
Common Desktop Environment 1.0

Programmer’s
Guide

This edition of the Common Desktop Environment Advanced User’s and System
Administrator’s Guide applies to AIX Version 4.2, and to all subsequent releases of
these products until otherwise indicated in new releases or technical newsletters.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were
contributed by Interleaf, Inc. Copyright 1993, Interleaf, Inc.

Copyright 1993, 1994, 1995 Hewlett-Packard Company
Copyright 1993, 1994, 1995 International Business Machines Corp.
Copyright 1993, 1994, 1995 Sun Microsystems, Inc.
Copyright 1993, 1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright
and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization.

All rights reserved. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by
the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
AR 52.227-19.

iiiContents

Part 1 —Basic Integration

1. Basic Application Integration 1.
Basic Integration Features 1.
Organization of Basic Integration Information 2.
Basic Integration Tasks 2.
Levels of Printing Integration 2.
Complete Print Integration 3.
Partial Print Integration 6.
Nonintegrated Printing 8.
Creating a Registration Package for Your Application 9.

Part 2 —Recommended Integration

2. Integrating Fonts 10.
Using Fonts in CDE Configuration Files 10.
Default Font Names 10.
Point Sizes 12.
Standard Application Font Names in app-defaults files 12

3. Displaying Errors from Your Application 14.
How to Present Error Messages 14.
Information to Present in Error Dialogs 14.
Linking Message Dialogs to Online Help 14.
Recovery Routines 15.

4. Integrating with Session Manager 16.
How Session Manager Saves Sessions and Applications 16
How to Program the Application for Session Management . .
16
How Session Manager Restores a Session 17.

5. Integrating with Drag and Drop 18.
Summary 18.
Drag-and-Drop User Model 19.
Drag-and-Drop Convenience API 26.
Drag-and-Drop Transaction 27.
Integration Action Plan 29.
API Overview 30.
How Drag Sources Are Used 31.
How Drop Zones Are Used 34.

Part 3 —Optional Integration

6. Integrating with the Workspace Manager 37.
Communicating with the Workspace Manager 37.
Placing an Application Window in Workspaces 38.

iv CDE Programmer’s Guide

Identifying Workspaces Containing the Application Windows
38
Preventing Application Movement Among Workspaces 39
Monitoring Workspace Changes 39.

7. Common Desktop Environment Motif Widgets 41
Using Common Desktop Environment Motif 41.
Text Field and Arrow Button Widget (DtSpinBox) 43. . . .
Text Field and List Box Widget (DtComboBox) 50.
Menu Button Widget (DtMenuButton) 56.
Text Editor Widget (DtEditor) 60.

8. Invoking Actions from Applications 71.
Mechanisms for Invoking Actions from an Application 71
Types of Actions 72.
Action Invocation API 72.
Related Information 73.
actions.c Example Program 73.
Listing for actions.c 77.

9. Accessing the Data-Typing Database 81.
Summary 81.
Data Criteria and Data Attributes 82.
Data-Typing Functions 87.
Registering Objects as Drop Zones 89.
Example of Drop Types 90.
Example of Using File Manager Move, Copy, Link Feature . .
91
Example of Using the Data-Typing Database 92.

10. Integrating with Calendar 96.
Library and Header Files 96.
Demo Program 96.
Using the Calendar API 96.
Overview of the CSA API 97.
Functional Architecture 98.
Data Structures 102.
Calendar Attributes 103.
Entry Attributes 104.
General Information about Functions 107.
Administration Functions 107.
Calendar Management Functions 109.
Entry Management Functions 111.

Glossary 163.

Index .

vPreface

About This Book

Who Should Use This Book
Use this book if you are a programmer interested in integrating an existing application into
the Common Desktop Environment (CDE), or in developing a new application that uses the
features and functionality of CDE. This book describes the CDE development environment,
and assumes that you are familiar with Motif , X, UNIX , or C programming.

Before You Read This Book
The Common Desktop Environment: Programmer’s Guide is a collection of programming
information. The manuals listed in the section “Related Books” should be read before you
begin integration of any applications to CDE.

The Common Desktop Environment: Programmer’s Overview provides a description of CDE
and introduces the programming environment.

How This Book Is Organized
The Common Desktop Environment: Programmer’s Guide has two parts. Each part
provides a detailed description of each element of the Common Desktop Environment, a
conceptual diagram, and a task-oriented description of how to use each element, complete
with code examples.

Part 1 – “Basic Integration” introduces how to register your application and printing levels.

“Basic Application Integration” describes the steps involved with the basic integration of an
existing application into CDE.

Part 2 – “Recommended Integration” introduces how to integrate existing applications into
the Common Desktop Environment.

“Integrating Fonts” describes how to use generic standard font descriptions to ensure that
you get the closest matching font for your application on any CDE-compliant system.

“Displaying Errors from Your Application” describes a common model for presenting
information and error messages.

“Integrating with Session Manager” describes the ICCM session management protocol and
provides examples of how to integrate your application with Session Manager.

“Integrating with Drag and Drop” describes the drag-and-drop user model, the new
drag-and-drop application program interface (API), and how to use drag and drop.

Part3 – “Optional Integration” describes how to integrate new applications with the Session
Manager and with drag and drop. It also explains how locales affect the Login Manager,
Window Manager, and the terminal emulator.

“Integrating with the Workspace Manager” describes how to integrate your application with
the Workspace Manager in specialized ways.

“Common Desktop Environment Motif Widgets” describes how to use the custom widgets
that are provided as part of CDE.

“Invoking Actions from Applications” describes how to create actions within your application.

“Accessing the Data-Typing Database” describes the data-typing functions and how to use
the data-typing database.

vi CDE Programmer’s Guide

“Integrating with Calendar” introduces the Calendar API, including functions, data
structures, calendar attributes, and entry attributes. It also describes how to use the
Calendar API.

“Glossary” is a list of words and phrases found in this book and their definitions.

Related Books
Before beginning integration of your application into CDE, you should become familiar with
the other books in the documentation set. See “Development Environment Documentation”
for a list of the companion books.

The run-time environment documentation set consists of:

• Common Desktop Environment: User’s Guide

• Common Desktop Environment: Advanced User’s and System Administrator’s Guide

• Online help volumes

Note: The Advanced User’s and System Administrator’s Guide contains information to
help you integrate an application into the desktop

For more information about the Calendaring and Scheduling API, contact the X.400 API
Association for the latest copy of the XAPIA Specification. The address is X.400 API
Association, 800 El Camino Real, Mountain View, California, 94043.

Development Environment Documentation
This section provides an overview of each manual—except for the Programmer’s Guide—in
the developer documentation set. In addition to the Programmer’s Guide, the development
environment documentation set consists of:

• Common Desktop Environment: Style Guide and Certification Checklist

• Common Desktop Environment: Application Builder User’s Guide

• Common Desktop Environment: Programmer’s Overview

• Common Desktop Environment: Help System Author’s and Programmer’s Guide

• Common Desktop Environment: ToolTalk Messaging Overview

• Common Desktop Environment: Internationalization Programmer’s Guide

• Common Desktop Environment: Desktop Korn Shell User’s Guide

• Common Desktop Environment: Glossary

• Online man pages

Common Desktop Environment: Programmer’s Overview
The Common Desktop Environment: Programmer’s Overview has two parts. Part 1 contains
an architectural overview of the Common Desktop Environment, including high-level
information on both the run-time and development environments. Part 2 contains
information useful to know before developing an application, and describes the development
environment components.

The Common Desktop Environment: Programmer’s Overview provides a high-level view of
the Common Desktop Environment development environment and the developer
documentation set. Read this book first before starting application design and development.

viiPreface

Common Desktop Environment: Style Guide and Certification Checklist
The Common Desktop Environment: Style Guide and Certification Checklist provides
application design style guidelines and the list of requirements for Common Desktop
Environment application-level certification. These requirements consist of the Motif Version
1.2 requirements with Common Desktop Environment-specific additions.

The checklist describes keys using a model keyboard mechanism. It assumes that your
application is being designed for a left-to-right language environment in an English-language
locale. Wherever keyboard input is specified, the keys are indicated by the engravings on
the Motif model keyboard. Mouse buttons are represented using a virtual button mechanism
to specify behavior independent of the number of buttons on the mouse.

This book provides information to assist the application designer in developing consistent
applications and behaviors within the applications.

Common Desktop Environment: Application Builder User’s Guide
The Common Desktop Environment Application Builder (also called App Builder) is an
interactive tool for developing Common Desktop Environment applications. AppBuilder
provides features that facilitate both the construction of an application graphical user
interface (GUI) and the incorporation of the desktop’s many useful desktop services (such
as Help, ToolTalk, and Drag and Drop). The Common Desktop Environment: Application
Builder User’s Guide explains how to create an interface by dragging and dropping “objects”
from a palette. The guide also explains how to make connections between objects in the
interface, use the application framework editor to easily integrate desktop services,
generate C code, and add application code to the App Builder output to produce a finished
application.

Common Desktop Environment: Help System Author’s and Programmer’s Guide
The Common Desktop Environment: Help System Author’s and Programmer’s Guide
describes how to develop online help for application software. It covers how to create help
topics and integrate online help into a Motif application.

The audience for this book includes:

• Authors who design, create, and view online help information

• Developers who want to create software applications that provide a fully integrated help
facility

This book has four parts. Part 1 describes the collaborative role that authors and developers
undertake to design application help. Part 2 provides information for authors organizing and
writing online help. Part 3 describes the Help System application programmer’s toolkit. Part
4 contains information for both authors and programmers about preparing online help for
different language environments.

Common Desktop Environment: ToolTalk Messaging Overview
The Common Desktop Environment: ToolTalk Messaging Overview describes the ToolTalk
components, commands, and error messages offered as convenience routines to enable
your application to conform to Media Exchange and Desktop Services message set
conventions. This manual is for developers who create or maintain applications that use the
ToolTalk service to interoperate with other applications.

The ToolTalk Messaging Overview does not describe general ToolTalk functionality. For
detailed information about the ToolTalk service, refer to The ToolTalk Service: An
Inter-Operability Solution. For tips and techniques to help make using ToolTalk easier, read
ToolTalk and Open Protocols: Inter-Application Communication.

viii CDE Programmer’s Guide

Common Desktop Environment: Internationalization Programmer’s Guide
The Common Desktop Environment: Internationalization Programmer’s Guide provides
information for internationalizing an application so that it can be easily localized to support
various languages and cultural conventions in a consistent user interface.

Specifically, this guide:

• Provides guidelines and hints for developers on how to write applications for worldwide
distribution.

• Provides an overall view of internationalization topics that span different layers within the
desktop.

• Provides pointers to references and more detailed documentation. In some cases,
standard documentation is referenced.

This guide is not intended to duplicate the existing reference or conceptual documentation,
but rather to provide guidelines and conventions on specific internationalization topics. It
focuses on internationalization topics and not on any specific component or layer in an open
software environment.

Common Desktop Environment: Desktop Korn Shell User’s Guide
The Common Desktop Environment: Desktop Korn Shell User’s Guide describes how to
create Motif applications with Desktop Korn Shell (dtksh) scripts. It contains several
example scripts of increasing complexity, in addition to the basic information a developer
needs to get started.

This guide is intended for developers who find a shell-style scripting environment suitable
for a particular task. It assumes a knowledge of Korn Shell programming, Motif, the Xt
Intrinsics, and, to a lesser extent, Xlib.

Common Desktop Environment: Glossary
The Common Desktop Environment: Glossary provides a comprehensive list of terms used
in the Common Desktop Environment. The Glossary is the source and reference base for all
users of the desktop. Because the audience for this glossary consists of many different
types of users—from end users to developers to translators—the format for a glossary
definition may include information about the audience, where the term originated, and the
Common Desktop Environment component that uses the term in its graphical user interface.

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file. Use ls -a to list
all files. system% You have mail.

AaBbCc123 Command-line placeholder:
replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Section 6 in User’s Guide.
These are called class options. You
must be root to do this.

ixPreface

Typographic Conventions

Typeface or
Symbol

ExampleMeaning

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

Part 1 —Basic Integration

Basic Application Integration
Basic application integration is a set of highly recommended tasks you should perform.

• Basic Integration Features

• Basic Integration Tasks

• Complete Print Integration

• Partial Print Integration

• Nonintegrated Printing

Basic integration does not involve extensive use of the desktop application programmer’s
interface (API). Therefore, it does not provide other interaction with the desktop, such as
drag and drop, session management, ToolTalk messaging, and programmatic access to the
actions and data typing database.

A few of the integration tasks covered in this section require source code modification. They
are optional, and are discussed here because they are closely related to basic integration
tasks.

Basic Integration Features
Basic application integration provides these features for end users:

• A graphical way to locate and start your application on the desktop

Your application will provide a desktop registration package, and your installation script will
automatically register your application.

Registration creates an application group at the top level of Application Manager. The
application group contains an icon the user double–clicks to start the application.

• The ability to recognize and manipulate your application’s data files

Your application will provide data types for its data files.

Data typing configures data files to use a unique icon to help users identify them. The data
files also have meaningful desktop behavior. For example, the user can start your
application by double–clicking a data file; dropping a data file on a desktop printer drop zone
prints the file using the appropriate print command.

• Easy font and color selection using Style Manager

Your application will change interface fonts and background, foreground, and shadow colors
dynamically.

The desktop defines general interface font and color resources that are used if no
corresponding application–specific resources exist.

Basic integration provides these advantages to system administrators:

• Easy installation and registration

Upon installation, the application is automatically registered. The system administrator has
little or no additional work to do.

2 CDE Programmer’s Guide

• Easy ongoing administration

All the desktop’s configuration files are gathered in one location. Furthermore, the
application can easily be unregistered if, for example, the administrator wants to update it or
to move it to a different application server.

Organization of Basic Integration Information
Most of the tasks involved in basic integration are also performed by system administrators
who are integrating an existing application into the desktop. Therefore, most basic
integration documentation is located in the section “Registering an Application” in the
Common Desktop Environment: Advanced User’s and System Administrator’s Guide.

This section guides you to that information and contains additional information specific to
application programmers.

Basic Integration Tasks
These are the general tasks involved in basic integration:

• Modify any application resources that set fonts and colors. This allows users to change
the application’s interface fonts and colors using Style Manager.

See the section on modifying font and color resources in the section “Registering an
Application” in the Common Desktop Environment: Advanced User’s and System
Administrator’s Guide.

• Create the registration package for your application.

See the text, “Creating a Registration Package for Your Application and “Registering an
Application” in the Common Desktop Environment: Advanced User’s and System
Administrator’s Guide.

• Modify your application’s installation script to install the registration package files and
perform the registration procedure.

See the text on registering the application using dtappintegrate in the section “Registering
an Application” in the Common Desktop Environment: Advanced User’s and System
Administrator’s Guide.

• Print application data files on networked and local printers. The desktop printer model
provides a graphical way for users to print and is built on top of the native networking
capabilities of the UNIX lp service.

Levels of Printing Integration
The printing functionality available to the user depends on the level of integration you use.
There are three levels of integration:

• Complete integration. See “Complete Print Integration.”

You should do complete integration if you have the ability to modify the application’s source
code.

When you do complete print integration, users can print data files on various printers by
dropping them on printer drop zones (the Front Panel Printer control and printer icons in
Print Manager). Certain other desktop behaviors are also implemented (see “Desktop
Printing Environment Variables”).

• Partial integration. See “Partial Print Integration.”

You should do partial integration if you do not have the ability to modify the application’s
source code, but you do have the ability to invoke printing via an action.

3CDE Programmer’s Guide

When you do partial integration, your application provides a subset of full–integration
functionality. For example, by using the LPDEST environment variable, your application’s
printing mechanism will obtain the print destination from the drop zone.

• No integration. See “Nonintegrated Printing.”

If an application can not supply a print action for its data files, you should configure the data
files to display an error dialog box when users drop the files on printer drop zones.

Complete Print Integration
To do complete print integration, your application must:

• Provide a Print action

• Use (dereference) the four desktop printing environment variables

Desktop Printing Environment Variables
To have fully integrated printing, your application must dereference the following four
environment variables. The LPDEST variable is particularly important. It provides the ability
for the user to choose the print destination by using a particular printer drop zone.

Printing Variable Description

LPDEST Uses the specified value as the printer destination for the file. If the variable
is not set, the default printing device for your application should be used.

DTPRINTUSERFILENAME
Specifies the name of the file as it should appear in the Print dialog or print
output. If the variable is not set, the actual file name should be used.

DTPRINTSILENT Specifies whether to display a Print dialog box. When the variable is
set to True, the Print dialog should not be displayed. If the variable is not
set, the dialog box should be displayed.

DTPRINTFILEREMOVE
When the variable is set to True, the file should be removed after it is
printed. This functionality is intended for temporary files that don’t need to
be retained after printing is complete. If the variable is not set, the file
should not be removed.

A Fully Integrated Print Action
The Print action is part of the registration package, provided in a configuration file,
app_root/dt/appconfig/types /language/name.dt .

If your print action executes a program that dereferences the four environment variables
indicated in “Desktop Printing Environment Variables,” then your data type is fully integrated.
The Print action must be written to be specific for the application’s data type and should
accept only a single file.

For example, the following print action is specific for a data type named ThisAppData :

ACTION Print

{
ARG_TYPEThisAppData
EXEC_STRINGprint_command –file %(file)Arg_1%
}

If your application handles the Print ToolTalk request, then your print action could send a
variant of it with the following actions. (If any of the four environment variables are not set,

4 CDE Programmer’s Guide

the corresponding message argument will be null. When the message argument is null, refer
to “Desktop Printing Environment Variables” for the default interpretation.)

ACTION Print

{

 ARG_TYPEThisAppData

 ARG_CLASSFILE

 ARG_COUNT1

 TYPE TT_MSG

 TT_CLASSTT_REQUEST

 TT_SCOPETT_SESSION

 TT_OPERATIONPrint

 TT_FILE%Arg_1%

 TT_ARG0_MODETT_IN

 TT_ARG0_VTYPE%Arg_1%

 TT_ARG1_MODETT_IN

 TT_ARG1_VTYPELPDEST

 TT_ARG1_VALUE$LPDEST

 TT_ARG2_MODETT_IN

 TT_ARG2_VTYPEDTPRINTUSERFILENAME

 TT_ARG2_VALUE$DTPRINTUSERFILENAME

 TT_ARG3_MODETT_IN

 TT_ARG3_VTYPEDTPRINTSILENT

 TT_ARG3_VALUE$DTPRINTSILENT

 TT_ARG4_MODETT_IN

 TT_ARG4_VTYPEDTPRINTFILEREMOVE

 TT_ARG4_VALUE$DTPRINTFILEREMOVE

}

ACTION Print

{

 ARG_TYPEThisAppData

 ARG_CLASSBUFFER

5CDE Programmer’s Guide

 ARG_COUNT1

 TYPETT_MSG

 TT_CLASSTT_REQUEST

 TT_SCOPETT_SESSION

 TT_OPERATIONPrint

 TT_ARG0_MODETT_IN

 TT_ARG0_VTYPE%Arg_1%

 TT_ARG0_VALUE%Arg_1%

 TT_ARG1_MODETT_IN

 TT_ARG1_VTYPELPDEST

 TT_ARG1_VALUE$LPDEST

 TT_ARG2_MODETT_IN

 TT_ARG2_VTYPEDTPRINTUSERFILENAME

 TT_ARG2_VALUE$DTPRINTUSERFILENAME

 TT_ARG3_MODETT_IN

 TT_ARG3_VTYPEDTPRINTSILENT

 TT_ARG3_VALUE$DTPRINTSILENT

 TT_ARG4_MODETT_IN

 TT_ARG4_VTYPEDTPRINTFILEREMOVE

 TT_ARG4_VALUEfalse

}

Creating Print Actions for Filtered Data or Data Ready to Print
The desktop print utility /usr/dt/dtlp provides functionality on top of the lp subsystem. It
gathers lp print options and prints the specified file.

Your application can use dtlp if either of the following conditions are true:

• The data files do not need to be processed before they are sent to a printer.

• Or, your application provides a filter for converting its data files to a ready–to–print form.

For more information about dtlp , see the dtlp(1) man page.

6 CDE Programmer’s Guide

If the file is ready to print, the Print action runs dtlp in the EXEC_STRING. For example:

Print
{
 ARG_TYPE ThisAppData
 EXEC_STRING dtlp %Arg_1%
}

If the application provides a conversion filter, the filter must be run before running dtlp . For
example:

Print
{
 ARG_TYPE MyAppData
 EXEC_STRING /bin/sh ‘ cat %Arg_1%| filter_name | dtlp‘
}

where filter_name is the name of the print filter.

Partial Print Integration
To do partial print integration, your application must provide:

• A Print action

• The extent to which printing is integrated depends on which, if any, of the printing
environment variables are handled by the action.

Providing the Print Command for Partial Integration
To provide partial print integration, your application must provide a print command line of the
form:

print_command [options] –file filename

where options provides a mechanism for dereferencing none, some, or all of the printing
environment variables (see “Desktop Printing Environment Variables”).

The simplest form of this print command line omits options.

print_command –file filename

This command line lets users print your application’s data files using the desktop printer
drop zones. However, printing destination is not set by the drop zone. In addition, other print
behaviors set by the environment variables are not implemented. For example, the desktop
may not be able to direct silent printing or remove temporary files.

If your print command line provides additional command–line options that correspond to the
desktop printing environment variables, you can provide additional integration.

For example, the following command line provides the ability to dereference LPDEST:

print_command [–d destination] [–file filename]

where:

destination is the destination printer.

The next print command line provides options for dereferencing all four variables:

print_command [–d destination] [–u user_file_name] [–s] [–e] –file
filename

where:

user_file_name
The file name as seen by the user.

7CDE Programmer’s Guide

–s Printing is silent (no Print dialog box is displayed).

–e The file is removed after it is printed.

The dereferencing occurs in the action definition. See the section, “Desktop Printing
Environment Variables” for more information.

Turning Environment Variables into Command Line Switches

If your action is not capable of dereferencing the four environment variables, but it is
capable of taking corresponding command line options, this subsection explains how to turn
the environment variable values into command line options.

For example, this is a simple Print action that deferences LPDEST:

Print
{
 ARG_TYPE data_type
 EXEC_STRING print_command –d $LPDEST –file %(file)Arg_1%
}

However, this Print action may create unpredictable behavior if LPDEST is
not set.

One way to create a Print action that provides proper behavior when variables are not set is
to create a shell script that is used by the Print action.

For example, the following action and the script it uses properly handle all four environment
variables:

Print
 ARG_TYPE data_type
 EXEC_STRING app_root /bin/envprint %(File)Arg_1%
}

The contents of the envprint script follows:

8 CDE Programmer’s Guide

#!/bin/sh
envprint – sample print script
DEST=””
USERFILENAME=””
REMOVE=””
SILENT=””

if [$LPDEST] ; then

DEST=”–d $LPDEST”
fi

if [$DTPRINTUSERFILENAME] ; then

USERFILENAME=”–u $DTPRINTUSERFILENAME”
fi

DTPRINTFILEREMOVE=echo $DTPRINTFILEREMOVE | tr “[:upper:]”
“[:lower:]”‘
if [“$DTPRINTFILEREMOVE” = “true”] ; then

REMOVE=”–e”
fi

DTPRINTSILENT=‘echo $DTPRINTSILENT | tr “[:upper:]” “[:lower:]”‘
if [“$DTPRINTSILENT” = “true”] ; then

SILENT=”–s”
fi

print_command $DEST $USERFILENAME $REMOVE $SILENT –file $1

Nonintegrated Printing
If your application does not integrate printing with the desktop, users must open your
application to properly print data files.

Nevertheless, you should provide a Print action that runs when users drop your application’s
data files on a printer drop zone. Otherwise, the desktop may assume that the file contains
text data, and the print output will be garbled.

The desktop provides a print action for this purpose named NoPrint. The NoPrint action
displays a dialog box telling users that the data files cannot be printed using the printer drop
zones.

The NoPrint action displays the Unable to Print dialog box.

To use the Unable to Print dialog box, create a print action specific to your data type that
maps to the NoPrint action. For example, suppose the data type for your application is:

DATA_ATTRIBUTES MySpreadSheet_Data1
{
 —
}

The following Print action maps to the NoPrint for this data type:

ACTION Print
{
 ARG_TYPE MySpreadSheet_Data1
 TYPE MAP
 MAP_ACTION NoPrint
}

9CDE Programmer’s Guide

Creating a Registration Package for Your Application
The desktop registration package you create for an application should become part of the
application’s installation package. The procedures for creating a registration package are
also performed by system administrators integrating existing applications into the desktop.
These procedures are documented in “Registering an Application” in the Common Desktop
Environment: Advanced User’s and System Administrator’s Guide.

10 CDE Programmer’s Guide

Part 2 —Recommended Integration

Integrating Fonts
Your application may be used by someone sitting at an X terminal, or by someone at a
remote workstation across a network. In these situations, the fonts available to the user’s X
display from the X window server might be different from your application’s defaults, and
some fonts may not be available.

The standard font names defined by CDE are guaranteed to be available on all
CDE-compliant systems. These names do not specify actual fonts. Instead, they are aliases
that each system vendor maps to its best available fonts. If you use only these font names
in your application, you can be sure of getting the closest matching font on any
CDE-compliant system.

• Using Fonts in CDE Configuration Files

• Default Font Name

• Point Size

• Standard Application Font Names in app-defaults files

Using Fonts in CDE Configuration Files
CDE specifies a set of generic standard application font names, in several sizes, that can be
used by applications running under CDE on all platforms. Each CDE vendor maps the
standard set of font names to its available fonts. The mapping of font names to existing
fonts may vary from vendor to vendor.

When you use the standard application font names in your app-defaults files, you can use a
single app-defaults file across all CDE platforms. If you do not use the standard font names,
you must supply a different app-defaults files for each application on each CDE platform.

All CDE systems provide a set of 13 standard application font names, in at least 6 sizes,
that represent 12 generic design and style variations (serif and sans serif), as well as a
symbol font. These standard names are provided in addition to the names of the fonts that
the standard names are mapped to for a particular CDE platform. An additional four
standard font names—to allow both serif and sans serif designs in a monospaced
font—may also be provided by CDE platform vendors, if they choose to do so.

These 13 font names are provided in CDE platforms for the locales using the ISO 8859–1
character set. See the Common Desktop Environment: Internationalization Programmer’s
Guide for information on using standard font names in other locales.

Default Font Names
The set of font names is defined by the XLFD field name values described in the following
table:

11CDE Programmer’s Guide

Field Name Values for Font Names

Field Value Description

FOUNDRY dt CDE name

FAMILY_NAME application CDE standard application font
name

WEIGHT_NAME medium or bold Weight of the font

SLANT r
i

Roman
Italic

SET_WIDTH normal Normal set width

ADD_STYLE sans
serif

Sans serif font
Serif font

PIXEL_SIZE * Platform dependent

POINT_SIZE pointsize Point size of the desired font

RESOLUTION_X * Platform dependent

RESOLUTION_Y * Platform dependent

AVERAGE_WIDTH p
 m

Proportional
Monospace

NUMERIC FIELD * Platform dependent

CHAR_SET_REGISTRY iso8859–1 Defining standards authority

ENCODING 1 Character set number

The standard names are available using the regular X Windows XLFD font-naming scheme.
When properly specified with appropriate wildcards for the platform-dependent fields, a CDE
font name is guaranteed to open a valid, corresponding platform-dependent font. The XLFD
name returned from a call to the Xlib XListFont function, however, is not guaranteed to be
the same on all CDE platforms.

Using these values, the XLFD pattern

–dt–application–*

matches the full set of CDE standard application font names on a given platform. The
pattern

–dt–application–bold–*–*–*–*–*–*–*–p–*–*–*–

matches the bold, proportionally spaced CDE fonts, both serif and sans serif. And the
pattern

–dt–application–*–*–*–*–*–*–*–*–m–*–*–*–

matches the monospaced fonts (whether serif or sans serif, or both).

