 431
Simple Filter Expressions, 431
Wildcarded Strings, 433

fnunbind — unbind the reference from an FNS
name, 436

fold — fold long lines, 437
fonts

prepends host resident PostScript fonts to
files — download, 292

force a defunct process to be reaped by its
parent — preap, 1172

format floppy diskette or PCMCIA memory
card — fdformat, 379

formatters, text
— fmt, 415

Forms and Menu Language Interpreter, See
FMLI

FORTRAN
create a tags file for use with ex and vi —

ctags, 252
Framed Access Command Environment, See

face
frameID number (FMLI utility) — getfrm, 490
franklinp — frontends to the mp Text to PDL

(Printer Description Language) pretty print
filter, 791

from — sender of mail messages, 439
frontends to the mp Text to PDL (Printer

Description Language) pretty print filter —
digestp, 791

frontends to the mp Text to PDL (Printer
Description Language) pretty print filter —
filep, 791

frontends to the mp Text to PDL (Printer
Description Language) pretty print filter —
filofaxp, 791

frontends to the mp Text to PDL (Printer
Description Language) pretty print filter —
franklinp, 791

frontends to the mp Text to PDL (Printer
Description Language) pretty print filter —
mailp, 791

frontends to the mp Text to PDL (Printer
Description Language) pretty print filter —
newsp, 791

frontends to the mp Text to PDL (Printer
Description Language) pretty print filter —
timemanp, 791

frontends to the mp Text to PDL (Printer
Description Language) pretty print filter —
timesysp, 791

ftp — file transfer program, 440
ftpcount — show current number of users in

each FTP Server class, 451
ftpwho — show current process information for

each FTP Server user, 452
function calls

trace application function calls to Solaris
shared libraries — apptrace, 48

G
gcore — get core images of running

processes, 453
gencat — generate a formatted message

catalog, 454
generate iconv code conversion tables —

geniconvtbl, 457
generate LLC2 configuration files —

llc2_autoconfig, 708
generate message source file from source files —

genmsg, 475
generate programs for lexical tasks — lex, 686
generate repetitive affirmative output —

yes, 1693
geniconvtbl — generate iconv code conversion

tables, 457
genmsg — generate message source file from

source files, 475
Auto Message Numbering, 475
Comment Extraction, 475
Invocation, 475
Testing, 475

get configuration values — getconf, 481
get locale-specific information — locale, 726
get or set the resource controls of running

processes, tasks, and projects — prctl, 1169
get or set the resource limits of running

processes

1708 man pages section 1: User Commands • May 2002

genmsg — generate message source file from
source files (continued)

— plimit, 1132
getconf — get configuration values, 481
getfacl — display discretionary file

information, 486
getfrm — (FMLI utility) returns the current

frameID number, 490
getitems — (FMLI utility) returns a list of

currently marked menu items, 491
getopt — parse command options, 492
getoptcvt — parse command options, 494
getopts — shell built-in function to parse

command-line options, 497
gettext — retrieve text string from message

database, 503
gettxt — retrieve text string from message

database, 505
glob — shell built-in function to expand a word

list, 507
goto — shell built-in functions to enable the

execution of the shell to advance beyond its
sequence of steps, 361

gprof — call-graph profile, 508
graph — draw graph, 513
graphics filters for plotters — plot, 1134
graphics filters for plotters — tplot, 1559
graphics

interpolate smooth curve — spline, 1423
grep

search a file for a pattern — grep, 515
search a file for a pattern using full regular

expressions — egrep, 328
search file for fixed-character string —

fgrep, 383
group IDs

change real and effective — newgrp, 975
change the group ownership of a file —

chgrp, 125
display a list of all valid group names —

dispgid, 288
prompts for group ID — ckgid, 141
provides error message for group ID —

errgid, 141
provides help message for group ID —

helpgid, 141
validates group ID — valgid, 141

groups — display group membership, 521

groups — print group membership of
user, 520

grpck — check group database entries, 522

H
halt system without checking disks —

fasthalt, 378
hash — shell built-in functions to evaluate the

internal hash table of the contents of
directories, 523

hashstat — shell built-in functions to evaluate
the internal hash table of the contents of
directories, 523

head — display first few lines of files, 525
history — shell built-in functions to re-use

previous command-lines from the current
shell, 527

HOME variable — sh, 1378
host machines, local

show status — ruptime, 1288
who is logged in — rwho, 1292

host machines, remote
display status of network hosts (RPC

version) — rup, 1286
who is logged in — rusers, 1291

host resident PostScript font downloader —
download, 292

hostid — display host ID, 536
hostname — display host name, 537

I
i386 — get processor type truth value, 787
iAPX286 — get processor type truth value, 787
IFS variable — sh, 1379
indicator — (FMLI utility) displays application

specific alarms or working indicator, or both,
on FMLI banner line, 540

indxbib — create an inverted index to a
bibliographic database, 541

install — install files, 542
instruction set, determining which variant is

optimal to use — optisa, 1069
integer

prompts for an integer — ckint, 143

Index 1709

integer (continued)
provides error message for integer —
errint, 143
provides help message for integer —

helpint, 143
validates an integer — valint, 143

integer, range
prompts for an integer within a specified

range — ckrange, 153
provides error message for integer within a

specified range — errange, 153
provides help message for integer within a

specified range — helprange, 153
validate an integer within a specified range

— valrange, 153
interactive message processing system —

mail, 789
interactive message processing system —

Mail, 789
Internet

transfer files to and from a remote machine
— tftp, 1530

transfer of files to and from remote network
sites — ftp, 440

user name directory service — whois, 1676
interprocess communication

remove a message queue, semaphore set, or
shared memory ID — ipcrm, 544

report status — ipcs, 545
invoke a command with an altered scheduling

priority — nice, 980
ipcrm — remove a message queue, semaphore

set, or shared memory ID, 544
ipcs — report inter-process communication

facilities status, 545
isainfo — describe instruction set

architectures, 549
isalist — display the native instruction sets

executable on this platform, 551

J
jobs — shell built-in functions to control process

execution, 552
join — relational database operator, 559
jsh — the job control shell command

interpreter, 1375

K
kbd — manipulate the state of keyboard or

display the type of keyboard or change the
default keyboard abort sequence effect, 562

Kerberos keytab maintenance utility —
ktutil, 630

Kerberos login utility
— kinit, 573

Kerberos tickets
destroy — kdestroy, 565
list currently held — klist, 578

keyboard
load and dump keyboard translation tables

— loadkeys, dumpkeys, 725
manipulate the state of keyboard or display

the type of keyboard or change the default
keyboard abort sequence effect —
kbd, 562

keylogin — decrypt and store secret key with
keyserv, 566

keylogout — delete stored secret key with
keyserv, 568

keywords
prompts for and validates a keyword —

ckkeywd, 148
kill — terminate a process by default, 569
Korn shell commands

login command, 618
KornShell

aliasing — ksh, 583
arithmetic evaluation — ksh, 599
blank interpretation — ksh, 598
command execution — ksh, 606
command re-entry — ksh, 607
command substitution — ksh, 586
commands — ksh, 581
comments — ksh, 583
conditional expressions — ksh, 599
definitions — ksh, 581
emacs editing mode — ksh, 608
environment — ksh, 603
file name generation — ksh, 598
functions — ksh, 603
I/O — ksh, 601
in-line editing options — ksh, 607
invocation — ksh, 626
jobs — ksh, 605
jobs — shell_builtins, 554

