
AIXlink/X.25 Version 2.1 for AIX: Guide

and Reference

SC23-2520-07

���

AIXlink/X.25 Version 2.1 for AIX: Guide

and Reference

SC23-2520-07

���

Note

Before using this information and the product it supports, read the information in Appendix J, “Notices,” on page 339.

Eighth Edition (September 2005)

This edition of AIXlink/X.25 Version 2.1 for AIX: Guide and Reference applies to the December 2004 update to AIX

5L Version 5.3, and to all subsequent releases of these products until otherwise indicated in new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . ix

Highlighting . ix

Case-Sensitivity in AIX . ix

ISO 9000 . ix

Related Publications . ix

Chapter 1. X.25 Network Communications Overview 1

X.25 Equipment Terminology . 1

X.25 Levels . 2

X.25 Usage . 6

X.25 Network Subscription . 10

Chapter 2. X.25 Licensed Program Functionality . 13

Configuration Structure . 13

STREAMS . 16

Chapter 3. X.25 Migration . 19

X.25 Functional Comparison . 19

Chapter 4. X.25 Installation and Configuration . 29

Minimum Requirements . 29

Planning Your X.25 Installation . 30

Installation Procedure . 30

Hardware Installation . 31

Configuring X.25 Communications with SMIT . 32

Configuration Commands . 44

Chapter 5. Network Provider Interface Programming Reference 47

NPI Enhancements for AIXlink/X.25 Version 2.1 . 48

Support for 64 Bit Applications . 48

Structure Changes for 64-bit Mode . 48

Sample Program . 48

Local Management Primitives . 49

Connection-Mode Primitive Formats and Rules . 49

NPI STREAMS Programming . 52

N_BIND_REQ Primitive . 53

N_BIND_ACK Primitive . 56

N_UNBIND_REQ Primitive . 57

N_OK_ACK Primitive . 58

N_ERROR_ACK Primitive . 59

N_INFO_REQ Primitive . 60

N_INFO_ACK Primitive . 60

N_CONN_REQ Primitive . 62

N_CONN_IND Primitive . 63

N_CONN_RES Primitive . 65

N_CONN_CON Primitive . 67

N_DATA_REQ Primitive . 68

N_DATA_IND Primitive . 69

N_DATACK_REQ Primitive . 70

N_DATACK_IND Primitive . 71

N_EXDATA_REQ Primitive . 71

N_EXDATA_IND Primitive . 72

N_RESET_REQ Primitive . 73

© Copyright IBM Corp. 2001, 2005 iii

N_RESET_IND Primitive . 74

N_RESET_RES Primitive . 75

N_RESET_CON Primitive . 76

N_DISCON_REQ Primitive . 76

N_DISCON_IND Primitive . 78

Chapter 6. Data Link Provider Interface Programming Reference 81

Structure Changes for 64-bit Mode . 81

The Data Link Layer . 81

Model of the Service Interface . 82

DLPI Primitives . 82

DL_BIND_ACK Primitive for X.25 . 84

DL_BIND_REQ Primitive for X.25 . 85

DL_CONNECT_CON Primitive for X.25 . 86

DL_CONNECT_REQ Primitive for X.25 . 87

DL_DISCONNECT_IND Primitive for X.25 . 88

DL_DISCONNECT_REQ Primitive for X.25 . 89

DL_ERROR_ACK Primitive for X.25 . 91

DL_INFO_ACK Primitive for X.25 . 92

DL_OK_ACK Primitive for X.25 . 94

DL_RESET_CON Primitive for X.25 . 94

DL_RESET_IND Primitive for X.25 . 95

DL_RESET_REQ Primitive for X.25 . 96

DL_RESET_RES Primitive for X.25 . 97

DL_UNBIND_REQ Primitive for X.25 . 98

Chapter 7. X.25 and SNA Networks . 99

Accessing an SNA Network with X.25 . 99

QLLC with Reference to X.25 Support . 100

Introducing Communications Server Version 6 . 101

Customizing Communications Server for AIX . 105

Chapter 8. Packet Assembler/Disassembler (PAD) 111

X.3, X.28 and X.29 Standards . 111

PAD Setup . 113

Using the PAD . 113

PAD for AIXlink/X.25 Running on AIX Version 4 (and later) 121

Configuration File Format (AIXlink/X.25 Version 1 and later) 130

Chapter 9. X.25 Simple Network Management Protocol 133

Installation Notes for SNMP Multiplexer X.25 Peer Daemon (x25smuxd) 133

Frame Layer Objects . 133

Packet Layer Objects . 134

Chapter 10. Common Input/Output Emulation . 137

X.25 Application Programming Interface Overview . 137

X.25 Application Programming Interface (API) . 137

Processing Calls with the X.25 API . 139

X.25 Example Programs . 146

X.25 Example Program svcxmit: Make a Call Using an SVC 147

X.25 Example Program svcrcv: Receive a Call Using an SVC 151

X.25 Example Program pvcxmit: Send Data Using a PVC 156

X.25 Example Program pvcrcv: Receive Data Using a PVC 159

List of X.25 Programming References . 162

Chapter 11. X.25 Power Management . 167

iv AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Impact to External Connection - Network Provider . 167

Impact to Local Applications: DLPI, TCP/IP, NPI, COMIO, and PAD 167

Power Management Limitation Warnings . 168

Chapter 12. X.25 Problem Determination . 171

Flashing 888 Problems . 171

Forcing a System Dump . 172

X.25 Problem Diagnosis . 173

Diagnosing Problems with Connecting to the X.25 Network 174

Diagnosing Problems with Making an Outgoing X.25 Call 175

Diagnosing Problems with Receiving an Incoming X.25 Call 175

Diagnosing X.25 Packet Problems . 176

Diagnosing X.25 Command Problems . 176

Diagnosing PAD Problems . 177

Diagnosing XOT Problems . 177

Diagnosing XOL Problems . 178

Appendix A. X.25 Commands . 179

backupx25 Command . 179

chsx25 Command . 180

lspvc Command . 181

lsx25 Command . 183

mkpvc Command . 186

mksx25 Command . 187

removex25 Command . 189

restorex25 Command . 190

rmsx25 Command . 191

sx25debug Command . 191

x25ip Command . 194

x25mon Command . 196

x25sessions Command . 199

X25status Command . 199

xotstat Command . 200

xotdisplay Command . 201

xroute Command . 202

xspad Command . 204

xtalk Command . 206

Appendix B. COMIO Emulator . 211

x25_ack Subroutine . 211

x25_call Subroutine . 213

x25_call_accept Subroutine . 214

x25_call_clear Subroutine . 216

x25_circuit_query Subroutine . 217

x25_ctr_get Subroutine . 219

x25_ctr_remove Subroutine . 220

x25_ctr_test Subroutine . 221

x25_ctr_wait Subroutine . 222

x25_deafen Subroutine . 223

x25_device_query Subroutine . 224

x25_init Subroutine . 225

x25_interrupt Subroutine . 226

x25_link_query Subroutine . 228

x25_listen Subroutine . 229

x25_pvc_alloc Subroutine . 231

x25_pvc_free Subroutine . 232

Contents v

x25_receive Subroutine . 233

x25_reset Subroutine . 235

x25_reset_confirm Subroutine . 236

x25_send Subroutine . 237

x25_term Subroutine . 239

Appendix C. Device Handler API . 241

Device Driver Emulation . 241

x25_close X.25 Device Handler Entry Point . 241

x25_ioctl X.25 Device Handler Entry Point . 242

CIO_DNLD (Download Task) x25_ioctl X.25 Device Handler Operation 244

CIO_GET_STAT (Get Status) x25_ioctl X.25 Device Handler Operation 245

CIO_HALT (Halt Session) x25_ioctl X.25 Device Handler Operation 247

CIO_QUERY (Query Device) x25_ioctl X.25 Device Handler Operation 249

CIO_START (Start Session) x25_ioctl X.25 Device Handler Operation 251

IOCINFO (Identify Device) x25_ioctl X.25 Device Handler Operation 255

X25_ADD_ROUTER_ID (Add Router ID) x25_ioctl X.25 Device Handler Operation 256

X25_COUNTER_GET (Get Counter) x25_ioctl X.25 Device Handler Operation 257

X25_COUNTER_READ (Read Counter) x25_ioctl X.25 Device Handler Operation 258

X25_COUNTER_REMOVE (Remove Counter) x25_ioctl X.25 Device Handler Operation 259

X25_COUNTER_WAIT (Wait Counter) x25_ioctl X.25 Device Handler Operation 260

X25_DELETE_ROUTER_ID (Delete Router ID) x25_ioctl X.25 Device Handler Operation 261

X25_DIAG_IO_READ (Read Register) x25_ioctl X.25 Device Handler Operation 261

X25_DIAG_IO_WRITE (Write to Register) x25_ioctl Operation 262

X25_DIAG_MEM_READ (Read Memory) x25_ioctl Operation 263

X25_DIAG_MEM_WRITE (Write Memory) x25_ioctl Operation 264

X25_DIAG_RESET (Reset Adapter) x25_ioctl Operation 264

X25_DIAG_TASK (Download Diagnostics) x25_ioctl Operation 265

X25_LINK_CONNECT (Connect Link) x25_ioctl Operation 266

X25_LINK_DISCONNECT (Disconnect Link) x25_ioctl Operation 267

X25_LINK_STATUS (Link Status) x25_ioctl Operation 268

X25_LOCAL_BUSY (Local Busy) x25_ioctl Operation 269

X25_QUERY_ROUTER_ID (Query Router) ID x25_ioctl Operation 270

X25_QUERY_SESSION (Query Session) x25_ioctl Operation 271

X25_REJECT_CALL (Reject Call) x25_ioctl Operation 272

x25_mpx X.25 Device Handler Entry Point . 273

x25_open X.25 Device Handler Entry Point . 275

x25_read X.25 Device Handler Entry Point . 278

x25_select X.25 Device Handler Entry Point . 280

x25_write X.25 Device Handler Entry Point . 281

Appendix D. X.25 Cables and Connectors . 285

X.25 Coprocessor 37-Pin Connector Pin Assignments 285

Modem Attachment Pin Assignments . 286

X.25 Interconnection Cables . 290

6-Port X.21 Portmaster Adapter . 292

X.25 Adapter and Cable Diagnostics Wrap Plugs and Pinouts 293

Appendix E. CCITT Causes and Diagnostics . 305

X.25 Clear and Reset Codes . 305

CCITT Restart Causes . 305

X.25 Logical Channel States . 305

X.25 Diagnostic Codes . 306

CCITT Clear and Reset Causes for X.25 . 306

Diagnostic Codes for X.25 and Communications Server (SNA) 307

Diagnostic Codes Used by the xtalk Command . 314

vi AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix F. Supported Facilities for X.25 Communications 315

Facilities Format . 315

X.25 Facilities . 316

CCITT-Specified Facilities to Support the OSI Network 325

Appendix G. Communications Server (SNA) Problem Determination 329

Information Required for Communications Server (SNA) Support for X.25 329

Additional Problem Determination Information for X.25 332

Appendix H. X.25 Virtual License Information . 333

Appendix I. Using AIXlink/X.25 over the IBM 2-Port Multiprotocol Adapter 335

Overview . 335

Appendix J. Notices . 339

Trademarks . 340

Index . 341

Contents vii

viii AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

About This Book

The AIXlink/X.25 for AIX®: Guide and Reference provides system administrators, application developers,

and end users with complete detailed information on using, managing, and programming AIXlink/X.25. This

book includes complete reference material for the Network Provider Interface (NPI), the Data Link Provider

Interface (DLPI), X.25 Commands, the COMIO Emulator, and the Device Handler API.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items

whose names are predefined by the system. Also identifies graphical objects such as buttons,

labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a

programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to AIXlink/X.25 2.1:

v AIX 5L Version 5.3 Commands Reference

v RS/6000 X.25 Cookbook

v AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

v AIX 5L Version 5.3 Communications Programming Concepts

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.3 Files Reference

v Networks and communication management

v Operating system and device management

© Copyright IBM Corp. 2001, 2005 ix

x AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 1. X.25 Network Communications Overview

X.25 can be a cost-effective means of networking systems in a wide geographical area, compared to

traditional dial-up (circuit switched) connections, or remote-bridged local area networks (LANs) connected

by leased lines. It provides worldwide interconnection for international corporations.

X.25 provides the ability to transmit data between remote machines. It is a set of recommendations from

the International Telegraph and Telephone Consultative Committee (CCITT). These recommendations

define a standard network access protocol for attaching different types of computer equipment to a

packet-switched data network (PSDN). A PSDN is an interconnecting set of switching nodes that enables

subscribers to exchange data using a standard protocol and packet-switching technology. This protocol is

particularly useful for communication between different types of computer systems and for accessing

public databases.

Both public and private PSDNs can be based on the X.25 protocol. Public networks are usually provided

nationally by the Post, Telegraph, and Telecommunications (PTT) authority. Private networks are operated

by individual corporations. Many of the corporations using X.25 networks have a requirement for

communication between themselves and other companies, such as dealers and agents. An example of

such an X.25 network use is an airline reservation system.

Although some corporations have created private networks, most companies subscribe to a public PSDN.

Such a network carries messages divided into packets over circuits that are shared by many network

users. A single physical line into an office can handle many concurrent connections. A packet consists of a

sequence of data and control elements in a format that is always transmitted as a whole. The network

packet size is commonly 128 bytes, but can vary from 16 to 4096 bytes. In X.25, a byte is called an octet.

You can use X.25 communications to provide a network service for higher-level protocols, such as System

Network Architecture (SNA) and Transmission Control Protocol/Internet Protocol (TCP/IP). Or you can use

an X.25 network directly, either by using the xtalk command, or by using an application programming

interface (API) to write your own applications.

X.25 Equipment Terminology

The terms DTE, DCE, and DSE are used with both the X.25 protocol and modems, with slightly different

meanings. The CCITT has defined these terms as follows for X.25 protocol:

 DTE (Data-Terminal Equipment.) A computer that uses a network for communications.

DCE (Data Circuit-Terminating Equipment.) A device at the point of access to a network.

DSE (Data-Switching Equipment.) A switching node in a packet-switched data network.

Notes®:

1. Every DTE must have an associated DCE.

2. DTE and DCE are functional definitions; they need not correspond to specific items of equipment.

For example, a single device may be a DSE and may also provide multiple DCE interfaces.

X.25 is not an end-to-end protocol. CCITT Recommendation X.25 defines a standard protocol for

information exchange in packet mode between a DTE and a DCE (that is, between an individual user’s

equipment and the network provider’s equipment).

The network is composed of DCEs and DSEs that route the packets of data through the network to the

intended destination. The path that a user’s data takes might vary with every packet. In most cases the

DTE is connected to a DCE in some form of network. In a few cases, two systems might be attached

© Copyright IBM Corp. 2001, 2005 1

more directly, without an intermediate network. When this is the case, one system has to act as a DCE at

the Data Link layer. This usage is not common because it restricts the flexibility of the protocol and

degrades performance.

Operation and maintenance of DCEs and DSEs are the responsibilities of the network provider. If a link

between two DSEs goes down, the provider must reroute traffic. X.25 does not define the route through

the network or the protocols employed within it.

The following diagram shows these elements of a packet-switched data network.

X.25 Levels

Several models have been used to specify how networks work. One of the most common of these

conceptual models is the International Standards Organization’s Open System Interconnect (OSI)

Reference Model , also referred to as the OSI 7-layer model. The OSI model numbers the seven layers, or

levels, beginning at the lowest (physical) level, as follows:

 7 Application

6 Presentation

Figure 1. The X.25 Network

2 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Levels 1-3 are network-specific, and differ depending on the physical network used. Levels 4-7 are

network-independent, higher-level functions. The X.25 protocol has three levels . These levels correspond

to Levels 1, 2, and 3 of the OSI model as follows:

 Physical level OSI Level 1 (Physical)

Link level/Frame Level OSI Level 2 (Data Link)

Packet level OSI Level 3 (Network)

The X.25 protocol can be quite complicated to set up. If protocol information is required, refer to a

communications textbook. Each layer relies on the lower layers to be functional for it to work. If a problem

is encountered when setting up an X.25 connection, each layer should be checked to see if it is active.

Physical Level

The physical level activates, maintains, and deactivates the physical circuit between a DTE and a DCE.

The physical level is implemented as a STREAMS driver and performs the following functions:

v Activate and deactivate physical circuits using electrical signals.

v Maintain line characteristics of the selected interface.

v Indicate faulty incoming HDLC frames, such as frames with the wrong length.

v Allow configuration of auto call units (ACU) for systems with dial-up X.25 connections.

This implementation supports three physical interfaces: V.24, V.35, and X.21bis. CCITT recommendations

V.24 and V.35 are found in 1988 volume VIII.I. The CCITT X.21bis is found in volume VIII.

Link Level or Frame Level

The packet layer produces X.25 packets to establish calls and transfer data. All these packets are then

passed to the frame layer for transmission to the local DCE. The frame layer uses a link-access procedure

to ensure that data and control information are accurately exchanged over the physical circuit between the

DTE and DCE. It provides recovery procedures and is based on a subset of the high-level data-link control

(HDLC) protocol called LAP-B. It is synchronous and full-duplex. Once a link is started, either station can

transfer information without waiting for permission from the other.

In HDLC all commands, responses, and data are transmitted in frames. Each frame has a header

containing address and control information, and a trailer containing a frame-check sequence. Normally,

none of this is seen when using X.25.

The three types of frames are:

 I Information frames. These frames transfer user data and are numbered sequentially. All X.25 packets are

transferred within I frames.

S Supervisory frames. These frames are numbered sequentially and supervise the link, performing such functions

as:

v Acknowledging I frames.

v Requesting retransmission of I frames.

v Requesting temporary suspension of transmission of I frames.

Chapter 1. X.25 Network Communications Overview 3

U Unnumbered frames. These frames describe the mode of operation, such as the command Set Asynchronous

Balanced Mode (SABM).

Packet Level

The packet-level protocol specifies how X.25 controls calls and data transfers between systems. There are

many networks running X.25, and a number of these are interconnected. Each system connected to the

network has an address to identify it, and this address is used when a connection from the local system to

the remote is being requested.

When a system is installed with X.25 and a network subscription obtained, various pieces of configuration

information are supplied by the network provider. This information is used to configure the X.25 software.

One or more X.25 lines can be connected and for each line, an X.25 port will be configured.

The data transfer capacity of the X.25 line may be shared between a number of different sessions. The

maximum number of subscriptions is based on the network subscription and the capabilities of the DTE

hardware and software. Each session is called a virtual circuit. A virtual circuit is a data circuit between the

local and remote systems, but a circuit that may have its route switched within the network. The element

of the network subscription that limits the number of simultaneous virtual circuits in use is the number of

logical channels subscribed to. Each virtual circuit takes up a logical channel for the period the circuit is

active.

Logical Channels

Logical channels are the communications paths between a DTE and its data circuit-terminating equipment

(DCE). For 15 simultaneous connections across a network, the network supplier must provide 15 logical

channels. Valid logical channel numbers range from 1 to 4095 (logical channel number 0 is usually

reserved for diagnostics). The network provider assigns the specific logical channel numbers, and each

number must match between the DTE and its DCE. For example, a DTE configured to use logical

channels 51-58 could not communicate with its DCE using logical channels 3002-3009. However, when a

DTE communicates with another DTE across a packet-switched data network (PSDN), the DTE logical

channel numbers do not have to match. The logical channel is not end-to-end in the network; it must only

match between each DTE/DCE pair, as shown in the following diagram:

Figure 2. Logical Channels and Virtual Circuits

4 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Virtual Circuits

When a user application begins a session with another DTE on the network, a virtual circuit is established

from one DTE to the other, through the DCEs on the network. For an outgoing call, the system that

originates the call automatically selects a free channel. When an incoming call is received, the system’s

local DCE selects the channel. Each application running between two hosts requires use of a virtual

circuit. There are two kinds of virtual circuits, permanent (PVC) and switched (SVC), of which SVCs are

the more commonly used. Normally when using an SVC, it is not necessary to know the logical channel

number in use; the X.25 software ensures that the data from a given session goes over the appropriate

virtual circuit. It is necessary to know the logical channel number a given session is on when using PVCs

or when tracing the traffic on the X.25 line.

Some applications multiplex their own connections over one virtual circuit. For example, once a virtual

circuit is established between two machines for TCP/IP, all TCP/IP traffic between those machines flows

on that circuit.

It is important that the virtual circuit ranges used for configuration agree with those defined by the network

provider.

Permanent Virtual Circuits:

Configure permanent virtual circuits (PVCs) to agree with the network provider’s subscription. The

subscription is permanently configured so that the PVC occupying a particular logical channel number

(LCN) connects to a remote machine on a specified LCN on the remote machine. This allows call setup

time to be saved, but dedicates the channel to that one remote system. This makes PVCs less flexible and

less likely to be used.

Switched Virtual Circuits:

A switched virtual circuit (SVC) is a virtual circuit that exists only for the duration of the call, acting like a

connection over a telephone network. There are three types of logical channels for SVCs:

 Incoming The DTE can only receive calls on this channel.

Outgoing The DTE can only initiate calls on this channel.

Two-Way The DTE can both receive and initiate calls on this channel.

These channel types are significant only during call initiation. Once a virtual circuit has been established, it

is always for two-way communication. Typically, only two-way SVCs are used. However, if more than one

type is used, the CCITT states that the logical channel numbers must be assigned within the following

hierarchy, from the lowest logical channel numbers to the highest:

1. PVCs.

2. Incoming SVCs.

3. Two-way SVCs.

4. Outgoing SVCs.

If a system has only two-way SVCs, then it is possible that at any given time they could all be in use by

incoming calls. If the ability to make an outgoing call must to be guaranteed, then an outgoing-only SVC

would perform that function.

Network User Address

Each system on an X.25 network has an address to identify it. This address is supplied by the network

provider. To ensure that the address is unique across different network providers and between different

Chapter 1. X.25 Network Communications Overview 5

countries, the X.121 specification defines an international numbering scheme that ensures a unique DTE

address. This address is called the network user address (NUA) . For communication between systems, it

is the remote system’s NUA that must be known.

Most public networks use the X.121 addressing standard (defined in CCITT Volume VIII.3) to create NUAs.

Under the X.121 addressing standard, an NUA consists of the following parts:

v Data Network Identification Code (DNIC)

v National Terminal Number (NTN)

Data Network Identification Code:

A data network identification code (DNIC) consists of 4 digits that include:

v Data Country Code (DCC). The first digit identifies a world geographic zone. The second and third digits

identify a specific country.

v Public Data Network Code (PDN). The fourth digit in the DNIC identifies a specific PDN.

Note: Because of the limitation of 1 digit to define only 10 PDNs within one single country, the

United States obtained CCITT permission to use 1 digit for the DCC and 2 digits to specify a PDN.

National Terminal Number:

Following the DNIC are 10 digits assigned by the PDN. No rule determines how the national terminal

numbers (NTNs) are made up. Most PDNs reserve the last 2 digits as an optional subaddress for the X.25

subscriber. It is the NTN, when communication is made within a given network, that is often given as the

system’s NUA. The optional subaddress is not processed by the PDN, but is available to identify a finer

granularity of address on the remote system. The DNIC is usually used when the remote system is on a

different network from the calling system.

The following shows the structure of the network user address (NUA), leaving two digits for the

subaddress.

Data Network Identification National Terminal Number Optional Subaddress 1234 56789012 34

The X.121 addressing standard also defines a 1-digit optional prefix for international calls. If a call is

beyond PDN boundaries, the user or application establishing the call can add a 0 or a 1 at the beginning

of the NUA. If a call is within PDN boundaries, no prefix is necessary. The maximum length of an NUA is

15 digits.

X.25 Usage

Once all three layers are active, the DTE can set up calls and transfer data to other DTEs. To do this, the

X.25 protocol uses different types of packets to make or accept the call, transfer data, and end calls. The

X.25 communications software performs most of the tasks involved in creating the packets. You do not

need to know the contents of each packet, you need only supply the information necessary to create it.

The way calls work on SVCs is different from the way calls work on PVCs. SVCs are more commonly

used, and they initiate the DTE to DTE connection with a call-request packet.

The DTE to DTE connection shown in the following diagram illustrates how a call is set up, used, and

cleared. The call uses a virtual circuit for the duration of the call. This circuit can be reused once the call is

over.

6 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Data sent during the call is divided up into units. The size of these units is the packet size. Packet size

applies to the size of each data packet, not all packets. The default packet size is 128 bytes. When one

unit of data needs to be sent that is greater than the packet size, a number of packets are sent. This

sequence of packets is marked to indicate that it makes up one unit of data through use of a flag called

the more or M bit. The packet size can be varied from 128 either through configuration or at call setup

time. Allowing more data in each packet can have performance gains as there is a degree of overhead for

every packet sent. The packet size is one of the call’s characteristics that can be changed at call setup.

Requests to make changes at this time are controlled by facility requests.

Usually the calling DTE is responsible for inserting all the facility requests it needs. Sometimes though, the

network inserts the facility requests into the call packet to indicate to the remote DTE certain

characteristics of the local DTE, one of which can be packet size. The contents of a packet, when it

reaches the called DTE, may be different from the packet that left the calling DTE. Packet contents may

change because some information differs for each DTE (for example, logical channel numbers) or only

applies to one of the DTEs. The name given to a packet also varies to indicate if it is received or sent.

Packets are grouped into the following categories, according to type:

v Call establishment and clearing:

– Call request

– Incoming call

– Call accepted

– Call connected

– Clear indication

– Clear request

– Clear confirmation

v Data and interrupt:

– Data

– Interrupt

– Interrupt confirmation

v Flow control and reset:

– Reset request

Figure 3. DTE to DTE Connection

Chapter 1. X.25 Network Communications Overview 7

– Reset indication

– Reset confirmation

– Receive ready

– Receive not ready

v Restart:

– Restart request

– Restart indication

– Restart confirmation

– Diagnostics

Call Setup

The call-setup packets contain different types of information:

v Calling and called addresses.

v Requests related to the characteristics of the call, aimed at either the network (DCE) or remote DTE.

These are referred to as facilities.

v Data provided by the calling DTE for use by the called DTE when it receives the call. This is referred to

as call-user data (CUD).

Call-Time Facilities

A facility is a service provided by the X.25 network. Some facilities are offered as options by the network

provider. Negotiating packet size, for example, is a standard facility on most networks, while

reverse-charging acceptance is optional. Some optional facilities, such as reverse-charging acceptance,

are valid for all virtual calls. Other facilities, such as reverse charging, must be specifically requested for

the duration of a call. Certain facilities can be allowed or disallowed for a given X.25 port. If not disallowed,

the requested facilities can be used during call setup.

The X.25 facilities and their coding are defined in the CCITT Recommendation X.25, Sections 6 and 7.

The facilities you can use are defined in your X.25 subscription.

To use a valid facility during a virtual call, a facility request and the facility’s corresponding parameters

must be inserted in the call packet. The X.25 program on the data terminal equipment (DTE) can insert a

facility request in the call request (calling DTE) or in the call accepted (called DTE) packet. Coding of the

facilities is the responsibility of the X.25 application and not of the application programming interface (API),

device driver, or X.25 microcode.

The network DCE can also notify the DTE of the use and parameters of a facility. The DCE inserts a

facility indication, either in the incoming-call packet or in the call-connected packet. The following diagram

illustrates the call-packet names.

8 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

The following table lists the main facilities that may be requested by the DTE or the DCE for the duration

of a call.

 X.25 Optional Facilities

Facilities 1980 Request Indicator

Throughput class selection yes yes yes

Flow-control parameters selection yes yes yes

CUG selection * yes

Reverse charging yes yes yes

Fast select yes yes yes

Recognized private operating agency (RPOA) selection yes yes

Network user identification (NUI) yes

Call redirection notification yes

Charging requesting service yes

Note: *Basic CUG only in CCITT 1980.

The Throughput Class Selection facility allows you to change your default throughput class (measuring the

transmission speed within the network) to a lower value. This action does not affect the DTE-to-DCE

speed, only the speed at which a packet traverses the switching nodes in the network.

 Flow-control Parameters

Facility

Consists of the window size selection and the packet size selection.

Closed User Group (CUG)

Facility

Enables a member of one subgroup to communicate only with other members of the

same subgroup. One DTE may be a member of several CUGs. The CUG selection

facility allows the DTE to specify what CUG it will be working with. A bilateral closed

user group (BCUG) allows calls to be made only between two designated DTEs.

Reverse Charging Facility Allows a DTE to request that the cost of a call be charged to the called DTE.

Fast Select Facility Allows the user 128 bytes of call user data instead of the ordinary 16. Also, 128 bytes

may be sent in the call-accepted packet. Fast select must be enabled at subscription

time for that particular DTE. With the facility you can make applications that depend

entirely on the virtual circuit protocol, clearing virtual circuits as soon as a

call-connected indication comes in.

RPOA Selection Facility Selects one or more specific transit networks to carry your virtual circuit.

Network User Identification

(NUI) Facility

Allows the requesting DTE to provide billing, security, or management information on

a per-call basis to the DCE.

Call Redirection Notification

Facility

Informs the caller that the call has been redirected to another DTE.

Charging Requesting Service

Facility

Specifies that charging information (such as segment-count, monetary-unit, or

call-duration data) is required.

Figure 4. Facilities and Call Packets

Chapter 1. X.25 Network Communications Overview 9

Coding and Decoding Facilities

The following diagram shows the structure of a call packet. Call requests, incoming calls, call-accepted

packets, and call-connected packets all have the same structure.

Facility requests or facility indications are inserted between the address block and the call user data (CUD)

and are prefixed by an octet containing the total length of the facilities. For information on coding and

decoding facilities, see Supported Facilities for X.25 Communications.

Facilities Requested by the DTE

Your application is responsible for coding a facility you want to use and inserting it in the call-request or

call-accepted packet. The xtalk command, Transmission Control Protocol/Internet Protocol (TCP/IP), and

System Network Architecture (SNA) Services allow the user optionally to define a facility request to be

inserted in the call packet.

X.25 Network Subscription

The network provider must supply some information about a connection before a user can connect to the

network. The network provider assigns the DTE address (NUA), the logical channel numbers, and the

types of virtual circuits. Additional attributes must also match between the DTE and the network’s DCE.

The network supplier provides the X.25 attachment attributes that must be used to configure the DTE for a

particular network subscription. Suppliers create subscriptions based on their network conventions, DCE

hardware, and customers’ requirements, such as performance, number of concurrent connections, and

security needs. The network attachment speed and the DCE hardware determine the adapter and

interface choice, so customers should check with the network provider before making these hardware

choices.

To configure a DTE, the network provider should be told that the X.25 device driver requires the following

attachment characteristics:

Figure 5. Call Packet Structure

10 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

v Full-duplex, synchronous transmission.

v Leased-line attachment or dial-up capability through X.32.

v Network or modem-provided clocking.

The X.25 licensed program supports CCITT up to 1988.

Chapter 1. X.25 Network Communications Overview 11

12 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 2. X.25 Licensed Program Functionality

This chapter discusses the functionality of the X.25 Licensed Program interface. The X.25 Licensed

Program provides the following functionality:

v Support of the International Consultative Committee on Telegraph and Telephone (CCITT) 1988, 1984,

1980 X.25.

v Packet layer programming interface network provider interface (NPI). New programs written to use X.25

should be written to this interface.

v Frame layer programming interface data link provider interface (DLPI). Programs requiring a

point-to-point LAP-B connection should use this interface.

v Compatibility application program interface (API) for applications written to the base Version 3 X.25

support. This API is not intended for new program development. For new program development, refer to

sections on NPI or DLPI. Applications written to the base Version 3 X.25 support will need to be

recompiled before they can be run on AIX 5.1 with the AIXlink/X.25 LPP COMIO emulation.

v Triple-X (X.3, X.28, X.29) Packet Assembler/Disassembler (PAD).

v Support for Transmission Control Protocol/Internet Protocol (TCP/IP) and Systems Network Architecture

(SNA) higher layer protocols.

v Simple network management protocol (SNMP) support for data items from the Management Information

Base (MIBs) for the packet and frame layers.

v Support for X.25 over TCP/IP (XOT) for routing X.25 applications and connections over a TCP/IP

Internet network.

v Support for X.25 over Logical Link Control Type two (XOL) for routing X.25 applications and connections

over Ethernet networks.

Each of these functional areas is covered in more detail in the relevant chapters.

Configuration Structure

With multi-port adapters, more than one X.25 port can be associated with a given adapter. When the

AIXlink/X.25 LPP is configured, X.25 ports are set up to use the available ports on a given

communications adapter. The following are supported: X.25 Interface Co-Processor/1 Adapter, X.25

Interface Co-Processor/2 Adapter, IBM® ARTIC Portmaster® Adapter, IBM 2-Port Multiprotocol Adapter,

IBM ARTIC960 Adapter, and IBM ARTIC960Hx 4-Port Selectable PCI Adapter. All of these adapters

support the V.24, V.35 and X.21 electrical interfaces. In addition, the ARTIC960 and ARTIC960Hx adapters

support the V.36 interface. These adapters produce device instances of the form ampx, ampx, apm,

dpmpa, ricio, and riciop, respectively.

For the X.25 Interface Co-Processor/1 , X.25 Interface Co-Processor/2, and the ARTIC Portmaster

adapters, the device driver twd is associated with the adapter and there can only be one available per

adapter. For the ARTIC960 and ARTIC960Hx adapters the twd driver is associated with the adapter’s

ddricio instance and there is only one per adapter. With the 2-Port Multiprotocol Adapter there is an hdlc

device driver for each of the 2 ports and no twd device driver. See Appendix I, “Using AIXlink/X.25 over the

IBM 2-Port Multiprotocol Adapter,” on page 335 for more information on this adapter.

With XOT, the xot driver is created, enabling you to use a LAN adapter instead of an X.25 adapter, routing

X.25 information over TCP/IP. With XOL, the xol driver is created, enabling you to use an Ethernet-based

LAN adapter instead of an X.25 adapter, routing X.25 information over Logical Link Control Type 2 (LLC2).

After a device driver is configured onto a given adapter, then as many ports supported by the adapter can

be configured. The main device used is the X.25 port as shown in the following diagram.

© Copyright IBM Corp. 2001, 2005 13

When each device is added to the system configuration, it is given the next available instance number. As

a result, the device driver’s instance number might not match the adapter on which it is configured. The

ports and which device driver or adapter is configured on each port can be viewed through smit or by

entering the lsx25 command.

Once an X.25 port is available, it can be used by a number of possible applications:

v x29d X.29 daemon

v xspad X.3/X.28 terminal session

To enable the Triple-X PAD on the system, refer to Managing the Triple-X PAD .

v A COMIO emulator-based application

To configure a COMIO emulator port on to an X.25 port, refer to Configuring X.25 Communications with

SMIT

v TCP/IP

To configure TCP/IP on an X.25 port, refer to Managing TCP/IP Configuration and Configuring TCP/IP in

the Networks and communication management.

v An NPI based application

v A DLPI based application

AIXlink/X.25 Version 2.1 executes in a 32-bit AIX environment or a 64-bit AIX environment.

32-bit applications are supported in the 32-bit AIX or 64-bit AIX environment.

64-bit NPI applications are supported in the 64-bit AIX environment.

The 2-Port Multiprotocol PCI Adapter and the IBM ARTIC960Hx 4-Port Selectable PCI Adapter are

supported in the 32-bit AIX environment and the 64-bit AIX environment. All other AIXlink/X.25 supported

adapters are supported in the 32-bit AIX environment.

Triple-X PAD

A PAD allows remotely attached ASCII terminals to access applications running in X.25 based hosts. Refer

to Packet Assembler/Disassembler (PAD) Overview for more details.

The PAD support can be enabled or disabled for the system, refer to Configuring X.25 Communications

with SMIT. If enabled, one instance of X.29 supports all the configured X.25 ports, servicing all remote

terminals using the PAD. Where the system is being used as a terminal PAD, each terminal has its own

X.3/X.28 session.

COMIO

Each X.25 port can have COMIO emulation enabled. This emulation produces a programming interface

compatible with that in the base AIX Version 3 X.25 support. Applications such as xtalk can use the

Figure 6. Sample Driver Configuration

14 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

emulation without recompiling. To allow for this emulation, a device entry is created with the same device

name that would have been generated by the base AIX Version 3 X.25 support - /dev/x25s. Refer to

Configuring X.25 Communications with SMIT for details on using this emulation.

 AIX Base Version 3 X.25

users

Not all applications supplied with Version 3 are supported. The xmanage command is

no longer needed as the line is continuously attempted to be brought up. The

xmonitor trace utility has been replaced with x25mon. The x25mon trace utility has a

″control″ tracing option that provides information such as the state of the various

layers and the contents of bad frames or packets.

TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) support can be added to any of the X.25 ports.

The system allows IP addresses to be matched to an NUA. If an IP connection is required to a given

remote X.25 DTE, then a virtual circuit is acquired and the IP data is sent. A typical TCP/IP port would be

xs0. The instance number of the TCP/IP port is not necessarily the same as the X.25 port on which it is

configured. Refer to Configuring X.25 Communications with SMIT and to Configuring TCP/IP in the

Networks and communication management for details.

NPI

Network Provider Interface (NPI) provides a programming interface for the packet layer. Refer to NPI

Overview for information on its use. Each instance of an NPI-based application accesses the NPI module

as required. There are no separate configuration steps for NPI.

DLPI

Data link provider interface (DLPI) provides a programming interface to the frame, LAP-B, layer. Refer to

DLPI Overview for information on its use. Though the access is to LAP-B rather than X.25, an X.25 port

must be configured and set up to allow use of the DLPI interface. When DLPI is enabled, X.25 access to

the port is disabled. Refer to “General Parameters” on page 35 for details.

Note: See Appendix I, “Using AIXlink/X.25 over the IBM 2-Port Multiprotocol Adapter,” on page 335

for information on differences when using 2-Port Multiprotocol Adapters.

XOT

XOT provides you with the ability to transport X.25 over IP Internets. RFC 1613 documents a method of

sending X.25 packets over IP Internets, by encapsulating the X.25 Packet Level in TCP packets.

XOT allows you to route existing X.25 applications and connections on AIX over a TCP/IP Internet

network.

XOT provides the following:

v Enables suppression of X.25-specific PCI adapters in AIX host systems by using remote IP-to-X.25

bridges to the real X.25 networks, and LAN connections to these bridges using Ethernet or others PCI

LAN adapters.

v Leaves the X.25 local applications over the various X.25 APIs on AIX unchanged regarding this new

way to reach X.25 networks.

v Adds the ability to do end-to-end X.25 user application dialog over IP Internets without real X.25

network layer usage.

XOT, used over a local LAN adapter and an external IP/X.25-router, provides the same X.25 link access

and features as AIX-located X.25 adapter and software.

Chapter 2. X.25 Licensed Program Functionality 15

In XOT, X.25 packets are routed to the XOT module using the Data Link Provider Interface (DLPI). All of

the X.25 applications remain unchangeable. XOT uses the TCP/IP stack to then use any LAN adapter to

send the data through IP. An X.25–to-IP bridge can be used to retrieve X.25 packets from the IP packets

and then sent to X.25.

XOL

The environment may need to transport the X.25 packets over Ethernet networks, to send the information

through a X.25 bridge or to communicate within the network. ISO 8881 documents a method of sending

X.25 packets over local area networks (LAN) using the Logical Link Control Type 1 (LLC) and Type 2

(LLC2). Currently, X.25 supports Ethernet adapters and LLC2.

XOL provides the following benefits:

v Enables the suppression of X.25 specific PCI adapters in AIX host systems, by using Ethernet adapters

and LLC2/X.25 bridges to a real X.25 network and LAN connections using Ethernet to Ethernet

connectivity.

v Leaves the X.25 local applications over the various X.25 APIs on AIX unchanged regarding this new

way to reach X.25 networks.

v Adds the ability to do local to local X.25 user application dialog without real X.25 network layer usage.

XOL, used over a local LAN adapter and an LLC2/X.25 bridge, provides the same X.25 link access and

features as AIX-located X.25 adapter and software to remote stations.

In XOL, X.25 packets are routed to the XOL module using the Data Link Provider Interface (DLPI). XOL

completes primitives sent by X.25, routing them to the AIX DLPI connection-oriented capability, that is

LLC2, to send the packets across an Ethernet network. The packets are translated using an Ethernet or

LLC2–to-X.25 bridge and routed to X.25. All X.25 applications remain unchangeable.

STREAMS

The X.25 Licensed Program works under the STREAMS environment. Refer to the section on STREAMS

in the AIX 5L Version 5.3 Communications Programming Concepts for more details on how this works.

When an X.25 port is configured, the various modules of supporting code are loaded into the STREAMS

environment as shown in the following diagram. Then the driver and modules are pushed to create the

protocol stack.

16 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Once the system is configured for use, the STREAMS setup happens automatically. Applications of NPI

and the instances of the X.3/X.28-based PAD require that an instance of the module be pushed onto the

stream. This is taken care of by the application.

Note: See Appendix I, “Using AIXlink/X.25 over the IBM 2-Port Multiprotocol Adapter,” on page 335

for information on how the x.25 modules are loaded into STREAMS when using 2-Port Multiprotocol

Adapters.

Figure 7. X.25 in the STREAMS Environment

Chapter 2. X.25 Licensed Program Functionality 17

18 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 3. X.25 Migration

This chapter describes the differences between X.25 Support on AIX Version 3, AIX Version 4, and AIX

Version 5.

X.25 Functional Comparison

The following table shows the main characteristics and differences between X.25 support on AIX Version

3, AIX Version 4, and AIX Version 5.

 AIX Version 3 BOS AIXlink/X.25 V1.1 AIXlink/X.25 V2.1

Operating System AIX 3.2 AIX 4.1.5, AIX 4.2.1, and AIX

4.3.0

AIX 5L™ Version 5.1 or

later

Packaging Basic X.25 support in BOS X.25 support through the

Licensed Program.

Selectable v.c. capacity:

Entry Up to 4

Basic Up to 16

Extended

Up to 64

Advanced

Up to 256

Full Unrestricted

Same as V1.1 except entry

level option is deleted

APPLICATIONS:

TCP/IP X (xt#), x25xlate X (xs#), X25ip Same as V1.1

PAD support 3rd Party x Same as V1.1

SNMP agent /MIB - X (x25smuxd) (subsets of

RFCs 1381 and 1382)

Same as V1.1

NPI (packet layer NPI) - x Same as V1.1

DLPI (frame layer API) - x

Note 1 Same as V1.1

Application Compatibility - COMIO emulation provides

X.25 access through

/dev/x25s# for X.25 BOS

applications and commands

Same as V1.1

SNA x - (Available in 4.1 and later

platforms)

Same as V1.1

AIX Version 3 X.25 API x COMIO emulation Same as V1.1

COMMANDS:

xcomms x - Same as V1.1

xroute x COMIO emulation Same as V1.1

xtalk x COMIO emulation Same as V1.1

xmanage x - Same as V1.1

© Copyright IBM Corp. 2001, 2005 19

AIX Version 3 BOS AIXlink/X.25 V1.1 AIXlink/X.25 V2.1

x25 line trace xmonitor -packet

-frame x25s#

x25mon -p -f -n sx25a# x25mon -t -c -p -f -n

sx25a#

For V2.1.1, x25mon

enables users to choose a

time stamp granularity with

the -g flag, and allows the

tracing of XOL with the -l

flag.

INSTALLATION:

AIX Version 3 BOS AIXlink/X.25 V1.1 AIXlink/X.25 V2.1

SMIT Installation All X.25 software is

installed at once

Selectable Install:

v All

v TCP/IP

Note 2

v Runtime

Note 3

v NPI

v Triple-X PAD

v COMIO

Same as V1.1

Adapter microcode Copy from Options disk Installed with Licensed

Program

Same as V1.1

MISCELLANEOUS:

Driver names x25s# (device driver) twd#

Note 4 (streams device

driver)

Same as V1.1

X.25 port names x25s# sx25a# Same as V1.1

CCITT Conformance 1980, 1984 1980, 1984, 1988 Same as V1.1

HARDWARE:

X.25 Interface

CoProcessor/2 (Micro

Channel®)

x25s# (until 3.2.3e) ampx#

(from 3.2.3e)

X ampx# Same as V1.1

ARTIC PortMaster/A: V.24

(8-port fanout) V.35 (6-port

fanout) X.21 (6-port fanout)

- X

Note 5 amp# Same as V1.1

ARTIC960: V.36 (6-port

fanout) X.21 (8-port fanout)

EIA-232E (8-port fanout)

- ricio#

Note 6 Same as V1.1

X.25 Interface CoProcessor

(ISA bus)

- X

Note 7 ampx# Same as V1.1

2-Port Multiprotocol PCI

Adapter

- X dpmp# Same as V1.1

IBM ARTIC960Hx 4-Port

Selectable PCI Adapter

- riciop#

Note 8 Same as V1.1

Maximum adapters per

system

4 per bus

Note 9 Limited to 8 adapters per

system.

16/System except

ARTIC960Hx 14;

ARTIC960MCA 8

Maximum virtual circuits 64 virtual circuits 512 total Virtual Circuits per

port, 1024 total Virtual

Circuits per board (512 on a

single port

Note 10) and 4096

total Virtual Circuits per

system.

Same as V1.1

20 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

AIX Version 3 BOS AIXlink/X.25 V1.1 AIXlink/X.25 V2.1

Packets Per Second (pps)

128-octet packets

Note 11

35 pps 100 pps per X.25 Interface

adapter, 200 pps per

PortMaster adapter, 1000 pps

per ARTIC960 adapter, 650

pps per 2-Port Multiprotocol

adapter, 1000 pps per

ARTIC960Hx 4-Port

Selectable PCI Adapter.

Same as V1.1

MODEM CABLE INTERFACE / MAXIMUM SPEEDS:

X.21 (15-pin) 64 Kbps 64 Kbps

Note 12 Same as V1.1

V.24 (24-pin) 19.2 Kbps 19.2 Kbps Same as V1.1

V.35 (34-pin) 64 Kbps

Note 13 64 Kbps

Notes 12,13 Same as V1.1

NETWORK ATTACHMENT(synchronous, full duplex, network/modem clocking):

Dedicated leased line x x Same as V1.1

Dial-up (X.32, V.25bis) - x Same as V1.1

Notes:

 1. A port cannot be used for running both frame and packet layer applications - DLPI interface is

enabled via SMIT.

 2. To run TCP/IP over X.25, the user must also install the TCP/IP software component.

 3. The Runtime software component is the minimum required for X.25 - all other components require the

runtime software.

 4. The twd streams device driver is not used for X.25 ports configured over the 2-Port Multiprotocol PCI

Adapter. Refer to Appendix I, “Using AIXlink/X.25 over the IBM 2-Port Multiprotocol Adapter,” on page

335 for more information.

 5. ARTIC PortMaster support is made of three components: a base PortMaster adapter with at least 1

MB memory, a V.24, V.35, or X.21 electrical interface board/daughter card (EIB), and the matching

interface cable/fanout box.

 6. ARTIC960 support is made of three components: a base ARTIC960 adapter with at least 4 MB

memory, a V.24, V.36, or X.21 application interface board/daughter card (AIB), and the matching

interface cable/fanout box.

Note: The ARTIC960 adapter is supported on AIXlink/X.25 1.1.3 (and later).

 7. The ISA and microchannel bus versions of the X.25 Interface Co-Processor adapters use the same

modem cables (V.24, V.35, X.21).

 8. The IBM ARTIC960Hx 4-Port Selectable PCI Adapter is supported on AIXlink/X.25 1.1.5 and later.

The ARTIC960Hx support is made of three components: a base ARTIC960Hx adapter with at least 8

MB of memory, a 4-Port selectable daughter card, and a cable assembly with the desired electrical

interface.

Note: The IBM ARTIC960Hx 4-Port Selectable PCI Adapter does not support circuit 125 (ring

indicate). Therefore, this adapter cannot receive incoming calls, using the V25bis direct mode

(108.1).

 9. Up to eight adapters are supported on systems with dual Micro Channel. Each microchannel supports

4 adapters.

10. 512 virtual circuits is the recommended maximum because the X.25 Interface Co-Processor adapters

have only one port.

11. Packet per second (pps) values assume full 128-octet packets and were measured at the packet

level.

Chapter 3. X.25 Migration 21

12. The ARTIC960 and ARTIC960Hx Adapters support speeds up to 2MB on the V.35/V.36 and X.21

electrical interfaces. The 2-Port Multiprotocol adapter supports speeds up to 2 MB on the V.35 and

V.36 electrical interfaces and up to 1.544 MB on X.21 electrical interfaces.

13. The CCITT V.35 specification defines 56 Kbps as the maximum line speed.

Differences Between X.25 Licensed Programs Version 2.1 and Version

1.1

If you are migrating from X.25 V1.1 to X.25 V2.1, read the following. This section explains what hardware,

functionality, configuration and setup procedures have been changed with the new X.25 Licensed

Program.

Hardware Differences

AIXlink/X.25 Version 2.1 continues to support the same adapters that were supported with Version 1.1:

v X.25 Co-Processor/2 adapter (FC 2960)

v X.25 Co-Processor ISA-bus adapter (FC 6753), only on a machine with AIX 4.1 or greater, an ISA-bus,

and the AIXlink/X.25 Licensed Program.

v RIC Portmaster Adapter/A with 1MB (FC 7006)

v RIC Portmaster Adapter/A with 2MB (FC 7008)

v RIC Portmaster Adapters with 1Mb and 2Mb can now be used to connect to an X.25 network. They are

multiport adapters which support V.24, V.35 and X.21 interfaces.

v ARTIC960 V.36 with 4MB (FC 2935)

v ARTIC960 X.21 with 4MB (FC 2938)

v ARTIC960 EIA-232E (V.24) with 4MB (FC 2929)

v 2-Port Multiprotocol PCI Adapter (FC 2962), only on AIX 4.1.5, AIX 4.2.1, AIX 4.3.0, or greater machines

with PCI-bus and AIXlink/X.25 Licensed Program.

v IBM ARTIC960Hx 4-Port Selectable PCI Adapter (FC 2947) is only supported on machines with AIX

4.1.5, AIX 4.2.1, and AIX 4.3.1 or higher with the AIXlink/X.25 LPP version 1.1.5 (or higher).

 X.25 Supported Adapters

Adapter AIX Version 3Base X.25

X.25 Licensed Program

V1.1 and V2.1

X.25 Co-Processor/2 supported supported

X.25 Co-Processor ISA-bus not supported supported

RIC Portmaster Adapter/A 1MB not supported supported

RIC Portmaster Adapter/A 2MB not supported supported

ARTIC960 4MB not supported supported

2-Port Multiprotocol PCI Adapter not supported supported

IBM ARTIC960Hx 4-Port Selectable PCI Adapter not supported supported

Additions and Functionality Differences in V1.1.5

The X.25 Licensed Program continues to provide the following features that were provided in V1.1:

v Support of the International Telegraph and Telephone Consultative Committee (CCITT) 1988 X.25.

v Packet Layer Programming Interface Network Provider Interface (NPI).

v Frame Layer Programming Interface Data Link Provider Interface (DLPI).

v COMIO emulation provides X.25 access through /dev/x25s# for AIX Version 3 base X.25 applications.

These applications must be recompiled before they can be run over the AIXlink/X.25 protocol stack.

v Triple-X (X.3, X.28, X.29) Packet Assembler/Disassembler (PAD).

22 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

v Simple Network Management Protocol (SNMP) support for data items from the Management Information

Base (MIB) for the packet and frame layers.

v V25bis support (Not on ARTIC960Hx 4-port selectable PCI adapter).

v Support for up to 512 logical channels per line.

v Automatic DTE configuration.

v Support for an aggregate sustained rate of 200 128-bytes packets per second (measured at the packet

layer API) for each adapter in the system.

Additions and Functionality Differences in Version 2.1

v Up to 16 adapters supported per system. ARTIC960Hx PCI has a limit of 14 adapters per system.

ARTIC960 MCA has a limit of 8 adapters per system.

v AIXlink/X.25 Version 2.1 continues to be able to execute in a 32-bit environment. AIXlink/X.25 Version

2.1 has been enhanced to execute in a 64-bit environment. The 2-Port Multiprotocol PCI adapter and

the ARTIC960Hx 4-port selectable adapter are supported in the 64-bit AIX environment, and continue to

be supported in a 32-bit AIX environment.

v NPI has been enhanced to return CCITT cause and diagnostic codes to NPI applications.

v The entry level product has been eliminated.

v The frame layer code of AIXlink/X.25 no longer executes on the adapter for those adapters which use

the twd driver. Instead, the frame layer code now executes in the kernel as the frame layer for the

2-Port Multiprotocol adapter has done.

 Functionality differences

Functionality

AIX Version 3 Base X.25

Support

X.25 Licensed Program

V1.1 and V2.1

CCITT Conformance 1984 1988

NPI NO YES

DLPI NO YES

API Library YES YES

Note 1

PAD Support NO

Note 2 YES

SNA Support YES YES

TCP/IP Support YES YES

SNMP Support NO YES

Automatic DTE Configuration NO NO

Logical Channels per line 64 512

Packets per second (128-bytes packets) 35 200

Notes:

1. Applications based on the API library are only supported when the COMIO emulator is configured on

the port.

2. Only with third-party software.

Additions and Functionality Differences in Version 2.1.1

v NPI supports 64-bit NPI applications in a 64-bit AIX environment.

v The x25mon command enables users to choose a time stamp granularity, and allows the tracing of

XOL.

Chapter 3. X.25 Migration 23

Packet Layer

The main differences between CCITT 1984 and 1988 X.25 recommendations at the packet level are:

 Network User Identification

(NUI)

Network User Identification (NUI) related facilities are divided into three facilities:

v NUI_subscription

v NUI_override

v NUI_selection

DTE/DTE Operation DTE-to-DTE operation without an intervening network is defined. In this situation, one

DTE must act as DCE. The DTE acting as DCE at packet layer may be acting as

DTE at Data Link Layer and vice versa. This is an optional facility.

Circuit-switched Connection

without Prior Agreement

A circuit-switched connection without prior agreement (such as electronic mail-order)

is defined and default values specified for all applicable parameters. This is an

optional capability.

Throughput Class of 64000

bits/s

A new throughput class of 64000 bits per second is defined. This is an optional

capability.

Address Block Definition A new address block is defined for call setup and clearing packets that allows

addresses of 12 or 15 digits. This is an optional capability.

TOA/NPI Address

Subscription

A new facility, TOA/NPI_Address_Subscription, is added to accommodate E.164

(ISDN) addresses of up to 17 digits in length. This addition results in a redefinition of

the address block and the consequent definition of new formats for the

CALL_REQUEST, CALL_ACCEPTED, CALL_CONNECTED, CLEAR_REQUEST,

CLEAR_INDICATION and CLEAR_CONFIRMATION packets. This is an optional

capability.

Call Deflection Call_Deflection_selection facilities whereby the DTE forwards calls after receiving an

INCOMING_CALL packet (unlike CALL_REDIRECTION that is handled in the network

and the originally called DTE never receives an INCOMING_CALL packet) is added.

There are three call deflection facilities:

v Call_Deflection_Subscription enables the DTE to request a

Call_Deflection_Selection.

v Call_Deflection_Selection may be used on a per-virtual-call basis only if

Call_Deflection_Subscription is subscribed to.

v Call_Deflection_Notification which informs the alternate DTE that the call is

forwarded.

These are optional user facilities.

Priority Facility A priority facility specifies the priority of data on a connection, and priority to keep a

connection. This is an optional capability.

Maximum size of Called and

Calling Address Extension

The maximum size of the called and calling address extension fields is extended from

32 to 40 digits, and an OSI/non-OSI indicator has been added. Support of the larger

address is optional. However, a test of the OSI/non-OSI indicator is required to

determine the size of the called and calling address.

Recognized Private Operating Agency RPOA related facilities are subdivided into:

v RPOA_Subscription applies to all virtual calls.

v RPOA_Selection applies to a given virtual call and does not require

RPOA_Subscription.

These are optional capabilities.

Mandatory Address Length

Fields in CALL_ACCEPTED

packets

The use of the Address Length Fields in CALL_ACCEPTED packets is mandatory,

even if they are set to zero.

Mandatory Facility Length

Fields in CALL_ACCEPTED

packets

The use of the Facility Length Fields in CALL_ACCEPTED packets is mandatory,

even if they are set to zero.

24 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Virtual Circuit

Clearing/Resetting Failure

When a CLEAR_REQUEST packet is not confirmed within time-limit T23, the DTE will

retry the call-clearing procedure up to R23 times, at T23 intervals, before notifying the

higher layer (virtual circuit user) of the failure; leaving the logical channel in the

DTE_CLEAR_REQUEST rate (p6) rather than placing the logical channel in an

inoperative state as specified by early versions.

When a RESET_REQUEST packet is not confirmed within time-limit T22, the DTE will

retry the resetting procedure up to R22 times, at T22 intervals, before notifying the

higher layer (virtual circuit user) of the failure; leaving the logical channel in the

DTE_RESET_REQUEST state (d2) rather than placing the logical channel in an

inoperative state as specified by early versions.

Frame Layer

The main differences between CCITT 1984 and 1988 X.25 recommendations at the frame level are:

 DTE/DTE Operation Although not specified in CCITT Recommendation X.25, International Standard

Organization ISO 7776 supports communication between two DTEs without an

intervening network. Since there is no intervening network, link layer characteristics

must be made by bilateral agreement rather than at subscription time. This is an

optional capability but is required for communication using Open Systems-Interconnect

(OSI).

Clearing a FRMR Condition

at the DCE

After the DCE has transmitted a FRMR response, the frame rejection condition is

cleared when the DCE receives a FRMR response (in addition to when a

SABM/SABME, DISC or DM is sent or received).

Maximum Number of

Outstanding I-Frames

American National Standards ANS X3.100 specifies that all networks must support k=7.

K is the maximum number of outstanding I-frames.

Installation, Configuration, and Setup Differences

The X.25 entry level package of 4 SVCs or less (the X.25 Lite Package) is no longer available.

Since X.25 is a licensed program, the first step in your configuration and setup procedure is to install the

X.25 code.

The next step is to configure the device driver and the X.25 port. As soon as the port is configured and

available, the X.25 licensed program software continuously tries to bring up the connection to the X.25

network.

You’ll probably need to change some attributes such as number of virtual circuits and throughput. If you

are going to use SMIT fast paths, be aware that many of them have changed.

 SMIT Fast Path Differences

Parameter AIX V.3 BOS V1.1 and V2.1

Change / Show X.25 General Parameters x25csg x25str_mp_csp_g_sel

Change / Show X.25 Frame Parameters x25csf x25str_mp_csp_f_sel

Change / Show X.25 Packet Parameters x25csp x25str_mp_csp_p_sel

The xroute command works only with X.25 ports that have COMIO emulation configured and must be

used only when you have applications which use this emulation (such as xtalk and SNA).

The X.25 licensed program allows you to enable or disable only these two facilities:

v Fast Select.

v Reverse Charging.

Chapter 3. X.25 Migration 25

Command Differences

Some commands that were used for management and configuration purposes have changed.

 Differences Between xmonitor and x25mon Commands

AIX V3 BOS

xmonitor V1.1 x25mon V2.1 x25mon V2.1.1 x25mon

Frame Layer -frame -f -c, -t -g, -l

Packet Layer -packet -p

Port x25s n -n sx25a n

Attributes Differences

The following table shows the differences in attribute names.

 Attribute Names

AIX Version 3 X.25 Support V1.1 and V2.1

num_in_out_svc bi_vc_num

in_out_svc bi_vc_start

ccitt_support ccitt

connection_mode connect_seq

d_bit d_bit_accept

pvc_d_bit def_pvc_d_bit

def_rx_pkt_size def_rx_size

def_rx_through def_rx_th

def_rx_pkt_win def_rx_win

def_tx_pkt_size def_tx_size

def_tx_through def_tx_th

def_tx_pkt_win def_tx_win

frame_modulo f_modulo

fast_select fs_mode

num_in_svcs in_vc_num

in_svc in_vc_start

line_type line_type

local_nua local_nua

max_rx_pkt_size max_rx_size

max_rx_pkt_win max_rx_win

max_tx_pkt_size max_tx_size

max_tx_pkt_win max_tx_win

n2_counter n2

network_id network_id

num_out_svcs out_vc_num

out_svc out_vc_start

pkt_modulo pkt_modulo

num_of_pvcs pvc_num

pvc_channel pvc_start

26 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Attribute Names

AIX Version 3 X.25 Support V1.1 and V2.1

rev_charging rev_charge

t1_timer t1

t21_timer t21

t22_timer t22

t23_timer t23

t24_timer t24

t25_timer t25

t26_timer t26

t4_timer t4

zero_address zero_address

Note: All timers in the AIXlink/X.25 LPP are defined in seconds.

Default Values of Important Parameters

Some default values of port parameters have changed. The following table shows the differences among

the AIX Version 3 Base X.25 support, V1.1, and V2.1.

 Default Values of Important Parameters

Parameter

AIX Version 3 Base X.25

Defaults

X.25 Licensed Program

Defaults V1.1

X.25 Licensed Program

Defaults V2.1

Frame window size 7 7 7

Frame modulo 8 8 8

Packet Modulo 8 8 8

CCITT support 1980 1984 1988

Default receive packet size 128 128 128

Default transmit packet size 128 128 128

Default receive packet window 2 3 3

Default transmit packet window 2 3 3

Default receive throughput class 9600 64000 64000

Default transmit throughput class 9600 64000 64000

Use of the System Error Log

The AIXlink/X.25 LPP does not use the System Error Log to report problems. See X.25 Problem

Determination for information on how to debug X.25 problems when using the AIXlink/X.25 LPP.

Chapter 3. X.25 Migration 27

28 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 4. X.25 Installation and Configuration

The following information explains what you need to install the X.25 program and how to configure your

system for X.25 communications.

Before you install the X.25 program, ensure that your system meets the minimum software and hardware

requirements.

Minimum Requirements

Software

You need the following software:

1. AIX 5L Release 5.1 with the 5100–01 Recommended Maintenance package or later, which is included

on the 9/2001 or later AIX Update CD.

2. AIXlink/X.25 Version 2.1 licensed program or higher (feature 5765–E85).

Hardware

You need the following hardware:

1. A microchannel system with at least one of the following:

a. ARTIC Portmaster Adapter/A 8-port V.24

b. ARTIC Portmaster Adapter/A 6-port V.35

c. ARTIC Portmaster Adapter/A 6-port X.21

Note: The ARTIC Portmaster Adapter/A adapters are made up of a processor board, along

with an add-on electrical interface board (EIB). The EIB requires you to select the type of line

interface to be used. The adapters should have 1 or 2 MB of memory.

d. ARTIC960 8-port EIA-232E (V.24)

e. ARTIC960 6-port V.35/V.36

f. ARTIC960 8-port X.21

Note: The ARTIC960 adapters are made up of a processor board, along with an add-on

interface board (AIB). The AIB type determines the line interface. The adapters must have

4MB of memory.

g. X.25 Interface Co-Processor/2.

2. A POWER-based Personal Computer with the following:

a. X.25 Interface Co-Processor/1.

Notes:

1) The POWER-based model must have ISA slots for this adapter to be used.

2) The interrupt level of this adapter is set using switches on the adapter. The interrupt level

should be unique for each adapter in the system. Refer to the system unit’s

documentation for more details.

b. IBM 2-Port Multiprotocol PCI Adapter

c. IBM ARTIC960Hx 4-Port Selectable PCI Adapter

Note: If you are using XOT or XOL, no specific X.25 adapter is required.

© Copyright IBM Corp. 2001, 2005 29

Planning Your X.25 Installation

The best method for data transfer over a wide area network depends on a number of factors. Among the

common factors are the amount of data traffic, the frequency that data is sent, response time required,

and so forth. Along with these, the tariff available for the network providers can play an important part in

protocol choice.

Once X.25 is decided upon, the specifics of the network subscription must be planned along with the

network provider. Switched virtual circuits can be used by different applications, possibly to different

remote destinations, at different times. Permanent virtual circuits are dedicated to a given remote

destination. Depending on the type of X.25 traffic that is generated, the number and speed of X.25 lines

must be decided, along with the number of virtual circuits, and so forth.

With the characteristics of the X.25 interfaces defined, X.25 adapters to support these interfaces must be

added to the system. Choice of adapter and line interface depends on the characteristics of the network

subscription.

The disk space needed to install the AIXlink/X.25 V2.1 packages is:

 sx25 6.4 Megabytes for the package

sx25.adt 1.1 Megabytes for the package

sx25.html 7 Megabytes for the package

Note: If your X.25 applications use the Data Link Provider Interface (DLPI), and you are migrating

from AIXlink/X.25 Version 1.1.3 or a prior version of the product, you may need to make changes to

your DLPI applications. The changes are necessary to allow your applications to make use of all

adapters supported by the AIXlink/X.25 product. If your DLPI applications are not configured to use

the IBM 2-Port Multiprotocol PCI adapter, then the changes are not strictly required. See Chapter 6,

DLPI Overview, for more information.

Installation Procedure

The X.25 licensed program is delivered as an install-image. To install the X.25 program:

1. Read Planning Your X.25 Installation.

The files making up the licensed program are divided into a number of sets that may be installed

independently. Installation of the X.25 run time system is a prerequisite for installation of any of the

other X.25 options. When installing the X.25 files, the language environment should be set to en_US.

The following options are available:

v All

v COMIO Compatibility Support and Applications

v NPI and DLPI Support

v Runtime Environment

v TCP/IP Support

v Triple-X Packet Assembler/Disassembler (PAD)

v Applications such as SNA and XTALK the COMIO Compatibility support.

v X.25 over TCP/IP (XOT).

v X.25 over Logical Link Control Type 2 (XOL).

2. Follow the instructions included with the program package.

3. Use the installp command or SMIT to install the program.

30 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Hardware Installation

The adapters should be installed as described in the system unit’s documentation.

v The IBM ARTIC960Hx 4-Port Selectable PCI Adapter attaches to a special breakout cable which

converts the one connector on the adapter to the 4 ports supported. The physical interface used on all 4

ports is selected by the type of cable used. From the breakout cable, the ports are attached to the line

interface equipment.

Note: Prior to using the AIXlink/X.25 on the ARTIC960Hx adapter, install the IBM ARTIC960

Support Program for RISC System/6000® software (devices.artic960.rte). This software is shipped

on a diskette packaged with the adapter and must be version 1.4.3 or later. When running X.25 on

an ARTIC960Hx adapter, do not directly run any other ARTIC960Hx software on that adapter,

including the programs in /usr/lpp/devices.artic960/bin.

v The ARTIC960 Adapters attach to a special breakout cable, which converts the one connector on the

adapter to the 6 or 8 ports supported. This cable must be the same interface type as the AIB attached

to the adapter. From the breakout cable, the ports are attached to the line interface equipment.

Notes:

1. Prior to using the AIXlink/X.25 on the ARTIC960 adapter, install the IBM ARTIC960 Support

Program for RISC System/6000 software (devices.artic960.rte). This software is shipped on a

diskette packaged with the adapter and must be version 1.3.4 or a later 1.3.x version. When

running X.25 on an ARTIC960 adapter, do not directly run any other ARTIC960 software on

that adapter, including the programs in /usr/lpp/devices.artic960/bin. The ARTIC960 adapter

is not supported on 7006- and 7011-type systems.