The full set of CDE Standard Application Font Names can be represented as follows:

12 CDE Programmer’s Guide

 –dt– application –bold–i–normal–serif–*–*–*–*–p–*–iso8859–1
 –dt– application –bold–r–normal–serif–*–*–*–*–p–*–iso8859–1
 –dt– application –medium–i–normal–serif–*–*–*–*–p–*–iso8859–1
 –dt– application –medium–r–normal–serif–*–*–*–*–p–*–iso8859–1
 –dt– application –bold–i–normal–sans–*–*–*–*–p–*–iso8859–1
 –dt– application –bold–r–normal–sans–*–*–*–*–p–*–iso8859–1
 –dt– application –medium–i–normal–sans–*–*–*–*–p–*–iso8859–1
 –dt– application –medium–r–normal–sans–*–*–*–*–p–*–iso8859–1
 –dt– application –bold–i–normal–*–*–*–*–*–m–*–iso8859–1
 –dt– application –bold–r–normal–*–*–*–*–*–m–*–iso8859–1
 –dt– application –medium–i–normal–*–*–*–*–*–m–*–iso8859–1
 –dt– application –medium–r–normal–*–*–*–*–*–m–*–iso8859–1
 –dt– application –medium–r–normal–*–*–*–*–*–p–*–dtsymbol–1

Point Sizes
The complete set of point sizes available for each of the standard application font names is
determined by the set of fonts shipped with a vendor’s CDE platform, whether bitmapped
only or both bitmapped and scalable outline. The minimum set of sizes required and
available on all CDE platforms corresponds to the standard sizes of bitmapped fonts that
make up the default mapping for X11R5: 8, 10, 12, 14, 18, and 24.

For example, the entire set of six sizes of the plain monospaced font can be represented by
the patterns:

–dt– application –medium–r–normal–*–80–*–*–*–m–*–iso8859–1
–dt– application –medium–r–normal–*–100–*–*–*–m–*–iso8859–1
–dt– application –medium–r–normal–*–120–*–*–*–m–*–iso8859–1
–dt– application –medium–r–normal–*–140–*–*–*–m–*–iso8859–1
–dt– application –medium–r–normal–*–180–*–*–*–m–*–iso8859–1
–dt– application –medium–r–normal–*–240–*–*–*–m–*–iso8859–1

These patterns match the corresponding standard font name on any CDE platform, even
though the numeric fields other than POINTSIZE may be different on various platforms, and
the matched fonts may be either serif or sans serif, depending on how the vendor
implemented the set of standard names.

Standard Application Font Names in app-defaults files
You can code a single app-defaults file to specify font resources for your application and
use it across all CDE platforms. Because the parts of the standard names that are defined
are the same across different vendors’ platforms, you can specify these values in the
resource specification in the app-defaults file. However, you must use wildcards for the
other fields (PIXEL_SIZE, RESOLUTION_X, RESOLUTION_Y, and AVERAGE_WIDTH)
because they may vary across platforms. For example, to specify some of the default
resource needs for an application named appOne, you might use:

appOne*headFont: \
–dt–application–bold–r–normal–sans–*–140–*–*–p–*–iso8859–1

appOne*linkFont: \
–dt–application–bold–i–normal–sans–*–100–*–*–p–*–iso8859–1

As another example, suppose that appTwo running on a vendor’s platform defines two font
resources for headings and hypertext links. appTwo uses a 14 point bold, serif font
(Lucidabright bold) and a 12–point bold, italic sans serif font (Lucida bold–italic). You would
then change the font definition from:

13CDE Programmer’s Guide

apptwo *headingFont: \
–b&h–lucidabright–bold–r–normal––20–140–100–100–p–127–iso8859–1

apptwo *linkFont: \
–b&h–lucida–bold–i–normal–sans–17–120–100–100–p–96–iso8859–1

to:

apptwo *headingFont: \
–dt–application–bold–r–normal–serif–*–140–*–*–p–*–iso8859–1

apptwo *linkFont: \
–dt–application–bold–i–normal–sans–*–120–*–*–p–*–iso8859–1

in your app-defaults file. Even though you may not know the names of the fonts on other
CDE platforms, these platform-independent patterns specified with the CDE standard
application font names match appropriate fonts on each platform.

You encode them exactly as shown, complete with the * wildcards, in your resource
definitions. By applying the wildcards to the numeric fields other than point size, you ensure
that the resources match CDE fonts on all platforms, even if the exact pixel size or average
width of the fonts is slightly different.

See the Common Desktop Environment Programmer’s Reference for more information.

14 CDE Programmer’s Guide

Displaying Errors from Your Application
Users running your application expect messages to be displayed in message footers, error
dialogs, or warning dialogs, with further explanations available in online help when
appropriate. Applications in the Common Desktop Environment follow a common model for
presenting error messages and warnings.

• How to Present Error Messages

• Information to Present in Error Dialogs

• Linking Message Dialogs to Online Help

• Recovery Routines

How to Present Error Messages
Because of the way message text is handled, users may not see messages from your
application unless you display them in a dialog, footer, or elsewhere in the user interface.

In CDE, such messages are directed to log files that a casual user may not routinely
examine. Use the following rules when deciding where to tell users about warnings,
messages, and error conditions:

• If the message is informational, display the text in the message footer of the application;
for example, “MyDoc file copied.”

• If the message is about an error or serious warning—a problem where an operation
important to the user has failed—display an error dialog or warning dialog.

Information to Present in Error Dialogs
A good error dialog or warning dialog gives the user the following information:

• What happened (from the user’s point of view)

• Why it happened, in simple language that the user can relate to the current task and
environment

• How to fix the problem

If the information cannot be presented in four or five lines of the error dialog, consider
adding a help button to the dialog and link it to a topic in the help volume for your
application.

For more information on writing messages, see the Common Desktop Environment:
Internationalization Programmer’s Guide.

Linking Message Dialogs to Online Help
In cases where additional background information is required, or where it takes more than
four or five lines of a dialog to explain an error fully, you should add a button that links the
user to online help.

Adding online help for a dialog is a straightforward task. Once you have decided that a
particular dialog is a candidate for online help, do the following:

1.. Choose a unique ID for the error help.

This ID provides the link to the online help text. IDs should be 64 characters or less; for
example, DiskSpaceError.

2.. Create the dialog and add a help callback.

15CDE Programmer’s Guide

Use the XmCreateErrorDialog convenience function for error messages and
XmCreateWarningDialog for warnings, adding the help callback as follows:

XtAddCallback(dialog, XmNhelpCallback, helpfn, “ID”);

In this example, helpfn is a help function you have created to manage the help dialog,
and the string “ID” is the ID you chose for the error message (for example,
DiskSpaceError). In your help function, set the XmNlocationId resource to the value
of ID. The /usr/dt/examples/dthelp directory contains examples of how to set up such
a help function.

For detailed information about creating and managing help dialog widgets, see the
Common Desktop Environment: Help System Author’s and Programmer’s Guide.

3.. Write a corresponding help section for the error message.

Document the message in the “messages” section of your help volume. In the help
source document, you should have a separate section for each message, and the ID=
attribute at the beginning of the section should match the ID you chose in your code for
the error.

For example, in the s1 section heading, the ID is DiskSpaceError.

When the user’s system has insufficient disk space, the error message the user sees
from the following heading is “Could Not Save File.”

 <s1 ID=DiskSpaceError>Could Not Save File <\s1>

Note that by convention, the text of the section heading should correspond closely to the
text in the error dialog.

4.. Rebuild the help file.

The new help section for the error message becomes active as soon as you rebuild the
help file (using the dthelptag program) and recompile your application.

For information about writing and building online help, see the Common Desktop
Environment: Help System Author’s and Programmer’s Guide.

Recovery Routines
If a recovery routine exists for an error condition, consider adding a Retry button to the
dialog. For example, if a file could not be copied because the system had insufficient disk
space, you might offer a Recopy option in the dialog that users could choose once they
have corrected a disk space or permissions problem.

16 CDE Programmer’s Guide

Integrating with Session Manager
Session Manager saves information about the Desktop environment and the applications
running when the user logs out (of the current session) or when the user saves the
environment (in a home session). For an application to be saved as part of the current
session or the home session and then restarted as part of the next session, it must
participate in the X Inter–Client Communication Conventions Manual (ICCCM) 1.1 Session
Management Protocol. This section outlines how Session Manager saves and restores
sessions and details the steps necessary for an application to participate in session
management.

• How Session Manager Saves Sessions and Applications

• How to Program the Application for Session Management

• How Session Manager Restores a Session

How Session Manager Saves Sessions and Applications
When you exit a session or when you save a Home session, Session Manager:

1.. Saves the selected resource settings and X server settings

2.. Allows each application to save its state and waits for the save to be completed

3.. Obtains the command line required to restart the application

How to Program the Application for Session Management

Setting the Program Environment
This section describes the programming steps necessary for an application to be saved as
part of the integration process.

Follow these steps to set the program environment:

1.. Include the following header files:

• Xm/Xm.h

• Xm/Protocols.h

• Dt/Session.h

2.. Link with libXm and libDtSvc .

3.. Initialize the toolkit and create a top-level widget.

Setting the WM_SAVE_YOURSELF Atom
Use the Motif XmAddWMProtocol() function to set the WM_SAVE_YOURSELF atom on
the WM_PROTOCOLS property for the top-level window of your application, as shown in
the following example.

Atom XaWmSaveYourself;
Display *dsp;

dsp = XtDisplay(toplevel);
XaWmSaveYourself =
XmInternAtom(dsp, ”WM_SAVE_YOURSELF”, False);
XmAddWMProtocols(toplevel, &XaWmSaveYourself, 1);

Note: Do not set the WM_SAVE_YOURSELF atom for more than one window.

17CDE Programmer’s Guide

Prepare to Receive the WM_SAVE_YOURSELF Message
Use the Motif XmAddWMProtocolCallback() function to establish a callback procedure to
be called when the application receives a WM_SAVE_YOURSELF client message:

XmAddWMProtocolCallback(toplevel, XaWmSaveYourself,
SaveYourselfProc,
 toplevel);

Processing the WM_SAVE_YOURSELF Message
When Session Manager sends a WM_SAVE_YOURSELF client message to this sample
application’s top-level window, the SaveYourselfProc() callback procedure is called. Use
thecallback to save the application’s state. The application can save its state by any means
you want, but cannot interact with the user during the save.

Session Manager provides the DtSessionSavePath() function as a way to return a full path
name and a base file name to use for saving the application’s state.

Setting the WM_COMMAND Property
After the application has finished processing the WM_SAVE_YOURSELF message, either
by saving its state or ignoring the message, the application must set the WM_COMMAND
property on its top-level window to tell Session Manager that the save operation is
complete.

Use the Xlib XsetCommand() function to set the WM_COMMAND property on the
application’s top-level window. Setting this property lets Session Manager know that the
application has finished processing the WM_SAVE_YOURSELF message and gives
Session Manager the command line it needs to restart the application.

XsetCommand() accepts an array of command-line arguments. If the application uses the
DtSessionSavePath() function as part of the save process, XsetCommand() needs an
additional command-line argument: –session basename, where basename is the base file
name returned by DtSessionSavePath() .

How Session Manager Restores a Session
Session Manager restores a session by:

1.. Restoring the resource database and server settings

2.. Restarting applications using the saved command lines

If the application used DtSessionSavePath() to find a path for its saved state, the
application can pass the base file name from the –session argument to the
DtSessionRestorePath() function to find the full path name of its saved-state file.

18 CDE Programmer’s Guide

Integrating with Drag and Drop
This section describes the drag-and-drop user model and the Common Desktop
Environment drag-and-drop convenience application program interface (API), and describes
how to use drag and drop.

• Summary

• Drag-and-Drop User Model

• Drag-and-Drop Convenience API

• Drag-and-Drop Transaction

• Integration Action Plan

• API Overview

• How Drag Sources Are Used

• How Drop Zones Are Used

Summary
The Common Desktop Environment contains an application program interface (API) for drag
and drop that is layered on top of Motif to provide convenient, consistent, and interoperable
drag and drop across the desktop. The Common Desktop Environment drag-and-drop API
makes it easier for developers to implement drag and drop. With drag and drop, users can
manipulate objects on the screen directly by grabbing them, dragging them around the
display, and dropping them on other objects to perform a transfer of data.

Text, files, and buffers are the three categories of data that are used with the Common
Desktop Environment drag-and-drop API. Text is defined, in this context, as any user-visible
text such as text in type-in fields. A file is a container of data that resides in the file system.
Each file also has a format that describes its contents. Buffers are data contained in
memory. Typically, each buffer also has a format that describes its contents.

Library and Header Files
To use drag and drop, you need to link to the DtSvc library. The header file is Dt/Dnd.h .

Demo Program
A demo program containing an example of drag and drop is in /usr/dt/examples/dtdnd .

Using Drag and Drop
To Integrate with Drag and Drop
To integrate your application with drag and drop, follow these steps:

1.. Include Dt/Dnd.h .

2.. Link to libDtsvc .

3.. As recipient:

a. Register as a drop zone using DtDndDropRegister .

b. Optionally, write a drop animate callback.

c. Write a transfer callback.

4.. As source:

19CDE Programmer’s Guide

a. Recognize user action (possibly requiring a modification of translation tables) and call
DtDndDragStart .

b. Write a convert callback .

c. Write a drag finish callback .

Drag-and-Drop User Model
This section describes the user model behind drag and drop to help you design an
application that is consistent with the rest of the desktop and users’ expectations.

See the Common Desktop Environment: Style Guide for more information about the
drag-and-drop user model and for guidelines for the visual appearance of drag-and-drop
elements.

When drag and drop is available for all applications on the desktop, the system is more
predictable to the user and is, therefore, easier to use and to learn. Users leverage their
learning across more applications by using skills that they already know. In addition, many
users prefer drag and drop to using menus.

In this section, the term drop zone is used to describe places where users can drop
something. Drop zones are usually represented by a control or icon graphic; for example, a
trash icon or a type-in field graphic. The term drop target is used to describe the rectangular
area that represents the drop zone.

Drag and Drop Capability
With the Drag and Drop capability, users can select and manipulate objects represented as
icons.

Note: Drag and drop is an accelerator to functionality that is accessible through other user
interface controls supported within your application. However, not all users are able
to take advantage of drag and drop. Do not support any basic operations solely
through drag and drop. Any basic function that your application supports through
drag and drop should also be supported by menus, buttons, or dialog boxes.

Drag Icons
When users select and manipulate icons using drag and drop, they expect the graphic icon
that represents the item being dragged to remain consistent from the selection through the
drag and drop. If the user selects a message icon in the File Manager and starts to drag it,
the source portion of the drag icon is represented by that message icon. Providing this kind
of consistency makes drag and drop more predictable to the user. Where the destination
application uses icons, the icon shown should, in most cases, be the same one that was
selected and then dragged and dropped. This behavior is not, however, always appropriate
for all applications. Dragging text is an exception. A text drag icon is used instead of
dragging the selected text.

Both the source and destination applications specify the visual appearance of drag icons.
You are responsible for ensuring that an application has a consistent and appropriate icon to
drag. Although the drag-and-drop library provides default icons, it is a good idea for you to
specify your own for each application. Most often, you should use the data-typing database
to obtain the icon associated with the type data represented by the icon. See “Accessing the
Data-Typing Database”.

When users start a drag without selecting an icon, it is appropriate for you to provide a
relevant drag icon. For example, in an appointment editor, the user can select an
appointment out of a scrolling list—which may or may not show icons. You should use an
appointment icon as the source indicator. The destination application (for example, a File
Manager) should display the same appointment icon.

20 CDE Programmer’s Guide

Parts of the Drag Icon
The drag icon changes appearance to provide drag-over feedback when the user moves it
over potential drop zones.

The drag icon has three parts that combine to provide the drag-over feedback:

• A state indicator

• An operation indicator

• A source indicator

The state indicator is a pointer used for positioning combined with a valid or invalid drop
zone indicator. The valid state indicator is an arrow pointer. The pointer has a hot spot so
users can position it in a predictable manner. The invalid state indicator—a circle with a
diagonal line—is displayed when users have positioned the cursor over an invalid drop
zone.

The operation indicator gives users feedback on what operation is occurring during the drag;
either move, copy, or link. Because most drags are moves, users are given additional
feedback when they perform the less-frequent copy or link operations.

Note: The operation feedback is drawn on top of the state and source feedback. This
behavior is consistent with Motif drag-and-drop behavior.

The user can choose the drag operation move, copy, or link by pressing and holding certain
keys during a drag, as shown in the following table:

Keys Used to Modify a Drag Operation

Modifier Key Operation

Shift Move

Control Copy

Control and Shift Link

The source application can force a copy, as in the case of the read-only File Manager
window. When the user chooses an operation, the drop zone must match that operation for
the drop to succeed; otherwise, the drop zone is invalid. In other words, if the user chooses
a copy by holding down the Control key, and then drags the drag icon over the trash icon,
the drag icon should show the trash icon as an invalid drop zone and any drop should fail,
because copying to the trash is not allowed.

The source indicator represents the selection (or the item being dragged). The source
indicator varies depending on whether the selection represents single or multiple items and
what kind of item the selection represents. The following table shows the default source
indicators in the Common Desktop Environment. These source indicators are generated
automatically when you use the Common Desktop Environment drag-and-drop convenience
API. The icons are approximations, not exact screen representations.

21CDE Programmer’s Guide

22 CDE Programmer’s Guide

Drags from Inside Windows
Sometimes an application needs to enable a drag from within a dialog box or window. The
Appointment Editor in Calendar has a scrolling list of appointments and an entry area for
editing an appointment. Users can drag from the scrolling list to get an appointment, but
users also need to be able to drag from the appointment entry area. Enabling users to drag
from the entry area covers those times when the appointment is not yet inserted in the
calendar (for example, when a proposed meeting time is entered but not inserted into the
calendar).

The item that can be dragged needs to have an icon graphic associated with it. Place the
icon graphic in the dialog box in an appropriate area adjacent to the information to be
dragged. The upper-right corner of the dialog box or window is the recommended default
position. The icon lets the user know that something can be dragged and the graphic used
is the same graphic used in the drag icon to provide consistency. The icon should be 32x32
pixels and have a label so that it resembles a File Manager icon. See the Common Desktop
Environment: Style Guide section on drag and drop for more information.

Note: Drags are only enabled from human interface elements that have components or
items that can be selected. Drags cannot be enabled from static labels such as
those on buttons or menus.

Visual Feedback
The following sections describe the drop zone feedback and transition effects of drag and
drop.

Drop Zone Feedback
The default drop zone feedback, called drag under, can be a solid line drawn around the
site, a raised or lowered surface with a beveled edge around the drop zone, or a pixmap
drawing over the drop zone.

Transition Effects
Transition effects show the user that the drop has either succeeded or failed. The two
transition effects are melt and snap back.

Melting occurs when the user drops a drag icon on a valid drop zone. When the user drops
a drag icon on a valid drop zone, the drag icon melts into the drop zone. The drag icon is
replaced by the icon appropriate to the destination application. A printer on the Front Panel
may show nothing other than the melting effect. An open File Manager window may display
an appropriate icon.

When an icon is dropped, sometimes the melting effect does not take place immediately.
The icon is displayed where it is placed until the transfer is done. It is a good idea for the
destination to set its cursor to a busy state while the transfer is occurring. The user cannot
move or select the icon until the transfer is complete; the busy cursor lets the user know the
transfer is in process.

Snap back occurs when a drop fails. Drops can fail in two ways. If the user drops a drag
icon over an invalid drop zone, then the drag icon snaps back to the source application.
Once a drop occurs, the source and destination applications have to transfer the data. If the
data transfer fails, the drag icon snaps back and the destination application is responsible
for indicating failure to the user and providing information on why the drop failed.

Drag-and-Drop Sources
To help you understand the behavior of drag-and-drop sources, the following table
describes the key desktop components that can be a source of drags of text selections,
files, and buffers.

23CDE Programmer’s Guide

Desktop Components That Can Be Drag Sources

Drag Source Text Selections Files Buffers

Text fields (Motif)* Selected text N/A N/A

Text Editor: Main Window Selected Text N/A N/A

Terminal: Main Window Selected Text N/A N/A

File Manager: Folder Window N/A Files N/A

File Manager: Trash Window N/A Files N/A

Mail: Message List N/A N/A Message in
mail-message
format

Mail: Attachment List N/A N/A Attachment in
format of the
attachment

Calendar: Appointment Editor N/A N/A Appointment in
appointment format

*Any application that has Motif text field sources selected drags text.

Drag-and-Drop Destinations
The following components on the desktop provide drop destinations:

• Editors

• File Manager

• Front Panel

Each component accepts drops of text selections, files, and buffers. Most of the text drop
destinations are provided automatically by the Motif library. File or buffer data drop
destinations require additional code.

When a user drops data from a file, and that file is modified in some way, the modifications
can be written back to the original holder of the file. This behavior is described as saveback.
However, when data is dropped from a buffer, the data does not have information about an
originating file. As a result, changes to data from buffers cannot be written back, because
there is no original holder of the data. This behavior is described as no saveback.

For example, the Mailer can export mail attachments to editors using drag and drop. If the
attachment is exported as a buffer (that has no saveback), the editor has no way to change
the original attachment in the mailer. So, the editor can only save its modified version of the
attachment to a new file.

Because mail attachments are not already separate files (they are embedded into a mail
folder file), they are only exported as buffers and cannot be saved back by other editors.

If the attachment is exported as a file (that has saveback) the editor saves its modified
version to that same file.

The following table describes the drops of text selections, files, and buffers on editor-type
components such as Text Editor, Icon Editor, Calendar, Mailer, and Application Builder.

24 CDE Programmer’s Guide

Editor Drop Destinations

Drop Destination Text
Selections

Files Buffers

Text Editor: Main
Window

Insert Insert Insert

Terminal: Main Window Insert N/A N/A

Icon Editor: Main
Window

N/A Load (if file in icon
format) saveback

Load into read-only (if
data in icon format) no
saveback

Mailer: Message List N/A Append (if file in mail
format)

Append (if data in mail
format)

Mailer: Compose Insert Insert Insert

Mailer: Attachment List Attach Attach Attach

Calendar: Main
Window

N/A Schedule Appointment
(if file in appointment
format)

Schedule appointment
(if data in appointment
format)

Calendar: Appointment
Editor

Insert into
text field

Fill in appointment
fields (if file in
appointment format)

Fill in appointment
fields (if data in
appointment format)

AppBuilder N/A Load (if file in BIX or
BIL format) saveback

Load into read-only (if
data in BIP format) no
saveback

The following table describes the drops of text selections, files, and buffers on file and folder
icons in the File Manager.

25CDE Programmer’s Guide

File Manager Drop Destinations

Drop
Destination

Text Selections Files Buffers

File Icon Invoke drop action on
target file and
dropped text (if file
accepts text drops
and dropped text in
appropriate format) no
saveback/copy

Invoke drop action
on target file and
dropped file (if file
accepts file drop and
dropped file in
appropriate format)
saveback

Invoke drop action on
target file and
dropped data (if file
accepts data drop and
dropped data in
appropriate format) no
saveback/copy

Folder Icon Insert text into new file
using “Untitled” name
in folder

Copy/move file to
folder

Insert data into new
file using supplied
name (if available) in
folder else using
“Untitled”

Action Icon Invoke action on text
(if appropriate format
and accepts text drop)
no saveback

Invoke action on files
(if appropriate format
and accepts file
drop) saveback

Invoke action on data
(if appropriate format
and accepts data
drop) no saveback

Mail Container
Icon

Append to mailbox (if
text in mail format)

Append to mailbox (if
file in mail format)

Append to mailbox (if
data in mail format)

The following table describes the drops of text selections, files, and buffers on action icons
in the Front Panel.

Front Panel Drop Destinations

Drop
Destination

Text Selections Files Buffers

Text Editor Load into read-only no
saveback

Load saveback Load into read-only no
saveback

Calendar Schedule
appointment (if text in
appointment format)

Schedule
appointment (if file in
appointment format)

Schedule
appointment (if data in
appointment format)

Mail Compose message
attach text

Compose message
attach file

Compose message
attach data

Printer Print text (if print
method available for
text)

Print file contents (if
print method
available for file
format)

Print data (if print
method available for
data format)

Trash Can N/A Move file to Trash
Can

N/A

26 CDE Programmer’s Guide

Front Panel Drop Destinations

Drop
Destination

BuffersFilesText Selections

Subpanel:
Install Icon

N/A Install icon N/A

Subpanel:
Action

Same as File
Manager

Same as File
Manager

Same as File
Manager

Subpanel:
Executable

Same as File
Manager

Same as File
Manager

Same as File
Manager

See the Common Desktop Environment: Style Guide for more information and guidelines on
how the drag and drop should appear to the user.

Drag-and-Drop Convenience API
The Common Desktop Environment provides a drag-and-drop convenience API to promote
consistency and interoperability across the desktop, and to make it easier for developers to
implement drag and drop.

The existing Motif API for drag and drop provides reasonable functionality to achieve a
rendezvous between the source and destination applications in the transaction. It provides a
framework for data transfer but leaves the actual data transfer details up to the application.
For true consistency and interoperability between applications across the desktop, all
applications must use the same data transfer protocols. The Common Desktop Environment
drag-and-drop convenience API provides common data transfer routines.

Simplify Use for Developers
The existing Motif API for drag and drop is very flexible and, therefore, is somewhat difficult
for nonexpert developers to use. The Common Desktop Environment drag-and-drop
convenience API provides some convenience functions, described in the following
paragraphs, that result in an API that is simpler and easier to use by providing the following
services:

• Manages configuration and appearance of drag icons. Graphics are provided for the
default source, state, and operation icons that make up the drag icon in Motif. The
compositing of these icons checks the type of data being dragged.

• Enables animation for a drop. You can define an animation procedure that is called when
the drop has completed.

• Provides data transfer using standard X selection targets for text, file, and buffer
transfers. This data transfer allows interoperability with other applications that use the
standard targets directly.

• Provides dual registration. You can register a text widget as a drop zone for data other
than text and preserve the ability to accept text drops.

Establish Policy
The drag-and-drop API establishes policy in three areas:

• Common targets. Where available, existing selection targets defined by the Inter-Client
Communication Conventions Manual (ICCCM) are used.

• Data transfer protocols. The API hides some of the details of data transfer and presents
the data to the application in the form of some simple data structures.

27CDE Programmer’s Guide

• Default drag icons. Default drag icons are provided for applications that can accept them.

Provide Common Functionality
The drag-and-drop API provides common functionality in these areas:

• Supports the transfer of data as text, file names, and buffers

• Supports, through the data transfer framework, the addition of new, built-in protocols

Leverage Existing Motif API
The API for drag and drop does not invent a new drag-and-drop subsystem; rather, it uses
the existing Motif API. In addition, since common data transfer protocols were chosen,
where available, applications can interoperate at the selection protocol level without
requiring global use of the new API.

The transfer of text and files use existing protocols. Buffer transfer uses new protocols.

Drag-and-Drop Transaction
The Basic Drag-and-Drop Transaction figure illustrates how the basic drag-and-drop
transaction is performed. The dotted-line boxes show the basic transaction. The solid boxes
show the optional transitions and operations.

28 CDE Programmer’s Guide

Data Transfer
Phase

Drop Zone Registration
At widget creation time,
appropriate widgets have been
registered as drop zones using
DtDndDropRegister().

Drag Icon Feedback
The state and operation parts of
the drag icon change to indicate
valid or invalid drop zones and
matching drag operations: move,
copy, link.

User Drops
The user releases the mouse
button over the desired drop
zone to complete the
rendezvous with the destination.

Data Conversion
The API calls the application
convertCallback function to get
the requested data.
Data is sent to the destination
using data transfer protocols.

Drop Zone Feedback
As the drag icon passes over
valid drop zones, the zone is
highlighted.

Data Requested
The API starts the data transfer
by requesting the conversion of
the appropriate selection targets.

Data Transfer
The requested data is received
from the source.
The API calls the application
transferCallback function.
The application takes the
appropriate drop action.

User Starts Drag
When the user presses the
Bselect or Btransfer button on
the icon or text selection, the
application starts the drag by
calling DtDndDragStart().

Application
Rendezvous
Phase

Drop Finish
The API calls the application
dropFinishCallback function to
conclude transfer.

Drop Zone Finish
The drop status from the
transferCallback is sent to the
source to conclude the data
transfer.

Drag Source Drop Zone

The Basic Drag-and-Drop Transaction

The Optional Transitions and Operations for Drag and Drop figure illustrates the optional
transitions and operations for the drag-and-drop transaction.

29CDE Programmer’s Guide

Data Transfer
Phase

Drop Zone Registration

Drag Icon Feedback

User Drops

Data Conversion

Drop Zone Feedback

Data Requested

Data Transfer

User Starts Drag

Application
Rendezvous
Phase

Drop Finish

Drop Zone Finish

Drag Source Drop Zone

Delete Data (for move)
Delete data from the drag source
when the transfer is complete.

Drop Animate
Display animation when the drop
is complete.

Optional Transitions and Operations for Drag and Drop

Integration Action Plan
This section suggests a plan of action for integrating your application with drag and drop in
Common Desktop Environment 1.0.

