
Redbooks Paper

Linux on IBM zSeries and S/390:

VSWITCH and VLAN Features of z/VM 4.4

Introduction and overview
z/VM® Virtual Switch (VSWITCH) is a new z/VM networking function announced by IBM® for
z/VM Version 4 Release 4. This new feature is designed to improve the interaction between
guests running under z/VM and the physical network connected to the zSeries® processor.

IBM also announced IEEE 802.1Q VLAN support for z/VM Virtual Switch, z/VM QDIO Guest
LAN, and z/VM HiperSockets™ Guest LAN, allowing z/VM guests to create and participate in
virtual LAN configurations.

This Redpaper describes how the features can be utilized by Linux guests, and how your
virtual networking configurations can be greatly simplified through the use of these new
functions.

The following topics are covered:

� Introduction to VLANs

� z/VM Virtual Switch (VSWITCH)

� Configuring Linux for VLAN

� Comparing VSWITCH with router-based designs

� High availability using z/VM Virtual Switch

We also describe some of our experiences with using z/VM Virtual Switch and VLANs on
z/VM simulated networks.

Vic Cross
© Copyright IBM Corp. 2003. All rights reserved. ibm.com/redbooks 1

Introduction to VLANs
Under z/VM 4.4, VSWITCH and Guest LAN include the capability to support IEEE 802.1Q
Virtual LANs within the simulated network. This section introduces the concept of Virtual
LANs and some of the terminology involved.

What is a Virtual LAN
A virtual LAN allows a physical network to be divided administratively into separate logical
networks. In effect, these logical networks operate as if they are physically independent of
each other.

The concept can be difficult to describe in words, so Figure 1 shows a diagram to illustrate it.

Figure 1 VLAN scenario

We make the following observations about the network in this diagram:

� Switch 1 is installed at one location, and Switch 2 and Hub are in another (for example, on
separate floors of a building, or in separate buildings).

� Switch ports are represented by dark squares. The larger squares are trunk ports, the
small squares are access ports.

Router

Hub

Switch
2

Switch
1

VLAN10 VLAN12

VLAN11

LINUXA
2 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

� VLAN11 is a network that exists across both locations. This is achieved by defining trunk
ports on both switches to the VLAN, and then connecting the two trunk ports.

� The router is a VLAN-capable device, attached to one of the trunk ports. The correct
definitions in the router will provide a routing path between VLAN10 and VLAN12, and
between either of these networks and the WAN (represented by the cloud). This is usually
done by defining a virtual network device against the physical port on the router, linking
that virtual interface to the VLAN, and enabling the interface for routing.

� VLAN11 has no access to any other VLAN, or the WAN. Even though VLAN11 shares
access to trunk ports in both switches with VLAN12, the VLAN architecture prevents traffic
from flowing between the two networks.

If routing to VLAN11 is required, the Switch 1 trunk port to the router could be included
into VLAN11 and a virtual interface for VLAN11 defined in the router.

� The only machines in the entire network that are permitted to access the server LINUXA
are those in VLAN11. This is for the same reason that VLAN11 cannot access the external
network: there is no routing path between VLAN11 and the other VLANs.

VLAN standards
Several virtual LAN mechanisms exist; most of them are proprietary and operate on a single
vendor’s equipment.

Port-based VLANs
Port-based VLANs are most often proprietary solutions that function within a single vendor’s
switch hardware. They provide a method of dividing a single network device (the switch) into
separate broadcast domains; how the switch does this internally is platform-specific.

Importantly, end stations have no way to participate in multiple VLANs because the switch
isolates the devices attached to it from the VLANs in the switch.

IEEE 802.1Q VLAN tagging
IEEE 802.1Q defines a standard virtual LAN mechanism that is being implemented across
equipment from many different vendors. It uses a header, called the VLAN tag, added to
packets transmitted over the network. The tag contains information that allows the network to
manage the separation of the different virtual LANs.

Definitions: A trunk port is a port that carries VLAN traffic between VLAN-aware
devices such as switches. Trunk ports provide the connections that carry traffic for more
than one VLAN between the switches that are used to access those VLANs.

An access port is a port that is defined to a single VLAN only. Access ports provide
connections for non-VLAN-aware devices, giving them access to the VLAN
environment. Frames sent on access ports do not have any VLAN information attached.

Attention: VLANs are different from Emulated LANs (ELANs). A VLAN uses the same
frame format as the underlying medium, while an ELAN often uses one network technology
to carry the frames of another. An example of this is Asynchronous Transfer Mode (ATM)
ELAN, which allowed Ethernet and Token Ring traffic to be carried over an ATM backbone
by emulating those frame formats over ATM cells.

Note that VLANs and ELANS should not be confused with the various simulated LAN
technologies we use on zSeries and z/VM!
Linux on IBM ̂zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 3

Cisco Inter-Switch Link VLANs
Cisco Systems has a proprietary VLAN trunking mechanism called Inter-Switch Link (ISL). If
your site uses Cisco networking equipment, ISL VLANs may be in use. ISL VLANs are not
compatible with IEEE 802.1Q VLANs, but Cisco switches provide a function that allows
mapping between ISL VLANs and 802.1Q VLANs.

How IEEE 802.1Q VLANs work
VLAN adds additional information to the data packet. The extra data is referred to as the
VLAN tag. The tag appears immediately after the Ethernet frame header, and before the data
payload of the frame.

The format of the VLAN tag on Ethernet is shown in Figure 2.

Figure 2 VLAN tag format for Ethernet

In most instances, only the Tag Protocol Identifier (TPID) and Tag Control Information (TCI)
fields are used. This gives the impression that the VLAN header is only four bytes. In fact, the
specification defines that additional information can be carried in the tag, including an
Extended Routing Information Field (E-RIF) which would be used in source-routing
environments (the Canonical Format Indicator (CFI) bit in the TCI indicates whether the E-RIF
is present or not).

The three-bit priority field at the start of the TCI can be used by switch equipment to prioritize
frames on different VLANs. On Linux, the vconfig command has parameters that allow the
priority field to be set for the VLAN being defined.

Important: In this document we will investigate the IEEE 802.1Q VLAN only, because this
is the VLAN standard supported under Linux and z/VM. For the remainder of this paper,
when we refer to VLANs, we are specifically referring to IEEE 802.1Q VLANs (unless
stated otherwise).

1 - 2
Octets

3 - 4

E-RIF
(present only if

required)

TPID
(Ethernet
encoded)

TCI Length/Type
field

7
(max 36)

N

priority

C
F

I VID

8 6 5 4 1 8 1

Octets

Bits

1 2
4 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

The VLAN tag is never included in a packet sent to a non-VLAN device. Part of the function of
a VLAN-capable device is to add or remove VLAN tags as required, usually based on the
learned capability of the peer device.

Untagged frames
A device does not have to support VLANs in order for it to join a network that uses them. A
frame generated by a device that is not VLAN-capable is called an untagged frame when it
arrives at the VLAN-capable switch.

The action taken by the switch in this case can vary. The switch can assign a default VLAN
number to be assigned to any untagged frames that enter the switch, or it can tag the frames
with a port-specific VLAN number (providing a function similar to a port-based VLAN).

Connecting to a VLAN
VLAN-capable devices attach to VLANs through the use of virtual network interfaces. Each
VLAN has its own separate virtual interface. The diagram in Figure 3 shows the layered
relationship of the components involved in packet transmission.

Figure 3 Layer diagram for VLAN-capable devices

Note: The VLAN priority is separate from IP priority mechanisms. VLAN priority is used to
prioritize the frames of a VLAN relative to other VLANs, while IP prioritization operates
within the IP layers of routers. Still other prioritization schemes may exist, like the traffic
shaping facilities provided by Linux.

Attention: This diagram is not meant to be a representation of the way that VLANs are
implemented in any particular device. It is a conceptual overview only.

IP Layer

NIC 2NIC 1 NIC 3

vlan21vlan20

eth1eth0 eth2

vlan40vlan30

172.26.15.8

NIC driver

8021q

NIC driver NIC driver

8021q

0.0.0.0
172.26.53.16172.26.56.16

172.26.60.16
172.26.55.16

172.26.59.16

Interface
queues

Source
Addresses

Routing
Linux on IBM ̂zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 5

In Figure 3, eth0 is a non-VLAN device. The IP layer, once a routing decision has selected
eth0 as the interface for the packet to be transmitted on, places the packet onto the queue for
eth0. Because eth0 is non-VLAN, when the packet gets to the front of the queue it is given to
the NIC driver for encoding and transmission on the network with no other action. If the switch
that this interface connects to is VLAN-aware, it must be configured to handle these frames;
see “Untagged frames” on page 5 for more on this.

eth1 is an interface that supports connection to two VLANs, 20 and 21. The virtual interfaces
for these VLANs are vlan20 and vlan21, respectively. As for any other interface, packets may
arrive at the queues for these interfaces as a result of the IP layer making a routing decision.
For VLAN interfaces, however, the kernel VLAN code processes the packet by adding the
VLAN tag and passing the tagged packet to the driver for the interface that the VLAN belongs
to.

The IP address associated with eth1 is a dummy address (that is, an address which does not
match a real network configuration). Figure 3 shows eth1 configured as 0.0.0.0, which is
commonly used for this purpose because it can never be used as a source address. The
practical effect of this is that the IP interface eth1 will not generate any traffic, because the IP
layer will not direct any packets to that interface for transmission (nor will the network send
any packets to that address). This means that switch port does not need any configuration to
support untagged frames (it can operate purely as a trunk port).

eth2 has an almost identical configuration to eth1, except for the address associated with it.
Here, a valid IP address is configured on the eth2 interface. When the IP layer selects
172.26.53.16 as a source address, the packet is not processed by VLAN, resulting in an
untagged frame being transmitted. The switch that eth2 is connected to must know what to do
with such frames arriving when tagged frames are expected. The 802.1Q specification refers
to this kind of port as a hybrid port, it can act both as a trunk port to handle tagged frames,
and as an access port to handle untagged frames.

VLAN support on z/VM Guest LAN
With z/VM 4.4, a simulated QDIO or HiperSockets network can now provide IEEE 802.1Q
VLAN function to attached guests. The Guest LAN simulation works in exactly the same
manner as in previous z/VM releases, except that it can pass VLAN tagged frames between
guests that are VLAN-aware. When using VLANs over Guest LAN, the Guest LAN simulation

Note: In Linux, when VLAN interfaces are configured, the physical interface the VLAN is
associated with must be provided as part of the configuration. This allows the VLAN
support to send the packet to the correct interface queue.

Note: Some equipment (such as Cisco switches/routers) specify a default VLAN used for
any interfaces that do not have an explicit VLAN ID coded. This means that the device
does not generate any untagged frames when communicating with VLAN-aware devices.
Linux, on the other hand, can generate untagged frames in the way described for eth2.

The use of untagged frames in a VLAN environment can result in unexpected connectivity
problems and potential security issues. To avoid this, always ensure that network traffic
specifies a VLAN ID. You can do this by using a dummy address on the base interface, as
illustrated with eth1 in Figure 3 on page 5. An example of what can happen with untagged
frames in a VLAN environment is shown in “VLAN Isolation with untagged frames” on
page 32.
6 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

does not interfere with the VLAN tagging of network frames. This means that a guest attached
to a Guest LAN must be VLAN-aware in order to participate in the VLAN network.