2. The ARTIC960 EIA-232E (V.24) AIB can use the same fanout boxes and cables as those used

for the Portmaster Adapter/A. The ARTIC960 X.21 AIB cannot. If the ARTIC960 V.36 AIB is

being connected to a V.35 network, the same fanout box and cables can be used as those for

the Portmaster Adapter/A. If the ARTIC960 V.36 AIB is being connected to a V.36 network, the

ARTIC960 6-port V.36 cable must be used.

v The 2-Port Multiprotocol PCI Adapters provide two interface ports, the physical interface type being

selected by the type of cable used. This adapter supports four different cabling options, corresponding

to the following physical line interface types:

– RS-232

– V.35

– V.36

– X.21

Please order the appropriate cable for your interface equipment.

Note : Prior to using AIXlink/X.25 on the 2-Port Multiprotocol PCI Adapter, install

devices.common.IBM.hdlc and devices.pci.331121b9.

v The Portmaster/A Adapters attach to a special breakout cable, which converts the one connector on

the adapter to the 6 or 8 ports supported. This cable must be the same interface type as the EIB

attached to the adapter. From the breakout cable, the ports are attached to the line interface equipment.

Prior to using AIXlink/X.25 on the Portmaster/A Adapter, install devices.mca.8f70.

v The X.25 Co-Processors provide one interface port, the physical interface type being selected by the

type of cable used.

Note:

– Prior to using AIXlink/X.25 on the Co-Processor/1, install devices.isa.c1x.

– Prior to using AIXlink/X.25 on the Co-Processor/2, install devices.mca.eff0.

v With the X.25 Co-Processor/1, the adapter’s interrupt level must be set so it will not conflict with other

adapters in the system. Refer to the system’s documentation for details of the interrupt setup.

Chapter 4. X.25 Installation and Configuration 31

v Ethernet adapters are required to run XOL. Ethernet is the only LAN adapter supported to run XOL.

Configuring X.25 Communications with SMIT

The easiest way to configure the X.25 software is through SMIT. When you are configuring the system,

options are presented based on what adapters are available in the system.

Note: It is best if all the adapters to be used are installed in the system before the X.25 configuration

is begun. Adapters can be added or deleted at a later time, but for the instance numbers to be kept

in a simple order, as much of the configuration as possible should be done at one time.

The main areas of configuration are:

v Adding and deleting adapter device drivers.

v Adding, deleting, and changing X.25 ports configured to an adapter.

From a system where the adapters are installed, the following steps outline those necessary to configure

X.25 ports ready for use:

1. Configure the total number of virtual circuits allowed on the system. This is specified on the X.25

license.

2. Add device drivers to each adapter to be used. If you use the IBM 2-Port Multiprotocol PCI Adapter,

you must add the hdlc device driver. Otherwise, you must add the twd device driver. If you use XOT or

XOL, you must add the XOT or XOL drivers, respectively.

3. Add X.25 ports to each of the adapter’s physical ports.

4. Change the configuration parameters on any ports where the settings must be different from the

defaults.

5. Add COMIO emulation to any of the X.25 ports where this is required. Refer to Managing COMIO

Emulation .

6. Add TCP/IP support to any of the X.25 ports where this is required. Refer to Managing TCP/IP

Configuration .

7. Start Triple-X PAD if it is used on the system. Refer to Managing the Triple-X PAD .

Initial SMIT Path

The X.25 software is configured based on the adapter it is to run on. To reach the communication devices

screen:

1. Enter: smit

2. Select Devices.

3. Select Communication.

Under the communication devices list are entries for the adapters supported in the system. Select the

adapter type required and a list of the available software packages for that adapter type is listed.

Depending on the adapter, select one of the following:

v IBM ARTIC960 Adapter.

v Portmaster Adapter/A.

v X.25 Co-Processor/2 or Multiport/2 Adapter.

v X.25 Co-Processor/1.

v IBM 2-Port Multiprotocol PCI Adapter. (See Note below.)

v IBM ARTIC960HX PCI Adapter.

v X.25 over TCP/IP (XOT).

v X.25 over Logical Link Control Type two (XOL).

4. Select Adapter.

32 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

5. Select Manage Device Drivers for the adapter type selected.

6. Select Manage X.25 Licensed Program Product Device Driver

Note: After you select IBM 2-Port Multiprotocol PCI Adapter do the following:

1. Select Manage HDLC Device Driver

2. Select Manage Additional Protocols / Emulators

3. Select Manage X.25 over HDLC Device Driver

Managing Device Drivers

The Manage X.25 Licensed Program Product Device Driver allows the instances of the twd device driver

to be managed. If a driver is in the defined state, selecting Configure a Defined Device Driver makes it

available, assuming that no other driver is configured at the adapter. The device driver is added to an

adapter before the X.25 ports on that adapter are added, and is removed after all the X.25 ports on the

adapter are removed.

Managing Ports

Select Manage X.25 Ports to manage the X.25 ports on the system, from the Licensed Program’s initial

SMIT screen. This brings up the Manage X.25 Ports SMIT screen. From the Manage X.25 Ports SMIT

screen, the following actions can be taken:

 List All Defined Ports List all the ports configured on the system, either in the defined or available state.

Add a Port Add a new port definition. This option sets all defaults for the port depending on the

country prefix you choose. If you do not choose a country prefix, port defaults are set to a

universal setting.

Move a Port Definition The definition of a given port can be moved to a different port, possibly on a different

adapter.

1. Select the port to be moved.

Note: For the IBM 2-Port Multiprotocol adapter, only those ports currently in the

defined state may be moved.

2. Select the new parent adapter driver.

3. Enter the new port number.

Note: For the IBM 2-Port Multiprotocol adapter, the port number is automatically

filled in for you.

Change/Show

Characteristics of a Port

The characteristics of the port are controlled by a number of attributes, divided up in

SMIT into a number of screens. This section gives access to those attribute screens.

Remove a Port The port is removed from the available state back to the defined state. When a port is in

the defined state, the port’s configuration information is kept in the ODM database.

Therefore, the port can be reconfigured into the available state. An option is given to also

remove the port’s information from the ODM database. If this option is chosen, the port is

completely removed from the system.

Configure a Defined Port If a port is in the defined state, then this selection makes it available.

Add COMIO Interface to

a Port

Use of the emulation of the base AIX Version 3 support is optional. It would be needed if

applications written to the base AIX Version 3 APIs such as xtalk or SNA are used. If this

is required on a given port, then COMIO should be added to produce a new device entry

such as /dev/x25s0. The emulator can be added to any available port. No additional

configuration information is required.

Remove COMIO Interface

to a Port

The emulation of the base AIX Version 3 support for a given port can be removed.

Chapter 4. X.25 Installation and Configuration 33

Add TCP/IP Interface to a

Port

TCP/IP can be enabled on any of the available ports. Details of the port’s TCP/IP

information is then provided in a separate screen.

Remove TCP/IP Interface

to a Port

The TCP/IP support for a given port can be removed.

Adding a Port

To add a port, select Add Port and a list of the available adapters will be presented. When you select an

adapter, a SMIT screen will allow entry of the port’s NUA. Information on the attribute choices available is

given in the help text. It is probable that the port will require further configuration before use to match its

characteristics with those provided by the network provider. Use the Change/Show Characteristics of Port

screen to alter the attributes.

The following attributes must be entered:

 PORT number The physical port on the adapter’s expansion cable that is to be used. With the

Portmaster adapters, this can vary between 0 and 7 for the V.24/RS-232 interface

and between 0 and 5 for its other interfaces. For the X.25 Co-Processor adapters,

this must be 0. If the port is associated with an IBM 2-Port Multiprotocol adapter, the

port number is automatically filled in, and does not require an entry.

Local network user address The Network User Address for the port. This is usually supplied by the network

provider and must agree with the subscription obtained.

The following attributes are optional. See “General Parameters” on page 35 for more details.

 Network Identifier On networks that implement X.121 addressing, the country prefix uniquely identifies

the country. In some cases, this can be used to identify default characteristics of the

network. In some countries, there is more than one network type, and though they

share the same country code, they have differing characteristics. If the identification

for the local network is listed, then that should be selected. Otherwise, select other

public if attached to a standard network. Select other private if the network’s

addressing scheme is different from X.121.

Country prefix The country code provided by X.121. This should be made available by the network

provider.

VC ranges For each of the four types of virtual circuit, the initial channel number, and the

number of channels must be given. This must match the configuration of the local

DCE, and so should be based on the information provided by the network provider.

If you use XOT, PVC default attributes can be defined in this screen. For more information about defining

attributes for XOT, see “Managing XOT” on page 42.

If you use XOL, define remote SAP/Mac addresses and local sap and PPA (physical point access). For

more information about defining attributes for XOL, see “Managing XOL” on page 43.

Moving a Port

The attributes defining a port can be transferred to a different port. When Move Port Definition is

selected:

1. Choose existing port to be moved.

2. Select the new adapter to be used. The new adapter can be the same as the port’s current adapter.

3. Enter the physical port number on the given adapter.

34 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Configuring a Port

From the ″Manage X.25 Ports″ screen , select Change/Show Characteristics of Port. The attributes for

the port are divided into a number of categories. They are listed in the SMIT screen in the order in which

they will most likely be used. It is often not necessary to configure anything other than the port’s general

parameters.

General Parameters:

General parameters are those most likely to need configuring. For a given port, there are the following

attributes:

 NUA The network user address for the port. This is usually supplied by the network provider

and must agree with the subscription obtained.

Calling address On a few networks, the NUA of the machine originating the call cannot be put into the

call it generates. Usually the calling address is allowed. This attribute is used only with

COMIO connections.

Enable DLPI If direct access to the frame layer is required on this port, then DLPI should be enabled.

This disables packet layer (X.25) access. DLPI is usually disabled.

VC ranges VC ranges are constructed according to the lowest logical channel number and the

logical channels desired for each of the VC types. The lowest logical channel number

indicates the lowest-numbered logical channel that may be used for a specific VC type.

This number depends on the network subscription and must be in the range of 1

through 4096. The lowest logical channel may be 0 only when the VC type is not used.

Logical channel number 0 may not be used for a VC channel because it is always used

as the network protocol channel. Check with your network provider to learn if logical

channel 0 is included in a VC range.

The number of logical channels indicates how many VCs to configure starting at the

lowest logical number of that VC type. This information is supplied by the network

provider.

The specified VC channel ranges must not overlap and must not exceed the total

number of channels allowed. In addition, the logical channel numbers must be defined

according to the following rule:

PVC < Incoming SVC < Two-way SVC < Out-going SVC

If the range of VCs is not needed, set the lowest logical channel number and the

number of logical channels for the VC type to 0.

X.32 This set of attributes should be set if the network provider requires X.32 DTE

identification. Both the X.32 XID identity and the X.32 XID signature are supplied by the

network provider. For more information, refer to Configuring a Port for X.32 .

Dial-Up These attributes must be set if a dial-up connection is used. For more information, refer

to Dial-Up Parameter Descriptions

Packet Parameters:

Packet parameters give the characteristics of the packet layer.

 CCITT The level of CCITT recommendation that is implemented by the network. The most

significant changes are between 1980 and 1984 where packets sizes greater than

1024 were introduced, along with modulo 128. It should be selected to reflect the

implementation of the network.

Modulo The packet layer modulo must agree with that of the network. Usually, it is 8. This

governs the number of packets that can be sent out before the sender must wait for

acknowledgement of the data. On some networks, modulo 128 can be used. Though

this would not normally be of benefit, the network provider would be able to advise on

its usefulness in a given situation.

Chapter 4. X.25 Installation and Configuration 35

Type of line By default, the system being configured will run as a DTE. In exceptional cases where

two systems are being run back to back, one can be set up as a DCE. This does not

allow the system to run as a full DCE; rather it just allows back-to-back operation.

DTE/DCE alteration In cases where two systems are being run back to back and the remote system is also

running with this licensed program, the selection of DTE/DCE can be made

automatically. In cases where one system is a DTE connected to a network, this

parameter need not be used.

Registration Some networks support registration, where the DCE configures some of the DTE’s

characteristics automatically. This is not normally the case, and so this should usually

be set to no.

A bit On most X.25 networks, the method by which the addresses are coded into the call

packet is standard. However, on some networks this differs. By far the more common

is one called non-TDA/NZI the section addressing, and this is standard for most

networks. The other mode of addressing is TOA/NPI. For regular usage, set the A-bit to

off, which provides the regular non-TDA/NZI addressing. Set this to on only if it is

required by the network provider.

NIDU The data passed up from the packet layer to applications such as TCP/IP is broken up

into data units. Typically, the size of the data unit should be such as to wholly contain

the typical application data packet. For example, if the MTU for the X.25 TCP/IP

interface is 1500, set the NIDU parameter to I500.

Packet sizes These attributes only apply to switched virtual circuits used on the port. The default

packet sizes are used when no negotiation of packet sizes takes place between the

DTE and the DCE. Therefore the default sizes depend on the network subscribed to

and should match the networks requirements. The default packet size does not have to

match the remote systems default packet size unless the systems are running back to

back. The maximum packet size is used if negotiation does take place between the

DTE and DCE. The maximum size should be set to a size sufficient to contain the

average size of the data unit used.

Window sizes The default and maximum packet window size that can be used. These attributes

specify how many packets can be sent before acknowledgement is received. The

window sizes should be set according to the recommendations of the network provider.

Generally, for slow, reliable communication links, a larger window size is

recommended. For unreliable communication links, a small window size is desirable.

When two systems are running back to back, their window sizes must match.

Throughput class Throughput is the DTE-to-DTE transfer rate in bits per second (bps). The throughput

can be affected by the local system, remote system, and the network. The default

throughput class should be set to the line rate.

T (timers)

The packet layer timers, T20 through T28, implement timeouts for different

types of packets.

R (counters)

If the particular timer packet is not confirmed within the given period, it is

re-sent, based on the value of the equivalent R counter. If still no

acknowledgement is received, a recovery process is started. The nature of the

process started depends on which type of packet was left unacknowledged.

Fast Select An optional facility that is available from some network providers. In a fast-select call,

the call request is always rejected, but the CUD in the call and clear constitute the

information exchange. This saves having to have the call established if only a small

amount of data needs to be sent.

D bit If the applications being run require DTE-to-DTE data acknowledgement, they will

make use of the D bit. On some networks, this is a separate option, and so may not be

subscribed to. If this is the case, then D bits should not be allowed, and this parameter

should be set to forbid. Usually, they should be allowed.

Reverse Charging An optional facility that allows a call to specify that the receiving party pays for the call.

In all cases, allow allows it, while allow if not billed allows it only in outgoing calls.

Facility size This gives the maximum number of bytes of facility that can be in a call.

Interrupt size This gives the maximum number of bytes of data that can be held in an interrupt

packet.

36 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Frame Parameters:

The frame parameters give the characteristics of the frame layer.

 T (timers) The T1 timer gives the timeout by which an acknowledgement of the data sent should

have been received. On slow lines, especially with large data packets, the value of T1

should not be too low. If too low, the frame will not be fully transmitted before the timer

expires, and so a high number of T1 expirations would be seen. N2 specifies, if T1

does timeout, how many times the frame should be retransmitted. T2 is less likely to be

varied, specifying to the software the required turn around time for a frame. T3 and T4

ensure that any frame layer failure is recognized.

Frame modulo Specifies whether the counters that check frame-layer activity between the DTE and the

DCE work in modulo 8 or 128. Usually modulo8 is used. This value will be based on

the network.

Frame window This gives the number of frames that can be sent to the DCE before the DTE must wait

for acknowledgement. The value, typically, does not affect performance greatly and

should be based on the network providers’ recommendation.

DTE/DCE Selection on whether the system operates as DTE or DCE can be made at the packet

or frame layers. This selection can be automatic (based on the ISO standard ISO8208)

or fixed. However, this does not allow the system to act as a full DCE.

Connection mode Once the physical layer is connected, the frame layer is established. The different

networks require different modes of startup at the frame layer. One of the most

common is for the DTE to start sending out SABM frames to indicate its frame layer is

ready. The network provider will provide additional information in this area.

Permanent Virtual Circuit (PVC) Parameters:

The characteristics of a PVC cannot be changed at the time of usage. Unlike SVCs, they have no call

request/confirm exchange in which to negotiate packet size. The X.25 Default PVC Parameters SMIT

screen allows the defaults that are to be assumed for this port to be set. If a specific PVC does not match

these defaults, then this should be given as a non-default PVC. The Manage Non-Default PVC screen is

provided for this. As identification of a given PVC is based on its logical channel number, this must be

specified when dealing with non-default PVCs.

 Packet sizes The packet sizes to be used.

Window sizes The packet window sizes to be used.

D bit If the applications being run require DTE-to-DTE data acknowledgement, they make use of

the D bit. On some networks, this is a separate option, and so may not be subscribed to. If

this is the case, then D bits should not be allowed. Usually, D bits should be allowed.

If you use XOT, other PVC non-default parameters can be defined. For more information about defining

these parameters, see “Managing XOT” on page 42

Configuring a Port for V.25bis Dialing

The CCITT V.25bis Recommendation provides a protocol to connect automatic calling and/or answering

equipment to a telephone network. This recommendation contains two types of connections. The

connection type is distinguished by the DTR signal used. If the DTR signal is 108.1, the connection type is

called direct. A direct V.25bis connection uses only V.24 signals to establish connections. If the DTR

signal is 108.2, the connection type is called addressed. An addressed connection uses V.25bis

commands and V.24 signals to establish connections. To use the addressed mode, your modem or ACU

must support the V.25bis command set.

The V.25bis functionality provided in the Streams X.25 LPP configures the port for both incoming and

outgoing calls. Therefore, your port can both originate and answer calls without having to be reconfigured.

Use the following method to configure a port for V.25bis dialing.

Chapter 4. X.25 Installation and Configuration 37

Using SMIT, enter:

 smit

Select the following SMIT menus:

1. Select Manage X.25 Ports.

2. Select Change/Show Characteristics of Port.

3. Select Change/Show X.25 General Parameters.

4. On the Change/Show X.25 General Parameters screen, there is a Dial-Up Configuration menu that

displays certain options for setting up calls.

The setup in the SMIT menus must match the setup of the actual modem or autocall unit (ACU) you are

using. Therefore, it is important that you are familiar with the modem setup before you attempt to configure

the port for V.25bis.

Here is a sample setup for using V25bis addressed mode. A phone number must be specified if the port is

to originate any calls. When originating a call, the X.25 adapter sends the dial string included in the Phone

Number or Address to Call field to the modem or ACU using V25bis commands.

Dial-Up Configuration

Connection type [V25bis] +

V25bis Call Establishment Method [Addressed] +

Phone Number or Address to Call [5551234]

Maximum Connection Delay [30] #

Enable/Disable DSR Polling [enable] +

DSR polling timeout [30]

Here is a sample setup for using V25bis direct mode:

Dial-Up Configuration

Connection type [V25bis] +

V25bis Call Establishment Method [Direct] +

Phone Number or Address to Call []

Maximum Connection Delay [30] #

Enable/Disable DSR Polling [enable] +

DSR polling timeout [30]

Dial-Up Parameter Descriptions

 Connection Type There are three types of connections:

Direct/Leased

Default connection type.

V25bis Represents all dial-up connection types with the exception of manual dial.

Manual-dial

Connections where the user does the dialing instead of the modem.

38 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

V25bis Call

Establishment

Methods

There are two V25bis call establishment methods:

ADDRESSED

Uses V25bis commands to communicate with the modem or ACU. For originated

calls, a dial string must be specified. This string is sent to the modem when the DTE

requests the call. When answering calls, the modem uses V25bis commands to notify

the DTE of an incoming call.

DIRECT

Uses V.24 signal control to establish connections. When originating a call, the modem

must already know the dial string to call. When answering calls, the modem or ACU

uses the Calling Indicator (circuit 125) to indicate an incoming call to the DTE.

 Note: The IBM ARTIC960Hx 4-Port Selectable PCI Adapter does not support

the Calling Indicator (circuit 125). Therefore, direct mode can not be used to

receive incoming V25bis calls with this adapter.

Phone Number or

Address to Call

Specifies the phone number the modem should call to establish a connection. The phone

number may contain the digits 0 through 9 inclusive and any of the following dial modifiers:

: Wait tone

< Pause

= Separator 3

> Separator 4

P Dialing to be continued in pulse mode

T Dialing to be continued in DTMF mode

& Flash

These dial modifiers are only valid if using V25bis addressed mode.

Since the port may not be used to originate calls, the phone number is not a required field.

However, if you do not specify a phone number and you try to send a call using addressed

mode, the call will fail.

Maximum

Connection Delay

Maximum time in seconds to allow for connection establishment. Must be set long enough for

modems to perform handshaking or training operations. When originating calls, this value

should be smaller than the T3 idle timer frame-layer parameter.

Used for all dial-up connections. For leased connections, this value remains unchanged.

Enable/Disable DSR

Polling

DSR polling must be enabled if using a V25bis or manual-dial dial-up connection. If using a

leased connection, DSR polling must be disabled.

DSR Polling

Timeout

After call establishment, time in seconds to wait after DSR has dropped before ending the

connection. Used only if DSR polling is enabled.

Configuring a Port for X.32

Use the following method to configure a port to use X.32 XID authentication.

Using SMIT, enter:

smit

Select the following SMIT menus:

1. Select Change/Show Characteristics of Port.

2. Select Change/Show X.25 General Parameters.

3. On the Change/Show General Parameters screen, the settings for the X.32 attributes must be obtained

from your network provider.

Chapter 4. X.25 Installation and Configuration 39

X.32 Parameter Descriptions

 Use X.32 XID Exchange Indicates whether or not to use X.32 XID authentication procedures when the link is

established.

X.32 XID Identity Represents the X.32 identity of your port. This attribute must be provided by the DCE

you are calling. The identity should be a string of 64 hexadecimal characters.

X.32 Signature Identifies your password. This attribute must be provided by the DCE you are calling.

The signature should be a string of 64 hexadecimal characters.

Managing COMIO Emulation

From the ″Manage X.25 Ports″ SMIT screen, emulation of the AIX Version 3 base X.25 driver support can

be added to an X.25 port. This screen also allows it to be removed. For details on this screen, see

“Managing Ports” on page 33.

When Add COMIO Interface to Port is selected, a choice of available ports is presented. Only one

emulator can be added to any one port, and if it has already been added to the port chosen, the operation

will fail.

When Remove COMIO Interface from Port is selected, a choice of the emulators configured on the

system is presented.

Managing TCP/IP Configuration

TCP/IP support can be added or removed from a given port. For more details of the TCP/IP support, refer

to the section on TCP/IP in the Networks and communication management.

Add a TCP/IP Interface

To add TCP/IP support, select Add TCP/IP Interface to Port from the Manage X.25 Ports and select the

correct adapter.

 Internet Address The IP address to be given to this interface, for example, 192.35.231.224. There

should be a host name for this address in /etc/hosts.

Network Mask The netmask of the network depends on the network’s implementation. If the IP

connection is simply from this port to another, then the default, which is obtained by

leaving the field blank, is usually acceptable. If many X.25/IP connections are being

used to make up a network, the netmask should be consistent across the systems.

Licensed Program Product

Port

The X.25 port selected.

Activate Choose whether to immediately activate the interface or not. If there is still

configuration work to be done on the port, then it should be activated later with the

ifconfig command.

Add Routes for Remote Systems

In order to communicate with a remote network, routes must be added.

The static route panel in smitty has changed. To add a route, change the following parameters:

1. Set Destination TYPE to ″host″

2. Set DESTINATION Address to the remote X.25 hostname

3. Set Default GATEWAY Address to the local X.25 hostname

4. Set Network Interface to ″xs0″

5. Set Is this a Local (Interface) Route? to ″yes″

40 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

To access the configuration menu using the SMIT fast path, enter:

smitty route

The following shows the SMIT menu with the entry fields containing sample field values:

 Add Static Route

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

 Destination TYPE host

 DESTINATION Address [remotex25hostname]

 (dotted decimal or symbolic name)

 Default GATEWAY Address [localx25hostname]

 (dotted decimal or symbolic name)

 COST [0]

 Network MASK (hexadecimal or dotted decimal) []

 Network Interface [xs0]

 (interface to associate route with)

 Enable Active Dead Gateway Detection? no

 Is this a Local (Interface) Route? yes

Remove a TCP/IP Interface

To remove a TCP/IP interface from a port, select Remove TCP/IP Interface from Port and then choose

the interface to be deleted.

Map IP Addresses to X.25 NUAs

AIXlink/X.25 conforms to RFC 1236 ″IP to X.121 Address Mapping for DDN″ which defines an algorithm

that automatically determines the NUA based on the Internet address.

Attachment to the Defense Data Network (DDN): Choosing the DDN network identifier invokes this

algorithm in place of the x25ip tables. The RFC defines this support for Class A Internet addresses only

(Class B and C addresses are also supported).

For All Other Network Identifiers: For all other types of network, the x25ip table maps TCP/IP Internet

addressing to the X.121 Network User Address (NUA). This table is maintained via the SMIT IP/X.25 Host

Entry menu.

Create an entry in this table for each remote host using either of the following methods:

v Using the SMIT fast path, enter:

 smit mkx25s

v Using SMIT, enter:

 smit

Choose the following SMIT menus:

1. Select Communications, Applications, and Services.

2. Select TCP/IP.

3. Select Further Configuration.

4. Select Network Interfaces.

5. Select Network Interface Selection.

6. Select X.25 Licensed Program Product IP Host Configuration.

7. Select Add an X.25 Licensed Program Product IP Host Entry.

8. Select Add a Switched Virtual Circuit (SVC) X.25 Licensed Program Product IP Host Entry.

Chapter 4. X.25 Installation and Configuration 41

Both methods display the Add an X.25 Licensed Program Product IP Host Entry screen. This screen

contains fields in which you type or select the desired values.

Notes:

1. A virtual call is made when the first session with a remote system is established.

2. Several IP sessions can share the same virtual circuit. Once an X.25 communication has been

established, all IP traffic between two systems shares the same virtual circuit. Only one SVC or PVC is

needed for communications between two systems.

3. The X.25 virtual circuit is left connected for a period of time after the last IP session has been closed.

This is so the cost of call establishment is not incurred if the remote system is contacted again in the

near future (which is reasonable).

This applies to SVCs and PVCs that are removed using the arp -t x25 -d command.

4. To clear a TCP/IP X.25 virtual connection, use the arp -t x25 -d command. For example to clear an

existing virtual connection between kilix and filix, type on filix:

 arp -t x25 -d filix

Managing the Triple-X PAD

The functionality of the PAD can be divided into two types of PAD, host and terminal PADs. The host PAD

allows remote ASCII terminals to access applications running on it, with their access across an X.25

network. A terminal PAD allows the ASCII terminals to directly attach to the system over asynchronous

links, and for them to use the X.28 protocol to establish calls with the remote X.25 attached system.

To enable host PAD support, the Manage Triple-X PAD option should be selected from the Manage X.25

LPP Device Driver menu. This option brings up a menu from which the host PAD support can be added or

stopped - the Start/Stop the Triple-X PAD X.29 Daemon menu. Select the Add and Configure/Stop the

X.29 Daemon menu to start the X.29 daemon. The daemon is only started for that instance and will be

stopped automatically if the machine is rebooted. To avoid having to restart the daemon each time, add

the following to any start-up script:

 /usr/lib/drivers/pse/x29d

The terminal support does not need to be configured and is available once the X.25 and PAD software is

installed, and the X.25 ports configured.

Managing XOT

XOT enables you to route X.25 applications over a TCP/IP network.

Configuring XOT

To configure XOT, complete the following steps:

 1. At a command prompt, type smit

 2. Select Devices.

 3. Select Communication.

 4. Select X25 over TCP/IP (XOT).

 5. Add the XOT driver and activate it using the Add XOT option. The xot0 driver is created. At the

Activate XOT option, select yes to activate the XOT driver.

 6. Change the XOT characteristics if the TCP/IP listening port, used for incoming connections, is

different than the standard listening port, 1998, by completing the following steps:

a. Select Change/Show Characteristics of XOT and change the value of the TCP/IP listening Port

parameter to match the port your configuration is using.

b. If the changes are to be applied immediately, answer no to the Apply change to DATABASE only

parameter. The XOT daemon is stopped and restarted to re-initialize addressing information and

the TCP/IP listening port.

42 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

7. Add and configure XOT-specific pseudo-line ports, using the Manage X.25 Ports option and the

following steps. Select Add Ports. When you select the XOT driver, a SMIT screen allows you to

enter the characteristics of the port. For more information about the attributes of the ports, see

“Adding a Port” on page 34.

 8. If necessary, configure the Permanent Virtual Circuit. Using XOT, the Add Ports screen allows you to

define the following PVC default parameters:

Local Interface Name

Name of the local interface identifying the X25 port (for example sx25a<x>).

Remote Interface Name

Name of the remote interface identifying the X25 port on the peer (for example sx25a<x>).

Remote IP Address

IP address of the remote XOT peer.

The Manage Non-Default Permanent Virtual Circuit screen is provided to define non-default

parameters for a PVC. Using XOT, the following non-default parameter is required:

Remote PVC number

Logical Channel Number of the PVC on the remote X.25 port.

 9. To setup the routing X121-IP addressing, select the XOT local addressing file option. This option

allows you to define the routing entries through NUA by mapping X.25 addresses with IP addresses.

You can list the static X121-IP mapping, and add, change, or remove an IP Host entry.

10. To add and configure the bridges, select Bridge/Port Addressing Configuration. This option allows

you to set the IP address of a bridge on a per-X.25 pseudo line. A routing entry is defined, specifying

a unique destination for a specific line. You can list the bridge addressing configuration and add,

change, or remove an entry.

11. Check the routing configuration by selecting Display local X121/IP routing table. This option

displays the dynamic local cache of X121/IP addresses mapping.

Removing XOT

To remove the XOT driver complete the following steps:

1. At a command prompt, type smit

2. Select Devices.

3. Select Communication.

4. Select X25 over TCP/IP (XOT).

5. Remove XOT ports by selecting Manage X.25 ports and Remove Port.

6. Select Remove XOT. Use the KEEP definition in database field to specify whether or not you want to

keep the data associated with the driver in the database. If you are removing the device driver

temporarily, keep the data in the database.

Managing XOL

XOL enables you to route X.25 applications over Ethernet networks.

Configuring XOL

To configure XOL, complete the following steps:

1. At a command prompt, type smit

2. Select Devices.

3. Select Communication.

4. Select X25 over LLC2 (XOL).

5. Add the XOL driver by selecting Add XOL. The xol0 driver is now created.

6. Select Manage X.25 Ports. Set up the destination SAP and MAC address, as well as the local SAP

and local PPA, or the Physical Point of Access, which is the Ethernet adapter to use.

Chapter 4. X.25 Installation and Configuration 43

The SAP must adhere to the following rules:

v An SAP is a byte size.

v SAPs must be entered as hexadecimal numbers.

v Low order bit must be 0 for individuals and 1 for groups, such as multicast groups), as shown in the

following example:

01000000 = user

11000000 = group (not supported by XOL)

v Default SAP is 0x7E.

v SAP/MAC pairs cannot be used in the same host. Either a different SAP or an additional Ethernet

adapter is required.

v The 0x0 and 0xaa SAPs are not allowed.

v Odd SAP numbers are not supported.

The local MAC address is not required because XOL will determine the address from the chosen

Ethernet adapter. You must manually determine the Remote MAC address and Remote SAP.

Removing XOL

To remove the xol driver, complete the following:

1. At a command prompt, type smit

2. Select Devices.

3. Select Communication.

4. Select X25 over LLC2 (XOL).

5. Remove XOL ports by selecting Manage X.25 ports and Remove Port.

6. Remove the XOL driver by selecting Remove XOL. The xol0 driver is now removed. Use the KEEP

definition in database field to specify whether or not you want to keep the data associated with the

driver in the database. If you are removing the device driver temporarily, keep the data in the

database.

Configuration Commands

The X.25 Licensed Program can be configured directly from the command line if this is desired, though for

most users the SMIT interface is preferable. A set of general system and specific X.25 commands allow

the X.25 system to be configured.

Managing Device Driver

Instances of the adapter device driver twd are added and deleted through the system commands mkdev

and rmdev. The port and adapter numbers used in the following examples would have to be replaced by

those needed on a particular system.

Add a driver

mkdev -c driver -s artic -t star -w0 -p ’apm1’

This assumes a Portmaster adapter, but could equally be a coprocessor ampx. For more details, see the

mkdev command.

Remove a driver

rmdev -l twd1

Moves the driver twd1 to the defined state. Using the -d option also removes the configured data from the

database. For more details, see the rmdev command.

44 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

List drivers

lsdev -C -t star or lsx25

For more details, see the lsdev or lsx25 commands.

Managing X.25 Ports

To manage the X.25 ports, the X.25 commands listed should be used:

Adding a Port

The appropriate command to use depends on which base device driver (twd or hdlc) is used by the port.

Note: The following is only an example.

If the port uses the hdlc device driver:

mksx25 -c port -s star -t stx25 -a nddname=’hdlc2’ -a local_nua=’54663’ -a network_id=’5’

Note: The following is only an example.

If the port uses the hdlc device driver:

mksx25 -c port -s star -t stx25 -a nddname=’hdlc2’ -a local_nua=’54663’ -a network_id=’5’

If the port uses the twd device driver:

mksx25 -c port -s star -t stx25 -p ’twd1’ -w ’4’ -a local_nua=’54663’ -a network_id=’5’

If the port uses the xot driver:

mksx25 -c port -s star -t stx25 -p ’xot’ -a local_nua=’54663’ -a network_id=’5’

Note: Do not use the mkdev command to create an X.25 port for the XOT driver.

If the port uses the xol driver:

mksx25 -c port -s star -t stx25 -p ’xol’ -a local_nua=’54663’ -a network_id=’5’ \

-m ent0 -y lsap=0x7E -r rmac=0.2.55.4f.96.e5 -u rsap=0x7E

Note: Do not use the mkdev command to create an X.25 port for the XOL driver.

Changing a Port

The following example changes the attributes listed for the given port. This allows such things as VC

ranges and packet sizes to be modified. For more details, see the chsx25 command.

chsx25 -l sx25a0 -a...

Removing a Port

Note: Do not use the rmdev command to remove an X.25 port that uses either the XOL or the XOT

driver.

The following example moves the port sx25a0 to the defined state. Using the -d option also removes the

configured data from the database.

rmsx25 -l sx25a0

For more details, see the rmsx25 command.

Listing Ports

The following example lists ports.

lsdev -C -t stx25

Chapter 4. X.25 Installation and Configuration 45

Adding a Non-default PVC

The following example adds a non-default PVC on port sx25a0’s logical channel number 4, itsnon-default

characteristic being a transmit packet size of 256. For more details, see the mkpvc command.

mkpvc -U -l sx25a0 -n 4 -s 256

Listing PVCs

The following example lists PVCs:

lspvc -l sx25a0

For more details, see the lspvc command.

46 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 5. Network Provider Interface Programming

Reference

This chapter discusses how the network provider interface (NPI) is used with X.25. It includes the

primitives necessary to run NPI on an X.25 network and illustrates how programs can use NPI.

The network provider interface (NPI) provides a connection-oriented programming interface based on the

UNIX® International Network Provider Interface Specification, Version 2.0.0. A connection-oriented subset

of the standard has been implemented with enhancements to better suit it to an X.25 environment.

NPI consists of a set of primitives defined as STREAMS messages that provide access to the network

layer services. The primitives are transferred between the network service (NS) user entity and the NS

provider. An NPI primitive can be one of the following types:

 User-originated These primitives make requests to the NS provider or respond to an event of the NS

provider.

Provider-originated These primitives are either confirmations of a request or are indications to the NS user

that the event has occurred.

The following diagram illustrates the NPI:

Multiple NPI applications can access the X.25 protocol code.

The main features of the connection-mode communication are:

v Virtual circuits.

v Data transfer by a pre-established path.

v Data transfer reliability.

There are three phases to each instance of communication: connection establishment, data transfer, and

connection termination. Units of data arrive at their destination in the same order as they departed their

source, and the data is protected against duplication or loss. Along with the NPI primitives required to use

the X.25 communications, there are a number of local management primitives that act locally to the NPI

module.

Figure 8. Model of the NPI

© Copyright IBM Corp. 2001, 2005 47

For an application to use NPI, it would typically follow these steps:

1. Open a stream to the packet driver.

2. Push the NPI module.

3. Bind the application to the NPI module.

4. Submit a connection request to establish a connection between the local and remote X.25 systems.

5. Once the connection becomes established, transfer the required data.

6. Disconnect the two systems.

NPI Enhancements for AIXlink/X.25 Version 2.1

AIXlink/X.25 Version 2.1.0 enhances Network Provider Interface (NPI) support by supplying CCITT cause

and diagnostic codes for X.25 to the user’s NPI applications.

Existing applications compiled with AIXlink/X.25 Version 1.1 can still continue to run on AIXlink/X.25

Version 2.1.0 without any modification. Customers who wish to receive the cause and diagnostic codes

must recompile their X.25 applications to take advantage of the modified functions.

The following NPI structures contained in /usr/include/sys/npi_20.h have been changed to allow users to

use the CCITT cause and diagnostic codes:

 N_reset_req_t

N_reset_ind_t

N_discon_req_t

N_discon_ind_t

Support for 64 Bit Applications

Support for 64 bit NPI applications has been added in AIXlink/X.25 V2.1.1.

Support is still available for 32 bit NPI applications.

Application writers need to be aware that fields in the NPI structures should be kept to 4 bytes.

Application writers need to insure that 4 bytes, not 8 bytes, of information is initialized into a field in a

structure when using functions such as bcopy.

Structure Changes for 64-bit Mode

All structures using the ulong definition have been changed to use the ulong32int64_t definition instead

of the ulong definition. This definition change is used with the 64-bit kernel.

In 32-bit mode and 64-bit mode, the ulong32int64_t and ulong definitions take up 4 bytes of space.

32-bit NPI applications do not need to change from the ulong definition to the ulong32int64_t definition

because they run in 32-bit mode.

Sample Program

The use of NPI is demonstrated in a set of sample programs, which is located in the following directory:

/usr/samples/sx25/npi

48 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Local Management Primitives

Local management primitives are called to open, close, manage, and report information on stream

connected to the NPI module. They also manage options supported by it and report information on its

supported parameter values.

The following local management primitives are supported:

 N_INFO_REQ Indicates a network information request.

N_INFO_ACK Indicates a network information acknowledgment.

N_BIND_REQ Indicates a bind protocol address request.

N_BIND_ACK Indicates a bind protocol address acknowledgment.

N_UNBIND_REQ Indicates an unbind protocol address request.

N_ERROR_ACK Provides error acknowledgment.

N_OK_ACK Provides successful receipt acknowledgment.

Connection-Mode Primitive Formats and Rules

A network connection (NC), once established, is like a pair of queues linking two network addresses, or

X.25 hosts. There is one queue for each direction of information flow, and each queue provides a flow

control function for its information flow. The pair of queues is considered to be available for each potential

NC. As with the X.25 protocol, NPI is a state machine, what action the application should take at a given

time is sometimes due to the state that the protocol layer is in. For example, a call cannot be established

until the application binds to the NPI module.

The following rules and guidelines apply to connection-mode service:

v Primitives can be put onto a queue by the application, subject to the control of the NPI module.

v The NPI module can add data to the queue.

v The receiving application controls the removal of objects from the queue. The objects are normally

removed in the order they were received, except when:

– The object is of a type defined to be able to advance ahead of the preceding object.

Note: No object can advance ahead of another object of the same type.

– The following object is defined to be destructive with respect to the preceding object on the queue. If

necessary, the last object on the queue would be deleted to allow a destructive object to be put on

the queue. For example, disconnect objects are defined to be destructive with respect to all other

objects. Reset objects are defined to be destructive with respect to all other objects except connect,

disconnect, and other reset objects.

The CONS primitives can be grouped as follows:

v Connection establishment primitives

v Normal data transfer primitives

v Receipt confirmation service primitives

v Reset service primitives

v Network connection release primitives

The following sections describe the format and rules of CONS primitives.

Chapter 5. Network Provider Interface Programming Reference 49

Connection Establishment Primitives

The following network service primitives pertain to establishing a connection. To make a connection, the

application must previously have bound to the NPI module.

 N_CONN_REQ Indicates a network connection request.

N_CONN_IND Provides a network connection indication.

N_CONN_RES Indicates a network connection response.

N_CONN_CON Provides a network connection confirmation.

The connection sequence is as follows:

1. Network service (NS) user, user A, sends a connection request primitive (N_CONN_REQ) to NS user,

user B.

2. User B receives the corresponding connection indication primitive (N_CONN_IND).

3. User B accepts the connection by sending a connection accept primitive (N_CONN_RES) to User A.

4. User A receives the corresponding connection confirm primitive (N_CONN_CON).

Now, the connection is established.

A pair of queues is associated with the connection between the two systems once the connection

sequence completes. The queues can now be added to the NS user’s read queue. The queues remain

associated with the connection until the NS user sends a disconnect request primitive (N_DISCON_REQ)

or receives a disconnect indication primitive (N_DISCON_IND).

Normal Data Transfer Primitives

The following NPI primitives provide normal data transfer service:

 N_DATA_REQ Indicates a normal data transfer request.

N_DATA_IND Provides a normal data transfer indication.

These primitives provide a way to exchange data between the two systems. NPI refers to the units of data

passed as network service data units (NSDUs). The exchange can occur in one direction or in both

directions simultaneously. The X.25 layer preserves the sequence and the boundaries of these data units.

If an N_DATA_REQ for an NSDU greater than the NIDU packet parameter is sent to NPI, the receiving

application gets several N_DATA_IND primitives. It is the responsibility of the receiving application to

check the N_MORE_DATA_FLAG in each data indication until the entire NSDU is received.

Receipt Confirmation Service Primitives

The following NPI primitives provide receipt confirmation service:

 N_DATACK_REQ Indicates a data acknowledgment request.

N_DATACK_IND Provides a data acknowledgment indication.

The N_RC_FLAG flag of the N_DATA_REQ primitive enables the receipt confirmation service. For each

data unit received with the confirmation request parameter set, the receiving user should return an

N_DATACK_REQ primitive. These acknowledgments are issued in the same order as the corresponding

N_DATA_IND primitives are received. The NS provider responds to the primitives such that each

acknowledgment is distinct from previous or subsequent acknowledgments. The application would have to

correlate the acknowledgments with the original requests. When an NSDU has been segmented into more

than one network interface data unit (NIDU), only the last NIDU can request receipt confirmation.

50 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

N_DATACK_REQ primitives are not subject to the flow control that affects N_DATA_REQ primitives at the

same NC endpoint. N_DATACK_IND primitives are not subject to the flow control affecting N_DATA_IND

primitives at the same NC endpoint.

To use receipt-confirmation, the two applications must agree upon its use at connection time, assuming it

is supported by the underlying X.25 network. The REC_CONF_OPT flag of the N_CONN primitives

requests receipt-confirmation service. As it is based on the X.25 D bit, the X.25 subscription being used

must have D bit support.

Expedited Data Transfer Service

The following NPI primitives provide an expedited data transfer service:

 N_EXDATA_REQ Indicates an expedited data transfer request.

N_EXDATA_IND Provides an expedited data transfer indication.

The expedited data transfer primitives correspond to X.25 interrupt packets. When the network services

(NS) provider receives an N_EXDATA_REQ from the user, the provider generates an X.25 interrupt

packet. When the NS provider receives an X.25 interrupt packet from the network, the provider

automatically sends an X.25 interrupt confirm packet to the network and sends an N_EXDATA_IND

primitive to the user. When the NS provider on the side that sent the N_EXDATA_REQ receives an X.25

interrupt confirm packet from the network, the provider sends an N_OK_ACK primitive to the user to

acknowledge that the interrupt sequence completed successfully. The NS provider sends the N_OK_ACK

primitive to the user, so that the application knows that the expedited data transfer sequence completed

successfully. The expedited data transfer sequence must complete before another expedited data request

can be sent from the same user. The expedited data transfer sequence is illustrated in the following

example:

 N_EXDATA_REQ -----> | interrupt packet ----> |------> N_EXDATA_IND

 | |

 | |

 N_OK_ACK <--------- | <--- interrupt confirm |

Note: The expedited data transfer service is always allowed with NPI, during the data transfer state.

Therefore, even though an NS user may choose not to ever send an N_EXDATA_REQ primitive, the

user must be able to handle receiving N_EXDATA_IND primitives from the NS provider, during the

data transfer mode.

Reset Service Primitives

The following NPI primitives provide a reset service:

 N_RESET_REQ Indicates a reset request.

N_RESET_IND Provides a reset indication.

N_RESET_RES Indicates a reset response.

N_RESET_CON Provides a reset confirmation.

An application would use the reset service to resynchronize the connection. The underlying X.25 layer

uses the service to report a detected loss of unrecoverable data within the network service. The reset

causes the NS provider to discard all data, expedited data, and receipt confirmations associated with this

connection.

Chapter 5. Network Provider Interface Programming Reference 51

Network Connection Release Primitives

The following NPI primitives provide for network connection release:

 N_DISCON_REQ Indicates a disconnect request.

N_DISCON_IND Provides a disconnect indication.

The connection can be released in the following ways:

v Either or both of the NS users can issue a N_DISCON_REQ to release an established connection.

v The destination application can reject an N_CONN_IND primitive.

v The NS provider, or underlying network, can release the connection. (All failures by the network to

maintain a connection are indicated in this manner.)

v The NS provider can fail to establish a requested NC.

A connection can be released at any time, regardless of its current state. A disconnection request cannot

be rejected, so once invoked, the connection will be released. Once the release phase is entered, the

network service does not guarantee delivery of any data.

NPI STREAMS Programming

The NPI interface works in the STREAMS environment. The following provides an overview of how to

program to the STREAMS interface.

Initially the ″NPI″ module is not available for use by an application, and the application itself must push it

onto a stream.

For an application to work with NPI in the STREAMS environment, the NPI module must be available to

STREAMS applications. Once AIXlink/X.25 Version 2.1 is installed on a system, the NPI module is made

available. Then applications that link to the STREAMS library are able to access the NPI module. The way

that an application ″pushes″ NPI is shown in the following sample of pseudo code:

Figure 9. Initial X-25 Stream State with NPI

52 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

dev=open("/dev/x25pkt", O_RDWR);

/* assumes good return value */

ioctl(dev, I_PUSH, "npi"); /* uses the streams library

 push ioctl */

Once pushed, the application may then bind to NPI. See the bind primitive for more details. The

application uses the functions putmsg and getmsg to communicate with NPI. Detailed under the

STREAMS documentation, examples of their use with NPI are given under some of the primitives. An

example of programming to NPI can be seen in the licensed program’s sample programs.

Handling Calls

The N_CONN primitives are used to generate outgoing calls and accept incoming calls. If incoming calls are

expected, the application must specify their characteristics to identify them. The X.25 call user data field is

used to identify incoming calls to NPI, and how the listen is specified is described under the N_BIND_REQ

primitive. The N_DISCON primitives are used to terminate the calls.

N_BIND_REQ Primitive

Purpose

Requests that NPI bind a user stream to the X.25 protocol stack. For connections using SVCs, the bind

request gives details about how the user stream is to be used. If the user stream is to be used to receive

incoming calls, then the bind request gives details on what incoming calls should be routed to that stream.

For connections using PVCs, the bind request gives details of what logical channel number to use.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong ADDR_length;

 ulong ADDR_offset;

 ulong CONIND_number;

 ulong BIND_flags;

 ulong PROTOID_length;

 ulong PROTOID_offset;

} N_bind_req_t;

Description

The N_BIND_REQ primitive requests that a network address be associated with a stream. It gives the

maximum number of connect indications that can be outstanding for the particular application through the

use of the CONIND_number field. It also indicates if the stream is a listening stream or a non-listening

stream. A listening stream only receives connect indications (N_CONN_IND), and a non-listening stream

either sends connect responses (N_CONN_RES) or connect requests (N_CONN_REQ). Bind requests for

listening streams should use the PROTOID field to specify the details of incoming calls that should be

listened for. In addition, bind requests for listening streams must use the CONIND_number field to specify

the number of connection indications that can be outstanding at any given time.

If it is desired that a stream bound as a non-listening stream issue both N_CONN_REQ and

N_CONN_RES primitives, it is necessary to do two binds. One bind allows N_CONN_REQ primitives to be

sent; then an N_UNBIND_REQ primitive followed by an N_BIND_REQ primitive that binds the stream for

sending the N_CONN_RES primitive is issued.

A sample of NPI code is included with the X.25 product.

Chapter 5. Network Provider Interface Programming Reference 53

Parameters

 PRIM_type Indicates the N_BIND_REQ primitive.

ADDR_length Indicates the length, in bytes, of the network address to be bound to the stream.

ADDR_offset Specifies where the network address begins. The parameter value is an offset from the

beginning of the M_PROTO block.

The following table defines specific address formats to be used at bind time. Note that this

primitive is also used for attaching PVCs.

 N_BIND_REQ SVC Address Formats

Byte # Represents Value Format

1 line number 0-255 Binary

2 address prefix 0 for X.121 ASCII

3 - on address itself X.121 address ASCII

 N_BIND_REQ PVC Address Formats

Byte # Represents Value Format

1 line number 0-255 Binary

2 address prefix P ASCII

3 - on logical channel # 0-4095 ASCII

Note: At a given time, not all 4096 LCNs are available. The range must be that which is configured

for this X.25 port.

The line number can be obtained several ways. The lsx25 command lists the logical port number for each

port, which is the line number. Another way is to use the lsattr command as follows:

lsattr -E -l portname -a port_num

The value to use for the line number is the port_num field. A third option is to use the odm_get_obj

subroutine. An example of this code can be found in the sample code directory for NPI.

Note: The port_num value is set by the X.25 licensed program when the port is defined. The X.25

software uses this field to understand which physical port the application is referencing. Therefore,

the value of port_num may not be changed by anyone other than the X.25 licensed program.

 CONIND_number Indicates the requested number of outstanding connect indications for the specified

protocol address. An outstanding connection indication is one that has not been accepted

by the application through the use of a connection response primitive (N_CONN_RES).

This number should be set to zero if a non-listening stream is desired or greater than

zero if a listening stream is desired. A listening stream can also be a

DEFAULT_LISTENER, which means that it will accept connect indications

(N_CONN_IND) for any network address on any port with any call user data.

54 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

BIND_flags Specifies one or more of the following:

DEFAULT_LISTENER

Indicates that the current stream is the default listener. This means that the

stream accepts connect indications (N_CONN_IND) for any network address on

any port with any call user data. There can only be one default listener per

system. If this flag is set, the CONIND_number should be set to a value greater

than zero.

TOKEN_REQUEST

Indicates that a token be assigned to the stream. This flag should only be set if

the stream is to be a non-listener stream used to send a connection response

primitive (N_CONN_RES). When this flag is set in the bind request, the

N_BIND_ACK primitive returns a token value to the user. The user uses the

token in a subsequent N_CONN_RES primitive to identify the stream on which

the connection is to be established.

 Note: This flag should not be set if the non-listener stream is to be used to

send a connection request primitive (N_CONN_REQ).

TRANSPAC_OPT

On most networks, an outgoing originated call contains both the calling and

called addresses. On some networks, however, the calling address must be

absent from the call packet since the network itself insets this address. When

connected to such networks, this flag must be set. To set it, use a logical OR to

″OR″ in the value of the TRANSPAC_OPT flag with the BIND_flags field.

 Note: In cases where the TRANSPAC_OPT flag is used, the following

rules apply:

v If sub-addressing is desired, the address in the N_BIND_REQ should be

formatted as follows:

– BYTE1 = line number

– BYTE2 = 0 (X.121 address prefix)

– BYTE 3 and on = sub-address.

v Otherwise, the address in the N_BIND_REQ should be formatted as follows:

– BYTE1 = line number

– BYTE2 = 0 (X.121 address prefix).

PROTOID_length Specifies the length, in bytes, of the protocol IDs to be bound to the stream.

Chapter 5. Network Provider Interface Programming Reference 55

PROTOID_offset Specifies where the protocol ID begins. The parameter value is an offset from the

beginning of the M_PROTO block.

The PROTO_id field gives a pattern to match to the call user data (CUD) of incoming

X.25 packets. It must be a null-terminated ASCII string where only digits (0-9), hex digits

(A-F), ″?″ and ″*″ are allowed. Note that the length of this string, including the null

character, cannot exceed 34 bytes. Following are some examples of how the matching

for the PROTO_id works.

1234 Only matches for the specific CUD 1234.

1234* Matches for any CUD which starts with the digits 1234. This includes the CUD

1234 itself since a * (asterisk) matches any number of characters including

none.

12*34 Matches for any CUD, including 1234, which starts with 12 and ends with 34.

12?? Matches for any CUD consisting of exactly four digits and starting with the

characters 12.

12??* Matches for any CUD consisting of at least four digits and starting with the

characters 12.

???? Matches for any CUD consisting of any four digits.

????* Matches for any CUD consisting of at least four digits.

1 Matches for any CUD containing the digit ″1″.

* Matches for any CUD. This includes calls that have no CUD.

Acknowledgments

The NS provider generates one of the following acknowledgments upon receipt of the N_BIND_REQ

primitive:

 Successful The NS provider sends the N_BIND_ACK primitive.

Unsuccessful Non-fatal errors are indicated by the N_ERROR_ACK primitive.

Error Codes

The applicable non-fatal errors are as follows:

v To a network address with the CONIND_number parameter set to a nonzero value.

v With the DEFAULT_LISTENER flag value set to nonzero.

 NNOADDR Indicates that no local address was supplied in the N_BIND_REQ.

NOUTSTATE Indicates the primitive was issued from an invalid state.

NSYSERR Indicates a system error. The error is indicated in the N_ERROR_ACK primitive.

Implementation Specifics

The N_BIND_REQ primitive is part of X.25 licensed program.

N_BIND_ACK Primitive

Purpose

Acknowledges that the NPI application has been bound to a network address.

56 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Structure

This primitive consists of one M_PCPROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong ADDR_length;

 ulong ADDR_offset;

 ulong CONIND_number;

 ulong TOKEN_value;

 ulong PROTOID_length;

 ulong PROTOID_offset;

} N_bind_ack_t;

Description

The N_BIND_ACK primitive indicates to the application that the specified network user entity has been

bound to the requested network address. The primitive also indicates the number of outstanding connect

indications that can be queued.

Parameters

 PRIM_type Specifies the N_BIND_ACK primitive.

ADDR_length Specifies the length, in bytes, of the bound network address.

ADDR_offset Specifies where the network address begins. The value of this parameter is the offset

from the beginning of the M_PCPROTO block.

CONIND_number Specifies the accepted number of outstanding NS provider connect indications allowed to

be outstanding by the NS provider for the specified network address. The

CONIND_number parameter will have one of the following values:

0 Indicates the stream cannot accept N_CONN_IND messages.

>0 Indicates the NS user can accept up to the specified number of N_CONN_IND

messages before responding with an N_CONN_RES or N_DISCON_REQ

message.

TOKEN_value Specifies the value of the token assigned to this stream. The value can be used by the

NS user in an N_CONN_RES primitive to accept a NC on this stream. The value will be

nonzero and will be unique to all streams bound to the NS provider.

PROTOID_length Specifies the length of the bound protocol IDs.

PROTOID_offset Specifies the offset of the bound protocol IDs.

Implementation Specifics

The N_BIND_ACK primitive is part of X.25 Licensed Program.

N_UNBIND_REQ Primitive

Purpose

Requests that the NPI application be unbound from the network address.

Syntax

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

}N_unbind_req_t;

Chapter 5. Network Provider Interface Programming Reference 57

Description

The N_UNBIND_REQ primitive requests that the NPI unbinds the application that was previously bound to

the network address.

Parameters

 PRIM_type Specifies the N_UNBIND_REQ primitive.

Acknowledgments

NPI can generate the following acknowledgments upon receipt of the primitive:

 Successful The N_OK_ACK primitive acknowledges that the N_UNBIND_REQ primitive successfully

completed.

Unsuccessful The N_ERROR_ACK primitive indicates non-fatal errors.

Error Codes

The applicable non-fatal errors are as follows:

 NOUTSTATE Indicates the primitive was issued from an invalid state.

NSYSERR Indicates a system error. The error is indicated in the N_ERROR_ACK primitive.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

N_OK_ACK Primitive

Purpose

Indicates the network provider received the previous user-originated primitive.

Syntax

This primitive consists of one M_PCPROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong CORRECT_prim;

} N_ok_ack_t;

Description

The N_OK_ACK primitive indicates to the application that the network provider received the previously

submitted primitive. The N_OK_ACK does not indicate any network protocol action taken due to the

issuance of the last primitive. The N_OK_ACK primitive can only be initiated as an acknowledgment for

user-originated primitives that have no other means of confirmation. These primitives include the

N_UNBIND_REQ, N_RESET_RES, N_CONN_RES, and N_DISCON_REQ primitives.

Parameters

 PRIM_type Specifies the N_OK_ACK primitive.

CORRECT_prim Identifies the successfully received primitive.

58 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Implementation Specifics

The N_OK_ACK primitive is part of X.25 Licensed Program.

N_ERROR_ACK Primitive

Purpose

Provides notification of an error.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong ERROR_prim;

 ulong NPI_error;

 ulong UNIX_error;

} N_error_ack_t;

Description

The N_ERROR_ACK primitive informs the application that a non-fatal error occurred in the previously

issued primitive. This primitive can only be initiated as an acknowledgment for those primitives that require

one. The N_ERROR_ACK primitive does not perform any action on the primitive that caused the error.

Parameters

 PRIM_type Specifies the N_ERROR_ACK primitive.

ERROR_prim Identifies the primitive that caused the error.

NPI_error Contains the network provider interface (NPI) error code.

UNIX_error Contains the system error code. This parameter can only be nonzero if the value of the NPI_error

parameter is NSYSERR.

Error Codes

The following error codes can be returned:

 NBADADDR Indicates the specified network address was in an incorrect format, or the address contained

illegal information.

NBADOPT Indicates the specified options values were in an incorrect format or contained illegal

information.

NNOADDR Indicates the NS provider could not allocate an address.

NOUTSTATE Indicates the primitive was issued from an invalid state.

NBADSEQ Indicates the specified sequence number was incorrect or illegal.

NBADDATA Indicates the specified amount of user data was outside the range supported by the NS

provider.

NSYSERR Indicates a system error. The error is indicated in the primitive.

NNOTSUPPORT Indicates the specified primitive type is not known to the NS provider.

NODDCUD Indicates an odd-length call user data string.

Implementation Specifics

The N_ERROR_ACK primitive is part of X.25 Licensed Program.

Chapter 5. Network Provider Interface Programming Reference 59

N_INFO_REQ Primitive

Purpose

Requests network information from the network service (NS) provider.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

} N_info_req_t;

Description

The N_INFO_REQ primitive requests the NS provider to return the values of all supported protocol

parameters and the current state of the NS provider. The N_INFO_REQ primitive does not affect the state

of the network. The information returned is detailed under the N_INFO_ACK primitive.

Parameters

 PRIM_type Indicates the N_INFO_REQ primitive.

Acknowledgments

The NS provider generates one of the following acknowledgments upon receipt of the primitive:

 Successful The N_INFO_ACK primitive acknowledges the N_INFO_REQ primitive.

Unsuccessful There are no non-fatal errors associated with issuing this primitive.

Implementation Specifics

The N_INFO_REQ primitive is part of X.25 Licensed Program.

N_INFO_ACK Primitive

Purpose

Acknowledges a request for network information.

Structure

This primitive consists of one M_PROTO message block with the following structure and values. Where a

value is not supported, QOS_UNKNOWN is returned:

typedef struct {

ulong PRIM_type; /* always N_INFO_ACK */

ulong NSDU_size; /* max NSDU size */

ulong ENSDU_size; /* max ENSDU size */

ulong CDATA_size; /* connect data size */

ulong DDATA_size; /* disconnect data size */

ulong ADDR_size; /* address size */

ulong ADDR_length; /* address length */

ulong ADDR_offset; /* address offset */

ulong QOS_length; /* length of the default QOS values */

ulong QOS_offset; /* offset of the default QOS values from the

 beginning of the block */

ulong QOS_range_length; /* length of the range of QOS values */

ulong QOS_range_offset; /* offset of the range of the QOS values from

 the beginning of the block */

60 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

ulong OPTIONS_flags; /* bit masking for options supported */

ulong NIDU_size; /* network interface data unit size */

long SERV_type; /* service type */

ulong CURRENT_state; /* current state */

ulong PROVIDER_type; /* type of provider */

ulong NODU_size; /* optimal NSDU size */

ulong PROTOID_length; /* length of bound protocol ids */

ulong PROTOID_length; /* offset of bound protocol ids */

ulong NPI_version; /* version number of npi that is supported */

} N_info_ack_t;

Description

The N_INFO_ACK primitive acknowledges a request for network information. The primitive indicates to the

network services (NS) user any relevant protocol-dependent parameters. The N_INFO_ACK primitive

serves as a response to the N_INFO_REQ primitive. The data transmission sizes are based on those of

the underlying X.25 network.

Parameters

 PRIM_type Indicates the primitive type.

NSDU_size Specifies the maximum size, in octets, of a network service data unit (NSDU) which is

based on the X.25 packet size.

ENSDU_size Specifies the maximum size, in octets, of an expedited network service data unit

(ENSDU), which is based on the X.25 network’s interrupt packet size.

CDATA_size Specifies the maximum number of octets of data that can be associated with connection

establishment primitives, which is based on the X.25 network’s call user data limit.

DDATA_size Specifies the maximum number of octets of data that can be associated with the

disconnect primitives, which is based on the X.25 network’s clear user data limit.

ADDR_size Specifies the maximum size, in decimal digits, of a network address. The value must be

between 1 and 40.

ADDR_length not supported, returns QOS_UNKNOWN

ADDR_offset not supported, returns QOS_UNKNOWN

QOS_length not supported, returns QOS_UNKNOWN

QOS_offset not supported, returns QOS_UNKNOWN

QOS_range_length not supported, returns QOS_UNKNOWN

QOS_range_offset not supported, returns QOS_UNKNOWN

OPTIONS_flags not supported, returns QOS_UNKNOWN

NIDU_size Indicates the amount of user data that can be present in an N_DATA primitive. The value

of the NIDU_size parameter should not be larger than the value of the NSDU_size

parameter.

SERV_type Specifies the service type supported by the NS provider. The only possible value is

N_CONS which indicates connection-mode service.

CURRENT_state not supported, returns QOS_UNKNOWN

PROVIDER_type not supported, returns QOS_UNKNOWN

NODU_size not supported, returns QOS_UNKNOWN

PROTOID_length Specifies the length of the protocol identifiers that were bound with the N_BIND_REQ

primitive. This value should be -1, which indicates that there is no obtainable information

that corresponds to the parameter’s definitions.

PROTOlD_offset Specifies the offset of the protocol identifiers to be bound from the beginning of the

M_PCPROTO message block. This value should be -1, which indicates that there is no

obtainable information that corresponds to the parameter’s definitions.

NPI_version not supported, returns QOS_UNKNOWN

Implementation Specifics

This primitive is part of X.25 Licensed Program.

Chapter 5. Network Provider Interface Programming Reference 61

N_CONN_REQ Primitive

Purpose

Requests a network connection.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong DEST_length;

 ulong DEST_offset;

 ulong CONN_flags;

 ulong QOS_length

 ulong QOS_offset;

 } N_conn_req_t;

Note: QOS_length and QOS_offset are not supported and should be set to 0 (zero).

Description

The N_CONN_REQ primitive requests that the network service (NS) provider make a network connection

to a specified destination. This will generate an X.25 call request to the remote X.25 host.

The format of the message is one M_PROTO message block followed by one or more M_DATA blocks for

the NS user data transfer. Specifying user data is optional. The NS user can send any integral number of

octets of data within the range supported by the NS provider. (For more information, see the

N_INFO_ACK primitive.)

The following table defines the specific address format to be used for SVCs:

 N_CONN_REQ_NPI SVC Address Format

Byte # (from 1) Represents Value Format

1 address prefix 0 for X.121 ASCII

2 - on address itself X.121 address ASCII

Note: User data is expected to be an even-length, null-terminated ASCII string. Facilities should be

included in the M_DATA, and are expected to be coded as they would appear in a call packet. The

sample code gives an example of facilities and CUD.

For PVCs, the N_CONN primitives are not used. The connection is established through the N_BIND_REQ.

Parameters

 PRIM_type Specifies the N_CONN_REQ primitive.

DEST_length Specifies the length of the destination address parameter. The destination address parameter

conveys an address identifying the NS user to which the network connection (NC) is to be

established. The DEST_length parameter accommodates variable length addresses within a

range supported by the NS provider.

DEST_offset Specifies the offset of the destination address from the beginning of the M_PROTO message

block.

62 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

CONN_flags This parameter can have the following values:

REC_CONF_OPT

Indicates the use and/or availability of the receipt confirmation service on the NC. The

receipt confirmation service must be provided in the network service to be used on the

NC.

 Note: This flag is automatically set by NPI unless the X.25 port packet layer

D-bit attribute is set to forbid. Therefore, NPI ignores whether or not this flag is

set in this primitive.

EX_DATA_OPT

Indicates the use of the expedited data transfer service on the NC. The expedited data

transfer service must be provided by the NS provider for it to be used on the NC.

 Note: The expedited data transfer service is always allowed with NPI during the

data transfer state. Therefore, NPI ignores whether or not the EX_DATA_OPT

flag is set in this primitive.

QOS_length This should be set to 0 (zero) since QOS parameters are supported.

QOS_offset This should be set to 0 (zero) since QOS parameters are supported.

Acknowledgments

The following acknowledgments are valid for the N_CONN_REQ primitive:

 Successful The N_CONN_CON primitive indicates the NC has been established.

Unsuccessful The N_DISCON_IND primitive indicates the NC was not established. A connection may be

rejected because either the called NS user cannot be reached, or the NS provider and the

called NS user did not agree with the specified facilities.

The N_ERROR_ACK primitive indicates non-fatal errors.

Error Codes

The applicable non-fatal errors are defined as follows:

 NBADADDR Indicates the network address was in an incorrect length or of zero length. This error code is not

intended to indicate NC errors, such as an unreachable destination. These errors types are

indicated with the N_DISCON_IND primitive.

NBADDATA Indicates the amount of user data specified was outside the range supported by the NS provider.

NBADOPT Indicates the options were either in an incorrect format or contained illegal information.

NOUTSTATE Indicates the primitive was issued from an invalid state. Usually, this error is returned when the

connection request is sent on a stream bound as a listener stream. See the N_BIND_REQ primitive

for more information.

NSYSERR Indicates a system error. The error is indicated in the N_ERROR_ACK primitive.

NODDCUD Indicates an odd-length call user data string.

Implementation Specifics

The N_CONN_REQ primitive is part of X.25 Licensed Program.

N_CONN_IND Primitive

Purpose

Indicates a network request connection has been made.

Chapter 5. Network Provider Interface Programming Reference 63

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong DEST_length;

 ulong DEST_offset;

 ulong SRC_length;

 ulong SRC_offset;

 ulong SEQ_number;

 ulong CONN_flags;

 ulong QOS_length;

 ulong QOS_offset;

 } N_conn_ind_t;

Note: QOS_length and QOS_offset are 0 (zero) since they are not supported.

Description

The N_CONN_IND primitive indicates to an application that it has received an incoming call or connection.

The format of this message is one M_PROTO message block normally followed by one or more M_DATA

blocks for NS user data. The calling application could have sent any integral number of octets of data

within the range supported by the NS provider. The NS user data exists only if the corresponding

N_CONN_REQ primitive specified user data. The data in the N_CONN_IND and N_CONN_REQ primitives

is identical.

Parameters

 PRIM_type Specifies the N_CONN_IND primitive.