Review Drag-and-Drop API and Sample Code
Use the information provided in this section and in the relevant sections in the Common
Desktop Environment: Programmer’s Reference to familiarize yourself with the
drag-and-drop API. Once you have a basic understanding of the API, review the source
code for the drag-and-drop demo program, /usr/dt/examples/dtdnd . This code provides
examples of how to use the API in various ways. The examples should give you an
understanding of the character and amount of code you need to write to support drag and
drop in your application. Understanding the actions and the data-typing API is useful as well.

Review Your Application for Possible Drop Zones
Identify the types of data your application might accept through a drag-and-drop transaction.
If, for example, you are writing a bitmap editor, you want to support the drop of files. Once
you have identified the data types you will allow to be dropped on your application,
determine the widget or widgets that should be drop zones. For the bitmap editor example,
you may decide the only place a file should be dropped on the application is the bitmap

30 CDE Programmer’s Guide

editing area. In this case, register the widget representing this area using
DtDndDropRegister() and provide the appropriate callbacks.

Because it is easiest to handle the drop of file names, start by implementing them. Once
you have mastered this technique, you will find it easier to move on to implementing the
drop of text and buffers.

Review Your Application for Possible Drag Sources
Identify the types of data your application might permit as sources for a drag-and-drop
transaction. In the example of the bitmap editor, you may want bitmap data containing the
current bitmap selection to be a drag source as an accelerator for cut and paste. Once you
have identified the data types you will allow to be dragged from your application, determine
the widget or widgets that should be drag sources. In the bitmap editor example, you may
decide the bitmap editing area containing the highlighted bitmap selection should serve as
the drag source. In this case, enable the widget representing this area for sourcing drags.

Start by implementing the drag of buffers that are most appropriate or specific to your
application. You will also want to add the ability to drop buffers on your application to enable
easy data transfer between multiple invocations of your application.

API Overview
This section provides an overview of the drag-and-drop application program interface (API).

DtSvc Library and Header File
The drag-and-drop functionality is implemented in the Desktop Services library, DtSvc . To
access the drag-and-drop API, include the header file <Dt/Dnd.h> and link with -lDtSvc .

Functions
The API includes four function calls, which are declared in the header file Dnd.h and
outlined in the following paragraphs. These functions are described in greater detail in later
sections.

• DtDndDragStart() starts a drag in response to a user action.

• DtDndCreateSourceIcon() creates a source icon to use with DtDndDragStart() .

• DtDndDropRegister() registers a widget as a drop zone. Drop zone registration usually
occurs immediately after the widget is created, but may be performed at any time.

• DtDndDropUnregister() unregisters a previously registered widget. A drop zone is
usually unregistered immediately before being destroyed, but may be unregistered any
time after being registered.

The DtDndContext Structure
You handle transfers of data using the DtDndContext data structure. This structure
contains fields for the transfer protocol, the number of items being transferred, and an array
of the data items being transferred. See the DtDndDragStart(3X) and
DtDndDropRegister(3X) man pages for details about the syntax of this structure.

Protocols
Protocols are used to tell the API the type of data being transferred. The predefined
protocols are shown in the following table.

31CDE Programmer’s Guide

Predefined Protocols

Protocol Description

DtDND_TEXT_TRANSFER Text transfer. Compound text. (Motif uses a
compound text target for text transfers.)

DtDND_FILENAME_TRANSFER File name transfer.

DtDND_BUFFER_TRANSFER Memory buffer.

Operations
The drag source and the drop zone can transfer the data in one of three ways, as described
in the following table.

Data Transfer Operations

Operation Description

XmDROP_MOVE Moves the data (Copy followed by Delete).

XmDROP_COPY Copies the data.

XmDROP_LINK Contains a link to the data.

How Drag Sources Are Used
This section describes how drag sources are used.

Starting a Drag
A drag is started in one of two ways. First, the user may start a drag by pressing down
Btransfer , the middle mouse button. As soon as the button is pressed down, the drag
begins. Second, the user may start a drag by pressing and holding down Bselect , the left
mouse button, and moving the cursor across the screen. The drag begins when the user
moves the mouse a certain distance. This distance is called the drag threshold and it is
measured in pixels. The default drag threshold is 10 pixels for Bselect . For Btransfer , the
drag threshold is 0; because there is no drag threshold, the drag begins as soon as the
pointer is moved. Motif scrolled text lists and text widgets are automatically registered as
drag sources for text drags using Btransfer and Bselect .

Dragging from Lists or Icons
There are two common interface objects that can be used to source a drag: lists and icons.
The Motif List widget automatically sources text drags. If other types of drags are desired,
this is accomplished by overriding the default widget translations with new Bntl and Btn2
translations. There is no icon widget in Motif but often a drawing area is used as container
of icons. In this case, an event handler for Btn1Motion would be used to start the drag.
Refer to the sample code in /usr/dt/examples/dtdnd for more detailed code examples.

Drag Threshold
When starting a drag using Bselect the widget event handler or translation procedures must
apply the drag threshold of 10 pixels before starting the drag. For Btransfer , there is no
threshold and the drag starts immediately.

32 CDE Programmer’s Guide

Btransfer or Badjust
Style Manager has a setting in the Mouse category that controls whether Btn2 , the middle
mouse button, acts as Btransfer or Badjust . This setting is stored as a resource name:
enableBtn1Transfer . A setting of 1 indicates that Btn2 is Badjust and should adjust the
selection while a setting of any other value means that Btn2 is Btransfer and should start a
drag. Btn1 , the left mouse button, always starts a drag.

The following example shows how to determine whether Btn2 should be Btransfer or
Badjust .

Display* display;

int adjust;

XtVaGetValues ((Widget)XmGetXmDisplay(display,

 “enableBtn1Transfer”, &adjust,

 NULL);

if (adjust == 1)

 /* Btn2 is adjust */

 else

 /* Btn2 is transfer */

Initiating a Drag
Common Desktop Environment 1.0 applications start a drag by calling DtDndDragStart() .
This function performs some desktop-specific setup and calls XmDragStart() to initiate a
drag. The DtDndDragStart() function synopsis and parameter usage are described as
follows:

Widget

DtDndDragStart(

 Widget dragSource,

 XEvent *event,

 DtDndProtocol protocol,

 Cardinal numItems,

 unsigned char operations,

 XtCallbackList convertCallback,

 XtCallbackList dragFinishCallback

 ArgList argList,

 Cardinal argCount)

 Widget dragSource

The widget that received the event that triggered the drag.

XEvent *event

The button press or button motion event that triggered the drag.

DtDndProtocol protocol

The protocol used for the data transfer. The protocol may be one of the following:

33CDE Programmer’s Guide

 DtDND_TEXT_TRANSFER
 DtDND_FILENAME_TRANSFER
 DtDND_BUFFER_TRANSFER

Cardinal numItems

Specifies the number of items being dragged.

unsigned char operations

Specifies options supported by dragSource. The options are XmDROP_MOVE,
XmDROP_COPY, and XmDROP_LINK . A drag source may support any combination of
these operations. You specify a combination of operations by using or. For example, to
support the move and copy operations, specify XmDROP_MOVE | XmDROP_COPY.

XtCallbackList convertCallback

This callback is invoked when a drop has started and the drop zone has requested data
from the drag source. The convertCallback is explained in more detail in the next
section.

XtCallbackList dragFinishCallback

This callback is invoked when the drag-and-drop transaction is complete. The
dragFinishCallback should reset the dragMotionHandler() and free any memory
allocated by the drag source during the drag-and-drop transaction.

Using Convert Callbacks
The convert callback provides data to the drop zone when a drop occurs. The first action in
the convert callback is a verification of the reason field in the callData . If the reason is not
DtCR_CONVERT_DATA or DtCR_CONVERT_DELETE , you should return immediately;
otherwise, proceed to convert the data. For example, if you are handling the conversion of a
file name, retrieve the appropriate file name from your internal data structures and copy it
into the file data object. If your drag source supports the move operation, you need to
support conversion of the DELETE target. That is, when convertCallback is called with a
reason of DtCR_CONVERT_DELETE , perform the appropriate deletion action for the data
that was moved. In the case of the file transfer, delete the file. Here is a simple
convertCallback that handles the conversion and deletion of file names.

34 CDE Programmer’s Guide

void

convertFileCallback(

Widget dragContext,

 XtPointer clientData,

 XtPointer callData)

{

 DtDndConvertCallbackStruct *convertInfo =
 (DtDndConvertCallbackStruct*) callData;

 char *fileName = (char *) clientData;

 if (convertInfo–>reason == DtCR_DND_CONVERT_DATA) {

 convertInfo–>dragData–>data.files[0]=

 XtNewString(fileName);

} else if (convertInfo–>reason == DtCR_DND_CONVERT_DELETE) {

 deleteFile(fileName);

} else {

 convertInfo–>status = DtDND_FAILURE;

 }

}

How Drop Zones Are Used
This section describes how drop zones are used.

Registering a Drop Zone
You generally register drop zones just after the widget that is going to be the drop zone is
created. If you want a modal drop zone, you may register the widget as a drop zone when
you want users to be able to drop on it and unregister it when you do not want users to drop
on it.

Motif text widgets are automatically registered as drop zones for text when they are created.
Dual registration is allowed. If you want a text widget to accept drops of other data, such as
file names, in addition to text, you may register the text widget as a drop zone for file names
as well. The text drop functionality provided by Motif is preserved. The functionality for
file-name (or other data-type) drops is layered on top.

Use the function DtDndDropRegister() to register a widget as a drop zone. This function
handles dual registration, if necessary, performs desktop-specific setup, and calls
XmDropSiteRegister() . The DtDndDropRegister() function synopsis and parameter use
are as follows.

void DtDndDropRegister(
 Widget dropSite,
 DtDndProtocol protocols;
 unsigned char operations;
 XtCallbackList transferCallback;
 ArgList argList;
 Cardinal argCount)
Widget dropSite

The widget that is being registered as a drop zone.

35CDE Programmer’s Guide

DtDndProtocol protocols

Specifies the list of data transfer protocols that the drop zone can use. To specify the use
of more than one protocol, use OR with the protocol values.

unsigned char operations

The operations supported by the drop zone. The drop zone may support any
combination of XmDROP_MOVE, XmDROP_COPY, and XmDROP_LINK by using OR
for the desired combination of operations.

XtCallbackList transferCallback

This function accepts the data that is dropped on the drop zone. The transfer callback is
explained in greater detail in the next section.

ArgList argList

Specifies an optional argument list.

Cardinal argCount

Specifies the number of arguments in argList .

Using the Transfer Callback
The transfer callback accepts data from the drag source when a drop occurs. The first
action in the transfer callback is a verification of the reason field in the callData . If the
reason is not DtCR_DND_TRANSFER_DATA , you should return immediately; otherwise,
proceed with data transfer based on its type and the operation specified in the reason. For
example, if you are handling the copy of a file, retrieve the file name from the data structure,
open the file, and copy its contents. If your drop zone supports more than one data type,
you need to support the transfer of each data type appropriately.

Here is a simple transfer callback for a drawing area drop zone that supports the copying of
text and file-name data types.

void
 TransferCallback(
 Widget widget,
 XtPointer clientData,
 XtPointer callData)
{
 DtDndTransferCallbackStruct *transferInfo =
 (DtDndTransferCallbackStruct*) callData;
 int ii;
 DtDndcontext * dropData = transferInfo–>dropData;
 return;
 switch dropData–>protocol {
 case DtDND_FILENAME_TRANSFER:
 for (ii=0; ii < dropData–>numItems; ii++) {
 drawTheString(dropData–>data, strings[ii]);
 }
 break;
 case DtDND_TEXT_TRANSFER:
 for (ii=0; ii<dropData–>numItems; ii++){
 drawTheFile(dropData–>data.files[ii]);
 }
 break;
 default:
 transferInfo–>status = DtDND_FAILURE;
 }
}

36 CDE Programmer’s Guide

Using Data Typing
In an application that accepts drops of buffers, you may want to handle the dropped data in
a different way depending on its type. To accomplish data typing, use the data-typing API.
Data-typing function calls of interest are DtDtsBufferToDataType() and
DtDtsBufferToAttributeValue() . The former returns the data attribute name for the data,
the latter returns the value of a specified attribute of the data. Attributes you may find useful
for drag and drop are shown in the following table.

 Data–Typing Attributes

Attributes Description

ICON Path of icon to use for this data.

MEDIA The Message Alliance media name for this data.

See “Accessing the Data-Typing Database” for more information.

37CDE Programmer’s Guide

Part 3 —Optional Integration

Integrating with the Workspace Manager
The Workspace Manager provides the means for an application to manage its windows
within the desktop’s multiple workspace environment. An application can perform four major
tasks by communicating with the Workspace Manager:

• Place the application’s windows in one or more workspaces

• Identify the workspaces in which the application’s windows are located

• Prevent the application’s windows from moving to another workspace

• Monitor changes to the workspaces, such as when a user switches from one workspace
to another

Normally, Session Manager will get your application main window into the right workspace
without your intervention. However, if your application has multiple top-level windows, you
should use the Workspace Manager API to figure out where your windows are and save this
data as part of your session state.

See “Integrating with Session Manager” for details on saving application-related information
between sessions.

• Communicating with the Workspace Manager

• Placing an Application Window in Workspaces

• Identifying Workspaces Containing the Application Windows

• Preventing Application Movement Among Workspaces

• Monitoring Workspace Changes

Communicating with the Workspace Manager
An application communicates with the Workspace Manager by using functions provided by
the desktop. These functions allow you to quickly and easily perform a variety of tasks
associated with workspace management. The following is a list of these functions:

• DtWsmAddCurrentWorkspaceCallback

• DtWsmAddWorkspaceFunctions

• DtWsmAddWorkspaceModifiedCallback

• DtWsmFreeWorkspaceInfo

• DtWsmGetCurrentBackdropWindows

• DtWsmGetCurrentWorkspace

• DtWsmGetWorkspaceInfo

• DtWsmGetWorkspaceList

• DtWsmGetWorkspacesOccupied

• DtWsmOccupyAllWorkspaces

• DtWsmRemoveWorkspaceCallback

38 CDE Programmer’s Guide

• DtWsmRemoveWorkspaceFunctions

• DtWsmSetCurrentWorkspace

• DtWsmSetWorkspacesOccupied

Segments of code from two demo programs (occupy.c and wsinfo.c) illustrate the use
of these functions. Listings for occupy.c , wsinfo.c , and makefiles for several brands of
workstations are in the directory /usr/dt/examples/dtwsm . See the applicable man page for
more information on each function.

Placing an Application Window in Workspaces
An application can place its windows in any or all of the existing workspaces.
DtWsmOccupyAllWorkspaces places the windows in all currently defined workspaces, while
DtWsmSetWorkspacesOccupied places the windows in all workspaces named in a list that
is passed to the function.

To Place an Application Window in All Workspaces
• Use DtWsmOccupyAllWorkspaces .

In occupy.c , the callback allWsCB for the Occupy All Workspaces push button calls
this function.

DtWsmOccupyAllWorkspaces (XtDisplay(toplevel),
 XtWindow(toplevel));

where:

• XtDisplay(toplevel) is the X display.

• XtWindow(toplevel) is the window to be placed in all workspaces.

See the DtWsmOccupyAllWorkspaces man page for more information on this function.

To Place an Application Window in Specified Workspaces
• Use DtWsmSetWorkspacesOccupied .

In occupy.c , the callback setCB for the Set Occupancy push button calls this function.

DtWsmSetWorkSpacesOccupied (XtDisplay(toplevel),
 XtWindow(toplevel), paWsSet, numSet);

where:

• XtDisplay(toplevel) is the X display.

• XtWindow(toplevel) is the window to be placed in the workspaces.

• paWsSet is a pointer to a list of workspace names that have been converted to X atoms.

• numSet is the number of workspaces in the list.

See the DtWsmSetWorkspacesOccupied man page for more information on this function.

Identifying Workspaces Containing the Application Windows
The function DtWsmGetWorkspacesOccupied returns a list of the workspaces in which a
specified application window resides. In occupy.c , the procedure
ShowWorkspaceOccupancy calls this function. Based on the results of this call,
ShowWorkspaceOccupancy changes the appearance of the toggle buttons that represent
the workspaces. A check mark appears on every toggle button in whose workspace the
application window resides.

39CDE Programmer’s Guide

To Identify Workspaces That Contain the Application Window
• Use DtWsmGetWorkspacesOccupied .

rval = DtWsmGetWorkspacesOccupied(XtDisplay(toplevel)
 XtWindow(toplevel), &paWsIn, &numWsIn);

where:

• XtDisplay(toplevel) is the X display.

• XtWindow(toplevel) is the window to be searched for in the workspaces.

• paWsIn is the address of a pointer to a list of workspace names that have been
converted to X atoms.

• numWsIn is the address of an integer into which the number of workspaces in the list is
placed.

After this call, loops are set up to compare the list of workspaces (found in the procedure
SetUpWorkspaceButtons by DtWsmGetWorkspaceList) with the list of workspaces in
which the application window was found to reside. The toggle button resource XmNset is
set to True for each toggle button that represents a workspace in which the application
window resides.

Preventing Application Movement Among Workspaces
The function DtWsmRemoveWorkspaceFunctions prevents an application from:

• Switching from one workspace to another

• Occupying all workspaces

• Being removed from the current workspace

DtWsmRemoveWorkspaceFunctions does this by making that portion of the desktop
Workspace Manager (dtwm) window menu inactive. The application should call
DtWsmRemoveWorkspaceFunctions before its top-level window is mapped because
dtwm only checks workspace information at the time it manages the application’s top-level
window. If you need to call DtWsmRemoveWorkspaceFunctions after the application’s
top-level window is managed, then you must first call the Xlib function XWithdrawWindow ,
call DtWsmRemoveWorkspaceFunctions , and then call XMapWindow to remap the
top-level window.

To Prevent Movement to Another Workspace
• Use DtWsmRemoveWorkspaceFunctions .

DtWsmRemoveWorkspaceFunctions(XtDisplay(toplevel),
 XtWindow(toplevel));

where:

• XtDisplay(toplevel) is the X display.

• XtWindow(toplevel) is the window for which workspace movement is to be
prevented.

Monitoring Workspace Changes
You can monitor workspace changes by using either or both of the following functions:

• DtWsmAddCurrentWorkspaceCallback

• DtWsmWorkspaceModifiedCallback

40 CDE Programmer’s Guide

DtWsmAddCurrentWorkspaceCallback registers an application callback to be called
whenever the Workspace Manager is switched to a new workspace. See the
DtWsmAddCurrentWorkspaceCallback(3) man page for more information.

DtWsmWorkspaceModifiedCallback registers an application callback to be called
whenever a workspace is added, deleted, or changed. See the
DtWsmWorkspaceModifiedCallback(3) man page for more information.

To Monitor Workspace Switching
• Use DtWsmAddCurrentWorkspaceCallback .

In the demo program wsinfo.c , this function is called after the top-level widget is
realized.

DtWsmAddCurrentWorkspaceCallback (toplevel, wschangecb, NULL);

where

• toplevel is the application’s top level widget.

• wschangecb is the name of the function to be called.

• NULL is the parameter for client data to be passed to the callback. In this case, no data is
passed.

To Monitor Other Workspace Changes
• Use DtWsmWorkspaceModifiedCallback .

DtWsmWorkspaceModifiedCallback (toplevel, wschangecb, NULL);

where:

• toplevel is the application’s top-level widget.

• wschangecb is the name of the function to be called.

• NULL is the parameter for client data to be passed to the callback. In this case, no data is
passed.

41CDE Programmer’s Guide

Common Desktop Environment Motif Widgets
The Common Desktop Environment provides Motif (based on Motif 1.2) OSF patch-level
1.2.3 libraries (with bug fixes) and enhancements. In addition, the Common Desktop
Environment provides four custom widgets you can use to provide certain OPEN LOOK
and Microsoft Windows functionality. This section describes these Motif custom widgets.

• Using Common Desktop Environment Motif

• Text Field and Arrow Button Widget (DtSpinBox)

• Text Field and List Box Widget (DtComboBox)

• Menu Button Widget (DtMenuButton)

• Text Editor Widget (DtEditor)

The widget library, libDtWidget, contains four widgets that combine or enhance functionality
of existing Motif 1.2 widgets:

• DtSpinBox combines a text field and arrow buttons in a control that can increment or
decrement numeric or text values.

• DtComboBox combines a text field and a list box in a control that displays one of the
many valid choices for the text field.

• DtMenuButton provides menu-cascading functionality outside of the menu bar.

• DtEditor incorporates such single text editor functions as cut and paste.

These widgets provide common functionality across all Common Desktop Environment
applications. None of these widgets support subclassing.

The Custom Widgets library depends directly on the following libraries:

• Xm library for the Motif superclass support

• Xt library for creation and manipulation of widgets

• X11 Library for the base X Window System

• DtSvc for desktop support utilized by DtEditor

Using Common Desktop Environment Motif
The Common Desktop Environment Motif toolkit consists of the Motif 1.2 widget library with
enhancements to existing functionality, bug fixes, and two new features.

Common Desktop Environment Motif adds functionality to the Motif 1.2.3 release while
maintaining source compatibility. Common Desktop Environment Motif is source and binary
compatible with Motif 1.2 applications. Existing Motif 1.2 applications will compile using
Common Desktop Environment Motif. Existing Motif 1.2 binaries will run without modification
using Common Desktop Environment Motif.

Common Desktop Environment Motif also provides four custom widgets not found in Motif
1.2. The custom widgets are described in detail in this section.

Motif Libraries
Use the Common Desktop Environment Motif and X11R5 libraries to develop a Common
Desktop Environment Motif-compliant application for the X Window System. The Common
Desktop Environment Motif libraries are the Motif 1.2.3 libraries (with bug fixes) and
enhancements.

42 CDE Programmer’s Guide

Motif Library (libXm)
Common Desktop Environment provides all the Motif 1.2 header files.

Motif UIL Library (libUil)
The Motif User Interface Language (UIL) is a specification language for describing the initial
state of a Motif application’s user interface.

Include the uil/UilDef.h header file to access UIL.

Motif Resource Manager Library (libMrm)
The Motif Resource Manager (MRM) creates widgets based on definitions contained in User
Interface Definition (UID) files created by the UIL compiler. MRM interprets the output of the
UIL compiler and generates the appropriate argument lists for widget creation functions.
Use libMrm to access the Motif Resource Manager.

Include the Mrm/MrmPublic.h header files to access libMrm in your application.

Features Added to Motif
The following features have been added to Motif 1.2.3 to support desktop applications:

• Complete internationalization of toolkit error messages.

• XmGetPixmap() and XmGetPixmapByDepth() use the environment variable
XMICONSEARCHPATH or XMICONBMSEARCHPATH as the icon search path. If
neither of these variables is set, XBMLANGPATH is used, which governs the Motif 1.2
behavior.See Common Desktop Environment Motif man page for more information.

Enhancements to Existing Motif Functionality
The Common Desktop Environment Xm library contains minor enhancements to Motif to
enable better usability by OPEN LOOK and Microsoft Windows users. The usability
enhancements include:

• Enabling button two on a three-button mouse to be used to extend the current selection.
This functionality is equivalent to the OPEN LOOK ADJUST mouse button.

• Enabling Tab to be used to move through a group of PushButton widgets and gadgets,
ArrowButton widgets and gadgets, and DrawnButton widgets.

• Enabling button 3 to activate a CascadeButton menu.

• Providing three new resources (pathMode, fileFilterStyle, and dirTextLabelStrin g) for
the XmFileSelectionBox widget, which gives it a new look and feel. See the Common
Desktop Environment: Programmer’s Overview for details about the new
XmFileSelectionBox resources.

• Enabling interoperability with Microsoft Windows and OPEN LOOK by providing multiple
key bindings for Motif virtual keys.

Each of the preceding enhancements can be controlled by a resource: either a widget
resource (for XmFileSelectionBox) or an application-wide resource (all other cases). The
default values for this resource provide behavior and an API that is identical to that of Motif
1.2. For information on these enhancements and resources, see the XmDisplay(3x) and
XmFileSelectionBox(3x) man pages.

Visual Enhancements
Common Desktop Environment changes the Motif 1.2 look in the following ways:

• RadioBox fill color is changed to show state more clearly.

• RadioBox shape is changed from diamond to circular.

43CDE Programmer’s Guide

• A check glyph is added to the CheckBox to show state more clearly.

• CascadeButtons and menu items are changed to have an etched-in border when active.

• Thumb is removed from the read-only Scale to distinguish it from the Scale.

• Default shadow thickness is changed to 1 pixel.

• Default highlight thickness is changed to 1 pixel.

• Default PushButton visual draws the highlight inside the button’s default shadow.

An application-wide resource can control each of these enhancements. The default values
for these resources provide behavior and an API that is identical to that of Motif 1.2.

For information on these enhancements, see the XmDisplay(3) ,
XmPushButton(3) ,XmPushButtonGadget(3) ,XmToggleButton(3) ,
XmToggleButtonGadget(3) , and XmScale(3) man pages.

Text Field and Arrow Button Widget (DtSpinBox)
Use the DtSpinBox for cycling through a list of text items or incrementing and
decrementing a numeric entry. DtSpinBox is a subclass of the XmManager class and is
used to display a text field and two arrows.

The DtSpinBox widget is a user interface control used to increment and decrement an
arbitrary text or numeric field. You can use it, for example, to cycle through the months of
the year or days of the month. The following figure shows examples of the DtSpinBox
widget.

Examples of the DtSpinBoc Widget

Library and Header Files
The DtSpinBox widget is in the libDtWidget library. The header file is Dt/SpinBox.h .

Demo Program
A demo containing an example of the DtSpinBox widget is in
/usr/dt/examples/dtwidget/controls.c .

Compatibility with Motif 2.0
To use the Motif 2.0 widgets, change the Dt names for the class, types, and creation
routines to Xm. For example, change all occurrences of DtSpinBox to XmSpinBox in your

44 CDE Programmer’s Guide

code. This information is supplied in case you choose to port your application to Motif 2.0,
but it is not a recommendation that you do so.

Note: Common Desktop Environment does not guarantee strict API or binary compatibility
between the Common Desktop Environment widgets and the Motif 2.0 widgets.

Convenience Functions
The following table lists the convenience functions for the DtSpinBox widget. See the
DtSpinBox(3X) man page for more information.

DtSpinBox Convenience Functions

Function Description

DtCreateSpinBox() Creates a SpinBox widget.

DtSpinBoxAddItem() Adds an item into a DtSpinBox widget at a specified
location.

DtSpinBoxDeletePos() Deletes a specified item from a DtSpinBox widget.

DtSpinBoxSetItem() Sets the current item in a DtSpinBox widget.

Classes
DtSpinBoxWidget inherits behavior and resources from the Core , Composite ,
Constraint , and XmManager classes.

The class pointer is dtSpinBoxWidgetClass .

The class name is DtSpinBoxWidget .

DtSpinBoxWidget does not support subclassing.

Resources
The DtSpinBox widget defines the following set of widget resources. The following table
lists the class, type, default, and access for each resource.

• DtNarrowLayout specifies the style and position of the DtSpinBox arrows.

• DtNarrowSensitivity specifies the sensitivity of the arrows in the DtSpinBox .

• DtNspinBoxChildType specifies the style of the DtSpinBox .

• DtNdecimalPoints specifies the position of the decimal point within the integer value
when the child type is numeric.

• DtNincrementValue specifies the amount to increment or decrement the position when
the child type is numeric.

• DtNinitialDelay specifies the amount of time in milliseconds before the arrow buttons
begin to spin continuously.

• DtNnumValues specifies the number of items in the DtNvalues list when the child type
is a string.

• DtNvalues supplies the list of strings to cycle through when the child type resource is a
string.

• DtNmaximumValue specifies the upper bound on the DtSpinBox range when the child
type is numeric.

45CDE Programmer’s Guide

• DtNminimumValue specifies the lower bound on the DtSpinBox range when the child
type is numeric.

• DtNmodifyVerifyCallback is called just before the DtSpinBox position changes. The
application can use this callback to implement new application-related logic, including
setting a new position, spinning to, or canceling the impending action.

• DtNposition has a different value based on the child type resource. When the child type
is a string, DtNposition is the index into the DtNvalues list for the current item. When
the child type is numeric, DtNposition is the integer value of the DtSpinBox that falls
within the maximum and minimum value range.

• DtNrepeatDelay is the number of milliseconds between repeated calls to the
DtNvalueChangedCallback while the user is spinning the DtSpinBox .

• DtNvalueChangedCallback is called whenever the value of the DtNposition resource is
changed through the use of the spinner arrows.

See the DtSpinBox(3X) man page for more information.

