
AIX Storage Management

Document Number GG24-4484-00

October 24, 1994

International Technical Support Organization
Austin Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (October 24, 1994)

This edition applies to the AIX Version 3.2 operating system, and where applicable to AIX Version 4.1.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 632B Building 821 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document provides a general introduction to storage management using AIX
on the RISC System/6000. Concepts and terminology are covered before
describing in more detail the operating system components: the Logical Volume
Manager, and file systems. Using this foundation, it then describes the additional
features and functions provided with AIX Version 4; useful commands are also
detailed, as well as a guide to designing storage subsystems. In order to
illustrate the topics covered, and provide examples of common practical
application, a section containing detailed step by step information on a variety of
storage management tasks is included.

This document is intended for customers and systems engineers who require a
more detailed understanding of storage management with AIX on the RISC
System/6000, particularly the additional features provided with AIX Version 4,
and who wish to have access to practical examples. Some knowledge of AIX
Version 3 is assumed.

(367 pages)

 Copyright IBM Corp. 1994 iii

iv AIX Storage Management

Contents

Abstract . i i i

Special Notices . xii i

Preface . xv
How This Document is Organized . xv
Related Publications . xvii
International Technical Support Organization Publications xvii
Acknowledgments . xviii

Chapter 1. Storage Management Related Concepts 1
1.1 Overview . 1

1.1.1 General Concepts . 1
1.1.2 Hardware Concepts . 3
1.1.3 Software Concepts . 6

1.2 Storage Management . 8
1.2.1 Hardware Management . 8
1.2.2 Software Management . 12

1.3 Summary . 15

Chapter 2. Hardware Storage Components . 17
2.1 Selecting the Hardware Components . 17

2.1.1 Points to Consider . 17
2.1.2 How to Make the Decision . 18

2.2 Selecting the Physical Hardware Devices 22
2.2.1 Hardware Attachment Adapters . 22
2.2.2 Disk Storage . 25
2.2.3 Tape Storage . 34
2.2.4 Optical Storage . 40

2.3 Summary . 44

Chapter 3. Operating System Software Components 47
3.1 The Operating System . 47

3.1.1 Page Space . 47
3.1.2 Device Drivers . 51
3.1.3 Logical Volume Manager . 51
3.1.4 File Systems . 58

3.2 Higher Level Tools . 64
3.2.1 Backup/Restore . 64
3.2.2 Hierarchical Storage Management . 65
3.2.3 Media Management . 66

3.3 Summary . 66

Chapter 4. AIX Version 4 Storage Management Enhancements 69
4.1 Fragmentation . 69

4.1.1 Disk Space Allocation . 71
4.1.2 Free Space Fragmentation . 72
4.1.3 Fragment Allocation Map . 72

4.2 Compression . 72
4.2.1 Implementation of Data Compression 73
4.2.2 Compression Algorithm . 73

 Copyright IBM Corp. 1994 v

4.3 Disk Striping . 74
4.3.1 Usage Implications . 76

4.4 Using Page Space for System Dumps . 76
4.5 Variable I-nodes . 77
4.6 File System Maximum Size Increase . 77

4.6.1 JFS Log Considerations . 78
4.7 Summary . 78

Chapter 5. Storage Subsystem Design . 79
5.1 Introduction . 79
5.2 Planning Disk Utilization . 79

5.2.1 Volume Groups . 79
5.2.2 Physical Volumes . 80
5.2.3 Logical Volumes . 81
5.2.4 File Systems . 81

5.3 Planning for Performance . 82
5.4 Planning for Availability . 86
5.5 Planning Backup Strategies . 89

5.5.1 Backup Overview . 89
5.5.2 Backup Planning . 90
5.5.3 Backup Methods . 91
5.5.4 Backup Media . 91

5.6 Summary . 92

Chapter 6. General AIX Storage Management 95
6.1 Introduction . 95
6.2 Managing Physical Volumes . 95

6.2.1 Configuration of Physical Volumes . 96
6.2.2 Modifying Physical Volume Characteristics 96
6.2.3 Removing Physical Volumes . 97
6.2.4 Monitoring Physical Volumes . 98
6.2.5 Listing Information about Physical Volumes 99

6.3 Managing Volume Groups . 103
6.3.1 Adding a Volume Group . 103
6.3.2 Modifying Volume Group Characteristics 104
6.3.3 Importing and Exporting a Volume Group 106
6.3.4 Varying On and Varying Off Volume Groups 108
6.3.5 Monitoring Volume Groups . 109

6.4 Managing Logical Volumes . 113
6.4.1 Adding a Logical Volume . 114
6.4.2 Removing a Logical Volume . 114
6.4.3 Increasing the Size of a Logical Volume 115
6.4.4 Copying a Logical Volume . 116
6.4.5 Migrating and Reorganizing Logical Volumes 116
6.4.6 Listing a Logical Volume . 117
6.4.7 Listing a Summary of a Logical Volume Allocation 118
6.4.8 Reading the VGDA on a Physical Volume 119

6.5 Managing the Storage Environment . 119
6.5.1 Disk Space and Performance/Availability Management 120
6.5.2 Backup and Restore Management . 127

6.6 Summary . 135

Chapter 7. Storage Management Files and Commands Summary 139
7.1 How to Understand and Use this Chapter 139

7.1.1 Major AIX Version 4 Filesets Relevant to Storage Management . . 140

vi AIX Storage Management

7.2 Common Storage Management Commands Using AIX Version 3 Syntax 141
7.2.1 Using Logical Volume Manager Files 141
7.2.2 Using File System Administration Commands 151
7.2.3 Using System Backup and BOS Installation Utilities 154
7.2.4 Using Archive Commands . 155
7.2.5 Using Other Fileset Commands . 159

7.3 AIX Version 4 Specific File Features . 159
7.3.1 Using Logical Volume Manager Files in an AIX Version 4

Environment . 159
7.3.2 Using File System Administration Commands in an AIX Version 4

Environment . 161
7.3.3 Using System Backup and BOS Installation Utilities in an AIX

Version 4 Environment . 162
7.3.4 Using Archive Commands in an AIX Version 4 Environment 164

7.4 Using Commands to View AIX Version 4 Logical Volume Manager
Information . 165

7.5 Using Commands to View AIX Version 4 Journaled File System
Information . 181

Chapter 8. Practical Examples . 185
8.1 Planning . 185
8.2 rootvg Mirroring - Implementation and Recovery 187
8.3 Storage Subsystem Design . 203

8.3.1 A Volume Group Design Example . 204
8.3.2 Map Files Usage and Contents . 206
8.3.3 A Design Example for Improved Availability 208
8.3.4 A Design Example for Improved Performance 218

8.4 Managing Backup and Restore . 244
8.4.1 How to Use the savevg and restvg Commands 246
8.4.2 How to Use the mksysb Command . 256

8.5 Utilizing the New AIX Version 4 Features 268
8.5.1 Striped Logical Volumes . 268
8.5.2 How to Use Fragments for Disk Usage Efficiency 272
8.5.3 How to Use JFS Compression and Check its Consequences 279
8.5.4 How to Create and Use a JFS Greater than 2GB 288

8.6 Migrating to AIX Version 4 . 295
8.7 Manipulating Page Space . 300

8.7.1 How to Decrease the Default hd6 Paging Logical Volume 301
8.8 Common Disk Management and Error Recovery Procedures 311

8.8.1 How to Use the migratepv Command 312
8.8.2 How to Use the rvgrecover Shell Script 317
8.8.3 How to Use the dsksync Shell Script 320

Appendix A. Overview of Hardware Components 321
A.1 Storage Product Interface Adapters . 321

A.1.1 SCSI Adapters . 321
A.1.2 Serial Adapters . 325
A.1.3 HiPPI Adapters . 325
A.1.4 ESCON Adapters . 325
A.1.5 Channel Emulation Adapters . 326

A.2 Disk Storage Products . 326
A.2.1 Disk Drives . 326
A.2.2 Disk Subsystems . 327

A.3 Tape Storage Products . 330
A.3.1 Tape Devices . 330

Contents vii

A.3.2 Tape Libraries . 332
A.4 Optical Storage Products . 334

A.4.1 Optical Devices . 334
A.4.2 Optical Libraries . 335

Appendix B. Higher Level Storage Management Products 337
B.1 ADSTAR Distributed Storage Manager . 338
B.2 AIX File Storage Facility/6000 . 340
B.3 Legato NetWorker for RISC System/6000 341
B.4 UniTree for RISC System/6000 . 342

Appendix C. General Volume Group Recovery 345
C.1 Disk Power Supply Failure . 345
C.2 General Disk Failure . 346
C.3 Recovery After a Disk Is Replaced -- 1 . 347
C.4 Recovery After a Disk Replaced -- 2 . 348
C.5 Disk Failure Recovery -- rootvg . 351
C.6 Disk Failure -- rootvg . 352
C.7 Recovering after Losing VGDA . 353

Glossary . 355

List of Abbreviations . 361

Index . 363

viii AIX Storage Management

Figures

 1. Storage Subsystem Component Usage . 2
 2. Diskette Types . 3
 3. Tape Device Types . 4
 4. Disk Device Types . 5
 5. Optical Device Type . 5
 6. Storage Software Organization . 7
 7. Importance of Performance Management 10
 8. Importance of Availability . 11
 9. Space Management . 13
10. Recovery Management . 14
11. Simple Storage Component Selection . 19
12. Requirements Suggest Several Components 20
13. Complex Storage Component Selection 21
14. Summary of Device Attributes . 21
15. Anatomy of a Disk Device . 26
16. Helical Scan Principles . 35
17. Helical Scan Tape Paths . 36
18. Longitudinal Recording Principles . 36
19. Longitudinal Recording Tape Paths . 37
20. Rewritable Optical Media Technology . 41
21. Pulse Position Modulation Vs Pulse Width Modulation 42
22. Virtual Memory Manager Disk Usage . 49
23. Components of the Logical Volume Manager 53
24. Relationship Between the LVM and other Components 55
25. Physical Disk Partition Location . 56
26. Standard AIX Version 4.1 JFS Organization 58
27. JFS Physical Organization . 59
28. Anatomy of an I-node . 60
29. Fragmentation Example . 71
30. Striping Example . 75
31. Sample lsvg Output . 166
32. Sample lsvg -M Output . 167
33. Continued Sample lsvg -M Output . 168
34. Sample lslv Output . 169
35. Sample lslv -m Output . 170
36. Sample lslv -p Output . 171
37. Continued Sample lslv -p Output . 171
38. Continued Sample lslv -p Output . 172
39. Sample lspv Output . 173
40. Sample lspv -p Output . 174
41. Sample lspv -M Output . 175
42. Continued Sample lspv -M Output . 175
43. Continued Sample lspv -M Output . 176
44. Sample lspv Output to See all Known Physical Volumes and Volume

Groups . 177
45. Sample lqueryvg Output . 177
46. Sample lquerylv Output for the Mirrored datapg Logical Volume . . . 178
47. Sample lquerylv Output for the Non-Mirrored datalv3 Logical Volume 179
48. Sample lquerypv Output . 180
49. Accessing a Disk after Reading its VGDA to Check its Contents 181

 Copyright IBM Corp. 1994 ix

x AIX Storage Management

Tables

 1. Application Requirements for Disk Storage 27
 2. Maximum Internal Storage Capacities . 28
 3. Maximum External Storage Capacities . 28
 4. Maximum External Storage Capacities (continued) 29
 5. Maximum External Storage per Micro Channel 29
 6. Individual Disk Drive Characteristics . 30
 7. Comparison of Disk Device and Subsystem Features 33
 8. Tape Drive Specifications . 39
 9. Tape Library Specifications . 39
10. Optical Device Specifications . 43
11. Optical Library Specifications . 44

 Copyright IBM Corp. 1994 xi

xii AIX Storage Management

Special Notices

This publication is intended to help customers and systems engineers
understand the basics of AIX storage management and the additional features
and functions provided by AIX Version 4. It also provides various examples to
illustrate and help explain various storage scenarios. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by AIX Version 4. See the PUBLICATIONS section of the IBM
Programming Announcement for AIX Version 4 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Ave., Thornwood, NY 10594, USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

ADSTAR AIX
AIX/6000 AIXwindows
ESCON IBM
InfoExplorer Micro Channel
OS/2 RISC System/6000
RS/6000 System/36
System/360 S/370

Andrew File System, AFS Transarc Corporation
AT&T AT&T
EXABYTE EXABYTE Corporation
UNIX, Novell Novell Inc.
NFS Sun Microsystems Inc.

 Copyright IBM Corp. 1994 xiii

Other trademarks are trademarks of their respective companies.

HP-UX Hewlett Packard Company
Lago Systems LS/380L DataWheel Lago Systems
Legato Networker Legato Systems Inc.
SUN-OS Sun Microsystems Inc.
SCO The Santa Cruz Operation Inc.
SONY Sony Corporation
ULTRIX Digital Equipment Corporation
Unitree OpenVision Technologies Inc.

xiv AIX Storage Management

Preface

This document is intended to assist customers and systems engineers in
understanding and utilizing storage management with AIX Version 4 on the RISC
System/6000. The concepts and terminology of AIX storage management are
explained first, providing a foundation for a more detailed examination of the
elements involved. This will allow less experienced readers to reach the level of
understanding necessary to appreciate the new features and functions provided
with AIX Version 4. Examples in the use of various storage management
commands are provided, as well as an overview of the issues involved in
organizing and managing storage with AIX Version 4 on the RISC System/6000.
In order to more effectively convey the information, a comprehensive set of
detailed scenarios provide step by step practical examples.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Storage Management Related Concepts”

This chapter describes general concepts relating to storage. It is designed to
bring those readers with little or no knowledge of storage management
under AIX to a level sufficient to appreciate the latter parts of this book. This
chapter can be skipped by those readers who already have a good grasp of
general storage management concepts.

• Chapter 2, “Hardware Storage Components”

This chapter discusses in more detail, the hardware components available
for use by AIX storage management products. Basic operation and functions
are outlined to provide a context for understanding the functions and options
provided by the storage management products. This chapter may be used as
reference to specific hardware types, or skipped by those readers who are
already familiar with the operation of all AIX hardware storage devices.

• Chapter 3, “Operating System Software Components”

This chapter describes the operating system software components involved
in AIX storage management. Specifically, the following areas are covered:

 1. Device Drivers. An overview of the function and operation of device
drivers is included, as these provide the basic interface to storage
products.

 2. Paging Space. The operating system management of paging space wil l
be covered, as it relates to storage management.

 3. The AIX Logical Volume Manager. The part of AIX responsible for
managing storage for higher level processes will also be covered here.

 4. File systems. The creation of a directory structure for file storage on
areas of disk managed by the Logical Volume Manager will be discussed
here too.

This chapter can be skipped by readers who are already familiar with these
elements of AIX storage management.

• Chapter 4, “AIX Version 4 Storage Management Enhancements”

 Copyright IBM Corp. 1994 xv

This chapter contains descriptions of all of the new features and functions
that enhance AIX storage management, as included in AIX Version 4. This
information is new, and should be read by anyone who is planning to
manage storage on a RISC System/6000 using AIX Version 4; it may be
skipped by those readers who will not be moving to AIX Version 4 at this
time.

• Chapter 5, “Storage Subsystem Design”

This chapter discusses the various issues involved in designing, configuring,
and managing storage under AIX Version 4 on the RISC System/6000. This
information is meant to allow readers to gain an insight into the
considerations involved in creating efficient storage resources and should be
viewed by any reader not familiar with designing efficient storage resource.

• Chapter 6, “General AIX Storage Management”

This chapter explores more practical aspects of storage management,
investigating the procedures necessary for successfully maintaining the
storage elements of a system. This chapter contains information applicable
to Version 3 and Version 4 users, though readers familiar with management
at Version 3 need only look at those sections pertaining to the Version 4
enhancements.

• Chapter 7, “Storage Management Files and Commands Summary”

This chapter provides examples of the usage of a variety of AIX commands
for the management of storage. The chapter is split into two sections,
pre-Version 4 commands and post-Version 4 commands. Those commands
included in the former section are still relevant under Version 4, while the
latter section contains examples of new commands. Readers already familiar
with Version 3 commands may therefore wish to skip the first section.

• Chapter 8, “Practical Examples”

This chapter consists of a number of practical examples of storage
management under AIX Version 4. The examples include topics such as
reducing page space utilization, common storage errors/recovery, setting
backup/restore policy, utilization of new Version 4 features, and many more.
Each example contains step by step details and explanations. This chapter
should be used by all readers for reference as required.

• Appendix A, “Overview of Hardware Components”

This appendix will provide an overview of the various hardware storage
devices available for attachment to the RISC System/6000. The emphasis is
on the basic features provided by the devices, and the mechanisms for
attaching them to the RS/6000.

• Appendix B, “Higher Level Storage Management Products”

This appendix contains a brief overview of the higher level storage
management products available. This redbook is primarily intended to cover
AIX Version 4 storage management, and as such this information is included
for reference only.

• Appendix C, “General Volume Group Recovery”

This appendix will provide several examples of techniques for recovering
from disk failures. These examples have not been tested in this project and
are presented as is.

xvi AIX Storage Management

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• IBM RISC System/6000 Technology, SA23-2619

• RISC System/6000 System Overview, GC23-2406

• AIX Version 4.1 Installation Guide, SC23-2550

• AIX Version 4.1 Network Installation Management Guide and Reference,
SC23-2627

• AIX Version 4.1 Getting Started, SC23-2527

• AIX Version 4.1 System User′s Guide: Operating System and Devices,
SC23-2544

• AIX Version 4.1 Messages Guide and Reference, SC23-2641

• AIX Version 4.1 Problem Solving Guide and Reference, SC23-2606

• AIX V3.2 Performance Monitoring and Tuning Guide, SC23-2365

• AIX Version 4.1 Commands Reference, Volume 1, SC23-2537

• AIX Version 4.1 Commands Reference, Volume 2, SC23-2538

• AIX Version 4.1 Commands Reference, Volume 3, SC23-2539

• AIX Version 4.1 Commands Reference, Volume 4, SC23-2540

• AIX Version 4.1 Commands Reference, Volume 5, SC23-2639

• AIX Version 4.1 Commands Reference, Volume 6, SC23-2640

• AIX Version 3.2 Files Reference, GC23-2200

• AIX Documentation Overview, SC23-2456

International Technical Support Organization Publications
• AIX V3.2 System Management Tips and Techniques, GG24-4161

• ADSM Presentation Guide, GG24-4146

• ADSM Implementation Examples, GG24-4034

• ADSM Advanced Implementation Experiences, GG24-4221

• Getting Started with ADSM/6000, GG24-4421

• Getting Started with ADSM/2, GG24-4321

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

To get listings of redbooks online, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

Preface xvii

How to Order Redbooks

IBM employees may order redbooks and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing
1-800-284-4721. Visa and Master Cards are accepted. Outside the USA,
customers should contact their IBM branch office.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

Acknowledgments
The advisor for this project was:

Nick Higham
International Technical Support Organization, Austin Center

The authors of this document are:

Nick Higham
IBM UK

Rash Gandhi
IBM UK

Robert Iacopetta
IBM Australia

This publication is the result of a residency conducted at the International
Technical Support Organization, Austin Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Bob Minns
International Technical Support Organization, Austin Center

Pat Lockwood
IBM Chicago

Bill Baker
IBM Austin

Doris Stoessel
IBM San Jose

xviii AIX Storage Management

Chapter 1. Storage Management Related Concepts

This chapter examines the basic elements involved in storage subsystems, and
explains basic concepts related to the hardware and software involved.

1.1 Overview
Storage subsystems may contain a variety of hardware and software products,
but primarily exist to supplement the relatively expensive main memory of a
computer with less expensive non-volatile storage. Secondary functions include
information exchange via removable storage media, backup of vital information
for recovery in the event of failure, and short term storage of frequently
accessed information. This overview will explain the rationale and some of the
concepts involved in the development and usage of the elements of storage
subsystems.

1.1.1 General Concepts
A computer system is composed of a number of different subsystems that
cooperate to carry out tasks on behalf of a user. Generally speaking, the process
works as follows. A user wishes to run an application to take some input,
operate on it, and produce some output. The application exists as a series of
instructions to the Central Processing Unit (CPU) of the computer system that tell
it where to get information, what to do with it, and where to put the results. For
the CPU to load these instructions and execute them, they must be located in the
main memory of the computer system. The first problem is that main memory is
volatile, which means that without power, it will lose whatever was stored in it.
Thus when the computer is first powered on, it must load its instructions from a
non-volatile source, and this is the first function of the storage subsystem, to
provide the CPU with it′s operating system, and then access to applications and
data for processing. This function is usually provided by magnetic disks which
are relatively fast, and allow direct access to required information, although a
brand new system may load it′s instructions initially from diskette, or more
commonly magnetic tape.

Now the CPU has access to the required instructions and data, and can go
ahead and do useful work for a user. So much so however, that pretty soon the
user wants more work done, in parallel, and to support other users workloads.
Clever operating system design allows this multitasking, enabling many things to
be done at once, but the next problem is that there is not enough volatile main
memory to contain all the different applications and data that are in concurrent
use. One solution would be to keep purchasing more memory to enable all
required applications and data to be maintained in main memory, but this
quickly becomes prohibitively expensive. A better solution is to use a system
called paging which utilizes reasonably fast, much cheaper magnetic disk as an
extension to the main memory. An area of the disk is set aside as paging space,
and those applications and data, or parts of applications and data, that are not
currently in use, are stored in this space, or swapped out. When an instruction
calls for a piece of this data, or the next instruction exists in the page space, the
page containing the required information is swapped in, or copied from the disk
back into main memory, and something else temporarily not required is copied
out. Page space is so named because the main memory is divided into sections
known as pages, and these form the units of exchange.

 Copyright IBM Corp. 1994 1

Soon there are large amounts of vital data being produced by the computer,
which immediately develops a fault causing everything to be lost, and creating a
great many angry people. Not so. The third function of a storage subsystem is to
provide inexpensive non-volatile storage for copies of vital information that can
be restored to the system in the event of failure. Removable media, such as
magnetic tape, diskette, or optical disks are generally used for this, as transfer
to and from the devices is easy (though much slower than disk or main
memory), and the media can then be stored safely in a secure place for use in
the event of failure.

With the advent of faster and faster low cost, high capacity devices such as tape
and optical, a fourth usage of storage subsystems is emerging. Space
management is the monitoring of information usage, so that less frequently
accessed information can be moved to lower cost, slower storage, thereby
maximizing the use of the higher cost, faster devices.

One final use of storage devices is for information exchange. Applications, data,
and even large directories of information can be stored on removable media,
such as optical, tape, diskette, or disk pack. The media can then be removed
and replaced for access on a different system, thereby allowing simple transfer
for common access to information. With the increase in performance and
reduction in the cost of communications networks, this function is becoming less
necessary.

Figure 1. Storage Subsystem Component Usage

2 AIX Storage Management

1.1.2 Hardware Concepts
As has been described in the previous section, storage subsystems components
have evolved to meet specific requirements within the computer system, and
each have different characteristics that enable these requirements to be met. A
storage subsystem may contain any or all of the following types of device.

 1. Diskette Storage

Diskettes, or floppy disks, were among the first permanent storage devices
developed. Information can be written to and read from a diskette via a
diskette drive unit attached to the computer system. The diskette can then be
removed and reinserted into a drive on another computer, where the
information can be utilized. Information can be accessed directly from
anywhere on the diskette so individual files can be quickly located and
accessed if required.

There are quite a few different standards for diskettes, both in terms of
physical specifications, and information capacities. In size, diskettes range
from 8-inch diskettes, as used on the IBM System/36* for example, to the
5.25-inch and more recently the 3.5-inch diskettes which are the most
commonly used today. Information capacity ranges from the earliest 320KB
5.25-inch diskettes to 2.8MB 3.5-inch diskettes today. Performance is
relatively slow, and coupled with the low maximum capacities, diskettes tend
to be used mostly for transferring small amounts of information between
computers, and sometimes for backing up information from small personal
computers.

The 5.25 and 3.5-inch standards are common to most manufacturers
machines, as are certain data formats used; this means that diskettes are
still one of the simplest mechanisms for exchanging information between
computers of different types.

Figure 2. Diskette Types. 3.5 inch diskettes are the most commonly used diskettes on the RS/6000, though the
lower capacity 5.25 inch diskettes are still available.

 2. Tape Storage

Tape storage technology has also been in existence for some time. The
earliest computers would utilize tape in much the same way that disk is used
today for storage of programs and data. The main difference between tape

Chapter 1. Storage Management Related Concepts 3

and other forms of storage device is that information is read and written
sequentially. This means that random access to information on a tape is
slow, as the tape must be sequentially searched from the beginning. The
read/write speed can be very fast, and the information capacity very high -
up to 10GB per tape - which means that tapes are currently best suited for
backing up large amounts of data, or for infrequent access to archived
information.

There are two main types of tape device. Tape cartridges contain all of the
tape inside a case which is inserted into a drive in much the same way as a
diskette. Tape reels contain the tape wrapped around a single spool, and
tend to require more complex mounting operations.

There are many different sizes and types of tape device, as well as an equal
variety of recording formats. This means that tapes are not as easily
interchangeable as diskettes.

Figure 3. Tape Device Types. These are some of the different tape devices available for use on the RS/6000.

 3. Disk Storage

Magnetic disk, or Direct Access Storage Devices (DASD), are similar to
diskette in design. Also known as fixed disk, magnetic disk is not however
generally removable, and allows much higher read/write speeds and
information capacity. Single units are now capable of storing up to 2GB and
the technology is improving all the time. Disk also allows direct access to
information, and coupled with the capacity and performance, makes an ideal
device for loading information to, and saving from main memory.

There are models of disk drive that do allow the removal of the internal fixed
disks. The removed disk packs can then be transferred to and utilized by
other computers, although due to the proprietary nature of most disk
information organization, compatibility is usually only ensured between
computers of the same model.

4 AIX Storage Management

Figure 4. Disk Device Types. These are some of the different disk devices available for external attachment to
the RS/6000.

 4. Optical Storage

A relatively recent technology, optical storage is based on Compact Disc
technology, though there are several different mechanisms and formats in
use. The simplest utilizes standard CD technology providing a Read Only
Memory (ROM) capability, surprisingly known as CD-ROM. Later, more
complex evolutions allow the disk to be written to once and then read from
as a normal CD-ROM; this is known as Write Once, Read Many (WORM). The
latest products allow complete read write capability.

All of these products allow direct access to information, though the access
time is somewhat slower than for DASD. The capacities range from 640MB
for a CD-ROM to several GB in the latest products. Optical storage products
are improving all the time, and the latest products are best utilized as
secondary storage for less frequently accessed information, either working in
parallel with DASD, or as part of a storage management system. Many
optical devices allow for removable media, which make them ideal for
software distribution on CD-ROM; the extraordinarily long life of information
recorded on optical media (up to one hundred years) also makes this a good
medium for information archive.

Figure 5. Optical Device Type

This covers the various storage media available in overview. These devices also
require software to drive and utilize them to their fullest potential, as well as

Chapter 1. Storage Management Related Concepts 5

hardware attachment methods. Both these topics will be discussed later in this
chapter.

1.1.3 Software Concepts
So far, the purpose of the various hardware elements comprising a storage
subsystem, as well as their place in the overall scheme have been discussed. In
order to make these devices perform, some form of software is required to drive
them. In actuality, several levels of software products are involved, and this
section outlines the hierarchy.

 1. Operating System

As is fairly common knowledge, the key player in a computer system is the
operating system. This complex piece of software is responsible for making
the resources of the computer available to applications in a reasonably fair
and effective manner. Looking solely from the perspective of storage, the
first component involved is the device driver. This piece of software is
written specifically for the hardware device it provides an interface to.
Essentially, it understands how to talk to the device and obtain the best
performance from it. When an application wishes to communicate with the
device (read or write some information), the request is made ultimately to
the device driver which manages the device and executes the required
function. Applications can communicate directly with the device driver,
known as raw device handling, or through an intermediate software product
which usually provides additional capabilities. The commands made to a
device driver are usually standard (read, write, control commands) so
applications need not be aware of differences in the hardware devices they
are using. This does mean that a specific device driver must be provided for
every device.

Utilizing device drivers to access the devices, a number of other operating
system components provide useful functions.

• Logical Volume Manager

This piece of software provides a number of convenience and protection
functions transparently to an application. The specifics of the LVM will be
discussed in a later chapter, but include the ability to generate multiple
copies of information (mirroring) for protection in the event of failure,
relocation of information in the event of damage to an area of disk, and
the implementation of information location policies to enable frequently
accessed information to be located more quickly.

• File Systems

File systems provide the user with a hierarchical view of the space
available to them for application and data storage. Generally the view is
organized as a tree structure of directories for organizational
convenience. Operating system commands are provided to open, close,
read, write and control files within the structure. File systems use the
LVM, which in turn uses device drivers to access the hardware.

• Backup/Restore commands

These operating system commands allow selected information, or even
entire systems to be saved to a storage device. In the event of failure,
the information can then be restored to the system from the device.

• Miscellaneous

6 AIX Storage Management

There are a number of operating system commands that allow reading
and writing of information to a storage device. Some of these are
designed for specific devices, others generic, but they all use device
drivers to communicate with the device.

These components will be discussed in more detail in Chapter 3, “Operating
System Software Components” on page 47.

 2. Higher Level Tools

Higher level tools are generally applications that are designed to provide
more complex storage management functions such as scheduled backup of
files, disk space management, and data archive for example. These tools
will usually employ many of the operating system functions to provide a
more convenient interface to managing storage, which means that some of
the capabilities of these products can be achieved with a good knowledge of
the lower level operating system functions. Although beyond the scope of
this book, some of these tools will be discussed in outline in Appendix B,
“Higher Level Storage Management Products” on page 337.

 3. Applications

Most applications will require access to information as part of their function.
Many of them will access files through the file systems mentioned earlier,
thus gaining the benefits of the more complex functions provided by this part
of the operating system. Some applications will use storage devices directly
through device drivers, which while being more complex in implementation,
allows a more flexible approach to the management of their information.
Databases are typical examples of applications that access storage devices
in this way.

Figure 6. Storage Software Organization. The various levels of software used in storage subsystems make use of
lower levels of software as well as sometimes utilizing the hardware directly.

Chapter 1. Storage Management Related Concepts 7

1.2 Storage Management
So far, the computing environment in general has been described in order to
allow the storage elements of the system to be positioned and discussed
generally. This section will focus on storage management; what are the issues
that this area addresses, and what aspects of a storage subsystem does it focus
on.

1.2.1 Hardware Management
From the hardware point of view, all of the devices that can constitute a storage
subsystem have been briefly discussed, and will be explored in more detail in
the next chapter. The intention here is to look at what aspects of their operation
are critical to overall system operation, and therefore form the focus of storage
management. This should put into context the discussion in later chapters of the
operating system commands and higher level tools available.

There are three main considerations, performance, availability, and capacity.

1.2.1.1 Performance
Performance is usually all about providing access to a resource such that
particular criteria are met. The resources in a storage subsystem all have
different characteristics and intended uses, and therefore the criteria applied are
also different. In general though, it is safe to say that performance in storage
products is about maximizing the throughput of information to and from the
device.

As has been said, there are different criteria for each device and some examples
follow, though a more complete discussion of maximizing performance for
storage subsystems can be found in Chapter 5, “Storage Subsystem Design” on
page 79 and Chapter 6, “General AIX Storage Management” on page 95.

• System bus

All information passed to I/O devices must at some stage cross the system
bus. The performance of this device is a common factor for all devices,
though rarely a bottleneck.

• Hardware attachment adapter

The physical attachment of all I/O devices to the system is via some sort of
adapter. There are various types including SCSI, Serial, Optical, and
Channel. Some of the issues which affect performance at the adapter are the
data rate, the number of devices supported, and the command capability of
the adapter. For example, some adapters are capable of overlapping
commands, duplex communication, and sorting of requests for best
performance.

• Disk Devices

Throughput to a disk depends on a number of things, the most basic of which
is the maximum read/write capability of the disk for sequential operations,
which is fixed by the disk technology; the maximum possible data rate from a
single disk cannot be higher than this. The intended usage of the disk will
also affect performance. Random access requests, where the disk read/write
head has to move around the disk a great deal will take longer than
sequential requests which involve only the initial search for the data. There
are other facilities such as mirroring, where multiple copies of data are
maintained in parallel. This can provide higher throughput when access to

8 AIX Storage Management

the data occurs in parallel, as well as increased availability due to the
multiple copies, though at the cost of increased disk space requirements.

The design of a storage subsystem will involve considering these options
and more. As will be seen after the section on availability, many of these
possibilities involve trade-offs with performance and cost, the final decision
often being one of compromise. Actual subsystem design is covered in more
detail in Chapter 5, “Storage Subsystem Design” on page 79, and disk
function in 2.2.2.1, “Disk Technology” on page 25.

• Tape Devices

Throughput to tape devices is also limited to the maximum read/write
capability of the drive. Tape devices access information sequentially by their
nature, information being read and written on a sequential medium. As
such, random access to information is slow, and tape devices are not
normally called upon for this requirement. Some tape devices provide for
data compression when writing and decompression when reading, thereby
increasing the volume of data and therefore the throughput. Some tape
subsystems provide autochangers with access to a library of tapes; in these
instances, tape selection and load time also become a throughput issue.

Performance in tape devices is therefore generally a straightforward
consideration of the physical specifications: features provided (for example
compression and libraries), throughput, and perhaps compatibility with other
tape media. Again, these issues will be discussed in Chapter 5, “Storage
Subsystem Design” on page 79. Tape function is covered in 2.2.3, “Tape
Storage” on page 34.

• Optical Devices

Throughput to optical devices involves elements from both disk and tape
devices. Optical devices operate in a similar fashion to disks, allowing
sequential and random access, and therefore present similar design
considerations; optical devices do generally possess a lower data rate than
magnetic disk though.

In common with tape devices, it is possible to have optical libraries which
again present similar considerations to tape library access.

Performance of optical technology is also therefore dependent upon the
intended environment, as well as the basic characteristics of the media.
Design issues will be covered in more detail in Chapter 5, “Storage
Subsystem Design” on page 79, and the technology itself is discussed in
2.2.4, “Optical Storage” on page 40.

Chapter 1. Storage Management Related Concepts 9

Figure 7. Importance of Performance Management. Users can become a tri f le irr i table if information is not
quickly forthcoming from their computer systems.

1.2.1.2 Availability
Availability concerns designing the storage subsystem to minimize the effects of
failure in any of the elements. Every environment will have different
requirements in this area, but essentially the intention is to ensure the continued
operation of the system despite failure in certain components. The level of
redundancy, or replication of devices for replacement purposes in the event of
failure, is again a trade-off with price and performance.

• Tape Devices

As has been explained in the previous section on performance, tape devices
are generally used for backup/restore operations, which means that they do
not tend to be a critical part of the subsystem (unless failure occurs during
restore after a crash, or during usage of the device itself), and as such,
having an alternative device to use may be sufficient for most situations.

• Optical Devices

Optical devices again do not tend to be used for primary data storage, due to
their slower access times, rather being used for archive or less frequently
accessed information. As such, providing a replacement device may also be
sufficient protection against failure. As with tape devices though, the exact
requirements will vary with the environment in question, and a more
comprehensive account of the design considerations can be found in the
section on storage subsystem design.

• Disk Devices

Disk devices constitute the most vital element of a storage subsystem,
indeed of the computer system. Processors and memory can be replaced,
but a disk crash can cause the loss of irreplaceable information.
Furthermore, disk devices are in continuous use as extensions to main
memory, and as storage for frequently accessed data; as such, availability of
these devices is of prime concern.

10 AIX Storage Management

Availability in this context has several connotations. The first and most
obvious, relates to ensuring that required information is always available,
and that corruption or problems with access to this data can be
compensated for. Techniques for ensuring this include file journaling and
mirroring, which are discussed in the section on file systems and AIX*
Storage Management respectively. These techniques ensure access to data
can be maintained continuously, even in the event of a hardware disk failure.
Generally, though, some time will need to be spent with the system not
operational to allow rebuilding of file systems, or replacement of damaged
parts; this activity should of course be scheduled to minimize its impact, but
is nevertheless a requirement.

The second connotation relates to not only ensuring that data is always
available, but that any repairs can be effected whilst the system remains
operational. The main technique for ensuring this function, is utilizing some
form of RAID (Redundant Array of Independent Disks). RAID is beyond the
scope of this book, but basically involves providing an intelligent array of
disks that allows mirroring, parallel access to data, on-line replacement of
failing components, and high performance.

Figure 8. Importance of Availability. However careful ly managed a computer system is, there wi l l always be
unforeseen circumstances when information is lost.

1.2.1.3 Capacity
The last main consideration is that of the capacity of the devices. Capacity is
generally related to performance, the more space that a device has, the longer
the average access time will be. This tends to be more important for devices that
will be used to access data for interactive use (such as disk or optical), and it
can sometimes be more prudent to utilize more lower capacity devices than
fewer larger capacity devices. This will be a trade-off between cost and
performance again, and there are other solutions to increasing performance
through parallel access to devices.

In the main, increasing capacity with disk devices involves purchasing either
larger, or more devices. With optical and tape devices there is another option,

Chapter 1. Storage Management Related Concepts 11

and that is the library. Optical and tape libraries provide the capability to store
many tapes or optical cartridges within a managed library, such that when a
request for a particular piece of data arrives, the library knows which tape or
optical cartridge the information is on, and can then utilize robotics to select the
item and load it into the tape or optical device. Libraries are discussed in more
detail in 2.2.3.2, “Selecting the Correct Tape Storage Devices” on page 38 and
2.2.4.2, “Selecting the Correct Optical Storage Devices” on page 43.

Thus the three major criteria from a hardware point of view, are the performance
of the storage subsystem, or more generally, it′s throughput, the maintenance of
the required level of availability of the information stored, and the quantity of
data that can be kept, or capacity.

1.2.2 Software Management
From the point of view of software in storage management, the main elements
have been described in overview, and will be covered in detail in the section on
Operating System Software Components. The intent of this section is to examine
the main issues that software management aims to address, in order to provide
a context for the discussion of the features currently available for storage
management, as well as the new features provided in AIX Version 4.

There are three considerations, space, recovery, and administration.

1.2.2.1 Space
As has been discussed, in any computer system, there is a finite amount of fast
main system memory. This, coupled with the requirement for non-volatile
storage, leads to the necessity for the provision of cheaper, auxiliary storage. It
is a truism to say that anything grows to fill the available resource, and this is
particularly true of information stored in computer systems; thus the cheaper
disk storage devices used for accessing frequently used data will also become
full over time, particularly when availability designs are taken into account.
Whilst cheap, disk devices are not that cheap, and so some sort of plan for
managing available disk space must be developed.

Managing disk space usually involves moving less frequently accessed
information out to slower, larger capacity, and cheaper per unit of information,
storage devices. Optical storage devices supporting read and write capability are
an ideal medium for this less frequently accessed information. Optical storage
can be treated in the same way as disk, with only access time being slower.
Using statistics on data access, less frequently used information can be moved
to the optical media, the slightly longer delay in retrieval being acceptable for
this type of information.

There is also a large amount of information that is very infrequently, if ever,
accessed; tax information must be kept for five years for example, in case an
inspection is required. This kind of information can be moved to even slower,
massive capacity devices, such as tape libraries.

Again, this process is a trade-off between space and access time, and is usually
called data archiving. Policies can be defined, and operating system tools used
to manage disk space, as will be shown in the chapters on operating system
software. There are also higher level tools designed specifically to provide
automatic management, and some examples of these can be found in
Appendix B, “Higher Level Storage Management Products” on page 337.

12 AIX Storage Management

Figure 9. Space Management. Organization of the available storage space on the computer system is very
important to ensure sufficient room for all of the currently required information, as well as projected growth.

1.2.2.2 Recovery
The second consideration is concerned with making provisions for failures in the
storage subsystem. Disk devices can fail for a variety of reasons including
mechanical faults such as head crashes, electronic failures, and corrupted data
on the disk itself; optical storage can suffer from mechanical problems, tape
devices can fail, and information written to tape can be unreadable due to
problems with the tape media. Users of the system are also prone, on occasion,
to accidentally erase vital components of the system, operating system files, or
data. There is also the possibility of natural disasters such as fires, floods, or
even lightning.

When a failure occurs, and it will, it would be fairly useful to be able to restore
the system to its state prior to the problem. This is what recovery management
is all about. There are several different strategies that can be employed, and
these will be discussed in detail in the chapters on storage management, but the
main point is to ensure that a current copy of the information stored in the
system is available to reload from. This copy is usually stored on tape, and its
currency reflects the amount of data that an organization can afford to lose. For
example, if losing more than a days worth of information would be fatal to a
company, then copies of at least the vital data need to be made daily. There are
various ways to minimize the amount of information that needs to be copied
each time, as well as high level tools to assist in managing the process. Some of
the high level tools will be briefly discussed in Appendix B, “Higher Level
Storage Management Products” on page 337. Again, the operating system
provides the basic tools to manage this process, and this area will be examined
in more detail in the chapters on storage management.

Chapter 1. Storage Management Related Concepts 13

Figure 10. Recovery Management. The effects of disaster can be minimized if sensible backup precautions have
been taken. Having the right tools and procedures for the job eases the task of recovery.

1.2.2.3 Administration
In order to make use of the devices constituting a storage subsystem, the
operating system needs to made aware of them, their capabilities, and how they
are to be used. Furthermore, in the event of failure, or for general maintenance,
there are tasks that need doing, such as making devices temporarily unavailable
so that they can be replaced, or reconfigured. Additionally, performance and
usage statistics may need to be gathered so that informed planning and
management can take place.

The operating system therefore provides administrative commands and tools
that enable these processes to be performed. Devices can be defined to the
system, made available or unavailable, configured, and monitored for
performance and usage. One other useful administrative tool gives the ability to
define and manage quotas for disk usage, thereby allowing a modicum of control
to be exercised over usage, and thereby ease the task of managing the
subsystem. These activities are examined in more detail in the chapters on
operating system software components and storage management.

Diskette devices have not been mentioned in this section on storage
management, mainly because their major usage is for simple transfer of small
amounts of information between computer systems that are not connected via a
network. In the past, when the quantity of information stored on computers (and
still today for some smaller personal computers), diskette devices were used for
backup purposes. Whilst remaining very inexpensive per diskette, and although
the capacity has grown to several megabytes, the sheer volume of information
contained in a general system backup precludes the use of diskettes for this
purpose.

14 AIX Storage Management

1.3 Summary
This chapter has looked at the basic concepts of storage management.

The first section examined the rationale behind storage subsystems, explaining
at a high level, the reasons why auxiliary storage is required. The components
that comprise storage subsystems:

• Diskette devices

• Tape devices

• Disk devices

• Optical devices

were looked at individually, and their basic capabilities discussed. Finally, the
software components used with storage subsystems were discussed:

• Logical Volume Manager

• File systems

• Device drivers

• Higher level tools

• Applications

again at a high level, in order to demonstrate the levels of function provided by
the various parts.

The second section looked at the rationale behind storage management. The
considerations involved in hardware management:

• Performance

• Availability

• Capacity

were discussed, along with an examination of the impact that particular devices
have in these areas. The issues addressed by software management:

• Space

• Recovery

• Administration

were explained in overview to put into context discussion in later chapters of
these processes, and the tools and commands that enable them.

Chapter 1. Storage Management Related Concepts 15

16 AIX Storage Management

Chapter 2. Hardware Storage Components

This chapter is intended to overview the capabilities and functions of the
hardware storage devices available to AIX. This will help to provide a context for
understanding more clearly the rationale behind some of the storage
management policies and the options and features of storage management
software, as well as enabling more informed decisions to be made when
selecting hardware devices.

2.1 Selecting the Hardware Components
Selection of the components that will make up the storage subsystem ranges
from very easy to being a complex trade-off. First of all, the application
requirements need to be considered in terms of their storage necessities, the
mix of storage device types then needs to be decided, and finally specific
products need to be chosen.

2.1.1 Points to Consider
Selecting the correct products for inclusion into a storage management
subsystem involves consideration of a number of points:

• Cost per megabyte

The cost per megabyte of storing information on a device is always
important. This cost is usually proportional to the speed of access to data on
the device, and generally also proportional to the capacity. If rapid access to
data is essential, then the cost will be higher.

• Access frequency

This figure represents the number of times data on the device will be
accessed in a given period. The higher this figure, the higher the data rate,
access times, and reliability usually need to be. Devices supporting frequent
access are usually required for interactive types of applications.

• Access density

This value describes the number of I/O requests per gigabyte of data. This
value needs to be considered in conjunction with the access frequency. High
access density and low frequency suggests using optical storage; high
density and high frequency suggests disk; low density and low frequency
suggests tape; low density and high frequency may involve other decision
points such as cost.

• Access type

This describes the required method for access to the data on the device, and
can be sequential or random. Random access means accessing small
amounts of data at many points on the device, whilst sequential access
means accessing large amounts of data from relatively few points. The
difference is mainly to do with just how easy it is to locate specific data
elements on the device. If it takes a long time to search for the required
information, then random access is not recommended. Database
applications tend to involve random requests, whilst backups or restores
would be good examples of sequential operations.

• Data rate

 Copyright IBM Corp. 1994 17

This describes how rapidly the data can be obtained from the device (once
located). Interactive applications tend to require a high data rate, whilst
batch applications can usually tolerate lower data rates.

• Online life

This describes how long data will need to be accessible on the device, and
is sometimes known as data age. Data age is usually inversely proportional
to access frequency, and therefore high values here usually imply the use of
low cost, low speed, high capacity devices.

• Interchange requirements

Will the information stored on this device be exchanged with other systems?
If this is the case, then some form of removable media will be required.

• Longevity

If archive, backup or even reference information is to be stored for long
periods of time, then the integrity of the media used is important. Most
media have a shelf life, after which degradation of stored information is
likely.

• Reliability

This is an extremely important consideration, particularly when mission
critical information is being considered.

• Regulatory requirements

Some industries are under legal restrictions with regard to data
management. Restrictions can apply, among other things, to access security
and length of time that records must be retained for.

2.1.2 How to Make the Decision
The decision as to which storage device is best for a given environment can be
represented using a Venn diagram as in Figure 11 on page 19.

2.1.2.1 The Simple Case
This example shows the case where the decision is not complicated;
examination of the points discussed in 2.1.1, “Points to Consider” on page 17
has placed the solution completely into one of the shaded areas:

• Disk

Disk would be selected when the environment requires high performance
and response times are critical.

• Tape

Tape would be the choice where low cost archive of information, high speed
sequential access to data, and/or backup/interchange of data is required.

• Optical

Optical should be used if long term archive of information is the primary
requirement.

18 AIX Storage Management

Figure 11. Simple Storage Component Selection

It is not always this easy however, and requirements often generate a case for
more than one device type.

2.1.2.2 Things Become More Complicated
In these examples, the decision points in 2.1.1, “Points to Consider” on page 17
have resulted in requirements for more than one device type, as can be seen in
Figure 12 on page 20.

• Disk/Optical

In this case, the requirements present arguments for both disk and optical
devices. Reasons for this include:

− Random access to information with medium to high performance
requirements

− Use of non-traditional applications such as image, which require medium
access frequency to large amounts of sequential data

− Long term storage of information is sometimes necessary

− Data usage allows migration of less frequently accessed information to
slower speed devices

− High availability and/or fault tolerance is required

Chapter 2. Hardware Storage Components 19

Figure 12. Requirements Suggest Several Components

• Disk/Tape

Here, the requirements include benefits from using both tape and disk. Some
of the reasons for this include:

− Access to large amounts of sequential data is required, with medium to
low performance

− Large amounts of space are required

− Time to access first byte of data is not significant, though the
performance requirements are then high

• Tape/Optical

In this situation, it can be seen that there are requirements for both tape and
optical storage devices. This state of affairs may have arisen as a result of
the following points:

− Bulk of access to data will be low speed sequential

− Requirements for random access to information

− Time to access first byte of information is not important

− Migration of less frequently accessed information from reasonably fast
media to slower speed media is acceptable

− Data life is important

Sometimes the decision can be even more difficult though.

2.1.2.3 The Worst Case
The worst case is not terrible in the sense that it is a disaster, but it does mean
that the requirements are complex enough to merit selection of devices of all
three types (see Figure 13 on page 21). Some of the reasons that may have led
to these decisions include:

20 AIX Storage Management

Figure 13. Complex Storage Component Selection

• Strong requirements for high performance random access to information

• Large amounts of information need to be stored, though not all access will
be concurrent

• There is a need to store archive information, and data life is an issue

• Fault tolerance and high availability are important

• Capacity is likely to grow

The chart in Figure 14 summarizes the advantages of each of the device types.

Figure 14. Summary of Device Attributes

Selection of the correct devices for the storage subsystem does, therefore,
involve careful consideration of the types of information that will be stored, as

Chapter 2. Hardware Storage Components 21

well as the access requirements. Once the correct mix of devices has been
selected, it is then necessary to choose specific devices from within each device
class. Within each class, the basic functions of the device (disk, optical or tape)
can be implemented in a number of different ways, with different costs
associated, and different levels of function provided. Selection of the actual
device to be used is also a matter for consideration, and the following sections
endeavor to assist in this process by discussing the features, functions and
technologies involved in each class.

2.2 Selecting the Physical Hardware Devices
This section will look at the different physical implementations of the various
devices available, and explain some of the advantages and disadvantages
involved in their selection.

2.2.1 Hardware Attachment Adapters
As has been mentioned in the previous chapter (see 1.2.1, “Hardware
Management” on page 8), the adapter forms the primary interface between
storage devices and the rest of the computer system. The adapter is responsible
for communicating instructions and data between a controlling process and the
storage device. There are a number of different adapters available, each utilizing
differing communications protocols, and each with subsequent pros and cons.
Each storage device also supports different combinations of adapters, so it is
well worth understanding the difference in order to enable sensible decisions to
be taken.

There are five main things to consider when looking at adapters:

 1. Cabling requirements

Every adapter technology places limitations upon the length of cable
supported between the adapter and a device, and then device to device (if
supported). This can have implications in terms of the amount of disk that
can be attached for example (the physical sizes of the devices may be
greater than the cable length allowed for connection). The size of the cable
may also cause problems if routing though ducting is necessary.

 2. Performance/Reliability

The maximum sustainable and burst data transfer rates govern how fast
information can be sent to and retrieved from the devices. This has
implications in the number and type of devices that can be attached to a
particular adapter. The reliability of the technology will also affect
performance (some methods are less error prone than others).

 3. Addressability

This governs both how many devices can be physically attached to an
adapter, as well as the type of device. Some adapter technologies allow
attachment of multiple systems; this means that more than one processor
can share storage devices using this mechanism.

 4. Device support

Obviously, the adapter selected must be capable of supporting the devices
required for attachment now, but consideration should also be given to future
requirements, as well as range of devices supported (some standards are
more open than others).

22 AIX Storage Management

 5. Cost

Both the cost of the adapter and the average cost of devices supporting
attachment to the adapter should be considered. Some technologies are
more expensive than others.

The following sections look at the various adapter options available.

2.2.1.1 Small Computer System Interface Adapter
The Small Computer System Interface or SCSI is one of the most common
mechanisms for attaching both IBM* and non-IBM peripherals. SCSI originated
from the selector channel on IBM System/360* computers, and was later scaled
down by the Shutgart Associates Company to make a universal, intelligent disk
drive interface. After around four years of discussions, in 1986, SCSI became an
ANSI standard, expanded to support other kinds of devices as well.

This standard, now referred to as SCSI-1, allows a maximum of seven devices to
be attached, and provides a one byte wide parallel bus. Each attached device
has a unique address to allow the operating system to communicate with it. Data
can be transmitted either synchronously, or asynchronously, depending upon the
capabilities of the device used; both asynchronous and synchronous devices can
share the same SCSI bus, and in fact, all devices must start up in asynchronous
mode initially to enable this compatibility. Asynchronous transfer rates are
typically around 1 to 2.5MB per second, while synchronous devices can
communicate faster, from 4 to 10MB per second. This original standard defined
optional synchronous clock speed of up to 5MHz, giving a maximum data rate of
5MB per second on the one byte wide bus.

With the release of the SCSI-1 standard in 1986, work started on a new standard,
predictably called SCSI-2. This standard is still in the process of being officially
approved as an ANSI standard, though many vendors, including IBM, have
implemented most of the features in the draft standard. Among the new features
are the following improvements.

• Command Tag Queuing

This provides the ability to queue multiple commands to devices
understanding the SCSI-2 protocol, which improves performance by making
more efficient use of the available bandwidth.

• Fast SCSI

The standard now defines permissible clock speeds of from 5 to 10MHz,
which increases the data rate to 10MB per second on a one byte wide bus.

• Wide SCSI

The standard now also allows bus widths of up to four bytes, though in
practice, physical design limitations have meant that two byte wide buses
are generally used. With 10MHz clock speeds, a two byte wide bus gives
burst data rates of 20MB per second.

Downward compatibility is maintained so that SCSI-1 devices can be attached to
SCSI-2 buses. SCSI-1 will be used when communicating with these devices, and
SCSI-2 to devices on the same bus supporting the new functions.

There are two alternative electrical configurations possible for the SCSI-1 and
SCSI-2 standards.

 1. Single Ended

Chapter 2. Hardware Storage Components 23

The single ended interface comprises a ground and single signal line for
each of the SCSI data and control functions. This is the simplest
configuration possible, but is prone to electrical interference, and therefore
has recommended cable lengths of from three to six meters.

 2. Differential

The differential interface comprises positive and negative signal lines for
each of the data and control functions. The binary value of the transmitted
signal is determined from the difference between the voltages of these two
signals. Interference will affect both signals equally, hence not changing the
difference between them; this provides for far more reliable communication,
with correspondingly greater cable lengths of up to 19 meters allowed.

There is a third SCSI standard currently being discussed, not surprisingly known
as SCSI-3. This standard will provide for even higher data rates, larger numbers
of addresses, and greater cable lengths between devices. This will be possible
through the utilization of serial buses and packetized protocols. New media will
be supported, such as fiber optics, twisted pair, or even wireless.

SCSI also supports the attachment of multiple processors to the SCSI bus, which
allows implementation of device sharing.

2.2.1.2 High Performance Disk Drive Subsystem Adapter
The High Performance Disk Drive Subsystem adapter provides for attachment of
up to four serially attached disk subsystems, each of which may address up to
four disk devices, giving a total addressability of 16 devices. The distances
between adapter and subsystem can be up to 10 meters using copper twisted
pair cables. The serial link uses full duplex packetized communications to the
disk subsystems, and can support a maximum total data transfer rate of 80MB
per second.

2.2.1.3 High Performance Parallel Interface Adapter
The High Performance Parallel Interface (HiPPI) adapter provides an ANSI
standard parallel interface to other computers and to storage devices. The
adapter provides simplex or duplex point to point communication at burst data
rates of up to 800Mb per second (in each direction) over copper cable at
distances of up to 25 meters. This cable distance can be extended using fiber
optic extenders or OEM HiPPI switches. The adapter consists of three cards on
the RS/6000*, requiring five slots for power consumption reasons; only one is
installable per Micro Channel* bus. These points limit the environments that the
HiPPI interface can be used in as they restrict the possible configurations of the
system.

2.2.1.4 ESCON Channel Adapter
The ESCON channel adapter supports the transfer of data between an RS/6000
and the ESCON channel at a maximum rate of 17MB per second. The adapter
supports connections over fiber optic links using LED or LASER technologies.
The link between control units, directors and systems can be up to three
kilometers with LED technology, and up to 20 kilometers using LASER.

24 AIX Storage Management

2.2.1.5 System/370 Channel Emulator Adapter
The System/370 channel emulator adapter provides parallel channel attachment
capability via the block multiplexor channel, and supports data transfer at rates
of up to 4.5MB per second. The block multiplexor channel cable length can be up
to 61 meters in length, and up to four control units can be supported.

2.2.1.6 Serial Storage Architecture
Serial Storage Architecture, or SSA, is an emerging standard defining a new
connection mechanism for peripheral devices. The architecture specifies a serial
interface that has the benefits of more compact cables and connectors, higher
performance and reliability, and ultimately, a lower subsystem cost. A general
purpose transport layer provides for 20MB per second full duplex
communications over 10 meter copper cables. Devices are connected together in
strings, with up to 128 nodes (devices) allowed per string. Information is
transmitted in 128 byte frames that are multiplexed to allow concurrent
operations. In addition, the full duplex communications allows simultaneous
reading and writing of data.

2.2.1.7 Other Adapters
There are a number of devices that can be connected via local area networks. In
the main, these devices support some form of networking protocol, such as
TCP/IP and NFS, that allow the computer system to access the device as though
it were local. In these cases, the computer system would be attached to the LAN
using a token ring or Ethernet adapter.

2.2.2 Disk Storage
This section will look at disk technology generally, before going on to examine
the decision process necessary to select the correct disk subsystems for the
environment.

2.2.2.1 Disk Technology
All disk devices are constructed in basically the same way (see Figure 15 on
page 26). A number of disk platters fixed to a central hub are rotated at high
speed by a motor. Both surfaces of each platter are coated with a thin film of
magnetic material where the data will be stored. Information is written to and
read from the magnetic surface via small read and write heads that are located
at the end of mechanical arms known as actuators The actuators move the
heads back and forth from the outer edge of the platters to the inner edge. Data
is written to the disk surface in concentric tracks , so the movement of the
actuator locates the head over the required track, and the rotation of the platter
moves the track past the heads allowing information to be read or written. Each
platter surface has read and write heads associated with it, though all heads are
usually attached to the same actuator assembly, moving in concert, with data
read from one platter surface and one track at a time. The length of time it takes
for the actuator to move the head to the required track is known as the seek
time, while the time taken for the rotation of the platter to bring the correct part
of the track under the heads is known as the rotational latency. Once correctly
positioned, data is read or written in a continuous stream, and the rate at which
this occurs is called the data transfer rate. The combination of the averages of
seek time, rotational latency, and data transfer rate define the performance of
the disk device.

Chapter 2. Hardware Storage Components 25

Figure 15. Anatomy of a Disk Device

The technology used for the read and write heads, as well as the composition of
the magnetic material used on the platter surface, defines the areal density or
how much information per unit area can be stored on the disk device. The
earliest mechanisms used small coils that generated a magnetic field when
current was passed through them, thereby changing the magnetic polarity of a
small area of the disk; the polarity of the area defining the binary value stored.
Passing the coil back over the surface causes it to intersect with the magnetic
fields generated by each area. When a magnetic field moves through a coil, it
causes a current to flow, the direction dependent upon the polarity of the field,
thus allowing the information to be read back. Greater areal densities and hence
correspondingly greater capacities per drive have since been achieved with new
head technologies, such as thin film heads which utilize the coil principle, and
more recently magneto resistive or MR heads (used for reading only). MR heads
use a different principle for reading the state of the magnetic domains, sensing
the variation in electrical resistance of the platter surface rather than using
induction. This also gives much improved performance.

Locating the information and passing it to the requesting processor is
accomplished by electronics in the drive assembly. The design and capabilities
here also affect the overall performance of the device. In the simplest case,
requests arrive for information located at a particular disk address, so the
actuator is positioned at the correct track and the required number of blocks are
read and passed to the requestor. The next request arrives, the actuator is
repositioned and the request again fulfilled. This involves much seeking back
and forth, as well as waiting for the correct parts of the track to arrive, thus
introducing significant delay. In order to minimize these periods of inactivity,
some devices utilize a mechanism known as elevator seeking where the
incoming requests are sorted so that the actuator can fulfill a sequential series
of requests on an inward pass, and then again on the outward pass. This
minimizes seek delay. Some devices also utilize a mechanism called read ahead
whereby the remaining blocks in a track (after a read has been satisfied) are
read and cached locally in the device in anticipation of a sequential request. If

26 AIX Storage Management

this occurs, the information can be supplied directly from cache with no costly
seek or rotational latency delays.

One other hardware technique used is known as banding. This takes advantage
of the fact that if data is written at a fixed rate, then there will be larger gaps
between bits the further out from the center that writes occur. Banding therefore
partitions the disk into radial sections and raises the bit density as the heads
move outwards through them. This ensures an even data density, and
consequently increases the overall capacity of the device.

Disk devices vary enormously in their capacities and performance, with the
highest single drive capacities currently around 4GB.

2.2.2.2 Selecting the Correct Disk Storage Devices
The preceding section explained the basic technology utilized in disk storage
devices; this section will focus on selecting the right solution in terms of the
drives and subsystems currently available. There are three main considerations
(as outlined in 1.2.1, “Hardware Management” on page 8), performance,
availability, and capacity. In some situations, fault tolerance, or the ability to
continue in the event of component failure, is important. This consideration is
really a subset of availability, but is separated out in Table 1 for clarity. This
table provides a guide for various application types as to which of the above
attributes are required, and should therefore assist in the selection of the correct
storage hardware.

Table 1. Application Requirements for Disk Storage

Application Random
Performance

Sequential
Performance

Capacity Avai labi l i ty Fault Tolerance

CAD/CAM I I I O -

CASE I I I I O

Communicat ions

Routing

I E - O O

Database C E I I O

Fileserver I O I I I

Mul t imedia Server I C I I O

Scient i f ic/NIC I C I O -

Transact ion

Processing

C - I I I

Note:

• C - crit ical
• I - important
• O - optionally important
• E - emerging

:2 refid=idiskd.application requirements

Having looked at which elements are important on a per application basis,
requirements for each attribute can now be examined in terms of specific device
type selection.

 1. Capacity

If increased internal disk storage is required, then the choice is restricted by
the number of internal drives supported within the system itself, and then by
the capacities of the drives selected. The following table shows the
maximum capacities for each of the currently available systems.

Chapter 2. Hardware Storage Components 27

Table 2. Maximum Internal Storage Capacities

RS/6000 System Maximum Number of Drives Maximum Drive Capacity (GB) Maximum Total Capacity (GB)

2xx Series 1 2 2

3xx Series 2 2 4

Models 41T/41W 1 + 1 1 + 2 3

Model C10 2 2 4

Model 52H 3 2 6

5xx Series 6 2 12

Model R10/R20 2 2 4

970B/980B/990/R24 4 2 8

Internal disks will generally be attached to a SCSI adapter, and may well
share the bus with other slower, asynchronous devices such as tape. This
will affect performance. Furthermore designing a highly available solution
using only internal disks can be difficult, as the maximum number of drives
allowed is not high. If either of these points is important, or just that more
capacity than supportable internally is required, then the considerations
become slightly more complex. In terms of maximizing storage capacity,
Table 3 and Table 4 on page 29 show the maximum sizes for all drives and
subsystems that can be attached to the RS/6000.

Table 3. Maximum External Storage Capacities

RS/6000
System

Configuration

9334
Single-ended
Capacity (GB)

9334
Single-ended
Max Drawers

9334
Dif ferent ial

Capacity (GB)

9334
Dif ferent ial

Max Drawers

7134 Capacity
(GB)

7134 Max
Subsystems

Model 250 18.5 2 28 4 NS NS

Rest of 2xx

series

9.2 1 NS NS NS NS

Models

41T/41W

18.5 2 28 4 NS NS

Model C10 27.7 3 42 6 42 1.5

Models

355/365/375

9.2 1 14 2 14 0.5

Models

360/370/380/390

36.9 4 28 4 28 1

Models

3AT/3BT

27.7 3 28 4 28 1

Model 52H 36.9 4 56 8 56 2

Model 550L 36.9 4 56 8 56 2

Rest of 5xx

series

64.6 7 98 14 98 3.5

Models

950/R10/R20

64.6 7 98 14 98 3.5

Models

970B/980B/990

R24

129.2 14 196 28 196 7

Note:

• 7135 RAIDiant array capacities are for RAID 3 or 5 with five disk drives in a bank
• All 9334 drives are 2GB except for single ended
• Differential 9334s are attached two per adapter
• NS is Not Supported

28 AIX Storage Management

Table 4. Maximum External Storage Capacities (continued)

RS/6000
System

Configuration

9333 Capacity
(GB)

9333 Max
Drawers

3514 Capacity
(GB)

3514 Max
Subsystems

7135 Capacity
(GB)

7135 Max
Subsystems

Model 250 NS NS 55.1 4 NS NS

Rest of 2xx

series

NS NS NS NS NS NS

Models

41T/41W

NS NS 55.1 4 NS NS

Model C10 64 8 82.6 6 288 6

Models

355/365/375

NS NS 55.1 4 192 4

Models

360/370/380/390

32 4 27.5 2 96 2

Models

3AT/3BT

NS NS 55.1 4 192 4

Model 52H 64 8 27.5 2 96 2

Model 550L 128 16 110.2 8 384 8

Rest of 5xx

series

192 24 110.2 8 384 8

Models

R10/R20

192 24 NS NS 384 8

Models

970B/980B/990

R24

224 28 NS NS 672 14

Note:

• All drives are 2GB
• Capacities of 7135 RAIDiant Array are for RAID 3 or RAID 5 configurations with 5 disk drives
• The 3514 Array capacity is calculated with 8 drives as 7 + P. Some capacity is used by the array subsystem so its actual capacity is

13.77GB rather than 14GB.
• NS is Not Supported

This gives an indication of the capacity that can be expected when selecting
particular devices, but should be used in conjunction with the sections on
performance and availability before making any final decisions. Furthermore,
it must be noted that multiples and mixes of these subsystems and devices
can be attached, though there are limits on the total due to technology
constraints.

• Cable lengths restrict the number of devices attachable in some cases.
See 2.2.1, “Hardware Attachment Adapters” on page 22 for details.

• Addressing limitations restrict the number of devices attachable to an
adapter. See 2.2.1, “Hardware Attachment Adapters” on page 22 for
details.

• Micro Channel can support a maximum of four differential SCSI adapters
due to power considerations. See Table 5 for more information.

The following table shows the maximum numbers of external storage devices
that can be attached to a Micro Channel bus.

Table 5 (Page 1 of 2). Maximum External Storage per Micro Channel

System Max imum Capacity
(GB)

Number of Drawers or
Subsystems

Single Processor Max
Capacity (GB)

Dual Processor Max
Capacity (GB)

9334 Single Ended

Deskside

9.2 1 9.2 8.8

9334 Single Ended Rack 9.2 1 9.2 Not Supported

9334 Differential

Deskside

8 2 14 12

Chapter 2. Hardware Storage Components 29

Table 5 (Page 2 of 2). Maximum External Storage per Micro Channel

System Max imum Capacity
(GB)

Number of Drawers or
Subsystems

Single Processor Max
Capacity (GB)

Dual Processor Max
Capacity (GB)

9334 Differential Rack 8/6 2 14 12

9333 High Performance 8 4 32 32

3514 Disk Array (RAID

0)

15.77 2 31.5 31.5

3514 Disk Array (RAID

5)

13.77 2 27.5 27.5

7134 Disk Subsystem 28 0.5 14 12

7135 RAIDiant Model

010

24 1 12 12

7135 Model 110 RAID 0 60 2 120 120

7135 Model 110 RAID

3/5

48 2 96 96

7135 Model 110 RAID 1 28 2 56 56

Note:

• The second drawer on a 9334 differential SCSI is l imited to three drives in a single processor configuration, and two drives with dual

processors.
• The single processor configurations of a single ended 9334 use seven SCSI ids with three 2.4GB and one 2GB drive.
• The dual processor configuration of a single ended 9334 uses six SCSI ids with two 2.4GB drives and two 2GB drives.
• The 7135 model 010 can contain a maximum of 12 disk drives with six on each of two SCSI buses. A separate Micro Channel adapter is

required for each bus.

 2. Performance

With regard to the disk devices themselves, the major performance issue is
application related; that is to say, whether large numbers of small accesses
will be made (random), or smaller numbers of large accesses (sequential).
For random access, performance will generally be better using larger
numbers of smaller capacity drives; the opposite applying for sequential
access. If the overall capacity requirements are large however, then larger
capacity disk drives should be used, as there will be sufficient drives to
enable performance benefits to be gained from concurrent access. Individual
disk drive performance information can be found in Table 6.

Table 6. Individual Disk Drive Characteristics

Drive Capacity Random
Performance
4K ops/sec

Sequential
Performance
4KB (M B / s)

Sequential
Performance
64KB (M B / s)

Sequential
Performance

512KB (M B / s)

Interface
Speed (M B / s)

SCSI 3.5″ 0.2 26 0.204 1.16 1.476 5

SCSI 3.5″ 0.4 27 0.225 1.141 1.472 5

SCSI 3.5″ 0.54 44 0.357 2.152 2.932 10

SCSI 3.5″ 1.0 33 0.271 1.604 2.189 10

SCSI 3.5″ 2.0 39 0.319 2.153 3.218 10

SCSI 5.25″ 0.857 31 0.255 1.301 1.709 4

SCSI 5.25″ 1.37 35 0.286 1.634 2.245 5

SCSI 5.25″ 2.4 66 0.271 1.604 2.189 10

Serial 1.07 31 0.255 1.301 1.709 8

Serial 2.0 39 0.319 2.153 3.218 8

Note:

• Random performance is measured as the number of 4KB blocks a drive can sustain at a uti l ization of 50%. As the uti l ization approaches

100% the response time increases signif icantly.
• Sequential performance is measured as the number of bytes per second that can be read from the drive. A random seek is done, a number

of bytes are read (4KB, 64KB, or 512KB), and then another random seek is done.
• Interface speeds shown are the burst data rates, and as such not sustainable for long periods of time. The serial drives are full duplex, and

can read and write data simultaneously.

30 AIX Storage Management

Generally speaking, when performance is the major issue, the best approach
is to benchmark the application set. If the applications spend most of their
time waiting for data from disk, then much benefit will be attained from
selecting faster storage subsystems. The quickest access to data can be
achieved through concurrency, which means being able to read/write from/to
multiple disk drives simultaneously in order to satisfy an application request.
This functionality is provided with RAID (Redundant Array of Independent
Disks) support, which a number of disk subsystems can utilize. Actual
performance characteristics will vary from subsystem to subsystem, but in
the main, the following points hold true for each of the RAID modes of
operation.

a. RAID 0

RAID 0 is also known as data striping. Conventionally, a file is written out
to (or read from) a disk in blocks of data. With striping, the information is
split into chunks (a fixed amount of data) and the chunks written to (or
read from) a series of disks in parallel. There are two main performance
advantages to this.

• Data transfer rates are higher for sequential operations due to the
overlapping of multiple I/O streams.

• Random access throughput is higher because access pattern skew is
eliminated due to the distribution of the data. This means that with
data distributed evenly across a number of disks, random accesses
will most likely find the required information spread across multiple
disks and thus benefit from the increased throughput of more than
one drive.

RAID 0 is well suited for program libraries requiring rapid loading of
large tables, or more generally, applications requiring fast access to
read-only data, or fast writing. RAID 0 is only designed to increase
performance, there is no redundancy, so any disk failures will require
reloading from backups.

b. RAID 1

RAID 1 is also known as disk mirroring. In this implementation, duplicate
copies of each chunk of data are kept on separate disks, or more
usually, each disk has a twin that contains an exact replica (or mirror
image) of the information. If any disk in the array fails, then the mirrored
twin can take over. Read performance can be enhanced as the disk with
its actuator closest to the required data is always used thereby
minimizing seek times. The response time for writes can be somewhat
slower than for a single disk, depending on the write policy; the writes
can either be executed in parallel for speed, or serially for safety (see
“Logical Volume Manager Policies” on page 55 for a complete
explanation of mirroring policies). This technique improves response
time for read-mostly applications, and improves availability at the cost of
price (twice as many disks as disk space required are required).

RAID 1 is most suited to applications that require high data availability,
good read response times, and where cost is a secondary issue.

 c. RAID 2/3

RAID 2 and RAID 3 are parallel process arrays, where all drives in the
array operate in unison. Similar to data striping, information to be written
to disk is split into chunks and each chunk written out to the same
physical position on separate disks (in parallel). When a read occurs,

Chapter 2. Hardware Storage Components 31

simultaneous requests for the data can be sent to each disk, which then
retrieve the data from the same place and return it for assembly and
presentation to the requesting application. More advanced versions of
RAID 2 and 3 synchronize the disk spindles so that the reads and writes
can truly occur simultaneously (minimizing rotational latency buildups
between disks). This architecture requires parity information to be written
for each stripe of data, the difference between RAID 2 and RAID 3 being
that RAID 2 can utilize multiple disk drives for parity, whilst RAID 3 uses
only one. If a drive should fail, the system can reconstruct the missing
data from the parity and remaining drives. Performance is very good for
large amounts of data, but poor for small requests as every drive is
always involved, and there can be no overlapped or independent
operation.

RAID 2 is rarely used, but RAID 3 is well suited for large data objects
such as CAD/CAM or image files, or applications requiring sequential
access to large data files.

d. RAID 4

RAID 4 addresses some of the disadvantages of RAID 3 by using larger
chunks of data and striping the data across all of the drives except the
one reserved for parity. Using disk striping means that I/O requests need
only reference the drive that the data required is actually on. This means
that simultaneous as well as independent reads are possible. Write
requests however, require a read/modify/update cycle that creates a
bottleneck at the single parity drive. This bottleneck means that RAID 4 is
not used as often as RAID 5, which implements the same process, but
without the bottleneck.

e. RAID 5

RAID 5, as has been mentioned, is very similar to RAID 4. The difference
is that the parity information is distributed across the same disks used
for the data, thereby eliminating the bottleneck. Parity data is never
stored on the same drive as the chunk that it protects. This means that
concurrent read and write operations can now be performed, and there
are performance increases due to the availability of an extra disk (the
disk previously used for parity). There are other enhancements possible
to further increase data transfer rates, such as caching simultaneous
reads from the disks, then transferring that information whilst reading the
next blocks. This can generate data transfer rates at up to the adapter
speed. Similar to RAID 3, in the event of disk failure, the information can
be rebuilt from the remaining drives.

RAID 5 is best used in environments requiring high availability and fewer
writes than reads.

Disk subsystems that support RAID include:

• IBM 7135 RAIDiant array
• IBM 3514 High Availability External Disk Array
• IBM 9570 Disk Array Subsystem

To summarize, the key performance issues are listed below:

• Quantity of code executed per block of data (I/O ratio)

• Number of disks containing data

• Disk drive performance

32 AIX Storage Management

• Disk drive data path performance (adapter to disk)

• Size of data blocks accessed

• Pattern of data access (random/sequential/locality of reference)

• Ability to pipeline data (caching)

• Importance of response time

 3. Availability and Fault Tolerance

The key assessment with regard to availability is how severe the impact of
losing data (however temporarily) would be to the business. If, for example,
being without access to vital information for two hours would cause
unacceptable loss of business, then the system must be designed in such a
way that any failures can be remedied within this period. Standard
availability usually means that the system is designed in such a way as to
minimize the risk of failure, but not prevent it altogether; choosing highly
reliable devices for example. High availability generally implies introducing
some redundancy into the system design, so that the system can continue
(albeit usually at reduced performance) while the failing component is
replaced. If all vital components in a subsystem have a back up in case of
failure (total redundancy), then the system is fault tolerant; this means
duplication of all critical components, including power supplies and cooling
fans for example, as well as allowing replacement of failing parts during
continuing subsystem operation.

The price of redundancy for high availability or fault tolerance is usually the
increased cost.

Highly availability solutions include mirroring (RAID 1), as well as RAID 3 and
RAID 5 parity. Automatic recovery can be built into some of the RAID
supporting subsystems as well. Additionally, some subsystems allow
redundancy in power supplies, controllers, and cooling to provide fault
tolerant, highly available subsystems.

The various advantages and disadvantages of the disk devices and subsystems
available are summarized in Table 7, which can be used to compare disk
solutions, and select the most appropriate for the required environment.

Table 7 (Page 1 of 2). Comparison of Disk Device and Subsystem Features

Configuration Avai labi l i ty
Mechanism

Max imum
Capacity (GB)

Performance Cost Applications Fault
Tolerance

Internal Disk Mi r ror ing System

Dependent

Medium Low General, OLTP No

7204-215 Mir ror ing 2 Medium Low General, OLTP Yes (#)

9334 Deskside Mi r ror ing 8 Medium Medium General, OLTP Yes (#)

9334-011 8

Drawers

Mi r ror ing 32 Medium Medium General, OLTP Yes (#)

9333 Deskside Mi r ror ing 8 High Medium Fast Response Yes (#)

9333 32

Drawers

Mi r ror ing 128 High Medium Fast Response Yes (#)

7135-110 (RAID

0)

None 56 High Medium Fast Response Yes

7135-110 (RAID

1)

Mi r ror ing 28 Medium High General, OLTP Yes

7135-110 (RAID

3)

Pari ty 48 Medium Medium NIC, Sequential Yes

Chapter 2. Hardware Storage Components 33

Table 7 (Page 2 of 2). Comparison of Disk Device and Subsystem Features

Configuration Avai labi l i ty
Mechanism

Max imum
Capacity (GB)

Performance Cost Applications Fault
Tolerance

7135-110 (RAID

5)

Pari ty 48 Medium Medium General Yes

3514 (RAID 0) None 14 High Low General Some

3514 (RAID 5) Pari ty 13.77 Medium Low General Some

9570 (RAID 1) Mi r ror ing 116.2 High High Fast Response Yes

9570 (RAID 5) Pari ty 232.4 High High Fast Response Yes

Note:

• (#) indicates that fault tolerance is achieved through using duplicate devices
• Capacities are based upon the usage of 2GB drives

2.2.3 Tape Storage
This section will look at tape technology, before continuing to examine the
decision process necessary to enable the best tape subsystems for the
environment to be selected.

2.2.3.1 Tape Technology
There are two basic technologies incorporated into tape devices, and the
specifics of these will be discussed shortly. Both though, utilize the same
essential mechanism for writing and reading data: however it is packaged, and
whatever materials are used in its construction, tape consists of a long strip of
material ranging from 4mm wide, to half an inch. The strip is coated (in much the
same way as disk) with a magnetic material, and wound onto spools of some
kind. Using a transport mechanism dependant on the technology, the tape is
moved past read and write heads that utilize similar technology to those used in
disk devices to alter or sense the polarity of magnetic domains on the tape,
thereby writing or reading data.

It is at this point that the technologies differ, both in the methods used for tape
transport, and in the way in which the data is written onto the tape surface.

 1. Helical Scan

34 AIX Storage Management

Figure 16. Helical Scan Principles

Helical scan technology has its origins in consumer analog video devices,
and though there are a number of different formats, the basic principles are
the same in each case. As can be seen from Figure 16, the tape surface is
wound around a large cylindrical head inclined at an angle of some four to
five degrees. The tape moves relative to the head, which is itself spinning at
high speed. This results in data tracks written at an angle across the tape
width as well as being slightly overlapped. This makes very efficient use of
the tape capacity, and gives a good data rate for continuous writing of data
(streaming). This capacity is at the cost of start/stop performance, as
synchronization problems slow down the initial access. Additionally, helical
scan is a destructive process in the sense that the tape surface is in contact
with the read/write head and hence wears more rapidly. Tape is normally
contained within a cartridge and extracted to be wound around the head as
shown in Figure 17 on page 36. This winding process also takes time and
must be performed every time the device is loaded or idle, as tape cannot be
left in contact with the head for too long as this would again cause excessive
wear. Head replacement is also difficult, due to the complexity of the
transport mechanism.

Chapter 2. Hardware Storage Components 35

Figure 17. Helical Scan Tape Paths

 2. Longitudinal Recording

Longitudinal recording was specifically designed for computer data storage.
Again there are a number of variations, though all utilize the same basic
ideas. As can be seen from Figure 18, the tape is moved past stationary
read and write heads causing the data tracks to be recorded linearly along
the tape′s length. In order to make full use of the tape, the heads normally
contain multiple elements allowing several tracks to be written or read
concurrently. In addition, when a continuous series of tracks has been
written along the length of the tape, the direction of motion can be switched,
and the heads stepped perpendicular to the movement of the tape, thereby
allowing another series of tracks to be written. This process can be repeated
until the entire tape width is used, and is known as serpentine track
interleaving.

Figure 18. Longitudinal Recording Principles

36 AIX Storage Management

Longitudinal recording is a non-destructive process with a consequently
longer media life. Performance is good for both streaming and start/stop
activity, and the data rate is high. Maintenance is a simpler process, and as
can be seen from Figure 19 on page 37, the tape transport path and
mechanism are generally simpler.

Two types of spooling method are common. Cartridges similar to helical
scan cartridges can be used, though with longitudinal recording, the tape
transport path can remain entirely within the cartridge. This makes load and
unload operations much faster, and the entire design much simpler. The
other mechanism utilizes a single reel within the cartridge, and requires the
free end of the tape to be threaded onto a spool within the tape device itself.
This does result in a slightly more complex design, and consequently longer
load and unload times.

Figure 19. Longitudinal Recording Tape Paths

The simpler design of longitudinal devices generally results in greater reliability,
though for a given media size, helical scan will provide greater capacity.
Start/stop performance and load/unload times are also better with the
longitudinal technology.

Both helical scan and longitudinal recording devices can make use of hardware
compression before writing data to the tape. In some cases (with the latest
Intelligent Data Recording Capability, or IDRC), this can result in up to a fourfold
increase in capacity, depending upon the characteristics of the data to be
compressed. Currently, maximum capacities for both technologies are at around
5GB per cartridge without compression.

The latest longitudinal devices now have such rapid load times, which when
coupled with new recording strategies, give access times to data anywhere on
the tape that are beginning to enter the acceptable range for interactive use. The
next section will look at specific product types with a view to selecting the best
tape devices for the environment.

Chapter 2. Hardware Storage Components 37

2.2.3.2 Selecting the Correct Tape Storage Devices
The preceding section has looked at tape devices from the technical point of
view. This section will now examine the criteria that should be used to choose
the correct devices for an environment, as well as the devices available. As in
the case of disk devices, there are three main considerations, performance,
availability, and capacity.

 1. Capacity

The capacity of a tape drive refers to how much information can be stored on
the media that it uses. This varies as a function of the tape drive technology,
and the compression techniques used (see 2.2.3.1, “Tape Technology” on
page 34 for details). If the required capacity should exceed that of any single
tape available, and either time constraints exist, or there is a requirement for
unattended backup, then a tape library should be used. The various
capacities available from the individual tape devices are shown in Table 7
on page 33. As can be seen, capacities are generally higher for the devices
using helical scan technology. Tape Libraries are discussed at the end of
this section.

Most tape drives support some form of compression which can increase the
amount of data that can be stored on a tape. The degree of compression
depends upon the data to be compressed, so the figures shown in Table 8
on page 39 are the maximum ratios. In order to arrive at a maximum
compressed capacity for a particular tape, the ratio should be multiplied with
the uncompressed capacity (for example a 5GB tape with a compression
ratio of 2:1 would give 10GB of data). The tape device automatically
uncompresses the data when reading back from tape. There is a small
overhead involved (small because the compression is usually performed in
hardware). As some types of data do not benefit greatly from compression,
and to remove the small overhead, most devices allow compression to be
turned off if required. Generally though, it is of benefit to leave compression
enabled.

 2. Performance

In the case of tape drives, performance mostly refers to the data rates to and
from the device. This is usually not limited by the attachment mechanism,
but by the device itself, though there are a number of adapters supported
(see Table 8 on page 39). In the case of tape libraries, the time taken to
read the first byte of data is usually also a performance measurement, and
includes the time taken to load and unload tapes from/to the library; this is
discussed at the end of this section. Data rates and attachment methods are
detailed in Table 7 on page 33. Note that although the data rates are
generally comparable, start/stop performance is usually superior with
longitudinal technology.

 3. Availability

Availability in this sense usually means reliability, and can be measured as
the Mean Time Between Failures for the device (MTBF), and the reliability of
the media. As was mentioned in 2.2.3.1, “Tape Technology” on page 34,
media life is greater for longitudinally recorded tapes, with correspondingly
fewer errors; additionally, the simpler transport mechanisms employed
normally extend the MTBF significantly.

