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Abstract
IBM®'s General Parallel File System (GPFS) for AIX® allows users shared access to files that can
span multiple disk drives on multiple nodes. GPFS allows parallel applications simultaneous
access to either the same or different files from any node in the GPFS nodeset (a nodeset is
defined as a group of nodes that run the same level of GPFS). It is designed to provide a common
file system abstraction for data that is being shared among all the nodes in a cluster and allows
applications to easily access files, utilizing standard UNIX® file system interfaces. Most UNIX file
systems are designed for a single-server environment. In such an environment, adding additional
file servers typically does not improve specific file access performance. GPFS is designed to
provide high performance by ‘striping’ I/O across multiple disks, high availability through
logging, replication, as well as high scalability (by utilizing multiple servers) through the SP
Switch and the SP Switch2 [2] [3].
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Figure 1.  IBM’s General Parallel File System for AIX in a virtual shared disk
environment.

GPFS 1.4 introduces support for concurrent file sharing in a High Availability Cluster
Multiprocessing (HACMP) cluster environment. GPFS 1.4 is designed to provide the capability to
share data across Serial Storage Architecture (SSA) shared disks or disk arrays directly attached
to multiple RS/6000® machines running AIX Version 4 Release 3.3 and HACMP/ES Version 4
Release 4. In a HACMP environment, SSA shared disks or disk arrays are directly attached to
each node in the nodeset providing physical access to the disks from every node. The limitations
of the SSA adapter constrain the size of a nodeset to a maximum of 8 nodes. GPFS 1.4 has (as do
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earlier versions of GPFS) the capability to operate in an IBM RS/6000 SP environment building
on IBM’s Virtual Shared Disk and IBM’s Recoverable Virtual Shared Disk components of IBM’s
Parallel System Support Program (PSSP) for AIX (see Figure 1). GPFS 1.4 can also be operated
in an IBM RS/6000 SP environment with HACMP/ES Version 4 and directly attached disks
(see Figure 2, the ‘non-IBM Virtual Shared Disk environment’). In this environment, SSA shared
disks or disk arrays are directly attached to each node in the nodeset. The limitations of the SSA
adapter constrain the size of a nodeset to a maximum of 8 nodes.
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Figure 2.  IBM’s General Parallel File System for AIX in a non-virtual shared disk
 environment.

GPFS Characteristics
On each node, the GPFS kernel extension provides the interfaces to the AIX vnode and virtual
file system (VFS) interfaces. From a structural perspective, applications issue file system calls to
AIX, which presents the calls to the GPFS file system kernel extension. In this sense, GPFS
appears to the applications as just another file system. GPFS is implemented as a number of
separate software components including a GPFS kernel module and a GPFS daemon (the mmfsd).
The GPFS kernel extension will either satisfy the requests, utilizing resources that are already
available in the system, or send a message to the GPFS daemon to complete the request. The
daemon performs the I/O, as well as the buffer management of the GPFS client cache. In
addition, the GPFS daemon further initiates read-ahead operations (on I/O patterns GPFS can
recognize), as well as conducts write-behind operations to accomplish more efficient pipelining.
Many of the services that are necessary for GPFS to operate are provided by the GPFS daemon.
The daemon is a multi-threaded process with some threads dedicated to specific functions. This
services requiring ‘priority attention’ are not blocked on other threads that are busy servicing
routine work. The daemon communicates with instances of the daemon on other GPFS nodes to
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coordinate configuration changes, recovery, and parallel updates of the same data structure [1]
[2]. 

GPFS incorporates ‘client side caching’. The GPFS cache is located in a dedicated (pinned) area
in each of the GPFS application node’s memory subsystems. The GPFS cache is labeled as the
‘pagepool’. The pagepool is used to cache user data and indirect blocks. It is the GPFS pagepool
mechanism that allows GPFS to implement read() and write() requests asynchronously via
read-ahead and write-behind mechanisms. GPFS is multithreaded, so as an application’s write
buffer has been copied into the pagepool, the write() request is completed from an application’s
perspective. Then GPFS schedules a worker thread to manage the write() request through to
completion by issuing I/O calls to the disk device driver. 

One of the major advantages of GPFS over other file system designs is its degree of scalability.
GPFS stripes a file across multiple disks. This feature is designed to provide higher (aggregate)
read and write throughput, and allows applications to work on large files and large file systems.
The file striping mechanism provided by GPFS is designed so that data (as well as metadata) are
‘managed’ in a distributed manner to avoid hot spots. The token manager server (which is one of
the many roles performed by the mmfsd daemon) is designed to maintain consistency in GPFS.
There is one token manager server per GPFS file system [2] [3]. The granularity for locking may
be either a whole file or only portions of a file. The item being accessed (a file) is termed a lock
object. The ‘per object’ lock information is termed a token. The status of each token is stored in
two locations, on the token management server and on the token management client holding the
token. On every write() request, the mmfsd determines if the application holds a lock that permits
the right to modify the file. If this is the first write for this node to this file, a ‘write token’ has to be
acquired. The mmfsd has to negotiate with the node that holds the token to get write permission.
The mmfsd first contacts the token manager server to acquire a list of nodes that hold the token,
and in a second step, negotiates with the nodes in the list to acquire the token. In order for a node
to relinquish a token, the daemon has to surrender the token. First, the daemon has to release any
locks that are being held utilizing the token. This process may involve waiting for I/O to
complete. Distributing the task to acquire the token to the mmfsd reduces serialization at the token
manager server level resulting in much better scalability of the whole system. The ‘token
management’ scheme employed by GPFS permits ‘byte range locking’. In particular, one task
may be granted read or write access to one portion of a file, while other tasks may be granted
read or write access to other portions of the same file. This allows read and write requests to
occur concurrently without suffering any serialization that could otherwise be due to any
consistency constraints. In smaller configurations, the load imposed onto the token manger is
insignificant. On larger systems, the load on the token server can become significant and it may,
therefore, be desirable to control which node in the configuration will act as the token manger
(which is accomplished by creating a preference file).

Benchmarks have shown that GPFS performance is at its peak when manipulating large data
objects, but GPFS can also provide a lot of benefits when an application processes large
aggregates of small objects [6] [9]. Further, GPFS can be configured with multiple metadata
copies which allows continuous operation in the case the path to a disk or the physical device itself
is lost. In a direct storage attached configuration, the loss of connectivity from one node to the
storage pool does not affect the other nodes in the cluster. In configurations that utilize IBM’s
Virtual Shared Disk component and the SP switch, routing the data through multiple IBM
Virtual Shared Disk servers provides the same redundancy. In either configuration, the failure of
a system does not result into a complete loss of access to the file system data pool. In a direct
attached GPFS configuration, the SSA connection between the storage pool and the actual
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system determines the data performance. Multiple SSA links can be configured up to the
maximum adapter slots available in a particular model. All of these SSA adapters can be linked
to a single GPFS file system. On a SP system, IBM’s Virtual Shared Disk component and the SP
switch provide the low overhead data movement between a node that has physically attached
disks and an application node that accesses the data pool. The disks on the I/O node can be
spread across adapters (within a server) as well as across multiple server nodes providing
scalability and high performance access to the GPFS file system.

GPFS Data Flow (IBM Virtual Shared Disk Environment)
In an IBM Virtual Shared Disk environment, GPFS attaches disks utilizing IBM’s Virtual Shared
Disk component of PSSP. IBM’s Virtual Shared Disk uses a client/server protocol that is working
across the switch. GPFS initiates read() and write() requests to the (IBM Virtual Shared Disk)
client. The requests are sent to the (IBM Virtual Shared Disk) server that owns the physical
connection to the disk. Basically, the IBM Virtual Shared Disk layer of GPFS allows a node to
locally issue an I/O request (essentially, a read() or write() request) that physically occurs on a disk
that is attached to a remote node. The IBM Virtual Shared Disk layer communicates either by
utilizing the IP layer of AIX or by using the KLAPI subsystem of PSSP.