1710 man pages section 1: User Commands • May 2002

KornShell (continued)
parameter substitution — ksh, 589
process substitution — ksh, 589
prompting — ksh, 599
quoting — ksh, 598
restricted command and programming

language — rksh, 581
signals — ksh, 606
special commands — ksh, 614
tilde substitution — ksh, 585
vi editing mode — ksh, 611

kpasswd — change a user’s Kerberos
password, 580

ksh — KornShell, a standard command and
programming language, 581

ktutil — Kerberos keytab maintenance
utility, 630

L
languages

C compiler — cc, 113
C preprocessor — cpp, 196
C program verifier — lint, 703
create C error messages — mkstr, 912
extract strings from C code — xstr, 1687

last — display login and logout information
about users and terminals, 632

lastcomm — display the last commands
executed, in reverse order, 634

ld — link-editor for object files, 636
ld — link editor, 648
ld.so.1 — runtime linker for dynamic

objects, 677
ldap — LDAP as a naming repository, 649
LDAP as a naming repository — ldap, 649
ldap delete entry tool — ldapdelete, 653
ldap entry addition and modification tools

— ldapadd, 660
— ldapmodify, 660

ldap modify entry RDN tool —
ldapmodrdn, 664

ldap search tool — ldapsearch, 667
ldapadd — ldap entry addition and

modification tools, 660
ldapdelete — ldap delete entry tool, 653

ldapmodify — ldap entry addition and
modification tools, 660

ldapmodrdn — ldap modify entry RDN
tool, 664
Input Format, 665

ldapsearch — ldap search tool, 667
Output Format, 667

ldd — list dynamic dependencies of executable
files or shared objects, 672

let — shell built-in function to evaluate one or
more arithmetic expressions, 685

lex — generate programs for lexical tasks, 686
Actions in lex, 693

lex
create a tags file for use with ex and vi —

ctags, 252
lex — generate programs for lexical tasks

Definitions in lex, 688
Output Files, 687
Regular Expressions in lex, 690
Rules in lex, 689
Stderr, 686
Stdout, 686
User Subroutines in lex, 690

library archive
find ordering relation for an object or library

archive — lorder, 748
limit — set or get limitations on the system

resources available to the current shell and
its descendents, 698
csh, 698
ksh, 698
sh, 698
sh/ksh, 700
/usr/bin/ulimit, 698

line — read one line from standard input and
write to standard output, 702

line numbering filter — nl, 1046
line printer control — lpc, 755
link

make hard or symbolic links to files —
ln, 719

link editor — ld, 648
link-editor — ld, 636
lint — C program verifier, 703
list

contents of directory — ls, 772
file names — ls, 778

Index 1711

list, sorted
find lines — look, 746

list_devices — list_devices, 705
list of service grades

print — uuglist, 1618
listusers — list user login information, 707
llc2_autoconfig — generate LLC2 configuration

files, 708
llc2_config — configure LLC2 interface

parameters, 709
LLC2 Station, SAP, and Connection Statistics —

llc2_stats, 711
llc2_stats — LLC2 Station, SAP, and Connection

Statistics, 711
ln — make hard or symbolic links to files, 719
loadkeys — load keyboard translation

tables, 725
locale — get locale-specific information, 726
localedef — define locale environment, 729
log, system

add entries — logger, 733
logger — add entries to the system log, 733
logger — make system log entry, 735
login command, 618, 1385
login — sign on to the system, 737
login

change login password and password
attributes — passwd, 1076

display effective user name —
whoami, 1674

display login and logout information about
users and terminals — last, 632

get the name of the user running the process
— logname, 744

list user login information — listusers, 707
remote — rlogin, 1253
spawn login to a remote terminal — ct, 250
who is logged in, and what are they doing —

w, 1659
login environment

display variables — printenv, 1186
set terminal characteristics — tset, 1583

login password
change in NIS — yppasswd, 1696

logname — get the name of the user running
the process, 744

logout — shell built-in function to exit from a
login session, 745

logout
display login and logout information about

users and terminals — last, 632
look — find words in the system dictionary or

lines in a sorted list, 746
lookbib — find references in a bibliographic

database, 747
lorder — find ordering relation for an object or

library archive, 748
lp — send requests to a print service, 749
LP print services

cancel requests — cancel, 109
control line printer — lpc, 755
display printer queue — lpq, 759
generate printer test pattern — lptest, 771
print files — lp, 749
print files (BSD) — lpr, 761
remove print jobs — lprm, 765

lpc — line printer control, 755
lpq — display printer queue, 759
lpr — print files, 761
lprm — remove print jobs, 765
lpstat — print information about the status of

the print service, 767
lptest — generate printer test pattern, 771
ls — list contents of directory, 772
ls — list files, 778

M
m4 — macro processor, 781
mach — display processor type of current

host, 786
machid — get processor type truth value, 787
machine IDs

get processor type truth value —
machid, 787

macro processor — m4, 781
magnetic tape

backspace files — mt, 935
backspace records — mt, 935
copy — tcopy, 1506
erase — mt, 935
forward space files — mt, 935
forward space records — mt, 935
get unit status — mt, 935
manipulate — mt, 935

1712 man pages section 1: User Commands • May 2002

magnetic tape (continued)
place unit off-line — mt, 935
retension — mt, 935
rewind — mt, 935
skip backward files — mt, 935
skip backward records — mt, 935
skip forward files — mt, 935
skip forward records — mt, 935
write EOF mark on — mt, 935

mail — interactive message processing
system, 789

Mail — interactive message processing
system, 789

MAIL variable — sh, 1378
mail

automatic replies — vacation, 1630
mail aliases

aliases— system mail, 1168
mail services

mail notifier — biff, 103
sender of mail messages — from, 439

mail utilities
statistics — mailstats, 795

mailbox
storage for incoming mail — mailx, 797

MAILCHECK variable — sh, 1378
mailcompat — provide SunOS compatibility for

Solaris mailbox format, 790
mailp — frontends to the mp Text to PDL

(Printer Description Language) pretty print
filter, 791

mailstats — mail delivery statistics, 795
mailx — interactive message processing

system, 797, 817
mailx commands

— !, 801
— #, 801
— =, 801
— ?, 801
— |, 805
— z, 808
— alias, 801
— alternates, 801
— cd, 801
— chdir, 801
— Copy, 801
— copy, 801
— delete, 801

mailx commands (continued)
— discard, 802
— dp, 802
— dt, 802
— echo, 802
— edit, 802
— else, 803
— endif, 803
— exit, 802
— field, 802
— file, 802
— folder, 802
— Followup, 803
— followup, 803
— from, 803
— group, 801
— headers, 803
— help, 803
— hold, 803, 805
— if, 803
— ignore, 802
— inc, 803
— list, 804
— load, 804
— mail, 804
— mbox, 804
— More, 804
— New, 804
— new, 804
— next, 805
— Page, 804
— pipe, 805
— preserve, 803, 805
— Print, 805, 807
— print, 805, 807
— Put, 805
— put, 805
— quit, 805
— Reply, 806
— reply, 805
— replyall, 806
— replysender, 805
— Respond, 806
— respond, 805
— retain, 806
— Save, 806
— save, 806
— set, 806