38 AIX Storage Management

Table 8. Tape Drive Specifications

Drive Uncompressed
Capacity

(GB)

Max imum
Compression

Ratio

Data Rate
(KB/s

uncompressed)

T ime to
Wri te One
Cartridge

(hrs)

Save Rate
(GB/hr

uncompressed)

Interface Technology

7208-011

(8mm)

5 2:1 500 2.78 1.8 SCSI-2 Hel ical

7208-001

(8mm)

2.3 N/A 245 2.61 0.88 SCSI-1 Hel ical

7206-001

(4mm)

2 2:1 183 3.04 0.66 SCSI-1 Hel ical

7206-005

(4mm)

4 2:1 400 2.78 1.44 SCSI-2 Hel ical

7207-012

(1/4″)
1.2 N/A 300 1.11 1.08 SCSI Longi tudinal

9348-012

(1/2″)
0.16 N/A 768 0.06 2.76 SCSI Longi tudinal

3490-C10

(1/2″)
4.8 3:1 3000 0.5 10.8 S/370 or

ESCON

Longitudinal

3490-C22

(1/2″)
9.6 3:1 3000 0.5 10.8 S/370 or

ESCON or

SCSI-2 Diff

F/W

Longi tudinal

3490-E01

(1/2″)
5.6 3:1 3000 0.5 10.8 SCSI-2 Diff

F/W

Longi tudinal

Note:

• The figures for the 9348-012 are using 6250 bpi

Tape libraries have been described in 2.2.3.1, “Tape Technology” on page 34,
and generally utilize automation to load/unload one of the drives in Table 8 from
a library. The library management software must usually be provided by an
application and needs to be written to understand the interface to the library. It
is important therefore, to confirm that the tape library selected is in fact
supported by the applications required. The intended usage is important too. If
the library will be used for backing up fileservers, or workstation clients
overnight, then it is necessary to ensure that the data rate is sufficient to do this.
A comparison of current tape library products can be seen in Table 9.

Table 9. Tape Library Specifications

Library Number of
Tapes

Max imum
Capacity

(GB)

Compression
Ratio

Number of
Drives

Data Rate
(M B / s un-
compressed)

T ime to
Fi l l A l l
Media
(hrs)

Average
Exchange

Time
(secs)

Technology

0840-001

(8mm)

10 50 2:1 1 0.5 27.8 49 Hel ical

0572-001

(8mm)

54 270 N/A 2 1.0 75 49 Hel ical

3494-L10 2 1 0 + 1 6 8 + 3:1 1-8 3.0 4 2 + 7-17 Long-

i tudinal

3495-L20

(1/2″)
6440 5152 3:1 4-16 2.5 days 7-17 Long-

i tudinal

Note:

• Average exchange times do not include access to first byte of data
• The 3490 supports the OEMI adapter at 2.5MB/s data rate

Chapter 2. Hardware Storage Components 39

2.2.4 Optical Storage
This section will look at optical storage technology, before going on to examine
the decision process required to choose the right optical storage devices for the
environment.

2.2.4.1 Optical Technology
There are three basic optical technologies, each providing for different
capabilities. Some devices will cope with more than one kind of technology,
though this is not always so. In all three cases, information is stored in tracks on
the media surface. Each mechanism then uses different methods to read and
write information on these tracks.

 1. Compact Disk Read Only Memory

With Compact Disk Read Only Memory, or CD-ROM, information is molded
into the media during the manufacturing process as a series of pits in the
surface. The existence or absence of a pit determines the binary state at
each point. The information is read back by shining a laser onto the disk
surface and measuring the reflected intensity. The compact disk is spun at
high speed inside the device and the laser assembly moved radially in and
out to give access to the required blocks of information. CD-ROMs are
cheap to make and provide an excellent distribution medium. The only
potential issue is that there is no recording capability.

 2. Rewritable

Rewritable media uses magneto-optic technology to store information. As
can be seen from Figure 20 on page 41, the media surface is comprised of
concentric tracks of magnetic material. With this technique, the read/write
head consists of two components, an electromagnet and a laser. The media
is first prepared by heating each magnetic domain with a high powered laser
in the presence of a magnetic field. This causes the domains to adopt a
common polarity. Writing is accomplished by again heating up a domain with
the laser while applying a magnetic field of reverse polarity to flip its state.
Reading back information is achieved using the reflected light from a lower
powered laser to detect the original polarity domains (zeros) and the
reversed polarity domains (ones), through a polarization effect. Erasing is
implemented by again heating up the domains with a high powered laser
and simultaneously using the electromagnet to reset the polarity to its
original state.

While providing the benefits of read, write and erase, this technology still
manages to be very stable, giving a shelf life of around 10,000 years, and
archival life of around 150 years.

40 AIX Storage Management

Figure 20. Rewritable Optical Media Technology

 3. Write Once Read Many

Write Once Read Many, or WORM technology is also implemented in a
number of different ways. The purpose in each case is the same, to allow
information to be recorded for permanent copy, that is to say once written, it
cannot be erased.

• Ablative

The ablative WORM technique uses a higher powered laser to actually
physically alter the media surface by burning away material to create
pits similar to those used in CD-ROM. In the same way, a lower powered
laser is then used to read back information through reflected intensity.
Erasing of information so recorded is clearly not possible.

• Continuous Composite Write-Once

Continuous Composite Write-Once, or CCW uses the magneto-optic
technology described earlier to record and read back information.
Erasure of data is prevented by simply not allowing this function in the
device firmware.

• Phase Change

This technology operates in a similar fashion to ablative. A higher
powered laser beam alters the physical properties of the material used
to form the disk surface, causing it to adopt its crystalline form at the
high temperature induced by the laser. The crystalline form is lighter in
color than the original form, and the resulting lighter dots can be read as
variations in reflected intensity by a lower powered laser.

• Dye-Polymer

Chapter 2. Hardware Storage Components 41

Again similar to ablative, this technology uses a high powered laser to
alter the physical properties of an organic dye that is coated on the
media surface. When exposed to the high energy beam, the dye absorbs
energy and becomes darker. A lower powered laser can then be used to
read back information as differences in reflected intensity.

WORM media is also stable, giving the benefits of extremely long archival
life of over 500 years, with the additional advantage of allowing the initial
information recording.

 4. Multifunction

A fourth technology combines the capabilities of WORM and magneto-optical
to give drives that support both functions.

These optical technologies also come in a number of different form factors
including 5.25 inch and 12 inch media, both single and double sided. The optical
disk is normally housed in a cartridge, and typical capacities per cartridge are
currently around 1.3GB for double sided, double density, 5.25 inch media.

Currently, lasers operating in the red light frequency range are being used; in
the future, switching to blue light frequency range lasers will increase the
density fourfold and consequently enlarge capacity. The binary state is currently
read as a function of the position of the element on the media (known as Pulse
Position Modulation, or PPM). In the future, Pulse Width Modulation, or PWM will
be used. This is also known as edge detection, where a state change is
interpreted as one level, and no state change as the other (binary 1 and 0). This
allows up to a 50% increase in density (see Figure 21), with a corresponding
increase in capacity. Lastly, banding as described in the section on disk
technology will be used, the overall capacity increase including banding being
around 24 times.

Figure 21. Pulse Position Modulation Vs Pulse Width Modulation

42 AIX Storage Management

2.2.4.2 Selecting the Correct Optical Storage Devices
Having looked at the technology used in optical storage devices in the previous
section, this section will now discuss the selection of the physical devices. Once
again, performance and capacity are important differentiators, and should be
considered; in addition, with optical media, the technology used is also
important.

 1. Capacity

The capacity of optical media is mainly dependent upon the technology, but
within that, also varies with the number of bytes per sector supported. It is
important to ensure that the application that will be using the optical device
supports the sector size that gives the capacity required. The capacities (for
the different bytes per sector supported) are shown in Table 10. If the
capacities available are insufficient for the environment, then an optical
library should be considered; these are discussed at the end of this section.

 2. Performance

With optical devices, performance involves (similar to disk) a combination of
the read and write data rates, as well as access times (themselves a
combination of seek times and rotational latencies). The attachment method
will not affect the performance significantly, as the maximum data rates do
not come close to the data rates of the adapters; this does mean that optical
devices can share adapters with other devices without performance
implications (the total data rate should be calculated to be below the
maximum adapter data rate). The performance characteristics of the various
optical devices available are compared in Table 10.

 3. Technology

As was described in 2.2.4, “Optical Storage” on page 40, there are several
different optical technologies currently in use: CD-ROM, WORM, and
Rewritable. If the requirement is for distribution or reading only, at relatively
low data rates, then CD-ROM is adequate; higher data rates would require
WORM or rewritable media devices. WORM is ideal if there is a requirement
for long term storage of infrequently accessed information, or for distribution.
Rewritable media is more suitable for interactive use when performance is
not critical.

Table 10. Optical Device Specifications

Drive Technology Capacity (GB) Read Data
Rate (KB/s)

Wri te Data
Rate (KB/s)

Average
Access Time

(ms)

Interface

7210-001 CD-ROM 0.6 150 N/A 325 SCSI

7210-005 CD-ROM 0.6 330 N/A 200 SCSI

7209-001 Rewri table 0.65 (0.595) 680 (620) 227 (207) 82.5 SCSI

7209-002 Rewri table 1.3 (1.19) 1600 (1400) 533 (467) 67.5 SCSI

Note:

• The figures for the 7209 models were measured at 1024 bytes per sector, the figures in brackets are for 512 bytes per sector media

Although generally slower than disk, optical storage is cheaper. Therefore, if
there is a requirement for large amounts of secondary storage, and performance
is not critical, then optical storage should be considered. If the storage capacity
required exceeds that of the optical drives available, then a library should be
considered. Using similar technology to that employed in tape libraries, optical
libraries utilize automation to load/unload optical drives from magazines of
optical media. The same performance, capacity, and technology considerations

Chapter 2. Hardware Storage Components 43

apply as in the case of optical drives; similar to tape libraries though, library
management software needs to be provided that understands how to control the
optical library. A comparison of the optical libraries currently available can be
found in Table 11.

Table 11. Optical Library Specifications

Library Number of
Cartridges

Technology Max imum
Capacity

(GB)

Number of
Drives

Average
Read Data

Rate
(M B / s)

Average
Write Data

Rate
(M B / s)

Average
Exchange

Time

Interface

3995-A63 16 Rewri table

& WORM

20 (19) 1 1.05 (0.96) 350 (320) 10 SCSI-2 &

SCSI-2 Diff

3995-063 32 Rewri table

& WORM

40 (38) 2 1.05 (0.96) 0.35 (0.32) 10 SCSI-2 &

SCSI-2 Diff

3995-163 144 Rewri table

& WORM

188 (171) 4 1.05 (0.96) 0.35 (0.32) 10 SCSI-2 &

SCSI-2 Diff

Note:

• The 3995 models support both 1024 and 512 bytes per sector media. The first figures are 1024 bytes per sector, the figures in brackets are

512 bytes per sector

In addition to the directly attachable library devices shown in Table 11, there are
also a number of LAN attached optical libraries that can be utilized via NFS.
These libraries utilize the same technologies as discussed in this section, the
difference being in the method of access. See 3.1.4, “File Systems” on page 58
for a discussion of NFS. The models of the 3995 that can be attached in this
fashion are:

• 3995-A23

• 3995-023

• 3995-123

The capacities are the same as for the equivalent x63 models for direct
attachment.

2.3 Summary
This chapter has discussed in more detail the hardware components available
for use by AIX storage management products.

The first section looked at the considerations involved in choosing the types of
components appropriate for a particular environment:

• Costs per megabyte

• Access frequency

• Access density

• Access type

• Data rates

• Online life

• Interchange requirements

• Longevity of data

• Reliability

• Regulatory requirements

44 AIX Storage Management

Various decision scenarios were examined, including:

• Simple cases for just disk, tape, or optical

• More complicated environments where combinations of disk, tape, and
optical may be required

• The most complex cases where disk, tape, and optical are all required

The second section examined the characteristics of the hardware devices
themselves with a view to selecting from the various products currently
available.

Adapters were looked at from the points of view of:

• Technology

• Cabling requirements

• Performance/reliabil ity

• Addressability

• Device support

• Cost

Disks were looked at from the points of view of:

• Technology

• Capacity

• Subsystem performance, including RAID levels

• Availability and fault tolerance

Tape devices were looked at from the points of view of:

• Helical and longitudinal technologies

• Device and library capacities

• Availability

• Device and library performance

Optical devices were looked at from the points of view of:

• ROM, Rewritable, and WORM technologies

• Device and library capacities

• Device and library performance

Chapter 2. Hardware Storage Components 45

46 AIX Storage Management

Chapter 3. Operating System Software Components

This chapter is intended to discuss the various software components within the
Operating System that are used to enable storage management. A brief
overview of the higher level software components available for storage
management is also included.

3.1 The Operating System
The operating system of a computer has been defined in many ways, but
essentially it is a set of software interfaces and functions designed to provide an
environment in which the hardware resources of the system can be utilized
easily to do work. Within this definition there can be arbitrary levels of
complexity, ranging from simple operating systems that allow a single process to
execute at a time for a single user, to those that manage multiple processors,
large arrays of disk, huge amounts of real memory, as well as many different
devices on behalf of hundreds of users, each running several processes
concurrently.

The operating system can be subdivided into a number of components, each of
which perform essential tasks. This section will focus on those elements related
to storage management.

3.1.1 Page Space
An application consists of four main elements:

 1. Library

The library segment contains shared instructions that perform common
functions that will be used by many processes.

 2. Text

The text segment contains any static information such as text strings, tables,
and instructions to the processor.

 3. Data

The data segment contains variable information that the application will use
and modify during the course of its operation.

 4. Files

Files contain the information that the application will actually process to
produce output that the user requires.

The text and data segments form an entity known as the executable and are
stored in a file system (file systems and the organization of disk space for their
support are described in more detail in 3.1.3, “Logical Volume Manager” on
page 51, and 3.1.4, “File Systems” on page 58), usually on disk. When the user
wishes to run the application, the operating system must locate the executable in
the file system, and load it into real memory. Any shared libraries required, if not
already being used by other applications, and therefore already loaded, must
also be loaded.

 Copyright IBM Corp. 1994 47

Memory under AIX is managed by the Virtual Memory Manager, which provides
a 52 bit virtual address space (4 petabytes). This space is divided into segments,
each of 256MB. Segments can be of several different types:

 1. Working Segments

Working segments are those pages of memory that contain transient
information, such as application data, and shared library code.

 2. Persistent Segments

Persistent segments are those pages of memory that contain longer term
information, such as data files, or application text.

 3. Client Segments

Client segments are used for NFS files, or data from remote systems.

 4. Log Segments

Log segments contain meta information used by the journaled file system
(see 3.1.4, “File Systems” on page 58 for more information on logs).

When the application is loaded, the VMM loads the various elements into virtual
memory segments (see Figure 22 on page 49). Application text and file data are
loaded into persistent segments, whilst application data and shared libraries are
loaded into working segments. If any of the libraries required have already been
loaded, then they obviously need not be loaded again.

Virtual memory segments are themselves divided into pages of 4096 bytes each,
and the VMM manages the mapping of these pages between real memory,
paging space, and disk. The first element of the application loaded is the text
segment, and the first few pages of this working segment are mapped to real
memory locations. This means that when the operating system loader issues
instructions to load the text segment to the required virtual memory segment,
the VMM translates the addresses of the first few pages, so that they actually
correspond to real memory page frames, and the corresponding pages are
therefore loaded into real memory.

As was described in 1.1.1, “General Concepts” on page 1, real memory is also
logically divided into pages frames, where each frame is a fixed number of bytes
of data (again 4096 bytes). When the application is loaded into memory, the
virtual memory pages are placed in real memory page frames, which is where
they must be for the processor to access information from them. The other
pages in real memory will contain other applications including those parts of the
operating system currently in use, also mapped by the VMM from the virtual
memory locations where they are actually addressed. The VMM maintains a
free list of currently unused real memory page frames; frames from this list are
used for mapping the incoming virtual memory pages to.

48 AIX Storage Management

Figure 22. Virtual Memory Manager Disk Usage

An entry in the process table is created containing essential information
regarding the application, such as the address of the current instruction, locks
held, and other application specific information. An entry is also put on a
process dispatch queue which is used by the operating system scheduler to
select the application which will run next.

The code segment, and shared libraries (if necessary) are also loaded in the
same manner.

The application eligible to run next is dispatched, which means that the address
of the next instruction in the process table is loaded into the processor, and the
application is now running. If at some point the application makes a jump to an
instruction contained in a page not currently in real memory (or requests a piece
of data on such a page,, or calls a library function whose instructions are on a
page not currently in real memory) a page fault occurs. In this case, the
operating system must copy the page required into real memory for use.

Sooner or later, the application will need to access information from a data file.
When the request to open the file is made, the physical file on disk is loaded into
a persistent virtual memory segment in the same manner as has been described
for the executable.

Each application also has a fixed time slice during which it can use the
processor, and once this expires the process is put to the back of the dispatch
queue and the next process scheduled. The next process may be part of the
operating system loading a new application that a user has started, in which
case the new executable is loaded into memory pages.

Relatively quickly, the memory pages will become full, and when a certain
threshold is reached, the VMM must act to maintain the number of pages in the
free list. To do this, it uses an algorithm to determine which of the in use pages
are not likely to be required in the near future. The criteria include:

• Whether the page frame belongs to a persistent or working segment

Chapter 3. Operating System Software Components 49

• If persistent, whether it contains program text, or file data

• Whether the page frame has caused page faults before (page faults are
explained shortly)

• If so, whether the faults were new faults, or repages (a repage is a page of
information that has been required more than once)

• If repages, how many

• User tunable threshold parameters

Pages selected in this way (enough to bring the number of used pages back
below the threshold) are paged out, and page frames thus freed added to the
free list. The decisions are designed to favor those types of segment most likely
to be required in the near future, such as program text data, working segments,
and highly accessed information.

The actions taken for paging out (or swapping) vary depending upon the type of
segment from which the page comes, as well as its current state. If the page is
from a working segment, then it is copied to an area of disk reserved for this
purpose known as page space. The VMM changes the mapping to reflect that
the page is no longer in real memory, so that if a jump to an address (or request
for data at an address) on this page occurs, a page fault will result causing the
page to be reloaded. This is the case for any working segment page out. The
page is then added to the free list.

If the page is from a persistent segment, then the VMM will check to see
whether the page has been altered since it was first loaded, if not then the page
is just added to the free list; if a change has happened, then the page is first
written out to its original location on disk (usually in a file system). Again, the
VMM changes the virtual memory mapping to point to the pages new location
back on disk, and then adds the freed real memory page to the free list.
Utilization of disk in this fashion is known as single level storage.

Thus page space is used as an extension to real memory for situations where
more real memory than is available for working segments is necessary.
Persistent memory segments use their original locations on disk as overflow. In
this way, the VMM is able to effectively use more real memory than is physically
available on the system, as well as provide a huge address space.

There are certain mechanisms for file access such as the mmap() subroutine, or
accessing files via shared memory segments that will cause the file to be loaded
into a working segment in virtual memory. In these cases, the file information
will be treated in the same way as data or libraries and page faults may result in
parts being paged out to page space. Applications using these mechanisms will
require much more page space, particularly if large files are to be accessed.

The operating system monitors the number of free pages in paging space, and
when this falls below a certain level, all applications currently running on the
system are informed of the situation via a SIGDANGER signal. If the number of
free pages should then fall further, below a second threshold, those processes
using the most paging space will be sent the SIGKILL signal. This will continue
until the number of free pages has risen above the danger level. Well behaved
applications will trap the SIGDANGER signal, and upon receipt, free up as much
page space as they can by releasing resources.

50 AIX Storage Management

As can be seen, the allocation of paging space is critical to the operation of the
computer system. Furthermore, the design of the storage subsystems generally
will have a big impact due to the concept of single level storage. These
considerations are taken into account in Chapter 6, “General AIX Storage
Management” on page 95 and Chapter 5, “Storage Subsystem Design” on
page 79, which cover design and management.

3.1.2 Device Drivers
Whenever an operating system component or an application needs to interact
with a physical device, such as a disk or tape, it does so through services
provided by another element of the operating system known as a device driver.
Device drivers provide a common mechanism for accessing the devices that they
support.

Device drivers are treated as though they are ordinary files; thus when a
process needs to communicate with a device, it uses the open subroutine to
initialize the interface, and can then use the read and write calls to access data.
Control of the device is accomplished using the ioctl calls, and when the task
requiring the device is complete, the interface is ended with the close
subroutine.

There are two main types of device driver; those designed for character oriented
devices, such as terminals, and printers, and those designed for block devices,
such as disks or tapes. Storage management devices are usually block devices,
as this is more efficient for transfer of larger quantities of information.

Device drivers normally consist of two parts:

 1. The top half

This half is responsible for interacting with requestors, blocking and buffering
data, queuing up requests for service, and handling error recovery and
logging.

 2. The bottom half

This half is responsible for the actual I/O to and from the device, and can
perform some preprocessing on requests, such as sorting reads from disks
for maximum efficiency.

Device drivers provide the primary interface to devices. The logical volume
manager, which is discussed in the next section also provides a device driver
interface to higher level software, and makes use of the services provided by
device drivers to communicate with the physical devices themselves. A fuller
understanding of device drivers is really only necessary for those readers who
intend to develop applications that will interact directly with storage devices,
such as tape or optical library managers. More information can be found in the
″Device Driver Concepts Overview″ in the InfoExplorer* online hypertext
documentation.

3.1.3 Logical Volume Manager
The logical volume concept defines a higher level interface transparent to
applications and users, that allows the division, allocation, and management of
fixed disk storage space. This concept is implemented as a set of operating
system commands, subroutines, device drivers, and tools that are collectively

Chapter 3. Operating System Software Components 51

known as the Logical Volume Manager (LVM). This section is relevant to both
AIX Version 3 and AIX Version 4, though any differences will be highlighted.

3.1.3.1 Logical Volume Manager Terminology
There are a number of specialized terms used to describe the various entities
that comprise Logical Volume Management.

Physical Volumes: The physical disk drive itself forms the basis of Logical
Volume Management. Before a disk can be used by the system, it must be
defined. Each disk is assigned certain configuration and identification information
that together define the disk as a Physical Volume (PV). This information is
physically recorded on the disk and includes a Physical Volume Identifier (PVid)
that uniquely identifies it. The disk is also assigned a physical volume name,
typically hdiskx where x is a system unique number. This physical volume name
is also used for the low level device driver interface to the disk (for example
/dev/hdisk0).

Volume Groups:: A collection of between 1 and 32 physical volumes is known as
a Volume Group (VG). When physical volumes are created, they must be added
to a volume group in order to be used. A physical volume can only be in one
volume group on a system, though there can be multiple volume groups. Volume
group information includes a unique Volume Group Identifier (VGid), and the
PVids of all physical volumes in the volume group, as well as various status
information. Each disk in the volume group has an area on disk known as the
VGDA or Volume Group Descriptor Area, where this information is stored. The
VGDA also contains information describing all of the logical volumes (discussed
later in this section) that exist in the volume group.

If more than 32 physical volumes are attached to a system then more than one
volume group will definitely be required. It is usually sensible to design the
system such that different types of information are stored in different volume
groups though. For example, operating system information contained in one
volume group, and user information in a separate one, can assist in
management and in particular recovery; should a disk fault occur in a physical
volume from one volume group, then only information from that volume group
will be affected.

Under AIX Version 3 and AIX Version 4, up to 255 volume groups can be defined.

Physical Partitions: When a physical volume is added into a volume group, the
space on the physical volume is divided up into equal chunks known as Physical
Partitions (PPs). The physical partition size is set when a volume group is
created, and all physical volumes that are added to the volume group inherit the
value. The physical partition size can range from 1 to 256MB, and must be a
power of 2, the AIX default being 4MB. Up to 1016 physical partitions can be
defined per physical volume under AIX Version 3 and AIX Version 4.

This is the smallest unit of disk space allocation in the logical volume paradigm.
Smaller units increase allocation flexibility at the cost of increased management
overhead.

Logical Partitions: A Logical Partition (LP) is effectively a pointer to from 1 to 3
physical partitions, this number specified when a logical volume (see next
section) is created. Information written to a logical partition will be physically
written to the physical partitions pointed to. Thus the number of physical

52 AIX Storage Management

partitions mapped to a logical partition defines the number of copies of that
partition, or the level of mirroring.

Up to 35,512 logical partitions can be defined per logical volume under AIX
Version 3 and AIX Version 4.

Logical Volumes: Once a volume group has been created, and physical
volumes added to it, logical volumes can be created. A Logical Volume (LV)
defines a number of logical partitions, and therefore an area of disk that can be
used to store information. With AIX Version 3, the maximum size of a logical
volume was 2GB, with AIX Version 4, this limit has been raised to 256GB. The
maximum number of user-definable logical volumes in a volume group is 256.

Logical volumes are used to store such things as file systems, log volumes,
page space, boot data, and dump storage. The section on logical partitions
explained that a logical partition can be mapped to up to three physical
partitions, which means that up to two copies of the information contained in a
logical volume can be maintained; this is called mirroring, and is explained in
more detail in “Logical Volume Manager Policies” on page 55.

A logical volume can have its size changed by adding or removing logical
partitions, the number of copies can be increased or reduced, and even the
physical location of the logical volume on disk can be changed.

Further information on creating and managing volume groups, physical volumes,
logical volumes, physical partitions, and logical partitions can be found in
Chapter 6, “General AIX Storage Management” on page 95. The diagram in
Figure 23, shows the relationship between these components.

Figure 23. Components of the Logical Volume Manager

Chapter 3. Operating System Software Components 53

The logical volume manager provides the tools to create and manage these
entities. Structuring access to the physical disks in this manner provides the
following benefits.

• Transparent Control of Physical Storage

Data contained in a logical volume appears to be contiguous, but can in fact
be located on disk partitions that are not side by side, or even on the same
physical disk. This allows efficient usage of available disk space, particularly
when logical volumes require expanding.

• Mirrored Copies of Logical Volumes

Through being able to assign multiple physical partitions to each logical
partition, copies of vital information can be transparently maintained, even
on separate physical disks for additional security.

• Capacity Greater than Physical Disk Sizes

The logical partitions comprising a logical volume can span multiple disks,
which means that logical volumes are not limited to the sizes of the
individual physical disks attached to the system.

• Physical Partition Flexibility

The sizes of physical partitions can be defined when a volume group is
created. This gives flexibility in the use of disk resources. For example,
logical volumes can be increased in size by smaller increments, thereby
utilizing the available disk space more effectively.

3.1.3.2 Logical Volume Manager Operation
General Operation: As has already been discussed, the logical volume manager
consists of a set of operating system commands, library subroutines, and other
tools that allow logical volumes to be established and controlled. The operating
system commands are discussed in detail in Chapter 6, “General AIX Storage
Management” on page 95, and Chapter 7, “Storage Management Files and
Commands Summary” on page 139. These commands use the library
subroutines to perform management and control tasks for the logical volumes,
physical volumes, and volume groups in a system. The interface to the logical
volumes is called the Logical Volume Device Driver (LVDD), and this is a pseudo
device driver that manages and processes all I/O to logical volumes. The logical
volume device driver is designed and utilized in the same way as any other
device driver in the system, consisting of two halves. In this case, the lower half
is responsible for mapping the logical addresses to actual physical disk
addresses, for handling any mirroring, and for maintaining Mirror Write
Consistency (MWC). Mirror Write Consistency uses a cache in the device driver
where blocks that are mirrored are stored until all copies have been updated.
This ensures data consistency between mirrors. The lower half also manages
bad block detection and relocation if necessary. If the physical disk is capable of
this function, then the logical volume device driver will make use of the
hardware support, otherwise it will be done in software. Both mirror write
consistency and bad block relocation can be disabled on a logical volume basis.

The list of data blocks to be written (or read) is finally passed by the logical
volume device driver to the physical disk device drivers, who interact directly
with the disks. In order for the logical volume manager to work with a disk
device driver, it must adhere to a number of criteria, the most significant of
which is a fixed disk block size of 512 bytes.

54 AIX Storage Management

The relationship between the various software layers involved in disk access
with the logical volume manager is shown in Figure 24 on page 55.

Figure 24. Relationship Between the LVM and other Components

Quorum Checking: In order for a volume group to be accessible to the system,
it must be varied on. The process of varying on a volume group is discussed in
6.3.4, “Varying On and Varying Off Volume Groups” on page 108. During this
process, the logical volume manager reads management information from the
physical volumes in the volume group. This information includes the volume
group descriptor area already mentioned in 3.1.3.1, “Logical Volume Manager
Terminology” on page 52, and another on-disk information repository known as
the Volume Group Status Area (VGSA), which is also stored on all physical
volumes in the volume group. The VGSA contains information regarding the
state of physical partitions and volumes in the volume group, such as whether
physical partitions are stale (used for mirroring, but not reflecting the latest
information), and whether physical volumes are accessible or not. The VGDA is
managed by the subroutine library, and the VGSA is maintained by the LVDD. If
the vary on command cannot access a physical volume in the volume group it
will mark it as missing in the VGDA. For the command to succeed, a quorum of
physical volumes must be available. A quorum is defined as a majority of VGDAs
and VGSAs (more than half of the total number available). The only situation
where this is slightly different is in the case where there are one or two physical
volumes in a volume group. In this case two VGDAs and VGSAs will be written to
one disk, and one (or none if only one disk) to the other. If the disk with two sets
is inaccessible, then a quorum will not be achieved and the vary on will fail. For
techniques to recover from quorum failure, see Appendix C, “General Volume
Group Recovery” on page 345.

Logical Volume Manager Policies: When logical volumes are created, there are
a number of attributes that can be defined for them that govern their subsequent
operation in terms of performance and availability. These attributes are really
policies that the logical volume manager enforces for the logical volume and
include the following:

Chapter 3. Operating System Software Components 55

 1. Bad-Block Relocation Policy

As was mentioned in “General Operation” on page 54, the logical volume
manager will perform bad-block relocation if required. This is the process of
redirecting read/write requests from a disk block that has become damaged
to one that is functional, transparently to an application.

 2. Intra-Physical Volume Allocation Policy

The logical volume manager defines five concentric areas on a disk where
physical partitions can be located. These regions are shown in Figure 25,
and are combined into the following three policy choices for data location:

a. Edge and Inner Edge

These regions generally have the longest seek times, resulting in the
slowest average access times. Logical volumes containing relatively
infrequently accessed data are best located here.

b. Middle and Inner Middle

These regions provide lower average seek times, and consequently
lower average access times. Reasonably frequently accessed data
should be positioned here.

 c. Center

This region provides the lowest average seek times, and hence the best
response times. Information which is accessed regularly, and needs high
performance should be situated here.

The different average seek times are based upon the supposition that there
is a uniform distribution of disk I/O, meaning the disk head will spend more
time crossing the center section of the disk than any of the other regions.

Figure 25. Physical Disk Partition Location

When a logical volume is created, the preferred location policy for the logical
volume can be defined. The logical volume manager will then do its utmost
to locate the volume as closely to the required position as is possible.

 3. Mirroring

56 AIX Storage Management

The logical volume manager allows each logical partition in a logical volume
to be mapped to from one to three physical partitions. This means that up to
two copies of a logical volume can be transparently maintained for
performance and availability purposes. The scheduling policy explained
below determines how information is actually written. Should a disk with one
of the copies of the logical volume fail, or should some of the physical
partitions in the copy become damaged, then another copy can be
transparently used while repairs are effected. Furthermore, the copy that has
the required partitions closest to a read/write head will be used for reading,
improving performance. The benefits here are somewhat dependent upon
the inter-physical volume allocation policy which is explained next.

 4. Inter-Physical Volume Allocation Policy

When the logical volume manager allocates partitions for a logical volume,
the partitions can be spread across multiple disks. The inter-physical volume
allocation policy governs how this will actually be implemented in terms of
numbers of physical volumes. There are two options:

a. Minimum

The minimum option indicates that if mirroring is being used, then the
minimum number of physical volumes should be used per copy, and that
each copy should use separate physical volumes. If mirroring is not
being used, then just the minimum number of physical volumes
necessary to hold all of the required physical partitions should be used.

b. Maximum

The maximum option predictably enough, attempts to spread the
required physical partitions over as many physical volumes as possible,
thereby improving performance. If mirroring is not used here, then this
approach is highly sensitive to physical volume failure.

 5. Scheduling Policy

When mirroring is being used, there are two ways in which the logical
volume manager can schedule I/O for the physical volumes:

a. Sequential-write copy

When this option is selected for a logical volume, write requests are
performed to each copy successively, in the order primary, secondary,
and tertiary. A write to a copy must complete before the next copy can
be updated, thus ensuring maximum availability in the event of failure.

Read requests will be initially directed to the primary copy, and if this
fails, to the secondary, and then tertiary if necessary (and defined). While
the data is being read from the next copy, the failing copy (or copies) is
repaired by turning the read into a write with bad-block relocation
switched on.

b. Parallel-write copy

In this case, write requests are scheduled for each of the copies
simultaneously. The write request returns when the copy that takes the
longest to update completes. This method provides the best
performance.

Read requests are scheduled to the copy that can be most rapidly
accessed, thereby minimizing response time. If the read fails, repairs are
accomplished using the same mechanism as for sequential-write copy.

Chapter 3. Operating System Software Components 57

There is a great deal of additional information on all aspects of the logical
volume manager in InfoExplorer online hypertext documentation, if required.
Further information on planning and managing the elements of the logical
volume manager can be found in Chapter 5, “Storage Subsystem Design” on
page 79, and Chapter 6, “General AIX Storage Management” on page 95.

3.1.4 File Systems
One further level of abstraction is provided at the operating system level, and
this is the file system. A file system is essentially a hierarchical structure of
directories, each directory containing files, or further directories (known as
subdirectories). The diagram in Figure 26 shows the standard AIX journaled file
system structure as of AIX Version 4; the differences between this and AIX
Version 3 structure are organizational. The main purpose of a file system is to
provide for improved management of data by allowing different types of
information to be organized and maintained separately. As will be shown later in
this section however, file systems also provide many more facilities.

Figure 26. Standard AIX Version 4.1 JFS Organization

There many different types of file systems in existence, including the following:

• Journaled File System (JFS)

This is the native AIX file system, providing the full range of supported file
system operations for organizing and managing physical files. The JFS is
explored in more detail later in this section.

• Network File System (NFS)

This type of file system allows a remote file system (or part of a file system)
to be accessed as if it were part of a local file system.

• CD-ROM File System

58 AIX Storage Management

This type of file system allows the contents of a CD-ROM to be accessed as
if they were part of a local file system.

However there must be at least one base (or root) file system within which other
file systems can be accessed, on the local machine.

3.1.4.1 Journaled File System
Journaled file systems are implemented through a set of operating system
commands that allow creation, management, and deletion, and a set of
subroutines that allow lower level access such as open, read, write, and close to
files in the file system. A JFS is created inside a logical volume and is organized
as shown in Figure 27.

Figure 27. JFS Physical Organization

As can be seen, the JFS divides the logical volume into a number of fixed size
units or Logical Blocks. The logical block size is the block size used for I/O at
the file system interface - this means that the file system passes data to be
written or receives data that has been read in blocks of 4096 bytes to/from the
LVM. The block size was selected to be 4KB to be the same as memory page
size for maximum transfer efficiency, and to minimize free space fragmentation
on the disk. The logical blocks in the file system are organized as follows:

Logical Block 0: The first logical block in the file system is reserved and
available for a bootstrap program or any other required information; this block is
unused by the file system.

Superblock: The first and thirty first logical blocks are reserved for the
superblock (logical block 31 being a backup copy). The super block contains
information such as the overall size of the file system in 512 byte blocks, the file
system name, file system log device address (logs will be covered later in this
section), version number, and file system state.

Chapter 3. Operating System Software Components 59

Allocation Groups: The rest of the logical blocks in the file system are divided
into a number of allocation groups. An allocation group consists of data blocks
and i-nodes to reference those data blocks when they are allocated to
directories or files. The purpose behind this extra level of abstraction is as
follows:

 1. Improve locality of reference

Files created within a directory will be maintained in an allocation group with
that directory. As allocation groups consist of contiguous logical blocks, this
should assist in maintaining locality of reference for the disk head.

 2. Ease file system extension

Extending a file system is easier as a new allocation group of i-nodes and
data blocks can be added, maintaining the relationship between i-nodes and
file system size simply. Without allocation groups, the file system would
either have to be reorganized to increase the number of i-nodes, or the
extension could only increase the number of data blocks available, thereby
conceivably limiting the number of files and directories in the file system.

I-nodes are explained in the next section. For a pictorial representation of this
organization, please refer to Figure 27 on page 59.

Disk i-nodes: When the file system is created, files and directories within the file
system are located via i-nodes. An i-node is an on-disk structure that contains
information regarding the file and its physical location on disk. Under AIX
Version 3, an i-node is created for every 4KB of file system space, so for a 32MB
file system, 8000 i-nodes would be created, and these i-nodes would be divided
between the allocation groups. This then defines the maximum number of files
and directories that can be created in the file system. The structure of an i-node
is depicted in Figure 28. The first part contains information such as the owner,
and permissions for the directory or file, the second part contains an array of 8
pointers to the actual disk addresses of the 4KB logical blocks that make up the
file or directory.

Figure 28. Anatomy of an I-node

60 AIX Storage Management

For files that can fit within the array storage area, such as most links, the file is
actually stored in the i-node itself, thus saving disk space.

For a file of size up to 32KB, each i-node pointer will directly reference a logical
block on the disk. For example, if the file is of size 27KB, then the first seven
pointers will be required, the last pointer referencing a 4KB logical block
containing the last 3KB of the file.

For files up to 4MB, the i-node points to a logical block that contains 1024
pointers to logical blocks that will contain the files data; this gives a file size of
up to 1024 x 4096 or 4MB.

For files greater in size than this, the i-node points to a logical block that
contains 512 pointers to logical blocks that each contain 1024 pointers to the
logical blocks that will actually contain the files data; this gives a maximum file
size of 512 x 1024 x 4096 or 2GB.

The mapping of file names to i-node numbers is stored within directory files.

The maximum size of the file system under AIX Version 3 is limited to 2GB. This
is due to limitations in the size of the internal pointer used by some system calls
to navigate the file system; the pointer is defined as a signed integer which
means there are 31 bits available for addressing. This gives a maximum range
of 2 to the power 31, or 2GB.

AIX Version 4 Enhancements to the JFS

 1. Fragments

While generally efficient from the point of view of loading into memory and
preventing physical disk fragmentation, having a fixed logical block size can
have drawbacks. If the majority of files stored in the file system are small
(less than 1 logical block in size), then there will be a great deal of wasted
disk space in the accumulation of those portions of the logical blocks that
remain unused by the smaller files. If all files are less than half of a logical
block in size, for example, then half of the total file system space will be
unused, even though the file system is full.

In order to address this type of situation, AIX Version 4 introduces the
concept of the fragment. A fragment is the smallest unit of file system disk
space allocation, and can be 512, 1024, 2048, or 4096 bytes in size. The
fragment size is defined at JFS creation time and is stored in the superblock.

 2. Number of Bytes Per i-node

Under AIX Version 3, the number of i-nodes created for a file system was
fixed, as discussed in the section on i-nodes. With AIX Version 4, it is now
possible to vary the number of i-nodes created within a file system, and
therefore the amount of space required by the i-node structures can be
tailored to maximize utilization of the file system. If only a few very large
files are going to be created in a file system, then it is a waste of space to
generate 8000 i-node structures, and therefore the value of the Number of
Bytes Per i-node or NBPI, should be increased. For example, if the NBPI is
set to 16KB, then in a file system of size 32MB, 2000 i-nodes would be
created rather than 8000 as in AIX Version 3.

 3. Compression

Chapter 3. Operating System Software Components 61

Another new feature in AIX Version 4 is JFS compression. This facility
provides for compression of regular files (as opposed to directories or links).
The compression is implemented on a logical block basis which means that
when a logical block of file data is to be written, an entire logical block is
allocated for it; the logical block is then compressed and the number of
fragments now required as a result of the compression, actually allocated.
Thus in contrast to a fragment file system which only allocates fragments for
the final logical blocks of files less than 32KB in size, compressed file
systems allocate fragments for every logical block in every file.

Compression is done block by block in order to fulfill the requirements for
efficient random I/O. The algorithm used by default is LZ1, although
user-defined compression algorithms are also supported.

 4. File System Size

As discussed previously, the maximum size of a file system under AIX
Version 3 was 2GB. With AIX Version 4, this maximum has been increased to
256GB. This increase has been achieved by changing the file system
pointers and data types to 64 bits; the limitations restricting the maximum
size are now JFS data structure and algorithm related.

These enhancements are described in more detail in Chapter 4, “AIX Version 4
Storage Management Enhancements” on page 69.

3.1.4.2 Network File System
NFS allows files and directories located on other systems to be incorporated into
a local file system and accessed as though they were a part of that file system.
NFS provides its services on a client-server basis. Server systems can make
selected files and directories available for access by client systems. NFS
provides a number of services, including the following:

• Mount Service

This service allows clients to mount the portion of the remote file system that
they wish to access into a local file system. Mounting is discussed in more
detail later in this section.

• Remote File Access

This service fulfills requests for file activity from the client to server (such as
opens, reads, and writes).

• Remote Execution Service

This service provides authorized clients with the ability to execute
commands on the server.

• Remote System Statistics Service

This service provides statistics on the recent availability of the server.

• Remote User Listing Service

This service provides information to clients on users of the server system.

NFS installation, configuration and management are covered in detail in the
InfoExplorer online hypertext documentation.

NFS operation is stateless, which means that the server does not maintain any
transaction information on behalf of clients. Each file operation is atomic, which
means that once complete, no information on the operation is retained. Thus if a

62 AIX Storage Management

connection should fail, it is up to the client to maintain any synchronization or
transaction logging to ensure consistency.

3.1.4.3 Other File Systems
As has been explained in this section, file systems provide an interface that
simplifies management and access to information. The native file system under
AIX is the JFS, but there are other types such as NFS for remote files, as well as
the following:

• CD-ROM File System

This file system provides access to information stored on a CD-ROM, such as
the infoExplorer hypertext information. Once created (see InfoExplorer for
details) a CD-ROM file system can be mounted and accessed like any other.

• File Storage Facility/6000 MFS

The File Storage Facility product (FSF) is discussed in overview in B.2, “AIX
File Storage Facility/6000” on page 340. This product provides a cache file
system on the client machine where files currently being accessed reside.
Viewing the contents of this file system can show more files than could
actually fit within the physical space on the client. This is accomplished
through the provision of another file system type known as MFS. The MFS
intercepts requests for file operations and works out whether the required
file is currently in local cache or stored remotely at the server; if remotely
stored, the file is transparently copied to the local cache for use. The MFS
also manages the removal from cache to the server of files that have not
been accessed for a defined period, or the largest files, so as to maintain
enough working space in the cache.

The MFS is created automatically when FSF/6000 is configured. For more
information on FSF/6000, see the documentation.

• Andrew File System** (AFS**)

The Andrew File System, or AFS, provides a similar basic service to NFS in
that it allows machines to access remote file systems as though they were
local. The major difference is that AFS defines its own hierarchy, where
many machines can participate in mounting sections of their local file
systems into the hierarchy. Client machines that are authorized can then
mount the entire AFS hierarchy into their local file system structure, and
thereby access information on a wide range of machines and file systems as
though it were local.

For more information on AFS, please refer to the product manuals.

3.1.4.4 Accessing File Systems
Once a file system of whatever type has been created, it must be mounted in
order to access the information within it. The process of mounting creates the
connection between an existing and accessible local file system mount point and
the root directory of the directory structure to be accessed. A mount point can be
either a directory or a file in the local file system. If a new local file system, or
remote directory structure (using NFS for example) is to be accessed, then it
must be mounted over a directory. If only a single file is to be accessed then it
must be mounted over a local file. As shown in Figure 26 on page 58, the AIX
operating system starts with a root file system into which the /usr, /var, /tmp,
and /home file systems are mounted at boot time. Any other file systems
required can then be mounted wherever required (assuming relevant
permissions).

Chapter 3. Operating System Software Components 63

3.2 Higher Level Tools
So far in this chapter the basic operating system support providing access to
information stored on physical media (such as disk) has been discussed. This
next section will look briefly at some higher level functions provided either by
the operating system, or by applications designed to enhance storage
management capabilit ies.

3.2.1 Backup/Restore
Backup facilities, as provided by the operating system, enable all information
(including both user and operating system data) to be copied (generally to
removable media such as tape), so that in the event of a major problem the
information can be easily restored.

There are three main areas to consider when designing a backup strategy:

 1. Which information should be backed up

There is usually a large amount of information stored in a computer system.
Copying this information can take time, and there will usually be information
that is not important enough to warrant concern (such as temporary files, or
data that has already been archived).

 2. What technology should be used for the backups

This will depend on the quantity of information, length of time available for
backup, length of time information needs to be stored on backup media, and
the cost of the technology used. As has been discussed in previous sections,
optical storage is generally faster and has longer potential shelf life, whilst
tapes are cheaper and generally larger capacity.

 3. When and how often should backups occur

There are several strategies that can be used, depending on the nature of
the information produced by the business. For example, sites where there is
a great deal of static reference information with little day to day change, and
maybe monthly updates to the static information could benefit from an
incremental policy. This would mean taking full backups on a monthly basis,
and only backing up the changed information daily. Organizations processing
large amounts of information on a daily basis may choose to backup the data
daily.

The strategy chosen should reflect the business information cycles, but will
also be strongly tied to the criticality of the information. The decision is
simply: how long can the business survive without key information. If the
answer is one day, then backups of the information must be scheduled at
least once a day.

Designing a backup strategy is an essential task, as however well maintained a
system is, the unexpected, by definition can always happen. Backup and
recovery planning and techniques are discussed in more detail in 5.5, “Planning
Backup Strategies” on page 89.

64 AIX Storage Management

3.2.2 Hierarchical Storage Management
Thus far, storage subsystems have been discussed from the point of view of
operating system level access. That is to say, covering the various storage
devices available, their pros and cons, and the way in which they can be made
available to higher level user applications. There are also many intermediate
and higher level applications that themselves provide services, both for system
administrators, and for higher level management of storage on behalf of users.
These types of application fall into the category of Hierarchical Storage
Management.

The premise behind hierarchical storage management is to categorize storage
devices in terms of their basic properties and provide automatic mechanisms to
utilize them most efficiently within this context, usually in a networked
environment. For example, as has been discussed in 2.1.2, “How to Make the
Decision” on page 18, the basic property classifications shown in Figure 14 on
page 21, apply. This implies that frequently accessed information, or information
that requires high performance access (such as databases), should be located
on fast disk devices. Older, less frequently accessed information, or information
with less restrictive performance requirements, can be stored on optical media.
Backup, archive, or long term information that is rarely accessed, can be stored
on tape. The process of classifying information in this way, is however, really a
dynamic one, and therefore best done on a reasonably continuous basis. This is
where hierarchical storage managers can be useful.

ADSTAR* Distributed Storage Manager (ADSM) for example, can manage disk,
optical and tape storage in just this way. ADSM provides backup/restore and
archive/retrieve services to client systems in a distributed environment. Storage
pools are maintained on the server machine that ADSM uses to fulfill client
requests. These pools can be defined to form a hierarchy and information can be
automatically migrated between pools. For example, the first pool may be
composed of fast disk devices to support rapid satisfaction of client requests.
However, if this pool becomes full, then information can be automatically
migrated to another storage pool. Generally, the information so migrated will be
the less frequently accessed information, and so the lower level pool will be
composed of lower cost, slower, higher capacity devices, such as optical. The
hierarchy so defined is arbitrary, and can contain pools of tape devices lower in
the hierarchy, to which backup information can be directly (and automatically)
written on behalf of clients, or to which even less regularly accessed archive
data can be migrated.

ADSM also has many other capabilities, and for a fuller description of these,
please refer to Appendix B, “Higher Level Storage Management Products” on
page 337.

Some tools manage disk space at the client machine as well. FSF/6000 is an
example of such an application. In this case, the client fast disk space is
maintained merely as a cache (or window onto the real storage space). When
information is created or changed in any way, it is stored in the cache at the
local machine, but a copy is made and this is maintained at the server. When the
cache approaches a predefined high water mark, or percentage utilization, data
is automatically migrated to the server storage space, and a pointer to it left in
the cache. Subsequent requests for this information will result in the information
being transparently moved back (a copy is still maintained). In this way, the
small client storage space can be made to seem much larger than it really is; in

Chapter 3. Operating System Software Components 65

addition, the server storage pool can be managed by a tool such as ADSM (at
the server) to provide automatic backup, archive and migration.

Using such tools additionally enhances storage management by providing a
centralized mechanism for information management, which can be useful, not
only from resource utilization management, but also from security, general
availability, and ease of use.

General information on some of the applications available in this area is
available in Appendix B, “Higher Level Storage Management Products” on
page 337.

3.2.3 Media Management
Media management refers to the control of the attached storage devices. This
chapter has already looked at the operating system supplied mechanisms to
enable this, including device drivers, the LVM, and file systems. In the previous
two sections, backup and restore, and hierarchical storage managers have also
been discussed, which provide higher level functions for storage. The
capabilities of the devices are thus made available through the operating system
components, and through higher level tools. Generally, the higher level
applications make use of the operating system provided components to access
the required devices. There are some device types that cannot currently be
managed by the operating system, including tape and optical libraries. In these
cases an alternative mechanism must be found to control the devices, if
required; ADSM for example provides the necessary support to control a range
of libraries (both tape and optical). It is not always the case that the complete
functionality of a higher level tool be required, merely just the ability to manage
a tape library for a discrete system. In this case an alternative solution may be
necessary in order to provide the library management component.

3.3 Summary
This chapter has discussed in detail the operating system software components
that enable access and management of the physical storage devices, as well as
those aspects that require storage space for system operation. Higher level
functions provided by tools such as hierarchical storage managers,
backup/restore operations, and management of the physical media were also
briefly discussed.

 1. Operating system

The components of the operating system discussed were:

• Paging

This section explained paging and the requirement for paging space as a
means to maximize the usage of available real memory. The complete
mechanism used to execute an application was outlined illustrating how
secondary storage can be used to supplement real memory and thereby
greatly increase the address space of the system.

• Device drivers

This section discussed the components of the operating system that
provide the low level management and access to physical devices. The
structure and capabilities of device drivers was briefly explained.

• Logical Volume Manager

66 AIX Storage Management

The main component of storage management under AIX, the LVM was
explained in reasonable detail in this section. LVM concepts such as:

− Physical Volumes
− Volume Groups
− Physical Partitions
− Logical Partitions
− Logical Volumes

were explained, as well as their interrelationships. LVM operations and
services were also described, including:

− Quorum checking
− Bad block relocation
− Intra-physical allocation policy
− Mirroring
− Inter-physical allocation policy
− Scheduling policy

• File systems

The concept of file systems was then covered. The relationship of file
systems to the LVM as well as their general function were outlined. The
native AIX file system, the JFS was then described in detail, including the
AIX Version 3 implementation, and the enhancements provided with AIX
Version 4:

− Fragments
− Number of bytes per i-node
− Compression
− File system size increase

The NFS and other file systems were then briefly discussed, followed by
a concise outline of subsequent operating system procedures for
accessing file systems.

 2. Higher level tools

The higher level tools discussed were:

• Backup/restore

The purpose and basic considerations involved in backing up a system to
ensure recovery in the event of failure were discussed in this section.

• Hierarchical Storage Management

The principles of hierarchical storage management as a means to make
the most effective use of available storage devices, as well as provide
backup/restore and archive/retrieve services, were discussed in this
section. Several high level applications (including ADSM, and FSF/6000)
were used as examples.

• Media Management

Certain devices provide extra capabilities that are not currently directly
supported by the operating system. Examples of this are tape and optical
library support. This section looks at the alternative methods available
for utilizing such functionality.

Chapter 3. Operating System Software Components 67

68 AIX Storage Management

Chapter 4. AIX Version 4 Storage Management Enhancements

AIX Version 4 provides enhanced functional capabilities in the area of the
storage management. This chapter will examine these enhancements, in some
detail.

4.1 Fragmentation
Fragmentation is a concept introduced in BSD UNIX** which enables system
administrators to manage file systems in such a way that they make more
efficient use of the disk storage space available to them.

Research conducted in the area of disk space utilization has revealed that up to
45% of disk space is wasted by file systems that use a 4KB block as the
allocation unit. In AIX releases prior to AIX Version 4, the disk space allocation
unit is in fact 4KB and not tunable, potentially giving rise to much wasted disk
space. In AIX Version 4 it is now possible to create journaled file systems with
an allocation unit or fragment size specified as one of 512, 1024, 2048 or 4096
bytes.

Although there is a distinct advantage in providing this enhancement for
ensuring optimal disk space utilization this can sometimes be at the expense of
performance.

In AIX Version 4, as many whole fragments as necessary are used to store a file
or directory′s data. Consider that we have chosen to use a JFS fragment size of
4KB and we are attempting to store file data which only partially fills a JFS
fragment. Potentially, the amount of unused or wasted space in the partially
filled fragment can be quite high. For example, if only 500 bytes are stored in
this fragment then 3596 bytes will be wasted. However, if a smaller JFS
fragment size, say 512 bytes, was used, the amount of wasted disk space would
be greatly reduced to only 12 bytes. It is, therefore, better to use small fragment
sizes if efficient use of available disk space is required.

Although small fragment sizes can be beneficial in reducing disk space wastage,
this can have an adverse effect on disk I/O activity. For a file with a size of 4KB
stored in a single fragment of 4KB, only one disk I/O operation would be
required to either read or write the file. If the choice of the fragment size was
512 bytes, eight fragments would be allocated to this file and for a read or write
to complete, several additional disk I/O operations (disk seeks, data transfers
and allocation activity) would be required. Therefore, for file systems which use
a fragment size of 4KB, the number of disk I/O operations will be far less than
for file systems which employ a smaller fragment size.

For files of greater than 32KB in size, whatever the fragment size, allocation is
performed in logical blocks of 4KB. The i-node pointers will therefore point to
4KB logical blocks as before (indirection will also be the same). For those files of
up to 32KB in size, fragments come in to play. Consider a file of 17KB in size.
The first 16KB of this file will be allocated logical blocks as before, the disk
addresses of these blocks pointed to by the first four pointers in the i-node. The
last 1KB of the file will be allocated sufficient contiguous fragments to contain
the remaining data, if available. Assuming a fragment size of 512 bytes, two
fragments in this case. The fifth pointer in the i-node points to the disk address

 Copyright IBM Corp. 1994 69

of the first fragment. In AIX Version 3, the first four bits of the disk block
addresses were unused and therefore zeros. In AIX Version 4, when
fragmentation is used, the last three of these bits are used to indicate the
number of fragments from the disk address that are required. To ensure
compatibility with previous releases, all zeros in these bits implies a full block of
fragments (which means that the disk address references a 4KB logical block),
and therefore in this example eight fragments (using logic 8 - 0 = 8 fragments).
So, for the final data in the example file, two fragments are required, so the
number in the four bits should be 0110 (this is 6 in binary: 8 - 6 = 2 fragments).
The JFS will always subtract the first four bits from eight to see if there are
fragments at the disk address in the remainder of the pointer, and if so, how
many. The next file that is to be written is exactly 4KB in size. This is one
complete logical block, and will be written immediately after the two fragments
from the previous example, thus wasting no space. The first four bits will be
zeros, indicating eight fragments. If there had not been eight contiguous
fragments free anywhere in the file system, this write would have failed. See
Figure 29 on page 71 for a diagram of the allocation for this first file (file X). Now
a third file is to be written (file Y). File Y is four fragments (or 2048 bytes) in
length. There are four fragments free after file X, so file Y is written immediately
after the fragments for file X. If there had not been four contiguous fragments
available, this write would have failed. File X is now extended by three fragments
(or 1536 bytes). There are three contiguous fragments available after file Y, so
the extension is written there (as shown in Figure 29 on page 71). Note that
both the pointer for file Ys fragments, as well as for the second block of file Xs
indicate partial blocks of fragments in the first four bits of the address (file X:
0101 = 5; 8 - 5 = 3 fragments. File Y: 0100 = 4; 8 - 4 = 4 fragments).

It is very important to note the following:

 1. Fragments are allocated contiguously or not at all

If the JFS cannot find sufficient contiguous fragments (up to 4KB worth),
allocation and therefore the write will fail. To elaborate, if 11 fragments
needed writing (following on from the preceding example), and there were
eight free contiguous fragments after file Y, and three free contiguous
fragments before file X, then file Z could be written. Having nine free
fragments after, and two before would not be sufficient.

 2. Fragments wil l lead to free space fragmentation

As files are extended, reduced, and deleted, small groups of free fragments
will begin to become available (for example if file X in Figure 29 on page 71
is reduced in size to six fragments, two free fragments will appear between
files X and Y. This will be used if another file should be created of size one
or two fragments, or if a file is extended by two fragments beyond a 4KB
boundary, otherwise it will remain unused). In order to reclaim this
fragmented free space, a tool is provided that will reorganize the file system
to coalesce this space as far as possible. The defragfs command is
described in Chapter 7, “Storage Management Files and Commands
Summary” on page 139.

70 AIX Storage Management

Figure 29. Fragmentation Example

To expand on fragment allocation one step further, only the last 4KB block of a
file can be partially allocated, that is to say allocated as fragments of the logical
block size, and the file must be directly referenced by the i-node, not indirect.
When blocks (4KB) or partial blocks (a fragment multiple) are allocated,
contiguous space must be available for them. Hence the statement in the last
example relating to extending a file 2 fragments beyond a 4K boundary. If the file
was 9 fragments, and is extended to 18 fragments, then this is the case: 2 full
blocks of 8 contiguous fragments, and 2 contiguous fragments must be found for
the write to succeed.

4.1.1 Disk Space Allocation
For file systems with a fragment size smaller than 4KB, there is likely to be an
increase in allocation activity when the size of existing files or directories are
extended.

As an example, assume that a file is extended by 500 bytes, and the file system
fragment size is 512 bytes, this will result in one allocation to this file of a 512

Chapter 4. AIX Version 4 Storage Management Enhancements 71

byte fragment. If the file is extended by another 500 bytes, another allocation of
a 512 byte fragment will be made to this file. So far, two allocation operations
have already been performed. However, with a file system fragment size of 4KB,
the first file extension operation would have involved one allocation to this file of
a 4KB fragment and the second file extension operation would not have resulted
in an allocation as there would have been sufficient space from the first
allocation. The number of allocations made in the file system using a 512 byte
fragment could have been minimized if the two separate file extension
operations were performed as one extension of 1024 bytes. Although two 512
byte fragments would still be allocated, this would involve only one file system
operation to complete.

4.1.2 Free Space Fragmentation
As has been mentioned, free space fragmentation can occur much more within a
file system that uses smaller fragment sizes. To clarify, assume that there is a
portion of the disk consisting of 8 contiguous 512 byte fragments and that four
files, each 500 bytes in size, have written to these fragments in a non-contiguous
manner. The free disk space within this area of the disk (four 512 byte
fragments) are unallocated fragments which also reside in a non-contiguous
manner. A file extension operation which would require 2048 bytes would not be
allocated these free fragments as they would have to be contiguous for a single
allocation to succeed.

It is quite possible for a file system using a fragment size smaller than 4KB,
particularly 512 bytes, to reach high levels of free space fragmentation.

4.1.3 Fragment Allocation Map
The fragment allocation map, used to hold information about the state of each
fragment for each file system, is held on the disk and in virtual memory. The
use of smaller fragment sizes in file systems results in an increase in the length
of these maps and therefore requires more resources to hold.

4.2 Compression
Compression, like fragmentation, is provided for journaled file systems in AIX
Version 4 for the better utilization of available disk space. The disk space
savings made by using compression on average increase by about a factor of
two. Unlike the JFS fragment support, which treats logical blocks of files and
directories less than 32K bytes in size differently to those that are larger, the JFS
data compression support will use the same data compression technique for all
logical blocks of files, irrespective of file size and fragment size. It does
however, enforce that the fragments used for the files logical blocks are
contiguous.

The obvious advantage of the use of data compression supplemental to
fragmentation, is that there is no restriction to the file size, and so compression
will be efficient for both small and large files.

AIX Version 4 JFS data compression is supplemental to JFS fragment support,
and requires the installation of the data compression software package.

Only regular files and long symbolic links can be compressed in file systems
supporting compression. The fragment sizes supported in a compressed file

72 AIX Storage Management

system are 512, 1024 and 2048 bytes only. A compressed file system cannot
have a fragment size of 4KB.

The choice of the fragment size for compressed file systems must be made after
evaluating the size of files to be stored and the amount of compression that is
actually achieved. Where high amounts of compression are possible, higher disk
space savings can be achieved by using a small fragment size like 512 bytes.
However, at the same time performance will degrade quite substantially.

4.2.1 Implementation of Data Compression
In AIX Version 4, data is compressed at the level of individual files logical blocks.
To compress data in large units (all the logical blocks of a file together for
example), would result in the loss of more available disk space. By individually
compressing a files logical blocks, random seeks and updates are carried out
much more rapidly.

After compression of a logical block of a file takes place, the compressed logical
block is written to disk using only the number of fragments required for it. After
compression, it is likely that the data in the files logical block will occupy less
than 4K bytes of disk space. However, if the data does not compress, then it is
written to disk in the uncompressed format and allocated the full 4KB of
contiguous fragments.

When a file or directory′s logical block is first modified, 4KB of disk space are
allocated to it to guarantee that the write to disk of that logical block will be
successful. If this allocation fails, then an appropriate system error message is
returned.

In addition to increased disk I/O activity and free space fragmentation problems,
file systems using data compression have the following performance
considerations:

1) Degradation in file system usability arising as a direct result of the data
compression/decompression activity. If the time to compress and
decompress data is quite lengthy, it may not always be possible to use a
compressed file system, particularly in a busy commercial environment
where data needs to be available immediately.

2) All logical blocks in a compressed file system, when modified for the first
time, will be allocated 4096 bytes of disk space, and this space will
subsequently be reallocated when the logical block is written to disk.
Performance costs are therefore associated with this allocation, which does
not occur in non-compressed file systems.

3) In order to perform data compression, approximately 50 CPU cycles per
byte are required, and about 10 CPU cycles per byte for decompression.
Data compression therefore places a load on the processor by increasing
the number of processor cycles.

4.2.2 Compression Algorithm
An IBM version of the Lempel Zev (LZ) algorithm is used to perform data
compression. The LZ algorithm compresses data by representing the second
and subsequent occurrences of a given string with a pointer, identifying the
position of the first occurrence of the string and its length. At the start of the
compression process the first byte of data is represented as the raw character
using a pointer-byte pair (0, byte). The algorithm then processes a fixed amount

Chapter 4. AIX Version 4 Storage Management Enhancements 73

of data, say N bytes, for compression. Normally, the value of N is one of 512,
1024 or 2048. Every time a string in the N bytes is replicated it is replaced by a
pointer-length pair as described above. After compression of N bytes of data,
the algorithm searches for the string starting at the next unprocessed byte in the
N bytes previously compressed. If the longest match found has a length of zero
or one, it represents the first byte in the unprocessed string as a raw character
as mentioned previously. If, on the other hand, the length of the matching string
is greater than one, the compression algorithm will represent the string using a
pointer-length pair and continue to process a further N bytes of data starting
from that string.

4.3 Disk Striping
AIX allows the placement of logical volumes on a specific area of one or more
physical volumes. For example, the center of the disk may be chosen for the
placement of logical volumes when rapid access to data is required. Even
though this placement strategy can provide fast access to data, it is still
restricted by the fact that a disk I/O operation is performed to retrieve each data
block.

In Part 1 of Figure 30 on page 75, the numbered disk blocks for the file
represent the sequence of the data in the file. To read the entire file
sequentially will involve reading each disk block in turn.

74 AIX Storage Management

Figure 30. Striping Example

However, if we place the data in a logical volume over all available disks in a
specific manner to enable parallel access to that data then this would further
improve sequential access to that data (see Figure 30).

In user environments where sequential access to large data files is very
frequent, this technique will prove extremely efficient. In fact, AIX Version 4
provides for this technique with a mechanism known as striping.

In non-striped logical volumes, data is accessed using addresses to data blocks
within physical partitions. In a striped logical volume, data is accessed using
addresses to stripe units. Consecutive stripe units are created on different
physical volumes. A single stripe consists of a stripe unit on each physical
volume. The size of a stripe unit must be specified at creation time and can be
any power of 2 in the range 4K to 128K bytes. As data in a striped logical
volume is no longer accessed using data block addresses, the LVM will track
which blocks on which physical drives actually hold the data being accessed. If
the data being accessed resides on more than one physical volume, the
appropriate number of simultaneous disk I/O operations will be scheduled for all
drives concerned.

Chapter 4. AIX Version 4 Storage Management Enhancements 75

4.3.1 Usage Implications
Disk striping definitely appears to provide very high-performance access to large
sequential files. However, to get optimal performance for sequential I/O, there
should be little or no other I/O activity on the physical volumes.

To make the most efficient use of striped logical volumes, some operating
system parameters must be tuned and application requirements for memory
must also be minimized. Results of a benchmark comparing the relative
performance of striped logical volumes against non-striped logical volumes are
provided in section 8.5.1.3, “Benchmark Results for an I/O Bound Test Using
Striping” on page 272.

The constraints imposed by striping of logical volumes are:

• For striping to be possible, at least two physical volumes are required.

• Mirroring is not possible. Increased I/O activity resulting from mirror-writes
would impact performance.

4.4 Using Page Space for System Dumps
A collection of one or more logical volumes, used solely for providing a
mechanism for storing data temporarily not required to be in real memory, is
known as Paging Space. A description of how paging actually works can be
found in 3.1.1, “Page Space” on page 47. Unlike non-paging logical volumes,
which are used to store data permanently when a computer is powered on or
rebooted, there is no guarantee that data which previously resided in paging
space would still remain there.

In AIX Version 4, paging space is additionally used as a primary dump device for
system dumps. During installation of AIX Version 4, /dev/hd6, (the paging logical
volume), is automatically configured as the primary dump device. However, for
AIX systems being migrated to AIX Version 4, /dev/hd7 is still being maintained
as the primary dump device.

After a system dump to the paging space (primary dump device) has taken
place, the system boot process has to move the dump data from this area to an
appropriate area on the disk. This has to be carried out since the paging space
will become re-activated and all data previously residing there is likely to
become over-written. By default, the dump is copied to the directory
/var/adm/ras. The sysdumpdev command now has an optional flag which can be
used to specify a different directory for the dump to be copied to.

The advantages of using paging space for the primary dump device are:

 1. It makes better util ization of storage space by using an existing logical
volume as opposed to reserving one specifically for this purpose. A
dedicated dump device like /dev/hd7, as used in AIX Version 3, can be quite
wasteful, particularly within a stable system.

 2. Since paging space is normally configured to be of the same size or larger
than RAM this would guarantee that it is has sufficient space for a dump.

 3. The I/O operations, particularly when writ ing dump data to disk, are
improved if the paging logical volumes are strategically placed for fast
access to data. For example, at the center of the disk and also over as
many physical volumes within the volume group as possible.

76 AIX Storage Management

4.5 Variable I-nodes
In all UNIX implementations, when a file system is created, several data
structures known as i-nodes are written to the disk. For each file or directory
one such data structure is used which describes information pertaining to it. The
sort of information which is stored in the i-node includes file type, permissions,
size, user and group owner ids. Other critical pieces of information that are held
in the i-node are the disk addresses at which the files data is stored.

AIX, like other UNIX implementations, reserves a number of i-nodes for files and
directories in each file system that is created. In releases prior to AIX Version 4,
an i-node is generated for every 4KB of disk space that is allocated to the file
system being created.

In a 4MB file system this would result in 1024 i-nodes being generated. For
earlier releases this figure would probably suffice, since a file or directory is
allocated at minimum 4KB of disk space anyway. In AIX Version 4, since disk
space is allocated in fragments allowing better utilization of disk space 1024
i-nodes in a 4MB file system can quickly become exhausted if a large number of
small files are written (assuming a fragment size of 512 bytes). In a file system
created using a 512 byte fragment size, 8192 files, at maximum, can be written if
the largest file size is 512 bytes.

AIX Version 4 JFS provides a parameter to tune the number of i-nodes generated
at file system creation time. This parameter, better known as
number-of-bytes-per-i-node (NBPI), can be any power of 2 in the range 512
through 16384 (examples include 512, 1024, 2048, 4096).

When NBPI is used in conjunction with the fragment size it can allow better
storage management, particularly when it is known beforehand the number and
size of files to be stored in the file system. See 3.1.4, “File Systems” on page 58
for more information on i-nodes.

4.6 File System Maximum Size Increase
In releases of AIX prior to Version 4, the maximum size a journaled file system
or logical volume can grow to is 2GB. The limitation is due to the usage of a 32
bit signed integer value giving maximum file system addressability of 2GB: 2
raised to the power of 31, the most significant bit giving the sign. With the
growing needs of commercial and scientific environments, this limit can be
reached quite quickly. In fact it is now becoming more commonplace for
database application environments to need to access larger volumes of data.

In AIX Version 4, the maximum size a journaled file system or logical volume
can grow to is 256GB. This is now possible since a 64 bit variable is used as for
the pointer.

However, note that the maximum file size is still limited to 2GB. This is because
no change has been implemented to the i-node structures used to reference the
data blocks. See 3.1.4, “File Systems” on page 58 for more information on file
systems.

Chapter 4. AIX Version 4 Storage Management Enhancements 77

4.6.1 JFS Log Considerations
For journaled file systems, a transaction log is maintained which provides file
system recovery in case the system abnormally terminates. One JFS log, with a
default size of one logical partition, maintains log data for all the file systems
within a volume group. For file systems that are no larger than 2GB, the default
log size is sufficient. However, for file systems that are larger than 2GB, it may
be necessary for the log size to be increased proportionately.

4.7 Summary
This chapter covers the latest enhancements to storage management made
available in AIX Version 4. These enhancements include:

• Fragmentation

The basic unit of file system allocation is now the fragment, which can be
512, 1024, 2048, or 4096 bytes.

• Compression

The JFS now supports compression which can result in a space saving of a
factor of 2.

• Striping

The logical volume manager now support striping which can radically
improve performance.

• Page Space for System Dumps

Page space can now be allocated as a dump device.

• Variable i-nodes

The number of i-nodes created within a file system can now be varied
allowing for improved management of disk resources.

• File System Size Increase

The maximum file system size is no longer limited to 2GB.

78 AIX Storage Management

Chapter 5. Storage Subsystem Design

This chapter covers the issues and considerations involved in designing storage
subsystems. Guidance on actually implementing the ideas set out here can be
found in Chapter 6, “General AIX Storage Management” on page 95, and
Chapter 8, “Practical Examples” on page 185.

5.1 Introduction
Designing storage subsystems involves evaluating the requirements that the
business processes that will be executed on the machine have, in terms of data
access and availability. Systems will generally be used for more than one
purpose (database applications may compete for resource with word processing
and image based applications for example), and it is important to attempt to
configure the environment in such a way that each process can perform within
required tolerances (these are usually performance and availability related -
user response time, and recovery in the event of error or failure for example). As
each process will have differing requirements, this task will of necessity involve
some compromise. The design of the AIX storage management components, as
has been covered in Chapter 3, “Operating System Software Components” on
page 47, does allow great flexibility in organization. The logical volume manager
allows the physical disks to be partitioned and the space thus created organized
in different ways to enable performance requirements to be met in one logical
volume, and availability requirements in another for example.

The first task is therefore to evaluate the storage requirements of the application
set that will be executed on the system in terms of:

 1. Performance requirements

 2. Availability requirements

 3. Recovery requirements

 4. Disk utilization

Each of these areas will now be examined in more detail.

5.2 Planning Disk Utilization
The design of the volume group and logical volume organization has a major
impact upon performance, availability, and recovery. The first consideration in
the process is volume group allocation.

5.2.1 Volume Groups
The most common hardware failure in a storage subsystem is disk failure,
followed by failure of adapters and power supplies. When failures of this type
occur, recovery will be easier if a sensible volume group design has been
implemented. Multiple volume groups should generally be implemented for the
following reasons:

• Maintenance

 Copyright IBM Corp. 1994 79

− Maintaining only operating system information in the root volume group
is a good decision because operating system updates, reinstallations,
and crash recoveries can be effected without danger to user data.

− System updates or reinstallation generally only affect the root volume
group, so these regular and important processes can occur more quickly,
as only operating system or application data is included in the changes.

• Physical Partition Size

All physical volumes within a volume group must have the same physical
partition size. In some cases greater granularity may be required in
allocation of physical partitions to logical volumes, and the only way to
implement this is to place those logical volume with differing physical
partition requirements into separate volume groups. An example of when
this might be necessary would be an environment where many small logical
volumes need to be created for specialized file systems of a size that may
entail much wasted space with 4MB partitions (2MB file systems say). The
greater flexibility afforded by the smaller partition is offset by increased
performance overhead to the LVM.

• Quorum Characteristics

If there is a requirement for implementing a file system in a non-quorum
volume group, then a separate volume group that does not utilize quorum
checking needs to be created.

• Security

In order to allow important confidential data to be removed and stored in a
secure place when required, a volume group including physical volumes on
removable disks should be created. At night, for example, the volume group
can be exported and the disks with the sensitive data removed and kept in a
secure place.

• Multiple JFS Logs

In order to reduce bottlenecks in a volume group with many journaled file
systems, multiple JFS logs may be required.

• Switching Physical Volumes Between Systems

In some cases there may be a requirement to share a physical volume
between systems, for availability or shared access for example. If the
physical volumes so utilized are maintained in a separate volume group,
then this volume group can be exported and varied off line for reuse on a
second system (import, vary on), without interrupting the normal operation of
either system.

The number of volume groups created should therefore be decided based upon
consideration of these points.

5.2.2 Physical Volumes
The next consideration should be the number of physical volumes per volume
group. This affects quorum checking and mirroring. A volume group with two
disks and quorum checking will fail to vary on if the disk with two VGDAs fails
(see “Quorum Checking” on page 55 for a description of this process). With
more than two disks, 51% or more of the VGDAs must become unavailable for
the vary on to fail, and data to become inaccessible. This is particularly true in a
two disk mirrored system, failure of the two VGDA disk will result in no access,
even though a good copy of the data is still available.

80 AIX Storage Management

Enough physical disks must also be included to support the mirroring strategy
required, both in terms of space for the mirrored copies, and number of disks for
the policies. If mirroring is to be done across the maximum number of physical
volumes possible, for availability purposes, then it makes sense to have at least
enough space to ensure the copies are stored on separate physical volumes. A
disk failure in this scenario will not impact access to the data.

5.2.3 Logical Volumes
The delineating factors for deciding upon the number of logical volumes to
create are basically performance and availability. As many logical volumes
should be created as there are different performance and availability
requirements. The design of the logical volumes themselves to satisfy these
requirements is covered in 5.3, “Planning for Performance” on page 82, and 5.4,
“Planning for Availability” on page 86. Within this however, there is the
consideration of disk space utilization. Depending upon the intended purpose of
file systems that will be created within logical volumes, different fragment sizes
may be required to optimally utilize the available disk space in the logical
volumes. As has been described in 4.1, “Fragmentation” on page 69, choosing
different fragment sizes can significantly improve disk space use. If there is a
need for file systems containing many small files, then a logical volume for each
file system with different requirements should be created.

5.2.4 File Systems
The primary considerations when creating file systems are as follows:

• Fragment size

Fragment size should be considered only if there will be many files in the file
system less than 32KB in size, or compression will be used. In the former
case, the fragment size should be selected based upon the average size of
the files, in order to minimize wasted space. For example, file less than 512
bytes or that will grow in chunks less than 512 bytes would be more
economically stored in a file system with a fragment size of 512.
Compression is discussed later in this section. This is an AIX Version 4
facility.

• Number of bytes per i-node (NBPI)

The number of bytes per i-node is described in 4.5, “Variable I-nodes” on
page 77. This parameter controls the number of i-nodes created in the file
system. The main consideration will be the number of expected files; if only
a few large files will be stored, then increase the NBPI to reduce the number
of i-nodes created, and hence free up disk resource that would have be used
by the extra i-nodes. The NBPI and fragment size together directly affect the
maximum possible size of the file system, and this is therefore a further
consideration. File system size is discussed later in this section. This is an
AIX Version 4 facility.

• Compression

Compression is discussed in 4.2, “Compression” on page 72. If disk space is
at a premium, and performance is not the major issue, then file system
compression should be considered. Using compression can reduce the
amount of storage space required by files enormously, at the cost of the
overhead required for the compression. The algorithm is performed on a
fragment basis, and its effectiveness is dependent upon the type of
information contained in the file. Larger fragment sizes will help to offset the

Chapter 5. Storage Subsystem Design 81

performance overhead, by reducing the number of allocation requests and
physical I/O. This is an AIX Version 4 facility.

• File system size

The size of the file system should be chosen to be large enough to
accommodate the required files. It is better to err on the small side, as file
systems can be easily expanded as the limit approaches, while reducing
(which can be done) is more work. Recovering free space within file systems
lost due to fragmentation can be accomplished using the defragfs command
which is discussed in Chapter 7, “Storage Management Files and
Commands Summary” on page 139.

Having created volume groups and added the required number of physical
volumes, the logical volumes and file systems need to be created. There are two
basic considerations: performance and availability. Generally, designing for high
performance will impact availability, and vice versa. The next two sections look
at design from these perspectives.

5.3 Planning for Performance
The performance of a disk subsystem is a combination of factors that includes:

• Adapters

This includes the physical performance capabilities of the adapter, as well as
the organization of devices using the adapter. In order to maximize
performance to high speed disk devices on an adapter, the characteristics of
the adapter should be considered. For example, SCSI adapters can support
multiple devices operating in either synchronous or asynchronous modes
(see 2.2.1.1, “Small Computer System Interface Adapter” on page 23 for
information on SCSI technology). To achieve maximum throughput for a
synchronous disk device, only other synchronous devices should be attached
to the adapter, and the total bandwidth (or throughput) of these devices
should not exceed the capabilities of the adapter itself.

The same considerations apply to adapters of other types. If multiple devices
are supported on the adapter, the total bandwidth available should not be
exceeded.

Finally, obviously the fastest adapter that meets the environmental
requirements of the site (in terms of cable lengths, and devices supported)
should be selected to maximize performance. Other functions like command
tag queuing (for some SCSI adapters), and differential communications (to
reduce errors) will also improve performance.

• Physical disk devices

Physical disk drives themselves support different levels of function in their
hardware. Some drives support bad block relocation and elevator seek
functions internally for example (see 2.2.2, “Disk Storage” on page 25 for a
discussion of disk technology). Off-loading these functions from the LVM will
increase performance.

Some subsystems, such as the 7135, support striping within the subsystem
(RAID 0) which will also increase performance.

Again, selecting disks with the fastest overall read/write performance figures
should be the policy for maximizing performance.

• Logical Volume Manager

82 AIX Storage Management

Selecting the highest performance hardware goes a long way to maximizing
the performance of a disk subsystem, but the software implementation in
terms of data placement on the disks and access methods (random or
sequential) are also vital to the overall result.

Under AIX Version 4, the LVM supports striping, which means that the logical
partitions of a logical volume can be spread across multiple disks and
therefore accessed concurrently (see 4.3, “Disk Striping” on page 74 for a
discussion of striping). Striping will maximize performance for sequential
reads and writes, where the LVM can schedule consecutive reads and writes
simultaneously to blocks on different disks. Performance will be further
enhanced when the disks are on different adapters, thereby allowing full
concurrency. Setting up striping is discussed in 8.5.1, “Striped Logical
Volumes” on page 268.

Whether striping is to be used or not, the placement of the data on the disk
surface itself affects the performance of the subsystem. The LVM provides a
number of parameters at logical volume setup that govern the policies it will
enforce in terms of data placement and access. These policies are explained
in “Logical Volume Manager Policies” on page 55. In order to maximize
performance, the following policies should be adopted:

− Intra-physical volume allocation policy

For maximum performance logical partitions should be selected in the
center of the disk.

− Inter-physical volume allocation policy

For maximum performance the maximum number of physical volumes
available should be used for the logical volumes logical partitions. This
will allow the LVM to schedule requests for long sequential reads or
writes across physical disks in parallel.

− Mirroring

Mirroring should generally be disabled for maximum performance. If it is
required however, then the scheduling policy should be set to parallel
and the allocation policy to strict. This will cause the LVM to place copies
on separate physical volumes, and to perform writes in parallel, thereby
maximizing performance. In addition, reads will be scheduled to the copy
of the data required that is closest to a disk head, improving read
performance. Write verification and mirror write consistency should also
be set to no. This will prevent the LVM from wasting a disk revolution on
every write to read back the data for validity, and also stop the LVM
waiting for all writes to copies to succeed before returning successful
completion of the write.

Adopting these policy settings in the LVM will maximize performance, but at
the expense of availability. If availability is an equally great issue, then
compromises will be necessary, such as using mirroring with reduced
efficacy (as described in this section).

• File System

With regard to maximizing performance from the file system point of view,
there are several configuration options that can be taken at file system
creation time:

− Fragment size

Chapter 5. Storage Subsystem Design 83

Using the largest fragment size of 4096KB will minimize allocation
operations and maximize throughput from the file system. This could be
at the expense of space utilization within the file system, depending upon
the sizes of files within (see 5.2, “Planning Disk Utilization” on page 79
for a discussion of maximizing disk space utilization).

− Compression

Using compression increases the overheads of reads and writes to the
file system, and therefore to maximize performance, compression should
not be used.

− Log devices

If many file systems are using the same log device, then this can
introduce a bottleneck. Reducing the number of file systems that will be
concurrently accessing a log device will avoid this problem. In order to
do this, multiple log devices should be created within the volume group.
To maximize performance, the log device should be on a different
physical volume, and preferably a different adapter to the file systems
sharing the log.

The JFS uses 4KB buffers for reading and writing, and returns success to a
requesting application on receipt of the data. The actual physical write is not
done until the buffer is full. This means that just using the JFS can improve
disk I/O performance.

 Warning

Some applications (some databases for example), rely on the fact that
when a write is requested, it is actually done immediately. In these
cases, using the JFS may speed up performance, but can introduce
inconsistencies if a crash should occur before a write actually took place
- the database logs would be out of sync with the JFS logs, resulting in
an inconsistent state. These type of applications should write directly to a
logical volume. For ordinary applications this would not be the case, and
recovery to a stable state should be possible from replaying the JFS log.
In all cases, checking with the application provider makes good sense.

Fragmentation of the file system will have an adverse effect on I/O
performance as it will increase the number of seeks required to access
information. The smaller the fragment size selected, the worse this problem
can become. Regular defragmentation of the file system, will alleviate this
problem, and is can be accomplished using the defragfs command,
discussed in Chapter 7, “Storage Management Files and Commands
Summary” on page 139.

• Operating System Parameters

There are a number of operating system parameters that affect the
performance of I/O subsystems. These parameters should be adjusted with
caution as they have system wide scope; this means that though they may
radically improve performance for one application using one logical volume,
they may have a detrimental effect on others:

− Sequential Read Ahead

This is a Virtual Memory Manager feature that allows the VMM to read in
pages of information from disk before they are required. If the VMM
suspects that a large sequential read is about to take place, it will use
the values set in minpgahead and maxpgahead to decide on how many

84 AIX Storage Management

extra pages ahead of the current one to read in. This means that when
requests for subsequent pages arrive, the required pages are already in
memory and time is saved. More detail on the setting of these
parameters is available in the InfoExplorer section Tuning Sequential
Read Ahead.

− Disk I/O Pacing

This feature is intended to prevent those programs that generate very
large amounts of I/O from saturating the I/O queues with requests, and
thereby causing the response time of less demanding applications to
deteriorate. Disk I/O pacing enforces high and low water mark values on
the number of I/O requests that can be outstanding for any memory
segment (this effectively means for any file). When the number of
outstanding I/O requests for a segment reaches the high water mark, the
process making the requests is put to sleep until the number of requests
has reached the low water mark.

This feature is set to off by default. See the InfoExplorer article on Use of
Disk-I/O Pacing for further details on tuning these parameters.

− SCSI Device Driver max_coalesce Parameter

When there are multiple requests in a SCSI device drivers queue, it
attempts to coalesce these requests into a smaller number of larger
requests. The largest request size (in terms of data actually transmitted)
that the device driver will build, is limited by the max_coalesce
parameter. See the InfoExplorer section on Modifying the SCSI Device
Driver max_coalesce Parameter for details on adjusting this setting.

