# Securing AIX Network Services

Skill Level: Intermediate

Sandor W. Sklar (ssklar@stanford.edu) Systems Administrator Consultant

24 Dec 2001

Better understand the network services in AIX and the impact each one has on system security. Administrators responsible for RS/6000s connected in some way to a public network can use the information in this tutorial to achieve the necessary balance between functionality and security.

# Section 1. Before you start

#### About this tutorial

This tutorial is for AIX systems administrators who want to better understand the network services in AIX and the impact each one has on system security. Administrators responsible for RS/6000s connected in some way to a public network can use the information in this tutorial to achieve the necessary balance between functionality and security.

No third-party tools are used in this presentation; only the components available to all AIX systems are explored and addressed. While a true security model takes much more than just turning off services and modifying configuration files, this tutorial provides a solid foundation to build upon to reach the goal of complete system integrity.

## About the examples in this tutorial

The examples in this tutorial were run on an IBM RS/6000 that had a complete installation of AIX 4.3.3, Maintenance Level 08. No software beyond that available on the AIX installation media was placed on the host. All practices and configurations discussed in this tutorial are equally applicable (and have been

confirmed) on a production system running AIX 5L (5.1 ML 01).

It is important to understand the potential impact of any change made to a system's configuration; this is especially true when dealing with security-related concerns. Before making any modifications to a production system, be sure that the changes have first been tested in a suitable development environment. Always back up systems, wear a seat belt, and close the cover when striking.

# Section 2. Understanding security

#### What is the problem?

A normal installation of AIX (or almost any operating system) includes a dizzying array of services. Some of these services are critical: without a telnetd daemon active, for example, there would be no way to remotely log in to the system. Many of these services, though, were developed at a time when the Internet was much smaller, and the perceived danger from crackers and other people trying to gain unauthorized access was considered less than the benefits of easy remote access and simple authentication methods.

Today's computing environment is a much more dangerous place: the number of hosts connected to the Internet has grown exponentially, and with that growth, attempts to access and subvert computers have become commonplace events. Insufficiently secure systems can be quickly compromised; once an attacker has gained access to a system, information stored there is no longer private, and its contents cannot be trusted.

## How does it happen?

Any system compromised by remote attackers has had, by definition, its own network connection used against it. Some of these attacks take advantage of bugs in a particular version of a network daemon. Other attacks are successful because they exploit a known weakness in a particular protocol, common to all systems running that service.

It is important to evaluate all active network services for not only their usefulness in fulfilling necessary tasks, but also for their shortcomings or vulnerabilities. Balancing the good and bad in each service can be difficult, but it is a critical part of keeping a system safe.

#### Barbarians at the sockets

A default AIX installation offers numerous services, each responsible for listening on at least one port. The table below details each open port, the system daemon that is bound to the port, and the configuration file that starts up the daemon.

| Port<br>Number | Protocol | Well-Known<br>Name | Daemon/Applica <b>Star</b> ted From                    |
|----------------|----------|--------------------|--------------------------------------------------------|
| 7              | tcp      | echo               | /usr/sbin/in <b>∉ed</b> c/inetd.cor                    |
| 7              | udp      | echo               | /usr/sbin/in <b>∉ed</b> c/inetd.cor                    |
| 9              | tcp      | discard            | /usr/sbin/in <b>∉ed</b> c/inetd.cor                    |
| 9              | udp      | discard            | /usr/sbin/in <b>∉ed</b> c/inetd.com                    |
| 13             | tcp      | daytime            | /usr/sbin/in <b>∉ed</b> c/inetd.com                    |
| 13             | udp      | daytime            | /usr/sbin/in <b>∉ed</b> c/inetd.cor                    |
| 19             | tcp      | chargen            | /usr/sbin/in <b>∉ed</b> c/inetd.com                    |
| 19             | udp      | chargen            | /usr/sbin/in <b>∉ed</b> c/inetd.cor                    |
| 21             | tcp      | ftp                | /usr/sbin/ftpdtc/inetd.com                             |
| 23             | tcp      | telnet             | /usr/sbin/telaetdinetd.com                             |
| 25             | tcp      | smtp               | /usr/sbin/sendmaikc.tcpip                              |
| 37             | tcp      | time               | /usr/sbin/in <b>∉ed</b> c/inetd.com                    |
| 37             | udp      | time               | /usr/sbin/in <b>etd</b> c/inetd.com                    |
| 67             | udp      | bootps             | /usr/sbin/boø <b>epd</b> /inetd.com                    |
| 111            | tcp      | sunrpc             | /usr/sbin/portemarc.tcpip                              |
| 111            | udp      | sunrpc             | /usr/sbin/portemarc.tcpip                              |
| 161            | udp      | snmp               | /usr/sbin/snmpdc/rc.tcpip                              |
| 177            | udp      | xdmcp              | /usr/dt/bin/detoginittab<br>(spawned by<br>/etc/rc.dt) |
| 199            | tcp      | smux               | /usr/sbin/dp <b>/d</b> 2c/rc.tcpip                     |
| 512            | tcp      | exec               | /usr/sbin/re <b>xetd</b> /inetd.com                    |
| 513            | tcp      | login              | /usr/sbin/rlø <b>gtnd</b> inetd.com                    |
| 514            | tcp      | shell              | /usr/sbin/rshdtc/inetd.com                             |
| 514            | udp      | syslog             | /usr/sbin/sysetogdrc.tcpip                             |
| 518            | udp      | ntalk              | /usr/sbin/talkdc/inetd.com                             |
| 543            | tcp      | klogin             | /usr/sbin/krlegindnetd.com                             |
| 544            | tcp      | kshell             | /usr/sbin/kr#hdc/inetd.com                             |
| 1001           | tcp      | rpc.statd          | /usr/sbin/rp¢estatd.nfs                                |
| 1001           | udp      | rpc.statd          | /usr/sbin/rp¢estatd.nfs                                |
| 1002           | tcp      | rpc.statd          | /usr/sbin/rp¢estatd.nfs                                |
| 1002           | udp      | rpc.statd          | /usr/sbin/rcpestatd.nfs                                |
| 1234           | tcp      | instsrv            | /home/netinstébinimesdsron                             |
| 2401           | tcp      | writesrv           | /usr/sbin/wr <b>ieesr</b> inittab                      |