DtSpinBoxWidge Resources

Name Class Type Default Access

DtNarrowLayout DtCArrowLayout unsigned char DtARROWS_END CSG

DtNarrowSensitivity DtCArrowSensitivity unsigned char DtARROWS_SENSITIVE CSG

DtNspinBoxChildType DtCSpinBoxChildType unsigned char DtSTRING CG

DtNdecimalPoints DtCDecimalPoints short 0 CSG

DtNincrementValue DtCIncrementValue int 1 CSG

DtNinitialDelay DtCInitialDelay unsigned int 250 ms CSG

DtNnumValues DtCNumValues int 0 CSG

DtNvalues DtCValues XmStringTable NULL CSG

DtNmaximumValue DtCMaximumValue int 10 CSG

DtNminimumValue DtCMinimumValue int 0 CSG

DtNmodifyVerifyCallback DtCCallback XtCallbackList NULL C

DtNposition DtCPosition int 0 CSG

DtNrepeatDelay DtCRepeatDelay unsigned int 200 ms CSG

DtNvalueChangedCallback DtCCallback XtCallbackList NULL C

Callback Structures
The callback structure follows and is described in the following table.

46 CDE Programmer’s Guide

typedef struct {
 int reason ;
 XEvent *event ;

 Widget widget ;

 Boolean doit ;

 int position ;

 XmString value ;

 Boolean crossed_boundary ;

} DtSpinBoxCallbackStruct;

DtSpinBox Callbacks

Callback Description

reason Use this callback for three possible reasons. For the first call
to the callback at the beginning of a spin, or for a single
activation of the spin arrows, DtCR_OK is the reason. If the
DtSpinBox is being continuously spun, the reason is
DtCR_SPIN_NEXT or DtCR_SPIN_PRIOR, depending on the
arrow that is spinning.

event A pointer to the event that caused this callback to be invoked.
It can be NULL when the DtSpinBox is continuously spinning.

widget The widget identifier for the text widget that is affected by the
spin.

doit Sets this value only when the call_data comes from the
DtNmodifyVerifyCallback. For a modifyVerify callback, the
setting of this field by an application determines whether the
action that initiated the callback should be performed. When
this field is set to False, the action is not performed.

position The new value of the DtNposition resource that results from
the spin.

value The new XmString value displayed in the Text widget that
results from the spin. This string must be copied if it is used
beyond the scope of the call_data structure.

crossed_boundary This Boolean is True when the spinbox cycles, and/or
DtNspinBoxChildType of XmSTRING wraps from the first item
to the last or the last item to the first. When the
DtNspinBoxChildType is XmNUMERIC, the boundary is
crossed when the DtSpinBox cycles from the maximum value
to the minimum value or vice versa.

Example of DtSpinBox Widget
The following example shows how to create and use a DtSpinBox widget. You can find this
code as part of the controls.c demo in the /usr/dt/examples/dtwidget directory.

/*

 * Example code for SpinBox

 */

47CDE Programmer’s Guide

#include <Dt/SpinBox.h>
static char *spinValueStrings[] = {

 “alpha”, “beta”, “gamma”, “delta”,
 “epsilon”, “zeta”, “eta”, “theta”,

 “iota”, “kappa”, “lambda”, “mu”,

 “nu”, “xi”, “omicron”, “pi”,

 “rho”, “sigma”, “tau”, “upsilon”,

 “phi”, “chi”, “psi”, “omega”

};

static void ModifyVerifyCb(Widget, XtPointer, XtPointer);

static void CreateSpinBoxes(Widget parent)

{

 Widget titleLabel, spinBox;
 XmString *valueXmstrings;

 int numValueStrings;

 XmString labelString;

 Arg args[20];

 int i, n;

 /* Create value compound strings */

 numValueStrings = XtNumber(spinValueStrings);
 valueXmstrings = (XmString *)XtMalloc(numValueStrings
 sizeof(XmString*));
 for (i = 0; i < numValueStrings; i++) {
 valueXmstrings[i] =

 XmStringCreateLocalized(spinValueStrings[i]);

 }
 /* Create title label */

 labelString = XmStringCreateLocalized(“SpinBox Widget”);

 n = 0;

 XtSetArg(args[n], XmNlabelString, labelString); n++;

 titleLabel = XmCreateLabel(parent, “title”, args, n);

 XtManageChild(titleLabel);

 XmStringFree(labelString);

 /*

 * Create a SpinBox containing string values.

 */

 n = 0;

 XtSetArg(args[n], DtNvalues, valueXmstrings); n++;
 XtSetArg(args[n], DtNnumValues, numValueStrings); n++;

48 CDE Programmer’s Guide

 XtSetArg(args[n], DtNcolumns, 10); n++;

 spinBox = DtCreateSpinBox(parent, “spinBox1”, args, n);

 XtManageChild(spinBox);

 /*
 * Create a SpinBox containing numeric values to 3 decimal
places.
 * Position the arrows on either side of the displayed
value.
 */

 n = 0;

 XtSetArg(args[n], DtNspinBoxChildType, DtNUMERIC); n++;

 XtSetArg(args[n], DtNminimumValue, 1000); n++;

 XtSetArg(args[n], DtNmaximumValue, 100000); n++;

 XtSetArg(args[n], DtNincrementValue,1000); n++;

 XtSetArg(args[n], DtNdecimalPoints,3); n++;

 XtSetArg(args[n], DtNposition,1000); n++;

 XtSetArg(args[n], DtNarrowLayout,DtARROWS_SPLIT); n++;

 XtSetArg(args[n], DtNcolumns, 10); n++;

 spinBox = DtCreateSpinBox(parent, “spinBox2”, args, n);

 XtManageChild(spinBox);

 /*
 * Create a SpinBox containing numeric values to 2 decimal
places.
 * Position the arrows on the left of the displayed value.
 * Disallow alternate user changes by adding a

modify/verify callback.

 */

 n = 0;

 XtSetArg(args[n], DtNspinBoxChildType, DtNUMERIC); n++;

 XtSetArg(args[n], DtNminimumValue, 1500); n++;

 XtSetArg(args[n], DtNmaximumValue, 60500); n++;

 XtSetArg(args[n], DtNincrementValue,1500); n++;

 XtSetArg(args[n], DtNdecimalPoints,2); n++;

 XtSetArg(args[n], DtNposition,7500); n++

 XtSetArg(args[n], DtNarrowLayout,
DtARROWS_FLAT_BEGINNING); n++;

 XtSetArg(args[n], DtNcolumns, 10); n++;

 spinBox = DtCreateSpinBox(parent, “spinBox3”, args, n);

 XtManageChild(spinBox);

 XtAddCallback(spinBox, DtNmodifyVerifyCallback,

49CDE Programmer’s Guide

ModifyVerifyCb, NULL);

 /*
 * Create a SpinBox containing string values.
 * Position the arrows on the left of the display value
 */

 n = 0;

 XtSetArg(args[n], DtNvalues, valueXmstrings); n++;

 XtSetArg(args[n], DtNnumValues, numValueStrings); n++;

 XtSetArg(args[n], DtNarrowLayout, DtARROWS_BEGINNING);
n++;

 XtSetArg(args[n], DtNcolumns, 10); n++;

 spinBox = DtCreateSpinBox(parent, “spinBox4”, args, n);

 XtManageChild(spinBox);

 /*

 * Create a SpinBox containing numeric values to 3 decimal
places.

 * Position the arrows on the right of the displayed value.

 */

 n = 0;

 XtSetArg(args[n], DtNspinBoxChildType, DtNUMERIC); n++;

 XtSetArg(args[n], DtNminimumValue, 1000); n++;

 XtSetArg(args[n], DtNmaximumValue, 100000); n++;

 XtSetArg(args[n], DtNincrementValue,1000); n++;

 XtSetArg(args[n], DtNdecimalPoints,3); n++;

 XtSetArg(args[n], DtNposition,1000); n++;

 XtSetArg(args[n], DtNarrowLayout, DtARROWS_FLAT_END); n++;

 XtSetArg(args[n], DtNcolumns, 10); n++;

 spinBox = DtCreateSpinBox(parent, “spinBox5”, args, n);

 XtManageChild(spinBox);

 /*

 * Free value strings, SpinBox has taken a copy.

 */

 for (i = 0; i < numValueStrings; i++) {

 XmStringFree(valueXmstrings[i]);

 }

 XtFree((char*)valueXmstrings);

}

50 CDE Programmer’s Guide

 /*

 * modify/verify callback.

 *

 * Allow/disallow alternate user changes

 */

static void ModifyVerifyCb(Widget w, XtPointer cd, XtPointer cb)

{

 DtSpinBoxCallbackStruct *scb= (DtSpinBoxCallbackStruct*)cb;

 static Boolean allowChange = True;

 scb–>doit = allowChange;

 if (allowChange == False) {
 printf(“DtSpinBox: DtNmodifyVerifyCallback.

 Change disallowed.\n”);

 XBell(XtDisplay(w), 0);

 }

 allowChange = (allowChange == True) ? False : True;

}

Text Field and List Box Widget (DtComboBox)
Use the DtComboBox widget to display a list and the current selection from the list. You
can use this widget for display only, or as a selectable control.

The DtComboBox widget is a combination of a text field and a list widget that provides a
list of valid choices for the text field. Selecting an item from this list automatically fills in the
text field with that list item. The following figure shows examples of a DtComboBox widget.

Examples of text field and list box widget (DtComboBox)

51CDE Programmer’s Guide

Library and Header Files
The DtComboBox widget is in the libDtWidget library. The header file is Dt/ComboBox.h .

Demo Program
A demo containing an example of the DtComboBox widget is in
/usr/dt/examples/dtwidget/controls.c .

Compatibility with Motif 2.0
The DtComboBox widget is similar to the Motif 2.0 release of XmComboBox . The APIs
are designed so that an application can easily switch to the Motif 2.0 version of these
widgets. To use the Motif 2.0 widgets, change the Dt names for the class, type, and creation
routines to Xm. For example, change all occurrences of DtComboBox to XmComboBox in
your code. This information is supplied in case you choose to port your application to Motif
2.0, but it is not a recommendation that you do so.

Note: Common Desktop Environment does not provide strict API or binary compatibility
between the Common Desktop Environment widgets and the Motif 2.0 widgets.

Convenience Functions
The DtComboBox widget provides the following convenience functions, described in more
detail in the following table.

See the DtComboBox(3X) man page for more information.

DtComboBox Widget Convenience Functions

Function Description

DtCreateComboBox() Creates a DtComboBox widget.

DtComboBoxAddItem() Adds an item into a DtComboBox widget at a specified
position.

DtComboBoxDeletePos() Deletes a specified item from a DtComboBox widget.

DtComboBoxSetItem() Selects an item in the XmList of a DtComboBox widget
and makes it the first visible item in the list.

DtComboBoxSelectItem() Selects an item in the XmList of the DtComboBox
widget.

DtComboBox is a subclass of the XmManager class that is used to display XmList or
XmScrolledList .

Classes
DtComboBox inherits behavior and resources from Core , Composite , Constraints , and
XmManager classes.

The class pointer is dtComboBoxWidgetClass .

The class name is DtComboBoxWidget .

DtComboBoxWidget does not support subclassing.

Resources
DtComboBox provides the following resources. The following table shows the class, type,
default, and access for these resources.

52 CDE Programmer’s Guide

• DtNmarginHeight specifies the number of pixels added between the top and bottom of
the text widget and the start of the shadow.

• DtNmarginWidth specifies the number of pixels added between the right and left sides
of the text widget and the start of the shadow.

• DtNselectedItem is passed through to the XmList to set the XmNselectedItemCount
and XmNselectedItems as the single item in the DtNitems that matches this specified
XmString in the list.

• DtNselectedPosition is passed through to the XmList to set the
XmNselectedItemCount and XmNselectedItems as the single item at this specified
position in the list.

• DtNselectionCallback is issued when an item is selected from the DtComboBox widget
list.

• DtNcomboBoxType determines the style type of the DtComboBox .

The list widget ID is accessible using the XtNameToWidget() function. The resources of
these widgets can be set. See the DtComboBox(3X) man page for more information.

The codes in the access column show if you can:

• Set the resource at creation time (C)

• Set by using XtSetValues (S)

• Retrieve by using XtGetValues (G)

DtComboBox Widget Resources

Name Class Type Default Access

DtNmarginHeight DtCMarginHeight Dimension 2 CSG

DtNmarginWidth DtCMarginWidth Dimension 2 CSG

DtNselectedItem DtCSelectedItem XmString Dimension CSG

DtNselectedPosition DtCSelectedPosition int Dimension CSG

DtNselectionCallback DtCCallback XtCallbackList XmString C

DtNcomboBoxType DtCComboBoxType unsigned char int CG

Callback Structures
The callback structure follows and is described in the following table.

typedef struct {

 int reason ;

 XEvent *event ;

 XmString item_or_text ;

 int item_position ;

} DtComboBoxCallbackStruct;

53CDE Programmer’s Guide

DtComboBox Callback Structures

Structure Description

reason The only reason to issue this callback is XmCR_SELECT.

event A pointer to the event that caused this callback to be invoked. It
can be NULL.

item_or_text The contents of the text widget at the time the event invoked the
callback. This data is only valid within the scope of the call_data
structure, so it must be copied when it is used outside of this
scope.

item_position The new value of the DtNposition resource in the DtComboBox
list. If the value is 0, the user entered a value in the XmTextField
widget.

Example of DtComboBox Widget
The following example shows how to create and use a DtComboBox widget. You can find
this code as part of the controls.c demo in the /usr/dt/examples/dtwidget directory.

/*

 * Example code for DtComboBox

 */

#include <Dt/ComboBox.h>

static char *comboValueStrings[] = {

 “alpha”, “beta”, “gamma”, “delta”,

 “epsilon”, “zeta”, “eta”, “theta”,

 “iota”, “kappa”, “lambda”, “mu”,

 “nu”, “xi”, “omicron”, “pi”,

 “rho”, “sigma”, “tau”, “upsilon”,

 “phi”, “chi”, “psi”, “omega”

};

static char *colorStrings[] = { “Red”, “Yellow”, “Green”,
“Brown”, “Blue” };

static void CreateComboBoxes(Widget parent)

{

 Widget titleLabel, comboBox, list;
 XmString *valueXmstrings, *colorXmstrings;
 int numValueStrings, numColorStrings;
 XmString labelString, xmString;
 Arg args[20];
 int i, n;

 /* Create value compound strings */

 numValueStrings = XtNumber(comboValueStrings);
 valueXmstrings = (XmString *)XtMalloc(numValueStrings *

54 CDE Programmer’s Guide

 sizeof(XmString*));
 for (i = 0; i < numValueStrings; i++) {
 valueXmstrings[i] =
 XmStringCreateLocalized(comboValueStrings[i]);
 }

 /* Create color compound strings */
 numColorStrings = XtNumber(colorStrings);

 colorXmstrings = (XmString *)XtMalloc(numColorStrings *
 sizeof(XmString*));

 for (i = 0; i < numColorStrings; i++) {
 colorXmstrings[i] =
 XmStringCreateLocalized(colorStrings[i]);
 }

 /* Create title label */

 labelString = XmStringCreateLocalized(“ComboBox Widget”);
 n = 0;
 XtSetArg(args[n], XmNlabelString, labelString); n++;
 titleLabel = XmCreateLabel(parent, “title”, args, n);
 XtManageChild(titleLabel);
 XmStringFree(labelString);

 /*
 * Create an editable ComboBox containing the color strings.
 * Get the widget id of the drop down list, add some greek
 * letter names to it, and make more items visible.
 */

 n = 0;
 XtSetArg(args[n], DtNcomboBoxType, DtDROP_DOWN_COMBO_BOX);
 n++;
 XtSetArg(args[n], DtNitems, colorXmstrings); n++;
 XtSetArg(args[n], DtNitemCount, numColorStrings); n++;
 XtSetArg(args[n], DtNvisibleItemCount, 5); n++;
 XtSetArg(args[n], DtNcolumns, 10); n++;
 comboBox = DtCreateComboBox(parent, “comboBox1”, args, n);
 XtManageChild(comboBox);

 list = XtNameToWidget(comboBox, “*List”);
 XmListAddItems(list, valueXmstrings, 10, 0);
 XtVaSetValues(list, XmNvisibleItemCount, 10, NULL);

 /*
 * Create an editable ComboBox with no entries.
 * Get the widget id of the drop down list, add some greek
 * letter names to it and select the third item in the list.
 */

 n = 0;
 XtSetArg(args[n], DtNcomboBoxType, DtDROP_DOWN_COMBO_BOX);
 n++;
 XtSetArg(args[n], DtNorientation, DtLEFT); n++;
 XtSetArg(args[n], DtNcolumns, 10); n++;
 comboBox = DtCreateComboBox(parent, “comboBox2”, args, n);
 XtManageChild(comboBox);

55CDE Programmer’s Guide

 list = XtNameToWidget(comboBox, “*List”);
 XmListAddItems(list, valueXmstrings, 7, 0);
 XtVaSetValues(list, XmNvisibleItemCount, 7, NULL);
 XtVaSetValues(comboBox, DtNselectedPosition, 3, NULL);

 /*
 * Create a non-editable ComboBox containing some greek
 letter names.
 * Position the arrow on the left.
 * Select the ‘gamma’ item in the list.
 */

 n = 0;
 XtSetArg(args[n], DtNorientation, DtLEFT); n++;
 XtSetArg(args[n], DtNitems, valueXmstrings); n++;
 XtSetArg(args[n], DtNitemCount, numValueStrings); n++;
 XtSetArg(args[n], DtNvisibleItemCount, 8); n++;
 comboBox = DtCreateComboBox(parent, “comboBox3”, args, n);
 XtManageChild(comboBox);

 xmString = XmStringCreateLocalized(“gamma”);
 XtVaSetValues(comboBox, DtNselectedItem, xmString, NULL);
 XmStringFree(xmString);

 /*
 * Create a non-editable ComboBox with no entries.
 * Position the arrow on the right.
 * Add the greek letter names to the list and select the
 fourth item.
 */

 n = 0;

 XtSetArg(args[n], DtNorientation, DtRIGHT); n++;

 XtSetArg(args[n], DtNvisibleItemCount, 8); n++;

 comboBox = DtCreateComboBox(parent, “comboBox4”, args, n);

 XtManageChild(comboBox);

 for (i = 0; i < numValueStrings; i++) {
 DtComboBoxAddItem(comboBox, valueXmstrings[i],
 0, True);

 }

 XtVaSetValues(comboBox, DtNselectedPosition, 4, NULL);

 /*

 * Free value and color strings, ComboBox has taken a copy.

 */

 for (i = 0; i < numValueStrings; i++) {
 XmStringFree(valueXmstrings[i]);

 }

 XtFree((char*)valueXmstrings);

 for (i = 0; i < numColorStrings; i++) {
 XmStringFree(colorXmstrings[i]);

56 CDE Programmer’s Guide

 }

 XtFree((char*)colorXmstrings);

}

Menu Button Widget (DtMenuButton)
Use the DtMenuButton widget to provide menu-cascading functionality outside of a menu
pane.

DtMenuButton widget is a command widget that complements the menu cascading
functionality of an XmCascadeButton widget. As a complement to XmCascadeButton
widget, it can only be instantiated outside a MenuBar, Pulldown, or Popup (use
XmCascadeButton widget inside a MenuPane.) The following figure shows examples of a
DtMenuButton widget.

Examples of a DtMenuButton Widget

Library and Header Files
The DtMenuButton widget is in the libDtWidget library. The header file is
Dt/MenuButton.h .

Demo Program
A demo containing an example of the DtMenuButton widget is in
/usr/dt/examples/dtwidget/controls.c .

Convenience Functions
DtCreateMenuButton() is a convenience function that creates a Common Desktop
Environment widget.

DtMenuButton widget is a subclass of XmLabel class. Visually, DtMenuButton widget has
a label string and a menu glyph. The menu glyph always appears on the right end of the
widget and, by default, is a downward pointing arrow.

DtMenuButton widget has an implicitly created submenu attached to it. The submenu is a
pop-up menu and has this DtMenuButton widget as its parent. The name of the implicitly
created submenu is obtained by prefixing submenu_ to the name of this DtMenuButton
widget. You can obtain the widget ID of the submenu by setting an XtGetValues on
DtNsubMenuId resource of this DtMenuButton widget. The implicitly created submenu
must not be destroyed by the user of this widget.

The submenu can be popped up by pressing the menu post button (see XmNmenuPost
resource of XmRowColumn) anywhere on the DtMenuButton widget or by pressing the
Motif Cancel key (usually Escape).

Classes
DtMenuButtonWidget inherits behavior and resources from Core , XmPrimitive , and
XmLabel classes.

57CDE Programmer’s Guide

The class pointer is dtMenuButtonWidgetClass .

The class name is DtMenuButtonWidget .

DtMenuButtonWidget does not support subclassing.

Resources
DtMenuButtonWidget provides the following resources. The following table shows the
class, type, default, and access for these resources.

• DtNcascadingCallback specifies the list of callbacks that are called before the attached
submenu is displayed.

• DtNcascadePixmap specifies the pixmap that is displayed as the menu glyph. If no
pixmap is specified, a downward pointing arrow is displayed.

• DtNsubMenuId specifies the widget ID of the pop-up menu pane to be associated with
this DtMenuButton widget. You must create the pop-up menu pane with this
DtMenuButton as its parent. You cannot specify this resource when the widget is
created because the submenu is automatically destroyed by this widget when the
resource is set.

See the DtMenuButtonWidget(3X) man page for more information.

The codes in the access column show if you can:

• Set the resource at creation time (C)

• Set by using XtSetValues (S)

• Retrieve by using XtGetValues (G)

DtMenuButtonWidget Resources

Name Class Type Default Access

DtNcascadingCallback DtCCallback XtCallbackList NULL C

DtNcascadePixmap DtCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

DtNsubMenuId DtCMenuWidget Widget NULL SG

Callback Structures
The callback structure follows and is described in the following table.

typedef struct {

 int reason ;

 XEvent *event ;

} XmAnyCallbackStruct;

DtMenuButtonWidget Callback Structures

Structure Description

reason Returns reason why the callback was invoked.

event Points to the XEvent that triggered the callback or NULL if the
callback was not triggered by an XEvent.

58 CDE Programmer’s Guide

Example of DtMenuButton Widget
The following example shows how to create and use a DtMenuButton widget. You can find
this code as part of the controls.c demo in the /usr/dt/examples/dtwidget directory.

/*

 * Example code for DtMenuButton

 */

#include Dt/DtMenuButton.h

/* MenuButton custom glyph */

#define menu_glyph_width 16

#define menu_glyph_height 16

static unsigned char menu_glyph_bits[] = {

 0xe0, 0x03, 0x98, 0x0f, 0x84, 0x1f, 0x82, 0x3f, 0x82, 0x3f,
 0x81,
 0x7f,

 0x81, 0x7f, 0xff, 0x7f, 0xff, 0x40, 0xff, 0x40, 0xfe, 0x20,
 0xfe,
 0x20,

 0xfc, 0x10, 0xf8, 0x0c, 0xe0, 0x03, 0x00, 0x00};

static void CreateMenuButtons(Widget parent)

{

 Widget menuButton, submenu, titleLabel, button;

 Pixmap cascadePixmap;

 Pixel fg, bg;

 Cardinal depth;

 XmString labelString;

 Arg args[20];

 int i, n;

 /* Create title label */

 labelString = XmStringCreateLocalized(“MenuButton Widget”);

 n = 0;

 XtSetArg(args[n], XmNlabelString, labelString); n++;

 titleLabel = XmCreateLabel(parent, “title”, args, n);

 XtManageChild(titleLabel);

 XmStringFree(labelString);

 /*

59CDE Programmer’s Guide

 * Create a MenuButton.

 * Add push buttons to the built-in popup menu.

 */

 labelString = XmStringCreateLocalized(“Action”);

 n = 0;

 XtSetArg(args[n], XmNlabelString, labelString); n++;

 menuButton = DtCreateMenuButton(parent, “menuButton1”, args,
 n);

 XtManageChild(menuButton);

 XmStringFree(labelString);

 XtVaGetValues(menuButton, DtNsubMenuId, &submenu, NULL);

 button = XmCreatePushButton(submenu, “Push”, NULL, 0);

 XtManageChild(button);

 button = XmCreatePushButton(submenu, “Pull”, NULL, 0);

 XtManageChild(button);

 button = XmCreatePushButton(submenu, “Turn”, NULL, 0);

 XtManageChild(button);

 /*

 * Create a MenuButton.

 * Replace the built-in popup menu with a tear-off menu.

 * Add a custom pixmap in the colors of the MenuButton.

 */

 labelString = XmStringCreateLocalized(“Movement”);

 n = 0;

 XtSetArg(args[n], XmNlabelString, labelString); n++;

 menuButton = DtCreateMenuButton(parent, “menuButton1”, args,
 n);

 XtManageChild(menuButton);

 XmStringFree(labelString);

 /* Create a tear-off menu */

 n = 0;

 XtSetArg(args[0], XmNtearOffModel, XmTEAR_OFF_ENABLED); n++;

 submenu = XmCreatePopupMenu(menuButton, “submenu”, args, n);

 button = XmCreatePushButton(submenu, “Run”, NULL, 0);

 XtManageChild(button);

60 CDE Programmer’s Guide

 button = XmCreatePushButton(submenu, “Jump”, NULL, 0);

 XtManageChild(button);

 button = XmCreatePushButton(submenu, “Stop”, NULL, 0);

 XtManageChild(button);

 XtVaSetValues(menuButton, DtNsubMenuId, submenu, NULL);

 /* Create a pixmap using the menu button’s colors and depth
*/

 XtVaGetValues(menuButton,

 XmNforeground, &fg,

 XmNbackground, &bg,

 XmNdepth, &depth,

 NULL);

 cascadePixmap = XCreatePixmapFromBitmapData(XtDisplay

 (menuButton),DefaultRootWindow(XtDisplay

 (menuButton)),

 (char*)menu_glyph_bits,

 menu_glyph_width, menu_glyph_height,

 fg, bg, depth);

 XtVaSetValues(menuButton, DtNcascadePixmap, cascadePixmap,
 NULL);

}

Text Editor Widget (DtEditor)
The Common Desktop Environment text editing system consists of two components:

• The text editor client, dtpad , which provides editing services through graphical, action,
and ToolTalk interfaces.

• The editor widget, DtEditor(3) , which provides a programmatic interface for the following
editing services:

• Cut and paste

• Search and replace

• Simple formatting

• Spell checking (for 8-bit locales)

• Undo previous edit

• Enhanced I/O handling capabilities that support input and output of ASCII text, multibyte
text, and buffers of data

• Support for reading and writing files directly

Although the OSF/Motif text widget also provides a programmatic interface, applications
that use the system-wide uniform editor should use the DtEditor(3) widget. The Common

61CDE Programmer’s Guide

Desktop Environment Text Editor and Mailer use the editor widget. Use this widget in the
following circumstances:

1.. You want the functionality, such as spell checking, undo, and find/change, that is
provided by the DtEditor(3) widget.

2.. You do not want to write the code so that users may read and write data to and from a
file.

3.. Your program does not need to examine every character typed or every cursor
movement made by a user.

This section describes the text editor widget, DtEditor(3) .

The Editor Widget library provides support for creating and editing text files. It enables
applications running in the desktop environment to have a consistent method of editing text
data. The DtEditor(3) widget consists of a scrolled edit window for text, an optional status
line, and dialogs for finding and changing text, spell checking, and specifying formatting
options. The text editor widget includes a set of convenience functions for programmatically
controlling the widget.

Library and Header Files
The DtEditor widget is in the libDtWidget library. The header file is Dt/Editor.h.

Demo Program
A demo containing an example of the DtEditor widget is in
/usr/dt/examples/dtwidget/editor.c .

Classes

Widget subclassing is not supported for the DtEditor widget class.
DtEditor inherits behavior and resources from Core , Composite , Constraints ,
XmManager , and XmForm classes.

The class name for the editor widget is DtEditorWidget .

The class pointer is dtEditorWidgetClass .

Convenience Functions
The DtEditor convenience functions are described in the following tables.

Life Cycle Functions
The DtEditor life cycle functions are described in the following table.

DtEditor Life Cycle Functions

Function Description

DtCreateEditor Creates a new instance of a DtEditor widget and
its children.

DtEditorReset Restores a DtEditor widget to its initial state.

Input/Output Functions
The DtEditor input/output functions are described in the following table.

62 CDE Programmer’s Guide

DtEditor Input/Output Functions

Function Description

DtEditorAppend Appends content data to the end of an editor
widget.

DtEditorAppendFromFile Appends the contents of a file to the end of an
editor widget.

DtEditorGetContents Retrieves the entire contents of an editor
widget.

DtEditorInsert Inserts content data at the current insert
position.

DtEditorInsertFromFile Inserts the contents of a file at the current insert
position.

DtEditorReplace Replaces a portion of text with the supplied
data.

DtEditorReplaceFromFile Replaces a portion of text with the contents of a
file.

