
Solaris Java Plug-in User’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0378–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 7

1 Overview — What is Java Plug-in? 11

11

2 Using the Conventional Applet Tag 13

Support for the APPLET Tag 13
Compatibility with the OBJECT Tag 13
Supported Browsers 14
Updating Old Class Files 14

3 Using OBJECT, EMBED and APPLET Tags in Java Plug-in 15

Introduction 15
Java Plug-in in Internet Explorer on Microsoft Windows Platforms 16
Java Plug-in in Netscape Navigator on Microsoft Windows and Linux Platforms or
Solaris operating environments 20
Java Plug-in in Internet Explorer and Netscape Navigator Browsers 23
Java Plug-in Anywhere 25
Summary 33

4 Using the HTML Converter to Convert Applet Tags for Java Plug-in 35

Introduction 35
Running the GUI version of the HTML Converter 36
Running the converter from the command line: 41

3

5 Proxy Configuration 43

Introduction 43
How Java Plug-in Obtains Proxy Information 44
Direct Connection 44
Manual Proxy Configuration 45
Automatic Proxy Configuration 46

6 Protocol Support 47

HTTP, FTP and Gopher 47
HTTPS 47
Socks 49

7 Cookie Support 51

Introduction 51
How Java Plug-in Supports Cookies 51
Cookie Policy Support in Java Plug-in 53
Cookies and Disk Caching 53
Cookies and Security 53

8 Applet Caching and Installation in Java Plug-in 55

Caching Option 55
Cache Update Algorithm 57

Security 57
Known Limitations 58

9 Using the Java Plug-in Control Panel to Set Plug-in Behavior/Options 59

Overview 59
Starting the Java Plug-in Control Panel 59
Saving Options 60
Setting Control Panel Options 60

10 Netscape 6 67

APPLET, EMBED AND OBJECT Tag Support 67
Java-JavaScript Bi-directional Communication 67
RSA Signed Applet Verification 67
Display of Java Console 68

4 Solaris Java Plug-in User’s Guide • May 2002

Enable/Disable the Java Platform 68

Applet Lifecycle Change 68

Proxy and Cookie Support 68

HTTPS 68

Automatic Download 68

Backward Compatibility Issue 68

11 Frequently Asked Questions (FAQ) 69

Contents 5

6 Solaris Java Plug-in User’s Guide • May 2002

Preface

This manual is an introduction to and overview of the use of version 1.4 of the Java™
Plug-in product. It is a summary of the Java Plug-in documentation available at
http://java.sun.com/j2se/1.4/docs/guide/plugin.

Who Should Use This Book
This book contains information that is useful to applet developers and web site
managers who host applets on their Web pages.

How This Book Is Organized
Chapter 1 provides an introduction to the Java Plug-in product.

Chapter 3 discusses tags that must be used in HTML files.

Chapter 4 describes the HTML Converter.

Chapter 5 contains information about setting up web sites that host applets.

Chapter 6 discusses support for HTTP, FTP, and GOPHER protocols.

Chapter 7 describes the Java Plug-in supports the use of cookies, which store data on
client platforms.

Chapter 8 contains more information related to caching of applets.

Chapter 9 describes the operation and use of the Java Plug-in Control Panel.

7

Chapter 10 contains information about Netscape 6 and the Open Java Interface (OJI).

Chapter 11 provides references to the various topics covered by the online FAQ for the
Java Plug-in.

Related Documentation
These documents have information about version 1.4 of the Java 2 Platform:

� Java 2 SDK for Solaris Developer’s Guide

� Java 2 SDK, Standard Edition v. 1.4 Release Notes located online at
http://java.sun.com/j2se/1.4/relnotes.html.

� Java 2 SDK, Standard Edition, v. 1.4 Documentation located online at
http://java.sun.com/j2se/1.4/docs/index.html.

� Java 2 Platform, Standard Edition, v 1.4 API Specification located online at
http://java.sun.com/j2se/1.4/docs/api/index.html.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

8 Solaris Java Plug-in User’s Guide • May 2002

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 9

10 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 1

Overview — What is Java Plug-in?

The Java™ Plug-in component (hereafter “Java Plug-in”) extends the functionality of a
web browser, allowing applets to be run under Sun’s Java 2 runtime environment
rather than the Java runtime environment that comes with the web browser. Java
Plug-in is part of the Java 2 Runtime Environment (JRE) and is installed with it when
the JRE is installed on a computer. It works with both Microsoft Internet Explorer and
Netscape™ web browsers.

This functionality can be acheived in two different ways:

1. By using the conventional APPLET tag in a web page.

2. By replacing the APPLET tag with the OBJECT tag for Internet Explorer; by
replacing the APPLET tag with the EMBED tag for Netscape 4; by replacing the
APPLET tag with the OBJECT tag or EMBED tag for Netscape 6. Note, however,
that the OBJECT and EMBED tags must conform to a special format as described in
the next chapter.

OBJECT and EMBED tags in web pages may be manually updated, but to facilitate
updating web pages to this new format, an HTML Converter is provided. It is
described in the section called Chapter 4.

While the above constitutes the heart of Java Plug-in, there are many other related
topics that you may want to understand. For instance, you may want to know how
proxy configuration works in Java Plug-in, you may want to know what protocols
Java Plug-in supports, or you may want to know about cookie support and caching.
Such topics are included in this book.

This book also contains information on Netscape 6.1 and the Open Java Interface (OJI)
and an FAQ.

The material in this book is taken from the Java Plug-in Developer Guide, which is part
of the Java 2 Platform, Standard Edition, v1.4 documentation set. The full Java Plug-in
Developer Guide is available online at

11

http://java.sun.com/j2se/1.4/docs/guide/plugin/developer_guide/contents.html.
In addition to the information provided in this book, the online Java Plug-in Developer
Guide contains additional chapters dealing with Deployment Schemes, Security,
Debugging Support, and Advanced Topics.

12 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 2

Using the Conventional Applet Tag

Support for the APPLET Tag
Java Plug-in now supports the HTML APPLET tag for launching applets. Users may
configure their browsers so that JRE 1.4.0 is the default runtime environment for
handling APPLET tags.

For developers, the Java Plug-in enhancements enable you to deploy your applet web
pages without the need for an HTML Converter or the use of OBJECT tags, while still
being able to ensure that your users will have the latest JRE/Java Plug-in for running
your code.

Even though Java Plug-in now supports the APPLET tag, it does not support applets
that make use of proprietary technologies. Examples of such technologies are

� CAB files
� Authenticode signing
� Java Moniker

Compatibility with the OBJECT Tag
This release of Java Plug-in supports the use of APPLET tags for launching applets.
However, it is also fully backward compatible with previous Java Plug-in releases in
its support of the OBJECT tag for launching applets. Developers have the option of
using the HTML Converter to set up their applet web pages to use the OBJECT tag as
before.

13

Supported Browsers
Java Plug-in provides support for the APPLET tag on the following web browsers:

� Internet Explorer 4.0 (4.01 recommended), 5.0 (5.01 recommended), 5.5 (Service
Pack 2 recommended), 6.0

� Netscape 6.0, 6.1

Updating Old Class Files
In some cases, the new Java Runtime Environment associated with this Java Plug-in
release will not run class files that were generated with old compilers. The usual
symptom is a java.lang.ClassFormatError that the virtual machine throws
when it attempts to load such a class file. This failure has nothing specifically to do
with the changes in this release. Rather, old bytecode compilers did not strictly adhere
to proper class-file format in all situations when generating class files. Recent virtual
machines are implemented to be strict in enforcing proper class file format, and this
can lead to errors when they attempt to load old, improperly formatted class files.
Some typical problems in some older class files are (this list is not exhaustive):

� There are extra bytes at the end of the class file;

� The class file contains method or field names that do not begin with a letter;

� The class attempts to access private members of another class;

� The class file has other format errors, including illegal constant pool indices and
illegal UTF-8 strings;

� Some early (third-party) bytecode obfuscators produced class files that violated
proper class-file format.

You can avoid this type of problem by recompiling your classes with the Javac
bytecode compiler from the current Java 2 SDK. If you choose to use a third-party
obfuscator, be sure to use one that produces class files that respect proper class-file
format.

14 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 3

Using OBJECT, EMBED and APPLET
Tags in Java Plug-in

This chapter includes the following topics:

� “Introduction” on page 15
� “Java Plug-in in Internet Explorer on Microsoft Windows Platforms” on page 16
� “Java Plug-in in Netscape Navigator on Microsoft Windows and Linux Platforms

or Solaris operating environments” on page 20
� “Java Plug-in in Internet Explorer and Netscape Navigator Browsers” on page 23
� “Java Plug-in Anywhere” on page 25
� “Summary” on page 33

Introduction
This document explains the tagging structure, involving OBJECT and EMBED tags,
required by Java Plug-in. It is intended for web authors who want to manually insert
Java Plug-in tags in their HTML pages.

Note – There is a Java Plug-in HTML Converter, available free-of-charge from Sun
Microsystems, that automatically does this for you. It is highly recommended that
most web authors use it.

Applets are normally specified in an HTML file as follows:

<APPLET code="XYZApp.class" codebase="html/" align="baseline"
width="200" height="200">

<PARAM name="model" value="models/HyaluronicAcid.xyz">
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</APPLET>

15

And normally the APPLET tag specifies information about the applet, while the
<PARAM> tags, located between the <APPLET> and </APPLET> tags, store
per-instance applet information.

However, an APPLET is rendered by the browser and there is no easy way to intercept
the browser and force it to use Sun’s Java Runtime Environment (JRE) to run the
applet. To force the browser to do so, however, you may use a special Java Plug-in
tagging structure involving the OBJECT or EMBED tag or both, as described below, in
place of the usual APPLET tag in your HTML pages. This will cause the browser to
launch Java Plug-in, which will then run the applet using Sun’s JRE.

For various combinations of browsers and platforms, the following sections tell you
exactly what you need to do.

Note – Product version numbers are of the form

n1.n2.n3_n4n5

where n1.n2 is the major version number, the n3 is the minor version number (also
referred to as the maintenance version number), and n4n5 is the update version
number.

The version numbers used in the examples below refer to the 1.4 major release with
minor release number of 0 and, at times, hypothetical update number.

At times you will see modified usages such as 1,4,0,nm and 14 (the latter to indicate
only the major version number).

Java Plug-in in Internet Explorer on Microsoft
Windows Platforms
To use Java Plug-in with Internet Explorer on Microsoft Windows platforms, use the
OBJECT tag. The following is an example of mapping an APPLET tag to a Java Plug-in
tag:

Original APPLET Tag

<APPLET code="XYZApp.class" codebase="html/" align="baseline"
width="200" height="200">

<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</APPLET>

Note – The URL given in the codebase attribute in this and following examples is for
illustrative purposes only. No cab file actually exists at that URL.