| 6000  | tcp | X11         | /usr/lpp/X11/ <b>bin/X</b> nittab<br>(spawned by<br>/etc/rc.dt) |
|-------|-----|-------------|-----------------------------------------------------------------|
| 6112  | tcp | dtspc       | /usr/dt/bin/desp@dnetd.conf                                     |
| 32768 | tcp | dtlogin     | /usr/dt/bin/ <b>degr∉ėh</b> ittab<br>(spawned by<br>/etc/rc.dt) |
| 32769 | tcp | rpc.ttdbser | vénsr/dt/bin/rptctideservenf                                    |
| 32772 | tcp | dpid2       | /usr/sbin/dpidic/rc.tcpip                                       |
| 32785 | udp | cmsd        | /usr/dt/bin/rptc/madtd.conf                                     |
| 49213 | tcp | httpd       | /usr/IMNSear¢hthttpdlite                                        |

#### What can be done?

There are two basic steps in hardening the networking services of an AIX system:

- Disable unnecessary services.
   Should a system whose purpose is to serve Web sites also have a mail server running on it? If the ability to boot a system from a network source will not be used in a data center, should the daemons that provide that service be active? The answer to both of those questions is, obviously, no. If a network service is running, but there is no use for it, then it should be turned off.
- 2. Configure remaining services for secure operation. Of course, it is not possible to turn off every service. (If it is possible, then an organization needs to rethink its use of information technologies.) It is possible, however, to mitigate potential risks by configuring those active services to operate in a secure fashion. In a perfect world, default configurations would also be secure configurations. Sadly, the world is not perfect.

## Section 3. Disabling unnecessary services

#### Where are network services started?

On an AIX system, network services are typically started in one of four ways:

1. An entry in the /etc/inittab file. These services are activated at system startup, and depending on the method used, may automatically respawn if killed.

- 2. An entry in the /etc/rc.tcpip file. This shell script is executed during system startup via an entry in /etc/inittab, and is responsible for starting the bulk of the standard network daemons.
- 3. An entry in the /etc/inetd.conf file. This configuration file for the inetd daemon (the super server) contains numerous entries for services that are useful and possibly necessary, but also many of dubious value in a secured environment.
- 4. Manually, by the invocation of a command by a user. Programs that bind to a port number above 1024 and accept connections from the network do not have to be run by the root user. Any user who has the ability to log in to a system also has the ability to run their own network services.

Each of the above methods must be checked for insecure or unnecessary services if the system is to be protected from network-originating attacks.

#### An overview of /etc/inittab

The following listing is an excerpt from the default /etc/inittab.

```
init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console # Power Failure
Detection
mkatmpvc:2:once:/usr/sbin/mkatmpvc >/dev/console 2>&1
atmsvcd:2:once:/usr/sbin/atmsvcd >/dev/console 2>&1
load64bit:2:wait:/etc/methods/cfg64 >/dev/console 2>&1 # Enable 64-bit execs
rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console # Multi-User checks fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/firstboot srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
rcnetw:2:wait:/etc/rc.netware #start Netware
cnsview:2:wait:/usr/bin/cnsview -c "daemon start" >/dev/console 2>&1 # Start cnsview daemon
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
cron:2:respawn:/usr/sbin/cron
piobe:2:wait:/usr/lib/lpd/pio/etc/pioinit >/dev/null 2>&1 # pb cleanup
qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
writesrv:2:wait:/usr/bin/startsrc -swritesrv
uprintfd:2:respawn:/usr/sbin/uprintfd
logsymp:2:once:/usr/lib/ras/logsymptom # for system dumps
httpdlite:2:once:/usr/IMNSearch/httpdlite/httpdlite -r
/etc/IMNSearch/httpdlite/httpdlite.conf \
& >/dev/console 2>&1
diagd:2:once:/usr/lpp/diagnostics/bin/diagd >/dev/console 2>&1
imnss:2:once:/usr/IMNSearch/bin/imnss -start imnhelp >/dev/console 2>&1
imqss:2:once:/usr/IMNSearch/bin/imq_start >/dev/console 2>&1
pmd:2:wait:/usr/bin/pmd > /dev/console 2>&1 # Start PM daemon
dt:2:wait:/etc/rc.dt
cons:0123456789:respawn:/usr/sbin/getty /dev/console
12:2:wait:/etc/rc.d/rc 2
13:3:wait:/etc/rc.d/rc 3
14:4:wait:/etc/rc.d/rc 4
15:5:wait:/etc/rc.d/rc 5
```

```
l6:6:wait:/etc/rc.d/rc 6
l7:7:wait:/etc/rc.d/rc 7
l8:8:wait:/etc/rc.d/rc 8
l9:9:wait:/etc/rc.d/rc 9
```

Unlike most configuration files in AIX, entries in /etc/inittab cannot be disabled by placing a pound sign (#) at the beginning of the line. To disable an inittab entry, it must either be deleted from the file, have a colon (:) as the first character of the line, or have the value of the action field set to Off. Changes to /etc/inittab may also be made via the chitab command; entries may be deleted with the rmitab command.

Before making changes to this file, ensure that there is a good backup copy available, as problems with the inittab file can prevent a system from starting.

### Editing /etc/inittab entries

• rcnetw:2:wait:/etc/rc.netware #start Netware The rcnetw entry executes the /etc/rc.netware script, which in turn, loads drivers for the Novell NetWare networking protocols. If NetWare will not be used with this system, it is safe to disable or delete this entry.

```
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 #
Start TCP/IP daemons
```

The majority of the stand-alone network daemons are started from within the /etc/rc.tcpip shell script, which is executed at startup via this inittab entry. The contents of this script and the services started by it will be discussed in detail further in this tutorial.

rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start
 NFS Daemons

NIS/YP and NFS services are started by the /etc/rc.nfs script. However, the lines that start up NIS are commented out by default, and unless NIS is in use, they should remain disabled.