In the case of IBM’s Virtual Shared Disk over IP, fragmentation and reassembly functions are
required when the read() or write() request sizes are greater than the size of a single IP packet (IP
packets are limited to a maximum size of 64 KB). So on a write() request, the IBM Virtual Shared
Disk layer has to defragment larger requests into multiple packets on the client side, and has to
reassemble the packets back into a single request on the server side. The reassembly function
further handles the cases where IP packets are received in a different order than from how they
were sent. Multiple data copies dominate the general overhead of GPFS when using IBM Virtual
Shared Disk over IP. Eliminating a data copy was required to reduce the overhead and
ultimately improve the GPFS node throughput. Basically, IBM’s Virtual Shared Disk requires an
efficient transport service to handle communication between the (IBM Virtual Shared Disk)
clients and the (IBM Virtual Shared Disk) servers. As already elaborated, GPFS maintains a
kernel addressable buffer cache (the pagepool) to support read-ahead and write-behind
functionality. In releases prior to PSSP 3.2, GPFS read() and write() requests resulted in two data
copies. One copy (performed by GPFS) between the application buffer and the GPFS pagepool,
and a second copy (on the IBM Virtual Shared Disk client) between the GPFS buffer cache and
the Communication Sub System (CSS) IP interface managed cluster buffer (performed by the
IBM Virtual Shared Disk layer). After the second copy, the switch adapter utilizes DMA to access
the cluster buffer. The only data copy in the GPFS path that could be eliminated while preserving
the GPFS buffer cache was the data copy done by the IBM Virtual Shared Disk layer. Using
IBM’s Virtual Shared Disk over KLAPI (Kernel LAPI) allows the elimination of this additional
data copy. KLAPI provides reliable transport services to kernel subsystems that have to
communicate across the SP switch. KLAPI provides semantics for active messages and ‘one
sided’ communication, message fragmentation and reassembly, packet flow control, and recovery
from lost packets. The KLAPI layer also provides interfaces and the infrastructure for
communication to occur without data copies in the communication layer. Functions are provided
by KLAPI to ‘prepare’ subsystem buffers for DMA, so that when data is either transmitted or
received, the switch adapter is able to DMA directly to or from the subsystem buffers. KLAPI
also guarantees the reliable delivery of messages in the absence of node failures. The main
advantage of KLAPI over IP is enhanced systems performance by reducing CPU and memory
bandwidth utilization as KLAPI effectively utilizes the capabilities of the SP Switch2 adapter.
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Further, because of flow control in KLAPI, systems utilization will improve under heavy system
load.
RAID Configuration
GPFS stripes the data across all the disks that are part of a file system. On a per disk basis, this
approach tends to result in an access pattern that has a random placement effect with an I/O size
equal to the block size of the GPFS file system. Reasons to use a RAID configuration include
tolerating some degree of disk failures as well as increasing GPFS performance for a single block.
Studies have shown that in a RAID-5 (4+P) configuration with a GPFS block size of 256 KB, the
read and the write throughput was measured as 14 MB/sec. and 12 MB/sec., respectively. These
measurements were being conducted with 7500 RPM SSA disks (see Appendix D for GPFS
performance measurements on different hardware components). In a RAID configuration, the
recommendation is that the stripe size matches the logical block size of the GPFS file system
(especially for write intensive workloads). SSA disks configured as (n+P) RAID systems have a
stripe size of n*64 MB (where ‘n’ depicts the number of disks not including the parity disk). Thus
for GPFS file systems that have a 256 KB block size, the optimal RAID configuration would be
4+P [6]. 

Performance Impact of Small I/O Requests
In order to achieve the best possible GPFS performance, data access has to utilize large block
sizes. Selecting an application read or write size that is smaller than the GPFS block size implies
that a significant portion of the GPFS block size will be wasted. In the case of truly random I/O
requests where the read() or write() size is smaller than the GPFS block size, it is necessary to
amortize the time to deliver a GPFS block over the amount of data requested by the application
[11]. The following analysis demonstrates the impact of small I/O requests, assuming truly
random I/O (each I/O request accesses a different GPFS block), a GPFS block size of 256 KB,
an application request size of 32 KB, and no GPFS overhead.

DR = Delivery Rate for a single GPFS block 
DR (for a 256 KB block size GPFS file system) = 256 KB/(latency + delivery time)
AR = Application Request Size / GPFS Block Size
RR = Rate to deliver a random application request (RR = AR*DR)

For an application request size of 32 KB (AR=0.125) and a delivery rate of 128 MB/sec.
(DR=128 MB/sec.), the rate to deliver an application record (RR) equals to 16 MB/sec. (RR =
AR*DR -> 0.125 * 128 MB/sec.). In other words, if the nominal data rate to deliver a 256 KB
GPFS block equals to 128 MB/sec., utilizing a 32 KB application request reduces the rate down
to only 16 MB/sec. 

Read, Write, Open, Stat, and Metadata Operations
In GPFS, the creation of new data (either by writing to a new file or extending an existing file)
requires updating the file’s inode and the on-disk allocation maps for that particular file system.
The GPFS file system is designed to incorporate logging when updating the allocation maps,
inodes, and indirect blocks [2]. All these operations will result in physical disk I/O. It is
imperative to have both, sufficient I/O bandwidth and capacity on the metadata disks when
separating metadata from the actual data disks. In the case of parallel write operations to a
shared file, GPFS has to acquire the necessary tokens over the requested region on that node in
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order to ensure ‘read/write’-ordering semantics. The token-acquiring process is normally a small
portion of the total processing overheads for I/O requests but if several application instances on
multiple GPFS nodes are writing to the same region of a shared file, token conflicts are
unavoidable. The recommendation is that applications that perform fine-grained sharing of the
same file consider the utilization of an MPI-IO interface to boost performance. MPI libraries are
a popular way of designing parallel applications, as MPI defines a standard for a message-passing
paradigm [4] [10]. When encountering random writes to a large GPFS file, the actual data is not
being written out to disk until either the block is being reused or the sync daemon runs. The
requirement for writing data to disk prior to the reuse of dirty buffers can impact performance on
systems that are constricted for pagepool resources and have large amounts of random write
operations. Increasing the size of the pagepool will alleviate some of the pressure put on the GPFS
cache and ultimately improve performance.

GPFS write() Operation
Write() processing is initiated by a system call to the operating system which calls the GPFS
subsystem when the write() request involves data in a GPFS file system. GPFS ‘moves’ the data
synchronously (in terms to the application write() call) from a user buffer into a file system buffer,
but defers the actual write() operation to disk. This technique allows GPFS to overlap
computation and communication and ultimately improves I/O performance [7]. The file system
buffers that are being allocated are part of the GPFS pagepool. An actual data block is scheduled to
be written to a disk when:

• The user application specifies synchronous write operations
• The system needs the storage space
• A token has been revoked
• The last byte of a block of a file that is being written sequentially is written out 
• A sync() call is initiated 

Until one of the above operations take place, the data remains (cached) in GPFS memory. Write()
processing encounters three ‘levels of complexity’ that are basically based on system activity and
status, each having its own performance characteristics:

1. The actual buffer is available in memory
2. The necessary token is available locally, but the actual data must be read in
3. The data and the tokens have to be acquired 

Metadata changes are flushed under a subset of the same conditions. They can be written either
directly (if the node is the metanode) or through the metanode, which consolidates changes from
multiple GPFS application nodes. The last scenario normally occurs when threads on multiple
GPFS application nodes create new data blocks in the same region of a shared file. 

1. The actual buffer is available in memory. The simplest path describes the case where the buffer
already exists in memory. This scenario occurs when a previous write() call accessed the block and
the block is still resident in memory, thus, the write token already exists from the prior system call.
In this case, the data is copied from the application buffer into the GPFS buffer. If it is a
sequential write() (and the last byte has been written) an asynchronous message is sent to the GPFS
daemon to schedule the buffer for ‘page out’ to disk. 
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2. The necessary token is available locally, but the actual data has to be read in. There are two scenarios in
which the token may exist but the buffer does not:

• The buffer has been recently stolen to satisfy other needs for buffer space
• A previous write() call obtained a ‘desired range token’ for more space than what was actually

needed

In either case, the kernel extension determines that the buffer is not available, suspends the
application thread, and sends a message to a (daemon) service thread requesting the buffer. If the
write() call is for a full file system block, an empty buffer is allocated as the entire block will be
replaced. If the write() call is for less than a full block and the rest of the block exists, the existing
version of the block has to be read from disk. If the write() call creates a new block in the file, the
daemon searches through the allocation map (for a free block) and assigns a block to the file. At
that point, the write() call proceeds as described in ‘the actual buffer is available in memory’.