16 Solaris Java Plug-in User’s Guide • May 2002

New OBJECT Tag

<OBJECT classid="clsid:CAFEEFAC-0014-0000-0000-ABCDEFFEDCBA"
width="200" height="200" align="baseline"
codebase="http://java.sun.com/jpi/jinstall-14-win32.cab#Version=1,4,0,mn">
<PARAM NAME="code" VALUE="XYZApp.class">
<PARAM NAME="codebase" VALUE="html/">
<PARAM NAME="type" VALUE="application/x-java-applet;jpi-version=1.4">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</OBJECT>

Note that the OBJECT tag contains similar information to the APPLET tag. It is
sufficient to launch Java Plug-in in Internet Explorer. The classid in the OBJECT tag is
the class identifier for Java Plug-in itself. This class identifier should be the same in
every HTML page. When Internet Explorer renders this class identifier in the OBJECT
tag, it will try to load Java Plug-in into the browser.

There are several attributes in the OBJECT tag, such as width, height and align, that
are mapped directly from the corresponding attributes in the APPLET tag. These
contain formatting information that Internet Explorer will use to position Java Plug-in.
Since this information is mapped directly without changes, the position and
appearance of the applets using Java Plug-in should be the same as those applets
using the APPLET tag.

Not all attributes in the APPLET tag can be mapped to the OBJECT tag attributes. For
example, the attributes code and codebase in the APPLET tag are not mapped into the
OBJECT tag attribute. Instead, the attribute code is mapped into the PARAM code
because, according to the HTML specification, the attribute code does not exist in the
OBJECT tag. There are other attributes that do not correspond in the OBJECT tag
attributes. These attributes, with one exception, should be mapped to PARAM tags.

Note – Duplicate parameter names should never be used with the OBJECT tag.

The one exception is the codebase attribute. In the APPLET tag, the codebase attribute
represents the location from which to download additional class and jar files.
However, in the OBJECT tag, the codebase attribute represents the location from
which to download Java Plug-in when it is not found on the local machine. Because
the codebase attribute has two different meanings in the APPLET and OBJECT tags,
you must resolve this conflict by mapping this attribute into a PARAM codebase in the
OBJECT tag.

In the above example, the code and codebase attributes in the APPLET tag are mapped
into the OBJECT tag parameters. The PARAM code identifies the applet, and its value
should be the same as the code attribute in the APPLET tag. The PARAM codebase
identifies the codebase of the applet. Java Plug-in knows where to download the
applet because it can read this information from the parameters. The parameter type is

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 17

not mapped from the APPLET tag, but it is required in the OBJECT tag. It identifies the
type of the Java executable, such as an applet, so Java Plug-in knows how to initialize
the Java executable. These three PARAM tags (code, codebase, and type) in the above
example are specified by Java Plug-in. They do not exist in the PARAM of the original
APPLET tag. Note that the model parameter within the OBJECT tag is identical to the
model parameter inside the APPLET tag. Except for these first three parameters
specified for Java Plug-in, the remainder of the parameters are the same as those
inside the APPLET tag.

A new addition for Java Plug-in 1.3 (and valid in 1.4) was the PARAM scriptable tag.
This was added to improve performance of applets that do not require the use of
JavaScript or VBScript. The value should be true if the applet requires scripting
support and false if it does not. The value is false by default.

Please note that PARAM scriptable is not the same as the PARAM Mayscript. Mayscript
provides support for communication from Java applets to JavaScript only, while
scriptable allows communication from JavaScript to Java applets in Internet Explorer
only.

The text "No Java 2 SDK, Standard Edition v 1.4 support for
APPLET!!" in the APPLET tag is mapped inside the <OBJECT> and </OBJECT>tags.
Originally, this text is displayed only if the browser does not have Java support. By
mapping it inside the OBJECT tag, this text will displayed if the browser does not
support the OBJECT tag.

The APPLET-OBJECT tag attributes mapping is as follows:

Attributes APPLET tag support OBJECT tag support Attribute map in OBJECT
tag

ALIGN X X Attribute ALIGN

ALT X

ARCHIVE X Param archive

CODE X X Param code

CODEBASE X X Param codebase

HEIGHT X X Attribute HEIGHT

HSPACE X X Attribute HSPACE

NAME X X Attribute NAME,
Param NAME

OBJECT X Param object

TITLE X X Attribute TITLE

VSPACE X X Attribute VSPACE

18 Solaris Java Plug-in User’s Guide • May 2002

Attributes APPLET tag support OBJECT tag support Attribute map in OBJECT
tag

WIDTH X X Attribute WIDTH

MAYSCRIPT X X Param MAYSCRIPT

Some attributes are special to the OBJECT tag. These attributes are:

Attribute/Param Meaning in OBJECT tag

Attribute classid It should always have the same value for dynamic version
support, i.e.
clsid:8AD9C840-044E-11D1-B3E9-00805F499D93. For static
version support it will have a unique value for the version,
e.g., clsid:CAFEEFAC-0014-0000-0000-ABCDEFFEDCBA.

Note: The examples in this section use the dynamic version.

Attribute CODEBASE It should be a full URL pointing to a CAB file somewhere
on the network. It should, be default, point to the binary on
the Java Software web site.

Param type If it is a Java applet, the value should be
“application/x-java-applet;jpi-version=1.4” or
“application/x-java-applet”. If it is a JavaBeans
component, the value should be
“application/x-java-bean;jpi-version=1.4” or
“application/x-java-bean”.

Param codebase Specifies the base URL of the applet. This attribute is
optional.

Param code Specifies the name of the Java applet or JavaBeans
component. It cannot be used the param object inside the
same OBJECT tag.

Para scriptable Specifies whether the applet is scriptable from the HTML
page using JavaScript or VBScript. The value can be either
true or false. This attribute is new in Java Plug-in 1.4.

Param object Specifies the name of the serialized Java applet or
JavaBeans component. It cannot be used with param code
inside the same OBJECT tag. This attribute is optional.

Param archive Specifies the name of the Java archive. This attribute is
optional.

Param mayscript Specifies whether the applet is allowed to access
netscape.javascript.JSObject. The value can be
either true or false. This attribute is optional.

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 19

Note that if the original APPLET tag has PARAM type, codebase, code, object or archive,
mapping it to the OBJECT tag will cause a problem because duplicate param names
will occur. To avoid this, Java Plug-in also supports another set of param names, as
follows:

Original Param Names New Param Names

code java_code

codebase java_codebase

archive java_archive

object java_object

type java_type

You should use these new param names only when necessary. If both the new and
original param names exist in the same OBJECT tag, the value associated with the new
param name is always used by Java Plug-in to load the applet or JavaBean.

Java Plug-in in Netscape Navigator on Microsoft
Windows and Linux Platforms or Solaris™
operating environments
To use Java Plug-in in Netscape Navigator™ 4 browsers on Microsoft Windows and
Linux platforms or Solaris™ operating environments, use the EMBED tag. The
following example maps an APPLET tag to a Java Plug-in EMBED tag:

Original APPLET tag:

<APPLET code="XYZApp.class" codebase="html/" align="baseline"
width="200" height="200">

<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</APPLET>

New EMBED tag:

<EMBED type="application/x-java-applet;jpi-version=1.4" width="200"
height="200" align="baseline" code="XYZApp.class"
codebase="html/" model="models/HyaluronicAcid.xyz"
pluginspage="http://java.sun.com/jpi/plugin-install.html">

<NOEMBED>
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!
</NOEMBED>

</EMBED>

20 Solaris Java Plug-in User’s Guide • May 2002

Note that the EMBED tag contains similar information to the APPLET tag, and it is
sufficient to launch Java Plug-in in Netscape Navigator browsers. The attribute type in
the EMBED tag is used for identifying the type of the Java programming language
executable, such as an applet or a bean. When a Netscape Navigator browser renders
this attribute in the EMBED tag, it will try to load Java Plug-in into the browser. By
specifying the type attribute, Java Plug-in will know how to initialize the Java
programming language executable.

In the above example, several attributes in the EMBED tag, such as width, height and
align, map directly from the corresponding attributes in the APPLET tag. These
contain formatting information that a Netscape Navigator browser uses to position
Java Plug-in. Since this information is mapped directly without changes, the position
and appearance of the applets using Java Plug-in should be the same as those applets
using the APPLET tag.

Unlike the OBJECT tag, all information must be stored inside the <EMBED> tag instead
of using PARAM. Therefore, all attributes and params in the APPLET tag must be
mapped as attribute-value pairs inside the EMBED tag.

In the above example, the code and codebase attributes in the APPLET tag are mapped
into the EMBED tag attributes. Attribute code identifies the applet. Its value should be
the same as the code attribute in the APPLET tag. Attribute codebase identifies the
codebase of the applet. Java Plug-in knows where to download the applet or
JavaBeans component because it can read this information from the attributes. Also
notice that the model attribute within the EMBED tag is mapped from the model param
inside the APPLET tag.

Like the codebase attribute in the OBJECT tag, attribute pluginspage in the EMBED tag is
used by Netscape Navigator browsers if Java Plug-in is not installed. It should always
point to the Java Plug-in Download Page on the Java Software web site.

The text "No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!"
in the APPLET tag is mapped inside the <NOEMBED> and </NOEMBED> tags.
Originally, this text is displayed only if the browser does not have Java technology
support. By mapping it inside the NOEMBED tag, this text will be displayed if the
browser does not support the EMBED tag or if the browser fails to start the Java
Plug-in.

The APPLET-EMBED tag attributes mapping is as follows:

Attributes APPLET tag support EMBED tag support Attribute map in EMBED
tag

ALIGN X X Attribute ALIGN

ALT X X Attribute ALT

ARCHIVE X Attribute archive

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 21

Attributes APPLET tag support EMBED tag support Attribute map in EMBED
tag

CODE X Attribute code

CODEBASE X Attribute codebase

HEIGHT X X Attribute HEIGHT

HSPACE X X Attribute HSPACE

NAME X X Attribute NAME

OBJECT X Attribute object

TITLE X X Attribute TITLE

VSPACE X X Attribute VSPACE

WIDTH X X Attribute WIDTH

MAYSCRIPT X X Attribute
MAYSCRIPT

Some attributes are special to the EMBED tag. These attributes are:

Attribute Meaning in EMBED tag

Attribute type If it is an applet, the value should be
"application/x-java-applet;jpi-version=1.4" or
"application/x-java-applet". If it is a bean, the
value should be
"application/x-java-bean;jpi-version=1.4" or
"application/x-java-bean".

Attribute codebase Specifies the base URL of the applet. This
attribute is optional.

Attribute code Specifies the name of the Java applet or
JavaBeans component. It cannot be used with
param object inside the same EMBED tag.