The biod daemon is required on systems that are either mounting (as a client) or exporting (as a server) filesystems via NFS.

rpc.statd and rpc.lockd provide locking and crash recovery used by some applications. Both of these daemons have had security problems resulting in the compromise of a system. Though the versions of rpc.statd and rpc.lockd that come with the latest releases of AIX are not known to be vulnerable, these daemons are often unnecessary, and can usually be disabled with no ill effect on the use of NFS-mounted filesystems.

NFS server capabilities are started if two conditions are met:

- 1. The program /usr/sbin/nfsd exists and is executable.
- 2. The file /etc/exports exists.

If the system is not going to provide NFS services, ensure that at least one of the two conditions listed will not be met, by either removing the executable bit from the nfsd daemon or by changing its name. If the system will not be using NIS or NFS at all, it is safe to disable or delete the entry for rcnfs in /etc/inittab.

- writesrv:2:wait:/usr/bin/startsrc -swritesrv
  The writesrv entry enables the ability of users on remote machines to
  use the write command to send messages to users on the local system.
  This entry should be disabled or deleted on any system that is connected
  to a public network. Note that disabling the writesrv service does not
  prevent users from messaging one another on the local system.
- httpdlite:2:once:/usr/IMNSearch/httpdlite/httpdlite -r /etc/IMNSearch/httpdlite/httpdlite.conf & >/dev/console 2>&1
- imnss:2:once:/usr/IMNSearch/bin/imnss -start imnhelp >/dev/console 2>&1
- imqss:2:once:/usr/IMNSearch/bin/imq\_start >/dev/console 2>&1

The above three inittab entries comprise the AIX Documentation Search Service, providing a Web site interface for browsing and searching AIX documentation. It is not necessary to run this service on all the systems in a network, and the Web server that IBM provides with this server is fairly limited in its features. These entries should be disabled or deleted from /etc/inittab.

dt:2:wait:/etc/rc.dt

The /etc/rc.dt program starts the CDE graphical window server; aside from using up valuable resources, the Common Desktop Environment has been a source of many security vulnerabilities in the past. Though there are no known issues with the latest version, unless there is a specific need for CDE, this entry should be disabled or deleted.

- 12:2:wait:/etc/rc.d/rc 2
- 13:3:wait:/etc/rc.d/rc 3
- 14:4:wait:/etc/rc.d/rc 4
- 15:5:wait:/etc/rc.d/rc 5
- 16:6:wait:/etc/rc.d/rc 6

```
17:7:wait:/etc/rc.d/rc 7
18:8:wait:/etc/rc.d/rc 8
19:9:wait:/etc/rc.d/rc 9
```

The above inittab entries were added by IBM to AIX 4.3.3 in an attempt to make AIX more friendly to administrators of Linux and Solaris systems. They provide a set of directories that application startup scripts can be placed in and be invoked upon entering a given run level, a la System-V-based Unix systems. While there are no services started by these entries by default on AIX 4.3.3, system administrators must be aware that they exist and might be used accidentally by other people with root access on the system.

Unless there are plans to use this System-V adaptation to the AIX startup process, these entries should be disabled or deleted from inittab and the directory /etc/rc.d should be deleted or renamed to prevent misunderstandings.

### An overview of /etc/rc.tcpip

The following excerpt from the /etc/rc.tcpip script indicates the services that are started or disabled in a default AIX installation.

```
echo "Starting tcpip daemons:"
trap 'echo "Finished starting tcpip daemons."' 0
# Start up dhcpcd daemon
#start /usr/sbin/dhcpcd "$src_running"
# Start up autoconf6 process
#start /usr/sbin/autoconf6 ""
# Start up ndpd-host daemon
#start /usr/sbin/ndpd-host "$src_running"
# Start up the ndpd-router daemon
#start /usr/sbin/ndpd-router "$src_running"
# Start up syslog daemon (for error and event logging)
start /usr/sbin/syslogd "$src_running"
# Start up print daemon
#start /usr/sbin/lpd "$src_running"
# Start up routing daemon (only start ONE)
#start /usr/sbin/routed "$src_running"
#start /usr/sbin/gated "$src_running"
# Start up the sendmail daemon.
qpi=30m # 30 minute interval
start /usr/lib/sendmail "$src_running" "-bd -q${qpi}"
# Start up Portmapper
start /usr/sbin/portmap "$src_running"
# Start up socket-based daemons
start /usr/sbin/inetd "$src_running"
# Start up Domain Name daemon
```

```
#start /usr/sbin/named "$src_running"
# Start up time daemon
#start /usr/sbin/timed "$src_running"
# Start up Network Time Protocol (NTP) daemon
#start /usr/sbin/xntpd "$src_running'
# Start up rwhod daemon (a time waster)
#start /usr/sbin/rwhod "$src_running"
# Start up the Simple Network Management Protocol (SNMP) daemon
start /usr/sbin/snmpd "$src_running"
# Start up the DHCP Server
#start /usr/sbin/dhcpsd "$src_running"
# Start up the DHCP Relay Agent
#start /usr/sbin/dhcprd "$src_running"
# Start up the DPID2 daemon
start /usr/sbin/dpid2 "$src_running"
# Start up the mrouted daemon
#start /usr/sbin/mrouted "$src_running"
# Start up the atm subagnet daemon muxatmd
#start /usr/sbin/muxatmd "$src_running'
/usr/lpp/x_st_mgr/bin/x_st_mgrd -b /usr/lpp/x_st_mgr/bin/x_st_mgrd.cf -s x_st_mgrd
```

Since /etc/rc.tcpip is a Korn shell script, items may be disabled by placing a pound sign (#) at the beginning of the line, or by deleting the line entirely.