DtEditorSaveContentsToFile Saves the entire contents to a file.

DtEditorSetContents Loads content data into an editor widget,
replacing the entire contents of the widget.

DtEditorSetContentsFromFile Loads the contents of a file into an editor
widget, replacing the entire contents of the
widget.

Selection Functions
The DtEditor selection functions are described in the following table.

DtEditor Selection Functions

Function Description

DtEditorClearSelection Replaces the currently selected contents with
blanks.

DtEditorCopyToClipboard Copies the currently selected contents to the
clipboard.

DtEditorCutToClipboard Removes the currently selected contents,
placing then on the clipboard.

DtEditorDeleteSelection Removes the currently selected contents.

DtEditorDeselect Deselects any selected contents.

DtEditorPasteFromClipboard Pastes the contents of the clipboard into an
editor widget, replacing any currently selected
contents.

DtEditorSelectAll Selects the entire contents of an editor widget.

63CDE Programmer’s Guide

Format Functions
The DtEditor format functions are described in the following table.

DtEditor Format Functions

Function Description

DtEditorFormat Formats all or part of the contents of an editor
widget.

DtEditorInvokeFormatDialog Displays the format dialog box that enables the
user to specify format settings for margins and
justification style and to perform formatting
operations.

Find and Change Functions
The DtEditor find and change functions are described in the following table.

DtEditArea Find and Change Functions

Function Description

DtEditorChange Changes one or all occurrences of a string.

DtEditorFind Finds the next occurrence of a string.

DtEditorInvokeFindChangeDialog Displays the dialog box that enables the
user to search for, and optionally change, a
string.

DtEditorInvokeSpellDialog Displays a dialog box with a list of
misspelled words in the current contents.

Auxiliary Functions
The DtEditor auxiliary functions are described in the following table.

DtEditor Auxiliary Functions

Function Description

DtEditorCheckForUnsavedChanges Reports whether the contents of an editor
widget have been altered since the last
time they were retrieved or saved.

DtEditorDisableRedisplay Prevents redisplay of an editor widget even
though its visual attributes have changed.

DtEditorEnableRedisplay Forces the visual update of an editor
widget.

DtEditorGetInsertPosition Returns the insertion cursor position of the
editor widget.

DtEditorGetLastPosition Returns the position of the last character in
the edit window.

64 CDE Programmer’s Guide

DtEditor Auxiliary Functions

Function Description

DtEditorGetMessageTextFieldID Retrieves the widget ID of the text field
widget used to display application
messages.

DtEditorGetSizeHints Retrieves sizing information from an editor
widget.

DtEditorGoToLine Moves the insertion cursor to the specified
line.

DtEditorSetInsertionPosition Sets the position of the insertion cursor.

DtEditorTraverseToEditor Sets keyboard traversal to the edit window
of an editor widget.

DtEditorUndoEdit Undoes the last edit made by a user.

Resources
The DtEditor widget provides the following set of resources.

• DtNautoShowCursorPosition ensures that the text visible in the scrolled edit window
contains the insert cursor when set to True. If the insert cursor changes, the contents of
the editor may scroll to bring the insertion point into the window.

• DtNblinkRate specifies the blink rate of the text cursor in milliseconds. The time it takes
to blink the insertion cursor on and off is twice the blink rate. When the blink rate is set to
zero, the cursor does not blink. The value must not be negative.

• DtNbuttonFontList specifies the font list used for the buttons that are displayed in the
dialog boxes of DtEditor .

• DtNcolumns specifies the initial width of the editor as an integer number of characters.
The value must be greater than zero.

• DtNcursorPosition specifies the location of the current insert cursor in the editor where
the current insert cursor is placed. Position is determined by the number of characters
from the beginning of the text. The first character position is 0.

• DtNcursorPositionVisible marks the insert cursor position by a blinking text cursor
when the Boolean value is True.

• DtNdialogTitle specifies the title for all dialogs displayed by DtEditor. These include the
dialogs for word search and replace, misspelled words, and format settings.

• DtNeditable indicates that the user can edit the data when set to True. Prohibits the user
from editing data when set to False.

• DtNlabelFontList specifies the font list used for DtEditor labels (the labels are displayed
in the status line and DtEditor dialog boxes).

• DtNoverstrike when set to False, characters typed into the editor widget inserts at the
position of the cursor (the default). When set to True, characters typed into the editor
widget replace the characters that directly follow the insertion cursor. When the end of
the line is reached, characters are appended to the end of the line. If the status line is
visible, the DtNoverstrikeIndicatorLabel is displayed in the status line whenever
DtNoverstrike is True.

65CDE Programmer’s Guide

• DtNrows specifies the initial height of the editor measured in character heights. The
value must be greater than zero.

• DtNscrollHorizontal adds a scroll bar that enables the user to scroll horizontally through
text when the Boolean value is True.

• DtNscrollLeftSide puts a vertical scroll bar on the left side of the scrolled edit window
when the Boolean value is True.

• DtNshowStatusLine displays a status line below the text window when set to True. The
status line contains a field that displays the current line number of the insert cursor, total
number of lines in the document, and whether the editor is in overstrike mode. Users can
type a line number in the line number display to go directly to that line.

The status line also includes a Motif XmTextField(3X) widget for displaying messages
supplied by an application. This field is a convenient place for an application to display
status and feedback about the document being edited. The ID of the text field is retrieved
using DtEditorGetMessageTextFieldID(3) . A message is displayed by setting the
XmNvalue or XmNvalueWcs resource of this widget. If the text field is not needed, you can
unmanage it by calling XtUnmanageWidget(3X) with its ID.

• DtNspellFilter specifies the filter used to identify spelling errors. The function
DtEditorInvokeSpellDialog(3) filters the contents of an editor through the filter specified
by DtNspellFilter . The filter specified should accept a file name and produce a list of
misspelled and unrecognized words in this file on stdout . The default filter is spell(1) .

• DtNtextBackground specifies the background for the edit window.

• DtNtextDeselectCallback specifies a function called whenever no text is selected within
the edit area. The reason sent by the callback is DtEDITOR_TEXT_DESELECT.

• DtNtextFontList specifies the font list used for the DtEditor edit window and its text
fields. The text fields are displayed in the status line and DtEditor dialog boxes.

• DtNtextForeground specifies the foreground for the edit window.

• DtNtextSelectCallback specifies a function called whenever text is selected within the
edit area. The reason sent by the callback is DtEDITOR_TEXT_SELECT.

• DtNtextTranslations specifies translations that are added to the edit window.
Translations specified with this resource override any duplicate translations defined for
the edit window. See the DtEditor(3) man page for a list of translations provided by
DtEditor .

• DtNtopCharacter displays the line that contains the position of text at the top of the
scrolled edit window. The line is displayed at the top of the widget without shifting the text
left or right. Position is determined by the number of characters from the beginning of the
text. The first character position is zero.

XGetValues(3X) for DtNtopCharacter returns the position of the first character in the line
that is displayed at the top of the widget.

• DtNwordWrap breaks lines at word breaks with soft carriage returns when they reach
the right edge of the window. Note that word wrap affects only the visual appearance of
the contents of an editor widget. The line breaks (soft carriage returns) are not physically
inserted into the text. The editor does support substituting hard carriage returns when the
contents of the widget are retrieved or saved to a file. See the DtEditorGetContents(3)
and DtEditorSaveContentsToFile(3) man pages for more information.

The following table lists the class, type, default, and access for each resource. You can also
set the resource values for the inherited classes to set attributes for this widget. To
reference a resource by name or class in an .Xdefaults file, remove the DtN or DtC prefix

66 CDE Programmer’s Guide

and use the remaining letters. To specify one of the defined values for a resource in an
.Xdefaults file, remove the Dt prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words).

The codes in the access column show if you can:

• Set the resource at creation time (C)

• Set by using XtSetValues (S)

• Retrieve by using XtGetValues (G)

See the DtEditor(3) man page for more information.

DtEditor Resources

Name Class Type Default Access

DtNautoShowCursorPosition DtCAutoShowCursorPosition Boolean True CSG

DtNblinkRate DtCBlinkRate int 500 CSG

DtNbuttonFontList DtCFontList XmFontList Dynamic CSG

DtNcolumns DtCColumns XmNcolumns Dynamic CSG

DtNcursorPosition DtCCursorPosition XmTextPosition 0 CSG

DtNcursorPositionVisible DtCCursorPositionVisible Boolean True CSG

DtNdialogTitle DtCDialogTitle XmString NULL CSG

DtNeditable DtCEditable Boolean True CSG

DtNlabelFontList DtCFontList XmFontList Dynamic CSG

DtNmaxLength DtCMaxLength int Largest
integer

CSG

DtNoverstrike DtCOverstrike Boolean False CSG

DtNrows DtCRows XmNrows Dynamic CSG

DtNscrollHorizontal DtCScroll Boolean True CG

DtNscrollLeftSide DtCScrollSide Boolean Dynamic CG

DtNscrollTopSide DtCScrollSide Boolean False CG

DtNscrollVertical DtCScroll Boolean True CG

DtNshowStatusLine DtCShowStatusLine Boolean False CSG

DtNspellFilter DtCspellFilter char * Spell CSG

DtNtextBackground DtCBackground Pixel Dynamic CSG

DtNtextDeselectCallback DtCCallback XtCallbackList NULL C

DtNtextFontList DtCFontList XmFontList Dynamic CSG

DtNtextForeground DtCForeground Pixel Dynamic CSG

DtNtextTranslations DtCTranslations XtTranslations NULL CS

67CDE Programmer’s Guide

DtEditor Resources

Name AccessDefaultTypeClass

DtNtextSelectCallback DtCCallback XtCallbackList NULL C

DtNtopCharacter DtCTextPosition XmTextPosition 0 CSG

DtNwordWrap DtCWordWrap Boolean True CSG

Inherited Resources
DtEditor inherits behavior and resources from the following superclasses:

• XmForm

• XmManager

• Composite

• Core

Refer to the appropriate man page for more information.

Localization Resources
The following list describes a set of widget resources that are designed for localization of
the DtEditor widget and its dialog boxes. Default values for these resources depend on the
locale.

• DtNcenterToggleLabel specifies the label for the center alignment toggle button in the
Format Settings dialog box. The default value in the C locale is Center.

• DtNchangeAllButtonLabel specifies the label for the button in the Find/Change dialog
box that changes all occurrences of the Find string in the document. The default value in
the C locale is Change All.

• DtNchangeButtonLabel specifies the label for the button in the Find/Change dialog box
that changes the next occurrence of the find string in the document. The default value in
the C locale is Change.

• DtNchangeFieldLabel specifies the label for the field in the Find/Change dialog box
where the user specifies the replacement string. The default value in the C locale is
Change To.

• DtNcurrentLineLabel specifies the label for the current line number field in the status
line. The default value in the C locale is Line.

• DtNfindButtonLabel specifies the label for the button in the Find/Change dialog box that
finds the next occurrence of the find string in the document. The default value in the C
locale is Find.

• DtNfindChangeDialogTitle specifies the title for the Find/Change dialog box. If
DtNdialogTitle is non-null, it is added to the front of this resource to form the title. The
default value in the C locale is Find/Change.

• DtNfindFieldLabel specifies the label for the field in the Find/Change dialog box where
the user specifies the search string. The default value in the C locale is Find.

• DtNformatAllButtonLabel specifies the label for the button in the Format Settings dialog
box that formats the complete document. The default value in the C locale is All.

68 CDE Programmer’s Guide

• DtNformatParagraphButtonLabel specifies the label for the button in the Format
Settings dialog box that formats the paragraph containing the insertion cursor. The
default value in the C locale is Paragraph.

• DtNformatSettingsDialogTitle specifies the title for the Format Settings dialog box. If
DtNdialogTitle is non-null, it is added to the front of this resource to form the title. The
default value in the C locale is Format Settings.

• DtNinformationDialogTitle specifies the title for the Information dialog box that is used
to present feedback and general information to the user. If DtNdialogTitle is non-null, it
is added to the front of this resource to form the title. The default value in the C locale is
Information.

• DtNjustifyToggleLabel specifies the label for the justify alignment toggle button in the
Format Settings dialog box. The default value in the C locale is Justify.

• DtNleftAlignToggleLabel specifies the label for the left alignment toggle button in the
Format Settings dialog box. The default value in the C locale is Left Align.

• DtNleftMarginFieldLabel specifies the label for the left margin value field in the Format
Settings dialog box. The default value in the C locale is Left Margin.

• DtNmisspelledListLabel specifies the label for the list of unrecognized and misspelled
words in the Spell dialog box. The default value in the C locale is Misspelled Words.

• DtNoverstrikeLabel specifies the label in the status line that shows that the editor is in
overstrike mode. The default value in the C locale is Overstrike.

• DtNrightAlignToggleLabel specifies the label for the right alignment toggle button in the
Format Settings dialog box. The default value in the C locale is Right Align.

• DtNrightMarginFieldLabel specifies the label for the right margin value field in the
Format Settings dialog box. The default value in the C locale is Right Margin.

• DtNspellDialogTitle specifies the title for the Format Settings dialog box. If
DtNdialogTitle is non-null, it is added to the front of this resource to form the title. The
default value in the C locale is Spell.

• DtNtotalLineCountLabel specifies the label for the display as part of the status line that
shows the total number of lines in the document. The default value in the C locale is
Total.

The following table lists the class, type, default, and access for each of the localization
resources. The codes in the access column show if you can:

• Set the resource at creation time (C)

• Set by using XtSetValues (S)

• Retrieve by using XtGetValues (G)

See the DtEditor(3) man page for more information.

DtEditor Localization Resources

Name Class Type Default Access

DtNcenterToggleLabel DtCCenterToggleLabel XmString Dynamic CSG

DtNchangeAllButtonLabel DtCChangeAllButtonLabel XmString Dynamic CSG

DtNchangeButtonLabel DtCChangeButtonLabel XmString Dynamic CSG

69CDE Programmer’s Guide

DtEditor Localization Resources

Name AccessDefaultTypeClass

DtNchangeFieldLabel DtCChangeFieldLabel XmString Dynamic CSG

DtNcurrentLineLabel DtCCurrentLineLabel XmString Dynamic CSG

DtNfindButtonLabel DtCFindButtonLabel XmString Dynamic CSG

DtNfindChangeDialogTitle DtCFindChangeDialogTitle XmString Dynamic CSG

DtNfindFieldLabel DtCFindFieldLabel XmString Dynamic CSG

DtNformatAllButtonLabel DtCFormatAllButtonLabel XmString Dynamic CSG

DtNformatParagraphButtonLabel DtCFormatParagraphButtonLabel XmString Dynamic CSG

DtNformatSettingsDialogTitle DtCFormatSettingsDialogTitle XmString Dynamic CSG

DtNinformationDialogTitle DtCInformationDialogTitle XmString Dynamic CSG

DtNjustifyToggleLabel DtCJustifyToggleLabel XmString Dynamic CSG

DtNleftAlignToggleLabel DtCLeftAlignToggleLabel XmString Dynamic CSG

DtNleftMarginFieldLabel DtCLeftMarginFieldLabel XmString Dynamic CSG

DtNmisspelledListLabel DtCMisspelledListLabel XmString Dynamic CSG

DtNoverstrikeLabel DtCOverstrikeLabel XmString Dynamic CSG

DtNrightAlignToggleLabel DtCRightAlignToggleLabel XmString Dynamic CSG

DtNrightMarginFieldLabel DtCRightMarginFieldLabel XmString Dynamic CSG

DtNspellDialogTitle DtCSpellDialogTitle XmString Dynamic CSG

DtNtotalLineCountLabel DtCTotalLineCountLabel XmString Dynamic CSG

Callback Functions
The DtEditor widget supports three callback functions:

• DtEditorNHelpCallback

• DtNtextSelectCallback

• DtNtextDeselectCallback

If you want to present help information about the editor widget and its dialog boxes, set the
XmNhelpCallback resource and use the reason field passed as part of
DtEditorHelpCallbackStruct to set the contents of the Help dialog box. A pointer to the
following structure is passed to XmNHelpCallback . The callback structure and is described
in the following table.

typedef struct {
 int reason ;
 XEvent * event ;
} DtEditorHelpCallbackStruct;

70 CDE Programmer’s Guide

DtEditorHelp Callback Structure

Structure Description

reason The reason why the callback was invoked. Refer to the DtEditor(3) man
page for a list of reasons.

event A pointer to the event that invoked this callback. The value can be NULL.

Use the DtNtextSelectCallback and DtNtextDeselectCallback resources when you want
to enable and disable menu items and commands depending on whether text is selected.
DtNtextSelectCallback specifies a function that is called whenever some text is selected in
the edit window. DtNtextDeselectCallback specifies a function that is called whenever no
text is selected within the edit window. The reasons sent by the callbacks are
DtEDITOR_TEXT_SELECT and DtEDITOR_TEXT_DESELECT.

71CDE Programmer’s Guide

Invoking Actions from Applications
If your application manages an extensible collection of data types, there is a strong
likelihood that it should be directly involved with action invocation. This section explains how
you can invoke an action from an application. Included is an example program that shows
you how to invoke an action.

For more information on actions and how you create them, see the section “Accessing the
Data–Typing Database” in this manual, and the following sections in the Advanced User’s
and System Administrator’s Guide:

• “Introduction to Actions and Data Types”

• “Creating Actions and Data Types Using Create Action”

• “Creating Actions Manually”

• “Creating Data Types Manually”

This section contains the following sections:

• Mechanisms for Invoking Actions from an Application

• Types of Actions

• Action Invocation API

• Related Information

• actions.c Example Program

• Listing for actions.c

Mechanisms for Invoking Actions from an Application
The action invocation API exported by the Desktop Services library is one mechanism
available to your application to cause another application to be invoked or to perform an
operation. Other mechanisms include:

• The fork/exec system calls

• ToolTalk messages

Each of these mechanisms has benefits and limitations, so you must evaluate your
specific situation to determine which is most appropriate.

The advantages of using the action invocation API include:

• Actions can encapsulate both traditional command–line applications (that is, COMMAND
actions) and ToolTalk applications (that is, TT_MSG actions). The application that invokes
the action does not need to know whether a command is forked or a message is sent.

• Actions are polymorphic and are integrated with the desktop’s data–typing mechanisms.
This means that an action, such as Open or Print, may have different behavior depending
on the type of argument that is supplied, but the behavior differences are transparent to
the application that invokes the action.

• Actions provide a great deal of configurability for the application developer, system
integrator, system administrator, and end user. Any one of these people can edit the
action database to modify the definition of how an action is to be performed.

• Actions work well in distributed environments. If an application uses fork/exec to directly
invoke another application, then both applications must be available and able to run on

72 CDE Programmer’s Guide

the same system. By contrast, the action invocation API uses information in the action
database to determine on which system a COMMAND action should be invoked.

• Actions allow your application to behave consistently with the behavior of the desktop.
This is because the desktop’s components interact by using actions when manipulating
the user’s data files.

• The disadvantage of using g the action invocation API is that it is only an invocatin
mechanism that has limited return value capabilities and has no capabilities for a dialog
with the invoked action handler. If these features are required, fork/exec/pipes can be
used. However, within CDE, ToolTalk is the preferred cross process communications
mechanism due to its generalized client/server paradigm.

Returning to invocation, suppose your application manages data files in several different
formats (text and graphics) and needs to provide a way for the user to edit and display
these files. To implement this without using actions, you would probably use one of the
following mechanisms:

• Use fork/exec to start the appropriate editor and invent some mechanism (for example,
environment variables) for the user to specify the names of the editors. The limitations of
this approach include the following:

• You must write complex code that uses system calls to invoke sub–processes and
monitors the resulting signals.

• The editors must either be available on the same system as your application or the
system administrator must provide a complex configuration using facilities such as rsh .

• System administrators and users must learn and manage your application’s unique
configuration model.

• Use ToolTalk messages to request that operations, such as Edit and Display, be
performed on the data. The limitation of this approach is that ToolTalk–based editors
must be available for all of your types of data.

To implement this using actions, you only have to invoke the Open action on the buffer or on
the data file. The action invocation API will use the action database to determine the
appropriate message to send or command to invoke, as well as handle all details, such as
creating and cleaning up temporary files and catching necessary signals.

Types of Actions
The action application program interface (API) works with any type of action. Types of
actions in the desktop include:

Command actions
Specifies a command line to execute.

ToolTalk actionsSpecifies a ToolTalk message to send, which is then received by the
appropriate application.

Map actions Refers to another action instead of defining any specific behavior.

See “Introduction to Actions and Data Types” in the Common Desktop Environment:
Advanced Users’ and System Administrator’s Guide for more information.

Action Invocation API
The action invocation API is exported from the Desktop Services library and provides
functions to accomplish a number of tasks, such as:

• Initialize and load the database of action and data–type definitions. The database must
be loaded before an action can be run.

73CDE Programmer’s Guide

• Query the database. There are functions to determine whether a specified action or its
associated icon image, label, or description exists.

• Invoke an action. The application can pass file or buffer arguments to the action.

• Register a callback to receive action status and return arguments.

Related Information
For detailed information about action commands, functions, and data formats, see the
following man pages:

• dtaction(1)

• dtactionfile(4)

• DtActionCallbackProc(3)

• DtActionDescription(3)

• DtActionExists(3)

• DtActionIcon(3)

• DtActionInvoke(3)

• DtActionLabel(3)

• DtActionQuit(3)

• DtActionQuitType(3)

• DtActionStUpCb(3)

• dtexec(1)

actions.c Example Program
This section describes a simple example program, actions.c . A complete listing of
actions.c is at the end of this section.

Loading the Database of Actions and Data Types
Before your application can invoke an action, it must initialize the Desktop Services library
(which contains the action invocation API) and load the database of action and data–type
definitions.

To Initialize the Desktop Services Library
• Use the DtInitialize() function to initialize the Desktop Services Library.

DtInitialize(* display , widget ,* name,* tool_class)

DtInitialize() uses the default Intrinsic XtAppContext . The API provides an additional
function, DtAppInitialize() to use when your application must specify an app_context:

DtAppInitialize(app_context ,* display , widget ,* name, tool_class)

DtInitialize() Example
The following code segment shows how the example program actions.c uses DtInitialize() .

74 CDE Programmer’s Guide

/* Initialize the desktop */
if (DtInitialize(XtDisplay(shell), shell, argv[0],
ApplicationClass)==False) {
 /* DtInitialize() has already logged an appropriate error
msg */
 exit(1);
 }

To Load the Actions and Data–Types Database
• Use the DtDbLoad() function to load the actions and data–typing databases.

DtDbLoad (void)

DtDbLoad() reads in the action and data–typing databases. This function determines the
set of directories that are to be searched for database files (the database search path) and
loads the *.dt files found into the database. The directory search path is based on the value
of the DTDATABASESEARCHPATH environment variable and internal defaults.

DtDbLoad() Example
The following code segment shows how the example program actions.c uses DtDbLoad() .

/* Load the filetype/action databases */
 DtDbLoad();

To Request Notification of Reload Events
If you use DtDbLoad() in a long–lived application, it must dynamically reload the database
whenever it is modified.

1.. Use the DtDbReloadNotify()function to request notification of reload events.

DtDbReloadNotify (DtDbReloadCallbackProc callback_proc ,
 XtPointer client_data)

2.. Supply a callback that:

• Destroys cached database information held by the application

• Calls the DtDbLoad() function again

Callback_proc cleans up any cached database information your application is holding and
then invokes DtDbLoad(). Client_data may be used to pass additional client information to
the callback routine.

Checking the Actions Database
Your application accesses the database if it needs to display the icon or label for an action.
Also by invoking an action, your application can check that it exists. An action is identified
in the database by the action name:

ACTION action_name

{
 º
}

For example, the action definition for the Calculator looks like this:

75CDE Programmer’s Guide

ACTION Dtcalc

{

 LABEL Calculator

 ICON Dtcalc

 ARG_COUNT 0

 TYPE COMMAND

 WINDOW_TYPE NO_STDIO

 EXEC_STRING /usr/dt/bin/dtcalc

 DESCRIPTION The Calculator (Dtcalc) action runs the \

 desktop Calculator application.

}

The action name for the Calculator action is Dtcalc. When an executable file has a file name
that matches an action name in the database, that file is an action file—a representation for
the underlying action. The information about the icon and label for that file are stored in the
database.

To Determine Whether a Specified Action Definition Exists
• Use the DtActionExists() function to determine whether a specified action definition

exists.

DtActionExists(* name)

DtActionExists() checks whether the specified name corresponds to the name of an
action in the database. The function returns True if name corresponds to an action
name, or False if no action with that name is found.

To Obtain the Icon Image Information for a Specified Action
• Use the DtActionIcon() function to obtain the icon image information.

DtActionIcon(char * action_name)

An action definition specifies the icon image used to represent the action in the definition’s
ICON field:

ACTION action_name

{
 ICON icon_image_base_name
 º
}

DtActionIcon() returns a character string containing the value of the icon image field. If the
action definition does not contain an icon field, the function returns the value of the default
action icon image, Dtactn.

You then need to determine the location of the icon, and the size you want to use. Icons
can exist in four sizes and are available in bitmap or pixmap form. For example, you can
find the base name of the icon file from the action definition for the Calculator. You then
use the base name coupled with the information given in the following table and knowledge
of the location of all the icons to find the specific icon file you want.

The icon name for the calculator action is Dtcalc, but that is not the entire file name. Icon
file names are based on the size of the icon, and there are four sizes. The following table
shows the sizes and file–naming conventions for the desktop icons.

76 CDE Programmer’s Guide

Icon Sizes and File Names

Icon Size Bitmap Name Pixmap Name

16 by 16 (tiny) name.t.bm name.t.pm

24 by 24 (small) name.s.bm name.s.pm

32 by 32 (medium) name.m.bm name.m.pm

48 by 48 (large) name.l.bm name.l.pm

Note: See “Creating Icons for the Desktop” in the Advanced Users & System
Administrator’s Guide for more information about the desktop icon files.

For bitmaps, there is an additional file that is used as a mask, and its extension ends with
_m.bm. Thus, there can be a total of three files for each size icon. Here are the icon files
for the calculator:

Dtcalc.t.bm
Dtcalc.t.pm
Dtcalc.t_m.bm
Dtcalc.m.bm
Dtcalc.m.pm
Dtcalc.m_m.bm
Dtcalc.l.bm
Dtcalc.l.pm
Dtcalc.l_m.bm

Note: There are no small icons (Dtcalc.s.bm, Dtcalc.s.pm, Dtcalc.s_m.bm) for the
Calculator.

DtActionIcon() returns only a base name; for the Calculator it is Dtcalc. You must choose
the type (pixmap or bitmap) and size (tiny, small, medium, or large) and append the
applicable extension to the base name. In addition, you must know where the file resides.

To Get the Localized Label for an Action
• Use the DtActionLabel() function to get the localized label for an action.

char *DtActionLabel(char * actionName)

An action definition may include a label. The label is defined using the label_text field:

ACTION action_name
{
 LABEL label_text
 º
}

This label is used in graphical components (such as File Manager and the Application
Manager) to label the action’s icon. If an action definition does not include a label_text field,
the action_name is used.

The value of label_text string should be used by all interface components to identify the
action to the end user.

The DtActionLabel() function returns the value of the label_text field in the action definition
of the action named actionName. If the label_text field does not exist, the function returns
the actionName.

77CDE Programmer’s Guide

 labelString = XmStringCreateLocalized(”On File:”);
 n = 0;
 XtSetArg(args[n], XmNlabelString, labelString); n++;
 w = XmCreateLabel(workArea, ”fileLabel”, args, n);
 XtManageChild(w);
 XmStringFree(labelString);

Invoking Actions
After your application has initialized the Desktop Services Library it can then invoke an
action.

To Invoke an Action
• Use the DtActionInvoke() function to invoke an action.

DtActionInvoke(widget , action , args , argCount , termOpts, execHost,
 contexDir , useIndicator ,

statusUpdateCb , client_data)

DtActionInvoke() searches the action database for an entry that matches the specified
action name, and accepts arguments of the class, type and count provided. Remember that
your application must initialize and load the database before invoking an action.

DtActionInvoke() Example
The following code segment is from activateCB()(the activate callback for the drawn button)
in actions.c.