DEST_length Specifies the length of the destination address parameter. The destination address parameter

conveys an address identifying the NS user to which the NC is to be established.

DEST_offset Specifies the offset of the destination address from the beginning of the M_PROTO message

block.

SRC_length Specifies the source address length. The source address parameter conveys the network

address of the NS user from which the NC has been requested. The semantics of the value in

the N_CONN_IND primitive are identical to the value associated with the stream on which the

N_CONN_REQ primitive was issued.

SRC_offset Specifies the offset of the destination address from the beginning of the M_PROTO message

block.

SEQ_number Identifies the sequence number that can be used by the NS user to associate this message

with a subsequent N_CONN_RES or N_DISCON_REQ primitive. This value must be unique

among the outstanding N_CONN_IND primitives. The parameter allows the NS user to issue

the N_CONN_RES or N_DISCON_REQ primitives in any order.

64 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

CONN_flags This parameter can have the following values:

REC_CONF_OPT

Indicates the use and/or availability of the receipt confirmation service on the NC. The

receipt confirmation service must be provided in the network service to be used on the

NC.

 Note: This flag is automatically set in this primitive by NPI unless the X.25 port

packet layer D-bit attribute is set to forbid.

EX_DATA_OPT

Indicates the use of the expedited data transfer service on the NC. The expedited data

transfer service must be provided by the NS provider for it to be used on the NC.

 Note: The expedited data transfer service is always allowed with NPI during the

data transfer state. Therefore, this flag is always automatically set by NPI in this

primitive.

QOS_length Set to 0.

QOS_offset Set to 0.

Implementation Specifics

The N_CONN_IND primitive is part of X.25 Licensed Program.

N_CONN_RES Primitive

Purpose

Allows the destination NPI application to accept an incoming connection request.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong TOKEN_value;

 ulong RES_length;

 ulong RES_offset;

 ulong SEQ_number;

 ulong CONN_flags;

 ulong QOS_length;

 ulong QOS_offset;

} N_conn_res_t;

Note: QOS_length QOS_length should be 0 (zero) since QOS parameters are not supported.

Description

The format of this message is one M_PROTO message block followed by one or more M_DATA blocks.

The M_DATA blocks contain user data which is optional. Any integral number of octets, up to the limit

imposed by the underlying network, can be passed. Note that an odd-length CUD string is not allowed.

Parameters

 PRIM_type Specifies the N_CONN_RES primitive.

Chapter 5. Network Provider Interface Programming Reference 65

TOKEN_value Identifies the stream on which the NS user wants to establish the network connection (NC).

The value of this parameter can be one of the following:

>0 Indicates the NS user wants to establish the NC on a stream other than the stream on

which the N_CONN_IND primitive arrived.

0 Indicates the NS user wants to establish the NC on the same stream on which the

N_CONN_IND primitive arrived.

The NS user determines the stream’s value by issuing an N_BIND_REQ primitive with the

TOKEN_REQUEST flag set. The N_BIND_ACK primitive returns the token value.

RES_length Specifies the length of the responding address parameter. The responding address parameter

conveys the network address of the NS user to which the NC has been established. Under

certain circumstances, such as call redirection or generic addressing, the parameter value may

be different from the destination address parameter specified in the corresponding

N_CONN_REQ primitive.

RES_offset Indicates the offset of the responding address from the beginning of the M_PROTO message

block.

SEQ_number Indicates the sequence number of the N_CONN_RES primitive. The NS provider uses this

number to associate the N_CONN_RES with an outstanding N_CONN_IND message. An

invalid sequence number results in an NBADSEQ error.

CONN_flags This parameter can have the following values:

REC_CONF_OPT

Indicates the use and/or availability of the receipt confirmation service on the NC. The

receipt confirmation service must be provided in the network service to be used on the

NC.

 Note: This flag is automatically set by NPI unless the X.25 port packet layer

D-bit attribute is set to forbid. Therefore, NPI ignores whether or not this flag is

set in this primitive.

EX_DATA_OPT

Indicates the use of the expedited data transfer service on the NC. The expedited data

transfer service must be provided by the NS provider for it to be used on the NC.

 Note: The expedited data transfer service is always allowed with NPI during the

data transfer state. Therefore, NPI ignores whether or not the EX_DATA_OPT

flag is set in this primitive.

QOS_length This should be set 0 (zero) since QOS parameters are not supported.

QOS_offset This should be set 0 (zero) since QOS parameters are not supported.

Acknowledgments

The NS provider generates one of the following acknowledgments upon receipt of the N_CONN_RES

primitive:

 Successful The N_OK_ACK primitive indicates the N_CONN_RES primitive succeeded.

Unsuccessful The N_ERROR_ACK primitive indicates that a non-fatal error occurred.

Error Codes

The applicable non-fatal errors are defined as follows:

 NBADDATA Indicates the amount of user data specified was outside the range supported by the NS provider.

NBADOPT Indicates the options were either in an incorrect format or contained illegal information.

NBADSEQ Indicates the sequence number specified in the primitive was incorrect or illegal.

NOUTSTATE Indicates the primitive was issued from an invalid state.

66 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

NSYSERR Indicates a system error. The error is indicated in the primitive.

Implementation Specifics

The N_CONN_RES primitive is part of X.25 Licensed Program.

N_CONN_CON Primitive

Purpose

Confirms a network connection.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong RES_length;

 ulong RES_offset;

 ulong CONN_flags;

 ulong QOS_length;

 ulong QOS_offset;

} N_conn_con_t;

Note: QOS_length and QOS_offset are 0 (zero) since they are not supported.

Description

The N_CONN_CON primitive informs an NPI application that issued a N_CONN_REQ that the remote

application accepted the connection.

The format of this primitive is one M_PROTO message block followed by one or more M_DATA blocks

that contain NS user data. In the remote application’s response it can send an integral number of octets of

user data - within the range supported by the network. User data will be a part of the confirmation only if

used in the remote’s N_CONN_RES primitive. The data in the N_CONN_CON and N_CONN_RES

primitives are always identical.

Parameters

 PRIM_type Specifies the N_CONN_CON primitive.

RES_length Indicates the length of the responding address parameter. This parameter conveys the network

address of the NS user entity to which the network connection (NC) has been established. Under

certain circumstances, such as call redirection or generic addressing, the parameter value may

be different from the destination address parameter specified in the corresponding

N_CONN_REQ primitive.

RES_offset Indicates the offset of the responding address from the beginning of the M_PROTO message

block.

Chapter 5. Network Provider Interface Programming Reference 67

CONN_flags This parameter can have the following values:

REC_CONF_OPT

Indicates the use and/or availability of the receipt confirmation service on the NC. The

receipt confirmation service must be provided in the network service to be used on the

NC.

 Note: This flag is automatically set in this primitive by NPI unless the X.25 port

packet layer D-bit attribute is set to forbid.

EX_DATA_OPT

Indicates the use of the expedited data transfer service on the NC. The expedited data

transfer service must be provided by the NS provider for it to be used on the NC.

 Note: The expedited data transfer service is always allowed with NPI during the

data transfer state. Therefore, this flag is always automatically set by NPI in this

primitive.

QOS_length 0 (zero) since QOS parameters are not supported.

QOS_offset 0 (zero) since QOS parameters are not supported.

Implementation Specifics

The N_CONN_CON primitive is part of X.25 Licensed Program.

N_DATA_REQ Primitive

Purpose

Sends data to the remote application

Structure

The structure of the M_PROTO message block, if present, is as follows:

typedef struct {

 ulong PRIM_type;

 ulong DATA_xfer_flags;

} N_data_req_t;

Description

The N_DATA_REQ primitive indicates that the message contains data. This primitive is user-originated

and allows transfers of data between applications.

The NS user must send any integral number of octets of data greater than 0. If the size of the NSDU

exceeds the network interface data unit (NIDU), the NSDU may be broken up into multiple NIDUs. If an

NSDU is segmented into multiple NIDUs, the N_DATA_REQ primitive must have the

N_MORE_DATA_FLAG flag set for each NIDU except the last one. The N_RC_FLAG flag can only be set

in the N_DATA_REQ containing the last NIDU. This is the standard method of working for the X.25

network.

The format of the message is one or more M_DATA blocks. Using a M_PROTO message block is

optional, but it is used for two reasons:

v To indicate the NSDU is broken into multiple NIDUs, and the data contained in the subsequent M_DATA

message block constitutes one NIDU.

v To indicate that active receipt confirmation is required for this data through use of the X.25 D bit.

68 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Parameters

 PRIM_type Specifies the N_DATA_REQ primitive.

DATA_xfer_flags Specifies one of the following values:

N_MORE_DATA_FLAG

Indicates that the next N_DATA_REQ message (NIDU) is also part of this

NSDU. This uses the X.25 M bit. This flag cannot be used with the

N_RC_FLAG flag.

N_RC_FLAG

Allows the originating NS user to request confirmation of receipt of the

N_DATA primitive. The N_DATACK primitives provide confirmation. The

parameter can only be present if the NS users and provider agreed to use

receipt confirmation during connection establishment. This uses the X.25 D bit.

This flag cannot be used with the N_MORE_DATA_FLAG flag.

N_Q_FLAG

Indicates that the Qualifier bit (Q-bit) should be set by NPI in the X.25 data

packet. This is used by applications that wish to indicate a difference between

data and the applications internal command data.

Acknowledgments

This primitive does not require any acknowledgments. However, the primitive may generate a fatal error.

The STREAMS M_ERROR message type notifies the application of an EPROTO error. As a result of the

error, all system calls on that stream will fail.

Error Codes

 EPROTO Indicates one of the following unrecoverable protocol conditions:

v The network interface was in an incorrect state.

v The amount of NS user data associated with the primitive is outside the range supported by the NS

provider. The NIDU_size parameter of the N_INFO_ACK primitive determines the range.

v The requested option is either not supported by the NS provider or was not specified with the

N_CONN_REQ primitive.

v The M_PROTO message block was not followed by one or more M_DATA message blocks.

v The N_RC_FLAG and N_MORE_DATA_FLAG flags were both set in the primitive, or the flags

parameter contained an unknown value.

Implementation Specifics

The N_DATA_REQ primitive is part of X.25 Licensed Program.

N_DATA_IND Primitive

Purpose

Indicates that the current message contains application data.

Structure

The structure of the M_PROTO message block, if present, is as follows:

typedef struct {

 ulong PRIM_type;

 ulong DATA_xfer_flags;

} N_data_ind_t;

Chapter 5. Network Provider Interface Programming Reference 69

Otherwise, the message consists of one or more M_DATA message blocks.

Description

The N_DATA_IND primitive indicates to the NS user that this message contains NS user data. This

primitive originates from the network provider and is a response to the N_DATA_REQ primitive. The

network service data unit (NSDU) can be segmented into more than one network interface data units

(NIDUs). The MORE_DATA_FLAG associates NIDUs with the NSDU. The RC_FLAG flag can be set only

on the last NIDU.

The format of the message is one or more M_DATA message blocks. The value of the NS user data field

is always the same as that supplied in the corresponding N_DATA_REQ primitive at the peer service

access point. M_PROTO message blocks are optional.

Parameters

 PRIM_type Specifies the N_DATA_IND primitive.

DATA_xfer_flags Specifies one of the following flags:

N_MORE_DATA_FLAG

Indicates that the next N_DATA_IND primitive (NIDU) is part of the current

NSDU. The NSDU is what was considered by the remote application to a

whole unit of data.

N_RC_FLAG

Indicates whether confirmation is requested. The DATA_xfer_flags parameter

can have this value only if both applications and the network agreed its use

while the network connection (NC) was being established. This parameter

value is always identical to that supplied in the corresponding N_DATA_REQ

primitive.

N_Q_FLAG

Indicates that the qualifier bit (Q-bit) was set by the remote application.

Implementation Specifics

The N_DATA_IND primitive is part of X.25 Licensed Program.

N_DATACK_REQ Primitive

Purpose

Acknowledges the receipt of data which had the N_DATA_ACK flag set.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

} N_datack_req_t;

Description

The N_DATACK_REQ primitive acknowledges receipt of an N_DATA_IND primitive which had the receipt

confirmation parameter set. The NPI application should send a N_DATACK_REQ on receipt of such data.

Parameters

 PRIM_type Specifies the N_DATACK_REQ primitive.

70 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Acknowledgments

This primitive does not require any acknowledgments. However, the primitive may generate a fatal error.

The STREAMS M_ERROR message type notifies the NS user of an EPROTO error. As a result of the

error, all system calls on that stream will fail.

Error Codes

 NSYSERR Indicates a system error. The error is indicated in the N_ERROR_ACK primitive.

Implementation Specifics

The N_DATACK_REQ primitive is part of X.25 Licensed Program.

N_DATACK_IND Primitive

Purpose

Indicates the remote NPI application has acknowledged data sent to it with the receipt acknowledge flag

set.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

} N_datack_ind_t;

Description

The N_DATACK_IND primitive indicates to the local NPI application that the remote has acknowledged the

data that had previously been sent with the receipt confirmation set. The N_DATACK_IND primitive is a

received based on the remote application submitting a N_DATACK_REQ primitive.

Parameters

 PRIM_type Specifies the N_DATACK_IND primitive.

Implementation Specifics

The N_DATACK_IND primitive is part of X.25 Licensed Program.

N_EXDATA_REQ Primitive

Purpose

Requests an expedited data transfer.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

} N_exdata_req_t;

Chapter 5. Network Provider Interface Programming Reference 71

Description

The N_EXDATA_REQ primitive requests that the network service (NS) provider send an X.25 interrupt

packet. The primitive consists of an M_PROTO message block followed by one or more M_DATA blocks.

The M_PROTO portion should contain the N_exdata_req_t structure, and the M_DATA block should

contain the data to be sent in the corresponding X.25 interrupt packet. The length of the data can be 1-32

bytes, depending on the X.25 CCITT level set in the X.25 port packet parameters. Note that the 1980

CCITT level only allows 1 byte of X.25 interrupt data, but 1984 and 1988 CCITT levels allow up to 32

bytes of data.

Note: The expedited data transfer service is always allowed with NPI during the data transfer state.

Therefore, NPI ignores whether or not the user set the EX_DATA_OPT flag in the N_CONN_REQ or

N_CONN_RES primitives.

Parameters

 PRIM_type Specifies the N_EXDATA_REQ primitive.

Acknowledgments

 Successful The N_OK_ACK primitive indicates that the X.25 interrupt sequence completed successfully

and the application may now send another N_EXDATA_REQ primitive.

Unsuccessful An N_ERROR_ACK primitive indicates non-fatal errors.

An M_ERROR STREAMS message indicates a fatal/unrecoverable error. This error results in

the failure of all system calls on that stream.

Error Codes

The applicable non-fatal errors are defined as follows:

 NNOINTCF Indicates that the NS user sent the N_EXDATA_REQ primitive to the NS provider before the user’s

previous N_EXDATA_REQ primitive completed. Each expedited data sequence must complete before

another one may be requested by the same user.

The applicable fatal/unrecoverable errors are defined as follows:

 EPROTO This indicates one of the following unrecoverable protocol conditions:

v The network interface was found to be in an incorrect state. Expedited data transfer requests are only

valid during the data transfer state.

v The N_EXDATA_REQ primitive was received without an M_DATA block.

Implementation Specifics

The N_EXDATA_REQ primitive is part of the X.25 licensed program.

N_EXDATA_IND Primitive

Purpose

Indicates the receipt of expedited data.

Structure

This primitive consists of one M_PROTO message block with the following structure:

72 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

typedef struct {

 ulong PRIM_type;

} N_exdata_ind_t;

Description

This primitive consists of one M_PROTO message block followed by one or more M_DATA blocks. The

value of the data in the M_DATA blocks is identical to that supplied with the corresponding

N_EXDATA_REQ primitive. The N_EXDATA_IND primitive indicates that the network service (NS) provider

received an interrupt packet from the network.

Note: The expedited data transfer service is always allowed with NPI during the data transfer state.

NPI ignores whether or not the user set the EX_DATA_OPT flag in the N_CONN_REQ or

N_CONN_RES primitives. Therefore, all users must be able to handle receiving N_EXDATA_IND

primitives from NPI.

Parameters

 PRIM_type Specifies the N_EXDATA_IND primitive.

Implementation Specifics

The N_EXDATA_IND primitive is part of the X.25 licensed program.

N_RESET_REQ Primitive

Purpose

Requests that the network connection be reset.

Syntax

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong RESET_reason;

 uchar cause;

 uchar diagnostic;

} N_reset_req_t;

Description

The N_RESET_REQ primitive requests that the network service (NS) provider reset the network

connection. The NS user initiates this primitive.

Parameters

 PRIM_type Specifies the N_RESET_REQ primitive.

RESET_reason Indicates the cause of the reset. The value of this parameter is always N_USER_RESYNC.

cause CCITT cause value of the reset. This field can be optionally assigned.

diagnostic CCITT diagnostic value of the reset. This field can be optionally assigned.

Acknowledgments

 Successful This primitive does not require an immediate acknowledgment. However, when the reset

completes, the issuer of this primitive receives an N_RESET_CON primitive.

Chapter 5. Network Provider Interface Programming Reference 73

Unsuccessful The N_ERROR_ACK primitive acknowledges non-fatal errors. The resulting state remains

unchanged.

Error Codes

The following non-fatal error codes are valid:

 NOUTSTATE Indicates the primitive was issued from an invalid state.

NSYSERR Indicates a system error. The error is indicated by the N_ERROR_ACK primitive.

Implementation Specifics

The N_RESET_REQ primitive is part of X.25 Licensed Program.

N_RESET_IND Primitive

Purpose

Indicates the connection has been reset.

Syntax

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong RESET_orig;

 ulong RESET_reason;

 uchar cause;

 uchar diagnostic;

} N_reset_ind_t;

Description

The N_RESET_IND primitive indicates to the network service user that the network connection has been

reset. The network provider originates this primitive.

Parameters

 PRIM_type Specifies the N_RESET_IND primitive.

RESET_orig Indicates the source of the reset. Its value can be one of the following:

N_PROVIDER

Indicates the NS provider or network originated the reset.

N_USER

Indicates the remote application originated the reset.

N_UNDEFINED

Indicates the reset originator was undefined.

74 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

RESET_reason Indicates the cause of the reset.

v If the value of the RESET_orig parameter is N_PROVIDER, the value is one of the

following:

N_CONGESTION

Indicates a reset due to congestion.

N_RESET_UNSPECIFIED

Indicates a reset due to an unspecified reason.

N_NET_LINK_DOWN

Indicates that the network or link is down.

N_NET_LINK_UP

Indicates that the network or link is up.

Note: Once a N_NET_LINK_DOWN reset indication is received, a N_RESET_RES

should be sent in response. After the N_RESET_RES, no other primitives should be

sent until a subsequent N_NET_LINK_UP reset indication is received. Other

primitives issued will receive a N_NET_LINK_DOWN reset in response.

v If the value of the RESET_orig parameter is N_USER, the value is:

N_USER_RESYNC

Indicates a user resynchronization.

v If the value of the RESET_orig parameter is N_UNDEFINED, the value is:

N_REASON_UNDEFINED

Indicates a reset due to an undefined reason.

cause CCITT cause value of the reset. This field can be optionally checked.

diagnostic CCITT diagnostic value of the reset. This field can be optionally checked.

Implementation Specifics

The N_RESET_IND primitive is part of X.25 Licensed Program.

N_RESET_RES Primitive

Purpose

Acknowledges receipt of a reset indication.

Syntax

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

} N_reset_res_t;

Description

The N_RESET_RES primitive indicates that the NPI application has accepted a reset request. This

primitive must be issued before use of the connection can be restored after a reset has been indicated.

Parameters

 PRIM_type Specifies the N_RESET_RES primitive.

Chapter 5. Network Provider Interface Programming Reference 75

Acknowledgments

 Successful The N_OK_ACK primitive indicates the successful completion of this primitive. This results in

the data transfer state.

Unsuccessful The N_ERROR_ACK primitive indicates this primitive was unsuccessful. The resulting state

remains the same.

Error Codes

The following non-fatal error codes are valid:

 NOUTSTATE Indicates the primitive was issued from an invalid state.

NSYSERR Indicates a system error. The error is indicated in the N_ERROR_ACK primitive.

Implementation Specifics

The N_RESET_RES primitive is part of X.25 Licensed Program.

N_RESET_CON Primitive

Purpose

Provides confirmation from the network that it received the N_RESET_RES primitive.

Syntax

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

} N_reset_con_t;

Description

The N_RESET_CON primitive informs the NPI application that the reset previously issued with the

N_RESET_RES primitive has completed. The NS provider can issue the N_RESET_CON primitive to the

application before receiving an N_RESET_RES primitive from the remote.

Parameters

 PRIM_type Specifies the N_RESET_CON primitive.

Implementation Specifics

The N_RESET_CON primitive is part of X.25 Licensed Program.

N_DISCON_REQ Primitive

Purpose

Requests that an existing connection be disconnected.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong DISCON_reason;

76 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

ulong RES_length;

 ulong RES_offset;

 ulong SEQ_number;

 uchar cause;

 uchar diagnostic;

} N_discon_req_t;

(Optionally followed by clear user data.)

Description

The N_DISCON_REQ primitive requests that the network service (NS) provider either disconnect an

existing connection or deny a request for a network connection. This primitive is user-originated.

The format of the message is one M_PROTO message block, followed by one or more M_DATA message

blocks that indicate user data. Any integral number of octets of data, up to the network’s clear user data

limit, can be sent provided the length is even.

Parameters

 PRIM_type Specifies the N_DISCON_REQ primitive.

DlSCON_reason This value is ignored by NPI. The corresponding X.25 CLEAR packet that is generated

from the N_DISCON_REQ will always have a diagnostic of 0x00.

RES_length Indicates the length of the responding address parameter. The responding address

parameter is optional and is present if the primitive indicates rejection of an attempt by an

NS user to establish a network connection. The responding address parameter conveys the

network address of the NS user entity from which the N_DISCON_REQ primitive was

issued. Under certain circumstances, such as call redirection and generic addressing, the

value of the responding address parameter may be different from the destination address in

the corresponding N_CONN_REQ primitive.

RES_offset Specifies where the responding address begins. The value of this parameter is the offset

from the beginning of the M_PROTO message block.

SEQ_number Identifies the sequence number of an N_CONN_IND primitive. This parameter can have

two types of values:

>0 Identifies the sequence number of the rejected N_CONN_IND message. NPI uses

this number to associate the N_DISCON_REQ primitive with an unacknowledged

N_CONN_IND primitive that is to be rejected.

0 Indicates the N_DISCON_REQ primitive is rejecting an established network

connection (NC).

cause CCITT cause value of the reset. This field can be optionally assigned.

diagnostic CCITT diagnostic value of the reset. This field can be optionally assigned.

Acknowledgments

The NS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful Indicated by the N_OK_ACK primitive.

Unsuccessful Non-fatal errors are indicated by the N_ERROR_ACK primitive.

Error Codes

The applicable non-fatal errors are as follows:

 NOUTSTATE Indicates the primitive was issued from an invalid state.

NBADDATA Indicates the amount of user data specified was outside the range supported by the NS provider.

NSYSERR Indicates a system error. The error is indicated in the primitive.

Chapter 5. Network Provider Interface Programming Reference 77

NBADSEQ Indicates one of the following conditions:

v The specified sequence number referred to an invalid N_CONN_IND primitive.

v The primitive attempted to reject an established NC, but the value of the sequence number was

not 0.

v The primitive attempted to reject an unconfirmed N_CONN_REQ primitive, but the value of the

sequence number was not 0.

Implementation Specifics

The N_DISCON_REQ primitive is part of X.25 Licensed Program.

N_DISCON_IND Primitive

Purpose

Indicates a disconnected or denied connection.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong PRIM_type;

 ulong DISCON_orig;

 ulong DISCON_reason;

 ulong RES_length;

 ulong RES_offset;

 ulong SEQ_number;

 uchar cause;

 uchar diagnostic;

} N_discon_ind_t;

Description

The N_DISCON_IND primitive indicates to the NPI application that either an existing connection has been

disconnected or a request for connection has been denied. The network provider generates this primitive.

The format of the message is one M_PROTO message block, followed by one or more M_DATA blocks.

The value of the user data parameter is identical to the user data in the corresponding N_DISCON_REQ

primitive sent by the remote application. If the remote application did not initiate the disconnect, then the

N_DISCON_REQ primitive will not contain user data.

Parameters

 PRIM_type Specifies the N_DISCON_IND primitive.

DISCON_orig Indicates the source of the network connection (NC) release and represents one of the

following values:

N_PROVIDER

Indicates an NS provider-originated disconnect.

N_USER

Indicates an NS user-originated disconnect.

N_UNDEFINED

 Indicates an undefined disconnect originator. This value is not permitted when

an NS user or the NS provider issues an N_DISCON_IND primitive to reject an

NC establishment attempt.

DISCON_reason All calls are cleared with a diagnostic of 0 (zero).

78 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

RES_length Indicates the length of the responding address parameter. This parameter is optional and is

present only if the primitive indicates the rejection of an NS user’s attempt to establish a

network connection. If the responding address parameter is not present, the value of this

parameter is 0. Otherwise, the value of the disconnect address parameter is identical to

that supplied with the corresponding N_DISCON_REQ primitive.

RES_offset Specifies the offset from the beginning of the M_PROTO message block where the network

address begins.

SEQ_number Identifies the sequence number of an N_CONN_IND primitive. This parameter can have

two types of values:

>0 Identifies the sequence number associated with the N_CONN_IND primitive that is

being terminated.

0 Indicates either a previously issued N_CONN_REQ primitive has been rejected, or

an established NC has been released.

When the value of this parameter is nonzero and matches the sequence number assigned

to an unacknowledged N_CONN_IND primitive, the value of the SEQ_number parameter

indicates that the NS provider is canceling the unacknowledged N_CONN_IND primitive.

cause CCITT cause value of the reset. This field can be optionally checked.

diagnostic CCITT diagnostic value of the reset. This field can be optionally checked.

Implementation Specifics

The N_DISCON_IND primitive is part of X.25 Licensed Program.

Chapter 5. Network Provider Interface Programming Reference 79

80 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 6. Data Link Provider Interface Programming

Reference

This chapter discusses the Data Link Provider Interface (DLPI) which provides access to the LAP-B frame

layer, including the primitives necessary to run DLPI.

The Data Link Provider Interface (DLPI) enables a data link service user to access and use the frame or

LAP-B layer of the protocol stack. To access the frame layer directly on a port, the port’s configuration

must be set to allow it. With the frame layer access active, regular X.25 applications cannot use the port.

The interface provides point-to-point data communications and is designed for two systems connected

back to back over a communications link. This is provided through a connectionless-oriented and a

connection-oriented subset of the full DLPI specification. Other implementations of DLPI exist, and shipped

with the operating system’s portable STREAMS environment is a connectionless-oriented subset. The X.25

Licensed Program only supports the connection-oriented subset of the specification that is shipped with

the product for the use DLPI applications.

On AIXlink v1.1, with X.25 ports that use the twd device driver, the frame layer resided on the adapter. As

a result, it was necessary to encode DLPI primitives in commands to the hardware device driver, twd. The

application’s DLPI primitives were passed to the frame layer through the twd driver. In AIXlink v2.1, the

frame layer resides in the kernel for twd and hdlc device drivers. Therefore it is no longer necessary to

encode DLPI primitives in commands to the hardware device driver, twd; DLPI primitives are issued

directly to the frame layer.

For X.25 ports that use the hdlc device driver, the frame layer resides in the kernel. In this case it is not

necessary (or appropriate) to encode the DLPI primitives. They are issued directly to the frame layer.

For X.25 ports that use xol or xot drivers, DLPI applications are not going to be supported. Because of the

connection-oriented subset capabilities of the operating system’s portable STREAMS environment, DLPI

applications that require connection-oriented capabilities can be written directly to the DLPI layer.

See the sample programs (referenced below) for the subroutine called dlpi_open. This subroutine

provides a single open interface that isolates these base device driver differences form DLPI applications.

For additional information on the twd device driver, see X.25 Licensed Program Functionality .

Structure Changes for 64-bit Mode

All structures using the ulong definition have been changed to use ulong32int64_t instead of ulong. This

is for use with the 64-bit kernel. However, AIXlink applications do not need to change definitions from

ulong to ulong32int64_t since they run in 32-bit mode. In 32-bit mode ulong32int64_t and ulong

definitions take up 4 bytes of space.

The Data Link Layer

The data link layer (layer 2 in the OSI Reference Model) is responsible for the transmission and error-free

delivery of information over a physical communications medium. This layer is also referred to as the frame

or LAP-B layers .

The model of the data link layer is presented here to describe concepts that are used throughout the

specification of DLPI. It is described in terms of an interface architecture, as well as addressing concepts

needed to identify different components of that architecture.

© Copyright IBM Corp. 2001, 2005 81

Model of the Service Interface

Each layer of the OSI Reference Model has two standards:

v One that defines the services provided by the layer.

v One that defines the protocol through which layer services are provided.

DLPI is an implementation of the first type of standard. It specifies an interface to the services of the data

link layer. The following diagram depicts an overview of DLPI.

The data link interface is the boundary between the network and data link layers of the OSI Reference

Model. The network layer entity, which is usually the X.25 layer , is the user of the services of the data link

interface. This user is DLPI’s user application and is sometimes referred to as the Data Link Service (DLS)

user . The DLPI layer which provides the programming interface is referred to as the DLS provider. This

interface consists of a set of primitives that provide access to the data link layer services.

The service primitives that make up kernel-level interfaces are defined as STREAMS messages that are

transferred between the user and provider of the service. DLPI is targeted for STREAMS protocol modules

that either use or provide data link services. In addition, user programs that wish to access a

STREAMS-based data link provider directly may do so using the putmsg and getmsg subroutines.

The use of DLPI is demonstrated in a set of sample programs located in the /usr/samples/sx25/npi

directory for AIXlink/X.25 Version 2.1.

DLPI Primitives

Before DLPI primitives can be used by the application, the user must establish a stream to DLPI. It does

this by binding to the frame layer that has been made available in the streams environment through the

X.25 Licensed Program’s installation. Once bound to a stream, the application can send primitives to DLPI

and connect and transfer data. When an application wishes to terminate it disconnects the link and

unbinds from its stream. The primitives are split into two groups:

v Local management service primitives which control peripheral setup requirements such as the bind

v Connection-mode service primitives associated with connecting, disconnecting and data transfer

Figure 10. Overview of DLPI

82 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Local Management Service Primitives

The following primitives support the information reporting, attach, and bind services of DLPI. Once a

stream has been opened by a DLS user, these primitives initialize the stream and prepare it for use.

 DL_INFO_ACK Returns information about the stream.

DL_BIND_REQ Requests the DLS provider to bind a DLSAP to a stream.

DL_BIND_ACK Reports a DLSAP has been bound.

DL_UNBIND_REQ Requests the DLS provider unbind a DLSAP.

DL_OK_ACK Indicates a request primitive was received.

DL_ERROR_ACK Indicates a previously issued request or response was invalid.

Connection-Mode Service Primitives

This section describes the service primitives that support the connection-mode service of the data link

layer. These primitives support:

v Connection establishment

v Data transfer

v Connection release

v Reset

Connection Establishment Primitives

The following DLPI primitives establish data link connections:

 DL_CONNECT_REQ Requests a data link connection with a remote user.

DL_CONNECT_CON Indicates a data link connection has been established.

The calling application initiates the connection by issuing a DL_CONNECT_REQ primitive. The

DL_CONNECT_CON primitive informs the calling application that the connection has been established.

Once the connection is established, data is exchanged using the STREAMS putmsg and getmsg

subroutines.

The data transfer service provides for the exchange of user data in either direction or in both directions

simultaneously between the applications. Data is transmitted in local groups called DLSDUs. The DLS

provider preserves both the sequence and boundaries of DLSDUs as they are transmitted.

Normal data transfer is neither acknowledged nor confirmed. It is up to the DLS users, if they so choose,

to implement a confirmation protocol. Refer to the DLPI sample programs for an example of coding data

frames.

Connection Release Primitives

The following DLPI primitives provide data link connection release service:

 DL_DISCONNECT_IND Requests the DLS provider to disconnect a connection.

DL_DISCONNECT_REQ Confirms the link has been disconnected.

The connection release service allows DLS users or the DLS provider to initiate the connection release.

Any data in that has not been delivered to the DLS user when the connection release is requested can be

discarded. Normally, one DLS user requests disconnection and the DLS provider issues an indication of

the ensuing release to the other DLS user.

Chapter 6. Data Link Provider Interface Programming Reference 83

Reset Primitives

The following DLPI primitives provide reset service:

 DL_RESET_REQ Requests the DLS provider to resynchronize a data link connection.

DL_RESET_IND Informs the DLS user a remote DLS user is resynchronizing the connection.

DL_RESET_RES Directs the DLS provider to complete resynchronizing the connection.

DL_RESET_CON Confirms the reset has been completed.

The reset service may be used by the DLS user to resynchronize the use of a data link connection, or by

the DLS provider to report detected loss of data unrecoverable within the data link service.

If the data link connection is congested, running the reset service unblocks the flow of DLSDUs. DLSDUs

may be discarded by the DLS provider. The DLS user or users that did not invoke the reset are notified

that a reset has occurred. A reset may require a recovery procedure to be performed by the DLS users.

DL_BIND_ACK Primitive for X.25

Purpose

Reports the successful bind of a data link service access point (DLSAP) to a stream.

Structure

This primitive consists a message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_sap;

 ulong dl_addr_length;

 ulong dl_addr_offset;

 ulong dl_max_conind;

 ulong dl_xidtest_flg;

} dl_bind_ack_t;

Description

The DL_BIND_ACK primitive reports the successful bind of an application to a stream and returns the

bound DLSAP address to the DLS user. This primitive is generated in response to a DL_BIND_REQ

primitive.

Parameters

 dl_primitive Specifies the DL_BIND_ACK primitive.

dl_sap Specifies the DLSAP address information associated with the bound DLSAP. It

corresponds to the dl_sap parameter of the associated DL_BIND_REQ primitive, which

contains all or part of the DLSAP address. For the portion of the DLSAP address

specified in the DL_BIND_REQ primitive, this parameter contains the corresponding

portion of the address for the bound DLSAP.

dl_addr_length For point to point addressing is not supported, so address length and offset are both set

to 0.

dl_addr_offset Set to 0 on return.

dl_max_conind Set to 0 on return.

dl_xidtest_flg Set to 0 on return.

Implementation Specifics

The DL_BIND_ACK primitive is part of X.25 Licensed Program.

84 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

DL_BIND_REQ Primitive for X.25

Purpose

The application requests a stream to be bound for the application to the frame layer, thus producing a data

link service access point (DLSAP) to the stream.

Structure

This primitive consists of a message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_sap;

 ulong dl_max_conind;

 ushort dl_service_mode;

 ushort dl_conn_mgmt;

 ulong dl_xidtest_flg;

} dl_bind_req_t;

Description

The DL_BIND_REQ primitive requests the DLS provider to bind a DLSAP to a stream. The DLS user must

identify the address of the DLSAP to be bound as well as indicate whether it will accept incoming connect

requests on the stream. The request directs the DLS provider to activate the stream associated with the

DLSAP.

A stream is active when the DLS provider can transmit and receive protocol data units destined to or

originating from the stream. The physical point of attachment (PPA) associated with each stream must be

initialized when the DL_BIND_REQ primitive has been processed. The PPA is initialized when the

DL_BIND_ACK primitive is received. If the PPA cannot be initialized, the DL_BIND_REQ primitive fails.

A stream can be bound as a connection management stream, which receives all connect requests that

arrive through a given PPA. In this case, the dl_sap parameter is ignored.

Parameters

 dl_primitive Specifies the DL_BIND_REQ primitive.

dl_sap The address format used by the frame layer is:

byte 1 Master station (1) or Slave station (0)

byte 2 Logical Line number

byte 3 Must be set to 0

byte 4 Not used, set to 0

 where byte 1 is the most significant byte of the ulong, and byte 4 is the least

significant.

dl_max_conind Should be set to 0.

dl_service_mode Should be set to 0.

dl_conn_mgmt Should be set to 0.

dl_xidtest_flg Should be set to 0.

States

 Valid The message is valid in the DL_UNBOUND state.

New The resulting state is DL_BIND_PENDING.

Chapter 6. Data Link Provider Interface Programming Reference 85

Acknowledgments

 Successful The DL_BIND_ACK primitive is sent to the DLS user. The resulting state is the DL_IDLE

state.

Unsuccessful The DL_ERROR_ACK primitive is returned. The resulting state is unchanged.

Error Codes

 DL_BADPPA Line number passed is too large

DL_INITFAILED Line not associated with a physical line

DL_BUSY Line already bound

DL_BADSAP Byte 1 of dl_sap not valid master or client SAP value

DL_BADADDR Bytes 3 and 4 not zero

Implementation Specifics

The DL_BIND_REQ primitive is part of X.25 Licensed Program.

DL_CONNECT_CON Primitive for X.25

Purpose

Informs the local data link service (DLS) user that the requested data link connection has been

established.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_resp_addr_length;

 ulong dl_resp_addr_offset;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_growth;

} dl_connect_con_t;

Description

The DL_CONNECT_CON primitive informs the local DLS user that the requested data link connection has

been established. The primitive contains the data link service access point (DLSAP) address of the

responding DLS user as well as the quality of service (QOS) parameters selected by the responding DLS

user.

Parameters

 dl_primitive Specifies the DL_CONNECT_CON primitive.

Addressing and quality of service parameters are not supported; therefore, each of the following

parameters will be set to 0.

v dl_resp_addr_length

v dl_resp_addr_offset

v dl_qos_length

v dl_qos_offset

86 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

dl_growth Defines a growth field for future enhancements to this primitive. Its value must be set to 0.

States

 Valid The message is valid in the DL_OUTCON_PENDING state.

New The resulting state is DL_DATAXFER.

Implementation Specifics

The DL_CONNECT_CON primitive is part of X.25 Licensed Program.

DL_CONNECT_REQ Primitive for X.25

Purpose

Requests data link connection between the data link service (DLS) provider and a remote DLS user.

Structure

This primitive consists of a message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_growth;

} dl_connect_req_t;

Description

The DL_CONNECT_REQ primitive requests that a DLS provider establish a data link connection with a

remote DLS user.

Parameters

 dl_primitive Specifies the DL_CONNECT_REQ primitive.

Addressing and quality of service parameters are not supported; therefore, each of the following

parameters will be set to 0.

v dl_resp_addr_length

v dl_resp_addr_offset

v dl_qos_length

v dl_qos_offset

 dl_growth Defines a growth field for future enhancements to this primitive. Its value must be set to 0.

States

 Valid The message is valid in the DL_IDLE state.

New The resulting state is DL_OUTCON_PENDING.

Chapter 6. Data Link Provider Interface Programming Reference 87

Acknowledgments

The DL_CONNECT_REQ primitive has no immediate response. However, if the connect request is

accepted by the called DLS user, the DL_CONNECT_CON primitive is sent to the calling DLS user,

resulting in the DL_DATAXFER state.

If the connect request is rejected by the called DLS user, the called DLS user cannot be reached, or the

DLS provider or called DLS user do not agree on the specified quality of service, a

DL_DISCONNECT_IND is sent to the calling DLS user, resulting in the DL_IDLE state.

If the request is erroneous, the DL_ERROR_ACK primitive is returned and the resulting state is

unchanged.

DL_DISCONNECT_IND Primitive for X.25

Purpose

Informs the data link service (DLS) user that the data link connection on the current stream has been

disconnected.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_originator;

 ulong dl_reason;

 ulong dl_correlation;

} dl_disconnect_ind_t;

Description

The DL_DISCONNECT_IND primitive informs the DLS user of one of the following conditions:

v The data link connection on the current stream has been disconnected.

v A pending connection from either the DL_CONNECT_REQ or DL_CONNECT_IND primitive has been

cancelled.

The primitive indicates the origin and the cause of the disconnect.

Parameters

 dl_primitive Specifies the DL_DISCONNECT_IND primitive.

dl_originator Specifies one of the following:

DL_USER

Indicates whether the disconnect originated from a DLS user.

DL_PROVIDER

Indicates whether the disconnect originated from a DLS provider.

88 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

dl_reason Specifies the reason for the disconnect. Reasons for disconnect are:

DL_DISC_PERMANENT_CONDITION

Indicates the connection was released due to a permanent condition.

DL_DISC_TRANSIENT_CONDITION

Indicates the connection was released due to a temporary condition.

DL_CONREJ_DEST_UNKNOWN

Indicates the connect request has an unknown destination.

DL_CONREJ_DEST_UNREACH_PERMANENT

Indicates the connection was released because the destination for the connect request

could not be reached. This is a permanent condition.

DL_CONREJ_DEST_UNREACH_TRANSIENT

Indicates the connection was released because the destination for the connect request

could not be reached. This is a temporary condition.

DL_CONREJ_QOS_UNAVAIL_PERMANENT

Indicates the requested quality of service parameters became permanently unavailable

while establishing a connection.

DL_CONREJ_QOS_UNAVAIL_TRANSIENT

Indicates the requested quality of service parameters became temporarily unavailable

while establishing a connection.

DL_DISC_UNSPECIFIED

Indicates the connection was closed due to an unspecified reason.

dl_correlation If the value is nonzero, specifies the correlation number contained in the DL_CONNECT_IND

primitive being cancelled. This value permits the DLS user to associate the message with the

proper DL_CONNECT_IND primitive. If the disconnect request indicates the release of a

connection that is already established, or is indicating the rejection of a previously sent

DL_CONNECT_REQ primitive, the value of the dl_correlation parameter is 0.

States

 Valid The message is valid in any of the following states:

v DL_DATAXFER

v DL_INCON_PENDING

v DL_OUTCON_PENDING

v DL_PROV_RESET_PENDING

v DL_USER_RESET_PENDING

New The resulting state is DL_IDLE.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_DISCONNECT_REQ Primitive for X.25

Purpose

Requests that an active data link be disconnected.

Structure

This primitive consists of one M_PROTO message block with the following structure:

Chapter 6. Data Link Provider Interface Programming Reference 89

typedef struct {

 ulong dl_primitive;

 ulong dl_reason;

 ulong dl_correlation;

} dl_disconnect_req_t;

Description

The DL_DISCONNECT_REQ primitive requests the data link service (DLS) provider to disconnect an

active data link connection or one that was in the process of activation. The DL_DISCONNECT_REQ

primitive can be sent in response to a previously issued DL_CONNECT_IND or DL_CONNECT_REQ

primitive. If an incoming DL_CONNECT_IND primitive is being refused, the correlation number associated

with that connect indication must be supplied. The message indicates the reason for the disconnect.

Parameters

 dl_primitive Specifies the DL_DISCONNECT_REQ primitive.

dl_reason Specifies one of the following reasons for the disconnect:

DL_DISC_NORMAL_CONDITION

Indicates a normal release of a data link connection.

DL_DISC_ABNORMAL_CONDITION

Indicates an abnormal release of a data link connection.

DL_CONREJ_PERMANENT_COND

Indicates a permanent condition caused the rejection of a connect request.

DL_CONREJ_TRANSIENT_COND

Indicates a transient condition caused the rejection of a connect request.

DL_DISC_UNSPECIFIED

Indicates the reason for the disconnect was not specified.

dl_correlation Specifies one of the following values:

0 Indicates either the disconnect request is releasing an established connection or

is cancelling a previously sent DL_CONNECT_REQ primitive.

>0 Specifies the correlation number that was contained in the DL_CONNECT_IND

primitive being rejected. This value permits the DLS provider to associate the

primitive with the proper DL_CONNECT_IND primitive when the provider rejects

an incoming connection.

States

 Valid The message is valid in any of the following states:

v DL_DATAXFER

v DL_INCON_PENDING

v DL_OUTCON_PENDING

v DL_PROV_RESET_PENDING

v DL_USER_RESET_PENDING

New The resulting state is one of the disconnect pending states.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user, resulting in the DL_IDLE state.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

90 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Error Codes

 DL_BADCORR Indicates the correlation number specified in this primitive did not correspond to a pending

connect indication.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error, which is specified in the DL_ERROR_ACK primitive.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_ERROR_ACK Primitive for X.25

Purpose

Informs the data link service (DLS) user that a request or response was invalid.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_error_primitive;

 ulong dl_errno;

 ulong dl_unix_errno;

} dl_ok_ack_t;

Description

The DL_ERROR_ACK primitive informs the DLS user that the previously issued request or response was

invalid. The primitive identifies the primitive in error, specifies a data link provider interface (DLPI) error

code, and if appropriate, indicates an operating system error code.

Parameters

 dl_primitive Specifies the DL_ERROR_ACK primitive.

dl_error_prim Identifies the primitive that caused the error.

dl_errno Specifies the DLPI error code associated with the failure. See the individual request or

response for the error codes that are applicable. In addition to those errors, it can have the

following values:

DL_BADPRIM

Indicates an unrecognized primitive was issued by the DLS user.

DL_NOTSUPPORTED

Indicates an unsupported primitive was issued by the DLS user.

DL_SYSERR

Reports operating system failures that prevent the processing of a given request

or response.

dl_unix_errno Specifies the operating system error code associated with the failure. This value should be

nonzero only when the dl_errno parameter is set to DL_SYSERR.

States

 Valid The message is valid in all states that have a pending acknowledgment or confirmation.

New The resulting state is the same as the one from which the acknowledged request or response was

generated.

Chapter 6. Data Link Provider Interface Programming Reference 91

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_INFO_ACK Primitive for X.25

Purpose

Returns information about the Data Link Provider Interface (DLPI) stream in response to the

DL_INFO_REQ primitive.

Structure

This primitive consists of one M_PCPROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_max_sdu;

 ulong dl_min_sdu;

 ulong dl_addr_length;

 ulong dl_mac_type;

 ulong dl_reserved;

 ulong dl_current_state;

 long dl_sap_length;

 ulong dl_service_mode;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_qos_range_length;

 ulong dl_qos_range_offset;

 ulong dl_provider_style;

 ulong dl_addr_offset;

 ulong dl_version;

 ulong dl_brdcst_addr_length;

 ulong dl_brdcst_addr_offset;

 ulong dl_growth;

} dl_info_ack_t;

Description

The DL_INFO_ACK primitive returns information about the DLPI stream to the data link service (DLS).

The DL_INFO_ACK primitive is a response to the DL_INFO_REQ primitive.

Parameters

 dl_primitive Specifies the DL_INFO_ACK primitive.

dl_max_sdu Specifies the maximum number of bytes that can be transmitted in a data

link service data unit (DLSDU). This value must be a positive integer

greater than or equal to the value of the dl_min_sdu parameter.

dl_min_sdu Specifies the minimum number of bytes that can be transmitted in a

DLSDU. The minimum value is 1.

dl_addr_length Specifies the length, in bytes, of the provider’s data link service access

point (DLSAP) address. For hierarchical subsequent binds, the length

returned is the total length. The total length is the sum of the values for the

physical address, service access point (SAP), and subsequent address

length.

dl_mac_type Specifies the type of medium supported by this DLPI stream. This

parameter can have the following value:

DL_HDLC

Indicates the medium is a bit synchronous communication line.

dl_reserved Indicates a reserved field whose value must be set to 0.

92 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

dl_current_state Specifies the state of the DLPI interface for the stream when the DLS

provider issued this acknowledgment.

dl_sap_length Indicates the current length of the SAP component of the DLSAP address.

The specified value must be an integer. The absolute value of the

dl_sap_length parameter provides the length of the SAP component within

the DLSAP address. The value can be one of the following:

>0 Indicates the SAP component precedes the PHYSICAL component

within the DLSAP address.

<0 Indicates the PHYSICAL component precedes the SAP component

within the DLSAP address.

0 Indicates that no SAP has been bound.

dl_service_mode If this DL_INFO_ACK primitive is returned before the DL_BIND_REQ

primitive is processed, specifies the service mode the DLS provider can

support. This parameter contains a bit-mask specifying the following value:

DL_CODLS

Indicates connection-oriented data link service.

Once this service mode has been bound to the stream, this parameter

returns that specific service mode.

dl_qos_length Specifies the length, in bytes, of the negotiated and selected values of the

quality of service (QOS) parameters. The returned values are those agreed

upon during negotiation.

If QOS has not yet been negotiated, default values are returned. These

values correspond to those that are applied by the DLS provider on a

connect request. For any parameter the DLS provider does not support or

cannot determine, the corresponding entry will be set to DL_UNKNOWN. If

the DLS provider does not support any QOS parameters, this length field is

set to 0.

dl_qos_offset Specifies the offset from the beginning of the M_PCPROTO block to where

the current QOS parameters begin.

dl_qos_range_length Specifies the length, in bytes, of the available range of QOS parameter

values supported by the DLS provider. This range is available to the calling

DLS user in a connect request.

For any parameter the DLS provider does not support or cannot determine,

the corresponding entry is set to DL_UNKNOWN. If the DLS provider does

not support any QOS parameters, this length field is set to 0.

dl_qos_range_offset Specifies the offset from the beginning of the M_PCPROTO block to where

the available range of QOS parameters begin.

dl_provider_style Specifies the style of DLS provider associated with the DLPI stream. This

parameter has the following value:

DL_STYLE1

Indicates the PPA is implicitly attached to the DLPI stream by

opening the appropriate major or minor device number.

dl_addr_offset Specifies the offset of the address that is bound to the associated stream. If

the DLS user issues a DL_INFO_REQ primitive before binding a DLSAP,

the value of the dl_addr_length parameter is set to 0.

dl_version Indicates the version of the supported DLPI.

dl_brdcst_addr_length Indicates the length of the physical broadcast address.

dl_brdcst_addr_offset Indicates the offset of the physical broadcast address from the beginning of

the PCPROTO block.

dl_growth Specifies a growth field for future use. The value of this parameter is 0.

Chapter 6. Data Link Provider Interface Programming Reference 93

States

 Valid The message is valid in any state in response to a DL_INFO_REQ primitive.

New The resulting state is unchanged.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_OK_ACK Primitive for X.25

Purpose

Acknowledges that a previously issued primitive was received.

Structure

This primitive consists of one M_PCPROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_correct_primitive;

} dl_ok_ack_t;

Description

The DL_OK_ACK primitive acknowledges to the DLS user that a previously issued primitive was received.

It is only initiated for the primitives listed in the ″States″ section.

Parameters

 dl_primitive Specifies the DL_OK_ACK primitive.

dl_correct_primitive Identifies the received primitive that is being acknowledged.

States

 Valid The message is valid in response to the following primitives:

v DL_CONNECT_RES

v DL_DETACH_REQ

v DL_DISCON_REQ

v DL_RESET_RES

v DL_UNBIND_REQ

For more information, see Appendix B.

New The resulting state depends on the current state.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_RESET_CON Primitive for X.25

Purpose

Informs the reset-initiating data link service (DLS) user that the reset has completed.

94 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

} dl_reset_con_t;

Description

The DL_RESET_CON primitive informs the DLS user initiating the reset that the reset has completed.

Parameters

 dl_primitive Specifies the DL_RESET_CON primitive.

States

 Valid The message is valid in the DL_USER_RESET_PENDING state.

New The resulting state is DL_DATAXFER.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_RESET_IND Primitive for X.25

Purpose

Indicates a data link service (DLS) connection has been reset.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

 ulong dl_originator;

 ulong dl_reason;

} dl_reset_ind_t;

Description

The DL_RESET_IND primitive informs the DLS user that either the remote DLS user is resynchronizing

the data link connection, or the DLS provider is reporting loss of data from which it cannot recover. The

primitive indicates the reason for the reset.

Parameters

 dl_primitive Specifies the DL_RESET_IND primitive.

dl_originator Specifies the originator of the reset. Possible values are:

DL_USER

Indicates the DLS user requested the reset.

DL_PROVIDER

Indicates the DLS provider requested the reset.

Chapter 6. Data Link Provider Interface Programming Reference 95

dl_reason Indicates one of the following reasons for the reset:

DL_RESET_FLOW_CONTROL

Indicates flow control congestion.

DL_RESET_LINK_ERROR

Indicates a data link error situation.

DL_RESET_RESYNCH

Indicates a request for resynchronization of a data link connection.

States

 Valid The message is valid in the DL_DATAXFER state.

New The resulting state is DL_PROV_RESET_PENDING.

Acknowledgments

The DLS user should issue a DL_RESET_RES primitive to continue the resynchronization procedure.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_RESET_REQ Primitive for X.25

Purpose

Requests that the data link service (DLS) provider begin resynchronizing a data link connection.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

} dl_reset_req_t;

Description

The DL_RESET_REQ primitive requests that the DLS provider begin resynchronizing a data link

connection.

Attention: Data in transit when the DL_RESET_REQ primitive is initiated may not be delivered.

Parameters

 dl_primitive Specifies the DL_RESET_REQ primitive.

States

 Valid The message is valid in the DL_DATAXFER state.

New The resulting state is DL_USER_RESET_PENDING.

96 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Acknowledgments

 Successful There is no immediate response to the reset request. However, as resynchronization

completes, the DL_RESET_CON primitive is sent to the initiating DLS user, resulting in the

DL_DATAXFER state.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error. The system error is specified in the DL_ERROR_ACK primitive.

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_RESET_RES Primitive for X.25

Purpose

Directs the data link service (DLS) provider to complete resynchronizing of the data link connection.

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

} dl_reset_res_t;

Description

The DL_RESET_RES primitive directs the DLS provider to complete resynchronizing of the data link

connection.

Parameters

 dl_primitive Specifies the DL_RESET_RES primitive.

States

 Valid The message is valid in the DL_PROV_RESET_PENDING state.

New The resulting state is DL_RESET_RES_PENDING.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user resulting in the DL_DATAXFER state.

Unsuccessful The DL_ERROR_ACK primitive is returned and the resulting state is unchanged.

Error Codes

 DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error. The system error is specified in the DL_ERROR_ACK primitive.

Chapter 6. Data Link Provider Interface Programming Reference 97

Implementation Specifics

This primitive is part of X.25 Licensed Program.

DL_UNBIND_REQ Primitive for X.25

Purpose

Requests the data link service (DLS) provider to unbind a data link service access point (DLSAP).

Structure

This primitive consists of one M_PROTO message block with the following structure:

typedef struct {

 ulong dl_primitive;

} dl_unbind_req_t;

Description

The DL_UNBIND_REQ primitive requests that the DLS provider unbind the DLSAP that had been bound

by a previous DL_BIND_REQ primitive. If one or more DLSAPs were bound to the stream with a

DL_SUBS_BIND_REQ primitive and have not been unbound with a DL_SUBS_UNBIND_REQ primitive,

the DL_UNBIND_REQ primitive unbinds all the subsequent DLSAPs for that stream along with the DLSAP

bound with the previous DL_BIND_REQ primitive.

At the successful completion of the request, the DLS user can issue a new DL_BIND_REQ primitive for a

potentially new DLSAP.

Parameters

 dl_primitive Specifies the DL_UNBIND_REQ primitive.

States

 Valid The message is valid in the DL_IDLE state.

New The resulting state is DL_UNBIND_PENDING.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user resulting in the DL_UNBOUND state.

Unsuccessful The DL_ERROR_ACK primitive is returned and the resulting state is unchanged.

Error Codes

 DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error. The error is specified in the DL_ERROR_ACK primitive.

Implementation Specifics

The DL_UNBIND_REQ primitive is part of X.25 Licensed Program.

98 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 7. X.25 and SNA Networks

You can use an X.25 connection to connect an AIX machine to a System Network Architecture (SNA)

network and access a remote X.25 machine, such as a System 390 or eServer™ zSeries® host.

The information included in this chapter is for Communications Server Version 6 for AIX. The information is

intended for system administrators who are responsible for:

v Installing Communications Server for AIX

v Configuring the system to match the network to which it is connected

v Keeping the system running

SNA administrators should be familiar with a node and operating procedures for the operating system.

Also, they should know the network to which the system is being connected and the general concepts of

SNA. In addition, individuals assuming administrative responsibilities should know how to use the System

Management Interface Tool (SMIT). Some of the tasks related to system administration are:

v Customizing Communications Server for AIX

v Starting and stopping Communications Server for AIX

v Defining network security

v Obtaining network status

Communications Server for AIX provides menu dialogs, commands, and procedures for system

administration purposes.

The following sections contain detailed information about using an X.25 connection to connect a host

machine to an SNA network and access a remote X.25 machine, such as a System 390 or eServer

zSeries host.

v “Accessing an SNA Network with X.25”

v “QLLC with Reference to X.25 Support” on page 100

v “Introducing Communications Server Version 6” on page 101

v “Customizing Communications Server for AIX” on page 105

Accessing an SNA Network with X.25

The X.25 protocol allows you to access an SNA network. You can make the connection by using the

Communications Server for the operating system licensed program product.

© Copyright IBM Corp. 2001, 2005 99

QLLC with Reference to X.25 Support

Qualified Logical Link Control (QLLC) is only for SNA support. It permits the use of additional link control

information that SNA needs, but which X.25 does not need. QLLC architecture specifies the mapping

between Synchronous Data Link Control (SDLC) frames and X.25 packets.

When SNA is used over X.25, it uses the qualifier-bit (Q-bit) in the X.25 packet header to indicate special

link control information. This information is relevant for SNA control between the two systems

communicating with each other, but it is of no concern to X.25 link control. These qualified packets help

SNA to determine who is calling whom between the two communicating systems and indicate such items

as maximum message size.

QLLC must be used in the following situations:

v When two systems are communicating with each other by means of SNA over X.25

v When a system is communicating with a host, for example, a System 390 or eServer zSeries, by means

of SNA over X.25

Some systems can control the segmenting and unsegmenting of messages themselves, rather than

leaving it to the X.25 protocol . These systems use additional control to perform this. The RS/6000 does

Figure 11. Example of a SNA Connection Using X.25. An X.25 network (PSDN) being used to provide communication

between (a) an RS/6000® or System p system running SNA services with X.25 and (b) a System 390 or eServer

zSeries host.

100 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

not support this additional control of Logical Link Control (LLC) headers, embedded in X.25 packets, to

segment messages. The system leaves it to the X.25 protocol to handle segmenting.

Note: The X.25 ports that are to be used for SNA must have COMIO emulation configured on them.

This produces ports such as x25s0 which are used by QLLC. For example, the X.25 port sx25a0

cannot be used directly by SNA or QLLC.

Introducing Communications Server Version 6

Communications Server for AIX implements two SNA components that control the operation of the local

node in the network. These components are as follows:

v Physical Unit (PU) Communications Server for AIX provides the capabilities of a PU Type 2.0 node

v Logical Unit (LU) classified as one of the following types:

 LU0 Program-to-program. This logical unit manages communication between devices associated with the retail

industry (for example, point of sale terminals). It provides primary and secondary LU support through an

application programming interface (API).

LU1 Host program to RJE workstation. This protocol manages many input/output devices such as printers, card

readers and punches, storage devices, and an operator console.

LU2 Host program to 3270 display. Used by applications related to the emulation of an IBM 3270 terminal,

allowing keyboard input, display output, and file transfer, using the SNA 3270 display data stream.

LU3 Host program to 3270 printer. Used by applications related to the emulation of an IBM 3270-attached

printer allowing for printed output, using the SNA 3270 printer data stream.

LU6.2 Advanced Program-to-Program Communications (APPC). For communications between two programs on a

peer-to-peer basis.

SNA Configuration Definitions

Communications Server for AIX Version 6 (CS/AIX) keeps all network definitions in the following flat files in

the /etc/sna directory:

sna_node.cfg

node, dlc, port, linkstations and LUs

sna_domn.cfg

CPI-C Side Information definitions

sna_tps

local TP definitions

Much of the information contained in the CS/AIX configuration files is independent of the link type being

used. Only the [define_qllc_dlc], [define_qllc_port], and [define_qllc_ls] stanzas in the sna_node.cfg file

have information that is specific to X.25. There are rules about the order in which CS/AIX definitions can

be created, and some definitions that are required before the X.25 specific definitions can be created. This

hierarchy of definitions is as follows:

[define_node]

The node definition identifies the local node’s function in the network as well as uniquely

identifying itself on the network (through the CP name). The control point is the default

INDEPENDENT LU 6.2 LU for the system. The XID node ID value identifies this node when a link

station profile specifies to use the control point’s XID instead of supplying one of its own

[define_qllc_dlc]

Defines a dlc_name (label) and the CITT support level (1980, 1984, 1988). This entity corresponds

to the AIX QLLC DLC provided by the bos.qllc.dlc fileset.

Chapter 7. X.25 and SNA Networks 101

[define_qllc_port]

Defines a port_name (label) and points to the associated dlc_name. It also defines the COMIO

interface (x25s#), with the port_number parameter and the local X.25 network address (NUA). It

also defines default values for parameters like the maximum I-field size, transmit and receive

window counts, and various polling frequencies, counts, and secondary inactivity time-out values.

[define_qllc_ls]

Defines an ls_name (label) and points to the associated port_name. It also defines the VC type

(switched or permanent) and remote X.25 network address (NUA) for an SVC or the logical

channel number (LCN) for a PVC. It also defines the local XID node ID, response to link inactivity,

station type, link activation parameters, virtual circuit type, supported session types, restart

parameters, and transmission group characteristics.

 Other CS/AIX definitions are probably required depending on the specific needs and the type of remote

SNA node. These include independent LUs and/or dependent LUs. See the ″IBM Communications Server

for AIX Administration Command Reference Version 6″ for details on these definitions.

SNA Configuration Commands

The CS/AIX definitions can be added, changed, and deleted with several different configuration methods,

including::

snaadmin

Command line

smit AIX menu system

xsnaadmin

Xwindows GUI

webadmin

HTTP browser GUI

NOF API

C language programming API

You can also edit the CS/AIX configuration files directly, but this is not recommended and requires that the

CS/AIX system be stopped with the ’sna stop’ command before the editing is done.

To display the syntax of the snaadmin command, type:

snaadmin -d -h

To display details on the parameters for each snaadmin subcommand, for example, type:

snaadmin -d -h define_qllc_ls

The SMIT menus for CS/AIX can be accessed with the fast path smit sna or by the following path: smit ->

Communications Applications and Services -> Communications Server For AIX. Only the most

common parameters are contained in the SMIT menus. All parameters can be changed with the snaadmin

command.

The xnaadmin GUI is an XWindows application. If the AIX system has a graphics console and runs an X

server (such as CDE), invoke the xsnaadmin command. If the AIX system does not have a graphics

console, but a remote X server is available, set the DISPLAY environment variable to point to that remote

X server and then invoke the xsnaadmin command. For example:

export DISPLAY=remoteaix:0

xsnaadmin

102 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

In xsnaadmin, there is no separate menu for the [define_qllc_dlc] stanza. It is automatically created when

the [define_qllc_port] stanza is defined. Only the most common parameters are exposed in the SMIT

menus. All parameters can be changed with the snaadmin command.

The webadmin GUI uses a Web server (such as the IBM HTTP Server) and an applet server (such as

WebSphere® Application Server) on the AIX machine and any Java™ capable web browser. After the Web

server and applet server have been defined and started, point the Web browser to the following address:

http://aixname/SnaAdmin/

where aixname is the TCP/IP name or address of the CS/AIX system.

The NOF API is a C language programming API for the Node Operator Facility. The API has calls for most

of the commands similar to the snaadmin.

Consult the ″IBM Communications Server for AIX Administration Guide Version 6″ for more details on

these CS/AIX configuration methods.

Communications Server for AIX Definition Types and Parameters

The following table lists some of the definition types related to X.25, some of their corresponding

parameters, and a brief description.

 Communications Server for AIX DefinitionTypes and Definition Parameters

Definition Type Definition Parameter Description

define_node node_type Type of the node. Possible values

are:

LEN_NODE

Low entry

END_NODE

APPN end node

NETWORK_NODE

APPN network node

BRANCH_NETWORK_NODE

APPN branch network node

fqcp_name Fully qualified control point (CP)

name of the node. The name is a

type-A character string, consisting of

1-8 character network name, a period

character, and a 1-8 character CP

name.

cp_alias Locally used LU alias for the control

point (CP) LU. This alias can be used

by APPC applications to access the

CP LU. This alias is a string of 1-8

characters.

node_id Node identifier used in XID exchange.

This ID is a 4-byte hexadecimal

string, consisting of a block number

(three hexadecimal digits) and a node

number (five hexadecimal digits).

Defaults to 0x07100000.

define_qllc_dlc dlc_name Name of the DLC. This name is a

character string using any locally

displayable characters.

Chapter 7. X.25 and SNA Networks 103

Communications Server for AIX DefinitionTypes and Definition Parameters

Definition Type Definition Parameter Description

support_level level X.25 support level provided by

the adapter. Possible values are:

1980 1980 standard

1984 1984 standard

1988 1988 standard

define_qllc_port port_name Name of the port to be defined. This

name is a character string using any

locally displayable characters.

dlc_name Name of the associated DLC. The

specified DLC must have already

been defined.

port_number The number of the COMIO interface

name (x25s#).

address Local X.25 address of the port used

for incoming calls. If the local station

becomes secondary after Link Station

role negotiation, this address is used

in the response to an incoming call. If

the local station is primary, or if the

port is used only for outgoing calls,

this parameter is reserved.

define_qllc_ls ls_name Name of the link station to be

defined.

port_name Name of port associated with this link

station. This name must match the

name of a defined port.

address Destination address of the remote link

station. This parameter is used only

for SVC outgoing calls (defined by the

vc_type parameter); it is ignored for

incoming calls or for PVC. The

address is a string of 1-15 characters.

The address is in X.25 (1980) format;

later address formats are not

supported.

pvc_id PVC identifier. Set this parameter to a

decimal number to identify which PVC

(from the range of PVCs defined for

your X.25 provider software) to use

for this LS. This parameter is

reserved if vc_type is set to SVC.

vc_type The virtual circuit type of the LS.

Possible values are:

SVC Switched virtual circuit

PVC Permanent virtual circuit

104 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Communications Server for AIX DefinitionTypes and Definition Parameters

Definition Type Definition Parameter Description

local_node_id Node ID sent in XIDs on this LS. This

ID is a 4-byte hexadecimal string,

consisting of a block number (three

hexadecimal digits). To use the node

ID specified in define_node, do not

specify this parameter.

loc_packet Packet size used for sending data on

switched virtual circuits from the local

station to the remote station. This

parameter is used only if the vc_type

parameter is set to SVC. The packet

size you specify is sent as an optional

facility on the outgoing call.

rem_packet Packet size used for receiving data

on switched virtual circuits from the

remote station. This parameter is

used only if the vc_type parameter is

set to SVC.

loc_wsize Window size used for sending data

from the local station to the remote

station. Specify a value in the range

1-7, or 0 (zero) to indicate using the

default window size for the network.

rem_wsize Window size used for receiving data

from the remote station. Specify a

value in the range 1-7, or 0 (zero) to

indicate using the default window size

for the network.

Customizing Communications Server for AIX

Use the following procedures to customize the Communications Server to use emulation within an X.25

network.

Each numbered step is described in the subsequent sections.

Customizing Communications Server to Use X.25

1. Install the Communications Server for AIX Licensed Program Product.

2. Install the Qualified Logical Link Control (QLLC) device driver.

3. Get host definitions.

4. Create the CS/AIX Definitions:

v Define the node ([define_node]).

v Define the X.25 SNA DLC ([define_qllc_dlc])

v Define the X.25 SNA Port ([define_qllc_port])

v Define the X.25 SNA Link Station ([define_qllc_ls])

v Define any local or remote LUs

5. Start the SNA node.

6. Start the SNA link station.

7. Display the SNA status.

Chapter 7. X.25 and SNA Networks 105

Installation of the Communications Server (SNA) Program

The licensed program product consists of the following parts:

 sna.msg.LANG.rte Contains the messages and helps in the specified language for the run-time

environment

sna.rte Contains the Communications Server (SNA) base program

The licensed program may also contain update files.

