
UNIX tips and tricks for a new user, Part 4: Some
nifty shell tricks
Learn the basics of scripting with these powerful techniques

Skill Level: Intermediate

Michael Stutz (stutz@dsl.org)
Author
Consultant

20 Feb 2007

When writing a shell program, you often come across some special situation that
you'd like to handle automatically. This tutorial includes examples of such situations
from small Bourne shell scripts. These situations include base conversion from one
string to another (decimal to hex, hex to decimal, decimal to octal, and so on),
reading the keyboard while in a piped loop, subshell execution, inline input, executing
a command once for each file in a directory, and multiple ways to construct a
continuous loop. Part 4 of this series wraps up with a collection of shell one-liners
that perform useful functions.

Section 1. Before you start

Learn what to expect from this tutorial and how to get the most out of it.

About this series

This series of tutorials provides a concise introduction to basic UNIX® concepts,
written for the perspective of a new user. The three previous tutorials in the series
provided a brush-up on UNIX systems geared toward new users coming from a
Microsoft® Windows® background, describing the file system and common
commands, an introduction to vi (the most ubiquitous of UNIX editors), and a quick
primer on filters and regular expressions using the grep, sed, and awk tools.

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 27

mailto:stutz@dsl.org
http://www.ibm.com/legal/copytrade.shtml

About this tutorial

This tutorial provides a collection of shell tricks and tips that are handy for new
users. It shows how to automate special situations using small scripts written in the
Bourne shell, including automatic base conversion, reading keyboard input,
executing commands in a subshell, executing commands on all the files in a
directory, and various forms of looping. The tutorial concludes with a collection of
useful shell one-liners.

Objectives

The objective of this tutorial is to show new users how to use and implement many
of the shell's methods for providing automation at various levels. It demonstrates
these methods by giving tricks and tips for special situations, and it also presents a
rundown of useful shell one-liners for common tasks.

Prerequisites

This tutorial is written for users who are relatively new to UNIX. The only
prerequisites are basic knowledge of the UNIX file system and the commands to
manipulate it, the command line itself, and editing text files with an editor, such as
vi. All of these concepts are fully described in the previous tutorials of this series.

System requirements

You need user-level access to a UNIX system with a Bourne-compatible shell
environment, such as the popular bash shell. This is the only system requirement
for this tutorial.

Section 2. Shell command execution

The best way to learn shell scripting is by example. Any command that you would
execute in a script you can try right at the command line, and that's how many of the
hands-on examples are given throughout this tutorial. For example, the echo
command writes a line of text to the standard output. (Many shells offer their own
version of echo as a built-in command, including the IBM AIX® implementation of
the Bourne shell. If that's your case, then when you run echo, it's actually your
shell's version of the command that's being run.)

Quotation

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 2 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Try outputting a short message with echo by enclosing it in quotes:

$ echo "Hello, world"
Hello, world

Shell quotation, either right at the command line or in scripts, is a means of passing
a string to the shell so that there is no ambiguity about any of the special
metacharacters that the string might contain. You use quotation when strings contain
more than a single word and to enclose a phrase containing space characters. You
also quote an individual character when it happens to be a shell metacharacter and
you want to take away its special meaning, such as when you want to pass a dollar
sign ($) as a literal dollar sign character and not the special metacharacter that
precedes a variable name.

Various expansion occurs inside quoted text. Inside of double-quoted text, for
instance, variables are expanded to their values, while literal variable names are not
expanded when referenced inside of single-quoted text.

There are three important types of quotation to know:

1. Quote a single character by preceding it with a backslash (\). This passes
the literal character and not any special meaning it might have, such as a
space character or shell metacharacter. For instance, to quote an asterisk
(*), which is a shell metacharacter, use *. To quote an actual backslash
character, use \\.

2. Pass an expanded quotation by enclosing a text string in double quotation
marks ("). The dollar sign ($) and single quotation mark (') characters
keep their meanings. So, among other things, any variable names
referenced in the quotation are replaced by their values. Backslashes that
precede a new line or certain characters ($`"\) are removed, but the
characters they quote are passed.

3. Pass a literal quotation of a text string -- passing all variable names,
metacharacters, and so on as the characters themselves and not their
meanings or values -- by enclosing the text in single quotation marks (').

Note that the exact rules of quotation differ across shells. Consult the man pages of
your particular shell to see its precise rules.

Try assigning a variable and then outputting it with various quotation styles, as
shown in Listing 1.

Listing 1. Demonstrating shell variable quotation styles with echo

$ myvar = "Hello, world"

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 27

http://www.ibm.com/legal/copytrade.shtml

$ echo $myvar
Hello, world
$ echo "$myvar"
Hello, world
$ echo '$myvar'
$myvar
$ echo \$myvar
$myvar
$ echo \'$myvar\'
'Hello, world'
$ echo "'$myvar'"
'Hello, world'
$ echo '"$myvar"'
"$myvar"
$ echo \"$myvar\"
"Hello, world"

Notice how the variable is interpreted in different ways depending on the quoting
style used.