Attribute object Specifies the name of the serialized Java
applet or JavaBeans component. It cannot be
used with param code inside the same
EMBED tag. This attribute is optional.

Attribute archive Specifies the name of the Java archive. This
attribute is optional.

Attribute pluginspage It should be a full URL pointing to an HTML
page somewhere on the network.

22 Solaris Java Plug-in User’s Guide • May 2002

Attribute Meaning in EMBED tag

Attribute mayscript Specifies whether the applet is allowed to
access netscape.javascript.JSObject. The value
can be either "true" or "false". This attribute is
optional.

Similar to the OBJECT tag case, if the original APPLET tag has PARAM type, codebase,
code, object, or archive, mapping it to the EMBED tag attribute will cause a problem. To
avoid this, Java Plug-in also supports the same new set of attribute names, as follows:

Original Attribute Names New Attribute Names

code java_code

codebase java_codebase

archive java_archive

object java_object

type java_type

You should use these new attribute names only necessary. If both new and original
attribute names exist in the same EMBED tag, the value associated with the new
attribute name is always used by Java Plug-in to load the applet or bean.

Java Plug-in in Internet Explorer and Netscape
Navigator Browsers
The OBJECT tag in Internet Explorer and the EMBED tag in Netscape Navigator
browsers allows your HTML page to use Java Plug-in if the HTML page is browsed on
Microsoft Windows platforms or Solaris operating environments. However, if the
HTML page is on the Internet/intranet, the page is likely to be browsed by both
Internet Explorer and Netscape Navigator browsers. You should activate the Java
Plug-in if both Netscape Navigator browsers and Internet Explorer will browse the
same HTML page. You can do this using the Java Plug-in OBJECT tag, as follows:

Original APPLET tag:

<APPLET code="XYZApp.class" codebase="html/" align="baseline"
width="200" height="200">

<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
No Java 2 SDK, Standard Editoin v 1.4 support for APPLET!!

</APPLET>

New OBJECT tag:

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 23

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="200" height="200" align="baseline"
codebase="http://java.sun.com/jpi/jinstall-14-win32.cab#Version=1,4,0,mn">
<PARAM NAME="code" VALUE="XYZApp.class">
<PARAM NAME="codebase" VALUE="html/">
<PARAM NAME="type" VALUE="application/x-java-applet;jpi-version=1.4">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="scriptable" VALUE="true">
<COMMENT>
<EMBED type="application/x-java-applet;jpi-version=1.4" width="200"

height="200" align="baseline" code="XYZApp.class"
codebase="html/" model="models/HyaluronicAcid.xyz"
pluginspage="http://java.sun.com/jpi/plugin-install.html">

<NOEMBED>
</COMMENT>

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!
</NOMEMBED></EMBED>

</OBJECT>

Because Internet Explorer understands the </OBJECT> tag, it will try to launch Java
Plug-in. Notice that the <COMMENT> tag is a special HTML tag understood only by
Internet Explorer. Internet Explorer ignores test between the <COMMENT> and
</COMMENT> tags. In effect, the above tags actually become:

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="200" height="200" align="baseline"
codebase="http://java.sun.com/jpi/jinstall-14-win32.cab#Version=1,4,0,mn">
<PARAM NAME="code" VALUE="XYZApp.class">
<PARAM NAME="codebase" VALUE="html/">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="type" VALUE="application/x-java-applet;jpi-version=1.4">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!
</NOEMBED></EMBED>

</OBJECT>

This is identical to the OBJECT tag example outlined above. The </NOEMBED> and
</EMBED> and tags are ignored by the OBJECT tag because there are no
corresponding <NOEMBED> and <EMBED> tags.

Because Netscape Navigator browsers do not understand the OBJECT and COMMENT
tags, they read the above tags as follows:

<EMBED type="application/x-java-applet;jpi-version=1.4"
width="200" height="200"
align="baseline" code="XYZApp.class" codebase="html/"
model="models/HyaluronicAcid.xyz"
pluginspage="http://java.sun.com/jpi/plugin-install.html">

<NOEMBED>
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</NOEMBED>

</EMBED>

24 Solaris Java Plug-in User’s Guide • May 2002

This is identical to the EMBED tag example outlined above. A Netscape Navigator
browser ignores tags because they are an HTML extension in an Internet Explorer
browser only.

This example illustrates that you can use the combined OBJECT-EMBED tag to activate
Java Plug-in in the browser if either Internet Explorer or a Netscape Navigator
browser is used. This combined tag is strongly recommended unless your HTML page
is browsed by users in a homogeneous environment. The Java Plug-in HTML
Converter from Sun Microsystems automatically converts HTML pages into this tag
style for you.

Java Plug-in Anywhere
In an Internet/intranet environment, an HTML page is likely to be seen by browsers
on different platforms. You should activate Java Plug-in only on the right browser and
platform combination. Otherwise, you should use the browser’s default JVM. You can
achieve this using the following Java Plug-in tag:

Original APPLET tag:

<APPLET code="XYZApp.class" codebase="html/" align="baseline"
width="200" height="200">

<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</APPLET>

New style tag:

The following is an example of an equivalent Java Plug-in tag. This example includes
comments.

<!-- The following code is specified at the beginning of the <BODY> tag. -->
<SCRIPT LANGUAGE="JavaScript"><!--
var _info = navigator.userAgent; var _ns = false;

var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0
&& _info.indexOf("Windows 3.1") < 0);

//--></SCRIPT>
<COMMENT><SCRIPT LANGUAGE="JavaScript1.1"><!--
var _ns = (navigator.appName.indexOf("Netscape") >= 0

&& ((_info.indexOf("Win") > 0 && _info.indexOf("Win16") < 0
&& java.lang.System.getProperty("os.version").indexOf("3.5") < 0)
|| _info.indexOf("Sun") > 0));

//--></SCRIPT></COMMENT>

<!-- The following code is repeated for each APPLET tag -->
<SCRIPT LANGUAGE="JavaScript"><!--

if (_ie == true) document.writeln(’
<OBJECT
classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="200" height="200" align="baseline"
codebase="http://java.sun.com/jpi/jinstall-14-win32.cab#Version=1,4,0,mn">

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 25

<NOEMBED><XMP>’);
else if (_ns == true) document.writeln(’

<EMBED
type="application/x-java-applet;jpi-version=1.4"
width="200" height="200"
align="baseline" code="XYZApp.class" codebase="html/"
model="models/HyaluronicAcid.xyz"
pluginspage="http://java.sun.com/jpi/plugin-install.html">
<NOEMBED><XMP>’);

//--></SCRIPT>
<APPLET code="XYZApp.class" codebase="html/" align="baseline"

width="200" height="200">
</XMP>
<PARAM NAME="java_code" VALUE="XYZApp.class">
<PARAM NAME="java_codebase" VALUE="html/">
<PARAM NAME="java_type" VALUE="application/x-java-applet;jpi-version=1.4">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!
</APPLET></NOEMBED></EMBED>
</OBJECT>

<!--
<APPLET code="XYZApp.class" codebase="html/" align="baseline"

width="200" height="200">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!
</APPLET>

-->

Although this tag seems complicated compared to the old APPLET tag, it is not. Most
of the Java Plug-in tag is the same regardless of the applet used. For the majority of
cases, a webmaster can copy and paste the Java Plug-in tag.

The first block of the script extracts the browser and platform. You must determine the
browser and platform on which the applet is running. You do this by using
JavaScript™ to extract first the browser name, then the platform. This is done once per
HTML document.

The second block of the script replaces the APPLET tag. You must replace each
APPLET tag with a similar block of code. The script replaces the APPLET tag with
either an EMBED tag or OBJECT tag, depending on the browser. You use the OBJECT
tag for Internet Explorer and the EMBED tag for Netscape Navigator browsers. Finally,
the original APPLET tag is included as a comment at the end. It is always a good idea
to keep the original APPLET tag in case you want to remove the Java Plug-in
invocation.

The first JavaScript establishes the browser and the platform on which the browser is
running. You must do this because, currently, Java Plug-in supports only Microsoft
Windows platforms and the Solaris operating environment. Note that Windows NT
3.51 is the only Win32 platform that Java Plug-in does not support. Java Plug-in
should be invoked only on the supported browser and platform. The script sets the

26 Solaris Java Plug-in User’s Guide • May 2002

variable _ie to true if the browser is Internet Explorer. It sets the variable _ns to true if
the browser is a Netscape browser. (Note that all variable names in the JavaScript start
with "_". This is done to avoid conflicting with other JavaScript variables in the same
page.)

To detect the right browser, the JavaScript evaluates three strings that are within the
JavaScript’s Navigator object: userAgent, appVersion, and appName. These strings
contain information about the browser and the platform. By looking at some examples
of the string userAgent, you can see how to evaluate userAgent and use it to determine
the browser. The following are some examples of the userAgent string for different
platforms as it appears in Internet Explorer. In the table, IE stands for Internet
Explorer.

Platform and Browser JavaScript’s Navigator.userAgent string

Windows 2000 w/IE 5.0 "Mozilla/4.0 (compatible; MSIE 5.01; Window
NT5.0)

Windows NT 4.0 w/ IE 4.0 "Mozilla/4.0 (compatible; MSIE 4.0; Windows
NT)" “

Windows 95 w/IE 4.0 "Mozilla/4.0 (compatible; MSIE 4.0; Windows
95)“

Windows NT 3.51 w/ IE 4.0 "Mozilla/4.0 (compatible; MSIE 4.0; Windows
3.1)“

Windows 3.1 w/IE 4.0 "Mozilla/4.0 (compatible; MSIE 4.0; Windows
3.1)“

Windows NT 4.0 w/Navigator 4.04 "Mozilla/4.04 [en] (WinNT; I)“

Windows NT 3.51 w/Navigator 4.04 "Mozilla/4.04 [en] (WinNT; I)“

Windows 95 w/Navigator 4.03 "Mozilla/4.03 [en] (Win95; I)“

Solaris 2.6 w/Navigator 4.02 "Mozilla/4.02 [en] (X11; l; SunOS 5.6 sun4u)

Note that in each case the substring "MSIE" is always in the userAgent string in
Internet Explorer. Also, the userAgent string in Internet Explorer under Windows 3.1
and Windows 3.51 would contain the substring "Windows 3.1" because Internet
Explorer in these platforms is 16-bit. While Internet Explorer 4 is also available on
Macintosh and the Solaris operating environment, in these versions the userAgent
string does not contain the substring "Win". In addition, Internet Explorer on Windows
CE does not support JavaScript. This can be summarized as follows:

userAgent string / Browser contains “MSIE” contains “Win” does not contain
“Windows 3.1”

Windows 3.1 w/ IE 4 X X

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 27

userAgent string / Browser contains “MSIE” contains “Win” does not contain
“Windows 3.1”

Windows NT 3.51 w/
IE 4

X X

Windows 95 w/IE 4 X X X

Windows NT 4.0 w/
IE 4

X X X

Windows CE w/ IE

Mac w/ IE X X

UNIX w/ IE X X

Other browsers on
any platform

X

The above table shows that only Windows 95 and Windows NT 4.0 with Internet
Explorer can pass the Java Plug-in browser and platform requirements. However, this
logic makes no assumptions about future releases of Internet Explorer or future
releases of Microsoft Windows with Internet Explorer. As long as the userAgent string
contains "MSIE" and "Win", the above code should work in future releases of Internet
Explorer on Win32.