Installation of the Qualified Logical Link Control

Install the bos.dlc.qllc fileset from the AIX installation media.

The QLLC is the device driver that is used by Communications Server (SNA) to communicate through the

supported X.25 adapters. QLLC has a special file under the /dev directory named dlcqllc.

To show the predefined device information for QLLC, run the following:

lsdev -P -H -c dlc -t x25_qllc

The output from that command looks similar to the following:

class type subclass description

dlc x25_qllc dlc X.25 QLLC Data Link Control

You can use one of the following methods to install the X.25 QLLC Data Link Control:

v To use the SMIT fast path, type:

smit cmddlc_qllc_mk

v To use SMIT , type:

smit

Make the following selections from the SMIT menus:

Select Devices.

Select Communication.

Select the appropriate adapter:

– IBM ARTIC960 Adapter

– Portmaster Adapter/A

– X.25 CoProcessor/2 or Multiport/2 Adapter

– X.25 CoProcessor/1

– IBM 2-Port Mutiprotocol PCI Adapter (see Note below)

– IBM ARTIC960HX PCI Adapter

Note: If you select IBM 2-Port Multiprotocol PCI Adapter, do the following:

1. Select Manage HDLC Device Driver

2. Select Manage Additional Protocols / Emulators

3. Select Manage X.25 over HDLC Device Driver

Select Services.

Select Data Link Controls.

Select Add a QLLC Data Link Control.

v To install from the command line, type:

106 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

mkdev -c dlc -s dlc -t x25_qllc

Getting Host Definitions

To start configuring Communications Server (SNA), request some information from the Virtual

Telecommunication Access Method (VTAM®) administrator for the SNA node you want to connect to. The

following table is the minimum information required in this example:

 SNA Host Definitions

VTAM Parameter Value Profile

Network User Address 3106001984 Link station profile

IDBLK 071 3270 LU profiles

IDNUM 06000 3270 LU profiles

SSCP ID 20 3270 LU profiles

LOCADDR 2, 3 3270 LU profiles

 Network User

Address:

The X.25 address, 3106001984, uniquely identifies the X.25 line to which the System 390 or

eServer zSeries host is attached. This parameter is used in the ″Link station profile″ definition.

IDBLK The three hexadecimal digits of this parameter provide an identifier, or block number, that is

unique to each product on the network. For the RS/6000, this number is 071.

IDNUM The five hexadecimal digits of this ID number distinguish a specific piece of equipment from all

others of a similar kind on the network. The number usually is given by the VTAM

administrator. In our case, an ID number of 06000 was assigned to our RS/6000.

SSCPID The ID of the controlling System Services Control Point (SSCP) in the SNA network (decimal

value).

LOCCADR Local addresses of the 3270 displays and printers in the 3270 cluster. One decimal value is

used for each display or printer connected.

Create the CS/AIX Definitions

To create the CS/AIX definitions needed to support X.25, the examples show how to use SMIT do this.

The definitions must be done in the order shown.

Creating the CS/AIX Definitions consists of the following steps:

1. “Define the node”

2. “Define the SNA X.25 DLC” on page 108

3. “Define the SNA X.25 Port” on page 108

4. “Define the SNA X.25 Link Station” on page 109

Define the node

1. Type smit sna.

2. Select Configure SNA Resources.

3. Select Local Node Resources.

4. Select Node Definition. The following SMIT panel displays:

 Node Definition

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* Control Point alias []

 Description []

Chapter 7. X.25 and SNA Networks 107

* Control Point name []

 APPN Support END_NODE +

 Node ID [07100000] X

 NM-API Style NORMAL +

 If BACK_LEVEL,

 Queue NMVTs? YES +

Define the SNA X.25 DLC

1. Type smit sna.

2. Select Configure SNA Resources.

3. Select Local Node Resources.

4. Select Connectivity.

5. Select DLCs, Ports and Link Stations.

6. Select Add Connectivity Resource.

7. Select Add X.25 Resource.

8. Select Add X.25 DLC. The following SMIT panel displays:

 Add X.25 DLC

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* DLC name []

 Description []

 Negotiable link stations supported? YES +

 Initially active? YES +

 Adapter Number [0] #

 X.25 level 1980 +

Define the SNA X.25 Port

1. Type smit sna.

2. Select Configure SNA Resources.

3. Select Local Node Resources.

4. Select Connectivity.

5. Select DLCs, Ports and Link Stations.

6. Select Add Connectivity Resource.

7. Select Add X.25 Resource.

8. Select Add X.25 Port. The following SMIT panel displays:

 Add X.25 Port

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* Port name []

 Description []

* DLC Name [] +

* Local X.25 sub-address []

 Initially active? YES +

 Use HPR on implicit links? YES +

 Maximum BTU size allowed [265] #

 Maximum number of active links allowed [255] #

 Implicit DSPU template [] +

 Implicit links to end nodes are uplinks? NO +

108 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Define the SNA X.25 Link Station

1. Type smit sna.

2. Select Configure SNA Resources.

3. Select Local Node Resources.

4. Select Connectivity.

5. Select DLCs, Ports and Link Stations.

6. Select Add Connectivity Resource.

7. Select Add X.25 Resource.

8. Select Add X.25 Link Station. The following SMIT panel displays:

 Add X.25 Link Station

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

* Link station name []

 Description []

* Port name [] +

 Activation BY_ADMINISTRATOR +

 Independent LU Traffic:

 Remote node Control Point name []

 Remote node type LEARN_NODE +

 Dependent LU Traffic:

 Downsteam PU services supplied NONE +

 If SNA Gateway or DLUR,

 Downstream PU name []

 If DLUR,

 DLUS server name []

 Local node id [] X

 Remote node id [] X

 Virtual circuit type SVC +

 Contact Information:

 If switched virtual circuit

 Remote X.25 address []

 If permanent virtual circuit,

 Channel number [1] #

 Advanced:

 Maximum BTU size to be sent [265] #

 Host type SNA +

 Request CP-CP sessions? YES +

 Remote node is a network node server? NO +

 Use HPR? NO +

 TG number [0] #

 Solicit SSCP sessions? YES +

 Solicit SSCP sessions? YES +

 Link station role USE_PORT_DEFAULTS +

 Branch link type NONE +

 Reactivate link station after failure YES +

 Window size [7] #

 Frame retransmit limit [2] #

 Frame retransmit timer [8] #

 Packet size DEFAULT +

 Call User Data [] X

[BOTTOM]

Additional CS/AIX definitions may be required, depending on the specific environment. Such definitions

include Local LU6.2 LUs, Partner LU6.2 LUs, Local Dependent LUs. See the ″IBM Communications

Server for AIX Administration Guide Version 6″ for more details.

Chapter 7. X.25 and SNA Networks 109

Defining the LU Profiles for 3270 Communication

Start SNA Node

Before any application can use Communications Server, the SNA node must be active.

To start the SNA node, log in as the root user and type the following command:

snaadmin init_node

Start SNA Link Station

A link station can be defined to start automatically when an application requires it, or it can be started

manually. Starting the link station begins the physical connection with the remote machine, so a call

request packet is sent from the X.25 adapter.

To start a link station, log in as the root user and type the following:

snaadmin start_ls, ls_name=X

where X is the link station name.

Starting the link station automatically starts the associated SNA DLC and SNA Port if they are not already

active.

Display Current® Status of SNA Node

To obtain status information about CS/AIX, log in as the root user and enter the following commands:

snaadmin status_node

snaadmin status_all

snaadmin query_ls

110 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 8. Packet Assembler/Disassembler (PAD)

X.25 defines the relationship between a Date Terminal Equipment (DTE) node and a network’s DCE. The

CCITT also defines the attachment of asynchronous start-stop devices to the PSDN in recommendations

X.3, X.28 and X.29. The asynchronous device is typically a low-cost terminal such as an IBM 3151 or

3152. These terminals lack the intelligence of a full-function node on the network and rely on a device

called a packet assembler/disassembler (PAD). A PAD is a protocol converter interfacing asynchronous

terminals with an X.25 network or an X.25 network with applications written for asynchronous terminals.

Low-cost asynchronous terminals are connected by the public-switched telephone network to a local public

outgoing PAD, often simply referred to as a PAD. The PAD takes the ASCII data stream coming from the

terminal, buffers it, converts it into a properly formatted X.25 packet, then sends it over the X.25 PSDN

addressed to the desired DTE. Data from the terminal that has been divided into packets and shipped by a

PAD to the DTE node must be received by some incoming PAD software (also referred to as an X.29

interface). This incoming PAD unpacks the data and passes it to the application (typically, the TTY driver)

for processing as if it were coming from directly attached asynchronous terminals. The other way, data

coming from the application is first put into packets by the X.29 PAD then transferred over the network.

When the PAD receives a packet addressed to the terminal, it reverses the process. This presents the

data in a form that the terminal can accept.

The computer industry has expanded the definition of a packet assembler/disassembler (PAD) to include

protocol conversion between X.25 and various teleprocessing protocols, for example, SDLC PADs,

BSC-3270 PADs, and so on.

Basic PAD functions include:

v Assembly of characters into packets (asynchronous-to-X.25).

v Disassembly of the packet’s user data field (X.25-to-asynchronous).

v Handling of virtual call setup and clearing.

v Handling of virtual call reset and interrupt procedures.

v Generation of service signals.

v Mechanism for forwarding packets when the proper conditions exist.

v Mechanism for transmitting data characters (including start, stop, and parity elements) as appropriate to

the start-stop terminal.

v Mechanism for handling a break signal from the start-stop terminal.

v Editing of PAD command signals.

v Mechanism for setting and reading the current value of PAD parameters.

Optional functions include:

v Mechanism for selection of a standard profile.

v Automatic detection of data rate, code, parity, and optional characteristics.

v Mechanism for a remote DTE to request a virtual call between the start-stop mode DTE and another

DTE.

X.3, X.28 and X.29 Standards

 X.3 Defines a set of parameters that the PAD uses to identify and control the attached terminals. A

complete set of parameters is called a profile, and each DTE-C (Data Terminal

Equipment-Character) has its own profile selected or set for use with the PAD.

© Copyright IBM Corp. 2001, 2005 111

X.28 Defines the control procedures used to establish the physical connection to the PAD, the

commands the user sends to the PAD, and the service signals sent by the PAD to the terminal

user. Simply, X.28 defines how a terminal user can control the X.3 PAD parameters. It specifies

the command and response formats, and the status indicators.

X.29 Defines the way in which a PAD and a remote DTE (or another PAD) exchange control

messages on an X.25 virtual circuit. The messages are formatted as special X.25 packets

called qualified data packets (Q-bit). For example, the packet mode DTE may use an X.29

message to change one of the internal X.3 parameters in the PAD. X.29 messages will only be

effective when an X.25 call is established. The user at the terminal is not explicitly aware of the

X.29 communication between the PAD and the remote DTE. The user at the terminal logs into

the host DTE in the same way as the user of an ASCII terminal locally attached to the same

host. The following diagram illustrates the interaction between X3, X28, and X29.

Public PAD Provided by the Post Telephone and Telegraph (PTT) administration or network provider that

you can access by a local call on the public switched network. Once your terminal is connected

to the public PAD, you enter the NUA of your host DTE and the PAD establishes the

communications.

Figure 12. How X.3, X.28, and X.29 Interact

112 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Private PAD A hardware device with several asynchronous connectors and an X.25 attachment. This

commercially available device can be connected to a public or private X.25 PSDN and has the

same capabilities as a public PAD.

Integrated PAD

Software

A software product emulating a PAD and requires a computer supporting an X.25 connection. It

generally provides an asynchronous terminal emulator, but can use existing ones such as ATE

or CU. With this product, the xspad function performs the asynchronous terminal-emulator role.

PAD Setup

To use the PAD software on the system, configure it through SMIT. See Managing the Triple-X PAD for

more details. Once the PAD software is enabled on the system, it can be used as a terminal PAD for

supporting local terminal users, or as a host PAD to work with remote terminal PADs. Both modes of

operation can be run at the same time.

For use as a terminal PAD, each terminal or terminal emulator that requires a PAD session executes the

xspad command. The xspad command connects the terminal to an application that provides the standard

X.28 interface. See Using the PAD for more details on the use of terminal PAD sessions.

When the system is to be used as a host PAD, no user interaction takes place on the system itself. Once

the system is configured to enable the PAD, users can connect from terminals connected to remote

terminal PADs. The system running the host PAD allows login and application execution similar to any

other type of remote ASCII terminal.

Note: PADs support ASCII terminals using 7-bit character set defined in International Alphabet 5

(IA5). PAD supports 8-bit data. The characteristics of the terminal must agree with its configuration

data on the system unit it is attached to if using xspad on an ASCII terminal. This is also true for any

attached TTY.

Using the PAD

This section discusses starting an X.28/X.3 terminal PAD session. For information on how to start X.29 on

the system, refer to Managing the Triple-X PAD.

To start a terminal PAD session, run the xspad command. On systems where the PAD is configured this

starts a terminal PAD session and provides the PAD prompt (*, the asterisk character). Enter the PAD

commands at the PAD prompt.

To start a PAD session:

1. Ensure the PAD is configured on the system.

2. Run xspad -l sx25a# where # is the port number.

3. Issue the call to the remote X.25 host at the PAD prompt.

4. Log on to the X.25 host and run the desired application.

For more information, see the xspad Command in Appendix A.

Commands

Once connected to an X.3/X.28 terminal PAD session, various commands can be issued to the PAD.

Some of these commands can only be issued after a connection has been established with the remote

X.25 host. Based on the PAD’s profile, the commands understood by the PAD are either based on the

CCITT standard or can be in a less cryptic style (advanced mode).

The start/stop DTE user may interact with the PAD using PAD commands. These commands provide:

Chapter 8. Packet Assembler/Disassembler (PAD) 113

v Establishment and clearing of virtual calls.

v Selection of PAD profiles.

v Display of the PAD parameter values.

v Changing the PAD parameter values.

v Sending an interrupt or a reset packet.

To enter a PAD command at the terminal, the user enters the command at the PAD prompt. As long as

there is not a remote host connection, the current prompt is the PAD prompt (*, the asterisk character). To

get to the prompt when connected to a remote session, press Ctrl-P.

At the prompt, the following commands can be issued:

 break Sends a break character to the PAD.

call Establishes a connection to the remote X.25 host: call 34511884, where 34511884 is the

remote NUA.

clear Clears the connection with the remote X.25 host. The clear is sent from the PAD

immediately. See the iclear command.

help Requests help text. See Getting Help for more details.

iclear Sends an ″invitation to clear″ to the remote X.25 DTE. This allows the remote host to

send any pending data before clearing the call.

interrupt Sends an interrupt packet. The packet contents cannot be user-specified.

language Sets the language for the PAD help text to English, French, or Spanish. For example,

language french.

nui This command is not implemented in the PAD.

par Reads the PAD parameters.

par? Displays all parameters.

par? 2, 3 Displays parameters 2 and 3.

In advanced mode, read or parameter can be used instead of par.

profile Displays which profiles are available, or allows you to change the profile. Enter PROFILE

followed by the profile name, such as PROFILE PROFILE_51 to make changes.

read See par.

rpar/rread Reads the PAD parameters as par? does for the local PAD in implementations where a

remote PAD DTE is supported.

rset/resetread Writes the PAD parameters as set? does for the local PAD in implementations where a

remote PAD DTE is supported.

set Sets one or more of the PAD parameters. For example:

set 2:1, 14:2

or in advanced mode

set echo:1, lfpad:2

Note: The default profile does not allow the parameters to be changed locally as

they are being controlled remotely through the TTY subsystem and the stty

command. xspad does not require the use of the set command or any of the

remote PAD commands (rread, rpar, rset, and rsetread).

status Indicates whether a connection to the remote X.25 host is active. Returns ENGAGED if it is

active or FREE if no connection is established.

Establishing Calls

To establish a connection with a remote X.25 host, a call must be made to it. The call must be given the

remote DTE’s address and any call user data or facilities being requested.

 X.28 Facility Codes

Facility Code Function Requested Value (text that follows the facility code)

C Charging Information

114 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

E Called Address Extension Extended address

F Fast select with no restriction

G Closed User Group CUG number

N Network User Identification NUI string

Q Fast select with restrictions on response

R Reverse charging

D Call User Data ASCII CUD string to be added to the standard

PAD call CUD. (Must be the last part of the

command string.)

- Facility end marker End of facilities marker (allow CUD).

Example Calls

The following are typical calls that might be made from the PAD command prompt:

 call 3536647 Establish a call to NUA 3536647

call 3536647 F,R- Request fast select and reverse charge

call 3536647 R- D user1 Have ASCII based CUD ″user1″

call 3536647,9093388 Make the call with the local (calling) address of 9093388 included

Connected Sessions

After a call has been placed to the remote X.25 host, it can be rejected by the network, or the remote

host, or accepted by the remote host. If rejected, a clear packet is received and results in a message

similar to those described in Ending Calls . Once connected, the terminal is under the control of the TTY

system of the remote host. Typically a login screen is presented. After the user has logged in, it can be

used the same as other attached TTYs.

Once a session is established, the TERM type and stty settings should be verified. The TERM type should

be set to the type of terminal you are using, for example, TERM=aixterm. The stty settings can be verified

with stty -a. The row and column attributes need to be updated if using X-Windows and the size of the

window is not equal to 80x25 (default setting). The echo, echoe, and echok attributes might also need to

be turned On/Off.

To change an stty attribute, enter one of the following commands:

stty echo (turns echo on)

stty -echo (turns echo off)

stty 50 rows (updates the row setting to 50)

Ending Calls

Once a connection is established, there are a number of ways in which it can be terminated. Termination

of the login shell used to log in to the remote X.25 host closes the connection and results in a message

such as the following:

CLEAR DTE 0 241 - Call cleared, by remote device, data may be lost

As the session was terminated above the PAD layer, the PAD code did not expect it and so could not tell if

it was user-initiated or not. If it was user-initiated, then no data was lost.

Chapter 8. Packet Assembler/Disassembler (PAD) 115

An alternative is to press Ctrl-P to get to the PAD command prompt, and then enter iclear. The iclear

command causes the local terminal PAD to send a request to the host PAD to clear the connection. The

host PAD software then issues the clear, but without regard for any applications that might be running on

the remote host under this login. As the remote PAD software issues the command to clear the

connection, the diagnostic software is likely to reflect this as being an expected clear.

CLEAR PAD 0 0 - Call cleared, remote request

The additional text is given when advanced mode is enabled through the profile; otherwise the base

clearing reason is given.

Exiting xspad

From the PAD command prompt that is reached by ending the call as described above, enter ^k (Ctrl-K) to

terminate the xspad program. The xspad application must not have a call established when attempting to

terminate xspad.

Automatic Termination and Identification for AIXlink/X.25 1.1.3 (and

later)

The PAD application is automatically exited upon termination of the X.25 Host connection. This optional

feature is enabled using the -x flag with the xspad command (for example, xspad -x -l sx25a0).

The PAD default is to enter ^k (Ctrl-K) before exiting. If an X.25 Host connection terminates and the user

does not exit, the user can initiate another X.25 connection using the same X.28 STREAMs connection.

Note: This feature applies only to xspad (the user space PAD application).

Getting Help

Help is provided through the help command. To list the help topics, enter help list. Each of the PAD

commands has help text associated with it (for example, help call). Also each PAD parameter and profile

has help text. The language in which the text is displayed can be changed using the language command.

Clearing Codes

When the call is cleared, the information passed in the X.25 clear packet is displayed. When advanced

mode has been selected through use of the appropriate profile, a more detailed text explanation of the

clear is given. Otherwise, the base cause is displayed as follows:

 OCC Remote DTE busy

NC Network congestion

INV Invalid facility

NA Access barred

ERR Local procedure error

RPE Remote procedure error

NP Number not assigned

DER DTE out of order

PAD DTE clearing

DTE DTE device clearing

RNA Reverse charging rejected

ID Incompatible destination

SA Ship cannot be contacted

FNA Fast select rejected

ROO Cannot route as requested

116 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

PAD Parameters

The operation of the PAD depends on the value of a set of internal variables called PAD parameters. An

independent set of parameters exists for each start/stop mode DTE. The current value of each PAD

parameter defines the operational characteristic of the related function.

Initially, the values of the parameters are chosen by selecting one of the available profiles. Subsequent

changes for a given terminal session are done under control of the session’s TTY subsystem on the host

PAD. When the application being run requires a change to the terminal characteristics, it modifies the

session’s stty structure which in turn causes the X.29 protocol to issue a change to the session’s X.3

parameters held in the terminal PAD.

The following is a list of the X.3 PAD parameters:

 par 1

PAD Recall This parameter specifies the character that you can type at the terminal to interrupt data flow with

the X.25 host (in order to enter commands addressed to the PAD). Possible values are:

0 Data flow can not be interrupted. The user can not enter PAD commands.

1 The escape character sequence is Ctrl-P.

32-126 Value of the PAD recall character in decimal.

Note: If you set this parameter to 0, you will not be able to change the PAD parameters

any further.

par 2

echo This parameter specifies whether the characters received from the terminal are to be transmitted

back to the terminal as well as being interpreted by the PAD. Possible values are:

0 No echo by the PAD.

1 Local echo by the PAD.

Note: When working in line mode, this parameter should be set to 1 to get an echo from

the PAD, and the echo provided by the host should be disabled with the command stty

-echo.

par 3

forward This parameter specifies the conditions under which a string of input characters from a terminal

is converted to a data packet and forwarded to the X.25 Network. Possible values are:

0 Data forwarding not controlled by a character.

1 Data forwarding on alphanumeric characters.

2 Data forwarding on receipt of carriage return (ENTER).

4 Data forwarding on receipt of ESC, BEL, ENQ, or ACK.

8 Data forwarding on receipt of DEL, CAN, or DC2.

16 Data forwarding on receipt of EXT or EOT.

32 Data forwarding on receipt of HT, LF, VT, or FF.

64 Data forwarding on receipt of any character from column 0 and 1 of the ASCII code

page.

If this parameter is set to 0, every character typed at the terminal is sent by the PAD in an

individual packet. For the other values, the PAD acts as a buffer and sends a packet only when

the specified character is entered. If you are working on your terminal in line mode, entering

UNIX commands for example, you may set this parameter to 18 and packets will be sent to the

host only when you press Enter, Ctrl-C, or Ctrl-D.

par 4

Chapter 8. Packet Assembler/Disassembler (PAD) 117

idle This parameter specifies a timeout period for the reception of characters from the terminal. After

this timeout expires, characters already received by the PAD are formatted into a data packet

and sent to the X.25 network. Possible values are:

0 No timeout period is used.

1-255 Timeout period expressed in units of 0.05 seconds.

This parameter, when set to a non-zero value, improves the data transfer rate from the terminal

to the host. In this case, the time delay between the PAD receiving two consecutive characters is

lower than the timeout period, so the PAD accumulates and sends data only when it has a full

packet, or when the file transfer application has stopped sending characters. When using line

mode, the value of this parameter should be 0.

par 5 Controls the ancillary device. Possible values are:

0 No use of X-ON and X-OFF.

1 Use of X-ON and X-OFF during data transfer.

2 Use of X-ON and X-OFF during commands and data transfer.

par 6

Signals Controls the service signals and dialog mode for the terminal. Possible values are:

0 No service signals are sent to the terminal.

1 Service signals other than prompt PAD service are transmitted in standard format.

4 Service signal prompt PAD service is transmitted in standard format.

8-15 PAD service signals are transmitted in a network-dependent format.

16 English extended dialog mode.

32 French extended dialog mode.

48 Spanish extended dialog mode.

par 7

Break Specifies the action of the PAD on receipt of a break signal from the terminal. Possible values

are:

0 Not applicable.

1 Interrupt.

2 Reset.

4 Send to DTE an indication of break PAD message.

8 Escape from data transfer state.

16 Discard output to terminal.

par 8

Discard Selects whether the data output should be sent to the terminal or discarded. Possible values are:

0 Normal data delivery.

1 Discard output to terminal.

par 9

CR Padding Specifies the number of padding characters sent to the terminal after a CR character (Enter).

Range 0 to 255.

par 10 - Line

Folding Specifies the number of characters sent to the terminal without inserting an appropriate

formatting character. Possible values are:

0 No line folding.

1-255 Number of characters.

par 11

118 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Speed Specifies the line speed of the terminal attached to the PAD. This parameter can only be read,

not changed.

Line Speed Parameter Values

Speed (bps) value Speed (bps) value

 50 10 1800 7

 75 5 75/1200 11

 100 9 2400 12

 110 0 4800 13

 134.5 1 9600 14

 150 6 19200 15

 200 8 48000 16

 300 2 56000 17

 600 4 64000 18

 1200 3

par 12

Terminal Flow

Control

Controls the flow between the PAD and the terminal. Possible values are:

0 No use of X-ON and X-OFF.

1 Use of X-ON and X-OFF.

par 13

LF/CR Specifies whether a Line Feed character is inserted after a Carriage Return. Possible values are:

0 No linefeed insertion.

1 Send linefeed to the terminal after sending a carriage return.

2 Add a linefeed after each carriage return to the data being sent from the terminal.

4 Echo a linefeed after each carriage return

par 14

LF Padding Specifies the number of padding characters sent to the terminal after an LF character. Range 0

to 255.

par 15

Editing Controls use of local editing to the terminal and PAD. The PAD allows the terminal to edit the

PAD command signals sent to the PAD before they are processed. Parameters 15 through 19

control this function. Possible values are:

0 No use of editing in data transfer mode.

1 No linefeed insertion.

par 16

Char Delete Specifies the character from International Alphabet 5 (IA5) that is to request character deletion for

the PAD editing buffer.

0 - 127 Valid range. 127 is character 7/15 (DEL).

par 17

Line Delete Specifies the character from IA5 that causes the PAD to delete the contents of its edit buffer.

0 - 127 Valid range. 24 is character 1/8 (CAN).

par 18

Line Display Specifies the character from IA5 that causes the PAD to display the contents of its edit buffer.

0 - 127 Valid range. 18 is character 1/2 (DC2).

par 19

Editing Signals Controls the editing of PAD service signals. Possible values are:

0 No editing allowed.

1 Editing allowed for printing terminals.

2 Editing allowed for display terminals.

8, 32-126

Character from IA5.

Chapter 8. Packet Assembler/Disassembler (PAD) 119

par 20

mask Selects what characters are echoed when local echo is enabled (parameter 2). Possible values

are:

0 All characters are echoed.

1 CR character is not echoed.

2 LF character is not echoed.

4 VT, HT, FF characters are not echoed.

8 BEL and BS characters are not echoed.

16 ESC and ENQ characters are not echoed.

32 ACK, NAK, STX, SOH, EOT, ETB, and ETX characters are not echoed.

64 Characters designated by PAR 16-18 are not echoed.

128 No echo of characters in columns 0 and 1, not mentioned above, or the DEL character.

Note: If parameters 5, 12, or 22 is set to a non-zero value, the characters XON and XOFF

are NOT echoed.

par 21

Parity Specifies the parity used when sending data to and from the terminal. Possible values are:

0 No parity generated or checked.

1 Parity checking.

2 Parity generating.

par 22

Page Wait Controls screen scrolling if page wait is to be used. Possible values are:

0 Page wait disabled.

1-255 Number of line feed characters before page wait.

PAD Profiles

Within the terminal PAD, there are four available profiles. Which profile is loaded for a particular session is

controlled by the PROF command. The command to list what profiles are available is help prof. By default,

the PROFILE_51 profile is used.

The following profiles are implemented:

 50 Standard profile with minimum textual information.

51 Standard profile with extended textual information.

90 CCITT simple profile.

91 CCITT transparent profile.

The settings of the X.3 parameters for each of the profiles are:

 X.3 Parameter Settings for Each Profile

 50 51 90 91

1 1 1 1 0

2 1 1 1 0

3 2 2 126 0

4 0 0 0 20

120 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

5 0 0 1 0

6 5 16 1 0

7 21 21 2 2

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 14 14 14 14

12 1 1 1 0

13 5 5 0 0

14 0 0 0 0

15 1 1 0 0

16 8 8 127 127

17 3 3 24 24

18 18 18 18 18

19 2 2 1 1

20 64 64 0 0

21 0 0 0 0

22 0 0 0 0

PAD for AIXlink/X.25 Running on AIX Version 4 (and later)

The configuration files for the AIXlink/X.25 product are:

 x28parm Defines the profiles and its values for the PAD X.28 module, along with standard values of 50, 51,

90, and 91. Three new values given are: 10 (default), 20 (titn_test), and 30 (print).

x29parm Defines the profiles and its values for the PAD X.29 module. The values for the five preset profiles

given are:

v 90 (CCITT Standard Simple Profile)

v 91 (CCITT Standard Transparent Profile)

v 10 (Default Profile)

v 20 (AIX/TITN Extended Compatibility Profile)

v 30 (Remote Printing Profile).

x29tty Defines the tty profile and its attributes for the PAD X.29. The default is ″cooked″ mode.

x28user Selects the values for an X.28 user. The default uses the default profile and permits all of the

calling addresses.

x29user Selects the values for an X.29 user. The default uses the ″cooked″ tty mode and the default profile.

x29access Selects key features based on the address. The default uses the ″cooked″ tty mode and the default

profile.

qdata Defines the values needed for locally initiated PAD printing.

Default Initial Application

Allows a host user connected through X.25 and X.29 to select the initial application. The criteria that must

be met are configurable and based on the X.25 calling address. Only a highly privileged user (such as a

network administrator) can configure the relevant data that resides on the host.

Three kinds of initial applications can be started upon acceptance of an incoming X.25 call packet using

the X.29 protocol ID:

Chapter 8. Packet Assembler/Disassembler (PAD) 121

logged user Login is done in the normal way and conventional password validation and security

processing are performed. There can be multiple ″logged users″ per X.25 calling address.

This kind of initial application processing is started based on the following:

v The X.25 calling address is not in the x29access configuration file.

v The X.25 calling address is configured, but additional X.29 access criteria (specified in

the x29access file) are not satisfied.

A ″logged user″ that supplies a login has a non-default initial TTY-X.29/X.3 profile set

under the following two conditions:

v The user has an X.25 address in the x29access file, and the data for that address

references a valid TTY-X.29/X.3 profile set.

v The user’s login is specified in the x29user configuration file, and the data for that

login references a valid TTY-X.29/X.3 profile set.

It is possible for multiple references to the same TTY-X.29/X.3 profile set. For more

information, see Selectable Profile .

trusted user Login is done so that it circumvents login ID and password validation. There is only one

″trusted user″ per X.25 calling address.

This initial application processing is started when the X.25 calling address is configured

as ″trusted″ in the x29access configuration file.

Note: The x29d daemon must be restarted so that the x29access file will be re-read.

The system requires that /etc/security/user and /etc/security/login.cfg files be

configured for trusted users. This can also be done through the System Management

Interface Tool (SMIT).

A trusted user has a non-default TTY-X.29/X.3 profile set if the x29access data for the

X.25 calling address is configured to reference a valid profile set. For more information,

see Selectable Profile .

Note: Since there is only one trusted user per X.25 calling address and no login is

supplied for the login process, selection of a profile set is based on the X.25 calling

address. This does not prevent a trusted user from selecting an initial profile set by other

means.

122 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

selective user Starts an application preconfigured in the x29access configuration file. The application is

responsible for security arrangements.

Additional criteria linked to the X.25 calling address may need to be satisfied before the

initial application is started and the ″selective user″ actually exists. The criteria are

specified in the x29access file on a per-X.25 calling address basis. The X.25 calling

address must match one in the x29access file.

For each X.25 calling address in the x29access file, there is an access_class field that

specifies one of the following values:

v REMOTE

The X.25 calling address is the only criteria, and it must match an address in the

x29access file. The format of the X.25 address may include variable-match syntax

(wildcard characters).

v USER_DATA

A subset of the X.25 call packet user data must match user data in the x29access file

for the corresponding X.25 calling address. The format of the user data also may

include wildcard characters.

v SUB_ADDRESS

Must match an X.25 called address specified in the x29access file.

Note: This criteria is evaluated only if the REMOTE value is satisfied.

v USER_SUB_ADDRESS

All criteria, including the REMOTE, USER_DATA, and SUB_ADDRESS values, must

be satisfied.

v LOGGED

Applies to ″logged″ rather than ″selective″ users. The initial application started for the

X.25 calling address is login. For more information, see logged user .

v TRUSTED

Applies to ″trusted″ rather than ″selective″ users. The initial application started for the

X.25 calling address is login. The format and characteristics of this value are the same

as that for the REMOTE value.

A ″selective user″ must satisfy the criteria described for the REMOTE, USER_DATA,

SUB_ADDRESS, or USER_SUB_ADDRESS values. If the x29access data for the

X.25 calling address is configured to reference a valid profile set, a ″selective user″ will

have a non-default TTY-X.29/X.3 profile set. For more information, see Selectable

Profile .

Notes:

1. A TTY-X.29/X.3 profile set has the following two components:

v A TTY characteristic profile defined in the x29tty file.

v An X.29/X.3 parameter profile defined in the x29parm file

2. Ambiguity is possible in X.25 calling addresses that contain variable-matching (wildcard) characters.

The algorithm for searching the x29access file defines a match as the first address in the file that

matches the one from a call packet. Consequently, if there are similar addresses in the x29access file,

the order in which they must be arranged is from those with the most rigid matching conditions to

those with the least rigid conditions.

Selectable Profile

The selectable profile mechanism allows for the selection of non-default profiles.

For outgoing PAD application connections (X.28/X.25), new functionality allows non-default X.28/X.3

parameter profiles to be selected by a name or a CCITT-defined profile number.

Chapter 8. Packet Assembler/Disassembler (PAD) 123

For incoming X.29/X.25 connections, both non-default X.29/X.3 profiles and TTY parameter profiles

(TTY-X.29/X.3 profile sets) can be selected. TTY-X.29/X.3 profile sets are selected based on data

extracted from the X.25 call packet and a variety of configuration data located in the x29access and

x29user files on the host.

Incoming X.29/X.25 Connection Profile Selection

The method for selecting non-default TTY-X.29/X.3 profile sets is quite different for ″logged users″ versus

other kinds of users (for example, ″trusted″ and ″selective″ users).

Depending on how the data in the x29access and x29user files is configured and the user’s login, there

are several ways a ″logged user″ can select non-default TTY-X.29/X.3 profile sets. In all cases, a

member-type profile must be referenced in order to select a non-default profile set. The x29parm file

contains members of the X.29/X.3 parameter-type, and the x29tty file contains members of the TTY

characteristic-type. A profile set is composed of an X.29/X.3 parameter profile and a TTY characteristic

profile.

Non-default TTY/X.3 profile sets are selected based on the following:

The profile set is referenced only in the x29access file.: This is only possible if the X.25 calling

address is in x29access. If so, the tty_profile field or the x3_profile field of the corresponding data set

reference the profile set, and the referenced members are in the x29tty and x29parm files.

The tty_profile field can contain the name or the alias of a TTY characteristic profile in the X.29/TTY

profile file. If tty_profile is not set, the default TTY characteristic profile is selected.

The x3_profile field may contain the name or number designating an X.29/X.3 parameter profile in the

X.29/X.3 profile file. If x3_profile is not set, the default X.29/X.3 parameter profile is selected.

The profile set is referenced only in the x29user file.: This is only possible if the login supplied is in

the x29user file. If so, the tty_profile or x3_profile fields for the corresponding data set reference the

profile set, and the referenced members are in the x29tty and x29parm files.

The profile set is referenced in both the x29access file and the x29user file.: This is only possible if

the X.25 calling address is in the x29access file, and the login supplied is in the x29user file. For

example, the login must be supplied by the ″logged user″ rather than extracted from the x29access file. If

so, the tty_profile or x3_profile fields for the corresponding data sets reference the same profile set,

and the referenced members are in the x29tty and x29parm files.

The multiple references to the same TTY-X.29/X.3 profile set must be resolved. Both the x29access and

x29user files contain tty_priority and x3_priority fields for exactly this purpose. The priority fields can

be initialized to -1, which means they are not to be used. The basic algorithm is as follows:

If both the x29access and x29user priority are not -1

 If the x29access priority < x29user priority,

 Use the reference in x29access.

 Else

 Use the reference in x29user.

Else

If the x29access priority is not -1,

 Use the reference in x29access.

Else

Use the reference in x29user.

This means if no priority is specified

the reference in x29user automatically has priority.

Notice that the lower the numerical value the higher the priority. Also, the algorithm is executed

independently for TTY characteristic and X.29/X.3 parameter profiles. Finally, once the references are

resolved, the tty_profile and x3_profile fields function the same as specified above.

124 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Profile sets have no explicit references.: In this case, there is no X.25 calling address in the

x29access file and no login in the x29user file. Consequently, there is no choice but to use the default

TTY-X.29/X.3 profile set.

The ″trusted″ and ″selective″ users can select the TTY-X.29/X.3 profile sets when the tty_profile field or

x3_profile field in the x29access file reference a profile set member in the x29tty or x29parm files,

respectively.

If the tty_profile field or the x3_profile field in the x29access file references a profile set member in the

x29tty file or the x29parm file, the non-default profile members are selected.

The tty_profile and x3_profile fields used in the x29access and x29user files have the following

syntax:

tty_profile = [NAME]

Where NAME can be the name or alias for a profile in the x29tty file, and it must be a printable ASCII string.

If NAME is not specified, there is no profile reference.

x3_profile = [NAME | NUMBER]

Where NAME is the name of a profile in the x29parm file and must be a printable ASCII string not beginning

with a : (colon) or # (number sign). NUMBER is the numerical identifier of a profile in the x29parm file and

consists of the # (number sign) character followed by a string of ASCII characters 0 through 9. If neither is

specified, there is no profile reference.

Outgoing X.28/X.25 Profile Selection

The PAD application can select a non-default initial X.28/X.3 profile in three ways:

v Using xspad -p Profile, where Profile is a selected name or a defined numeric profile number.

v Preconfiguring a non-default profile in the x28user file. It is prerequisite that the file contains a data set

for the user’s login. Then, the x3_profile field can be used to specify a profile.

v Using the standard profile command. See the xspad command in Appendix A for more information.

The available profiles are all stored in the x28parm file.

Distribution of Profile Data

All of the X.28/X.3 parameter profiles are stored in the x28parm file. However, the xspad command does

not directly extract profiles from the x28parm file.

Before any profile selection occurs, the X.28 STREAMs module is pushed on X.25. At that time, all the

profiles in the x28parm file are downloaded to the X.28 STREAMs module. This is necessary because a

new non-initial profile can be selected at a later stage of xspad execution.

Configurable Profile

The x28parm file contains all the X.3 parameter profiles and is used to configure the characteristics of

outgoing X.28/X.25 PAD sessions.

The x29parm file, which contains all the X.3 parameter profiles, and the x29tty file, which contains all the

TTY characteristic profiles, are used to configure the characteristics of incoming X.29/X.25 sessions.

Note: The x29d daemon must be restarted so these files will be read in the outgoing case.

Both the x28parm and the x29parm files have the same format. Each profile contains all 22 of the

standard CCITT X.3 parameters, descriptive information, and optionally some network-specific parameters.

Each profile has a unique name and numerical identifier.

Chapter 8. Packet Assembler/Disassembler (PAD) 125

All the fields must be present even if they are not used. The fields can be in any order, although it is

recommended that they be kept in increasing X.3 numerical order. An exception is the x3_11_dte_speed

parameter, because it is a read-only parameter and ignored.

A syntax enhancement allows the profiles to be referenced both by name and standardized CCITT

numeric profile identifiers:

NUMBER:NAME

Where NUMBER is the numerical profile identifier represented as a contiguous string of ASCII characters 0

through 9, and NAME is a descriptive profile identifier and a string of printable ASCII characters not

beginning with a : (colon) or # (number sign) character:

90:ccitt_default_profile

The following new fields have been added:

v x3_english_text

v x3_french_text

v x3_spanish_text

v x3_23_national_parm_1

v x3_24_national_parm_2

v x3_25_national_parm_3.

The x29tty file contains TTY characteristic profiles. Each profile has a unique name and possibly an alias

name. The field names are similar to those used in the normal TTY structures, and the semantics are the

same. It is easy to specify TTY characteristics, because almost all TTY characteristics can be enabled or

disabled by setting the corresponding field to ON or OFF. All the fields must be present, but the order is

optional.

To allow aliases, use the following syntax:

NAME:[ALIAS]

Where NAME and ALIAS are descriptive profile names consisting of printable ASCII characters beginning

with either the : (colon) or # (number sign) character.

cooked_profile:default

Some fields that represent a character have the following syntax:

FIELD_NAME = CHAR_VALUE

Where FIELD_NAME is a printable ASCII string without white space, and CHAR_VALUE is either a single ASCII

character or an ASCII character prefixed with the ″^″ character:

erase = @

kill = ^H

Note: The TTY characteristics specified by the tab0_tabs, eof_vmin_min, and eol_vtime_time fields are

context-dependent.

Security Features

Security for outgoing X.28/X.25 PAD sessions is on a per-user basis and is implemented by restricting the

X.25 addresses to which a particular user can connect.

Security for incoming X.29/X.25 sessions depends on the user’s X.29 access category:

 logged user Uses the conventional login security, and the functionality is implemented.

126 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

trusted user Controlled by the X.25 calling address and data in the x29access file.

Note: The implementation changes do not change the security method.

selective user Controlled by data in the x29access file.

PAD Printing

The following packages must be installed to use PAD printing:

v printers.rte

v printers.rte. (printer type being used)

v printers.hpJetDirect.attach

Note: The printers.hpJetDirect.attach package is important because rather than X.25 PAD creating its

own pioin and pioout applications, it uses the standard that comes with this package.

PAD printing can be accomplished by one of the following methods:

v The remote PAD printer can poll the host for print jobs queued.

v The host can automatically transmit queued jobs to the PAD printer. This method can only be used if

the PAD printer has a unique NUA and if a VC between the PAD printer and the host has been

established and does not interfere with other devices attached to the PAD.

Both methods require an X.25/X.29 connection between the host and the PAD to which the remote printer

is attached.

The host needs substantial configuration and some software modules to support either PAD printing

method.

There are two categories of configuration data. The first describes remote printer attributes, such as

speed, and the second associates NUAs and printer queues with actual remote printers.

The software functionality specific to the host-initiation method is the establishment of an X.25/X.29

connection.

The software functionality specific to the remote-initiation method is as follows:

v Acceptance of an incoming X.25/X.29 connection and the incidental criteria validation.

v Association of a destination NUA subaddress with a particular printer queue.

v Configuration of X.3 parameters.

v Activation of a queue.

The software functionality specific to both PAD printing methods is:

v Obtaining jobs from the front of a printer queue.

v Obtaining ″control″ of an X.25/X.29 remote printer connection.

v Transmission of a job at a rate that does not overrun the remote printer.

v Releasing an X.25/X.29 connection when piobe stops passing jobs.

Remote Initiation

The printer must query the host for print jobs. Printing is initiated when a remote PAD transmits an

X.25/X.29 call to the host. Upon reception of the call, the host uses preconfigured data to identify a

specific printer queue associated with the X.25 destination subaddress.

Since the PAD and printer have the same X.25 source address, use the X.25 destination sub-address to

identify the printer. This does not affect the criteria for validating the X.25 source address.

Chapter 8. Packet Assembler/Disassembler (PAD) 127

Once the X.25/X.29 connection is complete and the printer queue is identified, any jobs on the queue are

transmitted to the printer. The X.25/X.29 connection is then cleared.

This kind of printing is used when a printer does not have its own NUA or the network configuration makes

establishment of a VC between the host and printer unfeasible. Printing is usually triggered when the

printer is turned on. At this point, an X.25/X.29 call is sent to the host. After the connection is complete,

the PAD routes data from the host to the port to which the PAD is attached. The port must be configured

with the X.3/X.28 attributes to automatically place an X.25 call.

The host must have mechanisms for ″listening″ for calls that have a destination subaddress corresponding

to the remote printer queues, that map the subaddresses to the right queue, detect print jobs on the

queues, and transmit data over the X.25 connection from the remote printer. Some commercial products

do this by first setting up ″plumbing″ to the right queue, replacing pioout with a proprietary program, and

finally transmitting the queued print jobs.

Host Initiation

When a print job is queued for the remote printer, the host sends it regardless of how the job was queued.

When the host detects a job on the remote printer’s queue, it initiates an X.25/X.29 connection using the

destination address of the remote PAD to which the printer is attached. There must be a preconfigured

mapping between the remote printer queue and the NUA at the host. The initial request for the print job

may or may not originate at the PAD to which the printer is attached. If the request originated at the PAD,

the printer must have a different X.25 subaddress than other devices attached to the PAD.

When the X.25/X.29 connection is complete, the host transmits the print job and clears the connection.

This kind of printing requires that the printer have a unique NUA. Also, it must be likely that the attempts

by the host to establish a VC to the printer will succeed at any time, since print jobs can be queued at any

time.

PAD printing is triggered when a call with the appropriate NUA is received. The PAD then completes the

X.25/X.29 connection and routes data from the host to the port to which the printer is attached. The port

must be configured with the appropriate X.3/X.28 parameters and configured to accept incoming calls.

Printing is triggered at the host when a job is placed on the print queue of a remote printer. This is

achieved by some products by replacing pioout with a proprietary program with the ability to make

X.25/X.29 connections and the ability to send the print job without overrunning the remote printer.

PAD Printing Processes

The two processes that interact with the printer qdaemon to accomplish pad printing are:

v piox25

v piox25start

For both remote and local printing, piox25 is started indirectly each time the qdaemon removes a job from

a particular print queue. Then, the job is piped from piobe (the printer queue backend) to piox25 that

transmits it to the network through an X.25 connection. Pacing and formatting are handled by piobe;

therefore, the printers.hpJetDirect.attach fileset needs to be installed.

The piox25start process is used only in the case of remote printing and interacts with x29d, as well as

piox25.

Configuration for Remote Printing

The X.25 calling address of the printer needs to be configured in the /etc/sx25pad/x29access file as

follows:

1. The access_class field must be set to one of the selective user types: REMOTE, SUB_ADDRESS,

USER_DATA, or USER_SUB_ADDRESS. The user_data and sub_address fields must have values

consistent with the type.

128 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

2. The initial_application field must be set to /usr/lpd/piox25start QNAME where QNAME is the

name of a print queue associated with a remote printer.

3. The tty_profile field should be set to raw, and the x3_profile field should be set to an X.2/X.29

profile consistent with remote printing. Currently, one is available in the X29parm file as number 30 or

the name ″print.″

4. In the /etc/qconfig file, the particular printer queue needs to be configured so the backend field points

to /usr/sbin/piox25remote as shown in the following example:

pad_q:

 device = hp@stocks

hp@stocks:

 file = /var/spool/lpd/pio/@local/dev/hp@stocks#hpJetDirect

 header = never

 trailer = never

 access = both

 backend = /usr/sbin/piox25remote pad_q

When x29d receives an X.25/X.29 call from the specified X.25 calling address indicating the criteria was

satisfied, it spawns piox25start.

The piox25start process does two things:

v Activates the specified print queue using the enq command.

v Indicates the name of the device over which the X.28/X.29 connection is established.

When the printer qdaemon receives the enq request to activate a particular queue, it enables scheduling

of print jobs on that queue. When the qdaemon schedules a print job, it spawns piox25 as follows:

v It invokes the /usr/lpd/piox25remote shell script. The shell script starts piobe which is piped to piox25.

The piox25 process is started using the -r flag, indicating a remote job, and the -q QNAME flag, where

QNAME is the print queue name.

v Upon completion of transmission of the print job, piobe closes the pipe causing the piox25 command to

read an EOF. The piox25 command then waits for the remainder of the print job to be transmitted over

the X.25/X.29 connection to the remote printer, and then tries to elicit another print job from piobe.

The steps for eliciting another job while the connection is established are:

1. Using the enq command, deactivate the print queue to prevent timing problems.

2. Enter piox25start -r DEVICE QNAME, where DEVICE is the name of the device, and QNAME is

the print queue name.

3. Use the piox25 command to exit.

The cycle of running the piox25start and the piox25 commands, alternately, continues until the print

queue is empty or the network connection is lost. At that point, the piox25 command fails to receive

SIGUSR1, then exits; and the network connection is closed.

Configuration for Local Printing

The steps for configuring for local printing are as follows:

1. In the /etc/xs25pad/qdata file, enter:

QNAME LDEVICE DEST

Where QNAME is a print queue name; LDEVICE is a logical device name, such as sx25al; and DEST is the

X.25 called address of the hardware PAD to which the local printer is connected (for example,

32154123). In most cases, the X.25 called address contains a sub-address corresponding to the

hardware PAD port to which the printer is connected.

Note: This data is used to derive the line number and X.25 calling address from the ODM.

2. In the /etc/qconfig file, configure the printer queue so the backend field points to the

/usr/sbin/piox25local file as shown in the following example:

Chapter 8. Packet Assembler/Disassembler (PAD) 129

pad_q:

 device = hp@stocks

hp@stocks:

 file = /var/spool/lpd/pio/@local/dev/hp@stocks#hpJetDirect

 header = never

 trailer = never

 access = both

 backend = /usr/sbin/piox25local pad_q

3. Preconfigure the X.3 parameters for the remote hardware PAD. Features such as parity checking and

generation need to be disabled. X.3 parameters, such as ancillary device control, need to be set for

the type of printer.

Removing a Job from the Print Queue

A job is removed from the print queue by invoking piox25 as follows:

1. Use the piox25local command to pipe the output of piobe (the backend) to piox25. piox25 is called

only using -q QNAME, where QNAME is the print queue name.

2. Use the piox25 command to call the pp_connect() subroutine to make a normal X.25 connection to

the remote pad. The piox25 command transmits the print job and then exits closing the X.25

connection. piobe closes the pipe causing piox25 to read EOF when it is finished sending the print

job. It is important that piox25 wait for a substantial period of time before closing the X.25 connection

so the tail of the job has time to traverse the network.

Transmission Logic

Both local and remote printing share the same job transmission logic. Data read from piobe is sent to the

network until EOF is encountered. Since it is possible for transmissions to the network to be blocked, new

data is only read from piobe when no other transmission is in progress.

On occasion, it may seem that the print job takes some time. In some cases, such as remote initiation, the

connection must be established, the printer queue must be set up, the converting of the data from X.25 to

printable ASCII must be done, and lastly, the transmission of the job through the printer commands must

be completed.

Configuration File Format (AIXlink/X.25 Version 1 and later)

Each PAD configuration file contains a set of stanzas of the following form:

key1:

 attribute1 = value1

 attribute2 = value2

 attribute3 = value3

 ...

key2:

 ...

Each new key begins after a blank line. The key field and some attribute values may contain

pattern-matching characters that are defined as follows:

 * Matches zero or more characters.

? Matches any single character.

[] Matches any single character in the enclosed set of characters; ranges of characters can be defined using the

’-’ separator, for example, ″[0-9a-f]″.

| Separates values in a list of values.

The following is an example of attribute values:

12* Matches any value beginning with "12".

12? Matches any value beginning with "12" followed by any

 single character.

130 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

[1-3]* Matches any value beginning with "1", "2", or "3".

12*|23* Matches any value beginning with either "12" or "23".

The configuration file is searched sequentially, and the first key value that matches the search key is used.

To avoid redundant attribute definitions, it is possible to use the special default attribute to specify another

stanza that supplies attribute values not explicitly defined in the matching stanza. If the attribute definition

is still not found after searching any specified default stanzas, the stanza with the special default key is

checked. For example:

default:

 attribute1 = value1

 attribute2 = value2

 attribute3 = value3

key1:

 attribute1 = value1

key2:

 default = key1

 attribute2 = value2

key3:

 default = key2

 attribute3 = value3

In this case, the value for key2’s attribute1 comes from key1, since it is not defined in key2’s stanza; and

key1 is key2’s default stanza. Since an arbitrary number of default links can be followed, key3’s attribute1

value also comes from key1, as the default links are followed from key3 to key2 and key2 to key1. Finally,

the value for key2’s attribute3 comes from the default stanza, since neither key2 nor key2’s default

stanza, key1, defines a value for it.

Call packets can be received without a calling address specified. In these cases, the NULL key value can

be used in the address file to match a nonexistent calling address.

x29d Usage Changes

The default x29d mode can run as an outgoing PAD call validation daemon and an X.29 listener daemon

(a single process with dual functionality).

If started using the -n flag, the x29d runs as an outgoing PAD call. If started in the default mode using no

flags, x29d runs as an incoming X.29 call server daemon.

You can start x29d as follows:

x29d [-a] [-p user] | [-n] [-s]

 -a Outputs the calling X.25 address of the system initiating the X.29 session to stdout. x29d runs and

obtains the X.25 address, but a login is not needed since this flag is not related to X.3 or TTY

attributes. This flag cannot be used with the -n flag and requires that x29d is running as the X.29

listener daemon.

-n Starts x29d as a outgoing call validation daemon. The -a and -p flags cannot be used with this flag.

-p user Sets the initial TTY and X.3 attributes of an X.29 session, where user indicates the login ID. This flag

cannot be used with the -n flag and requires that x29d is already running as the X.29 listener daemon.

-s Starts x29d listening to any incoming call with a CUD 01* call pattern.

Chapter 8. Packet Assembler/Disassembler (PAD) 131

132 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 9. X.25 Simple Network Management Protocol

Support for a Simple Network Management Protocol (SNMP) proxy agent comes with AIXlink/X.25 Version

2.1. . This support allows statistical data related to the X.25 interfaces to be gathered and transferred to an

SNMP agent for analysis. The items of data gathered form a subset of the Management Information Base

for X.25 specified in RFCs 1381 and 1382 . RFC 1381 covers the frame layer and 1382 the packet layer.

For more details on the individual MIB objects, refer to the appropriate RFCs.

Data collection from X.25 for SNMP is enabled and disabled by the config methods:

v Enabled at the time the first port is configured.

v Disabled at the time the last port is unconfigured.

Installation Notes for SNMP Multiplexer X.25 Peer Daemon (x25smuxd)

It is assumed that the snmpd is running and all the necessary software needed to ensure that the snmpd

is properly functioning is installed and working. The X.25 proxy agent x25smuxd and the MIB defs file

x25smuxd.defs resides in /usr/sbin directory. Before invoking x25smuxd by the config methods at the

port configuration time, use the following installation procedure:

1. Obtain root user authority.

2. Check to see if the /usr/sbin/x25smuxd.defs file is installed.

3. In the /usr/sbin/x25smuxd.defs file, find the following line:

-- object definitions compiled from RFC1381-MIB { iso 3 6 1 2 1 }

Append every line from this line on to the end of the file to the bottom of the /etc/mib.defs file.

4. Add the following entry to the bottom of the /etc/snmpd.peers file:

"x25smuxd" 1.3.6.1.2.0.10.16 "x25smuxd_password"

5. Add the following entry to the bottom of the /etc/snmpd.conf file:

smux 1.3.6.1.2.0.10.16 x25smuxd_password #x25smuxd

6. Refresh the snmpd daemon so that it rereads the /etc/snmpd.conf file with the following command:

refresh -s snmpd

Notes:

a. Only run x25smuxd when you are logged in with root user authority.

b. Never start more than one instance of x25smuxd as it can cause conflicts with the

interprocess communication mechanism.

c. Line status change notification is not implemented in this release of X.25 Licensed Program.

Frame Layer Objects

The following objects from RFC1381 are supported in read-only mode:

 LapbOperEntry

lapbOperIndex

lapbOperControlField

lapbOperTransmitN1FrameSize

lapbOperReceiveN1FrameSize

lapbOperTransmitKWindowSize

lapbOperReceiveKWindowSize

lapbOperN2RxmitCount

© Copyright IBM Corp. 2001, 2005 133

lapbOperT1AckTimer

lapbOperT2AckDelayTimer

lapbOperT3DisconnectTimer

lapbOperT4IdleTimer

lapbOperPortId

LapbFlowEntry

lapbFlowIfIndex

lapbFlowCurrentMode

lapbFlowRejOutPkts

lapbFlowRejInPkts

lapbFlowT1Timeouts

Packet Layer Objects

The following objects from RFC1382 are supported in read-only mode:

 X25OperEntry

x25OperInterfaceMode

x25OperPacketSquencing

x25OperRestartTimer

x25OperCallTimer

x25OperResetTimer

x25OperClearTimer

x25OperWindowTimer

x25OperDataRxmtTimer

x25OperInterruptTimer

x25OperRejectTimer

x25OperRegistrationRequestTimer

x25OperRestartCount

x25OperResetCount

x25OperClearCount

x25OperDataRxmtCount

x25OperRejectCount

x25OperRegistrationRequestCount

x25OperNumberPVCs

x25OperDataLinkId

X25StatEntry

x25StatIndex

x25StatInCalls

x25StatInRestarts

x25StatInDataPackets

x25StatInInterrupts

x25StatOutCallAttempts

x25StatOutInterrupts

x25StatOutDataPackets

x25StatRestartTimeouts

x25StatCallTimeouts

x25StatResetTimeouts

x25StatClearTimeouts

x25StatDataRxmtTimeouts

x25StatInterruptTimeouts

134 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X25ChannelEntry

x25ChannelIndex

x25ChannelLIC

x25ChannelHIC

x25ChannelLTC

x25ChannelHTC

x25ChannelLOC

x25ChannelHOC

X25CircuitEntry

x25CircuitIndex

x25CircuitChannel

x25CircuitInOctets

x25CircuitInPdus

x25CircuitInInterrupts

x25CircuitOutOctets

x25CircuitOutPdus

x25CircuitOutInterrupts

x25CircuitDataRetransmissionTimeouts

x25CircuitResetTimeouts

x25CircuitInterruptTimeouts

Chapter 9. X.25 Simple Network Management Protocol 135

136 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 10. Common Input/Output Emulation

Prior to AIX Version 4, there was base X.25 support that provided a number of programming interfaces,

higher layer protocols and applications. This support was provided through devices such as /dev/x25s0.

With the X.25 support provided by the separate Licensed Programs, this former interface is emulated

through common input/output (COMIO) emulation.

Each X.25 port sx25a that requires COMIO emulation should have it selected through SMIT configuration.

You should be aware of the following port-related issues regarding COMIO emulation:

v When using the COMIO API, an application can use the x25_init() routine on only eight ports.

v The COMIO emulator can hold up to 100 write requests at any given time, irrespective of the size of

each request.

v The COMIO emulator restricts the size of individual receive packets to 128 K.

v A maximum of 8 192 counters per system is allowed.

v A total of 64 ports is allowed per system.

v A total of 128 sessions is allowed per port.

COMIO emulation is provided as a compatibility interface for existing user applications. NPI and DLPI are

the interfaces for new application development.

Note: All the documentation in this chapter refers to use of the COMIO emulator, its programming

interfaces or applications. Ensure that a suitable COMIO emulation port is available for use.

X.25 Application Programming Interface Overview

The X.25 application programming interface (API) can be used to write applications tailored to specific

needs.

This overview provides the following information about programming X.25 communications:

v X.25 Application Programming Interface (API)

v Processing Calls with the X.25 API

v X.25 Example Programs

X.25 Application Programming Interface (API)

X.25 communications can be used to provide a network service for higher-level protocols, such as SNA, or

directly with commands or the API. The X.25 commands can be used as soon as you have set up X.25

communications. The application programming interface (API) can be used to write applications tailored to

specific needs. The following sections discuss portions of the X.25 API:

v Using the X.25 Structures and Flags

v /dev/x25sn Special File

v X.25 Error Codes

v Using Processes in X.25 Applications

Before you can use the COMIO emulation X.25 API, the X.25 Licensed Program must be installed and

configured, and emulation ports added as required. You also need access to a C compiler.

The X.25 API includes a library of C subroutines that use the services of the X.25 adapter and adapter

code. Application programs call these subroutines to access X.25 functions. The subroutines use a number

of structures to pass information between the X.25 functions and the application programs. Further

information can be found in:

© Copyright IBM Corp. 2001, 2005 137

v Using the X.25 Structures and Flags

The X.25 API provides the following types of identifiers for use in programs:

v Listen identifiers, listen_id, for potential incoming calls

v Connection identifiers, conn_id, for established calls

v Counter identifiers, ctr_id, for notification of incoming messages

In addition to the subroutine library and the header files for the structures, there are example programs

that demonstrate the use of the subroutines. Further information can be found in “X.25 Example Programs”

on page 146.

Background information for using the subroutines is included in “Processing Calls with the X.25 API” on

page 139.

Using the X.25 Structures and Flags

For many of the subroutines, parameters are placed in a structure, and the subroutine is passed a pointer

to this structure. Definitions of these structures are supplied as a header file, /usr/include/x25sdefs.h.

Include the following line in programs:

#include <x25sdefs.h>

x25sdefs.h lists all the structures included in the /usr/include/x25sdefs.h file.

Each of the fields in a structure has an associated flag. This flag tells the API whether the associated field

has been used. If the corresponding flag has not been set, the field is ignored by the API. To use the flag,

which is a constant, OR it with the unsigned long flags in the structure. This sets the appropriate bit in

the flags field.

Before invoking a subroutine, the appropriate flags field must be set to 0 or to a particular flag constant.

For example, to set the flags field to 0 before invoking the x25_call subroutine, use the following:

cb_call.flags = 0

To indicate that the link_name field is being used, before invoking the x25_call subroutine, use the

following:

cb_call.flags = X25FLG_LINK_NAME

Some flags, for instance, X25FLG_D_BIT, do not correspond to structure elements.

/dev/x25sn Special File

The /dev/x25sn special file is provided through the COMIO emulation migration.

The emulator supports the /dev/x25sn special file as a character-multiplex special file. The special file

must be opened for both reading and writing (O_RDWR). There are no particular considerations for closing

the special file. The special file name used in an open call differs depending on how the device is to be

opened. Types of special file names are:

 /dev/x25sn Starts the device handler on the next available port.

/dev/x25sn/R Starts the device handler for updating the routing table.

138 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X.25 Error Codes

The X.25 subroutines set the x25_errno and errno flags to indicate error conditions.

If an error condition results from an X.25 API subroutine call, it is indicated in one of the following ways:

v For X.25-specific error conditions, the x25_errno flag indicates the error; for example, X25ACKREQ. The

errno flag is not set in these conditions.

v For other error conditions, the x25_errno flag is set to X25SYSERR and the errno flag indicates the error,

for example, EFAULT.

In a production program, check for each condition that is likely to occur, giving the end user a message

telling what action to take. The code example for the x25_link_statistics subroutine shows how to do this.

All the other subroutines can be handled in a similar way.

API Error Codes lists the error codes that may be returned by X.25 subroutines.

Using Processes in X.25 Applications

To improve performance, applications should be divided into multiple processes. For instance, you can

start a separate process for sending or receiving data. Or, you can have one process to listen for calls and

one process to make calls.

Child processes should not be created while a call is being established or after an incoming call has been

received. However, you can start a process:

v Before making a call

v After receiving confirmation of an outgoing call

v Before receiving an incoming call

After an incoming call is successfully received, an open file is created in the current process that is used

by the API library functions for subsequent communication on this connection. The file is closed when the

call is cleared. Creating child processes after the call is received may leave the file open indefinitely,

leading to an error due to reaching the limit on open files (errno 23).

A connection identifier can be used by the process that made or received the call, or by the process’

children. It cannot be used by other processes.

A child process can use a virtual circuit established by its parent, but a parent process cannot use a virtual

circuit established by its child.

Processing Calls with the X.25 API

This API-level overview tells you how to use the application programming interface through the emulation

port for both switched and permanent virtual circuits. The following refer to the example programs and

discuss how the subroutines are used:

v Initializing and Terminating

v Using the Connection Identifier for Calls

v Using Counters to Correlate Messages

v Listening for Incoming Calls

v Making and Receiving a Call

v Transferring and Acknowledging Data

v Clearing, Resetting, and Interrupting Calls

Chapter 10. Common Input/Output Emulation 139

Initializing and Terminating

The application programming interface (API) must be initialized for a specific X.25 port before any other

subroutines can be used on that port. If the program uses more than one X.25 port, the API must be

initialized for each. Use the x25_init subroutine (as in example program svcxmit).

If the application uses a permanent virtual circuit (PVC), you must use the x25_pvc_alloc subroutine to

allocate the PVC, identifying it by its logical channel number and X.25 port name (as in example program

pvcxmit). Use SMIT to find out which logical channel numbers are valid.

A PVC must be freed, using the x25_pvc_free subroutine, before the program is terminated (as in

example program pvcxmit).

You must terminate the API for each X.25 port, using the x25_term subroutine (as in example program

svcxmit). However, before terminating the API for a port, do the following:

1. Clear any calls, using x25_call_clear.

2. Remove any counters, using x25_ctr_remove.

3. Stop listening for calls, using x25_deafen.

4. Free any permanent virtual circuits, using x25_pvc_free.

Using the Connection Identifier for Calls

Because the API or a single application can simultaneously control multiple virtual circuits, there must be a

way of identifying a call uniquely. To do this, the API assigns to each call a positive integer known as the

connection identifier.

The conn_id parameter is used by the API subroutines to pass the connection identifier.

Obtaining a Connection Identifier

On a switched virtual circuit, for an outgoing call, the connection identifier is returned by the x25_call

subroutine (as in example program svcxmit). When receiving an incoming call the connection identifier is

allocated by the x25_receive subroutine to the first of its parameters (as in example program svcrcv).

On a permanent virtual circuit, the connection identifier is returned by the x25_pvc_alloc subroutine (as in

example program pvcxmit).

Using a Connection Identifier

The connection identifier is assigned on return from these subroutines:

v Using the x25_call subroutine to make a call on a switched virtual circuit

v Using the x25_pvc_alloc subroutine to establish a permanent virtual circuit

v Using the x25_receive subroutine to receive an incoming call

v Using the x25_receive subroutine to receive data from any currently connected call

The connection identifier is passed as a parameter to these subroutines:

v Using the x25_receive subroutine to receive data from a particular call

v Using the x25_call_accept subroutine to accept a call

v Using the x25_send subroutine to send data

v Using the x25_ack subroutine to acknowledge data

v Using the x25_call_clear subroutine to reject or terminate a call

v Using the x25_reset subroutine to reset a call

140 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

v Using the x25_reset_confirm subroutine to confirm that a reset arrived

v Using the x25_interrupt subroutine to interrupt a call

v Using the x25_pvc_free subroutine to free a permanent virtual circuit

v Using the x25_circuit_query subroutine to get information about a virtual circuit

Restrictions on the Use of the Connection Identifier

A connection identifier can be used only by the process that made the call, established the permanent

virtual circuit, or received the call, and by that process’ child processes. Any attempt to use the connection

identifier of another process results in the X25BADCONNID error code.

Using Counters to Correlate Messages

Many applications use the network at once and each application may have several calls active at one

time. An application may also be listening for calls for several different routing list names. How does the

application know when a message has arrived on a particular virtual circuit, or for a particular call? A

counter, supplied by the API, is incremented when a message arrives. The application issues an

x25_ctr_wait subroutine, which returns when the counter has been incremented. The counter is

decremented when the message has been received (using the x25_receive subroutine).

Counters allow an application to wait for messages on several virtual circuits at one time; it is the

responsibility of the application to correlate counters with particular virtual circuits. Optionally, an

application can use the x25_ctr_wait subroutine to accumulate several messages against a particular

counter before being notified.