Comments

In the shell, the hash mark (#) begins a comment line. The hash and everything that
follows it on the line is ignored. Try typing lines interspersed with comments, as
shown in Listing 2:

Listing 2. Using comments in the shell

$ # a comment does nothing
$ echo "Hello, world" # This text is ignored
Hello, world
$ echo # This will not output

$ echo 'But a hash (#) can be quoted'
But a hash (#) can be quoted
$ echo "# Even in double quotes"
Even in double quotes
$

Make a shell script

As you can see, you can work right at the command line to test these shell
programming constructs. But, when you graduate beyond one-line commands and
actually start composing longer programs, you need to write them to files called
scripts. A script is a text file that has its executable bit set and contains a program
consisting of commands in the shell language. The UNIX shell is an interpreted
language, meaning that its programs are not compiled but are read by an interpreter,
which is the shell executable itself, such as /bin/sh, /bin/bsh, or /bin/bash.

The first line of a shell script is always the same:

#!/bin/sh

This is a special comment line used by the shell itself to determine the language or

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 4 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

contents of the file. The exclamation point, often called bang in the UNIX and
typesetting idioms, followed by the path name indicates the interpreter the shell
should use to execute the file. In this case, it's /bin/sh, which on many systems is
the Bourne shell executable itself. A script written specifically for the Korn shell, for
example, might begin with the line #!/usr/bin/ksh instead, just as a Ruby script
would begin with #!/usr/bin/ruby. When bash is installed, /bin/sh is usually a
symbolic link to the bash binary. And, for compatibility, using /bin/sh is preferable
to using /bin/bash. On some systems, such as IBM AIX 5L™, the name for the
Bourne shell executable is bsh, and it's located at /usr/bin/bsh.

Listing 3 gives a short example shell script.

Listing 3. Sample shell script

#!/bin/sh
This is a shell script
message = "Hello, world!"
echo "The message is '"$message"'"

Use vi to type it in and save it to a file named myscript, as described in a previous
tutorial in this series (see Resources). Then, use chmod to make it executable by
setting execute permission on the file:

$ chmod u+x myscript

This command makes it executable only by you. If you want to let all users on the
system run it, you can always set the execute permission for all:

$ chmod a+x myscript

Now you can run it. Give the file name as it exists in relation to the current working
directory, which is specified in the path as a dot character (.):

$./myscript
The message is 'Hello, world!'
$

The shell variable PATH contains a list of directories delimited by colons. This is said
to be your path, and the shell always "sees" any files in those directories. The
purpose of the UNIX path is to make it convenient to run binary files. That's why you
just type the base file names of commands, such as ls and echo, instead of giving
their full or relative path names. If you move the script to a directory on your path,
you can just type its name to run it. The exact path depends on your UNIX
implementation and local setup, but normally the directories on the path include /bin,
/usr/bin, and /usr/local/bin.

Some users configure their shell so that the PATH variable includes the current

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 27

http://www.ibm.com/legal/copytrade.shtml

working directory, which is specified in the path as a dot character, ("."). That way,
to run a script in the current directory, you can just type its name without specifying
the relative directory. The shell searches along the path in the order given; so to
protect against trojans or accidental mishaps, it's never wise to put the current
working directory anywhere but at the end of the path.

To see your path, use echo to show the contents of the PATH variable, as shown in
Listing 4.

Listing 4. Changing the PATH

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11
$ myscript
myscript: command not found
$ PATH = $PATH":."
$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:.
$ myscript
The message is 'Hello, world!'
$

Special options or flags can follow the name of the interpreter, such as
/usr/bin/bsh -n, which is used for debugging purposes. A hyphen turns the
option off, while a plus turns the option on. The special built-in environment variable,
- (a hyphen), contains the full list of options for the current shell.

Try showing which options are set in your current interactive shell. Do this by using
echo to display the contents of the - variable:

$ echo $-
himBH
$

Consult the man page of your shell to get a current list of flags and options. Table 1
provides a list of common flags for the Bourne shell on AIX®, along with a short
description of what each one does.

Table 1. Common options for the AIX Bourne shell
Flag Description

-a Export all variables that are assigned values.

-c Variable Execute the commands read from Variable.

-e Exit immediately if a command meets one of the
following criteria: the command exits with a return
value greater than 0; the command isn't part of a
while, until, or if construction; the command
isn't being tested by AND or OR; or the command
is not a pipeline preceded by bang.

-f Disable all filename substitution.

-h Locate and remember all commands called
within the functions as the functions are defined.

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 6 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

-i Specify an interactive shell.

-k Place all keywords in the environment for the
command.

-n Read commands, but don't execute them.

-r Call a restricted shell.

-s Read commands from standard input, and write
output to standard error (excluding the output of
shell built-ins).

-t Read and execute one single command, and
then exit.

-u In scripts, treat all unset variables as errors. Exit
upon attempting variable substitution.

-v Show the input line as it's being read.

-x Show the full commands (all arguments and
options) before executing them.

Section 3. Shell arithmetic and base conversion

The shell provides for a number of basic arithmetic operations, which are useful in
scripts. The shell evaluates arithmetic expressions you give it, performing arithmetic
expansion, where it replaces the expression with its result. Give arithmetic
expressions in this form:

$((expression)

You can see arithmetic expansion at work by using echo to display the results at the
command line. Try what's shown in Listing 5 now.