Index 1713

mailx commands (continued)
— shell, 807
— size, 807
— source, 807
— top, 807
— touch, 807
— Type, 805, 807
— type, 805, 807
— unalias, 807
— undelete, 807
— undiscard, 807
— ungroup, 807
— unignore, 807
— Unread, 804, 807
— unread, 804, 807
— unretain, 807
— unset, 807
— version, 808
— visual, 808
— write, 808
— xit, 808

maintain groups of programs —
sysV-make, 1476

make — maintain, update, and regenerate
related programs and files
Appending to a Macro, 827
Bourne Shell Constructs, 847
Clearing Special Targets, 826
Command Dependencies, 826
Command Execution, 846
Command Substitutions, 847
Conditional Macro Definitions, 829
Dynamic Macros, 829
Global, 822
Hidden Dependencies, 826
Implicit Rules, 832
implicit rules, list of make/make.rules, 846
Library Maintenance, 846
Macros, 823, 826
Makefile Target Entries, 821
Pattern Matching Rules, 833
Pattern Replacement Macro References, 827
Predefined Macros, 829
Reading Makefiles and the

Environment, 821
Rules, 824
Signals, 847
Special Characters, 822

make — maintain, update, and regenerate
related programs and files (continued)

Special-Function Targets, 824
Special-Purpose Macros, 827
Suffix Replacement Macro References, 827
Suffix Rules, 833

make
System V version of make —

sysV-make, 1476
make — maintain, update, and regenerate

related programs and files
Targets and Dependencies, 822
The Suffixes List, 846

man — online display of reference pages, 853
manual pages

accessing — man, 853
describe command — whatis, 1667
locate — whereis, 1668

matrix display program for PostScript printers
— postmd, 1150

mbox
storage file for read mail — mailx, 797

mconnect — open connection to remote mail
server, 859

mcs — manipulate the comment section of an
object file, 860

mdb — modular debugger, 862
menu item

builds a menu and prompts user to choose
one item from menu — ckitem, 145

provides error message for menu item —
erritem, 145

provides help message for menu item —
helpitem, 145

menu items, FMLI
returns a list of — getitems, 491

mesg — permit or deny messages via
write, 903

message — puts arguments on FMLI message
line, 904

messages
create message object file — msgfmt, 929
display contents of, or search for a text string

in, message data bases — srchtxt, 1426
display on stderr or system console —

fmtmsg, 416
extract gettext call strings — xgettext, 1685

1714 man pages section 1: User Commands • May 2002

messages (continued)
generate a formatted message catalog —
gencat, 454
permit or deny messages via write —

mesg, 903
retrieve text string from message database —

gettext, 503
mixerctl — audio mixer control, 906
mkdir — make directories, 908
mkmsgs — create message files for use by

gettxt, 910
mkstr — create C error messages, 912
modify the Access Control List (ACL) for a file

or files — setfacl, 1367
modular debugger — mdb, 862
monitor process and LWP behavior using CPU

performance counters — cputrack, 202
more — browse through a text file, 914
mp — text to PDL (Printer Description

Language) pretty print filter, 920
mpss.so.1 — shared object for setting preferred

page size, 926
msgfmt — create message object file, 929
mt — manipulate magnetic tape, 935
mv — move files, 938

N
nawk — pattern scanning and processing

language, 941
Actions, 941
Arithmetic Functions, 941
Expression Patterns, 941
Expressions in nawk, 941
Functions, 941
Input/Output and General Functions, 941
Output Statements, 941
Pattern Ranges, 941
Patterns, 941
Regular Expressions, 941
Special Patterns, 941
String Functions, 941
User-defined Functions, 941
/usr/bin/nawk, 941
/usr/xcu4/bin/awk, 941
/usr/xpg4/bin/awk, 941
Variables and Special Variables, 941

NCA — the Network Cache and Accelerator
(NCA), 962

nca — the Network Cache and Accelerator
(NCA), 962

ncab2clf — convert binary log file to Common
Log File format, 964

ncakmod — start or stop the NCA kernel
module, 966

neqn — mathematical typesetting, 341
netscape — start Netscape Communicator for

Solaris, 967
newform — change the format of a text

file, 972
newgrp — changes a user’s group ID, 975
newgrp — shell built-in function to allow new

group permissions to the user, 975
news — print news items, 977
newsp — frontends to the mp Text to PDL

(Printer Description Language) pretty print
filter, 791

newtask — create new task or change task or
project of running process, 978

NFS, secure
decrypt and store secret key with keyserv —

keylogin, 566
delete stored secret key with keyserv—

keylogout, 568
nice — invoke a command with an altered

scheduling priority, 980
nice

change process nice value — renice, 1249
nice — invoke a command with an altered

scheduling priority
csh Builtin, 980

nis — a new version of the network information
name service, 982

NIS
change login password in —

yppasswd, 1696
print the value of one or more keys from a

NIS map — ypmatch, 1695
print values in a NIS database —

ypcat, 1694
return name of NIS server or map master —

ypwhich, 1697
nis+ — a new version of the network

information name service, 982

Index 1715

NIS+ — a new version of the network
information name service, 982

NIS+
Authentication — nis+, 989
Authorization — nis+, 989
change access rights on a NIS+ object —

nischmod, 1002
change password information —

nispasswd, 1030
change the group owner of a NIS+ object —

nischgrp, 1000
change the owner of a NIS+ object —

nischown, 1005
change the time to live of a NIS+ object —

nischttl, 1007
Concatenation Path — nis+, 985
create NIS+ directories — nismkdir, 1024
Directories and Domains — nis+, 988
Directory Authorization — nis+, 990
display NIS+ defaults — nisdefaults, 1009
display NIS+ error messages —

niserror, 1012
display tables — niscat, 997
Grammar — nis+, 984
Group Names — nis+, 988
group administration — nisgrpadm, 1013
Indexed Names — nis+, 983
list the contents of a NIS+ directory —

nisls, 1019
Name Expansion — nis+, 984
Namespaces — nis+, 986
NIS+ Administrative Commands —

nis+, 993
NIS+ Directory Object — nis+, 982
NIS+ Files and Directories — nis+, 995
NIS+ Group Object — nis+, 982
NIS+ Link Object — nis+, 983
NIS+ Programming API — nis+, 994
NIS+ Table Object — nis+, 982
NIS+ User Commands — nis+, 992
Principal Names — nis+, 986
remove directories — nisrmdir, 1036
remove objects — nisrm, 1034
return the state of the NIS+ namespace using