3. The data and the tokens have to be acquired. The third (and most complex) path involving a write()
operation occurs when neither the buffer nor the token exists on the (local) GPFS node. Prior to
the allocation of a buffer, a token has to be acquired for the area of the file that is needed. If the
I/O pattern is sequential, a token covering a larger range than what is actually needed will be
obtained (if no conflicts exist). If necessary, the token management function will revoke the token
from another node holding the token. Note that revoking a token might (if the block is dirty)
cause an I/O to occur on the node where the token is being revoked. After acquiring and locking
the token, the write() call continues as described in ‘the necessary token is available, but the actual data has
to be read in’.

GPFS read() Operation
In the case of read() operations that involve a regular data pattern (such as pure sequential reads
as identified by the GPFS daemon), GPFS attempts to prefetch the data, overlapping the actual
execution of an application with data transfers from the disk subsystem [7]. The amount of data
to prefetch depends on the response time of the disk subsystem and the rate at which the
application is reading, but is always limited by the amount of available pagepool space on the
GPFS clients. Increasing the size of the pagepool can boost performance for applications that show
a pure sequential read I/O pattern. If the I/O pattern reflects a random read, GPFS is forced to
fetch the data synchronously. In this case, GPFS will only fetch the disk sectors required to satisfy
the applications read() request. If there is an overlap among the random read operations with each
other, increasing the pagepool could economize on the number of  I/O operations necessary to
fetch the data.  

The GPFS read() function is invoked in response to a read() system call, and a call through the
operating system’s vnode interface to GPFS. As in the case of write() system calls, GPFS read()
processing falls into three levels of complexity (based on system activity and status), each having
its own performance characteristics:

1. The buffer and the necessary locks are available in memory
2. The tokens are available locally but the data has to be read in
3. The data and the tokens have to be acquired

1. The buffer and the necessary locks are available in memory. The simplest read() operation occurs when
the data is already available in memory (either because the data has been ‘prefetched’ or
because it has been read recently by another read() system call). In either case, the buffer is
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‘locally locked’, and the data is copied to the application’s data area. The lock is released
when the copy is completed. It has to be pointed out that in this scenario no token
communication is required because ‘possession of the buffer’ implies that the node at least
posses a ‘read token’ that includes the buffer. After the memory copy, prefetch operations are
initiated if appropriate.

2. The tokens are available locally but the data has to be read in. The second (and more complex) type of
read() operation is necessary when the data is not available in memory. This situation may
occur under three different circumstances:

� The token had been acquired on a previous read() operation that encountered no
contention

� The buffer had been stolen for other use (pressure on the pagepool)
� On some random read() operations the buffer may not be available 

In the first of a series of random read() requests the token will not be available locally. In such
situations, the buffer is not found and has to be read. No token activity has occurred because
the node has a ‘sufficiently strong token’ to lock the required region of the file locally. A
message is sent to the GPFS daemon, which is handled by one of the waiting daemon
threads. The daemon allocates a buffer, locks the file range that is required if the token
cannot be stolen for the duration of the I/O, and initiates the I/O to the device that is
holding the data. The originating thread waits for this process to complete and gets posted by
the daemon upon completion.

3. The data and the tokens have to be acquired. The third (and most complex) read() operation requires
that the tokens, as well as the actual data have to be acquired on the GPFS application node.
The kernel code determines that the data is not available locally and sends a message to the
GPFS daemon. The daemon thread determines that the necessary tokens to perform the
operation are not being held. In this case, a ‘token acquire request’ is sent to the token
management server. The requested token specifies the required length (the range of the file)
which is needed for this particular buffer. If the file is being accessed sequentially, a desired
range of data, starting at the point of the read and extending to the end of the file, is specified.
In the event that no conflict exists, the desired range will be granted which eliminates the
need for additional token calls on subsequent reads. At the completion of a read() request, the
prefetching of data is contemplated. GPFS computes a ‘desired read-ahead’ for each open file
based on the performance of the disks and the rate at which the application is reading data. If
additional prefetch operation is needed, a message is sent to the GPFS daemon that will
process the request asynchronously (in terms to the completion of the current read()
operation). 

GPFS open() and stat() operation
Processing of open() or stat() system calls (which cause significant access to metadata information) is
characterized by the necessary I/O operations to read directory and inode information [7]. The
actual read of the required information is unavoidable, but the performance of repeated inquiries
can be improved by increasing the maxStatCache and maxFilesToCache parameters (see
Appendix A). The opening of a GPFS file is invoked by the application issuing a system call to the
operating system specifying the name of the file. Processing of the open() system call involves:

1. Processing the required directory entry identifying the file specified by the application
2. Building the required data structures based on the inode
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The kernel extension code will process the ‘directory search’. If the required information is not in
memory, the daemon will be called to acquire the necessary token(s) for the directory (or part of
the directory) that is needed to resolve the lookup operation. Further, the daemon will read the
directory entry into memory. The lookup process occurs one directory at a time in response to
the calls from the operating system. In the final stage of an open() request, the inode for the file is
read from disk and linked to the operating system vnode structure. This requires acquiring locks on
the inode, as well as a lock that indicates ‘the presence’ to the metanode:

• If no other node has this particular file open, the node that issued the open() becomes the
metanode.

• If another node has a previous open(), then that node is the metanode and all the other nodes
will interface with the metanode in certain parallel write() situations.

• If the open() involves the creation of a new file, the appropriate locks are obtained on the
‘parent directory’ and the ‘inode allocation file block’. The directory entry is created, an
inode is selected and initialized to complete the open() processing.

The stat() system call returns information associated with a file. The call is issued by, for example,
the ls -l command. The data required to satisfy the stat() system call is contained in the inode.
GPFS processing of the stat() system call differs from other file systems in that it supports the
proper execution of stat() calls on all nodes without having to funnel the calls through a server.
This requires GPFS to obtain tokens that protect the actual metadata. In order to maximize
parallelism, GPFS supports the locking of individual inodes. In cases where a ‘special I/O
pattern’ can be detected (such as an attempt to stat() all of the files in a large directory) inodes will
be fetched in parallel in anticipation of their future use. Inodes are cached within GPFS either as
a ‘full inode’ or a ‘limited stat() cache’. The ‘full inode’ is required to perform (data) I/O against
the file. The ‘stat() cache’ is sufficient to open the file and satisfy a stat() system call. As discussed, it
is intended to efficiently support commands such as ls –l or du, as well as certain backup
applications that scan entire directory structures analyzing ‘modification times’ and file sizes. The
caches and the requirement for ‘individual tokens on inodes’ are the reason why the second
invocation of a ‘directory scanning request’ may execute faster than the first one. 

GPFS Systems Configuration
In order to configure a system that performs “reasonably well” with GPFS, several issues have to
be taken into consideration. The expected I/O performance is one of the first points that should
be addressed before configuring the system. This will determine the number of GPFS nodes (in
direct attached configurations) or IBM’s Virtual Shared Disk servers (in IBM Virtual Shared Disk
environments) that will have to be configured to fulfill the performance requirements. Attempting
to transfer more data than what the configuration is capable of will result in performance
degradation. A single node’s raw I/O performance is impacted by factors, such as memory
bandwidth, disk adapter performance, as well as physical disk performance. In addition, GPFS
performance is influenced by factors such as the size of the pagepool, the prefetch depth (in case of
an IBM Virtual Shared Disk environment), as well as the networks bandwidth capabilities into
the node. The total performance requirements, in conjunction with the capacity requirements,
will help determine the type, as well as the number or disks and adapters necessary to achieve the
desired performance level (see Appendix D). As already elaborated, GPFS stripes data across the
disks that make up the actual file system. At the disk level, this tends to generate a random
placement access pattern with an I/O size equal to the block size of the GPFS file system.
Depending on the disk type, the throughput numbers vary, with smaller block sizes resulting in
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lower throughput numbers. GPFS performance problems can originate within any of the layers
in the path to the disks. An in-depth analysis of all the layers has to be considered when
addressing a GPFS performance problem. A large number of IBM Virtual Shared Disk retries (in
an IBM Virtual Shared Disk environment) is a prime indicator of a performance problem that
originated in a layer other than GPFS (use the statvsd command to analyze the number of retries).
Such retries can be due to an overloaded (IBM Virtual Shared Disk) server node, or can be
caused by performance problems on the disk subsystem or switch level. 