Listing 5. Arithmetic expansion in the Bourne shell

$ echo $((10+40))
50
$ echo $((5*(3+3)))
30

You can also assign expansions to variables. Try what's shown in Listing 6.

Listing 6. Assigning arithmetic expansions to shell variables

$ myvar = 10
$ echo $myvar
10
$ echo $(($myvar-2))

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 27

http://www.ibm.com/legal/copytrade.shtml

8
$ myvar = $(($myvar+5))
$ echo $myvar
15
$ result = $(($myvar-10))
$ echo $result
5
$

Table 2 lists some of the valid operators that might be used between expressions in
most Bourne and Bourne-compatible shells. As in the second example above,
statements grouped in their own set of parentheses take precedence. In fact, shell
arithmetic precedence is generally determined according to the rules of the C
language.

Table 2. Shell conditionals
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

< Less than (1 if true, 0 if false)

<= Less than or equal to (1 if true, 0 if false)

> Greater than (1 if true, 0 if false)

>= Greater than or equal to (1 if true, 0 if false)

<< Left bitwise shift: shifts the given integer of the
first expression to the left by the number of bits of
the second expression

>> Right bitwise shift: shifts the given integer of the
first expression to the right by the number of bits
of the second expression

Base conversion with shell arithmetic

Say you have some number but, in your script, you need to work on it in another
base. Automating this conversion is done easily with shell arithmetic. One way is to
use shell arithmetic to convert a number from a given base to decimal. If a number is
given in an arithmetic expansion, it's assumed to be in decimal notation unless it's
prefaced by a either a zero -- in which case it's assumed to be in octal -- or 0x -- in
which case it's assumed to be in hexadecimal. Type the following to get decimal
output for some octal and hex values:

$ echo $((013))
$ echo $((0xA4))

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 8 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

You can also specify any arbitrary base between 2 and 64 with the following format:

$((BASE#NUMBER))

Try converting numbers in binary, octal, hex, and other bases to decimal by typing
the lines shown in Listing 7 at the shell prompt.

Listing 7. Outputting numbers in arbitrary bases in the shell

echo $((2#1101010))
echo $((8#377))
echo $((16#D8))
echo $((12#10))
echo $((36#ZZYY))

Base conversion using bc

Another trick for doing base conversion in the shell is to use bc, the arbitrary
precision calculator language, which is available on most UNIX installations.
Because it lets you specify an output base, this is a good technique for when you
need output in something other than decimal.

The special bc variables, ibase and obase, contain the value of the base used for
input and output, respectively. By default, both are set to 10. To perform base
conversion, convert one or both of them, and then give it a number. Try it now, as
shown in Listing 8.

Listing 8. Performing base conversion with bc

$ bc -ql
10

10
obase=16

10
A
ibase=2

10
2

Control-D

$

To do a quick base conversion, use bc in conjunction with echo to make a quick
one-liner, piping the given values to bc. Type what's shown in Listing 9.

Listing 9. Shell one-liners for bc

$ echo 'obase=16; 47' | bc
2F
$ echo 'obase=10; ibase=16; A03' | bc
2563
$

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 27

http://www.ibm.com/legal/copytrade.shtml

A note of caution: After you set the input base in bc, all numbers you input to bc
after that are taken in that base, including any number you give to set the output
base. So it's better to set the output base first or you might get unexpected results,
as shown in Listing 10.

Listing 10. Precedence matters when setting the input and output base

$ echo 'ibase=16; obase=10; A' | bc
A
$ echo 'ibase=16; obase=A; A' | bc
10
$

Section 4. Inline input

While the echo trick to pipe to an interactive command, such as bc, makes for a
quick one-liner at the command line, it isn't practical for multiple-line input, such as
when the contents of an actual file might be used. But there's another useful way to
do this. The shell has a facility called here documents, or inline input, which is a
great way to construct a file on the fly, such as inside of a script, and redirect the
contents of this file to a command.

Specify a here document using the shell << operator and follow it on the same line
with a limit string, which is the string that marks the termination of input and can be
any text you choose, so long as it's a single word without space characters. Follow
this with the lines of input that constitute your input file, and terminate the input with
the limit string on a line of its own -- it can't have any text before or after it, or that
line is considered to be part of the input. Try it with cat, as shown in Listing 11.

Listing 11. Making a here document

$ cat << END
> END of input text
> ENDspace

> This is still not the END
> ENDING SOON
> THE END
> END
END of input text
END
This is still not the END
ENDING SOON
THE END
$

The limit string, in this case END, can appear anywhere in the input -- only when it
appears on a line of its own with no spaces or other characters does it function as

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 10 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the termination of input.

Inline input in scripts

Inline input is often used in scripts to output usage information to standard output.
This is normally done by sending a here document to cat, as in the script in Listing
12. Use vi to type it in and save it to a file named baseconv, and make the file
executable (see the Make a shell script section).

Listing 12. Using a here document to give shell script usage information

#!/bin/sh
cat << EOF
baseconv is a program to convert a number from one base to another.