− Setting SCSI Adapter and Disk Device Queue Limits

It is possible to enforce a limit on the maximum number of outstanding
requests on a queue for a given SCSI bus or disk drive. Setting these
parameters can improve performance for those devices that do not
provide sophisticated queue handling algorithms. See the InfoExplorer
section on Setting the SCSI-Adapter and Disk-Device Queue Limits for
further information on adjusting these parameters.

− Controlling the Number of System pbufs

The LVM uses a construct called a pbuf to control pending disk I/O. In
AIX Version 3, a pbuf is required for each page being read or written,
which for applications with heavy I/O can result in pbuf pool depletion. In
AIX Version 4, a pbuf is used for every sequential I/O request, regardless
of the number of pages involved, thereby reducing the load on the pbuf
pool. It is possible to tune the number of pbufs available, and in some
cases this can improve performance. See the section in InfoExplorer on
Controlling the Number of System pbufs, for further information.

• Applications

The final performance considerations are at the actual application level. The
design of the application can have a major effect upon performance. It is not
always possible to affect the way in which application operate, but on those
occasions where it is, the following considerations should be taken into
account:

− Asynchronous Disk I/O

Applications can use asynchronous disk I/O, which means that control
returns to the application from the read/write as soon as the request has

Chapter 5. Storage Subsystem Design 85

been queued. The application can then continue working while the
physical disk operation takes place. Obviously not all applications will be
able to take advantage of this feature, but for those that can, the
performance benefits are significant. More information on this feature
can be found in InfoExplorer in the section on Performance Implications
of Asynchronous Disk I/O.

− sync and fsync

In a similar fashion to asynchronous disk I/O, the sync() system call
schedules a write of all modified memory data pages to disk, but returns
immediately. Conversely, the fsync() call will not return until the writing
is complete. Those application which must know whether the write was
successful will not be able to take advantage of this, but for those that
can, again the performance benefits can be significant. For more
information, see the InfoExplorer section on Performance Implications of
sync/fsync.

Examples of using LVM and file system configuration commands to maximize
performance are detailed in 8.3.4, “A Design Example for Improved
Performance” on page 218.

5.4 Planning for Availability
Designing a disk subsystem for availability also involves a number of
considerations, including:

• Adapters

From an availability standpoint, it is better to design a storage system using
more rather than less adapters. This is really of benefit in the case where
mirroring is to be used; having mirrored copies on separate adapters means
that failure of one adapter will still leave the information accessible from the
copy on the other adapter.

• Redundancy

Redundancy is one of the most important mechanisms for ensuring
availability. This entails having backups for all vital system components in
much the same way as multiple adapters and mirroring above; within
storage subsystem components, this really means having backup power
supplies, cooling fans, adapters, data paths, and spare disk drives that can
be automatically switched in when required, with no service or information
loss.

At a pure operating system level, redundancy is limited to mirroring and
multiple adapters. Much greater availability guarantees can be achieved
using the features of external devices providing many of the backup features
discussed. Devices available that support these kinds of features include the
IBM 7135 and the 9570. Details of these and other similar devices can be
found in A.2, “Disk Storage Products” on page 326.

• RAID

This set of performance and availability features is discussed in 2.2.2.2,
“Selecting the Correct Disk Storage Devices” on page 27. RAID levels 1, 3,
and 5 provide increasing levels of high availability and performance external
to the operating system. The attached subsystem performs all of the RAID
functionality under the covers, and presents an ordinary disk drive interface

86 AIX Storage Management

to the operating system. Subsystems which support RAID to varying degrees
include the IBM 7135, IBM 3514, and IBM 9570. A brief discussion of these
and other devices can be found in A.2, “Disk Storage Products” on page 326.

• Logical Volume Manager

As in the case of performance, there are several options that can be taken at
logical volume creation time to maximize availability of data. These options
include policies governing the placement of data on the physical disks and
mirroring. Data can be divided into two categories, operating system data,
and user data, and the mirroring setup is slightly different for each case:

− Mirroring the root volume group

This procedure will maximize availability of the operating system. At
least three physical disks should be in the rootvg to ensure that a
quorum will always be available in the event of a single disk failure.

 Note

A full system backup should be taken before performing any disk
reorganization procedures.

Mirroring the root volume group involves setting up one or two copies of
each logical volume in the volume group; the procedure for actually
implementing this is explained in 8.2, “rootvg Mirroring - Implementation
and Recovery” on page 187.

 Warning

The mirrored copies must each be on a bootable physical volume or
else a failure in the main bootable copy will not be easily
recoverable. The boot logical volume should not be mirrored, as this
can cause problems, rather a new boot logical volume should be
created on each physical disk containing a mirror copy.

The Non-Volatile RAM must be updated to reflect the new disks available
as boot devices, so that in the event of failure of the main copy of the
rootvg, a reboot can be effected from another copy.

− Mirroring user data

Mirroring user data also involves creating copies of all of those logical
volumes requiring high availability. For maximum availability, the
following policies should be selected:

- Number of mirrored copies

The number of copies of a logical volume maintained by the LVM can
be one, two, or three. Maximum protection against failure is provided
using three copies, though at increased overhead. Again, availability
is mainly achieved at the cost of performance, though this will
depend on the intended usage of the mirrored logical volume. If the
volume will mainly be used for reading, then performance can be
enhanced, as the LVM will schedule reads to the disk head closest to
the required data.

- Inter-physical allocation policy

Having the logical partitions comprising the mirrored logical volume
spread across the minimum number of disks will optimize
availability. Ideally, each copy should be on a separate physical

Chapter 5. Storage Subsystem Design 87

volume which is itself on a separate adapter. To enable this, the
range parameter should be set to minimum, and the strict parameter
to yes; this will force the LVM to restrict each copy of the logical
volume to as few disks as possible, and to maintain the copies
separate (no copy may share a disk). Prior planning to ensure space
on the physical disks to hold the entire logical volume will ensure
each copy can be successfully kept on a single physical volume.

- Intra-physical allocation policy

The actual location of the data on each physical disk will have no
direct impact on availability. If however, a center policy is selected
for example, then although the LVM will try and fulfill the request on
all of the mirrored copies, the inter-disk allocation policy will take
preference. This means essentially, that if there are not enough
center located logical partitions on a disk, then rather than look at
spreading the logical volume to another disk, edge or middle located
partitions will be used instead.

- Scheduling policy

For maximum availability, a sequential policy should be adopted.
This means that writes will be scheduled one after the other to all
copies of the logical volume, each write having to complete before
the next occurs. This maximizes the chances of at least one copy
surviving in the event of a system crash during the process.

- Write verification

This feature should be switched on for maximum availability. Write
verification means that after every write to a disk, the data written is
read back to ensure its validity. This does have performance
implications as every write will involve one extra disk revolution for
the read verify.

• File System

Using the JFS provides some availability features over writing to raw logical
volumes, or using NFS for example. The JFS records all changes to the
meta-data of a file system into a log (file systems are explained in 3.1.4, “File
Systems” on page 58). If there should be a system crash, on reboot, the log
is replayed and the file system returned to its last consistent state. This
prevents corruption of the file system and thereby assists in maintaining
higher availability.

• Application

Applications themselves can be designed to be availability aware. In the
reverse of the requirements for high performance, applications should avoid
asynchronous I/O to ensure that any data written is committed to disk before
continuing and risking inconsistencies. In addition, the fsync() system call
should be used rather than sync(), so that the application can be sure that all
modified pages in memory have been written before continuing.

The section on application oriented performance considerations earlier in
this section gives more details on these operating system calls.

88 AIX Storage Management

5.5 Planning Backup Strategies
The rest of this chapter looks at backup strategies, and the elements involved in
planning them.

5.5.1 Backup Overview
As soon as the system has been set up and the operating environment
configured as required, a backup strategy should be immediately implemented.
From this point on, valuable data will be created and stored within the storage
subsystem that represents time and effort, and in most cases that supports the
business. The organization of the system (operating system data and
applications), and the user information created (files and directories) are subject
to misadventure, however carefully managed; files can be accidentally erased,
and hardware or software faults can destroy some information or even the entire
system. For these reasons, it is important to be able to recover the system back
to a point at which work can continue. Backing up the system involves making
copies of all the information contained in it on a some medium that can be
stored separately. The copies can then be used to recreate the system after a
failure has been repaired, or information accidentally lost. The information in the
system is usually highly dynamic, and therefore frequent copies or updates to
the copies (also known as incremental backups) should be taken. The frequency
and content of the updates or full backups is unique for each business, and
depends upon the rate of change of information and the relative importance of
that information. Evaluating this is the process of developing a backup strategy.
The following points should be considered:

• Ensure recovery from major losses

Consider every potential catastrophe, however unlikely, and determine
whether recovery would be possible. If the backup media was lost in some
natural disaster, would recovery be possible? Obviously, it is necessary to
factor in the likelihood of a particular disaster, but this must be done in
conjunction with consideration of the value of the data. It′s not much comfort
to reflect how unlikely the ball of lightning that destroyed the backup media
inside a safe was, when the business is ruined as a result.

• Check backups periodically

There are many different types of backup media, each with varying degrees
of reliability and longevity (see 2.2.3, “Tape Storage” on page 34 for a
comparison of backup media). Check the condition of backups on a regular
basis to ensure that they are still usable.

• Keep old backups

Although it is a good policy to develop a regular cycle for reusing backup
media, complete copies should be maintained for some time as it can often
be a while before it is noticed that a particular file is damaged or unusable,
by which time the backup copies may contain copies of the damage. It is
therefore a good plan to implement a recycling policy such as the following:

− Recycle all media except Friday backups weekly

− Recycle all Friday media except the last in the month monthly

− Recycle all monthly media except the last in the quarter quarterly

Keep the quarterly backups indefinitely. This will always ensure the ability to
access information up to three months old at various levels of currency.

Chapter 5. Storage Subsystem Design 89

• Check file systems before backing up

Making a backup of a damaged file system will result in the ability to restore
that damaged file system in the event of failure. It is therefore a good idea to
check file systems before backing up to ensure integrity.

• Ensure files are not in use during backup

Files that are in use during a backup will be different to the backed up copy.
Backups should therefore be taken while the system, or files being backed
up, are not in use.

• Backup the system before implementing any major changes

Major changes introduce the possibility of errors and hence loss of data. It is
always sensible to take a backup prior to any such activity.

5.5.2 Backup Planning
There are two main types of backup:

• Complete system backup

In a complete system backup, a copy is made of everything on the system.
this can then be used to completely restore the system in the event of a
failure. The complete backup can contain operating system and user data,
although it is more sensible to maintain these two separately for the
following reasons:

 1. User data changes more regularly than system data, and the backup wil l
be smaller if the two are kept separate.

 2. It is quicker and easier to restore user data when kept separate from the
operating system. Crashes only affecting the operating system, only
require the operating system backup to be restored, and vice versa.

• Incremental backup

In an incremental backup, only the data that has changed since the last
backup is backed up.

A complete system backup policy should be used when data does not change
too often. The backups should be scheduled at a frequency that allows complete
recovery of business critical information. For example, if database update runs
are done weekly, then a backup after the run each week is sensible.

An incremental policy should be used when information is extremely dynamic.
Full system backups are taken at a fixed interval, within which backups of
changed information are taken at shorter intervals. The frequency of the
incremental backups depends upon the criticality of the information, as in the
complete system backup policy. The frequency of the incremental backups
depend upon the volumes of data that have changed. As recovery with
incremental backup requires reloading the last full backup followed by
application of the incremental backups up until the point of failure, the frequency
of incremental backups should be set at a value which is a balance between
criticality of information and number of incremental backups that will need
applying.

90 AIX Storage Management

5.5.3 Backup Methods
There are several ways of backing up information:

• Backing up by name

This method is also called file name archive, and should be used to backup
individual files or directories, if required. This mechanism is most commonly
used by users to make backups of their own files.

• Back up by file system

This method is also known as backup by i-node, and is used to backup entire
file systems. This mechanism should be used by the system administrator to
back up large groups of files. It is also used for incremental backups.

• Backup by volume group

This method allows complete volume groups to be backed up. There are
separate commands for the root volume group and for user volume groups.

The following commands can be used to implement the backup policy created:

backup This command allows backup by file name or by file system.

mksysb This command creates an installable image of the root volume group.

savevg This command backs up a user volume group.

cpio This command copies files into and out of archive storage. The cpio
format is common across many platforms, and so can be used for
exchange of information between systems.

dd This command will convert and copy information from one device to
another. The dd command does not group multiple files in any
particular format, it just streams the data, performing any supported
conversion from the source to the target device.

tar This command manipulates archives of files and directories. The tar
command will create an archive on the output device, write files and
directories to it, and extract them when required.

rdump This command backs up files by file system to a device on a remote
machine.

pax This POSIX conformant command will read and write tar and cpio
compliant archives.

These commands are described in detail in Chapter 7, “Storage Management
Files and Commands Summary” on page 139. Examples of backing up a system
are detailed in 8.4, “Managing Backup and Restore” on page 244.

5.5.4 Backup Media
So far, backup purposes, policies, and commands have been discussed. This
leaves the important topic of the actual media that the backup will be stored on.
Tape devices are the most common backup or long term archive medium,
though there are still several considerations:

• Device Technology

This should be governed by the requirements below, but is more often just a
question of cost per megabyte. The most important factors should be the
reliability, longevity, performance and capacity.

Chapter 5. Storage Subsystem Design 91

Volume of information should be considered too, as this might suggest a
tape library. Short term archive may suggest an optical device. These
decisions are covered in 2.1, “Selecting the Hardware Components” on
page 17.

• Performance

It is important to consider the length of time that a backup will require, and
this is a function of the volume of data and the speed with which the device
can write it. If backups need to be taken every evening, then a device
capable of completing the process in the time available should be chosen.

• Capacity

This is a question of cost, storage space, and ease of use. The more
information that can be packed onto the media, the better generally, as this
means that less media will be required for backups. Storage space is
therefore less, and if a single cartridge is sufficient, no operator intervention
may be required. If multiple cartridges will be required, and operator
intervention is not possible, then a tape library should be considered.

• Longevity

As was mentioned earlier in this section, the length of time that the media
can be safely stored is important. This governs not only the backup cycles,
but for how long the media can be safely reused.

• Reliability

This is a very important issue. Although checks on the success of a backup
can and should be performed, unreliable devices that have a high
percentage of errors, and produce occasional unreadable backups, are time
consuming and dangerous. Some devices encounter read back problems too,
even though the media copy may be good.

• Compatibil ity

Device technology improves and changes with time. It is a good idea to
ensure that next generation of devices support existing archive and backup
media.

These considerations are discussed in relation to tape technology in 2.2.3, “Tape
Storage” on page 34.

5.6 Summary
This chapter has looked in detail at the planning and design requirements for
storage subsystems. Design of the subsystem involves considering the following
points:

 1. Disk Utilization

How the physical subsystem will be organized from the perspective of:

• Volume Groups

• Physical Volumes

• Logical Volumes

• File Systems

 2. Performance

92 AIX Storage Management

For those applications that require high performance, designing the storage
subsystem for maximum performance. This involves optimizing:

• Adapter performance and function

• Physical disk device performance and function

• Optimizing the Logical Volume Manager for performance

• Optimizing file systems for performance

• Optimizing operating system parameters for performance

• Optimizing application design for performance

 3. Availability

For those applications that require high availability, designing the storage
subsystem for maximum availability. This involves optimizing:

• Adapter and disk organization

• Implementing redundancy

• Possible use of RAID

• Optimizing the Logical Volume Manager for availability

• Using the JFS if possible

• Optimizing application design for availability

 4. Backup

Designing a strategy that allows for as full a recovery as necessary in the
event of failure, for the business to continue. This entails the following:

• Considering all possible failure scenarios and designing a strategy to
cope with them

• Selecting the appropriate backup type

• Selecting the relevant backup commands to use

• Selecting the appropriate devices

Chapter 5. Storage Subsystem Design 93

94 AIX Storage Management

Chapter 6. General AIX Storage Management

This chapter will explore Storage Management from a more practical aspect.
Much of the functionality available with Version 3 is still included in Version 4, so
this chapter will provide useful information for Storage Management at either
release.

6.1 Introduction
The purpose of this chapter is to provide the reader with information, which it is
hoped will prove useful for applying the basic concepts of storage management
into their business environment. The areas which will be covered will include
the management of physical storage devices, volume groups and logical
volumes using the Logical Volume Manager (LVM) functions provided in AIX.
Consideration will also be given to issues relating to performance, availability
and the capability of backing up and restoring.

6.2 Managing Physical Volumes
Management of physical volumes involves day-to-day activities that not only
ensure that they are installed and configured correctly, but also that they are
maintained in a correct operating environment and monitored regularly so that
disasters from physical volume failures are prevented, by taking precautionary
steps.

For a physical volume to be used for storage purposes, either by the LVM or
directly via a low-level interface, it must first be recognized by the system and
configured to be in an available state. This can be done fairly quickly and with
ease, using the AIX Systems Management Interface Tool (SMIT). Once
recognized by the system it can then be included in a volume group and a
logical volume or a journaled file system can then be created on it, providing
users the ability to store data in it.

When a RISC System/6000* computer system is powered on or rebooted, the AIX
operating system will attempt to configure all devices physically connected to it.
Some devices may be attached while the system is up, and these can normally
be configured using the cfgmgr command, or by using SMIT. The fact that a
physical volume is configured and known to the system does not mean that it is
ready to be used for storage purposes.

This section will attempt to describe only those areas specifically relating to
physical volumes. This will include:

• Configuring physical volumes

• Modifying physical volume characteristics

• Removing physical volumes

• Monitoring physical volumes

 Copyright IBM Corp. 1994 95

6.2.1 Configuration of Physical Volumes
It is possible to check the configured state of a physical volume which has been
correctly installed. This can be done using SMIT or by issuing the following
command:

� �
lsdev -Cc disk� �

The above command will produce output that will look something like the
following:

� �
hdisk0 Available 00-06-00-00 857 MB SCSI Disk Drive
hdisk1 Available 00-06-00-10 857 MB SCSI Disk Drive
hdisk2 Available 00-07-00-00 857 MB SCSI Disk Drive
hdisk3 Available 00-07-00-10 857 MB SCSI Disk Drive
hdisk4 Defined 00-08-00-00 857 MB SCSI Disk Drive
hdisk5 Defined 00-08-00-10 857 MB SCSI Disk Drive� �

The second column of this output indicates the configured state of each physical
volume. Only those disks with an Available state have been successfully
configured by the system. It is quite likely that disks in the Defined state were
switched off during the configuration process. If this is the case they can be
configured, as previously mentioned, by using the command cfgmgr or smit
cfgmgr after powering on.

� �
cfgmgr� �

6.2.2 Modifying Physical Volume Characteristics
There is very little that can be done with respect to modifying the characteristics
of a physical volume. The two characteristics which can be changed should be
given important consideration, since they provide a way of controlling the usage
of physical volumes.

It may sometimes be necessary to restrict further physical partitions from being
allocated to any new or existing logical volumes. When a new logical volume is
created or an existing one extended, free physical partitions are allocated to it.

The chpv command can be used to restrict further physical partition allocations
from occurring. This can easily be achieved by issuing the following command:

� �
chpv -an PVname� �

After issuing the above command any allocations for physical partitions for the
physical volume PVname will not be allowed. Note, however, that access to
existing journaled file systems and logical volumes is still possible.

If the physical volume characteristics need to be reversed, this can be carried
out by issuing the following command:

� �
chpv -ay PVname� �

96 AIX Storage Management

An active physical volume is considered to be in an Available state since it will
continue to allow logical I/O to it to occur. The state of a physical volume can be
changed from active to not active to stop all logical I/O to it from occurring.
There are instances when access to file system or logical volume data needs to
be stopped, particularly if the physical volume is partially or wholly damaged,
and needs to be repaired or replaced. In a high security environment, it may be
necessary to physically remove a disk from the system and secure it in a secure
place for overnight periods. This may be achieved by making the physical
volume unavailable or Removed.

Whatever the reason, the physical volume can be made unavailable by setting
the state to Removed using the command:

� �
chpv -vr PVname� �

In the above example, the state of physical volume, PVname, is changed from
Available to Removed. To check the state use the lsvg command.

The above modification is only allowed if there are two or more physical
volumes in a volume group and more importantly if this action can be performed
without losing quorum. In a two-disk volume group, the chpv command will fail if
the disk containing two copies of the VGDA/VGSA is being removed, since more
than 50% of the VGDA and VGSA copies will be lost. Also, before a physical
volume can be made unavailable, all file systems must be unmounted and all
open logical volumes must be closed.

To bring the physical volume PVname back into an Available state, thereby
allowing logical I/O to the device to occur, the following command needs to be
executed:

� �
chpv -va PVname� �

6.2.3 Removing Physical Volumes
The configured state of physical volumes is Available when the system is
powered on. However, to unconfigure a physical volume, and place it in the
Defined state, the rmdev command can be used. Before a physical volume is
disconnected from the system, it must be unconfigured. In the Defined state,
access to the physical volume by the LVM will be prevented until it is again
made available. The rmdev command as invoked below, will result in the change
of state of the physical volume from Available to Defined:

� �
rmdev -l PVname� �

Although physical volume PVname will be unconfigured, its definition will still
remain in the ODM. This information must remain, particularly if the physical
volume will be reinstated with the same characteristics as before.

Chapter 6. General AIX Storage Management 97

6.2.4 Monitoring Physical Volumes
Physical volume failures can and do occur for many reasons. More often than
not they are caused by inadequate operating conditions, such as cables
connected to physical volumes left loosely on the floor risking being pulled out,
temperature and humidity not controlled properly, physical volumes exposed to
direct sunlight and strong magnetic fields. These physical conditions need to be
addressed for physical volumes to function properly. The tolerances of physical
volume may differ, and these can be obtained from the hardware specifications
supplied by the manufacturers.

Failures arising as a result of these conditions can always be avoided. However,
sometimes physical volumes also suffer from other problems which cannot be
identified so easily. An example of this might include a non-operational cooling
fan in a physical volume, or a damaged sector on the disk. It is, therefore,
imperative that physical volumes are monitored regularly, both in terms of their
physical environment and their physical characteristics, while they remain in
operation.

An important command available to a systems administrator is errpt which can
allow physical volume failures, and those impending, from being detected early.
Error reporting must be started on the system in order for this command to
produce useful information. Different levels of detail can be extracted by using
different command line options. Initially, it may only be necessary to extract
summary information to see what errors have been reported, how frequently
they are occurring, and whether or not they are of a permanent or temporary
nature. This can then be followed by a more detailed report to find out their
causes. A summary error report can be quickly produced by using the following
command:

� �
#errpt | pg� �

This will produce a one line summary for each error logged on the system with
the most recent error first. The fields identifying the error will be:

IDENTIFIER: A numeric error identifier for the type of error that has
occurred.

TIMESTAMP: This will indicate the date and time the error occurred.
The format of this field is MMDDhhmmYY, representing the
month, day, hour, minute, and year respectively.

T: The error type used to identify if the error is permanent
(P) or temporary (T).

C: The error class used to identify if the error is hardware
(H), software (S) or operator (O) related.

RESOURCE_NAME: The name of the resource for which the error is being
reported.

DESCRIPTION: A short description of the error.

The following example shows how the errpt command can be used to produce a
more detailed report for each logged error:

� �
errpt -a | pg� �

98 AIX Storage Management

It is worth piping the output through either more or pg if there are many errors
logged.

Of all the fields displayed, the most useful in identifying the nature and cause of
the error are:

ERROR LABEL: This is a label used to identify the error. An example of
a physical volume error is DISK_ERR4.

Error Class: This describes if the error is caused by a hardware or
software problem denoted by (H) or (S) respectively.

Error Type: This describes if the error is permanent (PERM) or
temporary (TEMP).

Description: This will be a short description of the error.

Probable Causes: If included, this field will identify the likely cause of the
error which can be a software program or a physical
device.

Failure Causes: This will identify the exact cause of the reported failure.

Recommended Actions This will describe any recovery or reporting action that
will need to be taken.

For more information about how to interpret the output of both the summary and
detailed reports, please refer to the errpt command and its associated
documentation in InfoExplorer.

6.2.5 Listing Information about Physical Volumes
A physical volume correctly installed on the system can be assigned to a volume
group and can subsequently be used to hold file systems and logical volumes.
Requirements of logical volumes can vary and sometimes their position within a
physical volume can be quite important. So information about free physical
partitions and their availability within different sectors on the disk can be very
useful. There are several commands which can be used to identify such
information pertinent to physical volumes. However, a single command which
can provide this is lspv.

6.2.5.1 Listing Physical Volumes on the System
The lspv command when executed without any arguments will produce output
which will identify the physical volume by the name that it is known to the
system, the unique physical volume identifier that has been assigned to it and
the volume group, if any, to which it belongs. It will appear as:

� �
lspv
hdisk0 00000310df1bbcef rootvg
hdisk1 00000310df26b596 rootvg
hdisk2 000001856246d451 None� �

In the above example, hdisk2 does not appear to be allocated to a volume group
yet and so the third field reflects this by appearing as None. Physical volumes,
hdisk0 and hdisk1, on the other hand, are allocated to volume group rootvg.

Chapter 6. General AIX Storage Management 99

6.2.5.2 Listing Physical Volume Characteristics
The lspv command can also be used to retrieve more detailed information about
physical volumes. The command must however be invoked with the name of the
disk for which information is required as the argument.

For example:

� �
lspv hdisk0� �

If the physical volume being interrogated is currently not allocated to a volume
group, no detailed information can be produced about it and an appropriate
message will be output to indicate this.

You will note that the information on the left shows detail pertinent to the
physical volume itself, whereas that on the right provides detail about the
volume group that the physical volume is allocated to. Some of the detail
extracted from this output will be discussed in more detail in sections 6.3,
“Managing Volume Groups” on page 103 and 6.4, “Managing Logical Volumes”
on page 113, since it is more relevant there.

In brief, the information produced is:

PHYSICAL VOLUME: The name of the physical volume.

PV IDENTIFIER: Physical volume identifier unique to the system.

PV STATE: Availability state of the physical volume for logical
I/O. This state can be changed using the chpv
command mentioned in section 6.2.2, “Modifying
Physical Volume Characteristics” on page 96.

STALE PARTITIONS: The number of physical partitions that are marked
stale. Partitions can become stale when the physical
volume is temporarily made unavailable while their
mirrored copies on other physical volumes change.
This will be reviewed in sections 6.3, “Managing
Volume Groups” on page 103 and 6.4, “Managing
Logical Volumes” on page 113.

PP SIZE: The size of the physical partition, set when the
volume group is added. This will be reviewed in
sections 6.3, “Managing Volume Groups” on
page 103 and 6.4, “Managing Logical Volumes” on
page 113.

TOTAL PPs: The total number of physical partitions that exist on
the physical volume.

FREE PPs: The number of physical partitions available on the
physical volume that have not been allocated to file
systems or logical volumes.

USED PPs: The number of physical partitions on the physical
volume that have already been allocated to file
systems or logical volumes.

FREE DISTRIBUTION: This lists the number of physical partitions that are
available in each of the various regions of the
physical volume. The use of this information will be

100 AIX Storage Management

discussed in section 6.3, “Managing Volume Groups”
on page 103 and 6.4, “Managing Logical Volumes”
on page 113.

USED DISTRIBUTION: The same as FREE DISTRIBUTION, except that it lists
the number of allocated partitions.

VOLUME GROUP: The name of the volume group to which the physical
volume belongs. This will be reviewed in sections 6.3,
“Managing Volume Groups” on page 103 and 6.4,
“Managing Logical Volumes” on page 113

VG IDENTIFIER: Volume group identifier unique to the system.

VG STATE: The state of the volume group. This will be reviewed
in section 6.4, “Managing Logical Volumes” on
page 113.

ALLOCATABLE: A yes/no setting to indicate whether or not free
physical partitions on this physical volume can be
allocated. For more information see the chpv
command in section 6.2.2, “Modifying Physical
Volume Characteristics” on page 96.

LOGICAL VOLUMES: The number of logical volumes residing on this
physical volume.

VG DESCRIPTORS: The number of Volume Group Descriptor Areas
(VGDAs) residing on this physical volume.

6.2.5.3 Listing Logical Volume Allocation within a Physical Volume
The lspv command can also be used to check how the physical volume is used.
It can provide information relating to each logical volume on the physical
volume, such as its name, number of logical and physical partitions allocated,
distribution across the physical volume, and mount point if one exists.

An example lspv invocation providing this detail is:

� �
lspv -l hdisk3
hdisk3:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
lv00 4 4 00..04..00..00..00 /expfs
loglv00 1 1 00..01..00..00..00 N/A� �

In this example, physical volume hdisk3 has two logical volumes on it, lv00 and
loglv00. Logical volume lv00 is allocated 4 logical partitions and 4 physical
partitions on this physical volume. All four physical partitions reside in
outer-middle region of the disk. The logical volume is used in a file system
whose mount point is /expfs. As logical volume loglv00 is not associated with a
file system, its mount point is shown as N/A.

6.2.5.4 Listing Physical Partition Allocation by Physical Volume
Region
We have already seen how to retrieve information about the distribution of
physical partitions allocated to logical volumes on a particular physical volume.
It may sometimes be necessary to check, in more detail, the range of physical
partitions allocated to a logical volume and the region of the disk used for those

Chapter 6. General AIX Storage Management 101

partitions. A file can be repositioned to the center of the disk to ensure that it is
accessed more quickly if performance is an issue.

The lspv command invocation providing this level of detail is:

� �
lspv -p hdisk3
hdisk3:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-15 free outer edge
16-20 free outer middle
21-23 used outer middle lv00 jfs /expfs
24-24 used outer middle loglv00 jfslog N/A
25-27 free outer middle
28-28 used outer middle lv00 jfs /expfs
29-30 free outer middle
31-45 free center
46-60 free inner middle
61-75 free inner edge� �

From the above example, we note that physical partitions allocated to the file
system /expfs (logical volume lv00) are 21 through 23, and 28, and are positioned
at the outer-middle region of the disk.

6.2.5.5 Listing Physical Partition Allocation Table
Although we can determine the range of physical partitions allocated to a logical
volume and its distribution, this information does not provide enough detail to
determine if a logical volume is allocated a contiguous range of physical
partitions. We may require this information if we are considering ways of
improving the I/O performance for a logical volume.

The lspv command, with the parameters as shown below, will produce such
information.

� �
lspv -M hdisk3
hdisk3:1-20
hdisk3:21 lv00:3:2
hdisk3:22 lv00:1:2
hdisk3:23 lv00:2:2
hdisk3:24 loglv00:1
hdisk3:25-27
hdisk3:28 lv00:4:2
hdisk3:29-75� �

The output above consists of the following space separated fields:

PVname:PP [-PP] PVname being the physical volume name and PP being the
physical partition number. The PP number will only be
specified as a range when there is more than one free
contiguous physical partition on the disk.

LVname:LP [:COPY] LVname being the logical volume name and LP the logical
volume partition. The COPY value is also output, if the
logical partition is mirrored.

In the above example output, we note that logical volume lv00 has been
allocated physical partitions 21, 22, 23, and 28, However, the order in which

102 AIX Storage Management

they are allocated to logical partitions 1, 2, 3, and 4 is 22, 23, 21, and 28
respectively.

6.3 Managing Volume Groups
The section will describe the operations which can be performed on volume
groups.

Like physical volumes, volume groups can be created and removed, and their
characteristics can also be modified. Additional operations such as varying
on/varying off and importing/exporting of volume groups can also be
performed. This section will describe the operations pertinent to volume groups.

6.3.1 Adding a Volume Group
Before a new volume group can be added to the system, one or more physical
volumes, not used in other volume groups, and in an Available state, must exist
on the system. Please see section 6.2, “Managing Physical Volumes” on
page 95 for more detail.

It is important to decide upon certain information such as the volume group
name and the physical volumes to use prior to adding a volume group. Even
though it is possible at a later time to change such detail, it may not always be
easy nor convenient, and users may even have to be temporarily denied access
to the data if the volume groups need to be varied off.

New volume groups can be added to the system by using the mkvg command or
using SMIT. Of all the characteristics set at creation time, the following are
essentially the most important:

• Volume group name, unique on the system

• Names of all physical volumes to be used in the volume group

• Maximum number of physical volumes that can exist in the volume group

• Physical partition size for the volume group

• Flag to activate the volume group automatically at each system restart

For example:

� �
mkvg -y myvg -d 10 -s 8 hdisk1 hdisk5� �

In this example, a volume group with the name myvg is created, using physical
volumes hdisk1 and hdisk5, and the physical partition size for this volume group
is set to 8KB. Since the volume group is limited to a maximum of 10 physical
volumes, eight more can still be added at a later time. The maximum number of
physical volumes, 10 in the above example, allowed in a volume group should be
given careful consideration since the physical volume space overhead increases
with larger numbers.

Volume groups can also be added through SMIT using the command smit mkvg.
Limited functionality is provided by the SMIT command. The main differences
are:

• smit mkvg does not provide the -d flag to set the maximum number of
physical volumes, it uses a default value of 32.

Chapter 6. General AIX Storage Management 103

• smit mkvg does not provide the -m flag to set the maximum size of the
physical volume. This flag will determine how many physical partitions are
used, it uses a default value of 1016 partitions.

• smit mkvg always uses the -f flag to force creation of the volume group.

For a new volume group to be successfully added to the system using the mkvg
command, the root file system should have between 1 to 2MB of free space.
Check this using the df command. This free space is required because a file is
written in the directory /etc/vg each time a new volume group is added. It is
also important to note that the -f flag will allow a physical volume which still has
a VGDA on it to be allocated to a new volume group. However, the physical
volume must not be part of another volume group that is varied on.

6.3.2 Modifying Volume Group Characteristics
Not many changes can be made to the characteristics of a volume group. The
changes that are possible are:

• Activation characteristics, which will determine whether or not the volume
group is automatically varied on at every system restart

• Unlocking a volume group

• Adding a physical volume

• Removing a physical volume

6.3.2.1 Modifying Volume Group Activation Characteristics
The command to allow a volume group to be varied on automatically each time
a system is restarted is:

� �
chvg -ay VGname� �

In this example, volume group VGname will be varied on automatically each time
the system is restarted.

To turn off automatic varying on of a volume group, the following command
needs to be executed:

� �
chvg -an VGname� �

It may sometimes also be necessary to allow a volume group to remain varied
on, even though quorum is lost. In a two-disk volume group, if the physical
volume with the two VGDAs is damaged, then the volume group will be varied off
since quorum is lost. In AIX Version 4, it is now possible to prevent a volume
group from being varied off automatically when quorum is lost and access to
data on the good physical volumes still continues.

In the example below, the volume group VGname will remain varied on
irrespective of loss of quorum.

� �
chvg -Qn VGname� �

104 AIX Storage Management

The following example command will ensure volume group VGname is varied off
after quorum is lost.

� �
chvg -Qy VGname� �

The chvg command invoked with the -Q flag will only have effect when the system
is restarted. It is important that the boot image is updated after executing the
chvg -Qy or chvg -Qn command. This can be done using either the bosboot or
savebase command. Failure to do so will not make the change to the volume
group and will have no effect when the system is restarted.

6.3.2.2 Unlocking a Volume Group
In AIX Version 4, it is now also possible to unlock a volume group. A volume
group can become locked when an LVM command terminates abnormally. This
is quite likely when the system crashes while an LVM operation is being
performed on the system or if an LVM command core dumps.

The example command below will unlock volume group, VGname.

� �
chvg -u VGname� �

In order for the above command to succeed no other LVM command must be
operating on the specific volume group.

6.3.2.3 Adding a Physical Volume
It may sometimes be necessary to increase the free space available in a volume
group so that existing file systems and logical volumes within the volume group
can be extended, or new ones can be added. To do this requires additional
physical volumes to be made available within the volume group. It is possible to
add physical volumes to a volume group, up to the maximum specified at
creation time. When adding physical volumes in this way, all data on the
physical volume will be destroyed.

A physical volume can be added using the extendvg command. In the following
example, physical volume hdisk3 is being added to volume group myvg.

� �
extendvg myvg hdisk3� �

The extendvg command will fail if the physical volume being added already
belongs to a varied on volume group on the current system. Also, if the physical
volume being added belongs to a volume group that is currently not varied on,
the user will be asked to confirm whether or not to continue.

6.3.2.4 Removing a Physical Volume
It may sometimes be necessary to free up one or more physical volumes from a
volume group. Suppose that three physical volumes have been allocated to a
volume group and only two are actually used for data storage. In this instance,
the unused physical volume could be removed from the volume group so that it
can be made available for use in other volume groups. It may also be necessary
to remove a physical volume if it becomes damaged so that maintenance work

Chapter 6. General AIX Storage Management 105

can be carried out on it. Whatever the reason, physical volumes can be
removed using the reducevg command.

In the following example, physical volume hdisk3 is removed from the volume
group myvg:

� �
reducevg myvg hdisk3� �

The reducevg command will only succeed in removing a physical volume if:

• No logical volumes exist on the physical volume being removed.

• The volume group is varied on.

The reducevg command provides the -d and -f flags. The -d flag is useful since
it deallocates all logical partitions and deletes all logical volumes from the
specified physical volume upon user confirmation. The -f flag used in
conjunction with the -d flag will force the deallocation of logical partitions and
deletion of logical volumes without user confirmation.

If the logical volumes on the physical volume specified to be removed also span
other physical volumes in the volume group, the removal operation may destroy
the integrity of those logical volumes, regardless of the physical volume on
which they reside.

6.3.3 Importing and Exporting a Volume Group
There may be times when a volume group may need to be moved from one RISC
System/6000 system to another, so that logical volume and file system data in
the volume group can be accessed directly on the target system. It may even be
necessary to remove all knowledge of a volume group from the system, if file
systems and logical volumes within it are no longer being accessed. By having
such redundant volume groups on the system. the physical volumes within it
remain tied up unnecessarily, when they could be used within other volume
groups.

However, before the physical volumes in a volume group are actually
disconnected, it would be good practice to remove the system definition of the
volume group to which they are allocated. To remove all knowledge of a volume
group from the ODM database, the volume group needs to be exported using the
exportvg command. This command will not remove any user data in the volume
group but only remove its definition from the ODM database. Similarly, when a
volume group is moved, the target system needs to be made aware of the new
volume group. This can be achieved by importing the volume group using the
importvg command which will add an entry to the ODM database.

In the example below, volume group myvg will be exported:

� �
exportvg myvg� �

Once exported, a volume group can no longer be accessed.

There are some restrictions when using the exportvg command to export a
volume group. These are:

106 AIX Storage Management

• The volume groups must be varied off. See 6.3.4, “Varying On and Varying
Off Volume Groups” on page 108 for more details.

• The rootvg volume group cannot be exported. This is because varying off the
rootvg is not possible. See 6.3.4, “Varying On and Varying Off Volume
Groups” on page 108 for more details.

• The volume group must not have any active paging space logical volumes on
it. In order to export a volume group with an active paging space on it you
must:

− Change the state of the paging space so that it is not automatically
activated on system restart

− Reboot the system

− Vary off the volume group

− Export the volume group

• A subset of physical volumes cannot be exported individually.

In the following example use of importvg, volume group myvg is being imported
onto the target system using hdisk3. The information about the volume group
characteristics, such as the other physical volumes in the group and the logical
volumes and file systems, will be read from the VGDA held on physical volume
hdisk3.

� �
importvg -y myvg hdisk3� �

In this example, the name to be given to the imported volume group is specified
using the -y flag. However, if the specified volume group name is already in
use, the importvg will fail with an appropriate error message, since duplicate
volume group names are not allowed. In this instance, the command can be
rerun with a unique volume group name specified, or it can be rerun without
both the -y flag and the volume group name, which gives the imported volume
group a unique system default name. It is also possible that some logical
volume names may also conflict with those already on the system. The importvg
command will automatically reassign these with system default names.

In AIX Version 4, when a volume group is imported it is automatically varied on,
whereas, in AIX Version 3, the volume group has to be varied on separately.

The important thing to remember when moving volume groups from system to
system, is that the exportvg command is always run on the source system prior
to importing the volume group to the target system. Consider that a volume
group is imported on system Y without actually performing an exportvg on
system X. If system Y makes a change to the volume group, such as removing a
physical volume from the volume group, and the volume group is imported back
onto system X the ODM database on system X will not be consistent with the
changed information for this volume group.

It is however, worth noting that a volume group can be moved to another system
without it first being exported on the source system.

Chapter 6. General AIX Storage Management 107

6.3.4 Varying On and Varying Off Volume Groups
Before administrative activities such as opening of logical volumes and mounting
of file systems can be performed, the relevant volume groups need to be made
available. This can be achieved by varying on a volume group using the
varyonvg command. Likewise, when access to a volume group needs to be
stopped entirely, it can be varied off after unmounting all file systems and
closing all open logical volumes within it. The varyoffvg command can be used
to vary off a volume group.

During the varying on process, a number of different operations are performed in
order to make a volume group available. They are:

• The VGDA and VGSA information is read from each of the physical volumes
in the volume group.

• Each physical volume′s VGDA and VGSA header and trailer timestamps are
validated. If, for example, the VGDA header and trailer timestamps on a
particular physical volume do not match, it is likely that the organizational
information held within it will be inconsistent.

• If the number of valid VGDAs found represents a majority, that is more than
50%, the volume group will be varied on. If not, the varying on process will
fail. The vary on process can be made to continue even when quorum is lost
by using this -f flag to varyonvg.

• Since, the valid VGDA with the latest timestamp is likely to hold the most
recent information about the organization of the volume group, it is used to
overwrite all other VGDAs in the volume group.

• If any invalid VGSAs (where the timestamps do not match) are found, then
syncvg is run to resynchronize any stale partitions within the volume group.

The following example shows how varyonvg can be used to varyon a volume
group.

� �
#varyonvg myvg� �

This command will vary on volume group myvg based on the varying on process
mentioned above. If quorum was lost, the volume group myvg would not be
varied on. With a number of optional flags specified with the varyonvg command,
the default processing can be overridden.

The optional flags are:

-f Forces the volume group to be varied on even though a
majority of VGDAs does not exist. Forcing a volume group
to vary on could be quite dangerous, particularly if a
damaged physical volume is holding logical partitions of a
logical volume which is being updated. This would cause
corruption of the data.

-n Disables the synchronization of the stale physical
partitions within the volume group. This allows flexibility to
the systems administrator in providing control over how
the volume group can be recovered.

-p This permits a volume group to be varied on only when all
the physical volumes in the volume group are available.

108 AIX Storage Management

-s Allows a volume group to be varied on in system
maintenance mode. In this mode no logical volumes can
be opened, thereby disallowing all logical I/O to logical
volume and file system data. Since logical volume
commands can still be run on the volume group, it
provides a mechanism for looking at and resolving any
problems that may occur on it.

To vary off a volume group, the following command can be issued:

� �
varyoffvg myvg� �

Before a volume group can actually be varied off all open logical volumes must
be closed and all mounted file systems must be unmounted. If a volume group
exhibits some problems and needs to be repaired, this can be done by varying
off the volume group directly into maintenance mode. This can be achieved by
using the -s flag.

6.3.5 Monitoring Volume Groups
Volume groups rely on the underlying physical volumes to be operational the
whole time that they are activated. If, however, physical volumes become
damaged, they can affect the state of volume groups. Therefore, like physical
volumes, it is important that volume groups are also monitored regularly so that
extensive damage can be avoided. This section will review those AIX logical
volume commands which will help in monitoring volume groups and their
characteristics.

6.3.5.1 Listing Volume Groups on the System
Although there are several AIX commands available to find out about the volume
groups on a system, the most preferred is lsvg. This command interrogates the
ODM database for all volume groups currently known to the system.

 Note

A volume group which has been exported using the exportvg command will
not appear in the output.

An example use of the lsvg command and its output is:

� �
lsvg
rootvg
myvg� �

Since the above command lists all known volume groups it may sometimes be
desired to list only those volume groups which are currently varied on.

Using the -o flag with lsvg will provide this detail.

For example:

� �
lsvg -o
rootvg� �

Chapter 6. General AIX Storage Management 109

6.3.5.2 Listing the Characteristics of a Volume Group
A volume group has many characteristics which can be observed, such as the
physical partition size for it, the number of physical volumes it consists of, how
much free and used space there is and more. It may be essential to observe
how much free space there is within a volume group to help decide whether or
not a logical volume or file system can be extended by a particular amount, or
even if a new logical volume or file system can be created with the required
size. Apart from the free space, it may also be helpful to find if the varied on
volume group shows any problems with regards to the physical volumes and
physical partitions. If a volume group needed to be varied on forcibly, this could
be attributed to a physical volume not having valid VGDA information on it.
There could also be stale physical partitions within a volume group, particularly
if mirrored copies of logical volumes on damaged physical volumes are not
updated. It is possible to see such information at a glance, about any varied on
volume group, by issuing the lsvg command as follows:

� �
lsvg myvg
VOLUME GROUP: myvg VG IDENTIFIER: 00000446f5eac0e3
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 574 (2296 megabytes)
MAX LVs: 256 FREE PPs: 571 (2284 megabytes)
LVs: 2 USED PPs: 3 (12 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 2
STALE PVs: 1 STALE PPs 1
ACTIVE PVs: 1 AUTO ON: yes� �

In this example, volume group myvg is being described.

The meaning of the fields in the above output and their values as found in the
this example will be explained.

VOLUME GROUP: This is the name of the volume group. In this example it is
myvg.

VG STATE: This describes if the volume group is varied on or varied
off. In our example, the content of this field is active
indicating that the volume group is varied on. This field
can have any one of the following values:

• active/complete - varied on and all physical volumes active

• active/partial - varied on but one or more physical volumes
are inactive

• inactive - varied off

VG PERMISSION: This describes if the volume group is accessible with
read-only permission or both read and write permission.
The volume group in this example has read and write
access permission.

MAX LVs: This field represents that maximum number of logical
volumes that can be created within a volume group which
is 256.

LVs: This represents the number of logical volumes that have
so far been created within the volume group. In our
example, only two logical volumes exist within the volume
group myvg.

110 AIX Storage Management

OPEN LVs: This describes the number of logical volumes that are
currently open for logical I/O. In the above example, there
are no logical volumes currently open.

TOTAL PVs: The total number of physical volumes that exist within the
volume group. In volume group myvg there are two
physical volumes.

STALE PVs: The number of inactive physical volumes in the volume
group. The example appears to have one physical volume
which is inactive. This indicates there is a problem with
one of the physical volumes in the volume group.

ACTIVE PVs: The number of active physical volumes within the volume
group. Volume group myvg has one active (working)
physical volume.

VG IDENTIFIER: This field shows the system wide unique alphanumeric
identifier for the volume group. In the example, this value
is 00000446f5eac0e3.

PP SIZE: A numeric value representing the size, in megabytes, of
each physical partition within the volume group. This
value is specified when the volume group is created. The
example volume group uses the default physical partition
size of 4MB.

TOTAL PPs: This field shows the total number of physical partitions
which exist in the volume group. It also shows, in
brackets, the size of the volume group which is calculated
using the physical partition size. Volume group myvg has
574 physical partitions allocated.

FREE PPs: This field shows the amount of unallocated space in the
volume group in terms of physical partitions. The size in
megabytes, is also shown in brackets. The number of free
physical partitions in the above example is 571.

USED PPs: This field shows the number of used physical partitions.
The format of the contents of this field is the same as for
the two previous fields. In the above example, only 3
physical partitions (12MB) have been used.

QUORUM: This field represents the number of physical volumes that
would be needed to represent a majority. For a two disk
volume group, this number represents the number of
VGDAs, rather than physical volumes, which would be
required to maintain quorum (a majority).

VG DESCRIPTORS: This value represents the number of VGDAs currently
available in the varied on volume group. In the example
volume group myvg, there appears to be 2 VGDAs
available. The example volume group consists of two
physical volumes and so there should really be 3 VGDAs
available. From the above output it can clearly be seen
that there is a problem accessing the third VGDA.

STALE PPs: This field represents the number of stale physical
partitions. The example shows 1 stale physical partition.
This is likely since one of the physical volumes is currently
inactive.

Chapter 6. General AIX Storage Management 111

AUTO ON: This field describes if the volume group will be varied on
automatically at system restart. This characteristic can be
changed using the chvg command. Volume group myvg, in
the above example, will be varied on automatically each
time the system is rebooted.

6.3.5.3 Listing the Logical Volumes in a Volume Group
The lsvg command can be used to list all the logical volumes in a varied on
volume group. To do so the -l flag needs to be specified together with the
volume group name.

For example:

� �
lsvg -l myvg
myvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
mylv jfs 6 12 2 open/syncd /myjfs� �

The above command provides details of each logical volume on a separate line.
The information includes the following:

LV NAME: This is the name of the logical volume.

TYPE: This field describes the type of logical volume it is. This
can be any one of the following special types:

• paging (used for the paging device)

• boot (used for the boot device)

• sysdump (used for the system dump device)

• jfslog (used for the JFS log)

• jfs (used for the journaled file system)

If a user defined logical volume type has been specified,
this field will reflect this.

LPs: This will be the number of logical partitions allocated to
the logical volume.

PPs: This will be the number of physical partitions allocated to
the logical volume. If a logical volume has mirrored
copies, this number will be the LPs value multiplied by the
number of mirrored copies.

PVs: This represents the number of physical volumes across
which the physical partitions are spread.

LV STATE: The state of the logical volume specified as any one of the
following:

• open/syncd - This specifies the logical volume is open
and synchronized

• close/syncd - This specifies the logical volume is
closed and synchronized

MOUNT POINT: This is the mount point of a file system if one exists. If a
file system has not been added to a logical volume the
entry will appear as N/A.

112 AIX Storage Management

6.3.5.4 Listing Physical Volume Status within a Volume Group
So far we have seen how the lsvg command can be used to list the volume
groups, their characteristics in detail and also information about the logical
volumes which have been created on them. The lsvg command can also be
used to extract information about the physical volumes that exist within a volume
group. To view this information the -p flag needs to be used.

For example:

� �
lsvg -p myvg
myvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk0 active 287 267 58..37..57..57..58
hdisk2 active 287 280 58..50..57..57..58
hdisk3 active 287 280 58..50..57..57..58� �

For each physical volume identified for the volume group, the following
information is provided:

PV_NAME: The name of the physical volume.

PV STATE: Indicates whether or not the physical volume is
active.

TOTAL PPs: The number of physical partitions that exist on the
physical volume in question.

FREE PPs: The number of physical partitions on the physical
volume that have so far not been allocated to a
logical volume or file system.

FREE DISTRIBUTION: The distribution of unallocated physical partitions on
the physical volume over specific regions of the disk.
The regions being:

• Outer edge

• Outer middle

• Center

• Inner middle

• Inner edge

It is useful to view the distribution of free (unallocated) physical partitions,
according to regions of the disk. This would be very beneficial, particularly when
deciding for the placement of logical volumes or file systems for fast access. It
can provide useful information about the placement of existing logical volumes
and file systems, and can help in determining if a reorganization of the logical
volumes is required, so that free contiguous physical partitions can be made
available for other allocation requests.

6.4 Managing Logical Volumes
Physical volumes and volume groups are normally not addressed directly by
users and applications to access data, and they cannot be manipulated to
provide disk space for use by users and applications. However, logical volumes
provide the mechanism to make disk space available for use, giving users and
applications the ability to access data stored on them.

Chapter 6. General AIX Storage Management 113

Logical volumes need to be managed on a day-to-day basis, and this section will
highlight those management issues relating to logical volumes, and why they
should be given important consideration. The areas to be covered will be:

• Adding a logical volume

• Removing a logical volume

• Increasing the size of a logical volume

• Copying a logical volume

• Migrating and reorganizing logical volumes

• Listing a logical volume

• Listing a summary of a logical volume allocation

• Using lslv to read the VGDA on a physical volume

6.4.1 Adding a Logical Volume
In order to provide users the ability to store and retrieve data on the disk, logical
volumes need to be added to a volume group on the system. However, before a
logical volume is actually created, certain characteristics about it, such as its
size, physical partition placement policy, and the volume group in which it
should belong need to be specified. These characteristics can be better
determined by understanding the needs of the users and applications that will
utilize the logical volume.

The command which will add a logical volume to a volume group is mklv. An
example of this command is:

� �
mklv -y mylv -c 2 myvg 10� �

The above example command will create a logical volume mylv in the volume
group myvg. The logical volume will be allocated 10 logical partitions and each
logical partition will consist of 2 physical partitions.

The two vital pieces of information that are mandatory when creating a logical
volume are:

 1. The number of logical partitions

 2. The name of the volume group to which it wil l belong

Many different characteristics for the logical volume can be set at creation time
using the mklv command. In AIX Version 4, since it is possible to create striped
logical volumes, the mklv command has been updated accordingly. For more
information about the use of mklv and its flags, please refer to the InfoExplorer
hypertext documentation.

6.4.2 Removing a Logical Volume
Under different circumstances, logical volumes may need to be removed from a
volume group. Consider that a logical volume is no longer used for storage
purposes by users and applications. The data within the logical volume could be
backed up and the space occupied by the logical volume could be freed by
removing the logical volume from the volume group. There may even be times
when a logical volume may need to be removed because it has more than the

114 AIX Storage Management

required number of logical partitions allocated. In this instance, the following
steps could be performed to free up the excess logical partition allocation:

• Back up all data in the logical volume

• Remove the logical volume

• Recreate the logical volume with the reduced logical partition allocation

• Restore the data

The resulting free space could be put to better use by allocating it to other
logical volumes requiring it. Whatever the reason, a logical volume can be
removed by using the rmlv command. An example use of this command is:

� �
rmlv mylv� �

This command will remove the logical volume mylv from the system. The
command will appropriately remove all knowledge of the logical volume from
the:

• ODM database

• VGDAs on all physical volumes

• /dev directory

It is also possible to remove all logical partitions on a particular physical volume
by using the rmlv command. For example:

� �
rmlv -p hdisk4 mylv� �

This command will remove copies of all logical partitions for the logical volume
mylv residing on the physical volume hdisk4.

 Warning

If the logical partitions being removed are the only ones remaining for the
logical volume, this command will also remove the logical volume from the
system.

Since by default, the rmlv command will perform its task requesting user
confirmation, the -f flag is provided to override this.

6.4.3 Increasing the Size of a Logical Volume
Over time, users and application needs for available disk space will definitely
grow, and for this reason, the size of logical volumes will also need to be
increased. This can be achieved by using the extendlv command. However,
there must be sufficient free (unallocated) physical partitions available within the
volume group to satisfy the operation.

For example:

� �
extendlv mylv 10� �

Chapter 6. General AIX Storage Management 115

This will extend the logical volume mylv by 10 logical partitions using the
available free space in the volume group.

Certain rules need to be adhered to when using the extendlv command to
extend striped logical volumes. For more information about the use of the
extendlv command and its flags, please refer to the InfoExplorer hypertext
documentation.

6.4.4 Copying a Logical Volume
Logical volumes may need to be copied for a number of reasons. If a disk is to
be removed and replaced by a faster one, the logical volumes on that disk will
need to be copied to the new disk. Logical volumes can be copied to new logical
volumes or to existing logical volumes which are then over-written.

In order to copy a logical volume, use the cplv command, as in the following
example:

� �
cplv -v myvg -y newlv oldlv� �

This copies the contents of oldlv to a new logical volume called newlv in the
volume group myvg. If the volume group is not specified, the new logical volume
will be created in the same volume group as the old logical volume. This
command creates a new logical volume. The following example demonstrates
how to copy a logical volume to an existing logical volume.

� �
cplv -e existinglv oldlv� �

This copies the contents of oldlv to the logical volume existinglv. Confirmation
for the copy will be requested as all data in existinglv will be over-written.

 Warning

If existinglv is smaller than oldlv, then data will be lost, probably resulting in
corruption.

Copying a logical volume can also be done through smit using the smit cplv
fastpath.

6.4.5 Migrating and Reorganizing Logical Volumes
As the uses of existing logical volumes change, sooner or later there will be a
requirement to modify the placement some logical volumes to alter the
performance characteristics. There are two commands that can assist in this
process:

• migratepv

This command will move the contents of one physical volume to another.
The two physical volumes must be in the same volume group. It is also
possible to stipulate which logical volumes on the physical volume will be
migrated. The command can be used as follows:

� �
migratepv -l lv oldpv newpv� �

116 AIX Storage Management

This will move the physical partitions belonging to lv from physical volume
oldpv to physical volume newpv. Omitting the -l flag will move all physical
partitions.

• reorgvg

This command will attempt to reallocate physical partitions for logical
volumes in an attempt to adhere more closely to the policies defined in the
logical volume manager for the logical volumes. The command can be used
as follows:

� �
reorgvg myvg mylv� �

This will reorganize the physical partitions belonging to mylv in myvg in an
attempt to more closely satisfy the policies defined for mylv at creation time.

6.4.6 Listing a Logical Volume
All of the attributes defined for a logical volume can be listed using the lslv
command as follows:

� �
lslv mylv
LOGICAL VOLUME: mylv VOLUME GROUP: myvg
LV IDENTIFIER: 00013948b0189961.7 PERMISSION: read/write
VG STATE: inactive LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 500 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 109 PPs: 109
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: center UPPER BOUND 32
MOUNT POINT: /myfs LABEL: /myfs
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes� �

The fields displayed have the following meanings:

LOGICAL VOLUME: The name of the logical volume.

VOLUME GROUP: The name of the volume group that the logical volume is
in.

LV IDENTIFIER: The system unique identifier for the logical volume.

PERMISSION: The access permission, which can be read-only, or
read-write.

VG STATE: The current state of the volume group. This can be one of:

 1. active/complete - all physical volumes are active.

 2. active/partial - not all physical volumes are active.

 3. inactive - the volume group is not active.

LV STATE: The current state of the logical volume. This can be one of:

 1. opened/stale - logical volume is open, but some
physical partitions do not contain current information.

 2. opened/syncd - logical volume is open and
synchronized.

Chapter 6. General AIX Storage Management 117

 3. closed - logical volume has not been opened.

TYPE: The type of the logical volume (JFS for example).

WRITE VERIFY: Whether write verify is being used or not.

MAX LPs: The maximum number of logical partitions that the logical
volume can contain.

PP SIZE: The size of the physical partitions in the logical volume.

COPIES: The number of copies of the logical volume that exist.

SCHED POLICY: Whether writes are to be scheduled serially, or in parallel
to disk.

LPs: The current number of logical partitions in the logical
volume.

PPs: The current number of physical partitions in the logical
volume.

STALE PPs: The number of physical partitions in the logical volume
that do not contain current information.

BB POLICY: Whether bad block allocation is to be used or not for this
logical volume.

INTER-POLICY: Whether the maximum or minimum range of disks should
be used for logical partition allocation for this logical
volume.

RELOCATABLE: Whether partitions can be relocated if a reorganization
occurs.

INTRA-POLICY: Specifies the preferred location for physical partitions on
the disk. This can be edge, middle, or center.

UPPER BOUND: This indicates the maximum number of physical volumes
within the volume group that can be used for physical
partition allocation.

MOUNT POINT: If this logical volume contains a file system, then this
indicates the mount point for that file system.

MIRROR WRITE CONSISTENCY:
Whether writes are cached to help ensure consistency
between mirrored copies.

EACH LP COPY ON A SEPARATE PV ?:
Whether the allocation policy is strict meaning that logical
volume copies will be placed on separate physical
volumes if possible.

6.4.7 Listing a Summary of a Logical Volume Allocation
If a summary of the physical partition usage for a logical volume is required,
rather than a complete listing of all attributes, the following command can be
used:

118 AIX Storage Management

� �
lslv -l mylv
mylv:/myfs
PV COPIES IN BAND DISTRIBUTION
hdisk0 107:000:000 27% 019:004:029:032:023
hdisk1 002:000:000 100% 000:000:002:000:000� �

The fields shown in the output above have the following meaning:

PV The physical volume name.

COPIES This field has the following three sub-fields:

• Number of single copy logical partitions.

• Number of two copy logical partitions.

• Number of three copy logical partitions.

IN BAND This shows the percentage of physical partitions that could be
allocated according to the intra-physical allocation policy.

DISTRIBUTION This shows for each disk region, the number of physical
partitions allocated to logical volumes.

6.4.8 Reading the VGDA on a Physical Volume
If it is required to interrogate the VGDA on the physical disk in order to find the
status of a logical volume, the following command can be used:

� �
lslv -n mypvid mylv� �

This will retrieve status information similar to that produced by the lslv mylv, but
from the VGDA, rather than the ODM.

6.5 Managing the Storage Environment
Managing storage is about optimizing the environment for the requirements of
the processes that will be using the subsystems within it. This will involve the
following considerations:

• Performance of logical volumes

• Availability of logical volumes

• Logical volume space usage

Management of the environment also involves ensuring recovery is possible in
the event of user errors or hardware and software failures. The key to this is the
development and implementation of a good backup strategy, and this will also be
discussed. Mechanisms for backing up the system and their capabilities have
changed somewhat from AIX Version 3 to AIX Version 4, and both environments
will be examined.

 Note

Please read this section in conjunction with Chapter 5, “Storage Subsystem
Design” on page 79, as there are many other considerations involved in
maximizing performance, availability and disk utilization.

Chapter 6. General AIX Storage Management 119

6.5.1 Disk Space and Performance/Availability Management
This section will look at the management issues inherent in controlling
performance, availability, and disk space utilization.

6.5.1.1 Managing Performance
In order to maximize the performance of a disk subsystem, certain options can
be taken at logical volume and file system creation time. In addition, existing
logical volumes can be modified to increase performance, and volume groups
can be reorganized to improve performance.

Creating Logical Volumes and File Systems for Performance: In order to
maximize performance create logical volumes as follows; the smit menus for the
creation will be shown in this section. For changing logical volume
characteristics, the commands will be shown. Either approach is valid, and for a
detailed discussion of the commands involved, see Chapter 7, “Storage
Management Files and Commands Summary” on page 139, or the InfoExplorer
documentation.

� �
smit mklv� �

This starts smit in the process for adding a new logical volume.

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
[perflv]
* VOLUME GROUP name datavg
Number of LOGICAL PARTITIONS [25] #
PHYSICAL VOLUME names [hdisk8 hdisk1]+
Logical volume TYPE [jfs]
POSITION on physical volume center +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [2] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? no +
Allocate each logical partition copy no +
on a SEPARATE physical volume? Performance

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical parallel +
partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This creates a logical volume with the following characteristics:

120 AIX Storage Management

PHYSICAL VOLUME names: This field contains the names of the physical
volumes that are to be used for the physical partitions of the logical
volume being created.

POSITION on physical volume: This field specifies the desired location of the
physical partitions on the disk. Center is chosen for optimum
performance. The LVM will attempt to locate free center partitions on
the disks specified previously; if not available, middle partitions, then
edge partitions will be selected.

RANGE of physical volumes: This parameter governs the way in which the LVM
will allocate partitions on the physical volumes specified above.
Maximum constrains the LVM to allocating partitions across as many
of the physical volumes as possible.

Number of COPIES of each logical partition: This field controls the level of
mirroring. Set to 1 implies no mirroring.

Mirror Write Consistency: Only valid if mirroring.

Allocate each logical partition copy on a SEPARATE physical volume? Only valid
if mirroring.

RELOCATE the logical volume during reorganization? This allows the physical
partitions to be moved during reorganization if required. This can be
useful if performance requirements change.

SCHEDULING POLICY for writing logical partition copies: Only valid for mirroring

Enable WRITE VERIFY: This parameter should be set to no to prevent the extra
disk rotation required for verification.

File containing ALLOCATION MAP: It is possible to override the LVMs allocation
policies and provide a file containing the physical partition locations
required. An example of this can be found in 8.3.2, “Map Files Usage
and Contents” on page 206.

Stripe Size? Striping is discussed later in this section.

Having created the logical volume, a file system must next be created within it:

� �
smit crfs� �

Select the option to Add a Journaled File System on a Previously Defined Logical
Volume .

Chapter 6. General AIX Storage Management 121

� �
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Field]
* LOGICAL VOLUME name perflv +
* MOUNT POINT [/tmp/nick]
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 4096 +
Number of bytes per inode 4096 +
Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This will create a file system with the following characteristics:

Fragment Size (bytes): This parameter controls the size of the basic unit of
allocation at the file system level. Setting this to 4096 creates
fragments of the largest size possible, thereby minimizing the
overhead involved and maximizing performance.

Number of bytes per inode: This parameter governs the number of i-nodes
actually created per number of bytes in the file system. This will have
no specific effect on performance.

Compression algorithm: To maximize performance, do not use compression.

Modifying Logical Volumes for Performance: In order to maximize the
performance of an existing logical volume do the following:

� �
chlv -a c LVname� �

This command will change the intra-disk physical allocation policy to use the
center of the disk if possible. In order for existing partitions to take advantage of
the new policy, the volume group will need reorganizing. This is discussed in the
next section. Partitions added if the logical volume is extended will be allocated
using the new policy. LVname should be the name of the logical volume that is to
be changed.

� �
chlv -e x LVname� �

This command will change the inter-disk physical allocation policy to use the
maximum number of disks possible within the volume group, for allocating
further physical partitions. Again, reorganization will be required if the existing
partitions that comprise the logical volume are to take advantage of this. LVname
should be the name of the logical volume that is to be changed.

122 AIX Storage Management

Reorganizing Volume Groups for Performance: In order to reorganize a volume
group after policies have been changed for logical volumes within that group, the
following command should be executed:

� �
reorgvg VGname LVname_1 LVname_2 LVname_3 ...� �

This command will instruct the LVM to attempt to reshuffle the physical partition
allocations within the volume group VGname, in order to satisfy as far as possible
the policy requirements of the logical volumes specified in the list (LVname_1,
LVname_2, and LVname_3 in this example). The LVM wil l try and implement the
policies for logical volumes in the order specified. In this example, LVname_1s
allocation will take precedence over LVname_2.

Determining which logical volumes are in a volume group can be achieved using
the lsvg command as follows:

� �
lsvg -l VGname
VGname:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
datalog jfslog 1 1 1 open/syncd N/A
datapg paging 5 10 2 closed/syncd N/A
perflv jfs 25 25 2 closed/syncd /tmp/nick
datalv4 jfs 10 10 1 closed/syncd /datajfs
#� �

Using Striping: Further performance enhancement is possible by setting up a
logical volume to use striping. An example of this procedure can be found in
“How to Create a Striped Logical Volume” on page 269.

6.5.1.2 Managing Availability
In order to maximize availability, there are certain options that can be selected
at logical volume creation time. Existing logical volumes can also be modified to
increase availability, and both possibilities will be examined.

Creating Logical Volumes for Availability: In order to maximize availability,
create logical volumes as follows. Logical volume creation will be shown using
smit, the commands are actually detailed in Chapter 7, “Storage Management
Files and Commands Summary” on page 139, and documented in InfoExplorer.
There are no particular availability related options during file system creation,
though as has been mentioned previously, having a journaled file system itself
provides enhanced availability through journaling.

� �
smit mklv� �

This starts smit in the process for adding a new logical volume.

Chapter 6. General AIX Storage Management 123

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [availlv]

* VOLUME GROUP name datavg
Number of LOGICAL PARTITIONS [25] #
PHYSICAL VOLUME names [hdisk8 hdisk1 h]+
Logical volume TYPE [jfs]
POSITION on physical volume center +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [1] #
to use for allocation

Number of COPIES of each logical 3 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical sequential +
partition copies

Enable WRITE VERIFY? yes +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This creates a logical volume with the following characteristics:

PHYSICAL VOLUME names: This parameter specifies the physical volumes
within the volume group that should be used to hold the physical
partitions that will be created. In this case, there are 3 physical
volumes specified, as there will be 3 copies of the logical volume, and
for maximum availability, each copy should be on a separate disk.

POSITION on physical volume: There are no particular availability advantages to
be gained from whereabouts on the disk physical partitions are
located. In this case, center has been chosen to improve
performance.

RANGE of physical volumes: This parameter governs how many physical
volumes the LVM will attempt to use when creating physical partitions
for each copy. Setting the value to minimum instructs the LVM to use as
few physical volumes as is possible.

Number of COPIES of each logical partition: This parameter specifies the degree
of mirroring that will be implemented. Setting the value to 3 provides
maximum availability with two redundant copies of the data existing.

Mirror Write Consistency? This parameter controls whether the LVM will cache
logical partitions until all copies of the partition have been updated.
Setting this to yes enhances availability by ensuring consistency
between mirrored copies.

124 AIX Storage Management

Allocate each logical partition copy on a SEPARATE physical volume? This
parameter specifies whether copies should be allowed to share
physical volumes. For maximum availability, it should be set to yes.

RELOCATE the logical volume during reorganization? This parameter governs
whether the LVM will be allowed to move physical partitions
belonging to this logical volume during a reorganization. Set this to
yes if there may be a requirement to modify the policies controlling
this logical volume.

SCHEDULING POLICY for writing logical partition copies: This parameter
controls how copies will be written to disk. For maximum availability,
this should be set to sequential, which ensures each write to a copy
must complete before the next occurs, thereby maximizing the
probability of a successful copy being made.

Enable WRITE VERIFY? This parameter toggles the write verification feature. For
maximum availability, it should be set to yes.

File containing ALLOCATION MAP: As described in the previous example, this
parameter allows the location of physical partitions on the physical
volumes to be directly controlled by the user. As physical location of
partitions on each disk is not an availability issue, this feature is not
required.

Stripe Size? This should be set to Not Striped, as striping cannot be used with
mirroring.

Modifying Logical Volumes for Availability: In order to maximize availability for
an existing logical volume, do the following. It will be necessary to check that
enough physical partitions exist on the selected physical volumes to support the
new number of mirror copies required. This can be achieved using the lsvg
command as shown here:

� �
lsvg -p VGname
VGname:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk8 active 75 18 15..00..00..00..03
hdisk1 active 287 206 58..09..24..57..58
#� �

This command shows the physical volumes in the volume group, and the free
partitions available, both in total, and in actual location.

� �
mklvcopy -e m -u 1 -s y -k LVname 3 hdiskX hdiskY ...� �

This modifies logical volume LVname as follows:

 -e m This flag sets the inter-disk physical policy, causing the LVM to use
the minimum number of disks for future partition allocations to LVname

-u 1 This flag sets the maximum number of physical volumes to be used in
each new allocation of partitions. Setting this to 1 means use the
minimum possible.

-s y This flag instructs the LVM to use a different physical volume for each
new copy of the logical volume. This ensures maximum availability by
placing each copy on a separate physical disk.

Chapter 6. General AIX Storage Management 125

-k This flag instructs the LVM to synchronize the data in the newly
created copies.

LVname 3 LVname is the name of the logical volume to be modified, and the
numeral following it, indicates the new number of copies of each
logical partition required (the level of mirroring). For maximum
availability, set this to 3.

hdiskX hdiskY ... The last part of this command should be a list of the physical
volumes that are to be used for the updated logical volume. The
values put in here should be the names of the physical disks. Using
the smit menus for this operation provides a prompt for the names of
existing physical volumes in the volume group. Alternatively use the
lsvg command, as detailed above, to list physical volumes in a
volume group.

Next, the write verify and scheduling policies should be modified:

� �
chlv -d s -v y -w y LVname� �

This changes the policies for LVname as follows:

-d s This flag sets the scheduling policy for writing logical partitions to
sequential. This is explained in the previous section on creating the
logical volume for availability.

-v y This flag sets the write verification feature on. Again the purpose
behind this is explained in the previous section.

-w y This flag enables mirror write consistency, which is also explained in
the previous section.

Mirroring the Root Volume Group: An example of the process of mirroring the
root volume group is shown in 8.2, “rootvg Mirroring - Implementation and
Recovery” on page 187.

Reorganizing Volume Groups for Availability: This procedure is exactly the
same as has already been described in the previous section on performance.

6.5.1.3 Managing Disk Space Utilization
Maximizing disk space utilization is possible through configuration of the
journaled file system at creation time. As has already been described in 5.2.4,
“File Systems” on page 81, the primary configuration options are the fragment
size, the number of bytes per i-node, and whether compression will be used or
not. This section will show the smit and system commands used to create a file
system, highlighting those parameters important in disk space management.

To create a file system do the following:

� �
smit crjfs� �

Select the volume group that will contain the file system and then:

126 AIX Storage Management

� �
Add a Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Volume group name datavg #

* SIZE of file system (in 512-byte blocks) [20000]
* MOUNT POINT [/tmp/nick] +
Mount AUTOMATICALLY at system restart? no +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 512 +
Number of bytes per inode 512 +
Compression algorithm LZ +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This is the same as using the following system command:

� �
crfs -v jfs -g datavg -a size=20000 -m /tmp/nick -A no -p rw -t no \
-a frag=512 -a nbpi=512 -a compress=LZ� �

This will create the file system as follows:

-a frag=512: The same as Fragment Size (bytes), this parameter sets the size of
the minimum allocation unit within the file system.

-a nbpi=512: The same as Number of bytes per inode, this parameter controls
how many i-nodes will be created in the file system. As each i-node
takes up 128 bytes of physical space, they can use up a great deal of
disk.

-a compress=LZ: The same as compression algorithm, this option allows a
compression type to be selected. By default, the system provides the
LZ mechanism. Utilizing compression can improve disk space usage
(depending upon the file data) by up to a factor of 2.

6.5.2 Backup and Restore Management
This section will show how to use the smit menus and system commands
available to backup and restore both system and user information.

6.5.2.1 Backups
 Note

Prior to any file system backup, run the fsck command to ensure file system
consistency.

Backing Up User Files or File Systems

Chapter 6. General AIX Storage Management 127

 Warning

Do not attempt to back up mounted file systems, as this may result in
inconsistencies in the backed up copy. This warning is not valid for the root
file system which is discussed in the next section.

Using the smit menus to effect these backups will not present the full range of
backup options, as this would become unnecessarily complicated, and negate
the purpose of smit (ease of use). To backup user files or file systems using smit
enter the following:

� �
smit backfile� �

This starts smit in the process for backing up files or directories by name:

� �
Backup a File or Directory

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
This option will perform a backup by name.

* Backup DEVICE [/dev/fd0] +/
* FILE or DIRECTORY to backup [.]
Current working DIRECTORY [/u/nickh] /
Backup LOCAL files only? yes +
VERBOSE output? no +
PACK files? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This will cause the backup command to be executed as follows:

� �
cd /u/nickh ; find . -fstype jfs -print | backup -iq -f /dev/fd0� �

Essentially, this changes directory to the required starting point, locates all
specified files, and passes them to the backup command which is implemented
using the following parameters:

-i This flag causes a backup by name

-q This flag indicates that the backup medium (in this case the diskette
drive) is ready to use, and a prompt is not required.

-f /dev/fd0 This flag indicates which device should be used for output, in this
case the diskette drive. The smit menu option provides a prompt for
device selection here.

128 AIX Storage Management

After executing this command, the specified files will have been copied to the
requested device, assuming the device was ready and capable of executing the
request, and the files and/or directories specified could be found.

To back up user file systems, do the following, ensure that the file systems to be
backed up are unmounted first:

� �
umount FSname
smit backfilesys� �

This unmounts file system FSname, and starts smit in the process for backing up a
file system. If a message is returned to the effect that the file system is busy,
then someone is currently using the file system.

� �
Backup a Filesystem

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
This option will perform a backup by inode.

* FILESYSTEM to backup [/u] +/
* Backup DEVICE [/dev/fd0] +/
Backup LEVEL (0 for a full backup) [0] #
RECORD backup in /etc/dumpdates? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This generates the system command shown below:

� �
backup -f /dev/fd0 -0 /u� �

By default, the backup command performs a backup by i-node.

-f This flag specifies the device to use for the backup. In this case the
diskette device.

-0 This flag specifies the backup level. Level 0 is a full backup, levels 1
to 9 are incremental backups. In an incremental backup, only those
files that have changed since the last backup at or below that level
are backed up.

/u The last part of the command indicates which file system to actually
backup.

 Warning

Any files with UID or GID greater than 65535 will not be backed up properly
as the UID and GID will be truncated to two bytes. Therefore they will be
restored with invalid UID and GID. This is only true for backup by i-node.

Chapter 6. General AIX Storage Management 129

Backing Up the System Image Including User Volume Groups: This section will
show how to use smit menus and system commands to back up the operating
system volume group and user volume groups.

To back up the root volume group, ensure that all root volume group file systems
that require backing up are mounted, then do the following:

• Ensure no local directories are mounted over other local directories, as this
will cause the mounted over directory to be backed up twice. To check
where directories are mounted, use the mount command.

• Ensure at least 8.2MB of free space are available in the /tmp file system. Use
the df command to verify this.

• For AIX Version 4, ensure that the sysbr fileset (BOS System Management
Tools) is loaded. Use lslpp -l bos.sysmgt.sysbr to verify this.

• Ensure the backup device is fully operational.

� �
smit mksysb� �

This will start smit in the process for creating an installable backup of the
operating system (rootvg).

� �
Back Up the System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
WARNING: Execution of the mksysb command will

result in the loss of all material
previously stored on the selected
output medium. This command backs
up only rootvg volume group.

* Backup DEVICE or FILE [/dev/rmt0] +/
Make BOOTABLE backup? yes +

(Applies only to tape media)
EXPAND /tmp if needed? (Applies only to bootable no +
media)
Create MAP files? no +
EXCLUDE files? no +
Number of BLOCKS to write in a single output [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This will cause the following system command to be executed:

� �
mksysb -i /dev/rmt0� �

The command executed is much more complex, as it attempts to check various
prerequisites, and adjust space if required. The command shown will create a
bootable image of the system on the tape device specified (/dev/rmt0), but may
fail if there is insufficient space in /tmp.

130 AIX Storage Management

-i This flag causes the generation of the /image.data file that contains
important install information on all the volume groups, logical
volumes, file systems, paging spaces, and physical volumes.

/dev/rmt0 The last part of this command specifies the output device to use. In
order for a bootable image to be created, this must be a tape device.

MAP Files: Using map files from the smit menu ensures that physical partitions
are allocated exactly as they were in the original, when the backup is
installed.

For a non-bootable backup of the operating system volume group, or for a
backup of a user volume group, do the following:

• Ensure that the volume group is varied on. This can be confirmed using lsvg
VGname.

• Ensure all file systems required in the volume group are mounted. This can
be confirmed with the mount command.

• Ensure the backup device is fully operational.

� �
smit savevg� �

This starts smit in the process for backing up a volume group:

� �
Back Up a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
WARNING: Execution of the savevg command will

result in the loss of all material
previously stored on the selected
output medium.

* Backup DEVICE or FILE [/dev/rmt0] +/
* VOLUME GROUP to back up [datavg] +
Create MAP files? no +
EXCLUDE files? no +
Number of BLOCKS to write in a single output [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This generates the following system command:

� �
savevg -i -f /dev/rmt0 VGname� �

If it is required to change the sizes of file systems, so that at restore of the
volume group, wasted space has been cut down, the following command should
be run prior to the savevg command:

Chapter 6. General AIX Storage Management 131

� �
mkvgdata -m VGname� �

This will cause map files to be created for the volume group. The file
/tmp/vgdata/VGname/VGname.data can then be edited to alter the size of any file
systems in the volume group to that required. If this is done, the savevg
command must be executed without the -i or -m flags as these will cause the
changes to be overwritten. The savevg command should then be executed as
follows:

� �
savevg -mf/dev/rmt0 VGname� �

-i This causes the generation of the image.data file mentioned in the
section on backing up the system volume group.

-m This flag causes map files to be written with the backup data to
enable the exact replication of physical partition location upon
restore.

-f /dev/rmt0 This flag specifies the device to be used for the backup, in this case
the tape device at rmt0.

Implementing Scheduled Backups: Implementing scheduled backups at the
operating system level involves using a combination of the backup commands
discussed already, and the system scheduler cron, to provide a basic automatic
backup. More sophisticated backup scheduling and control is possible using
script files to execute more complex functions such as checking file systems
prior to backup, checking for error conditions, and unmounting file systems prior
to execution. The highest level of control available can be found in higher level
tools as described in Appendix B, “Higher Level Storage Management Products”
on page 337.

For examples of this simple level of scheduling automatic backups, see
InfoExplorer documentation, in particular the article ″Implementing Scheduled
Backups″.

6.5.2.2 Restores
This final section will look at some of the smit menus and system commands
available to restore backed up information.

Restoring Individual User Files: Restoring individual files that have been
accidentally erased requires locating the backup medium on which they were
stored. This can be time consuming and involves using the following command
to search the backup archives:

� �
restore -T -f /dev/rmt0� �

This will list the contents of the backup archive on device rmt0. Alternatively, the
-i flag can be used which will interactively prompt for which files and directories
to restore.

132 AIX Storage Management

 Note

It is a good idea to restore files initially to the / tmp directory to avoid
overwriting information accidentally.

In order to restore from a complete level 0 backup of files or directories, do the
following:

� �
smit restfile� �

This will start smit in the process for restoring files or directories:

� �
Restore a File or Directory

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Restore DEVICE [/dev/fd0] +/
* Target DIRECTORY [.] /
FILE or DIRECTORY to restore []
(Leave blank to restore entire archive.)
VERBOSE output? no +
Number of BLOCKS to read in a single input [] #
operation

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This will execute the following system command:

� �
cd . ; restore -xdq -f /dev/fd0� �

This will change directory to the target directory, and then restore all files from
the backup media specified by the -f flag into it.

-x This flag causes the restore command to restore files by name.

-d This flag indicates that the file parameter is a directory, and all files
in the directory should be restored by name.

-q This flag specifies that the medium specified by the -f flag is ready
for use and a prompt is not required.

Restoring a User File System: This section shows the method for restoring a full
level 0 backup of a file system or directory:

� �
smit restfilesys� �

This starts smit in the process for restoring a file system or directory:

Chapter 6. General AIX Storage Management 133

� �
Restore a Filesystem

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Restore DEVICE [/dev/fd0] +/
* Target DIRECTORY [.] /
VERBOSE output? yes +
Number of BLOCKS to read in a single input [] #
operation

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This causes the following command to be executed:

� �
cd . ; restore -rq -f /dev/rmt0 -v� �

This changes directory to the target directory and restores a complete file
system. The file parameter would be ignored in this case, even if included.

-r This flag specifies that a whole file system is to be restored.

-q This flag specifies that the media is ready for reading and a prompt is
not required.

-f This flag indicates the media device to be read from (the tape device
at rmt0 in this case).

-v This flag shows more information about the restore process, such as
file sizes.

Restoring a User Volume Group: In order to restore an entire user volume
group, do the following:

� �
smit restvg� �

This starts smit in the process for remaking a volume group:

134 AIX Storage Management

� �
Remake a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Restore DEVICE or FILE [/dev/rmt0] +/
SHRINK the filesystems? no +
PHYSICAL VOLUME names [] +

(Leave blank to use the PHYSICAL VOLUMES listed
in the vgname.data file in the backup image)

Number of BLOCKS to read in a single input [] #
(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

This causes the following system command to be executed:

� �
restvg -f /dev/rmt0� �

The restvg command will restore the complete volume group from the specified
media. If the option to shrink the file system is chosen, this is equivalent to using
the -s flag with the system command, and causes the logical volumes within the
volume group to be recreated at the minimum size necessary to contain their file
systems.

Physical volume names can also be appended to the command (or included in
the smit menu), and if they are, the specified physical volumes will be used to
restore the volume group to, rather than those found in the VGname.data file.
The physical volumes must be empty, and not belong to any other volume
groups.

6.6 Summary
This chapter has covered the actual physical management of the elements of
storage subsystems that have so far been discussed in theory. The following
tasks were detailed:

• Managing Physical Volumes

− How to configure new physical volumes

This section discusses how to make new physical volumes known to the
system.

− How to modify physical volume characteristics

This section discusses how to make physical volumes available and
unavailable for access by the logical volume manager.

− How to remove physical volumes from the system

This section discusses how to remove physical volumes from the system.

− How to monitor the state of physical volumes

Chapter 6. General AIX Storage Management 135

• Managing Volume Groups

This section discusses how to monitor physical volumes for error conditions.
It also looks at finding out what physical volumes are on the system, which
volume groups they belong to, and what is stored on them.

− How to add new volume groups

This section discusses how to create new volume groups and define their
initial characteristics.