Another feature added to z/VM simulated HiperSockets with z/VM 4.4 is broadcast capability.
This means that guests attached to a simulated HiperSockets can now use applications and
protocols that use IP broadcast, in addition to the IP multicast support added in a previous
release.

z/VM Virtual Switch (VSWITCH)
z/VM Virtual Switch is an extension of the Guest LAN simulated networking function provided
in earlier releases of z/VM. VSWITCH provides a function that operates much like a Layer 2
switch within z/VM. To z/VM guests, it operates almost exactly the same as a z/VM 4.3 QDIO
Guest LAN, with two important exceptions:

� Direct external network access via OSA Express
� IEEE 802.1Q VLAN support

We describe various functions provided by the new support in the following sections.

External network access using VSWITCH
VSWITCH provides a way to link an external network to guests under z/VM via an OSA
Express, without the need for a routing function. Guests attached to the VSWITCH appear to
be attached to the LAN that the OSA Express is attached to. This allows you to configure your
guests with IP addresses from the network that the OSA Express connects to, without the
need to configure Proxy ARP in a z/VM TCP/IP service machine.

z/VM Virtual Switch can also function in a disconnected mode, where either an OSA port is
not associated, or the associated OSA does not flow traffic to the external network. It might
seem that a VSWITCH without an OSA is just the same as a QDIO Guest LAN, but this is not
the case; the VSWITCH provides additional control over VLAN membership and handling of
untagged frames (refer to “VLANs on z/VM Virtual Switch” on page 9 for more detail).

TCPIP service machine “controllers”
z/VM Virtual Switch uses a TCPIP service machine to act as the interface to an OSA Express
network connection. This TCPIP service machine acts as a controller for the VSWITCH, and
manages the operation of the OSA Express adapter ports the VSWITCH uses.

Important: At this time, the HiperSockets microcode on zSeries processors does not
support VLAN-tagged frames. VLAN support applies only to simulated HiperSockets on
z/VM 4.4.

Important: Avoid using the term “bridging” to describe this function. While this function
looks like it bridges between a Guest LAN and the Ethernet, bridging usually refers to the
copying of an entire Layer 2 frame from one network to another (performing whatever
frame translation is required on the way, such as in the case of translational bridging
between Token Ring and Ethernet). VSWITCH will handle only IP packets, and as such
does not qualify as a full Layer 2 network bridge.

Because QDIO is an IP-only transport anyway, this is not a limitation. We mention this
mainly so that you don’t incorrectly refer to VSWITCH as a bridge when talking to the
network staff.
Linux on IBM ̂zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 7

In order for a VSWITCH to provide connectivity to a LAN, at least one TCPIP service machine
must be configured to be a controller (this configuration is described in “Planning for
VSWITCH” on page 10). The configuration allows the TCPIP stack to connect to the system
service that manages VSWITCH connections. The TCPIP service machine is then able to act
as a controller for a VSWITCH OSA connection.

Using the CP QUERY CONTROLLER command, you can see the TCPIP stacks that can serve as
VSWITCH controllers. Example 1 shows the output from the command.

Example 1 CP QUERY CONTROLLER

q controller
CONTROLLER TCPCTL1 Available: YES VDEV Range: *
 SYSTEM TESTSW3 Controller: *
CONTROLLER TCPCTL2 Available: YES VDEV Range: *
Ready; T=0.01/0.01 17:12:16

When a VSWITCH with an OSA RDEV (real device) is defined, or when an OSA RDEV is
added for an existing VSWITCH, the *VSWITCH system service determines which TCPIP
service machine is to be used as the controller for that OSA. At least one controller TCPIP
service machine must be eligible; otherwise, the request to add the OSA to the VSWITCH will
fail.

If a CONTROLLER was specified on the CP DEFINE VSWITCH or CP SET VSWITCH command,
and that TCPIP service machine is eligible to act as a controller, that stack will act as the
controller. If no CONTROLLER parameter was given, or CONTROLLER * was specified, the
*VSWITCH system service scans its list of eligible TCPIP service machines for the one with
the fewest current VSWITCH connections and selects that service machine as the controller.

Once the controller stack for a VSWITCH has been selected, the *VSWITCH system service
instructs it to activate the OSA port specified using the configuration given in the CP DEFINE
VSWITCH or CP SET VSWITCH commands.

When a TCPIP service machine is controlling an OSA Express port for a VSWITCH, you can
see the device and link entries created for the VSWITCH in the output of the NETSTAT
DEVLINKS command. Example 2 shows the results of this command.

Example 2 NETSTAT DEVLINKS output on a TCPIP VSWITCH Controller

netstat devlinks
VM TCP/IP Netstat Level 440

Device VSWITCHDEV Type: VSWITCH-IUCV Status: Connected
 Queue size: 0 CPU: 0 IUCVid: *VSWITCH Priority: B
 Link VSWITCHLINK Type: IUCV Net number: 1
 BytesIn: 4355 BytesOut: 4489

Device TESTSW32320DEV Type: VSWITCH-OSD Status: Ready
 Queue size: 0 CPU: 0 Address: 2320 Port name: OSA2320

Important: The controller TCP/IP service machine is not involved in data transfer between
the LAN and the guests on the VSWITCH.

Important: You must not define the OSA Express port to your controller TCPIP service
machine in its PROFILE TCPIP. The *VSWITCH system service dynamically adds the
required definitions to the controller.
8 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

 Router Type: NonRouter Arp Query Support: Yes
 Link TESTSW32320LINK Type: QDIOETHERNET Net number: 0
 Broadcast Capability: Yes
 Multicast Capability: Yes
Ready; T=0.01/0.01 10:31:55

Here, you can see two extra devices added that support the VSWITCH:

� An IUCV link called VSWITCHDEV, created when the stack initializes with VSWITCH
CONTROLLER ON specified in PROFILE TCPIP. This is the connection to the *VSWITCH
system service. The link type shown here is VSWITCH-IUCV.

� The OSA Express port device, called in this case TESTSW32320DEV. This name is
derived from the name of our VSWITCH (TESTSW3) and the virtual device number of the
OSA.

Network data frames destined for guests attached to a VSWITCH are handled entirely by the
CP VSWITCH buffer management logic. Frames are transferred directly between the OSA
Express buffers and the guest on the VSWITCH. Likewise, outgoing frames are transferred by
the VSWITCH code from the guest’s virtual NIC to the OSA Express. The controller TCP/IP
service machine is not involved in this data transfer.

Sharing an OSA Express port with z/VM Virtual Switch
The OSA Express port you use with your z/VM Virtual Switch can be shared between the
VSWITCH and other guests (or LPARs), or even with other VSWITCHes. As long as you do
not set PRIROUTER on your VSWITCH definition, you can share it with other images without
restriction (even if one of the systems you are sharing with requires PRIROUTER).

You do not need to set PRIROUTER on a VSWITCH for normal operation. The only time to
set PRIROUTER for a VSWITCH is if you have a guest attached to the VSWITCH that is
providing a routing function for systems attached to another network.

There are additional considerations for OSA Express port sharing when multiple OSA
Express ports are used for backup. See “Multiple OSA Express ports” on page 21 for more
information.

VLANs on z/VM Virtual Switch
z/VM Virtual Switch supports IEEE 802.1Q VLANs. This means that guests attached to a
VSWITCH under z/VM 4.4 can participate in VLAN networking. When an OSA Express is
attached to the VSWITCH, VLAN operations extend between the VSWITCH and the LAN via
the OSA Express.

On a VSWITCH, CP will act as a VLAN-aware switch and perform VLAN tag processing
according to configuration. This means that the guest need not be VLAN-aware in order to
communicate to a specific VLAN. In the case where the guest is linked to a VLAN via
VSWITCH configuration, VSWITCH will add the correct VLAN tag to frames as they leave the
guest and remove it when the guest receives frames. If the configuration of the VSWITCH
does not specify a VLAN ID for that guest, the frames will be sent and received untagged.

Note: This means that the guest does not require any configuration for VLAN support.
Guests that do not support VLAN will send and receive frames on the VLAN that CP has
been configured to connect them to.

VSWITCH can provide many options for controlling which guests receive frames on which
VLANs. This is called VLAN filtering, and is described in “VSWITCH VLAN filtering”.
Linux on IBM ̂zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 9

If an OSA Express is associated with your VSWITCH, this OSA Express port will function like
a trunk port with access to all of the VLAN IDs appearing in the VSWITCH. When you
configure the port on the LAN switch the OSA Express connects to, you can choose to make
that port belong to any of the VLAN numbers configured in the VSWITCH. This will extend
those VLANs out of the VSWITCH into the LAN; if the VLAN IDs already exist in the LAN, the
guests on the VSWITCH will now be present on the same VLAN.

VLAN isolation
VLAN-capable devices automatically manage the separation of traffic between VLANs. Only a
virtual adapter “attached” to the correct VLAN will receive packets on that VLAN.

VSWITCH VLAN filtering
VSWITCH provides an additional feature that provides further isolation. Using the CP SET
VSWITCH command, you can control VLAN access at the VSWITCH. This is analogous to
defining the VLAN membership of a trunk port on a LAN switch.

You can nominate the VLAN IDs that a guest is allowed to “see” when you use the CP SET
VSWITCH command to grant access to a VSWITCH. Only frames tagged with those VLAN IDs
are passed to the guest.

The rules that apply to packet delivery on a z/VM Virtual Switch are explained in the “Working
with Virtual Networks” chapter of z/VM Virtual Machine Operation, SC24-5955.

Using z/VM Virtual Switch
In this section we describe how we used VSWITCH on our system. We describe the planning
and configuration steps we took to enable VLAN communication both within our z/VM system
and to VLANs outside it.

Planning for VSWITCH
Before you can start using a VSWITCH, you must perform several tasks.

Attention: There appears to be one exception to this: regardless of the VLAN IDs
specified, untagged frames from within the VSWITCH are always passed to the guest if the
destination IP address matches an address that the guest has configured. This could result
in unauthorized access to different network resources.

We recommend that you do not use untagged frames in your environment. For
VLAN-unaware guests, use the CP SET VSWITCH command to grant the guest access to
one VLAN ID only. For VLAN capable systems, always configure the base interface with a
dummy IP address as described in “Connecting to a VLAN” on page 5.

Important: The tasks described here are required only if you are using VSWITCH to
connect to an external network via OSA Express. If you are using VSWITCH only as a
Guest LAN with VLAN filtering, there are no preparation tasks and you can go straight to
“Configuring VSWITCH” on page 11.
10 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Update the directory entry for CONTROLLER TCPIPs
Any TCP/IP service machine that you want to operate as a controller for a VSWITCH must
have the IUCV *VSWITCH statement added to its directory entry. This authorizes the TCP/IP
service machine to connect to the *VSWITCH system service.

Add VSWITCH CONTROLLER to PROFILE TCPIP
For a z/VM TCP/IP service machine to initialize as a candidate to control an OSA for a
VSWITCH, the VSWITCH CONTROLLER statement must appear in the PROFILE TCPIP for
that stack.

Configuring VSWITCH
Once your z/VM system is prepared, you can start using VSWITCH.

Define the VSWITCH
A VSWITCH is created using the CP DEFINE VSWITCH command from a z/VM Class B userid.
The full syntax of the command is explained in “DEFINE VSWITCH” on page 39. The key
parameters (the ones you are most likely to use) of the command are as follows:

switchname This is the name of the VSWITCH being created. This name is used to
identify this VSWITCH in later commands.

RDEV rdev The real device address of the OSA Express adapter to be associated
with this VSWITCH. Only the first device address from the OSA port’s
address triple is entered here.

You can specify up to three addresses at this parameter. This is used
to provide backup OSA Express connections in case the first OSA
fails.