Counter Identifiers

Each counter has a counter identifier. The ctr_id parameter is used by some of the API subroutines to

pass the counter identifier. The x25_ctr_wait subroutine uses an array of structures (ctr_array_struct)

each of which contains a counter identifier and a value. This allows an application to wait for any of a

number of counters to change.

Counters in Applications

You must decide how to use counters in your application depending on what the application has to do.

Use of counters is not required, but the use of the x25_ctr_wait subroutine is the recommended way of

notifying the application that a message has arrived.

For an application that makes calls, use a separate counter for each call. For an application that listens for

and receives calls, use one counter to listen for incoming calls and then use a separate counter to accept

each call and receive its subsequent messages. For an application that receives messages from any one

of a number of connected calls, use a single counter.

The application is responsible for ensuring that it gets enough counters.

Obtaining a Counter

The application gets a counter from the API by calling the x25_ctr_get subroutine (as in example program

svcxmit). This subroutine returns a counter identifier that is unique across the system.

The two applications (the one that makes a call and the one that receives it) each use a different counter

for the call. Each tracks the messages independently.

Using a Counter

The counter identifier is passed as a parameter to the following subroutines:

v The x25_call subroutine assigns a counter to a specific connection when making a call on a switched

virtual circuit.

Chapter 10. Common Input/Output Emulation 141

v The x25_pvc_alloc subroutine assigns a counter to a specific connection when establishing a

permanent virtual circuit.

v The x25_listen subroutine assigns a counter to a listening process when starting to listen for incoming

calls.

v The x25_call_accept subroutine assigns a counter to a specific connection when accepting a call.

v The x25_ctr_wait subroutine uses an array of counters to wait for an incoming call or a message.

v The x25_ctr_test subroutine uses one counter to determine how many messages are waiting to be

received for a call.

Waiting for an Incoming Call or a Message:

Normally, the x25_ctr_wait subroutine notifies an application program that a message has arrived. The

program invokes the x25_ctr_wait subroutine, passing it a pointer to an array of counter structures. This

enables an application to wait for messages from more than one call.

The example programs show the x25_ctr_wait subroutine being used in several situations, but always

with only one counter. If you want to wait for messages using multiple counters, you must assign them all

to the ctr_array_struct structure before invoking the x25_ctr_wait subroutine.

Note: If you are writing a program that uses multiple counters to identify multiple calls, you are

responsible for storing the counter identifiers with their corresponding connection identifiers.

Example Uses of the x25_ctr_wait Subroutine:

1. Set up the ctr_array_struct structure and wait for an incoming call (as in example program svcrcv).

2. Wait for an acknowledgement indicating that the ctr_array_struct structure was set up earlier in the

program (as in example program svcxmit).

Determining How Many Messages Are Waiting to Be Received for a Call: The x25_ctr_test

subroutine is provided to determine the number of messages waiting to be received for a call, as follows:

1. Assign the counter identifier to the ctr_id parameter.

2. Invoke the x25_ctr_test subroutine, passing ctr_id as a parameter.

3. The return value is the number of messages waiting to be received.

However, if you use the x25_ctr_wait subroutine when expecting a message to arrive and receive every

message when it arrives, you should not need to use the x25_ctr_test subroutine.

Removing a Counter

Before an application terminates, it must remove all counters in use. A counter cannot be removed while

its value is greater than 0, indicating that there is a message to be received. First, receive any messages,

and then use the x25_ctr_remove subroutine, passing it the counter identifier as a parameter (as in

example program svcxmit).

Restrictions on the Use of Counters

Any application can test the value of a counter or wait for it to change. Only the application that requested

the counter with the x25_ctr_get subroutine, or a root user, can remove the counter using use the

x25_ctr_remove subroutine.

Listening for Incoming Calls

When it is listening for calls, the x25_listen subroutine uses a positive integer, the listen identifier, to

identify an incoming call. After the call has been received and accepted, the listen identifier is used again

to listen for subsequent incoming calls.

142 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Obtaining a Listen Identifier

The x25_listen subroutine can be used to listen for incoming calls.

1. Get a counter.

2. Invoke the x25_listen subroutine, passing it two parameters: the counter identifier and the name of an

entry in the X.25 routing list (as in example program svcrcv).

3. The x25_listen subroutine returns a listen identifier.

Using the Listen Identifier

After obtaining a listen identifier, the application must wait for an incoming call. When an incoming call

arrives for that listen identifier, the application assigns the listen identifier to the conn_id parameter and

uses the x25_receive subroutine to receive the incoming call.

Removing the Listen Identifier (Stop Listening):

1. Remove the counter associated with this listening process.

2. Invoke the x25_deafen subroutine, passing it the listen identifier as a parameter. Always do this before

terminating a program that has been listening for incoming calls (as in example program svcrcv).

Restrictions on the Use of the Listen Identifier:

The use of this variable is restricted to the user who received the listen_id from the x25_listen subroutine.

The user may have one application that listens and notifies the user of an incoming call, and another

application that actually receives the call.

Making and Receiving a Call

The following information describes the processes involved in making and receiving a call.

Making an Outgoing Call

To make a call on a switched virtual circuit (SVC) (as in example program svcxmit):

1. Set up the cb_call_struct with the relevant information.

2. Invoke the x25_call subroutine, passing two parameters: a pointer to cb_call_struct and a counter

identifier.

3. The x25_call subroutine returns a connection identifier, which the application must use to identify the

call.

4. Store a counter identifier with the connection identifier.

When using a permanent virtual circuit (PVC), do not make any calls. Once you have allocated a PVC,

you can send and receive data until you free the PVC.

After making a call, the calling application must wait for the called application’s response, using the

x25_ctr_wait subroutine, and then receive it, using the x25_receive subroutine (as in example program

svcxmit). The response can be either a call-connected message or the clear-indication message.

Receiving an Incoming Call

When you know there is an incoming call waiting because the counter associated with the listen identifier

has been incremented, you must use the listen identifier to receive the incoming call (as in example

program svcrcv).

1. Assign the listen identifier to the conn_id parameter.

2. Invoke the x25_receive subroutine, passing two parameters:

v The address of conn_id (which currently contains the listen identifier).

Chapter 10. Common Input/Output Emulation 143

v A pointer to the message control block, cb_msg_struct.

3. On return, the x25_receive subroutine assigns the connection identifier of the incoming call to the

conn_id. (The listen identifier is still valid for further incoming calls.)

4. On return from the x25_receive subroutine, the message control block includes the msg_type, which

indicates the type of message (for example, X25_INCOMING_CALL). You do not need to check it because

it is the only message that can be received using the listen identifier. The cb_call_struct control block

contains the incoming-call message, which may include call user data.

5. Free any structures allocated by the x25_receive subroutine (as in example program svcrcv).

Accepting or Rejecting an Incoming Call

To accept an incoming call after receiving it (as in example program svcrcv):

1. Get a new counter, to be used for accepting the call and receiving any subsequent messages for it.

(This allows the counter that was used for listening to continue to be used to listen for calls.)

2. Optionally, set up cb_call_struct with the relevant information.

3. Invoke the x25_call_accept subroutine, passing the connection identifier, the counter identifier, and

cb_call_struct as parameters.

4. The x25_call_accept subroutine sends an X25_CALL_CONNECTED message, which must be received by

the caller.

At this point, after accepting a call, you should deal with the call user data if necessary. After dealing with

the call user data, free the storage used (as in example program svcrcv).

Instead of accepting an incoming call, you can reject it, using the x25_call_clear subroutine to clear it.

Transferring and Acknowledging Data

The following information describes the processes involved in transferring and acknowledging data.

Sending Data

Either the called or the calling application can send data when:

v On a permanent virtual circuit (PVC), the PVC has been allocated.

v On a switched virtual circuit (SVC), a call has been made, received, and accepted.

To send data (as in example program svcxmit):

1. Ensure that any data sent previously with the D-bit set to a value of 1 has been acknowledged.

Otherwise, this x25_send subroutine will fail.

2. Assign to the data variable in cb_data_struct a pointer to the data you want to send.

3. Assign to the data_len variable in cb_data_struct the length of the data.

4. Invoke the x25_send subroutine, passing two parameters: the connection identifier and a pointer to

cb_data_struct.

Asking for Receiver Acknowledgment of Data Sent

To ask for the receiver to acknowledge the data, set the flags to X25FLG_DBIT in cb_data_struct, before

using the x25_send subroutine (as in example program svcxmit). The application must then wait for and

receive the X25_DATA_ACK message that is sent back.

Note: To allow the use of the D-bit, it should also be set on the x25_call subroutine (as in example

program svcxmit) or the x25_call_accept subroutine.

144 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Long Messages

If the data length is greater than the packet size, the API automatically splits the data into packets which it

sends separately. It sets on the M-bit in each packet to indicate that there is more data. Only the final

packet has the D-bit set and only one acknowledgment is expected.

To allow better recovery in the event of a transmission failure, avoid sending data longer than the packet

size. Specify as large a packet size as possible in the maximum transmit packet size attribute (for an SVC)

or PVC maximum transmit packet size. Otherwise specify as large a packet size as possible in the

psiz_cld or psiz_clg field in the cb_fac_struct. If necessary, split up the data yourself in the application, if

you want to receive an acknowledgment for each packet, and thus maintain data integrity. Otherwise, if

one piece of the data does not arrive, all of the data may need to be sent again.

Receiving Data

To receive data that has arrived for a particular call (as in example program svcrcv):

1. Ensure that you have acknowledged any data received previously with the D-bit set to a value of 1.

Otherwise this x25_receive subroutine will return X25NODATA.

2. Invoke the x25_receive subroutine subroutine, passing the address of the connection identifier and the

address of the message structure (cb_msg_struct) as parameters.

3. The x25_receive subroutine receives a complete packet sequence. That is to say, if a long message

was split up when it was sent, the X.25 API attempts to rebuild it before notifying the application that

there is a message waiting. If any packet (other than data or interrupt) arrives before the sequence is

completed, the attempt to rebuild is either abandoned and the sequence made available to the

application up to its current position, or the incoming packet is made available to the application ahead

of the as-yet-unfinished sequence.

4. On return from the x25_receive subroutine, the message structure (cb_msg_struct) includes the

msg_type, which indicates the type of message. In this case it is X25_DATA, indicating that the

message is available in the cb_data_struct control block.

5. The counter that indicated the waiting message is decremented when the message is received.

To receive data from any call that is currently connected, assign a value of 0 to the conn_id parameter and

invoke the x25_receive subroutine, passing the address of conn_id as a parameter. On return from the

x25_receive subroutine, the conn_id parameter contains the connection identifier of the call whose data

was returned by x25_receive subroutine.

Acknowledging Data Packets

For each data packet that was sent with the D-bit set to 1, invoke the x25_ack subroutine to confirm that it

arrived (as in example program svcrcv).

The application should ensure that the acknowledgment is given as soon as possible after receiving a

message with the D-bit set to 1.

Clearing, Resetting, and Interrupting Calls

The following information describes the processes involved in clearing, resetting, and interrupting calls.

Clearing a Call

Clearing removes the call from the network. You can send a clear-request message to reject a call, after

receiving fast-select data, to terminate a call, or to clear a call.

If you clear a call without ever accepting it, you are, in effect, rejecting it.

Chapter 10. Common Input/Output Emulation 145

If it is a fast-select call, the fast-select data is in the incoming-call packet. You can clear the call

immediately after receiving this or you can receive further messages on the call.

Clearing is the normal way of terminating a call. Either the caller or the called application can clear a call.

To clear a call:

1. Optionally, assign any data you want to send to the user_data field in the cb_clear_struct control

block, and set the user-data flag.

2. Optionally, assign a cause code and a diagnostic code to the appropriate fields in the cb_clear_struct

control block, and set the appropriate flags.

3. Invoke the x25_call_clear, passing the connection identifier and a pointer to cb_clear_struct as

parameters. The third parameter can be used for return data. If you do not need this, set the third

parameter to null.

Example program svcxmit shows how a call is cleared.

Note: Example program svcrcv could have cleared the call after receiving the data; the svcxmit

program is therefore prepared for the call to be cleared by the other application. A call does not have

to be cleared by the application that made it.

Resetting a Call

A reset flushes any data being sent from the network at the time of the reset. To reset a call (as in

example program pvcxmit):

1. Optionally, assign a cause code and a diagnostic code to the appropriate fields in the cb_res_struct

control block and set the appropriate flags.

2. Invoke the x25_reset subroutine, passing it the connection identifier and a pointer to the

cb_res_struct control block.

3. Wait for and receive the reset-confirmation message.

When an application receives a message of X25_RESET_INDICATION, it must send a reset-confirmation

message immediately by invoking the x25_reset_confirm subroutine (as in example program pvcrcv).

Interrupting a Call

An interrupt is placed at the beginning of the queue of incoming messages. To send an interrupt:

1. Assign the connection identifier to the conn_id parameter.

2. Invoke the x25_interrupt subroutine, passing it the conn_id parameter and a pointer to the

cb_int_data_struct control block.

3. Wait for and receive the interrupt-confirmation message. (Using this X.25 API, the

interrupt-confirmation message is sent automatically.)

X.25 Example Programs

To help you learn how to use the X.25 subroutines there are two pairs of example programs. One pair

demonstrates the use of a switched virtual circuit, and the other the use of a permanent virtual circuit. The

example programs are:

v X.25 Example Program svcxmit: Make a Call Using an SVC

v X.25 Example Program svcrcv: Receive a Call Using an SVC

v X.25 Example Program pvcxmit: Send Data Using a PVC

v X.25 Example Program pvcrcv: Receive Data Using a PVC

General information on using the examples includes:

146 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

v Preparing, Compiling, and Running the Example Programs

v Using the Example Code

Preparing, Compiling, and Running the Example Programs

The example programs (svcxmit.c, svcrcv.c, pvcxmit.c, and pvcrcv.c) are in the samples directory

/usr/lpp/sx25/samples.

Each of the example programs has variables to which values are assigned at the start. These include

CALLING_ADDR, CALLED_ADDR, LINK_NAME, and LOG_CHAN_NUM. These must be set to

appropriate values for your setup before you can run the programs.

To compile the example programs, enter:

cd /usr/lpp/bosext2/x25app/samples

cc svcxmit.c -lx25s -o svcxmit

cc svcrcv.c -lx25s -o svcrcv

cc pvcxmit.c -lx25s -o pvcxmit

cc pvcrcv.c -lx25s -o pvcrcv

This creates the executable files svcxmit, svcrcv, pvcxmit, and pvcrcv.

To run a program, type the name of the executable file at the shell prompt. Run them in pairs: svcxmit

talks to svcrcv, and pvcxmit talks to pvcrcv.

Note: You cannot run the PVC programs unless your network allows the use of permanent virtual

circuits.

Using the Example Code

The example programs are for demonstration purposes only. When creating your own programs, you may

find it useful to copy parts of the code from the examples. Be aware that the examples do not, in most

cases, check the return codes from the subroutines. When you invoke an X.25 subroutine in a production

program, you should assign the return value into a variable, as in the following:

rc = x25_...(...);

Then test the value of the return code.

If you do not want to write your own programs, use the xtalk command to communicate with other users.

X.25 Example Program svcxmit: Make a Call Using an SVC

This example program uses a switched virtual circuit (SVC) to make a call and transmit data, as follows.

Example program svcrcv is designed to receive the data sent by this program.

Program Description

To use the X.25 program:

 1. Initialize the API for the port specified by LINK_NAME (x25_init).

 2. If initialization failed, the program displays a message. Exit from the program.

 3. Get a counter (x25_ctr_get).

 4. Make a call from this address specified by the CALLING_ADDR flag to the address specified by the

CALLED_ADDR flag, enabling D-bit acknowledgment (x25_call).

 5. Wait for a call-clear or call-connected message (x25_ctr_wait).

 6. Receive the message (x25_receive).

Chapter 10. Common Input/Output Emulation 147

7. If the message is call-connected:

a. Send data (x25_send), without the D-bit set.

b. Send data (x25_send), with the D-bit set.

c. Wait for (x25_ctr_wait) and receive (x25_receive) acknowledgment of the data sent with the

D-bit set.

d. Clear the call (x25_call_clear).

 8. If the call was cleared by the remote DTE (the other user), the program displays a message.

 9. Remove the counter (x25_ctr_remove).

10. Terminate the API (x25_term).

Example Program svcxmit

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <NLchar.h>

#include <x25sdefs.h>

#define LINK_NAME "x25s0" /* Name of X.25 port. */

#define CALLING_ADDR "54321" /* Calling Network User Address */

#define CALLED_ADDR "1234502" /* Called Network User Address */

#define SAMPLE_NAME "IBMSAMP" /* A name in the X.25 routing list.*/

#define INFO "Hello World"

#define INFO2 "Goodbye Everyone"

/***/

/* Function main */

/* Description This program is designed to demonstrate usage of the X.25 */

/* API. It makes a call, transmits some data, and then clears */

/* the call. */

/* Example program svcrcv is designed to receive the data sent */

/* by this program. */

/* Note that, in a production program, you should check the */

/* return code from each subroutine call and take appropriate */

/* action. */

/* Return 0 if successful */

/* 1 if error occurs */

/***/

int main(

 int argc,

 char *argv[])

{

 int conn_id; /* Connection identifier, */

 /* to identify the call once it is made. */

 int ctr_id; /* Counter identifier to be associated with the call. */

 int rc; /* Used for return codes. */

 int ctr_num = 1; /* The number of counters in counter array. */

 /***/

 /* The following structures are defined in the x25sdefs.h file. */

 /***/

struct cb_msg_struct cb_msg;

struct cb_link_name_struct cb_link_name;

struct ctr_array_struct ctr_array[1];

148 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

struct cb_call_struct cb_call;

struct cb_clear_struct cb_clear;

struct cb_data_struct cb_data;

 /***/

 /* Initialize the API for access to a link. */

 /***/

 cb_link_name.flags = X25FLG_LINK_NAME;

 cb_link_name.link_name = LINK_NAME;

 rc = x25_init (&cb_link_name);

 if (rc < 0)

 {

 (void)printf(″%s: x25_init failed : x25_errno = %d errno = %d\n″,

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 {

 /**/

 /* Get a counter to be used to notify us of incoming messages. */

 /**/

 ctr_id = x25_ctr_get();

 /**/

 /* Set the flags in the cb_call structure to indicate which fields *

 /* have been filled in. The fields which this program sets */

 /* are the calling and called addresses, and the link on which to call. */

 /* The D-bit field must also be set, as there will be a data packet */

 /* sent later which sets the D-bit. */

 /**/

 cb_call.flags = X25FLG_LINK_NAME; /* Set flag for using linkname. */

 cb_call.link_name = LINK_NAME;

 cb_call.flags |= X25FLG_CALLING_ADDR; /* Set flag for calling address. */

 cb_call.calling_addr = CALLING_ADDR;

 cb_call.flags |= X25FLG_CALLED_ADDR; /* Set flag for called address. */

 cb_call.called_addr = CALLED_ADDR;

 cb_call.flags |= X25FLG_D_BIT; /* Set flag for D-bit. */

 /* Now that cb_call structure has been set up, make the call. */

 /* The return code is the connection identifier, which will be used to */

 /* refer to this call later. */

 conn_id = x25_call(&cb_call,ctr_id);

 if (conn_id == -1)

 {

 (void)printf(″%s: x25_call failed : x25_errno = %d errno = %d\n″,

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 (void)printf(″%s: Placed outgoing call\n″,argv[0]);

Chapter 10. Common Input/Output Emulation 149

/**/

 /* After making the call, prepare for either a call-connected or a */

 /* clear-indication message to arrive: */

 /* wait for the counter value to change indicating an incoming message. */

 /* (If there were more than one counter in the array, you would have to */

 /* test the counter identifier to see which one had been incremented. */

 /* In this case there is only one, so we do not have to do this.) */

 /**/

 ctr_array[0].flags = X25FLG_CTR_ID;

 ctr_array[0].flags |= X25FLG_CTR_VALUE;

 ctr_array[0].ctr_id = ctr_id;

 ctr_array[0].ctr_value = 0;

 (void)x25_ctr_wait(ctr_num,ctr_array);

 /* Receive the call-clear or call-connected packet. */

 (void)x25_receive(&conn_id,&cb_msg);

 /**/

 /* If the incoming message shows that the call has been connected, */

 /* send some data. */

 /**/

 if (cb_msg.msg_type == X25_CALL_CONNECTED)

 {

 cb_data.flags = X25FLG_DATA;

 cb_data.data_len = strlen(INFO);

 cb_data.data = INFO;

 (void)x25_send(conn_id,&cb_data);

 (void)printf(″%s: Data sent\n″,argv[0]);

 /**/

 /* Send some more data but this time with the D bit set. This */

 /* requires the receiver to send an acknowledgement to this data, */

 /* so we have to wait for the acknowledgment to arrive. */

 /**/

 cb_data.flags = X25FLG_DATA;

 cb_data.flags |= X25FLG_D_BIT;

 cb_data.data_len = strlen(INFO2);

 cb_data.data = INFO2;

 (void)x25_send(conn_id,&cb_data);

 (void)printf(″%s: Data sent\n″,argv[0]);

 /* Wait for and receive acknowledgement */

 (void)x25_ctr_wait(ctr_num,ctr_array);

 (void)x25_receive(&conn_id,&cb_msg);

 if (cb_msg.msg_type == X25_DATA_ACK)

 (void)printf(″%s: Data has been acknowledged.\n″,argv[0]);

 else

 (void)printf(″%s: Unexpected packet received.\n″,argv[0]);

150 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

/**/

 /* Clear the call now that transmission is completed. */

 /**/

 cb_clear.flags = X25FLG_CAUSE;

 cb_clear.flags |= X25FLG_DIAGNOSTIC;

 cb_clear.cause = 0; /* The CCITT code for DTE-originated */

 cb_clear.diagnostic = 0; /* No further information */

 (void)printf(″%s: Clearing the call.″,argv[0]);

 /* The x25_call_clear function can return information from the clear */

 /* confirmation packet. However, this isn’t required here, so set the */

 /* third parameter to NULL. */

 (void)x25_call_clear(conn_id,&cb_clear,(struct cb_msg_struct *)NULL);

 }

 /**/

 /* If the message received was a clear-indication, */

 /* print out a message before terminating the program. */

 /**/

 else if (cb_msg.msg_type == X25_CLEAR_INDICATION)

 {

 (void)printf("%s: Call cleared. Cause = 0x%02x Diagnostic = 0x%02x\n",

 argv[0], cb_msg.msg_point.cb_clear->cause,

 cb_msg.msg_point.cb_clear->diagnostic);

 }

 /**/

 /* Finally, tidy up by removing the counter and terminating the API. */

 /**/

 (void)x25_ctr_remove(ctr_id);

 (void)x25_term(&cb_link_name);

 }

 return(0);

}

X.25 Example Program svcrcv: Receive a Call Using an SVC

This program receives a call over a switched virtual circuit (SVC), accepts it, and then prints any data

received. Example program svcxmit is designed to send the data received by this program.

Program Description

The X.25 program uses the following steps:

 1. Initialize the API for the port specified by LINK_NAME (x25_init).

 2. If initialization failed, the program displays a message and exits.

 3. Get a counter for listening for incoming calls (x25_ctr_get).

 4. Start listening for incoming calls (x25_listen).

 5. Wait for an incoming call (x25_ctr_wait).

 6. Receive the incoming call (x25_receive).

 7. Get a counter for handling this call (x25_ctr_get).

 8. Accept the call (x25_call_accept).

 9. Free any memory allocated by the API to cb_msg_struct.

Chapter 10. Common Input/Output Emulation 151

10. Wait for a message (x25_ctr_wait).

11. Receive message (x25_receive).

12. If the message is data:

a. Acknowledge if the D-bit is set (x25_ack).

b. Display the data on the screen.

c. Free any memory allocated to cb_msg_struct by the API.

13. If the message is a clear indication:

a. Display a message to say the call has been cleared.

b. Remove the counter (x25_ctr_remove).

c. Stop listening for calls (x25_deafen).

d. Terminate the API for the port (x25_term).

14. If the message is a reset indication, send a reset confirmation (x25_reset_confirm).

15. For any other message type, do nothing.

Example Program svcrcv

/* X.25 Example Program svcrcv. */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <NLchar.h>

#include <x25sdefs.h>

#define LINK_NAME "x25s0" /* Name of X.25 port. */

#define SAMPLE_NAME "IBMSAMP" /* A name in the X.25 routing list. */

/***/

/* Function main */

/* Description This program is designed to demonstrate usage of the X.25 */

/* API. It waits for an incoming call, accepts it, and then */

/* prints any data received. */

/* Example program svcxmit is designed to send the data */

/* received by this program. */

/* Note that, in a production program, you should check the */

/* return code from each subroutine call and take appropriate */

/* action. */

/* Returns 0 if successful */

/* 1 if error */

/***/

int main(

 int argc,

 char *argv[])

{

 /***/

 /* The following structures are defined in the x25sdefs.h file. */

 /***/

 struct cb_call_struct cb_call;

 struct ctr_array_struct ctr_array[1]; /* This program waits for only */

 /* one counter at a time. */

 struct cb_msg_struct cb_msg;

 struct cb_link_name_struct cb_link_name;

152 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

NLchar name[8]; /* 1 longer than SAMPLE_NAME for NULL terminator. */

 int listen_id; /* Listen identifier for x25_receive. */

 int conn_id; /* Connection identifier to identify the call after */

 /* receiving it. */

 int listen_ctr_id; /* Counter identifier to associate with incoming calls*/

 int call_ctr_id; /* Counter identifier to associate with accepted call */

 int ctr_num; /* Number of entries in ctr_array. */

 int rc; /* Return code */

 /***/

 /* Initialize the API for access to a link. */

 /***/

 cb_link_name.flags = X25FLG_LINK_NAME;

 cb_link_name.link_name = LINK_NAME;

 rc = x25_init(&cb_link_name);

 if (rc < 0)

 {

 (void)printf("%s: x25_init failed : x25_errno = %d errno = %d\n",

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 {

 /**/

 /* Prepare to receive incoming calls: */

 /* 1. Get a counter to be used to notify us of incoming calls. */

 /* 2. Listen for calls that satisfy the criteria specified by a name in */

 /* the routing list. */

 /**/

 listen_ctr_id = x25_ctr_get(); /* Get a counter. */

 (void)NCdecstr(SAMPLE_NAME,name,8); /* Convert to NLchar. */

 listen_id = x25_listen(name,listen_ctr_id);

 if (listen_id < 0)

 {

 (void)printf(″%s: x25_listen failed : x25_errno = %d errno = %d\n″,

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 (void)printf(″%s: Awaiting incoming call...\n″,argv[0]);

 /**/

 /* Wait for an incoming call. The x25_ctr_wait subroutine returns */

 /* when a message arrives. */

 /**/

 ctr_num = 1;

 ctr_array[0].flags = X25FLG_CTR_ID;

 ctr_array[0].flags |= X25FLG_CTR_VALUE;

 ctr_array[0].ctr_id = listen_ctr_id;

 ctr_array[0].ctr_value = 0;

 rc = x25_ctr_wait(ctr_num,ctr_array);

Chapter 10. Common Input/Output Emulation 153

/**/

 /* Receive an incoming call. */

 /* In this example, we can assume that the message that has arrived */

 /* (causing the counter to be incremented and x25_ctr_wait to return) */

 /* is an incoming-call message. Therefore we assign the listen */

 /* identifier to the conn_id parameter before invoking x25_receive and */

 /* we do not check the return code. */

 /* On return, conn_id is set to the connection identifier for this call.*/

 /**/

 conn_id = listen_id;

 (void)x25_receive(&conn_id,&cb_msg);

 (void)printf(″%s: Incoming call received\n″,argv[0]);

 /**/

 /* Get a new counter for handling data from this call before */

 /* accepting the call. */

 /* No additional information needs to be put into the call-accept */

 /* packet, so the flags field is set to zero. */

 /**/

 call_ctr_id = x25_ctr_get();

 cb_call.flags = 0;

 (void)x25_call_accept(conn_id,&cb_call,call_ctr_id);

 (void)printf(″%s: Call accepted.\n″,argv[0]);

 /**/

 /* x25_receive allocates storage to return information. Although there */

 /* are no storage constraints in this application, the allocated */

 /* storage is freed once the information is no longer needed. */

 /**/

 if (cb_msg.msg_point.cb_call != NULL)

 {

 cb_msg.msg_point.cb_call -> flags = 0;

 if (cb_msg.msg_point.cb_call->link_name != NULL)

 free(cb_msg.msg_point.cb_call->link_name);

 if (cb_msg.msg_point.cb_call->calling_addr != NULL)

 free(cb_msg.msg_point.cb_call->calling_addr);

 if (cb_msg.msg_point.cb_call->called_addr != NULL)

 free(cb_msg.msg_point.cb_call->called_addr);

 if (cb_msg.msg_point.cb_call->user_data != NULL)

 free(cb_msg.msg_point.cb_call->user_data);

 free(cb_msg.msg_point.cb_call);

 }

 /**/

 /* The call has now been received and accepted. Now wait for the data. */

 /**/

 do

 {

 /**/

 /* Wait for counter to indicate that data is waiting to be received. */

 /**/

 ctr_num = 1;

 ctr_array[0].flags = X25FLG_CTR_ID;

 ctr_array[0].flags |= X25FLG_CTR_VALUE;

154 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

ctr_array[0].ctr_id = call_ctr_id;

 ctr_array[0].ctr_value = 0;

 (void)x25_ctr_wait(ctr_num,ctr_array);

 /**/

 /* Receive the message that is now ready. The types of message that */

 /* the program can handle are data, clear-indication, and */

 /* reset-indication; other message types are ignored. */

 /**/

 (void)x25_receive(&conn_id,&cb_msg);

 switch (cb_msg.msg_type)

 {

 case X25_DATA:

 /**/

 /* Acknowledge the data if the D-bit (delivery confirmation) is set.*/

 /**/

 if ((cb_msg.msg_point.cb_data->flags) & X25FLG_D_BIT)

 (void)x25_ack(conn_id);

 /**/

 /* Print the received data. Assume it is a normal string. */

 /**/

 if ((cb_msg.msg_point.cb_data -> flags) & X25FLG_DATA)

 {

 (void)printf("%s: Incoming Data : ",argv[0]);

 (void)printf("%s\n",cb_msg.msg_point.cb_data->data);

 free(cb_msg.msg_point.cb_data->data); /* Free memory allocated */

 free(cb_msg.msg_point.cb_data);

 }

 break;

 case X25_CLEAR_INDICATION:

 /**/

 /* When the call has been cleared, do the tidying up: */

 /* Remove the counters. */

 /* Stop listening for calls. */

 /* Terminate the API. */

 /**/

 (void)printf(″%s: Call cleared. Cause = 0x%02x Diagnostic = 0x%02x\n″,

 argv[0], cb_msg.msg_point.cb_clear->cause,

 cb_msg.msg_point.cb_clear->diagnostic);

 (void)x25_ctr_remove(call_ctr_id);

 (void)x25_ctr_remove(listen_ctr_id);

 (void)x25_deafen(listen_id);

 (void)x25_term(&cb_link_name);

 break;

 case X25_RESET_INDICATION:

 /**/

 /* Respond to the arrival of a reset-indication message, by sending */

 /* a reset-confirmation message. */

 /**/

 (void)x25_reset_confirm(conn_id);

 break;

 default:

 /* Ignore packet types other than data, clear-indication, and */

 /* reset-indication. */

 break;

 }

Chapter 10. Common Input/Output Emulation 155

} while (cb_msg.msg_type != X25_CLEAR_INDICATION);

 }

 return(0);

}

X.25 Example Program pvcxmit: Send Data Using a PVC

This program uses a permanent virtual circuit (PVC) to make a call. It allocates the circuit, sends some

data and then sends a reset. After receiving the reset-confirmation, the program sends some more data.

Example Program pvcrcv is designed to receive the data sent by this program.

Program Description

The following steps outline the pvcxmit program:

 1. Initialize the API for the port specified by the LINK_NAME value (x25_init).

 2. If initialization failed, the program displays a message and exits.

 3. Get a counter to be used to wait for incoming messages (x25_ctr_get).

 4. Allocate a PVC to the port, using the logical channel number specified by the LOG_CHAN_NUM

value (x25_pvc_alloc).

 5. If PVC allocation failed, the program displays a message and exits.

 6. Send some data (x25_send).

 7. Send a reset (x25_reset).

 8. Wait for the reset-confirmation message (x25_ctr_wait).

 9. Receive the reset-confirmation message (x25_receive).

10. Send some more data (x25_send).

11. Send the end-of-transmission indicator specified by the END_OF_TRANS value (x25_send).

12. Free the permanent virtual circuit (x25_pvc_free).

13. Remove the counter (x25_ctr_remove).

14. Terminate the API for the port (x25_term).

Example Program pvcxmit

/* X.25 Example Program pvcxmit. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <x25sdefs.h>

#define LINK_NAME ″x25s0″ /* Name of X.25 port. */

#define LOG_CHAN_NUM (1) /* PVC logical channel number. */

#define INFO ″Hello World″ /* Data to be sent. */

#define INFO2 ″Goodbye Everyone″ /* More data to be sent. */

#define END_OF_TRANS ″EOP″ /* End-of-transmission indicator: */

 /* must be the same as in pvcrcv. */

/**/

/* Function main */

/* Description This program is designed to demonstrate usage of the X.25 */

/* API. */

/* It allocates a permanent virtual circuit, sends some data */

/* and then sends a reset. After receiving the */

/* reset-confirmation, the program sends some more data. */

156 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

/* Example Program pvcrcv is designed to receive the data sent */

/* by this program. */

/* Note that, in a production program, you should check the */

/* return code from each subroutine call and take appropriate */

/* action. */

/* Return 0 if successful */

/* 1 otherwise */

/**/

int main(

 int argc,

 char *argv[])

{

 /***/

 /* The following structures are defined in the x25sdefs.h file. */

 /***/

 struct ctr_array_struct ctr_array[1]; /* One counter in the array. */

 struct cb_msg_struct cb_msg;

 struct cb_pvc_alloc_struct cb_pvc;

 struct cb_res_struct cb_res;

 struct cb_link_name_struct cb_link_name;

 struct cb_data_struct cb_data;

 int conn_id; /* Connection identifier to associate with this link.*/

 int ctr_id; /* Counter identifier for this link. */

 int ctr_num = 1; /* Number of counters in the counter array. */

 int rc; /* Return codes from various subroutines. */

 /***/

 /* Initialize the API for access to a link. */

 /***/

 cb_link_name.flags = X25FLG_LINK_NAME;

 cb_link_name.link_name = LINK_NAME;

 rc = x25_init(&cb_link_name);

 if (rc < 0)

 {

 (void)printf(″%s: x25_init failed : x25_errno = %d errno = %d\n″,

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 {

 /**/

 /* Get a counter to be used to notify us of incoming messages. */

 /**/

 ctr_id = x25_ctr_get();

 /**/

 /* Set up flags to show that a link and a channel number are supplied. */

 /* Then allocate the permanent virtual circuit for this application. */

 /**/

 cb_pvc.flags = X25FLG_LINK_NAME | X25FLG_LCN;

 cb_pvc.link_name = LINK_NAME;

 cb_pvc.lcn = LOG_CHAN_NUM;

Chapter 10. Common Input/Output Emulation 157

conn_id = x25_pvc_alloc(&cb_pvc,ctr_id);

 if (conn_id < 0)

 {

 (void)printf(″%s: x25_pvc_alloc failed : x25_errno = %d errno = %d\n″,

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 {

 /**/

 /* Now the PVC is available, send some data. */

 /**/

 cb_data.flags = X25FLG_DATA;

 cb_data.data_len = strlen(INFO);

 cb_data.data = INFO;

 (void)printf(″%s: Sending some data...″,argv[0]);

 (void)x25_send(conn_id,&cb_data);

 /**/

 /* Send a reset. */

 /**/

 (void)printf(″%s: Resetting the circuit...″,argv[0]);

 (void)x25_reset(conn_id,&cb_res);

 /**/

 /* After sending a reset packet, you must wait for the reset confirm */

 /* to arrive. */

 /**/

 ctr_array[0].flags = X25FLG_CTR_ID;

 ctr_array[0].flags |= X25FLG_CTR_VALUE;

 ctr_array[0].ctr_id = ctr_id;

 (void)x25_ctr_wait(ctr_num,ctr_array);

 /***/

 /* There is now a message ready to be received. If it is anything */

 /* other than the expected reset-confirmation, we: */

 /* free the permanent virtual circuit */

 /* remove the counter. */

 /* terminate the API. */

 /**/

 (void)x25_receive(&conn_id,&cb_msg);

 if (cb_msg.msg_type != X25_RESET_CONFIRM)

 {

 (void)printf(″%s: Did not receive expected reset confirm″,argv[0]);

 (void)x25_pvc_free(conn_id);

 (void)x25_ctr_remove(ctr_id);

 (void)x25_term(&cb_link_name);

 return(1);

 }

 (void)printf(″%s: Received reset confirm...″,argv[0]);

158 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

/**/

 /* Now send some more data */

 /* The last block of data to be sent is the end-of-transmission */

 /* indicator specified by END_OF_TRANS. This is understood by the */

 /* PVC receiver example program, pvcrcv. */

 /**/

 cb_data.data_len = strlen(INFO2);

 cb_data.data = INFO2;

 (void)printf(″%s: Sending some data...″,argv[0]);

 (void)x25_send(conn_id,&cb_data);

 (void)printf(″%s: Sending last block of data...″,argv[0]);

 cb_data.data_len = strlen(END_OF_TRANS);

 cb_data.data = END_OF_TRANS;

 (void)x25_send(conn_id,&cb_data);

 /**/

 /* Free up any resources allocated during the program before ending: */

 /* free the permanent virtual circuit */

 /* remove the counter. */

 /* terminate the API. */

 /**/

 (void)x25_pvc_free(conn_id);

 (void)x25_ctr_remove(ctr_id);

 (void)x25_term(&cb_link_name);

 }

 }

 return(0);

}

X.25 Example Program pvcrcv: Receive Data Using a PVC

This program uses a permanent virtual circuit (PVC) to make a call. It allocates the circuit, receives data,

and is prepared to handle a reset by sending a reset-confirmation packet. Example program pvcxmit is

designed to send the data received by this program.

Program Description

The X.25 program uses the following steps:

 1. Initialize the API for the port specified by the LINK_NAME value (x25_init).

 2. If initialization failed, the program displays a message and exits.

 3. Get a counter to be used to wait for incoming messages (x25_ctr_get).

 4. Allocate a PVC to the port, using the logical channel number specified by the LOG_CHAN_NUM

value (x25_pvc_alloc).

 5. If PVC allocation failed, the program displays a message and exits.

 6. Wait for an incoming message (x25_ctr_wait).

 7. Receive the incoming message (x25_receive).

 8. Test the msg_type in cb_msg_struct:

a. If the incoming message is a reset indication, send a reset confirmation (x25_reset_confirm).

b. If the incoming message is data, display it on the screen. (If it is the end-of-transmission indicator

specified in the END_OF_TRANS value, print a message saying that transmission has ended.)

Free the storage allocated to the structure cb_msg_struct.

Chapter 10. Common Input/Output Emulation 159

9. Free the permanent virtual circuit (x25_pvc_free).

10. Remove the counter (x25_ctr_remove).

11. Terminate the API for port x25s1 (x25_term).

Example Program pvcrcv

/* X.25 Example Program pvcrcv. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <x25sdefs.h>

#define LINK_NAME ″x25s0″ /* Name of X.25 port. */

#define LOG_CHAN_NUM (1) /* PVC logical channel number. */

#define END_OF_TRANS ″EOP″ /* End-of-transmission indicator; */

 /* must be the same as in pvcxmit. */

/***/

/* Function main */

/* Description This program is designed to demonstrate usage of the X.25 */

/* API. */

/* It allocates a permanent virtual circuit, receives data and */

/* is prepared to handle a reset, by sending a */

/* reset-confirmation. */

/* Example Program pvcxmit is designed to send the data */

/* received by this program. */

/* Note that, in a production program, you should check the */

/* return code from each subroutine call and take appropriate */

/* action. */

/* Return 0 if successful */

/* 1 otherwise */

/***/

int main(

 int argc,

 char *argv[])

{

 /***/

 /* The following structures are defined in the x25sdefs.h file. */

 /***/

 struct ctr_array_struct ctr_array[1]; /* One counter in the array. */

 struct cb_msg_struct cb_msg;

 struct cb_pvc_alloc_struct cb_pvc;

 struct cb_link_name_struct cb_link_name;

 int conn_id; /* Connection identifier to associate with this link.*/

 int ctr_id; /* Counter identifier for this link. */

 int rc; /* Return codes from various subroutines. */

 int ctr_num = 1; /* Number of counters in the counter array. */

 int end_tx = 0; /* Whether end of transmission has been reached. */

 /***/

 /* Initialize the API for access to a link. */

 /***/

160 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

cb_link_name.flags = X25FLG_LINK_NAME;

 cb_link_name.link_name = LINK_NAME;

 rc = x25_init(&cb_link_name);

 if (rc < 0)

 {

 (void)printf(″%s: x25_init failed : x25_errno = %d errno = %d\n″,

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 {

 /**/

 /* Get a counter to be used to notify us of incoming messages. */

 /**/

 ctr_id = x25_ctr_get();

 /**/

 /* Set up flags to show that a link and a channel number are supplied. */

 /* Then allocate the permanent virtual circuit for this application. */

 /**/

 cb_pvc.flags = X25FLG_LINK_NAME | X25FLG_LCN;

 cb_pvc.link_name = LINK_NAME;

 cb_pvc.lcn = LOG_CHAN_NUM;

 conn_id = x25_pvc_alloc(&cb_pvc,ctr_id);

 if (conn_id < 0)

 {

 (void)printf("%s: x25_pvc_alloc failed : x25_errno = %d errno = %d\n",

 argv[0],x25_errno,errno);

 return(1);

 }

 else

 {

 /**/

 /* The PVC link has now been set up and data can be received. */

 /* Wait for any message to arrive for this application */

 /**/

 ctr_array[0].flags = X25FLG_CTR_ID;

 ctr_array[0].flags |= X25FLG_CTR_VALUE;

 ctr_array[0].ctr_id = ctr_id;

 ctr_array[0].ctr_value = 0;

 do

 {

 (void)x25_ctr_wait(ctr_num,ctr_array);

 /**/

 /* Receive the message */

 /**/

 (void)x25_receive(&conn_id,&cb_msg);

 /**/

 /* If a reset-indication message is received, we must */

Chapter 10. Common Input/Output Emulation 161

/* send a reset-confirmation message as soon as possible. */

 /**/

 if (cb_msg.msg_type == X25_RESET_INDICATION)

 {

 (void)printf(″%s: Received reset indication...″,argv[0]);

 (void)x25_reset_confirm(conn_id);

 }

 /* If data is received, we display it on the screen, unless it is */

 /* end-of-transmission indicator specified by END_OF_TRANS. */

 else if (cb_msg.msg_type == X25_DATA)

 {

 (void)printf("%s: Incoming Data : ",argv[0]);

 (void)printf("%s\n",cb_msg.msg_point.cb_data->data);

 if (strcmp(cb_msg.msg_point.cb_data->data,END_OF_TRANS) != 0)

 {

 (void)printf("%s",cb_msg.msg_point.cb_data->data);

 (void)printf("\n");

 }

 else

 {

 (void)printf("%s: End of transmission received",argv[0]);

 end_tx = 1;

 }

 /**/

 /* The X.25 API allocates memory for information to be returned. */

 /* Although there are no memory constraints in this application, */

 /* the space is freed when the information has been displayed. */

 /**/

 free((char *)cb_msg.msg_point.cb_data->data);

 free((char *)cb_msg.msg_point.cb_data);

 }

 else

 {

 (void)printf("%s: Unexpected packet received",argv[0]);

 }

 } while (end_tx == 0);

 /**/

 /* Free up any resources allocated during the program before ending: */

 /* free the permanent virtual circuit */

 /* remove the counter */

 /* terminate the API. */

 /**/

 (void)x25_pvc_free(conn_id);

 (void)x25_ctr_remove(ctr_id);

 (void)x25_term(&cb_link_name);

 }

 }

 return(0);

}

List of X.25 Programming References

This list, for programs using the COMIO emulation port, includes:

v Subroutines

v API structures

v API error codes

v Header file

v Example programs

162 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Subroutines

The list of X.25 subroutines is organized by function:

v Initialization and termination subroutines

v Network subroutines

v Counter subroutines

v Management subroutines

Initialization and Termination Subroutines

The subroutines that begin and end X.25 sessions are:

 x25_init Initializes the API for a particular X.25 port.

x25_term Terminates the API for a particular X.25 port.

Network Subroutines

The network subroutines that establish calls, transmit data, clear calls, and allocate network resources are:

 x25_ack Acknowledges data received with the D-bit set.

x25_call Sets up a switched virtual circuit and establishes the call.

x25_call_accept Accepts an incoming call.

x25_call_clear Clears a call.

x25_listen Starts listening for incoming calls.

x25_deafen Turns off listening.

x25_interrupt Sends an interrupt.

x25_pvc_alloc Allocates a permanent virtual circuit.

x25_pvc_free Frees a permanent virtual circuit.

x25_receive Receives a message and indicates the message type.

x25_reset Resynchronizes communications.

x25_reset_confirm Sends a reset-confirmation message.

x25_send Sends data.

Counter Subroutines

To monitor and control what is happening during a call, your application can use these counters supplied

by the API:

 x25_ctr_get Gets a counter.

x25_ctr_remove Removes a counter.

x25_ctr_test Gets the current value of a counter.

x25_ctr_wait Suspends the current process until one of the counters has exceeded a specified value,

usually 0.

Management Subroutines

These subroutines can be used to control and monitor X.25 links:

 x25_device_query Returns information about some of the attributes of an X.25 adapter.

x25_circuit_query Returns information about a virtual circuit.

API Structures

The list of X.25 API structures is organized by function:

v Miscellaneous structures

v Structures used to establish calls and transfer data

v Structures used to clear, interrupt, and reset calls

Chapter 10. Common Input/Output Emulation 163

v Structures used to manage X.25 communications

Miscellaneous Structures

 cb_link_name_struct Used to indicate the name of the X.25 port.

cb_msg_struct Used to indicate the type of message being received.

ctr_array_struct Used to store the counter values and identifiers for use with the x25_ctr_wait

structure.

Structures Used to Establish Calls and Transfer Data

 cb_call_struct Used for calls made and accepted.

cb_data_struct Used for data transferred during a call.

cb_fac_struct Used for information about optional facilities being used.

cb_pvc_alloc_struct Used to indicate the logical channel number and port assigned to a PVC.

Structures Used to Clear, Interrupt, and Reset Calls

 cb_clear_struct Used for calls being cleared.

cb_int_data_struct Used for data sent or received in an interrupt packet.

cb_res_struct Used for data sent or received in a reset-request packet.

Structures Used to Manage X.25 Communications

 cb_circuit_info_struct Used for information about a virtual circuit.

cb_dev_info_struct Used for information about an X.25 adapter.

cb_link_stats_struct, x25_query_data, and x25_stats Used for statistics for an X.25 port.

API Error Codes

The list of X.25 API error codes is organized by function:

v X.25-Specific error codes

v System error codes

X.25-Specific Error Codes

For X.25-specific error conditions, the x25_errno flag is set to one of the following values:

 X25ACKREQ One or more packets require acknowledgement. Issue the x25_ack subroutine before

continuing.

X25AUTH The calling application does not have system permission to control the status of the link.

X25AUTHCTR The application does not have permission to remove this counter because it did not issue

the corresponding the x25_ctr_get subroutine.

X25AUTHLISTEN The application cannot listen to this name, because the corresponding entry in the routing

list has a user name that excludes the user running the application. Use another routing

list name, or change the user name in the routing list entry.

X25BADCONNID The connection identifier is invalid.

X25BADDEVICE The X.25 port name is invalid.

X25BADID The connection identifier or listen identifier is invalid.

X25BADLISTENID The listen identifier is invalid.

X25CALLED The called address is invalid. Check that the address is correct and is a null-terminated

string.

X25CALLING The calling address is invalid. Check that the address is correct and is a null-terminated

string.

X25CTRUSE The counter has a nonzero value.

164 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X25INIT X.25 is already initialized for this X.25 port, so it cannot be initialized again.

X25INVCTR The specified counter does not exist. (In the case of the x25_ctr_wait subroutine, the

counter is one of an array of counters.)

X25INVFAC An optional facility requested is invalid. Check the structure cb_fac_struct.

X25INVMON The monitoring mode is invalid.

X25LINKUP The X.25 port is already connected.

X25LINKUSE The X.25 port still has virtual circuits established; it may still be in use. Either free all

virtual circuits or disconnect the port using the override.

X25LONG The parameter is too long. Check each of the parameters for this subroutine.

X25MAXDEVICE Attempts have been made to connect more X.25 ports than are available. Check the smit

configuration to see how many ports are available.

X25MONITOR X.25 traffic on this X.25 port is already being monitored by another application. The other

application must stop monitoring before any other application can start monitoring.

X25NAMEUSED Calls for this name are already being listened for.

X25NOACKREQ No packets currently require acknowledgment.

X25NOCARD The X.25 adapter is either not installed or not functioning.

X25NOCTRS No counters are available.

X25NODATA No data has arrived for this connection identifier. Issue the x25_ctr_wait subroutine to be

notified when data arrives.

X25NODEVICE The X.25 device driver is either not installed or not functioning.

X25NOLINK The X.25 port is not connected. Issue the x25_link_connect subroutine, or use the

xmanage command to connect it.

X25NONAME The name is not in the routing list. Add the name or use one that is already in the list.

X25NOSUCHLINK The X.25 port does not exist. Check the smit configuration.

X25NOTINIT The application has not initialized X.25 communications. Issue the x25_init subroutine.

X25NOTPVC This is not defined as a permanent virtual circuit (PVC). Check the smit configuration.

X25PROTOCOL An X.25 protocol error occurred.

X25PVCUSED This permanent virtual circuit (PVC) is already allocated to another application. The other

application must free the PVC before it can be used.

X25RESETCLEAR The call was reset or cleared during processing. Issue the x25_receive subroutine to

obtain the reset-indication or clear-indication packet. Then issue the x25_reset_confirm

or x25_clear_confirm subroutine, as necessary.

X25SYSERR An error occurred that was not an X.25 error. Check the value of errno.

X25TABLE The routing list cannot be updated because the xroute command is using it. Try again

after xroute command has completed.

X25TIMEOUT A time-out problem occurred.

X25TOOMANYVCS No virtual circuits are free on the listed X.25 ports.

X25TRUNCTX The packet size is too big for internal buffers, so data cannot be sent.

System Error Codes

For non-X.25-specific error conditions, the x25_errno flag is set to X25SYSERR, and the errno global

variable is set to one of the following values:

 EFAULT Indicates a bad address pointer.

EINTR A signal was caught during the call.

EIO An I/O error occurred.

ENOMEM Could not allocate memory for device information.

ENOSPC There are no buffers available in the pool.

EPERM Calling application does not have sufficient authorization.

Header Files

 x25sdefs.h Contains the structures used by the X.25 application programming interface (API).

Chapter 10. Common Input/Output Emulation 165

Example Programs

 pvcrcv Receives a call using a permanent virtual circuit.

pvcxmit Sends a call using a permanent virtual circuit.

svcrcv Receives a call using a switched virtual circuit.

svcxmit Sends a call using a switched virtual circuit.

166 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 11. X.25 Power Management

This section applies to AIX 5.1 and earlier.

AIXlink/X.25 for drivers has been updated to provide for Power Management (PM) support. PM is a

technique that enables hardware and software to minimize system power consumption. PM is generally

only important to low-end models, such as Notebooks and systems operating on battery.

When Power Management is enabled, the system enters a power-saving mode under a number of

conditions including the expiration of the idle timer, a direct command from the user, a low battery, or the

closing of the Notebook lid. PM state transitions include: enable, standby, suspend, hibernation, and

shutdown. Each transition implies further decreasing the power supply to the various system components.

Only the suspend, hibernation, and shutdown states have any impact on X.25 connections.

Impact to External Connection - Network Provider

From an X.25 standpoint, bringing a system to the suspend, hibernation, or shutdown states results in

loss of power to the adapters. All network connections are lost. Externally, this can be viewed as pulling

the physical connection (cable), since there is a complete loss of signal power at the physical layer.

Since all signals are dropped at the physical layer, there is no opportunity for the local DTE packet layer to

send out clear requests to the DCE packet layer. Similarly, the frame layer does not go through the usual

DISC/UA sequence prior to bringing down the link level. All X.25 connections remain down until the system

is re-enabled.

Once power is restored, all X.25 physical connections previously up are restored. Two possible exceptions

are dial-up connections and ports controlled directly by DLPI applications. For dial-up, even though the

physical layer is reinitialized for two-way activation, these connections are only physically reconnected

when there is user activity, such as an outgoing call request or an incoming call. Likewise, for DLPI ports,

it is necessary for the applications to reconnect (DL_CONNECT request) to activate the port.

Note: Restoring an X.25 connection refers to bringing up the physical, frame, and packet layers

between the local DTE and DCE. Switched virtual circuits (SVCs) that were active before the power

loss have been cleared. Permanent virtual circuits (PVCs) have been reset. It is up to the

corresponding applications to re-establish the SVCs and properly resynchronize the PVCs.

Impact to Local Applications: DLPI, TCP/IP, NPI, COMIO, and PAD

A system shutdown impacts X.25 applications differently than either a suspend or hibernation transition.

In the case of a shutdown, all user applications are terminated. With a system shutdown, no attempt is

made to preserve the current user state before powering off. On bring-up, those ports and interfaces

defined in the ODM are newly configured. All X.25 user application need to be restarted after power-on.

In the case of the suspend and hibernation states, there is an attempt to preserve as much of the

current system state as possible in order to make the off-on cycle transparent to user applications. All user

applications remain active. For X.25, however, the network connections have been physically lost and

restarted. Losing the network connections directly impacts X.25 applications. The Power Management

suspend and hibernation power-off and power-on cycles are generally not completely transparent.

The following highlights the expected behaviors during a PM suspend or hibernation power-off and

power-on cycle for each of the programming interfaces:

© Copyright IBM Corp. 2001, 2005 167

DLPI Receives a DL_DISCONNECT indication. It is up to the DLPI application to properly

handle the indication. The port is not activated until a new DL_CONNECT request is

issued by the application. It is not necessary to re-bind to the port since all the

DL_BINDs are maintained. For detailed information on DLPI, refer to the DLPI

Overview.

TCP/IP Provides a highly robust and transparent interface. In most cases, it is transparent to

the application that the underlying virtual circuit was reset or cleared. As long as the

application remains active, the X.25 IF driver attempts to re-establish the virtual circuit.

If it succeeds in establishing the connection, the power-off/power-on cycle is

transparent to the application. For information on sockets, refer to Sockets Overview in

AIX 5L Version 5.3 Communications Programming Concepts. For information on TCP/IP

commands, refer to AIX 5L Version 5.3 Commands Reference.

NPI Receives N_DISCON_INDs on all active SVCs. Likewise, N_RESET_INDs

(RESET_reason: N_NET_LINK_DOWN/N_NET_LINK_UP) are received on all

configured and bound PVCs. The application needs to properly handle these primitives.

Note that all N_BIND_REQs are maintained as long as the application does not unbind,

close, or exit. This implies that all PVCs remain bound, and all listens are still active. All

SVCs need to be re-established through new N_CONN_REQs/N_CONN_INDs. For

detailed information on NPI, refer to the NPI Overview.

COMIO Emulation In the case of a base X.25 API application running through the COMIO emulator, all

active calls (SVCs) are cleared and all PVCs are reset. Before the sessions are

re-established, the application needs to ensure that it has properly handled the

completion of the aborted sessions. A Library API user needs to read all clears and

resets (x25_receive), while an application using the COMIO emulator need to complete

a CIO_HALT/CIO_HALT_DONE cycle for all sessions. It is not necessary for the

application to reinitialize (x25_init), reattach any PVCs (x25_pvc_alloc/CIO_START-
logical_channel), or re-establish any listens (x25_listen/ CIO_START-listen_name).

However, it is up to the application to re-establish any SVCs (x25_call/CIO_START,

x25_call_accept/ CIO_START). For detailed information on the base X.25 API, refer to

X.25 Application Programming Interface in Common Input/Output Emulation.

PAD All active PAD connections are cleared. If using the xspad application, a CLEAR is

received on all active sessions. PAD sessions can be re-established by issuing the

appropriate CALL commands. For more detailed PAD information, refer to Packet

Assembler/Disassembler (PAD) Overview.

Power Management Limitation Warnings

The following is a list of Power Management warnings:

 Changing configuration

during suspend/hibernation

Altering the system configuration, such as devices, ports, etc., while the system is in

the suspend or hibernation state transitions can cause unpredictable results. This

could cause loss of data, file system corruption, system crashes, or a failure to

resume from the suspend or hibernation states.

Non-PM-aware device

drivers

If a device driver is installed that is not PM-aware, unpredictable results could occur

when resuming from suspend or hibernation. If a non-PM-aware device driver is

installed, the suspend and hibernation states must NEVER be used. The following

command can be run with root authority to disable the states, effective on the next

system boot:

/usr/lib/boot/disable_hibernation

To re-enable these states, use the following command, effective on the next system

boot:

/usr/lib/boot/enable_hibernation

Booting from CD-ROM or

other

media after hibernation

Accessing the rootvg from maintenance mode, such as a CD-ROM boot when a valid

hibernation image exists, can result in loss of data and file system corruption.

168 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Maintenance modes after

hibernation

To avoid loss of data and file system corruption, maintenance modes should only be

used after normal system shutdown or power-off, not after a hibernation power-off.

Network connections during

suspend/hibernation

Network connections are disconnected during the suspend and hibernation states.

Since locally cached data will not be available to other nodes on the network during

this time and network activity cannot be monitored by the local node during this time,

it is recommended that the suspend and hibernation states NOT be used when

running network interfaces such as X.25, TCP/IP, NFS, AFS®, DCE, SNA, OSI,

NetBIOS, etc.

The following command can be run with root authority to disable the states, effective

on the next system boot:

/usr/lib/boot/disable_hibernation

To re-enable this function, use the following command, effective on the next system

boot:

/usr/lib/boot/enable_hibernation

Power Button Behavior When PM is enabled, the power button is software controlled. If there is a system

problem, the software necessary to make the requested Power Management state

transition using the power switch may not be able to run. In such a situation, it should

always be possible to turn off the power immediately by pressing the power button

three times quickly (within a two-second period). This overrides whatever state

transition was selected for the power switch and requires a full boot.

In addition, if the PM daemon (/usr/bin/pmd) is never started (by default, an entry in

/etc/inittab), the power switch acts as if there was no Power Management. A single

button press turns off the system. If /usr/bin/pmd is started and then killed, the first

two button presses are ignored and the third turns off the system. These button

presses can be over any period of time as long as /usr/bin/pmd is not restarted.

Chapter 11. X.25 Power Management 169

170 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Chapter 12. X.25 Problem Determination

Flashing 888 Problems

Flashing 888-102

An initial value of 102 indicates an unexpected system halt during normal operation.

For unexpected system halts, the string of three-digit display values has the following format:

888 102 mmm ddd

where mmm is a value indicating the cause of the halt and ddd is a value indicating whether or not a system

dump was obtained.

Refer to the hardware problem determination procedures supplied with your system. If these procedures

return an SRN, record that SRN in item 4 of the Problem Summary Form and report the problem to your

service organization.

If the diagnostics do not detect a problem, record SRN 101-mmm in item 4 of the Problem Summary Form

and report the problem to your service organization. If a system dump was obtained, copy the dump to

removable media and be prepared to make it available to your service organization.

The following list gives the possible values of mmm, the second value that follows the 888, and the cause

of the system halt invoking that value:

v 200 Machine check due to memory bus error (RAS/CAS Parity).

v 201 Machine check due to memory timeout.

v 202 Machine check due to memory card failure.

v 203 Machine check due to address exception: address out of range.

v 204 Machine check due to attempted store into ROS.

v 205 Machine check due to uncorrectable ECC due to address parity.

v 206 Machine check due to uncorrectable ECC.

v 207 Machine check due to undefined error.

v 300 Data storage interrupt - processor type.

v 32x Data storage interrupt - input/out exception - IOCC. The number represented by x is the BUID.

v 38x Data storage interrupt - input/output exception - SLA. The number represented by x is the BUID.

v 400® Instruction storage interrupt.

v 500 External interrupt - Scrub - memory bus error (RAS/CAS Parity).

External interrupt - DMA - memory bus error (RAS/CAS Parity).

External interrupt - undefined error.

v 52x External interrupt - IOCC type - channel check.

External interrupt - IOCC type - bus timeout.

External interrupt - IOCC type - keyboard external.

The number represented by x is the IOCC number.

v 700 Program interrupt.

v 800 Floating point unavailable.

The value of ddd, the third value following the 888, indicates the current dump status. The possible values

and meanings of ddd are:

v 0c0 Dump completed successfully.

© Copyright IBM Corp. 2001, 2005 171

v 0c4 Partial dump completed.

v 0c5 Dump failed to start. An unexpected error occurred while the system was attempting to write to the

dump device.

v 0c8 Dump failed. No primary dump device is configured.

Flashing 888-103

An initial value of 103 indicates a diagnostic message. Diagnostic messages are displayed in the

three-digit display when the console display is not present, or is unavailable because of a display or

adapter failure, or when a failure is detected that prevents the completion of IPL.

The string of three-digit display values identifies the SRN, and up to four field replacement Units (FRUs).

The string of three-digit display values has the following format:

v 888 103 nnn nnn c01 1ee 2ee 3dd 4dd 5 ss 6ss 7ff 8ff

v c02 1ee 2ee 3dd 4dd 5ss 6ss 7ff 8ff

v c03 1ee 2ee 3dd 4dd 5ss 6ss 7ff 8ff

v c04 1ee 2ee 3dd 4dd 5ss 6ss 7ff 8ff

The two values nnn nnn represent the SRN. The values c01, c02, c03 and c04 indicate the first, second,

third and fourth FRUs, respectively. For each FRU, the value sequence 1ee 2ee 3dd 4dd 5ss 6ss 7ff 8ff is

the location code. Refer to your diagnostic information for interpretation of these location codes.

Record the SRN in item 4 of the Problem Summary Form and the location codes in item 6 of the Problem

Summary Form. Then, report the problem to your service organization.

Forcing a System Dump

If the system did not produce a dump automatically because of a hang condition, obtain a dump while the

problem exists.

Note: The use of the Reset button is the preferred method of obtaining dumps, because in a hang

condition it is the dump trigger most likely to succeed. If the system has dumped and halted

automatically, the Reset button will scroll the LEDs rather than trigger another dump.

Attention: Obtaining a dump overwrites a previous dump or other data stored on the dump device.

If the console or a tty is accepting commands, you can start a dump using the sysdumpstart command.

The sysdumpstart command allows you to start a dump to the primary or the secondary dump device. If

the system is accepting commands, use the following procedure:

1. To determine which devices have been assigned as the primary and secondary dump devices, enter:

sysdumpdev -l

2. To start a dump to the primary dump device, log into the system as the root user and enter:

sysdumpstart -p

If the system is not accepting commands, then try one of the following:

v If there is a keyboard attached to the system unit, you can start a dump using the dump key sequences

(Ctrl-alt-numpad1 and Ctrl-alt-numpad2). The dump key sequences allow you to start a dump to the

primary or the secondary dump device.

v The Reset button can be used to start a dump to the primary dump device. To start a dump, turn the

Key Mode switch to the Service position and press the Reset button.

172 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X.25 Problem Diagnosis

Before investigating any problem, ensure that X.25 communications are set up correctly. The following

commands may help diagnose the problem:

v The x25mon command.

v The lsx25 command.

v X.25 clear and reset codes .

If it is required to trace the internal working of the X.25 stack, the following trace points are available.

These traces, along with a line trace from x25mon, a microcode trace using sx25debug and a system

configuration table form lsx25, would help diagnose the code’s behavior.

 25C Packet layer

329 X.25 TCP/IP interface

32A NPI

32B X.25 system utilities

32C Triple-X PAD

33B COMIO emulation

33C Adapter driver

2D8 Frame layer (for ports using the hdlc driver)

41E Physical layer (for ports using the hdlc driver)

253 XOT layer (for ports using the xot device driver)

47D XOL layer (for ports using the xol device driver)

The traces produced from these trace points are not in a form that is directly useful to a system user or

system administrator. They are designed to allow diagnosis of code flow.

The frame layer and physical layer code, running on the adapter, are also equipped with error point

tracing. If necessary, it is possible to capture the error logs from the microcode using sx25debug.

See the following for further discussion of X.25 problems and solutions:

v Diagnosing Problems with Connecting to the X.25 Network

v Diagnosing Problems with Making an Outgoing X.25 Call

v Diagnosing Problems with Receiving an Incoming X.25 Call

v Diagnosing X.25 Packet Problems

v Diagnosing X.25 Command Problems

v Diagnosing XOT Problems

v Diagnosing XOL Problems

Starting Traces

The following procedure describes how to take a trace:

1. Start the x25mon and system traces:

x25mon -fpct -n sx25a0

trace -a -j 25C,33B,329,33C

2. Recreate the problem.

3. Stop the traces:

trcstop

kill <pid> of x25mon

Chapter 12. X.25 Problem Determination 173

Possible Causes

1. Verify that the cables are attached correctly and are secure.

2. Verify that the modem-to-modem eliminator/switch is working properly.

3. Verify that the board is seated properly.

4. Verify that the device driver and ports are configured correctly.

Diagnosing Problems with Connecting to the X.25 Network

Problem 1

When adding a port or driver, the add fails with the message A device is already configured at the

specified location.

Suggestions

v This indicates that another device is using the resources that are needed. For example, an X.25 port is

already configured on the port number requested. Another example is a device driver is already

available on the adapter selected. The lsx25 command shows how the X.25 system is configured.

Problem 2

Attempts to connect an X.25 port fail when making the port via mksx25 or through SMIT. The physical and

the frame layers remain down. The x25mon command shows that there is no line activity.

Suggestions

v The cable is absent or loose.

v There is no carrier (DCD or RLSD) from the network terminating unit (NTU).

v There is a cabling problem such as an extra null.

v The X.25 adapter is not seated correctly.

Problem 3

Attempts to connect an X.25 port fail. The physical layer is established for several seconds, as shown by

the lights on the NTU, but then goes down again. The x25mon command indicates that there is no line

activity.

Suggestions

v The X.25 adapter is expecting a clock signal and not receiving one. Adjust the NTU to provide clocking.

v The cable is loose, causing the clock pin not to be connected.

Problem 4

Attempts to connect an X.25 port fail. The physical layer is connected but the frame layer fails to come up.

x25mon monitoring the frame layer shows a sequence such as a string of SABMs.

Suggestion

The packet layer type of line attribute is DCE rather than DTE for this X.25 adapter. Ensure that the

DTE/DCE switching configured in SMIT is suitable for the device being attached to.

The frame layer might need to be set for automatic detection. Use SMIT to change it.

174 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Diagnosing Problems with Making an Outgoing X.25 Call

Problem 5

On starting xtalk, the initial screen contains the message You cannot make outgoing calls. This implies

that there are no COMIO emulation ports, x25s.

Suggestion

Use lsx25 to see if there any COMIO emulation ports available. If not, add COMIO emulation to any of the

X.25 ports, sx25a, that require them.

Problem 6

Incoming calls are arriving, but outgoing calls cannot be made, on a switched virtual circuit (SVC).