The above logic summarizes into the following:

<SCRIPT LANGUAGE="JavaScript">
var _info = navigator.userAgent;
var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0

&& _info.indexOf("Windows 3.1") < 0);

//--></SCRIPT>

It is harder to detect Navigator on the right platform. Using just JavaScript, there is no
way to determine if the browser is running on the Windows NT 3.51 or Windows NT
4.0 operating platform. (Refer to the above table and examine the userAgent string.
Notice that the userAgent strings in Windows NT 3.51 and Windows NT 4.0 operating
platforms are the same in Netscape Navigator browsers.) It is important to make this
distinction because Java Plug-in supports only the Windows NT 4.0 operating
platform. To run Java Plug-in on the right platform, you must use LiveConnect in
Netscape Navigator browsers to determine the OS version number. This can be
summarized as follows:

28 Solaris Java Plug-in User’s Guide • May 2002

Testing logic /
Browser

appName
contains
“Netscape”

userAgent
contains "Win"

userAgent does
not contain
"Win16"

os.version does
not contain 3.5

userAgent
contains "Sun"

Windows 3.1
w/ Netscape
4

X X X

Windows NT
3.51 w/
Netscape 4

X X X

Windows 95
w/ Netscape
4

X X X X

Windows NT
4.0 w/ NS 4

X X X X

NS on Solaris X X

IE on Solaris X

Netscape on
other platform

X X Depends on
OS

IE on other
platform

X X

Other
browsers on
any platform

The above logic translates into the following code:

<SCRIPT LANGUAGE="JavaScript">
var _info = navigator.userAgent; var _ns = false;

//--></SCRIPT>
<COMMENT><SCRIPT LANGUAGE="JavaScript1.1">

var _ns = (navigator.appName.indexOf("Netscape") >= 0
&& ((_info.indexOf("Win") > 0 && _info.indexOf("Win16") < 0
&& java.lang.System.getProperty("os.version").indexOf("3.5") < 0)
|| _info.indexOf("Sun") > 0));

//--></SCRIPT></COMMENT>

Referring to the previous table, note that only Windows 95, Windows NT 4.0, and
Solaris operating environments with Netscape Navigator browsers pass all the tests.
Because LiveConnect is used to get the OS version number and only Netscape
Navigator browsers supports LiveConnect, a JavaScript that accesses LiveConnect will
not be understood by Internet Explorer. To prevent this from causing a problem, you
block out this piece of the script using the COMMENT tag since COMMENT is an Internet

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 29

Explorer-specific comment tag. The text between the COMMENT tag is ignored by
Internet Explorer but not by Netscape Navigator browsers. In addition, you must
specify the script language as JavaScript1.1 to block this out if the browser is Netscape
Navigator 2.

At this point, the above logic for Internet Explorer and Netscape Navigator browsers
summarizes to a script that should look as follows:

<!-- The following code is specified at the beginning of the <BODY> tag. -->
<SCRIPT LANGUAGE="JavaScript"><!--

var _info = navigator.userAgent; var _ns = false;
var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0

&& _info.indexOf("Windows 3.1") < 0);
//--></SCRIPT>
<COMMENT><SCRIPT LANGUAGE="JavaScript1.1"><!--

var _ns = (navigator.appName.indexOf("Netscape") >= 0
&& ((_info.indexOf("Win") > 0 && _info.indexOf("Win16") < 0
&& java.lang.System.getProperty("os.version").indexOf("3.5") < 0
|| _info.indexOf("Sun") > 0));

//--></SCRIPT></COMMENT>

Remember that this block of JavaScript should be put at the top of the <BODY> of the
HTML file. It is put at the top so that other JavaScripts can reference the variables _ie
and _ns. This JavaScript is the same in all HTML files, and it is only needed once for
each HTML body.

The second block of HTML tags are actually the corresponding OBJECT and EMBED
tags that are mapped from the data in the APPLET tag. Note that JavaScript outputs the
OBJECT tag when the browser is Internet Explorer running on the Windows 95,
Windows 98 or Windows NT 4.0 operating environments. If the browser is the
Netscape Navigator 4 browser on Windows 95, Windows 98, Windows NT 4.0, or
Solaris operating environments, then JavaScript also outputs the EMBED tag, though
with a slightly different syntax. Recall that the mechanism for detecting the browser
and the platform has been described in the above section. (Tags <!— and –> are used
for comments in HTML.)

Original APPLET tag:

<APPLET code="XYZApp.class" codebase="html/" align="baseline"
width="200" height="200">

<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</APPLET>

New style tag:

<SCRIPT LANGUAGE="JavaScript"><!--
if (_ie == true) document.writeln(’<OBJECT
classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="200" height="200" align="baseline"
codebase="http://java.sun.com/jpi/jinstall-14-win32.cab#Version=1,4,0,mn">
<NOEMBED><XMP> ’);

else if (_ns == true) document.writeln(’<EMBED

30 Solaris Java Plug-in User’s Guide • May 2002

type="application/x-java-applet;version=1.4" width="200" height="200"
align="baseline" code="XYZApp.class" codebase="html/"
model="models/HyaluronicAcid.xyz"
pluginspage="http://java.sun.com/jpi/plugin-install.html">

<NOEMBED><XMP>’);
//--></SCRIPT>
<APPLET code="XYZApp.class" codebase="html/" align="baseline"

width="200" height="200"></XMP>
<PARAM NAME="java_code" VALUE="XYZApp.class">
<PARAM NAME="java_codebase" VALUE="html/">
<PARAM NAME="java_type" VALUE="application/x-java-applet;version=1.4">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">

LUE="models/HyaluronicAcid.xyz">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</APPLET></NOEMBED></EMBED> </OBJECT>

Note that the original APPLET tag is also mapped in the new Java Plug-in tag. This is
done because Java Plug-in is intended to be used only on supported platforms.
Leaving the APPLET tag in the script ensures that browsers that do not support Java
Plug-in, or browsers that do not support JavaScript can gracefully handle the applet
using the default JVM. HotJava Browser, Internet Explorer, and Netscape Navigator
browsers on non-Java Plug-in supported platforms, or browsers without JavaScript
support, read the above tags as follows:

<APPLET code="XYZApp.class" codebase="html/" align="baseline"
width="200" height="200"></XMP>

<PARAM NAME="java_code" VALUE="XYZApp.class">
<PARAM NAME="java_codebase" VALUE="html/">
<PPARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!
<PARAM NAME="java_type" VALUE="application/x-java-applet;jpi-version=1.4">

</APPLET></NOEMBED></EMBED></OBJECT>

These browsers ignore the tags </XMP>, </OBJECT>, </EMBED>, and </NOEMBED> as
well because there is no corresponding <XMP>,<OBJECT>, <EMBED>, and <NOEMBED>
tags. Because Java Plug-in is targeted for features in the Java 2 SDK, Standard Edition v
1.4 or future releases, those browsers without full Java 2 SDK 1.4 support and who do
not support Java Plug-in will display the message "No Java 2 SDK, Standard Edition v
1.4 support for APPLET".

Unlike the previous examples, the mapped PARAM names contain java_code,
java_codebase, and java_type instead of code, codebase, and type. This is necessary because
specifying code and codebase in the <PARAM> inside the <APPLET> and </APPLET>
tag causes problems in some browsers.

Internet Explorer on Windows 95, Windows 98 or Windows NT 4.0 reads the tags as
follows:

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="200" height="200" align="baseline"
codebase="http://java.sun.com/jpi/jinstall-14-win32.cab#Version=1,4,0,mn">

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 31

<NOEMBED><XMP>
<APPLET code="XYZApp.class" codebase="html/" align="baseline"

width="200" height="200"></XMP>
<PARAM NAME="java_code" VALUE="XYZApp.class">
<PARAM NAME="java_codebase" VALUE="html/">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="java_type" VALUE="application/x-java-applet;jpi-version=1.4">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!
</APPLET></NOEMBED></EMBED>

</OBJECT>

Be careful when you use the <XMP> tag. Because Internet Explorer renders the
<OBJECT> tag, you must disable the <APPLET> tag. If not disabled, two applets will
simultaneously show up in the browser--one applet will be running in Microsoft’s
JVM, and the other will be running in Sun’s JVM using Java Plug-in. The <XMP> tag
provides a solution. The <XMP> and </XMP> tags basically transform any HTML tag
that occurs between them into a stream of static text. In the above example, the <XMP>
and </XMP> tags cause the browser to treat the <APPLET> tag as static text instead of
an HTML tag. Because the browser ignores any static text between the <OBJECT> tag
and the <PARAM> tag, the above tags actually become:

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="200" height="200" align="baseline"
codebase="http://java.sun.com/jpi/jinstall-14-win32.cab#Version=1,4,0,mn">
<PARAM NAME="java_code" VALUE="XYZApp.class">
<PARAM NAME="java_codebase" VALUE="html/">
<PARAM NAME="java_type" VALUE="application/x-java-applet;version=1.4">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</OBJECT>

This is identical to the OBJECT tag example outlined above. Note that the <OBJECT>
tag ignores the <NOEMBED>, </NOEMBED>, and <EMBED> tags.

Netscape Navigator 4 on Windows 95, Windows 98 or Windows NT 4.0 operating
environments reads tags as follows:

<EMBED type="application/x-java-applet;jpi-version=1.4"
width="200" height="200"
align="baseline" code="XYZApp.class" codebase="html/"
model="models/HyaluronicAcid.xyz"
pluginspage="http://java.sun.com/jpi/plugin-install.html">

<NOEMBED><XMP>
<APPLET code="XYZApp.class" codebase="html/" align="baseline"

width="200" height="200"></XMP>
<PARAM NAME="java_code" VALUE="XYZApp.class">
<PARAM NAME="java_codebase" VALUE="html/">
<PARAM NAME="java_type" VALUE="application/x-java-applet;jpi-version=1.4">
<PARAM NAME="model" VALUE="models/HyaluronicAcid.xyz">
<PARAM NAME="scriptable" VALUE="true">

No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</APPLET></NOEMBED></EMBED></OBJECT>

32 Solaris Java Plug-in User’s Guide • May 2002

Note that the <XMP> tag is used again in the <EMBED> tag to also disable the
<APPLET> tag. The <EMBED> tag ignores the <PARAM> and </OBJECT> tags as well.
In effect, the above tags actually become:

<EMBED type="application/x-java-applet;jpi-version=1.4"
width="200" height="200"
align="baseline" code="XYZApp.class" codebase="html/"
model="models/HyaluronicAcid.xyz"
pluginspage="http://java.sun.com/jpi/plugin-install.html">

<NOEMBED>
No Java 2 SDK, Standard Edition v 1.4 support for APPLET!!

