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Preface
This Redpaper describes a port of the Linux Embedded Appliance Firewall 
(LEAF) to Linux on zSeries. LEAF can be used in a specialized implementation 
for routing in a large-scale Linux on zSeries installation (sometimes colloquially 
known as a “penguin colony”).

Objectives
The objectives of this paper are:

� To discuss what LEAF is and how it works

� To show an example deployment method of LEAF on zSeries which takes 
advantage of centralized management using z/VM
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Vic Cross
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This paper does not discuss how to configure and operate LEAF, but instead 
examines porting issues that may applied to other Linux projects requiring a 
small footprint.

What is LEAF
LEAF is a project derived from the original Linux Router Project (LRP). LRP 
described a way to implement a customized Linux distribution which was small 
enough to fit on a floppy disk, and yet provide advanced routing functionality such 
as traffic shaping, firewalling, and even DHCP and DNS service.

Both LEAF and LRP are designed to be as small as possible, primarily for 
reliability and security reasons. The small footprint of LEAF/LRP makes it ideal 
for recycling old PC hardware for use as routers.

There are a number of different LEAF and LRP sub-distributions, each with a 
different focus or objective. For instance, the LEAF-Bering distribution (on which 
this paper is based) was the first LEAF distribution to use the Linux 2.4 kernel, in 
order to take advantage of the Shorewall firewall and other enhancements.

For more information about the LEAF project, and links to documents about how 
LEAF works on the Intel platform, visit the project home page. There is a lot of 
information on the site, including user and developer guides, installation 
instructions, FAQs and HOWTOs, and testimonials. The LEAF Project home 
page can be found at:

http://leaf.sourceforge.net

Important: This paper is not a recommendation on how to build Linux router 
images on zSeries. It is a description of one way to do so, using a 
purpose-built distribution of Linux. 

In the IBM Redbook Linux on IBM ^ zSeries and S/390: Large Scale 
Linux Deployment, SG24-6824, the authors describe a method of cloning 
Linux systems which will work for any type of Linux system, not just routers. 
However, LEAF offers some advantages (as used on zSeries under z/VM) that 
make it attractive for the particular task of centrally managing Linux router 
guests.

If anything, the paper reinforces the fact that almost anything you can do on 
Intel Linux, you can do on zSeries Linux!
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How LEAF works
As mentioned, LEAF is designed to be as small as possible, in terms of both 
code size and system requirements. LEAF builds a filesystem entirely in memory, 
and runs the Linux system from that - this eliminates the need even for a hard 
drive. The boot process reads package files from some persistent medium 
(usually a floppy disk, but can be a CD-ROM or network server) and builds the 
filesystem in memory from the contents of those packages.

Once the filesystem is built, the package store is no longer required and can be 
removed. This is a valuable security feature, as a potential cracker can only 
corrupt the filesystem in memory; if a compromise is discovered or suspected, a 
reboot of the router will return the system to a known state.

LEAF components
The main components of LEAF are packages, similar to packages such as RPM 
or DEB used by other distributions. In keeping with the low-overhead nature of 
LEAF, a LEAF package is basically just a tar archive with a particular format.

The LEAF developers build special kernels, with a small configuration to reduce 
the footprint (the 2.4.18 kernel used in the LEAF Bering distribution on Intel is just 
under 900kB in size, compared to nearly 2MB for the zSeries 2.4.7 installation 
kernel). LEAF also uses an initial root device (initrd) which provides the bootstrap 
facility that gets the router configuration started.

A key component of the LEAF distribution is a software utility called BusyBox. 
BusyBox is a program described as a “multi-call binary”, which includes the 
function of dozens of separate programs as shipped with a normal Linux 
distribution. Using BusyBox for LEAF considerably reduces the amount of space 
required for the distribution.

Boot process of LEAF on i386
When a LEAF router on the i386 platform boots, a series of actions take place 
that lead to the eventual running of the router system. We will describe the 
process in some detail here, so that we can later compare the differences 
between the i386 process and the zSeries process.

Syslinux boot loader
The computer’s BIOS locates the boot devices, and loads the master boot record 
(MBR) from that device. In this case, the code is part of the syslinux utility. 
Syslinux reads its configuration file to determine options such as the command 
line to be passed to the kernel. In the case of LEAF, there are additional 
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parameters passed in the kernel command line that are actually ignored by the 
kernel, but picked up by the LEAF initialization script later in the boot process. 
Syslinux loads the initial root device and the kernel image into memory, then 
starts executing the kernel.

Linux kernel
The kernel is decompressed (if needed) and executed. The kernel then 
decompresses and mounts the initial root device, and executes the system 
configuration script.

Linuxrc
This is the system configuration script. The actions taken by this script can vary 
between LEAF distributions, but usually at least the following actions will be 
performed:

� Loading packages, from disk or other method such as TFTP
� Loading kernel modules (if required)
� Activating network interfaces
� Creating RAM disks for temporary or log files
� Other actions, such as creating symbolic links for BusyBox

The script parses the kernel command line to obtain some configuration 
information, such as which packages to load and where to load them from.