a conditional expression — nistest, 1044
Simple Names — nis+, 983
symbolically link NIS+ objects —

nisln, 1017

NIS+ (continued)
Table Authorization — nis+, 991
table administration tool — nistbladm, 1038
utilities for searching NIS+ tables —

nismatch, nisgrep, 1021
niscat — display NIS+ tables, 997
nischgrp — change the group owner of a NIS+

object, 1000
nischmod — change access rights on a NIS+

object, 1002
nischown — change the owner of a NIS+

object, 1005
nischttl — change the time to live of a NIS+

object, 1007
nisdefaults — display NIS+ defaults, 1009
niserror — display NIS+ error messages, 1012
nisgrep — utility for searching NIS+

tables, 1021
nisgrpadm — NIS+ group administration

command, 1013
nisln — symbolically link NIS+ objects, 1017
nisls — list the contents of a NIS+

directory, 1019
nismatch — utility for searching NIS+

tables, 1021
nismkdir — create a NIS+ directory, 1024
nisrm — remove NIS+ objects, 1034
nisrmdir — remove a NIS+ directory, 1036
nistbladm — administer NIS+ tables, 1038
nistest — return the state of the NIS+

namespace using a conditional
expression, 1044

nl — number lines, 1046
nm — print name list of an object file, 1049
nohup — run a command immune to

hangups, 1054
notify — shell built-in functions to control

process execution, 552
notify user that volume requested is not in the

CD-ROM or floppy drive —
volmissing, 1655

nroff — format documents for display or
line-printer, 1058

nroff utilities
check nroff and troff files — checknr, 124
eliminate .so’s from nroff input —

soelim, 1405

1716 man pages section 1: User Commands • May 2002

nroff utilities (continued)
filters reverse line-feeds from two-column
nroff text — col, 170
format tables — tbl, 1504
remove nroff, troff, tbl and eqn constructs —

deroff, 274

O
object archive

find ordering relation for an object or library
archive — lorder, 748

object files
find printable strings — strings, 1453
manipulate the comment section —

mcs, 860
print section sizes in bytes — size, 1400
strip symbol table, debugging and line

number information — strip, 1455
octal dump

— od, 1061
od — octal dump, 1061
on — execute a command on a remote system,

but with the local environment, 1067
onintr — shell built-in functions to respond to

(hardware) signals, 1570
online documentation system

— answerbook2, 40
online reference pages — man, 853
optisa — determine which variant instruction

set is optimal to use, 1069

P
pack — compress files, 1070
page — page through a text file, 914
pagesize — display size or sizes of a page of

memory, 1073
pargs — print process arguments, environment

variables, or auxiliary vector, 1074
Pascal

create a tags file for use with ex and vi —
ctags, 252

passwd — change login password and
password attributes, 1076

password
change in NIS — yppasswd, 1696

password file
edit — vipw, 1651

passwords
change login password and password

attributes — passwd, 1076
paste — merge same lines of several files or

subsequent lines of one file, 1082
patch — apply changes to files, 1085

File Name Determination, 1088
Patch Application, 1088
Patch File Format, 1087

PATH variable — sh, 1378
pathchk — check path names, 1090
pathconv — search FMLI criteria for

filename, 1093
pathname

prompts for a pathname — ckpath, 150
provides error message for pathname —

errpath, 150
provides help message for pathname —

helppath, 150
validates pathname — valpath, 150

pattern scanning and processing language —
nawk, 941

pax — portable archive interchange, 1095
Modes of Operations, 1095
Standard Error, 1101
Standard Output, 1100

pcat — compress files, 1070
pcred — proc tools, 1203
pdp11 — get processor type truth value, 787
performance monitoring

display call-graph profile data — gprof, 508
resource usage for a command —

rusage, 1289
time a command; report process data and

system activity — timex, 1537
perl — Practical Extraction and Report

Language, 1104
pfcsh — execute a command in a profile, 1111
pfexec — execute a command in a profile, 1111
pfiles — proc tools, 1203
pfksh — execute a command in a profile, 1111
pflags — proc tools, 1203
pfsh — execute a command in a profile, 1111
pg — files perusal filter for CRTs, 1112

Index 1717

pgrep — find processes by name and other
attributes, 1117

pkginfo — display software package
information, 1121

pkgmk — produce an installable
package, 1123

pkgparam — display package parameter
values, 1126

pkgproto — generate prototype file entries for
input to pkgmk command, 1128

pkgtrans — translate package format, 1130
pkill — signal processes by name and other

attributes, 1117
pldd — proc tools, 1203
plimit — get or set the resource limits of

running processes, 1132
plot — graphics filters for plotters, 1134
plotters

graphics filters — plot, 1134
graphics filters — tplot

graphics filters, 1559
pmap — display information about the address

space of a process, 1136
popd — shell built-in functions to change the

current working directory, 115
portable archive interchange — pax, 1095
postplot — PostScript translator for plot(4B)

graphics files, 1153
postdaisy — PostScript translator for Diablo 630

daisy-wheel files, 1143
postdmd — PostScript translator for DMD

bitmap files, 1145
postio — serial interface for PostScript

printers, 1147
postmd — matrix display program for

PostScript printers, 1150
postprint — PostScript translator for text

files, 1155
postprocessors

troff for PostScript printers — dpost, 294
postreverse — reverse the page order in a

PostScript file, 1157
PostScript

matrix display program — postmd, 1150
prepends host resident PostScript fonts to

files — download, 292
reverse the page order in a PostScript file —

postreverse, 1157

PostScript (continued)
serial interface — postio, 1147
translator for Diablo 630 daisy-wheel files —

postdaisy, 1143
translator for DMD bitmap files —

postdmd, 1145
translator for plot(4B) graphics files —

postplot, 1153
translator for Tektronix 4014 files —

posttek, 1159
translator for text files — postprint, 1155
troff postprocessor for PostScript printers —

dpost, 294
PostScript translator for Diablo 630 daisy-wheel

files — postdaisy, 1143
PostScript translator forMD bitmap files —

postdmd, 1145
PostScript translator for Tektronix 4014 files —

posttek, 1159
PostScript translator for text files —

postprint, 1155
posttek — PostScript translator for Tektronix

4014 files, 1159
pr — print files, 1164
Practical Extraction and Report Language —

perl, 1104
praliases — display system mail aliases, 1168
prctl — get or set the resource controls of

running processes, tasks, and projects, 1169
preap — force a defunct process to be reaped by

its parent, 1172
prex — control tracing and manipulate probe

points in a process or the kernel, 1174
prime factors

obtain for a number — factor, 377
print — shell built-in function to output

characters to the screen or window, 1185
print

formatted output — printf, 1187
print files — pr, 1164

print process arguments, environment variables,
or auxiliary vector — pargs, 1074