− How to modify volume group characteristics

This section discusses how to modify the state of volume groups and
their characteristics. It looks at how to unlock volume groups, how to add
physical volumes to volume groups, and remove physical volumes from
volume groups.

− How to import and export volume groups

This section discusses how to make volume groups available and
unavailable to the system through import and export, for the purposes of
maintenance or transfer from system to system.

− How to vary on and off volume groups

This section discusses how to make volume groups ready for access by
the logical volume manager, and other processes that wish to access
data within a volume group.

− How to monitor volume groups

This section discusses monitoring volume groups from the point of view
of listing the volume groups on the system, listing their characteristics,
looking at the logical volumes contained within them, and listing the
status of physical volumes within the volume groups.

• Managing Logical Volumes

− How to add new logical volumes

This section discusses how to create new logical volumes within a
volume group.

− How to remove logical volumes

This section discusses how to remove logical volumes from volume
groups.

− How to increase the size of logical volumes

This section discusses how to modify logical volumes in terms of
increasing their size.

• Managing the Storage Environment

− Performance Management

This section discusses how to maximize performance when creating
logical volumes and file systems, when modifying them, and through the
use of striping. Reorganizing volume groups to improve performance is
also looked at.

− Availabil ity Management

This section discusses how to maximize availability when creating and
modifying logical volumes through mirroring. Reorganizing volume
groups to improve availability is also looked at.

136 AIX Storage Management

− Disk Space Management

This section discusses how to maximize disk space utilization through
options available at file system creation.

• Managing Backup and Restore

− Backup Management

This section discusses how to backup information from the user and
system perspectives. Backing up user files, directories, file systems, and
volume groups are examined, as well as creating installable system
backups and scheduling backups.

− Restore Management

This section discusses how to restore backed up information. Restoring
user files, directories, file systems and volume groups are examined.

Chapter 6. General AIX Storage Management 137

138 AIX Storage Management

Chapter 7. Storage Management Files and Commands Summary

This chapter provides details of storage management commands and usage.
Commands common to AIX Version 3 and AIX Version 4 are covered, as well as
those specific to AIX Version 4. Although common commands are being
reviewed first, they will be initially grouped according to the AIX Version 4 fileset
that they belong to. This will help the reader become more familiar with the AIX
Version 4 environment.

7.1 How to Understand and Use this Chapter
To learn more about a file in an AIX Version 4 environment, it is advisable to first
determine the fileset it belongs to, which is discussed in 7.1.1, “Major AIX
Version 4 Filesets Relevant to Storage Management” on page 140. To learn
more about a file in an AIX Version 3 environment, it is helpful to know what
logical function the file has that corresponds to the AIX Version 4 fileset
description. Otherwise, refer to each of the four fileset groups in 7.2, “Common
Storage Management Commands Using AIX Version 3 Syntax” on page 141 and
use the criteria in this section to read about a specific file.

As discussed in 7.1.1, “Major AIX Version 4 Filesets Relevant to Storage
Management” on page 140, 7.2, “Common Storage Management Commands
Using AIX Version 3 Syntax” on page 141 refers to all files in the four major
fileset logical groups. It then advises the reader to check 7.3, “AIX Version 4
Specific File Features” on page 159 if necessary.

The files listed in 7.2, “Common Storage Management Commands Using AIX
Version 3 Syntax” on page 141 and 7.3, “AIX Version 4 Specific File Features” on
page 159 are organized in a logical manner according to the fileset that they
belong to. Files in the same fileset are then grouped in the following logical
breakdown:

 1. What part of the installation package they belong to (that is, the usr, root or
share part).

 2. Which AIX Version 4 directory path are they in (it is assumed that the
product bos.compat that includes filesets such as AIX 3.2 to 4.1 Compatibility
Links has not been installed; the missing links are noted in 7.3, “AIX Version
4 Specific File Features” on page 159).

 3. Alphabetical order (this ensures that commands that do similar tasks, such
as the ch* commands that change object attributes, are located near each
other in this chapter).

Each file is initially described by a brief statement that includes:

• A comment about the purpose of the file.

• Which of the following categories it belongs to:

− Object file commands

− Shell script commands (Korn shell, Bourne shell or C shell)

− ASCII data file (that can be editted by the systems administrator using a
text editor such as the vi editor)

− Other file types

 Copyright IBM Corp. 1994 139

There is then a reference to its documentation status which is one of:

• Undocumented

Warning - DANGER - Warning

An undocumented command is usually not required to be used during
setup or regular operational systems management tasks. Hence, these
commands should be used with caution. Preferably, the equivalent high
level command should be used first. For example, to copy a logical
volume, try to use the documented cplv command before trying to use
copyrawlv.

• Documented

Search in AIX Version 4.1 Hypertext Information Base Library. In particular,
refer to the hardcopy or electronic versions of AIX Version 4.1 Commands
Reference and AIX Version 3.2 Files Reference for more details and examples
concerning this file.

Finally, the chapter concludes by mentioning some other useful commands that
are not part of the AIX Version 3 or AIX Version 4 base operating system. It then
shows you examples of how to look at logical volume manager and journaled file
system information.

7.1.1 Major AIX Version 4 Filesets Relevant to Storage Management
The AIX Version 4.1 Installation Guide describes how software is packaged, and
reminds us that that the systems administrator needs to consider what functions
are required, and hence what filesets should be installed. The command:

� �
lslpp -l bos.*|pg� �

will provide a list of base operating system filesets that are installed. The major
ones discussed in this chapter are:

bos.rte.lvm Logical Volume Manager

bos.rte.filesystem Filesystem Administration

bos.sysmgt.sysbr System Backup and BOS Installation Utilities

bos.rte.archive Archive Commands

All files in these four filesets are referred to in this chapter, and are listed in
section 7.2, “Common Storage Management Commands Using AIX Version 3
Syntax” on page 141. If a file has significant changes from AIX Version 3, or if it
is a new file that has been introduced by AIX Version 4, then a reference is given
to look in section 7.3, “AIX Version 4 Specific File Features” on page 159.

Other filesets that contain commands that are relevant to AIX storage
management include:

bos.rte.boot Boot Commands

bos.rte.serv_aid Error Log Service Aids

bos.diag.rte Hardware Diagnostics

bos.rte.diag Diagnostics

140 AIX Storage Management

bos.sysmgt.serv_aid Software Error Logging and Dump Service Aids

bos.rte.compare File Compare Commands

bos.rte.methods Device Configuration Methods

bos.sysmgt.quota File System Quota Commands

Only some of the most important files from these filesets that are relevant to AIX
storage management are discussed in this chapter.

The contents of a fileset can be seen from the command:

� �
lslpp -f fileset_name |pg� �

Note that it is easy to find what fileset a file belongs to in an AIX Version 4
system, if the filset in question is installed, by using the command:

� �
lslpp -f all|pg� �

and by then using the / search syntax at the colon prompt. For example, to find
that the cplv command belongs to the bos.rte.lvm fileset, type:

� �
:/cplv� �

and press the Enter key followed by entering:

� �
:-� �

once or twice to move backwards through the output until the fileset name
appears, such as:

� �
bos.rte.lvm 4.1.0.0 /usr/lib/liblvm.a� �

7.2 Common Storage Management Commands Using AIX Version 3 Syntax
This section looks at the AIX Version 3 commands.

7.2.1 Using Logical Volume Manager Files
The following commands are logical volume manager related.

7.2.1.1 Usr Part Files which are in the /usr/sbin Directory.
allocp allocp is an object file command that is used to generate an

allocation map that is required when a logical volume is created,
extended, reduced or removed.

It is an undocumented command whose usage is:

allocp: [-i LVid] [-t Type] [-c Copies]
[-s Size] [-k] [-u UpperBound>]
[-e InterPolicy] [-a InterPolicy]

Chapter 7. Storage Management Files and Commands Summary 141

cfgvg cfgvg is a Bourne shell script command that is called by /etc/rc to
varyon volume groups that have the auto-varyon flag set.

It is an undocumented command that requires no flags.

chlv chlv is a Bourne shell script command that changes only the
characteristics of a logical volume.

It is a documented command whose usage is:

chlv -n NewLVname LVname
chlv [-a IntraPolicy] [-e InterPolicy] [-L Label] [-u UpperBound]

[-s Strict] [-b BadBlocks] [-d Schedule] [-p Permission]
[-r Relocate] [-t Type] [-w MirrorWriteConsistency]
[-v Verify] [-x MaxLPs] LVname...

chps chps is an object file command that changes the attributes of a
paging space.

It is a documented command whose usage is:

chps [-s NewLPs] [-a {y|n}] Psname

chpv chpv is a Bourne shell script command that changes the
characteristics of a physical volume.

It is a documented command whose usage is:

chpv { -a Allocation | -v Availability } PVname

chvg chvg is a Bourne shell script command that changes the
characteristics of a volume group.

It is a documented command whose usage is:

chvg [-a Auto on] [-Q quorum] VGname...

Note that there is a new flag available, -u in AIX Version 4. Please
refer to the entry for chvg in 7.3, “AIX Version 4 Specific File
Features” on page 159.

copyrawlv copyrawlv is an object file command that is used by cplv to do the
actual copying on disk.

Extreme caution is required if this executable is used by the
systems administrator The strings command suggests that
copyrawlv does not contain any built in syntax advice and hence is
not likely to be designed to used manually. However, as an
example, after some necessary set up work, cplv uses this
command as follows:

Copy one lv to another.
copyrawlv /dev/sRawLVName /dev/dRawLVName Size

Where sRawLVName is the source logical volume, dRawLVName is the
destination, and Size is the size.

cplv cplv is a Bourne shell script command that copies a logical volume.

It is a documented command whose usage is:

cplv [-v VGname] [-y NewName | -Y Prefix] SourceLV
cplv -e [-f] DestinationLV SourceLV.

exportvg exportvg is a Bourne shell script command that exports the
definition of a volume group.

It is a documented command whose usage is:

142 AIX Storage Management

exportvg VGname

Note that this command does not change any volume group
configuration information on any of the disks that belong to it, but
the command only removes all configuration information about the
volume group (and any associated journalled file systems), from the
system on which the exportvg is executed.

extendlv extendlv is a Bourne shell script command that extends the size of
a logical volume.

It is a documented command whose usage is:

extendlv [-a IntraPolicy] [-e InterPolicy] [-m MapFile]
[-s Strict] [-u UpperBound] LVname NumberOfLPs [PVname...]

extendvg extendvg is a Bourne shell script command that extends a volume
group by adding a physical volume.

It is a documented command whose usage is:

extendvg [-f] VGname PVname...

getlvcb getlvcb is an object file command that gets information about a
logical volume from the logical volume control block.

It is an undocumented command whose usage is: suggested by
other high level shell scripts, such as updatelv, that call it. This
script tells us that the syntax is like:

getlvcb -aceLrsSPtu LVName
getlvcb -f LVName

Please refer to the entry for getlvcb in 7.3, “AIX Version 4 Specific
File Features” on page 159.

getlvname cfgvg is an object file command that generates or checks a logical
volume name.

It is an undocumented command whose usage is:

getlvname [-Y Prefix] [-n LVname] [Type]

getlvodm getlvodm is an object file command that obtains volume group and
logical volume information from the ODM.

It is an undocumented command whose usage is:

getlvodm [-a LVdescript] [-B LVdesrcript] [-b LVid]
[-cVid] [-C] [-d VGdescript]
[-e LVid] [-F] [-g PVid] [-h]
[-j PVdescript] [-k] [-L VGdescript]
[-l LVdescript] [-m LVid] [-p PVdescript]
[-r LVid] [-s VGdescript] [-t VGid]
[-u VGdescript] [-v VGdescript] [-w VGid]
[-y LVid]

Please refer to the entry for getlvodm in 7.3, “AIX Version 4 Specific
File Features” on page 159.

getvgname getvgname is an object file command that is used to return a new
unused volume group name.

It is an undocumented command whose usage is:

getvgname [-n VGname]

Chapter 7. Storage Management Files and Commands Summary 143

importvg importvg is a Bourne shell script command that brings into the
system all the configuration details of a volume group from a set of
physical volumes.

It is a documented command whose usage is:

importvg [-V MajorNumber] [-y VGname] [-f] PVname

Please refer to the entry for importvg in 7.3, “AIX Version 4 Specific
File Features” on page 159.

ipl_varyon ipl_varyon is an object file command that is used to vary on the
root volume group during system boot processing.

It is an undocumented command whose usage is:

ipl_varyon [-d ipldevice] [-i] [-v]

lchangelv lchangelv is an object file command that changes logical volume
attributes in the VGDA on disk.

It is an undocumented command whose usage is:

lchangelv -l LVid [-s MaxPartitions] [-n LVname] [-M SchedulePolicy]
[-p Permissions] [-r BadBlocks] [-v WriteVerify][-w mirwrt_consist]

lchangepv lchangepv is an object file command that that changes physical
volume attributes in the VGDA on disk.

It is an undocumented command whose usage is:

lchangepv -g VGid -p PVid [-r RemoveMode] [-a AllocateMode]

lcreatelv lcreatelv is an object file command that creates a logical volume
on disk.

It is an undocumented command whose usage is:

lcreatelv -N LVname -g VGid -n MinorNumber [-M MirrorPolicy]
[-s MaxLPs] [-p Permissions] [-r Badblocks] [-v WriteVerify]
[-w mirwrt_consist]

lcreatevg lcreatevg is an object file command that creates the volume group
on the disk and populates the VGDA.

It is an undocumented command whose usage is:

lcreatevg -a VGname -V MajorNumber -N PVname -n MaxLVs
-D VGDescriptorSize -s PPSize [-f] [-t]

ldeletelv ldeletelv is an object file command that removes a logical volume
from a volume group.

It is an undocumented command whose usage is:

ldeletelv -l LVid

ldeletepv ldeletepv is an object file command that removes a physical
volume from a volume group.

It is an undocumented command whose usage is:

ldeletepv -g VGid -p PVid

lextendlv lextendlv is an object file command that extends a logical volume
by Size partitions according to the map file Filename and updates
the VGDA on disk.

It is an undocumented command whose usage is:

lextendlv -l LVid -s Size Filename

144 AIX Storage Management

linstallpv linstallpv is an object file command that adds a physical volume to
a volume group and updates the VGDA on disk.

It is an undocumented command whose usage is:

linstallpv -N PVname -g VGid [-f]

lmigratepp lmigratepp is an object file command that is used by higher level
commands such as migratepv to copy a physical partition from one
physical volume to another.

It is an undocumented command whose usage is:

lmigratepp -g VGid -p SourcePVid -n SourcePPnumber
-P DestinationPVid -N DestinationPPnumber

lmktemp lmktemp is an object file command that is used to create temporary
map files for use by allocp during the creation and removal of
logical volumes (refer to the contents of the mklv and rmlv scripts).

It is an undocumented command whose usage is:

lmktemp TmpMapFile [size]

lquerylv lquerylv is an object file command that obtains logical volume
information from the VGDA for many other commands.

It is an undocumented command whose usage is:

lquerylv -L LVid [-p PVname] [-NGnMScsPRvoadlArtw]

Please refer to the entry for lquerylv in 7.3, “AIX Version 4 Specific
File Features” on page 159.

For examples on how to use lquerylv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 165.

lquerypv lquerypv is an object file command that obtains physical volume
information from structures in memory unless the PVname is
specified.

It is an undocumented command whose usage is:

lquerypv -p PVid [-g VGid | -N PVname] [-scPnaDdAt]

For examples on how to use lquerypv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 165.

lqueryvg lqueryvg is an object file command that obtains volume group
information from structures in memory unless the PVname is
specified.

It is an undocumented command whose usage is:

lqueryvg [-g VGid | -p PVname] [-NsFncDaLPAvt]

For examples on how to use lqueryvg, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 165.

lqueryvgs lqueryvgs is an object file command that provides a summary of the
volume groups known to the system.

It is an undocumented command whose usage is:

lqueryvgs [-NGAt]

Chapter 7. Storage Management Files and Commands Summary 145

lreducelv lreducelv is an object file command that reduces the size of a
logical volume, not a journaled file system, and updates only the
VGDA on disk.

It is an undocumented command whose usage is:

lreducelv -l LVid -s Size Filename

lresynclp lresynclp is an object file command that synchronizes a stale
logical partition in a logical volume.

It is an undocumented command whose usage is:

lresynclp -l LVid -n LPnumber

lresynclv lresynclv is an object file command that synchronizes all stale
logical partitions in a logical volume.

It is an undocumented command whose usage is:

lresynclv -l LVid

lresyncpv lresyncpv is an object file command that will synchronize all
physical partitions on a physical volume with the related copies of
the logical partition to which they correspond.

It is an undocumented command whose usage is:

lresyncpv -g VGid -p PVid

lslv lslv is an object file command that shows you information about a
logical volume.

It is a documented command whose usage is:

lslv [-l | -m] [-n DescriptorPV] LVname
lslv: [-n DescriptorPV] -p PVname [LVname]

For examples on how to use lslv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 165.

Please refer to the entry for lslv in 7.3, “AIX Version 4 Specific File
Features” on page 159.

lsps lsps is an object file command that shows you information about
paging type logical volumes.

It is a documented command whose usage is:

lsps {-s | [-c | -l] {-a | Psname | -t {lv|nfs} } }

lspv lspv is an object file command that shows you information about a
physical volume in a volume group.

It is a documented command whose usage is:

lspv [-M | -l | -p] [-n DescriptorPV] [-v VGid] [PVname]

For examples on how to use lspv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 165.

lsvg lsvg is an object file command that shows you information about
the volume groups in your system.

It is a documented command whose usage is:

lsvg [-o] [-n PVname]
lsvg [-i] [-M | -l | -p] VGname

146 AIX Storage Management

For examples on how to use lslv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 165.

lsvgfs lsvgfs is an object file command that lists the file systems that are
in the specified volume group.

It is a documented command whose usage is:

lsvgfs VGname

lvaryoffvg lvaryoffvg is an object file command that is called by the varyoffvg
command to vary off a volume group, and then update the VGDA on
disk, but not the ODM.

It is an undocumented command whose usage is:

lvaryoffvg -g VGid [-f]

lvaryonvg lvaryonvg is an object file command that is called by the mkvg
command to vary on a volume group.

It is an undocumented command whose usage is:

lvaryonvg -a VGname -V MajorNumber -g VGid
[-ornpft] Filename

lvchkmajor lvchkmajor is an object file command that checks whether a major
device number is being used.

It is a documented command whose usage is:

lvchkmajor Majornumber VGname

lvgenmajor lvgenmajor is an object file command that creates or gets the major
number for the logical volumes that belong to the volume group
specified as an argument to the redefinevg or mkvg commands.

It is an undocumented command whose usage is:

lvgenmajor VGname

lvgenminor lvgenminor is an object file command that returns a minor number
that is used during the creation of a logical volume.

It is an undocumented command whose usage is:

lvgenminor [-p PreferredNumber] MajorNumber NewDeviceName

lvlstmajor lvlstmajor is an object file command that lists currently unused
major numbers.

It is a documented command whose usage is:

lvlstmajor

lvmmsg lvmmsg is an object file command that is used by other logical
volume manager commands to generate messages.

It is an undocumented command whose usage is:

lvmmsg MessageNumber

lvrelmajor lvrelmajor is an object file command that frees up the major
number of a volume group when its removed from the system.

It is an undocumented command whose usage is:

lvrelmajor VGname

Chapter 7. Storage Management Files and Commands Summary 147

lvrelminor lvrelminor is an object file command that frees up a minor number
for a logical volume or volume group that′s removed from the
system.

It is an undocumented command whose usage is:

lvrelminor Name

migfix migfix is an object file command that is used by the reorgvg
command to help determine the proper order of physical partition
moves.

It is an undocumented command whose usage is:

migfix map_file_names

This command is used by the reorgvg script command.

migratepv migratepv is a Bourne shell script command that is used to move
physical partitions from one physical volume to another.

It is a documented command whose usage is:

migratepv [-i] [-l LVname] SourcePV DestinationPV...

For examples on how to use migratepv, please refer to 8.8.1, “How
to Use the migratepv Command” on page 312.

mklv mklv is a Bourne shell script command that creates a logical
volume.

It is a documented command whose usage is:

mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]
[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate]
[-s Strict] [-t Type] [-u UpperBound] [-v Verify] [-w MWC]
[-x MaxLPs] [-y LVname] [-Y Prefix] VGname NumberOfLPs [PVname...]

Please refer to the entry for mklv in 7.3, “AIX Version 4 Specific File
Features” on page 159.

mklvcopy mklvcopy is a Bourne shell script command that makes copies of
logical partitions for a logical volume

It is a documented command whose usage is:

mklvcopy [-a IntraPolicy] [-e InterPolicy]
[-k] [-m MapFile] [-u UpperBound] [-s Strict]
LVname LPcopies [PVname...]

mkps mkps is an object file command that creates a paging space using a
logical volume or an NFS server.

It is a documented command whose usage is:

mkps [-a] [-n] [-t lv] -s NumLPs Vgname Pvname
mkps [-a] [-n] -t nfs hostname pathname

mkvg mkvg is a Bourne shell script command that creates a volume group.

It is a documented command whose usage is:

mkvg [-d MaxPVs] [-f] [-i] [-m MaxPVsize]
[-n] [-s PPsize]
[-V MajorNumber] [-y VGname] PVname...

putlvcb putlvcb is an object file command that is used by high-level shell
scripts updatelv, rmlvcopy, mklvcopy mklv, extendlv, cplv and chlv
to update the logical volume control block. Hence, be very careful
when you change logical volume information.

148 AIX Storage Management

It is an undocumented command whose usage is:

putlvcb [-a IntraPolicy] [-c Copies] [-e InterPolicy] [-i LVid]
[-n Size] [-r Relocate] [-L Label] [-t Type]
[-u UpperBound] [-s Strict] LVName

putlvcb [-f FileSystemName] LVName

Please refer to the entry for putlvcb in 7.3, “AIX Version 4 Specific
File Features” on page 159.

putlvodm putlvodm is an object file command that places logical volume
manager information only into the ODM, so it is called by many
other logical volume manager commands to help ensure that ODM
information is synchronized with data stored in other areas, such as
the disk VGDA.

It is an undocumented command whose usage is:

putlvodm [-a IntraPolicy] [-B label] [-c Copies] [-e InterPolicy]
[-L LVid] [-l LVname] [-n NewLVName] [-r Relocate]
[-s Strict] [-t Type] [-u UpperBound] [-y Copyflag]
[-z Size] LVid

putlvodm [-o Auto-on] [-k] [-K] [-q VGstate]
[-v VGname -m majornum] [-V] VGid

putlvodm [-p VGid] [-P] PVid

Please refer to the entry for putlvodm in 7.3, “AIX Version 4 Specific
File Features” on page 159.

redefinevg redefinevg is a Bourne shell script command that redefines the set
of physical volumes of the specified volume group in the device
configuration database.

It is a documented command whose usage is:

redefinevg {-d PVname | -i VGid} [-V MajorNumber] VGname

reducevg reducevg is a Bourne shell script command that deletes physical
volumes from a specified volume group.

It is a documented command whose usage is:

reducevg [-d] [-f] VGname PVname...

reorgvg reorgvg is a Bourne shell script command that reorganizes the
physical partition allocation map for a volume group.

It is a documented command whose usage is:

reorgvg [-i] VGname [LVname...]

rmlv rmlv is a Bourne shell script command that removes logical
volumes from a volume group.

It is a documented command whose usage is:

rmlv [-f] LVname...

Please refer to the entry for rmlv in 7.3, “AIX Version 4 Specific File
Features” on page 159.

rmlvcopy rmlvcopy is a Bourne shell script command that removes copies
from a logical volume.

It is a documented command whose usage is:

rmlvcopy LVname LPcopies [PVname...]

Chapter 7. Storage Management Files and Commands Summary 149

rmps rmps is an object file command that removes a paging space.

It is a documented command whose usage is:

rmps Psname

synclvodm synclvodm is a Bourne shell script command that synchronizes
logical volume and volume group information.

It is a documented command whose usage is:

synclvodm [-v] VGname [LVname...]

syncvg syncvg is a Bourne shell script command that synchronizes logical
partition copies.

It is a documented command whose usage is:

syncvg [-i] [-f] {-l|-p|-v} Name

tstresp tstresp is an object file command that is used by the cplv,
extendvg, mkvg and rmlv shell scripts to convert a user′s response
to a question into a return code, so that the calling command can
act appropriately.

It is an undocumented command whose usage is:

� �# tstresp yes
echo $?
1
tstresp no
echo $?
0� �

updatelv updatelv is a Bourne shell script command that updates the logical
volume control block and the ODM.

It is an undocumented command whose usage is:

updatelv LVname VGname

updatevg updatevg is a Bourne shell script command that is used to
synchronize volume group information in the ODM if the ODM has
at least a valid volume group identifier.

It is an undocumented command whose usage is:

updatevg VGname

varyoffvg varyoffvg is a Bourne shell script command that deactivates a
volume group so that it can′ t be accessed.

It is a documented command whose usage is:

varyoffvg [-s] VGname

varyonvg varyonvg is an object file command that activates a volume group
so that it can be accessed.

It is a documented command whose usage is:

varyonvg [-f] [-n] [-s] [-p] VGname

150 AIX Storage Management

7.2.1.2 Usr Part Files which are in the /usr/lib Directory
liblvm.a This is the Logical Volume Manager Library that is used by many

logical volume manager subroutines. Please refer to programming
information in AIX Version 4.1 Hypertext Information Base Library.

libsm.a This is another logical volume manager library. You can use the
what command to see which functions are in this library. Please
refer to programming information in AIX Version 4.1 Hypertext
Information Base Library.

./methods/deflvm
This is a file that is used during device configurations. Again, it is
only of interest to programmers.

There are no files in the root or share parts of the bos.rte.lvm fileset.

7.2.2 Using File System Administration Commands

7.2.2.1 Usr Part Files which are in the /usr/sbin Directory.
chfs chfs is an object file command that changes file system attributes

such as mount point, permissions, and size.

It is a documented command whose usage is:

chfs [-n Nodename] [-m NewMountpoint] [-u Group] [-A {yes|no}]
[-t {yes|no}] [-p {ro|rw}] [-a Attribute=Value] [-d Attribute]
FileSystem

chvfs chvfs is an object file command that changes entries in the /etc/vfs
file.

It is a documented command whose usage is:

chvfs VfsEntry

crfs crfs is an object file command that creates a file system within a
previously created logical volume.

It is a documented command whose usage is:

crfs -v Vfs {-g Volumegroup | -d Device} -m Mountpoint
[-u Mountgroup] [-A {yes|no}] [-t {yes|no}] [-p {ro|rw}]
[-l Logpartitions] [-n nodename] [-a Attribute=Value]

crvfs crvfs is an object file command that adds entries to the /etc/vfs file.

It is a documented command whose usage is:

crvfs VfsEntry

dfsck dfsck is an object file command that checks for file system
consistency, and allows interactive repair of file systems.

It is a documented command whose usage is:

dfsck [-Options] Filesystem1 ... [-Options] Filesystem2 ...

dumpfs dumpfs is an object file command that prints out the superblock,
i-node map, and disk map for a file system or special device.

It is a documented command whose usage is:

dumpfs {FileSystem | Device}

Chapter 7. Storage Management Files and Commands Summary 151

fdformat fdformat is an object file command that formats diskettes or
read/write optical media disks.

It is a documented command whose usage is:

fdformat [-h] Device

ff ff is an object file command that reads i-node information for the
specified filesystem, and then writes it to stdout.

It is a documented command whose usage is:

ff [-3MIldsu -V Vfs -i Ilist -p Path -n File
-a # -m # -c #] /InputDevice

format format is an object file command that formats diskettes for use by
the system.

It is a documented command whose usage is:

format [-fl] [-d Device]

fsck fsck is an object file command that checks for file system
consistency, and allows interactive repair of file systems.

It is a documented command whose usage is:

fsck [-y|-n|-p] [-f] [-V Vfs] [-d #] [-i #]
[-t File] [-o Options] Filesystem ...

fsdb fsdb is an object file command that allows the user to examine,
alter, and debug the file system specified in the command.

It is a documented command whose usage is:

fsdb FileSystem [-]

fuser fuser is an object file command that lists the process numbers of
local processes that use the file(s) specified.

It is a documented command whose usage is:

fuser [-ku] File ... [-]

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in the fuser command.

imfs imfs is an object file command that is uses information from
/etc/filesystems to export or import logical volumes.

It is an undocumented command whose usage is:

imfs [-xlf] vgname ...

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in the imfs command.

logform logform is an object file command that is used to initialize a logical
volume for use a journaled file system log.

It is a documented command whose usage is:

logform LogName

logredo logredo is an object file command that uses the journaled file
system log to reestablish consistency in the specified file system.

It is an undocumented command whose usage is:

logredo [-n] filename

152 AIX Storage Management

lsfs lsfs is an object file command that displays characteristics of the
specified file system such as mount points, permissions, and file
system size.

It is a documented command whose usage is:

lsjfs [-q] {-a | -v Vfs| -u Group | Filesystem ...}

lsjfs lsjfs is a Korn shell script file that processes the output of the lsfs
command into a form acceptable by smit.

It is an undocumented command whose usage is:

lsjfs [-q] [-c|-l] {-a | -v vfstype | -u mtgroup | fsname [fsname ...]}

lsvfs lsvfs is an object file command that lists entries in the /etc/vfs file.

It is a documented command whose usage is:

lsvfs {-a | Vfsname}

mkfs mkfs is an object file command that makes a new file system on the
specified device.

It is a documented command whose usage is:

mkfs [-b BootProgram] [-i Inodes] [-l Label]
[-o Options] [-p Prototype]
[-s Size] [-v VolumeLabel] [-V vfs] {Device|Filesystem}

mklost+found
mklost+found is a Bourne shell script that creates a lost and found
directory in the current directory for the fsck command.

It is a documented command whose usage is:

mklost+found

mknod mknod is an object file command that makes a directory entry and
creates an i-node for a special file when used by the root user.
Otherwise it creates a named pipeline.

It is a documented command whose usage is:

mknod Name {p}
mknod Name {b | p} Major Minor

mkproto mkproto is a Bourne shell script that constructs a prototype for a
new file system.

It is a documented command whose usage is:

mkproto Special Proto

mount mount is an object file command that instructs the operating system
to make the specified file system available for use from the
specified point.

It is a documented command whose usage is:

mount [-fipr] [-n Node] [-o Options] [-t Type] [-{v|V} Vfs]
[-a | all | [[Node:]Device] [Directory]]

ncheck ncheck is an object file command that displays the path name for
files specified by i-node in the specified file system.

It is a documented command whose usage is:

ncheck [[-a] [-i InodeNumbers ...] | [-s]] [FileSystem]

Chapter 7. Storage Management Files and Commands Summary 153

proto proto is an object file command that creates a prototype file for a
file system or part of a file system.

It is a documented command whose usage is:

proto Directory [Prefix]

rmfs rmfs is an object file command that removes a file system.

It is a documented command whose usage is:

rmfs [-r] FileSystem

rmvfs rmvfs is an object file command that removes entries from the
/etc/vfs file.

It is a documented command whose usage is:

rmvfs VfsName

umount umount is an object file command that unmounts a file system from
its mount point.

It is a documented command whose usage is:

umount [-sf] {-a|-n Node|-t Type|all|allr|Device|File|Directory|Filesystem}

unmount unmount is an object file command that has exactly the same
function as the umount command.

It is a documented command whose usage is:

unmount [-sf] {-a|-n Node|-t Type|all|allr|Device|File|Directory|Filesystem}

7.2.2.2 Usr Part Files which are in the /usr/bin Directory
istat istat is an object file command that displays information about a

particular i-node number.

It is a documented command whose usage is:

istat {FileName | I-NodeNumber Device}

7.2.2.3 Root Part Files which are in the /etc Directory
filesystem

filesystems is a text file containing file system definitions for all file
systems.

vfs vfs is a text file containing definitions for all file system types.

7.2.2.4 Root Part Files which are in the /sbin/helpers Directory
v3fshelper v3fshelper is an object file command that is used by the mount and

umount commands to implement file system mounts and unmounts.

There are no files in the share parts of the bos.rte.filesystem fileset.

7.2.3 Using System Backup and BOS Installation Utilities
This section contains backup and installation commands.

154 AIX Storage Management

7.2.3.1 Usr Part Files which are in the /usr/lpp/bosinst Directory
bosmenus bosmenus is an object file command that displays the BOS

administration menus. This command has changed in AIX
Version 4, please refer to 7.3, “AIX Version 4 Specific File
Features” on page 159 for details.

7.2.3.2 Usr Part Files which are in the /usr/bin Directory
mksysb mksysb is a Korn shell script that creates an installable image

of the root volume group.

It is a documented command whose usage is:

mksysb Device

mkszfile mkszfile is a Korn shell script that creates the /.fs.size file
for use by the mksysb command.

It is a documented command whose usage is:

mkszfile [-f]

7.2.3.3 Usr Part Files which are in the /usr/sbin Directory
mkinsttape mkinsttape is a Bourne shell script that creates the BOS

install/maintenance tape image.

It is an undocumented command whose usage is:

mkinsttape [/file]

There are no files in the root or share parts of the bos.sysmgt.sysbr fileset.

7.2.4 Using Archive Commands
This section contains the archive commmands.

7.2.4.1 Usr Part Files which are in the /usr/bin Directory
compress compress is an object file command that reduces the size of the

specified file using the adaptive LZ algorithm.

It is a documented command whose usage is:

compress [-CcdFfnqVv] [-b Bits] [file ...]

cpio cpio is an object file command that copies files into and out of
archive storage.

It is a documented command whose usage is:

cpio -o[acvBC<value> <name-list >collection
cpio -i[bcdmrstuvfBC<value>S6] [pattern ...] <collection>
cpio -p[adlmuv] directory <name-list>

dd dd is an object file command that reads a file in, converts the
data (if required), and copies the file out.

It is a documented command whose usage is:

dd [cbs=BlockSize] [count=InputBlocks] [files= InputFiles]
[fskip=SkipEOFs] [if=InFile] [of=OutFile] [seek=RecordNumber]
[skip=SkipInputBlocks] [ibs=InputBlockSize] [obs=OutputBlockSize]
[bs=BlockSize] [conv=[ascii|ebcdic|lcase|ucase|iblock|ibm|noerror
|swab|sync|oblock|notrunc|block|unblock]]

Chapter 7. Storage Management Files and Commands Summary 155

mt mt is an object file command that sends commands to a
streaming tape device.

It is a documented command whose usage is:

mt [-f device] subcommand [count]
valid subcommands are: weof eof fsf bsf fsr bsr rewind offline

rewoffl status

pack pack is an object file command that saves the specified file(s) in
a compressed form.

It is a documented command whose usage is:

pack [-] [-f] File ...

pax pax is object file command that extracts, writes and lists
members of archive files. It also copies file and directory
hierarchies.

It is a documented command whose usage is:

pax -[cdnv] [-f archive] [-s replstr] [pattern...]
pax -r [-cdiknuvy] [-f archive] [-p string] [-s replstr] [pattern...]
pax -w [-dituvyX] [-b blocking] [[-a] -f archive] [-s replstr]

[-x format] [pathname...]
pax -r -w [-diklntuvyX] [-p string] [-s replstr] [pathname...] directory

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in AIX Version 4.

pcat pcat is an object file command that unpacks the specified files
and writes them to standard output.

It is a documented command whose usage is:

pcat {File|File.Z} ...

tar tar is an object file command that writes files to, or retrieves
files from, archive storage media.

It is a documented command whose usage is:

tar -{crtux} [-BFdhilmpsvw] [-num] [-ffile[-num]]
[-bblocks] [-S feet] [-S feet@density] [-S blocksb]
[-Linputlist] [-C directory] [-Nblocks] file ...

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in AIX Version 4.

tcopy tcopy is an object file command that copies information from
one tape device to another.

It is a documented command whose usage is:

tcopy Source [Destination]

tctl tctl is an object file command that sends commands to a
streaming tape device.

It is a documented command whose usage is:

tctl [-Benv] [-b num] [-p num]
[-f device] subcommand [count]

valid subcommands are: weof eof fsf bsf fsr bsr rewind offline rewoffl
erase retension read write status

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in AIX Version 4.

156 AIX Storage Management

uncompress uncompress is an object file command that restores files
compressed by the compress command to their original size.

It is a documented command whose usage is:

uncompress [-cFfnqVv] [file ...]

unpack unpack is an object file command that expands files that were
compressed using the pack command.

It is a documented command whose usage is:

unpack File ...

zcat zcat is an object file command that will uncompress data in tha
same way as the uncompress though always to standard output.

It is a documented command whose usage is:

zcat [-FfnV] [file ...]

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in AIX Version 4.

7.2.4.2 Usr Part Files which are in the /usr/sbin Directory
backbyinode backbyinode is an object file command that uses the backup

command to backup files by i-node.

It is a documented command whose usage is:

backbyinode [-b Number1] [-f Device] [-l Number2]
[-u] [-?] [-c] [w|W]] [-Level] [Filesystem]

backbyname backbyname is an object file command that used the backup
command to backup files by name.

It is a documented command whose usage is:

backbyname -i [-b Number] [-p [-e RegularExpression]] [-f Device]
[-INumber] [-o] [-q] [-v]

backup backup is an object file command that backs up files or file systems
by i-node or name.

It is a documented command whose usage is:

backup [-b Number1] [-f Device] [-l Number2]
[-u] [-?] [-c] [w|W]] [-Level] [Filesystem]

backup -i [-b Number] [-p [-e RegularExpression]] [-f Device]
[-INumber] [-o] [-q] [-v]

flcopy flcopy is an object file command that copies information to and
from diskettes.

It is a documented command whose usage is:

flcopy [-f Device] [-h] [-r] [-t Number]

rdump rdump is an object file command that backups local files by i-node
number to a remote machine.

It is a documented command whose usage is:

rdump [-b Number1] [-d Density] -f Machine: Device [-sSize]
[-u] [-?] [-c] [w|W]] [-Level] [Filesystem]

restbyinode restbyinode is an object file command that uses the restore
command to restore files that were backed up by i-node.

It is an undocumented command whose usage is:

Chapter 7. Storage Management Files and Commands Summary 157

restbyinode -[thvy] [-f device] [-s #] [-b #] [file file ...]
restbyinode -[xhmvy] [-f device] [-s #] [-b #] [file file ...]
restbyinode -[ihmvy] [-f device] [-s #] [-b #]
restbyinode -[rvy] [-f device] [-s #] [-b #]
restbyinode -[Rvy] [-f device] [-s #] [-b #]

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in AIX Version 4.

restbyname restbyname is an object file command that uses the restore
command to restore files that were backed up by name.

It is a documented command whose usage is:

restbyname -[thvy] [-f device] [-s #] [-b #] [file file ...]
restbyname -[xhmvy] [-f device] [-s #] [-b #] [file file ...]
restbyname -[ihmvy] [-f device] [-s #] [-b #]
restbyname -[rvy] [-f device] [-s #] [-b #]
restbyname -[Rvy] [-f device] [-s #] [-b #]

restore restore is an object file command that restores files or file
systems that were backed up using the backup command.

It is a documented command whose usage is:

For by name backups:
restore -[AxvqMd] [-f device] [-s #] [-b #] [file file ...]
restore -[t | T]vq] [-f device] [-s #] [-b #]
restore [-X # [-d]] [-f device] [-s #] [-b #] [file file ...]
For version 2 inode backups:
restore [-d] -[r] [-f device] [file ...]
For version 3 inode backups:
restore -[t | T]hvyB] [-f device] [-s #] [-b #] [file file ...]
restore -[xhmvyB] [-f device] [-s #] [-b #] [file file ...]
restore -[ihmvy] [-f device] [-s #] [-b #]
restore -[rvyB] [-f device] [-s #] [-b #]
restore -[RvyB] [-f device] [-s #] [-b #]

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in AIX Version 4.

rmt rmt is an object file command that allows control of remote tape
devices via subcommands.

It is a documented command whose usage is:

rmt
valid subcommands: O DeviceMode, C Device, L WhenceOffset

W Count, R Count, I OperationCount

rrestore rrestore is an object file command that restores files from a
remote machines device that were backed up by i-node.

It is a documented command whose usage is:

rrestore [-b Number] [-h] [-i] [-m] [-r] [-R] [-s Number]
[-t]

[-v] [-y] [-x] -fMachine: Device [FileSystem ...] [File ...]

See 7.3, “AIX Version 4 Specific File Features” on page 159 for
changes in AIX Version 4.

tapechk tapechk is Korn shell script that performs simple consistency
checking for streaming tape drives.

It is a documented command whose usage is:

158 AIX Storage Management

tapechk [-?] Number1 Number2

There are no files in the share or usr parts of the bos.rte.archive fileset.

7.2.5 Using Other Fileset Commands
Other documented commands that are relevant to AIX storage management that
are in the filesets referred to in 7.1.1, “Major AIX Version 4 Filesets Relevant to
Storage Management” on page 140 include:

bootlist boot logical volume
Updates the list of boot devices.

bosboot Builds a boot logical volume.

bootinfo Gives information about the boot physical volume.

savebase Saves ODM information to the boot logical volume.

/sbin/rc.boot A shell script executed during the system boot.

/etc/rc A shell script executed during the system boot.

swapspaces Activates paging devices.

snap A tool used to gather data for problem analysis.

diag Used to execute the hardware diagnostics utilities.

lscfg Gives detailed information about the RISC System/6000*
hardware configuration.

quotaon Starts the disk quota monitor.

errpt Formats the error log information.

diff Compares the contents of two text files.

lsdev Lists the devices known to the system.

lsattr Lists the attributes of the devices known to the system

mkdev Configures a device.

rmdev Removes a device.

lvedit Used for interactive definition and placement of logical
volumes within a volume group. Although this command
was part of the optional program product ″Extended
Commands″ (bosext1.extcmds.obj) in AIX V3.2, it is now
part of the separate licensed program product known as
″Performance Toolbox/6000″, product number 5969-623, in
AIX Version 4.

7.3 AIX Version 4 Specific File Features
This section looks at those commands that are new or changed in AIX Version 4.

7.3.1 Using Logical Volume Manager Files in an AIX Version 4 Environment
This section looks at logical volume manager commands.

Chapter 7. Storage Management Files and Commands Summary 159

7.3.1.1 Usr Part Files which are in the /usr/sbin Directory
As well as the specific AIX Version 4 noted for each individual file, the files listed
in this section no longer have symbolic links to the /etc directory. The current
workaround until you change all your pathnames is to install the AIX 3.2 to 4.1
Compatibility Links fileset.

chvg A new flag, -u allows the systems administrator to unlock a volume
group if another logical volume manager operation has abnormally
terminated. It is important to ensure that no other process is using
this volume group when this process is run.

It is a documented command whose usage is:

chvg [-a Auto on] [-Q quorum] [-u] VGname...

getlvcb The high level shell script updatelv that calls this command does so
with two new flags in AIX Version 4. These flags are

-P - stripe width

-S - the first physical partition number used on the 2nd disk
when P is 2.

It is an undocumented command whose usage is:

getlvcb -aceLrsSPtu LVName
getlvcb -f LVName

getlvodm getlvodm obtains volume group and logical volume information from
the ODM. In AIX Version 4, it has a new flag, -G.

It is an undocumented command whose usage is:

getlvodm [-a LVdescript] [-B LVdesrcript] [-b LVid]
[-cVid] [-C] [-d VGdescript]
[-e LVid] [-F] [-g PVid] [-h]
[-j PVdescript] [-k] [-L VGdescript]
[-l LVdescript] [-m LVid] [-p PVdescript]
[-r LVid] [-s VGdescript] [-t VGid]
[-u VGdescript] [-v VGdescript] [-w VGid]
[-y LVid] [-G LVdescript]

importvg We found that on the level of AIX Version 4 that we used, an
imported volume group was left in a varied on state when importvg
completed its execution. This behaviour contradicts the information
that we had access to, but we believe that is a reasonable and
logical step to want to varyon and access a volume group after you
have imported it.

lquerylv A new flag, -b, has been added that tells us the stripe exponent,
stripe_exp, so that 2 raised to the power of stripe_exp gives the
stripe size.

It is an undocumented command whose usage is:

lquerylv -L LVid [-p PVname] [-NGnMScsPRvoadlArtwb]

lslv Although this command does not have any new flags, it may have
more output if it used to obtain information about a striped logical
volume. In this case only, the following are two extra fields in the
first column of the output of the command lslv stripedlvname

STRIPE WIDTH: 2
STRIPE SIZE: 32K

It is a documented command whose usage is:

160 AIX Storage Management

lslv [-l | -m] [-n DescriptorPV] LVname
lslv [-n DescriptorPV] -p PVname [LVname]

mklv This has a new flag if you want to use striping, -S StripeSize

It is a documented command whose usage is:

mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]
[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate]
[-s Strict] [-t Type] [-u UpperBound] [-v Verify] [-w MWC]
[-x MaxLPs] [-y LVname] [-Y Prefix] [-Y StripeSize]
VGname NumberOfLPs [PVname...]

putlvcb Use this command with extreme caution, and refer to the updatelv
command for some of its flags, including those that are for striping
parameters.

It is an undocumented command whose usage is:

putlvcb [-a IntraPolicy] [-c Copies] [-e InterPolicy] [-i LVid]
[-n Size] [-r BBReloc] [-L Label] [-s Strict]
[-t Type] [-u Upper] [-S StripeExponent]
[-O StripeWidth] LVName

putlvcb [-f FileSystemName] LVName

putlvodm putlvodm has a new flag in AIX Version 4, the -S flag which specifies
the stripe size.

It is an undocumented command whose usage is:

putlvodm [-a IntraPolicy] [-B label] [-c Copies] [-e InterPolicy]
[-L LVid] [-l LVname] [-n NewLVName] [-r Relocate]
[-s Strict] [-t Type] [-u UpperBound] [-y Copyflag]
[-z Size] [-S StripeSize] LVid

putlvodm [-o Auto-on] [-k] [-K] [-q VGstate]
[-v VGname] [-V] VGid

putlvodm [-p VGid] [-P] PVid

In addition, the -m majornum flag that was used with a VGid is no
longer available.

rmlv The rmlv command allows a physical volume name to be specified.
Only logical partitions on this physical volume will be removed, and
the logical volume itself will not be removed unless no other
partitions exist on other physical volumes.

It is a documented command whose usage is:

rmlv [-f] [-p PVname] LVname...

7.3.1.2 Usr Part Files which are in the /usr/lib Directory
There are no files that were not in AIX Version 3.

There are no files in the root or share parts of the bos.rte.lvm fileset.

7.3.2 Using File System Administration Commands in an AIX Version 4
Environment

This section contains file system administration commands.

Chapter 7. Storage Management Files and Commands Summary 161

7.3.2.1 Usr Part Files which are in the /usr/sbin Directory
defragfs defragfs is an object file command that increases a file systems

contiguous free space by reorganizing file fragment allocations.

It is a documented command whose usage is:

defragfs [-q | -r] {device | mount-path}

fuser The AIX Version 4 version of the fuser command no longer has the
- flag. New flags automatically override the old settings.

It is a documented command whose usage is:

fuser [-ku] File ...

imfs The AIX Version 4 version of the imfs command no longer has the
-f flag.

It is an undocumented command whose usage is:

imfs [-xl] vgname ...

lsjfs In AIX Version 4 the lsjfs Korn shell script has been rewritten
slightly so that the lsfs command is now called with the -q
command as well.

It is an undocumented command whose usage is:

lsfs {-a | -v Vfs| -u Group | Filesystem ...}

7.3.2.2 Usr Part Files which are in the /usr/bin Directory
See the AIX Version 3 section for files in this fileset.

7.3.2.3 Root Part Files which are in the /etc Directory
See the section on AIX Version 3 for files in this fileset.

7.3.2.4 Root Part Files which are in the /sbin/helpers Directory
See the section on AIX Version 3 for files in this fileset.

There are no files in the share parts of the bos.rte.filesystem fileset.

7.3.3 Using System Backup and BOS Installation Utilities in an AIX Version 4
Environment

This section contains backup and installation commands.

7.3.3.1 Usr Part Files which are in the /usr/lpp/bosinst Directory
BosMenus BosMenus performs the same function as the AIX Version 3

command bosmenus, though it operates slightly differently.

CheckSize CheckSize is used during the installation process to check
that there is enough disk space for the operating system.

It is an undocumented command whose usage is:

CheckSize [-s] [-p]

Get_RVG_Disks Get_RVG_Disks is used during the installation process to
create a database of available disks according to the volume
groups they are in.

It is an undocumented command whose usage is:

Get_RVG_Disks

162 AIX Storage Management

bicfgsup bicfgsup runs the startup script from the installation device
before calling the Get_RVG_Disks.

It is an undocumented command whose usage is:

bicfgsup

bi_main bi_main performs the main operating system installation.

bosinst.template This file defines a template for the flow of the installation
process.

image.template This file contains template definitions for the installation
process.

tape This directory contains the following file:

tape/tapefiles1 This file contains a list of key operating system files.

7.3.3.2 Usr Part Files which are in the /usr/bin Directory
mksysb mksysb is a Korn shell script command that creates an

installable image of the root volume group.

It is a documented command whose usage is:

mksysb [-i] [-m] [-e] [-b blocks] device

mkszfile mkszfile is a Korn shell script that saves the system state to
a file for use during reinstallation.

It is a documented command whose usage is:

mkszfile [-m]

mkvgdata mkvgdata is a symbolic link to mkszfile.

restvg restvg is a Korn shell script that restores a user volume
group from a backup image created by the savevg command.

It is a documented command whose usage is:

restvg [-b Blocks] [-f Device] [-q] [-s] [DiskName ...]

savevg savevg is a Korn shell script that finds and backs up all files
for a specified volume group.

It is a documented command whose usage is:

savevg [-i] [-m] [-e] [-b blocks] [-f device] vgName

This is a symbolic link to the mksysb command.

7.3.3.3 Usr Part Files which are in the /usr/sbin Directory
mkinsttape mkinsttape is a Korn shell script command that creates a BOS

installation/maintenance tape file image.

It is an undocumented command whose usage is:

mkinsttape [/file]

7.3.3.4 Root Part Files which are in the /etc Directory
preserve.list This file contains a list of files that will be copied during a

preservation installation.

There are no files in the share parts of the bos.sysmgt.sysbr fileset.

Chapter 7. Storage Management Files and Commands Summary 163

7.3.4 Using Archive Commands in an AIX Version 4 Environment
This section contains archive commands.

7.3.4.1 Usr Part Files which are in the /usr/bin Directory
pax pax has an options flag in AIX Version 4, which was not present

in AIX Version 3.

It is a documented command whose usage is:

pax -[cdnv] [-f archive] [-s replstr] [pattern...]
pax -r [-cdiknuvy] [-f archive] [-o options] [-p string] [-s replstr]

[pattern...]
pax -w [-dituvyX] [-b blocking] [[-a] -f archive] [-o options]

[-s replstr] [-x format] [pathname...]
pax -r -w [-diklntuvyX] [-p string] [-s replstr] [pathname...] directory

tar tar is an object file command that enables writing data to, and
reading data from, an archive storage medium. There is a new
-o options flag that provides backwards compatibility with older
(non-AIX) versions of tar. The -S flag has also been enhanced.

It is a documented command whose usage is:

tar -{c|r|t|u|x} [-BdFhilmopsvw]
[-Number] [-fFile]
[-bBlocks] [-S [Feet] [Feet @Density] [Blocksb]]
[-LInputList] [-NBlocks] [-C Directory] File ...

tctl tctl is an object file command that sends commands to a
streaming tape device. In AIX Version 4 the -e flag is no longer
used, and there is an extra command, the reset command.

It is a documented command whose usage is:

tctl [-Bnv] [-b Blocks] [-p Num] [-f Device] Subcommand [Count]
valid subcommands are: weof, eof, fsf, bsf, fsr, bsr, rewind, offline,

rewoffl, erase, retension, read, write, reset,
status

zcat zcat is an object file command that expands a file compressed
using the compress command to standard out. The AIX Version 4
version of this command no longer uses the -F and -f flags.

It is a documented command whose usage is:

zcat [-nV] [File...]

7.3.4.2 Usr Part Files which are in the /usr/sbin Directory
restbyinode restbyinode is an object file command that uses the restore

command to restore files that were backed up by inode.

It is an undocumented command whose usage is:

restbyinode -t[Dhvy] [-f Device] [-s Number] [-b Number] [File ...]
restbyinode -x[Dhmvy] [-f Device] [-s Number] [-b Number] [File ...]
restbyinode -i[Dhmvy] [-f Device] [-s Number] [-b Number]
restbyinode -r[Dvy] [-f Device] [-s Number] [-b Number]
restbyinode -R[Dvy] [-f Device] [-s Number] [-b Number]

There is a new flag in AIX Version 4, -D.

restore restore is an object file command that copies files recently backed
up on a local device, onto the system. There have been a number
of flag changes in AIX Version 4.

164 AIX Storage Management

It is a documented command whose usage is:

Usage for Backup by Name:ber] [-f Device] [-s Number] [File ...]
restore -x[Mdqv] [-b Number] [-f Device] [-s Number] [File ...]

Extracts files by name.[-f Device] [-s Number] [File ...]
restore -T|-t [-qv] [-b Number] [-f Device] [-s Number]

Lists a table of contents or information about the backup.
restore -X Number [-Mdqv] [-b Number] [-f Device] [-s Number] [File ...]

Extracts beginning at a specified volume number.
Usage for Version 2 Backup by Inode:
restore -r[d] [-f Device] [File ...]ce] [-s Number]
Usage for Backup by Inode: systems.
restore -t[Bhqvy] [-b Number] [-f Device] [-s Number] [File ...]

Lists a table of contents.
restore -x[Bhmqvy] [-b Number] [-f Device] [-s Number] [File ...]

Extracts files by name.
restore -i[hmqvy] [-b Number] [-f Device] [-s Number]

Restores files interactively
restore -r[Bqvy] [-b Number] [-f Device] [-s Number]

Restores full file systems.
restore -R[Bvy] [-b Number] [-f Device] [-s Number]

Restores full file systems.

rrestore rrestore is an object file command that copies previously backed
up file systems from a remote machine′s device to the local
machine. The -D flag is new in AIX Version 4.

It is a documented command whose usage is:

rrestore -t[Dhvy] -f Host: Device [-s Number] [-b Number] [File ...]
rrestore -x[Dhmvy] -f Host: Device [-s Number] [-b Number] [File ...]
rrestore -i[Dhmvy] -f Host: Device [-s Number] [-b Number]
rrestore -r[Dvy] -f Host: Device [-s Number] [-b Number]
rrestore -R[Dvy] -f Host: Device [-s Number] [-b Number]

There are no files in the share or usr parts of the bos.rte.archive fileset.

7.4 Using Commands to View AIX Version 4 Logical Volume Manager
Information

This section discusses sample output from the various options of the following
commands:

 1. lsvg

 2. lslv

 3. lspv

 4. lqueryvg

 5. lquerylv

 6. lquerypv

Some of these commands are discussed further in Chapter 6, “General AIX
Storage Management” on page 95. You may decide to use the script command
to easily record the command syntax and output in one or more files. You can
see from the script command timestamps included in the output that we
executed these commands sequentially for the same logical volumes and all the
physical volumes in the datavg volume group. By comparing the different
command output formats, you can both understand the output and decide which

Chapter 7. Storage Management Files and Commands Summary 165

commands you prefer. Note that we had to filter the output files to remove
control M characters from the end of each line by executing commands like:

� �
tr -d ′ \015′ < lsvg.scr > lsvg.txt� �

You can see the control M characters when you vi edit the output files.

First assume the volume group is normal, so run lsvg like:

� �
Script started on Wed Jul 27 17:26:48 1994
lsvg datavg
VOLUME GROUP: datavg VG IDENTIFIER: 000004467b689da1
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 362 (1448 megabytes)
MAX LVs: 256 FREE PPs: 289 (1156 megabytes)
LVs: 6 USED PPs: 73 (292 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 2 AUTO ON: yes
lsvg -l datavg
datavg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
datalv1 jfs 10 20 2 closed/syncd /datajfs1
datalv2 jfs 10 20 2 closed/syncd /datajfs2
datalv3 jfs 12 12 1 closed/syncd /datajfs3
datalv4 jfs 10 10 1 closed/syncd /datajfs4
datalog jfslog 1 1 1 closed/syncd N/A
datapg paging 5 10 2 closed/syncd N/A
lsvg -p datavg
datavg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk8 active 75 50 15..00..05..15..15
hdisk1 active 287 239 58..09..57..57..58

script done on Wed Jul 27 17:28:28 1994� �
Figure 31. Sample lsvg Output

The first lsvg command quickly tells us how much of the volume group′s disk
space is used, and how much can be allocated to new or existing logical
volumes. The -l flag provides us with a good volume group logical volume
summary where we can:

• Check which logical volumes are mirrored by the ratio of physical partitions
to logical partitions; in this case, there are two mirror copies of the logical
volumes datalv1, datalv2 and datapg.

• Check which logical volumes are open and therefore used by the operating
system; in this case all are closed and so we can varyoff the volume group.

The -p flag provides a simple indication of how well organized the volume group
is; in other words, if one physical volume is empty, and the other is almost full
based on the FREE PPs column, then a I/O workload imbalance may result in a
performance degradation.

For more detailed volume group output, execute:

166 AIX Storage Management

� �
Script started on Wed Jul 27 17:28:37 1994
lsvg -M datavg

datavg
hdisk8:1-15
hdisk8:16 datalv1:1:1
hdisk8:17 datalv1:2:1
hdisk8:18 datalv1:3:1
hdisk8:19 datalv1:4:1
hdisk8:20 datalv1:5:1
hdisk8:21 datalv1:6:1
hdisk8:22 datalv1:7:1
hdisk8:23 datalv1:8:1
hdisk8:24 datalv1:9:1
hdisk8:25 datalv1:10:1
hdisk8:26 datalv2:1:2
hdisk8:27 datalv2:2:2
hdisk8:28 datalv2:3:2
hdisk8:29 datalv2:4:2
hdisk8:30 datalv2:5:2
hdisk8:31 datalv2:6:2
hdisk8:32 datalv2:7:2
hdisk8:33 datalv2:8:2
hdisk8:34 datalv2:9:2
hdisk8:35 datalv2:10:2
hdisk8:36 datapg:1:2
hdisk8:37 datapg:2:2
hdisk8:38 datapg:3:2
hdisk8:39 datapg:4:2
hdisk8:40 datapg:5:2
hdisk8:41-75
hdisk1:1-58
hdisk1:59 datalv1:1:2
hdisk1:60 datalv1:2:2
hdisk1:61 datalv1:3:2
hdisk1:62 datalv1:4:2
hdisk1:63 datalv1:5:2
hdisk1:64 datalv1:6:2
hdisk1:65 datalv1:7:2
hdisk1:66 datalv1:8:2
hdisk1:67 datalv1:9:2
hdisk1:68 datalv1:10:2� �

Figure 32. Sample lsvg -M Output

and continuing on the next screen:

Chapter 7. Storage Management Files and Commands Summary 167

� �
hdisk1:69 datalv2:1:1
hdisk1:70 datalv2:2:1
hdisk1:71 datalv2:3:1
hdisk1:72 datalv2:4:1
hdisk1:73 datalv2:5:1
hdisk1:74 datalv2:6:1
hdisk1:75 datalv2:7:1
hdisk1:76 datalv2:8:1
hdisk1:77 datalv2:9:1
hdisk1:78 datalv2:10:1
hdisk1:79 datalv3:1
hdisk1:80 datalv3:2
hdisk1:81 datalv3:3
hdisk1:82 datalv3:4
hdisk1:83 datalv3:5
hdisk1:84 datalv3:6
hdisk1:85 datalv3:7
hdisk1:86 datalv3:8
hdisk1:87 datalv3:9
hdisk1:88 datalv3:10
hdisk1:89 datalv3:11
hdisk1:90 datalv3:12
hdisk1:91 datalv4:1
hdisk1:92 datalv4:2
hdisk1:93 datalv4:3
hdisk1:94 datalv4:4
hdisk1:95 datalv4:5
hdisk1:96 datalv4:6
hdisk1:97 datalv4:7
hdisk1:98 datalv4:8
hdisk1:99 datalv4:9
hdisk1:100 datalv4:10
hdisk1:101 datalog:1
hdisk1:102 datapg:1:1
hdisk1:103 datapg:2:1
hdisk1:104 datapg:3:1
hdisk1:105 datapg:4:1
hdisk1:106 datapg:5:1
hdisk1:107-287

script done on Wed Jul 27 17:28:53 1994

� �
Figure 33. Continued Sample lsvg -M Output

This is the most comprehensive output available from the lsvg command. We
can see how it documents the exact use of physical partitions on all physical
volumes in the volume group, compared to the summary presented by using the
-p flag as shown in Figure 31 on page 166. However, we can see from the lslv
-p hdisk1 datalv3 command output shown in Figure 38 on page 172. and the
lspv -p hdisk1 command shown in Figure 40 on page 174 that there are more
suitable commands to use to check where the used physical partitions are. The
lsvg -M datavg information can be used to create logical volume map files and is
hence very useful if a corrupt VGDA needs to be fixed by recreating the datavg
volume group.

Now lets look at the output from the lslv command by executing:

168 AIX Storage Management

� �
Script started on Wed Jul 27 17:57:00 1994
lslv datapg
LOGICAL VOLUME: datapg VOLUME GROUP: datavg
LV IDENTIFIER: 000004467b689da1.6 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: paging WRITE VERIFY: off
MAX LPs: 128 PP SIZE: 4 megabyte(s)
COPIES: 2 SCHED POLICY: parallel
LPs: 5 PPs: 10
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV ?: yes
lslv datalv3
LOGICAL VOLUME: datalv3 VOLUME GROUP: datavg
LV IDENTIFIER: 000004467b689da1.3 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 128 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 12 PPs: 12
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /datajfs3 LABEL: /datajfs3
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes
lslv -l datapg
datapg:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk1 005:000:000 100% 000:005:000:000:000
hdisk8 005:000:000 0% 000:000:005:000:000
lslv -l datalv3
datalv3:/datajfs3
PV COPIES IN BAND DISTRIBUTION
hdisk1 012:000:000 100% 000:012:000:000:000� �

Figure 34. Sample lslv Output

If no flags are used, the logical volume attributes are listed in a format similar to
that used for the lsvg command. As expected, the command lslv -l datapg
provides a better summary of where the datapg physical partitions are located
on disk than does the output of the lsvg command shown in Figure 31 on
page 166.

To check how logical partitions have been mapped to physical partitions,
execute:

Chapter 7. Storage Management Files and Commands Summary 169

� �
lslv -m datapg
datapg:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0102 hdisk1 0036 hdisk8
0002 0103 hdisk1 0037 hdisk8
0003 0104 hdisk1 0038 hdisk8
0004 0105 hdisk1 0039 hdisk8
0005 0106 hdisk1 0040 hdisk8
lslv -m datalv3
datalv3:/datajfs3
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0079 hdisk1
0002 0080 hdisk1
0003 0081 hdisk1
0004 0082 hdisk1
0005 0083 hdisk1
0006 0084 hdisk1
0007 0085 hdisk1
0008 0086 hdisk1
0009 0087 hdisk1
0010 0088 hdisk1
0011 0089 hdisk1
0012 0090 hdisk1

script done on Wed Jul 27 18:04:36 1994� �
Figure 35. Sample lslv -m Output

This is probably the best way to check your configuration of a highly available
volume group. Since each mirror copy is listed in a separate column, you just
have to ensure that each row contains two or three different physical volume
names, depending on whether you have two or three copies of a logical volume.
In other words, you can quickly confirm that the copies are on different disks.

For detailed disk layout from lslv to see exact physical partition placement,
execute:

170 AIX Storage Management

� �
Script started on Wed Jul 27 18:04:58 1994
lslv -p hdisk1 datapg
hdisk1:datapg:N/A
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-10
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 11-20
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 21-30
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 31-40
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 41-50
FREE FREE FREE FREE FREE FREE FREE FREE 51-58

USED USED USED USED USED USED USED USED USED USED 59-68
USED USED USED USED USED USED USED USED USED USED 69-78
USED USED USED USED USED USED USED USED USED USED 79-88
USED USED USED USED USED USED USED USED USED USED 89-98
USED USED USED 0001 0002 0003 0004 0005 FREE FREE 99-108
FREE FREE FREE FREE FREE FREE FREE 109-115

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 116-125
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 126-135
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 136-145
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 146-155
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 156-165
FREE FREE FREE FREE FREE FREE FREE 166-172

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 173-182
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 183-192
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 193-202
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 203-212
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 213-222
FREE FREE FREE FREE FREE FREE FREE 223-229

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 230-239
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 240-249
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 250-259
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 260-269
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 270-279
FREE FREE FREE FREE FREE FREE FREE FREE 280-287� �

Figure 36. Sample lslv -p Output

For the datapg logical volume on the hdisk8 physical volume, execute:

� �
lslv -p hdisk8 datapg
hdisk8:datapg:N/A
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-10
FREE FREE FREE FREE FREE 11-15

USED USED USED USED USED USED USED USED USED USED 16-25
USED USED USED USED USED 26-30

USED USED USED USED USED 0001 0002 0003 0004 0005 31-40
FREE FREE FREE FREE FREE 41-45

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 46-55
FREE FREE FREE FREE FREE 56-60

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 61-70
FREE FREE FREE FREE FREE 71-75� �

Figure 37. Continued Sample lslv -p Output

Chapter 7. Storage Management Files and Commands Summary 171

For the datalv3 logical volume, execute:

� �
lslv -p hdisk1 datalv3
hdisk1:datalv3:/datajfs3
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-10
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 11-20
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 21-30
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 31-40
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 41-50
FREE FREE FREE FREE FREE FREE FREE FREE 51-58

USED USED USED USED USED USED USED USED USED USED 59-68
USED USED USED USED USED USED USED USED USED USED 69-78
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 79-88
0011 0012 USED USED USED USED USED USED USED USED 89-98
USED USED USED USED USED USED USED USED FREE FREE 99-108
FREE FREE FREE FREE FREE FREE FREE 109-115

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 116-125
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 126-135
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 136-145
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 146-155
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 156-165
FREE FREE FREE FREE FREE FREE FREE 166-172

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 173-182
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 183-192
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 193-202
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 203-212
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 213-222
FREE FREE FREE FREE FREE FREE FREE 223-229

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 230-239
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 240-249
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 250-259
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 260-269
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 270-279
FREE FREE FREE FREE FREE FREE FREE FREE 280-287

script done on Wed Jul 27 18:08:22 1994� �
Figure 38. Continued Sample lslv -p Output

This is probably the best character based pictorial representation of the disk
regions that shows the exact location of the used and free physical partitions. It
will also show you exactly which physical partitions are stale if you have
implemented mirroring by printing the word STALE or by printing a ? character
next to the logical partition number. The number 0001 in Figure 38 indicates that
the first logical partition of the datalv3 logical volume uses physical partition 79
on hdisk1, so the word USED on a physical partition refers to the fact that its used
by a logical volume other than datalv3. The numbering helps us determine how
badly a logical volume is fragmented within a physical volume, which may result
in a performance degradation. This is not the case in this example because the
physical partitions of each of the copies of the datapg and datalv3 logical
volumes have been allocated in a contiguous manner. You may find it easier to
notice this contiguity from the output of the lslv -m lvname commands shown in
Figure 35 on page 170.

As can be seen from the outputs for hdisk1 in Figure 36 on page 171 or in
Figure 38 and for hdisk8 in Figure 37 on page 171, it is easy to compare both

172 AIX Storage Management

the size and utilization of the disk regions of different disks. If you have many
physical volumes, a summarized view of this information can be obtained from
the output of the lspv -l disk_name command presented in Figure 39 on
page 173. Finally, we can deduce the names of the different disk regions by
comparing the numerical ranges presented in Figure 38 on page 172 with those
in Figure 40 on page 174 for hdisk1.

Now, take a look at the lspv command by executing:

� �
Script started on Wed Jul 27 18:11:12 1994
lspv hdisk1
PHYSICAL VOLUME: hdisk1 VOLUME GROUP: datavg
PV IDENTIFIER: 00000201dc8b0b32 VG IDENTIFIER 000004467b689da1
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 4 megabyte(s) LOGICAL VOLUMES: 6
TOTAL PPs: 287 (1148 megabytes) VG DESCRIPTORS: 1
FREE PPs: 239 (956 megabytes)
USED PPs: 48 (192 megabytes)
FREE DISTRIBUTION: 58..09..57..57..58
USED DISTRIBUTION: 00..48..00..00..00
lspv hdisk8
PHYSICAL VOLUME: hdisk8 VOLUME GROUP: datavg
PV IDENTIFIER: 0002479088f5f347 VG IDENTIFIER 000004467b689da1
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 4 megabyte(s) LOGICAL VOLUMES: 3
TOTAL PPs: 75 (300 megabytes) VG DESCRIPTORS: 2
FREE PPs: 50 (200 megabytes)
USED PPs: 25 (100 megabytes)
FREE DISTRIBUTION: 15..00..05..15..15
USED DISTRIBUTION: 00..15..10..00..00
lspv -l hdisk1
hdisk1:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
datalv1 10 10 00..10..00..00..00 /datajfs1
datalv2 10 10 00..10..00..00..00 /datajfs2
datalv3 12 12 00..12..00..00..00 /datajfs3
datalv4 10 10 00..10..00..00..00 /datajfs4
datalog 1 1 00..01..00..00..00 N/A
datapg 5 5 00..05..00..00..00 N/A
lspv -l hdisk8
hdisk8:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
datalv1 10 10 00..10..00..00..00 /datajfs1
datalv2 10 10 00..05..05..00..00 /datajfs2
datapg 5 5 00..00..05..00..00 N/A� �

Figure 39. Sample lspv Output

Just like the lsvg and lslv commands, you can execute the lspv command with
no flags to display the disk attributes. Note that the output from the lspv -l
hdisk1 command in Figure 39 is not the same as that from the lsvg -l datavg
command shown in Figure 31 on page 166, although both indicate the number of
physical partitions and logical partitions whose ratio indicates the extent of any
mirroring configuration.

However, if your logical volumes are not mirrored, then you may prefer to
summarize the logical volume information by executing lspv with a -p flag as
follows:

Chapter 7. Storage Management Files and Commands Summary 173

� �
lspv -p hdisk1
hdisk1:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-58 free outer edge
59-68 used outer middle datalv1 jfs /datajfs1
69-78 used outer middle datalv2 jfs /datajfs2
79-90 used outer middle datalv3 jfs /datajfs3
91-100 used outer middle datalv4 jfs /datajfs4
101-101 used outer middle datalog jfslog N/A
102-106 used outer middle datapg paging N/A
107-115 free outer middle
116-172 free center
173-229 free inner middle
230-287 free inner edge
lspv -p hdisk8
hdisk8:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-15 free outer edge
16-25 used outer middle datalv1 jfs /datajfs1
26-30 used outer middle datalv2 jfs /datajfs2
31-35 used center datalv2 jfs /datajfs2
36-40 used center datapg paging N/A
41-45 free center
46-60 free inner middle
61-75 free inner edge

script done on Wed Jul 27 18:13:04 1994� �
Figure 40. Sample lspv -p Output

Like the lspv -l output shown in Figure 39 on page 173, we know:

• The names of the logical volumes on the specified physical volume

• The logical partition distribution

• The number of physical partitions used

We get this from the sum of the differences of the PP RANGE for each row that
refers to a particular logical volume Also, this number is the same as the
number of logical partitions for a non-mirrored logical volume.

• The associated journaled file system mount point

However, the lspv -p output shown in Figure 40 also tells us:

• The type of logical volume

• The unambiguous state of every physical partition

This is very useful because we can easily see if a logical volume on this disk
will become fragmented if we extend it on this disk, as would occur for
datalv1, datalv2, datalv3, datalv4, or datalog in this example.

If you need to create map files for logical volumes that exist only on one disk,
then you can execute lspv -M as shown in:

174 AIX Storage Management

� �
Script started on Wed Jul 27 18:13:44 1994
lspv -M hdisk1
hdisk1:1-58
hdisk1:59 datalv1:1:2
hdisk1:60 datalv1:2:2
hdisk1:61 datalv1:3:2
hdisk1:62 datalv1:4:2
hdisk1:63 datalv1:5:2
hdisk1:64 datalv1:6:2
hdisk1:65 datalv1:7:2
hdisk1:66 datalv1:8:2
hdisk1:67 datalv1:9:2
hdisk1:68 datalv1:10:2
hdisk1:69 datalv2:1:1
hdisk1:70 datalv2:2:1
hdisk1:71 datalv2:3:1
hdisk1:72 datalv2:4:1
hdisk1:73 datalv2:5:1
hdisk1:74 datalv2:6:1
hdisk1:75 datalv2:7:1
hdisk1:76 datalv2:8:1
hdisk1:77 datalv2:9:1
hdisk1:78 datalv2:10:1� �

Figure 41. Sample lspv -M Output

On the next screen:

� �
hdisk1:79 datalv3:1
hdisk1:80 datalv3:2
hdisk1:81 datalv3:3
hdisk1:82 datalv3:4
hdisk1:83 datalv3:5
hdisk1:84 datalv3:6
hdisk1:85 datalv3:7
hdisk1:86 datalv3:8
hdisk1:87 datalv3:9
hdisk1:88 datalv3:10
hdisk1:89 datalv3:11
hdisk1:90 datalv3:12
hdisk1:91 datalv4:1
hdisk1:92 datalv4:2
hdisk1:93 datalv4:3
hdisk1:94 datalv4:4
hdisk1:95 datalv4:5
hdisk1:96 datalv4:6
hdisk1:97 datalv4:7
hdisk1:98 datalv4:8
hdisk1:99 datalv4:9
hdisk1:100 datalv4:10
hdisk1:101 datalog:1
hdisk1:102 datapg:1:1
hdisk1:103 datapg:2:1
hdisk1:104 datapg:3:1
hdisk1:105 datapg:4:1
hdisk1:106 datapg:5:1
hdisk1:107-287� �

Figure 42. Continued Sample lspv -M Output

For hdisk8, try:

Chapter 7. Storage Management Files and Commands Summary 175

� �
lspv -M hdisk8
hdisk8:1-15
hdisk8:16 datalv1:1:1
hdisk8:17 datalv1:2:1
hdisk8:18 datalv1:3:1
hdisk8:19 datalv1:4:1
hdisk8:20 datalv1:5:1
hdisk8:21 datalv1:6:1
hdisk8:22 datalv1:7:1
hdisk8:23 datalv1:8:1
hdisk8:24 datalv1:9:1
hdisk8:25 datalv1:10:1
hdisk8:26 datalv2:1:2
hdisk8:27 datalv2:2:2
hdisk8:28 datalv2:3:2
hdisk8:29 datalv2:4:2
hdisk8:30 datalv2:5:2
hdisk8:31 datalv2:6:2
hdisk8:32 datalv2:7:2
hdisk8:33 datalv2:8:2
hdisk8:34 datalv2:9:2
hdisk8:35 datalv2:10:2
hdisk8:36 datapg:1:2
hdisk8:37 datapg:2:2
hdisk8:38 datapg:3:2
hdisk8:39 datapg:4:2
hdisk8:40 datapg:5:2
hdisk8:41-75

script done on Wed Jul 27 18:14:09 1994� �
Figure 43. Continued Sample lspv -M Output

If you concatenate this lspv -M output from all the physical volumes in your
volume group, then the combined file is the same as that obtained from the lsvg
-M command, as shown in Figure 32 on page 167 and in Figure 33 on page 168.

If the volume group is varied off, it is still possible to get some volume group
information from lsvg -n hdiskx, and also, all the previous lslv and lspv output,
if, in each command, the -N PVName flag is used. Check in infoExplorer for the use
of this flag, as the returned data may not be current.

If the ODM is badly corrupted or if a volume group has not been configured, then
the previous commands may fail. However, the following commands will allow
the disks in a volume group to be read directly. As well as helping you repair
the ODM, you may also be able to determine what information is stored on a
disk when the other physical volumes in the disk′s volume group are not
available. We can simulate these two scenario′s by exporting the volume group
so that the physical volume assignment by the operating system is:

176 AIX Storage Management

� �
lspv
hdisk0 0000020158496d72 availvg
hdisk1 00000201dc8b0b32 None
hdisk2 000002007bb618f5 availvg
hdisk3 00000446431550c9 availvg
hdisk4 000137231982c0f2 stripevg
hdisk5 00014732b1bd7f57 rootvg
hdisk6 0001221800072440 stripevg
hdisk7 00012218da42ba76 rootvg
hdisk8 0002479088f5f347 None� �

Figure 44. Sample lspv Output to See all Known Physical Volumes and Volume Groups

First, use lqueryvg on the unassigned disks hdisk1 and hdisk8 to obtain general
volume group information; always use the -t flag for field titles.

� �
Script started on Wed Jul 27 19:13:24 1994
lqueryvg -p hdisk1 -Avt
Max LVs: 256
PP Size: 22
Free PPs: 289
LV count: 6
PV count: 2
Total VGDAs: 3
Logical: 000004467b689da1.1 datalv1 1

000004467b689da1.2 datalv2 1
000004467b689da1.3 datalv3 1
000004467b689da1.4 datalv4 1
000004467b689da1.5 datalog 1
000004467b689da1.6 datapg 1

Physical: 0002479088f5f347 2 0
00000201dc8b0b32 1 0

VGid: 000004467b689da1
lqueryvg -p hdisk8 -Avt
Max LVs: 256
PP Size: 22
Free PPs: 289
LV count: 6
PV count: 2
Total VGDAs: 3
Logical: 000004467b689da1.1 datalv1 1

000004467b689da1.2 datalv2 1
000004467b689da1.3 datalv3 1
000004467b689da1.4 datalv4 1
000004467b689da1.5 datalog 1
000004467b689da1.6 datapg 1

Physical: 0002479088f5f347 2 0
00000201dc8b0b32 1 0

VGid: 000004467b689da1

script done on Wed Jul 27 19:14:03 1994� �
Figure 45. Sample lqueryvg Output

The same VGid proves that they both belong to the same volume group, and we
know that there are no other disks since the PV count is two. Since the names of
the logical volumes are included in this lqueryvg command output, it is clearly
beneficial to give them meaningful names to help you remember the contents of
the logical volumes.

Chapter 7. Storage Management Files and Commands Summary 177

We can use a logical volume identifier and the physical volume name to execute
the following two commands to extract more logical volume and physical volume
information from the disk VGDA and VGSA:

� �
Script started on Wed Jul 27 19:14:19 1994
lquerylv -p hdisk1 -L000004467b689da1.6 -at
LVname: datapg
VGid: 4467b689da1
MaxLP: 128
MPolicy: 2
MWrtConsist: 2
LVstate: 1
Csize: 5
PPsize: 22
Permissions: 1
Relocation: 1
WrVerify: 2
open_close: 2
stripe_exp: 0
striping_wid 0
lquerylv -p hdisk1 -L000004467b689da1.6 -rt
LVMAP: 00000201dc8b0b32 102 1
LVMAP: 0002479088f5f347 36 1
LVMAP: 00000201dc8b0b32 103 2
LVMAP: 0002479088f5f347 37 2
LVMAP: 00000201dc8b0b32 104 3
LVMAP: 0002479088f5f347 38 3
LVMAP: 00000201dc8b0b32 105 4
LVMAP: 0002479088f5f347 39 4
LVMAP: 00000201dc8b0b32 106 5
LVMAP: 0002479088f5f347 40 5� �

Figure 46. Sample lquerylv Output for the Mirrored datapg Logical Volume

We now know that datapg has two mirror copies, and is configured for high
availability since we can see from the physical volume identifiers that each
logical partition copy is on a different physical volume. Of course, it was much
easier to view this information from the output of the lslv -m datapg command
shown in Figure 35 on page 170.

For the datalv3 logical volume, execute:

178 AIX Storage Management

� �
lquerylv -p hdisk1 -L000004467b689da1.3 -at
LVname: datalv3
VGid: 4467b689da1
MaxLP: 128
MPolicy: 2
MWrtConsist: 1
LVstate: 1
Csize: 12
PPsize: 22
Permissions: 1
Relocation: 1
WrVerify: 2
open_close: 2
stripe_exp: 0
striping_wid 0
lquerylv -p hdisk1 -L000004467b689da1.3 -rt
LVMAP: 00000201dc8b0b32 79 1
LVMAP: 00000201dc8b0b32 80 2
LVMAP: 00000201dc8b0b32 81 3
LVMAP: 00000201dc8b0b32 82 4
LVMAP: 00000201dc8b0b32 83 5
LVMAP: 00000201dc8b0b32 84 6
LVMAP: 00000201dc8b0b32 85 7
LVMAP: 00000201dc8b0b32 86 8
LVMAP: 00000201dc8b0b32 87 9
LVMAP: 00000201dc8b0b32 88 10
LVMAP: 00000201dc8b0b32 89 11
LVMAP: 00000201dc8b0b32 90 12

Script done on Wed Jul 27 19:21:31 1994� �
Figure 47. Sample lquerylv Output for the Non-Mirrored datalv3 Logical Volume

For more physical volume information, execute lquerypv. You′ ll need to use the
physical volume identifier to specify which disk you want to know about, and
then use the volume group identifier and a physical volume name to specify
which disk you want to read to get the information.

Note that you will need a terminal that′s about 115 columns wide to view output
neatly as follows:

Chapter 7. Storage Management Files and Commands Summary 179

� �
Script started on Wed Jul 27 19:24:33 1994
lquerypv -p 0002479088f5f347 -g 4467b689da1 -N hdisk8 -dt\
|grep 000004467b689da1.6|pg
PVMAP: 0002479088f5f347:36 1 ODMtype 000004467b689da1.6 1

00000201dc8b0b32:102 0000000000000000:0
PVMAP: 0002479088f5f347:37 1 ODMtype 000004467b689da1.6 2

00000201dc8b0b32:103 0000000000000000:0
PVMAP: 0002479088f5f347:38 1 ODMtype 000004467b689da1.6 3

00000201dc8b0b32:104 0000000000000000:0
PVMAP: 0002479088f5f347:39 1 ODMtype 000004467b689da1.6 4

00000201dc8b0b32:105 0000000000000000:0
PVMAP: 0002479088f5f347:40 1 ODMtype 000004467b689da1.6 5

00000201dc8b0b32:106 0000000000000000:0
(EOF):
lquerypv -p 00000201dc8b0b32 -g 4467b689da1 -N hdisk1 -at
PP Size: 22
PV State: 0
Total PPs: 287
Alloc PPs: 48
Total VGDAs: 1
lquerypv -p 0002479088f5f347 -g 4467b689da1 -N hdisk1 -at
PP Size: 22
PV State: 0
Total PPs: 75
Alloc PPs: 25
Total VGDAs: 2
#
lspv
hdisk0 0000020158496d72 availvg
hdisk1 00000201dc8b0b32 None
hdisk2 000002007bb618f5 availvg
hdisk3 00000446431550c9 availvg
hdisk4 000137231982c0f2 stripevg
hdisk5 00014732b1bd7f57 rootvg
hdisk6 0001221800072440 stripevg
hdisk7 00012218da42ba76 rootvg
hdisk8 0002479088f5f347 None� �

Figure 48. Sample lquerypv Output

The first lqueryvg command output has been simplified by being piped into the
grep command so that it only includes the lines that refer to the datapg logical
volume. The information here agrees with the physical partition allocation map
obtained from the lspv -p command that is displayed in Figure 40 on page 174.
The next two lqueryvg command outputs match the information obtained from the
lsvg commands as shown in Figure 31 on page 166. In particular, note that:

• The physical partition size is expressed as a power of 2, so 2 to the power of
22 is roughly 4MB

• We first obtained information about hdisk1, and then about hdisk8, but both
commands used the one copy of the VGDA that′s on hdisk1. However, we
could have obtained exactly the same information by accessing either of the
VGDA copies on hdisk8. Recall that the two executions of the lqueryvg
command shown in Figure 45 on page 177 also provided identical output
because they read copies of the same VGDA information that is placed on
every physical volume in a volume group.