Usage: baseconv [options]

Options:

-i BASE input base
-o BASE output base
-h display this message

For more information, consult the baseconv man page.
EOF

When the script is executed, the contents of the here document is sent (using cat)
to the standard output. Try it now, as shown in Listing 13.

Listing 13. Output of shell script usage information from a here document

$ baseconv
baseconv is a program to convert a number from one base to another.

Usage: baseconv [options]

Options:

-i BASE input base
-o BASE output base
-h display this message

For more information, consult the baseconv man page.
$

Additionally, most implementations of the Bourne shell recognize inline input
redirected with the optional hyphen character. The optional hyphen character
removes all leading tab characters from the beginning of all input lines, as well as
the line containing the limit string itself. This is helpful when writing scripts where you
want to keep the current indentation. Because inline input is normally taken literally
and the limit string has to be given at the beginning of the line, the input would break
your current indentation and make the script look unsightly. Thus, you can rewrite
the script in Listing 12 to match Listing 14, and the output will be identical.

Listing 14. A shell script here document with leading indentation

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 27

http://www.ibm.com/legal/copytrade.shtml

#!/bin/sh

cat <<- EOF
baseconv is a program to convert a number from one base to another.

Usage: baseconv [options]

Options:

-i BASE input base
-o BASE output base
-h display this message

For more information, consult the baseconv man page.
EOF

Inline input at the command line

At the command line, inline input is used with one-liners that call an interactive
program, such as the bc calculator discussed in the Base conversion using bc
section. You can use a here document to substitute a real file, or any number of
lines of real input, for any interactive command.

Try sending multi-line input to bc with a here document. Type what's shown in
Listing 15.

Listing 15. Sending inline input to an interactive program

$ bc << EOF
> ibase=16
> A
> EOF
10
$

Variables are normally expanded with inline input. Try what's shown in Listing 16.

Listing 16. How variable expansion occurs in inline input

$ BASECON=16
$ bc << EOF
> ibase=16
> $BASECON
> EOF
22
$

Section 5. Subshell execution

A command or list of commands can be executed in a new shell called a subshell,

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 12 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

whose parent is the current shell. Subshells take the environment of their parent. I/O
redirection can occur between the child and parent shells, but the subshell can never
modify the parent environment. This is desirable when you want to change the shell
environment for the execution of those commands, such as by setting variables, but
you do not want to change the environment that the script itself is running in. It's also
desirable to run subshells when you want to have multiple, long-running processes
started and running in the background at the same time. A shell can spawn multiple
subshells, and subshells, in turn, can recursively spawn any number of their own
subshells. Figure 1 illustrates the process.

Figure 1. How a subshell interacts with its parent shell

The shell sometimes automatically spawns subshells of its own, such as when
built-ins are used on a pipeline. When in a subshell, the shell $ parameter expands
to the process ID (PID) of the parent shell, never of the subshell.

Running commands in a subshell

To run a group of commands in a subshell, enclose them in parentheses. You can
use redirection to send input to the subshell's standard input or to send its collective
output to a file or a pipeline.

Try typing what's shown in Listing 17 in your home directory. It creates an example
directory and some test files, provided that you don't already have a directory named
example.

Listing 17. Making a group of files in a subshell

$ pwd
/home/user
$ (mkdir example; cd example; touch A B C)

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 27

http://www.ibm.com/legal/copytrade.shtml

$ pwd
/home/user
$ cd example; ls
A B C
$ pwd
/home/user/example
$

In this example, the shell spawns a subshell that runs in the background, making the
example directory and using touch to create three dummy files in that directory.
Meanwhile, the shell returns to the prompt in your home directory.

Subshells are convenient both at the command line and in scripts when you have a
group of commands that take a long time to execute. To keep your shell free, you
can run it in the background, or run many of them in the background:

(group-of-long-running-commands) &
(another-group-of-long-running-commands) &
(yet-another-group-of-long-running-commands) &

Subshells and variables

It's important to understand how variables work with subshells. Since the subshell
environment is a duplicate of its parent, it inherits all of the variables of the parent.
But the parent shell never sees any changes that are made in the subshell
environment, and the subshell, in turn, never sees any changes that are made in the
parent after the subshell is spawned.

As an example, use the vi editor to save the script in Listing 18 to a file in your
home directory named vartest, and make it executable (see the Make a shell script
section).

Listing 18. Shell script demonstrating variable behavior in subshells

#!/bin/sh
Demonstrates variable behavior in a subshell environment

VAR=10

echo "VAR is" $VAR

(

echo "In the subshell, VAR is still" $VAR

VAR=$(($VAR+5))

echo "The new value of VAR in the subshell is" $VAR

)

echo "Outside of the subshell, VAR is" $VAR

Now try executing the script by typing its name, as shown in Listing 19.

Listing 19. Output of the vartest script

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 14 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

$ vartest
VAR is 10
In the subshell, VAR is still 10
The new value of VAR in the subshell is 15
Outside of the subshell, VAR is 10
$

Section 6. Continuous loops

Now it's time to look at loops, which let you perform iterative tasks, such as
performing some action or command on a group of files. The shell has several
methods for constructing loops.