/sbin/init
The last stage in the bootup process is to start the init process, which reads the 
/etc/inittab file and starts other processes (such as console gettys) as required.

/etc/init.d/rc
This script reads links from the /etc/rc?.d directories (for the desired runlevel) and 
runs the linked programs in the configured order. This process is how system 
daemons such as httpd and cron are started.

/sbin/getty
The getty processes are started by init, and manage the connected terminals. 
They usually run the login program, which handles the process of user login.

The last three stages in this process are similar to the startup process of a 
“normal” Linux distribution.
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LEAF configuration system
The method used to configure a LEAF router is the lrcfg utility. This is a program 
that allows an operator to make configuration changes to the package files on a 
LEAF router. Each package contains a definition file which lrcfg uses to 
determine which files in the package are configuration files that can be edited. 
lrcfg launches an editor that allows the operator to make the required changes 
to the configuration file.

When editing configuration files using lrcfg, only the version of the file that 
resides in LEAF’s in-storage filesystem is changed. To make the change part of 
the configuration of the router, the LEAF boot medium must be available for 
lrcfg to write a new version of the modified package with the changes in place.

The main lrcfg panel is shown in Figure 1.

Figure 1   lrcfg main panel

Tip: This is a valuable security feature. Without access to the boot medium, it 
is impossible to make inadvertent or malicious permanent changes to the 
LEAF configuration.

                        LEAF configuration menu                                 
                                                                                
        1 ) Network configuration                                               
                                                                                
        2 ) System configuration                                                
                                                                                
        3 ) Packages configuration                                              
                                         b) Back-up a package                    
                                                                                
                                        c) Back-up your LEAF disk               
                                                                                
                                        h) Help                                 
  q) quit                                                                       
 ---------------------------------------------------------------------------  
        Selection:                                                              
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LEAF in the penguin colony
We now introduce the LEAF router concept to zSeries Linux. We discuss how 
“z/LEAF” differs from Intel LEAF, describe the process we used to build a z/LEAF 
system from scratch, and how our z/LEAF system works in practice.

Why use LEAF in a penguin colony
When running a large-scale Linux on zSeries installation, it is important that the 
infrastructure overhead is kept as low as possible. This means that not only CPU 
utilization, but also disk and storage consumption, must be minimized.

LEAF’s design fits this model very well. Designed originally to work on low-end 
Intel hardware, it can run in as little as 8MB of RAM and be entirely contained on 
a single 3 1/2” floppy disk. On zSeries, this low-overhead design makes it an 
interesting candidate for use as a router in a large-scale Linux deployment. 
Combined with features of z/VM, a collection of LEAF routers can be managed 
from a central location.

Differences between Intel and zSeries LEAF
Overall, the structure of the LEAF installation has not changed. There are a few 
areas that were slightly altered for LEAF’s use on zSeries.

Boot loader
On Intel LEAF, the Syslinux bootloader is used to load the kernel (with the 
desired parameter line) and provide the initial root device. However, Syslinux is 
not currently available on zSeries Linux, so we need an alternative.

The processing of Syslinux is quite similar to the boot process used by the 
installation system kernels used by the major zSeries Linux distributors. These 
kernels have an integrated loader which reads the kernel, parmfile and initial root 
device into storage from either a tape device or a z/VM reader.

Since this is an established process in zSeries Linux, we have used the “z/VM 
reader and installation kernel” boot method to replace Syslinux.

Kernel
As mentioned previously, the kernel being used is the kernel as supplied with the 
distributors’ installation system. This kernel has the following advantages:

� Support for initial root device (initrd) built in

� DASD driver loaded as module
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Accessing DASD using the DASD module is a desirable feature that provides 
additional security. By attaching and detaching the configuration disk as required, 
we can be reasonably sure that undesirable changes to the configuration cannot 
be made.

Location of LEAF packages
We were unable to wait for the completion of the zSeries floppy disk drive 
support1, so our LEAF implementation utilizes a Linux ext2 filesystem on a 
shared z/VM minidisk for storing the LEAF package files. This disk is attached 
during the running of the /leafrc script, and detached at the end of the script.

Bringing LEAF to zSeries
In this section, we describe the process we used to port LEAF-Bering to Linux on 
zSeries.

Kernel
We used the SuSE 2.4.17 professional kernel for initial development. After 
initially working with tuning the build, we decided that using a 64-bit distribution 
gave no appreciable benefit, and in fact added to the size of the build. Therefore, 
we changed to a 31-bit SuSE distribution. Table 1 lists the improvements we 
were able realize in the size of the image:

Table 1   Space saved by switching to a 31-bit distribution

However, due to other considerations, we had to increase the storage allocation 
to perform functional work with the system. This is described in “QETH driver 
memory allocation” on page 17.

1  Of course, this is a statement made in jest. However, on a system such as the Multiprise 3000, 
which provides emulated device support, it would be possible to define the machine’s floppy disk 
drive as an accessible device, perhaps by creating a 2880 block emulated FBA disk on it. Since the 
kernel file would occupy more space then this, however, it would not be practical for this application.