Now that we know exactly what these ″mystery″ physical volumes contain, we
can import them and access the data by executing:

180 AIX Storage Management

� �
importvg -y datavg hdisk1
datavg
#
mount /datajfs1
ls -la /datajfs1
total 16
drwxr-sr-x 2 sys sys 512 Jul 25 14:33 .
drwxr-xr-x 35 bin bin 1024 Jul 27 17:33 ..
script done on Wed Jul 27 19:29:40 1994� �

Figure 49. Accessing a Disk after Reading its VGDA to Check its Contents

Now we can complete the above steps by a comparison of the output. The main
point is that the same data can be obtained from many sources in many different
formats, so its up to the systems administrator to decide which format is
preferred.

7.5 Using Commands to View AIX Version 4 Journaled File System
Information

This section discusses sample output for some of the options of the following:

 1. Commands included in filesets of AIX Version 4:

The first two commands discussed, du and df, both produce similar output.
Before looking at the commands themselves a brief overview of their
differences in implementation will be given to account for the slight
differences in output.

On any given file system, execute:

� �
du -sk /filesystem_path� �

and then:

� �
df /filesystem_path� �

If you substract the number of free KB from the number of Total KB, you will
get a number of used KB. This number will be higher than that which the du
command will report as used on that same file system. The reason is the
methodology used by each command.

The du command basically walks down the directory tree taking the size of
each file and rounding it up to the next multiple of the cluster size, which is
4KB under AIX Version 3. The results of the rounding operation is then
added together to make a total, which is the number the du command
returns. Thus, if you run du -sk in a directory with two files under 4KB each,
the number output would be 12; 4KB for each of the two files and another
4KB for the directory entry. If you had a file that was 4097 bytes long (one
byte over 4KB) and executed du -sk file then the number returned would be
8 because its size is rounded to the next increment of 4 KB, in this case,
8192 bytes or 8KB. The du command returns an approximation of the size of
the file space used and does not include any file system overhead.

The df command looks at the super block of the file system to determine
how many 4KB data blocks are unallocated. Of the allocated storage, some
of the space will be allocated for I-nodes. I-nodes are part of the overhead

Chapter 7. Storage Management Files and Commands Summary 181

necessary for accessing information in the file system. As a result of this,
both files and I-nodes are added into the final total of allocated storage
space and a more accurate determination of file system usage is made.

The amount of space which is used by inodes can be determined from the
equation

kilobyte space = total i-nodes / 8

where the total i-nodes can be determined by running df -v and adding the
iused and ifree columns.

If you were to increase the size of that file system but not add any new files,
then the du command would return the same number as before. The df
command, however, would show more file system space was allocated than
before the file system was increased, because when the file system was
increased, more I-nodes were allocated.

• du

� �
du -ksr /home
103325 /home
#� �

This is a useful way of executing the disk usage command so that you
get a brief output that you can easily convert to MBs used, and you can
easily compare it to the following df output:

• df

� �
df -kI
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/hd4 8192 4308 3884 52% /usr
/dev/hd2 319488 315980 3508 98% /usr
/dev/hd9var 12288 940 11348 7% /var
/dev/hd3 12288 748 11540 6% /tmpe
/dev/hd1 122880 110128 12752 89% /home
/dev/lv00 106496 24948 81548 23% /usr/local� �

The previous display file systems command is beneficial because the
block numbers can easily be converted to MBs and the output is similar
to that for the df command in AIX V3.2. If you also want to display i-node
information in a wider output format, then use the -v flag as well in the
previous df command.

As is discussed elsewhere, du shows us that /home has physically used
103325 x 1024 byte blocks, whereas df says that 110128 x 1024 byte
blocks have been allocated. This means that we currently have an
overhead of about 6% ((110128 - 103325) / 122880) of the total size of
/home required to store the indices, or i-nodes, that are used by the
operating system when we want to access our data.

• fsdb

182 AIX Storage Management

� �
fsdb /home

File System: /home

File System Size: 245760 (512 byte blocks)
Disk Map Size: 18 (4K blocks)
Inode Map Size: 4 (4K blocks)
Fragment Size: 512 (bytes)
Allocation Group Size: 8192 (fragments)
Inodes per Allocation Group: 1024
Total Inodes: 30720
Total Fragments: 245760� �

Exit the fsdb command by typing q and pressing the Enter key.

• lsfs

� �
lsfs -q /home
Name Nodename Mount Pt VFS Size Options Auto

Accounting
/dev/hd1 -- /home jfs 245760 -- yes

no
(lv size: 245760, fs size: 245760, frag size: 512, nbpi: 4096, compress: no)

#� �
This command output complements the the journaled file system
attributes obtained from the fsdb command. Of course, not all of these
attributes are displayed if you execute these commands in AIX Version 3.

Warning - debug journaled file system carefully

The fsdb command, along with the dumpfs command that is not
discussed here, should only be used by very experienced systems
administrators as a last resort when they want to try to recover data
from a damaged journaled file system. If you think that you are likely
to need to use them, it would be wise to practice using these
low-level commands before a disaster.

 2. Commands included in filesets of other program products:

As you become familiar with the information discussed in the AIX V3.2
Performance Monitoring and Tuning Guide article ″Monitoring and Tuning
Disk I/O″ in the AIX Version 4.1 Hypertext Information Base Library, it is clear
that the following commands provide you with much more journaled file
system information. Although these commands were part of the optional
program product ″Extended Commands″ (bosext1.extcmds.obj) in AIX V3.2,
they are now part of the separate licensed program product known as
″Performance Toolbox/6000 , product number 5696-623″ in AIX Version 4.
Hence, this product is a wise investment if you really want to fine tune and
monitor your journaled file system configuration and performance.

• fileplace

This command tells us what physical and logical blocks are used by a
file. Consider the following example discussed in the AIX V3.2
Performance Monitoring and Tuning Guide article ″Monitoring and
Tuning Disk I/O″.

Chapter 7. Storage Management Files and Commands Summary 183

� �
fileplace -pv big1

The resulting report is:

File: big1 Size: 3554273 bytes Vol: /dev/hd10 (4096 byte blks)
Inode: 19 Mode: -rwxr-xr-x Owner: frankw Group: system

Physical blocks (mirror copy 1) Logical blocks
------------------------------- --------------
01584-01591 hdisk0 8 blks, 32 KB, 0.9% 01040-01047
01624-01671 hdisk0 48 blks, 192 KB, 5.5% 01080-01127
01728-02539 hdisk0 812 blks, 3248 KB, 93.5% 01184-01995

868 blocks over space of 956: space efficiency = 90.8%
3 fragments out of 868 possible: sequentiality = 99.8%� �

The above numbers do accurately reflect the extent of file fragmentation;
the lower the percentages the greater the fragmentation. Each row
above represents a contiguous area of disk space, so this file occupies
three disk chunks, or fragments. The first physical block used is block
01584, and the last is block 02539, so that the total number of contiguous
physical disk blocks that are available in this range is (02539 - 01584 +
1) = 956.

space efficiency = blocks_used / blocks_available

In this example, this is 868 / 956 = 90.8%. As expected, 100% efficiency
can be achieved if all available blocks are used for one contiguous file.

sequentiality = (blocks_used - (number_fragments - 1)) / blocks_used

Hence, in this case (868 - (3 - 1)) / 868 = 99.8%. This means that in the
ideal case where a single fragment file uses x contiguous blocks, its
sequentiality is (x - 0) / x = 100%.

• filemon

The filemon command monitors a trace of file system and I/O system
events and reports on the file and I/O access performance during that
period. It can produce an extensive output, an example of which is
presented in the AIX V3.2 Performance Monitoring and Tuning Guide
article ″Monitoring and Tuning Disk I/O″. Note this article′s
recommendation to experiment with this command. This will help you
become familiar with its output, and also estimate the performance
degradation that you will experience when you use this tool in a
production environment.

184 AIX Storage Management

Chapter 8. Practical Examples

This chapter contains a series of practical examples covering a variety of
storage management and problem solving situations.

Each example has three major sections:

• An introduction and general description.

• A summary of the commands that can be used by an experienced systems
administrator.

• A detailed description that may include:

− What the output is and what it means.

− Why a particular command is used.

− How to use the commands, usually with ASCII smit screens, note that on
your screen, the output may vary due to:

- A different level of AIX Version 4.

- Different terminal attributes such as the number of lines displayed in
an output screen.

Warning - read smit documentation

Before using smit:

• Become familiar with relevant smit documentation, such as
that provided in AIX Version 4.1 System Management Guide:
Operating System and Devices.

• Be aware that some of the storage management menus have
been changed.

8.1 Planning
Before a key is pressed to configure the available equipment, careful planning is
a wise investment. Hence, we begin by considering what volume group(s) our
disks should belong to, and how should they be connected to the RISC
System/6000.

We have nine SCSI-1 disks available that range in capacity from 355MB to 1.2GB.
To show a number of different logical volume manager features coexisting in AIX
Version 4, these disks can be initially arranged in four volume groups. The
implementation of this volume group setup is shown and discussed in 8.3,
“Storage Subsystem Design” on page 203.

Since there are two SCSI-1 adapters available for the nine available SCSI-1
disks, then four disks can be connected to one adapter, and five disks can be
connected to the second adapter. The CD-ROM and 8mm tape drive are not
likely to be involved in as much I/O as the disks, so their location is not as
critical.

A typical setup of this hardware can be seen from the output of the following
lsdev command:

 Copyright IBM Corp. 1994 185

� �
lsdev -Cc disk
hdisk0 Available 00-08-00-0,0 670 MB SCSI Disk Drive
hdisk1 Available 00-08-00-1,0 670 MB SCSI Disk Drive
hdisk2 Available 00-08-00-2,0 355 MB SCSI Disk Drive
hdisk4 Available 00-07-00-0,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk5 Available 00-07-00-1,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk6 Available 00-07-00-2,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk7 Available 00-07-00-3,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk3 Available 00-08-00-3,0 320 MB SCSI Disk Drive
hdisk8 Available 00-07-00-4,0 857 MB SCSI Disk Drive
lsdev -Cc cdrom
cd1 Available 00-08-00-4,0 CD-ROM Drive
#
lsdev -Cc tape
rmt0 Available 00-08-00-6,0 2.3 GB 8mm Tape Drive� �

Note that the allocation of hdisk names resulted from the following:

• Lower SCSI addresses are configured first

• The SCSI adapter in slot seven was added after that in slot eight, so its
devices were also configured later

Warning - For hdiskx, x may change

We expect when this system is reinstalled, the disk devices will be
reconfigured. Depending on what is powered on at installation time, the disk
name assigned to a particular device at a particular SCSI address may
change.

The devices connected to the SCSI adapter in slot seven are inside a model
9334-500, which is designed to provide extra storage capacity for the RISC
System/6000. The power supply in the 9334, and the second SCSI adapter in the
RISC System/6000, combine to help to reduce the number of single points of
failure that exists with the standard components in the RISC System/6000. All
this equipment is located in close proximity in an appropriate office environment.

Once the hardware is correctly connected and working, the operating system
needs to be installed, by default in the rootvg, before detailed configuration can
be completed. To enable the rootvg to be mirrored, AIX Version 4 is initially
installed only on hdisk0, before a copy is created on hdisk2. Please refer to the
AIX Version 4.1 Installation Guide both before and during the initial installation of
AIX Version 4 on hdisk0.

More detail regarding the level of AIX Version 4 in use can be obtained from the
commands lslpp or uname (please refer to the AIX Version 4.1 Commands
Reference for usage details). For these practical examples, we used:

� �
uname -a
AIX 9421A-UP bilbo 1 4 000004461000
#� �

The mirrored operating system implementation is described in the next section.

186 AIX Storage Management

Warning - Always have good backups in place

It is very important that you are familiar with the backup concepts discussed
elsewhere in this book (see 5.5, “Planning Backup Strategies” on page 89),
and also in the book AIX Version 4.1 System Management Guide: Operating
System and Devices, (you may have AIX Version 4.1 System Management
Guide: Operating System and Devices available in your AIX Version 4.1
Hypertext Information Base Library).

If any example in this document does not work in your particular
circumstances, then reinstallation from a backup may be your only viable
recovery method.

8.2 rootvg Mirroring - Implementation and Recovery
Once AIX Version 4 has been installed, this section describes how to create a
mirror of rootvg and then how to test it. In the following example, a second copy
of each logical volume on hdisk0 is made on hdisk2 which is an externally
powered 355MB disk unit. This device is then powered off at various times to test
the continued availability of the operating system. The availability test is
discussed for two scenarios:

• Disk power failure before AIX Version 4 is loaded when the RISC
System/6000 is turned on.

• Disk power failure during normal operations.

This section is based on the suggestions provided by the AIX Version 4.1
Hypertext Information Base Library articles Mirroring rootvg for Maximum
Operating System Availability and Recovering a Disk Drive without Reformatting.
As suggested by the title of this article, the availability test assumes that the disk
media has not been damaged and thus has a valid, unique PVID. This means
that the recovery steps can be as simple as a system reboot once the non-media
related disk problem is fixed.

However, if the media fails:

 1. Remove all physical partit ions from the failed disk.

 2. Remove the failed disk from the volume group.

 3. Add the new disk to the volume group.

 4. Rebuild the logical volume copies and synchronize them.

 5. Rebuild any single copy logical volumes and restore backups.

For more details, refer to the AIX Version 4.1 Hypertext Information Base Library
article Recovering from Disk Drive Problems.

The performance implications of rootvg mirroring is not investigated in this
example.

Chapter 8. Practical Examples 187

8.2.1.1 Command Line Summary
 1. Document your initial rootvg configuration; the following commands produce

the necessary output:

� �
lspv
lsvg -l rootvg
lsvg rootvg
lsvg -p rootvg
lslv -m hd9var
lsvg -M rootvg� �

 2. Create logical volume copies:

• Turn off quorum checking:

� �
chvg -a y -Q n rootvg� �

• Add a physical volume to mirror to (if necessary), in these examples we
are mirroring to a new physical volume called hdisk2:

� �
extendvg -f rootvg hdisk2� �

This command assumes that you wish to add a new physical volume
called hdisk2 to the root volume group.

• Create the mirrored copies for all logical volumes:

� �
mklvcopy hd4 2 hdisk2� �

Repeat this for every logical volume in rootvg:

− hd1 (/home).

− hd2 (/usr).

− hd3 (/tmp).

− hd8 (jfslog).

− hd9var (/var).

− hd6 (default paging space).

− Any other logical volumes that you may have created, except the
boot logical volume (see detailed guidance for the reasoning behind
this).

 3. Create second boot logical volume, and build a boot image on it:

� �
mklv -y hd5x -t boot -a e rootvg 1 hdisk2
bosboot -a -l /dev/hd5x -d /dev/hdisk2� �

 4. Update bootlist:

� �
bootlist -m normal hdisk0 hdisk2� �

 5. Synchronize rootvg copies:

� �
varyonvg rootvg� �

188 AIX Storage Management

This completes the command line overview of the process. A detailed
description of how to achieve mirroring for the root volume group now follows.

8.2.1.2 Detailed Guidance
How to Document the Initial rootvg Configuration: The initial layout of rootvg
can be seen from the output of the following commands. More examples
describing the use of these commands, and similar variations to them, are
provided in Chapter 7, “Storage Management Files and Commands Summary”
on page 139.

In order to see how to use smit to execute most of these commands so that the
output can be viewed in the smit.log file, then please refer to “How to Document
the Volume Group Design” on page 234.

� �
lspv
hdisk0 00014732b1bd7f57 rootvg
hdisk1 0001221800072440 newvg
hdisk2 00012218da42ba76 None
hdisk6 000002007bb618f5 myvg
hdisk7 000002007bb623c1 None
hdisk3 0002479088f5f347 None
#
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 8 1 open/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 1 1 open/syncd N/A
hd4 jfs 1 1 1 open/syncd /
hd2 jfs 50 50 1 open/syncd /usr
hd9var jfs 3 3 1 open/syncd /var
hd3 jfs 2 2 1 open/syncd /tmp
hd1 jfs 1 1 1 open/syncd /home
paging00 paging 16 16 1 open/syncd N/A
lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 00000446899fd108
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 159 (636 megabyte)
MAX LVs: 256 FREE PPs: 76 (304 megabyte)
LVs: 9 USED PPs: 83 (332 megabyte)
OPEN LVs: 8 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 1 AUTO ON: yes
#
lsvg -p rootvg
rootvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk0 active 159 76 28..24..00..00..24
#
lslv -m hd9var |pg
hd9var:/var
hd9var:/var
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0074 hdisk0
0002 0003 hdisk0
0003 0004 hdisk0
#� �

It is also useful to document the complete current partition map of the rootvg
volume group by using the command lsvg -M rootvg|pg. This command may

Chapter 8. Practical Examples 189

produce a long output for a large volume group so its output is not included
here. However, the outputs of lsvg -l rootvg and lslv -m hd9var clearly show,
from the one to one ratio of logical to physical partitions, that no logical volume
in the rootvg is currently mirrored.

How to Create the rootvg Logical Volume Mirror Copies: In this example, the
mirrored rootvg consists of only two disks. This means that by default, one disk
contains two copies of the VGDA. This disk is thus required to be operational to
maintain quorum. To ensure that the rootvg volume group stays online when this
disk fails, using the mirror logical volume copies, quorum needs to be turned off.

Turn the rootvg quorum function off by entering:

 1. smitty vg.

 2. From the Volume Groups menu select Set Characteristics of a Volume
Group .

 3. From the Set Characteristics of a Volume Group menu, select Change a
Volume Group .

 4. On the menu Change a Volume Group, type in rootvg for the option labelled
VOLUME GROUP name and press the Enter key (this could also be selected from
the option F4=List).

 5. Change the QUORUM field so the screen looks like:

� �
Change a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name rootvg
* Activate volume group AUTOMATICALLY yes +

at system restart?
* A QUORUM of disks required to keep the volume no +

group on-line ?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 6. As suggested by Enter=Do , press the Enter key.

When smit returns OK, a second disk is added to rootvg so that mirror copies of
all rootvg logical volumes can be created on it.

To add hdisk2 to the rootvg:

 1. Use F3=Cancel to return the menu named Set Characteristics of a Volume
Group.

 2. From this menu, select Add a Physical Volume to a Volume Group .

 3. Type rootvg and hdisk2 so that the screen looks like:

190 AIX Storage Management

� �
Add a Physical Volume to a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [rootvg]
* PHYSICAL VOLUME names [hdisk2]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 4. As suggested by Enter=Do , press the Enter key.

 5. Use F10=Exit to return to the command prompt.

Now create a mirrored copy of all file systems, the file systems log, and the
paging spaces on hdisk2.

For the root file system:

 1. Type smitty lv.

 2. Select Set Characteristic of a Logical Volume .

 3. Select Add a Copy to a Logical Volume .

 4. To select the root file system, either type hd4 and press the Enter=Do key, or
press F4=List to display a screen that looks like:

� �
Add Copies to a Logical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

| LOGICAL VOLUME name |

* | |
| |
| Move cursor to desired item and press Enter. |
| |
| loglv00 jfslog 1 1 1 closed/syncd N/A |
| lv00 jfs 1 2 2 closed/stale /myfs|
| hd6 paging 8 8 1 open/syncd N/A |
| hd5 boot 1 1 1 closed/syncd N/A |
| hd8 jfslog 1 1 1 open/syncd N/A |
| hd4 jfs 1 1 1 open/syncd / |
| hd2 jfs 50 50 1 open/syncd /usr |
| hd9var jfs 3 3 1 open/syncd /var |
| hd3 jfs 2 2 1 open/syncd /tmp |
| hd1 jfs 1 1 1 open/syncd /home|
| paging00 paging 16 16 1 open/syncd N/A |
| |
| F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F10=Exit Enter=Do |
F5| /=Find n=Find Next |
|__|� �

Chapter 8. Practical Examples 191

 5. Press the down key until the line that contains hd4 is highlighted, and then
press the Enter=Do key.

 6. Move the cursor again to the field named NEW TOTAL number of logical
partition copies and then use the Tab key to select the value 2.

 7. Leave the field SYNCHRONIZE the data in the new logical partition copies?
with its default of no since we′ ll synchronize it later in “How to Synchronize
rootvg” on page 195.

 8. Move the cursor to the field named PHYSICAL VOLUME names and then either
type in hdisk2 or use the F4=List function key to select it so the screen
looks like:

� �
Add Copies to a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name hd4
* NEW TOTAL number of logical partition 2 +

copies
PHYSICAL VOLUME names [hdisk2] +
POSITION on physical volume center +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

File containing ALLOCATION MAP []
SYNCHRONIZE the data in the new no +
logical partition copies?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 9. When smit returns OK to indicate that the command is complete, use the
F3=Cancel key a few times to return to the menu with the title Logical
Volumes.

10. Repeat the above copy creation for each of the following logical volumes:

a. Copy hd1 that contains /home.

b. Copy hd2 that contains /usr.

 c. Copy hd3 that contains /tmp.

d. Copy hd8 that contains the file system log.

e. Copy hd9var that contains /var.

f. Copy hd6 that contains the default paging device.

g. Copy paging00 that contains a second paging device.

192 AIX Storage Management

Warning - Check your dump device

If you have a new AIX Version 4 system, then the hd6 logical volume
is also likely to be the system dump device. This can be checked by
the command sysdumpdev.

If hd6 is the dump device and you want to be able to capture a valid
dump, then you must change the primary dump device by using the
command sysdumpdev -p /dev/dump_device_name -P.

Alternatively, you can follow the smit menus obtained from the
command smitty sysdumpdev to check and, if necessary, change the
primary dump device.

Do not mirror the dump device. Please refer to the article Developing
a Logical Volume Strategy in AIX Version 4.1 Hypertext Information
Base Library. Any dumps to a mirrored dump device will fail.

h. We can easily check that the copies have been created by using the
following lsvg command:

� �
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/stale N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/stale N/A
hd4 jfs 1 2 2 open/stale /
hd2 jfs 50 100 2 open/stale /usr
hd9var jfs 3 6 2 open/stale /var
hd3 jfs 2 4 2 open/stale /tmp
hd1 jfs 1 2 2 open/stale /home
paging00 paging 16 32 2 open/stale N/A
#� �

Note that the logical volumes are currently in a stale state. This reflects
the fact that the data in the most recently created copies is older than
that in the original copies; the data is synchronized in a subsequent step.

i. As stated in the AIX Version 4.1 Hypertext Information Base Library
article Mirroring rootvg for Maximum Operating System Availability, the
creation of a mirror copy of hd5, the boot logical volume, is not
recommended. Instead, create a new boot logical volume called hd5x.

1) Select, in the Logical Volumes menu, the option Add a Logical
Volume .

2) When prompted for the VOLUME GROUP name, type in rootvg and press
Enter=Do , or use F4=List to select it.

3) In the Add a Logical Volume menu, leave all entries as default,
except for Logical volume NAME, Number of LOGICAL PARTITIONS,
PHYSICAL VOLUME names, and Logical volume TYPE, so that the screen
looks like:

Chapter 8. Practical Examples 193

� �Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [hd5x]

* VOLUME GROUP name rootvg
* Number of LOGICAL PARTITIONS [2] #

PHYSICAL VOLUME names [hdisk2] +
Logical volume TYPE [boot]
POSITION on physical volume outer_edge +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation
Number of COPIES of each logical 1 +

partition
Mirror Write Consistency? yes +
Allocate each logical partition copy yes +

on a SEPARATE physical volume?
[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Note that you can use any Logical volume NAME, and you can use
more than one physical partition, although this does waste space
since hd5 only occupies 4MB. For the Logical volume TYPE, you must
type in the word boot to ensure that you do not get the default type of
jfs, which is for an ordinary jfs file system like /home. Finally, do not
forget to type hdisk2 for the PHYSICAL VOLUME name so that hd5x is not
created on hdisk0, which is where hd5, the original boot logical
volume, exists.

4) Use F10=Exit to exit smit when the command completion is indicated
by:

� �COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

hd5x

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

5) Now that hd5x exists, build a boot image on it by entering the
following command after using the F10=Exit key to leave smit.

� �# bosboot -a -l /dev/hd5x -d /dev/hdisk2

bosboot: Boot image is 4259 512 byte blocks.� �

194 AIX Storage Management

The output will appear after approximately 30 seconds.

Warning - Be careful with bosboot

It is very important to be aware of the following advice given in
the AIX Version 4.1 Hypertext Information Base Library article
Mirroring rootvg for Maximum Operating System Availability.

If you put on a ptf that performs a bosboot or personally do bosboot
and you are mirroring the rootvg, you must remember to do a
bosboot to the secondary /blv.

Furthermore, we suggest that you execute the command bootlist
-m normal hdisk0 hdisk2, and then reboot using hd5 which is on
hdisk0, before you execute any command that calls the bosboot
command.

If you do not do this, you may get errors such as:

� �installp: bosboot verification starting...

0301-168 bosboot: The current boot logical volume, /dev/hd5,
does not exist on /dev/hdisk2.

The installation or updating script is unable to continue
installp: An error occurred during bosboot processing.

Please correct the problem and rerun installp.� �

11. Now that all logical volumes in the rootvg exist with their primary copy on
hdisk0 and their mirror copy on hdisk2, the list of devices to attempt to boot
from in normal mode needs to be updated so the RISC System/6000 can boot
from hdisk2 if hdisk0 is not available.

Use the command:

� �
#
bootlist -m normal hdisk0 hdisk2
#� �

How to Synchronize rootvg: The newly created mirror copies need to be
synchronized with the originals to complete the creation of a mirrored rootvg.
This can be done with the command syncvg -v rootvg, or, to use smit:

 1. Type smitty vg.

 2. From the Volume Groups menu, select Activate a Volume Group .

 3. For the field VOLUME GROUP name, type rootvg or use the F4=List to select it so
that the screen looks like:

Chapter 8. Practical Examples 195

� �
Activate a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [rootvg] +
RESYNCHRONIZE stale physical partitions? yes +
Activate volume group in SYSTEM no +
MANAGEMENT mode?

FORCE activation of the volume group? no +
Warning--this may cause loss of data
integrity.

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 4. Press Enter=Do to execute the synchronization process.

This smit menu actually starts the command varyonvg rootvg which can be
seen from the F6=Command function key. The varyonvg command actually
starts the syncvg command before varyonvg exits. This can be seen by
pressing F10=Exit when smit returns an OK prompt, and then searching
through the output of the ps -ef command to find:

� �
root 7066 1 0 13:33:36 pts/0 0:00 bsh /usr/sbin/syncvg -v root
root 7264 6494 0 13:17:41 pts/1 0:00 -ksh
root 7604 7066 1 13:34:50 pts/0 0:00 lresynclv -l 00000446899fd108
root 7858 7264 5 13:34:46 pts/1 0:00 lsvg -l rootvg
root 8118 6056 34 13:35:05 pts/0 0:00 ps -ef� �

196 AIX Storage Management

Warning - syncvg continues

Although smit quickly returns an OK prompt, syncvg continues to run, and,
depending on the size of your rootvg, may run for a long time.

As well as the previous ps -ef command, you can regularly repeat the
following command until the field STALE PPs has a value of 0, which
indicates synchronization is complete.

� �
lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 00000446899fd108
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)
MAX LVs: 256 FREE PPs: 76 (304 megabytes)
LVs: 10 USED PPs: 167 (668 megabytes)
OPEN LVs: 8 QUORUM: 1
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 1 STALE PPs 76
ACTIVE PVs: 2 AUTO ON: yes� �

In this example, syncvg required approximately one hour and 15 minutes
on a quiesced system.

Note that the value of the QUORUM: field is 1 because the quorum function
has been turned off.

How to Check the Implementation of a Mirrored rootvg: When syncvg finally
completes, execute the following command:

� �
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/syncd N/A
hd4 jfs 1 2 2 open/syncd /
hd2 jfs 50 100 2 open/syncd /usr
hd9var jfs 3 6 2 open/syncd /var
hd3 jfs 2 4 2 open/syncd /tmp
hd1 jfs 1 2 2 open/syncd /home
paging00 paging 16 32 2 open/syncd N/A
hd5x boot 2 2 1 closed/syncd N/A
#� �

This shows there now exists two boot type logical volumes, two copies of all
other logical volumes, (indicated by the 2:1 ratio of PPs to LPs), and all the
rootvg logical volumes are now in a syncd state.

Other commands you can use to check the new rootvg configuration include:

Chapter 8. Practical Examples 197

� �
lslv -m hd9var |pg
hd9var:/var
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0074 hdisk0 0003 hdisk2
0002 0003 hdisk0 0004 hdisk2
0003 0004 hdisk0 0005 hdisk2
lsvg -p rootvg
rootvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk0 active 159 76 28..24..00..00..24
hdisk2 active 84 0 00..00..00..00..00
lsvg -M rootvg|pg
rootvg
more output.....
hdisk0:134 hd2:48:1
hdisk0:135 hd2:49:1
hdisk0:136-159
hdisk2:1 hd2:49:2
hdisk2:2 hd2:50:2
hdisk2:3 hd9var:1:2
more output.....� �

Notice that hdisk2 is full. This means that we can not currently extend the rootvg
logical volumes that have mirror copies on hdisk2. However, we can create new
non-mirrored logical volumes on hdisk0 in the rootvg volume group, but their
data would be unavailable if hdisk0 fails.

The implementation of a mirrored rootvg is now complete.

How to Test the rootvg Logical Volume Mirror Copies: Recall that the bootlist
command used earlier forces the RISC System/6000 to try to boot from hdisk0
before hdisk2. Hence, the first test requires AIX Version 4 to be shut down, and
then the internal disks must be disconnected from their power cables before the
RISC System/6000 is powered back on.

Warning - Handle hardware with care

Ensure that a qualified individual is available to follow the correct procedures
required when a RISC System/6000 unit is serviced.

There are error messages displayed during the boot sequence that are
associated with the powered off internal disks. You can easily confirm there is a
disk problem from the following commands:

198 AIX Storage Management

� �
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/stale N/A
hd4 jfs 1 2 2 open/stale /
hd2 jfs 50 100 2 open/stale /usr
hd9var jfs 3 6 2 open/stale /var
hd3 jfs 2 4 2 open/stale /tmp
hd1 jfs 1 2 2 open/stale /home
paging00 paging 16 32 2 open/syncd N/A
hd5x boot 2 2 1 closed/syncd N/A
#
lsdev -Cc disk
hdisk0 Defined 00-08-00-0,0 670 MB SCSI Disk Drive
hdisk1 Defined 00-08-00-1,0 670 MB SCSI Disk Drive
hdisk2 Available 00-08-00-2,0 355 MB SCSI Disk Drive
hdisk4 Available 00-07-00-0,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk5 Available 00-07-00-1,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk6 Available 00-07-00-2,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk7 Available 00-07-00-3,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk3 Available 00-08-00-3,0 320 MB SCSI Disk Drive� �

The lsvg command shows how the rootvg logical volumes are now in a stale
state, and the lsdev shows that the internal hdisk0 is not available for normal
operations.

The command:

� �
bootinfo -b
hdisk2
#� �

shows that the mirrored rootvg configuration has worked, since AIX Version 4
has now booted from hdisk2 instead of hdisk0.

Warning - do not change rootvg configuration

Do not make any changes to rootvg configuration at this point since this
information would only be recorded on the copies on hdisk2. Since this test
sequence involves a reboot next from hdisk0 while hdisk2 remains powered
off, then the VGSA on hdisk0 will be flagged as having the most recent copies
of the rootvg logical volumes.

Hence the hdisk0 copies are used to overwrite the hdisk2 copies during the
subsequent synchronization step after the external 355MB hdisk2 device is
powered back on.

Shut down the RISC System/6000 by executing the shutdown -f command, so that
power can then be restored to hdisk0. Since hdisk2 is an external 355MB disk
unit, leave it powered off when the RISC System/6000 is turned on so that the
RISC System/6000 will now boot from hdisk0 again instead of hdisk2.

Among the boot messages, you will see:

Chapter 8. Practical Examples 199

� �
varyonvg: Volume group rootvg is varied on.
PV Status: hdisk0 00014732b1bd7f57 PVACTIVE

hdisk2 00012218da42ba76 PVMISSING
0516-068 lresynclv: Unable to completely resynchronize volume. Run

diagnostics if necessary.
0516-932 /usr/sbin/syncvg: Unable to synchronize volume group rootvg.
0516-068 lresynclv: Unable to completely resynchronize volume. Run

diagnostics if necessary.
0516-932 /usr/sbin/syncvg: Unable to synchronize volume group rootvg.� �

This is normal since hdisk2 really is unavailable. The varyonvg rootvg command
is run automatically during the boot sequence and thus the above errors are
recorded.

We can again confirm that hdisk0 was used to boot by the command:

� �
bootinfo -b
hdisk0� �

You can also repeat the command lsvg -l rootvg to verify that the logical
volumes are still in a stale state.

In this example, we were surprised that the paging devices hd6 and paging00
were not in a stale state. This may change in a later level of AIX Version 4 than
the one that we tested.

However, you can force the paging devices to become stale by starting many
memory intensive processes in a loop. For example, you can use the graphical
version of the AIX Version 4.1 Hypertext Information Base Library from the
command info &.

We can see that the paging devices are now stale from:

� �
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/stale N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/stale N/A
hd4 jfs 1 2 2 open/stale /
hd2 jfs 50 100 2 open/stale /usr
hd9var jfs 3 6 2 open/stale /var
hd3 jfs 2 4 2 open/stale /tmp
hd1 jfs 1 2 2 open/stale /home
paging00 paging 16 32 2 open/stale N/A
hd5x boot 2 2 1 closed/syncd N/A
#� �

200 AIX Storage Management

Warning - Don ′ t be misled by lsps

Note that the output of lsps:

� �
lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto
paging00 hdisk0 rootvg 64MB 43 yes yes
paging00 hdisk2 rootvg 64MB 43 yes yes
hd6 hdisk0 rootvg 32MB 100 yes yes
hd6 hdisk2 rootvg 32MB 100 yes yes
#� �

may indicate that all copies of paging devices are accessible, when in fact
those on hdisk2 are not.

More detailed information about the status of each logical partition and physical
partition can be obtained from the commands discussed in Chapter 7, “Storage
Management Files and Commands Summary” on page 139. For example, use:

� �
lslv -p hdisk2 hd6
hdisk2:hd6:N/A
STALE USED STALE USED STALE STALE USED USED STALE STALE
STALE STALE STALE STALE STALE STALE STALE

0001? 0002? 0003? 0004? 0005? 0006? 0007? 0008? STALE STALE
USED USED USED USED USED USED USED
more output.....� �

to see that all copies of hd6 logical partitions on hdisk2 happen to be in a STALE
state, as indicated by the question mark.

Also note that not all physical partitions on hdisk2 are STALE; those physical
partitions that have not been accessed for any I/O operation are still in a USED
state. However, as seen from the lsvg -l rootvg command, the logical volumes
that these physical partitions belong to have been marked stale.

How to return to a synchronized state: The most simple method is to reboot the
RISC System/6000. However in this example, assuming there are other users
currently on the system, configure the defined hdisk2 using the following steps:

 1. Execute the command smitty devices.

 2. Select Fixed Disk .

 3. Select Configure a Defined Disk .

 4. From the Disk sub-menu that appears, select hdisk2 Defined 00-08-00-2,0
355 MB SCSI Disk Drive .

 5. Press F10=Exit when smit returns an OK prompt.

After you′ve confirmed that the disk is Available from the lsdev -Cc disk
command, repeat the synchronization step used in the creation of the mirrored
rootvg. Hence:

 1. Execute the command smitty vg.

 2. Select Activate a Volume Group .

 3. Type rootvg or use F4=List to select it.

Chapter 8. Practical Examples 201

 4. Press the Enter=Do key.

 5. Press F10=Exit when smit returns an OK prompt.

 Note

We suggest that you use the varyonvg command rather than both the chpv and
syncvg commands to synchronize the rootvg volume group.

From the output of the following command:

� �
iostat

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.3 12.9 6.1 5.1 78.9 10.0

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 14.9 55.5 5.3 231182 65737
hdisk3 0.0 0.2 0.0 1052 0
hdisk1 0.2 1.2 0.0 1070 5191
hdisk4 0.2 2.8 0.0 14777 69
hdisk5 0.1 1.6 0.0 8694 46
hdisk6 0.0 0.6 0.0 3172 154
hdisk7 0.0 0.2 0.0 1052 0
hdisk2 1.2 10.9 0.1 43 58171
#� �

we can see that, as discussed earlier, the copies on hdisk0 are most recent and
are being read so that a write operation can update the copies on hdisk2 now
that it is available again.

Simulation of disk failure during normal operations: This test uses hdisk2, a
355MB external disk device. Since this is an external disk, we can power it off
while the system is being used to verify that normal processing is not halted (we
are not concerned about any performance implications in this scenario).

First execute the lsvg -l rootvg command to confirm that all rootvg logical
volumes are now in a syncd state.

Power off hdisk2 and repeat the command to obtain output such as:

� �
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/stale N/A
hd4 jfs 1 2 2 open/stale /
hd2 jfs 50 100 2 open/stale /usr
hd9var jfs 3 6 2 open/stale /var
hd3 jfs 2 4 2 open/syncd /tmp
hd1 jfs 1 2 2 open/syncd /home
paging00 paging 16 32 2 open/syncd N/A
hd5x boot 2 2 1 closed/syncd N/A
#� �

Note that not all rootvg logical volumes are now stale.

202 AIX Storage Management

• hd8 is stale because a write occurred to a jfs.

• hd4 is stale because / contains the ODM files that are read to help produce
the command output.

• hd2 is stale because /usr contains the lsvg command that is read so that it
can be loaded into RAM and then executed.

• hd9var is stale because there have been some temporary files created since
hdisk2 was powered off.

The other logical volumes are not currently involved in an I/O operation and so
they remain in a syncd state.

Once power is restored to hdisk2, it can again be again synchronized with hdisk0
by using the varyonvg rootvg or the corresponding smitty vg selection.

8.3 Storage Subsystem Design
For this section, it is very beneficial for the reader to become familiar with the
concepts discussed in:

• Chapter 5, “Storage Subsystem Design” on page 79.

• Chapter 6, “General AIX Storage Management” on page 95.

• AIX Version 4.1 System Management Guide: Operating System and Devices,
which may be in :cit,AIX Version 4.1 Hypertext Information Base Library on
your system.

• AIX V3.2 Performance Monitoring and Tuning Guide, which may be in AIX
Version 4.1 Hypertext Information Base Library on your system.

• The following AIX Version 4.1 Hypertext Information Base Library articles:

− Developing a Logical Volume Strategy

− Configuring a Storage System for Maximum Performance

− Developing a Volume Group Strategy

− Configuring a Storage System for Maximum Availability

− Create a File System Log on a Dedicated Disk for a User-Defined Volume
Group

− Backing Up Your System

− Installing BOS from a System Backup

− Logical Volume Storage Overview

− File Systems Overview

Once the available hardware has been reviewed (please refer to 8.1, “Planning”
on page 185), the next step in storage subsystem design is to plan and design
your volume group configuration.

Chapter 8. Practical Examples 203

8.3.1 A Volume Group Design Example
Two major aims in storage subsystem design are to achieve the optimum
performance for disk access requests (in other words, the fastest disk access
possible), and also to achieve the highest possible availability (in other words,
provide the system with as good a chance as is practically possible that disk
access requests will not fail). These aims are discussed in more detail
elsewhere, but it is important to note at this point that these aims can often
interfere with each other. In other words, a high availability configuration will
often result in slower access times to the data that is now stored in a highly
available state.

Sometimes, a particular configuration option will be beneficial for both
performance and availability, but then there is likely to be an associated extra
cost for that choice. In this example, the price paid for a second SCSI adapter
has bought us the option of placing some disk devices on this second adapter.
This can improve performance because the I/O requests workload can now be
shared between both adapters. This also improves availability if disk mirroring is
implemented using disks on different adapters, because we would then still have
access to one disk if one of the adapters failed.

However, our particular configuration and storage needs does not allow us to
fully utilize this benefit. Recall from 8.1, “Planning” on page 185 that for this
example, we have a total of nine disks to allocate. We have already allocated
one internal 670MB disk and the external 355MB disk to the rootvg volume
group. We are not interested in the performance of disk I/O for the logical
volumes in the rootvg, so we′ve allocated the slowest disks for the rootvg. We
did not use both internal 670MB disks for rootvg because we wanted to be able
to power off a rootvg disk while the system is being used; please refer to 8.2,
“rootvg Mirroring - Implementation and Recovery” on page 187.

This leaves us with seven more disks to allocate, two on the SCSI adapter in slot
eight, and five on the adapter in slot seven. Ideally, a system with multiple disks
should consist of multiple volume groups; usually such a system should have at
least one non-rootvg volume group.

The guidelines for volume group design are discussed elsewhere, see
Chapter 5, “Storage Subsystem Design” on page 79, and also refer to the article
Developing a Volume Group Strategy, but for this example, we want to create
three volume groups, primarily for safe and easy maintenance. This allows us to
do different storage management related tasks in different volume groups, and
hence we can isolate the effects of theses tasks. In other words, a volume group
synchronization operation will potentially only result in extensive I/O in two or
three disks, instead of say seven disks if they are all grouped together as one
volume group. Multiple volume groups allow journaled file systems to be
created in one volume group, and raw logical volumes can be used by
databases in another volume group. Also, we can destroy the configuration of
one volume group and its associated components (disks, logical volumes, data)
during one example without affecting the integrity of data, file systems, and
logical volumes used in other examples in other volume groups. Finally, we
have the options of implementing different quorum characteristics in the different
volume groups, and we can use a different physical partition size for each
volume group.

204 AIX Storage Management

Design Change - Now or later?

If you do not fully understand all the implications of a proposed design, but
need to implement a design today, then do so provided that you at least
understand that any future disk reallocation work may be a large job that
may require significant system maintenance time, and possible end-user
interruptions.

In our example, the seven disks left after the rootvg set up can be allocated
to one volume group, or up to seven different volume groups. There are
arguments for and against creating three volume groups. However, for
expediency and the reasons outlined above, we shall create three volume
groups, each with a physical partition size of 4MB, and we′re ready to
change this in the future if required.

The choice of three volume groups also illustrates that any design has to work
with the available resources. We only have two disks available on the SCSI
adapter in slot eight and hence the benefits of using a second adapter will only
be available to at most two volume groups. Hence we need to prioritize the
creation of our volume groups. In this example design, assume that the created
logical volumes will require all available volume group physical partitions. Also
assume that for some logical volumes, their content is such that performance is
more critical than availability (for example, assume they store large archived
databases). For other logical volumes, assume that availability is more critical
(for example, a small customer database with names and phone numbers).
Since this example has three volume groups, then one of these volume groups
will have to sacrifice either performance or availability because it will use only
one SCSI adapter. We place priority on the logical volumes that require optimal
performance, so, in this example, create the following volume groups using the
specified disks for the reasons stated:

• stripevg

This volume group is primarily intended to contain examples associated with
the new AIX Version 4 logical volume manager and file system features.
Striping is most beneficial for large sequential I/O operations, so we want to
use two large disks of similar size. Striping is meant to improve
performance, so use disks on different adapters.

Since the adapter in slot eight only has a 670MB disk and a 320MB disk, use
the 670 disk for stripevg. There are four 1.2GB disks and one 857MB disk
configured using the adapter in slot seven, so use the 857MB disk as the
second disk in stripevg.

� �
hdisk1 Available 00-08-00-1,0 670 MB SCSI Disk Drive
hdisk8 Available 00-07-00-4,0 857 MB SCSI Disk Drive� �

Use hdisk1 and hdisk8 for stripevg.

• availvg

This volume group is primarily intended to contain examples that show how
to implement a high availability strategy using two disks. Since availability is
not as important as performance, then we will use two 1.2GB disks. This is
also a realistic availability configuration because it allows the entire contents
of one disk to be duplicated on the other (conversely, if we used a 857MB

Chapter 8. Practical Examples 205

and a 1.2GB disk here, then we could only protect the contents of the 857MB
disk from failure).

We must ensure that the disks can be independently powered on, so choose
hdisk4 and hdisk6 because these 1.2GB disks are physically located in
different parts of the 9334-500 machine used in these examples. To ensure
that we can continue to operate with only one of the two disks, then we also
need to turn off the quorum attribute of availvg.

� �
hdisk4 Available 00-07-00-0,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk6 Available 00-07-00-2,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)� �

Use hisk4 and hdisk6 for availvg.

• perfvg

This volume group is primarily intended to contain examples that show how
to implement a good performance strategy. Use the 320MB disk connected to
the adapter in slot eight. There are two disks left, so this volume group can
have either two or three disks in it. However, we want to allow for future
growth so leave one 1.2GB disk unallocated. The two disks are sufficient for
the design examples in this volume group.

� �
hdisk5 Available 00-07-00-1,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk3 Available 00-08-00-3,0 320 MB SCSI Disk Drive� �

Use hdisk3 and hdisk5 in perfvg.

8.3.2 Map Files Usage and Contents
A map file is used to specify exactly which physical partitions on which disks will
contain the logical partitions for the primary, secondary, or tertiary copy of a
logical volume. The physical partitions are allocated to logical partitions for a
logical volume copy according to the order in which they appear in the map file.
Each logical volume copy should have its own map file, and the map files of
each logical volume copy should each allocate the same number of physical
partitions. Hence it offers very precise control when a logical volume is first
created (the primary copy), or when the secondary or tertiary copies of a logical
volume are subsequently created in a mirrored environment.

Before map files are created, we need to check the following:

• What is the numerical range of physical partitions for the different disk
regions?

• Which physical partitions. are free on our target disks, hdisk5 and hdisk3?

You can easily check this with the following commands:

206 AIX Storage Management

� �
lspv -p hdisk5
hdisk5:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-58 free outer edge
59-115 free outer middle
116-172 free center
173-229 free inner middle
230-287 free inner edge
lspv -p hdisk3
hdisk3:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-15 free outer edge
16-30 free outer middle
31-45 free center
46-60 free inner middle
61-75 free inner edge� �

An example of the use of map files is given in the AIX Version 4.1 Hypertext
Information Base Library article Developing a Logical Volume Strategy. However,
the examples that follow here in 8.3, “Storage Subsystem Design” on page 203
use the following map files to create logical volumes in perfvg:

• badmir.map for perflv1:

� �
hdisk5:101-110� �

• goodmir.map for perflv2:

� �
hdisk5:201-210� �

• centre.map for perflv3:

� �
hdisk5:111-112
hdisk3:44-45
hdisk5:113-114
hdisk3:42-43
hdisk5:115-116
hdisk3:40-41� �

• inedge.map for perflv4:

� �
hdisk5:233-237
hdisk3:66-70� �

• badmir.map2 for perflv1:

� �
hdisk5:91-100� �

• goodmir.map2 for perflv2:

� �
hdisk3:51-60� �

When you use map files to specify exactly which physical partitions on a disk to
use, you can ignore the inter-disk allocation policies specified by the smit
options:

• RANGE of physical volumes.

Chapter 8. Practical Examples 207

• Allocate each logical partition copy on a SEPARATE physical volume?

You can also ignore the intra-disk smit option:

• POSITION on physical volume.

When you use smit, these fields have default values which can be ignored
because the map file physical partition allocation will have the higher
precedence.

For example, the use of the two map files badmir.map and badmir.map2 to
create the two copies of the perflv1 logical volume later will result in both copies
being placed on hdisk5. Hence, this gives you the same result as you would
obtain if you set RANGE of physical volumes to minimum. This is why this field must
be ignored. If you try to change this field, you′ ll get an error like

� �
0516-690 mklv: The -a, -e, -u, -s, and -c options cannot be

used with the -m option.
Usage: mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]

[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate]
[-s Strict] [-t Type] [-u UpperBound] [-v Verify&rbr. [-w MWC]
[-x MaxLPs] [-y LVname] [-Y Prefix] [-S StripeSize] VGname NumberOfLPs
[PVname...]

Makes a logical volume.� �

8.3.3 A Design Example for Improved Availability
This section will show you how to implement a mirrored environment that will
help you minimize the disruption caused by a hardware failure. The example in
this section assumes that you accept the cost of the extra disk capacity required
to implement mirroring.

If you do not have enough physical volumes to do this, then you can still improve
your availability by specifying minimum as the target range of physical volumes
during the creation of your logical volumes. This may be helpful if you know two
physical volumes in a volume group are much more reliable than another,
because if the less reliable physical volume fails, you may be able to access the
logical volumes that exist on one of the good disks.

We have already discussed a mirrored rootvg volume group, so this example
shows you how a non-rootvg volume group can be mirrored to provide higher
availability than in a non-mirrored environment.

Since mirroring requires a minimum of two physical volumes we will also show
how to identify these resources. We will use the name, availvg for our volume
group and and for our logical volume and journaled file system we expect to use
the names, availlv and availjfs respectively.

8.3.3.1 Command Line Summary
 1. First check to see what disks are available and that they are not assigned to

an existing volume group:

� �
lspv
hdisk4 0000020158496d72 none
hdisk6 000002007bb618f5 none
#lsdev -Cc disk
hdisk4 Available 00-07-00-0,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk6 Available 00-07-00-2,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)� �

208 AIX Storage Management

 2. Create original non-rootvg using both physical volumes:

� �
mkvg -f -y′ availvg′ ′ hdisk4 hdisk6′� �

 3. Add a logical volume to the the volume group availvg creating two copies,
each on a different physical volume. The logical volume will consist of six
logical partitions:

� �
mklv -y′ availlv′ -e′ x′ -c′ 2 ′ -v′ y′ ′ availvg′ ′ 6 ′� �

 4. Create a journaled file system, /availjfs, using the logical volume created
above:

� �
crfs -v jfs -d′ availlv′ -m′ / availjfs′ -A′ yes′ -p′ rw′ -t′ no′ \
-a frag=′4096′ -a nbpi=′4096′ -a compress=′ no′� �

 5. Mount the journaled file system:

� �
mount /availjfs� �

 6. Create a copy of the journaled log logical volume:

� �
mklvcopy -e′ x′ ′ -k′ ′ loglv00′ ′ 2 ′� �

 7. Turn off quorum checking:

� �
chvg -a′ y′ -Q′ n′ ′ availvg′� �

You now have a volume group with mirrored logical volumes and a file system
mounted and ready to be used.

8.3.3.2 Detailed Description
The above summary steps have shown us how to create a mirrored volume
group. In this section we will look at each command separately, showing its
output and also verify that we have successfully created a mirrored volume
group.

How to Create a Mirrored non-rootvg Volume Group: In order to create a
mirrored volume group we need two or more free physical volumes. In our
example we have chosen hdisk4 and hdisk6, each capable of being powered on
and off separately. This will be useful in simulating a physical volume failure by
switching off one of the active physical volumes. A mirrored logical volume,
availlv, will be created with a size of six logical partitions (24MB), with each copy
on a separate physical volume.

In order to achieve high availability we need to make sure that for each of the
physical volumes selected for the volume group:

• They are on different SCSI adapters.

• They have their own power supply.

 1. First let us look at the availability of the physical volumes for the volume
group. Execute the lspv command to check which physical volumes are
currently not assigned to a volume group:

Chapter 8. Practical Examples 209

� �
lspv
hdisk0 00014732b1bd7f57 rootvg
hdisk1 000137231982c0f2 stripevg
hdisk2 00012218da42ba76 rootvg
hdisk3 00000201dc8b0b32 perfvg
hdisk4 0000020158496d72 none
hdisk5 0002479088f5f347 perfvg
hdisk6 000002007bb618f5 none
hdisk7 00000446431550c9 none
hdisk8 0001221800072440 stripevg� �

Since the physical volumes hdisk4, hdisk6, and hdisk7 are attached to the
same SCSI adapter and do not have their own power supply, we do not have
the optimal availability scenario. However, each of the physical volumes
have their own power switch, and so hdisk4 and hdisk6 will be chosen, since
we will be able to simulate a hard disk failure by switching off the power to
either one of these two disks.

 2. Create a volume group that contains these two physical volumes by
executing the smitty mkvg command. On the following screen enter the
name of the volume group and the names of the physical volumes we have
identified. After filling out the fields press Enter .

� �
Add a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
VOLUME GROUP name [availvg]
Physical partition SIZE in megabytes 4 +

* PHYSICAL VOLUME names [hdisk4 hdisk6] +
Activate volume group AUTOMATICALLY yes +
at system restart?

* ACTIVATE volume group after it is yes +
created?

Volume Group MAJOR NUMBER [] +#

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Press the F10 key after smit returns with OK.

We have now created the volume group, availvg and are ready to add a
logical volume. Note that the volume group is automatically varied on.

 3. To create the availlv logical volume:

a. Execute the smitty mklv command:

210 AIX Storage Management

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [availlv]

* VOLUME GROUP name availvg
* Number of LOGICAL PARTITIONS [6] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume outer_middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 2 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

b. This is the first screen of this smit menu. On this screen enter
information for the following fields as shown above:

• Logical volume NAME

• Number of LOGICAL PARTITIONS

• RANGE of physical volumes

• Number of COPIES of each logical partition

For the range and copies fields use F4=List function key and select the
appropriate value. The RANGE field must be maximum so that each logical
partition copy is placed on a separate physical volume. The COPIES field
must be set to 2 so that two copies of each logical partition are created.

 c. To access information on the second screen use the PageDown key on
the keyboard. The second screen of the smit menu looks like:

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]
Number of COPIES of each logical 2 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical parallel +
partition copies

Enable WRITE VERIFY? yes +
File containing ALLOCATION MAP []
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Chapter 8. Practical Examples 211

On this screen use the F4 key and select yes for the field Enable WRITE
VERIFY?. The effect of this to read the data after it has been written to
make sure that the write was successful.

d. Press Enter after making the above changes. When smit returns with OK,
press the F10 key to exit smit.

e. Execute the command lslv -m availlv to get information about the
physical partition map for the logical volume availlv:

� �
lslv -m availlv
availlv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0082 hdisk4 0085 hdisk6
0002 0082 hdisk6 0085 hdisk4
0003 0083 hdisk4 0086 hdisk6
0004 0083 hdisk6 0086 hdisk4
0005 0084 hdisk4 0087 hdisk6
0006 0084 hdisk6 0087 hdisk4� �

Note copy location

Each logical partition copy is placed on a different physical volume.

f. Let us now check to see which region of each physical volume has been
used for logical volume availlv. Execute the following commands:

� �
lspv -p hdisk4
hdisk4:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-58 free outer edge
59-81 free outer middle
82-87 used outer middle availlv jfs N/A
88-115 free outer middle
116-172 free center
173-229 free inner middle
230-287 free inner edge
lspv -p hdisk6
hdisk6:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-58 free outer edge
59-81 free outer middle
82-87 used outer middle availlv jfs N/A
88-115 free outer middle
116-172 free center
173-229 free inner middle
230-287 free inner edge� �

The above output shows that on both hdisk4 and hdisk6 the outer-middle
region of the disk is used, as expected.

 4. Now type smitty jfs and select the menu option Add a Journaled File
System on a Previously Defined Logical Volume . On the smit screen, first
press F4 then choose the logical volume availlv from the list and press
Enter . Then enter /availjfs for the field MOUNT POINT, and change the default
setting for Mount AUTOMATICALLY at system restart? to yes by pressing the F4
key and choosing yes from the list. The screen should look like the following
when all the fields have been entered:

212 AIX Storage Management

� �
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name availlv +
* MOUNT POINT [/availjfs]
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 4096 +
Number of bytes per inode 4096 +
Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Press Enter when all the fields have been filled out. The file system is
created when smit returns with OK as shown below:

� �
COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

Based on the parameters chosen, the new /availjfs JFS file system
is limited to a maximum size of 134217728 (512 byte blocks)

New File System size is 49152

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

Press F10 to exit smit.

 5. Since this is the first journaled file system created in the volume group
availvg, a log logical volume (journal log) is automatically created. This log
logical volume also needs to be mirrored through the following procedure:

a. To identify the name of the journal log within the volume group availvg,
execute the command:

� �
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 6 12 2 closed/syncd /availjfs
loglv00 jfslog 1 1 1 closed/syncd N/A� �

From the above output we can see that the journal log is called loglv00
since it is of type jfslog.

Chapter 8. Practical Examples 213

b. Execute the following command to find out which physical volume is used
to hold the journal log:

� �
lslv -m loglv00
loglv00:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0088 hdisk4� �

From the output of the above two commands, also note that only one
physical partition has been allocated to loglv00 and it is not mirrored.

 c. Now we need to create a copy of the log logical volume (journal log).
Type smitty mklvcopy and enter loglv00 for the LOGICAL VOLUME name field
and press Enter . On the next smit screen change the content of:

• NEW TOTAL number of logical partition copies to 2.

• RANGE of physical volumes to maximum.

• SYNCHRONIZE the data in the new logical partition copies? to yes.

so that the screen looks like:

� �
Add Copies to a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name loglv00
* NEW TOTAL number of logical partition 2 +

copies
PHYSICAL VOLUME names [] +
POSITION on physical volume outer_middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

File containing ALLOCATION MAP []
SYNCHRONIZE the data in the new yes +
logical partition copies?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Press Enter after making the changes. When smit returns with OK press
F10 to exit smit.

 6. Check that we have successfully mirrored the two logical volumes in the
volume group by typing:

� �
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 6 12 2 closed/syncd /availjfs
loglv00 jfslog 1 2 2 closed/syncd N/A� �

The output indicates that the jfslog loglv00 consists of one logical partition
with each physical partition copy on a different physical volume. Likewise,
for availlv, the 6 logical partitions consist of 12 physical partitions with each
copy residing on a different physical volume.

214 AIX Storage Management

 7. Now mount the file system /availjfs using the command:

� �
mount /availjfs� �

 8. We must now turn off quorum checking so that in the event of losing 51% or
more of the physical volumes (VGDAs), the volume group availvg is not
varied off automatically. Execute the command smitty chvg and enter
availvg for the field VOLUME GROUP name and press Enter . On the second smit
screen, as shown below, change the field A QUORUM of disks required to
keep the volume group on-line? to no by pressing F4 and selecting no from
the list. Then press Enter .

� �
Change a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name availvg
* Activate volume group AUTOMATICALLY yes +

at system restart?
* A QUORUM of disks required to keep the volume no +

group on-line ?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

When smit returns with OK press F10 to exit smit.

Verify a Mirrored Volume Group for Availability: We are now ready to test the
mirrored volume group availvg. As explained before, the two physical volumes
hdisk4 and hdisk6 are connected to the same SCSI adapter so we will not be
able to test for SCSI failures. However, we can simulate a disk failure by
powering off one of these physical volumes since each physical volume has its
own power switch.

You can use a Korn shell script to simulate a disk failure and recovery. The
script automatically generates some logical I/O to the volume group availvg
using the dd command and then requests the user to switch off one of the
physical volumes. Stale physical partitions are automatically detected and the
user is once again prompted to power on the physical volume. Following this,
the resynchronization of the stale partitions is then performed using the varyonvg
command. The dd operations expects the InfoExplorer file,
/usr/lpp/info/lib/en_US/aix41/cmds/cmds.rom, to be installed on the system.

You can use the script in the following example test sequence that checks the
availability of the availvg volume group.

 1. Save the following script as availvg.ksh.

Chapter 8. Practical Examples 215

� �
/var/tmp/availvg.ksh.out
integer syncrun=0;
integer cnt=1;
while true
do

PS=ps -ef | grep -v grep | grep ″dd if=/usr/lpp/″ | \
awk ′ {print $8}′

if [″$PS″ != ″timex″]
then

echo dd number: $cnt started >> /var/tmp/availvg.ksh.out 2>&1
timex dd if=/usr/lpp/info/lib/en_US/aix41/cmds/cmds.rom \

of=/availjfs/cmds.rom.dd bs=100k >> \
/var/tmp/availvg.ksh.out 2>&1 &

cnt=cnt+1
if [$syncrun > 0]
then

ps -ef >> /var/tmp/availvg.ksh.out
fi

fi
while true
do

echo ″Checking for stale partitions.″ | \
tee -a /var/tmp/availvg.ksh.out

echo ″Please wait...″ | tee -a /var/tmp/availvg.ksh.out
PPS=lsvg availvg | grep ″STALE PPs″ | awk ′ {print $6}′
if [″$PPS″ = ″0″]
then

echo ″Stale partitions not found.″ | \
tee -a /var/tmp/availvg.ksh.out

echo
″To recreate stale partitions power off one disk unit″ | \

tee -a /var/tmp/availvg.ksh.out
echo ″and press enter. To quit press CTRL-C.″ | \

tee -a /var/tmp/availvg.ksh.out
syncrun=0
read a
break

else
echo ″$PPS stale partitions currently found.″ |a\

tee -a /var/tmp/availvg.ksh.out
SYNC=ps -ef | grep -v grep | grep ″ /usr/sbin/syncvg″ | \

awk ′ {print $9}′
if [″$SYNC″ = ″/usr/sbin/syncvg″]
then

break
else

echo ″Press enter when power, cables etc checked.″ | \
tee -a /var/tmp/availvg.ksh.out

read ans
echo ″Varyonvg started...″ >> \

/var/tmp/availvg.ksh.out 2>&1
(time /usr/sbin/varyonvg availvg >> \

/var/tmp/availvg.ksh.out 2>&1) 2>> \
/var/tmp/availvg.ksh.out &

syncrun=1
break

fi
fi

done
done� �

 2. Before we execute the script let us look at the status of the logical volumes
using the lsvg -l availvg command:

� �
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 6 12 2 open/syncd /availjfs
loglv00 jfslog 1 2 2 open/syncd N/A� �

216 AIX Storage Management

The output shows that the logical volumes availlv and loglv00 are open and
synchronized, (open/syncd).

 3. Now execute the script availvg.ksh, as follows:

� �
ksh availvg.ksh
Checking for stale partitions.
Please wait...
Stale partitions not found.
To recreate stale partitions power off one disk unit
and press enter. To quit press CTRL-C.� �

 4. At this point power off physical volume hdisk6 and then press Enter .

Since the file copy operation is started again after switching off the disk, we
now have stale partitions. This is shown by the following output:

� �
Checking for stale partitions.
Please wait...
7 stale partitions currently found.
Press enter when power, cables etc checked.� �

 5. From another terminal let us look at the state of the logical volumes in
availvg before we power on hdisk6.

� �
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 6 12 2 open/stale /availjfs
loglv00 jfslog 1 2 2 open/stale N/A� �

We now note that both availlv and loglv00 are marked stale. To get more
detailed information about the particular partitions that have become stale
execute the command lslv -p hdisk6 availlv. This command is described
in Chapter 7, “Storage Management Files and Commands Summary” on
page 139.

 6. Now power on hdisk6 and press Enter . The following output is produced:

� �
Varyonvg started...
Checking for stale partitions.
Please wait...
6 stale partitions currently found.
Checking for stale partitions.
Please wait...
5 stale partitions currently found.
Checking for stale partitions.
Please wait...
4 stale partitions currently found.
Checking for stale partitions.
Please wait...
3 stale partitions currently found.
Checking for stale partitions.
Please wait...
2 stale partitions currently found.
Checking for stale partitions.
Please wait...
1 stale partitions currently found.
Checking for stale partitions.
Please wait...
Stale partitions not found.
To recreate stale partitions power off one disk unit
and press enter. To quit press Ctrl-C.� �

 7. At this point press Ctrl-C to exit the shell script.

Chapter 8. Practical Examples 217

During the availability verification test the file copy command continues to
run, even while the varyonvg command is executing, to synchronize stale
partitions. This is deliberately done to simulate continuous I/O activity which
would occur in a production system.

 8. Since the test is now complete, let us look at the state of the logical volumes
using the lsvg -l availvg command.

� �
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 6 12 2 open/syncd /availjfs
loglv00 jfslog 1 2 2 open/syncd N/A� �

As expected, the logical volume partitions have all been synchronized. From
the results of our test we can conclude that mirroring of a non-rootvg volume
group can be carried out with ease, and provides much higher availability
than a non-mirrored volume group. As we saw in our test, I/O to the good
physical volume continues during the disk failure.

8.3.4 A Design Example for Improved Performance
First, create perfvg that contains hdisk3 and hdisk5 using the same procedure as
for the creation of availvg.

 1. Execute smitty vg

 2. Select Add a Volume Group

 3. Type perfvg for VOLUME GROUP name

 4. Type hdisk3 hdisk5 for PHYSICAL VOLUME names

 5. Press Enter=Do and then F10=Exit when smit returns an OK prompt

 6. Remember to ensure that perfvg is synchronized when you have finished
creating all the logical volumes in it, if some of them are mirrored. This
procedure is discussed just before “How to Document the Volume Group
Design” on page 234.

8.3.4.1 Command Line Summary
In this section we will be creating two mapped mirrored logical volumes with
different performance characteristics, and then two mapped non-mirrored logical
volumes, also with differing performance characteristics. We will then create a
jfs log logical volume and a paging logical volume, before documenting our
design. This summary will take you through the steps you would need to follow
at the command line:

 1. Create two mapped mirrored logical volumes:

• Create a logical volume with poor performance characteristics using the
following command:

� �
mklv -y′ perflv1′ -d′ s′ -m′ / home/maps/badmir.map′ ′ perfvg′ ′ 10 ′� �

This creates a logical volume of size 10 logical partitions in the perfvg
volume group. Scheduling will be done sequentially, and mirror write
consistency is on. The physical partitions will be allocated according to
the map file badmir.map.

• Add the mirrored copy:

218 AIX Storage Management

� �
mklvcopy -m′ / home/maps/badmir.map2′ ′ perflv1′ ′ 2 ′� �

This creates a copy of the physical partitions using the map file
badmir.map2 to allocate partitions.

• Create a logical volume with good performance characteristics using the
following command:

� �
mklv -y′ perflv2′ -w′ n′ -m′ / home/maps/goodmir.map′ ′ perfvg′ ′10� �

This creates a logical volume of size 10 logical partitions in the perfvg
volume group. Scheduling will be done in parallel, and mirror write
consistency is off. The physical partitions will be allocated according to
the map file goodmir.map.

• Add the mirrored copy:

� �
mklvcopy -m′ / home/maps/goodmir.map2′ ′ perflv2′ ′ 2 ′� �

This creates a copy of the physical partitions using the map file
goodmir.map2 to allocate partitions.

 2. Create two mapped non-mirrored logical volumes:

• Create a logical volume with poor performance characteristics using the
following command:

� �
mklv -y′ perflv4′ -m′ / home/maps/inedge.map′ ′ perfvg′ ′ 10 ′� �

This creates a logical volume of size 10 logical partitions, the physical
partitions being allocated according to the map in inedge.map.

• Create a logical volume with good performance characteristics using the
following command:

� �
mklv -y′ perflv3′ -m′ / home/maps/center.map′ ′ perfvg′ ′ 10 ′� �

This creates a logical volume of size 10 logical partitions, the physical
partitions being allocated according to the map in center.map.

 3. Create a jfslog logical volume:

• Create the logical volume using the following command:

� �
mklv -y′ perflog′ -t′ jfslog′ -a′ c′ ′ perfvg′ ′ 1 ′ ′hdisk5′� �

This will create a jfslog logical volume of size 4MB, located in the center
partitions of the disk hdisk5 in the perfvg volume group.

• Format the jfslog using the following command:

� �
/usr/sbin/logform /dev/perflog
logform: destroy /dev/perflog (y)?

#� �
This initializes the jfslog logical volume for use.

 4. Create a paging logical volume:

Chapter 8. Practical Examples 219

• Create the logical volume using the following command:

� �
mklv -y′ perfpg′ -t′ paging′ -a′ c′ -e′ x′ -c′ 2 ′ -w′ n′ ′ perfvg′ ′ 5� �

This will create a paging space logical volume of size 5 logical partitions,
using physical partitions located in the center of the disk for maximum
performance. A mirrored copy will be created, and mirror write
consistency will be set to off. The maximum number of disks possible will
also be used to maximize performance.

• Ensure the paging space will be activated at each system reboot using
the following command:

� �
chps -a′ y′ ′ perfps′� �

• Activate the new paging space using the following command:

� �
swapon /dev/′ perfps′� �

This causes the system to begin using the new page space.

 5. Synchronize the volume group:

When the following command exits, check that any commands that it calls,
such as syncvg, have also exited.

� �
varyonvg perfvg� �

 6. Document the volume group design:

Create two files:

a. /home/vginfo/vg.detail to contain a complete detailed partition map from
the lsvg command:

� �
lsvg -M perfvg > /home/vginfo/vg.detail� �

b. /home/vginfo/vg.summary to contain a summary partition map from the
lspv command:

• Save logical volume description for hdisk3:

� �lspv -l hdisk3 > /home/vginfo/vg.summary� �
• Save physical partitions description for hdisk3:

� �lspv -p hdisk3 >> /home/vginfo/vg.summary� �
• Save logical volume description for hdisk5:

� �lspv -l hdisk5 >> /home/vginfo/vg.summary� �
• Save physical partitions description for hdisk5:

� �lspv -p hdisk5 >> /home/vginfo/vg.summary� �

220 AIX Storage Management

 c. Refer to “An Example Description of a Volume Group Design” on
page 237 for the output files we obtained.

The performance characteristics of this volume group will be investigated in the
detailed guidance section that follows.

8.3.4.2 Detailed Guidance
This section will now look at these processes in detail:

How to Create Two Mirrored Logical Volumes: This section shows how to
create two logical volumes which have different attribute settings for those
attributes that significantly affect performance in a mirrored environment. The
different attributes, described by their smit field name, are:

• Mirror Write Consistency?

• SCHEDULING POLICY for writing logical partition copies

• Enable WRITE VERIFY?

• File containing ALLOCATION MAP

The main difference in the maps is that the good mirrored logical volume
uses a second disk for its copy, but the bad mirrored logical volume uses the
same disk for its primary and secondary copy.

The two logical volumes are:

• perflv1 - the bad mirrored logical volume

• perflv2 - the good mirrored logical volume

Warning - Choose attributes carefully

It is very important to note that when the above attributes are set to give
optimal performance, the availability of the good mirror perflv2 suffers.
Hence, this choice between performance and availability is a good example
of the design decisions that you will have to make.

Let′s create two mirrored logical volumes; one whose attributes should give
good performance, and one whose attributes should give bad performance.
Start by creating only the primary copy so that allocation maps can be used.

If you want to avoid map files

Please refer to “How to Create a Paging Type Logical Volume” on page 231
for an example of how to create a mirrored logical volume (two copies) with
optimal performance attributes, that does not use a physical partition
allocation map file.

The good logical volume, perflv2, will use goodmir.map, and the bad logical
volume, perflv1, will use badmir.map. These map files were displayed earlier in
8.3, “Storage Subsystem Design” on page 203.

For the bad mirror:

 1. Type smitty lv.

 2. Select Add a Logical Volume .

Chapter 8. Practical Examples 221

 3. Type perfvg and press Enter=Do , or select perfvg using F4=List .

 4. Type the logical volume name, such as perflv1.

 5. Type the number of logical partitions to allocate for this logical volume; in
this case type 10.

 6. Leave the Number of COPIES of each logical partition set to the default of 1
since we′ ll add the second copy later.

 7. Leave the Mirror Write Consistency? set as yes. This wil l only have meaning
once we create copies. It will then result in an extra disk I/O operation to
the edge of the disk where the Mirror Write Consistency data is stored. This
extra I/O will thus decrease performance.

The smit screen at this stage looks like:

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [perflv1]

* VOLUME GROUP name perfvg
* Number of LOGICAL PARTITIONS [10] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume outer_middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 8. Press the Page Down or Down Arrow key to get to the bottom of the next
page.

 9. Type in the path name of the allocation map file /home/maps/badmir.map. This
file specifies 10 contiguous inner middle physical partitions to be used.

10. Change the SCHEDULING POLICY for writing logical partition copies from the
default of parallel to sequential by using the Tab key to toggle the value.
This will ensure that all updates to mirror copies will occur in sequence,
which will obviously be slower than parallel writes.

11. Leave Enable WRITE VERIFY? as the default, yes (again, this is the slower
option), so that the screen looks like:

222 AIX Storage Management

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]
Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical sequential +
partition copies

Enable WRITE VERIFY? yes +
File containing ALLOCATION MAP [/home/maps/badmir.map]
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

12. Press the Enter=Do key to create the logical volume.

13. When smit returns OK, press F3=Cancel to return to the Logical Volumes
menu.

Now create the primary copy of the mirrored logical volume with good mirroring
performance attributes.

 1. Follow the same process as for the bad performance mirror example. Start
by again selecting Add a Logical Volume :

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [perflv2]

* VOLUME GROUP name perfvg
* Number of LOGICAL PARTITIONS [10] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume outer_middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? no +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 2. This time type perflv2 as the name of the logical volume.

 3. Use the Tab key to toggle Mirror Write Consistency? to no.This wil l reduce
disk movement for each I/O request and so it should result in better
performance.

Chapter 8. Practical Examples 223

 4. Leave the other fields with their defaults and press the Page Down key.

 5. Leave the Number of COPIES of each logical partition set to the default of 1
since we′ ll add the second copy later.

 6. The only field that now requires alteration is the File containing ALLOCATION
MAP field, where you should type /home/maps/goodmir.map.

 7. Press the Enter=Do key on the screen that now looks like:

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]
Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? no +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical parallel +
partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP [/home/maps/goodmir.map]
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 8. When smit returns OK, press F3=Cancel to return to the Logical Volumes
menu.

We now have two single copy logical volumes whose attributes, when mirroring
is implemented, will either give bad or optimal performance. Map files will also
be used to create the copies.

For the good mirror:

 1. Select Set Characteristic of a Logical Volume from the following screen:

224 AIX Storage Management

� �
Logical Volumes

Move cursor to desired item and press Enter.

List All Logical Volumes by Volume Group
Add a Logical Volume
Set Characteristic of a Logical Volume
Show Characteristics of a Logical Volume
Remove a Logical Volume
Copy a Logical Volume

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

 2. Select Add a Copy to a Logical Volume .

 3. Type perflv2 and press Enter=Do .

 4. Use the Tab key to change NEW TOTAL number of logical partition copies to
2.

 5. Leave the field SYNCHRONIZE the data in the new logical partition copies?
with its default of no since we′ ll synchronize it later, just before section “How
to Document the Volume Group Design” on page 234.

 6. Change NEW TOTAL number of logical partition copies to 2.

 7. Type /home/maps/goodmir.map2 in the File containing ALLOCATION MAP field.
This map uses physical partitions on the second disk so that parallel disk I/O
should give better performance. The screen should look like:

� �
Add Copies to a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name perflv2
* NEW TOTAL number of logical partition 2 +

copies
PHYSICAL VOLUME names [] +
POSITION on physical volume outer_middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

File containing ALLOCATION MAP <home/maps/goodmir.m
SYNCHRONIZE the data in the new no +
logical partition copies?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Chapter 8. Practical Examples 225

 8. Press the Enter=Do key to create the logical volume copy.

 9. When smit returns OK, press F3=Cancel to return to the Set Characteristic
of a Logical Volume menu.

Now create the bad mirror copy:

 1. Select Add a Copy to a Logical Volume .

 2. Type perflv1 and press Enter=Do .

 3. Use the Tab key to change NEW TOTAL number of logical partition copies to
2.

 4. Leave the field SYNCHRONIZE the data in the new logical partition copies?
with its default of no since we′ ll synchronize it later, just before section “How
to Document the Volume Group Design” on page 234.

 5. Type /home/maps/badmir.map2 in the File containing ALLOCATION MAP field. This
map uses physical partitions on the same disk as the primary copy so that,
along with the sequential disk I/O, we should get the worst performance.

 6. Press the Enter=Do key to create the logical volume copy.

 7. When smit returns OK, press F10=Exit to return to the command prompt.

How to Create Two Mapped Non-mirrored Logical Volumes: This section shows
how to create two logical volumes which have different logical partition locations
on hdisk3 and hdisk5. This enables us to investigate:

• How the Intra-Physical Volume Allocation Policy, described by smit as
POSITION on physical volume, affects performance in a non-mirrored
environment.

• How to use a physical partition map; in smit, use File containing ALLOCATION
MAP, to get precise control of logical partition location.

The two logical volumes are:

• perflv3 - uses good disk regions according to centre.map.

• perflv4 - uses bad regions according to inedge.map.

Warning - Choose carefully

It is very important to note that when the above attributes are set to give
optimal performance, the availability of a logical volume, even when it is not
mirrored, and thus exists as only a single copy, may suffer. For example, if
your map file uses all disks in a volume group, or if the Inter-Physical Volume
Allocation Policy is set to maximum, then although the extra disk heads may
reduce data access time, access to a logical volume may become difficult or
impossible if any disk fails.

We could have also degraded performance but improved the reliability of a
disk write operation by changing Enable WRITE VERIFY? from its no default
value to yes This attribute is not investigated in this example.

Let′s create both perflv3 and perflv4 using the map files that you can create
using your favorite editor, such as the vi text editor.

226 AIX Storage Management

If you want to avoid map files

Please refer to “How to Create a Journal Log Type Logical Volume” on
page 229, for an example of how to create a non-mirrored logical volume
(one copy) with optimal performance attributes, that does not use a physical
partition allocation map file.

Since we′re using map files, create these logical volumes using the smit
defaults, and once you′ve specified a map file, you only need to specify the
Number of LOGICAL PARTITIONS and the Logical volume NAME (note that Mirror Write
Consistency does not apply when only a single copy of a logical volume exists;
that is, there is no mirroring, and hence we can ignore this field).

To create perflv4:

 1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

 2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

 3. Type 10 in the field Number of LOGICAL PARTITIONS.

 4. Type perflv4 in the field Logical volume NAME so that the screen looks like:

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [perflv4]

* VOLUME GROUP name perfvg
* Number of LOGICAL PARTITIONS [10] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume outer_middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 5. Press the Page Down or Down Arrow Key to get to the bottom of the next
page.

 6. Type the map file path name, such as /home/maps/inedge.map, in the field
File containing ALLOCATION MAP so that the screen looks like:

Chapter 8. Practical Examples 227

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]
Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical parallel +
partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP [/home/maps/inedge.map]
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image� �

 7. Press the Enter=Do key to create the logical volume.

 8. When smit returns OK, press F3=Cancel to return to the command prompt.

To create perflv3:

 1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

 2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

 3. Type 12 in the field Number of LOGICAL PARTITIONS; 12 physical partitions
allows us to place three partition pairs on each disk.

 4. Type perflv3 in the field Logical volume NAME so that the screen looks like:

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [perflv3]

* VOLUME GROUP name perfvg
* Number of LOGICAL PARTITIONS [12] #
PHYSICAL VOLUME names [] +
Logical volume TYPE []
POSITION on physical volume outer_middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 5. Press the Page Down or Down Arrow key to get to the bottom of the next
page.

228 AIX Storage Management

 6. Type the map file path name, such as /home/maps/centre.map, in the field
File containing ALLOCATION MAP, so that the screen looks like:

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]
Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical parallel +
partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP [/home/maps/centre.map]
Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image� �

 7. Press the Enter=Do key to create the logical volume.

 8. When smit returns OK, press F3=Cancel to return to the command prompt.

How to Create a Journal Log Type Logical Volume: This section shows how to
create a jfslog logical volume that can be used by one or more AIX Version 4
journaled file systems. You may want to do this to improve your system′s
performance, since the log can be placed on the center region of the fastest disk
in your volume group.

Create the journaled file system log device before any journaled file system is
created in the volume group. Otherwise a default device, such as loglv01, will be
created automatically. In this example, we′ ll create perflog before we create any
journaled file systems in the perfvg volume group.

For more information, refer to the AIX Version 4.1 Hypertext Information Base
Library article Create a File System Log on a Dedicated Disk for a User-Defined
volume group.

To create perflog:

 1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

 2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

 3. Type perflog in the field Logical volume NAME.

 4. Type 1 in the field Number of LOGICAL PARTITIONS.

 5. Type hdisk5 in the field PHYSICAL VOLUME names, or use F4=List to select it.

 6. Type jfslog in the field Logical volume TYPE. Note that there is no select
option available here.

 7. Use the Tab key to toggle POSITION on physical volume to the center setting
so that the screen looks like:

Chapter 8. Practical Examples 229

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [perflog]

* VOLUME GROUP name perfvg
* Number of LOGICAL PARTITIONS [1] #
PHYSICAL VOLUME names [hdisk5] +
Logical volume TYPE [jfslog]
POSITION on physical volume center +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 8. We can execute this command with the rest of the fields left with their default
values, since most fields do not affect a logical volume that consists of one
physical partition. This logical volume can only exist as one copy on one
disk. Hence, instead of pressing the Page Down key to go to the next
screen, press the Enter=Do key to create the logical volume.

 9. When smit returns OK, press F3=Cancel to return to the command prompt.

10. We now need to format the newly created journaled file system log device
perflog with the following command:

� �
/usr/sbin/logform /dev/perflog
logform: destroy /dev/perflog (y)?
#� �

The following example illustrates that this command should not damage the
data in a clean (in other words, fsck has been used), unmounted journaled
file system. It just initializes the journaled file system log device, so that it
can record the changes to the pointers that reference the data stored in a
journaled file system.

Warning - Use logform carefully

For more information, refer to the AIX Version 4.1 Hypertext Information
Base Library article Create a File System Log on a Dedicated Disk for a
User-Defined volume group, and also refer to the logform command in the
AIX Version 4.1 Commands Reference.

230 AIX Storage Management

� �
lsvg -l vgname
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
perflog jfslog 1 1 1 closed/syncd N/A
lv04 jfs 1 1 1 closed/syncd /ritest2
/usr/sbin/logform /dev/perflog
logform: destroy /dev/perflog (y)?
mount /ritest2
cp /etc/motd /ritest2
ls -la /ritest2
total 24
drwxr-sr-x 2 sys sys 512 Jul 20 16:51 .
drwxr-xr-x 29 bin bin 1024 Jul 20 15:29 ..
-r-xr--r-- 1 root sys 880 Jul 20 16:51 motd
umount /ritest2
/usr/sbin/logform /dev/perflog
logform: destroy /dev/perflog (y)?
mount /ritest2
ls -la /ritest2
total 24
drwxr-sr-x 2 sys sys 512 Jul 20 16:51 .
drwxr-xr-x 29 bin bin 1024 Jul 20 15:29 ..
-r-xr--r-- 1 root sys 880 Jul 20 16:51 motd
lsvg -l vgname
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
perflog jfslog 1 1 1 open/syncd N/A
lv04 jfs 1 1 1 open/syncd /ritest2� �

The logical volume perflog is now ready to be used.

How to Create a Paging Type Logical Volume: This section shows how to create
a mirrored paging device in a non-rootvg volume group with attributes that give
optimal performance. You may wish to do this for memory intensive applications
that will potentially result in a lot of I/O to the paging logical volumes.

Execute smitty pgsp so your screen looks like:

� �
Paging Space

Move cursor to desired item and press Enter.

List All Paging Spaces
Add Another Paging Space
Change / Show Characteristics of a Paging Space
Remove a Paging Space
Activate a Paging Space

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

and then select Add Another Paging Space to display:

Chapter 8. Practical Examples 231

� �
Add Another Paging Space

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Volume group name perfvg
SIZE of paging space (in logical partitions) [5] #
PHYSICAL VOLUME name +
Start using this paging space NOW? yes +
Use this paging space each time the system is yes +

RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

You can easily see these menu choices provide no control over the placement of
the paging space logical partition, nor do they allow us to create multiple copies
of the paging logical volume.

We want to use all the disks in the volume group to provide more heads to
respond to access requests, so we′ ll use a maximum range. We′ ll leave the
scheduling policy as parallel so that all disks can handle I/O requests for this
logical volume simultaneously. We′ ll also specify the center disk region and turn
off Mirror Write Consistency? to minimize disk activity, since now the disk heads
will have a better chance of being able to stay near the center of the disk
platters during an I/O request. Hence, use the familiar logical volume creation
method as follows:

 1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

 2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

 3. Type perfpg in the field Logical volume NAME.

 4. Type 5 in the field Number of LOGICAL PARTITIONS.

 5. Type paging in the field Logical volume TYPE. Note that there is no select
option available here.

 6. Use the Tab key to toggle POSITION on physical volume to the center setting.

 7. Use the Tab key to toggle RANGE of physical volumes to the maximum setting.

 8. Use the Tab key to toggle Number of COPIES of each logical partition to a
value of 2. This will result in the creation of both a primary and secondary
copy of the perfpg logical volume.