Make a for loop

The most common loop construction is the for loop. It begins by defining a variable
that names the loop, gives a list of members, which can be any word, including
integers and file names, and then gives the commands to be executed in each
iteration. Each of the commands is terminated by a semicolon character (;), and the
entire grouping is enclosed by the words do and done. Its structure is described in
Listing 20.

Listing 20. Structure of a shell for loop

for loopname in members

do

command;
command;
...
command;

done

In the first iteration of the loop, the loopname variable takes the value of the first
member. Then loopname's value is replaced by the value of the next member in the
list, and it continues this iteration until there are no more members.

In most shells, the do and done can be replaced by curly brackets, as shown in
Listing 21.

Listing 21. Alternate structure of a shell for loop

for loopname in members

{

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 27

http://www.ibm.com/legal/copytrade.shtml

command;
command;
...
command;

}

Type the text from Listing 22 to run a simple loop with three members:

Listing 22. Changing the value of a variable with a loop

$ for i in 1 2 3
> {
> VAR = $(($VAR+$i))
> echo $i:$VAR
> }
1:1
2:3
3:6
$

Execute commands on each file in a directory

You can use loops to execute a command or group of commands on a given set of
files. If you give the names of the files as the members of a for loop, the loop
operates on each of those files in the order that you give them. You can give the
same file twice and the loop operates on it in turn. Try it in your example directory
using the text from Listing 23.

Listing 23. Constructing a loop with a list of files

$ cd ~/example
$ ls
A B C
$ for file in C B B C
> {
> echo $file
> }
C
B
B
C
$

To perform an operation on every file in a directory, use an asterisk (*) as the sole
member of the loop, as shown in Listing 24. The shell expands it to all the files in the
directory. Then, for the commands inside the loop that you wish to operate on all of
the files, use the loopname variable as the proper argument or option.

Listing 24. Executing a command on all files in a directory

$ ls
A B C
$ for file in *
> {
> mv $file $((0x$file))

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 16 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

> }
$

If you've been running all of the examples in this tutorial, the contents of your
example directory should be changed:

$ ls
10 11 12
$

What happened was the mv command in the loop changed the name of the file from
a hexadecimal value (constructed by inserting 0x to the beginning of the name) to its
decimal equivalent.

Make a while loop

You can make a loop that runs for as long as some condition is true. Do this with the
while conditional, whose format is described in Listing 25.

Listing 25. Structure of a shell while loop

while [condition]; do

command;
command;
...
command;

done

In the loop, a condition can be a statement built with an operator (see Table 3), or it
can be as simple as a variable name. As long as the value is non-zero, it's true.

Table 3. Common shell operators
Operator Description

-eq Equal to

-ne Not equal to

-lt Less than

-le Less than or equal to

-gt Greater than

-ge Greater than or equal to

There are a few notes of caution to keep in mind when constructing while loops.
First, there must always be whitespace between the condition and its surrounding
brackets. Second, if a variable is used for a numeric comparison in the condition, the
variable must be defined first, before the while statement.

Type the text from Listing 26 to execute a short while loop:

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 27

http://www.ibm.com/legal/copytrade.shtml

Listing 26. Changing a variable with a while loop

$ VAR=0
$ while [$VAR -lt 10]; do
> echo $VAR;
> VAR=$(($VAR+1));
> done
0
1
2
3
4
5
6
7
8
9
$

Make an until loop

The until conditional is similar to while and uses the same operators, but it does
the opposite. It only executes the loop if the condition is false, and the loop
continues to iterate until the given condition becomes true. Its format is described in
Listing 27.

Listing 27. Structure of a shell until loop

until [condition] ; do

command;
command;
...
command;

done

Try running a short until loop by typing the text from Listing 28:

Listing 28. Changing a variable with an until loop

$ VAR=10
$ until [$VAR -eq 0]; do
> echo $VAR;
> VAR=$(($VAR-1));
> done
10
9
8
7
6
5
4
3
2
1
$

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 18 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Nest multiple loops

You can nest loops and combine the various types of loops to perform assorted
complex operations. Since the elements of a for loop need not be numeric nor in
any kind of chronological order, you might use command names to be later executed
as commands in some inner loop, such as printf, echo, stop, resume, and so
on.

Try running the sample in Listing 29. It's an until loop that performs arithmetic
substitution while nested in a for loop whose loop words are not in numeric order.

Listing 29. Arithmetic substitution with nested loops

$ for i in 250 100 2136 875
> {
> VAR=10;
> until [$VAR -eq 0]; do
> echo "$i / $VAR = $(($i/$VAR)) $i * $VAR = $(($i*$VAR))\