The special value NONE is used to create a Virtual Switch that is not
associated with an OSA Express connection.

PORTname portname The port name to be used when opening the OSA Express adapter.
This works the same way as for normal use of the OSA Express: when
sharing the OSA, all LPARs or guests must use the same name to
open the OSA port.

If you are specifying more than one RDEV, you must specify more than
one portname.

The following shows the definition of a z/VM Virtual Switch called TESTSW3, with two OSA
Express ports available.

define vswitch testsw3 rdev 2320 2180 portname osa2320 osa2180
VSWITCH SYSTEM TESTSW3 is created
Ready; T=0.01/0.01 20:13:02
HCPSWU2830I VSWITCH SYSTEM TESTSW3 status is ready.
HCPSWU2830I TCPCTL1 is VSWITCH controller.

Connecting a guest to VSWITCH
Guests connect to a VSWITCH using a simulated QDIO NIC. This works exactly the same
way as it does for Guest LAN. There is an extra step involved with VSWITCH, however:

Important: PORTNAME (and its operands) must be the last parameter specified on the
DEFINE VSWITCH command (this applies to the SET VSWITCH command also).
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 11

guests attaching to a VSWITCH must be granted access to the VSWITCH using the SET
VSWITCH command.

Granting access to a VSWITCH using SET VSWITCH
Access to the VSWITCH is controlled by the GRANT and REVOKE options of the CP SET
VSWITCH command. The GRANT option allows you to restrict the guest to particular VLANs,
or allow the guest access to any VLAN (the default).

set vswitch testsw3 grant lnxsu6 vlan any
Command complete
Ready; T=0.01/0.01 14:38:01
set vswitch testsw3 grant lnxrh2 vlan 201
Command complete
Ready; T=0.01/0.01 14:38:10

The command syntax of the CP SET VSWITCH command is shown in “SET VSWITCH” on
page 39.

Defining a simulated NIC
A simulated NIC is defined on a guest using the CP DEFINE NIC command.

This example shows the use of the CP DEFINE NIC command to define a simulated QDIO NIC
at device address 6100.

define nic 6100 qdio
NIC 6100 is created; devices 6100-6102 defined
Ready; T=0.01/0.01 13:46:11

Attaching the simulated NIC to the VSWITCH
Once your simulated QDIO NIC is created, connect your simulated NIC using the CP COUPLE
command. Here is an example of using the command to connect the simulated NIC at device
address 6100 to a VSWITCH called TESTSW3.

couple 6100 to system testsw3

Configuring Linux for the VSWITCH connection
Once your userid has a simulated NIC defined and connected to the VSWITCH, you can IPL
your Linux installation. Configuring your Linux system for attachment to a VSWITCH is done
in the same way as for a QDIO Guest LAN connection.

Important: When a guest’s access to the VSWITCH is restricted to a single VLAN,
untagged frames will still be delivered to that guest. Refer to “VSWITCH VLAN filtering” on
page 10 for information on how VSWITCH controls frame flow.

Note: A simulated NIC of type QDIO can be connected to either a QDIO Guest LAN or a
VSWITCH.

Refer to the section on creating a simulated NIC in Linux on IBM ^ zSeries and
S/390: Large Scale Linux Deployment, SG24-6824 for more information on how to define a
simulated NIC. Also, an excellent new chapter called “Working with Virtual Networks” is
available in z/VM Version 4.4 Virtual Machine Operation, SC24-6036.
12 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

NICDEF directory control statement
NICDEF is a new directory control statement added to z/VM Directory Maintenance
(DirMaint) with z/VM 4.4. It provides a new way to define simulated NICs as part of a guest’s
directory definition. The options available on the DIRMAINT NICDEF command are shown in
“DIRMAINT NICDEF” on page 40.

NICDEF provides some additional options not available when you use the SPECIAL directory
control statement. Most relevant to Linux guests is the MACID parameter. This allows the
MAC address allocated to a simulated NIC to be defined statically, rather than dynamically
defined by CP when the NIC is created. This would be useful if you are using a protocol that
relies on the MAC address of a host, such as DHCP. MACID specifies the last six
hexadecimal digits of the MAC address; the first six are set using the new MACPREFIX option
on the VMLAN statement in SYSTEM CONFIG.

Configuring Linux for VLAN
This section describes the process to start using VLANs in your Linux systems, whether on
VSWITCH, HiperSockets Guest LANs, or OSA Express adapters that support VLAN. First we
describe the steps that take place to start a VLAN interface, then we show you how you can
do the steps automatically using the VLAN support included in SuSE SLES8.

VLAN configuration process on Linux
To connect to VLANs from a Linux system, you need the following:

� Linux kernel 2.4.14 or higher, or an earlier kernel with the IEEE 802.1Q VLAN patches.

� A user-space utility called vconfig, to configure the VLAN virtual interfaces.

The steps involved in starting a connection to a VLAN from a Linux guest are:

� Configure the VLAN.
� Load the IEEE 802.1Q VLAN module.
� Activate the physical interface.
� Configure a VLAN interface.
� Bring up the VLAN interface.

Configure the VLAN
If your VLAN configuration exists entirely within a VSWITCH or a z/VM simulated
HiperSockets, there is no VLAN configuration required. On a VSWITCH, however, you do
need to ensure that your guest has authority to use the VLAN you intend to use. Use the CP
QUERY VSWITCH command to check VLAN authority, and the CP SET VSWITCH command to
change the guest authorization.

Note: The IBM Redbook Linux on IBM ^ zSeries and S/390: Large Scale Linux
Deployment, SG24-6824 gives a description of how to set up Linux for Guest LAN
attachment (in the section “Configuring a VM Guest LAN in a Linux guest”).

Note: On our SuSE systems, not only was the kernel already prepared to support 802.1Q
VLANs (the module 8021q.o was present), but the vconfig program was available in a
prepared RPM package that came with the distribution (the vlan package).
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 13

If you will be connecting to a VLAN in your switch hardware, either directly or through a
VSWITCH, ensure that the switch configuration supports the VLAN you intend to connect to.
Refer to “Switch configuration” on page 24 for aspects of switch configuration that you may
need to investigate.

Load the IEEE 802.1Q VLAN module
VLAN support is usually built as a module called 8021q.o. Use the insmod or modprobe
command to load the module before attempting any operations to configure or use VLANs.
The following shows how to load the module using the modprobe command:

modprobe 8021q

You do not need to load a module if your kernel includes the VLAN support in the kernel
(rather than in a module).

When the module is loaded, you will see the following messages in your system log or dmesg
output:

802.1Q VLAN Support v1.7 Ben Greear <greearb@candelatech.com>
All bugs added by David S. Miller <davem@redhat.com>

Activate the physical interface
The physical interface used to connect to a VLAN must be activated prior to configuring any
VLAN interfaces. If you are going to use a default VLAN or generate untagged frames, you
can configure the interface in the same way as usual.

If you are not going to be using the physical interface to attach to an IP network (that is, the
interface simply gives you a connection to the network, and al your IP addresses and network
traffic will be associated with VLANs) you configure a dummy’ IP address on the physical
interface. You can use the address 0.0.0.0 as a valid dummy address (in fact, the IP
configuration scripts seemed to recognize what we were doing when we used 0.0.0.0, and
our configuration was very easy).

On SuSE SLES 8, we used the ifcfg-ethX file in /etc/sysconfig/network to define the address
for our base interface. Even when we used a dummy address, the network configuration
scripts worked correctly.

Configure a VLAN interface
You create your VLAN virtual interface using the vconfig command. Apart from creating and
deleting virtual interfaces, the vconfig command allows you to control the operation of the
VLAN interfaces. You can specify the priority of packets on your VLANs, changing the relative
priority of packets for different VLANs.

You can also change the default way in which the virtual devices are named. By default, the
8021q.o module uses the DEV_PLUS_VID_NO_PAD format. Some programs, however, have a
problem with the period (.) character in the interface name, so either the VLAN_PLUS_VID or
VLAN_PLUS_VID_NO_PAD formats must be used.

Important: If the guest is already authorized to a VLAN and you need to change to a
different VLAN, or you need to set or remove VLAN ANY authority, you can only change
this by first revoking the current authority and granting the new authority.
14 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Refer to “vconfig” on page 40 for an explanation of the vconfig command syntax. The
following command will create a virtual interface for VLAN 10 against the eth0 interface:

vconfig add eth0 10

If the default VLAN name format of DEV_PLUS_VID_NO_PAD is set, the command would create a
VLAN virtual interface called eth0.10.

Bring up the VLAN interface
The VLAN interface added using vconfig supports the usual interface configuration
commands such as ip and ifconfig. You configure the virtual interface in the same way as
any other network interface on your system. The following command will configure the VLAN
10 virtual interface on eth0 with the IP address 192.168.10.29:

ifconfig eth0.10 192.168.10.29 netmask 255.255.255.0 up

If the iproute2 utility is installed on your system, you can use the ip command to configure the
interface instead. You would use these ip commands to get the same result as the ifconfig
command above:

ip addr add 192.168.10.29/24 dev eth0.10
ip link set eth0.10 up

Configuring VLANs on SuSE SLES8
Since VLAN support is a fairly recent addition to Linux, configuring VLANs has been a
manual process because the network configuration scripts provided with most distributions
were not “VLAN-aware”. SuSE has set up their network scripts, however, so as long as you
can use the right names for your VLAN interfaces, the system will set up your VLAN interfaces
for you.

Important: One program that has a problem with the dot in the interface name is iptables,
the interface to the netfilter code in the Linux kernel. The iptables program is used to set up
firewall and network address functions in your Linux system.

If you plan to use any iptables commands against your VLAN interfaces, you will not be
able to use the default name format.

Tip: The vconfig usage text (shown in “vconfig” on page 40) shows you what your VLAN
interface names will look like for different settings of the VLAN name format.

Tip: The iproute2 utility by Alexey Kuznetsov, which provides the ip command, allows a
great degree of flexibility in configuring the Linux IP stack. Many distributors now include it
by default, and have rewritten their network configuration scripts using iproute2 instead of
the traditional IP configuration commands such as route and ifconfig. In addition,
iproute2 provides the facilities to control Linux advanced routing features like multiple route
tables, traffic shaping, and policy routing.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 15

Fixing the VLAN script
Unfortunately you may find a bug in the script used to configure the VLAN interface. In the
/etc/sysconfig/network/scripts/ifup-802.1q script, the path to the vconfig executable may be
incorrectly specified as /sbin/vconfig instead of /usr/sbin/vconfig. This will cause the script to
fail.

Until SuSE has a fix for this, you will have to update the script to show the correct path to the
vconfig program.

Configuring your VLANs
To configure a VLAN on SLES8, create a file in the /etc/sysconfig/network directory called
ifcfg-vlanX, replacing X with the VLAN number you are configuring. The contents of this file
should be similar to Example 3.

Example 3 ifcfg-vlan example

ETHERDEVICE='eth4'
BOOTPROTO='static'
STARTMODE='onboot'
IPADDR='192.168.201.109'
NETMASK='255.255.255.0'
NETWORK='192.168.201.0'
BROADCAST='192.168.201.255'

The ETHERDEVICE field is additional for VLAN configurations. This is used to instruct
vconfig which physical interface to configure the VLAN on. The STARTMODE field works the
same as for physical interfaces; this allows you to add your VLAN interfaces to your network
configuration and have them activated automatically at boot-time.