print authorizations granted to a user —
auths, 83

print execution profiles for a user —
profiles, 1210

print files — lpr, 761

1718 man pages section 1: User Commands • May 2002

print files
prepends host resident PostScript fonts to

files — download, 292
print project membership of user —

projects, 1212
print roles granted to a user — roles, 1270
print services

print information about the status —
lpstat, 767

printenv — display environment
variables, 1186

printers
cancel requests — cancel, 109
control — lpc, 755
display queue — lpq, 759
print information about the status —

lpstat, 767
remove jobs from queue — lprm, 765
send requests — lp, 749
test — lptest, 771

printers, LP
— disable, 337
— enable, 337

printf — print formatted output, 1187
proc tools

— pcred, 1203
— pfiles, 1203
— pflags, 1203
— pldd, 1203
— prun, 1203
— psig, 1203
— pstack, 1203
— pstop, 1203
— ptime, 1203
— ptree, 1203
— pwait, 1203
— pwdx, 1203

process, running
change priority — renice, 1249

process accounting
search and print files — acctcom, 28
time a command; report process data and

system activity — timex, 1537
process scheduler

display or set scheduling parameters of
specified process(es) — priocntl, 1192

process status
report — ps, 1213

processes
display status — ps, 1222
get core images of running processes —

gcore, 453
terminate a process by default — kill, 569

processors
display type — mach, 786

prof — display profile data, 1206
profile

display call-graph — gprof, 508
profiles — print execution profiles for a

user, 1210
programming languages

analyze and disperse compiler error
messages — error, 346

C compiler — cc, 113
C preprocessor — cpp, 196
C program verifier — lint, 703
extract strings from C code — xstr, 1687
formats program in nice style using troff —

vgrind, 1637
programming tools

arbitrary precision arithmetic language —
bc, 94

assembler — as, 60
create a tags file for use with ex and vi —

ctags, 252
create C error messages — mkstr, 912
debugger — adb, 31
display call-graph profile data — gprof, 508
dump selected parts of an object file —

dump, 302
find printable strings in an object or binary

file — strings, 1453
— install, 542
link editor — ld, 648
link-editor for object files — ld, 636
macro processor — m4, 781
make — build programs, 818
object code disassembler — dis, 286
print name list of an object file — nm, 1049
print section sizes in bytes of object files —

size, 1400
regular expression compile — regcmp, 1244
resolve and remove ifdef’ed lines from C

program source — unifdef, 1602
resource usage for a command —

rusage, 1289

Index 1719

programming tools (continued)
RPC protocol compiler — rpcgen, 1272
Source Code Control System — sccs, 1300
strip symbol table, debugging and line

number information from an object file —
strip, 1455

touch — update last modified date of
file, 1558

projects — print project membership of
user, 1212

prun — proc tools, 1203
ps — display process status, 1222
PS1 variable — sh, 1379
PS2 variable — sh, 1379
psig — proc tools, 1203
pstack — proc tools, 1203
pstop — proc tools, 1203
ptime — proc tools, 1203
ptree — proc tools, 1203
pushd — shell built-in functions to change the

current working directory, 115
pvs — display the internal versioning

information of dynamic objects, 1225
pwait — proc tools, 1203
pwd — print working directory name, 1228
pwdx — proc tools, 1203

Q
queue, printer

display — lpq, 759
queues

display the jobs queued to run at specified
times — atq, 72

remove jobs spooled by at or batch —
atrm, 73

R
true — convert archives to random

libraries, 1229
rcp — remote file copy, 1230
rdist — remote file distribution, 1232
read — shell built-in function to receive from

standard input (keyboard), 1237

readfile, longline — (FMLI utility) reads file,
gets longest line, 1240

readonly — shell built-in function to protect the
value of the given variable from
reassignment, 1241

reboot system without checking disks —
fastboot, 378

red — text editor, 312
refer — expand and insert references from a

bibliographic database, 1242
regcmp — regular expression compile, 1244
regenerate groups of programs —

sysV-make, 1476
regenerate programs — make, 818
regex — (FMLI utility) match patterns against a

string, 1246
registration, 1406
rehash — shell built-in functions to evaluate the

internal hash table of the contents of
directories, 523

reinit — (FMLI utility) changes the descriptors
in the initialization file, 1248

relational database
— join, 559

reminder services
— calendar, 107
mail notifier — biff, 103

remote shell — rsh, 1278
remote system

connect — tip, 1539
connect to — cu, 255
execute a command on a remote system, but

with the local environment — on, 1067
file copy — rcp, 1230
file distribution — rdist, 1232
remote login — rlogin, 1253
shell — rsh, 1278
show status — rup, 1286
spawn login — ct, 250
system to system command execution —

uux, 1626
transfer files to and from — tftp, 1530
who is logged in on remote machines —

rusers, 1291
removable rewritable media format utility —

rmformat, 1260
rename the binding of an FNS name —

fnrename, 429

1720 man pages section 1: User Commands • May 2002

renice — alter priority of running
processes, 1249

report on the calls to a specific procedure —
whocalls, 1675

report or filter out repeated lines in a file —
uniq, 1604

reset — (FLMI utility) changes the entry in a
field of a form to its default value, 1252

reset — reset terminal bits, 1583
reset terminal bits — reset, 1583
return — shell built-in functions to enable the

execution of the shell to advance beyond its
sequence of steps, 361

reverse page order
PostScript file — postreverse, 1157

reverse the page order in a PostScript file —
postreverse, 1157

rksh — KornShell, restricted command and
programming language, 581

rlogin — remote login, 1253
rm — remove files, 1256
rmdir — remove directories, 1256
rmformat — removable rewritable media

format utility, 1260
roffbib — format and print bibliographic

database, 1268
roles — print roles granted to a user, 1270
RPC

display host status of remote machines —
rup, 1287

display status of network hosts — rup, 1286
protocol compiler — rpcgen, 1272

RPC, secure
decrypt and store secret key with keyserv —

keylogin, 566
delete stored secret key with keyserv —

keylogout, 568
RPC Language

RPC protocol compiler — rpcgen, 1272
rpcgen — RPC protocol compiler, 1272
rpm2cpio — convert Red Hat Package (RPM) to

cpio archive, 1277
rsh — remote shell, 1278
run — (FMLI utility) runs a program, 1281
run a command immune to hangups —

nohup, 1054
runat — execute command in extended

attribute name space, 1283

runtime linker for dynamic objects —
ld.so.1, 677

rup — display status of network hosts (RPC
version), 1286

rup — display status of network hosts, 1287
ruptime — display status of local hosts, 1288
rusage — resource usage for a command, 1289
rusers — who is logged in on remote

machines, 1291
rwho — who is logged in on local

machines, 1292

S
sag — system activity graph, 1293
sar — system activity reporter, 1295
SCCS

extract SCCS version information from a file
— what, 1666

sccs-admin — create and administer SCCS
history files, 1310

sccs-cdc — change the delta commentary of an
SCCS delta, 1314

sccs-comb — combine deltas, 1316
sccs — Source Code Control System, 1300
SCCS commands

admin — create and administer SCCS history
files, 1310

cdc — change the delta commentary of an
SCCS delta, 1314

comb — combine deltas, 1316
delta — change the delta commentary of an

SCCS delta, 1318
get — retrieve a version of an SCCS

file, 1321
help — help regarding SCCS error or

warning messages, 1327
prt — display delta table information from

an SCCS file, 1332
rmdel — remove a delta from an SCCS

file, 1335
sact — show editing activity status of an

SCCS file, 1336
sccs-prs — display selected portions of an

SCCS history, 1328
sccsdiff — compare versions of SCCS

file, 1337

Index 1721

SCCS commands (continued)
unget — unget SCCS file, 1338
val — validate SCCS file, 1339

sccs-delta — change the delta commentary of an
SCCS delta, 1318

SCCS delta
change commentary — sccs-cdc, 1314
combine — sccs-comb, 1316
create — delta, 1318
remove — rmdel, 1335