 9. Use the Tab key to toggle Mirror Write Consistency? to the no setting so that
your screen looks like:

232 AIX Storage Management

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [perfpg]

* VOLUME GROUP name perfvg
* Number of LOGICAL PARTITIONS [5] #
PHYSICAL VOLUME names [] +
Logical volume TYPE [paging]
POSITION on physical volume center +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 2 +
partition

Mirror Write Consistency? no +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

10. We can execute this command with the rest of the fields left with their default
values. Hence, instead of pressing Page Down to go to the next screen,
press the Enter=Do key to create the logical volume.

11. When smit returns OK, press F3=Cancel to return to the command prompt.

12. Now execute smitty pgsp, but this time select Change / Show Characteristics
of a Paging Space .

13. Move your cursor to highlight perfpg and then press the Enter=Do .

14. Use the Tab key to toggle Use this paging space each time the system is
RESTARTED? from no to yes so that your screen looks like:

� �
Change / Show Characteristics of a Paging Space

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Paging space name perfpg
Volume group name perfvg
Physical volume name hdisk5
NUMBER of additional logical partitions [] #
Use this paging space each time the system is yes +

RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

15. Press the Enter=Do key to change the paging space.

16. When smit returns OK, press F3=Cancel to return to the Paging Space menu.

Chapter 8. Practical Examples 233

17. To immediately start to use the new paging device, you can now:

• Reboot AIX Version 4 using the shutdown -Fr command, or:

a. Select Activate a Paging Space .

b. Use the F4=List key to select perfpg .

 c. Press the Enter=Do key to activate the perfpg logical volume.

d. When smit returns OK, press F10=Exit to return to the command
prompt.

Synchronize the Volume Group: The final step that we need to do is to
synchronize perfvg. The parts of this step, similar to that described in “How to
Synchronize rootvg” on page 195, are:

 1. Execute the command smitty vg.

 2. Select Activate a Volume Group .

 3. Type perfvg or use F4=List to select it.

 4. Press the Enter=Do key.

 5. Press F10=Exit when smit returns an OK prompt.

If we have to create copies of many small logical volumes, it is more efficient for
the systems administrator to use one command after hours to synchronize them.
This means that the configuration work can be done during normal business
hours without any significant I/O burdens to normal operations.

How to Document the Volume Group Design: Now that we′ve created perfvg, we
can choose some of the commands discussed in Chapter 7, “Storage
Management Files and Commands Summary” on page 139 to enable us to:

• Check that all logical volumes have been created correctly.

• Record the configuration in our system logbook for reference should we have
to manually recreate perfvg (of course, you should have multiple, tested
volume group backup images stored safely. This is discussed in 8.4,
“Managing Backup and Restore” on page 244).

If you refer to the Chapter 7, “Storage Management Files and Commands
Summary” on page 139 chapter, you can see that the commands:

• lsvg

• lspv

• lslv

are quite simple since they only have a few flags. Hence we prefer to execute
these commands directly from the command line rather than through the smit
interface. Therefore, although the following is a brief summary of how to use the
correct smit options, you may prefer to follow the simple method outlined in the
previous command summary to enable you to document your volume group
configuration.

You should also note that the most comprehensive volume group command,
lsvg -M vgname, does not have a smit interface and hence must be executed from
the command line. It can also produce a long output for a large volume group
with many physical volumes in it. A smaller summarized version of its output
can be obtained by using the lspv command for each disk in the volume group,

234 AIX Storage Management

which you can do using the method below. Note that you could also use lslv,
but in this case, we shall use lspv because we only have two disks compared to
six logical volumes, so we only have to execute lspv twice to get a complete
description of perfvg.

Execute lspv from smit using the following procedure (we will also show you how
you can execute lsvg and lslv from smit):

 1. To get to the menu with the title Logical Volume Manager, execute the
command smitty lvm, or, if you do not like to use a fastpath:

a. Execute the command smitty.

b. Select System Storage Management (Physical & Logical Storage) .

 c. Select Logical Volume Manager .

 2. If you want to use the lsvg command:

a. Select Volume Groups .

b. Select List Contents of a Volume Group .

 c. Type perfvg and press the Enter=Do key, or use F4=List to select it.

d. For the field List OPTION, press the F4=List key to display a screen like:

� �
List Contents of a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [perfvg]
List OPTION status +

__
| List OPTION |
| |
| Move cursor to desired item and press Enter. |
| |
| status |
| logical volumes |
| physical volumes |
| |
| F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F10=Exit Enter=Do |
F5| /=Find n=Find Next |
F9|___|� �
• If you move the cursor to highlight status and press Enter=Do twice,

the F6=Command shows you that the displayed output is for the
command lsvg perfvg.

• If you move the cursor to highlight logical volumes and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lsvg -l perfvg.

• If you move the cursor to highlight physical volumes and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lsvg -p perfvg.

e. Press F10=Exit to return to the command prompt when you′ve finished
reading the output.

Chapter 8. Practical Examples 235

f. For an example of the output of lsvg, please refer to Chapter 7, “Storage
Management Files and Commands Summary” on page 139.

 3. If you want to use the lslv command:

a. Select Logical Volumes .

b. Select Show Characteristics of a Logical Volume .

 c. Type perlv1 and press the Enter=Do key, or use F4=List to select it.

d. For the field List OPTION, press the F4=List key to display a screen like:

� �
Show Characteristics of a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name [perflv1] +
List OPTION status +

__
| List OPTION |
| |
| Move cursor to desired item and press Enter. |
| |
| status |
| physical volume map |
| logical partition map |
| |
| F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F10=Exit Enter=Do |
F5| /=Find n=Find Next |
F9|___|� �
• If you move the cursor to highlight status and press Enter=Do twice,

the F6=Command shows you that the displayed output is for the
command lslv perflv1.

• If you move the cursor to highlight physical volume map and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lslv -l perflv1.

• If you move the cursor to highlight logical partition map and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lslv -m perflv1.

e. For an example of the output of lslv, please refer to Chapter 7, “Storage
Management Files and Commands Summary” on page 139.

f. Press F10=Exit to return to the command prompt when you′ve finished
reading the output.

 4. For this volume group design, we can execute the following two smit
commands to get the sample output that follows:

a. Select Physical Volumes .

b. Select List Contents of a Physical Volume .

 c. For hdisk3:

1) Type hdisk3 and press the Enter=Do key, or use F4=List to select it.

236 AIX Storage Management

2) For the field List OPTION, press the F4=List key to display a screen
like:

� �List Contents of a Physical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
PHYSICAL VOLUME name [hdisk3] +
List OPTION status +

__
| List OPTION |
| |
| Move cursor to desired item and press Enter. |
| |
| status |
| logical volumes |
| physical partitions |
| |
| F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F10=Exit Enter=Do |
F5| /=Find n=Find Next |
F9|___|� �

3) Move the cursor to highlight logical volumes and press enter=Do
twice. The F6=Command shows you that the displayed output is for
the command lspv -l hdisk3.

4) Press F3=Cancel to return to the screen with the title List Contents
of a Physical Volume when you′ve finished reading the output.

5) For the field List OPTION, press the F4=List key again to bring up the
same menu as shown above.

6) Move the cursor to highlight physical partitions and press
enter=Do twice. The F6=Command shows you that the displayed
output is for the command lspv -p hdisk3.

7) Press F3=Cancel to return to the screen with the title List Contents
of a Physical Volume when you′ve finished reading the output.

d. For hdisk5, repeat the steps described for hdisk3.

 5. Press F10=Exit to return to the command prompt when you′ve finished
reading the output.

 6. Save the file /smit.log since it wil l contain the output of these lspv
commands, which will be similar to those given in the next section.

An Example Description of a Volume Group Design: The lspv commands output
in the /smit.log or /home/vginfo/vg.summary files for the physical volumes in
perfvg should look like:

Chapter 8. Practical Examples 237

� �
lspv -l hdisk3
hdisk3:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
perfpg 5 5 00..00..05..00..00 N/A
perflv3 6 6 00..00..06..00..00 N/A
perflv2 10 10 00..00..00..10..00 N/A
perflv4 5 5 00..00..00..00..05 N/A
lspv -p hdisk3
hdisk3:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-15 free outer edge
16-30 free outer middle
31-34 free center
35-39 used center perfpg paging N/A
40-45 used center perflv3 jfs N/A
46-50 free inner middle
51-60 stale inner middle perflv2 jfs N/A
61-65 free inner edge
66-70 used inner edge perflv4 jfs N/A
71-75 free inner edge
#
lspv -l hdisk5
hdisk5:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
perflv1 10 20 00..20..00..00..00 N/A
perflv3 6 6 00..05..01..00..00 N/A
perflog 1 1 00..00..01..00..00 N/A
perfpg 5 5 00..00..05..00..00 N/A
perflv2 10 10 00..00..00..10..00 N/A
perflv4 5 5 00..00..00..00..05 N/A
lspv -p hdisk5
hdisk5:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-58 free outer edge
59-90 free outer middle
91-100 stale outer middle perflv1 jfs N/A
101-110 used outer middle perflv1 jfs N/A
111-115 used outer middle perflv3 jfs N/A
116-116 used center perflv3 jfs N/A
117-117 used center perflog jfslog N/A
118-139 free center
140-144 used center perfpg paging N/A
145-172 free center
173-200 free inner middle
201-210 used inner middle perflv2 jfs N/A
211-229 free inner middle
230-232 free inner edge
233-237 used inner edge perflv4 jfs N/A
238-287 free inner edge
#� �

The lsvg -M perfvg command output in the /home/vginfo/vg.detail file should
look like:

238 AIX Storage Management

� �
perfvg
hdisk3:1-34
hdisk3:35 perfpg:2:1
hdisk3:36 perfpg:4:1
hdisk3:37 perfpg:1:2
hdisk3:38 perfpg:3:2
hdisk3:39 perfpg:5:2
hdisk3:40 perflv3:11
hdisk3:41 perflv3:12
hdisk3:42 perflv3:7
hdisk3:43 perflv3:8
hdisk3:44 perflv3:3
hdisk3:45 perflv3:4
hdisk3:46-50
hdisk3:51 perflv2:1:2
hdisk3:52 perflv2:2:2
hdisk3:53 perflv2:3:2
hdisk3:54 perflv2:4:2
hdisk3:55 perflv2:5:2
hdisk3:56 perflv2:6:2
hdisk3:57 perflv2:7:2
hdisk3:58 perflv2:8:2
hdisk3:59 perflv2:9:2
hdisk3:60 perflv2:10:2
hdisk3:61-65
hdisk3:66 perflv4:6
hdisk3:67 perflv4:7
hdisk3:68 perflv4:8
hdisk3:69 perflv4:9
hdisk3:70 perflv4:10
hdisk3:71-75
hdisk5:1-90
hdisk5:91 perflv1:1:2
hdisk5:92 perflv1:2:2
hdisk5:93 perflv1:3:2
hdisk5:94 perflv1:4:2
hdisk5:95 perflv1:5:2
hdisk5:96 perflv1:6:2
hdisk5:97 perflv1:7:2
hdisk5:98 perflv1:8:2
hdisk5:99 perflv1:9:2
hdisk5:100 perflv1:10:2� �

the long output continues like this:

Chapter 8. Practical Examples 239

� �
hdisk5:101 perflv1:1:1
hdisk5:102 perflv1:2:1
hdisk5:103 perflv1:3:1
hdisk5:104 perflv1:4:1
hdisk5:105 perflv1:5:1
hdisk5:106 perflv1:6:1
hdisk5:107 perflv1:7:1
hdisk5:108 perflv1:8:1
hdisk5:109 perflv1:9:1
hdisk5:110 perflv1:10:1
hdisk5:111 perflv3:1
hdisk5:112 perflv3:2
hdisk5:113 perflv3:5
hdisk5:114 perflv3:6
hdisk5:115 perflv3:9
hdisk5:116 perflv3:10
hdisk5:117 perflog:1
hdisk5:118-139
hdisk5:140 perfpg:1:1
hdisk5:141 perfpg:3:1
hdisk5:142 perfpg:5:1
hdisk5:143 perfpg:2:2
hdisk5:144 perfpg:4:2
hdisk5:145-200
hdisk5:201 perflv2:1:1
hdisk5:202 perflv2:2:1
hdisk5:203 perflv2:3:1
hdisk5:204 perflv2:4:1
hdisk5:205 perflv2:5:1
hdisk5:206 perflv2:6:1
hdisk5:207 perflv2:7:1
hdisk5:208 perflv2:8:1
hdisk5:209 perflv2:9:1
hdisk5:210 perflv2:10:1
hdisk5:211-232
hdisk5:233 perflv4:1
hdisk5:234 perflv4:2
hdisk5:235 perflv4:3
hdisk5:236 perflv4:4
hdisk5:237 perflv4:5
hdisk5:238-287� �

How to Test the Performance of the Design: This section gives an example of
how you can obtain an indication of what effect the different attributes can have
when you create a logical volume.

Warning - Your results will be different

Of course, every site may have its unique features, such as different
hardware, different I/O requests, and different system loads, which may
result in different results for you if you try the following commands.

You can do a simple test by just copying a very large file from the same fixed
location on another volume group to each of:

• perflv1

• perflv2

• perflv3

• perflv4

240 AIX Storage Management

To do this, we first need to create a journaled file system on each of these
logical volumes:

 1. To create /perfjfs1 on perflv1:

a. Execute smitty jfs to get the Journaled File Systems menu.

b. Select Add a Journaled File System on a Previously Defined Logical
Volume .

 c. For the field LOGICAL VOLUME name, use the F4=List key to select perflv1.

d. Type /perfjfs1 in the field MOUNT POINT.

e. Change the field Mount AUTOMATICALLY at system restart? to yes by using
the Tab key.

f. Leave the other fields with their default values so that the screen looks
like:

� �
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name perflv1 +

* MOUNT POINT [/perfjfs1]
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 4096 +
Number of bytes per inode 4096 +
Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

g. Press the Enter=Do key.

h. Press the F3=Cancel key when smit returns an OK message to return to
the menu with the title Add a Journaled File System on a Previously
Defined Logical Volume.

 2. For perflv2, repeat the above to create the /perflv2 journaled file system.

 3. For perflv3, repeat the above to create the /perflv3 journaled file system.

 4. For perflv4, repeat the above to create the /perflv4 journaled file system.

Now we need to check that we have a suitable source file, and copy it four times
to each of the newly created journaled file systems. Use the timex command to
record the time required by the cp copy command. If you have access to AIX
Version 4.1 Hypertext Information Base Library, then you may be able to do the
following (note that our test used files from a copy of InfoExplorer that was
loaded on a physical volume).

Chapter 8. Practical Examples 241

� �
cd /usr/lpp/info/lib/en_US/aix41
ls -l cmds/cmds.romm
-rw-r--r-- 1 root system 21805056 May 12 09:33 cmds/cmds.rom
timex cp cmds/cmds.rom manage/manage.rom /perfjfs1

real 59.53
user 0.35
sys 9.14
timex cp cmds/cmds.rom manage/manage.rom /perfjfs2

real 34.15
user 0.40
sys 10.64
timex cp cmds/cmds.rom manage/manage.rom /perfjfs3

real 28.62
user 0.37
sys 10.36
timex cp cmds/cmds.rom manage/manage.rom /perfjfs4

real 28.66
user 0.42
sys 9.99� �

You may wish to use a command such as iostat 5 | tee iostat.perfjfsx to
monitor disk activity during each of these commands, which is what we did.

Let′s now look at these results for the mirrored and non-mirrored tests:

 1. Two copy logical volume tests - perflv1 and perflv2.

The 25 second difference clearly indicates the cost required to create a
highly available logical volume. As discussed in Chapter 5, “Storage
Subsystem Design” on page 79, and in the AIX V3.2 Performance Monitoring
and Tuning Guide, the following options will degrade performance during a
write operation:

• Scheduling policy

• Write verify

• Mirror write consistency

• Placing both copies on the same physical volume

You can see the effect of the copy location data in the following output from
the iostat command:

• For the copy to perflv1 (one disk):

� �
tty: tin tout avg-cpu: % user % sys % idle % io

0.2 158.9 4.0 42.5 20.2 33.

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 35.1 157.3 23.8 756 32
hdisk1 0.0 0.0 0.0 0 0
hdisk2 31.7 229.9 13.0 1120 32
hdisk3 0.0 0.0 0.0 0 0
hdisk4 0.0 0.0 0.0 0 0
hdisk5 73.1 494.0 11.2 4 2471
hdisk6 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0� �

You can see that a write is only occurring on one disk here.

242 AIX Storage Management

• For the copy to perflv2 (two disks):

� �
tty: tin tout avg-cpu: % user % sys % idle % io

0.2 158.9 10.0 21.2 5.8 63.

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 50.3 78.2 14.6 200 192
hdisk1 0.0 0.0 0.0 0 0
hdisk2 77.8 411.2 17.8 1868 192
hdisk3 45.9 408.8 15.2 0 2048
hdisk4 0.0 0.0 0.0 0 0
hdisk5 53.3 414.4 26.1 24 2052
hdisk6 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0� �

You can see that write operations occur on both disks here.

 2. Single copy logical volume tests - perflv3 and perflv4.

The main difference in the maps is that the good non-mirrored logical
volume uses a second disk for some of its logical partitions, arranged in a
partially contiguous manner using the center and outer middle regions of the
disks. This method of creating perflv3 shows the fine control available from
the use of map files. For example, the file centre.map:

� �
#cat centre.map
hdisk5:111-112
hdisk3:44-45
hdisk5:113-114
hdisk3:42-43
hdisk5:115-116
hdisk3:40-41� �

shows that a logical volume built with it will occupy the center region of
hdisk3 and the center and outer middle regions of hdisk5. It also shows that
we have decided to use two physical partitions from hdisk5, then two
physical partitions from hdisk3, and so on. The allocation precision obtained
from the use of a map file can be seen in the output of the following
command:

� �
lslv -m perflv3
perflv3:/perfjfs3
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0111 hdisk5
0002 0112 hdisk5
0003 0044 hdisk3
0004 0045 hdisk3
0005 0113 hdisk5
0006 0114 hdisk5
0007 0042 hdisk3
0008 0043 hdisk3
0009 0115 hdisk5
0010 0116 hdisk5
0011 0040 hdisk3
0012 0041 hdisk3� �

If the same logical volume had been built on hdisk3 and hdisk5 using a
maximum range for its Inter-Physical Volume Allocation Policy, then the
pattern would be one physical partition on hdisk5, one on hdisk3, and so on.
This would give better performance, so it′s not surprising that for both single
copy physical volumes, the copy time was about 28.6 seconds.

The fact that the time is approximately the same also suggests that the
center/middle disk region is not much faster than the edge region. However,

Chapter 8. Practical Examples 243

this write had no competition from other disk requests so the disk heads will
have minimal movement across the disk platter regions.

One final performance result of interest is that in our scenario, mirroring always
degraded performance, even when it was tuned for optimal performance. This is
not surprising since every logical write request is translated into two physical
write operations. However, you may obtain different results in another
environment, particularly if your test is based on a read rather than a write
operation, which we did not investigate here.

8.4 Managing Backup and Restore
It is critically important that a systems administrator both implements and
understands a reliable backup and recovery policy. This section shows you an
example of how to use the volume group backup utilities to save and recover
your system, if your data or configuration information is damaged beyond a
practical repair timeframe.

In particular, the examples in this section will describe:

• How to save the contents and configuration of the perfvg volume group.

• How to restore the contents and configuration of the perfvg volume group.

• How to use the mksysb command to save an image of the volume group.

• How to choose some of the storage management related installation options
to reinstall this rootvg image.

244 AIX Storage Management

Suggestion - One image

You should usually place one volume group image on one tape when you use
the smit defaults. This is what you may want to use as a simple backup rule.
Usually, volume groups will be several gigabytes large if they contain two to
three physical volumes, so each volume group will thus usually require at
least one tape cartridge. Also note that the smit fields that you see when you
execute smitty savevg:

• Only allow you to enter the name of one volume group in the VOLUME
GROUP to back up field.

• Do not allow you to specify a particular image on the backup device.

However, you may be able to get around this by using the tctl command and
the no-rewind tape device name as in the following sequence from the
command line:

� �
savevg -i -f′ / dev/rmt0.1′ ′ availvg′
savevg -i -f′ / dev/rmt0.1′ ′ perfvg′
tctl -f/dev/rmt0 rewind
restore -Tvf/dev/rmt0.1
restore -Tvf/dev/rmt0.1� �

This seemed to work fine, but is not fully investigated in this example.

If you have a number of small machines attached to a server that has a large
capacity tape drive, then you may decide to use disk space on the server as
a temporary storage area for all your volume group images from the smaller
machines until you back them up.

You must become familiar with the backup and recovery issues and procedures
discussed in:

• 3.2.1, “Backup/Restore” on page 64.

• 5.5, “Planning Backup Strategies” on page 89.

• AIX Version 4.1 System Management Guide: Operating System and Devices
and AIX Version 4.1 Installation Guide.

These books may be in AIX Version 4.1 Hypertext Information Base Library
on your system. For these examples in particular, you should refer to the
following articles within them.

− Backing Up Your System.

This article appears in both documents at the level of AIX Version 4 that
we used for these examples. Although the articles are very similar, we
found that:

- The version in AIX Version 4.1 Installation Guide was easier to follow
to create a rootvg image.

- The version in AIX Version 4.1 System Management Guide: Operating
System and Devices had more information regarding how to backup
other volume groups that are part of your system configuration.

• AIX Version 4.1 System Management Guide: Operating System and Devices.

The articles of interest for these examples in this document include:

Chapter 8. Practical Examples 245

− Restoring a User Volume Group.

− Backing Up the System Image Including User Volume Groups.

− Developing a Backup Strategy.

• AIX Version 4.1 Installation Guide.

The articles of interest for these examples in this document include:

− Installing BOS from a System Backup.

• AIX Version 4.1 System User.

This document may also be on AIX Version 4.1 Hypertext Information Base
Library on your system and so you may be able to refer to the articles in the
section called Backup Files and Storage Media.

8.4.1 How to Use the savevg and restvg Commands
This example follows the steps in Backing Up Your System and Restoring a User
Volume Group, in AIX Version 4.1 System Management Guide: Operating System
and Devices, to create and then restore a backup tape image of perfvg. Since we
can SHRINK the filesystems? when we restore the volume group with restvg,
we ′ ll create one backup with map files to try to preserve our design efforts in
8.3.4, “A Design Example for Improved Performance” on page 218.

We can then use the same backup to rebuild perfvg a second time, but this time
we ′ ll try to shrink the journaled file systems. Note that if we shrink the journaled
file systems, then the resulting extra free physical partitions in the volume group
means that we can not maintain the physical partition map.

8.4.1.1 Command Line Summary
There is a simple sequence of commands that can be used by an experienced
systems administrator to manage the backup and recovery of user volume
groups. These simple commands come from a few smit menus which are
described in the next section.

If you want to discover what smit is doing under the covers, press the
F6=Command command key to see that:

• For savevg to build an image of perfvg that includes map files smit executes:

� �
savevg -i -f′ / dev/rmt0′ -m′ ′ ′ perfvg′� �

To check the backup, execute restore -Tqvf/dev/rmt0.1.

• For restvg to recreate perfvg with the same physical partition map, smit
executes:

� �
restvg -f′ / dev/rmt0′� �

• For restvg to recreate perfvg with shrunken journaled file systems, smit
executes:

� �
restvg -f′ / dev/rmt0′ -s′ ′� �

You should note that:

246 AIX Storage Management

• We found that for this example on our level of AIX Version 4, the mirror
secondary copies of the perfvg logical volumes were not restored unless we
used an image that had been built without map files, such as from:

� �
savevg -i -f′ / dev/rmt0′ ′ perfvg′� �

Of course, you′ ll then have to check the new physical partition map to
ensure that it is satisfactory.

• If you want to rebuild a volume group, you must ensure that all target disks
are considered free for allocation by the operating system, so execute the
lspv command. Assume that you are recreating a volume group on the
same disks that were used by the volume group when savevg was executed.
If these disks are still being used by the volume group, then you can:

 1. Unmount all journaled file systems (you may have to change paging
devices and reboot before this step if necessary).

 2. Use the varyoffvg command on the volume group.

 3. Use the exportvg command for the volume group.

 4. Check with lspv.

 5. If you stil l have trouble recreating the volume group using the backup
image, then you can try to format the target physical volumes.

8.4.1.2 Detailed Guidance
To create the backup image of the perfvg volume group:

 1. Execute smitty vg to get to the menu with the title Volume Groups.

 2. Select Back Up a Volume Group , or, from the smit menu:

a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

 c. Select Logical Volume Manager .

d. Select Volume Groups .

e. Select Back Up a Volume Group .

 3. If your tape device is different to the default /dev/rmt0, then type the correct
target tape device (or file name) in the Backup DEVICE or FILE field, or use
the F4=List key to select it.

 4. Type perfvg in the VOLUME GROUP to back up field, or use the F4=List key to
select it.

 5. Use the Tab key to toggle the Create MAP files? field value from no to yes.

This should ensure that we maintain the precise physical partition allocation
documented in 8.3.2, “Map Files Usage and Contents” on page 206, that we
used to create perfvg. Your screen should look like:

Chapter 8. Practical Examples 247

� �
Back Up a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
WARNING: Execution of the savevg command will

result in the loss of all material
previously stored on the selected
output medium.

* Backup DEVICE or FILE [/dev/rmt0] +/
* VOLUME GROUP to back up [perfvg] +
Create MAP files? yes +
EXCLUDE files? no +
Number of BLOCKS to write in a single output [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 6. Press the Enter=Do key to backup perfvg.

 7. Although your backup may require multiple tape volumes, our example fits
on one tape and the output screen should resemble:

� �
COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

a ./tmp/vgdata/vgdata.files
a ./tmp/vgdata/perfvg/filesystems
a ./tmp/vgdata/perfvg/perfvg.data
a ./tmp/vgdata/perfvg/perflog.map
a ./tmp/vgdata/perfvg/perflv1.map
a ./tmp/vgdata/perfvg/perflv2.map
a ./tmp/vgdata/perfvg/perflv3.map
a ./tmp/vgdata/perfvg/perflv4.map
a ./tmp/vgdata/perfvg/perfpg.map
a ./perfjfs4
a ./perfjfs3
a ./perfjfs2
a ./perfjfs1
0512-038 savevg: Backup Completed Successfully.

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

You must check the end of the output by using any appropriate key such as
End , or Page Down , or Ctrl-V to look for the string 0512-038 mksysb: Backup
Completed Successfully. This will ensure that there is no hidden error
message, although such a message may be only a warning. In this case, our
backup seems to be alright.

 8. Press the F3=Cancel key to return to the Volume Groups menu.

 9. You should check your backup by:

a. Selecting List Files in a Volume Group Backup from the Volume Groups
menu.

248 AIX Storage Management

b. If your tape device is different to the default /dev/rmt0, then type the
correct target tape device (or file name) in the Backup DEVICE or FILE
field, or use the F4=List key to select it.

 c. Press the Enter=Do key to check the backup of your volume group. If
your backup is on multiple tape volumes, insert them as required.

10. Press the F10=Exit key to return to the command prompt when your backup
(and backup check) is complete.

Now that our backup is complete, we can try to rebuild the perfvg volume group
with the same physical partition layout as at the time of the backup.

Before we restored the backup, we ran the following commands:

� �
lspv -M hdisk3 > /tmp/perfvg/hdisk3.map.before
lspv -M hdisk5 > /tmp/perfvg/hdisk5.map.before� �

We can easily repeat similar commands after we′ve recreated perfvg so that we
can check if there are any changes to the physical partition layout by using the
diff command on the output files.

To recreate perfvg:

 1. You must ensure that all target disks are considered free for allocation by
the operating system. In other words, you must see the word None next to the
disk name when you execute the lspv command. Assume that you are
recreating a volume group on the same disks that were used by the volume
group when savevg was executed. If these disks are still being used by the
volume group when you want to rebuild it, then you can:

a. Unmount all journaled file systems. (You will have to change paging
devices and reboot before this step if necessary.)

b. Use the varyoffvg command on the volume group.

 c. Use the exportvg command for the volume group.

d. Check via lspv.

For this example, the procedure is:

 1) Execute chps -a′ n′ ′ perfpg′ and reboot.

A smit menu for this deactivation of a paging logical volume, from
the command smitty chps, is discussed in 8.7, “Manipulating Page
Space” on page 300.

2) Execute umount /perfjfs1.

3) Execute umount /perfjfs2.

4) Execute umount /perfjfs3.

5) Execute umount /perfjfs4.

6) Vary off the perfvg volume group using varyoffvg perfvg.

7) Export the perfvg volume group using exportvg perfvg.

8) Check that the lspv output looks like:

Chapter 8. Practical Examples 249

� �# lspv
hdisk0 00014732b1bd7f57 rootvg
hdisk1 0001221800072440 stripevg
hdisk2 00012218da42ba76 rootvg
hdisk4 0000020158496d72 availvg
hdisk5 00000201dc8b0b32 None
hdisk6 000002007bb618f5 availvg
hdisk3 0002479088f5f347 None
hdisk8 000137231982c0f2 stripevg
hdisk7 none None� �

hdisk5 and hdisk3 are not associated with any volume group by the
operating system, and hence they can be used as the target physical
volumes for the recreation of perfvg.

 2. Execute smitty restvg.

Or, if you have come down from the main smit menu to the Volume Groups
menu, then select Remake a Volume Group . Don′ t select Restore Files in a
Volume Group Backup.

 3. If your tape device is different from the default /dev/rmt0, then type the
correct source tape device (or file name) in the Restore DEVICE or FILE field,
or use the F4=List key to select it so that your screen looks like:

� �
Remake a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Restore DEVICE or FILE [/dev/rmt0] +/
SHRINK the filesystems? no +
PHYSICAL VOLUME names [] +

(Leave blank to use the PHYSICAL VOLUMES listed
in the vgname.data file in the backup image)

Number of BLOCKS to read in a single input [] #
(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 4. Press the Enter=Do key to get to the following menu prompt:

250 AIX Storage Management

� �
COMMAND STATUS

Command: running stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

Will create the Volume Group: perfvg
Target Disks: hdisk3

hdisk5
Allocation Policy:

Shrink Filesystems: no
Preserve Physical Partitions for each Logical Volume: yes

Enter ″y″ to continue:

� �
 5. Type the character y and press Enter=Do

Note that you are asked to confirm the target disks since they may contain
data that you want to keep. Remember that we only exported perfvg to free
up these disks, so hdisk3 and hdisk5 still contain valid data because exportvg
does not write to the physical volumes that are in the exported volume
group.

If you did not check that your target disks are free, you may see an error
such as:

� �
COMMAND STATUS

Command: failed stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

Will create the Volume Group: perfvg
Target Disks: hdisk3

hdisk5
Allocation Policy:

Shrink Filesystems: no
Preserve Physical Partitions for each Logical Volume: yes

Enter ″y″ to continue:
0512-037 restvg: Target Disk hdisk3 Already belongs to a Volume Group. Restore
of Volume Group canceled.

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

If you get this error even after you have exported the old volume group, you
may have to first double check using the lsdev -Cc disk command that the
physical volume names have not changed since you made the backup. You
may also have to format the target disks.

Chapter 8. Practical Examples 251

However, you should usually have no problem getting to a screen like

� �
COMMAND STATUS

Command: OK stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

[TOP]

Will create the Volume Group: perfvg
Target Disks: hdisk3

hdisk5
Allocation Policy:

Shrink Filesystems: no
Preserve Physical Partitions for each Logical Volume: yes

Enter ″y″ to continue: New volume on /dev/rmt0:
 Cluster 51200 bytes (100 blocks).

Volume number 1
Date of backup: Tue Jul 12 19:14:13 1994

[MORE...18]

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

You should go to the bottom of the smit output by using any appropriate key
such as End , or Page Down , or Ctrl-V to confirm there is no hidden error
message, although such a message may be only a warning.

 6. In our example, the command seems to have completed successfully so
press the F10=Exit key to return to the command prompt so that we can
confirm that:

• The physical partition layout has been restored.

• The data files have been restored.

Check the Restored Volume Group: The restvg command has automatically
mounted our file systems and there are no data access problems. Although we
expect our mirror setup to be maintained, the level of AIX Version 4 used in this
example has resulted in only one physical partition being allocated to each
logical partition in every logical volume in the perfvg volume group. This can be
seen from the output of:

� �
lsvg -l perfvg
perfvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
perflv1 jfs 10 10 1 open/syncd /perfjfs1
perflv2 jfs 10 10 1 open/syncd /perfjfs2
perflv3 jfs 12 12 2 open/syncd /perfjfs3
perflv4 jfs 10 10 2 open/syncd /perfjfs4
perflog jfslog 1 1 1 open/syncd N/A
perfpg paging 5 5 2 closed/syncd N/A� �

However, it is only the secondary copies that have been lost. The primary
copies have been restored to an identical physical partition layout. If you look at
the contents of the file badmir.map in 8.3.2, “Map Files Usage and Contents” on
page 206, you can see that the layout specified by this map file is consistent with
the output of the following command:

252 AIX Storage Management

� �
lspv -M hdisk5 |grep perflv1
hdisk5:101 perflv1:1
hdisk5:102 perflv1:2
hdisk5:103 perflv1:3
hdisk5:104 perflv1:4
hdisk5:105 perflv1:5
hdisk5:106 perflv1:6
hdisk5:107 perflv1:7
hdisk5:108 perflv1:8
hdisk5:109 perflv1:9
hdisk5:110 perflv1:10
#� �

If you have many large logical volumes in the volume group that you′ve
recreated, then it may not be easy to visually compare them. As an alternative,
you can execute the following commands:

� �
lspv -M hdisk3 > hdisk3.map.after
lspv -M hdisk5 > hdisk5.map.after
diff hdisk5.map.after hdisk5.map.before|grep perflv3
diff hdisk3.map.after hdisk3.map.before|grep perflv3
#� �

The diff command compares the ASCII text files that contain the physical
volume physical partition allocation map both before and after perfvg was
rebuilt. The grep command confirms that diff has found no difference for the
perflv3 logical volume, so we know that its layout has been maintained.

How to Recover Space in a User Volume Group: Unlike the rootvg volume
group journaled file systems, you may be able to recover space in a logical
volume in another volume group without affecting other users. For example, you
may be able to:

 1. Make a current backup of logical volume data.

 2. Close the logical volume (for example, by unmounting the associated &jfs).

 3. Remove the logical volume.

 4. Recreate the logical volume (and its associated journaled file system) with a
smaller size.

 5. Restore the data.

However, if you have multiple logical volumes that you wish to recover data from
in one volume group, then the above process may be lengthy. It′s probably
easier to backup the volume group using savevg, export it to deallocate its
physical volumes, and then recreate it with restvg, as in the following procedure
that is almost identical to the previous example.

 1. Execute smitty restvg. to get to the menu with the title Remake a Volume
Group

 2. If your tape device is different to the default /dev/rmt0, then type the correct
source tape device (or file name) in the Restore DEVICE or FILE field, or use
the F4=List key to select it.

 3. Press the Tab key to toggle the field SHRINK the filesystems? from no to yes
so that your screen should look like:

Chapter 8. Practical Examples 253

� �
Remake a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Restore DEVICE or FILE [/dev/rmt0] +/
SHRINK the filesystems? yes +
PHYSICAL VOLUME names [] +

(Leave blank to use the PHYSICAL VOLUMES listed
in the vgname.data file in the backup image)

Number of BLOCKS to read in a single input [] #
(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 4. Press the Enter=Do key to get to the following menu prompt:

� �
COMMAND STATUS

Command: running stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

Will create the Volume Group: perfvg
Target Disks: hdisk3

hdisk5
Allocation Policy:

Shrink Filesystems: yes
Preserve Physical Partitions for each Logical Volume: no

Enter ″y″ to continue:

� �
 5. Type the character y and press Enter=Do .

Note that you are asked to confirm the target disks since they may contain
data that you want to keep. Remember that we only exported perfvg to free
up these disks, so hdisk3 and hdisk5 still contain valid data because
exportvg does not write to the physical volumes that are in the exported
volume group.

You should get to a screen like:

254 AIX Storage Management

� �
COMMAND STATUS

Command: OK stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

[TOP]

Will create the Volume Group: perfvg
Target Disks: hdisk3

hdisk5
Allocation Policy:

Shrink Filesystems: yes
Preserve Physical Partitions for each Logical Volume: no

Enter ″y″ to continue: New volume on /dev/rmt0:
 Cluster 51200 bytes (100 blocks).

Volume number 1
[MORE...18]

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

You should go to the bottom of the smit output by using any appropriate key
such as End , or Page Down , or Ctrl-V to confirm there is no hidden error
message, although such a message may be only a warning.

 6. In our example, the command seems to have completed successfully so
press the F10=Exit key to return to the command prompt so that we can
confirm that:

• The journaled file systems and their logical volumes have been made as
small as is necessary to physically have enough room for the restored
data files.

• The data files have been restored.

The output of the following commands shows us that the space saving operation
has worked. The mirrored logical volumes have been correctly created, and the
journaled file systems have been mounted so that we can confirm that our data
files have been restored:

� �
lsvg -l perfvg
perfvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
perflv1 jfs 1 2 2 open/syncd /perfjfs1
perflv2 jfs 1 2 2 open/syncd /perfjfs2
perflv3 jfs 1 1 1 open/syncd /perfjfs3
perflv4 jfs 1 1 1 open/syncd /perfjfs4
perflog jfslog 1 1 1 open/syncd N/A
perfpg paging 5 10 2 closed/syncd N/A
#
df -I /perf*
Filesystem 512-blocks Used Free %Used Mounted on
/dev/perflv1 2640 208 2432 7% /perfjfs1
/dev/perflv2 2640 208 2432 7% /perfjfs2
/dev/perflv3 3152 208 2944 6% /perfjfs3
/dev/perflv4 2640 208 2432 7% /perfjfs4
#� �

Chapter 8. Practical Examples 255

Note that although each journaled file system requires one 4MB logical partition,
the journaled file system is actually much smaller than this, and can be
expanded to over 8000 512 byte blocks before a second logical partition will be
allocated to it.

8.4.2 How to Use the mksysb Command
This example follows the steps in ″Backing Up Your System″, in the AIX Version
4.1 Installation Guide, to create a backup bootable tape image of rootvg. We can
do this twice:

• One backup with map files.

• One backup without map files.

Since we are concerned about the location of our logical volume copies in our
mirrored rootvg example, we only need to do a backup that will create map files.
In fact, creating map files provides more installation choices; we can change the
field in the installation menu from its default of yes so that we do not have to use
the map files on the tape to rebuild the rootvg.

Once the backup is complete, we can try to reinstall AIX Version 4 from our
backup tape and confirm that the mirror copies are on separate physical
volumes:

• With the default installation options (no maps and no shrink).

• With the map file installation option.

• With the shrink option set to yes.

Note that the entry for the image.data file in the AIX Version 3.2 Files Reference
reminds us that this file in the / directory should not be modified.

8.4.2.1 Command Line Summary
Unlike AIX Version 3, the command called by smit is actually a script that for a
bootable tape effectively runs the following command:

� �
/usr/bin/mksysb -i $BFLAG $EFLAG $MFLAG $DEVICE� �

The script that is actually run is a great deal more complicated, and can be
viewed by using the F6=Command key from the smit Back Up the System menu.

8.4.2.2 Detailed Guidance
Our first example shows how to create a backup that includes map files for the
rootvg. This should enable us to use this backup tape to rebuild a system that
has the same disk configuration, with the physical partitions of each logical
volume located in exactly the same place. This will ensure that your system
performance does not suffer because, for example, a paging logical volume
could otherwise be rebuilt on a slow physical volume instead of the fast physical
volume that it was on when the AIX Version 4 rootvg image was built.

Always Document the Current System: Before we start any backup, it is wise to
collect the output of a few commands to document the current system
configuration. This information may be very valuable if you encounter a problem
when you use this backup image to install AIX Version 4.

256 AIX Storage Management

You can record information such as:

� �
lspv
hdisk0 00014732b1bd7f57 rootvg
hdisk1 0001221800072440 stripevg
hdisk2 00012218da42ba76 rootvg
hdisk4 0000020158496d72 availvg
hdisk5 00000201dc8b0b32 perfvg
hdisk6 000002007bb618f5 availvg
hdisk3 0002479088f5f347 perfvg
hdisk8 000137231982c0f2 stripevg
hdisk7 none None
lsdev -Cc disk
hdisk0 Available 00-08-00-0,0 670 MB SCSI Disk Drive
hdisk1 Available 00-08-00-1,0 670 MB SCSI Disk Drive
hdisk2 Available 00-08-00-2,0 355 MB SCSI Disk Drive
hdisk4 Available 00-07-00-0,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk5 Available 00-07-00-1,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk6 Available 00-07-00-2,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk3 Available 00-08-00-3,0 320 MB SCSI Disk Drive
hdisk8 Available 00-07-00-4,0 857 MB SCSI Disk Drive
hdisk7 Available 00-07-00-3,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
df
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 8192 4480 45% 714 34% /
/dev/hd2 409592 32688 92% 5044 9% /usr
/dev/hd9var 24576 3952 83% 95 3% /var
/dev/hd3 24576 23008 6% 70 1% /tmp
/dev/hd1 8192 7680 6% 70 6% /home
/dev/availlv 49152 4888 90% 17 0% /availjfs
/dev/strlv16k 98304 9856 89% 18 0% /strjfs16k
/dev/strlv32k 65536 2640 95% 42 0% /strjfs32k
/dev/lv01 57344 616 98% 5726 8% /frag512
/dev/lv00 57344 0 100% 5100 7% /frag4096
/dev/lv02 16384 288 98% 1748 85% /frag512-1
/dev/perflv1 81920 79280 3% 16 0% /perfjfs1
/dev/perflv2 81920 79280 3% 16 0% /perfjfs2
/dev/perflv3 98304 95152 3% 16 0% /perfjfs3
/dev/perflv4 81920 79280 3% 16 0% /perfjfs4
#
lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
perfpg hdisk5 perfvg 20MB 0 no no lv
perfpg hdisk3 perfvg 20MB 0 no no lv
hd6 hdisk0 rootvg 32MB 24 yes yes lv
hd6 hdisk2 rootvg 32MB 24 yes yes lv
#� �

Note that since the creation of the mirror copies of the rootvg logical volumes,
we deleted the paging00 device and increased the /tmp journaled file system by
4MB. An example of the output of lsvg -M rootvg before this change is shown in
“How to Check the Implementation of a Mirrored rootvg” on page 197. This is
very useful command output to keep when you want to create a rootvg image
that includes map files.

Create the rootvg Image on a Bootable Tape: As well as the prerequisites listed
in Backing Up Your System, in AIX Version 4.1 Installation Guide, you need to
ensure that you have:

• The fileset containing the required tape device software installed, if your tape
drive has been attached to your RISC System/6000 temporarily for the

Chapter 8. Practical Examples 257

purpose of backing it up (in other words, the tape device was not powered
on and attached to this RISC System/6000 when it was previously installed).

• Given thought to the consequences of using this rootvg image to install a
different RISC System/6000. In other words, do you need to:

− Change the root password before the backup.

− Install additional filesets containing device driver software for the target
machine if its hardware configuration is not identical to the source RISC
System/6000 where the image was created.

− Change communication parameters to avoid a network conflict.

We can see from the above output of the df command that we have 23008 512
byte blocks free in the /tmp journaled file system. This is more than 8.2MB, so
we should have enough working space for the backup process. However, even if
df said that /tmp was almost full or on the borderline of being likely to run out of
space, then since we know that rootvg has some free physical partitions in it, we
can just change the smit field EXPAND /tmp if needed? as described below. We
also know that all the rootvg journaled file systems that we want to backup are
currently mounted. To create the rootvg image:

 1. Execute the command smitty mksysb.

If you want to find this in the AIX Version 4 smit menu hierarchy:

a. Execute the command smitty.

b. Select System Storage Management (Physical & Logical Storage) .

 c. Select System Backup Manager .

d. Select Back Up the System .

Your screen should now have a menu with the title Back Up the System.

 2. Type the name of our backup device, such as /dev/rmt0, in the Backup DEVICE
or FILE field if its different to the default value that appears in the field.

 3. Ensure that we ′ l l have enough working space by using the Tab key to toggle
EXPAND /tmp if needed? to no.

 4. Use the Tab key to toggle Create MAP files? from no to yes so that your
screen looks like:

258 AIX Storage Management

� �
Back Up the System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
WARNING: Execution of the mksysb command will

result in the loss of all material
previously stored on the selected
output medium. This command backs
up only rootvg volume group.

* Backup DEVICE or FILE [/dev/rmt0] +/
Make BOOTABLE backup? yes +

(Applies only to tape media)
EXPAND /tmp if needed? (Applies only to bootable yes +
media)
Create MAP files? yes +
EXCLUDE files? no +
Number of BLOCKS to write in a single output [] #

#
(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 5. Press the Enter=Do key to create the backup using the write enabled tape
that we placed in the tape drive (we want to backup all files and we′ ll let the
operating system determine the appropriate number of blocks to use for the
/dev/rmt0 tape device).

 6. Insert a second tape if required.

Our example backup image fits on one 2.3GB 8mm tape cartridge. If your
rootvg image requires multiple large capacity tapes, then you may need to
reconsider your volume group design.

 7. Wait for the backup to complete, which will be indicated by a screen that
looks like:

� �
COMMAND STATUS

Command: OK stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

[TOP]
File System size changed to 24576

bosboot: Boot image is 5173 512 byte blocks.
Backing up to /dev/rmt0.1
Cluster 51200 bytes (100 blocks).
Volume 1 on /dev/rmt0.1
a 10 ./tapeblksz
a 24 ./tmp/vgdata/rootvg/hd1.map
a 1300 ./tmp/vgdata/rootvg/hd2.map
a 72 ./tmp/vgdata/rootvg/hd3.map
a 24 ./tmp/vgdata/rootvg/hd4.map
a 12 ./tmp/vgdata/rootvg/hd5.map
a 24 ./tmp/vgdata/rootvg/hd5x.map
[MORE...6679]

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

As can be seen from this output, the map files that contain the physical
partition allocation data are the first files that are backed up.

Chapter 8. Practical Examples 259

You should go to the bottom of the smit output by using any appropriate key
such as End , or Page Down , or Ctrl-V to confirm that the end of the output
looks like:

� �
a ./perfjfs3
a ./perfjfs4
a ./availjfs
a ./strjfs16k
a ./strjfs32k
a ./frag4096
a ./bosinst.data
0512-038 mksysb: Backup Completed Successfully.� �

It is important to check that there is no hidden error message, although such
a message may be only a warning. In this case, our backup seems to be
alright.

 8. You may find that it is easier to read the first and last pages of this long
output by checking your smit.log file when you exit smit by pressing the
F10=Exit key.

Warning - label all tapes

You will eventually become very frustrated if you do not correctly label
your backup tape(s) to include:

• The date of backup.

• The size of the rootvg image backed up (you may wish to keep a
printed copy of the /image.data file so that you can estimate how
much disk space is required on a target system installed with the
SHRINK option set to yes in the installation menu).

• The root password information.

• A communications configuration summary.

• The AIX version and release level.

• The tape name to identify it accurately in your backup tape pool.

 9. Write protect and safely store your tape(s).

Check the rootvg Image: Briefly, it is important to note that you should check
your backups regularly. A bootable tape should be checked by actually trying to
boot the system in service mode using the tape. The actual files backed up
should be checked by the smit option List Files in a System Image found in the
System Backup Manager smit menu.

How to Do a Thorough Backup Tape Test: Use the tape to reinstall the source
system!!!

To do this, you should refer to Installing BOS from a System Backup in the AIX
Version 4.1 Installation Guide. This article describes in detail the steps required
to recover your mksysb image, which is what we did for this example. You will
improve your understanding of the installation process if you continue with the
prompted installation.

In this example, you will encounter a problem if you try to use map files. As we
discussed at the start of this chapter, the names of the physical volumes may be
reconfigured if some of the disks were added into the system at different times.
This resulted in the installation process thinking that hdisk5 and hdisk7 were the

260 AIX Storage Management

target disks for the rootvg. You can check the actual SCSI addresses of these
disks to confirm that this is correct. However, because the map files only contain
the names of the disks, then the installation process only recognized hdisk0 and
hdisk3 (the original names of the rootvg disks) as having map files.

Hence, we are forced to install AIX Version 4 with the defaults of:

• Use Maps set to No.

• Shrink File System set to No.

• hdisk5 and hdisk7 as the Disk(s) Where You Want to Install.

This problem with the physical volume names shows us something useful; a
backup volume group image created with map files does not have to be installed
with the Use Maps set to yes.

When the installation is complete, we can see the following disk configuration:

� �
lspv
hdisk0 0000020158496d72 None
hdisk1 00000201dc8b0b32 None
hdisk2 000002007bb618f5 None
hdisk3 none None
hdisk4 000137231982c0f2 None
hdisk5 00014732b1bd7f57 rootvg
hdisk6 0001221800072440 None
hdisk7 00012218da42ba76 rootvg
hdisk8 0002479088f5f347 None
lsdev -Cc disk
hdisk0 Available 00-07-00-0,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk1 Available 00-07-00-1,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk2 Available 00-07-00-2,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk3 Available 00-07-00-3,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)
hdisk4 Available 00-07-00-4,0 857 MB SCSI Disk Drive
hdisk5 Available 00-08-00-0,0 670 MB SCSI Disk Drive
hdisk6 Available 00-08-00-1,0 670 MB SCSI Disk Drive
hdisk7 Available 00-08-00-2,0 355 MB SCSI Disk Drive
hdisk8 Available 00-08-00-3,0 320 MB SCSI Disk Drive
#� �

The new assignment of disk names reflects the following two precedents:

 1. SCSI physical volumes connected to adapters that are in lower slot numbers
are configured first.

 2. SCSI physical volumes with smaller addresses are configured first.

This means that the disk at address 00-08-00-0,0 which was hdisk0 is now called
hdisk5. Likewise, hdisk2 became hdisk7. However, note that the disk physical
volume identifiers have not changed. In other words, the number
00014732b1bd7f57 that was associated with the rootvg disk hdisk0 is still
associated with the same physical volume, which is now called hdisk5. This is
expected because when an identifier is given to a disk, it is actually recorded on
the VGDA of the disk.

Some of a physical volume Volume Group Descriptor Area can be seen by the
following low level command:

Chapter 8. Practical Examples 261

� �
lqueryvg -p hdisk0 -At
Max LVs: 256
PP Size: 22
Free PPs: 560
LV count: 2
PV count: 2
Total VGDAs: 3
Logical: 000004461ed9e52e.1 availlv 1

000004461ed9e52e.2 loglv00 1
Physical: 0000020158496d72 2 0

000002007bb618f5 1 0
#� �

This tells us that the disk that is currently called hdisk0 belongs to a volume
group that contains one other physical volume. Notice that the volume group
physical volumes are identified by their unique hexadecimal number rather than
by a name such as hdisk0.

The above command will also help us fix another problem that exists since our
installation of the backup tape. We can see from the earlier output of the lspv
command that the other non-rootvg physical volumes have the word None next to
them which reflects the fact that the current operating system does not know
about our user volume groups. This means that we will have to reimport these
volume groups. This is not difficult since we can use the output of the lspv
command and the lqueryvg command for some of the disks to determine how
many user volume groups we have.

Alternatively, we could use the following command for every disk to determine
the volume group configuration. When you can see the logical volume names on
your screen, you can press the Ctrl and C keys simultaneously to exit this
command.

� �
/usr/bin/strings /dev/rhdisk0| more
XImr
_LVM
DEFECT
_LVM
DEFECT
XImr
availlv
loglv00� �

Of course, since we had saved the output of the commands:

• lspv

• lsdev -Cc disk

in our original system, then we do not have to use lqueryvg or strings.

262 AIX Storage Management

Warning - Name your logical volumes

This example clearly illustrates the value of using meaningful names for your
logical volumes and volume groups. We recommended that you always use
the option Add a Journaled File System on a Previously Defined Logical
Volume in the menu found from smitty jfs, rather than Add a Journaled File
System for long term data files.

It is easier for us to recognize something called availlv rather than lv00.

How to Import a Volume Group: To import the user volume groups:

 1. Execute smitty importvg to get to the menu with the title Import a Volume
Group, or, more generally:

a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

 c. Select Logical Volume Manager .

d. Select Volume Groups .

e. Select Import a Volume Group .

 2. Type the name of the volume group, such as availvg, in the VOLUME GROUP
name field.

 3. Type the name of one physical volume that you know belongs to this volume
group, such as hdisk0 for availvg, in the PHYSICAL VOLUME name field, or use
the F4=List key to select it.

Note that only one physical volume is required to import a volume group. As
we saw from the earlier output of the lqueryvg command, each disk in a
volume group knows what physical volumes belong to the volume group, and
what logical volumes exist on the volume group.

 4. Press the Enter=Do key when your screen looks like:

� �
Import a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
VOLUME GROUP name [availvg]

* PHYSICAL VOLUME name [hdisk0] +
* ACTIVATE volume group after it is yes +

imported?
Volume group MAJOR NUMBER [] +#

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Chapter 8. Practical Examples 263

 5. Press the F10=Exit key to return to the command prompt when smit returns
an OK message.

Warning - Import user volume groups

With the level of AIX Version 4 that we used for these examples, we
found that it is always necessary to re-import your user volume groups
when a rootvg backup image is installed.

 6. Repeat this sequence for all volume groups whose data you want to access.
In this example, repeat the command for the perfvg and stripevg volume
groups.

We executed importvg directly from the command line as follows:

� �
importvg -y availvg hdisk0
availvg
importvg -y perfvg hdisk1
perfvg
importvg -y stripevg hdisk4
stripevg� �

We can easily confirm that the volume group configuration has been restored by
the following command:

� �
lspv
hdisk0 0000020158496d72 availvg
hdisk1 00000201dc8b0b32 perfvg
hdisk2 000002007bb618f5 availvg
hdisk3 none None
hdisk4 000137231982c0f2 stripevg
hdisk5 00014732b1bd7f57 rootvg
hdisk6 0001221800072440 stripevg
hdisk7 00012218da42ba76 rootvg
hdisk8 0002479088f5f347 perfvg
#� �

Note that all volume groups were automatically varied on when they were
imported, as can be from the output of:

� �
lsvg -o
stripevg
perfvg
availvg
rootvg� �

Now that the volume group configuration has been restored, we can mount the
journaled file systems in these volume groups. to check that we can still access
our data by executing the command:

� �
mount all
mount: /dev/hd1 on /home: Device busy
mount: /dev/newlv on /newfs: No such file or directory
Replaying log for /dev/perflv1.
Replaying log for /dev/availlv.� �

264 AIX Storage Management

We can quickly check the restoration of the files in our journaled file systems
from the command:

� �
df
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 8192 4520 44% 713 34% /
/dev/hd2 409592 32712 92% 5044 9% /usr
/dev/hd9var 24576 21712 11% 76 1% /var
/dev/hd3 24576 22640 7% 59 1% /tmp
/dev/hd1 8192 7712 5% 51 4% /home
/dev/perflv1 81920 79280 3% 16 0% /perfjfs1
/dev/perflv2 81920 79280 3% 16 0% /perfjfs2
/dev/perflv3 98304 95152 3% 16 0% /perfjfs3
/dev/perflv4 81920 79280 3% 16 0% /perfjfs4
/dev/availlv 49152 4888 90% 17 0% /availjfs
/dev/strlv16k 98304 9856 89% 18 0% /strjfs16k
/dev/strlv32k 65536 2640 95% 42 0% /strjfs32k
/dev/lv01 57344 616 98% 5726 8% /frag512
/dev/lv00 57344 0 100% 5100 7% /frag4096
/dev/lv02 16384 288 98% 1748 85% /frag512-1� �

From a comparison with this command′s output some time before the rootvg was
built, we can see that all journaled file systems are identical except for the fact
that the rootvg journaled file systems have more free space. This occurred
because we deleted some files before we built the image.

Finally, we need to check whether our rootvg mirrored configuration will protect
us from disk failure. The output of the following command suggests that we may
be safe:

� �
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/syncd N/A
hd4 jfs 1 2 2 open/syncd /
hd2 jfs 50 100 2 open/syncd /usr
hd9var jfs 3 6 2 open/syncd /var
hd3 jfs 3 6 2 open/syncd /tmp
hd1 jfs 1 2 2 open/syncd /home
hd5x boot 2 2 1 closed/syncd N/A
#� �

Now the last time our example system booted, it used the hd5 logical volume on
hdisk5, the 670MB disk at SCSI address 08-00. This can be seen from:

� �
bootinfo -b
hdisk5
#� �

We used the strings command on both the hd5 and hd5x raw devices and
thought that we may be able to reboot from the hd5x logical volume after
executing:

� �
bootlist -m normal hdisk7 hdisk5� �

Chapter 8. Practical Examples 265

However, our reboot hung at some point after the message PERFORM auto-varyon
of Volume Groups was displayed. This suggests that it is either a problem with
what we thought was a valid boot image on hd5x, and/or, that there is a problem
with the new physical partition map that was creation by the AIX Version 4
installation program.

When we checked the new rootvg physical partition map, we found that the hd5x
logical volume had been created on hdisk5 instead of hdisk7. Hence we used the
following commands:

� �
migratepv -l hd5x hdisk5 hdisk7
bosboot -a -l /dev/hd5x -d /dev/hdisk7

bosboot: Boot image is 4275 512 byte blocks.
bosboot -a -l /dev/hd5 -d /dev/hdisk5

bosboot: Boot image is 4275 512 byte blocks.� �

For more examples of how to use the migratepv command, please refer to 8.8.1,
“How to Use the migratepv Command” on page 312.

We are now able to successfully boot using either hdisk5 or hdisk7, so our first
example installation of a rootvg image is complete.

Warning - Always document rootvg

This boot problem reminds us that it is very important to use some
commands, such as those discussed in “How to Document the Volume Group
Design” on page 234, to record the physical partition map of a mirrored
rootvg configuration.

So far, we′ve tried to install a rootvg backup image that uses map files (and
hence does not change a journaled file systems′ size). However, in our
example, we were forced to abandon the use of map files because the disk
names changed. If you do use map files, you should execute the command lsvg
-M rootvg > filename on both the source and target machines, and then use the
diff command on the output files to confirm that the physical partition maps are
identical.

How to Save Space in the rootvg: Now we can try to use the new SHRINK
option in the installation menus of AIX Version 4 to save space in the rootvg
volume group, if some of its logical volumes have unused space. For example, if
you de-install a large program product, you may end up with a lot of free space
in /usr that you would rather allocate to another logical volume in the rootvg
volume group.

Briefly, recall that our rootvg from the end of 8.4.2, “How to Use the mksysb
Command” on page 256 looks like:

266 AIX Storage Management

� �
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/syncd N/A
hd4 jfs 1 2 2 open/syncd /
hd2 jfs 50 100 2 open/syncd /usr
hd9var jfs 3 6 2 open/syncd /var
hd3 jfs 3 6 2 open/syncd /tmp
hd1 jfs 1 2 2 open/syncd /home
hd5x boot 2 2 1 closed/syncd N/A
#� �

The disk space recovery installation procedure is almost identical to that
documented in the previous example in 8.4.2, “How to Use the mksysb
Command” on page 256. The only difference is that you must install AIX Version
4 with the defaults of:

• Use Maps set to No.

• Shrink File System set to Yes.

This is the critical field.

• hdisk5 and hdisk7 as the Disk(s) Where You Want to Install.

Warning - Do not edit /image.data

Although the article Backing Up the System Image Including User Volume
Groups in AIX Version 4.1 System Management Guide: Operating System and
Devices, suggests that we can change the SHRINK variable in the image.data
file, the entry for this file in the AIX Version 3.2 Files Reference reminds us
that it is not wise to edit this file. Although it says that it is alright to edit the
SHRINK field, we suggest that you do not do this, since you can get the same
effect by changing the SHRINK field in the AIX Version 4 installation menu.

When the installation is complete, run the commands:

� �
df -kI
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/hd4 4096 1928 2168 47% /
/dev/hd2 192512 188184 4328 97% /usr
/dev/hd9var 4096 1084 3012 26% /var
/dev/hd3 12288 1736 10552 14% /tmp
/dev/hd1 4096 240 3856 5% /home
and so on...
lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 open/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A
hd8 jfslog 1 2 2 open/syncd N/A
hd4 jfs 1 2 2 open/syncd /
hd2 jfs 47 94 2 open/syncd /usr
hd9var jfs 1 2 2 open/syncd /var
hd3 jfs 3 6 2 open/syncd /tmp
hd1 jfs 1 2 2 open/syncd /home
hd5x boot 2 2 1 closed/syncd N/A
#� �

Chapter 8. Practical Examples 267

The df command also shows that we now have a minimal amount of free space
in each journaled file system. You can see that we′ve recovered three logical
partitions from hd2 (/usr) and two from hd9var (/var), so we have 10 more free
physical partitions in rootvg that can be used to increase or create other logical
volumes. This occurs because we recover two physical partitions for every
logical partition since we have implemented a double copy mirrored rootvg
volume group.

Finally, do not forget to check the location of the hd5x logical volume. You may
have to move it using migratepv as was shown at the end of the last mksysb
example. Also, you will need to repeat the bosboot commands for both hd5 and
hd5x before you can simulate a rootvg physical volume failure.

8.5 Utilizing the New AIX Version 4 Features
This section contains some practical examples in the usage of the new storage
related features in AIX Version 4. This includes:

 1. Striped logical volumes

 2. Fragments

 3. JFS compression

 4. File systems greater than 2GB in size

First, create stripevg that contains hdisk1 and hdisk8 using the same procedure
as for the creation of availvg:

 1. Execute smitty vg..

 2. Select Add a Volume Group .

 3. Type stripevg for VOLUME GROUP name.

 4. Type hdisk1 hdisk8 for PHYSICAL VOLUME names.

 5. Press Enter=Do and then F10=Exit when smit returns an OK prompt.

8.5.1 Striped Logical Volumes
There are performance benefits in using striped logical volumes, particularly
when sequential read/write access to large files is of importance. Although it is
beyond the scope of this book to provide a practical example which would
demonstrate this, results taken from a benchmark using striping are provided
later in this section.

The purpose of the example to follow is to show how a striped logical volume
can be created in AIX Version 4.

8.5.1.1 Command Line Summary
 1. Create a striped logical volume, consisting of 60 logical partitions, called

stripelv32k, in the volume group stripevg using disks hdisk1 and hdisk8.
Specify a stripe size of 32k:

� �
mklv -y′ stripelv32k′ -S′32K′ ′ stripevg′ ′ 60 ′ ′hdisk1 hdisk8′� �

 2. Create a file system called strjfs32k using logical volume strlv32k:

268 AIX Storage Management

� �
crfs -v jfs -d′ strlv32k′ -m′ / strjfs32k′ -A′ yes′ -p′ rw′ -t′ no′ \
-a frag=′4096′ -a nbpi=′4096′ -a compress=′ no′� �

 3. Mount the file system:

� �
mount /strjfs32k� �

8.5.1.2 Detailed Description
The above summary steps show how a striped logical volume can be created
and subsequently used to create a journaled file system. In the following section
we will use smit to create the same striped logical volume and file system, and
will review the steps necessary to identify the resources required.

In the example we will not discuss how to tune a striped logical volume for
optimal performance. There are many different factors which need to be
considered when tuning a striped logical volume for optimal performance. Some
of these include system-wide operating system parameters, real memory
requirements of applications, and the availability of hardware resources.

Changing a system-wide operating system parameter such as maxpgahead
(maximum number of pages to read ahead), to provide a high performance
striped logical volume for one application can sometimes cause degradation in
performance for another application running on the same system. Also, if
striping is done across two disks attached to a single SCSI adapter this would
not provide a performance increase over non-striped disks.

Therefore, a lot of research and preparation work needs to be carried out in
order to provide an optimal performance environment suitable to all applications.
Since the needs for each site will differ, a particular system configuration
providing high performance sequential access to files stored in a striped logical
volume will not necessarily provide the same performance benefits at another
site.

However, some basic principles should be followed when creating striped logical
volumes for high-performance. These are:

• Spread the logical volume across as many physical volumes as possible.

• Use as many disk drive adapters, as possible, for the physical volumes.

• Create striped logical volumes using a volume group which is dedicated to
striping alone. Do not mix non-striped logical volumes with striped logical
volumes.

How to Create a Striped Logical Volume: For this example we have chosen to
use an existing volume group, stripevg which consists of two physical volumes,
hdisk1 and hdisk8. The logical volume and filesystem we will create will be
called /strlv32k and /strjfs32k, respectively. The logical volume will consist of 60
logical partitions.

 1. Use the lsdev command to make sure that the physical volumes hdisk1 and
hdisk8 in the volume group stripevg are attached to different SCSI adapters:

� �
lsdev -Cc disk
hdisk1 Available 00-08-00-1,0 670 MB SCSI Disk Drive
hdisk8 Available 00-07-00-4,0 857 MB SCSI Disk Drive� �

Chapter 8. Practical Examples 269

We can see from the above output that hdisk1 is attached to the SCSI
adapter located in slot 08 and hdisk8 is attached to the SCSI adapter in slot
07.

 2. Check that the physical volumes used in the volume group stripevg have no
physical partitions allocated:

� �
#lsvg -M stripevg

stripevg
hdisk1:1-159
hdisk8:1-203� �

The above output shows that no logical volumes currently exist and all
partitions on each physical volume are free.

 3. Create a striped logical volume over these physical volumes using the
command smitty mklv:

a. On the first screen enter stripevg for the volume group name and press
Enter .

b. On the second screen, shown below, enter:

• strlv32k for the field Logical volume NAME.

• 60 for the field Number of LOGICAL PARTITIONS.

• hdisk1 hdisk8 for the field PHYSICAL VOLUME names.

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Logical volume NAME [strlv32k]

* VOLUME GROUP name stripevg
* Number of LOGICAL PARTITIONS [60] #
PHYSICAL VOLUME names [hdisk1 hdisk8] +
Logical volume TYPE []
POSITION on physical volume outer_middle +
RANGE of physical volumes minimum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
to use for allocation

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image� �

 c. Press the PageDown key to move to the next page of this smit screen,
shown below:

270 AIX Storage Management

� �
Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]

Number of COPIES of each logical 1 +
partition

Mirror Write Consistency? yes +
Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL []
MAXIMUM NUMBER of LOGICAL PARTITIONS [128]
Enable BAD BLOCK relocation? yes +
SCHEDULING POLICY for writing logical parallel +
partition copies

Enable WRITE VERIFY? no +
File containing ALLOCATION MAP []
Stripe Size? [32K] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

d. Using the Tab key toggle to the value 32K for the field Stripe Size?

e. Press Enter .

f. Press F10 to exit when smit returns with OK.

 4. Create a journaled files system using the logical volume strlv32k with the
command smitty crjfslv.

The following smit screen will appear:

� �
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name stripelv +

* MOUNT POINT [/stripefs]
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 4096 +
Number of bytes per inode 4096 +
Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

On this smit screen:

a. Press F4 and select strlv32k from the list.

b. Enter /strjfs32k for the field MOUNT POINT.

 c. Using the Tab toggle to the value yes for the field Mount AUTOMATICALLY at
system restart?

Chapter 8. Practical Examples 271

d. Press Enter .

e. Press F10 to exit when smit returns with OK.

We have now successfully created a striped logical volume and journaled file
system.

8.5.1.3 Benchmark Results for an I/O Bound Test Using Striping
Based on a particular Motorola benchmark, an intensive I/O bound application
was developed in FORTRAN. The application test included performing
continuous sequential access to about 2.4GB of data held within a journaled file
system. The I/O activity performed by the application included reading forward,
reading backward, and reading then writing forward. For comparison, the test
was conducted, on separate occasions, using a striped logical volume and a
non-striped logical volume.

The striped logical volume was created with a stripe size of 32K and the block
size used for the disk I/O was 98304 bytes (96K). Certain operating system
parameters were tuned to achieve better performance using the vmtume
command. For example maxpgahead was set to 256 to allow up to this many 4K
pages to be read ahead sequentially.

The hardware environment used for the test consisted of an RISC System/6000
model 590 with 512MB of memory. Three corvette adapters and six 2GB disks
were configured for the striping test.

The results of this test was as follows:

 Results

Non-striped Run Striped Run
User System Elapsed User System Elapsed
(hrs) (hrs) (hrs) (hrs) (hrs) (hrs)

10.01 2.05 25.18 10.05 2.21 14.50

From the above timing results we can see that the test conducted using a striped
logical volume was completed in 14.50 hours, whereas the same test within a
non-striped logical volume took 25.18 hours. With the user and system times
similar for both tests we can conclude that striping provides much better
performance.

8.5.2 How to Use Fragments for Disk Usage Efficiency
The purpose of this example is to show how file systems created with a small
fragment size can provide better disk space utilization than file systems created
with a large fragment size when used to store a large number of small files. The
example will demonstrate how to set up file systems with different fragment
sizes and number-of-bytes-per-inode (NBPI) values.

For this exercise we will create two file systems, one with a fragment size of 512
bytes and the other with the default fragment size of 4096 bytes. For both file
systems we will use a value of 512 for NBPI so that more than the default
number of inodes are created. Each file system will be allocated 50000 512 byte
blocks.

272 AIX Storage Management

The test for efficient use of disk space will be determined by the disk space used
when a number of equal sized files are stored within each file system. In each
of these file systems we will store several small files, each 512 bytes in size.

8.5.2.1 Command Line Summary
 1. First create a journaled file system called /frag512 with a 512 byte fragment

size and a 512 NBPI value in the existing volume group stripevg:

� �
crfs -v jfs -g′ stripevg′ -a size=′50000′ -m′ / frag512′ -A′ yes′ -p′ rw′ \
-t′ no′ -a frag=′512′ -a nbpi=′512′ -a compress=′ no′� �

 2. Next create a journaled file system with a 4096 byte fragment size and a 512
NBPI value in the existing volume group stripevg:

� �
crfs -v jfs -g′ stripevg′ -a size=′50000′ -m′ / frag4096′ -A′ yes′ \
-p′ rw′ -t′ no′ -a frag=′4096′ -a nbpi=′512′ -a compress=′ no′� �

 3. Mount each of the above file systems:

� �
mount /frag512
mount /frag4096� �

8.5.2.2 Detailed Description
The above two summary steps show how a file system can be created from the
command line. In the following section we will look at each command
separately, and also conduct example tests to verify the efficiency of using file
systems with a small fragment size.

How to Create a File System with a Different Fragment Size: In our example we
have chosen to use an existing volume group, stripevg which consists of
physical volumes hdisk1 and hdisk8. The file system created with the 512 byte
fragment size will be called /frag512 and that created with a fragment size of
4096 bytes will be called /frag4096.

 1. Create the 512 byte fragment size file system using the command smitty
crjfs.

Select the volume group stripevg from the list by moving to it using the down
cursor key and pressing Enter .

On the second smit screen, shown below, enter or change details for the
following fields:

• SIZE of file system (in 512 byte blocks)

• MOUNT POINT

• Mount AUTOMATICALLY at system restart?

• Fragment Size (bytes)

• Number of bytes per inode

Chapter 8. Practical Examples 273

� �
Add a Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Volume group name stripevg

* SIZE of file system (in 512-byte blocks) [50000]
* MOUNT POINT [/frag512]
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 512 +
Number of bytes per inode 512 +
Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

a. Enter 50000 for the file system size.

b. Enter /frag512 for the mount point.

 c. Using the Tab key rotate to yes for the field Mount AUTOMATICALLY at
system restart?

d. Enter 512 for the fragment size.

e. Enter 512 for number of bytes per inode.

f. Press Enter when all fields have been filled out.

g. When processing finishes smit returns with OK, as shown below:

� �
COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

Based on the parameters chosen, the new /frag512 JFS file system
is limited to a maximum size of 16777216 (512 byte blocks)

New File System size is 57344

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

Press F10 to exit smit.

 Note

The output on this screen shows that the new file system size is 57344
512 bytes instead of 50000. This is because the file system is rounded up
to the nearest allocation group size. See 3.1.4.1, “Journaled File System”
on page 59 for a description of file system structure.

274 AIX Storage Management

 2. Now repeat the above steps to create the file system called /frag4096.
However, this time use 4096 bytes for the file system fragment size instead of
512 bytes.

 3. With both file systems now created we need to mount each in turn using the
commands:

� �
mount /frag512
mount /frag4096� �

Look at the output for the two mounted file systems produced by the df
command:

� �
df -I /frag512 /frag4096
Filesystem 512-blocks Used Free %Used Mounted on
/dev/lv01 57344 16528 40816 28% /frag512
/dev/lv00 57344 16504 40840 28% /frag4096� �

The above output shows us that we have 40816 512 byte blocks available in the
file system /frag512 and 40840 512 byte blocks available in the file system
/frag4096.

How to Test the Efficiency of Disk Space Utilization: Now that we have created
two file systems which have almost identical characteristics apart from their
fragment sizes, we can look at testing their efficiency for storing a large number
of very small files. For the test we will use a file whose size is 512 bytes which
will occupy only one 512 byte fragment.

Use the following shell script, mkfile to create the file 512bytefile with a size of
512 bytes.

Chapter 8. Practical Examples 275

� �
#!/bin/ksh
mkfile filesize
usage()
{

clear
echo ″ ″
echo ″ ″
echo ″ ″
echo ″ ″
echo ″Usage: mkfile filesize″
echo ″ filesize should be in multiples of 512 bytes″
echo ″ ″
echo ″ ″
echo ″ ″
echo ″ ″
exit

}
Main...
if [$# != 1]
then

usage
fi
filesize=$1
filename=″$1″bytefile
integer mod=expr $filesize % 512
integer div=expr $filesize / 512
if [$mod != 0]
then

usage
fi
integer i=0;
integer j=expr $div * 128
> $filename
echo ″ ″
echo ″Creating file \″$filename\″ . Please wait...″
while true
do

echo ″yes″ >> $filename
i=i+1
if [$i = $j]
then

break
fi

done� �

Create the file using the command:

� �
cd /var/tmp
mkfile 512� �

To test the number of 512 byte files that can be stored in each file system we will
use the following sample Korn shell script called fragcopy. This shell script will
continue to make copies in the target file system until either the file system
become full or the target file count is reached. During processing a count will be
displayed showing the number of files that have been copied successfully. Note
that the first file has a count suffix of 0.

276 AIX Storage Management

� �
#!/bin/ksh
fragcopy
usage()
{

clear
echo ″ ″
echo ″ ″
echo ″ ″
echo ″ ″
echo ″Usage: fragcopy numfiles dir/sourcefilename dir/targetfilename″
echo ″ ″
echo ″ ″
echo ″ ″
echo ″ ″
exit

}
Main...
integer i=0
integer cnt=$1
source=$2
target=$3
if [$# != 3]
then

usage
fi
while true
do

cp $source $target.$i
if [$? != 0]
then

echo ″ ″
exit

fi
i=i+1
echo ″ Files copied: \c″
echo ″$i\b\c″
if [$i = $cnt]
then

echo ″ ″
break

fi
done� �

Create copies of the file 512bytefile in the file system /frag512 using the
command:

� �
fragcopy 8 /var/tmp/512bytefile /frag512/frag8� �

Now let us look at the contents of the directory /frag512:

� �
ls -lt /frag512
total 8
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.0
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.1
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.2
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.3
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.4
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.5
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.6
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.7� �

Chapter 8. Practical Examples 277

Before we look at the df output for /frag512 let us create eight occurrences of the
file 512bytefile in the filesystem /frag4096.

Create copies of the file 512bytefile in /frag4096 using the command:

� �
fragcopy 8 /var/tmp/512bytefile /frag4096/frag8� �

Look at the directory contents for /frag4096:

� �
ls -lt /frag4096
total 8
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.0
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.1
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.2
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.3
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.4
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.5
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.6
-rw-r--r-- 1 root sys 512 Jul 11 18:02 frag8.7� �

Now that we have the two file systems with the same number of files let us see
how much disk space has been utilized in each using the df command:

� �
df -I /frag512 /frag4096
Filesystem 512-blocks Used Free %Used Mounted on
/dev/lv01 57344 16536 40808 28% /frag512
/dev/lv00 57344 16568 40776 28% /frag4096� �

We expected the file system /frag512 to use one 4K block and /frag4096 to use
eight 4K blocks. We can verify this by comparing the results of df before and
after the file copy operation.

Looking at the change in the Used column of the df output the following
calculation shows how many 512 byte blocks have been used by each file
system:

blks used by file copy = blks used before - blks used after

Based on this calculation the number of 512 byte blocks used by /frag512 is:

blks used by /frag512 = 16536 - 16528 = 8

This is correct since we created eight 512 byte files in this file system.

The following calculation shows how many blocks were used by the file system
/frag4096.

blks used by /frag4096 = 16568 - 16504 = 64

This is also exactly as we expected since each file copied to /frag4096 is
allocated a 4K block. With eight files this has resulted in 32K bytes used, which
expressed in 512 byte blocks is 64.

We can therefore conclude, based on the results of the test, that the use of
smaller fragment sizes leads to more efficient use of disk space when a large
number of small files need to be stored. We have also observed that file

278 AIX Storage Management

systems using a large fragment size can cause much wasted space particularly
when the files being stored are smaller than 4096 bytes.

8.5.3 How to Use JFS Compression and Check its Consequences
This example shows you how to create a compressed journaled file system, and
then how to use some simple commands to investigate the effects of
compression on both AIX Version 4 performance and disk space usage.

To investigate compression, let′s use the availvg volume group. The example
was done after the migratepv example discussed in 8.8.1, “How to Use the
migratepv Command” on page 312. This means that we have three physical
volumes available, each with 287 4MB physical partitions, of which only 14
physical partitions are currently used.

Finally, remember that compression can only be specified when a journaled file
system is created, and that compression must use a journaled file system with
fragments that are less than 4096 bytes; in other words either 512 or 1024 or 2048
bytes. This example also investigates the differences between choosing 512 or
2048 as a fragment size when you create a journaled file system.

8.5.3.1 Command Summary
The following commands show you how to create and mount two compressed
journaled file system, one with a fragment size of 512, the other with a fragment
size of 2048. The other crfs command shows you how to create, for comparison,
a third journaled file system that also has a fragment size of 2048, but does not
use compression.

� �
crfs -v jfs -g′ availvg′ -a size=′80000′ -m′ / compress′ -A′ yes′ \
-p′ rw′ -t′ no′ -a frag=′2048′ -a nbpi=′4096′ -a compress=′ LZ′
... output follows... then execute
crfs -v jfs -g′ availvg′ -a size=′80000′ -m′ / compress512′ -A′ yes′ \
-p′ rw′ -t′ no′ -a frag=′512′ -a nbpi=′4096′ -a compress=′ LZ′
... output follows... then execute
crfs -v jfs -g′ availvg′ -a size=′80000′ -m′ / uncompress′ -A′ yes′ \
-p′ rw′ -t′ no′ -a frag=′2048′ -a nbpi=′4096′ -a compress=′ no′� �

To check that the journaled file systems have been correctly created, use:

� �
lsfs -q� �

To mount the journaled file systems, execute:

� �
mount /compress
mount /compress512
mount /uncompress� �

Next we can check the performance of the compressed file system by copying a
20MB file (bigfile) to each file system, and measuring the performance. First
check that the logical volume configuration is similar:

� �
lspv -p hdisk0� �

Chapter 8. Practical Examples 279

Now record copy times:

� �
timex cp /strjfs16k/bigfile /compress
timex cp /strjfs16k/bigfile /uncompress
timex cp /strjfs16k/bigfile /compress512� �

Finally, check that all files are the same size:

� �
ls -lt /compress /uncompress /strjfs16k� �

Lastly, we can check the disk utilization in order to investigate the efficiency of
the compression. Copy the following 2560 byte files:

� �
cp /strjfs32k/fragdata/2560bytefile /compress512/2560bytefile
cp /strjfs32k/fragdata/2560bytefile /compress/2560bytefile
cp /strjfs32k/fragdata/2560bytefile /uncompress/2560bytefile
cp /strjfs32k/fragdata/2560bytefile /frag512/2560bytefile� �

Use du to check much space is really used:

� �
du /strjfs32k/fragdata/2560bytefile
du /compress512/2560bytefile
du /compress/2560bytefile
du /uncompress/2560bytefile
du /frag512/2560bytefile� �

Use ls to verify the normal size of each file:

� �
ls -l /strjfs32k/fragdata/2560bytefile /frag512/2560bytefile
ls -l /compress512/2560bytefile /compress/2560bytefile
ls -l /uncompress/2560bytefile� �

8.5.3.2 Detailed Guidance
How to Create a Compressed JFS: Since the availvg volume group has plenty of
free space and one totally empty disk after the migration in 8.8.1, “How to Use
the migratepv Command” on page 312, then in this case we can create the
journaled file system straight away, without first creating a target logical volume
for the journaled file system. As you can see later in this section, the logical
volume manager in this case uses a physical partition map for the journaled file
systems in this example that does not have a significant effect on our
performance results, which are discussed in “How to Check the Performance of
a Compressed File System” on page 285.

Although we want to create three journaled file systems for this example, the
method is almost identical with only a few fields that are different. Hence smit
menus are only provided once.

To create a 40MB compressed journaled file system with a fragment size of 2048
bytes mounted at /compress:

 1. Execute the fastpath smitty crjfs to get to the following volume group menu
selection:

280 AIX Storage Management

� �

__
| |
| Volume Group Name |
| |
| Move cursor to desired item and press Enter. |
| |
| availvg |
| rootvg |
| perfvg |
| stripevg |
| |
| F1=Help F2=Refresh F3=Cancel |
| F8=Image F10=Exit Enter=Do |
| /=Find n=Find Next |
|__|� �

While availvg is highlighted, press the Enter=Do key to get to the menu with
the title Add a Journaled File System.

Alternatively, you can go through the smit hierarchy by:

a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

 c. Selecting File Systems .

d. Selecting Add / Change / Show / Delete File Systems .

e. Selecting Journaled File Systems .

f. Selecting Add a Journaled File System .

g. Selecting the availvg volume group. to get to the menu with the title Add
a Journaled File System.

 2. Type 80000 for the field SIZE of file system (in 512-byte blocks). 80 000
times 512 bytes is roughly 40MB.

 3. Type /compress for the field MOUNT POINT.

 4. Use the Tab key to toggle the field Mount AUTOMATICALLY at system restart?
from no to yes.

 5. Use the Tab key to toggle the field Fragment Size (bytes) from 4096 to 2048,
or use the F4=List key to select it.

 6. Use the Tab key to toggle the field Compression algorithm from no to LZ so
that your screen looks like:

Chapter 8. Practical Examples 281

� �
Add a Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Volume group name availvg

* SIZE of file system (in 512-byte blocks) [80000] #
* MOUNT POINT [/compress]
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 2048 +
Number of bytes per inode 4096 +
Compression algorithm LZ +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 7. Leave the other fields with their default values and press the Enter=Do key
to create the /compress journaled file system.

When the journaled file system has been created, your screen should look
like:

� �
COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.
Based on the parameters chosen, the new /compress JFS file system
is limited to a maximum size of 134217728 (512 byte blocks)
New File System size is 81920

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find Next� �

 8. Press the key F10=Exit to return to the command prompt.

Now repeat the above procedure to:

 1. Create a 40MB compressed journaled file system with a frag size of 512
bytes mounted at /compress512:

a. Execute the fastpath smitty crjfs.

b. With availvg highlighted, press the Enter=Do key to get to the menu with
the title Add a Journaled File System.

 c. Type 80000 for the field SIZE of file system (in 512-byte blocks).

282 AIX Storage Management

d. Type /compress512 for the field MOUNT POINT.

e. Use the Tab key to toggle the field Mount AUTOMATICALLY at system
restart? from no to yes.

f. Use the Tab key to toggle the field Fragment Size (bytes) from 4096 to
512, or use the F4=List key to select it.

g. Use the Tab key to toggle the field Compression algorithm from no to LZ.

h. Leave the other fields with their default values and press the Enter=Do
key to create the /compress512 journaled file system.

i. Press the key F10=Exit to return to the command prompt.