64-bit 31-bit

Kernel file 3.22MB 2.57MB

Initial root device 6MB 4MB

Storage required for IPL 24MB 16MB
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Leafrc
The leafrc script, which functions as a system pre-build script to install the LEAF 
packages and configure basic devices, required some work to allow for the way 
that z/LEAF is set up.

As discussed, we used a shared minidisk (formatted ext2) to store the LEAF 
package files. Rather than give the LEAF guests permanent access to this disk, 
we chose to control access by having the guest link the disk when it is required. 
In order to do this, we used the cpint utility.

The leafrc script has modifications to install the cpint utility, as well as to install 
the DASD driver and mount the package disk. Once packages are installed, the 
disk is unmounted and unlinked.

LEAF packages
Not all of the LEAF packages available with the Bering distribution have been 
ported to zSeries at this time. At present, the following packages have been built 
and tested:

� root
� local
� etc
� tc

To assemble these packages for zSeries, we simply obtained the package list 
from the existing i386 package file and reproduced the list using files from a 
zSeries system. For many packages (local and etc, for example) no changes 
were required since they contained no i386 binaries.

Running LEAF on zSeries
In order to get the most benefit from the LEAF packaging method, we can take 
advantage of features of z/VM to manage the LEAF routers centrally.

Centralized boot files
Normally when you use the installation system to build a Linux system on z/VM, 
you will transfer the kernel, parmfile and initial root device to the A disk of your 
Linux userid and execute an exec that punches the files to the reader and IPLs. If 
we used the same approach with our LEAF routers, we would have these files 
scattered all over our z/VM system, making it difficult to keep releases 
synchronized.
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Instead, we will keep the files on a central userid A disk, and punch the files from 
the central userid to the reader of the LEAF router we wish to IPL. Then, we use 
the XAUTOLOG command to log on the LEAF userid. Adding an IPL command 
to the LEAF userids’ directory entries will automatically IPL the card reader when 
the guest logs on, commencing the LEAF boot process without any other 
intervention.

The simple CMS EXEC shown in Example 1 gives an example of how the LEAF 
router users can be automatically punched and logged on.

Example 1   LEAFIPL EXEC - sample LEAF IPL script

/* */                                                             
PARSE ARG LEAFID;                                                 
IF LEAFID = '' THEN DO                                            
  SAY 'Usage: LEAFIPL rtrid';                                     
  SAY '  where rtrid=the userid of the LEAF router to be IPLed.'; 
  EXIT 1;                                                         
END;                                                              
'PURGE 'LEAFID' RDR ALL'                                          
'SPOOL PUNCH 'LEAFID' RDR'                                        
'PUNCH SLES7PROF KERNEL A (NOH'                                   
'PUNCH LEAF PARMFILE A (NOH'                                      
'PUNCH INITRD LEAF A (NOH'                                        
'XAUTOLOG 'LEAFID 

We used this process quite successfully during early work on z/LEAF. When we 
started looking at centralized configuration management (see “Centralized 
configuration process” on page 10), however, we realized that we would need 
two support guests: one running Linux to support the configuration process, and 
another running CMS to provide the IPL processing. This seemed wasteful, 
considering that the CMS guest would get very little use.

While we were considering this, we learned about the Linux “unit record” device 
driver. This driver allows a Linux guest to interact with the VM spool; in particular, 
it would allow us to keep the kernel, parm and initrd files in a Linux filesystem, 
and punch to the LEAF guests’ readers from Linux. Now, we could use a single 
management guest running Linux for configuration and starting the LEAF 
images.

We copied our CMS IPL exec to Linux, and made some alterations to it to allow 
running it on Linux2. Example 2 on page 10 shows the resultant REXX script.

2  Yes, perhaps we should have re-written the exec as a shell or Perl script, but with the shell scripting 
skills of our team we decided it was easier to install Regina REXX than to do the re-write (even 
though there are only six lines that require re-writing). Perhaps in a future revision of this paper it may 
appear as shell script...
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Example 2   leafipl.rexx - sample LEAF IPL script

#!/usr/bin/rexx
PARSE ARG LEAFID;
IF LEAFID = '' THEN DO
  SAY 'Usage: LEAFIPL rtrid';
  SAY '  where rtrid=the userid of the LEAF router to be IPLed.';
  EXIT 1;
END;
'/sbin/hcp PURGE 'LEAFID' RDR ALL'
'/sbin/hcp SPOOL PUNCH 'LEAFID' RDR'
'ur copy -b sles7.kernel /dev/vmpunch'
'/sbin/hcp CLOSE PUNCH'
'ur copy -t 'LEAFID'.parmfile /dev/vmpunch'
'/sbin/hcp CLOSE PUNCH'
'ur copy -b initrd.gz /dev/vmpunch'
'/sbin/hcp CLOSE PUNCH'
'/sbin/hcp CH 'LEAFID' RDR ALL KEEP NOHOLD'
'/sbin/hcp XAUTOLOG 'LEAFID

Centralized configuration process
On i386 LEAF, configuration changes are made by logging on to the LEAF router 
and running the lrcfg program. This makes changes to the in-memory 
filesystem of the LEAF router. If the changes are to be persistent, the relevant 
package(s) are backed up to the boot medium.