SCCS delta table
print form an SCCS file — sccs-prt, 1332

SCCS files
compare versions — sccs-sccsdiff, 1337
retrieve a version of a file — sccs-get, 1321
show editing activity status —

sccs-sact, 1336
undo a previous get of an SCCS file —

sccs-unget, 1338
validate — sccs-val, 1339

sccs-get — retrieve a version of an SCCS
file, 1321

sccs-help — help regarding SCCS error or
warning messages, 1327

SCCS help
regarding SCCS error or warning messages

— sccs-help, 1327
SCCS history

display selected portions — sccs-prs, 1328
SCCS history files

create and administer — sccs-admin, 1310
sccs-prs — display selected portions of an SCCS

history, 1328
sccs-prt — display delta table information from

an SCCS file, 1332
sccs-rmdel — remove delta from SCCS

file, 1335
sccs-sact — show editing activity status of an

SCCS file, 1336
sccs-sccsdiff — compare versions of SCCS

file, 1337
sccs-unget — unget SCCS file, 1338
sccs-val — validate SCCS file, 1339
scp — secure copy (remote file copy

program), 1341
screen-oriented editor — vi, 1641
script — make script of terminal session, 1343

sdiff — print differences between two files
side-by-side, 1344

search for FNS objects with specified attributes
— fnsearch, 430

secure copy (remote file copy program) —
scp, 1341

secure file transfer program — sftp, 1372
Secure Shell proxy for HTTP —

ssh-http-proxy-connect, 1443
Secure Shell proxy for SOCKS5 —

ssh-socks5-proxy-connect, 1448
sed — stream editor, 1346, 1353

Functions, 1354
sed Addresses, 1347
sed Editing Commands, 1347
sed Regular Expressions, 1347
sed Scripts, 1353

select or reject lines common to two files —
comm, 172

serial interface for PostScript printers —
postio, 1147

set — shell built-in functions to determine the
characteristics for environmental variables of
the current shell and its descendents, 1359

set, unset — (FLMI utility) set and unset local or
global environment variables, 1364

set environment for command invocation —
env, 339

set or get limitations on the system resources
available to the current shell and its
descendents
— limit, 698
— ulimit, 698
— unlimit, 698

set process group ID — setpgrp, 1371
setcolor — (FMLI utility) redefine or create a

color, 1366
setenv — shell built-in functions to determine

the characteristics for environmental
variables of the current shell and its
descendents, 1359

setfacl — modify the Access Control List (ACL)
for a file or files, 1367
acl_entries Syntax, 1367

setpgrp — set process group ID, 1371
settime — change file access and modification

times, 1555
sftp — secure file transfer program, 1372

1722 man pages section 1: User Commands • May 2002

sh — the standard shell command
interpreter, 1375

SHACCT variable — sh, 1379
shared object for setting preferred page size —

mpss.so.1, 926
shell — (FMLI utility) run a command using

shell, 1393
SHELL variable — sh, 1379
shell

Korn shell — ksh, 581
restricted Korn shell — rksh, 581

shell command interpreter builtin-functions
— alias, 34
— bg, 552
— break, 104
— cd, 115
— chdir, 115
— continue, 104
— dirs, 115
— eval, 359
— exit, 361
— fc, 527
— fg, 552
— getopts, 497
— glob, 507
— hash, 523
— hashstat, 523
— history, 527
— jobs, 552
— kill, 569
— let, 685
— logout, 745
— newgrp, 975
— notify, 552
— onintr, 1570
— popd, 115
— print, 1185
— pushd, 115
— read, 1237
— readonly, 1241
— rehash, 523
— return, 361
— set, 1359
— setenv, 1359
— shift, 1398
— source, 359
— stop, 552
— suspend, 1474

shell command interpreter builtin-functions
(continued)

— times, 1536
— trap, 1570
— typeset, 1592
— umask, 1596
— unalias, 34
— unhash, 523
— unset, 1359
— unsetenv, 1359
— wait, 1661
— whence, 1592

shell programming
echo arguments — echo, 306
read one line from standard input and write

to standard output — line, 702
shell scripts

display size or sizes of a page of memory —
pagesize, 1073

provide truth values — true, false, 1575
shell variables, in Bourne shell, 1378
shells

C shell — csh, 221
remote — rsh, 1278
the job control shell command interpreter —

jsh, 1375
the standard shell command interpreter —

sh, 1375
shift — shell built-in function to traverse either

a shell’s argument list or a list of
field-separated words, 1398

show codeset table for the current locale —
dumpcs, 305

show current number of users in each FTP
Server class — ftpcount, 451

show current process information for each FTP
Server user — ftpwho, 452

shutdown — shut down multiuser
operation, 1399

sign on to the system — login, 737
Simple Mail Transfer Protocol

connection to remote mailserver —
mconnect, 859

size — print section sizes in bytes of object
files, 1400

sleep — suspend execution for an
interval, 1402

Index 1723

smart2cfg — Compaq Smart-2 EISA/PCI and
Smart-2SL PCI Array Controller ioctl
utility, 1403