 2. Create a 40MB non-compressed journaled file system with a fragment size of
2048 bytes mounted at /uncompress:

a. Execute the fastpath smitty crjfs.

b. With availvg highlighted, press the Enter=Do key to get to the menu with
the title Add a Journaled File System.

 c. Type 80000 for the field SIZE of file system (in 512-byte blocks).

d. Type /uncompress for the field MOUNT POINT.

e. Use the Tab key to toggle the field Mount AUTOMATICALLY at system
restart? from no to yes.

f. Use the Tab key to toggle the field Fragment Size (bytes) from 4096 to
2048, or use the F4=List key to select it.

g. Do not change the field Compression algorithm; leave it with the default
setting of no.

h. Leave the other fields with their default values and press the Enter=Do
key to create the /uncompress journaled file system.

i. Press the key F10=Exit to return to the command prompt.

How to Check the Characteristics of the New JFS: We could use smit to check
the characteristics of each individual journaled file system by using the fastpath
smitty chjfs and selecting, for example, /compress . To view a summary for all
the journaled file systems, we could also:

 1. Execute smitty fs to get to the File Systems menu.

 2. Select List All File Systems to execute the command lsfs.

However, the flag -q now also tells us about the new AIX Version 4 journaled file
system attributes, so the best way to check our new journaled file systems is to
execute:

Chapter 8. Practical Examples 283

� �
lsfs -q /compress* /uncomp* /frag512
Name Nodename Mount Pt VFS Size Options Auto Ac

/dev/lv05 -- /compress jfs 81920 rw yes no
(lv size: 81920, fs size: 81920, frag size: 2048, nbpi: 4096, compress: LZ)

/dev/lv07 -- /compress512 jfs 81920 rw yes no
(lv size: 81920, fs size: 81920, frag size: 512, nbpi: 4096, compress: LZ)

/dev/lv06 -- /uncompress jfs 81920 rw yes no
(lv size: 81920, fs size: 81920, frag size: 2048, nbpi: 4096, compress: no)

/dev/lv01 -- /frag512 jfs 57344 rw yes no
(lv size: 57344, fs size: 57344, frag size: 512, nbpi: 512, compress: no)

/dev/strlv32k -- /strjfs32k jfs 65536 rw yes no
(lv size: 65536, fs size: 65536, frag size: 4096, nbpi: 4096, compress: no)� �

Note that the output may appear distorted if your screen is not 90 columns wide.
We also included data for /frag512 and /strjfs32k since they will be used later in
“How to Check the Disk Usage of a Compressed File System” on page 286.

How to Mount the New JFS: To mount the newly created journaled file systems
so that we can use them, rather than use smit, we suggest that it is easier to
execute:

� �
mount /compress
mount /uncompress
mount /compress512� �

However, if you want to use smit, for example to access /compress:

 1. Execute smitty fs.

 2. Select Mount a File System .

 3. Based on the previous output of the lsfs -q command, type /dev/lv05 in the
FILE SYSTEM name field, or use the F4=List key to select it.

 4. Again based on the previous output of the lsfs -q command, type /compress
in the DIRECTORY over which to mount field, or use the F4=List key to select it
so that your screen looks like:

284 AIX Storage Management

� �
Mount a File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
FILE SYSTEM name [/dev/lv05] +
DIRECTORY over which to mount [/compress] +
TYPE of file system +
FORCE the mount? no +
REMOTE NODE containing the file system []
to mount

Mount as a REMOVABLE file system? no +
Mount as a READ-ONLY system? no +
Disallow DEVICE access via this mount? no +
Disallow execution of SUID and sgid programs no +
in this file system?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 5. Press the Enter=Do to execute the mount command:

 6. When smit returns an OK message, press the F10=Exit key to return to the
command line.

How to Check the Performance of a Compressed File System: We can obtain a
simple indication of the performance degradation that we get when we use a
compressed journaled file system by recording how long it takes to copy a 20MB
file to each of the /compress, /compress512 and the /uncompress journaled file
systems. Of course, the exact nature of your data files, their access rate, and
other environmental conditions will give you quite different results from the
sample values that this example provides. Note we do not use smit to execute
these simple commands, so first let′s summarize our test, and then discuss it
afterwards.

Before we commence our test, we need to check that the underlying logical
volume configuration will not result in any bias in the results. We can check the
logical volumes by executing:

� �
lspv -p hdisk0
hdisk0:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
1-58 free outer edge
59-68 used outer middle lv05 jfs /compress
69-78 used outer middle lv06 jfs /uncompress
79-88 used outer middle lv07 jfs /compress512
89-115 free outer middle
116-172 free center
173-229 free inner middle
230-287 free inner edge� �

You can see that all 10 physical partitions of each logical volume are on the
same disk region (note that the logical volume manager automatically used the
empty hdisk0, after the migratepv in 8.8.1, “How to Use the migratepv Command”
on page 312, to create the new logical volumes). Each copy operation will be

Chapter 8. Practical Examples 285

done sequentially from the same source file, so that the main reason for the
copy time differences is the attributes of each target journaled file system.

To test the copy times, execute:

� �
timex cp /strjfs16k/bigfile /compress

real 42.70
user 0.27
sys 5.77
timex cp /strjfs16k/bigfile /uncompress

real 8.71
user 0.20
sys 5.94
df -kI /compress /uncompress
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/lv05 40960 11188 29772 27% /compress
/dev/lv06 40960 21020 19940 51% /uncompress
timex cp /strjfs16k/bigfile /compress512

real 39.66
user 0.25
sys 4.31
ls -lt /compress /uncompress /strjfs16k
/strjfs16k:
total 39328
-rw-r--r-- 1 root sys 20131943 Jul 21 14:51 bigfile
/uncompress:
total 39328
-rw-r--r-- 1 root sys 20131943 Jul 21 14:57 bigfile
/compress:
total 19664
-rw-r--r-- 1 root sys 20131943 Jul 21 14:53 bigfile� �

First, notice that although the ls output shows that each file is about 20MB big,
the df -kI output gives you an idea of how compression can save disk space.
This is looked into in more detail in the next section, “How to Check the Disk
Usage of a Compressed File System.”

However, the timex results indicate the performance costs of the disk saving
benefits when we used a compressed file system. We can see that it took about
40 seconds to copy bigfile to our compressed file system that uses 512 byte
fragments, then about 43 seconds to copy the same file to our compressed file
system that uses 2048 byte fragments, but only nine seconds to a
non-compressed file system that also uses 2048 byte fragments. Our copy time
has increased by about 370% (100 x 34/9), because bigfile was being
compressed in /compress by the journaled file system code while the cp
command was actually writing the bigfile file. Finally, notice that there was not
much difference in our example between our copy to a fragment size of 2048, 43
seconds, compared to when the fragment size was decreased to 512 bytes,
which only saved three seconds.

How to Check the Disk Usage of a Compressed File System: To check how
much disk space is available initially in the empty journaled file systems,
execute:

286 AIX Storage Management

� �
df -kI /compress /uncompress /compress512
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/lv05 40960 1332 39628 3% /compress
/dev/lv06 40960 1332 39628 3% /uncompress
/dev/lv07 40960 1344 39616 3% /compress512� �

Note that the journaled file system with the smaller fragment (512 versus 2048),
has more space initially allocated for the journaled file system organizational
data (in other words, areas like the journaled file system maps).

If you refer to 8.5.2, “How to Use Fragments for Disk Usage Efficiency” on
page 272, you will see that we can use the ksh shell scripts mkfile and fragcopy
to create files with a size that is a multiple of 512 byte blocks. In this example,
we use the file 2560bytefile that consists of five 512 byte blocks. We can then use
the du command to see many disk blocks are really used.

If we copy the files using the cp commands given in the command summary,
then the following ls command confirms that we have five files that appear to
occupy the same amount of disk space.

� �
ls -l /strjfs32k/fragdata/2560bytefile /frag512/2560bytefile
-rw-r--r-- 1 root sys 2560 Jul 21 16:53 /strjfs32k/fragdata/2560bytefile
-rw-r--r-- 1 root sys 2560 Jul 21 17:09 /frag512/2560bytefile
ls -l /compress512/2560bytefile /compress/2560bytefile
-rw-r--r-- 1 root sys 2560 Jul 21 16:56 /compress512/2560bytefile
-rw-r--r-- 1 root sys 2560 Jul 21 16:57 /compress/2560bytefile
ls -l /uncompress/2560bytefile
-rw-r--r-- 1 root sys 2560 Jul 21 16:57 /uncompress/2560bytefile� �

However, the following du command output reports the true number of 512 byte
disk blocks that are actually used by each file:

� �
du /strjfs32k/fragdata/2560bytefile
8 /strjfs32k/fragdata/2560bytefile
du /frag512/2560bytefile
5 /frag512/2560bytefile
du /compress512/2560bytefile
1 /compress512/2560bytefile
du /compress/2560bytefile
4 /compress/2560bytefile
du /uncompress/2560bytefile
8 /uncompress/2560bytefile� �

To correctly interpret this data, we need to recall the journaled file system
attributes documented in “How to Check the Characteristics of the New JFS” on
page 283.

As expected the source file /strjfs32k/fragdata/2560bytefile requires 8 x 512 =
4096 bytes because /strjfs32k was created with default journaled file system
attributes, so it has to use at least one complete 4K fragment to store 2560 bytes.
Now the file /uncompress/2560bytefile also uses 4096 bytes, but in this case, it
used two 2048 byte fragments. The first fragment is completely full, but the
second fragment contains 3 x 512 = 1536 of wasted space that can′ t be used by
any other file.

Chapter 8. Practical Examples 287

If we now use compression, our disk space requirements are halved, since we
now only require 4 x 512 = 2048 bytes to store the /compress/2560bytefile file.
However, this is still using a full fragment or less in /compress which has a
fragment size of 2048 bytes. So when we check the space used by
/compress512/2560bytefile, we can see that the LZ compression algorithm has
actually shrunk the file to 20% (512 / 2560) or less of its original size. This is not
too surprising since we know that the shell script mkfile (as given in 8.5.2, “How
to Use Fragments for Disk Usage Efficiency” on page 272) just creates a file that
has the word yes repeated on each line many times. Such a repetitive file is
likely to be much easier to compress than your real data files.

Finally, we can see that if performance is not critical, it is wise to combine
compression with a low fragment size when you create a journaled file system.
The du output for the file /frag512/2560bytefile shows us that for journaled file
systems with a 512 byte fragment size, we require, as expected, five fragments
to store 2560 bytes. However this is reduced to only one fragment when the
journaled file system is also configured at creation to use compression as well
as a 512 byte fragment size.

8.5.4 How to Create and Use a JFS Greater than 2GB
This section shows you how to expand an existing journaled file system to a size
greater than 2GB, which is the maximum journaled file system size in AIX
Version 3. Again, as in the section 8.5.3, “How to Use JFS Compression and
Check its Consequences” on page 279, we will use the availvg volume group,
because it has the most available disk space. We will be increasing the availlv to
a new total size of 3GB after removing its mirror copy so that we have enough
disk space.

8.5.4.1 Command Summary
First of all we reduce the number of copies of availlv to 1:

� �
rmlvcopy ′ availlv′ ′ 1 ′� �

Next we increase the size of the logical volume to 900 logical partitions which
equates to 3600MB:

� �
chlv -x′900 ′ ′availlv′� �

Finally, we increase the size of the JFS availjfs to 6000000 512 byte blocks
which equates to 3GB:

� �
chfs -a size=′6000000′ ′/availjfs′� �

8.5.4.2 Detailed Guidance
How to Remove a Logical Volume Copy: As can be seen from the following:

288 AIX Storage Management

� �
lsvg availvg
VOLUME GROUP: availvg VG IDENTIFIER: 000004461ed9e52e
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 861 (3444 megabytes)
MAX LVs: 256 FREE PPs: 817 (3268 megabytes)
LVs: 5 USED PPs: 44 (176 megabytes)
OPEN LVs: 5 QUORUM: 1
TOTAL PVs: 3 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 3 AUTO ON: yes
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 6 12 2 open/syncd /availjfs
loglv00 jfslog 1 2 2 open/syncd N/A
lv05 jfs 10 10 1 open/syncd /compress
lv06 jfs 10 10 1 open/syncd /uncompress
lv07 jfs 10 10 1 open/syncd /compress512
#� �

availlv currently has two mirror copies. However, the availvg volume group is
not big enough to hold two mirror copies of the availlv logical volume when it is
expanded to 3MB. This would require 6MB in availvg. We currently only have
3268MB available, as indicated by the FREE PPs: field in the second column of the
output of the lsvg availvg command.

Hence we can remove one of the mirror copies if we:

 1. Execute the fastpath smitty rmlvcopy to get to the screen with the title
Remove Copies from a Logical Volume, or, to go through the smit hierarchy:

a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

 c. Select Logical Volume Manager .

d. Select Logical Volumes .

e. Select Set Characteristic of a Logical Volume .

f. Select Remove Copies from a Logical Volume .

 2. Type availlv in the LOGICAL VOLUME name field and press the Enter=Do key, or
use the F4=List key to select it.

 3. Use the Tab key to toggle the contents of the field NEW maximum number of
logical partition copies from 2 to 1 so that the screen looks like:

Chapter 8. Practical Examples 289

� �
Remove Copies from a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name availlv
* NEW maximum number of logical partition 1 +

copies
PHYSICAL VOLUME name(s) to remove copies from [] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Since one copy of availlv currently exists on each of two identical disks (so
that we are protected from disk failure), then we can ignore the third field.
However, if one disk is not as fast or reliable as the other, then we may
decide to remove the copy of availlv that it contains.

 4. Press the Enter=Do key to remove a copy of availlv.

 5. When smit returns an OK prompt, press the F10=Exit key to return to the
command prompt.

How to Change a Logical Volume Copy: Now availlv only exists as a single copy
logical volume, and there is sufficient space available in availvg to expand it to
3GB. However, by default, when a logical volume is created, it is limited to a
maximum of 128 physical partitions. Since the availvg volume group uses a
physical partition size of 4MB, availlv can only grow to 4 x 128 = 512MB. This
also means that the /availjfs that uses this logical volume also can not get
bigger than 512MB.

Fortunately, you can change the maximum number of logical partitions in a
logical volume if you:

 1. Execute the fast path smitty chlv1 to get to the menu with the title Change a
Logical Volume, or, to go through the smit hierarchy:

a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

 c. Select Logical Volume Manager .

d. Select Logical Volumes .

e. Select Set Characteristic of a Logical Volume .

f. Select Change a Logical Volume .

 2. Type availlv in the LOGICAL VOLUME name field and press the Enter=Do key, or
use the F4=List key to select it.

 3. Type 900 in the MAXIMUM NUMBER of LOGICAL PARTITIONS field.

290 AIX Storage Management

This enables us to increase the size of /availjfs journaled file system that
uses the availlv logical volume, up to 4 x 900 = 3600MB. Hence we still
allow for a growth of 600MB beyond our initial 3GB objective so that we can
increase /availjfs without having to first change the MAXIMUM NUMBER of
LOGICAL PARTITIONS (unless, of course we wanted to increase /availjfs by
another 1GB).

 4. We are not currently concerned about the other fields so we ′ l l leave them
with default values so that the screen should look like:

� �
Change a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Logical volume NAME availlv
Logical volume TYPE [jfs]
POSITION on physical volume outer_middle +
RANGE of physical volumes maximum +
MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #
to use for allocation

Allocate each logical partition copy yes +
on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +
Logical volume LABEL [/availjfs]
MAXIMUM NUMBER of LOGICAL PARTITIONS [900]
SCHEDULING POLICY for writing logical parallel +
partition copies

PERMISSIONS read/write +

[MORE...3]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 5. Press the Enter=Do to change this logical volume.

 6. When smit returns with an OK prompt, press the F10=Exit to return to the
command line.

How to Increase the Size of a JFS: Now that we have ensured that the availlv
logical volume can accommodate a 3GB journaled file system, we can increase
the /availjfs journaled file system.

To increase /availjfs so that it is a total of 3GB:

 1. Execute the fast path smitty chjfs to get to a screen like:

Chapter 8. Practical Examples 291

� �
__
| |
| File System Name |
| |
| Move cursor to desired item and press Enter. |
| |
| [TOP] |
| / |
| /home |
| /usr |
| /var |
| /tmp |
| /newfs |
| /availjfs |
| /strjfs32k |
| /frag512 |
| /frag4096 |
| /frag512-1 |
| [MORE...9] |
| |
| F1=Help F2=Refresh F3=Cancel |
| F8=Image F10=Exit Enter=Do |
| /=Find n=Find Next |
|__|� �

Or, to go through the smit hierarchy to get to the above selection screen:

a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

 c. Select File Systems .

d. Select Add / Change / Show / Delete File Systems .

e. Select Journaled File Systems .

f. Select Change / Show Characteristics of a Journaled File System .

 2. Use the Down Arrow to move the cursor so that the journaled file system
/availjfs is highlighted.

 3. Press the Enter=Do key.

 4. Type 6000000 in the SIZE of file system (in 512-byte blocks) field, since
6000000 x 512 = 3000000000, or more simply, 3GB.

Since this is the only field we need to change, the screen should like:

292 AIX Storage Management

� �
Change/Show Characteristics of a Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
File system name /availjfs
NEW mount point [/availjfs]
SIZE of file system (in 512-byte blocks) [6000000]
Mount GROUP []
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 4096
Number of bytes per inode 4096
Compression algorithm no

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 5. Press the Enter=Do key to change the journaled file system.

 6. When the command is complete, your screen should look like:

� �
COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

File System size changed to 6004736

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

 7. Press the F10=Exit key to return to the command prompt.

How to Check the Attributes of a JFS greater than 2GB: Now that we have
increased /availjfs to a total size of 3GB, we have also forced the availlv logical
volume that the /availjfs journaled file system uses to increase to 3GB. We can
check how availvg and availlv have changed by executing the following
commands:

Chapter 8. Practical Examples 293

� �
lsvg availvg
VOLUME GROUP: availvg VG IDENTIFIER: 000004461ed9e52e
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 861 (3444 megabytes)
MAX LVs: 256 FREE PPs: 96 (384 megabytes)
LVs: 5 USED PPs: 765 (3060 megabytes)
OPEN LVs: 5 QUORUM: 1
TOTAL PVs: 3 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 3 AUTO ON: yes
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 733 733 3 open/syncd /availjfs
loglv00 jfslog 1 2 2 open/syncd N/A
lv05 jfs 10 10 1 open/syncd /compress
lv06 jfs 10 10 1 open/syncd /uncompress
lv07 jfs 10 10 1 open/syncd /compress51
#� �

We can clearly see that the availvg volume group now uses 3060MB, with only
384MB that can currently be allocated, from the existing physical volumes in this
volume group, to new or existing logical volumes in this volume group. Also, we
note that the availlv logical volume now uses 733 4MB physical partitions, which
is approximately 4 x 733 = 2932MB (remember that 1MB may be 1048576 bytes
or 1000000 bytes, depending upon the context in which it is used, so rounding
errors can become significant).

To verify that we can actually use all of this space, we again used the fragcopy
script from 8.5.2, “How to Use Fragments for Disk Usage Efficiency” on page 272,
to copy a 21MB file many times.

� �
ls -l /availjfs/cmds.rom.dd
-rw-r--r-- 1 root sys 21805056 Jul 8 12:23 /availjfs/cmds.rom
ksh fragcopy 140 /availjfs/cmds.rom.dd /availjfs/cmds.rom.dd &
ls -l /availjfs
total 72608
-rw-r--r-- 1 root sys 21805056 Jul 8 12:23 cmds.rom.dd
-rw-r--r-- 1 root sys 15368192 Jul 21 18:50 cmds.rom.dd.0
cp: /availjfs/cmds.rom.dd.135: No space left on device
df -kI /availjfs
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/availlv 3002368 3002368 0 100% /availjfs
#
ls /availjfs |wc -l

137
ls -lt /availjfs|more
total 5808264
-rw-r--r-- 1 root sys 8065024 Jul 21 19:40 cmds.rom.dd.135
-rw-r--r-- 1 root sys 21805056 Jul 21 19:40 cmds.rom.dd.134
-rw-r--r-- 1 root sys 21805056 Jul 21 19:39 cmds.rom.dd.133� �

From the results of the ls commands, we can see that there was enough room
for 134 + 1 = 135 complete new copies of the original 21MB file before we filled
the /availjfs journaled file system. The full journaled file system is indicated by
both the cp command error, and the output of the df -kI command.

This example shows that AIX Version 4 allows us to successfully use journaled
file systems that have a capacity greater than the AIX Version 3 limit of 2GB.

294 AIX Storage Management

Although we will not go into the details here, you can also specify a size greater
than 2GB when you initially create the logical volume and its associated
journaled file system.

8.6 Migrating to AIX Version 4
This section discusses and shows how the logical volume manager and
journaled file system configuration of an existing AIX Version 3 system can be
maintained when it is upgraded to AIX Version 4 by a migration installation.

The actual migration installation is discussed in depth in the AIX Version 4.1
Installation Guide, which is the essential companion to this section.

8.6.1.1 Command Line Summary
Ensure that you have documented your storage organization prior to migration
so that you can confirm the process occurs successfully. Remember to take
adequate backups (as described in 8.4, “Managing Backup and Restore” on
page 244), before any reorganization.

Use the following command for each physical volume to establish partition
allocation:

� �
lspv -M hdiskx > map.hdiskx� �

This will store the output for hdiskx in the file map.hdiskx. Use the following
commands for volume groups to record the configuration:

� �
lsvg volume_group > lsvg-volume_group
lsvg -l volume_group > lsvg-l-volume_group� �

This will store information regarding volume group organization and the logical
volumes contained within them. Lastly record information about the file systems:

� �
df > df.fs
cat /etc/filesystems > fs� �

This will save information regarding the file systems and their configuration.

Given that all other planning and organizational tasks have been performed (see
AIX Version 4.1 Installation Guide), we can now restart our system with the AIX
Version 4 installation media loaded and the key in the service position. Selecting
the migration option from the Installation and Settings menu will cause a
migration to AIX Version 4 to occur. See the detailed guidance section in this
chapter for more information.

Lastly, once the migration has successfully taken place, we can confirm that our
storage organization is as we expected it to be. Essentially, we can perform the
same documentation tasks that we instituted at the start of this process, and
then compare the results.

Chapter 8. Practical Examples 295

8.6.1.2 Detailed Guidance
Our migration test uses a graphical console display and CD-ROM AIX Version 4
installation media. As well as the important prerequisite of having a good
backup of whatever operating system and data is on the target disks, it is also
highly advisable to have the current configuration documented. For this example,
documenting the AIX V3.2.5 logical volume manager and journaled file system
configuration also shows how this is preserved during the migration to AIX
Version 4.

How to Document AIX Version 3.2.5 before a Migration

 1. Logical volume manager configuration

Our example system has three physical volumes organized in two volume
groups that are rootvg and 325vg. The exact disk partition map can be saved
to a separate map file for each disk by executing the following familiar
sequence of commands:

� �
lspv -M hdisk0 > map.hdisk0
lspv -M hdisk1 > map.hdisk1
lspv -M hdisk2 > map.hdisk2� �

Your file format should be similar to the following example for hdisk2:

� �
hdisk2:1-17
hdisk2:18 loglv00:1
hdisk2:19 lv00:1
hdisk2:20 lv00:2
hdisk2:21 lv00:3
hdisk2:22 lv00:4
hdisk2:23 lv00:5
hdisk2:24 lv00:6
hdisk2:25 lv00:7
hdisk2:26 lv00:8
hdisk2:27 lv00:9
hdisk2:28 lv00:10
hdisk2:29-84� �

To summarize the logical volume manager information, we can use many of
the commands discussed in Chapter 7, “Storage Management Files and
Commands Summary” on page 139. In our example, we use the following
sequence of lsvg commands:

� �
lsvg rootvg > lsvg-rootvg
lsvg -l rootvg > lsvg-l-rootvg
lsvg 325vg > lsvg-325vg
lsvg -l 325vg > lsvg-l-325vg� �

We can check the contents of these configuration files by executing the
following sequence of cat commands:

296 AIX Storage Management

� �
cat lsvg-rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 000005083df45081
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)
MAX LVs: 256 FREE PPs: 8 (32 megabytes)
LVs: 16 USED PPs: 235 (940 megabytes)
OPEN LVs: 12 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 2 AUTO ON: yes
#
cat lsvg-l-rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 10 10 1 open/syncd N/A
hd61 paging 10 10 1 open/syncd N/A
hd5 boot 2 2 1 closed/syncd /blv
hd7 sysdump 2 2 1 open/syncd /mnt
hd8 jfslog 1 1 1 open/syncd N/A
hd4 jfs 2 2 1 open/syncd /
hd2 jfs 76 76 2 open/syncd /usr
hd1 jfs 1 1 1 open/syncd /home
hd3 jfs 82 82 2 open/syncd /tmp
hd9var jfs 31 31 1 open/syncd /var
hdag1 lfs 2 2 1 closed/syncd N/A
dumpfiles jfs 5 5 1 open/syncd /var/adm/ras
agroot lfs 1 1 1 closed/syncd N/A
tmpvar jfs 1 1 1 closed/syncd N/A
varrpc jfs 5 5 1 open/syncd /var/dce/rpc/socket
xmconsole jfs 4 4 1 open/syncd /tmp/xm
#
cat lsvg-325vg
VOLUME GROUP: 325vg VG IDENTIFIER: 00011605f67f40e9
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 84 (336 megabytes)
MAX LVs: 256 FREE PPs: 73 (292 megabytes)
LVs: 2 USED PPs: 11 (44 megabytes)
OPEN LVs: 2 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 1 AUTO ON: yes
#
cat lsvg-l-325vg
325vg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loglv00 jfslog 1 1 1 open/syncd N/A
lv00 jfs 10 10 1 open/syncd /325jfs� �

The above information shows us that rootvg has two physical volumes in it
and that it contains some logical volumes for an application (DCE). We can
also see that there is one data logical volume in the 325vg that contains one
physical volume.

 2. JFS configuration

This is easier to record; in this example, we saved a copy of the file
/etc/filesystems, and we then saved the output of the df command to a file
named df.I. We can check its output by executing:

� �
cat df.I
Filesystem Total KB used free %used Mounted on
/dev/hd4 8192 6520 1672 79% /
/dev/hd9var 126976 13144 113832 10% /var
/dev/hd2 311296 299168 12128 96% /usr
/dev/hd3 335872 76472 259400 22% /tmp
/dev/hd1 4096 496 3600 12% /home
/dev/dumpfiles 20480 11120 9360 54% /var/adm/ras
/dev/varrpc 20480 928 19552 4% /var/dce/rpc/socket
/dev/xmconsole 16384 544 15840 3% /tmp/xm
/dev/lv00 40960 1380 39580 3% /325jfs� �

Chapter 8. Practical Examples 297

Installing AIX Version 4: Now that we have completed the documentation and all
the prerequisites documented in AIX Version 4.1 Installation Guide in the chapter
called Installing BOS from CD-ROM or Tape, we can continue the process
described in the Start the System section in the same chapter.

After we select English as an Installation language, and press the Enter key, we
arrive at the Welcome to Base Operating System Installation and Maintenance
menu. The simplest choice is to now select >>> 1 Installation and Settings so
that we can check and change the installation options. In our example, the
defaults in the following screen were suitable.

� �
Installation and Settings

Either type 0 and press Enter to install with current settings, or type the
number of the setting you want to change and press Enter.

1 System Settings:
Method of Installation.............Migration
Disk Where You Want to Install.....hdisk0...

2 Primary Language Environment Settings (AFTER Install):
Cultural Convention................English (United States)
LanguageEnglish (United States)
KeyboardEnglish (United States)

3 Install Trusted Computing Base.......No

>>> 0 Install AIX with the current settings listed above.

+---
88 Help ? | WARNING: Base Operating System Installation will
99 Previous Menu | destroy or impair recovery of SOME data on the

| destination disk hdisk0.
>>> Choice [0]:� �

However, if you need to change any of the above values, please refer to the
references given in Verify the Default Installation and System Settings in the
chapter Installing BOS from CD-ROM or Tape in AIX Version 4.1 Installation
Guide. In particular, we found in AIX Version 4.1 Installation Guide. In particular,
we found that as we checked the physical volume allocation by following the
procedure in Change the Destination Disk in the same chapter, the AIX Version 4
installation process correctly recognized which physical volumes belong to the
rootvg, and which belong to other volume groups, based on their unique SCSI
addresses. We can now complete the migration installation of AIX Version 4 by
following the procedure in the section Install from CD-ROM or Tape in the same
chapter.

How to Check the Configuration after Migration: When the system reboots after
AIX Version 4 is installed, there may be many systems management tasks for
the systems administrator to complete. In our example, we want to quickly check
our storage configuration details. We can again generate a set of configuration
files as we did before the migration by executing the following set of similar
commands:

298 AIX Storage Management

� �
lspv -M hdisk0 > map.hdisk0.41
lspv -M hdisk1 > map.hdisk1.41
lspv -M hdisk2 > map.hdisk2.41
lsvg rootvg > lsvg-rootvg.41
lsvg -l rootvg > lsvg-l-rootvg.41
lsvg 325vg > lsvg-325vg.41
lsvg -l 325vg > lsvg-l-325vg.41
df -Ik > df.Ik.41� �

We can quickly use the diff command on the map files to verify that our
partition map has been maintained. Although diff for the hdisk0 and hdisk2 files
gives no output , as expected diff for hdisk1 results in the following:

� �
diff map.hdisk1 map.hdisk1.41
11c11,14
< hdisk1:11-17

> hdisk1:11 hd2:77
> hdisk1:12 hd2:78
> hdisk1:13 hd2:79
> hdisk1:14-17� �

This shows that /usr journaled file system on the hd2 logical volume has grown
by three physical partitions during the migration installation. The increase in the
rootvg volume group is also verified by the change in the lsvg rootvg output as
follows:

� �
diff lsvg-rootvg lsvg-rootvg.41
4,6c4,6
< MAX LVs: 256 FREE PPs: 8 (32 megabytes)
< LVs: 16 USED PPs: 235 (940 megabytes)
< OPEN LVs: 12 QUORUM: 2

> MAX LVs: 256 FREE PPs: 5 (20 megabytes)
> LVs: 16 USED PPs: 238 (952 megabytes)
> OPEN LVs: 11 QUORUM: 2� �

You can see how the diff command used on configuration files can quickly help
us isolate any configuration changes, especially when the output files are large.
However, you need to carefully check its output because the differences may be
irrelevant. For example, the command diff lsvg-l-325vg lsvg-l-325vg.41
suggests that the entire 325vg logical volume configuration has changed. Close
inspection reveals that in our example, the only change is that the position of the
output columns, starting with PVs, has been moved.

Finally, we need to check the configuration of the journaled file system in AIX
Version 4. Although the command diff filesystems filesystems.41 has no
output and so none of the journaled file system attributes recorded in it have
changed, we should check the space utilization of the journaled file systems by
executing the command

Chapter 8. Practical Examples 299

� �
df -kI
Filesystem 1024-blocks Used Free %Used Mounted on
/dev/hd4 8192 6904 1288 84% /
/dev/hd2 323584 315948 7636 97% /usr
/dev/hd9var 126976 12404 114572 9% /var
/dev/hd3 335872 15656 320216 4% /tmp
/dev/hd1 4096 496 3600 12% /home
/dev/dumpfiles 20480 11128 9352 54% /var/adm/ras
/dev/varrpc 20480 928 19552 4% /var/dce/rpc/socket
/dev/lv00 40960 1384 39576 3% /325jfs� �

This verifies that only the /usr journaled file system has had more space
allocated to it and used, but the output also shows that other journaled file
systems have changes in the number of 1024-blocks used due to a variety of
factors that may include:

• A change in the number of LPPs installed, and/or their individual disk space
requirements.

• The size of the log files in / and /var. Note in particular the new AIX Version
4 logs in /var/adm/ras which include:

− devinst.log

− bosinstlog

− BosMenus.log

− bootlog

• The storage of some configuration information for the original AIX V3.2.5 in
/tmp/bos (this required about 5MB in our example).

• Any user changes; we deleted a large file from /tmp to create enough free
space for the AIX V3.2.5 configuration data.

Note that just like the lsvg -l command, the output format has changed so we
do not benefit from the diff command. In AIX Version 4, the default block size
used by df is 512 bytes, so we need to use the -k flag to report the output using
1024 bytes which is the default value for AIX Version 3.

Overall Effects of Migration: Our example shows that there are no major
storage management compatibility issues involved during a migration from AIX
V3.2.5 to AIX Version 4. However, of course we cannot use any new AIX Version
4 features, such as journaled file system compression, on an existing journaled
file system that was migrated from AIX Version 3 unless we recreate it and
restore its data. As well as this, we must also be aware of any other migration
issues, such as those discussed in AIX Version 4.1 Installation Guide, in
particular in the section Compatibility Between AIX Version 3.2 and AIX Version
4.1.

8.7 Manipulating Page Space
This section shows you how to implement the most common maintenance tasks
for your paging logical volumes. The examples manipulate the hd6 logical
volume in AIX Version 4 that contains two mirror copies. However, you can
easily apply the procedures described here for other paging devices, where,
depending on their attributes, you may not need to:

• Modify any boot files.

300 AIX Storage Management

• Repeat commands such as bosboot, which is only necessary in this example
because we deal with a mirrored rootvg.

For this section, it is very beneficial for the reader to become familiar with the
concepts discussed in:

• 3.1.1, “Page Space” on page 47.

• Chapter 5, “Storage Subsystem Design” on page 79.

• Chapter 6, “General AIX Storage Management” on page 95.

• AIX Version 4.1 System Management Guide: Operating System and Devices,
which may be in AIX Version 4.1 Hypertext Information Base Library on your
system.

In particular, refer to the chapter that discusses paging space and virtual
memory. Note that the following articles in this chapter are used as a
reference for the examples in this section:

− Adding and Activating a Paging Space.

− Resizing or Moving the hd6 Paging Space.

− Changing or Removing a Paging Space.

Warning - Reboots required

It is important to note that paging devices can not be deactivated, so any
maintenance task that requires this, such as the removal of a paging logical
volume, will have to be done at an appropriate time to minimize user
disruption. This is probably a helpful limitation, since it reminds us that any
system maintenance task must be carefully scheduled to help you cope in
case there are any disasters, foreseen or unforeseen, during your
maintenance work.

8.7.1 How to Decrease the Default hd6 Paging Logical Volume
This next section looks at reducing the size of the hd6 default paging space
logical volume.

8.7.1.1 Command Line Summary
This example demonstrates the tasks required to reduce the size of a paging
space. In particular, it provides the extra steps required in the more complex
scenario where we want to decrease the default rootvg paging logical volume,
hd6, when it is part of a mirrored rootvg. First, let′s look at the paging spaces
that we have:

� �
lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
perfpg hdisk1 perfvg 20MB 0 no yes lv
perfpg hdisk8 perfvg 20MB 0 no yes lv
hd6 hdisk5 rootvg 32MB 22 yes yes lv
hd6 hdisk7 rootvg 32MB 22 yes yes lv� �

This shows us the size of the paging space that we are interested in, as well as
the current paging space usage. Next let′s see how much memory we have:

Chapter 8. Practical Examples 301

� �
lsattr -E -l sys0 -a realmem
realmem 49152 Amount of usable physical memory in Kbytes False� �

This gives us a basis for calculating how big page space needs to be, more
information being presented in the detailed guidance section. Before we alter
this though, we must create another temporary page space as it would be a bad
idea to be without it:

� �
mkps -a -n -s 20 rootvg
paging00� �

This makes a new paging space of size 80MB. Next we make hd6 inactive, and
cause paging00 to be used at the next reboot:

� �
chps -a n hd6
#
edit the one entry in /sbin/rc.boot... search via /swapon to find line near
Start paging if no dump
[! -f /needcopydump] && swapon /dev/paging00

bosboot -l /dev/hd5x -d /dev/hdisk7 -a
bosboot: Boot image is 4275 512 byte blocks.
bosboot -l /dev/hd5 -d /dev/hdisk5 -a
bosboot: Boot image is 4275 512 byte blocks.� �

We also recreate the boot images to reflect the change and then reboot. Now we
can remove and recreate the hd6 page space to be the size that we wish. First
ensure that the dump device is not hd6:

� �
sysdumpdev -pP /dev/sysdumpnull
sysdumpdev -l
primary /dev/sysdumpnull
secondary /dev/sysdumpnull
copy directory /tmp
forced copy flag TRUE� �

Then remove hd6, recreate the two mirror copies with the new required size,
then activate it:

� �
rmps hd6
mklv -y′ hd6′ -e′ x′ -c′ 2 ′ -v′ y′ ′ rootvg′ ′ 7 ′
swapon /dev/hd6� �

The rc.boot file must now be edited again to reflect the new page space, and the
boot images again updated:

� �
edit the one entry in /sbin/rc.boot... search via /swapon to find line near
Start paging if no dump
[! -f /needcopydump] && swapon /dev/hd6

bosboot -l /dev/hd5x -d /dev/hdisk7 -a
bosboot: Boot image is 4275 512 byte blocks.
bosboot -l /dev/hd5 -d /dev/hdisk5 -a
bosboot: Boot image is 4275 512 byte blocks.� �

302 AIX Storage Management

Now reboot the system and then update the bootlist:

� �
shutdown -Fr
bootlist -m normal hdisk5 hdisk7� �

Finally, remove the temporary page space:

� �
chps -a n paging00
rmps paging00� �

Don′ t forget to change the system dump device back if required.

8.7.1.2 Detailed Guidance
This task has a number of component steps that also serve to illustrate general
paging space management tasks. Thus, although this entire section is based on
the one procedure given in the AIX Version 4.1 System Management Guide:
Operating System and Devices article Resizing or Moving the hd6 Paging Space,
we do this procedure in the following subsections.

How to Check Prerequisites before Changing hd6: The first task is that you
need to properly understand your system′s performance so that you not remove
too much capacity from your paging logical volumes. In this example, we can
execute the following commands to give us a current snapshot:

� �
lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
perfpg hdisk1 perfvg 20MB 0 no yes lv
perfpg hdisk8 perfvg 20MB 0 no yes lv
hd6 hdisk5 rootvg 32MB 22 yes yes lv
hd6 hdisk7 rootvg 32MB 22 yes yes lv
#
lsattr -E -l sys0 -a realmem
realmem 49152 Amount of usable physical memory in Kbytes False
#� �

You can see that we are currently using only about 7MB of our paging space,
even though we have 49MB of RAM.

Warning - Understand performance

It is very important to be familiar with the issues discussed in the AIX V3.2
Performance Monitoring and Tuning Guide (which may be available in the AIX
Version 4.1 Hypertext Information Base Library on your system) before you
decide exactly how much paging space you need.

This decision depends on many factors, such as application needs and the
number of users.

In this example, we want to maintain the amount of paging space suggested by
the following rule of thumb:

Use a 1:1 ratio of total paging space to system RAM.

Chapter 8. Practical Examples 303

This means that we only want to decrease hd6 by 4MB so that we will still have
a total of 48MB of paging space.

As is described in 6.2, “Managing Physical Volumes” on page 95, there are
many ways to check the physical partition layout and usage in a volume group.
To check rootvg, we can execute:

� �
lspv -l hdisk5
hdisk5:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
hd5 1 1 01..00..00..00..00 N/A
hd6 8 8 00..08..00..00..00 N/A
hd8 1 1 00..00..01..00..00 N/A
hd4 1 1 00..00..01..00..00 /
hd2 50 50 00..00..29..21..00 /usr
hd9var 3 3 00..00..00..03..00 /var
hd3 3 3 00..00..00..03..00 /tmp
hd1 1 1 00..00..00..01..00 /home
lspv -l hdisk7
hdisk7:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
hd2 50 50 02..00..14..17..17 /usr
hd9var 3 3 03..00..00..00..00 /var
hd3 3 3 03..00..00..00..00 /tmp
hd1 1 1 01..00..00..00..00 /home
hd5x 2 2 02..00..00..00..00 N/A
hd6 8 8 00..08..00..00..00 N/A
hd8 1 1 00..00..01..00..00 N/A
hd4 1 1 00..00..01..00..00 /
#� �

We can clearly see that rootvg is mirrored in a high availability configuration to
help protect us from disk failure. So we know that we will gain a free,
unallocated physical partition, on each physical volume when we decrease hd6
by one logical partition.

We also know from the lsdev -Cc disk command that hdisk7 is only a 355MB
disk, and so is almost full, whereas hdisk5 is a 670MB disk, and so has many
more free physical partitions, particularly near its edges (note the first and last
columns are mainly 00 under the heading DISTRIBUTION above).

Based on this information, we have decided to create a non-mirrored temporary
paging space. We could make it small, but we′ ll follow the suggestion in the
Resizing or Moving the hd6 Paging Space article, and make it 80MB in size,
since we know that we have enough space.

Finally, note that it is not good enough to simply activate the perfpg paging
logical volume to use it while we work with hd6, because perfpg is in the perfvg
volume group. The AIX Version 3 and AIX Version 4 boot processes expect the
hd6 logical volume to be in the root volume group if hd6 is used, since this
volume group is the first one that is accessed during the boot process.

How to Add a New Paging Logical Volume to a Volume Group: Now that we′ve
checked the rootvg volume group, we need to create another paging device to
temporarily use as the main system paging device while we work with hd6. The
process described here is very similar to that documented in the article Adding
and Activating a Paging Space. Note that we could create a paging type logical
volume. However, this process has already been described in “How to Create a

304 AIX Storage Management

Paging Type Logical Volume” on page 231, and we are not concerned about the
physical partition location here so we can use the mkps command.

To create a new paging logical volume:

 1. Execute the fast path smitty mkps to get to the screen that looks like:

� �

| |
| VOLUME GROUP name |
| |
| Move cursor to desired item and press Enter. |
| |
| availvg |
| rootvg |
| perfvg |
| stripevg |
| |
| F1=Help F2=Refresh F3=Cancel |
| F8=Image F10=Exit Enter=Do |
| /=Find n=Find Next |
|___|� �

Alternatively, you can go through the smit hierarchy by:

a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

 c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Add Another Paging Space to get to a screen that prompts you
to select a volume group from a menu similar to that shown above.

 2. Use the Arrow keys to highlight the rootvg volume group name, and then
press the Enter=Do key.

 3. Type 20 for the field SIZE of paging space (in logical partitions), 20 times
4MB gives us an 80MB temporary paging logical volume.

 4. Use the Tab key to toggle the field Start using this paging space NOW? from
no to to yes, or use the F4=List key to select it.

 5. Use the Tab key to toggle the field Use this paging space each time the
system is RESTARTED? from no to yes so that your screen looks like:

Chapter 8. Practical Examples 305

� �
Add Another Paging Space

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Volume group name rootvg
SIZE of paging space (in logical partitions) [20] #
PHYSICAL VOLUME name +
Start using this paging space NOW? yes +
Use this paging space each time the system is yes +

RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 6. Press the Enter=Do to create the temporary paging logical volume.

 7. When smit returns the device name, such as paging00 in this example, with
smit ′s OK prompt, you can press the F10=Exit key to return to the command
line.

You can now use the command lsps -a to check that this new device is active.
To use smit:

 1. Execute smitty.

 2. Select System Storage Management (Physical & Logical Storage) .

 3. Select Logical Volume Manager .

 4. Select Paging Space .

 5. Select List All Paging Spaces .

 6. When smit returns the lsps -a output, with smit ′s OK prompt, you can press
the F10=Exit key to return to the command line.

How to Change the Attributes of a Paging Logical Volume: We now need to
change the hd6 logical volume′s boot attributes so that we can remove it. This
change example is based on that described in the AIX Version 4.1 Hypertext
Information Base Library article Changing or Removing a Paging Space.

To change the hd6 paging logical volume:

 1. Execute the fast path smitty chps to get to a PAGING SPACE name prompt in a
screen like:

306 AIX Storage Management

� �

| |
| PAGING SPACE name |
| |
| Move cursor to desired item and press Enter. |
| |
| paging00 |
| perfpg |
| hd6 |
| |
| F1=Help F2=Refresh F3=Cancel |
| F8=Image F10=Exit Enter=Do |
| /=Find n=Find Next |
|___|� �

Alternatively, you can go through the smit hierarchy by:

a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

 c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Change / Show Characteristics of a Paging Space to get to a
screen that prompts you to select a paging logical volume from a menu
similar to that shown above.

 2. Use the Arrow keys to highlight the hd6 paging space name, and then press
the Enter=Do key.

 3. Use the Tab key to toggle the field Use this paging space each time the
system is RESTARTED? from yes to no so that your screen looks like:

Chapter 8. Practical Examples 307

� �
Change / Show Characteristics of a Paging Space

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Paging space name hd6
Volume group name rootvg
Physical volume name hdisk5
NUMBER of additional logical partitions [] #
Use this paging space each time the system is no +

RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 4. Press the Enter=Do to change the hd6 paging logical volume.

 5. When smit returns an OK prompt, you can press the F10=Exit key to return to
the command line.

How to Complete the Steps to Rebuild a Smaller hd6: Although we have
changed hd6, it is still an active logical volume (you can see that its LV STATE is
open/syncd if you execute the lsvg -l rootvg command). Hence we must use the
command shutdown -Fr to reboot the RISC System/6000, but we must first modify
the boot file that explicitly references a paging logical volume that is called hd6.
We also need to save our changes so far, to the boot logical volumes.

We need to edit the file /sbin/rc.boot. In this example we used the vi editor, so
to use vi:

 1. Execute vi /sbin/rc.boot.

 2. Type the characters /swapon and press the Enter key to find the relevant line.

 3. Press the character w four t imes while in command mode to move the cursor
to a position under the character h in the word hd6.

 4. Press the characters cw to change the word hd6.

 5. Type the word paging00 so that the lines look like:

� �
Start paging if no dump
[! -f /needcopydump] && swapon /dev/paging00� �

 6. Press the Esc key to return to command mode.

 7. Use the capital zz sequence, in other words type the characters ZZ, to save
our updated rc.boot file.

Now if we try to update the boot disk as suggested in the article Resizing or
Moving the hd6 Paging Space in InfoExplorer, we will get the following error:

308 AIX Storage Management

� �
bootinfo -b
hdisk7
bosboot -d /dev/hdisk7 -a
0301-168 bosboot: The current boot logical volume, /dev/hd5,

does not exist on /dev/hdisk7.� �

Since we have a mirrored rootvg with two boot logical volumes on different
disks, then each boot image needs to be updated with the following commands:

� �
bosboot -l /dev/hd5x -d /dev/hdisk7 -a
bosboot: Boot image is 4275 512 byte blocks.
bosboot -l /dev/hd5 -d /dev/hdisk5 -a
bosboot: Boot image is 4275 512 byte blocks.� �

Now we can reboot the RISC System/6000 by executing the command shutdown
-Fr.

When the system is up, you can login to check that hd6 can now be removed by
executing the command:

� �
lsvg -l rootvg |head
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd6 paging 8 16 2 closed/syncd N/A
hd5 boot 1 1 1 closed/syncd N/A� �

We can now remove the hd6 logical volume.

Warning - Check dump device

If you are using AIX Version 4, then you need to check what your dump device
is by executing the command sysdumpdev -l. If your command ouput looks
like:

� �
sysdumpdev -l
primary /dev/hd6
secondary /dev/sysdumpnull
copy directory /tmp
forced copy flag TRUE� �

then your hd6 logical volume will still be in an open state and hence cannot
be removed. If your primary dump device is hd6, then you can change it by
executing the following command (note that you can get to the equivalent
smit menus for these commands by executing smitty sysdumpdev):

� �
sysdumpdev -Pp /dev/sysdumpnull
primary /dev/sysdumpnull
secondary /dev/sysdumpnull
copy directory /tmp
forced copy flag TRUE� �

Now follow the procedure described in “How to Remove a Paging Logical
Volume” on page 311 to delete the hd6 logical volume.

Chapter 8. Practical Examples 309

We can now recreate hd6 to make it only 28MB in size, instead of its original
32MB, to save 4MB of disk space.

The procedure is almost identical to that described in 8.3.3, “A Design Example
for Improved Availability” on page 208, where we created availlv. The only
differences are:

• The name of the volume group is rootvg.

• The name of the 2 mirror copy logical volume that we are creating is hd6.

• Type paging for the field Logical volume TYPE.

Note that this command is different to the mklv command in the procedure
suggested by the Resizing or Moving the hd6 Paging Space article, since that
example only shows you how to work with a single copy hd6. Also note that we
are not following a procedure similar to that described in “How to Add a New
Paging Logical Volume to a Volume Group” on page 304, because it would
require an extra step to change the name of the new paging logical volume from
a name like paging01, to hd6.

Now that hd6 exists again, we need to activate it, so:

 1. Execute the fast path smitty swapon to get to a menu with the title Activate a
Paging Space. Alternatively, you can go through the smit hierarchy by:

a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

 c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Activate a Paging Space to get to the same menu.

 2. Press the F4=List to generate a list of paging logical volumes.

 3. Use the Arrow keys to highlight the hd6 logical volume name, and then press
the Enter=Do key twice.

 4. When smit returns an OK prompt, press the F10=Exit to return to the
command line.

Now that hd6 is active, we need to:

 1. Reverse the previous change to the /sbin/rc.boot file.

 2. Repeat the command bosboot -l /dev/hd5x -d /dev/hdisk7 -a.

 3. Repeat the command bosboot -l /dev/hd5 -d /dev/hdisk5 -a.

 4. Execute shutdown -Fr to reboot the RISC System/6000.

 5. When the system comes up, execute the bootlist -m normal hdisk5 hdisk7
command to check that we can still boot from either rootvg mirror copy.

At this stage, your system is almost back to normal and your paging information
should look like:

310 AIX Storage Management

� �
lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
paging00 hdisk5 rootvg 80MB 0 yes yes lv
perfpg hdisk1 perfvg 20MB 8 yes yes lv
perfpg hdisk8 perfvg 20MB 8 yes yes lv
hd6 hdisk5 rootvg 28MB 22 yes no lv
hd6 hdisk7 rootvg 28MB 21 yes no lv� �

This verifies that we have recovered one logical partition, which is two physical
partitions (8MB) from the hd6 logical volume, so we can now remove the
temporary paging00 logical volume.

How to Remove a Paging Logical Volume

Now that the smaller hd6 logical volume has been returned to its original
operating conditions, we can follow the process described in the article
Changing or Removing a Paging Space to remove our temporary logical volume.

To remove the paging device paging00:

 1. Follow the procedure given in “How to Change the Attributes of a Paging
Logical Volume” on page 306 to change paging00 so that it will not be active
after a reboot.

 2. Reboot the RISC System/6000 by executing the shutdown -Fr command.

 3. When the system is up, login in as root and execute the fast path smitty rmps
to get to the menu with the title Remove a Paging Space. Alternatively, you
can go through the smit hierarchy by:

a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

 c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Remove a Paging Space to get to the same menu.

 4. Press the F4=List to generate a list of paging logical volumes.

 5. Use the Arrow keys to highlight the paging00 logical volume name, and then
press the Enter=Do key three times (once to enter the name in the field,
once to get the warning, and the third time to execute the command).

 6. When smit returns an OK prompt, press the F10=Exit to return to the
command line.

8.8 Common Disk Management and Error Recovery Procedures
This section will show examples of the use of the migratepv and the rgrecover
command and shell script respectively. We also include the contents of the
dsksyn script that many people have used in AIX Version 3, although we did not
test this script in AIX Version 4.

For further examples of recovery procedures, see Appendix C, “General Volume
Group Recovery” on page 345.

Chapter 8. Practical Examples 311

8.8.1 How to Use the migratepv Command
In this section we will look at how to migrate the contents of one physical
volume to another physical volume within the same volume group.

The example will use the volume group availvg which consists of two physical
volumes hdisk0 and hdisk2, and the contents of the physical volume hdisk0. will
be migrated to physical volume hdisk3.

You will note that the physical volume names have changed for this volume
group and do not match those listed in 8.3.3, “A Design Example for Improved
Availability” on page 208. The change has occurred as a result of running the
mksysb restore example. See 8.4, “Managing Backup and Restore” on page 244
for more details.

Also note that in our tests we could not successfully migrate all logical volumes
in one step using the migratepv command, although this should have been
possible. To work around this problem we used a variant of the migratepv
command which allows migration of individual logical volumes. However, in the
command line summary we have used another variant of the migratepv
command which performs an entire physical volume migration.

8.8.1.1 Command Line Summary
 1. Using the lspv command, check to see if there is a physical volume which is

currently not assigned to a volume group:

� �
lspv
hdisk0 0000020158496d72 availvg
hdisk1 00000201dc8b0b32 perfvg
hdisk2 000002007bb618f5 availvg
hdisk3 none None
hdisk4 000137231982c0f2 stripevg
hdisk5 00014732b1bd7f57 rootvg
hdisk6 0001221800072440 stripevg
hdisk7 00012218da42ba76 rootvg
hdisk8 0002479088f5f347 perfvg� �

 2. Add physical volume hdisk3 to volume group availvg:

� �
extendvg -f ′ availvg′ ′ hdisk3′� �

 3. Identify the logical volumes in volume group availvg:

� �
lsvg -l availvg
availvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
availlv jfs 6 12 2 open/syncd /availjfs
loglv00 jfslog 1 2 2 open/syncd N/A� �

 4. Migrate the contents of hdisk0 to hdisk3:

� �
migratepv ′ hdisk0′ ′ hdisk3′� �

 5. To confirm that all physical partitions have been migrated, execute the lspv
command on hdisk0 and hdisk3:

312 AIX Storage Management

� �
lspv -M hdisk0
hdisk0:1-287
#
lspv -M hdisk3
hdisk3:1-81
hdisk3:82 availlv:1:2
hdisk3:83 availlv:2:2
hdisk3:84 availlv:3:2
hdisk3:85 availlv:4:2
hdisk3:86 availlv:5:2
hdisk3:87 availlv:6:2
hdisk3:88 loglv00:1:2
hdisk3:89-287� �

The above results show that the migratepv command has moved the contents
of hdisk0 to hdisk3.

8.8.1.2 Detailed Guidance
Let us now look at these steps in more detail, and see how a physical volume
migration can be done using smit. We will also look at the commands which
help us identify whether or not all physical partitions have been migrated.

How to Migrate Physical Volume contents to another disk: Before we start a
physical volume migration to another disk, we need to confirm that the target
physical volume has sufficient storage capability to hold all physical partitions
which will be migrated. In this section we will look at the commands that
provide this vital information.

To reiterate, we will migrate physical volume hdisk0 to physical volume hdisk3.

 1. Identify all physical volumes which are currently not assigned to a volume
group using the command:

� �
lspv
hdisk0 0000020158496d72 availvg
hdisk1 00000201dc8b0b32 perfvg
hdisk2 000002007bb618f5 availvg
hdisk3 none None
hdisk4 000137231982c0f2 stripevg
hdisk5 00014732b1bd7f57 rootvg
hdisk6 0001221800072440 stripevg
hdisk7 00012218da42ba76 rootvg
hdisk8 0002479088f5f347 perfvg� �

Each line of the above output shows the name of a configured physical
volume. If this physical volume belongs to an existing volume group, the line
also shows its system-wide unique physical volume identifier and the name
of the volume group to which it belongs.

However, from the above information we note that physical volume hdisk3
does not currently belong any volume group, making it a candidate for the
target disk for this example.

 2. Check the partition map for our source physical volume hdisk0:

Chapter 8. Practical Examples 313

� �
lspv -M hdisk0
hdisk0:1-81
hdisk0:82 availlv:1:2
hdisk0:83 availlv:2:2
hdisk0:84 availlv:3:2
hdisk0:85 availlv:4:2
hdisk0:86 availlv:5:2
hdisk0:87 availlv:6:2
hdisk0:88 loglv00:1:2
hdisk0:89-287� �

Note that logical volumes availlv and loglv00 have their second logical
partition copies allocated on this physical volume. The logical volume
availlv has 6 physical partitions allocated on this physical volume, and
logical volume loglv00 has 1 physical partition.

 3. Using the lsdev command, let us look at the size of physical volumes hdisk0
and hdisk3:

� �
lsdev -Cc disk
hdisk0 Available 00-07-00-0,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk1 Available 00-07-00-1,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk2 Available 00-07-00-2,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk3 Available 00-07-00-3,0 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit
hdisk4 Available 00-07-00-4,0 857 MB SCSI Disk Drive
hdisk5 Available 00-08-00-0,0 670 MB SCSI Disk Drive
hdisk6 Available 00-08-00-1,0 670 MB SCSI Disk Drive
hdisk7 Available 00-08-00-2,0 355 MB SCSI Disk Drive
hdisk8 Available 00-08-00-3,0 320 MB SCSI Disk Drive� �

Since hdisk0 and hdisk3 are of identical size, there should be no problems in
performing the physical volume migration.

 4. Add physical volume hdisk3 to the volume group availvg using the command
smitty extendvg.

The following screen will appear:

� �
Add a Physical Volume to a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* VOLUME GROUP name [availvg] +
* PHYSICAL VOLUME names [hdisk3] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image� �

On this smit screen:

a. Enter availvg for the field VOLUME GROUP name.

b. Enter hdisk3 for the field PHYSICAL VOLUME names.

 c. Press Enter .

d. Press F10 after smit returns with OK.

e. Confirm that we now have three physical volumes in volume group
availvg using the command:

314 AIX Storage Management

� �
lsvg -p availvg
availvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk0 active 287 280 58..50..57..57..58
hdisk2 active 287 280 58..50..57..57..58
hdisk3 active 287 287 58..57..57..57..58� �

From the above output we can see that three physical volumes now exist
in availvg, and as expected all physical partitions on hdisk3 are free.

 Note

It is not a requirement that a new target physical volume is added to
the volume group. For a migratepv to succeed it is only necessary
that the target physical volume has a sufficient number of free
physical partitions equal to or greater than the number of partitions
being moved from the source physical volume.

We are now ready to perform the migration test. However, since the
migratepv command will still allow access to the data being migrated, we will
simulate this by executing the following shell script, called migpvtst during
the migration process.

� �
#!/bin/ksh
migpvtst
cd /availjfs
while true
do

ls
sleep 1

done� �
 5. Execute migpvtst from another terminal:

� �
ksh migpvtst
cmds.rom.dd
cmds.rom.dd
cmds.rom.dd� �

The above sample output shows that the file cmds.rom.dd was displayed once
every second.

 6. Migrate the contents of physical volume hdisk0 to hdisk3 using the command
smitty migratepv:

� �
Move Contents of a Physical Volume

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* SOURCE physical volume name [hdisk0] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Chapter 8. Practical Examples 315

a. On this smit screen enter hdisk0 for the field SOURCE physical volume
name.

b. Press Enter .

On the next smit screen, shown below:

 c. Enter hdisk3 for the field DESTINATION physical volumes.

 d. Press Enter .

e. Press F10 when smit return with OK.

� �
Move Contents of a Physical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* SOURCE physical volume name hdisk0
* DESTINATION physical volumes [hdisk3] +
Move only data belonging to this [] +
LOGICAL VOLUME?

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 Warning

If smit returns with OK and also displays error messages like:

0516-158 lmigratepp: Destination physical partition number not
entered.

Usage: lmigratepp -g VGid -p SourcePVid -n SourcePPnumber
-P DestinationPVid -N DestinationPPnumber

0516-812 migratepv: Warning, migratepv did not completely
succeed; all physical partitions have not been
moved off the PV.

this indicates that the migration has failed. When this happens, rerun the
command for each logical volume that exists on the source physical
volume. The command lspv -l diskname will identify all logical volumes
contained on the physical volume specified by the diskname parameter.
Alternatively, press F4 on the field Move only data belonging to this
LOGICAL VOLUME? and select a logical volume from the displayed list.

 7. Confirm that there are no physical partitions allocated on hdisk0 by excuting
the command:

� �
lspv -M hdisk0
hdisk0:1-287� �

As expected all 287 physical partitions are now free on hdisk0.

 8. Confirm that seven physical partitions now exist on hdisk3 using the
command:

316 AIX Storage Management

� �
lspv -M hdisk3
hdisk3:1-81
hdisk3:82 availlv:1:2
hdisk3:83 availlv:2:2
hdisk3:84 availlv:3:2
hdisk3:85 availlv:4:2
hdisk3:86 availlv:5:2
hdisk3:87 availlv:6:2
hdisk3:88 loglv00:1:2
hdisk3:89-287� �

 9. Press Ctrl-C to stop the shell script migpvtst from running.

Note that the shell script migpvtst still continued to list the files in the directory
/availjfs both during and after the migration of physical volume hdisk0. The
above steps show us that a migration of the contents of one physical volume to
another can be easily performed, and furthermore, without denying users access
to data residing on the source physical volume.

8.8.2 How to Use the rvgrecover Shell Script
There are many references that you need to need to help you resolve problems
quickly. These include the article Recovering from Disk Drive Problems in AIX
Version 4.1 System Management Guide: Operating System and Devices, and also
the article Recovering Volume Groups in the AIX Version 4.1 Problem Solving
Guide and Reference. This latter article includes the following script called
rvgrecover:

� �
PV=/dev/ipldevice
VG=rootvg

cp /etc/objrepos/CuAt /etc/objrepos/CuAt.$$
cp /etc/objrepos/CuDep /etc/objrepos/CuDep.$$
cp /etc/objrepos/CuDv /etc/objrepos/CuDv.$$
cp /etc/objrepos/CuDvDr /etc/objrepos/CuDvDr.$$
lqueryvg -Lp $PV | awk ′{ print $2 }′ | while read LVname; do

odmdelete -q ″name = $LVname″ -o CuAt
odmdelete -q ″name = $LVname″ -o CuDv
odmdelete -q ″value3 = $LVname″ -o CuDvDr

done
odmdelete -q ″name = $VG″ -o CuAt
odmdelete -q ″parent = $VG″ -o CuDv
odmdelete -q ″name = $VG″ -o CuDv
odmdelete -q ″name = $VG″ -o CuDep
odmdelete -q ″dependency = $VG″ -o CuDep
odmdelete -q ″value1 = 10″ -o CuDvDr
odmdelete -q ″value3 = $VG″ -o CuDvDr
importvg -y $VG $PV # ignore lvaryoffvg errors
varyonvg $VG� �

To test this script, note that we start with a system whose ODM is fine as
indicated by:

Chapter 8. Practical Examples 317

� �
lsdev -Cc disk
hdisk0 Available 00-08-00-0,0 670 MB SCSI Disk Drive
hdisk1 Available 00-08-00-1,0 355 MB SCSI Disk Drive
hdisk2 Available 00-08-00-2,0 355 MB SCSI Disk Drive
lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 000005083df45081
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)
MAX LVs: 256 FREE PPs: 5 (20 megabytes)
LVs: 16 USED PPs: 238 (952 megabytes)
OPEN LVs: 11 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 2 AUTO ON: yes� �

To simulate a corrupt ODM, we can execute the following commands:

Warning - DO NOT DO THIS

You must use a test machine to do this process, since if you have any
problems, you may have to reinstall.

� �
odmdelete -o CuAt -q′ name=rootvg′
0518-307 odmdelete: 3 objects deleted.
lsvg rootvg
0516-310 lsvg: Unable to find attribute rootvg in the Device

Configuration Database. Execute synclvodm to attempt to
correct the database.

#
odmdelete -o CuAt -q′ name=hd3′
0518-307 odmdelete: 4 objects deleted.
odmdelete -o CuAt -q′ name=hd5′
0518-307 odmdelete: 5 objects deleted.
lslv hd3
LOGICAL VOLUME: hd3 VOLUME GROUP: rootvg
LV IDENTIFIER: PERMISSION: ?
VG STATE: inactive LV STATE: ?
TYPE: jfs WRITE VERIFY: ?
MAX LPs: ? PP SIZE: ?
COPIES: 1 SCHED POLICY: ?
LPs: ? PPs: ?
STALE PPs: ? BB POLICY: ?
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /tmp LABEL: None
MIRROR WRITE CONSISTENCY: ?
EACH LP COPY ON A SEPARATE PV ?: yes� �

Now we can execute the rvgrecover shell script. During the execution, you may
see messages on your screen like:

� �
0518-307 odmdelete: 1 objects deleted.
0518-307 odmdelete: 0 objects deleted.
0516-510 updatevg: Physical volume not found for physical volume

identifier 00000997c020352d.
0516-548 synclvodm: Partially successful with updating volume

group rootvg.
0516-782 importvg: Partially successful importing of /dev/ipldevice.� �

318 AIX Storage Management

We can then check that whether the rootvg has been recovered by executing:

� �
lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 000005083df45081
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)
MAX LVs: 256 FREE PPs: 5 (20 megabytes)
LVs: 16 USED PPs: 238 (952 megabytes)
OPEN LVs: 11 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 2 AUTO ON: yes
lslv hd3
0516-304 lslv: Unable to find device id 00000997c020352d in the Device

Configuration Database.
LOGICAL VOLUME: hd3 VOLUME GROUP: rootvg
LV IDENTIFIER: 000005083df45081.9 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 128 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 82 PPs: 82
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: center UPPER BOUND: 32
MOUNT POINT: /tmp LABEL: /tmp
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes� �

It seems that there is still an ODM problem as indicated by the 0516-304 error
message. After the initial invocation of the rvgrecover script, only some objects
in the ODM database (CuAt) were recovered. The physical volume information
for hdisk0 has not immediately been recovered by this script. When we reboot
the RISC System/6000, we find that the PVid for hdisk0 is recovered from the
VGDA on one of the rootvg disks. However, as can be seen in the following,
hdisk0 is still not included as part of the rootvg volume group, since its status is
none:

� �
lspv
hdisk0 00000997c020352d none
hdisk1 00000997c01fd413 rootvg
hdisk2 000010732623885a 325vg� �

However, we can repeat the execution of the rvgrecover script after this reboot,
and then we find that the ODM information for physical volume hdisk0 is updated
correctly. This can be seen from:

� �
lspv
hdisk0 00000997c020352d rootvg
hdisk1 00000997c01fd413 rootvg
hdisk2 000010732623885a 325vg� �

Chapter 8. Practical Examples 319

8.8.3 How to Use the dsksync Shell Script
This shell script will synchronize your disks on a AIX Version 3 system so they
will be named in the correct order. The order may differ from that expected from
the configuration rules as physical volumes and adapters are added and
removed over a period of time to your system. For example: hdisk0, hdisk2,
hdisk3 instead of hdisk0, hdisk1, hdisk2. The order of the disk names generally
does not cause errors, but it may cause confusion for the user. Run the
following dsksync script to alleviate such confusion. The script will rename the
hard disks.

You may need to use a shell script similar to that given in in 8.8.2, “How to Use
the rvgrecover Shell Script” on page 317 after you run this script. Make sure
the key is in the Normal position before running this script.

� �
lsdev -Cc disk | awk ′{ print $1 }′ | while read HDname; do

odmdelete -q ″name = $HDname″ -o CuAt
odmdelete -q ″value = $HDname″ -o CuAt
odmdelete -q ″name = $HDname″ -o CuDep
odmdelete -q ″name = $HDname″ -o CuDv
odmdelete -q ″value3 = $HDname″ -o CuDvDr
odmdelete -q ″name = $HDname″ -o CuVPD

done
rm -f /dev/hdisk*
rm -f /dev/rhdisk*

savebase� �

When the shell script completes successfully, run the shutdown -Fr command to
shutdown and reboot AIX Version 3.

320 AIX Storage Management

Appendix A. Overview of Hardware Components

This appendix contains highlights of hardware storage components available on
the RS/6000.

A.1 Storage Product Interface Adapters
This section looks at the hardware adapters available to connect various
hardware storage components to the RS/6000 system units.

A.1.1 SCSI Adapters
The following are examples of SCSI adapters that are available to connect SCSI
devices to the RS/6000.

A.1.1.1 IBM SCSI High Performance I/O Controller
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

• One SCSI internal and/or external bus interface

• 4MB/sec maximum synchronous data transfer

• 2MB/sec maximum asynchronous data transfer

• One byte wide single-ended implementation

• Maximum bus length of six meters

This adapter is supported in the following systems:

• #2828

− RS/6000 Models 320, 32H, 32E

• #2829

− RS/6000 500 series, all models

• #2835

− RS/6000 200 series, all models except 250, 25S, 25W, 25T

− RS/6000 300 series, all models

− RS/6000 500 series, all models

− RS/6000 900 and R series, all models

A.1.1.2 IBM SCSI-2 High Performance I/O Controller
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

• One SCSI-2 internal and/or external interface

• 10MB/sec maximum synchronous data transfer

• 2.5MB/sec maximum asynchronous data transfer

• One byte wide single-ended implementation

• Maximum bus length of three to six meters, depending upon configuration

• Command Tag Queueing

This adapter is supported in the following systems:

 Copyright IBM Corp. 1994 321

• #2410

− RS/6000 200 series, all models

− RS/6000 Models 41T, 41W

− RS/6000 Model C10

− RS/6000 300 series, all models

− RS/6000 500 series, all models except 520, 530, 540

− RS/6000 900 and R series, all models except 930

• #2831

− RS/6000 500 series, all models except 520, 530, 540

A.1.1.3 IBM SCSI-2 Differential High Performance External I/O
Controller
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

• One SCSI-2 internal and/or external bus interface

• 10MB/sec maximum synchronous data transfer

• 2.5MB/sec maximum asynchronous data transfer

• One byte wide differential interface

• Maximum bus length of 19 meters

• Command Tag Queueing

This adapter is supported in the following systems:

• #2420

− RS/6000 200 series, all models except 250, 25S, 25W, 25T

− RS/6000 models 41T, 41W

− RS/6000 model C10

− RS/6000 model 3AT, 3BT

− RS/6000 300 series, all models except 320, 32H, 32E

− RS/6000 500 series, all models except 520, 530, 540

− RS/6000 900 and R series, all models except 930

A.1.1.4 IBM SC SI-2 Fast/Wide Adapter/A
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

• Two independent SCSI-2 bus interfaces, one internal, one external

• 20MB/sec maximum synchronous transfer rate

• 3.6MB/sec maximum asynchronous transfer rate

• Two byte wide single-ended implementation

• Maximum bus length of three to six meters, depending upon bus
configuration

• Command Tag Queueing

• Up to 30 total SCSI device addresses, 15 internal, and 15 external. This
capability is currently limited by AIX to 14 total addresses, 7 internal, and 7
external

322 AIX Storage Management

This adapter is supported in the following systems:

• #2415

− RS/6000 models 250, 25S, 25W, 25T

− RS/6000 models 41T, 41W

− RS/6000 model C10

− RS/6000 300 series, all models except 320

− RS/6000 500 series, all models except 520, 530, 540

− RS/6000 900 and R series, all models except 930

A.1.1.5 IBM SCSI-2 Differential Fast/Wide Adapter/A
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

• Two independent SCSI-2 bus interfaces, one internal, one external

• 20MB/sec maximum synchronous data transfer

• 3.6MB/sec maximum asynchronous data transfer

• Maximum bus length of three to six meters, depending on internal bus
configuration

• Maximum bus length of 25 meters, depending on external bus configuration

• Command Tag Queueing

• Two byte wide single-ended implementation, internal bus

• Two byte wide differential implementation, external bus

• Up to 30 total SCSI device addresses, 15 internal, and 15 external. This
capability is currently limited by AIX to a total of 14 addresses, 7 internal,
and 7 external

This adapter is supported in the following systems:

• #2416

− RS/6000 models 250, 25S, 25W, 25T

− RS/6000 models 41T, 41W

− RS.6000 model C10

− RS/6000 300 series, all models except 320

− RS/6000 500 series, all models except 520, 530, 540

− RS/6000 900 and R series, all models except 930

A.1.1.6 Integrated IBM SCSI High-Performance I/O Controller
This integrated controller provides the following capabilities:

• One SCSI internal and/or external bus interface

• 4MB/sec maximum synchronous data transfer

• 2MB/sec maximum asynchronous data transfer

• One byte wide single-ended implementation

• Maximum bus length of six meters

The controller is integrated into the following models:

Appendix A. Overview of Hardware Components 323

• RS/6000 models 340, 34H, 350, 355, 360, 365, 370, 37T, 375

• RS/6000 500 series, 570 and above

• RS/6000 900 and R series 970 and above, R10, R20

A.1.1.7 Integrated SCSI Controller
This integrated controller provides:

• One SCSI internal and/or external bus interface

• 5MB/sec maximum synchronous data transfer

• 5MB/sec maximum asynchronous data transfer

• One byte wide single-ended implementation

• Maximum bus length of six meters

The controller is integrated into the following models:

• RS/6000 model M20

• RS/6000 200 series, all models except 250, 25S, 25T, 25W

A.1.1.8 Integrated SCSI-2 Controller
This integrated controller provides:

• One SCSI-2 internal and/or external bus interface

• 10MB/sec maximum synchronous data transfer

• 5MB/sec maximum asynchronous data transfer

• One byte wide single-ended implementation

• Maximum bus length for models 250, 25S, 25T, 25W:

− Three meters at SCSI-2 data rates (5 - 10MB/sec)

− Six meters at SCSI data rates (<5MB/sec)

• Maximum bus length for models 41T, 41W, C10

− Bus length limited to 2.3 meters external to the system

A.1.1.9 Integrated IBM SCSI-2 Fast/Wide Adapter/A
This adapter provides the following capabilities:

• Two independent SCSI-2 bus interfaces, one internal, one external

• 20MB/sec maximum synchronous data transfer rate

• 3.6MB/sec maximum asynchronous data transfer rate

• Maximum bus length of three to six meters, depending upon bus
configuration

• Command Tag Queueing

• Two byte wide single-ended implementation. Up to 30 total SCSI device
addresses, 15 internal, and 15 external. This capability is currently limited by
AIX to a total of 14 addresses, 7 internal, and 7 external

This adapter is integrated into the following models:

• RS/6000 300 series, models 380, 390, 3AT, 3BT

324 AIX Storage Management

A.1.2 Serial Adapters
The following are examples of serial adapters that can be used to attach serial
devices to the RS/6000.

A.1.2.1 High Performance Disk Drive Subsystem Adapter
This Micro Channel adapter occupies one slot on the RS/6000 and provides:

• Support for up to four 9333 subsystems

• Support for up to 16 serial disk drives per adapter

• 8MB/sec full duplex operation with packet multiplexing allowing concurrent
communication with all attached devices

• Maximum cable length of 10 meters

The adapter is supported in the following systems:

• #6212

− RS/6000 200 series, all models

− RS/6000 model C10

− RS/6000 300 series, all models

− RS/6000 500 series, all models

− RS/6000 900 and R series, all models

A.1.3 HiPPI Adapters
The following adapter can be used to attache HiPPI compatible devices to the
RS/6000.

A.1.3.1 HiPPI Adapter
This Micro Channel adapter occupies 3 adjacent slots in the RS/6000, though due
to power constraints, must be considered to occupy 5 slots. It provides:

• Peak rate simplex/duplex data transfer up to 800Mb/sec in each direction

• Maximum cable length of 25 meters (extendable via vendor switches and
fibre optic extenders)

• Connection to the 9570 Disk Array Subsystem

The adapter is supported in the following systems:

• #2735

− RS/6000 500 series, models 570, 580, 58H, 590, 59H

− RS/6000 900 and R series, models 970, 97B, 980, 98B, 990, R24

A.1.4 ESCON Adapters
The following adapter can be used to attach ESCON* compatible devices to the
RS/6000.

Appendix A. Overview of Hardware Components 325

A.1.4.1 System/390 ESCON Channel Emulator
This Micro Channel adapter requires 2 slots on the RS/6000 and provides:

• 17MB/sec data transfer rate

• Support for attachment to all models of the 3490 and 3490E tape subsystems

• Support for attachment to the 3494 and 3495 tape library dataservers

This adapter is supported by the following systems:

• #2754

− RS/6000 models 340, 34H, 350, 360, 36T, 370, 37T

− RS/6000 models 3AT, 3BT

− RS/6000 500 series, all models

− RS/6000 900 and R series, all models

A.1.5 Channel Emulation Adapters
The following adapter can be used to attach channel compatible devices to the
RS/6000.

A.1.5.1 System/370 Channel Emulator/A
This Micro Channel adapter requires one slot in an RS/6000 and provides:

• 4.5MB/sec data transfer rate

• Support for up to 4 control units per block multiplexer channel

• Maximum cable length of 61 meters

• Support for all models of the 3480, 3490 and 3490E tape subsystems

• Support for the 3495 tape library dataserver

The adapter is supported in the following systems:

• #2759

− RS/6000 300 series, all models

− RS/6000 models 3AT, 3BT

− RS/6000 500 series, all models

− RS/6000 900 and R series, all models

A.2 Disk Storage Products
This section looks at the disk storage products that are available for attachment
to the RS/6000.

A.2.1 Disk Drives
The following drive units can be installed.

326 AIX Storage Management

A.2.1.1 SCSI Drives
3.5″ Drives: The following drives are available. They are SCSI-2 single-ended
unless otherwise specified.

• #2490 - 200MB, supported on 200, 300 series

• #2560 - 400MB (SCSI), supported on 200, 300 series

• #2390 - 540MB, supported on 200, 300 series

• #2555 - 1.0GB, supported on 200, 300, 500, 900 series

• #2565 - 1.0GB (differential), supported on 9334

• #2580 - 2.0GB, supported on 200, 300, 500, 900 series

• #2585 - 2.0GB (differential), supported on 9334

5.25″ Drives: The following drives are available:

• #2570 - 1.37GB (SCSI), supported on 500 series and 9334

• #2590 - 2.4GB (SCSI-2), supported on 500 series and 9334

A.2.1.2 Serial Drives
The following drives are available:

• #3100 - 857MB (5.25″), supported on 9333

• #3110 - 1.07GB (5.25″), supported on 9333

• #3120 - 2.0GB (3.5″), supported on 9333

A.2.2 Disk Subsystems
The following disk subsystems can be attached to the RS/6000.

A.2.2.1 IBM 7203 and 7204 External Disk Drives
The 7203 provides an external disk drive supporting a removable disk pack of
either 355MB or 1.0GB. This is useful for environments where security is an
issue, as the disk pack can be removed and stored in a secure place. Disk packs
can also be moved between machines, allowing easy sharing of information. The
7203 supports a standard SCSI interface, and is attachable to all systems.

The 7204 is an external disk unit supporting the following capacities:

• Model 320 - 320MB, SCSI-2 interface, supported on 200, 300, 500, 900 series

• Model 001 - 1.0GB, SCSI-2 interface, supported on 200, 300, 500, 900 series

• Model 010 - 1.0GB, SCSI-2 interface, supported on 200, 300, 500, 900 series,
this unit has faster access times

• Model 215 - 2.0GB, SCSI-2 differential interface, supported on 300, 500, 900
series

A.2.2.2 IBM 9334 SCSI Expansion Unit
The 9334 SCSI Expansion Unit provides support for up to four SCSI disk drives
per unit. There are four models:

• Model 010 (SCSI-2), rack mounted, supported by the 900 series

• Model 011 (SCSI-2 differential), rack mounted, supported by the 900 series

• Model 500 (SCSI-2), desk side, supported by the 200, 300, 500 series

Appendix A. Overview of Hardware Components 327

• Model 501 (SCSI-2 differential), desk side, supported by the 300, 500 series

A.2.2.3 IBM 9333 High Performance Disk Drive Subsystem
The 9333 High Performance Disk Drive Subsystem attaches to a port on the High
Performance Disk Drive Subsystem adapter, and supports up to four serial disks.
The 9333 is designed to provide the fastest response time when an application
makes large numbers of requests for short blocks of data.

The 9333 also supports multiple paths from its controller to the processor,
allowing a 9333 to attach simultaneously to up to eight hosts processors. This is
useful for high availability environments or data sharing. Independent electrical
paths are provided to each host, so bandwidth is not shared, nor will electrical
failure in one path affect the others.

There are four models of the 9333:

• Model 010 - rack mounted, supported by the 900 series (4.3GB max)

• Model 011 - rack mounted, supported by the 900 series (8.0GB max)

• Model 500 - desk side, supported by 34H, 360, 370, and 500 series (4.3 GB
max)

• Model 501 - desk side, supported by 34H, 360, 370, and 500 series (8.0 GB
max)

A.2.2.4 IBM 7134 High Density SCSI Disk Subsystem
The 7134 High Density SCSI Disk Subsystem can hold 16 3.5″ 2.0GB SCSI disk
drives. These drives are split into two banks of eight drives, each on a separate
internal (to the 7134) SCSI adapter. The 7134 itself requires a SCSI-2 differential
fast/wide adapter to attach to the system. The subsystem can be connected to
two hosts for availability reasons, and in this case, only six drives are supported
in each bank.

There is one model of the 7134:

• Model 010 - rack mounted, supported by the 300, 500, 900, and R series

A.2.2.5 IBM 7135 RAIDiant Array
The 7135 RAIDiant Array provides high data availability and/or performance
using RAID technology (RAID is explained in 2.2.2.2, “Selecting the Correct Disk
Storage Devices” on page 27); RAID levels 0, 1, 3, and 5 are supported.
Essentially any combination of RAID levels are concurrently supported on the
7135, with the Logical Unit, or LUN of disks supporting each defined RAID level
appearing as a single SCSI disk drive to the operating system.

The 7135 is connected to the host system via either a SCSI-2 differential adapter,
or a SCSI-2 fast/wide differential adapter. The disks are connected internally to
five SCSI-2 buses, giving a maximum number of 30 disks; either 2.0GB, or 1.3GB
3.5″ disks are supported.

The 7135 has an internal controller that manages the RAID functions, and a
second controller may be added operating in either standby mode (taking over in
the event of failure of the first), or in active mode (providing enhanced
performance as well as availability). In addition, redundant power supplies and
cooling are standard, and maintenance is supported concurrently on any failing
hardware.

328 AIX Storage Management

There are two models of the 7135:

• Model 010 (system rack), up to 12 disks, supported by 300, 500, 900, and R
series

• Model 110 (desk side), up to 30 disks, supported by 300, 500, 900, and R
series.

A.2.2.6 IBM 3514 High Availability Disk Array
The 3514 Disk Array provides a lower cost solution for those environments not
requiring the full range of RAID support. The 3514 allows a maximum of eight
disk drives, which can be either 1.0GB or 2.0GB (not mixed within the same unit).
RAID levels 0 and 5 are supported, configurable from the front panel of the unit.
All drives within the 3514 are used in the configured RAID level, and appear to
the operating system as a single SCSI disk drive (one drive can be designated at
a hot spare, to be used automatically in the event of failure of one of the other
drives).

The 3514 is connected to the host system via a SCSI-2 fast/wide differential
adapter, or a SCSI-2 differential adapter; internally, the disks are connected to
the array controller via four SCSI-2 buses.

A redundant power supply is provided, but not cooling fans, or controller.

There are four models of the 3514:

• Model 212 (desk side), 1.0GB disks, supported by 250, 300 series, and 500
series

• Model 213 (desk side), 2.0GB disks, supported by 250, 300 series, and 500
series

• Model 312 (rack mount), 1.0GB disks, supported by 250, 300 series, and 500
series

• Model 313 (rack mount), 2.0GB disks, supported by 250, 300 series, and 500
series

A.2.2.7 IBM 9570 Disk Array Subsystem
The 9570 Disk Array is designed to support applications requiring very high
performance access to information, and/or enhanced availability. The 9570 R5
supports RAID levels 1 and 5 concurrently within a system in separately defined
partitions. The internal disks are 2.0GB SCSI disks supporting IPI-2 protocols,
and are supported in configurations ranging from 12.9GB to 232.4GB of data.

The 9570 is connected to the host system via the HiPPI adapter, and can support
a maximum sustained data transfer rate of over 60MB/sec.

Fault tolerance is provided in the form of redundant power supplies and cooling.
The subsystem also provides its own console for error detection, collection and
monitoring. Automatic log analysis and real time fault isolation can be
performed.

The 9570 is rack based and there are many models depending upon the exact
configuration required. The first rack in a subsystem will always contain the
array controller, one or two HiPPI ports, and up to 10 drawers of disks (each
drawer can have up to four disks). Three additional racks may be daisy chained
to the first rack, also containing a maximum of 10 drawers. The model numbers
are constructed as follows. The first digit may be a 0, 1 or 2; 0 indicates an

Appendix A. Overview of Hardware Components 329

expansion rack, 1 or 2 indicates a controller rack, the number determining how
many HiPPI ports the rack contains. The last two digits will be either 20 (five
drawers in the rack), or 40 (10 drawers in the rack). So, for example, a model 140
would be a controller rack with one HiPPI port and 10 drawers of disk.

A.3 Tape Storage Products
The following section looks at the tape storage products that are available for
attachment to the RS/6000.