DtActionInvocationID actionId;
/* If a file was specified, build the file argument list */
printf(”%s(%s)\n”,action,file);
if (file != NULL && strlen(file) != 0) {

 ap = (DtActionArg*) XtCalloc(1, sizeof(DtActionArg));

ap[0].argClass = DtACTION_FILE;

ap[0].u.file.name = file;

nap = 1;
 }
 /* Invoke the specified action */

actionId =
DtActionInvoke(shell,action,ap,nap,NULL,NULL,NULL,True,NULL,NULL)
;
}

Listing for actions.c
/* Include File Declarations */
#include <Xm/XmAll.h>
#include <Dt/Dt.h>
#include <Dt/Action.h>

#define ApplicationClass ”Dtaction”
static Widget shell;
static XtAppContext appContext;
static Widget actionText;
static Widget fileText;

78 CDE Programmer’s Guide

static void CreateWidgets(Widget);
static void InvokeActionCb(Widget, XtPointer, XtPointer);
static void InvokeAction(char*, char*);
static void DbReloadProc(XtPointer);

void main(int argc, char **argv)
{
 Arg args[20];
 int n=0;
 int numArgs = 0;

 shell = XtAppInitialize(&appContext , ApplicationClass, NULL,
 0, &argc, argv, NULL, args, n);

 CreateWidgets(shell);

 if (DtInitialize(XtDisplay(shell), shell, argv[0],
 ApplicationClass)==False) {
 /* DtInitialize() has already logged an appropriate error
 msg */
 exit(–1);
 }

 /* Load the filetype/action databases */
 DtDbLoad();

 /* Notice changes to the database without needing to restart
 application */
 DtDbReloadNotify(DbReloadProc, NULL);

 XtRealizeWidget(shell);
 XmProcessTraversal(actionText, XmTRAVERSE_CURRENT);

 XtAppMainLoop(appContext);
}
static void CreateWidgets(Widget shell)
{
 Widget messageBox, workArea, w;
 Arg args[20];
 int n;
 XmString labelString;

 labelString = XmStringCreateLocalized(”Invoke”);

 n = 0;
 XtSetArg(args[n], XmNdialogType, XmDIALOG_TEMPLATE); n++;
 XtSetArg(args[n], XmNokLabelString, labelString); n++;
 messageBox = XmCreateMessageBox(shell, ”messageBox”, args,n);
 XtManageChild(messageBox)
 XmStringFree(labelString);
 XtAddCallback(messageBox, XmNokCallback, InvokeActionCb,
 NULL);

 n = 0;
 XtSetArg(args[n], XmNorientation, XmVERTICAL); n++;
 XtSetArg(args[n], XmNpacking, XmPACK_COLUMN); n++;
 XtSetArg(args[n], XmNnumColumns, 2); n++;
 XtSetArg(args[n], XmNentryAlignment, XmALIGNMENT_END); n++;
 workArea = XmCreateWorkArea(messageBox, ”workArea”, args, n);

79CDE Programmer’s Guide

 XtManageChild(workArea);

 labelString = XmStringCreateLocalized(”Invoke Action:”);
 n = 0;
 XtSetArg(args[n], XmNlabelString, labelString); n++;
 w = XmCreateLabel(workArea, ”actionLabel”, args, n);
 XtManageChild(w);
 XmStringFree(labelString);

 labelString = XmStringCreateLocalized(”On File:”);
 n = 0;
 XtSetArg(args[n], XmNlabelString, labelString); n++;
 w = XmCreateLabel(workArea, ”fileLabel”, args, n);
 XtManageChild(w);
 XmStringFree(labelString);

 n = 0;
 XtSetArg(args[n], XmNcolumns, 12); n++;
 actionText = XmCreateTextField(workArea, ”actionText”, args,
 n);

 XmProcessTraversal(actionText, XmTRAVERSE_CURRENT);

 XtAppMainLoop(appContext);
}

static void CreateWidgets(Widget shell)
{
 Widget messageBox, workArea, w;
 Arg args[20];
 int n;
 XmString labelString;

 labelString = XmStringCreateLocalized(”Invoke”);

 n = 0;
 XtSetArg(args[n], XmNdialogType, XmDIALOG_TEMPLATE); n++;
 XtSetArg(args[n], XmNokLabelString, labelString); n++;
 messageBox = XmCreateMessageBox(shell, ”messageBox”, args,
 n);
 XtManageChild(messageBox);
 XmStringFree(labelString);
 XtAddCallback(messageBox, XmNokCallback, InvokeActionCb,
 NULL);

 n = 0;
 XtSetArg(args[n], XmNorientation, XmVERTICAL); n++;
 XtSetArg(args[n], XmNpacking, XmPACK_COLUMN); n++;
 XtSetArg(args[n], XmNnumColumns, 2); n++;
 XtSetArg(args[n], XmNentryAlignment, XmALIGNMENT_END); n++;
 workArea = XmCreateWorkArea(messageBox, ”workArea”, args, n);
 XtManageChild(workArea);

 labelString = XmStringCreateLocalized(”Invoke Action:”);
 n = 0;
 XtSetArg(args[n], XmNlabelString, labelString); n++;
 w = XmCreateLabel(workArea, ”actionLabel”, args, n);
 XtManageChild(w);
 XmStringFree(labelString);

80 CDE Programmer’s Guide

 labelString = XmStringCreateLocalized(”On File:”);
 n = 0;
 XtSetArg(args[n], XmNlabelString, labelString); n++;
 w = XmCreateLabel(workArea, ”fileLabel”, args, n);
 XtManageChild(w);
 XmStringFree(labelString);

 n = 0;
 XtSetArg(args[n], XmNcolumns, 12); n++;
 actionText = XmCreateTextField(workArea, ”actionText”, args,
 n);

 DtActionInvocationID actionId;

 /* If a file was specified, build the file argument list */

 printf(”%s(%s)\n”,action,file);
 if (file != NULL && strlen(file) != 0) {
 ap = (DtActionArg*) XtCalloc(1, sizeof(DtActionArg));
 ap[0].argClass = DtACTION_FILE;
 ap[0].u.file.name = file;
 nap = 1;
 }

 /* Invoke the specified action */

 actionId = DtActionInvoke(shell, action, ap, nap, NULL, NULL,
 NULL, True, NULL, NULL);
}

81CDE Programmer’s Guide

Accessing the Data-Typing Database
This section describes the data-typing functions and how to use the data- typing database.

• Summary

• Data Criteria and Data Attributes

• Data-Typing Functions

• Registering Objects as Drop Zones

• Example of Using the Data-Typing Database

Summary
Data typing provides an extension to the attributes of files and data beyond what is provided
by the traditional UNIX file systems. These extensions consist of attributes, such as icon
names, descriptions, and actions, that can be performed on files and data. This information
is stored in name/value pairs in the DATA_ATTRIBUTES table (or database). The desktop
uses a certain set of DATA_ATTRIBUTES , described in the following paragraphs. The
DATA_ATTRIBUTES table is extendable for future and application-specific growth, although
extending this table is not recommended because other applications may not check the
additions.

Data is matched with a specific file or data entry in a DATA_CRITERIA table. The
DATA_CRITERIA table entries are sorted in decreasing order from most specific to least
specific. For example, /usr/lib/lib* is more specific than /usr/* and would, therefore, appear
first. When a request to type a file or data is made, the table is checked in sequence to find
the best match using the information provided either from the file or from the data. When an
information and entry match is found, DATA_ATTRIBUTES_NAME is used to find the
proper DATA_ATTRIBUTES entry.

If you want your application to present data objects (either files or data buffers) to the user
in a manner consistent with the desktop, use the DtDts* API to determine how to display
the data objects and how to operate on them. For example, your application can determine
the icon that represents a data object by calling the DtDtsDataTypeToAttributeValue
function for the ICON attribute.

Library and Header Files
To use data typing, you need to link to the libDtSvc library. Actions are usually loaded with
the data-typing information. Actions require links to the libXm and libX11 libraries. The
header files are Dt/Dts.h and Dt/Dt.h .

Demo Program
A demo program containing an example of how to use the data-typing database is in
/usr/dt/examples/dtdts/datatypes/datatyping.c .

Using Data Typing

To Type Your Application Using the Database
• Create an <app>.dt database file using Create Actions (dtcreate).

See the Common Desktop Environment: Advanced User’s and System Administrator’s
Guide for information on using Create Actions.

82 CDE Programmer’s Guide

Data Criteria and Data Attributes
Data typing consists of two parts:

• A database that stores data criteria and data attributes

• A collection of routines that query the database

The attributes of data criteria, in alphabetical order, are:

• CONTENT

• DATA_ATTRIBUTES_NAME

• LINK_NAME

• LINK_PATH

• MODE

• NAME_PATTERN

• PATH_PATTERN

The following table describes the data criteria in the order in which you are most likely to
use them.

Data Criteria in Order of Most Likely Use

Criteria Description Typical Usage

DATA_ATTRIBUTES_NAME The name of this type of data. This value is a record_name
in the data attributes table.

POSTSCRIPT

NAME_PATTERN A shell pattern-matching expression describing the file
names that could match this data. The default is an empty
string, which means to ignore file patterns in matching.

*.ps

CONTENT Three values that are interpreted as the start, type, and
value fields of the magic file used by the file utility. See the
file(1) man page for more information. The default is an
empty field, which means to ignore contents in matching.
The following types are examples of what can be matched:
string, byte, short, long, and file name.

0 string !%

MODE A string of zero to four characters that match the mode field
of a stat structure. See the stat(2) man page for more
information. The first character indicates:

d matches a directory
s matches a socket
l matches a symbolic link
f matches a regular file
b matches a block file
c matches a character special file

f&!x

83CDE Programmer’s Guide

Data Criteria in Order of Most Likely Use

Criteria Typical UsageDescription

The characters listed below can be either the first or
subsequent characters:

r matches any file with any of its user, group, or
other read permission bits set.
w matches any file with any of its user, group, or
other write permission bits set.
x matches any file with any of its user, group, or
other execute or directory-search permission
bits set.

For example, the MODE field of frw matches any regular file
that is readable or writable; x matches any file with any of its
executable or search bits set.
The default is an empty field, which means to ignore the
mode in matching.

PATH_PATTERN A shell pattern-matching expression describing the absolute
path names that could match this data. The default is an
empty string, which means to ignore path patterns in
matching.

/mysubdir/

LINK_NAME See dtdtsfile(4) man page.

LINK_PATH See dtdtsfile(4) man page.

84 CDE Programmer’s Guide

 Some of the more common attributes of data types, in alphabetical order, are:

• ACTIONS

• COPY_TO_ACTION

• DESCRIPTION

• ICON

• INSTANCE_ICON

• IS_EXECUTABLE

• IS_TEXT

• LINK_TO_ACTION

• MEDIA

• MIME_TYPE

• MOVE_TO_ACTION

• NAME_TEMPLATE

• PROPERTIES

• X400_TYPE

The following table describes the data attributes in the order in which you are most likely to
use them.

Data Attributes in Order of Most Likely Use

Criteria Description Typical Usage

DESCRIPTION A human-readable description of this data. If this field is
NULL or is not included in the data attribute record, the
name of the data attribute should be used.

This is a PostScript page
description.

ICON The name of the icon to be used for this data. If this field
is NULL or is not included in the data attribute record,
the standard icon should be used. See dtdtsfile(4) for
more details on icon naming.

Dtps

PROPERTIES Keywords to indicate properties for this data. Valid
values are invisible and visible. If this field is NULL or is
not included in the data attribute record, the visible
property should be assumed. Use this if you want to
completely hide files from the user.

invisible

ACTIONS A list of actions that can be performed on this data. This
list refers to names in the action table for actions that
are to be presented to the user for objects of this type. If
this field is NULL or is not included in the data attribute
record, no action is available.

Open,Print

85CDE Programmer’s Guide

Data Attributes in Order of Most Likely Use

Criteria Typical UsageDescription

NAME_TEMPLATE Field A string used to create a new file for data of this type.
The string is passed to sprintf(3) with the file name as
the single argument. The default is empty. Contrast this
field with the NAME_PATTERN field of the data criteria
table in that the template is used to create a specific file,
such as %s.c, whereas the pattern is used to find files,
such as *.c.

%s.ps

IS_EXECUTABLE Field A string-Boolean value that tells users of this data type
that it can be executed as an application. If
IS_EXECUTABLE is set to true (see DtDtsIsTrue()) the
data is executable. If this field is NULL, is not included
in the data attribute record, or is not set to true, then the
data is considered not executable.

true

MOVE_TO_ACTION The name of an action to be invoked when an object is
moved to the current object.

FILESYSTEM_MOVE

COPY_TO_ACTION The name of an action to be invoked when an object is
copied to the current object.

FILESYSTEM_COPY

LINK_TO_ACTION The name of an action to be invoked when an object is
linked to the current object.

FILESYSTEM_LINK

IS_TEXT A string-Boolean value that tells users of this data type
that it is suitable for manipulation (viewing or editing) in
a text editor or text widget. The IS_TEXT field is set to
true (see DtDtsIsTrue()) if the data is textual in nature
and if it should be presented to the user in text form.
Criteria for making this determination include whether
data consists of human language, is generated and
maintained manually, is usefully viewable and editable
in a text editor, or contains no (or only minimal)
structuring and formatting information.

See IS_TEXT Attribute Examples
table.

If the IS_TEXT field is true, the data is eligible to be
displayed directly by an application. That is, the
application can load the data directly into a text editing
widget, such as XmText.

MEDIA Field The names in the MEDIA name space describe the
form of the data itself. MEDIA names are used as
ICCCM selection targets, named in the MEDIA field of
the data-type records, and used in the type parameter
of ToolTalk Media Exchange messages.

The MEDIA name space is a subset of the name space
of selection target atoms as defined by the ICCCM. All
selection targets that specify a data format are valid
MEDIA names, and all valid MEDIA names can be used
directly as selection targets. Some selection targets
specify an attribute of the selection (for example,
LIST_LENGTH) or a side effect to occur (for example,
DELETE), rather than a data format. These attribute
selection targets are not part of the MEDIA name space.

POSTSCRIPT

86 CDE Programmer’s Guide

Data Attributes in Order of Most Likely Use

Criteria Typical UsageDescription

MIME_TYPE MEDIA is the desktop internal, unique name for data
types. However, other external naming authorities have
also established name spaces. Multipurpose Internet
Message Extensions (MIME), as described in the
referenced MIME RFC, is one of those external
registries, and is the standard-type name space for the
desktop mailer.

application/postscript

X400_TYPE X.400 types are similar in structure to the MEDIA type,
but are formatted using different rules and have different
naming authorities.

1 2 840 113556 3 2 850

INSTANCE_ICON Field The name of the icon to be used for this instance of
data, typically a value such as %name%.icon [Bug in
dtdtsfile(4) man page, too.] If INSTANCE_ICON is set,
the application should use it instead of ICON. If this field
is NULL or is not included in the data attribute record,
the ICON field should be used.

/myicondir/%name%.bm

DATA_HOST The DATA_HOST attribute is not a field that can be
added to the data attributes table in the *.dt file, but it
may be returned to an application reading attributes
from the table. The data-typing service adds this
attribute automatically to indicate the host system from
which the data type was loaded. If this field is NULL or
is not included in the data attribute record, the data type
was loaded from the local system.

The IS_TEXT field differs from the text attribute of the MIME_TYPE field, which is the MIME
content type, as described in the referenced MIME_ RFC. The MIME content type
determines whether the data consists of textual characters or byte values. If the data
consists of textual characters, and the data is labeled as text/*, the IS_TEXT field
determines whether it is appropriate for the data to be presented to users in textual form.

The following table shows some examples of IS_TEXT usage with different MIME_TYPE
attributes.

IS_TEXT Attribute Examples

Description and MIME_TYPE Attribute IS_TEXT Value

Human language encoded in ASCII with MIME_TYPE text/plain IS_TEXT true

Human language encoded in E*UC, JIS, Unicode, or an ISO
Latin charset with MIME_TYPE text/plain; charset=XXX

IS_TEXT true

CalendarAppointmentAttrs with a MIME_TYPE text/plain IS_TEXT false

HyperText Markup Language (HTML) with a MIME_TYPE
text/html

IS_TEXT true

PostScript with MIME_TYPE application/postscript IS_TEXT false

C program source (C_SRC) with MIME_TYPE text/plain IS_TEXT true

87CDE Programmer’s Guide

IS_TEXT Attribute Examples

Description and MIME_TYPE Attribute IS_TEXT Value

Bitmaps and pixmaps (XBM and XPM) with MIME_TYPE
text/plain

IS_TEXT false

Project or module files for the desktop application building
service with MIME_TYPE text/plain

IS_TEXT false

Shell scripts with MIME_TYPE text/plain IS_TEXT false

Encoded text produced by uuencode(1) with MIME_TYPE
text/plain

IS_TEXT false

*MIME_TYPE text/plain IS_TEXT false

See the dtdtsfile(4) man page for more information about data-type attributes.

Data-Typing Functions
To look up an attribute for a data object, you must first determine the type of the object and
then ask for the appropriate attribute value for that type. The functions that you can use to
query the database for data information are shown in the following table. Each of these
functions has a man page in section (3). Refer to the appropriate man page for more
information.

Data-Typing Database Query Functions

Function Description

DtDtsBufferToAttributeList Finds the list of data attributes for a given
buffer.

DtDtsBufferToAttributeValue Finds the data attribute for a given buffer.

DtDtsBufferToDataType Finds the data-type name for a given
buffer.

DtDtsDataToDataType Finds the data type for a given set of data.

DtDtsDataTypeIsAction Returns the resulting saved data type for
the directory.

DtDtsDataTypeNames Finds a complete list of available data
types.

DtDtsDataTypeToAttributeList Finds the attribute list for a given data
attribute name.

DtDtsDataTypeToAttributeValue Finds the attribute value for a given data
attribute name.

DtDtsFileToAttributeList Finds the list of data attributes for a given
file.

DtDtsFileToAttributeValue Finds the data attribute value for a given
file.

DtDtsFileToDataType Finds the data type for a given file.

88 CDE Programmer’s Guide

Data-Typing Database Query Functions

Function Description

DtDtsFindAttribute Finds the list of data types where attribute
name matches value.

DtDtsFreeAttributeList Frees the memory of the given attribute list.

DtDtsFreeAttributeValue Frees the memory of the given attribute
value.

DtDtsFreeDataType Frees the application memory for the given
data-type name.

DtDtsFreeDataTypeNames Releases memory created with the
DtDtsDataTypeNames or
DtDtsFindAttribute call.

DtDtsIsTrue A convenience function that converts a
string to a Boolean.

DtDtsRelease Unloads the data-typing database
information, generally in preparation for a
reload.

DtDtsSetDataType Sets the data type for the specified
directory.

DtsLoadDataTypes Initializes and loads the database fields for
the data-typing functions. Use instead of
DtDbLoad when you do not need to use
actions or action types and you need extra
performance. Use DtDbLoad when you
need to use actions.

You can type data and retrieve attributes in one of three ways: simple, intermediate, or
advanced.

Simple Data Typing
The simplest way to type data is to use the following functions:

• DtDtsFileToAttributeList

• DtDtsFileToAttributeValue

When you use these functions, a file is typed and a single attribute, or the entire list, is
retrieved. System calls are made, data is typed, and the attribute is retrieved. These
functions call the intermediate data-typing functions.

• DtDtsBufferToAttributeList

• DtDtsBufferToAttributeValue

Buffers are assumed to have a mode that matches regular files that have read/write
permissions. See “Advanced Data Typing” to type read-only buffers.

Intermediate Data Typing
When you type data and retrieve attributes, the data-typing part of the process is the most
expensive in terms of performance. You can type data in a second way that improves
performance by separating the data-typing and attribute-retrieval functions. Use the
following functions for intermediate data typing:

89CDE Programmer’s Guide

• DtDtsBufferToDataType

• DtDtsFileToDataType

• DtDtsDataTypeToAttributeList

• DtDtsDataTypeToAttributeValue

Use these functions if your application queries for more than a single attribute value. When
you use these functions, an object is typed and then that type is used to retrieve one or
more attributes from the attribute list.

Using the intermediate data-typing functions is the recommended way to type data and
retrieve attributes. These functions call the advanced data-typing functions and make the
same assumptions about buffers as the simpler data typing.

Advanced Data Typing
Advanced data typing separates system calls, data typing, and attribute retrieval even
further. Advanced data typing is more complicated to code because it uses data from
existing system calls, which are initialized in advance and are not included as part of the
data-typing function. Use the following function for advanced data typing:

DtDtsDataToDataType

To type a read-only buffer, a stat structure should be passed that has the st_mode field set
to S_IFREG | S_IROTH | S_IRGRP | S_IRUSR.

Data Types That Are Actions (DtDtsDataTypeIsAction)
For every action in a database a synthetic data type is generated when a database is
loaded that allows actions to be typed. These data types may have two additional attributes:

• IS_ACTION is a string-Boolean value that tells users of this data type that it is an action.
If IS_ACTION is set to the string true (independent of case), the data is an action.

• IS_SYNTHETIC is a string-Boolean value that tells users of this data type that it was
generated from an entry in the ACTION table. If IS_SYNTHETIC is set to true , the data
type was generated.

Registering Objects as Drop Zones
If your application defines icons for data objects, you may choose to support those icons as
drop zones. If so, you need to query the MOVE_TO_ACTION, COPY_TO_ACTION, and
LINK_TO_ACTION attributes to determine the drop behavior for those objects. Objects
should support drop operations (for example, copy, move, and link) only if the corresponding
attribute value is not NULL. If all three attributes have NULL values, the object should not
be registered as a drop site.

When you write your desktop application, follow these steps to ensure that it provides all the
drag and drop behavior that you intend:

1.. In your application, decide if you need to define any data types.

2.. For each data type you define, decide whether you want the associated object to be a
drop zone.

3.. For each object that you want to register as a drop zone, decide which
operations—move, copy, or link—you want to define.

4.. For the drop operations that are valid for each object, define the appropriate drop actions
(set the MOVE_TO_ACTION, COPY_TO_ACTION, and LINK_TO_ACTION attributes).

90 CDE Programmer’s Guide

If you want an object of a certain type in your application to be a drop zone, you need to
decide which drop operations to define for the object: move, copy, link, or some combination
of the three.

Every desktop data object should have three associated drop attributes:

• MOVE_TO_ACTION

• COPY_TO_ACTION

• LINK_TO_ACTION

If you want to define a move operation for the object, set the MOVE_TO_ACTION attribute
to reflect the appropriate move behavior. If you want to define a copy operation, set the
COPY_TO_ACTION attribute. If you want to define a link operation, set the
LINK_TO_ACTION attribute.

Whenever you set at least one of these attributes for an object with a defined data type,
your application registers that object as a drop zone. The application sets the Motif
resource XmNdropSiteOperations to the appropriate operation (XmDROP_MOVE,
XmDROP_COPY, or XmDROP_LINK) corresponding to the drop attribute you have defined.

Using these three attribues, you can change defaults or define new move, copy, and link
behavior for your data type.

Note: If, for an object with an associated data type, you do not define values for any of
these three drop attributes, that object is not registered as a drop zone.

When a user drags an object to a drop zone, your application determines which gesture
(that is, which drag operation) was used to make the drop. Based on the drag operation and
the drop zone’s data type, the application retrieves a drop attribute from the data–types
database. It then calls DtActionInvoke, using the following two rules to determine its
parameters:

1.. If the user drops objects A and B onto object C, call DtActionInvoke with these
parameters:

DtActionInvode(drop_action_name, C, A, B)

2.. The previous rule has one exception: If object C is an action, the parameter list does not
include C:

DtActionInvode(drop_action_name, A, B)

where drop_action_name is one of MOVE_TO_ACTION, COPY_TO_ACTION, or
LINK_TO_ACTION.

The File Manager, along with its directory and folder objects, exemplifies how the desktop
uses the move, copy, and link drop attributes. A user can drag and drop objects (files) to
directory folders. File Manager defines MOVE_TO_ACTION, COPY_TO_ACTION, and
LINK_TO_ACTION actions for folder objects. These actions perform the appropriate file
system move, copy, and link system functions. If you want, you can redefine the attributes
to perform different move, copy, and link functions.

See /usr/dt/appconfig/types/C/dtfile.dt for an example of how to define the
MOVE_TO_ACTION, COPY_TO_ACTION, and LINK_TO_ACTION attributes. See
“Integrating with Drag and Drop,” for information about how to use drag and drop.

Example of Drop Types
Motif determines the type of a drop (move, copy, or link) using the formula shown in the
following table:

91CDE Programmer’s Guide

Types of Drags

User Action Result

Drop + Shift Move drop

Drop + Ctrl Copy drop

Drop + Shift + Ctrl Link drop

The following drop defaults to the first type that a drop site is registered for using the
following precedence:

1.. Move

2.. Copy

3.. Link

For example, if a drop site is registered for Move and Link drops and a user dropped an
object on this site without using a modifier key, Motif defaults to a Move drop. If a drop site
is registered for Copy and Link drops, Motif defaults to a Copy drop.

Note: Actual Motif terminology for modifiers keys: is
<Shift>Btransfer = MOVE
<Ctrl>BTransfer = COPY
<Shift><Ctrl>BTransfer = Link
You might want to use this terminology instead.

Example of Using File Manager Move, Copy, Link Feature
When File Manager creates a view of a file, it queries the Types database for three
attributes for each file:

• MOVE_TO_ACTION

• COPY_TO_ACTION

• LINK_TO_ACTION

These attributes tell the File Manager what action to take for a move drop, a copy drop, and
a link drop respectively. All objects that have values for at least one of these attributes are
registered as drop sites. The objects are registered to receive only those drops that have a
corresponding action in the Types database.

In the following example, all executable objects are registered as drop sites that receive
copy drops only. When a user drops an object or objects on an executable using:

• No modifier keys, or

• The Control modifier key

the drop is accepted. A File Manager callback is triggered. The File Manager callback starts
the Execute action. All dropped files are sent as input to the Execute action.

92 CDE Programmer’s Guide

DATA_ATTRIBUTES EXECUTABLE
{
 ACTIONS Run, Open
 ICON Dtexec
 IS_EXECUTABLE true
 COPY_TO_ACTION Execute
 MIME_TYPE application/octet–stream
 DESCRIPTION This file contains a shell script or a \
 compiled program that can be executed. \
 Its data type is named EXECUTABLE.
}

In the following example, all editor objects are registered as drop sizes that receive move
and copy drops. When a user drops an object or objects on an editor object using:

• No modifier keys, or

• The Shift modifier key, or

• The Control modifier key

the drop is accepted. A File Manager callback is triggered. For an unmodified drop or a Shift
modified drop, File Manager starts the Move action, Edit_Write. This action enables the user
to edit the dropped files and save the results. For a Control modified drop, File Manager
starts the Copy action, Edit_ReadOnly. This action enables the user to edit the dropped files
but does no enable the user to save the results.

DATA_ATTRIBUTES EDITOR
{
 .
 .
 .
 MOVE_TO_ACTION Edit_Write
 COPY_TO_ACTION Edit_ReadOnly
}

Example of Using the Data-Typing Database
This section contains example code of how to use data typing. You can find this example
code in /usr/dt/examples/dtdts/datatyping.c. The example code displays the data type, icon
name, and supported actions for each file passed to it. You can then use the dtaction client
to run a supported action on the file. The usage for datatyping is:

datatyping file1 [file2 ...]

#include <Xm/Form.h>

#include <Xm/Text.h>

#include <Dt/Dts.h>

#define ApplicationClass ”DtDatatyping”

static Widget text;

static void DisplayTypeInfo(int, char**);

int main(int argc, char **argv)

{

 XtAppContext appContext;

93CDE Programmer’s Guide

 Widget toplevel, form;

 Arg args[20];

 int n;

 toplevel = XtAppInitialize(&appContext, ApplicationClass,

 NULL, 0, argc, argv, NULL, NULL, 0);

 if (argc == 1) {

 printf(”%s: No files specified.\n”, argv[0]);

 exit(1);

 }

 form = XmCreateForm(toplevel, ”form”, NULL, 0);

 XtManageChild(form);

 n = 0;

 XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;

 XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;

 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;

 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;

 XtSetArg(args[n], XmNeditable, False); n++;

 XtSetArg(args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;

 XtSetArg(args[n], XmNrows, 25); n++;

 XtSetArg(args[n], XmNcolumns, 90); n++;

 text = XmCreateScrolledText(form, ”text”, args, n);

 XtManageChild(text);

 XtRealizeWidget(toplevel);

 if (DtAppInitialize(appContext, XtDisplay(toplevel),

 toplevel, rgv[0], ApplicationClass) == False) {

 printf(”%s: Couldn’t initialize Dt\n”, argv[0]);

 exit(1);

 }

 DtDbLoad();

 DisplayTypeInfo(argc, argv);

 XtAppMainLoop(appContext);

}

94 CDE Programmer’s Guide

static void DisplayTypeInfo(int argc, char **argv)

{

 char *file;

 char *datatype;

 char *icon;

 char *actions;

 char str[100];

 int i;

 sprintf(str, ”%-30s\t%-10s\t%-8s\t%-20s\n”,

 ”File”,

 ”DataType”,

 ”Icon”,

 ”Actions”);

 XmTextInsert(text, XmTextGetLastPosition(text), str);

 sprintf(str, ”%-30s\t%-10s\t%-8s\t%-20s\n”,

 ”–––––––––––––––––––”,

 ”––––––––”,

 ”––––”,

 ”–––––––”);

 XmTextInsert(text, XmTextGetLastPosition(text), str);

 for(i=1; i < argc; i++) {

 char *file = argv[i];

 /* find out the Dts data type */

 datatype = DtDtsFileToDataType(file);

 if(datatype) {

 /* find the icon attribute for the data type */

 icon = DtDtsDataTypeToAttributeValue(datatype,
 DtDTS_DA_ICON, file);

 }

 /* Directly find the action attribute for a file */

 actions = DtDtsFileToAttributeValue(file,

 DtDTS_DA_ACTION_LIST);

95CDE Programmer’s Guide

 sprintf(str, ”%–30s\t%–10s\t%–8s\t%s\n”,

 file,

 datatype?datatype:”unknown”,

 icon?icon:”unknown”,

 actions?actions:”unknown”);

 XmTextInsert(text, XmTextGetLastPosition(text), str);

 /* Free the space allocated by Dts */

 DtDtsFreeAttributeValue(icon);

 DtDtsFreeAttributeValue(actions);

 DtDtsFreeDataType(datatype);

 }

96 CDE Programmer’s Guide

Integrating with Calendar
The Calendar application program interface (API) provides a programmatic way to access
and manage calendar data in a networked environment. The API supports inserting,
deleting, and modifying of entries as well as browse and find capabilities. It also supports
calendar administration functions.