### Configuring /etc/rc.tcpip

- start /usr/sbin/syslogd "\$src\_running"
   The syslog daemon provides a facility for handling messages and errors from various applications running on a system. Syslogd is started by default on AIX; this is a good thing. Unfortunately, the default configuration does not log any messages received by the daemon.
   Configuring the syslog daemon will be discussed later in this tutorial.
- start /usr/lib/sendmail "\$src\_running" "-bd -q\${qpi}" Sendmail is started in daemon mode by the /etc/rc.tcpip script; in this default configuration, the AIX system provides SMTP service with no restriction or authentication. Unless the systems administrator rectifies this unfortunate fact, the system will be used as a relay, routing tremendous amounts of spam to users throughout the Internet and incurring the wrath of the recipients of said mail. Running sendmail in a secure fashion will be discussed later in this tutorial. Until the reader is ready to address the issue of proper configuration, sendmail should be disabled by commenting out this line in rc.tcpip.
- start /usr/sbin/portmap "\$src\_running"
   The portmap daemon is responsible for reporting the port numbers in use by all Remote Procedure Call (RPC) servers running on the system.

Some common RPC servers include those involved in NFS (both client and server), and a number of items started by the inetd daemon, including rstatd, rexd, and other items of dubious value and high risk for security vulnerabilities. If after reviewing the active services in use on the system, the administrator determines that there are none that use RPC, this daemon should be commented out or deleted from the rc.tcpip script.

- start /usr/sbin/inetd "\$src\_running"

  The inetd server is the super server, responsible for listening on multiple ports and responding to requests for network services by spawning the appropriate program, as specified in the configuration file /etc/inetd.conf. A large number of the services that inetd provides in its default configuration should not be run on a system connected to a public network because of either weaknesses in the authentication and authorization methods used by the service, or because a history of security problems in the application providing the service. Proper configuration of inetd is addressed later in this tutorial. If, after reviewing the services provided by inetd, the administrator determines that there are better replacements for the items that are required for the system to function, the inetd daemon can be disabled by commenting out or deleting this entry from the rc.tcpip script.
- start /usr/sbin/snmpd "\$src running"
- start /usr/sbin/dpid2 "\$src\_running"
  The snmpd and dpid2 daemons both provide Simple Network
  Management Protocol (SNMP) services, which can be useful for
  monitoring the status of the system, but which were not designed with a
  good security model and have multiple known vulnerabilities. Unless the
  system is secured behind a firewall that restricts SNMP requests to the
  local network, both of these services should be disabled by commenting
  out or deleting their entries in rc.tcpip.

The dpid2 daemon, in particular, should always be disabled, as it is an archaic holdover from earlier SNMP developments, and no longer provides any useful service.

/usr/lpp/x\_st\_mgr/bin/x\_st\_mgrd -b
/usr/lpp/x\_st\_mgr/bin/x\_st\_mgrd.cf -s x\_st\_mgrd
The above command is added to the /etc/rc.tcpip script by the
installation of the fileset X11.x\_st\_mgr.rte, and it provides services to
IBM Xstation graphical workstations. Unless the RS/6000 is providing
these services to Xstations, this entry should be deleted from the
rc.tcpip file, and the X11.x\_st\_mgr.rte fileset should be removed
from the system.

#### An overview of /etc/inetd.conf

The following excerpt from /etc/inetd.conf lists all of the services that are active in the default installation of AIX:

```
/usr/sbin/ftpd
ftp
       stream tcp6
                       nowait root
                                                             ftpd
                      nowait root
telnet stream tcp6
                                      /usr/sbin/telnetd
                                                             telnetd -a
shell stream tcp6
                                                           rshd
                                    /usr/sbin/rshd
                     nowait root
                     nowait root
kshell stream tcp
                                     /usr/sbin/krshd
                                                            krshd
                                    /usr/sbin/rlogind
login stream tcp6
                     nowait root
                                                           rlogind
                      nowait root
                     , usr/sbin/krlog
wait root /usr/sbin/rexecd
wait root /usr/sbin/rexecd
klogin stream tcp
                                      /usr/sbin/krlogind
                                                            krlogind
exec stream tcp6
                    nowait root
                                                          rexecd
bootps dgram udp
                                     /usr/sbin/bootpd
                                                             bootpd /etc/bootptab
        dgram udp6
                       SRC
                               nobody /usr/sbin/tftpd
tftp
                                                              tftpd -n
                               root
ntalk
                       wait
                                       /usr/sbin/talkd
                                                              talkd
       dgram
               udp
       sunrpc_udp
rstatd
                                      root
                                              /usr/sbin/rpc.rstatd rstatd 100001 1-3
                       udp
                               wait
rusersd sunrpc_udp
                       udp
                               wait
                                       root
                                               /usr/lib/netsvc/rusers/rpc.rusersd rusersd
100002 1-2
                       udp
                               wait
rwalld
        sunrpc_udp
                                      root /usr/lib/netsvc/rwall/rpc.rwalld rwalld
100008 1
                                               /usr/lib/netsvc/spray/rpc.sprayd sprayd
                       udp
                               wait
sprayd
        sunrpc_udp
                                       root
100012 1
pcnfsd sunrpc_udp
                       udp
                               wait
                                     root
                                               /usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2
                       nowait root
                                       internal
echo
       stream
               tcp
discard stream
               tcp
                       nowait root
                                       internal
                       nowait root nowait root
chargen stream
                                       internal
               tcp
daytime stream tcp
                                       internal
time
       stream tcp
                       nowait root
                                       internal
echo
       dgram
               udp
                       wait
                               root
                                       internal
                              root
discard dgram
                       wait
               udp
                                      internal
chargen dgram
               udp
                       wait
                               root
                                       internal
daytime dgram
               udp
                       wait
                              root
                                      internal
                               root
time
       dgram
                       wait
                                       internal
               udp
ttdbserver
                                                       /usr/dt/bin/rpc.ttdbserver
               sunrpc_tcp
                               tcp
                                       wait
                                              root
rpc.ttdbserver 100083 1
ssalld sunrpc_tcp
                                               /usr/sbin/rpc.ssalld rpc.ssalld 300667 1
                               wait
                                       root
instsrv stream tcp
                       nowait netinst /home/netinst/bin/instsrv instsrv -r
     /tmp/netinstalllog /home/netinst/scripts
                                       /usr/dt/bin/dtspcd /usr/dt/bin/dtspcd
dtspc stream tcp nowait root
                                               /usr/dt/bin/rpc.cmsd cmsd 100068 2-5
                       udp
cmsd
       sunrpc_udp
                               wait
                                       root
```

To disable a service listed in the /etc/inetd.conf file, delete the line or place a pound sign (#) as the first character of the line. Changes to inetd.conf will not take effect until the inetd daemon is restarted by either sending a HUP signal to the PID of the process or by executing the command refresh -s inetd as root.