A.3.1 Tape Devices
The following tape devices are available.

A.3.1.1 IBM 7206
The 7206 is a standalone 4mm helical scan technology tape device (helical scan
is explained in 2.2.3, “Tape Storage” on page 34). The 7206 attaches to the
system via a SCSI, or SCSI-2 interface, depending upon the model. A media
recognition feature is included that ensures that only data grade tape cartridges
can be used. The 7206 support data compression, attach to all model of the
RS/6000, and can be mounted inside the 500 and 900 series.

There are two models:

• Model 001

The model 001 offers 2.0GB native cartridge capacity (up to 4GB when using
compression). The data transfer rate is 183 KB/sec (up to 366 KB/sec when
using compression). This model attaches via a SCSI adapter.

• Model 005

The model 005 offers 4.0GB native cartridge capacity (up to 8GB when using
compression). The data transfer rate is 400 KB/sec (up to 800 KB/sec when
using compression). This model attaches via a SCSI-2 adapter.

A.3.1.2 IBM 7207
The 7207 is a standalone 0.25″ longitudinal technology tape device (longitudinal
technology is explained in 2.2.3, “Tape Storage” on page 34). All models attach
to the system via a SCSI adapter, and none support compression. The 7207
attaches to all models of the RS/6000 and can be mounted inside.

There are three models:

• Model 001

The model 001 provides a maximum data transfer rate of 90KB/sec, and a
maximum storage capacity of 150MB.

• Model 011

The model 011 provides a maximum data transfer rate of 200KB/sec, and a
maximum storage capacity of 525MB.

• Model 012

The model 012 provides a maximum data transfer rate of 300KB/sec, and a
maximum storage capacity of 1.2GB.

330 AIX Storage Management

A.3.1.3 IBM 7208
The 7208 is a standalone 8mm helical scan tape device (helical scan technology
is explained in 2.2.3, “Tape Storage” on page 34). The 7208 attaches to the
system via a single-ended SCSI-2 adapter. Data compression is provided using
the IBM IDRC (Improved Data Recording Capability) algorithm.

There is one model currently available for attachment to the RS/6000. The
model 011 supports a sustained data transfer rate of 500KB/sec, and cartridge
capacity of 5.0GB. With compression, data rates and capacities of up to 1MB/sec
and 10GB respectively are achievable. The model 011 is supported on all models
and may be mounted internally in the 500 and 900 series.

A.3.1.4 IBM 9348
The 9348 is a standalone 0.5″ reel, longitudinal technology tape device
(longitudinal technology is discussed in 2.2.3, “Tape Storage” on page 34). Tape
recording densities of 1600 and 6250 bits per inch are supported with a data rate
of 200KB/sec at 1600bpi, and a maximum data rate of 781 KB/sec at 6250bpi. The
unit autoloads and autothreads tape reels, and attaches via a single-ended SCSI
interface to the system unit. Reel data capacities are 40MB at 1600bpi, and
160MB at 6250bpi. There is only one model attachable to the RS/6000, the model
012, though the unit can be mounted in a rack.

A.3.1.5 IBM 3490
The 3490 includes a family of 0.5″ longitudinal technology tape devices
(longitudinal technology is explained in 2.2.3, “Tape Storage” on page 34).
There are two basic components, the tape string controller and the tape devices
themselves. The tape devices can be either 18 track or 36 track, and contain
either two or four physical drives, each with a cartridge loader. The control units
attach via SCSI-2 differential fast/wide, S/370* channel, or ESCON, depending
upon the model. All models use the Improved Data Recording Capability (IDRC)
algorithm to provide data compression.

As has been mentioned, there are various models, summarized below:

• Controllers

− A0X Models

The A01 supports 1 x 18 track tape device (B02 or B04). The A02 supports
2 x 18 track tape devices (B02 or B04).

− AX0 Models

The A10 supports 1 x 36 track tape device (B20 or B40). The A20 supports
2 x 36 track tape devices (B20 or B40).

All of these controllers attach to the host via ESCON or System/370 channel.

• Devices

− B0X Models

The B02 and B04 are both 18 track tape devices. Both support a data rate
of 3MB/sec and a tape capacity of 200MB. The B02 has two physical
drives, whil the B04 has four. All drives have cartridge loaders containing
up to six cartridges.

− BX0 Models

The B20 and B40 are both 36 track tape devices. Both support a data rate
of 3MB/sec and a tape capacity of 400MB. The B20 has two physical

Appendix A. Overview of Hardware Components 331

drives, whilst the B40 has four. All drives have cartridge loaders
containing up to six cartridges.

• Combined Controller/Devices

− CXX Models

The C11 and C22 both support a single 36 track tape device, though the
C11 supports a single physical drive, whilst the C22 supports two
physical drives. Both models support a data rate of 3MB/sec, and a
cartridge capacity of 400MB. Each physical device has a standard six
cartridge ACL (Automatic Cartridge Loader). Attachment to the host is
via ESCON, S/370 Channel, or SCSI-2 differential fast/wide.

− EXX Models

The E01 and E11 models both support maximum throughput of 3MB/sec,
and a maximum uncompressed capacity of 5.6GB (these units support a
7 cartridge ACL). With compression, this capacity increases to 16.8GB,
and the throughput to 6.5MB/sec. Both units attach to the host via a
SCSI-2 differential or SCSI-2 differential fast/wide adapter. The E01 is the
table top version of the E11 rack mounted model.

A.3.2 Tape Libraries
The following tape libraries are available.

A.3.2.1 Exabyte EXB-10e
The Exabyte tape library (IBM model number 0840-001) combines an 8mm helical
scan technology device with a 10 cartridge autoloader. The cartridges fit into a
removable magazine that offers up to 50GB of storage without compression (up
to 100GB can be achieved using the compression feature); the sustained data
rate is 500MB/sec, and can reach 1.0MB/sec with compression. Attachment to
the system is via a SCSI-2 adapter.

The library has the following performance figures:

• Cartridge access time 24 seconds average

• Cartridge load/unload 25 seconds nominal

• Cartridge read/write 167 minutes

• File search time 136 seconds maximum

This product is supported by ADSM, Legato, and Unitree storage management
products. These products are discussed briefly in Appendix B, “Higher Level
Storage Management Products” on page 337.

A.3.2.2 Lago LS/380L DataWheel
The Lago Systems LS/380L DataWheel** tape library (IBM model number
0562-001) combines two 8mm helical scan technology tape devices with a 54
cartridge removable carousel and loader. The unit offers up to 270GB of data
storage in uncompressed form (up to 540GB compressed). The DataWheel
attaches to the system unit via a SCSI-2 adapter for both tape drives and the
autoloader. An RS232 interface for control of the autoloader is also provided, if
required by the software using the device. Peak data transfer rate is 4MB/sec,
sustained transfer is 500KB/sec (uncompressed).

The Lago DataWheel has the following characteristics:

332 AIX Storage Management

• Maximum cartridge search time 136 seconds

• Average file access time 0.75 seconds

• Interchangeable carousels

• Two independent tape drives and loader mechanisms

This product is supported by ADSM, UniTree, and Legato storage management
products. These products are described briefly in Appendix B, “Higher Level
Storage Management Products” on page 337.

A.3.2.3 IBM 3494-L10
The 3494 L10 is a single unit that combines a control unit with the automated
cartridge loaders, a library manager, the tape devices, and the storage cells for
the 0.5″ tapes. The cartridge capacity for the unit depends upon whether the
optional convenient I/O station for the library is installed or not. Without the I/O
station, 240 cartridges can be stored, with it, 210. The I/O station allows
cartridges to be easily added and removed from the subsystem. Storage units
can be added to the subsystem, each of which provides capacity for 400 further
cartridges. Up to seven units can be added to the first, of which up to three may
be further drive units, and up to seven may be storage units. The drive units
contain either C1A or C2A tape devices, and 300 cartridges. The C1A has a
single tape drive, and the C2A has two. The maximum number of drives possible
is therefore eight, with 2740 cartridges (one control unit, three drive units, and
three storage units). The maximum number of cartridges is 3040, with two tape
drives (one control unit, and seven storage units). This gives a maximum storage
capacity of 2.4TB uncompressed, 7.2TB compressed. The CXX tape devices
support 36 track bi-directional recording.

The C1A and C2A are analogous to the C11 and C22 devices mentioned in A.3.1,
“Tape Devices” on page 330. Attachment to the system is via ESCON,
System/370 channel, or SCSI-2 differential fast/wide.

The 3494 is supported by the ADSM storage management product which is
briefly discussed in Appendix B, “Higher Level Storage Management Products”
on page 337.

A.3.2.4 IBM 3495
The 3495 tape library dataserver utilizes the 3490 tape subsystem technology
inside an enhanced automated library, along with a library manager. The
subsystems attach to the host in the same way as discussed in the section on
3490 tape devices (see A.3.1, “Tape Devices” on page 330).

There are several models, each providing different levels of tape storage
capacity:

• Model L20

This model has an actual cartridge capacity of from 5660 to 6440. This gives
theoretical storage capacity of 13,584 to 15,456GB.

• Model L30

This model has an actual cartridge capacity of from 8,480 to 10,590. This
gives theoretical storage capacity of 20,352 to 25,416GB.

• Model L40

Appendix A. Overview of Hardware Components 333

This model has an actual cartridge capacity of from 11,300 to 14,750. This
gives theoretical storage capacity of 27,120 to 35,400GB.

• Model L50

This model has an actual cartridge capacity of from 14,120 to 18,910. This
gives theoretical storage capacity of 33,888 to 45,474GB.

• Model M10

This model has an actual cartridge capacity of 100,000. This gives
theoretical storage capacity of 240,000GB (Wow).

A.4 Optical Storage Products
The following optical storage components are available for attachment to the
RS/6000.

A.4.1 Optical Devices
The following optical devices are available.

A.4.1.1 IBM 7209
The 7209 is a standalone external read/write optical disk drive. Optical
technology is discussed in 2.2.4, “Optical Storage” on page 40. The 7209 drive
has a single read/write head which means that only one side of the single
optical cartridge supported by the drive can be accessed at a time. In order to
access the other side, the cartridge must be physically removed and turned over
by an operator. The 7209 uses a 5.25″ double sided optical cartridge with a
capacity of 595MB of data per side at a sector size of 512 bytes. Attachment to
the host is via a single-ended SCSI adapter and the data transfer rate is
1424KB/sec.

A.4.1.2 IBM 7210
The 7210 is a self powered external CD-ROM device supporting a single 600MB
optical read only disk. Optical technology is discussed in 2.2.4, “Optical Storage”
on page 40. Average access times to files on the CD-ROM range from 200ms to
380ms, with data transfer rates of from 150KB/sec to 330KB/sec depending upon
the model. Attachment to the system is via a single-ended SCSI adapter.

There are two models:

• Model 001

The model 001 has an average access time of 380ms, and supports a data
rate of 150KB/sec.

• Model 002

The model 005 has an average access time of 200ms, and supports a data
rate of 330KB/sec.

Both models are available for mounting inside the system.

334 AIX Storage Management

A.4.2 Optical Libraries
The following optical libraries are available.

A.4.2.1 IBM 3995 Optical Library Dataserver
The 3995 combines multifunction optical drives (the number of drives depends
upon the model) with an automated picker and optical cartridge storage to
provide access to up to 376GB (unformatted) of optical storage. The 3995 models
all support both read/writeable as well as WORM optical technology on both
single sided and double sided 5.5″ cartridges. Optical technology is discussed in
2.2.4, “Optical Storage” on page 40. There are 4 types of cartridge:

• 1.3GB at 1024 bytes per sector (double sided)

• 650MB at 1024 bytes per sector (single sided)

• 1.19GB at 512 bytes per sector (double sided)

• 595MB at 512 bytes per sector (single sided)

There are three models directly attachable to the RS/6000:

• Model A63

The 3995-A63 supports up to 16 optical cartridges giving a maximum total
unformatted capacity of 20GB of data. The unit contains a single
multifunction optical drive and attaches to the host system via either a
SCSI-2 or SCSI-2 differential adapter.

• Model 063

The 3995-063 supports up to 32 optical cartridges giving a maximum total
unformatted capacity of 40GB of data. The unit contains two multifunction
optical drives, and attaches to the host system via either a SCSI-2 or SCSI-2
differential adapter.

• Model 163

The 3999 163 supports up to 144 optical cartridges giving a maximum total
unformatted capacity of 188GB of data. The unit contains four multifunction
optical drives and attaches to the host system via a SCSI-2 differential
adapter.

Maximum data rates for the 3995 model optical drives are the same as for the
IBM 7209 optical drive described in A.4.1.1, “IBM 7209” on page 334.

Appendix A. Overview of Hardware Components 335

336 AIX Storage Management

Appendix B. Higher Level Storage Management Products

This appendix is intended to provide an overview of some of the higher level
storage management products available. The products will be compared in
terms of function and positioning.

The main areas in which higher level tools provide enhanced function are:

 1. Automation

The provision of mechanisms to define when information should be backed
up, archived or migrated, and what information should be selected. This
allows the defined operations to be scheduled as required without the need
for operator intervention.

 2. Backup/restore

The ability to create copies of a client system′s vital data, so that in the
event of a failure, the client can be restored to the same state that it was at
the time of the last backup.

 3. Archive/retrieve

The ability to free up space at the client system by moving or archiving
infrequently accessed information from the client to the archive storage
space (usually at a server machine). If the information is required again, it
can be retrieved from the archive.

 4. Migration

The ability to structure the storage subsystems in such a way that elements
of the subsystem are used in the most efficient fashion. For example,
frequently accessed information, or information requiring high performance
access should be stored in fast storage (usually disk). Information that is
less frequently accessed should be moved to less expensive, lower
performance, higher capacity media such as optical; this should happen
automatically if possible, thereby freeing up space in the much in demand
fast storage. If the second level of storage (that used by the first movement,
or migration) of information becomes full, or for information that is accessed
even more rarely, a third level could be defined of even higher capacity,
cheaper, slower media, such as tape.

Levels in the hierarchy should also be accessible for specific purposes; for
example, backups, or long term archives would be best stored in the tape
level.

 5. Disk space utilization

A mechanism by which disk space on a client can be utilized more
efficiently. This is usually implemented by using the client disk as a cache,
and maintaining the full information space at a server. When data is
requested by an application on the client, it can be transparently copied to
the client cache - clients see the cache to be as large as the information
space at the server.

This can be used in conjunction with the capabilities mentioned in the
previous points. The server information space can be treated as a level in a
storage hierarchy, thereby increasing efficiency further. The space can also
be backed up more easily.

 6. Central management

 Copyright IBM Corp. 1994 337

The facility to manage the above capabilities from a central point, thereby
minimizing the effort, and maximizing the efficiency.

 7. Ease of use

Provision of ergonomic interfaces to both the server and client functions. For
example, the ability to define backup and restore policies for every client
system in a network centrally, through a graphical user interface; from the
client point of view, being able to simply specify the required files for
backup/restore or archive/retrieve, again through a graphical user interface,
and have the requests automatically processed.

 8. Platform support

The range of operating systems and hardware platforms across which the
higher level application can operate.

The tools discussed below will be compared against the above points to enable
a reasonable comparison to be drawn.

Other points for consideration include:

• Security

Consideration of access security from clients to the server, and from any
administrative components.

• Performance

Consideration of the amount of time taken for backups or archive; usually
related to the performance of the physical devices supported, the network
protocols used, and whether concurrency is supported (multiple
simultaneous client access).

• Device support

Relating to the range of devices supported by the product, and their
capabilities.

• Scalability

What range of client support is available. Does the product support
environments ranging from small workgroups of common machines through
to large, complex networks of multiple system types?

• API provision

Provision of an Application Programming Interface to allow other products to
make use of the services provided by the storage management tool. Allowing
applications such as databases for example to utilize storage managers to
automatically backup information.

B.1 ADSTAR Distributed Storage Manager
ADSM is a client/server based hierarchical storage manager that allows for
centrally managed and scheduled, automated, network based backup and
archive function. Both server and client components are supported across a
wide range of platforms. An administrator component provides for local or
remote configuration and management of the operation of ADSM via a command
line or graphical user interface.

 1. Automation

338 AIX Storage Management

ADSM provides a scheduling function that allows backups/restores and
archive/retrieves to be executed automatically by the server at the requested
times. This means that the client systems can be backed up overnight for
example, or at times when impact on user productivity is minimal.

 2. Backup/restore

Clients can have all of their vital data backed up across a network to the
server storage automatically on a regular basis. Users can also issue
manual backup requests for directory trees, directories, or even individual
files if required. In the event of loss of data, the backed up information can
be restored (in the event of complete loss for example) or requested
directories or files can be individually restored at user request.

ADSM also supports a large range of backup methods including full,
incremental and selective, as well as policy based.

 3. Archive/retrieve

In the same way as backups and restores are implemented, archival and
retrieval operations can be arranged. In the case of both backup and archive
(if authorized), users can select the storage pool to which their
backup/archive is directed.

 4. Migration

Storage at the server is organized into storage pools of similar device types
(disk, tape, and optical). These pools can be linked into a hierarchy if
required, and criteria set for movement (migration) of information down the
hierarchy. For example the top level of a hierarchy may be comprised of a
disk pool, the second layer optical, and the third tape. If the first pool
approaches a preset capacity limit, ADSM will automatically migrate
information to the next pool down to free up space. If a migrated file is
requested, it is automatically copied from its location in the hierarchy to the
requesting client.

 5. Disk space utilization

Client disk space utilization is not managed by ADSM at the current release,
although a future release will provide this function.

 6. Central management

All of the functions provided by the server and all of the data storage is
maintained centrally, and thus easily managed. An administrative component
provides the capability to monitor and configure ADSM, either locally at the
server, or remotely from any supported administration client machine in the
network.

 7. Ease of use

ADSM provides command line and graphical user interfaces for both the
administrative and client components. This maximizes ease of use, as
menus present the available options, and icons depict the current
configurations. The learning curve is consequently shorter, and productivity
higher. Availability of the graphical user interface is dependant upon the
platform; some platforms only support the command line interface for
example.

 8. Platform support

Appendix B. Higher Level Storage Management Products 339

The server component is supported under AIX, OS/2*, OS/400*, MVS and VM.
ADSM for VSE is announced, and there is a statement of direction for
ADSM/HP and ADSM/SUN.

The client component is supported under DOS, Microsoft Windows, OS/2,
AIX, HP/UX**, SunOS**, DEC ULTRIX**, SCO 386 UNIX**, MAC, and Novell
Netware**.

The administrative component is supported on DOS, Microsoft Windows,
OS/2, AIX, HP/UX, SunOS, DEC ULTRIX, SCO 386 UNIX, TSO, and CMS.

B.2 AIX File Storage Facility/6000
FSF/6000 is a client/server based storage manager that provides automated disk
space management services to clients. Client disk space is managed by utilizing
administrator defined policies to remove files from the client disk to maintain
free space. The removed files are actually copied to the server and are
transparently returned when required.

 1. Automation

FSF maintains a designated area of the clients disk as cache. Information
created within this cache can be automatically maintained by FSF/6000. Data
can be migrated on the basis of size, time since last access, or it can be
pinned into the cache if it is regularly accessed. Information requested that
has been removed from the cache to free up space is automatically and
transparently copied back to the cache.

 2. Backup/restore

FSF does not provide this function.

 3. Archive/retrieve

FSF does not provide this function.

 4. Migration

FSF does not provide this function, although it can be configured to work with
ADSM, with the FSF server using an ADSM storage pool as its client file
space (location to maintain copies of client information). In this case, ADSM
could automatically migrate information from the filespace when it
approached a capacity threshold.

 5. Disk space utilization

As outlined in the section on automation, FSF manages disk space on behalf
of clients. It does this by maintaining remote copies of any information
created in the managed area of the clients storage at the server, either using
NFS, or ADSM to do so (see 3.1.4.2, “Network File System” on page 62 for a
brief explanation of NFS). When space becomes critical in the cache, local
copies of the information are deleted using size or last access as selection
criteria, thereby maintaining free space. For performance reasons, very
frequently accessed files can be pinned locally (this prevents the file from
being deleted, although a copy is always kept at the server).

 6. Central management

Client data is usually maintained at the FSF server location, but could be
located on an NFS mounted directory from another machine. In the sense
that all configuration must be done at the server though, FSF is centrally
maintained, but only from the server.

340 AIX Storage Management

 7. Ease of use

Configuration and management of FSF is performed via SMIT menus. Actual
usage should be transparent.

 8. Platform support

FSF/6000 is only supported under AIX.

B.3 Legato NetWorker for RISC System/6000
Legato Networker** is a client/server based product that provides automated
backup services in a networked environment. Networker client and server
components are supported across a range of platforms.

 1. Automation

Backup operations can be scheduled at the server to take place when
required.

 2. Backup/restore

Legato Networker provides backup/restore services to clients in a networked
environment. Up to 12 different backup types may be scheduled:

a. Full backup

All files at the client are backed up

b. Levels 1 through 9

All files that have changed since a previous full (level 0) backup or since
a previous lower level backup. For example, if a level 4 backup is
scheduled for Monday night, then only files that have changed since the
last level 0, 1, 2, or 3 backup will be backed up.

 c. Incremental backup

All files that have changed since last backup, regardless of level, are
backed up.

d. Backup from client

This level allows a backup to be skipped at a given time; for example, if
a backup from client is scheduled for Saturday night, using this option
will prevent that backup from occurring.

 3. Archive/retrieve

Legato Networker does not provide this function.

 4. Migration

Legato Networker performs backups directly to tape or optical devices. The
concept of a hierarchy is not defined.

 5. Disk space utilization

Legato Networker does not provide this function.

 6. Central management

A command line and graphical user interface based administrative
component is provided that allows Networker to be configured, managed,
and monitored from any client in the network.

 7. Ease of use

Appendix B. Higher Level Storage Management Products 341

Initial setup and configuration of Legato is manual, however once setup, the
graphical administrative component can be used to manage the product.
There is no requirement for client interaction, so no interface is provided to
the client components; the code for clients is accessed via NFS, or locally on
disk, setup is manual.

 8. Platform support

The server component is supported under AIX.

Client support is provided for AIX, Novell Netware, DOS, SunOS, Sony**
NEW-OS, HP/UX, DEC ULTRIX, RISC/os, and SGI IRIX.

B.4 UniTree for RISC System/6000
UniTree** is a client/server based hierarchical storage manager that provides
centrally managed, automated hierarchical storage management in a networked
environment.

 1. Automation

Similarly to FSF/6000, UniTree will automatically perform migration of client
data within the UniTree file system down the defined hierarchy of storage
devices, based on configurable criteria. When data is requested by a client,
UniTree can transparently retrieve the information from the lower level in the
hierarchy, and make it available to the requesting client.

 2. Backup/restore

UniTree does not provide backup/restore services for clients.

 3. Archive/retrieve

As with FSF/6000, UniTree provides remote access to a managed file system
for clients. The file system space is maintained through automatic archival of
files based upon configurable criteria (such as access frequency and size).
When data is required by a client, it is transparently recovered from its place
in the hierarchy.

 4. Migration

UniTree defines a hierarchy of storage devices, similar to ADSM, with faster,
more expensive media such as disk at the top, moving down to slower,
larger capacity, cheaper media at the bottom. Information is migrated down
the hierarchy as described in the previous two sections thus ensuring that
the most frequently accessed information is available on the fastest devices.

 5. Disk space utilization

Disk space utilization is maximized at the server, as automatic archival
through migration ensures that there is always free space available. This
does of course depend upon there being enough free space lower down the
hierarchy for migration to succeed.

 6. Central management

The storage hierarchy is administered at the server, though all configuration
and management is via SMIT. Each client utilizes the services provided via
NFS (see 3.1.4.2, “Network File System” on page 62 for a brief description of
NFS), or FTP.

 7. Ease of use

342 AIX Storage Management

Server management and administration is achieved via SMIT, and is
therefore performed on the server machine. Client access to the UniTree file
systems is via NFS or FTP, and should be transparent to the user. Likewise,
migration and archival/retrieval of information is performed automatically
and should be transparent.

 8. Platform support

The server is supported under AIX.

Client platforms supported with the AIX server include SUN, DEC, SGI, HP
and AT&T**.

Appendix B. Higher Level Storage Management Products 343

344 AIX Storage Management

Appendix C. General Volume Group Recovery

This appendix contains examples of possible recovery techniques for various
potential failures. The examples are presented as is, with no guarantee, and
should be used only if the problem is fully understood.

Unlike the examples in Chapter 8, “Practical Examples” on page 185 that were
executed in an AIX Version 4 environment, the examples here are presented in
an AIX V3.2 environment. Hence, although the recovery principles are similar for
AIX Version 4 and AIX V3.2, some modifications of the following procedures may
be required.

C.1 Disk Power Supply Failure
Scenario: System has two volume groups, rootvg and vg00. Volume group vg00
has an external disk drive, hdisk4. The power supply fails on hdisk4, the disk
media itself is not harmed.

• Make hdisk4 unavailable

 1. Remove PV from the VG:

� �
chpv -vr hdisk4� �

 2. Remove the disk from the system configuration:

� �
rmdev -l hdisk4� �

 3. Repair the power supply.

 4. Add the disk back into the system configuration:

� �
mkdev -l hdisk4� �

 5. Activate the PV in the VG:

� �
chpv -v a hdisk4� �

 6. PV is still not active?

� �
lsvg -p vg00
vg00:
PV_NAME PV STATE TOTAL PPs FREE PPs ...
hdisk2 active 75 60
hdisk3 active 75 55
hdisk4 missing 75 50� �

 7. Activate missing PV:

� �
varyonvg vg00� �

 8. Synchronize stale partitions on disk:

� �
syncvg -p hdisk4� �

 Copyright IBM Corp. 1994 345

C.2 General Disk Failure
Scenario: System has two volume groups, rootvg and vg00. A disk in vg00 fails
and must be replaced. The disk name is hdisk5. The LVs on hdisk5 are:
/dev/lvpat, /home/pat, /dev/lvcad, and /cad (mirror copy).

• Removing a failed PV

 1. Remove the PV from the VG:

� �
chpv -v r hdisk5� �

 2. Unmount all single-copy file systems on the disk:

� �
umount /home/pat� �

 3. Remove all single-copy file systems on the disk:

� �
rmfs /home/pat� �

 4. Remove physical partit ion copies from the disk:

� �
rmlvcopy lvcad 1 hdisk5� �

 5. Remove the disk from the VG:

� �
reducevg -df vg00 hdisk5� �

 6. Delete the disk from the system configuration:

� �
rmdev -d -l hdisk5� �

• Remove and replace hdisk5

 1. Configure the new disk into the system:

� �
cfgmgr (or an IPL)� �

 2. Add the disk to the VG:

� �
extendvg vg00 hdisk5� �

 3. Remake LVs and file systems:

� �
mklv -t jfs -y lvpat vg00 5 hdisk5
crfs -v jfs -d lvpat -m /home/pat� �

 4. Extend multiple-copy LVs onto disk:

� �
mklvcopy lvcad 2 hdisk5� �

 5. Resynchronize copied physical partitions:

� �
syncvg -p hdisk5� �

346 AIX Storage Management

• Restore data from backup for single-copy file systems

C.3 Recovery After a Disk Is Replaced -- 1
Scenario: System has two volume groups, rootvg and vg00. Volume group vg00
contains three drives, hdisk1, hdisk2 and hdisk3. hdisk3 failed and has been
replaced prior to any clean up. The LVs on hdisk3 are:

/dev/lvpat /home/pat
/dev/lvca /cad (mirror copy)

• VG information is in error

 1. Run lsvg command to get VG status:

� �
lsvg -p vg00
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIB.
hdisk1 active 75 59 15..01..13..15..15
hdisk2 active 84 65 17..06..08..17..17
0516-304 lsvg: Unable to find device id 000045af344545ef in the

Device Configuration Database
000045af344545ef missing 95 4 03..01..00..00..00� �

 2. reducevg command produces errors:

� �
reducevg vg00 hdisk3

0516-022 ldeletepv: Illegal parameter or structure value.

0516-884 reducevg: Unable to remove physical volume hdisk3.� �
 3. lspv does not show removed hdisk3:

� �
lspv
hdisk0 0000457a839d9efe rootvg
hdisk1 00004224dce3930a vg00
hdisk2 0000175005450a7f vg00
hdisk3 00000601c3a717a4 none� �

 4. lqueryvg still l ists hdisk3 as being part of vg00:

� �
lqueryvg -p hdisk1 -At

Max LVs: 256
PP Size: 22
Free PPs: 192
LV count: 6
PV count: 3
Total VGDAs: 3
Logical: 00001750ed06a88b.1 paging00 1

00001750ed06a88b.2 lvpat 1
00001750ed06a88b.3 loglv00 1
00001750ed06a88b.4 lvcad 1

Physical: 0000175005450a7f 1 0
00004224dce3930a 1 0
000045af244545ef 1 0� �

• To recover

 1. Remove all single-copy file systems on the disk:

� �
rmfs /home/pat� �

Appendix C. General Volume Group Recovery 347

 2. Remove LV mirror copies from the disk:

� �
rmlvcopy lvcad 1� �

 3. Delete the PV from the VG in the VGDA:

� �
ldeletepv -g 00001750ed06a88b -p 000045af244545ef� �

 4. Delete the PV from the VG in the ODM:

� �
odmdelete -q ″value like ′000045af244545ef*′ ″ -o CuAt� �

 5. Save new ODM information to boot logical volume:

� �
savebase� �

C.4 Recovery After a Disk Replaced -- 2
Scenario: System has two volume groups, rootvg and vg00. Volume group vg00
has three disk drives in it, hdisk1, hdisk2 and hdisk3. hdisk3 failed and has been
replaced prior to any clean up. Don′ t know what LVs were on hdisk3.

• VG information is erroneous

 1. System has been rebooted.

 2. lsvg command produces errors.

� �
lsvg -p vg00
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIB.
hdisk1 active 75 59 15..01..13..15..15
hdisk2 active 84 65 17..06..08..17..17
0516-304 lsvg: Unable to find device id 000045af344545ef in the

Device Configuration Database
000045af344545ef missing 95 4 03..03..00..00� �

 3. reducevg command produces errors:

� �
reducevg vg00 hdisk3

0516-022 ldeletepv: Illegal parameter or structure value.

0516-884 reducevg: Unable to remove physical volume hdisk3.� �
 4. lspv does not show the removed hdisk3:

� �
lspv

hdisk0 0000457a839d9efe rootvg
hdisk1 00004224dce3930a vg00
hdisk2 0000175005450a7f vg00
hdisk3 00000601c3a717a4 none� �

 5. lqueryvg still l ists hdisk3 as being part of vg00:

348 AIX Storage Management

� �
lqueryvg -p hdisk1 -At
Max LVs: 256
PP Size: 22
Free PPs: 192
LV count: 6
PV count: 3
Total VGDAs: 3
Logical: 00001750ed06a88b.1 paging00 1

00001750ed06a88b.2 lvpat 1
00001750ed06a88b.3 loglv00 1
00001750ed06a88b.4 lvcad 1

Physical: 0000175005450a7f 1 0
00004224dce3930a 1 0
000045af244545ef 1 0� �

• Various LVM commands produce the following:

� �
lsps -a
Page Space Physical Vol Vol Group Size %Used Active Auto
0516-304 : Unable to find device id 000045af244545ef in the Device
Configuration Database.

hd6 hdisk0 rootvg 64B 2 yes yes yes

lspv -l hdisk3
0516-320 : Physical volume 000045ab34dd34ab is not assigned to a

volume group.� �
• Try to remove via ldeletepv:

� �
ldeletepv -g 00001750ed06a88b -p 000045af244545ef
0516-016 ldeletepv: Cannot delete physical volume with allocated

partitions. Use either migratepv to move the partitions or
reducevg with the -d option to delete the partitions.� �

• Which LVs are on hdisk3?

 1. The lspv command fails:

� �
lspv -l hdisk3
0516-320 : Physical volume 00000601c3a717a4 is not assigned to a

volume group.� �
 2. Use lquerypv command:

� �
lquerypv -p 000045af244545ef -g 00001750ed06a88b -dt | pg
:
:

PVMAP: 000045af244545ef:1 0 ODMTYPE 000000000000000.0 0
0000000000000000:0 000000000000000:0
:
:

PVMAP: 000045af244545ef :21 0 ODMTYPE 00001750ed06a88b.1 0
000000000000000:0 000000000000000:0
PVMAP: 000045af244545ef :22 0 ODMTYPE 00001750ed06a88b.4 0
000000000000000:0 000000000000000:0
PVMAP: 000045af244545ef :23 0 ODMTYPE 00001750ed06a88b.4 0
000000000000000:0 000000000000000:0
PVMAP: 000045af244545ef :24 0 ODMTYPE 00001750ed06a88b.2 0
000000000000000:0 000000000000000:0
:
:� �

• From lqueryvg and lquerypv determine which LVs were on hdisk4

− lvpat (part on hdisk4 part on hdisk3)

Appendix C. General Volume Group Recovery 349

− lvcad (mirrored LV, only a copy on hdisk4)

− paging00 (paging space all on hdisk4)

• Remove the LVs from hdisk4:

� �
rmlvcopy lvcad 1
rmfs /home/pat

rmps paging00
0517-062 rmps: Paging space paging00 is active
0517-061 rmps: Cannot remove paging space paging00� �

• How to remove the paging space:

Edit /etc/swapspaces and remove the paging00 stanza:

� �
paging00:

dev = /dev/paging00� �
Reboot.

� �
rmps paging00
rmlv: Logical volume paging00 is removed� �

• Remove the disk from the volume group:

� �
ldeletepv -g 00001750ed06a88b -p 000045af244545ef
0516-010 ldeletepv: Volume group must be varied on: use varyon

command� �
The volume group is varied on????

� �
lchangepv -g 00001750ed06a88b -p 000045af244545ef -r2
ldeletepv -g 00001750ed06a88b -p 000045af244545ef� �

• Remove information from ODM:

� �
odmdelete -q ″value like ′000045af244545ef*′ ″ -o CuAt� �

• Rebuild LVM configuration:

� �
extendvg vg00 hdisk3
mklvcopy lvcad 2 hdisk3
mklv -t jfs -y lvpat vg00 5 hdisk3
crfs -v jfs -d lvpat -m /home/pat
mkps -s 10 -n -a vg00 hdisk3� �

• Re-sync mirrored copies:

� �
syncvg -p hdisk3� �

350 AIX Storage Management

C.5 Disk Failure Recovery -- rootvg
Scenario: System has two disks in rootvg, hdisk0 and hdisk1. Most of the
operating system is on hdisk0. hdisk0 fails and there is data on hdisk1 that
needs be recovered. The logical volumes on hdisk1 are:

/dev/lv0 /home/cad1
/dev/lv01 /home/wordper
/dev/loglv00 log logical volume

• Accessing data in rootvg

A jfslog logical volume must be on hdisk1:

 1. Boot from maintenance diskettes or tape. NEVER import disks from the
rootvg except in maintenance mode!

 2. Select Start a limited function maintenance shell

 3. Import the rootvg from an available disk:

� �
importvg -y rootvg hdisk1� �

 4. Vary on the VG without a quorum:

� �
varyonvg -f -n rootvg� �

 5. Check and clean all available file systems:

� �
fsck -y -V jfs /dev/lv00
fsck -y -V jfs /dev/lv00� �

 6. Mount first file systems:

� �
mount -o log=/dev/loglv00 /dev/lv00 /mnt� �

 7. Backup user data:

� �
cd /mnt
for i in ./* ./*/* ./*/*/*
> do
> echo $i
> done | pax -wvf/dev/rmt0� �

Note: This requires that you know the number of levels of
subdirectories

 8. Unmount first file system, then mount second:

� �
umount /mnt
mount -o log=/dev/loglv00 /dev/lv01 /mnt� �

 9. Backup user data:

� �
cd /mnt
for i in ./* ./*/* ./*/*/*
> do
> echo $i
> done | pax -wvf/dev/rmt0� �

Appendix C. General Volume Group Recovery 351

Note: This requires that you know the number of levels of
subdirectories.

C.6 Disk Failure -- rootvg
Scenario: System has four disks in the rootvg. LVs hd1, hd2, hd3, hd4 hd6 and
hd6 are on hdisk0. The LV hd9var is on hdisk1. Other user LVs are 1, on
hdisk1, hdisk2 and hdisk3. hdisk1 and hdisk2 fail, system now boots ot to 552
(cannot varyon the rootvg due to lack of quorum).

• Boot from diskette, choose option 4, Start a limited function maintenance
shell :

� �
getrootfs hdisk0
0516-052 varyonvg: Volume group cannot be varied on without a

quorum. More physical volumes in the group must be active
Run diagnostics on inactive PVs.

0516-780 importvg: Unable to import volume group from hdisk0.� �
• getrootfs does not do an importvg -f

• Change getrootfs -- From maintenance shell:

� �
importvg -fy rootvg hdisk0

PV Status: hdisk0 000005960941e8c2 PVACTIVE
hdisk1 0000175005450a7f NONAME
hdisk2 00000330ecb0948f NONAME
hdisk4 0000188edb0944dd PVACTIVE

varyonvg: Volume group rootvg is varied on
0516-510 updatevg: Physical volume not found for physical volume

identifier 0000175005450a7f.
0516-510 updatevg: Physical volume not found for physical volume

identifier 00000330ecb0948f.
0516-548 synclvodm: Partially successful with updating volume

group rootvg.
0516-782 importvg Partially successful importing of hdisk0 and hdisk4.

varyonvg -fn rootvg
PV Status: hdisk0 000005960941e8c2 PVACTIVE

hdisk1 0000175005450a7f NONAME
hdisk2 00000330ecb0948f NONAME
hdisk4 0000188edb0944dd PVACTIVE

varyonvg: Volume group rootvg is varied on.� �
• Now to change the getrootfs script from importvg -y rootvg $disk to

importvg -fy rootvg $disk.

 1. Copy the required commands to the root file system:

� �
fsck /dev/hd2
fsck /dev/hd4
mount /dev/hd4 /mnt
mount /dev/hd2 /mnt/usr
cd /mnt/usr/bin
cp sed /mnt/mysed
cp chmod /mnt/mychmod (Don′ t copy to /mnt/sed & /mnt/chmod)
sync; sync� �

 2. Reboot to maintenance mode:

352 AIX Storage Management

� �
fsck /dev/hd4
mount /dev/hd4 /mnt
cp /mnt/mysed /usr/sbin/sed
cp /mnt/mychmod /usr/sbin/chmod� �

 3. Change the getrootfs script:

� �
cd /usr/sbin
cat getrootfs | sed ″s/importvg -y rootvg/importvg -fy rootvg/″ >myfs
chmod 777 myfs
umount /mnt� �

 4. Run new myfs script:

� �
myfs hdisk0 (whole bunch of messages)
mount

node mounted mounted over vfs date options
---- ------- ------------ --- ---- -------

/dev/ram0 / jfs Oct 14 rw
/dev/hd4 / jfs Oct 14 rw...
/dev/hd2 /usr jfs Oct 14 rw...
/dev/hd3 /tmp jfs Oct 14 rw...� �

• Make changes to allow normal boot:

 1. In /etc/fi lesystems comment out the lines in the /var stanza type=bootfs
and mount = automatic. Comment character is *.

� �
mkdir /var/tmp
TERM=″whatever type terminal you are using″
export TERM
vi /etc/filesystems� �

 2. In /sbin/rc.boot change the following:

− Add a sleep 1 before line fsck -fp /var

− Comment out line fsck -fp /var

On 3.2.4 or later also comment out lines:

− /../etc/mount -f /var

− [″$?″ -ne 0] && loopled 0x518

 3. Run bosboot command:

� �
bosboot -a -d/dev/hdisk0
shutdown -F� �

• Boot in normal mode

C.7 Recovering after Losing VGDA
Scenario: System had a volume group vg00. Volume group vg00 included hdisk2
and hdisk3. hdisk2 failed and VGDA is broken on hdisk3.

• Create new volume group on hdisk3:

� �
mkvg -y newvg hdisk3� �

Appendix C. General Volume Group Recovery 353

• Create LVs on hdisk3 over previous LVs:

� �
mklv -m /home/mapfile3.a -t jfs -y lv00
mklv -m /home/mapfile3.b -t jfs -y lv01
mklv -m /home/mapfile3.c -t jfs -y lv02
mklv -t jfslog -y loglv00 newvg 1 hdisk3
logform /dev/loglv00� �

• But wait, where do I get the /home/mapfile3.* files?

− Save physical volume map information prior to daily backups:

� �
for i in lspv | cut -f1 -d″ ″
> do
> lspv -M $i > /home/map.$i
> done� �

− Map file is created from PV map information.

Format: PVname:PPnum1 [2]

� �
cat map.file

hdisk1:1-10
hdisk1:23
hdisk1:33� �

• Without map files, there is no way to recover

• Create entries in /etc/filesystems for new LVs:

� �
cat /etc/filesystems
:

/home/newfs1:
dev = /dev/lv00
vfs = jfs
log = /dev/loglv00
mount = true
options = rw

:� �
• Mount all new file systems:

� �
mount /home/newfs1
mount /home/newfs2
mount /home/newfs3� �

354 AIX Storage Management

Glossary

Ablative . Ablative technology util izes heat to remove
a layer of some material. In this context, it relates to
writing information with a laser by using the lasers
heat to burn away a layer of the recording medium,
thereby representing a binary value.

Access pattern skew . This refers to the tendency for
reference to information to follow a pattern whereby,
information is referenced from a certain area for
some time, then another area, then a further one,
rather than completely random jumps. Thus, if
information in a file was written sequentially across a
number of disks, utilization would tend towards one
disk at a time. If however, the file data is split into
blocks, and each block written to a separate disk, the
skew is eliminated.

Access time . This refers to the total length of time
from the initiation of a request for data, to the start of
the receipt of that data from a device.

Actuators . An actuator is the mechanical assembly
that is responsible for moving the disk head back and
forth across the disk surface.

Allocation group . An allocation group consists of a
set of i-node pointers to data blocks, and the data
blocks themselves. This is a file system entity used to
improve access to files within a file system based on
locality of reference.

Areal density . This defines the density at which
individual bits can resolved by the read head. This
equates to the maximum bit density supported by the
media.

Archive . Archiving involves moving data from the
location that it is usually accessed from (normally
fast, expensive storage), to lower cost storage such
as tape. Information is normally archived if access to
it will be very infrequent. Contrast with retrieval.

Asynchronous . This refers to an operation that can
occur independently of other operations. An
asynchronous communication for example, can be
sent and then other work initiated without waiting for
a response. Contrast with synchronous.

Autochanger . An autochanger is a mechanical device
designed to load an remove media from a drive
automatically. Tape and optical l ibraries have
autochangers.

Backup . Backup involves taking a copy of data,
usually on some form of removable media, so that in
the event that information is lost, it can be easily
recovered. Contrast with restore.

Bad block relocation . When a write of a block of data
to a disk occurs, some software (and in some cases
the hardware), is capable of detecting that the write
failed (usually with a read following the write to test).
In this case, transparently to the process that
requested the write, the hardware or software can
mark the block as bad so that it will not be used
again, and redirect the write to a fresh block.

Banding . Traditionally, writing of bits to a disk
surface occurs in a regular fashion; thus the further in
toward the center of the disk, the less information can
be stored. Banding refers to a process of dividing the
disk surface into a number of concentric regions. As
the disk write head moves into regions closer to the
center of the disk, the bit write frequency increases
proportionally, thereby maintaining the bit density.

Block . A block is a unit of data to be written or read.
There are various block sizes, depending upon the
media and software. Disk device drivers currently use
a block size of 512 bytes to write to the disk.

Bus . A bus is a data and control path between
devices. It consists of power lines, a number of data
lines, and a number of control lines. There are
various standards including Micro Channel and PCI.

Cache . A cache is a area of extremely fast (usually
expensive) memory that is used to maintain
frequently accessed information, or store information
temporarily. Caches are used in various parts of a
computer system. In disk subsystem controllers for
example, writes to disk will actually occur to the
cache so that a completion return code can be quickly
returned to the writing process. The actual write will
occur from the cache when the subsystem has time to
satisfy it. The CPU also maintains several caches
where instructions and data can be pre-loaded while
the current instruction is executing.

Caddy . A caddy is a removable casing that a
CD-ROM is placed in before being loaded into the
optical drive.

CCW. Continuous composite write describes the
magneto-optical implementation of WORM. Erasure
and rewriting are prevented by simply not allowing
the functions to take place. Contrast with WORM.

CD-ROM. A CD-ROM is an optical disk that has
information stored on it before it is distributed. The
information is permanently stored and cannot be
erased or rewritten.

Command tag queueing . Command tag queuing
refers to the SCSI-2 implementation of piggy-backing
commands together to a device on the SCSI bus.

 Copyright IBM Corp. 1994 355

This effectively allows commands to be overlapped,
thereby improving performance.

Compression . Compression techniques utilize
hardware or software implemented algorithms that
are able to reduce the amount of storage needed by
data. The reduction in space is dependent upon the
data used, as well as the compression algorithm.
Contrast with decompression.

Data transfer rate . This is the rate at which data can
be moved from the host system to a device. It is
normally measured in KB/sec or MB/sec.

Decompression . This is the process of restoring
compressed data to its original state, so that it can be
used again. Contrast with compression.

Device driver . A device driver is a piece of software
written to assist in the management of a specific
device. Other software will use the device driver as
the interface to the device for reading, writing and
control functions.

Differential . This refers to the communications
technique of transmitting information as the difference
voltage between two signals. Normally, information is
transmitted as a single signal and can be corrupted
by noise from external sources. Differential
transmission means that both signal lines will be
equally affected by any noise, the difference between
them, the actual information, remaining constant.

Directory . A directory is a file system entity that is
used to organize related information within fi le
systems. The space allocated to a file system for file
storage can be subdivided into directories so that
files can be more sensibly organized. Directories can
have sub-directories, thereby forming an
organizational hierarchy. Files themselves can be
thought of as being located within a specific directory,
and access to them is defined by a path that is the
directory hierarchy leading to them.

Diskette . A diskette contains a circular piece of
magnetic material that is read and written in the
same way as fixed magnetic disk. Diskettes are
designed to be removed and easily transported and to
enable this function, have lower tolerances and hence
less storage capacity than fixed disks.

Disk pack . A disk pack contains a traditional fixed
disk but can be removed in its entirety from the
support structure (power, cooling, and connection
bus). It is far less portable than a diskette, but can
contain as much information as a normal fixed disk.

Dispatch . This refers to the action of taking a
process that is waiting to use the processor from its
wait queue and loading it into the processor for
execution.

Dump . Should an unrecoverable error occur within
the computer system, a dump usually occurs before
the system halts completely, if possible. The dump
consists of the contents of main memory and
processor registers immediately prior to the error.

Elevator seeking . In order to maximize the efficiency
of disk head seeks, a simple sort of the request queue
can be implemented in software or hardware. This
will allow the disk head to satisfy requests using the
smallest possible head movements moving into the
center of the disk and then out again, thereby
minimizing seek times.

Fast and wide . The SCSI-2 standard defines a data
bus up to 32 bits wide, and with a 10MHz cycle time.
This is currently utilized at 2 bytes giving a data rate
of 20MB/sec. Fast refers to the clock speed, and wide
to the data bus.

Fault tolerance . Systems that have total redundancy
are called fault tolerant. This means that all operation
critical systems have a hot standby that can take over
in the event of failure of the primary component.

File system . A file system is a high level entity that
manages the storage of data. Through the file system,
information can be organized within directories and
files created, read, written, and erased.

Floppy disk . This is an earlier term for a diskette. It
originates from the fact that older diskette designs
utilized soft covers that were pliable.

Fragment . A fragment is a subdivision of a file
system block. Blocks can be divided into a number of
fragments (up to eight, dependent upon file system
creation parameters). The purpose of fragments is to
minimize the disk space wastage that occurs as a
result of partially allocated blocks.

Frame . Real memory in a computer system is
divided into sections for ease of manipulation. These
sections vary in size depending upon the system
implementation, and are known as page frames.
Under AIX, a page frame is 4KB in size.

HDA . The mechanical component composed of the
disk head, actuator, motor and platters, is known as
the head disk assembly.

Helical scan . This technology was introduced from
the consumer video marketplace. Tape is partially
wrapped around a spinning recording head that is
mounted at an angle to the tapes direction of travel.
This results in data tracks being recorded at an angle
across the tapes surface, thereby using the tape
recording area most efficiently, and maximizing
capacity.

Hierarchical . This refers to an organizational method
that involves levels that are accessed by moving from
one to another starting at the top of the hierarchy. An

356 AIX Storage Management

example is a directory tree in a file system, where
files are found by navigating from the top of the tree
through a series of subdirectories, until the file is
found.

Hierarchical storage management . At a higher level,
treating the various storage technologies available as
levels, with disk being the level for interactive access,
through optical for intermediate, to tape for
backup/archive, defines a storage hierarchy through
which data can be migrated according to space and
usage requirements. The process of managing this
mechanism is known as hierarchical storage
management.

IDRC. This is a compression technique implemented
on some IBM tape drives that allows data being
written to the tape to be compressed as the writing is
being done, thereby increasing the capacity of the
tape medium. When data is read back, it is
decompressed as the read occurs.

I-node . An i-node is a file system entity that is used
to locate a files data on the actual disk. It contains
pointers to the physical disk blocks containing the
data.

JFS log . Every action that occurs within a file system
is recorded into a log known as the journaled file
system log. These actions include events such as
opening files, writes to files, and closing files. If the
system should fail during operation, upon reboot, the
file systems can be brought back to consistent states
by replaying the information contained in the log.

Journaled file system . The Journaled File System is
the main AIX file system implementation. It defines a
file system with a JFS log.

Library . A tape or optical drive coupled with an
autochanger and racks of media comprises a library.
Media can be unloaded and loaded from the racks
automatically, on request from the host system.

Licensed program products . All software products
purchased for use on the RS/6000 are known as
licensed program products.

Linear . Linear with regard to tape technology implies
recording information in a straight horizontal direction
along the length of the tape.

Locality of reference . If when a process is executing,
most of the time it runs is spent in several small
sections of the code, with occasional jumps to other
parts, then the process is said to display good locality
of reference. This is beneficial, as it means that the
operating system can maintain the small number of
most utilized sections of the process in memory, and
thereby achieve good performance.

Logical partition . A logical volume is composed of a
number of logical partitions. Each logical partition

maps directly to from one to three physical partitions
where data is actually stored.

Logical volume . A logical volume is an area of
physical disk storage comprising a number of logical
partitions. Logical volume can be written to directly,
or a file system can be created within them.

Logical volume device driver . The logical volume
manager device driver is one of the components of
the logical volume manager. It implements the logical
volume manager policies for logical volumes.

Logical volume manager . The logical volume
manager is a collection of device drivers, disk data
areas, daemons, and management subroutines that
collectively form a high level interface to disk storage.
It provides functions for the creation, manipulation,
access, and deletion of logical volumes.

Longitudinal . In terms of tape technology,
longitudinal recording defines a mechanism for data
recording that involves writing linear tracks on the
tape surface.

Magneto-resistive . This technology is used to
implement rewritable optical disk storage. Magnetic
material in the optical media surface is heated with a
laser and then its polarity altered with an
electromagnet. The material used is such that a low
powered laser shined on the material is polarized in
different directions depending upon the magnetic
polarity, thereby representing binary states.

Mirroring . This refers to the practice of maintaining
two or more concurrent copies of information. All
copies are updated for each write of the information.
In the event of loss of a copy, the data can still be
accessed from another copy.

Mirror write consistency . When mirroring is
implemented and data is being written, there is a
danger that if the system should fail during the writing
of the data, all copies may end up in an inconsistent
state. Mirror write consistency util izes cache storage
to maintain the data to be written until all copies have
been updated, thereby ensuring consistency between
copies.

MTBF . Mean time between failure is a measurement
of the reliability of hardware components. It is
calculated as total operating time of a group of
components making up a device divided by the
number of components in the device that fail over
that period.

Multitasking . This is the capability of a computer
system to divide its time between multiple processes
or tasks, such that the processes all appear to be
executing concurrently.

NFS. The network file system is an implementation
of a remote file system. Files stored on a remote

Glossary 357

machine are made to appear as if they were being
accessed from the local machine.

NIC. Numerically intensive computing generally
refers to applications that require much intensive
calculation, such as modelling or statistical analysis.

Non-volatile . This typically refers to memory storage
that is capable of retaining information during periods
without power.

OEMI. This is a standard third party interface used to
attach peripheral devices.

OLTP . This describes a category of application that
performs repetitive processing of records, such as
bank account processing.

Optical disk . A storage medium that is read using
optical technology, usually a laser. There are a
number of different writing mechanisms including
ablative, magneto-optical, and phase change.

Page . Generally, a page describes a block of
information. In AIX a page is 4KB.

Page fault . When a page of an application that was
waiting on some event, and has been paged out, is
required, the CPU will try and access it, and in so
doing generate a page fault as the page will not be in
memory. The fault causes the missing page to be
located in page space and copied back into memory,
probably causing some other currently inactive page
to be swapped out.

Page frame . Main memory is divided into a number
of pages frames, in AIX, these are 4KB in size. Pages
of information are then loaded into page frames.

Page space . Main memory is finite,and soon
becomes filled with the pages of many executing
applications. If at this point, more applications wish to
run, there would be no room and they would have to
wait. Page space defines a pool of storage on disk
where pages of applications that are waiting on some
event can be temporarily stored to make room for
other application pages.

Paging . Paging describes the process of temporarily
copying pages from main memory to page space in
order to free up memory page frames for other
applications to use.

Parallel write . When mirroring is being used, parallel
write means that data to be written will be
simultaneously scheduled to all copies. This is the
quickest way to implement mirroring, though a failure
during write will result in no valid copies. Contrast
with sequential write.

Physical partition . A physical volume is divided up
into a number of physical partitions whose size is
defined when the volume group containing the disk is

created. These partitions are then mapped to logical
partitions when a logical volume is created.

Physical volume . Before a physical disk can be
added to a volume group, it must be defined as a
physical volume. This process assigns the disk a
unique number by which it will be identified, and
creates some on-disk data areas which are used to
store information regarding the disks usage.

Physical volume identifier . The unique number
assigned to a physical volume is known as the
physical volume identifier.

Pipeline . Pipelining refers to the process of
pre-fetching instructions into an instruction cache in
order to speed up process execution.

Platter . Inside a disk drive is a spindle that connects
a number of disks coated with a magnetic material.
Read/write heads on arms are moved back and forth
radially over the disks, which are spun to allow a
series of concentric tracks to be written on each disk
surface. Each such disk is known as a platter.

PPM. This refers to the process of determining a
signal value by its presence or absence. Thus if the
signal is there, it represents logic one, if not, logic
zero. With optical disk, a low powered laser utilizes
the same mechanism to read data, a returned signal
being logic one, no returned signal logic zero.

PWM. This refers to the process of establishing a
signal value using the change in state from present to
absent. Thus a transition from absent to present is
logic one, a transition from present to absent is logic
zero. Using this technique means that data can be
more densely packed as discrete signals are no
longer required. Optical technology uses this
technique where dots on the disk can actually be
overlapped as it is only the change in state from a
sequence of returned signals to no signal (or vice
versa) that indicates a binary value.

Quorum . The logical volume manager implements a
process known as quorum checking. This is used to
ensure that before a volume group can be made
available for use, over 50% of the disks in the group
have valid VGDAs, indicating that they contain
uncorrupted data. The quorum is the number of disks
required to constitute more than 50% of the total
disks in the group.

RAID . RAID arrays are designed to increase
performance or availabil ity through the
implementation of one of the following modes of
operation. RAID 0 stripes data across the disks for
maximum performance. RAID 1 pairs off the disks and
mirrors data on each disk. RAID 3 stripes data across
the disks and uses one further disk to record parity
information to allow data to be reconstructed in the
event of loss of one disk. RAID 5 splits the data into

358 AIX Storage Management

blocks and writes blocks sequentially across the disks,
intermixing parity blocks with data blocks.

Read ahead . When an application wishes to access a
data file, just the first few pages of data are actually
read into memory. As the file is used, more pages are
read in according to two system parameters,
minpgahead, and maxpgahead. If the operating
system detects that the file is being accessed
sequentially, then it will read in minpgahead more
pages when further pages are required. If access is
still sequential, the next time pages are required,
minpgahead + 2 will be read in. This value is
incremented by two as long as the access remains
sequential up to maxpgahead thereby enhancing
performance for sequential reads.

Redundancy . Providing a duplicate component within
a subsystem that can be switched in and used in the
event of failure of the primary component means that
the component has redundancy.

Restore . Restoring is the process of copying
information back from its safe location (usually some
form of removable media) to replace the original copy
that has somehow been lost. Contrast with backup.

Retrieve . Retrieval is the process of moving data
back from archive storage to its original location
where it can be accessed. Contrast with archive.

Rotational Latency . When a block of data is to be
read/written from a disk, the actuator moves the
read/write head to the track where the block is
located and then waits for the platter to rotate the
start of the block underneath so reading/writing can
begin. This delay before the start of the block arrives
is called rotational latency.

Scheduler . The operating system maintains several
priority queues of processes waiting for their turn to
execute on the processor. The scheduler is the
operating system component that decides which
process is eligible to run next, and selects it for
dispatch.

SCSI. The SCSI standards define a communications
protocol and physical interfaces to support the
attachment of SCSI compatible devices to a host
system, and thence the devices controlled, and
information read and written.

Seek time . The seek time is the sum of the time
taken for the disk head to be moved to the required
track plus the rotational latency.

Segment . The total AIX address space of 4 petabytes
is divided into segments of 256MB. There are several
different types of segment including working,
persistent, client, and log segments.

Sequential write . When mirroring is being used,
sequential write means that data to be written is

scheduled to each mirror copy in turn, with the next
not occurring until the previous has completed. This
method gives the highest chances of at least one
copy surviving in the event of failure during the write,
but at the cost of performance. Contrast with parallel
write.

Serial . When data is sent a single bit at a time
(usually over two wires), the communications is said
to be serial.

Serpentine track interleaving . This technology is an
enhancement to longitudinal recording where the data
is written to tape in a series of blocks. The tape head
is capable of writing/reading several tracks
simultaneously which it does during one pass down
the length of the tape. The head is then stepped
laterally and the pass restarted in the opposite
direction. The stepping continues until the tape width
is full.

Single ended . Single ended technology refers to
non-differential communications where information is
transmitted serially using four wires, two to send and
two to receive.

SSA . This defines a new communications protocol
and physical interfaces for connecting peripherals to
the host system and communicating with them.

Stale . When mirroring is being used, should one of
the copies of the data fail, then the copy is marked as
stale, which reflects the fact that it can no longer be
considered accurate until it has been resynchronized
with the other copies after repairs have been
effected.

Streaming . When data is written continuously to a
device in one long run, the data is said to be
streamed to the device, and the device itself capable
of streaming.

Striping . Splitting data to be written into equal sized
blocks and writing blocks simultaneously to separate
disk drives is called striping the data and maximizes
performance to the disks. Reading the data back is
also scheduled in parallel, with a block being read
concurrently from each disk then reassembled at the
host.

Stripe width . The size of the block that data is split
into for striping is known as the stripe width.

Subsystem . A subsystem is a collection of
components that together perform some function on
behalf of the host system. An example is a RAID
array subsystem.

Superblock . A file system is split into a number of
blocks whose size is 4KB in AIX. The second and
thirty first (a backup copy) are designated as the
superblock and contain administrative information

Glossary 359

regarding the file system such as fragment size and
overall fi le system size.

Swapping . This is an alternative name for paging.

Swap space . This is an alternative name for page
space.

Synchronous . This defines an operation that must
occur with a fixed time relationship to another
operation. An example of this is synchronous
communications where each end maintains a clock,
and data is sent at regular intervals, each clock tick
for example. Contrast with asynchronous.

TCP/IP. This is a set of communications protocols
that support the transmission of information between
computers.

Thin film . This technology is used in the construction
of read heads for tape and disk devices. It allows a
very high degree of sensitivity and a correspondingly
high bit density on the recording medium.

Throughput . This defines the rate at which
information can be transferred across an interface
and is a measure of performance. It is usually
measured in KB/sec or MB/sec.

Track . This defines a single one bit wide stream of
physical data written on a storage medium. Tracks
are concentric circles on disk and most optical media,
horizontal lines on longitudinal technology tape, and
inclined lines on helical scan technology tape.

Volatile . Memory that does not maintain its contents
during periods of no power is known as volatile
storage. Contrast with non-volatile.

Volume group . This is a logical volume manager
entity that contains a number of physical volumes.

Volume group descriptor area . Each physical volume
has at least one VGDA stored on it. The VGDA
contains information regarding the organization and
location of all logical volumes and physical volumes
within the volume group.

Volume group identifier . Each volume group has a
unique number identifying it known as the volume
group identifier.

Volume group status area . Each physical volume has
at least one VGSA stored on it. The VGSA contains
information regarding the status of all logical volumes
and physical volumes within the volume group.

Virtual memory manager . This operating system
component is responsible for managing memory
allocation and usage. The VMM manages the
mappings between real memory, page space and the
file systems, and all addressing requests go through
it.

WORM. Optical media that util izes a destructive
writing process meaning that once written,
information cannot be erased. Contrast with CCW.

360 AIX Storage Management

List of Abbreviations

AFS Andrew File System

AG Allocation Group

CCW Continuous Composite Write

CD Compact Disc

CD-ROM Compact Disc Read Only
Memory

DASD Direct Access Storage Device

GB Gigabytes

IBM International Business
Machines Corporation

IDRC Improved Data Recording
Capability

I/O Input/Output

ITSO International Technical
Support Organization

JFS Journaled File System

KB Kilobytes

LP Logical Partition

LV Logical Volume

LVDD Logical Volume Device Driver

LVID Logical Volume Identifier

LVM Logical Volume Manager

LPP Licensed Program Product

LZ Lempel Zev

MWC Mirror Write Consistency

MTBF Mean Time Between Failure

NBPI Number of Bytes per I-node

NIC Numerically Intensive
Computing

NFS Network File System

OEMI Other Equipment
Manufacturer Interface

OLTP On Line Transaction Program

PP Physical Partition

PPM Pulse Position Modulation

PWM Pulse Width Modulation

PV Physical Volume

PVID Physical Volume Identifier

RAID Redundant Array of
Independent Disks

RAM Random Access Memory

ROM Read Only Memory

SCSI Small Computer System
Interface

SSA Serial Storage Architecture

TCP/IP Transmission Control
Protocol/Internet Protocol

VG Volume Group

VGDA Volume Group Descriptor
Area

VGID Volume Group Identifier

VGSA Volume Group Status Area

VMM Virtual Memory Manager

WORM Write Once Read Many

 Copyright IBM Corp. 1994 361

362 AIX Storage Management

Index

A
abbreviations 361
Ablat ive 41
Access density 17
Access frequency 17
Access t ime 43
Access type 17
acronyms 361
ACTIVE PVs 111
active/complete 110, 117
active/part ial 110, 117
Actuator 25
Adapters

adapters available 321
addressabil i ty 22
availabil i ty design 86
cabling requirements 22
cost 23
device support 22
High Performance Disk Drive Subsystem 24
High Performance Parallel Interface 24
other adapters 25
performance 22
performance design 82
reliabil i ty 22
System/370 Channel Emulator 25

Address space 48
Administrat ion overview 14
ADSM 65, 338
AFS 63
ALLOCATABLE 101
Allocate each logical partition copy on a SEPARATE

physical volume 121, 125
Allocation groups 60
API provision 338
Applications

availabil ity design 88
components 47
data access 7
performance design 85

Archival l i fe 40, 42
Archive 337, 339, 342
Areal density 26
Asynchronous 23
Asynchronous disk I/O 85, 88
AUTO ON 112
Autochanger 9
Automatic management 12
automation 337, 338, 340, 341, 342
Availabi l i ty

device selection 18
disk devices 33
optical 10
overview 10

Availabi l i ty (continued)
tape 10
tape devices 38

Avai labi l i ty Management
availabil ity design example 208
creating LVs for availability 123
design 86
managing 123
modifying LVs for availability 125
reorganizing VGs for availability 126

Available 96, 97, 103

B
Backup 128, 129, 157

archive commands 155
backup design example 244
backup media 91
backup methods 91
complete system backup 90
concepts 2, 6
design 90
higher level tools 337, 339, 341
incremental backup 89, 90
longevity 18
making scheduled backups 132
managing 127
overview 64, 89
recycling backups 89
scheduled 7
system image and user VGs 130
user files and file systems 127
using mksysb example 256
V4 archive commands 164

Backup by file system 91
Backup by name 91
Backup by volume group 91
Bad block relocation 54, 56
Banding 27
BB POLICY 118

C
C 98
Cache 32, 65
Capacity

constraints 29
device selection 18
disk devices 27
diskette 3
optical devices 43
overview 11
tape devices 38

CCW 41

 Copyright IBM Corp. 1994 363

CD-ROM file system 63
Central management 337, 339, 340, 341, 342
cfgmgr 95, 96
chlv

changing LV policies 126
command syntax 142
modifying LVs for performance 122

chpv
command syntax 142
making PVs available 97
making PVs unavailable 97
restricting PP allocation 96

chvg
command syntax 142
disable quorum checking 105
enable quorum checking 105
prevent VG autovaryon 104
unlocking a VG 105
V4 command syntax 160
varyon VG automatically 104

close/syncd 112
closed 118
Compatibi l i ty 92
Compression

JFS compression algorithm 73
JFS compression example 279
JFS compression implementation 73
JFS compression performance 73
JFS compression technology 72
JFS V4 overview 61
performance design 84
space design 81
tape 9

Compression algorithm 122
Concepts

design 79
general 1
hardware
software 6

Configuration 14
COPIES 118, 119
Cost per megabyte 17
cplv 116, 142
crfs 121, 127, 151

D
Data age 18
Data archive 7, 12
Data rate 17
Decompression 9
Defined 96, 97
defragfs 70, 162
DESCRIPTION 98, 99
Device attributes 21
Device driver 6
Device queue limits 85
df 181, 182

Directories 58
Disk Devices

availabi l i ty 33
capacity 27
concepts 4
disk devices available 326
fault tolerance 33
performance 30
performance design 82
selecting disks 27
technology 25

Disk failure 13
Disk I/O pacing 85
Disk packs 4
Diskettes 3, 14
DISTRIBUTION 119
du 181, 182
dump space 76
Dye-polymer 41

E
EACH LP COPY ON A SEPARATE PV 118
Ease of use 338, 339, 341, 342
Elevator seeking 26
Enable WRITE VERIFY 121, 125
Error Class 99
ERROR LABEL 99
Error Type 99
errpt 98
Executable 47
exportvg 106, 142
extendlv 116, 143
extendvg 105, 143

F
Failure Causes: 99
File containing ALLOCATION MAP 121, 125
File name archive 91
File system size design 82
File Systems

accessing file systems 63
administration commands 151
availabil ity design 88
concepts 6
creating a compressed JFS example 280
creating a JFS greater than 2GB example 288
creating for performance 120
JFS fragment size example 273
JFS V4 size 62, 77
JFS version 4 enhancements 61
journaled fi le system 59
Network File System 62
organization 58
other fi le systems 63
overview 58
performance design 83
space design 81

364 AIX Storage Management

f i leplace 183
Fragment allocation 69, 71
Fragment size 69
Fragment Size (bytes) 122
Fragmentation 70, 72
Fragments

fragment allocation map 72
fragments example 272
overview 61
performance design 83
space design 81
technology 69

FREE DISTRIBUTION 100, 113
Free list 48
FREE PPs 100, 111, 113
fsdb 182
FSF/6000 63, 65, 340
fsync() 86, 88

G
glossary 355

H
Hardware components 17
Hardware management 8
Helical scan 35
Hierarchical storage management 65
High water mark 65, 85
Higher level products 337
Higher level tools 7, 64

I
I-nodes 60
IDENTIFIER 98
IDRC 37
importvg 107, 144, 160, 180
IN BAND 119
inactive 110, 117
Information exchange 2
Inter-physical allocation policy 57
Inter-physical volume allocation 83, 87
INTER-POLICY 118
Interchange requirements 18
Intra-physical volume allocation 56, 83, 88
INTRA-POLICY 118

J
JFS log 78, 80
JFS log performance design 84
Journaled fi le system 59

L
Legato Networker 341

Libraries
optical l ibraries available 335
tape libraries available 332

Library 43
Load/unload time 38
Logical blocks 59, 70
LOGICAL VOLUME 117
Logical volume device driver 54
Logical Volume Manager

availabil ity design 87
command usage examples 165
concepts 6
logical partit ion 52
logical volume manager components 54
logical volumes 53
operation 54
performance design 82
physical partit ions 52
physical volumes 52
policies 55
quorum checking 55
terminology 52
V3 commands reference 141
V4 commands 159
volume groups 52

Logical Volumes 101
adding 114
changing a LV copy example 290
copying a LV 116
creating a mirrored paging LV example 231
creating a striped LV example 269
creating for availabil ity 123
creating for performance 120
creating JFS log LV example 229
creating mapped LVs example 226
design 81
increasing the size of a LV 115
listing LV allocation summary 118
listing LV characteristics 117
managing 113
migrating and reorganizing LVs 116
modifying for availabil i ty 125
modifying for performance 122
overview 53
reading the VGDA on a PV 119
removing 114
removing a LV copy example 288

Longevity 18, 92
Longitudinal 36
Low water mark 85
LPs 118
LPs: 112
lquerylv 145, 160, 178
lqueryvg 145, 177
lsdev 96, 185
lsfs 183
lslpp 140

Index 365

ls lv
command syntax 146
command usage examples 168
creating LVs for availability 124
determining LVs in a VG 123
listing LV allocation summary 119
listing LV characteristics 117
reading the VGDA on a PV 119
V4 command syntax 160

lspv
checking PV usage 101
command syntax 146
command usage examples 173
listing PP allocation table 102
listing PV allocation by region 102
listing PV characteristics 100
listing PVs 99

lsvg
checking PP availability 125
command syntax 146
command usage examples 166
listing LVs in a VG 112
listing only varied on VGs 109
listing PV status 113
listing VG characteristics 110
listing VGs 109

LV IDENTIFIER 117
LV NAME: 112
LV STATE 117
LV STATE: 112
LVs 110
LZ algorithm 73

M
Magneto resistive 26
Magneto-optic 40
Main memory 1, 12
Managing

backup and restore 127
dsksync example 320
introduction 95
logical volumes 113
migratepv example 312
new V4 feature examples 268
physical volumes 95
recovering space in a VG example 253
rvgrecover example 317
the storage environment 119
V4 migration example 295
volume groups 103

Map files 132, 206
MAX LPs 118
MAX LVs 110
max_coalesce 85
maxpgahead 84
Media management 66
migratepv 116, 148

Migrat ion 337, 339, 340, 342
minpgahead 84
Mirror write consistency 54, 118, 121, 124
Mirror ing

availabil ity design 87
concepts 6
creating a mirrored VG example 209
logical partit ions 53
LVM mirroring 56
performance design 83
raid 1 31
rootvg mirroring example 187

mklv 148
command syntax 161
creating a LV 114
creating an LV for performance 120

mklvcopy 125, 148
mkpv
mksysb 130, 155, 163, 256
mkvg 148

creating a VG 103
mkvgdata 132, 163
Mount 63
Mount point 63, 118
MOUNT POINT: 112
MTBF 38

N
NBPI 61, 77
NBPI space design 81
NFS 62
Non-volati le 1, 12
Number of bytes per i-node 61, 77, 122
Number of COPIES of each logical partition 121, 124

O
Online life 18
OPEN LVs 111
open/syncd 112
opened/stale 117
opened/syncd 117
Operating System

concepts 1, 6
device drivers 51
file systems 58
logical volume manager 51
overview 47
page space 47
performance design 84

Optical Devices
backup device selection 91
capacity 43
CD-ROM 40
libraries 43
optical devcies available 334
performance 43
rewritable 40

366 AIX Storage Management

Optical Devices (continued)
selecting optical devices 43
selecting the correct technology 43
technology 40

Optical l ibrary 9

P
Page 1
Page frames 48
Page Space Management

adding a new paging LV example 304
advantages as dump device 76
changing paging space attributes example 306
creating a mirrored paging LV example 231
decreasing default paging LV example 301
low paging space 50
manipulating page space example 300
page faults 49
page replacement algorithm 49
removing a paging LV example 311
system dump space 76
technology 47

Pages 48
Parallel-write copy 57
Parity 32
pbuf control 85
Performance

adapters 8, 22
device selection 18
disk devices 8, 30
diskette 3
optical devices 9, 43
overview 8
system bus 8
tape devices 9, 38

Performance Management
backup design 92
design 82
managing 120
modifying LVs for performance 122
performance design example 218
reorganizing VGs for performance 123

PERMISSION 117
Phase change 41
Physical partition size 80
PHYSICAL VOLUME 100
Physical volume identifier 52
PHYSICAL VOLUME names 121, 124
Physical Volumes

configuration 96
design 80
listing information 99
managing 95
modifying 96
monitoring 98
overview 52
removing 97

Platform support 338, 339, 341, 342, 343
Platters 25
POSITION on physical volume 121, 124
PP SIZE 100, 111, 118
PPs 118
PPs: 112
Probable Causes 99
Pulse position modulation 42
Pulse width modulation 42
PV 119
PV IDENTIFIER 100
PV STATE 100, 113
PV_NAME 113
PVs: 112

Q
Quorum 55, 80, 111
Quorum characteristics 80

R
RAID

availabil ity design 86
concepts 11
key performance issues 32
level 0 31
level 1 31
level 2 31
level 3 31
level 4 32
level 5 32
performance design 82
RAID products available 328, 329
supported subsystems 32

Random access 8, 17, 30
RANGE of physical volumes 121, 124
Read ahead 26
Recommended Actions: 99
Recovery Management

overview 13
reducevg 106, 149
Redundancy 33
redundancy design 86
Regulatory requirements 18
Reliabil i ty 18

adapters 22
availabil ity design 86
backup design 92
tape devices 38

RELOCATABLE 118
RELOCATE the logical volume during

reorganization 121, 125
Removable media 5, 18
Removed 97
reorgvg 117, 123, 149
RESOURCE_NAME 98
Restore 132, 133, 134, 158, 164

concepts 6

Index 367

Restore (continued)
higher level tools 337, 339, 341
individual user fi les 132
managing 132
overview 64
restore commands 155
restore design example 244
user file systems 133
user VG 134
V4 restore commands 164

restvg 135, 163
Retr ieve 337, 339, 342
rmdev 97
rmlv 115, 149, 161
Robot 12
Rotational latency 25

S
savevg 131, 163
Scalabil ity 338
SCHED POLICY 118
Scheduler 49
Scheduling 88
Scheduling policy 57
SCHEDULING POLICY for writing logical partition

copies 121, 125
SCSI Devices

configuration 23
data rate 23
SCSI adapters available 321
SCSI-2 23
SCSI-3 24
technology 23

Sector size 43
Security 80, 338
Seek time 25
Segments 48
Selecting Hardware Components

choosing adapters 22
hardware component overviews 321
how to make the decision 18
points to consider 17

Sequential access 8, 9, 17, 30
Sequential read ahead 84
Sequential-write copy 57
Serial 24
Serpentine track interleaving 36
Shelf life 18
Shrink 135
Single level storage 50
Software components 47
Space Management

backup design 92
concepts 2, 7
higher level tools 337, 339, 340, 342
how to save space in the rootvg 266
managing 126
overview 12

Space Management (continued)
planning disk space 79
recovering space in a VG example 253

Spindle synchronization 32
STALE PARTITIONS 100
STALE PPs 111, 118
STALE PVs 111
Start/stop 35, 37
Statistics 14
Storage Management Commands

archive commands 155
file system administration 151
filesets covered 140
JFS command usage examples 181
LVM command usage examples 165
LVM commands 141
other fi leset commands 159
other fi lesets 140
understanding the chapter 139
V3 commands reference 141
V4 archive commands 164
V4 changed/specific commands 159
V4 LVM commands 159

Streaming 35, 37
Stripe Size 121, 125
Striping

creating a striped LV 114
performance design 83
performance implications 76
raid 0 31
striped LV example 268
striping benchmark example 272
technology 74
units 75

Subsystem Design
availabil ity design example 208
concepts 79
performance design example 218
physical planning example 185
planning backup strategies 89
planning disk space 79
planning for availabil ity 86
planning for performance 82
storage subsystem design example 203

Superblock 59
Swap 1
sync() 86, 88
Synchronous 23
sysdumpdev 76

T
T 98
Tape Devices

availabi l i ty 38
backup device selection 91
capacity 38
compression 37
concepts 3

368 AIX Storage Management

Tape Devices (continued)
l ibraries 39
performance 38
selecting tape devices 38
tape devices available 330
technology 34

Tape library 9
Testing Designs

testing a compressed file system 283
testing a JFS greater than 2GB 293
testing a mirrored VG for availability 215
testing a mirrored VG implementation 197
testing a performance design 240
testing a restored VG 252
testing disk space efficiency with fragments 275
testing LV mirror copies 198
testing the configuration after migration 298

Time slice 49
Time to read first byte 38
TIMESTAMP 98
TOTAL PPs 100, 111, 113
TOTAL PVs 111
Tracks 25
Transfer rate 25
TYPE 118
TYPE: 112

U
Unitree 342
Unlocking volume groups 104
UPPER BOUND 118
USED DISTRIBUTION 101
USED PPs 100, 111

V
V4 storage enhancements 69
Variable i-nodes 77
varyoffvg 108, 150
varyonvg 108, 150
VG DESCRIPTORS 101, 111
VG IDENTIFIER 101, 111
VG PERMISSION 110
VG STATE 101, 110, 117
VGDA 52
VGSA 55
Virtual memory manager 48
Volatile 1
VOLUME GROUP 101, 110, 117
Volume group descriptor area 52
Volume group design 79
Volume group identif ier 52
Volume group status area 55
Volume Groups

adding 103
adding a PV 105
changing activation characteristics 104
import/export 106

Volume Groups (continued)
importing a VG example 263
listing LVs in a VG 112
listing PV status 113
listing VG characteristics 110
listing VGs 109
managing 103
modifying 104
monitoring 109
removing a PV 105
reorganizing for availabil i ty 126
reorganizing for performance 123
synchronizing a VG 195
unlocking volume groups 105
varyon/varyoff 108
VG design example 204

W
WORM 5
Write verif ication 88
WRITE VERIFY 118

Index 369

ITSO Technical Bulletin Evaluation RED000

AIX Storage Management

Publication No. GG24-4484-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4484-00 IBML

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 948, Building 821
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

GG24-4484-00

IBML

Printed in U.S.A.

GG24-4484-00

	AIX Storage Management
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	Acknowledgments

	Chapter 1. Storage Management Related Concepts
	Overview
	General Concepts
	Hardware Concepts
	Software Concepts
	Storage Management
	Hardware Management
	Software Management
	Summary

	Chapter 2. Hardware Storage Components
	Selecting the Hardware Components
	Points to Consider
	How to Make the Decision
	Selecting the Physical Hardware Devices
	Hardware Attachment Adapters
	Disk Storage
	Tape Storage
	Optical Storage
	Summary

	Chapter 3. Operating System Software Components
	The Operating System
	Page Space
	Device Drivers
	Logical Volume Manager
	File Systems
	Higher Level Tools
	Backup/ Restore
	Hierarchical Storage Management
	Media Management
	Summary

	Chapter 4. AIX Version 4 Storage Management Enhancements
	Fragmentation
	Disk Space Allocation
	Free Space Fragmentation
	Fragment Allocation Map
	Compression
	Implementation of Data Compression
	Compression Algorithm
	Disk Striping
	Usage Implications
	Using Page Space for System Dumps
	Variable I- nodes
	File System Maximum Size Increase
	JFS Log Considerations
	Summary

	Chapter 5. Storage Subsystem Design
	Introduction
	Planning Disk Utilization
	Volume Groups
	Physical Volumes
	Logical Volumes
	File Systems
	Planning for Performance
	Planning for Availability
	Planning Backup Strategies
	Backup Overview
	Backup Planning
	Backup Methods
	Backup Media
	Summary

	Chapter 6. General AIX Storage Management
	Introduction
	Managing Physical Volumes
	Configuration of Physical Volumes
	Modifying Physical Volume Characteristics
	Removing Physical Volumes
	Monitoring Physical Volumes
	Listing Information about Physical Volumes
	Managing Volume Groups
	Adding a Volume Group
	Modifying Volume Group Characteristics
	Importing and Exporting a Volume Group
	Varying On and Varying Off Volume Groups
	Monitoring Volume Groups
	Managing Logical Volumes
	Adding a Logical Volume
	Removing a Logical Volume
	Increasing the Size of a Logical Volume
	Copying a Logical Volume
	Migrating and Reorganizing Logical Volumes
	Listing a Logical Volume
	Listing a Summary of a Logical Volume Allocation
	Reading the VGDA on a Physical Volume
	Managing the Storage Environment
	Disk Space and Performance/ Availability Management
	Backup and Restore Management
	Summary

	Chapter 7. Storage Management Files and Commands Summary
	How to Understand and Use this Chapter
	Major AIX Version 4 Filesets Relevant to Storage Management
	Common Storage Management Commands Using AIX Version 3 Syntax
	Using Logical Volume Manager Files
	Using File System Administration Commands
	Using System Backup and BOS Installation Utilities
	Using Archive Commands
	Using Other Fileset Commands
	AIX Version 4 Specific File Features
	Using Logical Volume Manager Files in an AIX Version 4 Environment
	Using File System Administration Commands in an AIX Version 4
	Environment
	Using System Backup and BOS Installation Utilities in an AIX Version 4
	Environment
	Using Archive Commands in an AIX Version 4 Environment
	Using Commands to View AIX Version 4 Logical Volume Manager
	Information
	Using Commands to View AIX Version 4 Journaled File System
	Information

	Chapter 8. Practical Examples
	Planning
	rootvg Mirroring - Implementation and Recovery
	Storage Subsystem Design
	A Volume Group Design Example
	Map Files Usage and Contents
	A Design Example for Improved Availability
	A Design Example for Improved Performance
	Managing Backup and Restore
	How to Use the savevg and restvg Commands
	How to Use the mksysb Command
	Utilizing the New AIX Version 4 Features
	Striped Logical Volumes
	How to Use Fragments for Disk Usage Efficiency
	How to Use JFS Compression and Check its Consequences
	How to Create and Use a JFS Greater than 2GB
	Migrating to AIX Version 4
	Manipulating Page Space
	How to Decrease the Default hd6 Paging Logical Volume
	Common Disk Management and Error Recovery Procedures
	How to Use the migratepv Command
	How to Use the rvgrecover Shell Script
	How to Use the dsksync Shell Script

	Appendix A. Overview of Hardware Components
	A.1 Storage Product Interface Adapters
	A.1.1 SCSI Adapters
	A.1.2 Serial Adapters
	A.1.3 HiPPI Adapters
	A.1.4 ESCON Adapters
	A. 1.5 Channel Emulation Adapters
	A.2 Disk Storage Products
	A. 2.1 Disk Drives
	A.2.2 Disk Subsystems
	A. 3 Tape Storage Products
	A.3.1 Tape Devices
	A. 3.2 Tape Libraries
	A. 4 Optical Storage Products
	A. 4.1 Optical Devices
	A. 4.2 Optical Libraries

	Appendix B. Higher Level Storage Management Products
	B. 1 ADSTAR Distributed Storage Manager
	B. 2 AIX File Storage Facility/ 6000
	B. 3 Legato NetWorker for RISC System/ 6000
	B. 4 UniTree for RISC System/ 6000

	Appendix C. General Volume Group Recovery
	C. 1 Disk Power Supply Failure
	C. 2 General Disk Failure
	C. 3 Recovery After a Disk Is Replaced -- 1
	C. 4 Recovery After a Disk Replaced -- 2
	C. 5 Disk Failure Recovery -- rootvg
	C. 6 Disk Failure -- rootvg
	C. 7 Recovering after Losing VGDA

	Glossary
	List of Abbreviations
	Index
	A
	B
	C
	E
	F
	D
	G
	H
	I
	J
	L
	N
	M
	O
	P
	Q
	R
	S
	T
	W
	U
	V
	ITSO Technical Bulletin Evaluation RED000