The Calendar API is an implementation of the X.400 Application Programming Interface
Association’s (XAPIA) Calendaring and Scheduling API (CSA API). CSA API defines a set
of high-level functions so that applications that are calendar enabled can access the varied
features of the calendaring and scheduling service. For more information about the latest
XAPIA Specification, contact the X.400 API Association, 800 El Camino Real, Mountain
View, California 94043.

This section describes the Calendar API in these sections:

• Library and Header Files

• Demo Program

• Using the Calendar API

• Overview of the CSA API

• Functional Architecture

• Data Structures

• Calendar Attributes

• Entry Attributes

• General Information about Functions

• Administration Functions

• Calendar Management Functions

• Entry Management Functions

Library and Header Files
To use the Calendar API, you need to link to the libcsa library. The header file is csa/csa.h .

Demo Program
A demo program containing an example of how to use the Calendar API is in
/usr/dt/examples/dtcalendar.

Using the Calendar API

How to Integrate with Calendar
The Calendar API provides a way to access and manage calendar data in a networked
environment.

1.. Include csa/csa.h in your application.

2.. Use the calendar API to incorporate the calendar operations you want in your
application.

3.. Link with libcsa.

97CDE Programmer’s Guide

Overview of the CSA API
The CSA interface enables a common interface to a calendaring and scheduling service.
For each CSA implementation, the view and capabilities presented by CSA must be
mapped to the view and capabilities of the underlying calendaring service. The interface is
designed to be independent of the actual calendaring and scheduling implementation. The
interface is also designed to be independent of the operating system and underlying
hardware used by the calendaring service.

The number of function calls provided is minimal. A single set of functions manage multiple
types of calendar entries.

C Naming Conventions
The identifier for an element of the C interface is derived from the generic name of the
element and its associated data type, as specified in the following table. The generic name
is prefixed with the character string in the second column of the table; alphabetic characters
are converted to the case in the third column.

Derivation of C Naming Conventions

Element Type Prefix Case

Data type CSA_ Lower

Data value CSA_ Upper

Function csa_ Lower

Function argument none Lower

Function result none Lower

Constant CSA_ Upper

Error CSA_E_ Upper

Macro CSA_ Upper

Reserved for extension sets CSA_XS_ Any

Reserved for extensions CSA_X_ Any

Reserved for use by implementors CSAP Any

Reserved for vendor function extensions csa_x Lower

Structure Tag CSA_TAG_ Upper

Elements with the prefix CSAP (any case) are reserved for internal proprietary use by
implementors of the CSA service. They are not intended for direct use by programs written
using the CSA interface.

The prefixes CSA_XS_, CSA_X_ (in either uppercase or lowercase), and csa_x are reserved
for extensions of the interface by vendors or groups. The specification defines these
interface extensions as extensions to the base set of functions.

For constant data values, an additional string is usually appended to CSA_ to indicate the
data structure or function for the constant data value.

98 CDE Programmer’s Guide

Functional Architecture
This section describes the functional architecture of services supporting the CSA API. It
provides an abstract implementation model, an abstract data model, and a functional
overview.

Implementation Model
The abstract implementation model is provided as a reference aid to help you understand
the scope of the CSA API.

The CSA interface is defined between a calendar-enabled application and a calendaring
service. All functions in this interface are designed to be independent of the calendaring
service; however, the API does allow protocol-specific extensions to the common functions
to be invoked through the use of extensions. See “Extensions” for more information. The
relationship of the CSA interface to a calendar-enabled application and the calendar service
is shown the following figure.

Calendar-Enabled Application

Calendaring Service

Calendaring and Scheduling API

Positioning of the Calendaring and Scheduling API

The model of the CSA interface can be divided into three components: administration,
calendar management, and entry management. These components are shown in the
following figure.

Calendar-Enabled Application

Calendaring and Scheduling API

Calendaring
Service

Entry
 Management

Calendar
ManagementAdministration

Figure 1. Components of the Calendaring and Scheduling API

Access to the calendaring service is established through a calendaring session. The session
provides for a valid connection to the calendaring service and assists in ensuring the
integrity of the calendaring information maintained by the service. A calendar-enabled
application logs on to an individual calendar within the calendaring service to establish a

99CDE Programmer’s Guide

valid session or connection. The session is terminated by the calendar-enabled application
logging off from the calendar.

The calendaring service maintains one or more calendars. The calendar service provides
some level of administration support for these calendars. A calendar-enabled application
might access a list of the calendars maintained by a particular calendar service. In addition,
the calendar service might provide support for the archive and restore of calendar
information into some implementation-specific, persistent format. Where a calendar service
provides support for maintaining more than one calendar, support functions are defined for
creating and deleting calendars. In addition, functions are provided to support administering
the characteristics of the calendar.

The majority of the functions within the CSA interface manage individual calendar entries.
Calendar entries may be either events, to dos, or memos. Entries can be added, deleted,
updated, and read from a particular calendar. A calendar-enabled application can also add
reminders to calendar entries.

Data Model
The CSA interface is an access method to a conceptual back-end store of calendaring
information that is maintained by a calendaring service. A common data model is helpful in
visualizing the components of the calendaring information maintained by a calendaring
service.

Calendar Entities
The data model is based on the concept of a calendar entity. The calendar is represented
by a named collection of administrative calendar attributes and calendar entries. A calendar
is owned by an individual user. The user could represent a person, a group of people, or a
resource.

The calendar attributes are a set of named values that may represent common,
implementation-specific, or application-specific administrative characteristics about the
calendar. For example, time zone, name, owner, and access rights to the calendar can be
specified in individual calendar attributes.

The calendar entries are the primary components of a calendar. The three classes of
calendar entries follow:

• Events

• To Dos

• Memos

Calendar entries are represented by a uniquely named collection of entry attributes. The
entry attributes are a set of named values that represent common, implementation-specific,
or application-specific characteristics of the calendar entry. For example, an event might
contain a start and end date and time, a description, and a subtype. A to do might contain
the date it was created, the due date, a priority, and a status. A memo might contain the
date it was created and a text content or description.

The calendar attributes and entry attributes consist of a name, type, and value tuple.
Common attributes defined by the specification can be extended. Implementations can
define implementation-specific attributes. In addition, some implementations may provide
the capability for applications to define application-specific attributes. The CDE
implementation supports application defined attributes.

Access Rights
The accessibility of a calendar to an individual user can be controlled by the access rights
given that user. Access rights are paired with a calendar user. CSA allows users to be an

100 CDE Programmer’s Guide

individual, group, or resource. The CDE implementation only supports individual users. The
access rights are maintained in an access list. The access list is a particular calendar
attribute. The access rights are individually controlled and can be accumulated to define a
range of accessibility of a user to a calendar and its entries. The access rights can also be
specified in terms of the following access roles:

• The owner of a calendar

• The organizer of a particular entry within the calendar

• The sponsor of a particular entry within the calendar

The owner role enables the user to do anything to the calendar or calendar entries that the
owner of the calendar can do, including deleting the calendar; viewing, inserting, and
changing calendar attributes; adding and deleting calendar entries; and viewing, inserting,
and changing entry attributes.

The organizer role enables the user to delete the entry or view and change entry attributes
of those calendar entries for which the user is specified as the organizer. The organizer
defaults to the calendar user who created the entry.

The sponsor role enables the user to delete the entry or view and change entry attributes for
those calendar entries for which the user is specified as the sponsor. The sponsor is the
calendar user who effectively owns the calendar entry.

In addition to these roles, an access right can be set to limit access to free time searches;
view, insert, or change calendar attributes; or view, insert or change entries, depending on
whether they are classified as public, confidential, or private. The entry classification acts as
a secondary filter on accessibility.

Functional Overview
The CSA interface supports three principle types of tasks:

• Administration

• Calendar management

• Entry management

Administration
Most of the CSA function calls occur within a calendar session. The calendar session is a
logical connection between the calendar-enabled application and a particular calendar
maintained by the calendaring service. A session is established with a call to the csa_logon()
function and terminated with a call to the csa_logoff() function. The context of the session is
represented by a session handle. This handle provides a token in each of the CSA functions
to distinguish one calendar session from another. The csa_logon() function also
authenticates the user to the calendaring service and sets session attributes. Currently,
there is no support for sharing calendar sessions among applications.

The csa_list_calendars() function is used to list the names of the calendars managed by a
particular calendar service.

The csa_query_configuration() function is used to list information about the current calendar
service configuration. This information can include the character set, line terminator
characters for text strings, default service name, default authorization user identifier for the
specified calendar service, an indicator of whether a password is needed to authenticate the
user identifier, an indicator of whether the common extensions for user interface dialogs is
supported, and the CSA specification supported by the implementation.

The CSA implementation provides support for managing the memory for calendar objects
and attributes that are returned by the service. The csa_free() function is used to free up this

101CDE Programmer’s Guide

memory after it is no longer needed. It is the responsibility of the application to free up the
memory allocated and managed by the calendar service.

Calendar Management
The CSA interface provides several calendar management functions. The CDE
implementation supports multiple calendars per calendar service; the calendar-enabled
application can add or delete calendars. The csa_delete_calendar() function is used to delete
calendars. The csa_add_calendar() function is used to add new calendars to the service.

The application can also list, read, and update calendar attributes using the
csa_list_calendar_attributes() , csa_read_calendar_attributes() , and
csa_update_calendar_attributes() functions. The application can register callback functions
for receiving notification of a calendar logon, calendar deletion, update of calendar
attributes, addition of a new calendar entry, deletion of a calendar entry, and update of a
calendar entry. The callback function is only registered for the duration of the calendar
session. In any case, this information may be invaluable for some calendar administration
applications.

Entry Management
The CSA interface has a robust set of functions for managing calendar entries. The context
of a calendar entry in a calendar session is maintained by the entry handle. This handle
provides a token in the CSA functions to distinguish one calendar entry from another. The
entry handle is returned by the csa_add_entry() and csa_list_entries() functions. The entry
handle is valid for the duration of the calendar session or until the entry is deleted or
updated. The entry handle becomes invalid when it is freed by a call to csa_free() .

The csa_add_entry() function is used to add new entries to a calendar. The
csa_delete_entry() function is used to delete an entry in a calendar. The csa_list_entries()
function is used to enumerate the calendar entries that match a particular set of entry
attribute criteria. The csa_read_entry_attributes() function is used to get either all or a set of
entry attribute values associated with a particular calendar entry.

To add an entry to a calendar, a calendar-enabled application must first establish a session
with the calendaring service using the csa_logon() function. Then the application invokes the
csa_add_entry() function to specify the new entry. The calendar-enabled application is
responsible for composing the attributes used in the csa_add_entry() function. The session
is terminated using the csa_logoff() function.

The entry attributes in an individual calendar entry can be enumerated with the
csa_list_entry_attributes() function. The values of one or more attributes can be read with
the csa_ read_entry_attributes() function. Individual entry attributes can be modified with the
csa_update_entry_attributes() function.

Memory allocated by the CSA implementation for retrieved calendar information is released
by passing the associated memory pointers to the csa_free() function.

Some calendar entries are associated with a recurring activity. The
csa_list_entry_sequence() function can be used to enumerate the other recurring calendar
entries. This function returns a list of entry handles for the recurring entries.

The CDE calendar server provides support for alarms or reminders to be associated with
calendar entries. Reminders can take the form of audio reminders from the terminal
speaker, flashing reminders presented on the terminal screen, mail reminders sent to the
calendar user, or pop-up reminders presented on the terminal screen. The calendar service
manages the reminders, but it is the responsibility of the calendar application to retrieve the
reminder information and act on it. The csa_read_next_reminder() function is used to read
the information about the next scheduled type of reminder.

102 CDE Programmer’s Guide

Extensions
The major data structures and functions defined in the CSA specification can be extended
methodically through extensions. Extensions are used to add additional fields to data
structures and additional parameters to a function call. A standard generic data structure
has been defined for these extensions. It consists of an item code, identifying the extension;
an item data, holding the length of extension data or the data itself; an item reference,
pointing to where the extension value is stored or NULL if there is no related item storage;
and flags for the extension.

Extensions that are additional parameters to a function call may be input or output. That is,
the extension may be passed as input parameters from the application to the CSA service
or passed as output parameters from CSA service to the application. If an extension is an
input parameter, the application allocates memory for the extension structure and any other
structures associated with the extension. If an extension is an output parameter, the CSA
service allocates the storage for the extension result, if necessary. In this case, the
application must free the allocated storage with a csa_free() call.

If an extension that is not supported is requested, CSA_E_UNSUPPORTED_FUNCTION_EXT
is returned.

Data Structures
The following table lists the CSA data structures. See the relevant man page for complete
information.

CSA Data Structures

Data Type Name Description

Access List List of access rights structures for calendar users

Attendee List List of attendee structures

Attribute Attribute structure

Attribute Reference Attribute reference structure

Boolean A value that indicates logical true or false

Buffer Pointer to a data item

Calendar User Calendar user structure

Callback Data
Structures

Callback data structures

Date and Time Date and time designation

Date and Time List List of date and time values

Date and Time Range Range of date and time

Entry Handle Handle for the calendar entry

Enumerated Data type containing a value from an enumeration

Extension Extension structure

Flags Container for bit masks

Free Time Free time structure

103CDE Programmer’s Guide

CSA Data Structures

Data Type Name Description

Opaque Data Opaque data structure

Reminder Reminder structure

Reminder Reference Reminder reference structure

Return Code Return value indicating either that a function succeeded
or why it failed

Service Reference Service reference structure

Session Handle Handle for the calendar session

String Character string pointer

Time Duration Time duration

Calendar Attributes
The following table lists the calendar attributes supported in the CDE implementation. See
the relevant man page for more information. The list of calendar attributes is extensible
through the extended naming convention.

CSA Calendar Attributes

Attribute Name Description Read-Only

Access List Access list attribute No

Calendar Name Calendar name attribute Yes

Calendar Owner Calendar owner attribute Yes

Calendar Size Calendar size attribute (computed) Yes

Character Set Character set attribute No

Date Created Calendar creation date attribute Yes

Number Entries Number of entries attribute
(computed)

Yes

Product Identifier Product identifier attribute Yes

Time Zone Time zone attribute No

Version Product version attribute Yes

The following section provides additional information about the calendar attributes listed in
the CSA Calendar Attributes table.

• Access List

When a new calendar is added and if no access list is specified, the default access list
contains a special user world and its corresponding access right is
CSA_VIEW_PUBLIC_ENTRIES , which provides access right to list and read calendar entries
with public classification. The special user world includes all users.

104 CDE Programmer’s Guide

• Calendar Name

The calendar name is specified when the calendar is created using csa_add_calendar(). It
becomes read-only and cannot be changed after the calendar is created.

• Calendar Owner

The calendar owner is set to the user who is running the application that calls
csa_add_calendar() to create the calendar. It becomes read-only and cannot be changed
after the calendar is created.

• Character Set

The CDE common locale name should be used to set this value.

CDE Calendar Attributes
The followings are CDE-defined calendar attributes:

• Server Version

This read-only attribute shows the version number of the server managing the calendar.
This attribute is a CSA_VALUE_UINT32 type of attribute.

• Data Version

This read-only attribute shows the data version of the calendar. This attribute is a
CSA_VALUE_UINT32 type of attribute.

Entry Attributes
The following table lists the entry attributes supported in the CDE implementation. See the
relevant man page for more information. The list of entry attributes is extensible through the
extended naming convention.

CSA Entry Attributes

Attribute Name Description Read-Only

Audio Reminder Audio reminder attribute No

Classification Classification attribute No

Date Completed Date completed attribute No

Date Created Entry creation date attribute Yes

Description Description attribute No

Due Date Due date attribute No

End Date End date attribute No

Exception Dates Exception dates attribute No

Flashing Reminder Flashing reminder attribute No

Last Update Last update attribute Yes

Mail Reminder Mail reminder attribute No

Number
Recurrences

Number of recurrences
attribute (computed)

Yes

105CDE Programmer’s Guide

CSA Entry Attributes

Attribute Name Read-OnlyDescription

Organizer Organizer attribute Yes

Popup Reminder Pop-up reminder attribute No

Priority Priority attribute No

Recurrence Rule Recurrence rule attribute No

Reference Identifier Reference identifier attribute Yes

Sponsor Sponsor attribute No

Start Date Start date attribute No

Status Status attribute No

Subtype Subtype attribute No

Summary Summary attribute No

Transparency Time transparency or
blocking attribute

No

Type Type attribute Yes

The following section provides additional information about the entry attributes listed in the
CSA Entry Attributes table.

• Organizer

The organizer of an entry is set to the user who is running the application that calls
csa_add_entry() to add the entry to the calendar. It becomes read-only and cannot be
changed after the entry is added.

• Reference Identifier

The reference identifier of an entry is a string that contains a unique identifier of the entry
within the calendar as well as the name and location of the calendar. The format is
n:calendar @location where n is a number that uniquely identifies the entry within the
calendar, calendar is the name of the calendar, and location is the name of the machine
where the calendar is stored.

• Status

The CDE implementation defines the following additional status values:

CSA_X_DT_STATUS_ACTIVE

CSA_X_DT_STATUS_DELETE_PENDING

CSA_X_DT_STATUS_ADD_PENDING

CSA_X_DT_STATUS_COMMITTED

CSA_X_DT_STATUS_CANCELLED

• Type

The value becomes read-only and cannot be changed after the entry is added. The CDE
implementation defines the following additional type value:

106 CDE Programmer’s Guide

CSA_X_DT_TYPE_OTHER

CDE Entry Attributes
The following are CDE-defined entry attributes:

• Show Time

The value of this attribute indicates whether the start and end time of the entry should be
shown to the user. It can be modified using csa_update_entry_attributes() . This attribute is a
CSA_VALUE_SINT32 type of attribute.

• Repeat Type

The frequency of recurrence of the entry, which indicates how often the entry repeats. This
is a read-only attribute and is derived from the entry attribute Recurrence Rule .

This attribute is a CSA_VALUE_UINT32 type of attribute.

The following values are defined:

CSA_X_DT_REPEAT_ONETIME

CSA_X_DT_REPEAT_DAILY

CSA_X_DT_REPEAT_WEEKLY

CSA_X_DT_REPEAT_BIWEEKLY

CSA_X_DT_REPEAT_MONTHLY_BY_WEEKDAY

CSA_X_DT_REPEAT_MONTHLY_BY_DATE

CSA_X_DT_REPEAT_YEARLY

CSA_X_DT_REPEAT_EVERY_NDAY

CSA_X_DT_REPEAT_EVERY_NWEEK

CSA_X_DT_REPEAT_EVERY_NMONTH

CSA_X_DT_REPEAT_MON_TO_FRI

CSA_X_DT_REPEAT_MONWEDFRI

CSA_X_DT_REPEAT_TUETHUR

CSA_X_DT_REPEAT_WEEKDAYCOMBO

CSA_X_DT_REPEAT_OTHER

CSA_X_DT_REPEAT_OTHER_WEEKLY

CSA_X_DT_REPEAT_OTHER_MONTHLY

CSA_X_DT_REPEAT_OTHER_YEARLY

• Repeat Times

This attribute shows the number of times an entry repeats. This is a read-only attribute and
is derived from the entry attribute Recurrence Rule . This attribute is a CSA_VALUE_UINT32
type of attribute.

• Repeat Interval

This attribute tells how often an entry with repeat types CSA_X_DT_REPEAT_EVERY_NDAY ,

CSA_X_DT_REPEAT_EVERY_NWEEK , or CSA_X_DT_REPEAT_EVERY_NMONTH repeats. This
is a read-only attribute, and is derived from the entry attribute Recurrence Rule. For
example, if the value of this attribute is 3 and the repeat type is

107CDE Programmer’s Guide

CSA_X_DT_REPEAT_EVERY_NWEEK , the entry repeats every three weeks. This attribute is
a CSA_VALUE_UINT32 type of attribute.

• Repeat Occurrence Number

If the entry’s repeat type is CSA_X_DT_REPEAT_MONTHLY_BY_WEEKDAY , this attribute tells
in which week the entry repeats. This is a read-only attribute and is derived from the entry
attribute Recurrence Rule . This attribute is a CSA_VALUE_SINT32 type of attribute.

• Sequence End Date

This entry attribute shows the end date of the sequence. This is a read-only attribute and is
derived from the entry attribute Recurrence Rule . This attribute is a CSA_VALUE_DATE_TIME
type of attribute.

General Information about Functions
The following general information applies to all functions:

• Character set restriction

The calendar attribute, CSA_CAL_ATTR_CHARACTER_SET , is used to store the locale
information of the calendar.

Note: All data except textual description passed in the library must be in ASCII format and
the library supports single-byte as well as multibyte character strings.

• Type checking for attribute values is provided for the predefined attributes only.

• When a function takes both a session handle and an entry handle, the session handle is
always ignored in the CDE implementation.

• Entry attributes CSA_ENTRY_ATTR_RECURRENCE_RULE and
CSA_ENTRY_ATTR_EXCEPTION_DATES are used to specify recurrence information of a
calendar entry. Information in the CSA_ENTRY_ATTR_RECURRENCE_RULE attribute can
be queried using the following attributes: CSA_X_DT_ENTRY_ATTR_REPEAT_TYPE ,
CSA_X_DT_ENTRY_ATTR_REPEAT_TIMES , CSA_X_DT_ENTRY_ATTR_REPEAT_INTERVAL ,
CSA_X_DT_ENTRY_ATTR_REPEAT_OCCURRENCE_NUM , and
CSA_X_DT_ENTRY_ATTR_SEQUENCE_END_DATE . These computed attributes are
read-only.

• The CSA_calendar_user data structure specifies either a user or a calendar. In the first
case, for example, when specifying a user in an access list, only the user_name field is
used and all other fields are ignored. In the latter case, for example, when specifying the
calendar to log onto, only the calendar_address field is used and all other fields are
ignored. The format is calendar @location where calendar is the name of the calendar and
location is the name of the machine where the calendar is stored.

• Attributes of value type CSA_VALUE_ATTENDEE_LIST are not supported and
CSA_E_INVALID_ATTRIBUTE_VALUE will be returned if they are specified.

• Although the repeat_count and snooze_time fields in the CSA_reminder data structure are
stored in the calendar, the calendar service does not interpret their values and the
associated reminder will be returned only once by the server.

• The user interface extension CSA_X_UI_ID_EXT is not supported.

Administration Functions
This section contains descriptions for the administration functions supported in the CDE
implementation. See the relevant man page for more information.

• Free - Frees memory allocated by the calendaring service.

108 CDE Programmer’s Guide

CSA_return_code
csa_free(
 CSA_buffer memory
);

• List Calendars - Lists the calendars supported by a calendar server.

CSA_return_code
csa_list_calendars(
 CSA_service_reference calendar_service,
 CSA_uint32 *number_names,
 CSA_calendar_user **calendar_names,
 CSA_extension *list_calendars_extensions
);

A host name where the server runs should be passed in calendar_server .

• Logon – Logs on to the calendar service and establishes a session with a calendar.

CSA_return_code

csa_logon(
 CSA_service_reference calendar_service,
 CSA_calendar_user *user,
 CSA_string password,
 CSA_string character_set,
 CSA_string required_csa_version,
 CSA_session_handle *session,
 CSA_extension *logon_extensions
);

Arguments calendar_service, password, character_set, and required_csa_version are not
used.

The calendar_address field of the CSA_calendar_user structure pointed to by user
specifies the calendar to log onto. The format is calendar @location where calendar is the
name of the calendar and location is the host name where the calendar is stored.

The CDE-defined extension CSA_X_DT_GET_USER_ACCESS_EXT is supported. This
extension can be used to get the access rights the calling user has with respect to the
calendar. The user’s access rights is returned in the item_data field of the extension
structure.

• Logoff – Terminates a session with a calendar.

CSA_return_code

csa_logoff(

 CSA_session_handle session,

 CSA-extension *logoff_extensions

);

• Query Configuration – Determines information about the installed CSA configuration.

CSA_return_code

csa_query_configuration(
 CSA_session_handle session,
 CSA_enum item,
 CSA_buffer *reference,
 CSA_extension *query_configuration_extensions
);

109CDE Programmer’s Guide

The following items are not supported by this implementation of CDE:

CSA_CONFIG_CHARACTER_SET

CSA_CONFIG_LINE_TERM

CSA_CONFIG_VER_IMPLEM

Calendar Management Functions
This section contains descriptions for the calendar management functions supported in the
CDE implementation. See the relevant man page for more information.

• Add calendar – Adds a calendar to the calendar service.

CSA_return_code
csa_add_calendar(
 CSA_session_handle session,
 CSA_calendar_user *user,
 CSA_uint32 number_attributes,
 CSA_attribute *calendar_attributes,
 CSA_extension *add_calendar_extensions
);

The first argument session is ignored.

The calendar_address field of the CSA_calendar_user structure pointed to by user
specifies the name and the location of the calendar to be created. The format is
calendar @location where calendar is the name of the calendar and location is the host
name where the calendar is to be stored; for example, my_calendar @my_host .

• Call Callbacks – Forces the invocation of the callback functions associated with the
specified callback list(s).

CSA_return_code

csa_call_callbacks(

 CSA_session_handle session,

 CSA_flags reason,

 CSA_extension *call_callbacks_extensions

);

• Delete Calendar – Deletes a calendar from the calendar service.

CSA_return_code

csa_delete_calendar

 CSA_session_handle session,

 csa_extension *delete_calendar_extensions

);

• List Calendar Attributes – Lists the names of the calendar attributes associated with a
calendar.

110 CDE Programmer’s Guide

CSA_return_code

csa_list_calendar_attributes(

 CSA_session_handle session,

 CSA_uint32 *number_names,

 CSA_attribute_reference **calendar_attributes_names,

 CSA_extension *list_calendar_attributes_extensions

);

• Read Calendar Attributes – Reads and returns the calendar attribute values for a
calendar.

CSA_return_code
csa_read_calendar_attributes(
 CSA_session_handle session,
 CSA_uint32 number_names,
 CSA_attribute_reference *attribute_names,
 CSA_uint32 *number_attributes,
 CSA_attribute **calendar_attributes,
 CSA_extension *read_calendar_attributes_extensions
);

• Register Callback Functions – Registers the callback function to be invoked with the
specified type of updates in the calendar.

CSA_return_code
csa_register_callback(
 CSA_session_handle session,
 CSA_flags reason,
 CSA_callback callback,
 CSA_buffer client_data,
 CSA_extension register_callback_extensions
);

• Unregister Callback Functions – Unregisters the specified callback function.

CSA_return_code
csa_unregister_callback(
 CSA_session_handle session,
 CSA_flags reason,
 CSA_callback callback,
 CSA_buffer client_data,
 CSA_extension *unregister_callback_extensions
);

• Update Calendar Attributes – Updates the calendar attribute values for a calendar.

CSA_return_code

csa_update_calendar_attributes(

 CSA_session_handle session,

 CSA_uint32 number_attributes,

 CSA_attribute *calendar_attributes,

 CSA_extension *update_calendar_attributes_extensions

);

111CDE Programmer’s Guide

Entry Management Functions
This section contains descriptions for the entry management functions supported in the
CDE implementation. See the relevant man page for more information.