Suggestions

v The configuration of the SVC logical channel numbers is incorrect. Check your network subscription and

use SMIT to check the network attributes.

v Use SMIT to check that outgoing calls and local charges are allowed.

Problem 7

A call is being cleared with a cause code from 1 through 127.

Suggestion

The diagnostic code gives details of why the call is being cleared. Common causes are that the network

user address (NUA) is not known, the X.25 line is not connected, or unsupported optional facilities have

been requested.

Note: Cause codes 80 through FF are set by SNA. When SNA is being used, the diagnostics are

interpreted differently.

Diagnosing Problems with Receiving an Incoming X.25 Call

Problem 8

The x25mon command indicates that an incoming call has arrived at the adapter, but it is not being routed

to the application that is running.

Suggestions

v If the call is being cleared with cause 0 and diagnostic 0, it may be that the application is not listening to

a name in the routing list that matches the incoming call. There may be another name in the routing list

that is a better match for the call and has reject (R) specified as the action.

v The incoming call may have requested an optional facility that is not allowed by the current

configuration.

v The incoming call may have arrived on an invalid logical channel. Check your network subscription and

the network configuration attributes in your SMIT configuration.

v Use SMIT to check that incoming calls are allowed.

v Check the cause and diagnostic codes with the standard list of codes and any network-specific codes.

v A different application may be listening to criteria that are a better match those which your application is

listening. Check for another program using X.25.

Chapter 12. X.25 Problem Determination 175

Diagnosing X.25 Packet Problems

Problem 9

Whenever a packet is sent on a permanent virtual circuit (PVC), the network sends a clear-indication

packet.

Suggestion

The PVC logical channel number ranges are set incorrectly. Check your network subscription and your

SMIT configuration.

Problem 10

When sending a data packet with the D-bit set on an switched virtual circuit (SVC), a reset-request packet

is sent instead.

Suggestion

The intention to use D-bits must be made clear when the call is originally established, either in the

call-request packet or in the call-accepted packet.

Problem 11

When sending a data packet with the D-bit set on a permanent virtual circuit (PVC), a reset packet is sent

instead.

Suggestion

Use SMIT to configure the PVC to use D-bits.

Problem 12

When sending an interrupt packet with more than one byte of user data, a reset packet is sent instead.

Suggestion

The 1980 version of X.25 supports exactly one byte of user data in the interrupt packet. The 1984 version

supports up to 32 bytes. Check your subscription and the value of the CCITT support attribute in SMIT.

Problem 13

When sending large packets on slow lines, the link sometimes gets restarted.

Suggestion

The CCITT timer, T1, may have expired. Use SMIT to increase the value of the T1 attribute, or use smaller

packets. Before changing T1 or packet size values, verify these values with your network provider.

Diagnosing X.25 Command Problems

Problem 14

Attempts to start up the x25mon command on the X.25 port fails.

Suggestion

Only root may start the X.25 monitoring.

Problem 15

The xmanage, xcomms and xmonitor commands are not in AIXlink/X.25 Version 2.1.

176 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Suggestion

These commands are not shipped with AIXlink/X.25 Version 2.1. The x25mon command replaces xmonitor,

and the x25status and lsx25 commands provide link status on ports that have COMIO emulation.

Problem 16

None of the X.25 commands get past the title screen.

Suggestion

Use the echo $TERM command to find out your terminal-type setting and make sure that it matches your

actual terminal type.

Problem 17

The number of virtual circuits cannot be configured past an upper limit.

Suggestion

The maximum number of VCs supported depends on the license of the product that was purchased. Use

smit chg_sx25vcS to see the licensed number of VCs.

Diagnosing PAD Problems

Problem 18

Unable to get a CALL to complete after running xspad -l sx25a0. For example:

CLEAR DTE 0 136 -

Call cleared, by remote device, data may be lost

Suggestion

Verify that the side you are calling has a PAD or X.29 daemon running. Verify that the

switch/modem-to-modem/eliminator is configured and set up to acknowledge your call. Also verify that the

NUA is configured properly.

Problem 19

When logging in through the PAD, the display isn’t working as expected. For example, no backspace,

echo, problems with row and column widths, etc.

Suggestion

Check the stty settings and verify that they are set like a ASCII terminal. Verify that your echo, row, and

columns are set correctly.

Problem 20

Unable to get xspad -l sx25a0 to work. For example:

Unable to retrieve port ’sx25a0’ from CuAt

Suggestion

Verify that port sx25a0 is configured.

Diagnosing XOT Problems

Problem 21

After configuring a port on XOT, unable to establish an X25 call.

Chapter 12. X.25 Problem Determination 177

Suggestions

v Verify that the XOT address resolution daemon is running.

v Verify that X121-IP address mapping is correct, using the xotdisplay command.

v Use the x25mon -n<port> -x command to trace events on the XOT level.

Problem 22

Unable to establish a PVC on XOT.

Suggestion

Check PVC interface name configuration.

Diagnosing XOL Problems

Problem 23

After configuring a port on XOT, unable to establish an X25 call.

Suggestions

v Verify in both remote and local ports that the remote and local SAP as well as the MAC address are

correct.

v Verify that the SAPs used are supported.

v Verify that MAC/SAP pairs are not repeated in the same host (local or remote).

178 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix A. X.25 Commands

The following are the commands needed to program X.25:

v backupx25 Command

v chsx25 Command

v lspvc Command

v lsx25 Command

v mkpvc Command

v mksx25 Command

v removex25 Command

v restorex25 Command

v rmsx25 Command

v sx25debug Command

v x25ip Command

v x25mon Command

v x25sessions Command

v x25status Command

v xotstat Command

v xotdisplay Command

v xroute Command

v xspad Command

v xtalk Command

backupx25 Command

Purpose

Backs up the configuration information for the X.25 LPP into files.

Syntax

backupx25 [-f] [-d Directory] [-v]

backupx25 -h

Description

The backupx25 command saves information concerning the configuration and attribute information for a

particular machine to assist you with system administration. This aids customers who want to re-install the

X.25 LPP or want to replicate their setup to other machines, assuming the adapter and port information is

the same. The files produced by the backupx25 command are read by the restorex25 command to

restore your setup.

To reinstall the X.25 LPP, it is suggested that backupx25 is used to save configuration information, port

definitions be removed, re-install the X.25 LPP and then restore the configuration using the restorex25

command.

Flags

 -d Directory Specifies the name of save directory. Defaults to current directory.

© Copyright IBM Corp. 2001, 2005 179

-f Forces removal of existing backup files if they are already present in the save directory.

-h Displays the command usage.

-v Specifies verbose mode (displays messages).

Security

 Access Control: You must have root authority to run this command.

Example

To backup configuration information for the X.25 LPP in the directory /tmp/x25setup in a verbose manner,

enter:

backupx25 -d /tmp/x25setup -v

Files

 /usr/bin/backupx25 Contains the backupx25 command for AIX Version 4.

/usr/lpp/sx25/bin/backupx25 Contains the backupx25 command for AIX 3.2.5.

Related Information

The restorex25 command, lsdev command, lspvc command, mkdev command, mkpvc command,

mksx25 command, rmdev command, rmsx25 command.

chsx25 Command

Purpose

Re-initializes the attributes of an X.25 port.

Syntax

chsx25[-l Name] [-a Attribute=Value...] [-p ParentName] [-P | -T] [-q] [-w ConnectionLocation] [-f

File]

chsx25 -h

Description

The chsx25 command re-initializes the attributes of the specified X.25 port.

Flags

 -l Name Specifies the defined port, indicated by the Name parameter, in the customized devices

object class.

-p ParentName Specifies the new parent device logical name from the customized devices object class.

This flag is used only when changing the parent of the port.

-w ConnectionLocation Specifies the new connection location on the parent where this child device is to be

defined. This flag is used only when changing the connection location of the port.

Note: ConnectionLocation value corresponds to the port number where X.25 is

configured.

180 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

-a Attribute=Value Specifies the X.25 port attributes and their values. You can either use one -a flag for a

string of Attribute=Value pairs and enclose the string in single quotation marks, or use

one -a flag for each pair.

Two attributes are accepted by the chsx25 command; the network_id and

country_prefix.

network_id

Network identifier. This attribute may have one of the following values:

1 Datex-P

2 Datapac

3 Telenet

4 DDN

5 Other public

6 Other private

7 PSS-1 Extended

8 TRANSPAC

country_prefix

The data country/geographical area codes as defined in CCITT-X.121 Annex D.

The AIX/V3 X.25 Communications Cookbook also contains a listing of the

country codes under Appendix C.

-f File Reads the needed flags from the File parameter. The user should not include the -a

Attribute=Value entries within File. All attributes should be specified on the command line.

-P Changes the characteristics of the device permanently in the customized devices object

class without actually changing the device. The change can be made to the database

with the -P flag; and then by restarting the system, the changes will be applied to the

port. This flag cannot be used with the -T flag.

-T Changes the characteristics of the device temporarily without changing the customized

devices object class for the current start of the system. This flag cannot be used with the

-P flag.

-h Displays the command usage message.

-q Suppresses the command output messages from standard output and standard error.

Examples

To re-initialize X.25 on port sx25a1 with network ID of 5 and a country code of 334, enter:

chsx25 -l sx25a1 -a ’network_id=5 country_prefix=334’

Related Information

The chdev command, lsdev command, lspvc command, mkdev command, mkpvc command, mksx25

command, rmdev command, and rmsx25 command.

lspvc Command

Purpose

Lists the non-default permanent virtual circuits (PVCs) defined on an X.25 port.

Syntax

lspvc -l Name[-n Number] -O] -N]

lspvc -h

Appendix A. X.25 Commands 181

Description

The lspvc command displays the non-default PVC attribute information for an X.25 port. If the -n flag is

used, only the PVC information for that virtual circuit is displayed. If no number is specified, the information

for all PVCs defined on that port is listed.

You can display the attribute information in one of two ways. The default output is the pvc_num rx_win

rx_size tx_win tx_size and d-bit attribute information separated by spaces. The -O flag displays all the

corresponding attribute values separated by colons. Using the -N flag will suppress the header information.

Flags

 -l Name Specifies the defined port name as found in the ODM customized devices object class.

-n Number Specifies the non-default PVC virtual circuit number.

-O Displays the attribute information separated by colons for each PVC. The information for each

virtual circuit number is displayed on a different line.

-N Suppress the attribute header information.

-h Displays the command usage message.

Examples

1. To list the current PVC attribute information for all virtual circuits on port sx25a0, enter:

lspvc -l sx25a0

The system displays a message similar to the following:

pvc_num rx_win rx_size tx_win tx_size d_bit

1 3 128 3 128 1

2 3 256 3 256 0

3 7 256 7 256 0

2. To list the current PVC attribute information for non-default PVC, defined for XOT use, on port sx25a0,

enter:

lspvc -l sx25a0

The system displays a message similar to the following:

pvc_num:rx_win:rx_size:tx_win:tx_size:d_bit:l_interf_n:r_interf_n:r_addrip:r_pvc_num

1:3:128:3:128:1:sx25a0:sx25a1:111.111.1.1:2

3. To list the current PVC attribute information for virtual circuit 2 on port sx25a0, in colon format, enter:

lspvc -l sx25a0 -n 2 -O

The system displays a message similar to the following:

pvc_num:rx_win:rx_size:tx_win:tx_size:d_bit

2:3:256:3:256:0

4. To list the current PVC attribute information for all virtual circuits on port sx25a0, in colon format and

suppressing the header, enter:

lspvc -l sx25a0 -O -N

The system displays a message similar to the following:

1:3:128:3:128:1

2:3:256:3:256:0

3:7:256:7:256:0

Related Information

The chdev command, chsx25 command, lsdev command, mkdev command, mkpvc command, mksx25

command, rmdev command, and rmsx25 command.

182 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

lsx25 Command

Purpose

Lists the configuration of the X.25 support on the system.

Syntax

lsx25

Description

The lsx25 command uses information available from the system’s configuration database to display the

relationship between adapters, drivers, ports, and so forth, that are configured to use the X.25 support.

This command only shows data for devices in the available state.

There are two formats that are used to display the information. The long format displays the information in

a number of different ways to make it easier to illustrate a particular relationship or attribute. This format is

only available for the supported X.25 microchannel adapters.

The short format is a condensed subset of the long format. This format is only available for the supported

X.25 ISA and PCI adapters.

In both the long and short formats, the data is sent to stdout.

The long format is divided up into:

v The name of the machine from which the command was entered.

v A list of what adapters are in each slot of the machine and what X.25 ports have been configured to use

an adapter.

– The physical port number as shown on the adapter’s breakout cable if applicable. On single port

adapters this is always zero.

– The X.25 port configured. For example, sx25a3.

– The port’s network user address (NUA).

v Ports sorted by the X.25 port number, showing information on how the ports are referenced:

 X.25 Port Specifies the port name.

Driver Specifies the device driver associated with the adapter where the port is configured.

NUA Specifies the port’s network user address.

COMIO Specifies the port name if a COMIO emulation port is configured to this X.25 port.

TCP/IP Specifies the TCP/IP name if a TCP/IP interface is configured to this X.25 port.

Logical board Specifies the logical board number for the adapter. There is NOT a direct correlation

between this number and the associated device driver number.

Logical port Specifies a logical port number associated with each X.25 port. With the varying numbers

of ports available on the different supported adapters, a constant logical number must be

assumed to allow adapters to be moved physically in the system. Each adapter would have

a block of eight ports associated with it, though the number of configured ports may be less

than that.

v Ports sorted by the X.25 port number, showing information on the port’s physical characteristics:

 X.25 Port Specifies the port name.

Driver Specifies the device driver associated with the adapter where the port is configured.

Adapter Specifies the adapter instance that the port is on (apm for Portmaster adapters and ampx for

X.25 Interface Co-Processor/2 adapters).

Slot Specifies the slot that the adapter is in.

Physical port Specifies the port being used on the adapter.

Appendix A. X.25 Commands 183

Interface Specifies the electrical interface in use with the given adapter when using the Portmaster

adapter. The coprocessor adapters have the electrical interface selectable by the cable

used and this cannot be detected by lsx25.

v List of X.25 ports, sorted by the network user address, given in alphabetical order.

v List of COMIO emulator ports and the associated X.25 ports.

v List of TCP/IP network interfaces, the associated IP address, and X.25 port number.

The short format displays the following:

v The name of the machine from which the command was entered.

v For each X.25 port, it shows:

 ADAPTER Specifies the adapter over which the X.25 port is configured.

DRIVER Specifies the driver over which the X.25 port is configured.

PORT Specifies the port name.

COMIO Specifies the COMIO port name, if a COMIO emulation port is configured to this X.25 port.

TCPIP Specifies the TCP/IP name, if a TCP/IP interface is configured to this X.25 port.

NUA Specifies the port’s network user address.

LOGICAL BOARD Specifies the logical board number for the adapter. There is NOT a direct correlation

between this number and the associated device driver number.

LOGICAL PORT Specifies a logical port number associated with each X.25 port. With the varying number of

ports available on the different supported adapters, a constant, logical number must be

assumed to allow adapters to be moved physically in the system. Each adapter has a block

of eight ports associated with it, though the number of port available to be configured may

be less than that.

PHYSICAL PORT Specifies the port being used on the adapter.

Examples

1. Typical output for the lsx25 command printed in the long format is :

**

* Configuration report for X.25 LPP ports configured *

**

Machine gladstone

**

* Report by slot number - bus 0 *

**

Slot 1, ppr0 POWER Gt4 Midrange Graphics Adapter

Slot 4, ampx0 X.25 CoProcessor/2 Adapter

Slot 4, twd0 X.25 Streams driver

 Physical port 0 is x25 port sx25a0 [11111]

Slot 5, apm0 8-Port Portmaster Adapter/A RS-232

Slot 5, twd1 X.25 Streams driver

 Physical port 3 is x25 port sx25a1 [22222]

Slot 6, tok0 Token-Ring High-Performance Adapter

Slot 7, ricio0 IBM ARTIC960 Adapter

Slot 7, twd2 X.25 Streams driver

 Physical port 2 is x25 port sx25a3 [44444]

 Physical port 5 is x25 port sx25a2 [33333]

Slot 8, ascsi0 Wide SCSI I/O Controller Adapter

**

* Report by logical location of X.25 port *

**

X.25 Logical Logical

Port Driver NUA COMIO TCP/IP Board Port

184 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

sx25a0 twd0 11111 x25s0 n/a 0 0

sx25a1 twd1 22222 n/a xs0 1 11

sx25a2 twd2 33333 x25s1 xs1 2 21

sx25a3 twd2 44444 x25s2 n/a 2 18

**

* Report by physical location of X.25 port *

**

X.25 Phys.

Port Driver Adapter Slot Port Interface

sx25a0 twd0 ampx0 4 0 cable selectable

sx25a1 twd1 apm0 5 3 RS-232 (V.24)

sx25a2 twd2 ricio0 7 5 V.36

sx25a3 twd2 ricio0 7 2 V.36

**

* Report by Network User Address (NUA) *

**

NUA X.25 Port

11111 sx25a0

22222 sx25a1

33333 sx25a2

44444 sx25a3

**

* Report of COMIO emulators *

**

COMIO X.25 Port

x25s0 sx25a0

x25s1 sx25a2

x25s2 sx25a3

**

* Report of X.25 TCP/IP (xs) interfaces *

**

TCP/IP Address X.25 Port

xs0 1.1.1.1 sx25a1

xs1 1.1.1.2 sx25a2

2. Typical output for the lsx25 command printed in the short format is:

POWER-based Desktop X.25 system configuration

Machine: gladstone

ADAPTER DRIVER PORT COMIO TCPIP NUA LOGICAL LOGICAL PHYSICAL

 BOARD PORT PORT

dpmpa0 hdlc0 sx25a2 x25s1 333 2 16 0

dpmpa0 hdlc1 sx25a3 x25s2 xs1 44444 2 17 1

riciop0 twd0 sx25a0 x25s0 xs0 1234 0 0 0

ampx0 twd1 sx25a1 22222 1 8 0

3. Typical output for the lsx25 command used with XOT and printed in the short format is:

POWER-based Desktop X.25 system configuration

Machine: gladstone

ADAPTER DRIVER PORT COMIO TCPIP NUA LOGICAL LOGICAL PHYSICAL

 BOARD PORT PORT

 xot0 sx25a0 123456 0 0

4. Typical output for the lsx25 command used with XOT and printed in the short format is:

POWER-based Desktop X.25 system configuration

Machine: gladstone

Appendix A. X.25 Commands 185

ADAPTER DRIVER PORT COMIO TCPIP NUA LOGICAL LOGICAL PHYSICAL

 BOARD PORT PORT

 xo10 sx25a0 123456 0 0

Related Information

The chdev command, chsx25 command, lsdev command, mkdev command, mkpvc command, mksx25

command, rmdev command, and rmsx25 command.

mkpvc Command

Purpose

Creates or modifies a non-default permanent virtual circuit (PVC) on an X.25 port.

Syntax

mkpvc [-U] -lName -n Number [-r RxWindow] [-s RxSize] [-t TxWindow] [-u TxSize] [-d Dbit]

mkpvc -h

mkpvc [-U] -l Name -n Number -p Number -i Name -a IPAddress [-r RxWindow] [-s RxSize] [-t TxWindow]

[-u TxSize] [-d Dbit]

Description

The mkpvc command creates or modifies a non-default PVC for the virtual circuit number on the port

specified. Not all of the PVC attribute values need to be used. If an attribute value is not entered by the

user, the command will use the default PVC value found in the ODM for this port.

If the non-default PVC already exists, its values can be updated by issuing the -U flag along with the new

attribute values.

If XOT is used, the -p, -i, and -a flags allow you to specify the attributes required to route the PVC over

TCP/IP to an XOT peer.

Flags

 -a IPAddress Specifies the remote IP address of an XOT peer.

-i Name Specifies the remote port name of an XOT peer.

-l Name Specifies the defined port name as found in the ODM customized devices object class.

-n Number Specifies the non-default PVC virtual circuit number.

-p Number Specifies the remote PVC number of an XOT peer.

-r RxWindow Specifies the receive window size for the non-default PVC. The window size can range from

1-127.

-sRxSize Specifies the receive packet size for the non-default PVC. The packet size can range from

16-4096 for powers of 2.

-t TxWindow Specifies the transmit window size for the non-default PVC. The window size can range from

1-127.

-uTxSize Specifies the transmit packet size for the non-default PVC. The packet size can range from

16-4096 for powers of 2.

-d Dbit Specifies how the packet layer will handle the D bit. A value of 0 indicates the packet layer will

reject the D bit, and a value of 1 indicates the packet layer will allow the use of the D bit.

-U This flag allows the user to update the attribute values for a non-default PVC.

-h Displays the command usage message.

186 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Examples

1. To create a non-default PVC for virtual circuit 2, on port sx25a0, with receive and transmit window

sizes of 7, and the D bit enabled, enter:

mkpvc -l sx25a0 -n 2 -r 7 -t 7 -d 1

2. To change the receive window and packet sizes for the non-default PVC defined on virtual circuit 2 of

port sx25a0, enter:

mkpvc -l sx25a0 -n 2 -r 127 -s 2048 -U

3. To create a non-default PVC for virtual circuit 2 on port sx25a0, through XOT to remote port sx25a1

and remote virtual circuit 1, over IP address 111.111.1.1, with receive and transmit window sizes of 7

and the D-bit enabled, type the following:

mkpvc -l sx25a0 -n 2 -p 1 -i sx25a1 -a 111.111.1.1 -r 7 -t 7 -d 1

Related Information

The chdev command, chsx25 command, lsdev command, lspvc command, mkdev command, mksx25

command, rmdev command, and rmsx25 command.

mksx25 Command

Purpose

Initializes the attributes of an X.25 port.

Syntax

mksx25 { [-cClass] [-s Subclass] [-t Type] } [-l Name][-a Attribute =Value...] [-m EthernetAdapter] [

-d | -S] [-p ParentName] [-q] [-w ConnectionLocation] [-f File]

mksx25 -l Name [-S] [-f File]

mksx25 -h

Description

The mksx25 command initializes the attributes of the X.25 port specified. The System Management

Interface Tool (SMIT) fast path select may be used to run this command. To add a port to a parent

configured on a Portmaster adapter, using SMIT, enter:

smit mksx25pm

To add a port to a parent configured on an X.25 CoProcessor adapter, using SMIT, enter:

smit mksx25c

This is a fast path to the SMIT screens that allow the port to be added to the system.

Appendix A. X.25 Commands 187

Flags

 -a Attribute=Value Specifies the X.25 port attributes and their values. You can either use one -a flag for a

string of Attribute=Value pairs and enclose the string in single quotation marks, or use

one -a flag for each pair. Four attributes are accepted by the mksx25 command:

v local_nua

v network_id

v country_prefix

v nddname, the ″Network Device Driver″ name for the port driver. This attribute is used

when the X.25 port is managed by the hdlc device driver.

v local_interf_n, the local interface name identifying the X.25 port. This attribute is used

when the X.25 port is managed by the xot driver.

v remote_interf_n, the remote interface name identifying the X.25 port on the peer. This

attribute is used when the X.25 port is managed by the xot driver.

v remote_addrip, the IP address of the XOT peer. This attribute is used when the X.25

port is managed by the xot driver.

The following attributes require specific flags:

v lsap, with the -y flag, local service point access (SAP). This attribute is used when the

X.25 port is managed by the xol driver.

v rsap, with the -u flag, remote service point access (SAP). This attribute is used when

the X.25 port is managed by the xol driver.

v rmac, with the -r flag, remote mac address. This is the remote mac address of the

Ethernet adapter the current port will try to be connected to. This attribute is used

when the X.25 port is managed by the xol driver.

local_nua

The port’s network user address is required.

network_id

Network identifier. This attribute may have one of the following values:

1 Datex-P

2 Datapac

3 Telenet

4 DDN

5 Other public

6 Other private

7 PSS-1 Extended

country_prefix

The data country/geographical area codes as defined in CCITT-X.121 Annex D.

-c Class Specifies the device class from the predefined devices object class.

-d Defines the device in the customized devices object class. If you specify the -d flag, the

port will only be in the defined state and not available. This flag cannot be used with the

-S flag.

-f File Reads the needed flags from the File parameter. The user should not include the -a

Attribute=Value entries with in File. All attributes should be specified on the command

line.

-h Displays the command usage message.

-l Name (lowercase L) Specifies the already defined device, indicated by the Name parameter, in

the customized devices object class when not used with the -c, -s, and -t flags. The -a,

-p, and -w flags cannot be used in this case.

-mEthernetAdapter Specifies the logical name of the Ethernet adapter to use.

-pParentName Specifies the parent device logical name from the customized devices object class.

-q Suppresses the command output messages from standard output and standard error.

188 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

-S Prevents the device from being set to the available state. This flag is only meaningful for

those devices that support the stopped state. This flag cannot be used with the -d flag.

-sSubclass Specifies the device subclass from the predefined devices object class.

-tType Specifies the device type from the predefined devices object class.

-wConnectionLocation Specifies the connection location on the parent where this child device is defined.

Note: The -pParentName and -w ConnectionLocation parameters are used when

configuring a port which uses the twd driver. The ConnectionLocation value

corresponds to the port number where X.25 is configured, when the port is

managed by the twd driver.

See Chapter 4, ″Managing X.25 Ports″ for more information.

Examples

1. To configure X.25 on port 2 of adapter driver twd0, with an NUA of 123456789, network ID of 5, and

country code of 334, enter:

mksx25 -c port -s star -t stx25 -p twd0 -w

2 \

> -a ’local_nua=123456789 network_id=5 country_prefix=334’

2. To configure an xot port with an NUA of 54663, network ID of 5, enter:

mksx25 -c port -s star -t stx25 -p ’xot’ -a local_nua=’54663’ -a network_id=’5’

3. To configure an xot port with an NUA of 54663, network ID of 5, and to define PVC default attributes

with local interface sx25a0, remote interface sx25a1 and remote IP address 111.111.1.1, enter:

mksx25 –c port –s star –t stx25 –p ’xot’ –a local_nua=’54663’ –a network_id=’5’

> -a local_interf_n=’sx25a0’ -a remote_interf_n=’sx25a1’ -a remote_addrip=’111.111.1.1’

4. To configure an xol port with an NUA of 54663, network ID of 5, lsap=0x7E, rsap=0x7E, PPA is

Ethernet adapter 0 and remote mac address set to 0.6.29.4.62.ac, enter:

mksx25 –c port –s star –t stx25 –p ’xol’ –a local_nua=’54663’ –a network_id=’5’ \

-m ’ent0’ -y lsap=’0x7E -u rsap=’0x7E’ -r rmac=’0.6.29.4.62.ac’

Related Information

The chdev command, chsx25 command, lsdev command, lspvc command, mkdev command, mkpvc

command, rmdev command, and rmsx25 command.

removex25 Command

Purpose

Removes all instances of x.25 ports.

Syntax

removex25 [-q] [-d Directory] [-v] [-f]

Description

The removex25 command removes all configured information relating to the X.25 LPP.

Flags

 -d Directory Specifies the name of the directory holding backup files. Defaults to current directory.

-f Forces removal of existing backup files if they are already present in the save directory.

-q Runs the command without asking for verifications or displaying messages.

Appendix A. X.25 Commands 189

-v Runs the command in the verbose mode, displaying messages as necessary. Default if

the -q flag is not used.

Security

 Access Control: You must have root authority to run this command.

Example

To remove configuration information for the X.25 LPP in the directory /tmp/backupx25 and force removal

of existing backup files if they are already present, enter:

removex25 -d /tmp/backupx25 -f

Files

 /usr/bin/removex25 Contains the removex25 command for AIX Version 4.

/usr/lpp/sx25/bin/removex25 Contains the removex25 command for AIX 3.2.5.

Related Information

The restorex25 command,lsdev command, lspvc command, mkdev command, mkpvc command,

mksx25 command, rmdev command, rmsx25 command.

restorex25 Command

Purpose

Restores the X.25 LPP configuration information from files saved when using backupx25.

Syntax

restorex25 [-d Directory] [-v]

restorex25 -h

Description

The restorex25 command will use the information saved by the backupx25 command to restore your

configuration after a fresh X.25 LPP installation.

Flags

 -d Directory Specifies the name of save directory. Defaults to current directory.

-h Displays the command usage.

-v Runs the command in the verbose mode, displaying messages as necessary.

Security

 Access Control: You must have root authority to run this command.

190 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Examples

To restore configuration information for the X.25 LPP in the directory /tmp/x25setup in a verbose manner,

enter:

restorex25 -d /tmp/x25setup -v

Files

 /usr/bin/restorex25 Contains the restorex25 command for AIX Version 4.

Related Information

The backupx25 command,lsdev command, lspvc command, mkdev command, mkpvc command,

mksx25 command, rmdev command, rmsx25 command.

rmsx25 Command

Purpose

Removes an X.25 port.

Syntax

rmsx25 -l Name [-d] [-q] [-f File]

rmsx25 -h

Description

The rmsx25 command either configures or unconfigures and undefines the X.25 port specified by the -l

flag. The default action is to unconfigure the device while retaining its device definition in the customized

devices object class.

Flags

 -l Name Specifies the device name, indicated by the Name parameter, in the customized devices object

class, for the port to be removed.

-d Indicates the the port is undefined and its device information is to be removed for the customized

devices object class.

-f File Reads the needed flags from the File parameter.

-h Displays the command usage message.

-q Suppresses the command output messages from standard output and standard error.

Examples

To unconfigure and completely undefine port sx25a0, enter:

rmsx25 -l sx25a0 -d

sx25debug Command

Purpose

Verifies that the X.25 on-card code is functioning and gathers debug messages from the X.25 on-card

code.

Appendix A. X.25 Commands 191

Syntax

For ARTIC960Hx:

sx25debug [-D] [-b BoardNumber] [-i]

All other adapters:

sx25debug [-b BoardNumber] [-i]

Description

The sx25debug command is a debugging aid that has two basic functions. If the -i flag is specified, you

can enter characters at the keyboard, and this causes the microcode to be polled to make sure that it is

operational. A response of ″pse_gdebug: Alive″ indicates that it is functioning normally.

Note: If the -i flag is specified, the sx25debug command cannot be run as a background process, since it

must be able to access the tty.

The -D option for the ARTIC960 and the ARTIC960Hx adapters allows the user to use several keys from

the keyboard to detect the modem signals, show its status, and retrieve the individual port statistics. For

more options, type the ? character.

The second main function is to read debug and error messages from the microcode and print them on

stdout. This can aid in debugging microcode problems.

To exit sx25debug, enter Ctrl-E, or press the interrupt key (usually Ctrl-C).

Note: This command is not used with the IBM 2-Port Multiprotocol PCI Adapter. Refer to Appendix I,

“Using AIXlink/X.25 over the IBM 2-Port Multiprotocol Adapter,” on page 335 for additional

information on this adapter.

Flags

 -b BoardNumber Specifies the board number to communicate with. If the -b flag is not specified, the board

number defaults to 0.

-D Specifies debug mode. Typing specific characters from the keyboard will show debug

information. Type ? for complete information.

-i Specifies interactive mode (reads characters from the tty). Every time a character is read,

a message is sent to the microcode on the board, which should elicit a response

indicating that the microcode is running. This allows the you to poll the adapter to make

sure that the microcode is operational.

Security

 Access Control: You must have root authority to run this command.

Examples

1. To start an interactive session, enter:

sx25debug -i

This should produce the following output:

Type is BoardType

where BoardType is either ″PMA″, ″C2X″, ″C1X″, ″ARTIC960″, or ″ARTIC960Hx″. If this is the first

time that the sx25debug command has been run since the board was configured, you will see:

192 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

cyc_main: Entering scheduler loop.

for a C2X or C1X board, or:

rticmain: Entering scheduler loop.

for a PMA board, or:

a960main: Entering scheduler loop.

for an ARTIC960 or an ARTIC960Hx board.

If you then hit any character on the keyboard, you should see:

pse_gdebug: Alive

This indicates that the microcode is functioning normally.

2. To start a ″read-only″ session, enter:

sx25debug

This will print out any debug messages from the microcode.

3. Either of these modes can have their output redirected or piped by the shell. For example, if you want

to start an interactive session on board number 1 and save the output to a file, enter:

sx25debug -i -b 1 | tee /tmp/sx25debug.out

4. To be able to retrieve information for a particular port, after the sx25debug -D -b <boardnumber> string

is used, the following keys can be used:

 (0–3) Number of port to retrieve information from

c Shows error and transfer information

C Clears all the error and transfer information

s Detects the modem signals

r Detects the receiver clock signal

t Detects the transmitter clock signal

The following are examples of this key use:

v Key ″1″ followed by key ″c″.

This key combination retrieves error and transmission information for port one, resulting in a display

similar to the following:

 ----------Statistics for Port 1-------------------

Frames Rx 0 | Frames Tx 0 |

CRCs 0 | Short Frames 0 | Rcl not Zero 0

Aborts 0 | Overrun 0 | idle line 0

Tx uxpct int 0 | Read Forced 0 |

This output shows the number of errors the adapter software has detected from the line and how

many frames were transmitted or received.

v Key ″s″.

This key combination retrieves information about modem signals, resulting in a display similar to the

following:

hdlc_sig_status() -> physical interface is V.24

hdlc_sig_status() -> port[0] CTS=OFF DSR=ON DCD=OFF RI=OFF

hdlc_sig_status() -> port[1] physical link not active

hdlc_sig_status() -> port[2] physical link not active

hdlc_sig_status() -> port[3] physical link not active

Files

 /usr/bin/sx25debug Contains the sx25debug command.

Appendix A. X.25 Commands 193

x25ip Command

Purpose

Updates or displays translate information in the IP/X.25 translate table.

Syntax

x25ip [-h HostName] [-a] [-o Options] [-d] [-s] [-z]

Description

The x25ip command updates or displays IP/X.25 translate information. The translate table allows Internet

addresses used by the Internet Protocol (IP) to be mapped to specific X.25 virtual circuits with specific

X.25 circuit characteristics. New entries and updates to existing entries are written to or deleted from the

IP/X.25 translate table.

Note: Users must have root authority to issue the x25ip command.

The x25ip command uses the gethostbyname subroutine to obtain the IP address of a specified host.

The host name specified should exist in the /etc/hosts file or be retrievable from a name server. However,

the IP address can be used instead of a host name.

If the command is completed successfully, a value of 0 is returned. If the command is unsuccessful, a

value of -1 is returned.

The IP/X25 translate table can be updated using the System Management Interface Tool (SMIT).

Flags

 -a Adds or changes the specified options for the given host name.

-d Deletes the specified host.

-h HostName Specifies the host name to use for add, delete and show flags.

194 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

-o Options Specifies options for the given host name. Valid values are:

vc_type

Specifies the X.25 virtual circuit type: switched virtual circuit (SVC), or permanent

virtual circuit (PVC). Valid values are 1 for SVC and 2 for PVC. The parameters for

SVC and PVC are as follows:

 SVC Parameters (vc_type=1)

remote_dte

Specifies the X.25 address of the remote DTE. Valid values consist of 1 to 15 ASCII

decimal digits (X.121 address). Valid values are 0 through 9.

rcv_wndsiz

Specifies the maximum receive window size to be used with the virtual circuit. Valid

values are 1 through 127.

xmit_wndsiz

Specifies the maximum transmit window size to be used with the virtual circuit. Valid

values are 1 through 127.

rcv_pktsiz

Specifies the maximum receive packet size to be used with the virtual circuit. Valid

values are 64, 128, 256, 512, 1024, 2048, 4096.

xmit_pktsiz

Specifies the maximum transmit packet size to be used with the virtual circuit. Valid

values are 64, 128, 256, 512, 1024, 2048, 4096.

callusr_data

Specifies the optional user-defined facilities to be used in the call request packet. Valid

values consist of 1 through 16 HEX digits, with digit values 0 through F.

RPOA_selec

Specifies the data network identification code or codes identifying a requested RPOA

transit network. Valid values consist of 4 ASCII digits, with digit values 0 through 9. Up

to 10 groups of 4 digits may be specified.

cug_indx

Specifies the closed user group index to be used with the closed user group facility.

Valid values are 0 through 9999.

cug_indxout

Specifies the closed user group index to be used with the closed user group outgoing

access facility. Valid values are 0 through 9999.

 PVC Parameters (vc_type=2)

logical_chann

Specifies the X.25 logical channel to be used for the PVC. Valid values are 1 through

4095.

port_nam

Specifies the port name (sx25a0, sx25a1, ...) that is used by this PVC.

-s Shows current options for the given host or display list of host names.

-z Displays output in dotted decimal format. This flag is not normally used if the command is

issued from the command line.

Examples

1. To initialize the IP/X.25 translate table, issue the following command:

x25ip

2. To show the current IP/X25 translate values for host node1, issue the following command:

x25ip -h node1 -s

3. To add options to the host node2, issue the following command:

Appendix A. X.25 Commands 195

x25ip -h node2 -a -ovc_type=1,remote_dte=31060164,callusr_data=CC,rcv_pktsize=1024,xmit_pktsize=10

Related Information

The gethostbyname subroutine.

The /etc/hosts file format.

TCP/IP Network Interfaces, TCP/IP Name Resolution, and How to Configure a Network Interface in

Networks and communication management.

Object Data Manager (ODM) Overview for Programmers in General Programming Concepts.

x25mon Command

Purpose

Traces the packet and frame traffic of an X.25 port.

Syntax

x25mon -n Port [-f [-i Bytes] | -x [-i Bytes] | -l [-i Bytes]] [-p [-d Bytes]] [-g] [-c] [-t]

Description

The frame or packet activity on the X.25 port is traced, and the report is sent to stdout. If using a COMIO

emulation port, or a TCP/IP network interface, the x25 port being used for that interface can be found

using the lsx25 command.

Use the -p and -f flags to turn on packet and frame layer tracing, respectively. It is possible to turn on

either or both. Use the -x flag to turn on XOT tracing. Use the -l flag to turn on LLC layer tracing for XOL.

If you don’t specify either flag, the x25mon command defaults to the -p flag.

Use the -d and -i flags to vary the length of the DATA packet and INFO frame traces, for the packet and

frame layer respectively. Use the -i flag to vary the length of the XOT packet. The ability to manage the

number of bytes traced is important because turning on tracing, by invoking the x25mon command,

impacts memory resources in addition to performance. Because adapters have limited memory resources,

it is important to minimize the length of the frame layer INFO frame when using adapters that run the

frame layer on the adapter (for example, apm, ampx, and ricio adapter types).

Use the -t flag to trace the frame layer timers and packet layer timers.

Use the -c flag to enable control tracing. The use of this flag can provide additional information for problem

determination. Some physical and frame layer status will be included in the trace output and the contents

of invalid frames and packets received can be displayed. There are 16 types of control frames and 10

types of control packets. The identifiers for these are displayed in the field for the packet or frame type in

the trace output (see ″Trace components″ below). The possible control frames are:

 BAD ADDR TOO LONG T3 TIMER INV CR

NO CTRL BAD NS N2 RETRAN NOT RDY

UNKNOWN BAD NR L1 UP L1 DOWN

INV SIZE INV STATE L2 UP L2 DOWN

The possible control packets are:

 TOO SHORT INV LCN INV STATE

TOO LONG BAD PS UNKNOWN

196 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

BAD LCN INV PS

BAD GFI INV PR

Note: You must have root authority to issue the x25mon command.

Flags

 -c Enable control tracing.

-d Bytes Specifies the number of bytes to trace for packet layer Data packets [0..4096]. If you do

not specify this flag, the trace defaults to 40 bytes.

-f Trace the frame layer activity.

-g Timer granularity (in msecs).

-i Bytes Specifies the number of bytes to trace for frame layer Info frames [0..5003] and for the

XOT layer. If you do not specify this flag, the trace defaults to 40 bytes.

Note: Running with large traces may result in adapter memory resource constraints.

-l Trace the LLC layer activity for XOL.

-n Port Specifies the X.25 port where the traffic should be monitored. For example, sx25a0.

-p Trace the packet layer activity

-t Trace the frame layer timers and packet layer timers.

-x Trace the XOT activity.

Examples

1. To run a packet layer trace on X.25 port sx25a2, enter:

x25mon -p -n sx25a2

The following output would be a typical sample:

 port type LCN packet type flags/lengths data

14:59:03 sx25a2 PR 0x0020 CALL d:N la:4 lf:0 ld:0 441965196400CD

14:59:03 sx25a2 PS 0x0020 CF CALL d:N

14:59:03 sx25a2 PR 0x0020 DATA pr:0 ps:0 dN mN qN l:16 3F2A01

34256A8492AABC63E5F21D1C2C

14:59:03 sx25a2 PS 0x0020 DATA pr:2 ps:0 dN mN qN l:2 C301

2. To run a packet layer trace on X.25 port sx25a2 limiting the DATA packet trace, enter:

x25mon -p -d 4 -n sx25a0

The following output would be a typical sample:

 port type LCN packet type/flags/lengths data

16:58:34 sx25a0 PS 0x002a CALL dN la:4 lf:0 ld:1 441964196500FD

16:58:36 sx25a0 PR 0x002a CF CALL dN

16:57:12 sx25a0 PR 0x002a DATA pr:0 ps:0 dN mN qN l:64 68656C6C..

16:57:15 sx25a0 pS 0x002a RR pr:1

16:57:40 sx25a0 PR 0x002a DATA pr:0 ps:1 dN mN qN l:64 68656C6C..

16:57:43 sx25a0 PS 0x002a RR pr:2

3. To run a frame layer trace on the same port, limiting the INFO frame trace to 8 bytes, enter:

x25mon -f -i 8 -n sx25a0

from which the following output would be a typical sample:

 X.25 type physical frame type/flags/lengths data

 port port

17:15:02 sx25a0 FS 0x0000 INFO a:3 p:0 ns:5 nr:3 l:10 102A0B441964196500FD

17:15:03 sx25a0 FR 0x0000 RR a:3 p:0 nr:6

17:15:05 sx25a0 FR 0x0000 INFO a:1 p:0 ns:3 nr:6 l:3 102A0F

Appendix A. X.25 Commands 197

17:15:32 sx25a0 FS 0x0000 INFO a:3 p:0 ns:6 nr:4 l:16 102A0068656C6C6F..

17:15:33 sx25a0 FR 0x0000 RR a:3 p:0 nr:7

17:15:35 sx25a0 FR 0x0000 INFO a:1 p:0 ns:4 nr:7 l:3 102A21

4. To run an XOT trace on the same port, limiting the XOT packet trace to 30 bytes, enter:

x25mon -x -i 30 -n sx25a0

from which the following output would be a typical sample:

 X.25 Monitor sx25a0

22:19:04 sx25a0 XS 0x0001 XOT_OPEN Nua= Ipaddr=10.64.9.102

22:19:04 sx25a0 XS 0x0001 XOT_PVCSETUP status=0 l_interf:sx25a0 r_interf:sx25a0

22:19:04 sx25a0 XR 0x0001 XOT_PVCSETUP status=18 l_interf:sx25a0 r_interf:sx25a0

22:19:04 sx25a0 XS 0x0001 XOT_DATA l:34

00000083000000030000000106165F3200000000100110010397016C818283840000

22:19:04 sx25a0 XS 0x0001 XOT_DATA l:34

0000008361353820000000130000080B000000001001120110011800010203040000

5. To run an XOL trace on the sx25a1 XOL configured port, limiting LLC frame trace to 30 bytes, enter:

 x25mon -l -i 30 -n sx25a1

from which the following output would be a typical sample:

X.25 Monitor sx25a1

07:24:31 sx25a1 LR 0x0000 RR p:1 nr:1 000629C355BE0004ACE4067E00047E7E0103

07:24:31 sx25a1 LC 0x0000 RR p:1 nr:1

07:24:31 sx25a1 LS 0x0000 RR p:1 nr:1 0004ACE4067E000629C355BE00047E7E0103

07:24:31 sx25a1 LR 0x0000 RR p:1 nr:1 000629C355BE0004ACE4067E00047E7F0103

Trace components

 port Specifies the X.25 Port being traced.

type Specifies the type of data. The first character is P for packets, F for frames, X for XOT

frame and L for LLC frame. The second character is S for data sent and R for data

received.

LCN Specifies the logical channel number for the packet. (Only valid for packet tracing.)

Physical Port Specifies the physical port on the adapter associated with this X.25 port.

packet type Specifies the type of X.25 packet or the type of control packet. For example, DATA, CALL,

CF CONFIRM, or BAD LCN, INV PS, INV PR .

frame type Specifies the type of LAP-B frame, or the type of control frame. For example, SABM, UA,

INFO, or L2 DOWN, BAD ADDR, T3 TIMER.

xot type Specifies the type of XOT packet (XOT_OPEN or XOT_CLOSE for opening or closing a

TCP/IP connection, XOT_DATA for sending or receiving data, XOT_PVCSETUP for setting

up an XOT PVC).

xol type Specifies the type of LLC-TYPE2 frame, or the type of control frame. For example, SABME,

INFO, RR, REJ, RNR, DISC or T1, T2, TI TIMER EXPIRED.

flags Specifies the different flags. For packets d, q, m represent the D, Q, M bits and are set to Y

if the flag is set, and to N if it is not.

For frames:

a Gives the frame address DCE (3) or DTE (1)

p Gives the setting of the poll/final bit

n Gives the settings of the send and receive counters.

lengths Specifies the lengths are given in the number of bytes they take up.

la Total length of NUAs.

lf Length of the facilities.

ld Length of the call user data.

l Length of data in data packets.

data Shows the initial part of the data portion of the packet is shown.

Note: Data is displayed in hexadecimal. Lengths and so forth are displayed in decimal.

198 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

x25sessions Command

Purpose

Provides current activity status for the COMIO Emulator.

Syntax

x25sessions

Description

The x25sessions command provides current status information for each COMIO emulated AIXlink/X.25

port in the system. The command lists the available ports, followed by information for each listen and

In/Out session on each available port. If no COMIO emulated ports are identified, x25sessions lists an

error message and ends with a nonzero exit code.

Exit Status

This command returns the following exit values:

0 Successful completion.

>0 An error occurred.

Security

Access control: Any user.

Example

To display the current COMIO session information, and prevent the output from scrolling off the top of the

display, enter:

x25sessions | pg

Files

/usr/bin/x25sessions

Related Information

Chapter 10. Common Input/Output Emulation

X25status Command

Purpose Provides current Packet level status for each AIXlink/X.25 port.

Syntax

x25status

Description

The x25status command provides current status information for each AIXlink/X.25 port in the system. In

addition to providing the hostname, port names and current packet state for each port, x25status provides

the number of active switched virtual circuits (SVCs), permanent virtual circuits (PVCs), and listens, for

each port. The report ends with details regarding each port’s active listens:

v Calling address

v Called address

v Call user data (CUD)

Appendix A. X.25 Commands 199

Exit Status

This command returns the following exit values:

0 Successful completion.

>0 An error occurred.

Security

Access control: Any user.

Example

To display the current Packet level status information, and prevent the output from scrolling off the top of

the display, enter:

x25status | pg

Files

/usr/bin/x25status

Related Information

Chapter 1. X.25 Network Communications Overview

xotstat Command

Purpose

Displays XOT statistics on a line or on an LCN basis.

Syntax

xotstat -l {ALL | all } [-r]

xotstat -l LineNumber [-s LcnNumber] [-r]

Description

The xotstat command enables you to display or to reset LCN statistics, for all lines, for a specified line, or

for a specified LCN. Only the connected LCN can be displayed.

You can not issue more than five xotstat commands simultaneously.

Flags

 -lLineNumber Specifies for which X.25 line number the statistics are to be displayed or reset. Rather then

using the LineNumber parameter, the ALL or all parameters display or reset statistics for all

lines.

-r Resets statistics.

-sLcnNumber Specifies for which LCN number the statistics are to be displayed or reset.

Examples

1. To display the LCN statistics for X.25 line sx25a0, enter:

 xotstat -l 0

The following output would be a typical sample:

200 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

STATISTICS : LINE sx25a0

LLCN RLCN CNX-TM BY-SNT BY-RCV Q-MSG SOURCE-IP SRC-P DESTINATION-IP DST-P

1 1 517 4561 8117 0 10.64.9.102 1998 10.64.9.103 32789

2 2 560 8854 4264 0 10.64.9.102 1998 10.64.9.105 32801

2. To display the statistics for LCN number 1, on X.25 line sx25a0, enter:

 xotstat -l 0 -s 1

The following output would be a typical sample:

STATISTICS : LINE sx25a0

LLCN RLCN CNX-TM BY-SNT BY-RCV Q-MSG SOURCE-IP SRC-P DESTINATION-IP DST-P

1 1 517 4561 8117 0 10.64.9.102 1998 10.64.9.103 32789

3. To display statistics for the active LCNs, for all lines, enter:

xotstat -l all

The following output would be a typical sample:

STATISTICS : LINE sx25a0

LLCN RLCN CNX-TM BY-SNT BY-RCV Q-MSG SOURCE-IP SRC-P DESTINATION-IP DST-P

1 1 540 4548 1544 0 10.64.9.102 1998 10.64.9.103 32789

2 2 560 8854 4264 0 10.64.9.102 1998 10.64.9.105 32801

STATISTICS : LINE sx25a1

LLCN RLCN CNX-TM BY-SNT BY-RCV Q-MSG SOURCE-IP SRC-P DESTINATION-IP DST-P

1 1 495 2246 8438 0 10.64.9.102 32789 10.64.9.104 1998

4. To reset the statistics for LCN number 1, on X.25 line sx25a0, enter:

xotstat -l 0 -s 1 -r

5. To reset all statistics for X.25 line sx25a0, enter:

xotstat -l 0 -r

xotdisplay Command

Purpose

Displays the X.25/IP routing table.

Syntax

xotdisplay [-n] [-h | -?]

Description

The xotdisplay command displays the X.25/IP cache table of the xot driver. This table enables you to

route the X.25 packets defined by a NUA or an X.25 line towards a specific IP address.

Flags

 -h or -? Displays help.

-n Displays the cache table with host names.

Examples

1. To display the X.25 addresses and lines with their corresponding IP addresses, enter:

 xotdisplay

The following output would be a typical sample:

Appendix A. X.25 Commands 201

@ip @X.25/Line

111.111.1.1 2

127.0.0.1 123456

127.0.0.1 888888

2. To display the X.25 addresses and lines with their corresponding IP host names, enter:

xotdisplay -n

The following output would be a typical sample:

@ip @X.25/Line

111.111.1.1 2

loopback 123456

loopback 888888

xroute Command

Purpose

Enables the routing of calls that use the COMIO emulation.

Syntax

xroute [-s]

Description

The xroute command enables the routing of calls that use COMIO emulation for X.25 support. For

applications that do not use this emulation interface, the xroute command is unnecessary. Applications

such as xtalk, or SNA-based applications, have their calls routed by the table maintained by the xroute

command.

Note: The xroute command works with X.25 ports that have COMIO emulation configured. Refer to

Managing COMIO Emulation for further information.

All applications that use the COMIO emulation and wish to receive incoming calls, submit listen requests.

These requests identify table entries in the emulator’s routing table. Calls that are received are passed up

from the X.25 port to the emulator and it determines if any application is listening for that call. The

emulator is one of a number of applications, such as TCP/IP or NPI, that will be listening for incoming

calls. The emulator provides extra routing capability which allows it to route the calls that its applications

are expecting. Calls for applications like TCP/IP are not affected by the xroute command. If the incoming

call matches the criteria defined in the routing table for a specific application, the call will be routed to that

application. A routing table is not needed if you are using only permanent virtual circuits (PVCs).

An application listening for an incoming call is associated with an entry name in the routing table. This

entry specifies the criteria that must be satisfied for the application program to receive an incoming call.

The call user data (CUD) field of the call packet is generally used for routing but other conditions may also

be tested, such as:

v The network address of the caller.

v A subaddress in the called data terminal equipment (DTE) address.

v The attachment that has received the call.

Flags

 -s Download the table to the emulator.

202 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Updating the X.25 Routing Table with the xroute Command

The default routing table is stored in the /etc/xrt.names file. You can update this table with the xroute

command by logging on as the root user and entering the following command:

xroute -s

The default routing table has predefined entries for SNA, the sample program, and the xtalk command.

The first six entries correspond to X.25/SNA protocols:

 IBMELLC Identifies the SNA enhanced logical link control (LLC) used for peer-to-peer communications.

IBMPSH Identifies the physical-services header LLC used with the IBM-5793 network interface adapter (NIA).

IBMQLLC Identifies the SNA qualified logical link control (QLLC).

The two CUDs associated with each of these protocols identify their version.

To change a routing list entry move the cursor to the entry name you would like to change and type c for

CHANGE.

The dialog screen contains the following fields:

 Entry Name Specifies the name of the entry the listening program uses to find the routing criteria.

Call User Data Indicates the part of the data received in an incoming call packet. It can be used for

any purpose, but it often specifies the protocol. The xroute command uses only the

first 64 bytes of the CUD.

For example, the CCITT defines the first four bytes of user data in a call from a packet

assembler/disassembler (PAD) as hex 01000000. Enter this hex value in the CUD field

of the routing table entry associated with an incoming PAD. The AIXlink/X.25 Licensed

Program Product PAD does not use the xroute table.

User Name Specifies the login name of the user who is allowed to start applications listening for

incoming calls associated with this entry. An * (asterisk) indicates that any user can

listen for calls using this entry. A user whose login name does not match this entry is

not allowed to listen for calls corresponding to it.

For example, your routing list entry contains the user name marcel, as in the following

entry:

Entry Name ==>IBMXTALK

User Name ==>marcel

If you try to start the command xtalk -l IBMXTALK as the user root, the system

displays an error message like the following:

CIO Status 79 - X25_AUTH_LISTEN

You cannot listen to this name, because the routing list entry

has a userid which excludes the user running the application.

X.25 Port Specifies the name of the X.25 port associated with the application for which the call is

intended. Use an * (asterisk) to indicate any port.

Calling Address Specifies the network user address (NUA) from which the application will receive

incoming calls. An * (asterisk) at the end of this entry indicates that any digits are

acceptable in the remainder of the address. Another NUA trying to call this application

will be rejected.

Called Subaddress Specifies the NUA subaddress used to route a call internally within a node. You can

add additional digits to the end of an NUA up to the 15-digit limit. Use an * (asterisk)

for this parameter to indicate any subaddress.

Calling Address Ext Specifies the address extension for the calling DTE. The 1984 version of the X.25

protocol allows you to specify up to 40 additional digits of address. Use an * (asterisk)

in this field to indicate any address extension.

Appendix A. X.25 Commands 203

Called Address Ext Specifies the address extension for the called DTE. The 1984 version of the X.25

protocol allows you to specify up to 40 additional digits of address. Use an * (asterisk)

in this field to indicate any address extension.

Priority (1-3) Indicates the field that specifies when an application receives a call. If two applications

need to listen to the same routing information, the priority field specifies which

application receives the call if both are listening. For example, IBMSAMP is defined as

listening to any condition (* in all fields), but with the lowest priority (3). Thus a

background daemon could listen to IBMSAMP and log any incoming call that is not

received by another application.

Action (R,F) Indicates the field that specifies whether to forward or reject an incoming call. The field

values are R to reject the incoming call, or F to forward the incoming call. The forward

or reject conditions apply when no application is listening for the routing list entry which

is the best match for the incoming call.

If this field is set to R and your application is not running when you try to establish a

call, the call will be cleared with cause 0 and diagnostic 0. If the field is set to F, the

next best match is selected, and so on until an entry that specifies R is selected and

the call is rejected.

If a call does not match any entry in the routing table, it is cleared with cause 0 and diagnostic 0.

xspad Command

Purpose

Starts a terminal PAD (Packet Assembler/Disassembler) session.

Syntax

xspad -lPort [-sOptFile] | [?] [help] [-aDest[, Source]] [-c] [-eAdd] [-f] [-gIDX] [-oIDX] [-pATT] [-q] [-r] [-tID]

[-uData] [-x]

Description

The xspad commmand starts a terminal PAD (Packet Assembler/Disassembler) session. A PAD is a

protocol converter interfacing asynchronous terminals with an X.25 network or an X.25 network with

applications written for asynchronous terminals. See Packet Assembler/Disassembler for more information.

Flags

 -a Dest [, Source] Specifies the destination X.25 address and optionally a source address. Dest and Source are

ASCII strings of digits corresponding to BCD digits as described by the CCITT X.121

standard. Use of this flag is equivalent to interactively issuing the CALL command.

-c Adds the X.25 Charging facility.

-e Add Adds the X.25 Called Address Extension facility, where ADD is an ASCII string of digits

corresponding to BCD digits. The X.213 format is not used since the PAD directly accesses

X.25.

-f Adds the X.25 Fast Select With No Restriction facility.

-g IDX Adds the X.25 CUG Selection facility, where IDX is a 2 digit ASCII string corresponding to

BCD digits of a user group index (Basic Format Only).

-l Port (Lowercase L) Specifies the name of a logical port to connect PAD to a host. For example,

sx25a2 may represent a physical line connected to an X.25 network switch.

-o IDX Adds the X.25 CUG with Outgoing Access Selection facility, where IDX is a 2 digit ASCII

string corresponding to BCD digits of a user group index (Basic Format Only).

204 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

-p ATT Selects an initial X.28/X.3 profile. ATT identifies a profile containing a set of X.3 parameter

values. It can have one of the following formats:

v The # (number sign) character followed by a decimal number corresponding to a standard

CCITT or custom profile, no spaces.

v An ASCII string which does not begin with # or :(colon) and specifies the profile name.

-q Adds the X.25 Fast Select With Restriction Of Response facility.

-r Adds the X.25 Reverse Charging facility.

-s OptFile Specifies that OptFile contains the remainder of the command-line arguments. The syntax

and semantics of the arguments are the same as if they were passed on the command line,

except that they do not all need to be on the same line. You should not pass other flags on

the command line with this option. In OptFile, blank lines are ignored and lines beginning

with a # character are interpreted as comments.

-t ID Adds the X.25 RPOA facility, where ID is a 4 digit ASCII string corresponding to BCD digits

of network identification code as described by X.25. (i.e. Basic Format Only.)

-u Data Adds user data to the X.25 Call Packet, where Data is an ASCII string as in the D option

described by the interactive documentation.

-x Specifies to exit PAD after termination of a connection, typically after issuing CLEAR or

ICLEAR command or reception of a CLEAR. The default behavior is that execution continues

and establishment of another connection is possible without exiting or reinvoking the PAD.

Options

 ? Explains command line argument use.

help Displays the PAD help menu when invoking xspad and causes ignores all flags -l.

Exit Status

This command returns the following exit values:

 0 Successful completion.

>0 An error occurred.

Security

Access Control: Any user.

Auditing Events: N/A

Examples

To start a PAD session:

1. Ensure the PAD is configured on the system.

2. Run xspad -l sx25a# where # is the port number.

3. Issue the call to the remote X.25 host at the PAD prompt.

4. Log on to the X.25 host and run the desired application.

Files

 /usr/bin/xspad Contains the xspad command.

Related Information

Packet Assembler/Disassembler in AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix A. X.25 Commands 205

xtalk Command

Purpose

Enables you to initiate or receive calls over SVCs and communicate with another user by typing messages

or sending and receiving files.

Syntax

xtalk [-l Name] [-n] [-s] [-q]

Flags

 -lName Specifies the name in the xroute table that should be listened for.

-n Runs the xtalk process in the background to listen for calls and notify you when they arrive. When a

call arrives, you can start the xtalk process again in the foreground and then choose whether to

accept or reject the call.

-s Bypasses (does not produce) the initial copyright screen.

-q Removes copyright screen after showing it. User not required to press Enter.

Description

The xtalk command enables you to initiate or receive calls over SVCs and communicate with another user

by typing messages or sending and receiving files. xtalk can be used on any port that has the COMIO

emulation enabled.

Note: The xtalk command works over X.25 ports that have COMIO emulation configured.

The xtalk command has some features that are analogous to using a telephone. To have a conversation

or transfer files, one party must first make a call and the other party must receive and accept the call. The

xtalk command enables you to do the following:

v Listen for calls.

v Make a call.

v Receive a call.

v Have a conversation.

v Transfer files.

v End a call.

You can store the details of the systems you want to communicate with under a symbolic name in an

address list. The xtalk command allows you to view, change, add, or delete entries in this list.

The xtalk -n command runs the xtalk process in the background to listen for calls and notify you when

they arrive. When a call arrives, you can start the xtalk process again in the foreground and then choose

whether to accept or reject the call.

The xtalk -l EntryName command listens for calls for the routing list entry specified by the EntryName

parameter.

Two other flags enable you to manipulate the display of the title screen for the xtalk menu program. The

xtalk -q command displays the title screen for two seconds; the xtalk -s command suppresses the display

of the title screen.

To converse, each user types messages. Your messages and the other user’s messages appear on your

display. You can record in a log file the messages you exchange during a conversation.

206 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Starting the xtalk Command

Both hosts must have the xtalk command running in order to communicate. The calling host runs the

xtalk command to initiate a call. The called host runs the xtalk command, either in the foreground or the

background, to listen for incoming calls from other users. The same command can be used for both the

calling and called host. Enter the following:

xtalk -s -l IBMXTALK

where IBMXTALK is the identification of a record in the routing table giving the characteristics of the

incoming calls that must be routed to the xtalk application. The IBMXTALK entry is a default entry in the

routing table supplied with the X.25 program.

If you want to run the xtalk command in the background to listen for incoming calls, enter the following:

xtalk -n -l IBMXTALK

The xtalk command displays a screen with the following options:

 TALK Allows you to make calls to another user.

ADD Permits the addition of new entries in the system address list or in your local address list.

BROWSE Enables you to see all of the data associated with a name in either address list.

CHANGE Allows you to change the information for an entry in the address lists.

DELETE Allows you to delete an entry in the address lists.

QUIT Ends an xtalk session.

The xtalk screen also displays the first few names in the system address list and the local address list (if

one exists).

Making a Call

The TALK option on the xtalk main screen allows you to exchange messages with another user. You can

specify the user you want to call in one of the following ways:

v Use the Up and Down arrow keys to scroll to the desired name in the local or system address list. To

switch between the two lists, use the

F2: TALK

v Use the Left and Right arrow keys to select the TALK option, and then press

Enter:

Note: If you type a name and an X.25 port, the xtalk command uses the port you type instead of the port

specified in the address list entry for that name.

v Use the Left and Right arrow keys to select the TALK option, and then press

Enter:

Accepting a Call

If you have the xtalk command running in the background, the command sends you a message when

there is an incoming call. You must have the xtalk command running in the foreground to accept a call.

When the xtalk command is running in the foreground, the command displays a screen listing the caller,

the caller’s address, and the COMIO emulator port. The screen gives you the option to accept or reject the

call. Select ACCEPT to receive the incoming call.

Exchanging Messages

When a user accepts an incoming call, the xtalk command displays a commands screen on both the

calling and the called host. The options on the commands screen are as follows:

Appendix A. X.25 Commands 207

TRANSFER FILE

BEGIN LOGGING

END LOGGING

CHANGE LOG FILENAME

QUIT CALL

With the commands screen options, you can choose to transfer files or log the messages between hosts.

To exchange messages, press the F2 key to switch to the message screen. The messages typed by both

users appear on the message screen of each host.

Transferring Files

To transfer a file with the xtalk command, one user sends the file, and the other user can choose to

accept or reject it. If a file of the same name already exists on the recipient’s system, the recipient can

choose to append or overwrite the existing file, or save the transferred file under a new name.

To transfer files, you must first make or receive a call by using the xtalk command. When a call is

accepted, the xtalk command displays the commands screen or the message screen on both hosts.

If you are sending a file to another user and the message screen is displayed on your machine, press the

F2 key to display the commands screen. Use the Up or Down arrow key to select the FILE TRANSFER

option, and then press the

Enter: If you are receiving a file and the commands screen is displayed on your machine, press the F2

key to display the message screen. To receive the file, use the Left or Right arrow key to select the

ACCEPT option. The xtalk command displays a screen containing the name of the file. You can change

the name of the file being transferred by typing a new name in this screen.

Once a file transfer has been accepted by the called user, either user can cancel the file transfer by

pressing the Esc (Escape) key.

Creating Address List Entries

Each user that you can talk to over an X.25 network has a network user address (similar to a telephone

number). So that users can make calls without knowing another user’s network address, the xtalk

command maintains a system address list that is available to all users. The system address list is stored in

the /etc/xtalk.names file. You must have root user permissions to change the entries in the system

address list.

Each user can also choose to keep a local address list containing modifications and additions to the

system address list. An entry for a user in your local address list overrides the entry for the same user in

the system address list. The xtalk command stores entries for a local address list in the

$HOME/xtalk.names file.

To make an entry in an address list, select the ADD option from the xtalk Main menu screen. The Add

screen contains the following fields:

 Name Enter a name of up to 15 characters. The name must start with a letter and consist of

letters and digits.

Port Enter a valid COMIO emulation port name of the form x25snn, where nn is the port

number. The port name must be the name of one of the COMIO emulators configured

onto one of the X.25 ports.

Address Enter a valid network user address (NUA) of up to 15 decimal digits.

Extended Address Enter a valid extension of up to 32 digits. The extension address is valid only on

networks implementing the 1984 version of X.25. This field is optional.

Facilities Enter up to 32 hexadecimal characters that represent 16 bytes transmitted in the

facilities field in the call request packet. This field is optional.

208 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Making a Call

This procedure uses the xtalk command to make a call on an SVC from a DTE named Host1 to a DTE

named Host2.

Note: In the following procedure, IBMXTALK identifies a record in the routing table giving the

characteristics of the incoming calls that must be routed to the xtalk application.

1. On Host2, load xtalk to listen to the IBMXTALK entry in the routing table. Enter the following:

xtalk -s -l IBMXTALK

2. On Host1:

a. Load the xtalk command. Enter the following:

xtalk -s -l IBMXTALK

b. Use the ADD option to create an entry in the address list for Host2.

c. Select the TALK option to call Host2.

3. On Host2, accept the incoming call, and then press the F2 key.

4. On Host1, press the F2 key and enter a message. It is transmitted on the network then displayed on

Host 2.

Notes:

a. If you have only one system, open two windows (or two sessions). In the first window, start one

copy of the xtalk command that corresponds to the called machine and that will listen for incoming

calls whose characteristics are defined in the routing table entry IBMXTALK:

xtalk -s -l IBMXTALK

In the other window, start the xtalk command without a routing parameter:

xtalk -s

Ignore the warning message You cannot receive incoming calls by pressing the Esc key. You

can now proceed from this window the same way as explained for the system Host1.

b. The xtalk command cannot be used to test permanent virtual circuits (PVCs). Use the sample

programs instead. These programs are located in the /usr/lpp/bosext2/x25app/samples directory

and in /usr/samples/sx25/comio for AIX Version 4 users.

Problems

The xtalk command indicates a device driver problem by displaying a message that begins with CIO

Status, as in the following message:

CIO Status 68 - X25_NAME_USED

The name is already being listened to.

These messages correspond to device driver return codes. If you have already tested the connection to

the network, the most likely error messages are those related to the routing table:

 CIO Status 68 - X25_NAME_USED The name is already being listened to. Another copy of the

xtalk command is probably running in the background and

listening to IBMXTALK. Remember to always use the QUIT

option to end the xtalk session and not the F3 key.

CIO Status 77 - X25_TABLE Could not update routing list. A copy of the xroute

command is probably still running or a lock file xroute.lck

has been left in the /etc/locks directory.

CIO Status 73 - X25_NO_NAME There is no such name in the routing list. The -l parameter

does not match an entry in the routing list.