SMPT, See Simple Mail Transfer Protocol
soelim — eliminate .so’s from nroff input, 1405
software package

display information — pkginfo, 1121
display parameter values —

pkgparam, 1126
generate prototype file entries for input to

pkgmk command — pkgproto, 1128
produce an installable package —

pkgmk, 1123
translate package format — pkgtrans, 1130

Solaris user registration — solregis, 1406
solregis — Solaris user registration, 1406
sort, topological

items mentioned in input — tsort, 1588
sort — sort and/or merge files, 1409
sortbib — sort bibliographic database, 1416
sotruss — trace shared library procedure

calls, 1418
source — shell built-in functions to execute

other commands, 359
Source Code Control System, See SCCS
source files

locate — whereis, 1668
sparc — get processor type truth value, 787
spell — check spelling, 1420
spline — interpolate smooth curve, 1423
split files based on context — csplit, 247
split — split a file into pieces, 1424
srchtxt — display contents of, or search for a

text string in, message data bases, 1426
ssh-agent — authentication agent, 1441
ssh-http-proxy-connect — Secure Shell proxy

for HTTP, 1443
ssh-keygen — authentication key

generation, 1445
ssh-socks5-proxy-connect — Secure Shell proxy

for SOCKS5, 1448
standard output

replicate — tee, 1507
start Netscape Communicator for Solaris —

netscape, 967
start or stop the NCA kernel module —

ncakmod, 966

statistics
collected by sendmail — mailstats, 795

stop — shell built-in functions to control
process execution, 552

strchg — change stream configuration, 1450
strconf — query stream configuration, 1450
stream editor — sed, 1346, 1353
STREAMS

change or query stream configuration —
strchg, strconf, 1450

string
prompt for defined string answer —

ckstr, 156
provide an error message for defined string

answer — errstr, 156
provide an help message for defined string

answer — helpstr, 156
validate a defined string answer —

valstr, 156
strings — find printable strings in object or

binary file, 1453
strip — strip symbol table, debugging and line

number information from an object
file, 1455

stty command, 1465
stty — set the options for a terminal, 1457
sum — print checksum and block count for a

file, 1472
sum — sum and count blocks in file, 1473
sun — get processor type truth value, 787
SunOS/BSD Source Compatibility Package

— stty, 1465
SunOS/BSD Source Compatibility Package

commands
— arch, 59
— basename, 93
— biff, 103
— cc, 113
— chown, 137
— df, 275
— du, 300
— echo, 310
— expr, 369
— fastboot, 378
— file, 387
— from, 439
— groups, 521
— grpck, 522

1724 man pages section 1: User Commands • May 2002

SunOS/BSD Source Compatibility Package
commands (continued)

— hostid, 536
— hostname, 537
— install, 542
— ld, 648
— lint, 703
— ln, 722
— logger, 735
— lpc, 755
— lpq, 759
— lpr, 761
— lprm, 765
— lptest, 771
— ls, 778
— mach, 786
— mkstr, 912
— pagesize, 1073
— plot, 1134
— printenv, 1186
— ps, 1222
— rusage, 1289
— shutdown, 1399
— sum, 1473
— test, 1526
— tr, 1569
— tset, 1583
— users, 1611
— vipw, 1651
— whereis, 1668
— whoami, 1674

provide SunOS compatibility for Solaris
mailbox format — mailcompat, 790

suspend — shell built-in function to halt the
current shell, 1474

suspend execution of command
— sleep, 1402

symorder — update symbol table
ordering, 1475

synchronize files and directories —
filesync, 389

system to system copy — uucp, 1612
system activity

graphical representation — sag, 1293
reporter — sar, 1295
time a command; report process data and

system activity — timex, 1537

system administration
— install, 542

system call and signals
trace — truss, 1576

system log
add entries — logger, 733

system name
print — uname, 1599

system to system command execution —
uux, 1626

system uptime
display — uptime, 1610

sysV-make — maintain, update, and regenerate
groups of programs, 1476

T
TAB characters

expand to SPACE characters, and vice versa
— expand, unexpand, 363

tables
format for nroff or troff — tbl, 1504

tabs — set tabs on a terminal, 1483
tail — display last part of file, 1487
talk — talk to another user, 1490
tape

backspace files — mt, 935
backspace records — mt, 935
erase — mt, 935
forward space files — mt, 935
forward space records — mt, 935
get unit status — mt, 935
place unit off-line — mt, 935
retension — mt, 935
rewind — mt, 935
skip backward files — mt, 935
skip backward records — mt, 935
skip forward files — mt, 935
skip forward records — mt, 935
write EOF mark on — mt, 935

tape, magnetic
copy, blocking preserved — tcopy, 1506
manipulate — mt, 935
scan — tcopy, 1506

tape archives
create — tar, 1493

Index 1725

tar — create tape archives, and add or extract
files, 1493

tbl — format tables for nroff or troff, 1504
tbl

remove nroff, troff, tbl and eqn constructs —
deroff, 274

tcopy — copy a magnetic tape, 1506
tee — replicate the standard output, 1507
telnet — user interface to a remote system using

the TELNET protocol, 1508
TELNET protocol

user interface to a remote system using the
TELNET protocol — telnet, 1508

terminal
set options — stty, 1457
set tabs — tabs, 1483

terminal screen
— clear, 167

terminal session
make script— script, 1343

terminals
get name — tty, 1590
initialize a terminal or query terminfo

database — tput, 1560
reset bits — reset, 1583
set characteristics — tset, 1583
set characteristics — stty, 1465

terminate a process by default — kill, 569
terminfo database

initialize a terminal or query terminfo
database — tput, 1560

test — evaluate condition(s), 1518
test — (FMLI utility) evaluates the expression

expression, 1528
test — condition evaluation, 1526
text editing

screen-oriented (visual) display editor based
on ex — vi, 1641

sed — stream editor, 1353
stream editor — sed, 1346

text editor
— ed, 312
— edit, 324
— ex, 350

text files
browse or page through a text file — more,

page, 914
change format — newform, 972

text formatter
format documents for display or line-printer

— nroff, 1058
text processing utilities

check spelling — spell, 1420
concatenate and display files — cat, 111
display last part of file — tail, 1487
pattern scanning and processing language —

awk, 85
search a file for a pattern — grep, 515
search a file for a pattern using full regular

expressions — egrep, 328
search file for fixed-character string —

fgrep, 383
sort and/or merge files — sort, 1409
split a file into pieces — split, 1424
translate characters — tr, 1564, 1569
underline text — ul, 1595

text retrieval tools
create message files for use by gettxt —

mkmsgs, 910
retrieve text string from message database —

gettxt, 505
text to PDL (Printer Description Language)

pretty print filter — mp, 920
tftp — trivial file transfer program, 1530
the Network Cache and Accelerator (NCA) —

NCA, 962
the Network Cache and Accelerator (NCA) —

nca, 962
tilde escape commands for mail

— mailx, 808
time — time a simple command, 1533
time

prompts for time — cktime, 161
provides error message for time —

errtime, 161
provides help message for time —

helptime, 161
validates time — valtime, 161

time a simple command — time, 1533
timed event services

display the jobs queued to run at specified
times — atq, 72

reminder service — calendar, 107
remove jobs spooled by at or batch —

atrm, 73
user crontab file — crontab, 216

1726 man pages section 1: User Commands • May 2002

timemanp — frontends to the mp Text to PDL
(Printer Description Language) pretty print
filter, 791

times — shell built-in function to report time
usages of the current shell, 1536

timesysp — frontends to the mp Text to PDL
(Printer Description Language) pretty print
filter, 791

timex — time a command; report process data
and system activity, 1537

tip — connect to remote system, 1539
tnfdump — convert binary TNF file to

ASCII, 1548
tnfxtract — extract kernel probes output into a

trace file, 1553
touch — change file access and modification

times, 1555, 1591
settime, 1556
touch, 1555

touch — update last modified date of file, 1558
tplot — graphics filters for plotters, 1559
tput — initialize a terminal or query terminfo