</NOEMBED>

</EMBED>

This is identical to the EMBED tag example outlined above.

You can use the combined OBJECT-EMBED-JavaScript tag to activate Java Plug-in
in the right browser on the right platform. This combined tag is complicated and it
should be used only if your HTML page is browsed by users in a heterogeneous
environment.

Summary
This document describes the OBJECT tag and EMBED tag styles used by Java Plug-in. It
focuses on the conversion from an APPLET tag to the OBJECT and EMBED tags.
Currently, HTML 4.0 suggests that the OBJECT tag is the best way to insert Java
applets and JavaBeans components into a HTML page. This document will be updated
in the near future should there be a need to convert the OBJECT tag to the Java Plug-in
tag style. Information disclosed in this document is intended to assist ISVs for writing
HTML migration tools and to assist webmasters with Java Plug-in migration. The tag
style described in this document is subject to change in the future.

Note that the use of Java Plug-in is not limited to the tag styles described in this
document. In fact, webmasters are encouraged to modify the tag style or mix the tag
with JavaScript to fit their needs. As long as the described OBJECT tag is used in
Internet Explorer and EMBED tag is used in Netscape Navigator browsers, there should
be no problems running Java Plug-in. Currently, there are several conversion
templates shipped with the Java Plug-in HTML converter. Webmasters may find one
template better than others for their needs, and are encouraged to modify these
templates themselves if necessary.

Chapter 3 • Using OBJECT, EMBED and APPLET Tags in Java Plug-in 33

34 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 4

Using the HTML Converter to Convert
Applet Tags for Java Plug-in

This section includes the following topics:

� “Introduction” on page 35
� “Running the GUI version of the HTML Converter” on page 36
� “Running the converter from the command line:” on page 41

Note –

1. Backup all files before converting them with this tool.
2. Cancelling a conversion will not rollback the changes.
3. Comments within the APPLET tag are ignored.

Introduction
The Java Plug-in HTML Converter is a utility for converting an HTML page (file)
containing applets to a format for Java Plug-in. The conversion process is as follows:

First, HTML that is not part of an applet is transferred from the source file to a
temporary file. Then, when an <APPLET> tag is reached, the converter parses the
applet to the first </APPLET> tag (not contained in quotes) and merges the applet
data with the template. If this completes without error, the original HTML file is
moved to the backup folder and the temporary file is then renamed as the original
file’s name.

The converter effectively converts the files in place. Thus, once the converter runs, files
are setup for Java Plug-in.

35

Running the GUI version of the HTML
Converter

Running the GUI version of the HTML Converter

The HTML converter is located in the lib/htmlconverter.jar file inside the Java
2 SDK, Standard Edition, v1.4 installation. In the default package installation, this will
be at /usr/j2se/lib/htmlconverter.jar. To launch the GUI version of the
HTML Converter, do the following.

At the command line, cd to <HTML Converter Directory>, then type

java -jar htmlconverter.jar -gui

The HTML Converter window will appear:

36 Solaris Java Plug-in User’s Guide • May 2002

Choosing files within folders to convert:

To convert all files within a folder, you may type in the path to the folder, or choose
the browse button to select a folder from a dialog. Once you have chosen a path, you
may supply any number of file specifiers in "Matching File Names". Each specifier
must be separated by a comma. You may use * as a wildcard. Finally, if you would like
all files in nested folders matching the file name to be converted, select the checkbox
"Include Subfolders".

Choosing a backup folder:

The default backup folder path is the source path with an "_BAK" appended to the
name; e.g., if the source path is /home/user1/html, then the backup path would be
/home/user1/html_BAK. The backup path may be changed by typing a path in the
field labeled "Backup Files to Folder:", or by browsing for a folder.

Generating a log file:

Chapter 4 • Using the HTML Converter to Convert Applet Tags for Java Plug-in 37

If you would like a log file to be generated, go to the Advanced Options screen
(Edit->Options) and check "Generate Log File". Enter a path in the text field or browse
to choose a folder. The log file contains basic information related to the converting
process.

Choosing a conversion template:

A default template will be used if none is chosen. This template will produce
converted html files that will work with Internet Explorer and Netscape browsers. If
you would like to use a different template, you may choose it from the menu on the
main screen. If you choose other, you will be allowed to choose a file to be used as the
template. If you choose a file, be sure that it is a template.

Choosing a version scheme:

The specified version mentioned below is the version of the JRE you use to launch the
converter; e.g., 1.4.0. The first two numbers in the version indicate the family; e.g.,
1.4.3_02 is in the 1.4 family. For an explanation of product version numbers, see the
note in the section called "Using OBJECT, EMBED and APPLET Tags in Java Plug-in."

There are two choices here:

1. You can choose to have conversion tags that will require the specified version of
Java Plug-in to run your applets. If the specified version is not installed, then the
client will be asked if he/she wants to install and download it.

2. 2.You can choose conversion tags that will allow any installed version of Java
Plug-in in the family, equal to or higher than the specified version, to run your
applets. If there is no installed version of Java Plug-in, or no installed version in the
family equal to or higher than the specified version, then the client will be asked if
he/she wants to install and run the latest version of Java Plug-in in the family.

Converting:

Click the "Convert..." button to begin the conversion process. A dialog will show the
files being processed, the number of files processed, the number of applets found, and
number of errors.

Exit or Convert More Files:

When the conversion is complete, the button in the process dialog will change from
"Cancel" to "Done". You may choose "Done" to close the dialog. You can then exit the
Java Plug-in HTML Converter program, or select another set of files to convert.

Details about templates:

The template file is the basis behind converting applets. It is simply a text file
containing tags that represent parts of the original applet. By
adding/removing/moving the tags in a template file, you can alter the output of the
converted file.

38 Solaris Java Plug-in User’s Guide • May 2002

Supported Tags:

$OriginalApplet$ This tag is substituted with the complete text
of the original applet.

$AppletAttributes$ This tag is substituted with all of the applets
attributes (code, codebase, width, height, etc.).

$ObjectAttributes$ This tag is substituted with all the attributes
required by the object tag.

$EmbedAttributes$ This tag is substituted with all the attributes
required by the embed tag.

$AppletParams$ This tag is substituted with all the applet’s
<param ...> tags.

$ObjectParams$ This tag is substituted with all the <param ...>
tags required by the object tag.

$EmbedParams$ This tag is substituted with all the <param ...>
tags required by the embed tag in the form
name=value

$AlternateHTML$ This tag is substituted with the text in the
no-support-for-applets area of the original
applet

$CabFileLocation$ This is the URL of the cab file that should be
used in each template that targets IE.

$NSFileLocation$ This is the URL of the Netscape plugin to be
used in each template that targets Netscape.

$SmartUpdate$ This is the URL of the Netscape SmartUpdate
to be used in each template that targets
Netscape Navigator 4.0 or later.

$MimeType$ This is the MIME type of the Java object.

Below are four templates that come with the HTML Converter. You can make up
others and put them in the template folder to use them.

default.tpl — the default template for the converter. The converted page can be used in
Internet Explorer and Netscape Navigator browsers on Microsoft Windows platforms
to invoke Java Plug-in. This template can also be used with the Netscape browser on
the Solaris operating environment.

<!-- HTML CONVERTER -->
<OBJECT classid="clsid:E19F9330-3110-11d4-991C-005004D3B3DB"
$ObjectAttributes$ codebase="$CabFileLocation$">
$ObjectParams$
<PARAM NAME="type" VALUE="$MimeType$">

Chapter 4 • Using the HTML Converter to Convert Applet Tags for Java Plug-in 39

<PARAM NAME="scriptable" VALUE="false">
$AppletParams$
<COMMENT>
<EMBED type="$MimeType$" $EmbedAttributes$
$EmbedParams$ scriptable=false pluginspage="$NSFileLocation$"><NOEMBED>
</COMMENT>
$AlternateHTML$
</NOEMBED></EMBED>
</OBJECT>

<!--
$ORIGINALAPPLET$

-->

ieonly.tpl - the converted page can be used to invoke Java Plug-in in Internet Explorer
on Microsoft Windows only.

<!-- HTML CONVERTER -->
<OBJECT classid="clsid:E19F9330-3110-11d4-991C-005004D3B3DB"
$ObjectAttributes$ codebase="$CabFileLocation$">
$ObjectParams$
<PARAM NAME="type" VALUE="$MimeType$">
<PARAM NAME="scriptable" VALUE="false">
$AppletParams$
$AlternateHTML$
</OBJECT>

<!--
$ORIGINALAPPLET$

-->

nsonly.tpl - the converted page can be used to invoke Java Plug-in in Netscape
Navigator browsers on Microsoft Windows platforms and the Solaris operating
environment.

<!-- HTML CONVERTER -->
<EMBED type="$MimeType$" $EmbedAttributes$
$EmbedParams$ scriptable=false pluginspage="$NSFileLocation$"><NOEMBED>
$AlternateHTML$
</NOEMBED></EMBED>

<!--
$ORIGINALAPPLET$

-->

extend.tpl - the converted page can be used in any browser and any platform. If the
browser is Internet Explorer or a Netscape Navigator browser on Microsoft Windows,
or a Netscape Navigator browser on the Solaris operating environment, Java™ Plug-in
will be invoked. Otherwise, the browser’s default virtual machine is used.