On zSeries LEAF, we want the configuration process to be done entirely from a 
central server. In order to do this, we change the processing of configuration 
updates slightly.

On our central configuration machine, when a configuration change is required 
for a LEAF router, we expand the package files into a temporary space and run 
the configuration changes against those expanded files. When the change is 
complete, we back up the altered packages, which writes the updated package 
files ready for the next restart of the LEAF router.

If a dynamic configuration change is required, we run an additional command 
that signals the LEAF router to re-link to the configuration disk and re-expand the 
altered package(s).

Tip: For more information on the unit-record driver and corresponding utilities, 
refer to the discussion on ur in Linux on IBM ^ zSeries and S/390: 
Large Scale Linux Deployment, SG24-6824.
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Router-unique packages
Since the LEAF IPL process includes the packages to be installed in the kernel 
command line, one of the things that must be unique for each LEAF router is the 
kernel parmline. This allows a different set of packages to be specified for each 
router, as required.

Some packages, however, contain router-unique files. The best example of this is 
the etc package, which populates the /etc directory of the LEAF router. Each 
router will have different versions of common configuration files (such as 
/etc/hosts) which must be managed on a per-router basis.

The easiest solution is to duplicate these particular packages for each router, and 
specify the name of the package file for that particular router on the kernel 
command line. Using the LEAF router image name as part of the package name 
makes it easier to identify which packages have been customized for a particular 
router.

Starting a z/LEAF router
We now describe the process of starting a z/LEAF router image.

z/LEAF boot sequence
The LEAF boot sequence on zSeries is roughly similar to the boot process on 
i386, except for the initial startup. Instead of using the syslinux utility as a 
bootloader, the installation kernel’s internal loader is used to read the kernel, 
parmfile and initial root device from the z/VM reader into storage, and start 
executing the kernel.

Once the kernel is executing, the boot process is almost identical to i386.

Getting the LEAF system into the reader
Before we can IPL a LEAF guest from its virtual reader, the correct files must be 
punched there. We do this from a central management guest, as described in 
“Centralized boot files” on page 8.

Note: You could use the lrcfg program on each LEAF router to make 
temporary changes. This is feasible, but be aware that by doing so you are 
increasing the chances that a configuration change is made without being 
saved.
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Starting the z/LEAF guest
Once the files are in the guest’s reader, we can log the guest on and have it IPL 
from the reader. Since we want this process to be fully automatic, we want the 
IPL to take place automatically. There are two ways of getting the guest to IPL at 
logon:

� IPL command in the guest’s directory entry

� PROFILE EXEC on the guest’s A disk containing an IPL command

The second option would be used if you wanted the ability to IPL the LEAF router 
guests into CMS and perform operations there. This is not necessary, since we 
do not expect to use CMS and have no other reason to give the guest an A disk. 
Therefore, we will ensure that the directory entry for the LEAF guests has the 
correct IPL command to start the guest from the virtual reader.

Having set up the guest so that it will automatically IPL when it is logged on, we 
now need to provide a way for the guest to get logged on without intervention. 
This is done using the XAUTOLOG command at the end of the IPL exec.

Running the z/LEAF guest
Once the z/LEAF guest is logged on and IPLed, no further action is necessary. It 
will perform its boot processing and start functioning automatically.

Note: Remember that the userid you intend to use to log on other guests must 
be authorized to do so! The AUTOLOG statement in a user directory entry lists 
those users who are allowed to use XAUTOLOG to log that guest on. We 
made sure that each of our z/LEAF guests had our configuration guest ID 
listed in the AUTOLOG statement.

Tip: As with any unattended Linux guest, it is a good idea to have centralized 
logging. Under VM, the easiest way to do this is to spool the guest’s console to 
another userid. There are network-based methods (remote syslog, etc), but 
spooling the console allows you to get message output from the very start of 
the guest’s IPL.
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Building z/LEAF
The process of building the z/LEAF system originally involved a lot of manual 
command work. We started with a LEAF Bering system on Intel, to gain a 
working understanding of the boot and configuration processes. Then, we moved 
the initial root device to our Linux on zSeries system, and gradually replaced files 
from the LEAF system with the equivalent packages from the zSeries Linux 
installation.

BusyBox
The majority of the function of LEAF (outside the kernel and modules) is provided 
by the BusyBox utility. BusyBox implements a large number of system utility 
functions in a single file called a “multi-call binary”. Packaging many different 
programs in a single binary is used for embedded projects such as LEAF for 
three main reasons:

� Saving code space through non-duplication of code

Every executable file contains some common code that is used to load and 
execute the program. Combining many programs into one file (compared to 
the same programs in their own command file) means you have only one copy 
of this common code, used by all the programs.

� Saving file system space through reduced filesystem overhead

Most computer filesystems have some inefficiency due to the way that file 
space is allocated (in multiples of the filesystem block size, 4KB on zSeries). 
This means that, unless the size of a file is an exact multiple of the block size, 
some space will be wasted at the end of every file. If many programs share a 
single file, part of only one block will be lost instead of one for every file.