A GPFS server is being overloaded when the aggregate I/O request rate from all the GPFS client
systems exceeds the IBM Virtual Shared Disk server’s throughput limit. This can be due to
having a high (IBM Virtual Shared Disk) client-to-server ratio. To alleviate this problem, either
the number of GPFS servers has to be increased or the client’s I/O rate has to be throttled back.
From a disk subsystem perspective, it is imperative to ensure that there is no overload in the disk
attachment mechanism. Having a situation with a very high busy rate without a high transfer rate
indicates that the disks are being diverted from actually transferring data by recovery operations
or congestion problems in the disk attachment path. Such a ‘congestion’ is normally due to
connecting too many disk drives per adapter. A recovery situation is normally logged in the
system error logs and points to an actual hardware problem on the disk level. Error logs should
be scrutinized to insure a smooth operation. To summarize, the root causes for GPFS
performance problems are based on the fact that either (a) the client systems are trying to process
I/O rates that exceed the server’s throughput capacity, (b) there is an under-configured
GPFS/IBM Virtual Shared Disk/KLAPI/IP resource, or (c) there exists an actual disk problem.
The first case can be addressed by either increasing the server capacity or by reducing client’s
I/O demands. The recommendation for the second cause is to check the tuning parameters
against the suggested settings in this paper (see Appendix A). The third cause requires analyzing
the disk I/O subsystem (iostat) and to consult the server log files.

GPFS Performance on POWER3 SMP Thin, Wide, and
High Nodes
The next section in this paper summarizes the results of a GPFS performance study conducted on
POWER3 SMP Thin and Wide Nodes, as well as on POWER3 SMP High Nodes. The goal was
to establish a baseline for single, as well as multi-server performance, and to analyze the
scalability and robustness of GPFS 1.4 over KLAPI. The benchmark programs that were being
utilized throughout the study simulated the sequential I/O pattern of a parallel application,
scaling the number of GPFS application nodes by keeping the workload per application thread
static [8]. All the benchmarks reported aggregate throughput numbers in MB/second (1
MB=1024^2 bytes). See Appendix B (POWER3 SMP Thin and Wide Nodes) and Appendix C
(POWER3 SMP High Nodes) for the IBM Virtual Shared Disk server configurations, as well as
for the raw performance numbers that were being collected throughout the study.

Benchmark
The benchmark program used in this study measures the (aggregate) sequential read/write
throughput to/from a shared GPFS file. The simulated access pattern in all the benchmarks was
segmented (which results in sequential access for each task, permitting read-ahead and
write-behind strategies to take affect). The total ‘job time’ was calculated as the delta between the
time the first task started its I/O activities and the last task concluded its I/O processing. After
spawning off all the worker threads (tasks), a barrier was called to insure that all the tasks start
their I/O activities approximately as the same time. After setting the barrier, each task issued a
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call to ‘gettimeofday’ to initialize its timing function.  After processing the last I/O request, each task
again called ‘gettimeofday’ to report the end-time. All the ‘start and end time’ information was
being reported to task 0, and summarized in a log for further analysis. Per benchmark, every
worker thread executed 2,000 256 KB read() or write() requests to or from the shard GPFS file.
There are several reasons why parallel applications need a parallel file system such as GPFS and
why such applications have to have access to a shared file. Where I/O performance is the major
bottleneck, spreading the read() and write() requests across multiple disks, ultimately balancing the
load to maximize combined throughput increases the aggregate bandwidth of the file system [5]
[12]. When dealing with very large data sets, the ability to spawn multiple disk drives with a
single file makes the management of the file seamless to the application (and after processing is
completed easy visualization of the data is possible). 

Benchmark Environment – POWER3 SMP Thin and Wide Nodes
• GPFS server(s): 1 and 2 POWER3 SMP Wide nodes, each node with 4 CPU’s and 8 GB of

memory
• GPFS clients: 40 POWER3 SMP Thin nodes, each configured with 4 CPU’s and 4 GB of

memory
• Each server configured with 2 SSA adapters (1 per PCI bus)
• Each server with 128 18 GB SSA disks, 64 per SSA adapter (JBOD), 256 KB GPFS block

size
• GPFS 1.4, AIX 4.3.3.25, PSSP 3.3.2.10, IBM’s Virtual Shared Disk over KLAPI
• 80 buddy buffers configured on  IBM Virtual Shared Disk servers, 100 MB pagepool on

GPFS clients
• Maximum aggregate switch bandwidth (SP Switch) for 1 server approximately 130 MB/sec

A buddy buffer is being used by a VSD server to handle a disk I/O. The VSD server uses a
buddy buffer to temporarily store data for I/O operations that originated at a client node.

Single-Server Performance – POWER3 SMP Thin and Wide Nodes 

Based on the limitations of the I/O subsystem (the two SSA adapters), the peak bandwidth of the
I/O system was anticipated to be around 180 MB/second. Further, the maximum aggregate SP
Switch bandwidth for the one server configuration was anticipated to be approximately 130
MB/second (see Appendix B for the raw performance numbers for the charts that follow).
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Figure 3. Sequential Read Performance – 1 IBM Virtual Shared Disk Server.

The single-server read performance peaked at 125.5 MB/sec., whereas the peak write
performance was at 144.4 MB/sec. The peak read performance was achieved with 2 worker
threads and 4 GPFS application nodes (see Figure 3), with an average CPU utilization of 12%
(2% user, 10% system) on a GPFS application node, and an average CPU utilization of 43% (all
system) on the VSD server. The peak write performance was achieved with 1 worker thread and
4 GPFS application nodes (see Figure 4), with an average CPU utilization of 14% (2% user, 12%
system) on a GPFS application node, and an average CPU utilization of 42% (all system) on the
VSD server. Increasing the number of application nodes resulted into diminished aggregate write
throughput numbers as the number of client retries increased substantially.
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Figure 4.  Sequential Write Performance – 1 IBM Virtual Shared Disk Server
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Multi-Server Performance – POWER3 SMP Thin and Wide Nodes
Based on the limitations of the I/O subsystem (the two SSA adapters per server), the peak
bandwidth of the I/O subsystem was anticipated to be around 360 MB/second. Further, the
maximum aggregate SP Switch bandwidth for the two IBM Virtual Shared Disk servers was
anticipated to be approximately 240 MB/second.
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Figure 5.  Sequential Read Performance – 2 IBM Virtual Shared Disk Servers

0 5 10 15 20 25 30

150

200

250

1 Thread                                               
2 Threads
4 Threads
8 Threads
16 Threads

Mean Performance (Seq. Write - WH2)

Number of GPFS Application Nodes

M
B

/s
ec

Y_1

Y_2

Y_4

Y_8

Y_16

X_1 X_2, X_4, X_8, X_16,

Figure 6.  Sequential Write Performance – 2 IBM Virtual Shared Disk Servers

The multi-server read performance peaked at 235.9 MB/sec. (see Figure 5), whereas the peak
write performance was at 229.2 MB/sec. (see Figure 6). The ‘peak read performance’ was
achieved with 16 worker threads and 32 GPFS application nodes, with an average CPU
utilization of 8% (1% user, 7% system) on a single GPFS application node, and an average CPU
utilization of 38% (all system) per VSD server. The ‘peak write performance’ was reported with 1
worker thread and 8 GPFS application nodes, with an average CPU utilization of 9% (1% user,
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8% system) on a single GPFS application node, and an average CPU utilization of 38% (all
system) per VSD server. The peak aggregate read as well as write throughput numbers are close
to the anticipated SP Switch adapter bandwidth of 240 MB/sec. Scaling the number of
application nodes resulted into a diminished write throughput as the number of client retries
increased significantly. 