Once you have prepared your ifcfg file, you start your VLAN interface by issuing the ifup
command with the VLAN interface name as the parameter. The following command will start
the vlan10 interface:

ifup vlan10

Restriction: In addition to the naming issue, the configuration requires that the vconfig
per_kernel option be set to on. This means that VLAN numbers have scope across the
kernel, rather than just per interface. If you need the ability to have the same VLAN
numbers on different real interfaces representing different VLANs, you will not be able to
use SuSE’s configuration method and will have to create your own.

VLAN numbers should be allocated universally, so it is unlikely that this restriction will
cause a problem for you.

Important: The name of the ifcfg file you create is critical. If the file is named incorrectly (or
more accurately: if the name you pass to the ifup script, which has to match the last part
of the ifcfg file name, is not correct), the SuSE network configuration processing will not
call the correct script to configure the interface.

As an example, if you are configuring VLAN ID 10, the details shown in Example 3 would
be contained in a file called /etc/sysconfig/network/ifcfg-vlan10.
16 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Testing the configuration
Once your virtual interface is up, you can use it to communicate with other guests on the
same VLAN. If your VSWITCH is linked through an OSA to stations on the LAN, and your
LAN is configured with the same VLAN, you can now reach LAN devices on that VLAN as
well.

Utilities
The ping command is a simple command you can use to verify connectivity. You can also use
traceroute, a utility that will show you the path to other devices in the network.

Using traceroute, you can verify that your VLAN configuration is working as you expect. For
example, two guests on the same VSWITCH but configured on separate VLANs can only
reach each other via a router, and using traceroute will help you verify this. An example
traceroute command execution is shown in Example 4.

Example 4 traceroute command example

traceroute 192.168.200.109
traceroute to 192.168.200.109 (192.168.200.109), 30 hops max, 40 byte packets
 1 192.168.201.1 0.677 ms 0.805 ms 0.762 ms
 2 192.168.200.109 1.098 ms 1.026 ms 1.240 ms

Making your VLAN configuration persistent
If you use the supplied configuration processes on SuSE SLES8 (discussed in “Configuring
VLANs on SuSE SLES8” on page 15), you do not need to do anything else to have your
VLAN connections start at reboot time. If you included “STARTMODE=onboot” in the
ifcfg-vlanX file for your VLAN interface, the system network initialization scripts will do all the
VLAN configuration for you at system startup.

If you are not using SuSE SLES8, or you cannot use SuSE’s process because of your
configuration requirements, you will have to write a script that implements the steps outlined
in “VLAN configuration process on Linux” on page 13.

Comparing VLANs on VSWITCH and Guest LAN
Configuring Linux guest connections to VLANs on a z/VM Guest LAN is identical to the
process used on VSWITCH. The difference between Guest LAN and VSWITCH is in the
handling of untagged frames.

In VSWITCH, if a guest authorized to connect to only one VLAN generates untagged frames,
the VSWITCH tags them with the VLAN ID the guest is authorized to. In fact, the VSWITCH
applies this VLAN tag to all the frames the guest generates, restricting that guest to
generating frames for its authorized VLAN only1.

Important: The physical interface (the interface specified in the ETHERDEVICE
parameter in the interface configuration file) must be activated in order for this to function.
See “Activate the physical interface” on page 14 for information on this.

Note: In “z/VM Virtual Switch failover” on page 28, we use the -R switch on the ping
command to display the route taken both to and from the destination host. This can provide
a little more information than traceroute. Refer to the discussion there for more details.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 17

The z/VM Guest LAN does not process or modify VLAN tags in any way. No VLAN filtering
takes place. Guests that are VLAN-aware must be configured for matching VLAN IDs in order
to communicate on their VLAN.

Frame processing for VLAN-aware and non-VLAN-aware guests occurs as follows:

� When guests that are VLAN-aware put tagged frames onto the Guest LAN, the Guest LAN
will carry those frames unaltered and other guests that are VLAN-aware will be able to
process them. Non-VLAN-aware guests will not be able to process these frames.

� Guests with no VLAN support generating untagged frames will not have their frames
modified either, and both VLAN-aware and non-VLAN-aware guests will be able to
process the packets (as long as the VLAN-aware guests have a network definition that
supports untagged frames).

Comparing VSWITCH with router-based designs
Figure 4 shows a virtual network configuration based on Linux virtual routers. This
configuration provides a high level of availability through its use of multiple router guests,
multiple OSA ports, and dynamic routing facilities.

Figure 4 Connectivity based on Linux routers

1 This is similar to the configuration of a “default VLAN” on some LAN switches.

Note: The Redpaper Linux on IBM ^ zSeries and S/390: Virtual Router
Redundancy Protocol on VM Guest LANs, REDP3657, will give you more information
about this configuration.

z/VM

OSPF

VRRP
Virtual IP: 192.168.42.1

Master Backup

sA sB sC sD

rA rB

Guest LAN
192.168.42.0/24

.10 .11 .12 .13

.8 .9

Switch

Router

Switch

Router

OSAOSA
18 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

While this configuration provides excellent availability for the Linux guests, it has a few
drawbacks in a z/VM environment.

� OSA ports must be activated with the PRIROUTER setting. This stops you from sharing
an OSA ports between multiple routers.

� The Linux guests consume memory, disk and CPU resource just by being active.

� Running the networking protocols that provide the routing failover (VRRP, OSPF)
generates network traffic and consumes processor resource.

With VSWITCH, a highly available network configuration can be made without the resource
overhead of virtual routers. Figure 5 shows an example configuration based on VSWITCH
that provides a high degree of availability.

Figure 5 Connectivity based on VSWITCH

By using VSWITCH in this configuration, you remove the overhead of your Linux router
guests, as well as the network traffic generated by the protocols used to provide high
availability in the network. Importantly, the function of providing network availability is moved
into network components, where it can be more consistently managed with the rest of the
enterprise network function.

Note: In Figure 5, we show the two network routers participating in VRRP to provide a
redundant gateway service for the Linux guests. While we strongly recommend that you
use some kind of redundant gateway facility, it does not have to be VRRP. Other such
protocols, like Cisco Hot Standby Router Protocol (HSRP), may be just as effective in your
environment.

Also, not shown here is that the routers will be participating in the dynamic routing
environment used for the rest of the LAN.

z/VM

VRRP
Virtual IP: 192.168.42.1

Master Backup

sA sB sC sD

VSWITCH
192.168.42.0/24

.10 .11 .12 .13

Switch

Router

TCPIP1 TCPIP2

OSA

Switch

Router

OSA
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 19

Migrating to z/VM Virtual Switch
Changing your current guest networking configuration over to z/VM Virtual Switch can be
achieved with a minimum of reconfiguration effort.

QDIO Guest LAN to VSWITCH
If you are currently using persistent QDIO Guest LANs in your z/VM environment, you can
simply replace them with a z/VM Virtual Switch. All your guests will connect to the VSWITCH
in the same way as the Guest LAN they connect to now.

If your current Guest LAN is defined as UNRESTRICTED, you will need to add appropriate
CP SET VSWITCH commands to give your guests authority to connect to the VSWITCH. If
your current Guest LAN is RESTRICTED, you simply change your existing CP SET LAN
commands into CP SET VSWITCH commands.

HiperSockets Guest LAN to z/VM Virtual Switch
This migration is a little more complex, because you cannot use the same simulated NICs for
HiperSockets Guest LAN and VSWITCH. You will need to change the NIC definition for the
guest from TYPE HIPER to TYPE QDIO. This change will require a corresponding change in the
guest’s TCP/IP configuration.

For this migration, we recommend setting up the new VSWITCH in parallel with the existing
HiperSockets Guest LAN. Define the new simulated NIC to the guest, and complete the
configuration of the new VSWITCH interface while the HiperSockets Guest LAN is still
available. Alternatively (if you’re comfortable with the Linux console), you can prepare new
configuration files in advance, switch the guest’s NIC definition to QDIO, and copy the new
configuration files into place from the console.

vCTC or IUCV to z/VM Virtual Switch
Migrating either vCTC or IUCV topologies to z/VM Virtual Switch is a complicated process,
because the topology of the guest connectivity changes from a set of point- to-point
connections to a single shared-access transport facility.

Setting up the VSWITCH and simulated NICs in advance is definitely recommended for this
migration.

Restriction: If you use transient Guest LANs in your current configuration (LANs defined
and owned by z/VM general users instead of SYSTEM), you will need to consider changing
to persistent LANs. You cannot define a transient z/VM Virtual Switch; they are all owned
by SYSTEM, and the CP commands that define and modify them can be run by Class B
users only.

Important: For all migrations to z/VM Virtual Switch, remember to verify that the guest’s
routing definitions are correct after the change is made. For example, if your VSWITCH
connects to an OSA Express, the default route for the guests should specify a LAN router
rather than a z/VM TCP/IP service machine or Linux router guest.
20 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Virtual NIC definition
If you currently define your guests’ Guest LAN connections using the SPECIAL directory
control statement, consider using the new NICDEF statement instead. NICDEF provides
additional parameters to define simulated NICs, including:

� Specifying the virtual channel path identifier (CHPID) the simulated NIC will use (most
useful for simulated HiperSockets NICs for use on z/OS guests)

� Specifying the MAC address for the simulated NIC

NICDEF is discussed in “NICDEF directory control statement” on page 13. The syntax of the
DIRMAINT NICDEF command is shown in “DIRMAINT NICDEF” on page 40.

High availability using z/VM Virtual Switch
z/VM Virtual Switch can be used to create highly-available connectivity for your Linux guests
under z/VM. You can make access to your z/VM guests highly reliable by configuring the
redundancy features of VSWITCH combined with LAN-based high availability.

You can define multiple OSA Express adapters for hardware redundancy, and multiple TCPIP
controller service machines for some software redundancy. As long as your LAN switch is
configured appropriately, you can ensure that your z/VM guests stay linked to the external
network when failures occur.

Planning redundant configuration for VSWITCH
Some planning is required to ensure that your VSWITCH connectivity will survive outages.

Multiple CONTROLLER TCP/IP service machines
If you have only one TCPIP service machine and it is logged off or fails, all your external
network connectivity via a VSWITCH fails also. For this reason, it is highly recommended to
have at least one additional TCPIP service machine configured as a controller to provide
continued connectivity.

When you have more than one TCP/IP service machine running in your z/VM system, these
stacks can all be set up to become a VSWITCH controller. Using the CP QUERY CONTROLLER
command, you can see the TCPIP stacks that can serve as VSWITCH controllers. Example 6
on page 24 shows the output from the command, and shows that our system currently has
three TCPIP service machines ready to operate as controllers.

Multiple OSA Express ports
When you specify more than one RDEV on the CP DEFINE VSWITCH command, redundant
OSA ports are made available to your VSWITCH in case network access through the first port
is impaired.

You can specify multiple OSA Express ports using extra values on the RDEV parameter to the
CP DEFINE VSWITCH and CP SET VSWITCH commands. Up to three RDEV values can be

Tip: z/VM TCP/IP stacks used as controllers do not need to have any connectivity defined
of their own. They do not need DEVICE and LINK statements, or HOME addresses, or the
like. This means that you can set up additional TCPIP service machines with no specific IP
configuration to serve as backup controllers for your VSWITCH configuration, with little
configuration or management overhead. We describe a way of doing this in “Configuring
controller TCP/IP service machines” on page 22.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 21

provided, meaning up to three OSA ports can be provided to connect the VSWITCH to the
LAN.

A very important configuration requirement when defining multiple OSA Express ports for
backup is that the switch configuration of the two ports must match. Importantly, if you are
extending VLANs between your VSWITCH and the LAN, the switch ports you connect your
OSA Express adapters to must all be defined as trunk ports, and they must all be configured
to trunk the correct VLANs to the VSWITCH. If you don’t do this, some or all of your guests
may fail to connect properly if your main OSA Express connection fails.