$i + $VAR = $(($i+$VAR)) $i - $VAR = $(($i-$VAR))";
> VAR=$(($VAR-1);
> done;
> }
250 / 10 = 25 250 * 10 = 2500 250 + 10 = 260 250 - 10 = 240
250 / 9 = 27 250 * 9 = 2250 250 + 9 = 259 250 - 9 = 241
250 / 8 = 31 250 * 8 = 2000 250 + 8 = 258 250 - 8 = 242
250 / 7 = 35 250 * 7 = 1750 250 + 7 = 257 250 - 7 = 243
250 / 6 = 41 250 * 6 = 1500 250 + 6 = 256 250 - 6 = 244
250 / 5 = 50 250 * 5 = 1250 250 + 5 = 255 250 - 5 = 245
250 / 4 = 62 250 * 4 = 1000 250 + 4 = 254 250 - 4 = 246
250 / 3 = 83 250 * 3 = 750 250 + 3 = 253 250 - 3 = 247
250 / 2 = 125 250 * 2 = 500 250 + 2 = 252 250 - 2 = 248
250 / 1 = 250 250 * 1 = 250 250 + 1 = 251 250 - 1 = 249
100 / 10 = 10 100 * 10 = 1000 100 + 10 = 110 100 - 10 = 90
100 / 9 = 11 100 * 9 = 900 100 + 9 = 109 100 - 9 = 91
100 / 8 = 12 100 * 8 = 800 100 + 8 = 108 100 - 8 = 92
100 / 7 = 14 100 * 7 = 700 100 + 7 = 107 100 - 7 = 93
100 / 6 = 16 100 * 6 = 600 100 + 6 = 106 100 - 6 = 94
100 / 5 = 20 100 * 5 = 500 100 + 5 = 105 100 - 5 = 95
100 / 4 = 25 100 * 4 = 400 100 + 4 = 104 100 - 4 = 96
100 / 3 = 33 100 * 3 = 300 100 + 3 = 103 100 - 3 = 97
100 / 2 = 50 100 * 2 = 200 100 + 2 = 102 100 - 2 = 98
100 / 1 = 100 100 * 1 = 100 100 + 1 = 101 100 - 1 = 99
2136 / 10 = 213 2136 * 10 = 21360 2136 + 10 = 2146 2136 - 10 = 2126
2136 / 9 = 237 2136 * 9 = 19224 2136 + 9 = 2145 2136 - 9 = 2127
2136 / 8 = 267 2136 * 8 = 17088 2136 + 8 = 2144 2136 - 8 = 2128
2136 / 7 = 305 2136 * 7 = 14952 2136 + 7 = 2143 2136 - 7 = 2129
2136 / 6 = 356 2136 * 6 = 12816 2136 + 6 = 2142 2136 - 6 = 2130
2136 / 5 = 427 2136 * 5 = 10680 2136 + 5 = 2141 2136 - 5 = 2131
2136 / 4 = 534 2136 * 4 = 8544 2136 + 4 = 2140 2136 - 4 = 2132
2136 / 3 = 712 2136 * 3 = 6408 2136 + 3 = 2139 2136 - 3 = 2133
2136 / 2 = 1068 2136 * 2 = 4272 2136 + 2 = 2138 2136 - 2 = 2134
2136 / 1 = 2136 2136 * 1 = 2136 2136 + 1 = 2137 2136 - 1 = 2135
875 / 10 = 87 875 * 10 = 8750 875 + 10 = 885 875 - 10 = 865
875 / 9 = 97 875 * 9 = 7875 875 + 9 = 884 875 - 9 = 866
875 / 8 = 109 875 * 8 = 7000 875 + 8 = 883 875 - 8 = 867
875 / 7 = 125 875 * 7 = 6125 875 + 7 = 882 875 - 7 = 868
875 / 6 = 145 875 * 6 = 5250 875 + 6 = 881 875 - 6 = 869
875 / 5 = 175 875 * 5 = 4375 875 + 5 = 880 875 - 5 = 870
875 / 4 = 218 875 * 4 = 3500 875 + 4 = 879 875 - 4 = 871
875 / 3 = 291 875 * 3 = 2625 875 + 3 = 878 875 - 3 = 872
875 / 2 = 437 875 * 2 = 1750 875 + 2 = 877 875 - 2 = 873
875 / 1 = 875 875 * 1 = 875 875 + 1 = 876 875 - 1 = 874
$

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 27

http://www.ibm.com/legal/copytrade.shtml

Section 7. Reading keyboard input

You can also read keyboard input in your scripts or from the command line itself.
This is accomplished with the read command, which is a built-in function that takes
any number of variable names as arguments. It reads values into the variables from
the standard input, reading in a single line of input and assigning each input word to
each variable.

Try reading a variable, as shown in Listing 30:

Listing 30. Reading a variable with read

$ read VAR
23

$ echo $VAR
23
$

Use the -p option to give a prompt for each read. Give the prompt as a string
enclosed in quotes, as shown in Listing 31. Variable expansion occurs.

Listing 31. Using a prompt with a variable read

$ read -p "Instead of $VAR, what number would you like? " VAR
Instead of 23, what number would you like? 17
$ echo $VAR
17
$

If there are more words in the keyboard input than there are variables, the variables
are assigned the input words in turn until reaching the last variable, which is then
assigned the remainder of the input line. (If fewer words are given in the input than
variables, then variables are assigned values until all of the input is assigned, after
which all remaining variables are given null values.)

Reading in loops

You can use read as a conditional in a loop. Try it now using Listing 32:

Listing 32. Reading a list of file names in a loop

$ while read -p "File? " file; do ls $file; done
File? 10
10
File? 12
12
File? 42

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 20 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

42: no such file or directory
File?