� Reduced code size due to elimination of unnecessary functions

Most software utilities have a large number of features and functions compiled 
in, which leads to a large executable file. Many of these functions might not be 
used in the embedded application environment. When making a utility part of 
a multi-call binary, the packager will usually take the opportunity to remove 
some unnecessary options, thus reducing the file size.

The makers of BusyBox take many common Linux/UNIX utilities and package 
them in a multi-call format. BusyBox can be customized so that the various 
utilities are either included or excluded from the resulting binary.

Building BusyBox on zSeries was not difficult. For the purpose of this project, we 
left out some components (such as modprobe) which were i386-specific code. To 
build BusyBox, we issued the the command ./configure && make.
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The biggest difficulty in building BusyBox was in making sure that the 
components included in the build of the BusyBox binary matched up with what 
was required by LEAF. This was made easier with the realization that the 
components required would appear as symbolic links to the BusyBox binary on a 
LEAF system. All we had to do was list the directories /usr/bin, /usr/sbin and so 
on, looking for all the symbolic links and making the appropriate configuration in 
the BusyBox header file.

Other system applications: SSHD
Once we had networking set up, we of course wanted to log on to our LEAF 
routers over the network! To do this, we needed to provide a Telnet or SSH 
daemon to support a logon interface. Following the process used earlier in our 
system build, we simply copied the files from our source SuSE distribution into 
the root package of our LEAF system.

When we rebooted our router and attempted to connect using SSH, it was 
unsuccessful. Starting the syslog server did not provide any information for us 
(other than the log of the connection request by inetd). Running sshd from the 
command line yielded the following error message:

sshd: error while loading shared libraries: libpam.so.0: cannot load shared 
object file: No such file or directory 

The SSH daemon as supplied with our source distribution was linked against the 
PAM libraries, which we had not copied to our LEAF build. Our first thought was 
to copy the libraries in and try again, but we consider PAM to be too much 
overhead for a simple router image (which will not have users logging on in the 
general course of events). So for now, console access via the VM TCP/IP stack 
will do.

Using z/LEAF
Our z/LEAF environment consisted of the following guests:

LEAFMSTR was a SuSE Linux Enterprise Server 7.2 system

0191 disk: CMS A disk (original work prior to Linux ur device driver)
0200 disk: package files for all LEAF routers

Note: In the case of modprobe, it was much easier to simply bring a copy of 
the binary over from the host distribution than to try and port the 
platform-specific code in BusyBox to zSeries. Of course, that increased the 
size of our resulting system.
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0201 disk: swap (200 cyl)
0202 disk: root filesystem (3138 cyl)

LEAF routers

0200 disk: temporary read-only access to packages

In practice, we came across a few catches when using LEAF, most concerning 
storage (which is the primary issue when working with in-storage Linux 
distributions like LEAF).

Storage allocated in 8MB units
We wanted to be able to finely control the amount of storage given to our LEAF 
routers. We were making changes to the size of the initial root device to make it 
fit in a smaller size, so as to reduce the overall footprint of our router images. 
Using DirMaint, we altered the initial storage size of our LEAF guests in 4MB 
intervals. However, when we IPLed our LEAF images, Linux did not recognize 
the storage change.

Figure 2 on page 16 shows an example; the command output comes from one of 
our LEAF guests, LEAF2.
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Figure 2   Storage allocation on LEAF2

We seem to have lost 4MB! Once we changed to 32MB, things were different, as 
seen in Figure 3 on page 17.

# hcp q stor 
STORAGE = 28M 
Ready; 

# dmesg | grep Memory 
Memory: 19620k/24576k available (1924k kernel code, 0k reserved, 617k data, 
48k init) 

# cat /proc/meminfo 
cat /proc/meminfo 
        total:    used:    free:  shared: buffers:  cached: 
Mem:  21348352 15400960  5947392        0  4206592  7376896 
Swap:        0        0        0 
MemTotal:        20848 kB 
MemFree:          5808 kB 
MemShared:           0 kB 
Buffers:          4108 kB 
Cached:           7204 kB 
SwapCached:          0 kB 
Active:            704 kB 
Inact_dirty:     10608 kB 
Inact_clean:         0 kB 
Inact_target:       36 kB 
HighTotal:           0 kB 
HighFree:            0 kB 
LowTotal:        20848 kB 
LowFree:          5808 kB 
SwapTotal:           0 kB 
SwapFree:            0 kB 
16 Linux on IBM  ̂zSeries and S/390: Porting LEAF to Linux on zSeries



Figure 3   Storage allocation on LEAF1

This apparent 8MB boundary behavior reduced our ability to finely tune our 
storage allocation.

QETH driver memory allocation
Before we started using networking on our LEAF images, we found that we could 
successfully get them IPLed with a storage size of 24MB (anything smaller was 
insufficient space to complete the init processing). This gave us sufficient storage 
to start some daemons and verify from the console that things were working. 
Once IPLing was sorted, the next stage was to get the routers on the network. 
We included the QDIO and QETH modules from our source SuSE distribution, 
IPLed our system, configured chandev, and loaded the modules. Then, when we 
tried to start daemons, our system froze.