Configuring high availability with VSWITCH
Figure 5 on page 19 shows an example of a high availability configuration. In the following
paragraphs we will describe how to build it.

As discussed in “Planning redundant configuration for VSWITCH” on page 21, to make your
VSWITCH connectivity redundant, you define multiple controller TCPIP service machines
and provide multiple OSA Express ports to your VSWITCH.

In our lab configuration, we had two OSA Express ports at devices 2320-2322 and
2180-2182. The second OSA was the one used for direct access by other Linux guests to the
LAN switch. We also defined two extra TCPIP service machines, named TCPCTL1 and
TCPCTL2, to act as controllers.

Configuring controller TCP/IP service machines
You can use your main TCPIP service machine as a VSWITCH controller, but we decided to
try setting up a separate configuration for a dedicated controller service machine. This
configuration would allow us to easily and quickly start additional controller machines from the
same configuration. The configuration we tried was a success, and the detail of how it was set
up appears in the following paragraphs.

Minidisk configuration
The controller service machines were given a separate configuration disk, allocated as
TCPMAINT 298 (the same size as TCPMAINT 198), which they link to as their 198
configuration disk. They each had their own 191 disk.

Important: Only one port is used for communication between the VSWITCH and the LAN
at any one time. Additional ports defined for the VSWITCH are not connected until
required. This means that your backup ports can be in use on other guests, or on other
VSWITCHes.

However, if the PRIROUTER setting appears in the port configuration for both your
VSWITCH and that of the guest or VSWITCH using the port, you will not be able to use
that port as a backup (your VSWITCH will not be able to set PRIROUTER with the other
connection active on the port).

Important: This may also prevent you from sharing an OSA Express port for backup
purposes. If the primary system using the OSA Express port requires a certain
configuration in the switch, and this conflicts with or does not match the configuration you
need for the VSWITCH connection, the port cannot be used for VSWITCH backup.

Demonstration: “z/VM Virtual Switch failover” on page 28 shows the results of the testing
we performed with these availability configurations.
22 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Setting up the configuration disk for the new service machines involved formatting the new
minidisk and copying all the files from the configuration disk for the main TCP/IP service
machine. We used the following commands:

FORMAT 298 K # answer the prompts for volume label and confirm
COPYFILE * * D = = K (OLDDATE

Directory entries
We added the controller service machines to the z/VM directory as copies of the main TCPIP
userid. The IUCV *VSWITCH directory entry is required to allow them to connect to the
system service that manages VSWITCH connectivity to OSA Express adapters. Also, the link
command for the machines’ 198 disk must specify TCPMAINT 298 instead of TCPMAINT
198, as follows:

LINK TCPMAINT 0298 0198 RR

PROFILE TCPIP
The PROFILE TCPIP for our controller service machines requires no special customization,
apart from the VSWITCH CONTROLLER ON statement required to allow the TCP/IP stack to
initialize as a VSWITCH controller. We did not see a need in our configuration to restrict the
machines to a range of LDEV (logical device) values; we used the default operation, allowing
the OSA Express to be defined to the TCP/IP machine with the same logical device numbers
as the real OSA device addresses (RDEVs).

This configuration allowed us to have an identical PROFILE TCPIP on all the controller
service machines and share the configuration disk between all the controller service
machines we set up.

SYSTEM DTCPARMS
Every TCP/IP service machine in your z/VM system needs to have DTCPARMS configured.
You can add the definitions to the SYSTEM DTCPARMS file, or use a machine-local
DTCPARMS file containing the definitions on a local minidisk to the guest. We chose the latter
method, creating TCPCTL1 DTCPARMS and TCPCTL2 DTCPARMS files on the controller
service machines’ 198-disk.

Our DTCPARMS file was very simple, as shown in Example 5.

Example 5 TCPCTL1 DTCPARMS file

:NICK.TCPCTL1 :TYPE.SERVER :CLASS.STACK
 :DISKWARN.NO

Attention: While we did not need to specify the LDEV range in the VSWITCH CONTROLLER
parameter in our configuration, you may need to do so to prevent the *VSWITCH system
service from using device numbers that are already in use on your controller service
machines. This may be particularly relevant if you are using your production TCP/IP
service machine as a VSWITCH controller.

Important: If you specify the LDEV parameter, and it needs to be different on each of your
controller service machines, you will need to have a separate 198 disk for each one.
Allocate additional TCPMAINT minidisks as copies of the TCPMAINT 198 disk as
described in “Minidisk configuration” on page 22 (using different device numbers for each,
of course) and update each guest’s directory entry to link to the correct minidisk.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 23

Start the controller service machines
Once configured, the new controller service machines can be logged on using the
XAUTOLOG command.

Issue the CP QUERY CONTROLLER command to see that your service machines have initialized
and that they have registered as controllers. Example 6 shows the results we obtained after
our controller service machines initialized.

Example 6 CP QUERY CONTROLLER

q controller
CONTROLLER TCPCTL1 Available: YES VDEV Range: *
 SYSTEM TESTSW3 Controller: *
CONTROLLER TCPCTL2 Available: YES VDEV Range: *
Ready; T=0.01/0.01 17:12:16

Configuring multiple OSA Express ports
When we defined our z/VM Virtual Switch using the CP DEFINE VSWITCH command, we
specified multiple values on the RDEV and PORTNAME parameters to provide access to our
two OSA ports. Example 7 shows the results of our DEFINE VSWITCH command.

Example 7 DEFINE VSWITCH results

define vswitch testsw3 rdev 2320 2180 portname osa2320 osa2180
VSWITCH SYSTEM TESTSW3 is created
Ready; T=0.01/0.01 20:13:02
HCPSWU2830I VSWITCH SYSTEM TESTSW3 status is ready.
HCPSWU2830I TCPCTL1 is VSWITCH controller.

To get information about the z/VM Virtual Switch we just created, we can issue the CP QUERY
VSWITCH command. Example 8 shows this output.

Example 8 QUERY VSWITCH results

query vswitch testsw3
VSWITCH SYSTEM TESTSW3 Type: VSWITCH Active: 3 MAXCONN: INFINITE
 PERSISTENT RESTRICTED NONROUTER MFS: 8192 ACCOUNTING: OFF
 State: Ready
 CONTROLLER: TCPCTL1 IPTIMEOUT: 5 QUEUESTORAGE: 8
 PORTNAME: OSA2320 RDEV: 2320 VDEV: 2320
 PORTNAME: OSA2180 RDEV: 2180
Ready; T=0.01/0.01 20:17:43

Switch configuration
To make sure you get the connectivity you expect in your environment, you will need to
ensure that your switch configuration reflects the connectivity you want. Some of the things
you need to look at or check are described here.

Important: Remember to add your new service machines to your automation procedures
to ensure that they start automatically after an IPL of z/VM.

Remember:
PORTNAME
must be
specified last.

Remember,
PORTNAME
must be
specified last
on DEFINE or
SET VSWITCH
commands.

Note: Our testing environment used a Cisco Catalyst 6509 switch. We will illustrate the
settings you need to investigate with configuration statements we used in our switch.
24 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Setting up a trunk port
If you are using VLANs within your VSWITCH, and you want to link the VLANs inside z/VM
with VLANs in the LAN, you will need to configure the switch port your OSA Express attaches
to as a trunk port. This ensures two things:

� Frames sent to the OSA Express are VLAN tagged
� Frames for your desired VLANs are sent to the OSA Express

You can configure the trunk port to carry a specific range of VLANs. This would be useful to
minimize unnecessary packet flow into the VSWITCH if you have many VLANs defined in the
switch network but only some of them are represented in the VSWITCH.

On our Cisco switch, we defined a trunk port with this command:

set trunk 2/7 on dot1q 1-1005,1025-4094

This command sets port 7 in module 2 to be a trunk port, using IEEE 802.1Q tagging. VLAN
numbers 1 through 1005 and 1025 through 4094 will be trunked on this port (this is the Cisco
default).

Defining a VLAN
Your LAN switch must include a definition for the VLAN you want to create.

In Cisco CatOS, VLANs are defined using the set vlan command. The following command
defined VLAN 202 on our switch.

itso6509 (enable) set vlan 202 type ethernet mtu 1492

We specified an MTU of 1492 bytes to correspond with the MTU used on the OSA Express
and VSWITCH adapters.

You can use the show vlan command to display attributes of your VLAN configuration.
Example 9 gives an example of this.

Example 9 Displaying VLAN status on a Cisco Catalyst switch

itso6509 (enable) show vlan 202
VLAN Name Status IfIndex Mod/Ports, Vlans
---- -------------------------------- --------- ------- ------------------------
202 active 114 2/3,2/7,2/11
 15/1

VLAN Type SAID MTU Parent RingNo BrdgNo Stp BrdgMode Trans1 Trans2
---- ----- ---------- ----- ------ ------ ------ ---- -------- ------ ------
202 enet 100202 1492 - - - - - 0 0

VLAN MISTP-Inst DynCreated RSPAN
---- ---------- ---------- --------

Important: When using VLANs in z/VM Guest LANs, you do not need to pre-define the
VLANs in your z/VM configuration. If you are using VLAN filtering, however, you must grant
access to VLAN IDs as required.

Note: Depending on your logging level, some messages may appear when you enter a
configuration command.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 25

202 - static disabled

itso6509 (enable)

There are many other configuration settings for VLANs available. Refer to your Cisco
documentation for more detail.

Adding ports to a VLAN
One of the first things you might want to do is configure certain ports on your switch to access
certain VLANs. We used the CatOS set vlan command to assign switch ports to VLANs. The
following command will attach port 3 on module 2 to VLAN 202.

itso6509 (enable) set vlan 202 2/3

The show port commands will display various information about your port status. Example 10
gives a sample of this display.

Example 10 Displaying port information on a Cisco Catalyst switch

itso6509 (enable) show port 2/3
* = Configured MAC Address

Port Name Status Vlan Duplex Speed Type
----- -------------------- ---------- ---------- ------ ----- ------------
 2/3 connected 202 a-full a-100 10/100BaseTX

<...>

Port Security Violation Shutdown-Time Age-Time Max-Addr Trap IfIndex
----- -------- --------- ------------- -------- -------- -------- -------
 2/3 disabled shutdown 0 0 1 disabled 12

<...>

Port Last-Time-Cleared
----- --------------------------
 2/3 Sun Jul 6 2003, 06:56:44

Idle Detection

 --
itso6509 (enable)

We have truncated some of the output of this command. This is shown by the <...> symbols in
the output.

Routing to and from your VLAN
Stations attached to different VLANs cannot communicate to each other without a router. The
router may be a physical device with attachments to ports on the switch, or it may be a
software or hardware component of the switch.

The Cisco Catalyst switch in our lab was equipped with the Multilayer Switch Feature Card
(MSFC), which provides a routing component. We used this routing function to provide
access between our VLANs.
26 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Configuring a connection to a VLAN for routing requires adding a virtual interface to the
MSFC representing a connection to the VLAN. The interface vlan command is used to
create a VLAN virtual interface, and the ip address command is used to assign an IP
address to the virtual interface. Example 11 shows the commands we used to add a VLAN
interface to the configuration of the routing function in our switch.

Example 11 Configuring MSFC for VLAN routing

itsores1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
itsores1(config)#interface vlan 202
itsores1(config-if)#ip address 192.168.202.1 255.255.255.0
itsores1(config-if)#^Z
itsores1#

Additional commands are required to enable routing in the MSFC, and to set up a dynamic
routing protocol if you use one. Refer to Cisco documentation if you need assistance with
these.