Carriage return

10 11 12
File?

Control-C

$

This technique is often used when the input to the loop is piped. Try typing the text
from Listing 33, which replaces the output of the ls command with a loop:

Listing 33. Reading from a pipeline

$ ls | while read file; do ls $file; done
10
11
12
$

You can also operate on the variable over multiple lines, such as sending a
message to standard output and also performing shell arithmetic on the loopname
variable (see the Shell arithmetic and base conversion section). Try the example
provided in Listing 34:

Listing 34. A longer loop with a piped read

$ ls | while read file; do echo "The file is " `ls -i $file`; \
echo "If the number were in hex, the value would be $((16#$file))"; done
The file is 100267120 10
If the number were in hex, the value would be 16
The file is 100267121 11
If the number were in hex, the value would be 17
The file is 100267122 12
If the number were in hex, the value would be 18
$

You can read multiple values in one piped read, as shown in Listing 35.

Listing 35. Reading multiple variables from a pipeline

$ ls -i | while read inode file; do \
echo "File $file has inode $inode"; done

File 10 has inode 100267120
File 11 has inode 100267121
File 12 has inode 100267122
$

Section 8. Putting it all together

This concluding section combines the various tricks and techniques you've just

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 27

http://www.ibm.com/legal/copytrade.shtml

learned for some useful, real-life one-liners. It also includes a simple shell script that
performs arbitrary base conversion.

Useful one-liners

The following examples are sample shell one-liners that perform useful functions. All
of them consist of various constructions described in this tutorial.

• Take a group of files in the current directory that are exactly two
characters long and rename them with a .ppm extension:

for i in ??; { mv $i $i.ppm; }

• Copy an entire directory tree using tar and subshells while keeping all of
the same file permissions:

(cd source ; tar pcf - *) | (cd target ; tar pxvf -)

• Read a binary number and output the value in decimal:

read BINLOC;echo $((2#$BINLOC))

• Find all of the files in the /usr/local directory tree that have an .mp3
extension -- these files might have space characters in their name -- and
compress them with the bzip2 utility:

find /usr/local -name "*.mp3" | while read name ; do bzip2 $name; done

• Output all the decimal numbers in a given file to their hexadecimal value:

cat file | while read number ; do echo $((0x$number)); done

• Convert all the decimal numbers in a given file to their hexadecimal value
and output them to a new file with a .hex extension:

cat file | while read number ; do echo $((0x$number)) >> file.hex; done

• Make ten iterations of a loop, running command with the number (from 0
to 90 in increments of ten) passed as an argument:

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 22 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

i=0; while [$i -ne 100]; do command $i; i=$(($i+10)); done

A sample script: convert numbers to another base

Some of the various tricks discussed in this tutorial are combined together in Listing
36. It's a simple script, baseconv, that converts numbers from a given input base to
an output base. Give it the values for the input and output bases as arguments, and
it reads numbers from the keyboard input until it gets a number of 0.

Listing 36. A simple script to convert bases

#!/bin/sh
baseconv, convert numbers from one base to another.
#

NUMBER=1
while [$NUMBER]; do

read -p "Input base: " IN
read -p "Output base: " OUT
read -p "Number: " NUMBER
bc -ql <<- EOF

obase=$OUT
ibase=$IN
$NUMBER
EOF

done

When you have it in an executable file (see the Make a shell script section), try
running it, as shown in Listing 37:

Listing 37. Output of the baseconv script

$./baseconv
Input base: 10
Output base: 16
Number: 33
21
Input base: 2
Output base: 1100
Number: 101
5
Input base: 16
Output base: A
Number: ACA
2762
Input base: 10
Output base: 10
Number:

Carriage return

$

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 27

http://www.ibm.com/legal/copytrade.shtml

Section 9. Conclusion

Wrap-up

Whew! This tutorial sure has covered a lot of ground, sweeping you through a
whirlwind tour of many basic shell programming concepts. While taking this tutorial,
you learned many core concepts of shell programming: continuous loops, inline
input, reading keyboard input, base conversion, and subshell execution. You also
learned how shell code snippets can be run as one-liners right from a shell prompt
and how to put them together in a file as an executable script. These are some of
the most important shell scripting concepts you can learn. If you use what you
learned in this tutorial along with what you learned in the previous tutorials in this
series, you're well on your way to becoming a UNIX pro.

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 24 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• UNIX tips and tricks for a new user: Check out other parts in this series.

• "Working in the bash shell" (developerWorks, May 2006): A step-by-step tutorial
that describes the features of bash.

• "Learn 10 good UNIX usage habits" (developerWorks, December 2006): This
article gives examples of good usage habits in the shell, including hints on
quoting variables and running subshells.

• AIX documentation: Read this documentation on inline input.

• "Produce device-independent documentation with Groff" (developerWorks, June
2006): This tutorial uses inline input to show how to process input documents
with the Groff typesetting system.

• Check out other articles and tutorials written by Michael Stutz:

• AIX and UNIX zone

• Across developerWorks

• Search the AIX and UNIX library by topic:

• System administration

• Application development

• Performance

• Porting

• Security

• Tips

• Tools and utilities

• Java™ technology

• Linux®

• Open source

• AIX and UNIX: The AIX and UNIX developerWorks zone provides a wealth of
information relating to all aspects of AIX systems administration and expanding
your UNIX skills.