database, 1560
tr — translate characters, 1564, 1569
trace function calls

trace application function calls to Solaris
shared libraries — apptrace, 48

trace shared library procedure calls —
sotruss, 1418

translate characters — tr, 1564, 1569
translates exportfs options to share/unshare

commands — exportfs, 365
trap — shell built-in functions to respond to

(hardware) signals, 1570
Trivial File Transfer Protocol, See TFTP
troff — typeset or format documents, 1572
troff utilities

check nroff and troff files — checknr, 124
eliminate .so’s from nroff input —

soelim, 1405
filters reverse line-feeds from two-column

nroff text — col, 170
format tables — tbl, 1504
formats program code — vgrind, 1637
postprocessor for PostScript printers —

dpost, 294
remove nroff, troff, tbl and eqn constructs —

deroff, 274

true — provide truth values, 1575
truss — trace system calls and signals, 1576
tset — set terminal characteristics, 1583
tsort — topological sort of items mentioned in

input, 1588
ttl — time to live value, nischttl, 1007
tty, set characteristics — stty, 1465
tty, set characteristics — tset, 1583
tty

set options — stty, 1457
tty — get the name of the terminal, 1590
typeset — shell built-in functions to set/get

attributes and values for shell variables and
functions, 1592

typeset documents — troff, 1572

U
u370 — get processor type truth value, 787
u3b — get processor type truth value, 787
u3b15 — get processor type truth value, 787
u3b2 — get processor type truth value, 787
u3b5 — get processor type truth value, 787
ucblinks — adds /dev entries to give SunOS 4.x

compatible names to SunOS 5.x
devices, 1594

ul — underline text, 1595
ulimit — set or get limitations on the system

resources available to the current shell and
its descendents, 698

umask — shell built-in function to restrict
read/write/execute permissions, 1596

unalias — shell built-in functions to create your
own pseudonym or shorthand for a
command or series of commands, 34

uname — print name of current system, 1599
unbind the reference from an FNS name —

fnunbind, 436
uncompress — uncompress files, 177
underline text — ul, 1595
unexpand — unexpand SPACE characters to

TAB characters, 363
unhash — shell built-in functions to evaluate

the internal hash table of the contents of
directories, 523

unifdef — resolve and remove ifdef’ed lines
from C program source, 1602

Index 1727

uniq — report or filter out repeated lines in a
file, 1604

units — converts quantities expressed in
standard scales to other scales, 1606

UNIX
convert text file from DOS format to ISO

format — dos2unix, 290
UNIX-to-UNIX commands

uucp — uucp, 1612
uulog — uucp, 1612
uuname — uucp, 1612

unix2dos — convert text file from ISO format to
DOS format, 1608

unlimit — set or get limitations on the system
resources available to the current shell and
its descendents, 698

unpack — expand compressed files, 1070
unset — shell built-in functions to determine

the characteristics for environmental
variables of the current shell and its
descendents, 1359

unsetenv — shell built-in functions to
determine the characteristics for
environmental variables of the current shell
and its descendents, 1359

update and examine attributes associated with
FNS named object — fnattr, 421

update groups of programs —
sysV-make, 1476

update last modified date of file — touch, 1558
update programs — make, 818
uptime — show how long the system has been

up, 1610
user ID

change user IDs of files — chown, 137
user IDs

display a list of all valid user names —
dispuid, 289

prompts for user ID — ckuid, 163
provides error message for user ID —

erruid, 163
provides help message for user ID —

helpuid, 163
validates user ID — valuid, 163

users
display effective name — whoami, 1674
display group membership — groups, 520

users (continued)
display information about local and remote
users — finger, 403
get the name of the user running the process

— logname, 744
list user login information — listusers, 707
talk to another user — talk, 1490
who is logged in, and what are they doing —

w, 1659
who is logged in on local machines —

rwho, 1292
who is logged in on remote machines —

rusers, 1291
who is on the system — who, 1671
write to another user — write, 1677

users, network
Internet user name directory service —

whois, 1676
users — display users on system, 1611
uucp — UNIX-to-UNIX copy, 1612
uucp

log — uulog, 1612
uucp status inquiry — uustat, 1619

uudecode — decode binary file, 1616
uuencode — encode binary file, 1616
uuglist — print list of service grades

available, 1618
uulog — UUCP log, 1612
uuname — UUCP list of names, 1612
uustat — uucp status inquiry, 1619
uux — system to system command

execution, 1626

V
vacation — automatic mail replies, 1630
vax — get processor type truth value, 787
version control

— vc, 1633
vgrind — formats program in nice style using

troff, 1637
vi — screen-oriented (visual) display editor

based on ex, 1641
vipw — edit password file, 1651
volcancel — cancel user’s request for removable

media that is not currently in drive, 1652
volcheck — check for media in a drive, 1653

1728 man pages section 1: User Commands • May 2002

volmissing — notify user that volume requested
is not in the CD-ROM or floppy drive, 1655

volrmmount — call rmmount to mount or
unmount media, 1656

Volume Management
cancel user’s request for removable media

that is not currently in drive —
volcancel, 1652

check for media in a drive —
volcheck, 1653

missing volume notification —
volmissing, 1655

vsig — synchronize a co-process with the
controlling FMLI application, 1658

W
w — display information about currently

logged-in users, 1659
w — who is logged in, and what are they

doing, 1659
wait — shell built-in function to wait for other

jobs or processes, 1661
wc — display a count of lines, words and

characters in a file, 1664
what — extract SCCS version information from

a file, 1666
whatis — describe command, 1667
whence — shell built-in functions to set/get

attributes and values for shell variables and
functions, 1592

whereis — locate the binary, source and manual
page files for a command, 1668

which — locate a command; display its
pathname or alias, 1670

who is logged in — w, 1659
who — who is on the system, 1671
whoami — display effective user name, 1674
whocalls — report on the calls to a specific

procedure, 1675
whois — Internet user name directory

service, 1676
write — write to another user, 1677
write file checksums and sizes — cksum, 159

X
xargs — construct argument lists and invoke

utility, 1680
xgettext — extract gettext call strings, 1685
xstr — extract strings from C code, 1687

Y
yacc — yet another compiler-compiler, 1689
yacc

create a tags file for use with ex and vi —
ctags, 252

yes — generate repetitive affirmative
output, 1693

yes/no answer
prompts for yes/no answer — ckyorn, 165
provides error message for yes/no answer —

erryorn, 165
provides help message for yes/no answer —

helpyorn, 165
validates yes/no answer — valyorn, 165

yet another compiler-compiler — yacc, 1689
ypcat — print values in a NIS database, 1694
ypmatch — print the value of one or more keys

from a NIS map, 1695
yppasswd — change your network password in

the NIS database, 1696
ypwhich — return name of NIS server or map

master, 1697

Z
zcat — displays uncompressed files but leaves

compressed files intact, 177

Index 1729

1730 man pages section 1: User Commands • May 2002