<!-- HTML CONVERTER -->
<SCRIPT LANGUAGE="JavaScript"><!--
var _info = navigator.userAgent; var _ns = false; var _ns6 = false;
var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0 &&
_info.indexOf("Windows 3.1") < 0);

40 Solaris Java Plug-in User’s Guide • May 2002

//--></SCRIPT>
<COMMENT><SCRIPT LANGUAGE="JavaScript1.1"><!--
var _ns = (navigator.appName.indexOf("Netscape") >= 0 &&
((_info.indexOf("Win") > 0 && _info.indexOf("Win16") < 0 &&
java.lang.System.getProperty("os.version").indexOf("3.5") < 0) ||
_info.indexOf("Sun") > 0));
var _ns6 = ((_ns == true) && (_info.indexOf("Mozilla/5") >= 0));
//--></SCRIPT></COMMENT>

<SCRIPT LANGUAGE="JavaScript"><!--
if (_ie == true) document.writeln(’<OBJECT
classid="clsid:E19F9330-3110-11d4-991C-005004D3B3DB" $ObjectAttributes$
codebase="$CabFileLocation$"><NOEMBED><XMP>’);
else if (_ns == true && _ns6 == false) document.writeln(’<EMBED
type="$MimeType$" $EmbedAttributes$
$EmbedParams$ scriptable=false
pluginspage="$NSFileLocation$"><NOEMBED><XMP>’);
//--></SCRIPT>
<APPLET $AppletAttributes$></XMP>
$ObjectParams$
<PARAM NAME="type" VALUE="$MimeType$">
<PARAM NAME="scriptable" VALUE="false">
$AppletParams$
$AlternateHTML$
</APPLET>
</NOEMBED></EMBED></OBJECT>

<!--
$ORIGINALAPPLET$

-->

Running the converter from the
command line:

Running the converter from the command line:

Format:

java -jar htmlconverter.jar [filespecs] [-simulate] [-options1 value1

[-option2 value2 [...]]

If only "java -jar htmlconverter.jar" is specified (no filespecs or options), the
GUI version of the converter will be launched. Otherwise, the GUI will be suppressed.

[filespecs]: space-delimited list of file specifications which may include wildcard
(*), e.g. *.html, file*.html).

Chapter 4 • Using the HTML Converter to Convert Applet Tags for Java Plug-in 41

[simulate]: Set to preview a conversion without actually doing the conversion. Use
this option if you are unsuer about a conversion. You will be shown detail information
about the conversion had it been done.

Options: Descriptions

source: Path to files; e.g., c:\htmldocs in Windows,
/home/user1/htmldocs in Unix. Default is
<userdir>

If the path is relative, it is assumed to be
relative to the directory from which the
HTMLConverter was launched.

dest Path to converter file location. Default:
<usrdir>

backup Path to the directory where you want backup
files to be stored. Default:
<userdir>/<source>_bak

If the path is relative, it is assumed to be
relative to the directory from which the
HTMLConverter was launched.

f Force overwritting of backup files.

subdirs: Sets whether files subdirectories should be
processed or not. Default: false

template Name of template file to use. Default:
Standard (IE & Navigator) for Windows &
Solaris Only.

Note – Use the default if you are unsure.

log Path and filename for the log. Default:
<userdir>/convert.log

progress Set to display standard out progress during
conversion. Default: true

latest Use the latest JRE supporting the MIME type.

gui Display the graphical user interface for the
converter.

42 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 5

Proxy Configuration

This chapter includes the following topics:

� “Introduction” on page 43
� “ How Java Plug-in Obtains Proxy Information” on page 44
� “Direct Connection” on page 44
� “Manual Proxy Configuration” on page 45
� “Automatic Proxy Configuration” on page 46

Introduction
For enterprise customers it is important to be able to set up secure computing
environments within their companies, and proxy configuration is an essential part of
doing that. Proxy configuration acts as a security barrier; it ensures that the proxy
server monitors all traffic between the Internet and the intranet. This is normally an
integral part of security enforcement in corporate firewalls within intranets. Enterprise
customers who want to use Java Plug-in to deploy applets on their intranet web pages
may also set up proxy support. This support is required for Java Plug-in to work in an
intranet environment and can be set up through the Java Plug-in Control Panel.

The Control Panel provides three proxy options:

� "Use browser settings"
� Manual configuration through the Protocol-Address-Port table
� "Automatic proxy configuration URL"

If "Use browser settings" is selected, then proxy information is entered entirely
through the browser. For Internet Explorer, go to Tools>Internet Options ... and select
the Connections tab and then LAN Settings ... ; for Netscape, go to Edit>Preferences ...
and select Advanced under Category and then Proxies. How this works and the three
types of connections that can be set up through the browser-Direct, Manual, and
Automatic-are described in the following sections.

43

If you select manual configuration in the Control Panel, then you must enter in the
table for each protocol the address and port for the proxy server. Note that you may
select to exclude some hosts from requiring proxy servers by listing them in the field
labeled "No proxy host".

If you select "Automatic proxy configuration URL", then you must enter the URL for
the location of the JavaScript called FindProxyForURL(URL url) that returns the
proxy server to be used for a URL. Support for this script is the same as described
below under Automatic Proxy Configuration.

How Java Plug-in Obtains Proxy
Information
Because browsers on different platforms store proxy information differently, there is no
generic mechanism to obtain proxy information. Here’s how Java Plug-in obtains
proxy information for three different browser-platform combinations:

Internet Explorer on Win32: Internet Explorer stores proxy information in the same set
of keys in the windows registry. Java Plug-in obtains this information directly.

Netscape Navigator browser on Win32: Navigator 4 stores proxy information in the user
preference file on the local machine. Java Plug-in reads and parses the user preference
file to obtain the Navigator 4 proxy information. Netscape 6 has an API for obtaining
proxy information. findProxyForURL(URL) returns proxy configuration
information for the URL passed to it.

Netscape Navigator browser on the Solaris operating environment and Linux: Navigator
stores proxy information in a file in the local machine. Java Plug-in reads and parses
this file to obtain the proxy information. For Netscape 6 the process is the same as
described in the previous section.

Java Plug-in obtains proxy information at startup time. If you change the proxy setting
after Java Plug-in has started, you may force Java Plug-in to reload the proxy
information from the browser through the p option in the Java Console.

Direct Connection
Direct connection does not use a proxy. For certain situations, such as when mobile
users connect to the company through a modem, direct connection to the intranet
environment is required, and proxies should not be used in these cases.

44 Solaris Java Plug-in User’s Guide • May 2002

Manual Proxy Configuration
Both Internet Explorer and Netscape Navigator support manual proxy configuration.
Users can specify the proxy server and port for each protocol. Users can also specify
one proxy server and port for all protocols. To minimize the workload of the proxy
server, some sites might bypass the proxy server completely when a machine is
connecting to another machine inside the intranet environment. To do this, network
administrators and users can specify the proxy server bypass list in the browser’s
setting.

Internet Explorer: Java Plug-in recognizes and supports the proxy server and port
setting associated with the protocol. Internet Explorer supports various syntaxes in the
proxy server bypass list, as follows:

� IP address/hostname only
� IP address/hostname with wildcard
� IP address/hostname with protocol

For example, if you specify "121.141.23.5;*.eng;http://*.com" in the proxy
server bypass list, then the browser bypasses the proxy whenever one of the following
occurs:

� "121.141.23.5" is requested
� the URL hostname ends with ".eng"
� the URL protocol is http and the URL hostname ends with ".com"

Currently, Java Plug-in supports the first two syntaxes in the proxy server bypass list
in Internet Explorer. Internet Explorer also supports bypassing the proxy server for
local (intranet) addresses without using the proxy server bypass list. Java Plug-in
supports this option by bypassing the proxy server if the URL hostname is plain; i.e.,
the hostname contains no dot (.).

Netscape Navigator:Java Plug-in recognizes and supports the proxy server and port
setting associated with the protocol. For example, if you specify ".eng,.sun.com" in
the proxy server bypass list in the Netscape Navigator browser, it bypasses the proxy
whenever the URL hostname ends with ".eng" or ".sun.com". Java Plug-in fully
supports this syntax in the proxy server bypass list in Navigator.

For more information about manual proxy configuration in your browser, please
consult the user guide for your browser.

Chapter 5 • Proxy Configuration 45

Automatic Proxy Configuration
Both Internet Explorer and Netscape Navigator support automatic proxy
configuration. The browser’s automatic proxy configuration is set to a particular URL
that contains a JavaScript file with .pac or .js extension. This file contains a
function called FindProxyForURL() that contains the logic to determine which
proxy server to use when the browser receives a connection request. This function is
written by the system administrator for the particular intranet environment. When the
browser starts up, it recognizes the URL of the JavaScript file and downloads the file
to the local machine using direct connection. Then whenever it needs to make a new
connection, the browser executes the JavaScript function FindProxyForURL() in the
file to obtain the proxy information to set up the connection.

Internet Explorer: During startup, Java Plug-in downloads the JavaScript file to the local
machine using direct connection. Then whenever it needs to make a new connection, it
executes the FindProxyForURL function to obtain the proxy information using the
JavaScript engine in Internet Explorer.

Netscape Navigator browser:During startup, Java Plug-in downloads the JavaScript file
to the local machine using direct connection. Then whenever it needs to make a new
connection, it executes the FindProxyForURL() function to obtain the proxy
information by using the JavaScript engine in the Netscape Navigator browser.

There are a number of predefined JavaScript functions which can be called from the
JavaScript function FindProxyForURL(). Java Plug-in provides its own
implementation of these functions to completely emulate the automatic proxy
configuration. Here are a few notes regarding this implementation:

� Function dnsResolve() always returns an empty string if the host is not an IP
address

� Function isResolvable() always returns false if the host is not an IP address.

� Function isInNet() always returns false if the host is not an IP address.

Note that executing the function FindProxyForURL() always returns proxy
information as a string. Java Plug-in extracts the setting in the following way:

� If "DIRECT" is in the string, Java Plug-in assumes direct connection.

� If "PROXY" is in the string, it uses the first proxy setting for the connection.

� If "SOCKS" is in the string, it uses the SOCKS v4 for the connection.

� Otherwise, the proxy information in the string is incorrect. In this cases, Java
Plug-in assumes direct connection.

For more information about automatic proxy configuration in your browser, consult
the user guide for your browser.

46 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 6

Protocol Support

HTTP, FTP and Gopher
Java Plug-in supports HTTP, FTP, and GOPHER protocols, including built-in proxy
configuration support.

HTTPS
Introduction

Prior to version 1.4 of the Java 2 Platform, Standard Edition, Java Plug-in supported
HTTPS through browser-dependent native APIs. Java™ Secure Socket Extension
(JSEE) is a new Java extension in 1.4, providing a Java implementation of SSL and
HTTPS for the Java platform. Java Plug-in in 1.4 leverages JSSE to provide HTTPS
support, instead of relying on the browser.

This provides the following advantages over using browser-dependent native APIs for
support:

� No native code is used, eliminating separate HTTPS support for each browser on
each platform and making code more maintainable and portable.

� Implementation of java.net.HttpsURLConnection is provided in JSSE,
allowing developers to take advantages of all features in HTTPS, including
tunneling.

� Support is multi-threaded. Because the implementation is in Java, there is no need
to have a mutex to lock up connections and Java performance is enhanced for
simultaneous HTTPS connections.

47

Java Plug-in supports HTTPS through JSSE for Win32, Linux and the Solaris operating
environment.

Proxy and Cookie Support

A different proxy configuration may be used for every HTTPS connection. Java Plug-in
provides full proxy configuration support in HTTPS. Proxy configuration may be set
through user preference in the browser, as well as the Java Plug-in Control Panel.
Direct, manual and automatic proxy configuration are supported.