Single-Server Performance – POWER3 SMP High Nodes 
Each SP Switch2 adapter on the SP-Switch2 is capable of sustaining 500 MB/sec. (peak in each
direction). A single thread can achieve about 350 MB/sec. communication bandwidth, which is
limited by the CPU copy rate. However, multiple CPU’s can achieve over 425 MB/sec. With 2
SP Switch2 adapters on 2 planes (on the SP Switch2) the communication subsystem is capable of
over 900 MB/sec. of unidirectional bandwidth. It has to be pointed out that while the
communication subsystem by itself can achieve over 900 MB/sec., that the I/O card on the
POWER3 SMP High Node shares the memory bandwidth with the communication card. So the
aggregate memory bandwidth available for I/O and communication combined is limited to less
than 1,800 MB/sec. Thus one can not expect to sustain more than 900 MB/sec. of I/O
bandwidth on IBM’s Virtual Shared Disk servers that are configured with 2 SP Switch2 adapters
(see Appendix C for the raw performance numbers for the charts shown below).

Benchmark Environment – POWER3 SMP High Nodes
• GPFS server: 1 POWER3 SMP High Node configured with 16 CPU’s and 16 GB of

memory
• GPFS server: 6 RIO’s (remote I/O connections), 4  SSA adapters (1 per PCI bus) per RIO
• GPFS server: 96 RAID systems (4+P, 480 spindles, mixed 9.1 GB/18.2 GB drives, 20

spindles per loop)
• GPFS clients: 30 POWER3 SMP High Nodes, each configured with 16 CPU’s and 16 GB of

memory
• GPFS 1.4, AIX 4.3.3.25, IBM’s Virtual Shared Disk over KLAPI, 256 KB (GPFS) block size)
• 256 buddy buffers configured on IBM’s Virtual Shared Disk server, 62 MB pagepool on

GPFS clients
• Max. aggregate switch bandwidth (SP Switch2, 2 SP Switch2 adapters) approximately 800

MB/sec
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Figure 7.  Sequential Read Performance – 1 IBM Virtual Shared Disk server
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Figure 8.  Sequential Write Performance – 1 IBM Virtual Shared Disk Server

The read performance peaked at approximately 715 MB/sec. (single IBM Virtual Shared Disk
server configuration with 2 worker threads and 16 GPFS application nodes). The read
performance was limited by the performance of the communication subsystem (see Figure 7). The
write performance (see Figure 8) peaked at approximately 710 MB/sec. (8 worker threads and 2
GPFS application nodes). However, adding additional GPFS application nodes caused the write
performance to degrade. This is believed to be due to an inefficiency in resource management on
zero-copy buffers on the SP Switch2 adapter by the KLAPI subsystem.
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Appendix A: GPFS Tuning Parameters 
Parameter: pagepool (mmfsadm dump pgalloc to evaluate current setting, mmchconfig to

adjust it)

Recommendation:  Application and memory specific, a 100 MB pagepool is recommended

Description:  The pagepool is used to cache user data and indirect blocks. The default
value is 20 MB. It is the GPFS pagepool mechanism that allows GPFS to
implement read as well as write requests asynchronously. Basically,
increasing the size of the pagepool increases the amount of (pinned) memory
that is available to the application. Applications that either reuse data or
have a random I/O pattern can normally benefit from a larger pagepool.

Parameter: max MBpS (mmfsadm dump config to evaluate current setting, mmchconfig to
adjust it; GPFS daemon has to be restarted after adjusting it)

Recommendation: Default (of 150) for SP Switch, 450 for SP Switch2 with 1 SP Switch2
adapter and 900 for SP Switch2 with 2 SP Switch2 adapters

Description: This setting determines the amount of prefetching that can be performed. If
the default value is not adjusted accordingly it will affect single-client
performance. However, in an IBM Virtual Shared Disk environment, the
aggregate performance of a server can still be achieved with a sufficient
number of GPFS clients.

Parameter: GPFS Block Size (mmlsfs –B command to evaluate the current setting,
mmcrfs to adjust it)

Recommendation: Application-specific

Description: The GPFS block size determines the minimum preferred increment for
either reading or writing file data. From a performance perspective, the
recommendation is to set the GPFS block size to match the application
buffers size. Supported block sizes are 16 KB, 64 KB, 256 KB, 512 KB, and
1 MB. As noted in the section on “Raid Configuration”, it is important (from
a performance perspective) for the GPFS block size to match the stripe size
on the RAID system. If the GPFS block size does not match the RAID stripe
size, performance may severely be degraded  (especially for write()
operations).

Parameter: max_buddy_buffers (vsdatalst –n to evaluate the current setting,
updatevsdnode to adjust it)

Recommendation: I/O throughput and request latency specific

Description: Buddy buffers are being used by the IBM Virtual Shared Disk servers to
handle disk I/Os. The IBM Virtual Shared Disk server utilizes the buddy
buffers for temporarily storing data for I/O operations originating at a client.
The maximum number of buddy buffers that have to be configured on (a per
IBM Virtual Shared Disk server basis) is related to the I/O throughput and
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the average turnaround time of an individual request. For example, If the
throughput on the server is 130 MB/second, and the average turnaround
time of an individual request is 40 milliseconds, a minimum of 5.2 MB (0.04
seconds * 130 MB/seconds) of buddy buffer storage space is required. With a
maximum buddy buffer size set to 256 KB, at least 21 buddy buffers are
necessary to handle the load. The recommendation is to at least triple that
value to insure an adequate safety margin.

Parameter: max_buddy_buffer_size (vsdatalst –n to evaluate current setting,
updatevsdnode to adjust it)

Recommendation: Set max_buddy_buffer_size to the same as the max GPGS block size

Description: The max_buddy_buffer_size parameter sets an upper limit to the size of a
buddy buffer. Setting the maximum buddy buffer size lower as the GPFS
block size will result into additional overhead in acquiring the additional
buddy buffers necessary to hold ‘a file system block size’ worth of data.
Setting the maximum buddy buffer size greater than the GPFS block size will
result in an over allocation of memory in regards to the buddy buffer space. 

Parameter: maxFilesToCache (mmfsadm dump config to evaluate current setting,
mmchconfig to adjust it)

Recommendation: default

Description: The maxFilesToCache parameter specifies the number of inodes to cache for
recently used files that have been closed. Storing a file's inode in the cache
permits faster re-access to the file. The default is 1000. Increasing this
number may improve throughput for workloads with high file reuse.
However, on larger configurations it may be preferable to lower the value on
at least the compute nodes so that the token manager node does not become
the bottleneck.

Parameter: maxStatCache (mmfsadm dump config to evaluate current setting, mmchconfig
to adjust it)

Recommendation: default

Description: The maxStatCache parameter specifies the number of inodes to keep in the
stat cache. The stat cache maintains only enough information from the inode
to perform a query on the file system. The default is 4 × maxFilesToCache.

Parameter: rw_request_count (vsdatalst –n to evaluate current setting, updatevsdnode to
adjust it)

Recommendation: 16 per I/O device

Description: The rw_request_count parameter specifies the number of pbufs. These are
control structures used on the IBM Virtual Shared Disk server to describe
each read and write request that is pending.
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Parameter: max_coalesce  (lsattr –El hdiskX to evaluate current setting, chdev to adjust it)

Recommendation: 256 KB (RAID-5 4+P configuration)

Description: The max_coalesce (SSA) parameter defines the max number of bytes that
the SSA disk device driver attempts to transfer to or from a SSA logical disk
in one operation. This parameter is very important when dealing with RAID
systems.