Appendix A. X.25 Commands 209

Two other problems are also related to the routing:

v The call has been cleared with cause 00 and diagnostic 00.

Means that the call has reached the remote system but has not been transmitted to an application.

Either the application (the xtalk command) is not loaded, or it has not been started with the -l

IBMXTALK flag, or the IBMXTALK entry in the routing table doesn’t exist or doesn’t contain a CUD

matching the one in the incoming call packet (FD).

v The call has been cleared with cause 00 and diagnostic F4.

This is a diagnostic generated by the xtalk command on the called DTE meaning that the xtalk

command received the call but was not ready to accept it (not on the main menu).

If you get a message like the following, you have an X.25 protocol problem.

The call has been cleared with cause 13

and diagnostic 43.

The cause and diagnostic codes are hexadecimal values indicating the cause of the problem. These codes

may be generated by the local system, the PSDN or the remote DTE.

210 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix B. COMIO Emulator

The library API is provided for applications that were written to the user space API provided with the base

AIX Version 3 X.25 support. The API is not intended for new program development. To allow the use of

this API, a COMIO emulation port must be configured on to the X.25 ports to be used. Applications running

on AIX Version 3 with the base X.25 product must be recompiled on AIX Version 4 with the AIXlink/X.25

product before they can be run over a COMIO emulation port.

v x25_ack Subroutine

v x25_call Subroutine

v x25_call_accept Subroutine

v x25_call_clear Subroutine

v x25_circuit_query Subroutine

v x25_ctr_get Subroutine

v x25_ctr_remove Subroutine

v x25_ctr_test Subroutine

v x25_ctr_wait Subroutine

v x25_deafen Subroutine

v x25_device_query Subroutine

v x25_init Subroutine

v x25_interrupt Subroutine

v x25_link_query Subroutine

v x25_listen Subroutine

v x25_pvc_alloc Subroutine

v x25_pvc_free Subroutine

v x25_receive Subroutine

v x25_reset Subroutine

v x25_reset_confirm Subroutine

v x25_send Subroutine

v x25_term Subroutine

x25_ack Subroutine

Purpose

Acknowledges data received with the D-bit set.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_ack(conn_id)

int conn_id;

Description

The x25_ack subroutine sends an acknowledgment for the data packet most recently received with the

D-bit set for the call specified by the conn_id parameter.

© Copyright IBM Corp. 2001, 2005 211

Control is returned to the calling application when the adapter has queued the packet for transmission.

Parameters

 conn_id Connection identifier of the call.

Return Values

If successful, the x25_ack subroutine returns a value of 0. If an error occurs, the x25_ack subroutine

returns a value of -1 and sets the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following values:

X25BADCONNID

X25NOACKREQ

X25NOCARD

X25NOLINK

X25NOTINIT

X25PROTOCOL

X25SYSERR

X25RESETCLEAR

X25TRUNCTX

If the x25_errno global variable is set to a X25SYSERR value, the errno global variable is set to one of

the following values:

ENOSPC

EINTR

EIO

Examples

Acknowledge data received with the D-bit set: example program svcrcv.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_send subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags in AIX 5L Version 5.3

Communications Programming Concepts.

212 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

x25_call Subroutine

Purpose

Makes an X.25 call by setting up a switched virtual circuit (SVC).

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_call(cb_call, ctr_id)

struct cb_call_struct * cb_call,

int ctr_id;

Description

The x25_call subroutine sets up a switched virtual circuit (SVC) for the X.25 port specified in

cb_call_struct for an X.25 call between the calling address and called address, also specified in the

cb_call_struct structure.

Control is returned to the application as soon as the call-request packet has been transmitted, but the SVC

is not established until a call-connected packet is received (using the x25_receive subroutine).

Optional facilities, such as fast-select calls, can be requested by entering the correct values in the

cb_fac_struct structure. If the facilities requested are not allowed by the network, the call is cleared and

an appropriate error code is made available in the cb_clear_struct structure, which can be received using

the x25_receive subroutine.

Parameters

 cb_call Pointer to the cb_call_struct structure.

ctr_id Identifier of a counter allocated by a previous x25_ctr_get subroutine.

Return Values

If successful, the x25_call subroutine returns the connection identifier to be used by other subroutines for

the duration of the call. If an error occurs, or the call is cleared, the x25_call subroutine returns a value of

-1 and sets the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25CALLED

X25CALLING

X25INVCTR

X25INVFAC

X25LONG

X25NOCARD

Appendix B. COMIO Emulator 213

X25NOLINK

X25NOSUCHLINK

X25NOTINIT

X25PROTOCOL

X25SYSERR

X25TOOMANYVCS

X25TRUNCTX

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR

EIO

ENOSPC

Examples

Make a call: example program svcxmit.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_call_accept subroutine, x25_call_clear subroutine, x25_ctr_get subroutine, x25_receive

subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags in AIX 5L Version 5.3

Communications Programming Concepts.

x25_call_accept Subroutine

Purpose

Accepts an incoming call.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_call_accept(conn_id, cb_call, ctr_id)

int conn_id;

struct cb_call_struct * cb_call;

int ctr_id;

214 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Description

The x25_call_accept subroutine accepts an incoming call by generating and sending a call-accepted

packet. It then returns control to the application. If the facilities requested are not allowed by the network,

the call is cleared and an appropriate error code is made available in a later cb_clear_struct control

block.

Parameters

 conn_id Connection identifier of the call.

cb_call Pointer to the call control block, the cb_call_struct structure.

ctr_id Identifier of a counter allocated by a previous x25_ctr_get subroutine, to be associated with this call.

Return Values

If successful, the x25_call_accept subroutine returns a value of 0. If an error occurs, the x25_call_accept

subroutine returns a value of -1 and sets the x25_errno global value to one of the error codes shown

below.

Error Codes

On failure, the x25_errno global value is set to one of the following values:

X25BADCONNID

X25CALLED

X25CALLING

X25INVCTR

X25INVFAC

X25LONG

X25NOCARD

X25NOLINK

X25NOTINIT

X25PROTOCOL

X25RESETCLEAR

X25SYSERR

X25TRUNCTX

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

EIO

ENOSPC

Appendix B. COMIO Emulator 215

Examples

Accept an incoming call: example program svcrcv.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_call subroutine, x25_call_clear subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_call_clear Subroutine

Purpose

Clears a call.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_call_clear (conn_id, cb_clear, cb_msg)

int conn_id;

struct cb_clear_struct * cb_clear;

struct cb_msg_struct * cb_msg;

Description

The x25_call_clear subroutine clears a call by generating and sending a clear request packet. Control is

not returned to the application until a clear confirmation or a clear indication packet has been received.

A call is cleared by disconnecting a connected call or rejecting a call that has not been accepted.

Parameters

 conn_id Specifies the Connection identifier of the call.

cb_clear Indicates the pointer to the clear structure, cb_clear_struct.

cb_msg Indicates the pointer to the message structure, cb_msg_struct. This structure is used to return

information from the clear confirmation packet. The application must interpret the appropriate

structure to access the message. This structure is allocated by the API. (It is the responsibility of the

application to free this memory). If the cb_msg value is set to a null value, no clear confirmation

information is returned.

Return Values

If successful, the x25_call_clear subroutine returns a value of 0. If an error occurs, the x25_call_clear

subroutine returns a value of -1 and sets the x25_errno global variable to one of the error codes shown

below.

216 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Error Codes

On failure, the x25_errno global variable is set to one of the following values:

X25BADCONNID

X25CALLED

X25CALLING

X25LONG

X25NOCARD

X25NOLINK

X25NOTINIT

X25PROTOCOL

X25SYSERR

X25RESETCLEAR

X25TRUNCTX

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

EIO

ENOSPC

Examples

Terminate (clear) a call: example program svcxmit.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_call subroutine, x25_call_accept subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags in AIX 5L Version 5.3

Communications Programming Concepts.

x25_circuit_query Subroutine

Purpose

Returns configuration information about a virtual circuit.

Appendix B. COMIO Emulator 217

Library

X.25 Communications Library (libx25s.a)

C Syntax

struct cb_circuit_info_struct *x25_circuit_query(conn_id)

int conn_id;

Description

The x25_circuit_query subroutine returns the current information about the specified virtual circuit in

cb_circuit_info_struct.

Parameters

 conn_id Connection identifier of the call currently using the virtual circuit.

Return Values

If successful, the x25_circuit_query subroutine returns a pointer to cb_circuit_info_struct, the structure

containing the information. Storage for this structure is allocated by the API; it is the responsibility of the

application to free it. If an error occurs, the x25_circuit_query subroutine returns a NULL value and sets

the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following values:

X25BADCONNID

X25NOLINK

X25NOTINIT

X25SYSERR

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to

ENOMEM.

Examples

The following code structure prints current information for the virtual circuit identified by conn_id:

struct cb_circuit_info_struct *cct_ptr;

cct_ptr = x25_circuit_query(conn_id);

if (cct_ptr == NULL)

 (void)printf("Error %d from x25_circuit_query.",x25_errno);

else

{

 if (cct_ptr -> flags & X25FLG_LCN)

 (void)printf("Logical Channel Number (LCN) : %d\n",cct_ptr -> lcn);

 if (cct_ptr -> flags & X25FLG_INCOMING_PACKET_SIZE)

 (void)printf("Incoming Packet Size : %d\n",

 cct_ptr -> incoming_packet_size);

 if (cct_ptr -> flags & X25FLG_OUTGOING_PACKET_SIZE)

 (void)printf("Outgoing Packet Size : %d\n",

 cct_ptr -> outgoing_packet_size);

 if (cct_ptr -> flags & X25FLG_INCOMING_THROUGHPUT_CLASS)

 (void)printf("Incoming throughput class : %d\n",

 cct_ptr -> incoming_throughput_class);

218 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

if (cct_ptr -> flags & X25FLG_OUTGOING_THROUGHPUT_CLASS)

 (void)printf("Outgoing throughput class : %d\n",

 cct_ptr -> outgoing_throughput_class);

 if (cct_ptr -> flags & X25FLG_INCOMING_WINDOW_SIZE)

 (void)printf("Incoming window size : %d\n",

 cct_ptr -> incoming_window_size);

 if (cct_ptr -> flags & X25FLG_OUTGOING_WINDOW_SIZE)

 (void)printf("Outgoing window size : %d\n",

 cct_ptr -> outgoing_window_size);

 free(cct_ptr);

}

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_device_query subroutine, the x25_link_query subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_ctr_get Subroutine

Purpose

Gets a counter.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_ctr_get(void)

Description

The x25_ctr_get subroutine allocates a counter whose value is incremented when a message associated

with it arrives. The counter is decremented when a message associated with it is received by an

application.

Return Values

If successful, the x25_ctr_get subroutine returns the counter identifier. If an error occurs, the x25_ctr_get

subroutine returns a value of -1 and sets the x25_errno global variable to one of the error codes shown

below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25NOCTRS

X25NOTINIT

X25SYSERR

Examples

Get a counter: example program svcxmit.

Appendix B. COMIO Emulator 219

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_ctr_remove subroutine, x25_ctr_test subroutine, x25_ctr_wait subroutine.

Processing Calls with the X.25 API in AIX 5L Version 5.3 Communications Programming Concepts.

x25_ctr_remove Subroutine

Purpose

Removes a counter.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_ctr_remove(ctr_id)

int ctr_id;

Description

The x25_ctr_remove subroutine removes the specified counter from the system. Only the application that

requested the counter can remove it from the system. The counter cannot be removed if it has a non-zero

value, which indicates that data is waiting to be read from an associated call. The counter identifier may

be reused by a future call to the x25_ctr_get subroutine.

Parameters

 ctr_id Contains the counter identifier allocated by a previous x25_ctr_get subroutine call.

Return Values

If successful, the x25_ctr_remove subroutine returns a value of 0. If an error occurs, the x25_ctr_remove

subroutine returns a value of -1 and sets the x25_errno global variable to one of the error codes shown

below.

Error Codes

On failure, the x25_errno global variable is set to one of the following value:

X25AUTHCTR

X25CTRUSE

X25INVCTR

X25NOTINIT

X25SYSERR

Examples

See the example program svcxmit for a code sample that removes a counter.

220 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Implementation Specifics

This command is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_ctr_get subroutine, x25_ctr_test subroutine, x25_ctr_wait subroutine.

Processing Calls with the X.25 API in AIX 5L Version 5.3 Communications Programming Concepts.

x25_ctr_test Subroutine

Purpose

Returns the current value of a counter.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_ctr_test(ctr_id)

int ctr_id;

Description

The x25_ctr_test subroutine returns the current value of an active counter for testing.

Parameters

 ctr_id Contains the Counter identifier allocated by a previous x25_ctr_get subroutine.

Return Values

If successful, the x25_ctr_test subroutine returns the current value of the counter. If an error occurs, the

x25_ctr_test subroutine returns a value of -1 and sets the x25_errno global variable to one of the error

codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25INVCTR

X25NOTINIT

X25SYSERR

Examples

The following code structure determines how many messages for a call are waiting to be received,

assuming an array of calls information is available:

ctr_id = calls[i].counter_id;

number_of_messages = x25_ctr_test(ctr_id);

if (number_of_messages == 0)

 (void)printf("There are no messages waiting\n");

else if (number_of_messages > 0)

 (void)printf("The number of messages waiting is %d\n",

 number_of_messages);

Appendix B. COMIO Emulator 221

Note: The array used here is not part of the X.25 API.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_ctr_get subroutine, x25_ctr_remove subroutine, x25_ctr_wait subroutine.

Processing Calls with the X.25 API, X.25 Overview for Programming in AIX 5L Version 5.3

Communications Programming Concepts.

x25_ctr_wait Subroutine

Purpose

Waits for counters to change in value.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_ctr_wait(ctr_num, ctr_array)

int ctr_num;

struct ctr_array_struct ctr_array[];

Description

The x25_ctr_wait subroutine waits for the values of active counters to change. The process is suspended

until the value of one of the counters is greater than the specified value. Setting this value in the

application is optional, but recommended.

Parameters

 ctr_num Indicates the number of elements in the ctr_array_struct structure.

ctr_array Indicates the contents of an array of structures.

ctr_id Contains the counter identifier allocated by a previous x25_ctr_get subroutine.

ctr_value Specifies the value that must be exceeded by this counter.

Return Values

If successful, the x25_ctr_wait subroutine returns the counter identifier (ctr_id) of the counter that satisfied

the condition by exceeding the specified value. (If more than one counter exceeded its specified value,

only one of the counter identifiers is returned.) If an error occurs, the x25_ctr_wait subroutine returns a

value of -1 and sets the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25INVCTR

X25NOTINIT

X25SYSERR

222 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Examples

1. See the example program svcxmit for an illustration of code statements that wait for a call to be

connected or cleared.

2. See the example program svcrcv for an illustration of codes statements that wait for an incoming call.

3. See the example program svcrcv for an illustration of code statements that wait for data or some other

message.

Implementation Specifics

This command is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_ctr_get subroutine, x25_ctr_remove subroutine x25_ctr_test subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_deafen Subroutine

Purpose

Turns off listening for incoming calls.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_deafen(listen_id)

int listen_id;

Description

The x25_deafen subroutine turns off listening for incoming calls. It stops routing the calls that the

application was listening for using the specified the listen_id parameter.

Parameters

 listen_id Contains the listen identifier returned from a previous x25_listen subroutine.

Return Values

If successful, the x25_deafen subroutine returns a value of 0. If an error occurs, the x25_deafen

subroutine returns a value of -1 and sets the x25_errno global variable to one of the error codes shown

below.

Error Codes

On failure, the x25_errno global variable is set to one of the following values:

X25BADLISTENID

X25NOTINIT

X25SYSERR

Appendix B. COMIO Emulator 223

X25TIMEOUT

Examples

Stop listening: example program svcrcv.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_listen subroutine.

Processing Calls with the X.25 API in AIX 5L Version 5.3 Communications Programming Concepts.

x25_device_query Subroutine

Purpose

Returns configuration information about a device.

Library

X.25 Communications Library (libx25s.a)

C Syntax

struct cb_dev_info_struct *x25_device_query(link_name)

struct cb_link_name_struct * link_name;

Description

The x25_device_query subroutine returns information about the X.25 adapter in the cb_dev_info_struct

structure.

The information entered when the adapter was configured is returned. Changes made to a particular

switched virtual circuit (SVC) by requests entered in the facilities fields of X.25 API structures are not

reflected by this subroutine; these values can be obtained using the x25_circuit_query subroutine.

Parameters

 link_name Specifies a pointer to the cb_link_name_struct structure, which gives the name of the X.25 port.

Return Values

If successful, the x25_device_query subroutine returns a pointer to cb_dev_info_struct, structure

containing the information. The storage for this structure is allocated by the API; it is the responsibility of

the application to free it. If an error occurs, the x25_device_query subroutine returns a null value and sets

the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following values:

X25NOTINIT

X25SYSERR

224 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to

ENOMEM.

Examples

The following code sample prints out the number of PVCs and the default and maximum packet sizes for

an X.25 port:

struct cb_dev_info_struct *dev_ptr;

dev_ptr = x25_device_query(&link_name);

if (dev_ptr == NULL)

 (void)printf("Error %d from x25_device_query.",x25_errno);

else

{

 if (dev_ptr -> flags & X25FLG_NUA)

 {

 (void)printf("NUA : %s\n",dev_ptr -> nua);

 free(dev_ptr -> nua);

 }

 if (dev_ptr -> flags & X25FLG_NO_OF_VCS)

 (void)printf("Number of PVCs : %d\n",dev_ptr -> no_of_vcs);

 if (dev_ptr -> flags & X25FLG_MAX_RX_PACKET_SIZE)

 (void)printf("Max receive pkt size : %d\n",

 dev_ptr -> max_rx_packet_size);

 if (dev_ptr -> flags & X25FLG_MAX_TX_PACKET_SIZE)

 (void)printf("Max transmit pkt size : %d\n",

 dev-ptr -> max_tx_packet_size);

 if (dev_ptr -> flags & X25FLG_DEFAULT_SVC_RX_PACKET_SIZE)

 (void)printf("Default receive pkt size : %d\n",

 dev_ptr -> default_svc_rx_packet_size);

 if (dev_ptr -> flags & X25FLG_DEFAULT_SVC_TX_PACKET_SIZE)

 (void)printf("Default transmit pkt size : %d\n",

 dev_ptr -> default_svc_tx_packet_size);

 free(dev_ptr);

}

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_circuit_query subroutine, x25_link_query subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_init Subroutine

Purpose

Initializes the X.25 application programming interface (API).

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_init(link_name)

struct cb_link_name_struct * link_name;

Appendix B. COMIO Emulator 225

Description

The x25_init subroutine establishes communications with the X.25 device driver to set up X.25

communications with the X.25 port named by the link_name parameter. The application must invoke the

x25_init subroutine before any other X.25 subroutines.

Note: Initializing a port does not guarantee that the port is connected (see the x25_link_query

subroutine).

Parameters

 link_name Indicates a pointer to the cb_link_name_struct structure, which gives the name of the X.25 port.

Return Values

If successful, the x25_init subroutine returns a value of 0. If an error occurs, the x25_init subroutine

returns a value of -1 and sets the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25BADDEVICE

X25INIT

X25MAXDEVICE

X25NOSUCHLINK

X25SYSERR

Examples

Initialize the API for an X.25 port: example program svcxmit.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_term subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_interrupt Subroutine

Purpose

Sends an interrupt packet.

Library

X.25 Communications Library (libx25s.a)

226 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

C Syntax

int x25_interrupt(conn_id, cb_int)

int conn_id:

struct cb_int_struct * cb_int;

Description

The x25_interrupt subroutine sends an interrupt message. Control is returned to the application when the

message has been received by the adapter.

Parameters

 conn_id Contains the connection identifier of the call.

cb_int Contains a pointer to the cb_int_struct structure, which contains the interrupt data.

Return Values

If successful, the x25_interrupt subroutine returns a value of 0. If an error occurs, the x25_interrupt

subroutine returns a value of -1 and sets the x25_errno global variable to one of the error codes shown

below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25BADCONNID

X25NOCARD

X25NOLINK

X25NOTINIT

X25PROTOCOL

X25RESETCLEAR

X25SYSERR

X25TRUNCTX

If the x25_errno global variable is set to a X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

EIO

ENOSPC

Examples

The following code statement ends an interrupt:

struct cb_int_struct int_data;

int_data.flags = X25FLG_INT_DATA;

int_data.data_len = 20;

int_data.int_data = "This is an interrupt";

Appendix B. COMIO Emulator 227

rc = x25_interrupt(conn_id,&int_data);

if (rc < 0)

 (void)printf("Error %d from x25_interrupt.",x25_errno);

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

Processing Calls with the X.25 API , Using the X.25 Structures and Flags ,

in AIX 5L Version 5.3 Communications Programming Concepts.

x25_link_query Subroutine

Purpose

Returns information about the current status of an X.25 port.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_link_query(link_name)

struct cb_link_name_struct * link_name;

Description

The x25_link_query subroutine returns the status of the X.25 port as an integer.

Parameters

 link_name Contains a pointer to the cb_link_name_struct structure, which gives the name of the X.25 port.

Return Values

If successful, the x25_link_query subroutine returns an integer that indicates a status of

X25_LINK_CONNECTED, X25_LINK_DISCONNECTED, or X25_LINK_CONNECTING. If an error occurs,

the x25_link_query subroutine returns a value of -1 and sets the x25_errno global variable to one of the

error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25NOCARD

X25NOTINIT

X25SYSERR

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

228 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

EIO

Examples

To find out whether port x25s1 is connected, disconnected, or connecting, use this code sample:

struct cb_link_name_struct link_name;

link_name.flags = X25FLG_LINK_NAME;

link_name.link_name = "x25s1";

rc = x25_link_query(&link_name);

switch (rc)

{

 case X25_LINK_CONNECTED:

 (void)printf("Link is connected\n");

 break;

 case X25_LINK_DISCONNECTED:

 (void)printf("Link is disconnected\n");

 break;

 case X25_LINK_CONNECTING:

 (void)printf("Link is connecting\n");

 break;

 case -1;

 switch (x25_errno);

 {

 case X25SYSERR:

 (void)printf("System error : errno = %d\n",errno);

 perror();

 break;

 case X25NOCARD:

 (void)printf("The X.25 adapter is either not\n");

 (void)printf("installed or not functioning:");

 (void)printf("Call your system administrator.\n");

 break;

 case X25NOTINIT:

 (void)printf("The application has not initialized\n",

 (void)printf("X.25 communications:");

 (void)printf("Call your system administrator.\n");

 break;

 }

 break;

}

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_circuit_query subroutine, x25_device_query subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_listen Subroutine

Purpose

Starts listening for incoming calls.

Library

X.25 Communications Library (libx25s.a)

Appendix B. COMIO Emulator 229

C Syntax

int x25_listen(name, ctr_id)

NLchar * name;

int ctr_id;

Description

The x25_listen subroutine starts listening for incoming calls that fit the criteria in the routing list entry with

the specified name parameter. It also tells the API to associate the calls with the counter identifier

specified. It returns a listen identifier to be used by the x25_receive subroutine.

Parameters

 name Contains a pointer to a name that is specified in the routing list.

ctr_id Identifies a counter, allocated by a previous x25_ctr_get subroutine.

Return Values

If successful, the x25_listen subroutine returns the listen identifier. If an error occurs, the x25_listen

subroutine returns a value of -1 and sets the x25_errno global variable global variable to one of the error

codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25AUTHLISTEN

X25INVCTR

X25NAMEUSED

X25NOLINK

X25NONAME

X25NOTINIT

X25SYSERR

X25TABLE

X25TIMEOUT

Examples

Start listening for incoming calls: example program svcrcv.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_deafen subroutine.

Processing Calls with the X.25 API in AIX 5L Version 5.3 Communications Programming Concepts.

230 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

x25_pvc_alloc Subroutine

Purpose

Allocates a permanent virtual circuit (PVC) for use by an application.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_pvc_alloc(pvc_ptr, ctr_id)

struct cb_pvc_alloc_struct * pvc_ptr;

int ctr_id;

Description

The x25_pvc_alloc subroutine reserves the use of the specified permanent virtual circuit (PVC) for an

application.

Parameters

 pvc_ptr Contains a pointer to the cb_pvc_alloc_struct structure, which contains the name of the X.25 port and

the logical channel number of the PVC to be used. Together, the port and the logical number, identify

the PVC.

ctr_id Identifies a counter allocated by a previous x25_ctr_get subroutine.

Return Values

If successful, the x25_pvc_alloc subroutine returns the connection identifier to be used by other

subroutines. If an error occurs, the x25_pvc_alloc subroutine returns a value of -1 and sets the

x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25INVCTR

X25NOCARD

X25NOLINK

X25NOSUCHLINK

X25NOTINIT

X25NOTPVC

X25PVCUSED

X25SYSERR

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

Appendix B. COMIO Emulator 231

EIO

Examples

The example program, pvcxmit, illustrates code statements that allocate a PVC.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_pvc_free subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_pvc_free Subroutine

Purpose

Frees a permanent virtual circuit (PVC).

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_pvc_free(conn_id)

int conn_id;

Description

The x25_pvc_free subroutine frees the permanent virtual circuit (PVC) used for the specified connection

for use by another application. Any data queued for the x25_receive subroutine is lost. It is the

responsibility of the application to check the counter identifier for queued data before freeing the PVC.

Parameters

 conn_id Contains the connection identifier, returned by the previous x25_pvc_alloc subroutine.

Return Values

If successful, the x25_pvc_free subroutine returns a value of 0. If an error occurs, the x25_pvc_free

subroutine returns a value of -1 and sets the x25_errno global variable to one of the error codes shown

below.

Error Codes

On failure, the x25_errno global variable is set to one of the following values:

X25BADCONNID

X25NOCARD

X25NOLINK

X25NOTINIT

232 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X25SYSERR

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

EIO

Examples

Free a PVC: example program pvcxmit.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_pvc_alloc subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_receive Subroutine

Purpose

Receives an incoming packet and indicates the packet type.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_receive(conn_id, cb_msg)

int * conn_id;

struct cb_msg_struct * cb_msg;

Description

The x25_receive subroutine is used to receive incoming calls and messages and monitor data for

connected calls. One x25_receive subroutine call receives a complete packet sequence. In the event that

an interrupt packet is received, an interrupt confirmation is sent automatically by the system.

Appendix B. COMIO Emulator 233

Parameters

 conn_id Contains a pointer to an integer that contains the listen identifier.

Note: If the call is successfully received, an open file is created in the current process that is

used by the API library functions for subsequent communication on this connection. The file is

closed when the call is cleared.

To receive a message for any connected call, a pointer to an integer that contains a value of 0.

To receive a message for a specific connected call, a pointer to an integer that contains the connection

identifier of the call.

To receive monitoring data for a call, a pointer to an integer that contains the connection identifier

returned by the x25_link_monitor subroutine.

On return from this subroutine, in all cases, a pointer to an integer that now contains the actual

connection identifier.

cb_msg Specifies a pointer to the message structure, cb_msg_struct, which includes the msg_type field. This

structure is allocated by the API; it is the responsibility of the application to free this memory.

Return Values

If successful, the x25_receive subroutine returns a nonnegative value. If an error occurs, the x25_receive

subroutine returns a value of -1 and sets the x25_errno global variable to one of the error codes shown

below.

Error Codes

On failure, the x25_errno global variable is set to one of the following values:

X25BADID

X25NOACKREQ

X25NOCARD

X25NODATA

X25NOLINK

X25NOTINIT

X25RESETCLEAR

X25SYSERR

X25TRUNCTX

If the x25_errno global variable is set to a X25SYSERR value, the errno global variable is set to an

EINTR value.

Examples

1. See the example program svcrcv for a code sample that receives an incoming call.

2. See the example program svcrcv for a code sample that receives data or some other message.

3. See the example program svcxmit for a code sample that receives an acknowledgment that data has

been received.

234 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_send subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_reset Subroutine

Purpose

Resynchronizes communications on a virtual circuit.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_reset(conn_id, cb_res)

int conn_id;

struct cb_res_struct * cb_res;

Description

The x25_reset subroutine sends a reset-indication packet to reset the virtual circuit using the specified

connection identifier.

If the application is sending data at the time this subroutine is called, the data is flushed from the system,

and the x25_send subroutine returns an appropriate error code. Incoming data not already passed to the

application will be flushed. Because resets can cause data to be lost, it is the responsibility of the

application to provide higher-level protocol for data protection.

Parameters

 conn_id Contains the connection identifier of the call.

cb_res Specifies a pointer to the cb_res_struct structure, which is used to pass the reset cause and

diagnostic codes.

Return Values

If successful, the x25_reset subroutine returns a value of 0. If an error occurs, the x25_reset subroutine

returns a value of -1 and sets the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following value:

X25BADCONNID

X25NOCARD

X25NOLINK

Appendix B. COMIO Emulator 235

X25NOTINIT

X25PROTOCOL

X25RESETCLEAR

X25SYSERR

If the x25_errno global variable is set to the X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

EIO

ENOSPC

Examples

See the example program pvcxmit for a code sample that resets a call.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_reset_confirm subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_reset_confirm Subroutine

Purpose

Confirms that a reset-indication packet has been received.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_reset_confirm(conn_id)

int conn_id;

Description

The x25_reset_confirm subroutine sends a reset-confirmation packet. After the reset-indication packet

has been received by the x25_receive subroutine, no further data can be sent or received until the

reset-confirmation has been sent. Any data currently in transmission is discarded with an appropriate

return code.

Parameters

 conn_id Contains the Connection identifier of the call.

236 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Return Values

If successful, the x25_reset_confirm subroutine returns a value of 0. If an error occurs, the

x25_reset_confirm subroutine returns a value of -1 and sets the x25_errno global variable to one of the

error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25BADCONNID

X25NOACKREQ

X25NOCARD

X25NOLINK

X25NOTINIT

X25PROTOCOL

X25RESETCLEAR

X25SYSERR

X25TRUNCTX

If the x25_errno global variable is set to a X25SYSERR value, the errno global variable is set to one of

the following values:

EINTR

EIO

ENOSPC

Examples

The example program pvcrcv illustrates how to confirm that a reset indication has arrived.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_reset subroutine.

Processing Calls with the X.25 API in AIX 5L Version 5.3 Communications Programming Concepts.

x25_send Subroutine

Purpose

Sends a data packet.

Appendix B. COMIO Emulator 237

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_send(conn_id, cb_data)

int conn_id;

struct cb_data_struct * cb_data;

Description

The x25_send subroutine transfers the data packet to the adapter for transmission across the network.

Control is returned to the calling application when the device driver indicates successful data transfer to

the adapter. If there is no room for the packet in adapter memory, the x25_send subroutine waits until

memory becomes available. The amount of memory available depends on the transmit packet window and

the transmit packet size. More memory generally becomes available after the X.25 network sends a

Receiver Ready signal for the connection identifier.

Parameters

 conn_id Contains the connection identifier of the call.

cb_data Specifies a pointer to data structure, cb_data_struct.

Return Values

If successful, the x25_send subroutine returns a value of 0. If an error occurs, the x25_send subroutine

returns a value of -1 and sets the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25BADCONNID

X25NOACKREQ

X25NOCARD

X25NOLINK

X25NOTINIT

X25PROTOCOL

X25RESETCLEAR

X25SYSERR

X25TRUNCTX

If the x25_errno global variable is set to a X25SYSERR value, the errno global variable is set to one of

the following values:

EFAULT

EINTR

238 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

EIO

ENOSPC

Examples

1. For code statements that send data without the D-bit set; see the example program svcxmit.

2. For code statements that send data with the D-bit set to request acknowledgment, see the example

program svcxmit.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_ack subroutine, x25_receive subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

x25_term Subroutine

Purpose

Terminates the X.25 API for a specified X.25 port.

Library

X.25 Communications Library (libx25s.a)

C Syntax

int x25_term(link_name)

struct cb_link_name_struct * link_name;

Description

The x25_term subroutine terminates communication with the X.25 device driver to stop X.25

communications with the X.25 port named by the link_name subroutine. If this is the last X.25 port open

for this process, X.25 resources are freed.

The x25_term subroutine clears any virtual circuits still being used by the application. However, it is

recommended that you clear virtual circuits in an orderly manner before invoking the x25_term subroutine.

Parameters

 link_name Contains the pointer to the cb_link_name_struct structure, which gives the name of the X.25 port.

Return Values

If successful, the x25_term subroutine returns a value of 0. If an error occurs, the x25_term subroutine

returns a value of -1 and sets the x25_errno global variable to one of the error codes shown below.

Error Codes

On failure, the x25_errno global variable is set to one of the following:

X25BADDEVICE

Appendix B. COMIO Emulator 239

X25SYSERR

Examples

The example program svcxmit illustrates code statements that terminates an API.

Implementation Specifics

This subroutine is part of X.25 Application in Base Operating System (BOS) Extensions 2.

Related Information

The x25_init subroutine.

Processing Calls with the X.25 API, Using the X.25 Structures and Flags, in AIX 5L Version 5.3

Communications Programming Concepts.

240 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix C. Device Handler API

Device Driver Emulation

The emulation of the old driver provides the following programming interface routines:

v x25_close X.25 Device Handler Entry Point

v x25_ioctl X.25 Device Handler Entry Point

v CIO_GET_STAT (Get Status) x25_ioctl X.25 Device Handler Operation

v CIO_HALT (Halt Session) x25_ioctl X.25 Device Handler Operation

v CIO_QUERY (Query Device) x25_ioctl X.25 Device Handler Operation

v CIO_START (Start Session) x25_ioctl X.25 Device Handler Operation

v IOCINFO (Identify Device) x25_ioctl X.25 Device Handler Operation

v X25_ADD_ROUTER_ID (Add Router ID) x25_ioctl X.25 Device Handler Operation

v X25_COUNTER_GET (Get Counter) x25_ioctl X.25 Device Handler Operation

v X25_COUNTER_READ (Read Counter) x25_ioctl X.25 Device Handler Operation

v X25_COUNTER_REMOVE (Remove Counter) x25_ioctl X.25 Device Handler Operation

v X25_COUNTER_WAIT (Wait Counter) x25_ioctl X.25 Device Handler Operation

v X25_DELETE_ROUTER_ID (Delete Router ID) x25_ioctl X.25 Device Handler Operation

v X25_LINK_STATUS (Link Status) x25_ioctl Operation

v X25_LOCAL_BUSY (Local Busy) x25_ioctl Operation

v X25_QUERY_ROUTER_ID (Query Router) ID x25_ioctl Operation

v X25_QUERY_SESSION (Query Session) x25_ioctl Operation

v X25_REJECT_CALL (Reject Call) x25_ioctl Operation

v x25_mpx X.25 Device Handler Entry Point

v x25_open X.25 Device Handler Entry Point

v x25_read X.25 Device Handler Entry Point

v x25_select X.25 Device Handler Entry Point

v x25_write X.25 Device Handler Entry Point

x25_close X.25 Device Handler Entry Point

Purpose

Closes an X.25 device handler channel.

Syntax

int x25_close (devno, chan, ext)

dev_t devno;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

chan Identifies the channel number assigned by the x25_mpx entry point.

ext Not used by the x25_close entry point.

© Copyright IBM Corp. 2001, 2005 241

Description

The x25_close entry point closes an X.25 device handler channel. For each channel opened by the

x25_open entry point, there must be a corresponding x25_close entry point. When the X.25 device

handler receives an x25_close entry point, the device handler frees all internal data areas associated with

the corresponding x25_open entry point. In addition, any receive data for the indicated channel is purged.

Note: The x25_close entry point does not free the channel itself. The channel is freed by the

x25_mpx entry point, which the kernel calls immediately after the x25_close entry point.

If the channel being closed is the only open channel for the minor device, the X.25 device handler does

the following as well:

v Frees the interrupt level.

v Resets all static data to its initial state.

Before issuing the x25_close entry point, the caller should issue a call to the CIO_HALT operation for

each successful CIO_START operation. If the user does not call the CIO_HALT operation (for example,

the call was invoked by the kernel after a user process ended abnormally), the X.25 device handler

performs the CIO_HALT operation on all open sessions on the channel before continuing with the

x25_close function. The close purges all data waiting on the channel. No special clear data can be sent

and any clear confirm data is lost.

Attention: If the user does not call a CIO_HALT, it is possible data could be lost on the channel’s

open sessions.

Execution Environment

An x25_close entry point can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to one

of the following values:

 EINTR Indicates that the close call was interrupted.

ENXIO Indicates that the channel was invalid.

Implementation Specifics

The x25_close entry point functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_mpx entry point, x25_open entry point.

The CIO_HALT x25_ioctl X.25 Device Handler Operation, CIO_START x25_ioctl X.25 Device Handler

Operation.

x25_ioctl X.25 Device Handler Entry Point

Purpose

Provides various functions for controlling the X.25 device.

242 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Syntax

int x25_ioctl (devno, cmd, arg, devflag, chan, ext)

dev_t devno;

int cmd, arg;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

cmd Specifies which of the available x25_ioctl operations is to be performed.

arg Identifies the address of the x25_ioctl parameter block. The meaning of this parameter depends on the

value of the cmd parameter.

devflag Indicates how the device was opened and whether the caller is a user- or kernel-mode process. This

parameter accepts the following flags:

DAPPEND

Specifies open for appending. The X.25 handler ignores this flag.

DKERNEL

Indicates a kernel-mode process called the entry point. This flag is clear if a user-mode

process called the entry point.

DNDELAY

Specifies the X.25 device handler performs nonblocking reads and writes. If this flag is not set,

the X.25 device handler performs blocking reads and writes.

DREAD

Specifies open for reading. This is the default for the X.25 handler regardless of whether this

flag is set.

DWRITE

Specifies open for writing. This is the default for the X.25 handler regardless of whether this

flag is set.

chan Identifies the channel number assigned by the x25_mpx entry point.

ext Specifies the extended system call parameter. The meaning of this parameter depends on the value of

the cmd parameter.

Description

The x25_ioctl X.25 device handler entry point provides various functions for controlling the X.25 device.

The following are valid operations for the X.25 device:

 CIO_DNLD Downloads tasks to the kernel.

CIO_GET_STAT Returns the next status block.

CIO_HALT Halts a session.

CIO_QUERY Returns the current RAS counter values.

CIO_START Starts a session and registers a network ID.

IOCINFO Returns a structure that describes the device.

In addition to the above standard operations, the x25_ioctl operation supports the following X.25 specific

commands:

 X25_ADD_ROUTER_ID Adds a router ID.

X25_COUNTER_GET Gets a counter for asynchronous notification.

X25_COUNTER_READ Reads the value of a counter.

X25_COUNTER_REMOVE Removes a counter from the system.

X25_COUNTER_WAIT Waits for the contents of counters to change.

Appendix C. Device Handler API 243

X25_DELETE_ROUTER_ID Deletes a router ID.

X25_DIAG_IO_READ Reads from an I/O register on the adapter.

X25_DIAG_IO_WRITE Writes to an I/O register on the adapter.

X25_DIAG_MEM_READ Reads memory from the adapter into a user’s buffer.

X25_DIAG_MEM_WRITE Writes to memory on the adapter from a user’s buffer.

X25_DIAG_TASK Downloads the diagnostics task onto the card.

X25_LINK_CONNECT Connects a link.

X25_LINK_DISCONNECT Disconnects a link.

X25_LINK_STATUS Queries the status of a link.

X25_LOCAL_BUSY Enables or disables receiving data packets on a port.

X25_QUERY_SESSION Queries a session.

X25_QUERY_ROUTER_ID Queries router ID.

X25_REJECT Rejects a call.

Execution Environment

The x25_ioctl entry point can be called from the process environment only.

Implementation Specifics

The x25_ioctl entry point functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_mpx entry point.

CIO_DNLD (Download Task) x25_ioctl X.25 Device Handler Operation

Purpose

Downloads tasks to the kernel.

Description

Note: The CIO_DNLD operation can be called only by a user-mode process. The DKERNEL flag

must be clear to run this operation.

The CIO_DNLD x25_ioctl operation downloads tasks to the kernel. This routine is used to pass microcode

between the configuration program and the device driver. Each call to this routine completely replaces any

previous version of microcode stored in the device driver.

Notes:

1. The CIO_DNLD operation does not download the microcode to the card. It transfers the

microcode into kernel memory so that the microcode is available when needed.

2. If the microcode for real-time control microcode (RCM), X.25, or diagnostics is not available, the

code pointer should be set to null and the code length set to 0.

For the CIO_DNLD operation, the arg parameter points to an x25_task structure. This structure contains

the following fields:

 x25_code Points to X.25 code.

rcm_code Points to RCM.

diagnostic_code Points to diagnostic code.

x25length Specifies the length of the X.25 code.

244 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

rcm_length Specifies the length of the RCM code.

diagnostic_length Specifies the length of the diagnostic code.

Execution Environment

The CIO_DNLD operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to the

following value:

 EFAULT Indicates that an invalid address was specified.

Implementation Specifics

The CIO_DNLD operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_ioctl device handler entry point.

CIO_GET_STAT (Get Status) x25_ioctl X.25 Device Handler Operation

Purpose

Returns the next status block.

Description

Note: Only a user-mode process can call the CIO_GET_STAT operation.

The CIO_GET_STAT x25_ioctl operation reads the next status block available on the channel. This

operation does not block. To call the CIO_GET_STAT operation, the DKERNEL flag must be clear,

indicating a user-mode process. If a new status block is available for a kernel-mode process, the stat_fn

kernel procedure defined by the x25_open entry point is called.

For the CIO_GET_STAT operation, the arg parameter returns a pointer to a status_block structure as

defined in the /usr/include/sys/comio.h file.

Status Blocks for the X.25 Device Handler

Status blocks are provided to user-mode and kernel-mode processes differently. Kernel-mode processes

receive a status block when they are called using the stat_fn kernel procedure. This procedure is

indicated when a channel is opened by the x25_open entry point.

User-mode processes receive a status block whenever they issue a CIO_GET_STAT operation. In

addition, a user-mode process can wait for the next available status block by issuing an x25_select entry

point with the DPOLLPRI event specified.

Status blocks can be solicited to indicate a completion of a previous command (such as a CIO_START

operation). Status blocks can also be unsolicited to indicate some asynchronous event.

Appendix C. Device Handler API 245

Status blocks contain a code field and possible options. The code field indicates the type of status block

code (for example, CIO_START_DONE). The types of status blocks are:

v CIO_HALT_DONE

v CIO_NULL_BLK

v CIO_START_DONE

v CIO_TX_DONE

v X25_REJECT_DONE

CIO_HALT_DONE Status Block

This block is provided by the X.25 device handler when the CIO_HALT operation is complete:

 option[0] Specifies the status or exception code. This option is set to CIO_OK if the start is successful.

Otherwise, it is set to one of the status returns defined by the CIO_HALT operation.

option[1] Specifies the session ID and the network ID. The 2 high-order bytes contain the session ID, and

the 2 low-order bytes contain the network ID.

option[2] Valid only if the CIO_HALT was used to issue a Clear Request. For a user-mode process, this

option contains a pointer to the first byte of the process’s data buffer.

For kernel-mode process, this option contains the mbuf structure passed with the CIO_HALT

operation. The buffer described by the mbuf structure represents a Clear Confirm received in

response to the Clear Request. If there was a clear collision, the buffer represents a Clear

Indication that should be treated as an acknowledgment of the Clear Request as no Clear Confirm

is subsequently received.

This option is null for other CIO_HALT operation types.

option[3] Not used.

CIO_NULL_BLK Status Block

This status block is returned whenever a status block is requested but none are available.

 option[0] Not used

option[1] Not used

option[2] Not used

option[3] Not used

CIO_START_DONE Status Block

This block is provided by the X.25 device handler when the CIO_START operation is complete:

 option[0] Specifies the status or exception code. This option is set to CIO_OK if the start is successful.

Otherwise, it is set to one of the status returns defined by the CIO_START operation.

option[1] Specifies the session ID and the network ID. The 2 high-order bytes contain the session ID and the

2 low-order bytes contain the network ID.

option[2] Valid only for a session of type SESSION_SVC_OUT. For a user-mode process, this option

contains a pointer to the first byte of the process’s data buffer.

For kernel-mode process, this option contains the mbuf structure passed with the CIO_START

operation. The mbuf structure describes a buffer that represents either a Call Connected or a Clear

Indication received in response to a Call Request.

This option is null for other session types.

option[3] Not used.

246 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

CIO_TX_DONE Status Block

This block is provided by the X.25 device handler when a transmit request for which an acknowledgment

was requested is complete:

 option[0] Specifies the status or exception code. This option is set to CIO_OK if the start is successful.

Otherwise, it is set to one of the status returns defined by the x25_write entry point.

option[1] Specifies the write ID in the write_extension structure. This structure is passed by the x25_write

entry point.

option[2] Points to the first byte of a user-mode process data buffer or to the mbuf structure for a

kernel-mode process. The mbuf structure is passed with the x25_write entry point.

option[3] Specifies the session ID in the 2 high-order bytes and the network ID in the 2 low-order bytes.

X25_REJECT_DONE Status Block

This status block indicates that the CIO_REJECT operation is complete:

 option[0] Specifies the status or exception code. This option is set to CIO_OK if the start is successful.

Otherwise, it is set to one of the status returns defined by the CIO_REJECT operation.

option[1] Specifies the session ID in the 2 high-order bytes and the network ID in the 2 low-order bytes.

option[2] Identifies the call ID of the incoming call that is being rejected.

option[3] Not used.

Execution Environment

The CIO_GET_STAT operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to the following value:

 EFAULT Indicates an invalid address was specified.

Implementation Specifics

The CIO_GET_STAT operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

Common Communications Status/Exception Codes in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

The x25_ioctl entry point x25_open entry point, x25_select entry point, x25_write entry point.

The CIO_HALT x25_ioctl X.25 Device Handler Operation, CIO_START x25_ioctl X.25 Device Handler

Operation, X25_REJECT x25_ioctl X.25 Device Handler Operation.

CIO_HALT (Halt Session) x25_ioctl X.25 Device Handler Operation

Purpose

Ends a session with the X.25 device handler.

Appendix C. Device Handler API 247

Description

The CIO_HALT x25_ioctl operation ends a session with the X.25 device handler. A session identified by a

particular session_id field can be terminated in any of the following ways:

v Clear request on an SVC

v Clear confirm on an SVC

v Request for deallocation of a PVC

v Request to stop listening for incoming calls

v Turning off the monitoring facilities on the card.

If the CIO_HALT operation is the last for this port, appropriate termination (such as automatic

disconnection, if configured) is done.

The CIO_HALT operation returns immediately to the caller before the halt completes. If the return does not

indicate an error, the X.25 device handler builds a CIO_START_DONE status block on completion of the

operation. For kernel-mode processes the status block is passed to the associated status function, as

specified by the x25_open entry point. For user-mode processes, the block is placed in the associated

status-and-exception queue.

Parameter Block

The parameter block for the CIO_HALT operation is the x25_halt_data structure. This structure contains

the following fields:

 sb Indicates that the session_blk structure is defined in the /usr/include/sys/comio.h file. The

status field in this structure has meaning when returned only if the return code is EIO.

session_id Identifies the ID of the session to halt.

If the CIO_HALT operation is issued to send a Clear Request packet on a session of type

SESSION_SVC_OUT or SESSION_SVC_IN, the CIO_HALT operation ext parameter is used. The ext

parameter points to a buffer containing the data required for the Clear Request packet. This data is in the

form described in the mbuf structure.

For a kernel-mode process, the data passed in the ext parameter is an mbuf pointer. Only the calling

process can free the mbuf data returned in the CIO_HALT_DONE status block. The mbuf data returned by

this status block is not the same as the data passed down.

For a user-mode process, the data passed in the ext parameter is a pointer to a buffer of the same format

in user space. If the pointer is null, then the Clear Request packet is sent with default

cause-and-diagnostic codes (0, 0), but with no facilities or user data. When the CIO_HALT_DONE status

block is received, the buffer is filled with the contents of the Clear Confirm packet.

Execution Environment

The CIO_HALT operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to one

of the following values:

 EFAULT Indicates that an invalid address was specified.

EINVAL Indicates invalid values in the ext parameter buffer.

248 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

EIO Indicates that an error has occurred. The status field in the status_block structure indicates one of the

following exception codes:

v CIO_HARD_FAIL

v CIO_LOST_DATA

v CIO_NOMBUF

v CIO_NOT_STARTED

v CIO_TIMEOUT

In addition, one of the following X.25-specific codes may be returned:

 X25_BAD_PKT_TYPE Indicates that the packet type passed in the ext parameter is invalid. For session

types SESSION_SVC_OUT or SESSION_SVC_IN, the packet type should be either

PKT_CLEAR_REQ or PKT_CLEAR_CONFIRM.

X25_NO_LINK Indicates that the link is not connected.

X25_PROTOCOL Indicates that a protocol error occurred.

Implementation Specifics

The CIO_HALT operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_ioctl entry point, x25_open entry point.

The CIO_START x25_ioctl X.25 Device Handler Operation.

Status Blocks for the X.25 Device Handler.

CIO_QUERY (Query Device) x25_ioctl X.25 Device Handler Operation

Purpose

Returns device statistics and device-dependent information.

Description

Note: The counters and profile information can only be cleared by a system user.

The CIO_QUERY x25_ioctl operation returns the ras_log field of the define device structure (DDS).

query_params Parameter Block

For the CIO_QUERY operation, the arg parameter returns a pointer to the query_params structure. This

structure contains the following fields:

 status Contains the returned value if the return code is EIO.

bufptr Points to an x25_query_data structure. This structure contains the following fields:

cc Contains a cio_stats structure as defined in the /usr/include/sys/comio.h file.

ds Contains an x25_stats structure identifying X.25-specific statistics. This structure is found in

the /usr/include/sys/x25user.h file.

buflen Specifies the length of the buffer.

Appendix C. Device Handler API 249

clearall Clears the statistics when set to CIO_QUERY_CLEAR. Any other setting leaves the statistics

unchanged.

x25_stats Structure

The x25_stats structure identifies X.25-specific statistics. Information in this structure includes the

transmit_profile field. This field provides a profile of the transmission packet sizes in use on a port and

can be used for configuration of adapter buffers. The transmit_profile field contains a count of the

number of packets sent since the device was last configured. The size of these packets must be in the

range specified.

 Index Size

0 Packet size not known

1 Reserved

2 Reserved

3 Reserved

4 0 - 15

5 16 - 31

6 32 - 63

7 64 - 127

8 128 - 255

9 256 - 511

10 512 - 1023

11 1024 - 2047

12 2048 - 4095

>12 Reserved

Execution Environment

The CIO_QUERY operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation and the kernel sets the errno global variable to

one of the following values:

 EFAULT Indicates an invalid address was specified.

EIO Indicates an error has occurred. The arg->status field contains one of the following exception codes:

v CIO_BAD_MICROCODE

v CIO_HARD_FAIL

v CIO_NOT_STARTED

v CIO_TIMEOUT

v CIO_LOST_DATA

EMSGSIZE Indicates the statistical data was greater than the length of the buffer specified by the buflen field.

The data in the buffer is truncated.

ENOBUFS Indicates no buffers are available.

ENXIO Indicates the device has not been completely configured.

Implementation Specifics

The CIO_QUERY operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

250 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Related Information

The x25_ioctl device handler entry point.

CIO_START (Start Session) x25_ioctl X.25 Device Handler Operation

Purpose

Starts an X.25 device handler session.

Description

The CIO_START x25_ioctl operation starts an X.25 session. Only one X.25 session is associated with

each CIO_START operation. An X.25 session can be initiated by any of the following:

v A call request on a switched virtual circuit (SVC).

v A call accepted on an SVC in response to an incoming call received on some other (listening) session.

v A request for allocation of a permanent virtual circuit (PVC).

v A request to listen for incoming calls satisfying a named specification in the routing table.

If the CIO_START operation is the first one issued for a port, the operation also does the appropriate

initialization (for example, downloading the microcode).

The CIO_START operation returns immediately to the caller, before the command completes. If the

operation completes successfully, the X.25 device handler builds a CIO_START_DONE status block on

completion. For kernel-mode processes, the status block is passed to the associated status function

specified at x25_open time. For user-mode processes, the block is placed in the associated status

exception queue indicated by a / (slash).

If the immediate return indicates an error, there is no need to halt the operation. However, if the status

block indicates an error, the calling process must issue a halt. An X.25 CIO_HALT operation can be called

before a CIO_START_DONE status block is received. In this case, it is undefined whether or not the

session generates a CIO_START_DONE status block.

Note: Read or write operations should not be performed until the CIO_START_DONE status block is

received.

Parameter Block

For the CIO_START operation, the arg parameter points to an x25_start_data structure as defined in the

/usr/include/sys/comio.h file. This structure contains the following fields:

 sb Defines a session_blk structure as described in the /usr/include/sys/comio.h file.

This structure contains the following fields:

netid Identifies the network ID. This field can be set by the caller to a correlator

returned with any data received on this session.

status Identifies return values. This field is meaningful only if the return code is

EIO.

session_name Specifies an ASCII name supplied by the caller for RAS purposes. This field is

null-terminated if less than 16 characters.

session_id Specifies a unique ID for this session returned by the X.25 device handler. The

caller must use this ID to identify the session on all subsequent calls.

Appendix C. Device Handler API 251

session_type Specifies the type of session required.

The X.25 device handler permits a process to start a session of type

SESSION_SVC_IN only if its UID is the same as that of the process that owns the

session of type SESSION_SVC_LISTEN that received the incoming call.

If the session type is SESSION_SVC_OUT or SESSION_SVC_IN, then the

CIO_START operation ext parameter is used. The ext parameter points to the data

required for the Call Request and Call Accepted packets issued by an out or in

session. This data is in the form described in the mbuf structure (found in the

/usr/include/sys/x25user.h file). For a kernel-mode process, the data is an mbuf

pointer. For user-mode, the data is a pointer to a buffer in user space of the same

format.

For a SESSION_SVC_OUT session, the option[2] field of the status block points

to the packet that completed the CIO_START operation. This is either a

PKT_CALL_CONNECTED or PKT_CLEAR_INDICATION packet.

session_protocol Specifies the protocol for this session. This field is set by the caller and is valid only

for a SESSION_SVC_OUT or SESSION_SVC_IN session. The protocol for

SESSION_PVC is set in the configuration.

The session_protocol field accepts the following values:

PROTOCOL_ELLC

Reserved.

PROTOCOL_ISO8208

No specific action. This value is used whenever no other specific protocol

is wanted.

PROTOCOL_QLLC_1980

Selects SNA 1980 cause-and-diagnostic codes instead of CCITT.

PROTOCOL_QLLC_1984

Selects SNA 1984 cause-and-diagnostic codes instead of CCITT.

PROTOCOL_TCPIP

No specific action.

PROTOCOL_YBTS

Yellow Book Transport Service.

 For this protocol, the X.25 device handler does not handle X.25 packet

sequences on behalf of the user. Instead, incoming packets with the M bit

set are passed to the user without waiting for the sequence to complete.

counter_id Specifies the counter to increment for any incoming data on this session. This field

is set by the calling process. This field set to -1 indicates that counters are not used

on this session.

Note: Counter functions are available only to user-mode processes.

252 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

session_type_data Contains additional data set by the caller. The data returned in this field depends on

the value of the session_type field. Following are the possible data types:

listen_name

Identifies the nickname of an entry (or collection of entries) in the router

table. This must be set by the caller with the CIO_START operation when

the session_type field is set to SESSION_SVC_LISTEN.

call_id Contains the incoming call ID supplied to a listening session by the device

handler with an incoming call from remote data terminal equipment (DTE).

This value must be set by the caller with the CIO_START operation when

the session_type field is SESSION_SVC_IN.

logical_channel

Specifies the logical channel number of the PVC to be acquired. This field

must be set by the caller with the CIO_START operation when the

session_type field is set to SESSION_PVC.

 Note: When the session type is SESSION_SVC_OUT, no additional

data is required.

Execution Environment

The CIO_START operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to one

of the following values:

 EFAULT Indicates that an invalid address was specified.

Appendix C. Device Handler API 253

EIO Indicates that an error has occurred. The error is returned in the sb.status field of the CIO_START

parameter block and takes any one of the following four exception codes:

v CIO_BAD_MICROCODE

v CIO_HARD_FAIL

v CIO_NOMBUF

v CIO_TIMEOUT

In addition, the sb.status field may take any of the following X.25-specific codes:

X25_AUTH_LISTEN

Indicates the UID in the router table entry that corresponds to the listen_name field does not

match the calling UID.

X25_BAD_CALL_ID

Indicates the call_id field specified on a SESSION_SVC_IN session is not valid.

X25_BAD_PKT_TYPE

Indicates the packet type passed by the ext parameter is not valid.

X25_CLEAR

The session has been cleared.

X25_INV_CTR

The counter specified in the x25_start_data field does not exist.

X25_NAME_USED

Indicates the listen_name field specified on a SESSION_SVC_LISTEN session is in use by

another application.

X25_NO_LINK

Indicates could not connect to the link.

X25_NO_NAME

Indicates the listen_name field specified on an SESSION_SVC_LISTEN session is not in the

router table.

X25_NOT_PVC

Indicates the channel is not defined as a PVC.

X25_PROTOCOL

Indicates a protocol error occurred. For example, a SESSION_SVC_IN session was cleared

by the remote DTE before it could be accepted. The clear packet can be read using the

x25_read operation before issuing the halt.

X25_PVC_USED

Indicates the PVC is in use by another application.

X25_TOO_MANY_VCS

Indicates too many virtual circuits have been opened.

EINVAL Indicates that any of the following errors may have occurred:

v The session_type field is not valid. This field must be set to PKT_CALL_REQ for a

SESSION_SVC_OUT session or to PKT_CALL_ACCEPT for a SESSION_SVC_IN session.

v The session_protocol field is not valid.

v The chan parameter was not opened in the correct mode. For a SESSION_MONITOR session, the

channel must be opened in M mode. For sessions of type SESSION_SVC_IN,

SESSION_SVC_OUT, and SESSION_SVC_LISTEN, the channel must be opened without a mode.

EINTR Indicates that a signal was received during the call.

ENOBUFS Indicates that there are no spare buffers in the pool.

EBUSY Indicates that the number of starts for this device was exceeded. This occurs with a monitor device that

can only support one start.

ENXIO Indicates that the device was not completely configured. Initial configuration must be completed before

any starts can be issued.

254 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Implementation Specifics

The CIO_START operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_ioctl entry point, x25_open entry point, x25_read entry point.

The CIO_HALT x25_ioctl X.25 Device Handler Operation.

Status Blocks for the X.25 Device Handler.

IOCINFO (Identify Device) x25_ioctl X.25 Device Handler Operation

Purpose

Returns I/O character information for an X.25 device.

Description

The IOCINFO x25_ioctl operation returns I/O character information for an X.25 device. The parameter

block for this operation is defined in the /usr/include/sys/definfo.h file by the devinfo structure. This

structure contains the following fields:

 devtype Identifies the type of device. This is set to the DD_X25 value (defined as the ASCII character x).

flags Undefined for X.25 devices.

devsubtype Undefined for X.25 devices.

In addition to the above members, the /usr/include/sys/devinfo.h file also contains an x25 structure

(found in the /usr/include/sys/x25user.h file). This structure defines the X.25 device and contains the

following members:

 support_level Identifies a support level of 1980 or 1984.

nua Contains a null-terminated ASCII string that

represents the network-user address.

subscription_facilities_supported Contains device-dependent information.

network_id Specifies the identification code for the network. The

range and default value for this code is defined by

the device configuration.

max_tx_packet_size Specifies the maximum size of a transmitted data

packet. This packet is encoded in the manner of the

ISO 8208 definition.

max_rx_packet_size Specifies the maximum size of a received data

packet. This packet is encoded in the manner of the

ISO 8208 definition.

default_svc_tx_packet_size Specifies the default transmit packet size for a

switched virtual circuit (SVC). This packet is

encoded in the manner of the ISO 8208 definition.

default_svc_rx_packet_size Specifies the default received packet size for an

SVC. This packet is encoded in the manner of the

ISO 8208 definition.

Appendix C. Device Handler API 255

Permanent Virtual Circuit (PVC) Packets

PVC packet sizes are configured on a per-PVC basis. To determine the packet size on a PVC you can use

either of the following operations:

v CIO_QUERY operation

v CIO_START operation followed by a X25_QUERY_SESSION operation

Execution Environment

The IOCINFO operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to the

following value:

 EFAULT Indicates an invalid address.

Implementation Specifics

The IOCINFO operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The CIO_QUERY x25_ioctl X.25 Device Handler Operation, CIO_START x25_ioctl X.25 Device Handler

Operation, X25_QUERY_SESSION x25_ioctl X.25 Device Handler Operation.

X25_ADD_ROUTER_ID (Add Router ID) x25_ioctl X.25 Device Handler

Operation

Purpose

Registers a new routing name and routing specification.

Description

Note: Only a process that has opened the router special file can call the X25_ADD_ROUTER_ID

operation.

The X25_ADD_ROUTER_ID operation registers a new route name and routing specification in the router

table. For this operation, the arg parameter points to an x25_router_add structure. This structure contains

the following fields:

 router_id Specifies the unique identifier for the entry.

listen_name Specifies the nickname identifier for the entry. The nickname need not be unique.

priority Identifies the integer priority to attach to the routing request. A priority of 1 is high; 3

indicates a low priority.

action Specifies the action to take if the name is not being listened to. This field takes the

following values:

0 Forwards the incoming call so that it can match other listening specifications.

1 Rejects the incoming call with cause 0, diagnostic 0.

256 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

uid Identifies the user ID allowed to receive these incoming calls. This field can be the user

ID number. A value of -1 indicates that any user ID can receive the calls. Any attempt by

a user with insufficient authority to listen on a name is rejected with the EACCES return

value.

call_user_data Contains the call user data to match with an incoming call. The last character can be an *

(asterisk). The format of this data is a string of hexadecimal characters and an optional *

(asterisk); for example, C3*. The call user data is null-terminated if it is less than the

maximum length.

Additionally, the x25_router_add structure contains the following address fields which are defined in the

glossary:

v called_subaddress[20]

v calling_address[20]

v extended_calling_address[41]

v extended_called_address[41]

These addresses are set to match with an incoming call. The last character of an address can be an *

(asterisk). The addresses are null-terminated if less than the maximum length.

Execution Environment

The X25_ADD_ROUTER_ID operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES Indicates the ioctl operation was issued on an channel that was not opened in Router mode.

EFAULT Indicates a specified address was not valid.

EINVAL Indicates one of the following occurred:

v The specified router ID already exists. (Router IDs must be unique.)

v The action field passed was neither 0 nor 1.

ENOMEM Indicates the operation ran out of memory.

Implementation Specifics

The X25_ADD_ROUTER_ID operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_ioctl handler entry point.

X25_COUNTER_GET (Get Counter) x25_ioctl X.25 Device Handler

Operation

Purpose

Gets a counter for asynchronous notification.

Description

Note: Only user-mode processes can use counter operations.

Appendix C. Device Handler API 257

The X25_COUNTER_GET x25_ioctl operation uses the arg parameter to return a counter ID. The ID can

be used to wait and test for incoming X.25 data.

Execution Environment

The X25_COUNTER_GET operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EFAULT Indicates a specified address is not valid.

ENOSPC Indicates there are no counters available to allocate.

Implementation Specifics

The X25_COUNTER_GET operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_ioctl entry point.

The X25_COUNTER_READ x25_ioctl X.25 Device Handler Operation, X25_COUNTER_REMOVE

x25_ioctl X.25 Device Handler Operation, X25_COUNTER_WAIT x25_ioctl X.25 Device Handler

Operation.

Using Counters to Correlate Messages in AIX 5L Version 5.3 Communications Programming Concepts.

X25_COUNTER_READ (Read Counter) x25_ioctl X.25 Device Handler

Operation

Purpose

Reads the value of a counter.

Description

Note: Only user-mode processes can use counter operations.

The X25_COUNTER_READ x25_ioctl operation reads the value of a counter. For this operation, the arg

parameter points to the x25_counter_info structure. This structure contains the following fields:

 counter_id Identifies a counter to read.

counter_value Holds the current value of the counter on return of the X25_COUNTER_READ operation.

Execution Environment

The X25_COUNTER_READ operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

258 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

EFAULT Indicates a specified address is not valid.

EINVAL Indicates the counter ID does not exist.

Implementation Specifics

The X25_COUNTER_READ operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_COUNTER_GET x25_ioctl X.25 Device Handler Operation, X25_COUNTER_REMOVE x25_ioctl

X.25 Device Handler Operation, X25_COUNTER_WAIT x25_ioctl X.25 Device Handler Operation.

The x25_ioctl device handler entry point.

X25_COUNTER_REMOVE (Remove Counter) x25_ioctl X.25 Device

Handler Operation

Purpose

Removes a counter from the system.

Description

Note: Only user-mode processes can use counter operations.

The X25_COUNTER_REMOVE x25_ioctl operation removes the specified counter from the system. For

this operation, the arg parameter indicates what ID is to be removed. An error code is returned if there is

outstanding data to be read associated with this counter.

Execution Environment

The X25_COUNTER_REMOVE operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES Indicates the application did not get the counter. The counter is not deleted.

EBUSY Indicates one of the following errors occurred:

v Some packets are still waiting to be read.

v The counter is being waited on by another process.

EINVAL Indicates the counter ID specified does not exist.

Implementation Specifics

The X25_COUNTER_REMOVE operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_COUNTER_GET x25_ioctl X.25 Device Handler Operation, X25_COUNTER_READ x25_ioctl

X.25 Device Handler Operation, X25_COUNTER_WAIT x25_ioctl X.25 Device Handler Operation.

Appendix C. Device Handler API 259

The x25_ioctl device handler entry point.

X25_COUNTER_WAIT (Wait Counter) x25_ioctl X.25 Device Handler

Operation

Purpose

Waits for the contents of counters to change.

Description

Note: Only user-mode processes can use counter operations.

The X25_COUNTER_WAIT x25_ioctl operation waits for the contents of a counter to change. The process

that called this operation is suspended until the value of one of its counters exceeds the value specified by

the counter_value field.

For the X25_COUNTER_WAIT operation, the arg parameter points to the x25_counter_list structure. This

structure contains the following fields:

 counter_num Identifies the number of elements in the counter array.

counter_array Specifies an array of the following:

flags Indicates if the counter information was successfully matched. If successful, the

top bit of the flags field is set on the return of the Counter Wait operation.

counter_id

Identifies the counter to wait on.

counter_value

Specifies the value the counter must exceed in order for the counters to match

successfully.

Execution Environment

The X25_COUNTER_WAIT operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EFAULT Indicates a specified address is not valid.

EIDRM Indicates the counter has been removed.

EINVAL Indicates one or more of the counters in the list does not exist.

ENOMEM Indicates the operation ran out of memory.

Implementation Specifics

The X25_COUNTER_WAIT operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_COUNTER_GET x25_ioctl X.25 Device Handler Operation, X25_COUNTER_READ x25_ioctl

X.25 Device Handler Operation, X25_COUNTER_REMOVE x25_ioctl X.25 Device Handler Operation.

260 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

The x25_ioctl entry point.

Using Counters to Correlate Messages in AIX 5L Version 5.3 Communications Programming Concepts.

X25_DELETE_ROUTER_ID (Delete Router ID) x25_ioctl X.25 Device

Handler Operation

Purpose

Removes a routing name.

Description

Note: Only a process that has opened the router special file can call the X.25

X25_DELETE_ROUTER_ID operation.