Cookies may be sent/received for every HTTPS connection. Java Plug-in provides full
cookie support, automatically retrieving or updating cookies through the browser
cookie store.

Error handling support

When accessing an HTTPS server, errors may occur. Java Plug-in has hooked into JSSE
to provide the following types of error handling:

� Hostname mismatch: If the HTTPS server host name does not match the name on
the server certificate, a warning dialog will appear.

� Untrusted server certificate: If the server certificate can not be verified during the
SSL handshaking, a warning dialog will appear.

� Untrusted client certificate: In case client authentication is required by the server
and the client certificate cannot be verified, a warning dialog will be appear.

� Server authentication: If the client accesses a protected directory on the HTTPS
server, the users will be prompted for a username and password. Note: Only basic
and digest authentication are currently supported.

Potential issues with HTTPS through JSSE

Although support of HTTPS through JSSE eliminates many browser-specific problems,
there are several issues that developers should be aware of:

� Untrusted server certificate: When SSL handshaking takes place in establishing an
HTTPS connection, the server certificate is verified against the root CA store in
J2SE. However, J2SE supports fewer root CA certificates than does the browser. As
a result, you may have problems with untrusted server certificates.

� Client authentication: An HTTPS server may require client authentication, in which
case a local client certificate is sent to the server for authentication. In JSSE, client
certificates are stored in a separate file and are independent of the browser. In order
for client authentication to work, developers must import client certificates into
JSSE through the keytool. For more information, see the JSSE documentation online
at http://java.sun.com/j2se/1.4/docs/guide/security/jsse/JSSERefGuide.html.

� Level of error handling: Java Plug-in currently handles the types of error listed in
the previous section. However, if there are additional types of error that Java
Plug-in doesn’t recognize, the Java applet code may break.

48 Solaris Java Plug-in User’s Guide • May 2002

� Startup delay: When HTTPS is used, a secure random generator will be created.
This process may take several seconds to a minute, depending on the speed of the
client machine. In some cases, Java Plug-in may appear to be hung during the
creation of the secure random generator. This issue has been addressed by delaying
the loading of HTTPS code in Java Plug-in as well as leveraging the native OS
secure-seed generator if available on the platform; thus, Java Plug-in startup time
should not be affected if HTTPS is not used. However, some users may still see the
startup delay, depending on the exact loading sequence of the startup code in Java
Plug-in.

Socks
Java Plug-in currently supports SOCKS version 4.

Note – For HTTP/HTTPS, a SOCKS proxy server may be used with a web proxy
server to add caching. The behavior, however, may differ from that observed when
running a similar configuration in a browser without Java Plug-in.

Chapter 6 • Protocol Support 49

50 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 7

Cookie Support

This section covers the following topics:

� “Introduction” on page 51
� “How Java Plug-in Supports Cookies ” on page 51
� “Cookie Policy Support in Java Plug-in” on page 53
� “Cookies and Disk Caching” on page 53
� “Cookies and Security” on page 53

Introduction
Cookies are a way of storing data on the client side. They have been used extensively
for personalization of portal sites, user preference tracking, and logging into web sites.
For enterprise customers using cookies in their web sites, cookie support in Java
Plug-in is essential for making deployment of Java applets or JavaBeans™ components
easier.

Cookie support allows an applet or JavaBeans component to pass a cookie back to a
web server if that cookie originated from the web server. This provides the server with
information about the state of the client. Beginning with version 1.4, Java Plug-in
provides bidirectional cookie support. This document specifies how cookie works in
different browser environments.

How Java Plug-in Supports Cookies
Java Plug-in supports both Internet Explorer and Netscape Navigator browsers on
various Win32 platforms and the Solaris operating environment, and it supports
Netscape Navigator browsers on Linux platforms. Java Plug-in provides cookie

51

support through the browser API. Because browsers on various platforms implement
the browser’s API differently, cookie support in Java Plug-in varies according to
platform. You need to know how each browser supports cookies and how Java Plug-in
accesses and updates cookie information.

When a browser makes an HTTP/HTTPS request through a URL connection, it
normally checks the cookie cache and policy to determine if a cookie should be sent
along with the HTTP/HTTPS request header. If so, the browser will read the cookie
from the cache and append the cookie as part of the HTTP/HTTPS request header.

When a browser processes the HTTP/HTTPS respond header through a URL
connection, it will check the header to see if any cookies should be set. The browser
also checks the cookie policy to determine if the action is allowed. If so, it will extract
the cookie from the HTTP/HTTPS respond header and write it into the cookie cache.

When an HTTP/HTTPS request is made using Java Plug-in, Java Plug-in consults the
browser to determine if a cookie should be sent along. If so, the HTTP/HTTPS request
will contain the cookie as part of the header. Otherwise, the HTTP/HTTPS request
will be sent with no cookie attached.

When a cookie needs to be set from the HTTP/HTTPS respond header, Java Plug-in
uses the browser API to do so, with the exception of Netscape Navigator 4 browsers.
For the Netscape Navigator 4 browser, there is no API allowing Java Plug-in to do so.

There is another limitation for Netscape Navigator 4 browsers. When using Java
Plug-in in a Netscape Navigator 4 browser, cookie support works only if the codebase
is the same or a subdirectory of the document base. See examples in the table below:

Document Base Codebase Will It Work?

http://host.com/my/ http://host.com/my/ Yes

http://host.com/my/
http://host.com/my/page

Yes

http://host.com/my/page http://host.com/my/ No

Currently, cookie support in Java Plug-in is triggered automatically when an
HTTP/HTTPS connection needs to be made.

To ensure that cookie support in Java Plug-in always works as expected, the following
is recommended:

� Use Internet Explorer or Netscape 6 browser
� In the case that you must use the Netscape 4 browser, avoid having your web

server set cookies in an HTTP/HTTPS connection with an applet.

(The above recommendations apply to an intranet environment, where deployment of
browsers and web servers is controllable.)

52 Solaris Java Plug-in User’s Guide • May 2002

For more general information about how cookies work, consult the user guide for
your browser.

Cookie Policy Support in Java Plug-in
Java Plug-in supports all cookie policies that are supported in both Internet Explorer
and Netscape Navigator browsers. Cookie policy can be configured in both browsers
(see your browser guide for details). There are various options, including the
following:

� Always accept cookies

� Disable all cookie use

� Prompt/Warn before accepting a cookie

� Only accept cookies from a server if they get sent back to that server

When cookie policy is changed in the browser, it will take effect the next time an
HTTP/HTTPS connection is made via Java Plug-in.

Java Plug-in does not provide cookie-caching support. Instead, it consults the browser
every time an HTTP/HTTPS connection is made. Thus the browser is the only place
where cookies are stored. Any change to a cookie in the browser is reflected
immediately in Java Plug-in when a new HTTP/HTTPS connection is made.

Cookies and Disk Caching
Java Plug-in provides disk-caching support through the browser’s API. It is triggered
whenever a .jar or .class file is downloaded via an HTTP/HTTPS connection.
When disk-caching support is triggered, the file is downloaded entirely by the
browser, and a cookie will be handled automatically by the browser.

Cookies and Security
Although cookies are sent when an HTTP/HTTPS connection is made in Java Plug-in,
applets and beans have no access to this information-even if the code is trusted.
Moreover, a cookie is only sent back to the host and domain from which it came.

Chapter 7 • Cookie Support 53

54 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 8

Applet Caching and Installation in
Java Plug-in

This section covers the following topics:

� “Caching Option” on page 55
� “Security” on page 57
� “Known Limitations” on page 58

Note – The discussion below applies to JavaBeans components as well as applets.

Caching Option
The version 1.4 release introduces a new form of applet caching, allowing an applet
deployer to decide if an applet should be "sticky", i.e., placed in a secondary disk
cache which the browser cannot overwrite. The only time a sticky applet gets
downloaded after caching is when it is updated on the server. Otherwise the applet is
always available for fast loading. Applets providing core business applications should
be made sticky to improve startup performance.

Once an applet is cached, it no longer needs to be downloaded when referenced again.
Thus performance is improved.

This new feature is activated by including the new cache_archive, cache_version and
cache_archive_ex values in the OBJECT/EMBED tag that specifies the use of Java Plug-in
as shown below:

cache_archive

The cache_archive attribute contains a list of the files to be cached:

<PARAM NAME="cache_archive" VALUE="a.jar,b.jar,c.jar">

55

Like the archive attribute in the APPLET tag, the list of jar files in the cache_archive
attribute do not contain the full URL, but are always downloaded from the codebase
specified in the EMBED/OBJECT tag.

Note that the list of .jar files in the cache_archive attribute and those in the archive
attribute may look similar, but they should not contain the same .jar files.

cache_version

The cache_version is an optional attribute. If used, it contains a list of file versions to be
cached:

<PARAM NAME="cache_version" VALUE="1.2.0.1, 2.1.1.2, 1.1.2.7">

Each version number is in the form X.X.X.X, where X is hexadecimal. Each version
number corresponds to a respective .jar file in the cache_archive.

cache_archive_ex

In order to allow pre-loading of jar files, HTML parameter cache_archive_ex can be
used, This parameter allows you to specify whether the jar file needs to be pre-loaded;
optionally the version of the jar file can also be specified. The value of cache_archive_ex
has the following format:

cache_archive_ex =
"<jar_file_name>;<preload(optional)>;<jar_file_version>,<jar_file_name>;
<preload(optional>;<jar_file_version(optional>,...."

The optional tags like preload or the jar_file_version can appear after the jar_file_name in
any order seperated by the delimiter ";". Following shows how these tags might be
used in an HTML page:

<OBJECT >
<PARAM NAME="archive" VALUE="a.jar">
<PARAM NAME="chache_archive" VALUE="b.jar, c.jar, d.jar">
<PARAM NAME="chache_version" VALUE="0.0.0.1, 0.0.A.B, 0.A.B.C">
<PARAM NAME="cache_archive_ex" VALUE="applet.jar;preload,
util.jar;preload;0.9.0.abc, tools.jar;0.9.8.7">

In the above example, a.jar is specified in archive, whereas b.jar, c.jar and
d.jar are specified in cache_archive. The versions are also specified for b.jar,
c.jar, and d.jar as 0.0.0.1, 0.0.A.B, and 0.A.B.C, respectively. In
cache_archive_ex, applet.jar is specified to be pre-loaded. util.jar is also
specified to be pre-loaded but along with the version. For tools.jar, only version is
specified.

Java Plug-In doesn’t compare the versions if they are not specified for all the jar files
specified in HTML parameter cache_archive. If cache_archive is used without
cache_version, the jar files specified in cache_archive are treated no differently than the
jar files specified in HTML parameter archive. Similar treatment is given to jar files
specified in cache_archive_ex when preload and version options are not provided.