## Configuring /etc/inetd.conf

• ftp stream tcp6 nowait root /usr/sbin/ftpd ftpd This entry provides the FTP (File Transfer Protocol) service, enabling the uploading and downloading of files by an FTP client. In general, FTP is not considered a secure protocol as it transmits user IDs, passwords, and data in the clear, with no encryption. Secure alternatives, such as sftp-server included with OpenSSH, are available, though they require that different client programs be used.

If a more secure alternative is acceptable, or if there is no need to provide

download and upload capabilities for the system, the FTP server should be disabled by deleting or commenting out its entry in the /etc/inetd.conf file. If FTP service is required, improving the security of the service is discussed later in this tutorial.

 telnet stream tcp6 nowait root /usr/sbin/telnetd telnetd -a

The telnet service gives users the ability to log in to the system remotely, using a standard telnet client. As it is with the FTP service, the telnet protocol is inherently insecure due to its passing of user IDs, passwords and data without encryption. A common, secure alternative is the sshd component of the OpenSSH application package. If there is a need for the providing of the telnet service, some level of security can be achieved via the techniques discussed later in this tutorial.

- shell stream tcp6 nowait root /usr/sbin/rshd rshd
- kshell stream tcp nowait root /usr/sbin/krshd krshd The shell and kshell entries both provide the services for the rcp and rsh client programs. There is a large difference, though, in the security of the services provided by the different daemons. The kshell service, provided by the krshd daemon, uses Kerberos to verify the identity of the client and to authenticate the user. The shell service, however, uses an extremely weak method of authentication, and should not be enabled unless the system is not connected to a public network.

If an organization uses Kerberos, disable or delete the entry for shell, as its availability negates any benefit gained by the deployment of Kerberos. If Kerberos is not in use, the sshd component of the OpenSSH application package provides a much more secure drop-in replacement for the rshd daemon; in this case, both entries should be disabled.

- login stream tcp6 nowait root /usr/sbin/rlogind rlogind
- klogin stream tcp nowait root /usr/sbin/krlogind krlogind

As with the shell/kshell services, the login and klogin entries both provide a similar service: the ability for remote users to log in to the system without specifying a password. Again, the krlogind daemon uses Kerberos for authentication and encryption, while the standard rlogind uses the same insecure method for user authentication as the shell service, with no encryption of data passed over the network.

The login service should be disabled or deleted from inetd.conf, as the Kerberized klogin service is much more secure. If Kerberos is not in use at a Web site, disable both services and use ssh.

exec stream tcp6 nowait root /usr/sbin/rexecd rexecd
The exec service is yet another holdover from the time when networks
were friendly, and security was not a prime concern. The rexecd
daemon gives remote users the ability to run commands on the system,
with poor authentication and no encryption of passwords or data. This
entry should be disabled, as there are numerous secure alternatives for
this service.

- bootps dgram udp wait root /usr/sbin/bootpd bootpd /etc/bootptab
- tftp dgram udp6 SRC nobody /usr/sbin/tftpd tftpd -n
  The bootpd and tftpd daemons make available the ability to do
  network booting of remote systems. Unless it is required that the system
  provide this service, the bootps and tftp inetd.conf entries should
  be disabled or deleted.
- ntalk dgram udp wait root /usr/sbin/talkd talkd Similar in purpose to the writesrv service started from /etc/inittab, the talkd daemon receives messages from users on remote systems, displaying them on the terminals of local users. This daemon has been successfully exploited in the past, and should be disabled.
- rstatd sunrpc\_udp udp wait root /usr/sbin/rpc.rstatd rstatd 100001 1-3
- rusersd sunrpc\_udp udp wait root
  /usr/lib/netsvc/rusers/rpc.rusersd rusersd 100002 1-2
  The rstatd and rusersd services provide information about the system and the users; this information should not be available outside of the local network. They should both be disabled if the system is connected to a public network.
- rwalld sunrpc\_udp udp wait root /usr/lib/netsvc/rwall/rpc.rwalld rwalld 100008 1
   The rwalld daemon accepts incoming messages and writes the message to the terminals of all logged-in users. This inetd.conf entry should be disabled or deleted.
- sprayd sunrpc\_udp udp wait root /usr/lib/netsvc/spray/rpc.sprayd sprayd 100012 1
   The sprayd daemon, in conjunction with the spray command, can provide network performance statistics. It can also provide a platform for denial-of-service attacks. It should be disabled or deleted.
- pcnfsd sunrpc\_udp udp wait root /usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2

The rpc.pcnfsd daemon receives connections from Personal Computer-Network File System (PC-NFS) clients. This service primarily used for printing from desktop computers with non-Unix-based operating systems to print spools on the AIX server. There have been several vulnerabilities in this daemon, and there are more modern, secure alternatives.

Unless the environment requires the use of PC-NFS, this inetd.conf entry should be disabled.

- echo stream tcp nowait root internal
- discard stream tcp nowait root internal
- chargen stream tcp nowait root internal
- daytime stream tcp nowait root internal
- time stream tcp nowait root internal
- echo dgram udp wait root internal
- discard dgram udp wait root internal
- chargen dgram udp wait root internal
- daytime dgram udp wait root internal
- time dgram udp wait root internal
  The above services are handled internally by the inetd daemon. While
  none of the internal services have been the source of a large vulnerability,
  each entry represents another open port and an opportunity to host a
  denial-of-service attack. Therefore, disable these entries unless there is a
  specific need for the service that they provide.
- ttdbserver sunrpc\_tcp tcp wait root
   /usr/dt/bin/rpc.ttdbserver rpc.ttdbserver 100083 1
   The ToolTalk Database Server (rpc.ttbdserver) is a component of
   the Common Desktop Environment (CDE), used by AIXWindows. This
   daemon has a history of security vulnerabilities, and it should be disabled,
   as it is unlikely that a server would require the availability of CDE.
- ssalld sunrpc\_tcp tcp wait root /usr/sbin/rpc.ssalld rpc.ssalld 300667 1
  The rpc.ssalld daemon is the part of the SSA network agent for the IBM StorWatch Serial Storage Expert (StorX) application. Unless StorX is in use and is monitoring this host, the ssalld entry should be disabled or deleted from /etc/inetd.conf.
- instsrv stream tcp nowait netinst /home/netinst/bin/instsrv instsrv -r

/tmp/netinstalllog /home/netinst/scripts
The instsrv service is a part of the Network Installation Tools, useful only for providing service to RS/6000s running AIX version 3.2 or earlier. This inetd.conf entry should be disabled, and the fileset that it is associated with, boos.compt.Netinst, should be removed from the system.