You can display the status of your VLAN virtual interface using the show interface command.
Example 12 shows a sample of this.

Example 12 Interface status for a MSFC VLAN virtual interface

itsores1>show interface vlan202
Vlan202 is up, line protocol is up
 Hardware is Cat6k RP Virtual Ethernet, address is 0007.85f3.7302 (bia 0007.85f3.7302)
 Internet address is 192.168.202.1/24
 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input 00:00:01, output never, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue :0/40 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 556993 packets input, 28982480 bytes, 0 no buffer
 Received 556777 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 465 packets output, 38350 bytes, 0 underruns
 0 output errors, 2 interface resets
 0 output buffer failures, 0 output buffers swapped out
itsores1>

There are many other commands you can use to get information about your routing
configuration. Refer to your Cisco documentation for more information.

Experiences
This section describes some aspects of VSWITCH and HiperSockets VLAN support that we
encountered while writing this paper. The diagram in Figure 6 on page 28 shows our network
testing configuration.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 27

Figure 6 Test network configuration

In this diagram, we represented the VLANs in a switch (including z/VM Virtual Switch) as
labelled rectangles within the representation of the switch. A particular station or guest’s
membership of a VLAN is indicated by a solid circle in the rectangle for the VLAN intersecting
the connection from the station. In the VSWITCH, the ability to generate and receive
untagged frames is shown by membership to the ‘—’ VLAN.

For example, the guest LNXSU7 belongs to VLAN 201, but because we granted it access to
VLAN ANY it can also generate and receive untagged frames. LNXRH2, on the other hand,
was granted access to VLAN 201 only.

The diagram also shows a HiperSockets Guest LAN with a single VLAN, as well as the
relationship between the VSWITCH OSA Express port and the controller TCPIP service
machine.

z/VM Virtual Switch failover
With the configuration as described in “Configuring high availability with VSWITCH” on
page 22, we tried various ways to disrupt the communication through the OSA Express port
to the LAN.

We used the ping command from one of the Linux guest machines on our VSWITCH to a PC
attached to a port on the LAN switch. We made sure that the LAN PC was only reachable via
the VLAN link via the VSWITCH (that is, that there was no alternative path for the connection
to travel over), and verified this by using the -R switch on the ping command.

ITSO

VMLINUX

TCPIP

VSWITCH
TESTSW3

Switch/Router
Cisco Catalyst 6509

VLANs

Routing

201

202

 1

 2

OSA

LNXSU6

LNXSU7

LNXRH2

22110

Linux
Test Servers
192.168.200.0/24

OSA

LNXSU4

LNXSU3

LNXSU2

LNXSU1

Windows Test Station
192.168.202.0/24

9.12.9.0/24

HiperSockets

.35

.36

.37

.38

.44

.46

.45

 —

1 201 2022

Linux Guests
192.168.100.0/24

HiperSockets
Guest LAN
28 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Deactivate the switch port in the LAN switch
This failure is detected as a loss of signal or cable pull on the OSA Express, and the
VSWITCH swaps to the other OSA port. We used the set port disable command in the
Cisco Catalyst switch to shut down the switch port. Example 13 shows the results or our ping
test.

Example 13 Ping test across OSA Express port detach

lnxsu6:~ # ping -R 192.168.200.100
PING 192.168.200.100 (192.168.200.100) from 192.168.200.109 : 56(124) bytes of data.
64 bytes from 192.168.200.100: icmp_seq=1 ttl=64 time=1.14 ms
RR: 192.168.200.109
 192.168.200.100
 192.168.200.100
 192.168.200.109

64 bytes from 192.168.200.100: icmp_seq=2 ttl=64 time=0.608 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=3 ttl=64 time=0.592 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=4 ttl=64 time=0.613 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=5 ttl=64 time=0.597 ms (same route) < disable here
64 bytes from 192.168.200.100: icmp_seq=11 ttl=64 time=0.631 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=12 ttl=64 time=0.624 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=13 ttl=64 time=0.623 ms (same route)

--- 192.168.200.100 ping statistics ---
13 packets transmitted, 8 received, 38% loss, time 12006ms
rtt min/avg/max/mdev = 0.592/0.679/1.147/0.178 ms
lnxsu6:~ #

You can see that after a short period of time, the connection was transferred to the other OSA.
On a z/VM console, we issued the commands and received messages as shown in
Example 14.

Example 14 z/VM commands and messages around switch port deactivation

q vswitch testsw3 <- before disable
VSWITCH SYSTEM TESTSW3 Type: VSWITCH Active: 1 MAXCONN: INFINITE
 PERSISTENT RESTRICTED NONROUTER MFS: 8192 ACCOUNTING: OFF
 State: Ready
 CONTROLLER: TCPCTL1 IPTIMEOUT: 5 QUEUESTORAGE: 8
 PORTNAME: OSA2180 RDEV: 2180
 PORTNAME: OSA2320 RDEV: 2320 VDEV: 2320
Ready; T=0.01/0.01 15:45:31
HCPSWU2830I VSWITCH SYSTEM TESTSW3 status is devices attached. \ <- disable here
HCPSWU2830I TCPCTL1 is VSWITCH controller. \ unsolicited
HCPSWU2830I VSWITCH SYSTEM TESTSW3 status is ready. / messages
HCPSWU2830I TCPCTL1 is VSWITCH controller. /
q vswitch testsw3

Tip: Adding the -R switch on the ping command adds the RECORD_ROUTE option to the
ICMP echo request packets that ping generates. Each host along the path adds its address
to the IP header, so that when the reply is received by ping, it can display the route taken
by the packet. The effect is similar to traceroute, but the response is much quicker and
you obtain round-trip data (traceroute will only tell you the path from source to destination,
and sometimes the return path is different).

Unfortunately, only nine hops can be counted using ping -R; if your round trip exceeds nine
hops, you will only see the first nine.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 29

VSWITCH SYSTEM TESTSW3 Type: VSWITCH Active: 1 MAXCONN: INFINITE
 PERSISTENT RESTRICTED NONROUTER MFS: 8192 ACCOUNTING: OFF
 State: Ready
 CONTROLLER: TCPCTL1 IPTIMEOUT: 5 QUEUESTORAGE: 8
 PORTNAME: OSA2180 RDEV: 2180 VDEV: 2180
 PORTNAME: OSA2320 RDEV: 2320
Ready; T=0.01/0.01 15:48:11

In the console log of the TCPIP service machine, we saw some very good message output.
This output is shown in Example 15.

Example 15 TCPIP console log output across switch port deactivation

15:47:52 DTCOSD309W Received adapter-initiated Stop Lan 1
15:47:52 DTCOSD082E VSWITCH-OSD shutting down: 2
15:47:52 DTCPRI385I Device TESTSW32320DEV:
15:47:52 DTCPRI386I Type: VSWITCH-OSD, Status: Ready
15:47:52 DTCPRI387I Envelope queue size: 0
15:47:52 DTCPRI388I Address: 2320
15:47:52 DTCQDI001I QDIO device TESTSW32320DEV device number 2322: 3
15:47:52 DTCQDI007I Disable for QDIO data transfers
OSA 2320 DETACHED TCPCTL1 2320 BY TCPCTL1 4
OSA 2321 DETACHED TCPCTL1 2321 BY TCPCTL1
OSA 2322 DETACHED TCPCTL1 2322 BY TCPCTL1
15:47:52 DTCOSD080I VSWITCH-OSD initializing: 5
15:47:52 DTCPRI385I Device TESTSW32180DEV:
15:47:52 DTCPRI386I Type: VSWITCH-OSD, Status: Not started
15:47:52 DTCPRI387I Envelope queue size: 0
15:47:52 DTCPRI388I Address: 2180
15:47:52 DTCQDI001I QDIO device TESTSW32180DEV device number 2182: 6
15:47:52 DTCQDI007I Enabled for QDIO data transfers
15:47:52 DTCOSD238I ToOsd: Multicast support enabled for TESTSW32180DEV
15:47:52 DTCOSD319I ProcessSetArpCache: Supported for device TESTSW32180DEV
15:47:52 DTCOSD341I Obtained MAC address 0006296CA5BC for device TESTSW32180DEV
15:47:57 DTCOSD246I VSWITCH-OSD device TESTSW32180DEV: Assigned IPv4 address 192.168.200.109 7
15:47:57 DTCOSD246I VSWITCH-OSD device TESTSW32180DEV: Assigned IPv4 address 192.168.201.109
15:47:57 DTCOSD246I VSWITCH-OSD device TESTSW32180DEV: Assigned IPv4 address 192.168.202.109

The chain of events is as follows:

1. The OSA Express notifies TCP/IP that the LAN is no longer available.

2. TCP/IP commences a shutdown of the VSWITCH dynamically-defined device.

3. QDIO data transfer on the failed interface is terminated.

4. TCP/IP detaches the real OSA Express devices and attaches the devices for the backup
OSA Express port (only the device detachments were logged).

5. TCP/IP initializes a new dynamically-defined device for the newly-attached OSA Express
port.

6. QDIO data transfer for the new OSA Express port is activated.

7. The IP addresses for active guests are registered to the OSA Express port. LAN
communications are re-established.

Detach the OSA from the controller service machine
The next thing we tried was to detach the real devices for the VSWITCH’s active OSA
Express port from the system. This allowed us to simulate the OSA Express device becoming
unavailable through hardware failure or operator intervention.
30 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

The results were the same as for the switch port deactivation. Almost as soon as the
disruption took place, the OSA Express detected a loss of communication and the VSWITCH
was transferred to the other OSA Express port.

Failure of the controller service machine
We simulated the failure of the controller service machine by using the CP FORCE command
on its userid. Again we used ping to verify the communication path. The result of the ping test
is shown at Example 16.

Example 16 Ping test across controller service machine outage

lnxsu6:~ # ping -R 192.168.200.100
PING 192.168.200.100 (192.168.200.100) from 192.168.200.109 : 56(124) bytes of data.
64 bytes from 192.168.200.100: icmp_seq=1 ttl=64 time=1.02 ms
RR: 192.168.200.109
 192.168.200.100
 192.168.200.100
 192.168.200.109

64 bytes from 192.168.200.100: icmp_seq=2 ttl=64 time=0.625 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=3 ttl=64 time=0.641 ms (same route) <- force here
64 bytes from 192.168.200.100: icmp_seq=9 ttl=64 time=0.697 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=10 ttl=64 time=0.623 ms (same route)
64 bytes from 192.168.200.100: icmp_seq=11 ttl=64 time=0.621 ms (same route)

--- 192.168.200.100 ping statistics ---
11 packets transmitted, 6 received, 45% loss, time 10006ms
rtt min/avg/max/mdev = 0.621/0.705/1.025/0.146 ms
lnxsu6:~ #

You can see that communication was interrupted for a short time while another controller
TCPIP stack took control of the VSWITCH. On a z/VM console, we issued the commands and
received messages as shown in Example 17.