• Add Entry – Adds an entry to the specified calendar.

CSA_return_code

csa_add_entry(

 CSA_session_handle session,

 CSA_uint32 number_attributes,

 CSA_attribute *entry_attributes,

 CSA_entry_handle *entry,

 CSA_extension *add_entry_extensions

);

• Delete Entry – Deletes an entry from the specified calendar.

CSA_return_code
csa_delete_entry(
 CSA_session_handle session,
 CSA_entry_handle entry,
 CSA_enum delete_scope,
 CSA_extension *delete_entry_extensions
);

• List Entries – Lists the calendar entries that match all the attribute search criteria.

CSA_return_code
csa_list_entries(
 CSA_session_handle session,
 CSA_uint32 number_attributes,
 CSA_attribute *entry_attributes,
 CSA_enum *list_operators,
 CSA_uint32 *number_entries,
 CSA_entry_handle **entries,
 CSA_extension *list_entries_extensions
);

The following information details more about the operators specified in list_operators :

Only the operators CSA_MATCH_ANY and CSA_MATCH_EQUAL_TO are supported for the
attribute value types CSA_VALUE_REMINDER , CSA_VALUE_CALENDAR_USER , and
CSA_VALUE_DATE_TIME_RANGE .

Only the operators CSA_MATCH_ANY, CSA_MATCH_EQUAL_TO ,
CSA_MATCH_NOT_EQUAL_TO , and CSA_MATCH_CONTAIN are supported for the attribute
value type CSA_VALUE_STRING . The operator CSA_MATCH_CONTAIN only applies to
CSA_VALUE_STRING type of attributes.

Matching of attributes with the value types CSA_VALUE_OPAQUE_DATA ,
CSA_VALUE_ACCESS_LIST, CSA_VALUE_ATTENDEE_LIST, and,
CSA_VALUE_DATE_TIME_LIST are not supported. The only exception is the attribute
CSA_ENTRY_ATTR_REFERENCE_IDENTIFIER . The operator CSA_MATCH_EQUAL_TO is
supported for this attribute.

• List Entry Attributes – Lists the names of the entry attributes associated with the specified
entry.

112 CDE Programmer’s Guide

CSA_return_code

csa_list_entry_attributes(

 CSA_session_handle session,

 CSA_entry_handle entry,

 CSA_uint32 *number_names,

 CSA_attribute_reference **entry_attribute_names,

 CSA_extension *list_entry_attributes_extensions

);

• List Entry Sequence – Lists the recurring calendar entries that are associated with a
calendar entry.

CSA_return_code

csa_list_entry_sequence(

 CSA_session_handle session,

 CSA_entry_handle entry,

 CSA_date_time_range time_range,

 CSA_uint32 *number_entries,

 CSA_entry_handle **entry_list,

 CSA_extension *list_entry_sequences_extensions

);

CSA_E_INVALID_PARAMETER is returned if the specified entry is a one-time entry.

• Read Entry Attributes – Reads and returns the calendar entry attribute values for a
specified entry.

CSA_return_code

csa_read_entry_attributes(

 CSA_session_handle session,

 CSA_entry_handle entry,

 CSA_uint32 number_names,

 CSA_attribute_reference *attribute_names,

 CSA_uint32 *number_attributes,

 CSA_attribute **entry_attributes,

 CSA_extension *read_entry_attributes_extensions

);

• Read Next Reminder – Reads the next reminder of the given type in the specified
calendar relative to a given time.

113CDE Programmer’s Guide

CSA_return_code

csa_read_next_reminder(

 CSA_session_handle session,

 CSA_uint32 number_names,

 CSA_attribute_reference *reminder_names,

 CSA_date_time given_time,

 CSA_uint32 *number_reminders,

 CSA_remainder_reference **reminder_references,

 CSA_extension *read_next_reminder_extensions

);

• Update Entry Attributes – Updates the calendar entry attributes.

CSA_return_code

csa_update_entry_attributes(

 CSA_session_handle session,

 CSA_entry_handle entry,

 CSA_enum update_scope,

 CSA_boolean update_propagation,

 CSA_uint32 number_attributes,

 CSA_attribute *entry_attributes,

 CSA_entry_handle *new_entry,

 CSA_extension *update_entry_attributes_extensions

);

Update propagation is not supported; the update_propagation argument should be set to
CSA_FALSE.

Glossary

action A user interface defined in a database of files that requests an application
perform some operation.

action icon An icon that represents an action in a File Manager or Application
Manager window. It is displayed by creating an executable file with the
same name as the action it represents.

action server A host computer that provides access to a collection of actions.

active A window, window element, or icon that is currently affected by keyboard
and mouse input. Active windows are differentiated from other windows on
the workspace by a distinctive title bar color or shade. An active window
element is indicated by a highlight or selection cursor.

app–defaults file
A file for each application that programmers use to define the X resources.

application group
An Application Manager container that holds a specific software
application.

Application Manager
The software application that manages the tools and other software
applications available to you.

application server
A host computer that provdes access to a software application.

argument An item of information following a command.

arrow keys The four directional keys on a keyboard. Also see navigation keys.

attachment An encapsulated data object inside a document.

background The underlying area of a window on which objects, such as buttons and
lists, are displayed.

bitmap An image stored in a raster format. Usually refers to an image limited to
two colors (a foreground and a background color). Contrast with pixmap.

bitmapped font
A font made from a matrix of dots. See font.

busy pointer The mouse pointer displayed when an application is busy and cannot
accept input.

button A generic term for a window control that initiates an action by an
application, usually executing a command, displaying a window, or
displaying a menu. Also used to describe the controls on a mouse.

button binding Association of a mouse button operation with a particular behavior.

cascaded list The list box that displays additional elements from which you choose in
order to interact with other screen elements.

cascaded menu
The menu item that displays additional elements from which you choose in
order to interact with other screen elements.

CDE Common Desktop Environment, a graphical user interface running on
UNIX.

164 CDE Programmer’s Guide

check box A nonexclusive control whose setting is indicated by the presence or
absence of a check mark. A check box has two states, on and off.

choose To use the mouse or keyboard to pick a menu command, button, or icon
that begins a command or action. Contrast with select.

click To press and release a mouse button without moving the mouse pointer.

client A system or software application that requests services from a network
server.

clipboard A buffer that temporarily stores the last cut, copy, or paste data or object.

combo box Use text box to refer to the text box portion of a combo box, and list box to
refer to the list portion. Example: Type the name of the file in the File text
box or select it from the list box underneath.

command line prompt
A prompt, usually %, >, or $, that shows the computer is ready to accept
commands. In a terminal emulation window, you display the command line
prompt by pressing Return.

context–sensitive help
Help information about the specific choice or object that the cursor or
pointer is on.

control A generic term for a variety of objects (such as buttons, check boxes, and
scroll bars) that perform an action or indicate an option setting. Also
applies to Front Panel icons.

Copy View Options
A menu command that copies the current view’s properties and places the
copy onto the clipboard.

current item The currently highlighted item in a list.

current session
The session saved by Session Manager when you log off. At the next
login, unless you specify otherwise, this session automatically opens,
enabling work to continue where you left off. Contrast with home session.

current setting The present state of a control such as a check box or radio button.

current workspace
The workspace that is presently displayed on the screen. It can be
changed with the workspace switch.

cursor A graphical device that indicates the current object that will be affected by
mouse or keyboard input.

data host A host computer where the data for an action is located.

DATA_HOST An attribute added to the DATA_ATTRIBUTES entry that indicates the host
system that the Data Type was loaded from. Note that this value should
not be set in the *.dt files but is generated when the database is loaded.

database host A host computer where an action is defined.

data–type A mechanism that associates particular data files with the appropriate
applications and actions. Data types can determine the type of a file based
on file–naming conventions, such as a particular extension name, or on
the contents of the file.

default A value set automatically by an application.

165CDE Programmer’s Guide

dialog box A window displayed by an application that requires user input. Do not use
dialog as shorthand.

directory A collection of files and other subdirectories.

display–dependent session
A session that can be restored on only a particular display.

display–independent session
A session that can be restored on any display, regardless of screen
resolution or color capability.

double–click To quickly press a mouse button twice without moving the mouse pointer.
Unless otherwise specified, button 1 is assumed.

drag To move the mouse pointer over an object, press and hold down mouse
button 1, and then move the mouse pointer and the object to another
location on the workspace.

drag and drop To directly manipulate an object by using a pointing device to move and
place the object somewhere else.

drag over feedback
The drag icon changes appearance when the user drags it over potential
drop zones.

drag under feedback
The appearance provided by a drop zone. The feedback can be a solid line
drawn around the site, a raised or lowered surface with a beveled edge
around the drop zone, or a pixmap drawing over the drop zone.

drop After grabbing an object, the act of releasing the mouse button. If the
object is dropped in an appropriate area, an Action is initiated. Also see
grab.

drop target A rectangular graphic that represents the drop zone in an application.

drop zone An area of the workspace, including the Trash, Printer, and CDE Mail
icons, that accepts a dropped object. Objects can be dropped on the
workspace for quick access.

element A generic term for any entity that can be considered a standalone item in a
broader context, such as an item in a list or a control in a window.

execution host A host computer where an application invoked by an action runs. This
may be the same computer where the action resides, or it may be another
computer on the network.

field A window element that holds data, as in the Name field or the Telephone
number field. Preferred: Use a more specific noun to describe the element,
as in the Name text box or the Files list box.

File Manager The software application that manages the files and directories on your
system.

file server A host computer that stores data files used by applications.

format type In CDE document containers, the type used to store the property.

focus Place to which keyboard input is directed.

folder An icon that represents a directory.

166 CDE Programmer’s Guide

font A complete set of characters (letters, digits, and special characters) of
one size and one typeface. Ten–point Helvetica bold is an example of a
font.

foreground The content of a window and the color or shading used to distinguish it
from the window’s background.

Front Panel A centrally located window containing icons for accessing applications and
utilities, including the workspace switch. The Front Panel occupies all
workspaces.

grab To move the mouse pointer over an object, and then to press and hold
down mouse button 1 in preparation for moving the object. Also see drag;
drop.

grab handles (or handles)
The small squares displayed at the corners and midpoints of a selected
graphic object.

group box A box in a window that visually associates a set of controls.

home directory
A directory where you keep personal files and additional directories. By
default, File Manager and Terminal Emulator windows are set to the home
directory when you first open them.

home session A choice at logout to designate a particular session, other than the one
you are currently in, as the one you will automatically return to at the next
login.

hyperlink In Help text, information that when chosen displays another Help topic.

icon A graphic symbol displayed on the screen, which you can select to work in
a particular function or software application.

insertion point The point at which data typed on the keyboard, or pasted from the
clipboard or a file, appears on the screen. In text, a synonym for cursor.

Install Icon A choice on subpanels that enables you to install icons on the desktop
using drag and drop.

IS_ACTION An attribute added to the DATA_ATTRIBUTES entry that is created when
an action is loaded. The DtDtsDataTypeIsAction uses this attribute to
determine if a data type was created from the action table. It has no
representation in the *.dt files except as an action entry. Note that this
value should not be set in the *.dt files and is only used internally.

IS_SYNTHETICAn attribute added to the DATA_CRITERIA/DATA_ATTRIBUTES entries
that is created when an action is loaded. It has no representation in the
*.dt files except as an action entry. Note: This value should not be set in
the *.dt files and is only used internally.

ITE Internal Terminal Emulator. ITE allows use of a bitmapped display as a
terminal (through command–line mode from the Login screen).

items Elements in a list.

key binding Association of a keystroke with a particular behavior.

label The text appearing next to a window element that names the element.

link Synonym for symbolic link.

167CDE Programmer’s Guide

list A control that contains elements from which you select. Also called
selection list.

list box Any of a number of graphical devices that displays a list of items from
which you can select one or more items. It is usually not necessary to
name the specific kind of box being used.

local host The CPU or computer on which a software application is running; your
workstation.

mapping An action that invokes another action rather than containing its own
EXEC–STRING. The file /usr/vue/types/user–prefs.vf contains the built–in
mapped actions. For example, the built–in CDE Mail action used by the
Front Panel is mapped to the Elm action.

menu A list of commands from which you select to perform a particular
application task.

menu bar The part of the application window between the title bar and the work area
where menu names are listed.

menu item A choice that appears on a menu.

metadata In Bento containers, the information about an object. Contrast with value.

minimize To turn a window into an icon. The push button that minimizes a window is
located near the upper–right corner of the window frame.

modifier key A key that when pressed and held along with another key changes the
meaning of the second key. Control, Alt, and Shift are examples.

multipart document
A document that contains one or more attachments.

navigation keys
The keyboard keys used to move the current location of the cursor. These
include the arrow keys (with or without the Control key); the Tab key (with
or without the Control or Shift keys); the Begin and End keys (with or
without the Control key); and the Page Up and Page Down keys.

networked session
A session managed across multiple systems. Using a networked session
enables the same session to be seen, regardless of which system was
used to log in. It also provides a single home directory across multiple
systems.

newline character
An unseen character that marks the end of a line of text in a document. It
tells a printer or screen to break a line and start a new one.

no saveback The inability of drag and drop to write changes in data held in buffers back
to an originating file.

On Item help A form of help in which an application provides on–screen information
about a particular command, operation, dialog box, or control.

operation indicator
The part of a drag icon that gives users feedback on the operation (move,
copy, or link) that is occurring during the drag.

options A generic term that applies to the variations available when choosing a
command to run, or when selecting or filling in items in a dialog box.

168 CDE Programmer’s Guide

page To advance text displayed in a window by one full screen at a time, usually
using a scroll bar.

palette The range of available elements, usually colors.

pixmap An image stored in a raster format. Usually refers to an image that may
have more than two colors. Contrast with bitmap.

point To move the mouse until the pointer rests on a particular screen object or
area.

pointer The arrow or other graphical marker that indicates the current mouse
position, and possibly the active window. Also see cursor.

print server A host computer to which one or more printers are connected, or the UNIX
process that manages those printers.

Properties A menu command that enables you to set characteristics of an object,
such as its date or name, or display identifying characteristics of an object,
such as typefaces.

push button A control that immediately starts an action as soon as it is chosen. OK,
Cancel, and Help are examples of push buttons commonly found in dialog
boxes.

radio button An exclusive control whose setting is indicated by the presence or
absence of a graphical indicator, usually part of a radio group. A radio
button has two states, on and off.

radio button group
A box containing a set of radio buttons that may have a distinct label. At
most, one of the radio buttons may be activated at a time.

release To let go of a mouse button or keyboard key.

resize handle A control used to change the size of a window or a pane in a window.

resize pointer The mouse pointer displayed when an object, such as a window, is being
resized.

resource A mechanism of the X Window System for specifying an attribute
(appearance or behavior) of a window or application. Resources are
usually named after the elements they control.

saveback The ability of drag and drop to write modified data back to the originating
file.

scalable typeface
A mathematical outline for a typeface used to create a bitmapped font for a
particular size, slant, or weight.

screen lock A function that locks the workstation screen, barring further input until the
valid user password is entered.

screen saver A choice that causes the workstation, after a specified time period, to
switch off the display or to vary the images that are displayed, thereby
prolonging the life of the screen.

scroll bar A control located at the right or bottom of a window that enables you to
display window content not currently visible.

select To add highlighting or some other visual cue to an object so that it can be
operated or enabled. Selection does not imply the initiation of an action but

169CDE Programmer’s Guide

rather a change of state, such as highlighting an item in a list, or toggling a
check box on.

server A system that supplies services to a client.

session The elapsed time between user login and logout.

session server A system that provides networked sessions. Session files reside on the
session server and are used whenever you log into a system on the
network.

shortcut General term for a mouse action that simplifies filling out a dialog box. For
example: As a shortcut, double–click an item in the Filename list box to
select it and choose OK in one action.

shortcut keys A keyboard key sequence used to activate a menu command. This can be
a key sequence that uses a special accelerator key, or an underlined letter
(mnemonic) sequence. For example: Press Alt+F4 or Alt+F+P to choose
the command File⇒ Πριντ.

slider A control that uses a track and arm to set a value from among the
available values. The position of the arm (or a separate indicator) gives the
currently set value.

software application
A computer program that provides you with tools to do work. Style
Manager, Text Editor, and File Manager are examples of software
applications.

source indicator
The part of a drag icon that represents the item being dragged.

spin box A window element with a text box and two arrow buttons that displays a
set of related but mutually exclusive choices, such as days of the week.

state indicator The part of a drag icon that is used as a pointer for positioning combined
with feedback that shows whether a drop zone is valid or invalid.

Style Manager The software application used to customize some of the visual elements
and system device behaviors of the workspace environment, including
colors and fonts, and keyboard, mouse, window, and session start–up
behaviors.

subpanel A component of the Front Panel that provides additional controls.
Subpanels usually contain groups of related controls.

symbolic link A reference to a file or directory.

synthetic data attribute
A data type added to the DATA_CRITERIA/DATA_ATTRIBUTES entries that
is created when an action is loaded. It has no representation in the *.dt
filesexcept as an action entry. Note that this attribute should not be set in
the *.dt files and is only used internally.

terminal emulator
A window that emulates a particular type of terminal for running
nonwindow programs. Terminal emulator windows are most commonly
used for typing commands to interact with the computer’s operating
system.

text field A rectangular area in a window where information is typed. Text fields with
keyboard focus have a blinking text insertion cursor.

170 CDE Programmer’s Guide

tile A rectangular area used to cover a surface with a pattern or visual texture.
For example: The Workspace Manager supports tiling, enabling users with
limited system color availability to create new color tiles blended from
existing colors.

title bar The topmost area of a window, containing the window title.

toggle To change the state of a two–state control, such as a radio button or check
box, using either the mouse or keyboard.

value In Bento containers, refers to the contents of an object. Contrast with
metadata.

window A rectangular area on the display. Software applications typically have
one main window from which secondary windows, called dialog boxes, can
be opened.

window frame The visible part of a window that surrounds a software application. A
window frame can contain up to five controls: title bar, resize borders,
minimize button, maximize button, and the Window menu button.

window icon A minimized window.

Window list An action that presents a list of all the open windows associated with the
window from which the action was selected.

Window menu The menu displayed by choosing the Window menu button. The menu
provides choices that manipulate the location or size of the window, such
as Move, Size, Minimize, and Maximize.

Window menu button
The control at the upper–left corner of a window, next to the title bar.
Choosing it displays the Window menu.

work area The part of a window where controls and text appear.

workspace The current screen display, the icons and windows it contains, and the
unoccupied screen area where objects can be placed.

workspace background
The portion of the display not covered by windows, icons, or objects.

Workspace Manager
The software application that controls the size, placement, and operation
of windows within multiple workspaces. The Workspace Manager includes
the Front Panel, the window frames that surround each application, and
the Window and Workspace menus.

Workspace menu
The menu displayed by pointing at an unoccupied area of the workspace
and clicking mouse button 3.

workspace object
An object that has been copied from File Manager to the workspace.

workspace switch
A control that enables you to select one workspace from among several
workspaces.

X-171Index

A
access rights, Calendar, 99
action invocation library, 72
actions, 71

advantages of, 71
database, 74
example program, 73
icon image for, 75
invoking from an application, 71
invoking from application, 71
library, 81
types, 72

added features, Motif, 42
administration, Calendar, 100
administrative functions, Calendar, 107
API, drag and drop overview, 30
app–defaults file, 10
arrow button and text field widget, 41
attributes, Calendar, 103
auxiliary functions, DtEditor, 63

B
basic integration

advantages, 1
definition, 1
printing, 2
registration package, 9
summary of tasks, 2

Btransfer and drag and drop, 31

C
C naming conventions, 97
Calendar

access rights, 99
administration, 100
administrative functions, 107
architecture, 98
attributes, 103
data structures, 102
demo program, 96
entities, 99
entry attributes, 104
entry management, 101
entry management functions, 111
header file, 96
library, 96
management, 101
management functions, 109
naming conventions, 97

Calendar API
components, 98
data model, 99

callback functions, DtEditor, 69
callback structures, 52

DtMenuButton, 57
DtSpinBox, 45

cascading menu functionality, 41
cascading menu widget, 56

CDE Motif toolkit, 41
character set ISO 8859–1, 10
classes

DtComboBox, 51
DtEditor, 61
DtMenuButton, 56
DtSpinBox, 44

code example
data typing, 92
DtComboBox, 53
DtMenuButton, 58
DtSpinBox, 46

colors, getting from Style Manager, 1
compatibility

DtComboBox, 51
Motif 2.0 XmSpinBox, 43
MW–windows, 41
OPEN LOOK, 41

configuration file, fonts, 10
convenience functions

DtComboBox, 51
DtEditor, 61
DtMenuButton, 56
DtSpinBox widget, 44

convert callbacks, drag and drop, 33
criteria, data typing, 82
CSA

C naming conventions, 97
extensions, 102
implementation model, 98

CSA API, 96
CSA API, overview, 97
cycle widget, 43

D
data attributes, 82
data criteria, 82
data structures, Calendar, 102
data type, purpose of, 1
data types, printing, 2
data typing

code example, 92
criteria, 82
data attributes, 82
data criteria, 82
database query functions, 87
demo program, 81
drag and drop, 36
functions, 87
library, 81
registering objects as drop zones, 89

database query functions, data typing, 87
decrement/increment widget, 43
default font names, 10
demo program

Calendar, 96
data typing, 81
DtComboBox, 51
DtEditor, 61

X-172CDE Programmer’s Guide

DtMenuButton, 56
widgets, 43

destinations for drag and drop, 22
drag and drop

API, 26
API overview, 30
convert callbacks, 33
data typing, 36
drop zones, 34
functions, 30
header file, 18, 30
implementation plan, 29
inside windows, 22
library, 18
operations, 31
protocols, 30
registering drop zones, 34
sources and destinations, 22
starting a drag, 31, 32
structures, 30
transactions, 27
transfer callback, 35
transition effects of, 22
user model, 19
using Btransfer, 31
visual feedback, 22

drag icon
operation indicator, 20
source indicator, 20

drag icons, 19, 20
state indicator, 20

drop zone, registering objects, 89
drop zone feedback, 22
drop zones, 34

registering, 34
Dt.Xcsa.h header file, 96
Dt/SpinBox.h header file, 43
DtActionExists, 75
DtAppInitialize, 73
DtComboBox, 52

callback structures, 52
classes, 51
compatibility with Motif 2.0, 51
convenience functions, 51
demo program, 51
example code, 53
header file, 51
library, 51
resources, 51

DtComboBox widget, 41, 50
DtDbLoad, 74
DtDbReloadNotify, 74
DtEditor

auxiliary functions, 63
callback functions, 69
classes, 61
convenience functions, 61
demo program, 61
find and change functions, 63
format functions, 63

header file, 61
inherited resources, 67
input/output functions, 61
life cycle functions, 61
resources, 64
selection functions, 62

DtEditor widget, 41, 60
DtInitialize, 73
DtMenuButton

callback structures, 57
classes, 56
convenience functions, 56
demo program, 56
example code, 58
header file, 56
resources, 57

DtMenuButton widget, 41, 56
DTPRINTFILEREMOVE variable, 3
DTPRINTSILENT variable, 3
DTPRINTUSERFILENAME variable, 3
DtSpinBox

callback structures, 45
classes, 44
convenience functions, 44
example code, 46
resources, 44

DtSpinBox widget, 41, 43
DtSpinBox, compatibility with Motif 2.0, 43
DtWsmAddCurrentWorkspaceCallback, 40
DtWsmAddCurrentWorkspceCallback, 39
DtWsmGetWorkspacesOccupied, 39
DtWsmOccupyAllWorkspaces, 38
DtWsmRemoveWorkspaceFunctions, 39
DtWsmSetWorkspacesOccupied, 38
DtWsmWorkspaceModifiedCallback, 39, 40

E
editor widget, 41
enhancements to Motif, 42
enhancements, visual Motif, 42
entities, Calendar, 99
entry attributes, Calendar, 104
entry management functions, Calendar, 111
entry management, Calendar, 101
environment variables,printing, 3
error messages, displaying, 14
exec, 72
extensions, CSA, 102

F
feedback, drop zone, 22
filters,print, 5
find and change functions, DtEditor, 63
font names, standard application, 12
font names, default, 10
font point sizes, 12
fonts

getting from Style Manager, 1
in configuration files, 10

X-173Index

fork, 72
format functions, DtEditor, 63
functionality, cascading menu, 41
functions

data typing, 87
drag and drop, 30

H
header file

drag and drop, 18, 30
Dt/SpinBox.h, 43
Dt/xcsa.h, 96
DtMenuButton, 56

header file, Calendar, 96
header files

DtComboBox, 51
DtEditor, 61
Motif, 42
Motif UIL library, 42

header filesMrmPublic.h, 42

I
icons, drag, 19, 20
implementation model, CSA, 98
implementation plan for drag and drop, 29
increment/decrement widget, 43
inherited resources, DtEditorDtEditor, 67
input/output functions, DtEditor, 61
ISO 8859–1 character set, 10

L
libDtCalendar library, 96
libDtSvc library, 81
libDtWidget library, 41, 43, 51, 56, 61
libMrm library, 42
libraries, Motif 1.2.3, 41
library

actions, 81
Calendar, 96
data typing, 81
drag and drop, 18
libDtWidget, 41, 43, 51, 56, 61
libMrm, 42
libUil, 42
Motif, 41
Motif resource manager, 42
Motif UIL, 42
widget, 41

librarylibDtCalendar, 96
libUil, 42
libX11 library, 81
libXm library, 81
life cycle functions, DtEditor, 61
list box and text field widget, 41, 50
LPDEST variable, 3

M
management functions, Calendar, 109
management, Calendar, 101

menu button widget, 56
menu cascading functionality, 41
menu widget, pop–up, 41
Motif 1.2.3 libraries, 41
Motif added features, 42
Motif enhancements, 42
Motif header files, 42
Motif libraries, 41
Motif resource manager header file, 42
Motif resource manager library, 42
Motif toolkit, 41
Motif UIL library, 42

header file, 42
Motif visual enhancements, 42
mouse functionality, OPEN LOOK, 42
MrmPublic.h header file, 42
MW–windows compatibility, 41

N
naming conventions, C, 97
navigation, tab, 42
NoPrint action, 8

O
OPEN LOOK, mouse functionality, 42
OPEN LOOK compatibility, 41
operation indicator, drag icons, 20
operations, drag and drop, 31

P
point sizes, 12
pop–up menu widget, 41
pop–up meu button widget, 56
print actions, 3, 5
print command line, partial integration, 6
Print dialog box, 3
print filters, 5
print integration

complete, 3
environment variables, 3
levels, 2
partial, 6
printing without Print dialog box, 3
removing temporary files, 3
script for, 7
specifying destination printer, 3
specifying file name, 3
using NoPrint action, 8

printing integration, 2
protocols, drag and drop, 30

R
registering drop zones, 34
registering objects as drop zones, 89
registration, definition, 1
registration package, 1

creating, 9
providing printing, 2

X-174CDE Programmer’s Guide

resources
DtComboBox, 51
DtEditor, 64
DtMenuButton, 57
DtSpinBox, 44
XmFileSelectionBox widget, 42

S
selection functions, DtEditor, 62
source indicator, drag icons, 20
sources for drag and drop, 22
standard application font names, 12
starting a drag, 32
starting a drag and drop operation, 31
state indicator, drag icon, 20
structures, drag and drop, 30
Style Manager, integrating with, 1

T
tab navigation, 42
text editor widget, 41, 60
text field and arrow button widget, 41, 43
text field and list box widget, 41, 50
toolkit, Motif, 41
ToolTalk, 72
transactions, drag and drop, 27
transfer callback, drag and drop, 35
transition effects for drag and drop, 22

U
UilDef.hheader files, Uil.Def.h, 42
Unable to Print dialog box, 8
user model, drag and drop, 19

V
visual enhancements, Motif, 42

visual feedback for drag and drop, 22

W
widget

arrow button and text field, 41, 43
cascading menu, 56
cycle, 43
demo program, 43
DtComboBox, 50
DtComboBox,widget, text field and list box, 41
DtEditor, 41, 60
DtMenuButton, 41, 56
DtSpinBox, 41
increment/decrement, 43
libDtWidget library, 43
library, 41
list box and text field, 41, 50
menu button, 56
pop–up menu, 41, 56
text editor, 41, 60
text field and arrow button, 41, 43
text field and list box, 50
XmFileSelectionBox, 42

widgetDtSpinBox, 43
widgets, Motif 1.2.3, 41
workspace

identifying, 38
monitoring changes, 39
placing application window in, 38
preventing application movement, 39

Workspace Manager
communicating with, 37
integrating with, 37

X
XmComboBox, compatibility with DtComboBox, 51
XmFileSelectionBox widget resources, 42