56 Solaris Java Plug-in User’s Guide • May 2002

Class files and resources will be searched in the following order from the .jar files
specified by the HTML parameters

1. cache_archive_ex
2. cache_archive
3. archive

Cache Update Algorithm
By default, without the cache_version attribute, applet caching will be updated if:

� The cache_archive has not been cached before, or

� The "Last-Modified" value of the cache_archive on the web server is newer than the
one stored locally in the applet cache, or

� The "Content-Length" of the cache_archive on the web server is different than the
one stored locally in the applet cache.

However, in some situations, the "Last-Modified" value returned from the web server
through HTTP/HTTPS may not reflect the actual version of the applets. For example,
if the web server crashes and all the files are restored, the cache_archive will have a
different modification date on the server. Even if the cache_archive has not been
updated, it will still force all the Java Plug-in clients to download the cache_archive
again.

To strongly enforce the version update, it is recommended that the applet deployer
use the cache_version attribute.

If cache_version is used, applet caching will be updated if the cache_version for the
cache_archive in the EMBED/OBJECT tag is larger than the one stored locally in the
applet cache. Note that the version number is used for triggering an update; there is
no actual version number attached to the .jar file on the web server. In fact, unless
version is used to trigger an update, it is possible the applet on the web server could
be updated without the applet in cache_archive.

Using cache_version eliminates the need to connect to the web server to obtain
"Last-Modified" and "Content-Length" of the cache_archive. In most cases this will
speed up performance.

Security
Although sticky applets are cached locally, they will still conform to the security policy
defined by their original codebase and signer.

Chapter 8 • Applet Caching and Installation in Java Plug-in 57

Known Limitations
� Caching of the JAR files specified in the manifest’s Class-Path variable using Java

Plug-in’s cache is currently not supported.

� The path specified in the cache_archive must be a relative URL to the applet’s
codebase. Full URLs are not supported in cache_archive.

58 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 9

Using the Java Plug-in Control Panel
to Set Plug-in Behavior/Options

This section covers the following topics:

� “Overview” on page 59
� “Starting the Java Plug-in Control Panel” on page 59
� “Saving Options” on page 60
� “Setting Control Panel Options” on page 60

Overview
The Java™ Plug-in Control Panel enables you to change the default settings used by
the Java Plug-in at startup. All applets running inside a running instance of Java
Plug-in use these settings.

Starting the Java Plug-in Control Panel
You can run the Control Panel by launching the ControlPanel executable file. In the
Java 2 SDK, this file is located at

<SDK installation directory>/jre/bin/ControlPanel

For example if your Java 2 SDK is installed at /usr/j2se, launch the Control Panel
with this command:

/usr/j2se/jre/bin/ControlPanel

In a Java 2 Runtime Environment installation, the file is located at

59

<JRE installation directory>/bin/ControlPanel

You can also use Netscape to visit the Control Panel applet page, which was installed
inside the JRE directory as the file ControlPanel.html. In the Java 2 SDK this file is
located at:

<SDK installation directory>/jre/ControlPanel.html

In the JRE:

<JRE installation directory>/ControlPanel.html

Saving Options
When you have completed your changes to the Control Panel options, click Apply to
save the changes. Click Reset to cancel your changes and reload the Control Panel
values from the configuration file.

Setting Control Panel Options
There are five panels from which you can set various options within the Java Plug-in
Control Panel. These panels are labeled:

� Basic
� Advanced
� Proxies
� Cache
� Certificates

Basic Panel

The basic panel looks like this:

60 Solaris Java Plug-in User’s Guide • May 2002

Use the Basic panel to set the following options:

� Enable Java Plug-in: Enables Java Plug-in to run applets or JavaBeans components. If
this option is left unchecked, Java Plug-in does not run any applets. The default
setting is with the Plug-in enabled(checked).

� Show Console: Displays the Java Console while running applets. The console
displays messages printed by System.out and System.err objects. It is useful
for debugging problems. The default setting is not to show the Java Console
(unchecked).

� Hide console: The console is running but hidden.

� Do not start console: The console is not started.

� Show Exception Dialog Box : Shows an Exception Dialog Box when exceptions occur.

Advanced Panel

The Advanced panel looks like this:

Chapter 9 • Using the Java Plug-in Control Panel to Set Plug-in Behavior/Options 61

Use the Advanced panel to set the following options:

� Java Runtime Environment: Enables Java Plug-in to run with any JRE or Java 2 SDK,
Standard Edition v 1.3 or 1.4 installed on your machine. Java Plug-in 1.3/1.4 is
delivered with a default JRE. However, you can override the default JRE and use
an older or newer version. The Control Panel automatically detects all versions of
the Java 2 SDK or JRE installed on the machine. In a list box it displays all installed
Java 2 SDK or JRE versions which you can use. The first item in the list will always
be the Java Plug-in default, and the last item will always say Other. If you choose
Other, you must specify the path to the JRE or Java 2 SDK, Standard Edition v
1.3/1.4. Only advanced users should change this option.

� Java Run Time Parameters: Overrides the Java Plug-in default startup parameters by
specifying custom options. The syntax is the same as used with parameters to the
java command-line invocation.

To enable assertion support, the following system property must be specified in the
Java Runtime Parameters:

-D[enableassertions | ea][: <package name>”...” | : <class
name>]

To disable assertion in the Java Plug-in, specify the following in the Java Runtime
Parameters:

-D[disableassertions | da][:<package name>”...” | : <class
name>]

Assertion is disabled in Java Plug-in code by default. Since the effect of assertion is
determined during Java Plug-in startup, changing assertion setting in Java Plug-in
Control Panel will require a browser restart in order for the new settings to take
effect.

Because Java code in Java Plug-in also has built-in assertion, it is possible to enable
the assertion in Java Plug-in code through

62 Solaris Java Plug-in User’s Guide • May 2002

-D[enableassertions | ea]:sun.plugin

Proxies Panel

The Proxies panel looks like this:

Use the Proxies panel to use the browser default settings or to override the proxy
address and port for the different protocols.

� Use browser settings: Uses the browser default proxy settings.

� Proxy information table: You can override the default settings by unchecking the
browser settings check box, then completing the proxy information table beneath
the check box. You can enter the proxy address and port for each of the supported
protocols: HTTP, Secure (HTTPS), FTP, Gopher, and Socks.

� No proxy host: This is a host or list of hosts for which no proxy/proxies are to be
used. No proxy host is usually used for an internal host in an intranet
environment.

� Automatic proxy configuration URL: This is the URL for the JavaScript file (.js or .pac
extension) that contains the FindProxyForURL() function.
FindProxyForURL() has the logic to determine the proxy server to use for a
connection request.

Cache Panel

The Cache panel looks like this:

Chapter 9 • Using the Java Plug-in Control Panel to Set Plug-in Behavior/Options 63

� Enable JAR Caching: Check this to enable JAR caching.
� View JAR Cache: Press this to view the JAR cache.
� Clear JAR Cache: Press this to clear the JAR cache used for storing applet JAR files.
� Location: You can use this to specify the location of the JAR cache.
� Size: You can check Unlimited to make the JAR cache unlimited in size; or you can

set the Maximum size of the JAR cache.
� Compression: You can set the compression of the JAR cache files between None and

High. While you will save memory by specifying higher compression, performance
will be degraded; best performance will be achieved with no compression.

Certificates Panel

64 Solaris Java Plug-in User’s Guide • May 2002

The Certificates panel looks like this:

Four types of certificates may be selected:

� Signed applet: These are certificates for signed applets.

� Secure site: These are certificates for secure sites.

� Signer CA: These are certificates of Certificate Authorities (CAs) for signed applets;
they are the ones who issue the certificates to the signers of signed applets.

� Secure site CA: These are certificates of Certificate Authorities (CAs) for secure sites;
they are the ones who issue the certificates for secure sites. For Signed applet and
Secure site certificates, there are four options: Import, Export, Remove, and Detail.
The user can import, export, remove and view the details of a certificate. For Signer
CA and Secure site CA, there is only one option: Detail. The user can only view the
details of a certificate.

Chapter 9 • Using the Java Plug-in Control Panel to Set Plug-in Behavior/Options 65

66 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 10

Netscape 6

This section describes the primary features of the Java runtime in Netscape 6, which is
enabled by Java Plug-in.

APPLET, EMBED AND OBJECT Tag
Support
Applets are loaded by Java Plug-in if these tags are used. For information on how to
use the OBJECT or EMBED tag to launch an applet, see Chapter 3.

Java-JavaScript Bi-directional Communication
JavaScript can access the methods of applets, and applets can access the Document
Object Model (DOM) through JavaScript. Thus an HTML author can access applet
methods and applet developers can access the DOM.

See online documentation on Java-to-JavaScript and JavaScript-to-Java at
http://java.sun.com/j2se/1.4/docs/guide/plugin/developer_guide/java_js.html and
http://java.sun.com/j2se/1.4/docs/guide/plugin/developer_guide/js_java.html
respectively. Be sure to read the sections on security.

RSA Signed Applet Verification
RSA signed applet verification is supported.

67

Display of Java Console
You may display the Java Console through the Netscape 6 browser menu:
Tasks->Tools->Java Console.

Enable/Disable the Java Platform
You may enable/disable the Java platform through the Netscape 6 browser menu:
Edit->Preferences->Advanced. Note that to take effect, the browser must be restarted.

Applet Lifecycle Change
Whenever a page is visited, theinit() and start() methods of the applet are
called; and whenever the page is left, the stop() and destroy() methods may be
called.

Proxy and Cookie Support
Java Plug-in previously handled proxy and cookie support alone. In Netscape 6 this
support is moved to the browser.

HTTPS
HTTPS is supported through the Java Secure Socket Extension (JSSE) in the Java 2
Platform, Standard Edition.

Automatic Download
Via its XPInstall mechanism, Netscape 6 will support automatic download of Java
Plug-in (JRE) if it is not present.

Backward Compatibility Issue
Although backward compatibility between the Java 2 Platform and the Netscape VM
has been the goal, it may not be 100%. Some applets may run as is; other may only
need recompilation; others, however, may need to be ported to the Java 2 platform.

68 Solaris Java Plug-in User’s Guide • May 2002

CHAPTER 11

Frequently Asked Questions (FAQ)

An FAQ is available for Java Plug-in at
http://java.sun.com/j2se/1.4/docs/guide/plugin/developer_guide/faq/.

The FAQ is comprised of several sections, including a basic FAQ for people unfamiliar
with Java Plug-in, a developer FAQ with information for system administrators and
developers, a troubleshooting FAQ, and an FAQ about APPLET tag support.

69

70 Solaris Java Plug-in User’s Guide • May 2002