Example 17 z/VM commands and messages around controller failure

q vswitch testsw3
VSWITCH SYSTEM TESTSW3 Type: VSWITCH Active: 1 MAXCONN: INFINITE
 PERSISTENT RESTRICTED NONROUTER MFS: 8192 ACCOUNTING: OFF
 State: Ready
 CONTROLLER: TCPCTL1 IPTIMEOUT: 5 QUEUESTORAGE: 8
 PORTNAME: OSA2180 RDEV: 2180 VDEV: 2180
 PORTNAME: OSA2320 RDEV: 2320
Ready; T=0.01/0.01 15:48:11
HCPSWU2830I VSWITCH SYSTEM TESTSW3 status is controller not available. \ <- force here
HCPSWU2830I VSWITCH SYSTEM TESTSW3 status is ready. > unsolicited
HCPSWU2830I TCPCTL2 is VSWITCH controller. / messages
q vswitch testsw3
VSWITCH SYSTEM TESTSW3 Type: VSWITCH Active: 1 MAXCONN: INFINITE
 PERSISTENT RESTRICTED NONROUTER MFS: 8192 ACCOUNTING: OFF
 State: Ready
 CONTROLLER: TCPCTL2 IPTIMEOUT: 5 QUEUESTORAGE: 8

Attention: If you want to conduct similar testing, take care with your OSA connections. We
found that repeatedly detaching the OSA Express devices from the TCPIP service
machines eventually would cause problems with the OSA (channel errors were reported in
the TCPIP log when the OSA was used, and communications would fail). To recover, we
had to reset the OSA by configuring the channel path offline and back online.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 31

 PORTNAME: OSA2180 RDEV: 2180 VDEV: 2180
 PORTNAME: OSA2320 RDEV: 2320
Ready; T=0.01/0.01 16:47:38

VLAN Isolation with untagged frames
When setting up and using VLANs in our testing with VSWITCH, we were very satisfied with
how the system preserved isolation of the different VLANs used. We wanted to verify what
happened when untagged frames were used, especially with non-VLAN-aware guests.

To test this, we attached a guest running Red Hat Linux 7.2 to our VSWITCH (in Figure 6 on
page 28, this was the guest LNXRH2). As distributed, Red Hat 7.2 has no support for VLANs.
When we granted access to the VSWITCH, we granted it only to VLAN 201. Other than our
Red Hat guest, there were two other guests on the VLAN, both VLAN-aware SLES8 systems.

We configured the Red Hat guest with an IP address configuration for that VLAN, and verified
that we could communicate between it and other guests on the VLAN.

We then tried configuring different IP addresses as secondary addresses on the eth4
interface of the guest (the interface that connected to the VSWITCH).

Example 18 IP configuration on LNXRH2

[root@lnxrh2 root]# ip addr ls
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
2: eth4: <MULTICAST,NOARP,UP> mtu 1492 qdisc pfifo_fast qlen 100
 link/ether 02:00:00:00:00:10 brd ff:ff:ff:ff:ff:ff
 inet 192.168.201.10/24 brd 192.168.201.255 scope global eth4
 inet 192.168.100.10/24 scope global eth4
 inet 192.168.202.10/24 scope global eth4
3: eth2: <MULTICAST,NOARP> mtu 1492 qdisc noop qlen 100
 link/ether 02:00:00:00:00:0f brd ff:ff:ff:ff:ff:ff
4: hsi1: <MULTICAST,NOARP> mtu 8192 qdisc noop qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
5: hsi0: <MULTICAST,NOARP,UP> mtu 16384 qdisc pfifo_fast qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 9.12.9.45/24 brd 9.12.9.255 scope global hsi0
[root@lnxrh2 root]# ip route ls
192.168.100.0/24 dev eth4 proto kernel scope link src 192.168.100.10
9.12.9.0/24 dev hsi0 scope link
192.168.201.0/24 dev eth4 scope link
192.168.200.0/24 via 192.168.201.0 dev eth4
192.168.202.0/24 dev eth4 proto kernel scope link src 192.168.202.10
127.0.0.0/8 dev lo scope link
default via 9.12.9.1 dev hsi0
[root@lnxrh2 root]#

Important: We are very impressed with the way that z/VM Virtual Switch provides failover
for its components; with only a short interval of dead time, the connectivity between the
VSWITCH and the LAN is restored.

Ping is only a very simplistic test. Before you rely on this function to protect critical
services, conduct your own testing to verify that the protocols and applications that you run
in your environment recover from the brief outage interval.
32 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Our Red Hat guest was authorized only to VLAN 201, corresponding to the 192.168.201.0/24
network. We should only be able to communicate directly with other guests on that same
VLAN. By configuring IP addresses belonging to other VLANs against our interface, we tell
the kernel to try and reach those networks directly instead of routing.

When we tried to ping the hosts on the 192.168.202.0/24 network, we got no responses. This
confirmed that we were being isolated from VLAN 202. However, when we then tried to ping a
host on the 192.168.100.0/24 network, we were surprised to find that we did get responses,
even though we had restricted the guest to VLAN 201.

Example 19 Ping command on LNXRH2

[root@lnxrh2 root]# ping 192.168.100.109
PING 192.168.100.109 (192.168.100.109) from 192.168.100.10 : 56(84) bytes of data.
64 bytes from 192.168.100.109: icmp_seq=0 ttl=64 time=359 usec
64 bytes from 192.168.100.109: icmp_seq=1 ttl=64 time=292 usec
64 bytes from 192.168.100.109: icmp_seq=2 ttl=64 time=275 usec

--- 192.168.100.109 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.275/0.308/0.359/0.041 ms
[root@lnxrh2 root]#

To try and understand what was happening here, we had to look closer into the action of both
the VSWITCH code and the Linux kernel.

The VSWITCH maintains a table of connected guests and associated IP addresses. The
VSWITCH uses this table to determine which guest to send a received packet to. You can
inspect this table using the CP QUERY VSWITCH command with the DETAIL option.
Example 20 shows this command output after the ping command above.

Example 20 CP QUERY VSWITCH for IP address table

q vswitch testsw3 detail
VSWITCH SYSTEM TESTSW3 Type: VSWITCH Active: 3 MAXCONN: INFINITE
 PERSISTENT RESTRICTED NONROUTER MFS: 8192 ACCOUNTING: OFF
 State: Ready
 CONTROLLER: TCPCTL1 IPTIMEOUT: 5 QUEUESTORAGE: 8
 PORTNAME: OSA2320 RDEV: 2320 VDEV: 2320
 PORTNAME: OSA2180 RDEV: 2180
 RX Packets: 30569 Discarded: 33 Errors: 0
 TX Packets: 27494 Discarded: 0 Errors: 0
 RX Bytes: 2744464 TX Bytes: 2305386
 Authorized userids:
 LNXRH2 VLAN: 0201
 LNXSU6 VLAN: ANY
 LNXSU7 VLAN: 0201 0202
 SYSTEM VLAN: ANY
 VSWITCH Connection:
 Device: 2322 Unit: 002 Role: DATA
 VLAN: ANY Assigned by user
 Unicast IP Addresses:
 192.168.202.202 Mask: 0.0.0.0 Remote
 Adapter Owner: LNXRH2 NIC: 6100 Name: TESTSW3
 Device: 6102 Unit: 002 Role: DATA
 VLAN: 0201 Assigned by system
 Unicast IP Addresses:
 192.168.100.10 Mask: 255.255.255.0
 192.168.201.10 Mask: 255.255.255.0
 192.168.202.10 Mask: 255.255.255.0
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 33

 Multicast IP Addresses:
 224.0.0.1 MAC: 01-00-5E-00-00-01
 Adapter Owner: LNXSU6 NIC: 6100 Name: TESTSW3
 Device: 6102 Unit: 002 Role: DATA
 VLAN: ANY Assigned by user
 Unicast IP Addresses:
 192.168.100.109 Mask: 255.255.255.0
 192.168.201.109 Mask: 255.255.255.0
 192.168.202.109 Mask: 255.255.255.0
 FE80::200:0:300:8/0 Local
 Multicast IP Addresses:
 224.0.0.1 MAC: 01-00-5E-00-00-01
 FF02::1 MAC: 33-33-00-00-00-01 Local
 FF02::1:FF00:8 MAC: 33-33-FF-00-00-08 Local
Ready; T=0.01/0.01 15:22:41

The following chain of events takes place during our ping.

1. LNXRH2 sends an ICMP echo request packet. The source address is 192.168.100.10,
because we have that address configured on one of our local interfaces and the route
table selected it. The packet is given to the VSWITCH, and because LNXRH2 is
authorized to only one VLAN ID the VSWITCH tags the frame for VLAN 201.

2. Next, the VSWITCH looks up the IP address table for the destination address. LNXSU6
has registered this address, so the next check is whether the VLAN authority of LNXSU6
will allow the frame to be delivered. LNXSU6 is authorized to VLAN ANY, so VSWITCH
delivers the frame.

3. The IP stack in LNXSU6 does a final check to see if the destination address is local or if
the packet has to be routed. The address is local, so the packet handled by the kernel.

4. The kernel processes the ICMP echo request, formatting an ICMP echo reply to be sent to
192.168.100.10. The route table selects 192.168.100.109 as the source address, and
sends the reply via the eth4 interface. This packet will be sent as an untagged frame.

5. Because LNXSU6 is authorized to VLAN ANY, VSWITCH takes no action on the untagged
frame entering the VLAN. It checks the IP address table again, this time for the destination
address 192.168.100.10, and finds it on LNXRH2. Untagged frames are not filtered by
VSWITCH, so the frame is sent to LNXRH2.

6. The IP stack in LNXRH2 checks to see if the destination IP address is local, which it is in
this case, so the packet is given to its destination (the ping program).

The main reason this connection can take place is an efficiency aspect of the Linux kernel. At
step 3, when the packet arrives at the VLAN interface, it technically has an incorrect
destination address for the interface it is arriving on. Rather than forwarding the packet
through the stack to deliver it at the correct interface, the kernel will simply accept it at the
interface it was delivered.

The other reason that the connection works is that the VSWITCH does not filter untagged
frames for delivery to guests.

In this instance, since the two machines were configured with a common network interface
and were able to communicate anyway, the fact this happens this way is a curiosity. However
if the machines were not intended to have a shared network then this could lead to
unexpected connectivity and a loss of security.

Many IP stacks
work this way
to improve
performance.
34 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Closing the door
There are at least two ways you can eliminate this possible exposure: by eliminating untagged
frames, or by using firewall rules in Linux. In the following sections, we discuss these methods
in more detail.

Eliminate untagged frames
In the configuration of LNXSU6, the base interface (eth4) was used to gain connectivity to the
other Linux guests that were attached to the other OSA device in the network (the
192.168.100.0/24 network). The Cisco switch that we connected to was defined to use
VLAN 1 as a default VLAN ID, so all the Linux guests attached to the other OSA were actually
in VLAN 1, as far as the switch was concerned.

By changing the configuration of LNXSU6 to bring up a connection to the 192.168.100.0/24
network via VLAN 1 and using a dummy IP address on the base interface, we could still
communicate with the other machines on the 192.168.100.0/24 network. Importantly, this
configuration eliminated untagged frames from LNXSU6. The frames sent back to LNXRH2
were not delivered by the VSWITCH because they were tagged as VLAN 1, a VLAN that
LNXRH2 was not authorized to.

Firewall rules in Linux
Many administrators do not like the default behavior of Linux accepting packets on “foreign”
interfaces. By adding iptables rules in any Linux host attached to multiple VLANs, you can
prevent the kernel from accepting packets on an interface whose network does not match the
destination address of the packet.

Capturing VLAN network traffic on VSWITCH
We used the tcpdump packet capture tool to grab network traffic, and the Ethereal analysis
tool to look at the trace.

We started a packet capture against the VLAN 2 interface (the 192.168.200.0/24 network),
and issued ping commands for destinations on the various VLANs that our host was attached
to. Analyzing the captured packets, we only saw the packets on VLAN2. This was what we
expected. Figure 7 on page 36 is a screen capture of the Ethereal program analyzing our
captured traffic.