# hcp q stor 
STORAGE = 32M 
Ready; 

# dmesg | grep Memory 
Memory: 27664k/32768k available (1924k kernel code, 0k reserved, 617k data, 
48k init) 

# cat /proc/meminfo 
total:    used:    free:  shared: buffers:  cached:  
Mem:  29585408 25669632  3915776        0  4214784  7430144  
Swap:        0        0        0                             
MemTotal:        28892 kB 
MemFree:          3824 kB 
MemShared:           0 kB 
Buffers:          4116 kB 
Cached:           7256 kB 
SwapCached:          0 kB 
Active:             60 kB 
Inact_dirty:     11312 kB 
Inact_clean:         0 kB 
Inact_target:        4 kB 
HighTotal:           0 kB 
HighFree:            0 kB 
LowTotal:        28892 kB 
LowFree:          3824 kB 
SwapTotal:           0 kB 
SwapFree:            0 kB 
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Suspecting memory contention, we re-IPLed and checked memory usage before 
and after module loading. We found that the storage consumed by the QDIO 
driver was not significant (in contrast to the QETH driver, which has significant 
storage consumption).

Figure 4   QETH storage utilization

The memory utilization of our LEAF guest has jumped by over 4MB. Once we 
then tried to start various daemons, the system ran out of memory.

One way around this would be to set up swap devices to give Linux some swap 
space. While there is nothing wrong with this, it does increase the complexity of 
the guest’s configuration, and the idea is to keep things as simple as possible. 

# cat /proc/meminfo 
        total:    used:    free:  shared: buffers:  cached:
Mem:  21348352 15400960  5947392        0  4206592  7376896
Swap:        0        0        0 
...
# insmod qdio 
Using /lib/modules/2.4.7-SuSE-SMP/qdio.o 
qdio: loading QDIO base support version 2 ($Revision: 1.79 $/$Revision: 1.44 
$)
debug: qdio_setup: new level 2 
debug: qdio_labs: new level 2 
debug: qdio_sense: new level 2 
debug: qdio_trace: new level 2 
# cat /proc/meminfo 
        total:    used:    free:  shared: buffers:  cached:
Mem:  21348352 15536128  5812224        0  4206592  7376896
Swap:        0        0        0 
...
# insmod qeth 
Using /lib/modules/2.4.7-SuSE-SMP/qeth.o                                        
qeth: loading qeth S/390 OSA-Express driver ($Revision: 1.135 $/$Revision: 
1.53 $/$Revision: 1.18 $) 
 qeth: allocated 0 spare buffers 
...
qeth: Trying to use card with devnos 0x700/0x701/0x702 
qeth: Device 0x700/0x701/0x702 is an OSD Express card (level: 2938) 
with link type Gigabit Eth (portname: NIC0700) 
 qeth: IPv6 not supported on eth0 
# cat /proc/meminfo 
        total:    used:    free:  shared: buffers:  cached:
Mem:  21348352 19714048  1634304        0        0  7376896
Swap:        0        0        0 
...
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We could also allocate some expanded storage to our LEAF guests. The usual 
way for Linux to handle expanded storage is with the xpram device driver, which 
makes the expanded storage available as a block device. This is then used to 
define swap space. We now end up with a variation of the previous solution, with 
no appreciable advantage to the guest over just allocating the extra storage as 
more central storage.

The 4MB3 requirement of the QETH driver is documented elsewhere. We 
mention it here because in this situation, since it is a low-memory 
implementation, it was an issue that caused a significant effect to our solution.

DirMaint files in our readers
Every now and then, we would find that an IPL of one of our LEAF routers would 
fail. On accessing the console output, we would see the following message:

HCPGIR450W CP entered; disabled wait PSW 000E0000 00000232 

This is an IPL failure wait-state that indicates that no IPL-able image was found. 
This was very confusing, since the first command we issue in our IPL exec is:

'/sbin/hcp PURGE 'LEAFID' RDR ALL'

We assumed this command would clear the reader of any files. We checked that 
all of our punch commands process successfully.

After one such failure, we IPLed CMS in our LEAF guest and issued the RDRList 
command. The command output is displayed in Figure 5 on page 20.

3  Actually 8MB in total, since 4MB comes from the guest and another 4MB comes from CP.
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Figure 5   Reader List command on LEAF2

At this point we remembered that we had done some operations on the guest 
userid using DirMaint prior to the last punch of LEAF2’s reader. The DirMaint file 
was not deleted by the PURGE RDR ALL that we issued from our LEAF IPL 
exec.

We initially thought that the DirMaint file was not being deleted because it was 
OPEN, and PURGE does not touch open files. This was not the case, however, 
as while trying to diagnose the problem we discovered that the file was indeed 
closed before the IPL and it was the IPL attempt that opened the file.