Parameter: GPFS comm_protocol (mmlsconfig  to evaluate the current setting,
mmchconfig to adjust it)

Recommendation: Application-specific

Description: The GPFS comm_protocol parameter selects the communication protocol
that is being used among the GPFS daemons. The two options are TCP and
LAPI. TCP is the default value. LAPI should be chosen for applications that
encounter a lot of metadata traffic (for instance small strided write()
operations, or a lot of file creations and deletions) as the LAPI protocol
provides a lower latency than TCP. Choosing LAPI will reduce the number
of available switch adapter windows by one, and so may not be the preferred
choice for installations that do not want to dedicate an adapter window to
GPFS communication (use the chgcss command to determine the number of
available adapter windows). GPFS has to be stopped and restarted for the
communication protocol change to take effect.

Parameter: IBM Virtual Shared Disk Communication Protocol (statvsd to
evaluate current setting, ctlvsd to adjust it)

Recommendation: KLAPI

Description: The default IBM Virtual Shared Disk communication protocol is IP. GPFS
1.3 (in conjunction with PSSP 3.1) introduced the KLAPI option. KLAPI is a
high-performance communication interface that can be used to avoid
additional data copies. Avoiding the data copies reduces CPU utilization. In
order to switch from IP to KLAPI, IBM’s Recoverable Virtual Shared Disk
system has to be stopped and IBM’s Virtual Shared Disk component has to
be unconfigured. In the case that IBM Virtual Shared Disk over KLAPI
encounters a communication problem, the system will switch to IBM Virtual
Shared Disk over IP. Choosing KLAPI will not affect the number of
user-space windows that are available to user applications.

Parameter: IBM Virtual Shared Disk adapter choice (vsdatalst -n to evaluate the
current setting, updatevsdnode to change it)

Recommendation: Configuration-specific

Description: Configurations that have more than one adapter per node have the option to
use the ml0 adapter type for IBM’s Virtual Shared Disk (in that case, IBM’s
Virtual Shared Disk communication can utilize all the adapters on the node).
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Using the ml0 device (for IBM’s Virtual Shared Disk) will result in better
performance in the case where multiple communication adapters are
available on the node.

Parameter: max_IP_msg_size (vsdatalst –n to evaluate the current setting, ctlvsd to
adjust it)

Recommendation: 60 KB

Description: The max_IP_msg_size parameter defines the largest size packet the IBM
Virtual Shared Disk software will send between the client and the server
(IBM Virtual Shared Disk over IP only).

Parameter: ipqmaxlen (no to evaluate the current setting, no to adjust it)

Recommendation: 512 

Description: The ipqmaxlen parameter controls the number of incoming packets that can
exist on the IP interrupt queue. The default value is 128 (IBM Virtual
Shared Disk over IP only).

Parameter: spoolsize (lsattr –El cssX to evaluate the current setting, chgcss to adjust it)

Recommendation: 16 MB

Description: The spoolsize parameter describes the allocation of memory that is effectively
a staging area for information to be sent over the switch (IBM Virtual Shared
Disk over IP only).

Parameter: rpoolsize (lsattr –El cssX to evaluate the current setting, chgcss to adjust it)

Recommendation: 16 MB
Description: The rpoolsize parameter describes the allocation of memory that is effectively

a staging area for information to be received over the switch (IBM Virtual
Shared Disk over IP only).
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Appendix B: GPFS Performance – POWER3 SMP Thin
and Wide Nodes

All the performance numbers represent MB/sec. All the test runs were being executed six times,
and the performance data in the actual tables represent the mean performance over all the test
runs. Every worker thread in the benchmark executed 2,000 256 KB read or write operations to
a shared GPFS file. The number of worker threads was scaled from 1 per application node up to
16 per application node. The number of application nodes was scaled from 1 to 2, 4, 8, 16, and
up to 32.

IBM Virtual Shared Disk Server (over KLAPI)

Table 1.   Raw Data – Mean GPFS Read Performance – 1 Server (in MB/sec.)

124.6124.6124.8125.2122.232 GPFS Nodes
124.8124.8124.8124.7122.916 GPFS Nodes
124.8124.8125.0125.2123.48 GPFS Nodes
125.1125.1125.4125.5123.74 GPFS Nodes
125.4125.2125.3124.6121.12 GPFS Nodes
124.9124.4121.6123.0108.21 GPFS Node

16 Threads8 Threads4 Threads2 Threads1 Thread

Table 2.   Raw Data – Mean GPFS Write Performance – 1 Server (in MB/sec.)

126.1124.9123.2122.9123.732 GPFS Nodes
131.6131.3132.3132.9135.316 GPFS Nodes
131.9132.9134.2135.7139.48 GPFS Nodes
132.0133.3134.7138.7144.44 GPFS Nodes
130.9132.5134.2138.5143.62 GPFS Nodes
129.4129.9131.9133.4133.71 GPFS Node

16 Threads8 Threads4 Threads2 Threads1 Thread

Table 3.  1-Server Environment

05/30/2001Date

2,000 256 KB sequential read or write requests (per worker thread) to
or from a single (shared) GPFS file

Benchmark

100 MB Pagepool on GPFS Application Nodes, 80 Buddy Buffers on
GPFS Server, KLAPI, 128 SSA Drives on two SSA Adapters (on
GPFS Server), JBOD (Just a bunch of disks)

Configuration

POWER3 SMP Thin and Wide Nodes, 1 IBM Virtual Shared Disk
Server, SP Switch, GPFS 1.4, PSSP 3.3.2.10

System
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IBM Virtual Shared Disk Servers (over KLAPI)

Table 4.  Raw Data – Mean GPFS Read Performance – 2 Servers (in MB/sec.)

235.9213.4213.1232.8227.732 GPFS Nodes
230.5223.5224.0223.7216.516 GPFS Nodes
217.1221.3224.4223.3213.18 GPFS Nodes
207.9207.7207.3204.9193.64 GPFS Nodes
179.8179.2177.2172.6166.42 GPFS Nodes
131.5131.0129.7128.9121.71 GPFS Node

16 Threads8 Threads4 Threads2 Threads1 Thread

Table 5.  Raw Data – Mean GPFS Write Performance – 2 Servers (in MB/sec.)

181.6175.4179.7177.0173.632 GPFS Nodes
211.0214.5212.0206.9212.016 GPFS Nodes
208.0215.9218.7221.4229.28 GPFS Nodes
196.5203.2201.1208.1212.64 GPFS Nodes
176.3177.4183.1186.4176.92 GPFS Nodes
130.4131.8133.1134.8135.31 GPFS Node

16 Threads8 Threads4 Threads2 Threads1 Thread

Table 6.  2-Server Environment

06/01/2001Date

2,000 256 KB sequential read or write requests (per worker thread) to or
from a single (shared) GPFS file

Benchmark

100 MB Pagepool on GPFS Application Nodes, 80 Buddy Buffers per
GPFS Server, KLAPI, 128 SSA Drives on two SSA Adapters (per
Server), JBOD (Just a bunch of disks)

Configuration

POWER3 SMP Thin and Wide Nodes, 2 IBM Virtual Shared Disk
Servers, SP Switch, GPFS 1.4, PSSP 3.3.2.10

System
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Appendix C: GPFS Performance – POWER3 SMP High
Nodes

All the performance numbers represent MB/second. All the test runs were being executed four
times. The highest and the lowest values were discarded, and the performance data in the actual
tables represent the mean performance over the other two test runs. Every worker thread in the
benchmark executed 2,000 256 KB read or write operations to/form a shared GPFS file. The
number of worker threads was scaled from 1 per application node up to 16 per application node.
The number of application nodes was scaled from 1 to 2, 4, 6, 8, 12, 16, and up to either 24 (for
write() operations) or 24 and up to 28 (for read() operations).

IBM Virtual Shared Disk Server (over KLAPI)

Table 7.  Raw Data – Mean GPFS Read Performance - 1 Server (in MB/sec.)