- dtspc stream tcp nowait root /usr/dt/bin/dtspcd /usr/dt/bin/dtspcd
- cmsd sunrpc\_udp udp wait root /usr/dt/bin/rpc.cmsd cmsd 100068 2-5
   Both the dtspcd daemon and the rpc.cmsd daemon are part of the Common Desktop Environment. dtspc enables the launching of applications from remote hosts. The cmsd service communicates with the dtcm client calendaring application. Neither of these services should be active.

# Section 4. Securing remaining services

### The syslogd daemon

The key to ensuring that a system remains secure is by constantly monitoring messages posted by the various system daemons and other programs. Most of these programs report errors and other messages through the syslogd daemon, which is responsible for dispatching these messages based on their severity and their facility (or source). While the syslogd daemon is active by default in AIX, the configuration of syslogd does no logging of any messages it receives, silently discarding them.

### Syslogd: facilities, priorities, and destinations

The /etc/syslog.conf configuration file determines how messages from a particular source and of a set priority will be dealt with. Every system program that uses syslogd will transmit messages at a predefined facility. Those facilities are:

| kern   | kernel messages                |
|--------|--------------------------------|
| user   | various user-level programs    |
| mail   | sendmail                       |
| daemon | system daemons, including ftpd |
| auth   | authorization messages         |

| authpriv        | authorization messages whose viewing should be restricted to root |
|-----------------|-------------------------------------------------------------------|
| syslog          | messages generated internally by the syslog daemon                |
| lpr             | lpd (printer subsystem)                                           |
| news            | nntp (news) server messages                                       |
| uucp            | uucp subsystem messages                                           |
| cron            | crond messages                                                    |
| local0 - local7 | facilities available for administrator-defined use                |

Each message sent to syslogd also has a severity or priority attached to it. Those priorities, in order of severity from highest to lowest, are:

| emerg   | daemon or subsystem failure has occurred or is pending |
|---------|--------------------------------------------------------|
| alert   | immediate action is required to prevent failure        |
| crit    | a critical condition has occurred                      |
| err     | an error has occurred                                  |
| warning | a warning has occurred                                 |
| notice  | a normal, but significant event has occurred           |
| info    | informational messages                                 |
| debug   | debug-level messages                                   |

The syslogd daemon dispatches the message to a given destination, based upon the configuration in the /etc/syslogd.conf configuration file. Destinations may be:

| file name | records the message in the log file specified                                                 |
|-----------|-----------------------------------------------------------------------------------------------|
| @hostname | transmits the message to the syslogd daemon running on the specified hostname                 |
| user      | writes the message to the terminal of the specified user name                                 |
| *         | writes the message to the terminals of all logged-in users                                    |
| errlog    | transmits the message to the AIX error logging facility (errdemon) for inclusion in the errpt |

# Configuration of the syslog.conf file

There is no single correct way to configure the syslogd daemon; the administrator needs to determine a site's configuration based on the standard practices used by their organization. The following example, however, will provide a good starting point.

```
## /etc/syslog.conf
# record messages from all facilities at severity "alert" or higher in
# the AIX errlog ...
*.alert
                                   errlog
# record messages from all facilities at severity "err" or higher in
# the log file /var/adm/errorlog
*.err
                                   /var/adm/errorlog
# record messages from the "mail" facility at severity "info" or
# higher in the log file /var/adm/mail.log
mail.info
                                 /var/adm/mail.log
# record messages from the "auth" and "authpriv" facilities at
# severity "info" or higher in the log file /var/adm/auth.log
auth.authpriv.info
                                  /var/adm/auth.log
# record messages from the "daemon" facility at severity "info" or
# higher in the log file /var/adm/daemon.log
daemon.info
                                  /var/adm/daemon.log
```

The syslogd daemon will not write to a file if it does not already exist, so be sure to touch any log files that have been specified. In addition, ensure that the permissions on log files are set so that only authorized users can view their contents. After making changes to the syslog.conf file, the syslogd daemon must be restarted by typing refresh -s syslogd. It is important that the log files are pruned on a regular basis, or they will grow until the filesystem is filled up. Pruning or rotating of log files should be handled by a daily cleanup script.

## Hardening sendmail

The sendmail mail transport program has a reputation of being the swiss cheese of software, filled with exploitable vulnerabilities. In fact, the first ever advisory released by the Computer Emergency Response Team (CERT) in 1997 dealt with a problem with sendmail and ftpd.

Fortunately, current versions of sendmail have a much better track record of security, and any issues that are found are dealt with promptly by the developers of the sendmail application and by IBM. AIX 4.3.3 ships with sendmail 8.9.3 (part of the bos.net.tcp.client fileset) and while this is not the latest available version, it is stable and relatively secure.

In order to fully secure the sendmail service, several changes to the default configuration must bemade.

## Disabling the SMTP service

The first step in securing sendmail is to decide if it is even necessary to run sendmail on the particular host. Many organizations centralize their email service so that all incoming mail is routed to a small number of systems that are dedicated to receiving and routing incoming mail. If this is the case, then sendmail should not be running as a daemon on other hosts.