Attention: We are not trying to point out a design problem by illustrating this issue; we do
not believe that a design problem exists. Rather, we are drawing your attention to an
interoperation aspect that you should be aware of when implementing VSWITCH and
VLAN in a Linux environment.

Attention: To use tcpdump with QETH network interfaces, the tcpdump-qeth wrapper
script by Holger Smolinski of IBM is needed to analyze the frames correctly. This script is
included in the tcpdump package on SuSE SLES 8.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 35

Figure 7 Ethereal packet analysis on VLAN 2

We highlighted one packet for display in the decode window.

You can also see that we only appear to have captured the transmitted packets. It appears
that the same “feature” that we discussed in “VLAN Isolation with untagged frames” on
page 32, which is Linux receiving packets on any configured interface as long as the IP
address is local, is apparent here.

In this case, it would seem that the frames are being delivered to the base interface and
accepted there rather than registering against the VLAN interface. Looking at the statistics for
the VLAN 2 interface, this definitely appears to be the case (refer to Example 21).

Example 21 Interface statistics for a VLAN interface

lnxsu6:~ # ifconfig vlan2
vlan2 Link encap:Ethernet HWaddr 02:00:00:00:00:08
 inet addr:192.168.200.109 Mask:255.255.255.0
 inet6 addr: fe80::200:0:300:8/10 Scope:Link

Note: In the Ethereal display shown in Figure 7, you can see that the Ethernet II header
has all-zero MAC addresses for source and destination MAC. This is the dummy Ethernet
header inserted into the frame by the tcpdump-qeth script.
36 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

 UP RUNNING MULTICAST MTU:1492 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:7783 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:664403 (648.8 Kb)

You can see that no received packets have been recorded against this interface.

Seeing this behavior, we then traced the base interface. In doing so we hoped to see frames
with VLAN headers in the trace. We wanted to see the contents of the VLAN headers and
other changes to packets that the VLAN support made.

Two things surprised us about what we saw in the trace of the base interface:

� We saw no VLAN headers
� We saw both transmitted and received IP packets for all VLANs

Figure 8 on page 38 shows Ethereal analyzing a packet trace we collected against the eth4
interface on LNXSU6. In particular, we ran tcpdump with the -p option, which prevents
tcpdump from using promiscuous mode (we wanted to be absolutely sure we were not
opening anything up that we did not intend to2).

2 Promiscuous mode gave the same result, which shows it is fairly meaningless on z/VM simulated networks anyway.
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 37

Figure 8 Ethereal packet analysis on base interface

In the top portion of the window, you can see some of the packets that were collected. The
source and destination addresses for these packets are for addresses on VLAN 2 and VLAN
202 in our configuration.

It appears that tcpdump can only see IP frames when QETH is used. Since QETH is an
IP-only transport, this makes sense. By the time tcpdump views the packets, the 802.1Q
processing has finished with them, having extracted the VLAN headers and leaving just the IP
payload.

Note: With the IBM s390 kernel patches for the 2.4.21 kernel, the QETH driver has been
released as open source. An interesting project would be to modify the driver so that
“traditional” tools like libpcap function as expected. This may allow better visibility not only
of VLAN frames, but of other frame headers as well.

However, this still may not produce the desired results because the Ethernet header is not
always preserved by the OSA Express hardware. Also, not all frames received on a QETH
interface will ever have had an Ethernet header: traffic between guests on the same
simulated network, for example, do not.
38 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Command usage
The usage syntax of the commands used in this paper are shown in this section.

DEFINE VSWITCH
The syntax of the DEFINE VSWITCH command is shown in Example 22.

Example 22 DEFINE VSWITCH syntax

DEFINE VSWITCH

 (1) .-RDEV--NONE--------. .-CONnect----.
 >>--DEFINE VSWITCH--switchname------+-------------------+--+------------+---->
 | .---------. | '-DISCONnect-'
 | V (2)| |
 '-RDEV----rdev----+-'

 .-QUEuestorage--8M------. .-CONTRoller--*-------. .-IPTimeout--5---.
 >--+-----------------------+--+---------------------+--+----------------+---->
 '-QUEuestorage--numberM-' '-CONTRoller--userid1-' '-IPTimeout--nnn-'

 .-NONrouter-.
 >--+-----------+--.---------------------------.-----------------------------><
 '-PRIrouter-' | .-------------. |
 | V (3)| |
 '-PORTname----portname----+-'

 Notes:
 (1) You can specify the operands in any order, as long as switchname is the
 first operand specified, and portname is the last operand specified, if
 applicable.

 (2) You can specify a maximum of 3 real device numbers.

 (3) You can specify a maximum of 3 port names.

Refer to z/VM CP Command and Utility Reference for full details of all parameters.

SET VSWITCH
The syntax of the SET VSWITCH command is shown in Example 23.

Example 23 SET VSWITCH syntax

SET VSWITCH

 .-VLAN--ANY--------.
 >>--SET VSWITCH--switchname--.-GRAnt--userid--+------------------+-.--------><
 | | v--------. | |
 | '-VLAN----vlanid-+-' |
 |-REVoke--userid----------------------|
 | .--------------. |
 | V (1) | |
 |-PORTname----portname-----+----------|
 | .----------. |
 | V (2) | |
 |-RDEV--.---rdev-----+.---------------|
 | '-NONE--------' |
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 39

 |-CONnect-----------------------------|
 |-DISCONnect--------------------------|
 |-QUEuestorage--numberM---------------|
 |-CONTRoller--.-*-------.-------------|
 | '-userid1-' |
 |-IPTimeout--nnn----------------------|
 |-NONrouter---------------------------|
 '-PRIrouter---------------------------'

 Notes:
 (1) You can specify a maximum of 3 port names.

 (2) You can specify a maximum of 3 real device numbers.

Refer to z/VM CP Command and Utility Reference for full details of all parameters.

DIRMAINT NICDEF
Example 24 shows the options available on the DIRMAINT NICDEF command.

Example 24 DIRMAINT NICDEF command

NICDEF

>>--DIRMaint--.--------------------.--NICDEF--vdev--------------------------->
 | (1)|
 '-Prefix Keywords----'

>--.-DELETE---.-----------------------><
 '-TYPE--.-HIPERsockets-.--.--------------------.-'
 '-QDIO---------' '-| NICDEF Options |-'

NICDEF Options:
 v----------------------------------.
|---.-DEVices--devs-----------------.-+--------------------------------------|
 |-LAN--.-.-ownerid-.--lanname-.-|
 | | |-*-------| | |
 | | '-SYSTEM--' | |
 | '-SYSTEM--switchnm-----' |
 |-CHPID--hh---------------------|
 '-MACID--macaddress-------------'

Note:
(1) For more information on prefix keywords, enter the following command:

 dirm help dirmaint

vconfig
Example 25 shows the usage of the vconfig command.

Example 25 Usage of the vconfig command

lnxsu6:~ # vconfig
Expecting argc to be 3-5, inclusive. Was: 1

Usage: add [interface-name] [vlan_id]
 rem [vlan-name]
40 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

 set_flag [interface-name] [flag-num] [0 | 1]
 set_egress_map [vlan-name] [skb_priority] [vlan_qos]
 set_ingress_map [vlan-name] [skb_priority] [vlan_qos]
 set_name_type [name-type]

* The [interface-name] is the name of the ethernet card that hosts
 the VLAN you are talking about.
* The vlan_id is the identifier (0-4095) of the VLAN you are operating on.
* skb_priority is the priority in the socket buffer (sk_buff).
* vlan_qos is the 3 bit priority in the VLAN header
* name-type: VLAN_PLUS_VID (vlan0005), VLAN_PLUS_VID_NO_PAD (vlan5),
 DEV_PLUS_VID (eth0.0005), DEV_PLUS_VID_NO_PAD (eth0.5)
* bind-type: PER_DEVICE # Allows vlan 5 on eth0 and eth1 to be unique.
 PER_KERNEL # Forces vlan 5 to be unique across all devices.
* FLAGS: 1 REORDER_HDR When this is set, the VLAN device will move the
 ethernet header around to make it look exactly like a real
 ethernet device. This may help programs such as DHCPd which
 read the raw ethernet packet and make assumptions about the
 location of bytes. If you don't need it, don't turn it on, because
 there will be at least a small performance degradation. Default
 is OFF.

The author of this Redpaper
This Redpaper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Vic Cross is the Linux for zSeries and S/390® Team Leader at Independent Systems
Integrators, IBM’s Large Systems Business Partner in Australia. He has more than 15 years
of experience in general computing, eight of which have been spent working on S/390 and
zSeries. He holds a Bachelor of Computing Science degree from Queensland University of
Technology. His areas of expertise include networking and Linux.

He is a co-author of IBM Redbooks™ and Redpapers Linux on IBM ^ zSeries and
S/390: ISP/ASP Solutions, SG24-6299, Linux on IBM ^ zSeries and S/390: Large
Scale Linux Deployment, SG24-6824, Linux on IBM ^ zSeries and S/390: Porting
LEAF to Linux on zSeries, REDP3627, and Linux on IBM ^ zSeries and S/390: Virtual
Router Redundancy Protocol on VM Guest LANs, REDP3657.

Thanks to the following people for their contributions to this project:

Roy Costa and Greg Geiselhart
International Technical Support Organization, Poughkeepsie Center

Angelo Macchiano and Dennis Musselwhite
z/VM Development, IBM Endicott

Simon Williams
IBM Australia
Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4 41

Related publications
The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this Redpaper.

IBM Redbooks
� Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM

Guest LANs, REDP3657

Other publications
� z/VM Virtual Machine Operation, SC24-5955

� z/VM CP Command and Utility Reference, SC24-6008
42 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. 43

This document created or updated on September 3, 2003.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an Internet note to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Domino™
HiperSockets™
ibm.com®
IBM®
Lotus®

MVS™
Notes®
Redbooks(logo) ™
Redbooks™
S/390®

™
z/OS®
z/VM®
zSeries®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

®

44 Linux on IBM ^ zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Linux on IBM zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4
	Introduction and overview
	Introduction to VLANs
	What is a Virtual LAN
	VLAN standards
	How IEEE 802.1Q VLANs work

	VLAN support on z/VM Guest LAN
	z/VM Virtual Switch (VSWITCH)
	External network access using VSWITCH
	VLANs on z/VM Virtual Switch
	VLAN isolation

	Using z/VM Virtual Switch
	Planning for VSWITCH
	Configuring VSWITCH
	Connecting a guest to VSWITCH

	Configuring Linux for VLAN
	VLAN configuration process on Linux
	Configuring VLANs on SuSE SLES8
	Testing the configuration
	Making your VLAN configuration persistent
	Comparing VLANs on VSWITCH and Guest LAN

	Comparing VSWITCH with router-based designs
	Migrating to z/VM Virtual Switch

	High availability using z/VM Virtual Switch
	Planning redundant configuration for VSWITCH
	Configuring high availability with VSWITCH

	Switch configuration
	Setting up a trunk port
	Defining a VLAN
	Adding ports to a VLAN
	Routing to and from your VLAN

	Experiences
	z/VM Virtual Switch failover
	VLAN Isolation with untagged frames
	Capturing VLAN network traffic on VSWITCH

	Command usage
	DEFINE VSWITCH
	SET VSWITCH
	DIRMAINT NICDEF
	vconfig

	The author of this Redpaper
	Related publications
	IBM Redbooks
	Other publications

	Notices
	Trademarks