Further investigation revealed that we did not have sufficient privilege on our 
LEAFMSTR guest. Since it was defined as a class G user, we could delete our 
own spooled files but not those of any other user. Adding class D to LEAFMSTR 
fixed our problem by giving LEAFMSTR sufficient privilege to operate on other 
users’ output on the spool of our LEAF routers.

 LEAF2  RDRLIST  A0  V 164 Trunc=164 Size=4 Line=1 Col=1 Alt=0 
Cmd Filename Filetype Class User  at Node     Hold Records  Date      Time
    LEAF2    VMLINUX  PUN A DIRMAINT VMLINUX  NONE      10 OPEN-    000C
    (none)   (none)   PUN A LEAFMSTR VMLINUX  NONE   33709 10/02     0:26:35
    (none)   (none)   PUN A LEAFMSTR VMLINUX  NONE       3 10/02     0:26:42
    (none)   (none)   PUN A LEAFMSTR VMLINUX  NONE   15096 10/02     0:26:42

1= Help     2= Refresh  3= Quit    4= Sort(type) 5= Sort(date) 6= Sort(user)
7= Backward 8= Forward  9= Receive 10=          11= Peek      12= Cursor 

====>                                                                           
                                                          X E D I T  1 File

Curiosity: According to the VM online help, without class D privilege we 
should not have been able to purge files on another user’s spool at all.
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Enhancing LEAF on zSeries
There are a few ways in which z/LEAF can be enhanced and developed that we 
did not have an opportunity to investigate fully.

The “Gold” z/LEAF build
This paper discusses experiences with z/LEAF that have been gained through 
hacking and experimentation. To produce a real z/LEAF distribution, it would be 
necessary to follow the build process in the same way as the LEAF developers 
do when producing a build for i386.

LEAF is based on the Debian GNU/Linux distribution. To build a true LEAF 
distribution, it would be necessary to start with a Debian installation on zSeries.

The process to be followed would be:

1. Obtain the correct kernel source tree, and patch it with the recommended 
S/390 patches from IBM developerWorks.

2. Patch the kernel with the LEAF-recommended kernel patches, and build a 
LEAF kernel.

3. Build the LEAF support packages (BusyBox, TinyLogin, etc) from source 
using the LEAF configuration.

4. Copy the LEAF scripts (leafrc, lrcfg, lrpkg) to the system.

5. Build the LEAF packages, and copy them to package media.

6. Test your LEAF build.

Useful documentation on building packages for LEAF and compiling a LEAF 
kernel are available from the LEAF project Web site. Note that you are not 

Note: You can find out all about Debian on S/390 (including how to install it) by 
going to the Debian GNU/Linux Web site at:

http://www.debian.org

Debian provides an installation method that can be run from any existing Linux 
system. This makes it very easy to install a new Debian system. Look for 
“debootstrap” in the installation documentation.

One thing to watch out for is the process of installing network connectivity. We 
had to download the IBM OCO drivers from the IBM developerWorks site and 
install them manually. We used the kernel 2.4.17 “31-bit no-timer” modules 
from the “August 2001 stream” page.
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restricted to LEAF Bering, as you can port any of the LEAF builds (recall that we 
chose Bering simply because it was based on the Linux 2.4 kernel).

BusyBox insmod for s390
The BusyBox package can provide the functionality of insmod, but the code is 
specific to only two or three platforms (none of which is zSeries). This means that 
we cannot use this code on zSeries.

To avoid this issue, we had to copy the insmod program from our host distribution 
to the LEAF package. This increases the total size of the package compared to 
using the BusyBox code.

In order to truly align z/LEAF with the LEAF builds on other systems, the insmod 
code in BusyBox would have to be ported to s390 (and s390x for 64-bit).

Sharing system resources
One way to further minimize the overall resource consumption of a number of 
z/LEAF routers would be to have them share as much system resource as 
possible. The current IPL process, while it is easy to manage, does create a fair 
amount of duplication. This duplication occurs for two reasons:

� Each z/LEAF router loads kernel and modules into its own storage

� The kernel, initrd and parameter files sit it the router guests’ readers

These issues could be addressed with some development. There is some 
ongoing work in using facilities of z/VM to share storage between guests, for the 
purposes of sharing kernel code. This is ideal for the z/LEAF scenario, since all 
of the routers would run identical kernel code.

To reduce spool usage of the z/LEAF guests, our IPL script could be changed to 
purge the reader after the IPL. However, this introduces a timing dependency 
since we do not want to purge the reader until the guest has finished its IPL 
processing. It would be better to change the leafrc script to purge the reader from 
within the guest itself at an appropriate time.

Tip: The author will be continuing work on the z/LEAF port, so watch for 
updates to this paper.

Note: The topic of using VM facilities to share kernel code among guests was 
introduced in Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, 
SG24-6299. It is a field of ongoing research.
22 Linux on IBM  ̂zSeries and S/390: Porting LEAF to Linux on zSeries



Another method to reduce spool usage would be to use a kernel that IPLs over 
the network (using kernel auto-configuration and a network-accessible root 
device) instead of from an initrd in the VM reader. LEAF supports this 
configuration, but some work would be required to verify its applicability to 
z/LEAF.