Sendmail is started from the file /etc/rc.tcpip; following the steps in this tutorial means automatic startup should already be disabled, by commenting out the line:

```
start /usr/lib/sendmail "$src_running" "-bd -q${qpi}"
```

in /etc/rc.tcpip. Ensure that it is not running by issuing the command lssrc -s sendmail; the output should be similar to:

```
Subsystem Group PID Status sendmail mail inoperative
```

After disabling sendmail, the host will no longer accept connections on port 25. Emails generated from this system, though, will no longer be sent to their destination; they will remain in the spool directory until the mail queue is manually processed. The following lines should be added to root's crontab file:

```
# process the outgoing mail queue twice an hour.
10,40 * * * * /usr/lib/sendmail -q > /dev/null 2>&1
```

The above cron job will invoke sendmail twice an hour, at 10 minutes and 40 minutes past the hour, in queue-processing mode. Sendmail will not accept incoming network connections in this mode, but it will go through the mail queue and dispatch any messages it finds.

### Closing the open relay

It is probably not feasible to disable incoming mail service on every system within an organization. If a system has been designated as a mail server, there are steps that can be taken to ensure that the system is not used to route mail not generated by or destined for an organization.

The default behavior of sendmail in AIX 4.3.3 permits what is known as *open relaying*. Basically, this means that the mail server will accept and process mail sent from outside an organization to addresses that are also outside thatorganization. Exploiting open relays is the most common technique used by spammers to send

email to thousands of addresses, all originating from a single mail server.

Before enabling sendmail in daemon mode (assuming it was disabled per the instructions earlier in this tutorial), the sendmail configuration file must be modified to prevent this misuse of a given system. The following steps detail the process of generating the updated sendmail.cf configuration file:

- 1. Ensure that the filesets bos.net.tcp.adt and bos.adt.base are installed.
- 2. Change the current working directory to /usr/samples/tcpip/sendmail/cf, and create a backup of the file aix433.mc.
- 3. Edit the file aix433.mc, making the changes detailed in the following table:

| divert(0)dnl                           | This line should not be changed.                                                             |
|----------------------------------------|----------------------------------------------------------------------------------------------|
| OSTYPE(aix43)dnl                       | This line contains an error; change the text within the parenthesis from $aix43$ to $aix433$ |
| FEATURE(genericstable)dnl              | This line should be deleted unless the genericstable feature is required.                    |
| FEATURE(mailertable)dnl                | This line should be deleted unless the mailertable feature is required.                      |
| FEATURE(virtualusertable)dnl           | This line should be deleted unless the virtualusertable feature is required.                 |
| FEATURE(domaintable)dnl                | This line should be deleted unless the domaintable feature is required.                      |
| FEATURE(allmasquerade)dnl              | This line should be deleted unless the allmasquerade feature is required.                    |
| FEATURE(promiscuous_relay)dnl          | Delete this line to disable open relaying.                                                   |
| FEATURE(accept_unresolvable_domains)dr | nIDelete this line to increase security.                                                     |
| FEATURE(accept_unqualified_senders)dnl | Delete this line to increase security.                                                       |
| DOMAIN(generic)dnl                     | Without an organization-specific domain.m4 file, this line should not be changed.            |
| MAILER(local)dnl                       | This line should not be changed.                                                             |
| MAILER(smtp)dnl                        | This line should not be changed.                                                             |
| MAILER(uucp)                           | This line should be deleted unless the routing of mail via UUCP is required.                 |
|                                        |                                                                                              |

After making the above changes and saving the file, the contents of the aix433.mc file should be similar to:

```
divert(0)dnl
OSTYPE(aix433)dnl
DOMAIN(generic)dnl
MAILER(local)dnl
MAILER(smtp)dnl
```

- 4. Build a new sendmail configuration file by executing the command: m4 ../m4/cf.m4 aix433.mc > /tmp/sendmail.cf.new
- 5. Often, several mail hosts will receive incoming mail for all of the other systems within the organization, through the use of mail exchange (MX) records in the domain name server configuration (DNS). If this is the case, create the file /etc/sendmail.cw and add to that file the hostname of each system for which this host will be processing incoming mail for. Note that if this host has multiple hostnames (due to aliases or multiple IP addresses), each of those names must be listed in this file as well, or mail sent to addresses at those hostnames will be bounced. If there are no hostnames in the sendmail.cw file, create the file anyway (leaving it empty), or edit the /tmp/sendmail.cf.new file and comment out with a pound sign (#) the line:

Fw/etc/sendmail.cw

6. If there are specific domains for which relaying needs to be permitted, create the directory /etc/mail, and create the file /etc/mail/relay-domains, adding the names of those domains to that file.

If there are no domains for which relaying will be permitted, edit the /tmp/sendmail.cf.new file and comment out with a pound sign (#) the line:

```
FR-o /etc/mail/relay-domains
```

7. Confirm that there are no errors in the new sendmail configuration file, by running the command:

```
endmail -C/tmp/sendmail.cf.new -bt < /dev/null
echo $?</pre>
```

If the sendmail command exited with a 0 (zero) code (reflected in the output of the echo \$? command), then the new configuration file is ready to be used.

8. Make a backup of the file /etc/sendmail.cf, and copy the file /tmp/sendmail.cf.new to /etc/sendmail.cf.

9. Start sendmail in daemon mode by running the command:

```
startsrc -s sendmail -a "-bd -q30m"
```

10. Re-enable the starting of sendmail at system boot time by removing the sendmail entry commenting in /etc/rc.tcpip.

Sendmail will no longer allow the relaying of mail from hosts outside of a domain to addresses not in that domain.

### Improving FTP security

Along with sendmail, the File Transfer Protocol (FTP) daemon is the most commonly exploited application on Unix servers. Unlike sendmail, though, vulnerabilities in the ftpd leading to complete system compromise have been found in the version included in AIX 4.3.3. For this reason (and others), unless it is absolutely necessary to offer FTP service, it should be completely disabled in /etc/inetd.conf.

If service requirements mandate the availablilty of FTP, there are a number of steps that can be taken that can reduce, if not eliminate, the risks inherent in this protocol.

- 1. Ensure that the AIX fix IY04477 is fully installed on the system by running the command instfix -ik IY04477.