• New to AIX and UNIX: Visit the New to AIX and UNIX page to learn more about
AIX and UNIX.

• AIX 5L Wiki: A collaborative environment for technical information related to
AIX.

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 27

http://www.ibm.com/developerworks/views/aix/libraryview.jsp?search_by=UNIX+tips+and+tricks+for+a+new+user
http://www.ibm.com/developerworks/edu/au-dw-au-bash-i.html
http://www.ibm.com/developerworks/aix/library/au-badunixhabits.html
http://www.ibm.com/developerworks/aix/library/au-badunixhabits.html#four
http://www.ibm.com/developerworks/aix/library/au-badunixhabits.html#six
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.baseadmn/doc/baseadmndita/redir_output_inline.htm
http://www.ibm.com/developerworks/edu/au-dw-au-groff-i.html
http://www.ibm.com/developerworks/apps/SendTo?author=aixmichaelstutz
http://www.ibm.com/developerworks/search/searchResults.jsp?searchType=1&searchSite=dW&searchScope=dW&query=michael+stutz
http://www.ibm.com/developerworks/apps/SendTo?aix=aixsystemadmin
http://www.ibm.com/developerworks/apps/SendTo?aix=aixappdev
http://www.ibm.com/developerworks/apps/SendTo?aix=aixperform
http://www.ibm.com/developerworks/apps/SendTo?aix=aixporting
http://www.ibm.com/developerworks/apps/SendTo?aix=aixsecurity
http://www.ibm.com/developerworks/apps/SendTo?aix=aixtips
http://www.ibm.com/developerworks/apps/SendTo?aix=aixtoolsandutilities
http://www.ibm.com/developerworks/apps/SendTo?aix=aixjava
http://www.ibm.com/developerworks/apps/SendTo?aix=aixlinux
http://www.ibm.com/developerworks/apps/SendTo?aix=aixopensource
http://www.ibm.com/developerworks/apps/SendTo?aix=aixzone
http://www.ibm.com/developerworks/apps/SendTo?aix=aixnewto
http://www.ibm.com/developerworks/apps/SendTo?aix=aix5lwiki
http://www.ibm.com/legal/copytrade.shtml

• Safari bookstore: Visit this e-reference library to find specific technical
resources.

• developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

• Podcasts: Tune in and catch up with IBM technical experts.

Get products and technologies

• IBM trial software: Build your next development project with software for
download directly from developerWorks.

Discuss

• Participate in the developerWorks blogs and get involved in the developerWorks
community.

• Participate in the AIX and UNIX forums:

• AIX 5L -- technical forum

• AIX for Developers Forum

• Cluster Systems Management

• IBM Support Assistant

• Performance Tools -- technical

• Virtualization -- technical

• More AIX and UNIX forums

About the author

Michael Stutz
Michael Stutz is author of The Linux Cookbook , which he also designed and typeset
using only open source software. His research interests include digital publishing and
the future of the book. He has used various UNIX operating systems for 20 years.
You can reach Michael at stutz@dsl.org.

Trademarks

IBM, AIX, and AIX 5L are registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.
Linux is a registered trademark of Linus Torvalds in the United States, other

developerWorks® ibm.com/developerWorks

Some nifty shell tricks
Page 26 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/apps/SendTo?community=aixdwtecheventsart
http://www.ibm.com/developerworks/apps/SendTo?community=dwpodcasts
http://www.ibm.com/developerworks/apps/SendTo?downloads=aixdownloadsart
http://www.ibm.com/developerworks/apps/SendTo?community=dwblogs
http://www.ibm.com/developerworks/apps/SendTo?forums=aix5l
http://www.ibm.com/developerworks/apps/SendTo?forums=aix4developers
http://www.ibm.com/developerworks/apps/SendTo?forums=cluster
http://www.ibm.com/developerworks/apps/SendTo?forums=assistant
http://www.ibm.com/developerworks/apps/SendTo?forums=performancetools
http://www.ibm.com/developerworks/apps/SendTo?forums=virtualization
http://www.ibm.com/developerworks/apps/SendTo?forums=more
http://dsl.org
stutz@dsl.org?Subject=developerWorks
http://www.ibm.com/legal/copytrade.shtml

countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.

ibm.com/developerWorks developerWorks®

Some nifty shell tricks
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 27

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Shell command execution
	Quotation
	Comments
	Make a shell script

	Shell arithmetic and base conversion
	Base conversion with shell arithmetic
	Base conversion using bc

	Inline input
	Inline input in scripts
	Inline input at the command line

	Subshell execution
	Running commands in a subshell
	Subshells and variables

	Continuous loops
	Make a for loop
	Execute commands on each file in a directory
	Make a while loop
	Make an until loop
	Nest multiple loops

	Reading keyboard input
	Reading in loops

	Putting it all together
	Useful one-liners
	A sample script: convert numbers to another base

	Conclusion
	Wrap-up

	Resources
	About the author
	Trademarks