How a multi-call binary works
The BusyBox package is one of the best examples of a multi-call binary. This 
concept allows a single executable file to perform the function of dozens of 
different utilities usually packaged as separate files. Multi-call binaries exploit a 
number of operating system features that make it possible for a user of a system 
to not even know that the programs they are running are all, in fact, the same file.

Invoking the BusyBox multi-call binary
There are two ways to invoke BusyBox functions. In the first method, you issue 
the command busybox followed by the name of the function you want to issue. 
For example, busybox ls would perform the directory list function (equivalent to 
the usual ls command). This method requires no administration, but users of the 
program would have to remember that they could not simply perform a function 
by issuing the name of a command.

The second method is to set up a set of symbolic links to the BusyBox 
executable, each with the name of a function implemented by BusyBox. When 
BusyBox is run, it checks the name by which it was invoked, and uses that name 
as the function to be executed. This method requires some administration, as the 
symbolic links must be maintained, but system users can follow the normal 
practice of performing a function by issuing the name of the command.

Restriction: The catch here is with the current broadcast support available in 
zSeries Guest LANs and HiperSockets. Since the protocols used by kernel 
auto-configuration (DHCP, BOOTP, RARP) use MAC-level broadcasts and rely 
on consistent MAC addresses, they do not currently function on Guest LANs. 
If your z/LEAF router was to configure itself over a “real” network via an OSA 
things should work, but in our environment it would not because our z/LEAF 
guests were all attached to QDIO Guest LANs.

We know of a project to provide true broadcast support to Guest LANs, but we 
do not know if this work will provide the consistent MAC address that a z/LEAF 
router would require (for BOOTP and RARP, in particular).
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Figure 6 shows the symbolic links created for ln and ls commands.

Figure 6   BusyBox session

The first ls output shows that /bin/ls is a symbolic link to /bin/busybox. The 
next part of the output (generated by providing an un-implemented option to the 
ls command) shows that the BusyBox binary is being used to process the ls 
command.

Figure 6 also shows us another feature of the BusyBox utility. In the full GNU 
implementation of ls, the -G option is valid (it suppresses the display of the group 
name from the directory list). In the interests of saving space, however, not all of 
the function of the various utilities is provided. This is quite appropriate for 

Tip: Current versions of BusyBox include a parameter that will make BusyBox 
create appropriate symbolic links for all of the functions that the binary 
implements. This means that you can start with an empty directory and have 
BusyBox fill it with the right links for that build of the program.

# pwd
/bin
# ls -l l*
lrwxrwxrwx 1 root root           12 Oct  2 00:11 ln -> /bin/busybox 
lrwxrwxrwx 1 root root           14 Oct  2 00:11 login -> /bin/tinylogin
lrwxrwxrwx 1 root root           12 Oct  2 00:11 ls -> /bin/busybox

# ls -lG
ls: invalid option -- G                                   
BusyBox v0.60.3 (2002.09.26-00:58+0000) multi-call binary 
                                                          
Usage: ls [-1AacCdeFilnpLRrSsTtuvwxXhk] [filenames...]    
                                                          
List directory contents                                   

...

Note: In the first output you can also see login, which is a symbolic link to 
/bin/tinylogin. TinyLogin is a partner program to BusyBox and performs the 
functions of programs like login and sulogin. These functions could have 
been implemented in BusyBox, but for security reasons it is preferred to have 
a separate executable for login processing.
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BusyBox, however, since the idea is to eliminate unused (or little used) functions 
in the interests of reducing the executable size.

Writing a multi-call binary
So, how does a multi-call binary like BusyBox, when invoked using a symbolic 
link, know what function to perform? The answer is that the way a multi-call 
binary program is written differs from a normal program.

The C language is used for most systems programming on UNIX/POSIX 
systems. Programs written in C always have a main() function, which is the first 
part of the program to be executed. The main function is written in a particular 
way, to allow the operating system to pass parameters to it. A typical main() 
function declaration appears here:

int main(int argc, *char argv[])

The parameters passed to the main() function are argc, an integer containing the 
number of parameters passed by the system to the program, and argv, the list of 
the parameters passed. By convention4, there will always be at least one 
parameter passed to the program: the name used to invoke the program. This is 
usually the command typed by the user at the shell prompt to invoke the 
command, and will just about always be the name of the file that contains the 
program. In C notation, this value (the first item in the array called argv) is 
argv[0].

Most single call binaries ignore the contents of argv[0], as the program is 
designed to perform a single task and it is irrelevant what name the system used 
to invoke the program.

A multi-call binary pays attention to this parameter, however, and uses it to 
determine which function to execute. In the case of BusyBox, if argv[0] is the 
same as the executable file name it will use the second item in the parameter list 
(argv[1]) as the name of the function to be executed. If argv[0] is not the same as 
the name of the BusyBox executable file, it will attempt to use the contents of 
argv[0] as the name of the requested function.

4  On UNIX/POSIX systems, at least.

Note: Some programs, for security reasons, do make sure that the command 
issued is correct. This can prevent a malicious user from executing a program 
they should not have access to.
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