722.0708.3721.1718.8706.628 GPFS Nodes
720.2707.9722.4708.7619.324 GPFS Nodes
716.9693.8716.7716.4654.816 GPFS Nodes
710.4683.1712.1714.8660.812 GPFS Nodes
723.1710.5705.0707.3681.18 GPFS Nodes
720.8707.7698.0699.2616.26 GPFS Nodes
719.2695.0650.9647.6590.84 GPFS Nodes
633.6617.5586.9538.1577.12 GPFS Nodes
354.4365.2349.5502.3379.21 GPFS Node

16 Threads8 Threads4 Threads2 Threads1 Thread

Table 8.  Raw Data – Mean GPFS Write Performance – 1 Server (in MB/sec.)

467.3467.2470.7477.9456.024 GPFS Nodes
491.0495.8502.5504.7527.816 GPFS Nodes
516.6518.8525.6529.5556.212 GPFS Nodes
564.3560.6571.3549.4586.48 GPFS Nodes
583.8571.7593.6591.7611.46 GPFS Nodes
641.6615.8636.8644.8643.84 GPFS Nodes
726.7711.1703.7651.5359.62 GPFS Nodes
417.1431.7416.4341.9181.61 GPFS Node

16 Threads8 Threads4 Threads2 Threads1 Thread

Table 9. 1-Server Environment

06/05/2001Date

2,000 256 KB sequential read or write requests (per worker thread) to
or from a single (shared) GPFS file

Benchmark

62 MB Pagepool on GPFS Application Nodes, 256 Buddy Buffers on
GPFS Server, KLAPI, 96 RAID-5’s (4+P SSA Drives per RAID-5) on
24 SSA Adapters (on GPFS Server) across 6 RIO ports

Configuration

POWER3 SMP High Nodes, 1 IBM Virtual Shared Disk Server, SP
Switch2, GPFS 1.4

System
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Appendix D: GPFS Performance on Different HW
Components

The table below outlines some peak GPFS measurements for various hardware components
along the I/O path. The performance numbers are intended as a guide to configure a GPFS
system. All measurements were being taken on a GPFS system that was configured with 6 RIO’s
(evenly balanced across both I/O chips), 4 SSA adapters per RIO (with one SSA adapter per
PCI bus). Each adapter had two loops. Each loop had 20 disks configured as 4 RAID-5 systems.
For each of the measurements taken, a GPFS file system was configured consisting of all the disks
that constituted that component. As an example, for the single SSA loop measurement, the file
system was configured with 4 RAID-5 systems that make up the loop, or for the single SSA
adapter measurements, all the RAID-5 systems (in the two loops) of the adapter were being used
to create the GPFS file system. It has to be pointed out that the performance numbers represent
‘best case performance data’ measured on a development system running a development version
of the PSSP software. So actual GPFS performance may vary depending on an applications I/O
characteristic or on how the I/O subsystem is actually configured. The measurements in Table
10 were being taken with 7500 RPM SSA drives (a mixture of 4.5 GB, 9.1 GB and 18.2 GB
disk). This is especially important for the first row in Table 10.  For instance, performance tests
have shown that newer disks consistently deliver over 20 MB/sec. (measured for reads on a single
RAID-5 (4+P) configuration).  

Table 10.  GPFS Performance Along the I/O Path

650 MB/sec.650 MB/secHigh Node (6 RIO’s,  2 SP Switch2
Adapters, 2 Ports)

340 MB/sec.340 MB/sec.High Node (6 RIO’s, 1 SP Switch2
Adapter, 1 Port)

200 MB/sec.196 MB/sec.Single RIO
65 MB/sec.79 MB/sec.Single SSA Adapter
33 MB/sec.46 MB/sec.Single SSA Loop
12 MB/sec.14 MB/sec.4+P RAID

Write
Throughput

Read
Throughput

Component
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IBM business contact for information on the products, programs, services, and features available in your area. Any
reference to an IBM product, program, service or feature is not intended to state or imply that only IBM's product,
program, service or feature may be used.  Any functionally equivalent product, program, service or feature that does
not infringe on any of IBM's intellectual property rights may be used instead of the IBM product, program, service or
feature. IBM makes no representation or warranty regarding third-party products or services.

Information in this document concerning non-IBM products was obtained from the suppliers of these products,
published announcement material or other publicly available sources. Sources for non-IBM list prices and
performance numbers are taken from publicly available information including D.H. Brown, vendor announcements,
vendor WWW Home Pages, SPEC Home Page, GPC (Graphics Processing Council) Home Page and TPC
(Transaction Processing Performance Council) Home Page.  IBM has not tested these products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products.  Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document.  The furnishing of
this document does not give you any license to these patents.  Send license inquires, in writing, to IBM Director of
Licensing, IBM Corporation, New Castle Drive, Armonk, NY 10504-1785 USA. 
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All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and
represent goals and objectives only. Contact your local IBM office or IBM authorized reseller for the full text of a
specific Statement of General Direction.

The information contained in this document has not been submitted to any formal IBM test and is distributed "AS
IS".  While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere.  The use of this information or the implementation of any
techniques described herein is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment.  Customers attempting to adapt these techniques to their
own environments do so at their own risk.

IBM is not responsible for printing errors in this publication that result in pricing or information inaccuracies.

The information contained in this document represents the current views of IBM on the issues discussed as of the
date of publication.  IBM cannot guarantee the accuracy of any information presented after the date of publication.

All prices shown are IBM's suggested list prices; dealer prices may vary.

IBM products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms
apply.

Information provided in this document and information contained on IBM's past and present Year 2000 Internet
Web site pages regarding products and services offered by IBM and its subsidiaries are "Year 2000 Readiness
Disclosures" under the Year 2000 Information and Readiness Disclosure Act of 1998, a U.S. statute enacted on  
October 19, 1998.  IBM's Year 2000 Internet Web site pages have been and will continue to be our primary
mechanism for communicating year 2000 information.  Please see the "legal" icon on IBM's Year 2000 Web site 
 (http://www.ibm.com/year2000) for further information regarding this statute and its applicability to IBM.

Any performance data contained in this document was determined in a controlled environment.  Therefore, the
results obtained in other operating environments may vary significantly.  Some measurements quoted in this
document may have been made on development-level systems.  There is no guarantee these measurements will be
the same on generally-available systems.  Some measurements quoted in this document may have been estimated
through extrapolation.  Actual results may vary.  Users of this document should verify the applicable data for their
specific environment.
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The following terms are trademarks or registered trademarks of International Busines Machines Corporation in the
United States, other countries, or both:

IBM, AIX, e(logo), RS/6000

IBM Trademarks information can be found at: http://www.ibm.com/legal/copytrade.shtml. 

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries,
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Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SPEC, SPECjbb, SPECint, SPECfp, SPECweb, and SPECsfs are trademarks of the Standard Performance                
Evaluation Corporation and information can be found at:  http://www.spec.org.
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Notes on Benchmarks and Values
The benchmarks and values shown here were derived using particular, well configured, development-level computer systems. Unless
otherwise indicated for a system, the  values were derived using 32-bit applications and external cache, if external cache is supported on
the system. All benchmark values are provided "AS IS" and no warranties or guarantees are expressed or implied by IBM. Actual system
performance may vary and is dependent upon many factors including system hardware configuration and software design and
configuration. Buyers should consult other sources of information to evaluate the performance of systems they are considering buying
and should consider conducting application oriented testing. For additional information about the benchmarks, values and systems
tested, contact your  local IBM office or IBM authorized reseller or access the following on the Web:

TPC http://www.tpc.org
GPC http://www.spec.org/gpc
SPEC http://www.spec.org
Pro/E http://www.proe.com
Linpack http://www.netlib.no/netlib/benchmark/performance.ps
Notesbench Mail http://www.notesbench.org
VolanoMark http://www.volano.com
Fluent http://www.fluent.com

Unless otherwise indicated for  a system, the performance  benchmarks were conducted using AIX V4.2.1 or 4.3,  IBM C Set++ for
AIX/6000 V4.1.0.1, and AIX XL FORTRAN V5.1.0.0 with optimization where the compilers were used in the benchmark tests. The
preprocessors used in the benchmark tests include KAP 3.2 for FORTRAN and KAP/C 1.4.2 from Kuck & Associates and VAST-2
v4.01X8 from Pacific-Sierra Research. The preprocessors were purchased separately from these vendors.