  This fix closes the vulnerability that has been widely reported, as noted in the IBM Emergency Response Service Security Vulnerability Alert number ERS-SVA-E01-1999:004.1. This APAR is included in Maintenance Level (ML) 02, and so should be installed on any system not currently at this ML level.
- 2. Ensure that the user names of those accounts that are *not* permitted to use the ftp service are listed in the file /etc/ftpusers. This list (with one user name per line) should include root, as well as all of the predefined administrative accounts: daemon, bin, sys, adm, uucp, guest, nobody, lpd, invscout, imnadm, ipsec, nwroot, nwuser, nwprint, nwldap, ldap, nuucp, and netinst.

3. Modify the entry for the ftpd server in /etc/inetd.conf, adding the following arguments:

```
ftp stream tcp6 nowait root /usr/sbin/ftpd ftpd
-1 -u077
```

The -1 enables logging by the ftpd daemon, at the priority info, while the -u077 mask changes the permissions of uploaded files from the default of 027.

Providing anonymous FTP service is highly advised against. However, if this service is required, use the shell script /usr/samples/tcpip/anon.ftp (installed as part of the bos.net.tcp.client fileset) to properly set up the anonymous FTP user account and directories.

### Setting network options

Though not specific to a particular service, there are options that can be set to control how certain network protocols behave on an AIX system. These network options are displayed and set using the no command. Several of these network options should be changed from their default settings on any system that is connected to a public network (such as the Internet).

Network options need to be set at each system boot, as they do not "stick" across reboots. There is no official method of setting these options; the script below offers one possible method:

1. Create the following script and save it as /etc/rc.no.

2. Create an entry in /etc/inittab to run the above script directly after the brc entry, by manually editing the inittab file or by running the command mkitab -i brc no:2:once:"/etc/rc.no > /dev/console 2>&1"

3. Execute the rc.no command manually, so that its settings take effect for the current system environment.

## Section 5. Summary

### Reviewing the hardened system

#### Reviewing the hardened system

On the example system used for this tutorial, these changes have been made:

- In /etc/inittab:
  - The following entries were disabled: rcnetw, writesrv, httpdlite, imnss, imqss, dt, and lines I2 through I9 which referenced the System V script directories.
  - The /etc/rc.nfs script was modified to prevent the startup of the rpc.statd and rpc.lockd daemons.
  - An entry was added to execute the /etc/rc.no script, setting network options.
- In /etc/rc.tcpip:
  - The lines of the script responsible for starting the snmpd, dpid2, and x\_st\_mgrd daemons were disabled.
- In /etc/inetd.conf:
  - The following services were disabled: shell, kshell, login, klogin, exec, bootps, tftp, rstatd, rusersd, rwalld, sprayd, pcnfsd, echo, discard, chargen, daytime, time, ttdbserver, ssalld, instsrv, dtspc, and cmsd.
  - The entry for ftp was modified to invoke the ftp daemon with the arguments -1 -u077.
- Sendmail configuration was modified to prevent the open relaying of third-party mail.

As a result of those changes, the number of open ports on the system was reduced

#### significantly:

| Port Number | Protocol | Well-Known<br>Name | Daemon/ApplicStarted from  |
|-------------|----------|--------------------|----------------------------|
| 21          | tcp      | ftp                | /usr/sbin/ftpdtc/inetd.con |
| 23          | tcp      | telnet             | /usr/sbin/telnetdinetd.com |
| 25          | tcp      | smtp               | /usr/sbin/sendmailc.tcpip  |
| 111         | tcp      | sunrpc             | /usr/sbin/portemarc.tcpip  |
| 111         | udp      | sunrpc             | /usr/sbin/portemarc.tcpip  |
| 514         | udp      | syslog             | /usr/sbin/systogdrc.tcpip  |

#### Am I secure now?

Unfortunately, the answer to that question is "no". It is not enough to simply turn off some services and hope that what remains is secure. Constant monitoring of system logs and network services is required to guard against attempts at compromise and to check for signs of successful intrusion.

The steps outlined in this tutorial cover only what is possible with the tools provided by the operating system. No advantage was taken of the many open source and other free tools available. These software applications include OpenSSH, which provides secure replacements for so many of the insecure default services, and other tools like nmap, useful in determining the network footprint of a system and detecting unauthorized services that may be active.

Network security cannot be achieved by just keeping outsiders at bay. A truly safe system must have safeguards against illegitimate user activity, improper file access control, and a host of other issues. The steps outlined in this tutorial provide a necessary start to the never-ending process of developing a safe, secure, and productive computing environment.

## A footnote on network security

Within the six days that the example system used in this tutorial was up and running, there were four distinct attempts at unauthorized access. System administrators who don't believe an attack is possible are not monitoring their logs close enough.

#### Resources

- Participate in the discussion forum for this content.
- The IBM RedBooks UNIX Portal provides a wealth of information on all aspects of AIX administration. Of particular interest to those looking to improve system security is:
  - SG24-5971 Additional AIX Security Tools on IBM (e)server pSeries, IBM RS/6000, and SP/Cluster
- SecurityFocus is an excellent community news site, focusing on computer security incidents, news, and features.
- The CERT Coordination Center, provided by Carnegie Mellon University, is research and development center, concentrating on Internet security vulnerabilities and publishing security alerts affecting all computing platforms.
- In conjunction with the Federal Bureau of Investigation (FBI), the SANS Institute also publishes The Twenty Most Critical Internet Security Vulnerabilities, updated regularly as new problems spring to the forefront.
- OpenSSH is an open source implementation of the Secure Shell standard suite.
  It provides secure replacements for telnet, ftp, rsh, rlogin, and rcp, as well as a
  method of encrypting other TCP/IP network protocols transparently. OpenSSH
  should be included in every Unix distribution by default.
- Nmap is a port scanner that can be used to determine the network footprint of a system, and detect services that shouldn't be running. Nmap is an important tool in the arsenal of the security-conscious administrator.
- Nessus is a remote network security auditing tool. By scanning the hosts with nessus, administrators will know all the vulnerable spots, hopefully before the bad quys do.

### About the author

Sandor W. Sklar

Sandor W. Sklar is a Unix systems administrator at Stanford University, in beautiful Northern California. When not poking through his systems for real or imagined security holes, he enjoys spending time with his wife and two children.