The following SPEC and Linpack benchmarks reflect the performance of the microprocessor, memory architecture, and compiler of the
tested system:

- SPECint95 - SPEC component-level benchmark that measures integer performance. Result is the geometric mean of eight tests
that comprise the CINT95 benchmark suite. All of these are written in the C language. SPECint_base95 is the result of the same
tests as CINT95 with a maximum of four compiler flags that must be used in all eight tests.

- SPECint_rate95 - Geometric average of the eight SPEC rates from the SPEC integer tests (CINT95).  SPECint_base_rate95 is
the result of the same tests as CINT95 with a maximum of  four compiler flags that must be used in all eight tests.

- SPECfp95 - SPEC component-level benchmark that measures floating-point performance. Result is the geometric mean of ten
tests, all written in FORTRAN, that are included in the CFP95 benchmark suite. SPECfp_base95 is the result of the same tests as
CFP95 with a maximum of four compiler flags that must be used in all ten tests.

- SPECfp_rate95 - Geometric average of the ten SPEC rates from SPEC floating-point tests (CFP95). SPECfp_base_rate95 is the
result of the same tests as CFP95 with a maximum of four compiler flags that must be used in all ten tests.

- SPECint2000 - New SPEC component-level benchmark that measures integer performance.  Result is the geometric mean of
twelve tests that comprise the CINT2000 benchmark suite.  All of these are written in C language except for one which is in C++.
SPECint_base2000 is the result of the same tests as CINT2000 with a maximum of four compiler options that must be used in all
twelve tests.

- SPECint_rate2000 - Geometric average of the twelve SPEC rates from the SPEC integer tests (CINT2000).
SPECint_base_rate2000 is the result of the same tests as CINT2000 with a maximum of four compiler options that must be used
in all twelve tests.

- SPECfp2000 - New SPEC component-level benchmark that measures floating-point performance.  Result is the geometric mean
of fourteen tests, all written in FORTRAN and C languages, that are included in the CFP2000 benchmark suite.
SPECfp_base2000 is the result of the same tests as CFP2000 with a maximum of four compiler options that must be used in all
fourteen tests.

- SPECfp_rate2000 - Geometric average of the fourteen SPEC rates from SPEC floating-point tests (CFP2000).
SPEC_base_rate2000 is the result of the same tests as CFP2000 with a maximum of four compiler options that must be used in all
fourteen tests.

- SPECweb96 - Maximum number of Hypertext Transfer Protocol (HTTP) operations per second achieved on the SPECweb96
benchmark without significant degradation of response time. The Web server software is ZEUS v.1.1 from Zeus Technology Ltd.

- SPECweb99 - Number of conforming, simultaneous connections the Web server can support using a predefined workload.  The
SPECweb99 test harnass emulates clients sending the HTTP requests in the workload over slow Internet connections to the Web
server.  The Web server softwre is Zeus from Zeus Technology Ltd.

- LINPACK DP (Double Precision) - n=100 is the array size. The results are measured in megaflops (MFLOPS).
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- LINPACK SP (Single Precision) - n=100 is the array size. The results are measured in MFLOPS.

- LINPACK TPP (Toward Peak Performance) - n=1,000 is the array size. The results are measured in MFLOPS.

- LINPACK HPC (Highly Parallel Computing)  - solve largest system of linear equations possible.  The results are measured in
GFLOPS.

VolanoMark is a 100% Pure Java™ server benchmark characterized by long-lasting network connections and high thread counts. In this
context, long-lasting means the connections last several minutes or longer, rather than just a few seconds. The VolanoMark benchmark
creates client connections in groups of 20 and measures how long it takes for the clients to take turns broadcasting their messages to the
group.  At the end of the test, it reports a score as the average number of messages transferred by the server per second.    

VolanoMark 2.1.2 local performance test measures throughput in messages per second. The final score is the average of the best two out
of  three results.

The following SPEC benchmark reflects the performance of the microprocessor, memory subsystem, disk subsystem, network subsystem:

- SPECsfs97_R1 - the SPECsfs97_R1 (or SPEC SFS 3.0) benchmark consists of two separate workloads, one for NFS V2 and one
for NFS V3, which report two distinct metrics, SPECsfs97_R1.v2 and SPECsfs97_R1.v3, respectively.  The metrics consist of a
throughput component and an overall response time measure.  The throughput (measured in operations per second) is the primary
component used when comparing SFS performance between systems.  The overall response time (average response time per
operation) is a measure of how quickly the server responds to NFS operation requests over the range of tested throughput loads.

The following Transaction Processing Performance Council (TPC) benchmarks reflect the performance of the microprocessor, memory
subsystem, disk subsystem, and some portions of the network:

- tpmC - TPC Benchmark C throughput measured as the average number of transactions processed per minute during a valid
TPC-C configuration run of at least twenty minutes.

- $/tpmC - TPC Benchmark C price/performance ratio reflects the estimated five year total cost of ownership for system hardware,
software, and maintenance and is determined by dividing  such estimated total cost by the tpmC for the system.

- QppH is the power metric of TPC-H and is based on a geometric mean of the 17 TPC-H queries, the insert test, and the delete
test.  It measures the ability of the system to give a single user the best possible response time by harnessing all available resources.
QppH is scaled based on database size from 30 GB to 1TB.

- QthH is the throughput metric of TPC-H and is a classical throughput measurement characterizing the ability of the system to
support a multiuser workload in a balanced way.  A number of query users is chosen, each of which must execute the full set of 17
queries in a different order.  In the background, there is an update stream running a series of insert/delete operations. QthH is
scaled based on the database size from 30 GB to 1TB.

- $/QphH is the price/performance metric for the TPC-H benchmark where QphD is the geometric mean of QppH and QthH.
The price is the five-year cost of ownership for the tested configuration and includes maintenance and software support.

The following graphics benchmarks reflect the performance of the microprocessor, memory subsystem, and graphics adapter:

- SPECxpc results - Xmark93 is the weighted geometric mean of 447 tests executed in the x11perf suite and is an indicator of 2D
graphics performance in an X environment. Larger values indicate better performance.

- SPECplb results (graPHIGS) - PLBwire93 and PLBsurf93 are geometric means of literal and optimized Picture Level Benchmark
(PLB) tests for 3D wireframe and 3D surface tests, respectively. The benchmark and tests were developed by the Graphics
Performance Characterization (GPC) Committee. The results shown used the graPHIGS API. Larger values indicate better
performance.

- SPECopc results - CDRS-03, CDRS-04, DX-03, DX-04, DX-05, DRV-04, DRV-05, DRV-06, Light-01, Light-02, Light-02,
AWadvs-01,  AWadvs-02, Awadvs-03, and ProCDRS-02 are weighted geometric means of individual viewset metrics. The viewsets
were developed by ISVs (independent software vendors) with the assistance of OPC (OpenGL Performance Characterization)
member companies. Larger values indicate better performance.

The following graphics benchmarks reflect the performance of the microprocessor, memory subsystem, graphics adapter, and disk
subsystem:

Bench95 and Bench97 Pro/E results - Bench95 and Bench97 Pro/E benchmarks have been developed by Texas Instruments to
measure UNIX and Windows NT® workstations in a comparable real-world environment. Results shown are in minutes. Lower
numbers indicate better performance.

The NotesBench Mail workload simulates users reading and sending mail.  A simulated user will execute a prescribed set of
functions 4 times per hour and will generate mail traffic about every 90 minutes.  Performance metrics are:

- NotesMark - transactions/minute (TPM).
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- NotesBench users - number of client (user) sessions being simulated by the NotesBench workload.
- $/NotesMark - ratio of total system cost divided by the NotesMark (TPM) achieved on the Mail workload.
- $/User - ratio of total system cost divided by the number of client sessions successfully simulated for the Mail NotesBench
workload measured.  

Total system cost is the price of the server under test to the customer, including hardware, operating system, and Domino Server
licenses.
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