The X25_DELETE_ROUTER_ID x25_ioctl operation removes a routing name from the router table. For

this operation, the arg parameter points to the x25_router_del structure. This structure contains the

following fields:

 router_id Specifies the unique ID for the entry.

override Indicates how listening is handled. If set to 0, the routing entry is not deleted if any process is

listening for it. If set to a non-zero value, outstanding listens are canceled. No notification is given

to the listening applications if the outstanding listens are canceled.

Execution Environment

The X25_DELETE_ROUTER_ID operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES Indicates the ioctl was issued on a channel that was not opened in Router mode.

EBUSY Indicates the router ID was being listened to and the override option was not set.

EFAULT Indicates a specified address was not valid.

EINVAL Indicates the router ID cannot be deleted because it does not exist.

Implementation Specifics

The X25_DELETE_ROUTER_ID operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_ioctl entry point.

X25_DIAG_IO_READ (Read Register) x25_ioctl X.25 Device Handler

Operation

Purpose

Reads from an I/O register on the X.25 Interface Co-Processor/2.

Appendix C. Device Handler API 261

Description

Note: Only a process that has opened the device for diagnostics can issue this call.

The X25_DIAG_IO_READ x25_ioctl operation reads from an I/O register on the X.25 Interface

Co-Processor/2. Both direct and indirect registers can be read since the card pointer register is adjusted

by this operation.

For this operation, the arg parameter returns a pointer to an x25_diag_io structure. The value this

operation reads is placed in the value field of the x25_diag_io structure.

Execution Environment

The X25_DIAG_IO_READ operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES The device was not opened in diagnostic mode.

ENXIO The operation attempted to read a card that was not configured.

Implementation Specifics

The X25_DIAG_IO_READ operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_DIAG_IO_WRITE x25_ioctl X.25 Device Handler Operation, X25_DIAG_MEM_READ x25_ioctl

X.25 Device Handler Operation, X25_DIAG_MEM_WRITE x25_ioctl X.25 Device Handler Operation,

X25_DIAG_TASK x25_ioctl X.25 Device Handler Operation.

The x25_ioctl entry point.

X25_DIAG_IO_WRITE (Write to Register) x25_ioctl Operation

Purpose

Writes to an I/O register on the X.25 Interface Co-Processor/2.

Description

Note: Only a process that has opened the device for diagnostics can call this process.

The X25_DIAG_IO_WRITE x25_ioctl operation writes to an I/O register on the X.25 Interface

Co-Processor/2. Both direct and indirect registers can be written to as the card pointer register is adjusted

by this operation.

Execution Environment

The X25_DIAG_IO_WRITE operation can be called from the process environment only.

262 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES The channel was not opened in diagnostic mode.

ENXIO The operation attempted to read a card that was not configured.

Implementation Specifics

The X25_DIAG_IO_WRITE operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_DIAG_IO_READ x25_ioctl operation, X25_DIAG_MEM_READ x25_ioctl operation,

X25_DIAG_MEM_WRITE x25_ioctl operation, X25_DIAG_TASK x25_ioctl operation.

The x25_ioctl entry point.

X25_DIAG_MEM_READ (Read Memory) x25_ioctl Operation

Purpose

Reads memory from the X.25 Interface Co-Processor/2 into a user buffer.

Description

Note: Only a process that has opened the device for diagnostics can call this process.

The X25_DIAG_MEM_READ x25_ioctl operation reads memory from the X.25 Interface Co-Processor/2

into a user’s buffer. For this operation, the arg parameter points to a x25_diag_mem structure. This

structure provides the following:

v Page and offset of card memory to start from

v Number of bytes to read

v Pointer to a buffer into which the data is read

The read operation can cover more than one page of card memory.

Execution Environment

The X25_DIAG_MEM_READ operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES The channel was not opened in diagnostic mode.

ENXIO The operation attempted to read a card that was not configured.

Implementation Specifics

The X25_DIAG_MEM_READ operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Appendix C. Device Handler API 263

Related Information

The X25_DIAG_IO_READ x25_ioctl operation, X25_DIAG_IO_WRITE x25_ioctl operation,

X25_DIAG_MEM_WRITE x25_ioctl operation, X25_DIAG_TASK x25_ioctl operation.

The x25_ioctl entry point.

X25_DIAG_MEM_WRITE (Write Memory) x25_ioctl Operation

Purpose

Writes memory to the X.25 Interface Co-Processor/2 from a user buffer.

Description

Note: Only a process that has opened the device for diagnostics can issue this call.

The X25_DIAG_MEM_WRITE x25_ioctl operation writes memory to the X.25 Interface Co-Processor/2

from a user buffer. For this operation, the arg parameter points to a x25_diag_mem structure. This

parameter provides the following:

v Page and offset of card memory to start from

v Number of bytes to write

v Pointer to the user buffer containing the data to write

The write can cover more than one page of card memory.

Execution Environment

The X25_DIAG_MEM_WRITE operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES The channel was not opened in diagnostic mode.

ENXIO The operation attempted to read a card that was not configured.

Implementation Specifics

The X25_DIAG_MEM_WRITE operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_DIAG_IO_READ x25_ioctl operation, X25_DIAG_IO_WRITE x25_ioctl operation,

X25_DIAG_MEM_READ x25_ioctl operation, X25_DIAG_TASK x25_ioctl operation.

The x25_ioctl entry point.

X25_DIAG_RESET (Reset Adapter) x25_ioctl Operation

Purpose

Resets the X.25 Interface Co-Processor/2.

264 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Description

Note: Only a process that has opened the device for diagnostics can call this process.

The X25_DIAG_RESET x25_ioctl operation completely resets the X.25 Interface Co-Processor/2.

Execution Environment

The X25_DIAG_RESET operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EINVAL The channel was not opened in diagnostic mode.

ENXIO The operation attempted to read a card that was not configured.

Implementation Specifics

The X25_DIAG_RESET operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_DIAG_IO_READ x25_ioctl operation, X25_DIAG_IO_WRITE x25_ioctl operation,

X25_DIAG_MEM_READ x25_ioctl operation, X25_DIAG_MEM_WRITE x25_ioctl operation,

X25_DIAG_TASK x25_ioctl operation.

The x25_ioctl entry point.

X25_DIAG_TASK (Download Diagnostics) x25_ioctl Operation

Purpose

Provides the means to download the diagnostics task on to the card.

Description

The X25_DIAG_TASK x25_ioctl operation provides the means to download the diagnostics task on to the

X.25 Interface Co-Processor/2. The task microcode must have been previously downloaded to the device

handler using the CIO_DNLD operation.

For the X25_DIAG_TASK operation, the arg parameter points to a x25_diag_addr structure that is used

to return the load page and offset.

Execution Environment

The X25_DIAG_TASK operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EINVAL The microcode was not available to download.

Appendix C. Device Handler API 265

ENACCES The channel was not opened in diagnostic mode. You must have appropriate authority to open a

channel in diagnostic mode.

ENXIO The operation attempted to read a card that was not configured.

Implementation Specifics

The X25_DIAG_TASK operation functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_DIAG_IO_READ x25_ioctl operation, X25_DIAG_IO_WRITE x25_ioctl operation,

X25_DIAG_MEM_READ x25_ioctl operation, X25_DIAG_MEM_WRITE x25_ioctl operation.

The x25_ioctl entry point.

X25_LINK_CONNECT (Connect Link) x25_ioctl Operation

Purpose

Connects the link to the data circuit-terminating equipment (DCE).

Description

Note: Only a process that has opened the router special file can issue the X25_LINK_CONNECT

operation.

The X25_LINK_CONNECT x25_ioctl operation connects the X.25 link to the network. If required, the

connection is made using the automatic calling unit (ACU). If the link is already connected, no action is

taken.

For the X25_LINK_CONNECT operation, the arg parameter points to the x25_connect_data structure.

This structure contains only a status field. This field has meaning only when the return code is EIO.

Execution Environment

The X25_LINK_CONNECT operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES Indicates the calling application does not have root authority.

EIO Indicates an I/O error occurred. The status field in the x25_connect_data structure contains one of

the following values:

CIO_BAD_MICROCODE

Indicates that the microcode download failed.

CIO_HARD_FAIL

Indicates that a hardware failure was detected.

CIO_TIMEOUT

Indicates that a time out occurred.

ENOBUFS Indicates no buffers are available.

266 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Implementation Specifics

The X25_LINK_CONNECT operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_LINK_DISCONNECT x25_ioctl operation, X25_LINK_STATUS x25_ioctl operation.

The x25_ioctl entry point.

X25_LINK_DISCONNECT (Disconnect Link) x25_ioctl Operation

Purpose

Disconnects the link to the data circuit-terminating equipment (DCE).

Description

Note: This command is restricted to user programs that have root authority.

The X25_LINK_DISCONNECT x25_ioctl operation disconnects the X.25 link from the network. If the link is

already disconnected, no action is taken. If there are virtual calls in progress on the link, disconnection

takes place only if the override parameter is nonzero.

The X25_LINK_DISCONNECT operation returns synchronously. The X25_LINK_STATUS operation is

used to determine if the disconnect operation is complete.

For the X25_LINK_DISCONNECT operation, the arg parameter points to the x25_disconnect_data

structure. This structure contains the following fields.

 status Holds values supplied by the ioctl operation if there is an EIO error.

override Specifies how disconnection occurs. If this parameter is 0, the disconnection takes place only if there

are no virtual calls in progress. Otherwise, the disconnection is forced. This disconnects the link layer

only, not the physical layer.

Execution Environment

The X25_LINK_DISCONNECT operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES Indicates the calling application does not have root authority.

EBUSY Indicates there are active circuits on the link.

EIO Unable to disconnect due to an I/O error. The status field in the x25_disconnect_data structure

contains one of the following common exception codes:

CIO_HARD_FAIL

Indicates that a hardware failure was detected.

CIO_TIMEOUT

Indicates that a time out occurred.

ENOBUFS Indicates no available buffers.

Appendix C. Device Handler API 267

Implementation Specifics

The X25_LINK_DISCONNECT operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_LINK_CONNECT x25_ioctl operation, X25_LINK_STATUS x25_ioctl operation.

The x25_ioctl entry point.

X25_LINK_STATUS (Link Status) x25_ioctl Operation

Purpose

Returns the status of the link.

Description

The X25_LINK_STATUS x25_ioctl operation returns the status of a link. This operation returns the last

known status of the link to the calling program.

For the X25_LINK_STATUS operation, the arg parameter points to a buffer. On return of this operation,

the buffer is filled with a x25_link_status structure. This structure contains the following five fields:

 status Supplied by an X.25 device handler with a return value when the return code is EIO.

packet Identifies the status of the packet layer. This field has the following possible values:

0 Link disconnected

1 Connecting link

2 Link connected

frame Specifies the status of the frame layer. This field has the same values as the packet

field.

physical Specifies the status of the physical layer. This field has the same values as the

packet field.

no_of_vcs_in_use Identifies the number of virtual circuits currently in use on the link.

Execution Environment

The X25_LINK_STATUS operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EFAULT Indicates a specified address is not valid.

EIO Indicates an error occurred. The status field of the x25_link_status structure contains one of the

following exception codes:

CIO_BAD_MICROCODE

Indicates that the microcode download failed.

CIO_HARD_FAIL

Indicates that a hardware failure was detected.

ENOBUFS Indicates no available buffers.

268 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Implementation Specifics

The X25_LINK_STATUS operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The X25_LINK_CONNECT x25_ioctl operation, X25_LINK_DISCONNECT x25_ioctl operation.

The x25_ioctl entry point.

X25_LOCAL_BUSY (Local Busy) x25_ioctl Operation

Purpose

Enables or disables receiving data packets on a port.

Description

Note: Only the user who called the CIO_START operation can call the X25_LOCAL_BUSY

operation.

The X25_LOCAL_BUSY x25_ioctl operation enables or disables receiving data and interrupt packets on a

given session. This operation can be used to slow down large blocks of received data or reduce the

number of buffers required. However, clear-and-reset packets are still passed on.

The effects of disabling received packets do not take place immediately after calling the

X25_LOCAL_BUSY operation. Data packets that arrived before the call or packets currently being read off

the card are passed on.

The X25_LOCAL_BUSY operation does not affect the outcome of the x25_read or x25_select entry

points. These operations continue to wait for received packets. To query the status of a local busy on a

session, use the X25_QUERY_SESSION operation.

Parameter Block

For the X25_LOCAL_BUSY operation, the arg parameter points to a buffer that contains the

x25_local_busy structure. This structure contains the following fields:

 busy_mode Specifies the handling of data packets in the session. This field accepts one of the following

values:

0 Enables the receiving of data on this session.

1 Disables the receiving of data on this session.

session_id Identifies the session to which this operation applies.

Execution Environment

The X25_LOCAL_BUSY operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES Indicates the call must be made by the user who issued the CIO_START operation.

EFAULT Indicates a specified address was not valid.

Appendix C. Device Handler API 269

EINVAL Indicates the specified session ID was not valid, or the busy_mode field was illegal.

Implementation Specifics

The X25_LOCAL_BUSY operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Data Transmission and Reception for the X.25 Device Handler in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

The CIO_START x25_ioctl operation, X25_QUERY_SESSION x25_ioctl operation.

Related Information

The x25_ioctl entry point.

X25_QUERY_ROUTER_ID (Query Router) ID x25_ioctl Operation

Purpose

Queries an entry in the routing table.

Description

Note: This operation is restricted to user programs that have root authority.

The X25_QUERY_ROUTER_ID x25_ioctl operation queries an entry in the routing table. For this

operation, the arg parameter points to the x25_router_query structure. This structure contains the

following fields:

 router_id Specifies what entry to query.

pid Is set on return of the query to the process ID of the listening process. A value of 0 indicates that

no process is listening.

Execution Environment

The X25_QUER_ROUTER_ID operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EFAULT Indicates the specified address was not valid.

EINVAL Indicates the specified router ID was not in the router table.

Implementation Specifics

The X25_QUER_ROUTER_ID operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_ioctl entry point.

270 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X25_QUERY_SESSION (Query Session) x25_ioctl Operation

Purpose

Queries the status of an open X.25 session.

Description

Note: This call only succeeds on SVCs and PVCs.

The X25_QUERY_SESSION x25_ioctl operation supplies the information for a session in the user data

area. The packet size, window size, and throughput class values are not available until the session is

completely established. To query the static configuration, use the CIO_QUERY operation.

x25_query_session_data Parameter Block

For the X25_QUERY_SESSION operation the arg parameter points to the x25_query_session_data

structure. Within this structure, the session to be queried is identified either by a nonzero session ID or a

nonzero logical channel number. If both the session_id and logical_channel fields are nonzero, the

session_id field is used.

The fields in the x25_query_session_data structure are set on return. All the X.25 facilities specified by

the structure’s field are encoded as in the ISO 8208 definition. The x25_query_session_data structure

contains the following fields:

 netid Identifies the user-defined correlator set by the CIO_START operation.

session_name Identifies the user-defined name set by the CIO_START operation.

session_id Identifies the device handler correlator returned from the CIO_START operation.

local_busy Contains a value of 1 if the session is in Local Busy mode, or a 0, if not.

session_protocol Specifies the higher-level protocol specified by the user for this session in the

CIO_START operation.

logical_channel Identifies the X.25 logical channel number used by the session.

tx_tclass Specifies the transmit throughput class facility in use on the session. If the call has

not been established, this is 0.

rx_tclass Specifies the receive throughput class facility in use on the session. If the call has not

been established, this is 0.

tx_packet_size Identifies the outbound packet size in use on the session. If the call has not been

established, this field is set to 0.

rx_packet_size Identifies the inbound packet size in use on the session. If the call has not been

established, this field is set to 0.

tx_window_size Identifies the outbound window size in use on the session. If the call has not been

established, this field is set to 0.

rx_window_size Identifies the inbound window size in use on the session. If the call has not been

established, this field is set to 0.

Execution Environment

The X25_QUERY_SESSION operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EFAULT Indicates a specified address was not valid.

EINVAL Indicates the session ID was not valid, or the logical_channel field was not valid.

Appendix C. Device Handler API 271

Implementation Specifics

The X25_QUERY_SESSION operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The CIO_START x25_ioctl operation.

The x25_ioctl entry point.

X25_REJECT_CALL (Reject Call) x25_ioctl Operation

Purpose

Provides the means to reject an incoming X.25 call.

Description

Note: A call can be rejected only by the process that called the CIO_START operation.

The X25_REJECT_CALL x25_ioctl operation is used to reject an X.25 incoming call that was forwarded to

a session of type SESSION_SVC_LISTEN. This operation causes a clear request to be issued in

response to the incoming call.

The X25_REJECT_CALL operation returns immediately to the caller, before the command completes. If

the immediate return indicates no error, the X.25 device handler builds a status block of type

X25_REJECT_DONE on receipt of a clear confirm or clear indication. For kernel mode processes, the

status block is passed to the associated status function. The status function is specified when the X.25

channel is opened. For user-mode processes, the block is placed in the associated status and exception

queue.

The x25_reject_data Parameter Block

For the X25_REJECT_CALL call operation, the arg parameter points to a x25_reject_data structure. The

sb.status field of this structure is meaningful on return only if the return code is EIO.

For the X25_REJECT_CALL operation, the ext parameter optionally points to a buffer containing the data

required for a clear request packet. This data is in the form described in the mbuf structure. For a

kernel-mode process, this parameter points to the mbuf structure. For a user-mode process, it points to a

buffer of the same format in user space. If the pointer is a null character, the clear request is sent with

default cause-and-diagnostic codes and no facilities or user data.

Execution Environment

The X25_REJECT_CALL operation can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets the errno global

variable to one of the following values:

 EACCES Indicates the reject must be performed by the same process that called the X.25 CIO_START operation.

EFAULT Indicates an invalid address was specified.

272 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

EINVAL Indicates one of the following occurred:

v A reject was issued on a session that was not started in SESSION_SVC_LISTEN mode.

v The ext parameter points to a buffer that does not have a packet type of PKT_CLEAR_REQ.

In addition, the arg->status field may return one of three X.25-specific codes:

X25_BAD_CALL_ID

The call_id field specified is invalid.

X25_CLEAR

Indicates the session has been cleared.

X25_PROTOCOL

Indicates a protocol error occurred.

EIO Indicates an error has occurred. The arg->status field in the x25_reject_data structure contains one of

four exception codes:

CIO_HARD_FAIL

Indicates that a hardware failure was detected.

CIO_NOMBUF

Indicates that the operation was unable to allocate mbuf structures.

CIO_NOT_STARTED

Indicates that the command could not be accepted because the device has not yet been started

by the first call to CIO_START operation.

CIO_TIMEOUT

Indicates that a time out occurred.

Implementation Specifics

The X25_REJECT_CALL operation functions with an X.25 Interface Co-Processor/2 that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The CIO_START x25_ioctl operation.

The x25_ioctl entry point.

The X.25 mbuf structure in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

x25_mpx X.25 Device Handler Entry Point

Purpose

Provides the means to allocate and deallocate a channel into X.25 device handler.

Syntax

int x25_mpx (devno, chan, channame)

 dev_t devno;

 int *chan;

 char *channame;

Appendix C. Device Handler API 273

Parameters

 devno Specifies the major and minor device numbers.

chan Specifies the channel ID. If the channame parameter is a null character, the chan parameter

identifies the channel to be deallocated. Otherwise, the x25_mpx entry point returns the ID of the

allocated channel to the chan parameter.

channame Points to the remaining path name describing the channel to allocate. The channame parameter

accepts the following values:

null Deallocates the channel.

Pointer to a null string

Allows a normal open sequence of the X.25 device on the channel ID generated by the

x25_mpx entry point.

Pointer to a ″D″

Allows the X.25 device to be opened in diagnostic mode on the channel ID generated by the

x25_mpx entry point.

Pointer to an ″M″

Allows the X.25 device to be opened in monitor mode on the channel ID generated by the

x25_mpx entry point.

Pointer to an ″R″

Allows the X.25 device to be opened in router mode on the channel ID generated by the

x25_mpx entry point.

Description

Note: This entry point is called by the kernel. It cannot be called directly by a user- or kernel-mode

process.

The x25_mpx entry point provides the means for allocating and deallocating a channel into the X.25

device handler. This entry point is called by the kernel in response to an open subroutine (before calling

the x25_open entry point) or in response to a close subroutine (after calling the x25_close entry point).

Execution Environment

An x25_mpx entry point can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to one

of the following values:

 EINVAL Indicates an invalid parameter was specified.

EPERM Indicates an open in the specified mode is denied.

EBUSY Indicates the device is already open in diagnostic, monitor, or router mode.

Implementation Specifics

The x25_mpx entry point functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_close entry point, x25_open entry point.

The close subroutine, open subroutine.

274 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X.25 Device Handler Modes in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

x25_open X.25 Device Handler Entry Point

Purpose

Initializes a channel into the X.25 device handler.

Syntax

int x25_open (devno,

devflag, chan, ext)

dev_t devno;

ulong devflag;

int chan;

struct kopen_ext *ext;

Parameters

 devno Specifies major and minor device numbers.

devflag Indicates how the device was opened and whether the caller is a user- or kernel-mode process. This

parameter accepts the following flags:

DKERNEL

Specifies a kernel-mode process called the entry point. This flag is clear if a user-mode

process called the entry point.

DREAD

Specifies open for reading. This is the default for the X.25 handler regardless of whether this

flag is set.

DWRITE

Specifies open for writing. This is the default for the X.25 handler regardless of whether this

flag is set.

DAPPEND

Specifies open for appending. The X.25 handler ignores this flag.

DNDELAY

Specifies that the X.25 device handler performs nonblocking reads and writes. If this flag is

not set, the X.25 device handler performs blocking reads and writes.

chan Identifies the channel number assigned by the x25_mpx routine.

ext Specifies the extended system call. This parameter is required for kernel-mode processes and ignored

for user-mode processes.

Description

The x25_open entry point performs data-structure allocation and initialization. Time-consuming tasks, such

as port initialization and connection establishment, are deferred until the first CIO_START operation is

issued. This call is synchronous and does not return until the x25_open entry point is complete.

Note: If this is the first open request to the X.25 device handler, the interrupt level and interrupt

handler entry point are registered.

Parameter Block

For the x25_open entry point, the ext parameter can be a pointer to the kopen_ext structure defined in

the /usr/include/sys/comio.h file. This structure contains the following fields:

 status Identifies the status of the open process. This value is meaningful only if the EIO code is returned.

Appendix C. Device Handler API 275

open_id Specifies the channel correlator for kernel mode processes. This value is passed to kernel functions to

identify which channel an event occurred on.

rx_fn Specifies the address of a kernel procedure. This procedure is called by the X.25 device handler

whenever received data is to be processed. This kernel procedure must be defined as follows:

void rx_fn (open_id,read_ext, mbufptr)

ulong open_id;

struct x25_read_ext *read_ext;

struct mbuf *mbufptr;

The parameters in this kernel procedure are defined as follows:

open_id

Specifies the ID of this instance of the x25_open entry point. The device handler sets this

parameter to the ID originally passed to the X.25 device handler with the x25_open entry

point.

read_ext

Contains the status of the x25_open entry point. Currently, this parameter accepts a value of

CIO_OK or CIO_BUF_OVFLW.

mbufptr Points to received data. This data is in the form described by the mbuf structure.

The kernel-mode process making the call to the x25_open entry point is responsible for pinning the

rx_fn kernel procedure before making the call. When the X.25 device handler calls the kernel

procedure, the X.25 device handler pins the mbuf structure. It is the responsibility of the rx_fn kernel

procedure to free the pinned mbuf structure.

tx_fn Identifies the address of a kernel procedure. The X.25 device handler calls this procedure when both

the following conditions are true:

v The most recent x25_write entry point for this channel was unsuccessful with a return code of

EAGAIN, indicating the write request was not performed.

v The x25_open entry point, or the most recent x25_ioctl operation for this channel, indicates the

nonblocking mode (DNDELAY) is set.

The tx_fn kernel process should be defined as follows:

void tx_fn (open_id)

ulong open_id;

The parameter in this kernel process is defined as follows:

open_id

Identifies the ID of the x25_open entry point. The device handler sets this value to the ID

passed with the x25_open entry point.

The kernel-mode process making the call to the x25_open entry point is responsible for pinning the

tx_fn kernel procedure before making the call.

276 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

stat_fn The address of a kernel procedure to be called by the X.25 device handler whenever a status block

becomes available. The kernel procedure should have the following structure:

void stat_fn (open_id,

sblk_ptr)

ulong open_id;

struct status_block *sblk_ptr;

The kernel procedure parameters have the following values:

open_id

Identifies the ID of the open entry point. The device handler sets this value to the ID passed

with the x25_open entry point.

sblk_ptr

Points to a status block.

The kernel-mode process that calls the x25_open entry point is responsible for pinning the stat_fn

kernel procedure before making the open call.

The rx_fn, tx_fn and stat_fn kernel procedures are all made synchronously at high priority. It is

therefore imperative that the called kernel procedure return quickly. Until the return, the kernel

procedure cannot call any other device entry point.

Note: Entry points are associated with a channel initialized by the x25_open entry point. Sessions

are initialized by the CIO_START operation. A single channel can support numerous sessions.

Execution Environment

An x25_open entry point can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to one

of the following values:

 EINVAL Indicates a kernel user passed an invalid function.

EIO Indicates that an error has occurred. The sb.status field contains the CIO_HARD_FAIL return value,

indicating a hardware failure was detected.

EINTR Indicates that the open subroutine was interrupted.

ENODEV Indicates that the device requested does not exist.

EBUSY Indicates that the maximum number of opens was exceeded. This error results from an attempt to open a

channel in diagnostic mode while other channels on the minor device number are open. This error can

also result from an attempt to open a channel while another channel is already open and running in

monitor or router mode.

ENOMEM Indicates that the X.25 device handler was unable to allocate space required for the open.

ENXIO Indicates that one of the following occurred:

v An attempt was made to open the X.25 device handler before it was configured.

v The interrupt could not be registered.

Implementation Specifics

The x25_open entry point functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Appendix C. Device Handler API 277

Related Information

The CIO_START x25_ioctl X.25 Device Handler Operation.

The x25_ioctl entry point, x25_mpx entry point, x25_write entry point.

The open subroutine.

X.25 Device Handler Modes in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

x25_read X.25 Device Handler Entry Point

Purpose

Provides the means to receive data from the X.25 adapter.

Syntax

int x25_read (devno, uiop, chan, ext)

dev_t devno;

struct uio *uiop;

int chan;

struct x25_read_ext *ext;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure.

chan Identifies the channel number assigned by the x25_mpx routine.

ext Points to the x25_read_ext structure. This structure is found in the /usr/include/sys/x25user.h file and it

contains a call_id field and a re.status field. The call_id field is only valid on sessions of type

SESSION_SVC_LISTEN. The re.status field is meaningful only if the return value is EIO.

Description

Note: This entry point can only be called by user-mode processes. Data received for a kernel-mode

process is passed to the rx_fn kernel procedure specified by the x25_open entry point.

The x25_read entry point provides the means to receive incoming data on the session specified by

session_id field. If the session_id field is 0 (zero) and the device was opened in normal mode, data for

any session started by this channel is returned, and the session_id field is filled in accordingly. The X.25

device handler copies the data to the user buffer and decrements the uiop->resid field by the number of

bytes moved.

X.25 data is made up of an M-bit sequence. This sequence is consolidated before it is made available for

read operations. The exception are sessions of type X25_SESSION_YBTS. For these sessions, each

packet is available as a separate data block.

Notes:

1. The order of incoming data is preserved for each session, but is not guaranteed across sessions.

2. The x25_packet_data common data structure describes the buffering of incoming X.25 packet

sequences. This structure is found in the /usr/include/sys/x25user.h file.

278 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

The x25_read entry point can be a blocking or nonblocking read. The type of read is determined by flags

specified by the x25_open entry point when the channel is opened. If the read is blocking, and no data is

available, the x25_read entry point blocks until data is received. If the read is nonblocking and no data is

available, the entry point returns an error code.

If the current session was initialized for listening, the only data that can be read on the session is an

incoming call. The user process should respond by issuing a X25_REJECT operation on the current

session or by starting a new session with a Start Session CIO_START operation to accept the call.

When a PKT_CLEAR_IND packet is received, the user must respond with a CIO_HALT operation. As a

result, no further x25_write entry points are accepted. If the session is a SESSION_MONITOR type, then

the data buffer contains monitor control sequences.

Parameter Block

For the x25_read entry point, the arg parameter returns a pointer to the uio structure. This structure

specifies the location and length of the caller’s data area to transfer information. The uio structure is

defined in the /usr/include/sys/uio.h file.

The data is in the form described in the mbuf structure. The value for the packet_type field for

SESSION_SVC_LISTEN sessions is PKT_INCOMING_CALL. For other sessions, the possible packet

types are the following:

v PKT_DATA

v PKT_INT

v PKT_INT_CONFIRM

v PKT_RESET_IND

v PKT_RESET_CONFIRM

v PKT_D_BIT_ACK

v PKT_CLEAR_IND (except for sessions of type SESSION_PVC)

Execution Environment

The x25_read entry point can be called from the process environment only.

Return Values

 EFAULT Indicates a buffer area was not valid.

EINVAL Indicates a parameter was not valid.

EIO Indicates an error has occurred. The ext->status field in the x25_read_ext structure contains one of

the following values:

v CIO_NOT_STARTED

v CIO_HARD_FAIL

v CIO_LOST_DATA

EMSGSIZE Indicates that the buffer was not large enough to receive the packet data. The receiver data is

preserved within the device driver until a read is issued with a large enough buffer.

EAGAIN Indicates that there were no packets to be read and the device was opened with the DNDELAY flag

set.

Implementation Specifics

The x25_read entry point functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Appendix C. Device Handler API 279

Related Information

The x25_mpx entry point, x25_open entry point, x25_write entry point.

The CIO_HALT x25_ioctl X.25 Device Handler Operation, CIO_START x25_ioctl X.25 Device Handler

Operation, X25_REJECT x25_ioctl X.25 Device Handler Operation.

The mbuf structure in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Data Transmission and Reception for the X.25 Device Handler in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

Sessions with the X.25 Device Handler in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

x25_select X.25 Device Handler Entry Point

Purpose

Determines whether a specified event occurred on a device.

Syntax

int x25_select (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort *reventp;

int chan;

Parameters

 devno Specifies major and minor device numbers.

events Identifies the events to check. The events parameter is indicated by a bitwise OR using the following

flags:

DPOLLIN

Checks if the receive data is available.

DPOLLOUT

Checks if transmission is possible. For the X.25 device handler, this event is always true.

DPOLLPRI

Checks if status is available.

DPOLLSYNC

Indicates the request is synchronous. The x25_select entry point should not perform a

selnotify kernel service if the events occur later.

reventp Returns the events pointer. The x25_select entry point uses this parameter to indicate which of the

selected events are true at the time of the call. The reventp parameter is indicated by a bitwise OR of

the DPOLLIN, DPOLLOUT, or DPOLLPRI flag, as appropriate.

chan Identifies the channel number assigned by the x25_mpx entry point.

Description

Note: This entry point should only be called by user-mode processes using the select or poll

subroutine.

280 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

The x25_select entry point determines if a specified event occurred on a device. If one or more events

specified by the events parameter are true, this entry point updates the reventp parameter by setting the

corresponding bits.

If none of the events are true, the reventp parameter is set to 0 (zero) and the entry point checks the

DPOLLSYNC flag. If this flag is set, the request is synchronous and the entry point simply returns. If this

flag is false, the x25_select entry point records which events were requested. When one or more of the

events subsequently becomes true, the x25_select entry point calls the selnotify kernel subroutine to

notify the user process.

When the X.25 device handler is in a state that prevents any of the events from being satisfied (such as

an adapter failure), the x25_select entry point sets the reventp parameter to 1 for the appropriate event.

This prevents the select or poll subroutine from waiting indefinitely.

Note: Unless the session protocol is PROTOCOL_YBTS, an X.25 packet sequence can not satisfy a

x25_select entry point until the final packet of the sequence is received or the sequence is

otherwise terminated (for example, by the arrival of a clear indication).

Execution Environment

An x25_select entry point can be called from the process environment only.

Return Values

A return code of -1 indicates an unsuccessful operation. The kernel sets the errno global variable to the

following value:

 EINVAL Indicates an invalid argument was specified or that the x25_select entry point was called by a

kernel-mode user.

Implementation Specifics

The x25_select entry point functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

Select /Poll Logic for ddwrite and ddread Routines.

The CIO_GET_FASTWRT ddioctl Communications PDH entry point.

The selnotify kernel service.

The poll subroutine, select subroutine.

x25_write X.25 Device Handler Entry Point

Purpose

Provides the means to send data to the X.25 adapter.

Appendix C. Device Handler API 281

Syntax

int x25_write (devno,uiop, chan, ext)

dev_t devno;

struct uio *uiop;

int chan;

struct x25_write_ext *ext;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure.

chan Identifies the channel number assigned by the x25_mpx routine.

ext Points to the struct x25_write_ext structure. This structure is found in the /usr/include/sys/x25user.h file.

Description

Note: Call-establishment or termination packets cannot be sent using this entry point.

The x25_write entry point provides the means to send an X.25 data packet to the adapter.

uio Structure

For the x25_write entry point, the uiop parameter is a pointer to a uio structure. This structure is

described in the /usr/include/sys/uio.h file. The uio structure specifies the location and length of the

caller’s data.

This routine checks the uiop->segflag field to determine whether the data is in user space or kernel

space. If the data is in kernel space, the uiop->uio_ iov ->uio_base field points to an mbuf structure

chain containing the data for transmission. If the data is in user space, then the uiop->uio_iov field points

to an array of iovec structures.

The data is in the form described by the mbuf structure. For a kernel-mode process, the mbuf structure

containing the data should be pinned before making this call.

For session types of SESSION_SVC_OUT, SESSION_SVC_IN, or SESSION_PVC, the possible values for

the packet_type field are the following:

v PKT_DATA

v PKT_INT

v PKT_INT_CONFIRM

v PKT_RESET_REQ

v PKT_RESET_CONFIRM

v PKT_D_BIT_ACK

Note: For a SESSION_MONITOR session, the packet_type field must have a value of

PKT_MONITOR.

If the value of the packet_type field is PKT_DATA and the data buffer is larger than the packet size, the

data is transmitted as an X.25 packet sequence.

If a previous incoming data packet has been received with the D bit set, the incoming packet must be

acknowledged with a PKT_D_BIT_ACK packet type before any further packets can be accepted by the

device handler for this session.

282 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

x25_write_ext Parameter Block

For the x25_write entry point, the ext parameter points to the x25_write_ext parameter block. The

x25_write_ext structure contains a write_extension (we) structure and a session_id field.

The we.flag field consists of the bitwise OR of one or more of the following values:

 CIO_NOFREE_MBUF Setting this bit causes the X.25 device handler to retain the mbuf structure after

transmission is complete. If a kernel-mode process sets this bit, it must also do the

following:

1. Determine when the X.25 device handler is finished with the mbuf structure.

2. Free the mbuf structure.

For a user-mode process, the device handler always frees the mbuf structure.

CIO_ACK_TX_DONE Setting this bit causes the X.25 device handler to acknowledge completion by building a

CIO_TX_DONE status block for the caller when the write is complete.

The we.status field is meaningful only if the return value is EIO.

Execution Environment

The x25_write entry point can be called from the process environment only.

Return Values

 EINVAL Indicates that an invalid parameter was used or a write was made on a listen session.

EIO Indicates an error has occurred. The ext->status field contains one of the following common exception

codes:

v CIO_NOT_STARTED

v CIO_HARD_FAIL

v CIO_NOMBUF

v CIO_TIMEOUT

Otherwise, the field contains one of the following X.25 specific codes:

X25_NO_ACK

A data packet with the D-bit set requires acknowledgment. Data packets cannot be sent until the

acknowledgment is completed.

X25_NO_ACK_REQ

A PKT_D_BIT_ACK was sent and no packets required a D-bit acknowledgment.

X25_PROTOCOL

A protocol error occurred.

X25_RESET

The session is in reset state. The data packet could not be sent.

X25_CLEAR

The session has been cleared.

X25_NO_LINK

The X.25 link is not established.

X25_BAD_PKT_TYPE

The packet_type field passed in the uiop parameter block is not valid for the session type.

EAGAIN

Indicates that the transmit queue is full and the DNDELAY flag is set. The command was not

accepted.

Appendix C. Device Handler API 283

Implementation Specifics

The x25_write entry point functions with an X.25 Interface Co-Processor/2 that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Related Information

The x25_read entry point.

Common X.25 Device Handler Structures in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Sessions with the X.25 Device Handler in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

284 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix D. X.25 Cables and Connectors

The following information describes X.25 cable and connector configuration.

X.25 Coprocessor 37-Pin Connector Pin Assignments

The following table describes the X.25 coprocessor 37-pin connector pin assignments.

 X.25 Coprocessor 37-Pin Connector Pin Assignments

Pin Circuit

Description

Symbol X.21bis /V24 X.21bis /V35 X.21

1 Reserved

2 Transmitted data TXD x

3 Received data RXD x

4 Request to send RTS x x

5 Clear to send CTS x x

6 Data set ready DSR x x

7 Signal ground GND x x x

8 Carrier detect CD x x

9 Cable ID 0 ID0 x x

10 Transmitted data

(A)

T (A) x

11 Control (A) C (A) x

12 Received data (A) R (A) x

13 Indication (A) I (A) x

14 Transmit clock (A) S (A) x

15 Cable ID 1 ID1 x x

16 Receive clock (B) RX CLK (B) x

17 Transmitted data

(B)

TXD (B) x

18 Transmit clock (B) TX CLK (B) x

19 Receive data (B) RXD (B) x

20 Data terminal

ready

DTR x x

21 Remote loopback

test

RLBT x

22 Call indicate CI x x

23 Reserved

24 Transmit clock TX CLK x

25 Test indicate TI x

26 Receive clock RX CLK x

27 Local loopback

test

LLBT

28 Transmitted data

(B)

T (B) x

© Copyright IBM Corp. 2001, 2005 285

29 Control (B) C (B) x

30 Received data (B) R (B) x

31 Indication (B) I (B) x

32 Transmit clock (B) S (B) x

33 Reserved

34 Receive clock (A) RX CLK (A) x

35 Transmitted data

(A)

TXD (A) x

36 Transmit clock (A) RX CLK (A) x

37 Received data (A) RXD (A) x

NOTES:

(a) and (b) indicate pins that are associated to form pairs.

Modem Attachment Pin Assignments

Supported modem types include the V.11, V.24/X.21bis, and V.35/X.21bis attachments.

X.21 Pin Assignments

The following table describes the pin assignments of the V.11 interface circuits for 15-pin connectors.

 Pin Assignments of V.11 Interface Circuits to 15-Pin Connectors

Pin Number Circuit

Assignment

Circuit Description

11 - -

2 T(a)2 Transmit

3 C(a) Control

4 R(a) Receive

5 I(a) Indication

6 S(a) Signal element timing

7 B(a)/X(a) Byte timing: Modem transmit signal

8 G Signal ground or common return

9 T(b)2 Transmit

10 C(b) Control

11 R(b) Receive

12 I(b) Indication

13 S(b) Signal element timing

14 B(b)/X(b) Byte timing: Modem transmit signal

15 Future use Future use

NOTES:

1 Assigned for connecting the shields between tandem sections of shielded interface cables.

2 (a) and (b) indicate pins that are associated to form pairs.

286 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

G - Signal ground (or

common return)

In the case of interchange circuits according to Recommendation V.11, it

interconnects the zero volt reference points of a generator and a receiver to reduce

environmental signal interference, if required.

T - Transmit The binary signals originated by the system to be transmitted during the data transfer

phase by way of the data circuit to one or more remote systems are transferred on

this circuit to the modem.

This circuit also transfers the call control signals originated by the system to be

transmitted to the modem in the call establishment and other call control phases as

specified by the relevant recommendations for the procedural characteristics of the

interface.

The modem monitors this circuit to detect electrical circuit fault conditions, according

to the specifications of the electrical characteristics of the interface. A circuit fault is

interpreted by the modem as defined in the recommendation for the procedural

characteristics of the interface.

R - Receive The binary signals sent by the modem as received during the data transfer phase

from a remote system are transferred on this circuit to the system.

This circuit also transfers the call control signals sent by the modem as received

during the call establishment and other call control phases specified by the relevant

recommendation for the procedural characteristics of the interface.

The system monitors this circuit to detect electrical circuit fault conditions, according

to the specifications of the electrical characteristics of the interface. A circuit fault is to

be interpreted by the system as defined in the recommendations for the procedural

characteristics of the interface.

C - Control Signals on this circuit control the modem for a particular signalling process.

Representation of a control signal requires additional coding of circuit T-Transmit as

specified in the relevant recommendation for the procedural characteristics of the

interface. During the data phase, this circuit must remain on. During the call control

phases, the condition of this circuit must be as specified in the relevant

recommendation for the procedural characteristics of the interface.

The modem monitors this circuit to detect electrical circuit fault conditions, according

to the specifications of the electrical characteristics of the interface. A circuit fault is to

be interpreted by the modem as defined in the recommendation for the procedural

characteristics of the interface.

I - Indication Signals on this circuit indicate the state of the call control process.

Representation of a control signal requires additional coding of circuit R-Receive, as

specified in the relevant recommendation for the procedural characteristics of the

interface. The on condition of this circuit signifies that signals on circuit R contain

information from the distant system. The off condition signifies a control signalling

condition which is defined by the bit sequence on circuit R as specified by the

procedural characteristics of the interface.

The system monitors this circuit to detect electrical circuit fault conditions, according

to the specifications of the electrical characteristics of the interface. A circuit fault is to

be interpreted as defined in the recommendation for the procedural characteristics of

the interface.

Appendix D. X.25 Cables and Connectors 287

S - Signal element timing Signals on this circuit provide the system with signal element timing information from

the modem. The condition of this circuit is on and off for nominally equal periods of

time. However, for burst asynchronous operations, longer periods of off condition

may be permitted equal to an integer odd number of the nominal period of the on

condition as specified by the relevant procedural characteristics of the interface.

The system must present a binary signal on circuit T-Transmit and a condition on

circuit C-Control, in which the transitions nominally occur prior to the transitions from

off to on condition of this circuit.

The modem presents a binary signal on circuit R-Receive and a condition on circuit

I-Indication in which the transitions nominally occur at the time of the transitions from

off to on condition of this circuit.

The modem transfers signal-element timing information on this circuit across the

interface whenever the timing source is capable of generating this information.

V.24/X.21bis Pin Assignments

The following table describes V.24/X.21bis pin assignment for a 25-pin connector (for speeds up to 20

Kbps).

 V.24/X.21bis Pin Assignments for a 25-Pin Connector

Pin CCITT Circuit CCITT Circuit Designation

1

2 103 Transmitted data

3 104 Received data

4 105 Request to send

5 106 Ready for sending

6 107 Data set ready

7 102 Signal ground

8 109 N

9 - N

10 - N

11 - N

12 - N

13 - F

14 - F

15 114 Tx signal element timing from modem

16 - F

17 115 Rx signal element timing from modem

18 141 Local loopback

19 - F

20 108 Data terminal ready: Connect data set to line

21 140 Local loopback

22 125 Calling indicator

23 - N

24 - F

288 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

25 142 Test indicator

Notes: N=Pin permanently reserved for national use. F=Pin reserved for future international standard and should not

be used for national use.

V.35/X.21bis Pin Assignments

The following table describes the V.35/X.21bis pin assignments for a 34-pin connector (for speeds above

20 kbps).

 V.35/X.21bis Pin Assignments for a 34-Pin Connector

Pin CCITT Circuit CCITT Circuit Designation Direction

A

B 102 Signal ground or common return Common

C 105 Request to send From system

D 106 Ready for sending To system

E 107 Data set ready To system

F 109 Data channel received line signal

detection

To system

H 108.1 Connect data set to line From system

H 108.2 Data terminal ready From system

J 125 Calling indicator To system

K 141 Local loopback From system

L - F -

M - F -

N 140 Loopback/Maintenance test From system

P 103 Transmitted data A-wire From system

R 104 Received data A-wire To system

S 103 Transmitted data B-wire From system

T 104 Received data B-wire To system

U 113 Tx signal element timing from system

A-wire

From system

V 115 Receiver signal element timing A-wire To system

W 113 Tx signal element timing from system

B-wire

From system

X 115 Receiver signal element timing B-wire To system

Y 114 Tx signal element timing from modem

A-wire

To system

Z - F -

AA 114 Tx signal element timing from modem

B-wire

To system

BB - F -

CC - F -

DD - F -

EE - F -

FF - F -

Appendix D. X.25 Cables and Connectors 289

HH - N -

JJ - N -

KK - N -

LL - N -

MM - F -

NN 142 Test indicator To system

Notes: N=Pin permanently reserved for national use. F=Pin reserved for future international standard and should not

be used for national use.

V.36 Pin Assignments

The following table describes the V.36 pin assignments for a 37-pin connector:

 ARTIC960 6-Port V.36 37-Pin D-Shell Connector Pins

Pin CCITT Circuit Signal Name Direction

04 103 TXDnA From system

22 103 TXDnB From system

06 104 RXDnA To system

24 104 RXDnB To system

05 114 TCLKInA To system

23 114 TCLKInB To system

08 115 RCLKInA To system

26 115 RCLKInB To system

17 113 TCLKOnA From system

35 113 TCLKOnB From system

07 105 RTSn From system

09 106 CTSn To system

13 109 DCDn To system

12 108.2 DTRn From system

11 107 DSRn To system

19 102 SigGnd(-)

01 — Shield(-)

X.25 Interconnection Cables

The X.25 protocol supports the X.25 interface cables.

X.21 Interface Cable

 D-37 Connector D-15 Connector Function

T(A) 10 2 T(A) Transmitted data (A)

C(A) 11 3 C(A) Control (A)

R(A) 12 4 R(A) Received data (A)

I(A) 13 5 I(A) Indication (A)

290 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

S(A) 14 6 S(A) Transmit clock (A)

GND 7 8 GND Signal ground

T(B) 28 9 T(B) Transmitted data (B)

C(B) 29 10 C(B) Control (B)

R(B) 30 11 R(B) Received data (B)

I(B) 31 12 I(B) Indication (B)

S(B) 32 13 S(B) Transmit clock (B)

ID0 9*

* Wired to pin 7 of the same cable

X.21bis/V.24 Interface Cable

 D-37 Connector D-25 Connector Function

TXD 2 2 TXD Transmitted data

RXD 3 3 RXD Received data

RTS 4 4 RTS Request to send

CTS 5 5 CTS Clear to send

DSR 6 6 DSR Data set ready

GND 7 7 GND Signal ground

CD 8 8 CD Carrier detect

TX CLK 24 15 TX CLK Transmit click

RX CLK 26 17 RX CLK Receive clock

LLBT 27 18 LLBT Local loopback test

DTR 20 20 DTR Data terminal ready

RLBT 21 21 RLBT Remote loopback test

CI 22 22 CI Call indicated

TI 25 25 TI Test indicated

ID0 9*

ID1 15*

* Wired to pin 7 of the same cable

X.21bis/V.35 Interface Cable

 D-37 Connector M/34 Connector Function

GND 7 B GND Signal ground

RTS 4 C RTS Request to send

CTS 5 D CTS Clear to send

DSR 6 E DSR Data set ready

CD 8 F CD Carrier detect

DTR 20 H DTR Data terminal ready

CI 22 J CI Call indicate

TXD (A) 35 P TXD (A) Transmitted data (A)

RXD (A) 37 R RXD (A) Receive data (A)

Appendix D. X.25 Cables and Connectors 291

TXD (B) 17 S TXD (B) Transmitted data (B)

RXD (B) 19 T RXD (B) Receive data (B)

RX CLK (A) 34 V RX CLK (A) Receive clock (A)

TX CLK (A) 36 Y TX CLK (A) Transmit clock (A)

RX CLK (B) 16 X RX CLK (B) Receive clock (B)

TX CLK (B) 18 AA TX CLK (B) Transmit clock (A)

ID1 15

* Wired to pin 7 of the same cable

The X.25 protocol supports the X.21, X.21bis/V.24, and X.21bis/V.35 interface cables.

6-Port X.21 Portmaster Adapter

X.21 Interface Cable

 D-25 Connector D-15 Connector

Function Signal Pin Pin Signal

T(A) 2 2 T(A) Transmitted data (A)

C(A) 4 3 C(A) Control (A)

R(A) 3 4 R(A) Received data (A)

I(A) 5 5 I(A) Indication (A)

S(A) 15 6 S(A) Receive clock (A)

GND 7 8 GND Signal ground

T(B) 24 9 T(B) Transmitted data (B)

C(B) 20 10 C(B) Control (B)

R(B) 17 11 R(B) Received data (B)

I(B) 6 12 I(B) Indication (B)

S(B) 23 13 S(B) Receive clock (B)

ID0 ID0

X(A) 8 7 X(A) Transmit clock (A)

X(B) 22 14 X(B) Transmit clock (B)

X.21bis/V.24 for 8-Port Portmaster and 8-Port ARTIC960 Adapters

 D-25 Connector D-25 Connector

Function Signal Pin Pin Signal

TXT 2 2 TXD Transmitted data

RXD 3 3 RXD Received data

RTS 4 4 RTS Request to send

CTS 5 5 CTS Clear to send

DSR 6 6 DSR Data set ready

GND 7 7 GND Signal ground

CD 8 8 CD Carrier detect

292 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

TX CLK 15 15 TX CLK Transmit clock (in)

RX CLK 17 17 RX CLK Receive clock (in)

DTR 20 20 DTR Data terminal ready

DTECLK 24 24 DTECLK DTE clock (out)

HRS 23 23 HRS Half rate select

6-Port /V.35 Portmaster and 6-Port/V.36 ARTIC960 Adapters (V.35

Configuration)

 D-25 Connector D-25 Connector

Function Signal Pin Pin Signal

GND 7 B GND Signal ground

RTS 4 C RTS Request to send

CTS 5 D CTS Clear to send

DSR 6 E DSR Data set ready

CD 8 F CD Carrier detect

DTR 20 H DTR Data terminal ready

TXD (A) 2 P TXD (A) Transmitted data (A)

RXD (A) 3 R RXD (A) Receive data (A)

TXD (B) 14 S TXD (B) Transmitted data (B)

RXD (B) 16 T RXD (B) Receive data (B)

RX CLK (A) 17 V RX CLK (A) Receive clock (A)

TX CLK (A) 15 Y TX CLK (A) Transmit clock (A)

RX CLK (B) 9 X RX CLK (B) Receive clock (B)

TX CLK (B) 12 AA TX CLK (B) Transmit clock (B)

DTE CLK (A) 24 U DTE CLK (A) DTE clock (A)

DTE CLK (B) 11 W DTE CLK (B) DTE clock (B)

X.25 Adapter and Cable Diagnostics Wrap Plugs and Pinouts

Adapter and cable wrap plugs, used for diagnostics, are automatically included with cables and X.25

adapter orders specifying the system order numbers.

The following table lists the wrap plug pin assignments. They are supplied for local loopback tests in

accordance with CCITT Recommendation X.150.

 Table 1.

X.25 Co-Processor PORTMASTER ARTIC960

D-37 wrap plug 6-Port V.21 D-15 wrap plug 8-Port X.21 D-15 wrap plug

D-15 wrap plug 6-Port V.35 wrap plug 8-Port EIA-232E D-25 wrap plug

D-25 wrap plug 6-Port X.21bis/.24 D-25 wrap plug

M/34 wrap plug 6-Port X.35 D-25 wrap plug 6-Port V.36 DB-37 wrap plug

6-Port X.21 D-78 wrap plug 8-Port X.21 D-100 wrap plug

6-Port V.35 D-100 wrap plug 6-Port V.36 D-100 wrap plug

Appendix D. X.25 Cables and Connectors 293

Table 1. (continued)

6-Port X.21bis/.24 D-100 wrap plug 8-Port X.21bis/EIA-232E D-100 wrap plug

X.25 Co-Processor Adapter D-37 Wrap Plug

The D-37 Wrap plug is used to test local loopback at the D-37 connector on the adapter. It has a cable

identifier of ID0=1, and ID1=1. The D-37 Wrap Plug table shows the pin assignments.

 D-37 Wrap Plug

Signal Pin Number Pin Number Signal

T(B) 28 30 R(B)

T(A) 10 12 R(A)

C(B) 29 31 I(B)

C(A) 11 13 I(A)

TXD 2 3 RXD

RTS 4 5 CTS

DTR 20 6 DSR

LLBT 27 25 TI

RBLT 21 22 CI

TXD(A) 35 37 RXD(A)

TXD(B) 17 19 RXD(B)

ID0 9 15 ID1

X.25 Co-Processor Adapter D-15 Wrap Plug

The D-15 wrap plug is used to test loopback at the DCE end of the X.21 interface cable. The D-15 Wrap

Plug table shows the pin assignments.

 D-15 Wrap Plug

Signal Pin Number Pin Number Signal

T(B) 9 11 R(B)

T(A) 2 4 R(A)

C(B) 10 12 I(B)

C(A) 3 5 I(A)

X.25 Co-Processor Adapter D-25 Wrap Plug

The D-25 wrap plug is used to test loopback at the DCE end of the X.21bis/V.24 interface cable. The D-25

Wrap Plug table shows the pin assignments.

 D-25 Wrap Plug

Signal Pin Number Pin Number Signal

TXD 2 3 RXD

RTS 4 5 CTS

DTR 20 6 DSR

LLBT 18 25 TI

RBLT 21 22 CI

294 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X.25 Co-Processor Adapter M/34 Wrap Plug

The M/34 wrap plug is used to test loopback at the DCE end of the X.21bis/V.35 interface cable. The M/34

Wrap Plug table shows the pin assignments.

 M/34 Wrap Plug

Signal Pin Number Pin Number Signal

TXD(A) P R RXD(A)

TXD(B) S T RXD(B)

RTS C D - F CTS - DCD

DTR H E DSR

DTECLK(A) U V RXCLK(A)

DTECLK(B) W X RXCLK(B)

6-Port X.21 Portmaster and 8-Port X.21 ARTIC960 D-15 Wrap Plug

 6-Port X.21 Portmaster and ARTIC960 D-15 Wrap Plug

Signal Pin Number Pin Number Signal

T(B) 9 11 R(B)

T(A) 2 4 R(A)

C(B) 10 12 I(B)

C(A) 3 5 I(A)

X(A) 7 6 S(A)

X(B) 14 13 S(B)

8-Port V.24 Portmaster and 8-Port EIA-232E ARTIC960 D-25 Wrap Plug

 8-Port V.24 Portmaster and 8-Port EIA-232E ARTIC960 D-25 Wrap Plug

Signal Pin Number Pin Number Signal

TXD 2 3 RXD

RTS 4 5 - 8 - 15 CTS - DCD - TXCLKIN

DTR 20 6 - 22 - 23 DSR - RI - HRS

TXCLK 24 17 RXCLK

6-Port V.35 Portmaster M/34 Wrap Plug

 6-Port V.35 Portmaster M/34 Wrap Plug

Signal Pin Number Pin Number Signal

TXD(A) P R-Y RXD(A), TXCLK(A)

TXD(B) S T-AA RXD(B), TXCLK(B)

RTS C D-F CTS, DCD

DTR H E DSR

DTE CLK(A) U V RX CLK(A)

Appendix D. X.25 Cables and Connectors 295

DTE CLK(B) W X RX CLK(B)

6-Port X.21 Portmaster D-25 Wrap Plug

 6-Port X.21 Portmaster D-25 Wrap Plug

Signal Pin Number Pin Number Signal

T(B) 2 3 R(B)

T(A) 24 17 R(A)

C(B) 4 5 I(B)

C(A) 20 6 I(A)

X(A) 8 15 S(A)

X(B) 22 23 S(B)

6-Port V.35 Portmaster Wrap Plug

 6-Port V.35 Portmaster Wrap Plug

Signal Pin Number Pin Number Signal

TXD(A) 2 3-5 RXD(A), TXCLK(A)

TXD(B) 14 16-12 RXD(B), TXCLK(B)

RTS 4 5-8 CTS, DCD

DTR 20 6 DSR

DTE CLK(A) 24 17 RX CLK(A)

DTE CLK(B) 11 9 RX CLK(B)

6-Port V.36 ARTIC960 DB-37 Wrap Plug

 6-Port V.36 ARTIC960 DB-37 Wrap Plug

Signal Pin Number Pin Number Signal

TXD(A) 4 6-5 RXD(A), TCLK(A)

TXD(B) 22 24-23 RXD(B), TCLK(B)

TCLK(A) 17 8 RCLK(A)

TCLK(B) 35 26 RCLK(B)

RTS 7 9-13 CTS, DCD

DTR 12 11 DSR

IBM ARTIC960Hx 4-Port Selectable PCI Adapter V.35 M/34 Wrap Plug

 IBM ARTIC960Hx 4-Port Selectable PCI Adapter V.35 M/34 Wrap Plug

Signal Pin Number Pin Number Signal

TXD(A) P R - Y RXD(A), TXCLK(A)

TXD(B) S T - AA RXD(B), TXCLK(B)

RTS C D CTS

DTR H E - F DSR, DCD

296 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

DTE CLK(A) U V RX CLK(A)

DTE CLK(B) W X RX CLK(B)

IBM ARTIC960Hx 4-Port Selectable PCI Adapter EIA-232 D-25 Wrap

Plug

 IBM ARTIC960Hx 4-Port Selectable PCI Adapter EIA-232 D-25 Wrap Plug

Signal Pin Number Pin Number Signal

TXD 2 3 - 15 RXD, TXCLKIN

RTS 4 5 CTS

DTR 20 6 - 8 DSR, DCD

TXCLK 24 17 RXCLK

IBM ARTIC960Hx 4-Port Selectable PCI Adapter X.21 D-15 Wrap Plug

 IBM ARTIC960Hx 4-Port Selectable PCI Adapter X.21 D-15 Wrap Plug

Signal Pin Number Pin Number Signal

T(B) 9 11 R(B)

T(A) 2 4 R(A)

C(B) 10 12 I(B)

C(A) 3 5 I(A)

X(A) 7 6 S(A)

X(B) 14 13 S(B)

6-Port X.21 Portmaster D-78 Wrap Plug

 6-Port X.21 Portmaster D-78 Wrap Plug

Port Connector K9B Pins Signal Wrapped

0 40 —>02 T0(A) —> R0(A)

41 —> 62 T0(B) —> R0(B)

01 —> 61 C0(A) —> I0(A)

60 —> 42 C0(B) —> I0(B)

22 —> 23 X0(A) —> S0(A)

03 —> 21 X0(B) —> S0(B)

1 04 —>64 T1(A) —> R1(A)

05 —> 26 T1(B) —> R1(B)

63 —> 25 C1(A) —> I1(A)

24 —> 06 C1(B) —> I1(B)

45 —> 46 X1(A) —> S1(A)

65 —> 44 X1(B) —> S1(B)

2 66 —>28 T2(A) —> R2(A)

19 —> 57 T2(B) —> R2(B)

Appendix D. X.25 Cables and Connectors 297

27 —> 48 C2(A) —> I2(A)

47 —> 68 C2(B) —> I2(B)

09 —> 78 X2(A) —> S2(A)

29 —> 76 X2(B) —> S2(B)

3 69 —>31 T3(A) —> R3(A)

20 —> 77 T3(B) —> R3(B)

30 —> 51 C3(A) —> I3(A)

50 —> 71 C3(B) —> I3(B)

12 —> 59 X3(A) —> S3(A)

32 —> 37 X3(B) —> S3(B)

4 73 —>54 T4(A) —> R4(A)

10 —> 18 T4(B) —> R4(B)

34 —> 15 C4(A) —> I4(A)

35 —> 72 C4(B) —> I4(B)

74 —> 39 X4(A) —> S4(A)

49 —> 38 X4(B) —> S4(B)

5 55 —>75 T5(A) —> R5(A)

13 —> 53 T5(B) —> R5(B)

16 —> 36 C5(A) —> I5(A)

17 —> 33 C5(B) —> I5(B)

56 —> 14 X5(A) —> S5(A)

52 —> 58 X5(B) —> S5(B)

8-Port X.21 ARTIC960 D-100 Wrap Plug

 8-Port X.21 ARTIC960 D-100 Wrap Plug

Port Connector K9B Pins Signal Wrapped

0 01 —> 52 T0(A) —> R0(A)

27 —> 76 T0(B) —> R0(B)

03 —> 54 TCLK0(A) —> RCLK0(A)

29 —> 78 TCLK0(B) —> RCLK0(B)

02 —> 53 C0(A) —> I0(A)

28 —> 77 C0(B) —> I0(B)

1 04 —> 55 T1(A) —> R1(A)

30 —> 79 T1(B) —> R1(B)

07 —> 57 TCLK1(A) —> RCLK1(A)

32 —> 81 TCLK1(B) —> RCLK1(B)

05 —> 56 C1(A) —> I1(A)

31 —> 80 C1(B) —> I1(B)

2 08 —> 58 T2(A) —> R2(A)

33 —> 82 T2(B) —> R2(B)

10 —> 60 TCLK2(A) —> RCLK2(A)

298 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

35 —> 84 TCLK2(B) —> RCLK2(B)

09 —> 59 C2(A) —> I2(A)

34 —> 83 C2(B) —> I2(B)

3 11 —> 61 T3(A) —> R3(A)

36 —> 85 T3(B) —> R3(B)

13 —> 63 TCLK3(A) —> RCLK3(A)

39 —> 87 TCLK3(B) —> RCLK3(B)

12 —> 62 C3(A) —> I3(A)

37 —> 86 C3(B) —> I3(B)

4 14 —> 64 T4(A) —> R4(A)

40 —> 88 T4(B) —> R4(B)

16 —> 66 TCLK4(A) —> RCLK4(A)

42 —> 90 TCLK4(B) —> RCLK4(B)

15 —> 65 C4(A) —> I4(A)

41 —> 89 C4(B) —> I4(B)

5 17 —> 67 T5(A) —> R5(A)

43 —> 91 T5(B) —> R5(B)

20 —> 69 TCLK5(A) —> RCLK5(A)

45 —> 93 TCLK5(B) —> RCLK5(B)

18 —> 68 C5(A) —> I5(A)

19 —> 92 C5(B) —> I5(B)

6 21 —> 70 T6(A) —> R6(A)

46 —> 94 T6(B) —> R6(B)

23 —> 72 TCLK6(A) —> RCLK6(A)

48 —> 96 TCLK6(B) —> RCLK6(B)

22 —> 71 C6(A) —> I6(A)

47 —> 95 C6(B) —> I6(B)

7 24 —> 73 T7(A) —> R7(A)

49 —> 97 T7(B) —> R7(B)

26 —> 99 TCLK7(A) —> RCLK7(A)

51 —> 100 TCLK7(B) —> RCLK7(B)

50 —> 74 C7(A) —> I7(A)

75 —> 98 C7(B) —> I7(B)

6-Port V.35 Portmaster and 6-Port V.36 ARTIC960 D-100 Wrap Plug

 6-Port V.35 Portmaster and 6-Port V.36 ARTIC960 D-100 Wrap Plug

Port Connector K9B Pins Signal Wrapped

0 94 - 08 - 76 TXDA0 - RXDA0 - TXCA0 IN

70 - 33 - 52 TXDB0 - RXDB0 - TXCB0 IN

24 - 20 TXCA0 OUT - RXCA0

49 - 45 TXCB0 OUT - RXCB0

Appendix D. X.25 Cables and Connectors 299

42 - 15 - 89 RTS0 - CTS0 - DCD0

18 - 66 DTR0 - DSR0

1 21 - 54 - 06 TXDA1 - RXDA1 - TXCA1 IN

46 - 78 - 31 TXDB1 - RXDB1 - TXCB1 IN

73 - 41 TXCA1 OUT - RXCA1

97 - 16 TXCB1 OUT - RXCB1

43 - 65 - 40 RTS1 - CTS1 - DCD1

91 - 90 DTR1 - DSR1

2 47 - 58 - 77 TXDA2 - RXDA2 - TXCA2 IN

22 - 82 - 53 TXDB2 - RXDB2 - TXCB2 IN

98 - 38 TXCA2 OUT - RXCA2

74 - 13 TXCB2 OUT - RXCB2

92 - 86 - 62 RTS2 - CTS2- DCD2

69 - 88 DTR2 - DSR2

3 71 - 29 - 56 TXDA3 - RXDA3 - TXCA3 IN

95 - 04 - 80 TXDB3 - RXDB3 - TXCB3 IN

25 - 19 TXCA3 OUT - RXCA3

50 - 44 TXCB3 OUT - RXCB3

93 - 87 - 61 RTS3 - CTS3 - DCD3

68 - 64 DTR3 - DSR3

4 72 - 28 - 27 TXDA4 - RXDA4 - TXCA4 IN

96 - 03 - 02 TXDB4 - RXDB4 - TXCB4 IN

99 - 32 TXCA4 OUT - RXCA4

75 - 07 TXCB4 OUT - RXCB4

37 - 59 - 35 RTS4 - CTS4 - DCD4

14 - 60 DTR4 - DSR4

5 23 - 57 - 55 TXDA5 - RXDA5 - TXCA5 IN

48 - 81 -79 TXDB5 - RXDB5 - TXCB5 IN

26 - 30 TXCA5 OUT - RXCA5

51 - 05 TXCB5 OUT - RXCB5

39 - 09 - 84 RTS5 - CTS5 - DCD5

12 - 85 DTR5 - DSR5

8-Port X.21bis/V.24 Portmaster and 8-Port X.21bis/V.24 ARTIC960 D-100

Wrap Plug

 8-Port X.21bis/V.24 Portmaster and 8-Port X.21bis/V.24 ARTIC960 D-100 Wrap Plug

Port Connector K9B Pins Signal Wrapped

0 51 - 02 TXD0 - RXDA0

01 - 77 - 28 - 29 RTS0 - CTS0 - DCD0 - TXCLKIN0

52 - 78 TXCLK0 - RXCLK0

76 - 53 - 03 - 27 DTR0 - DSR0 - RI0 - HRS0

300 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

1 54 - 05 TXD1 - RXDA1

04 - 80 - 31 - 32 RTS1 - CTS1 - DCD1 - TXCLKIN1

55 - 81 TXCLK1 - RXCLK1

79 - 56 - 06 - 30 DTR1 - DSR1 - RI1 - HRS1

2 07 - 83 TXD2 - RXDA2

82 - 34 - 59 - 60 RTS2 - CTS2 - DCD2 - TXCLKIN2

08 - 35 TXCLK2 - RXCLK2

33 - 09 - 84 - 58 DTR2 - DSR2 - RI2 - HRS2

3 10 - 86 TXD3 - RXDA3

85 - 37 - 63 - 63 RTS3 - CTS3 - DCD3 - TXCLKIN3

11 - 38 TXCLK3 - RXCLK3

36 - 12 - 87 - 61 DTR3 - DSR3 - RI3 - HRS3

4 13 - 89 TXD4 - RXDA4

88 - 40 - 65 - 66 RTS4 - CTS4 - DCD4 - TXCLKIN4

14 - 41 TXCLK4 - RXCLK4

39 - 15 - 90 - 64 DTR4 - DSR4 - RI4 - HRS4

5 16 - 92 TXD5 - RXDA5

91 - 43 - 68 - 69 RTS5 - CTS5 - DCD5 - TXCLKIN5

17 - 44 TXCLK5 - RXCLK5

42 - 18 - 93 - 97 DTR5 - DSR5 - RI5 - HRS5

6 94 - 46 TXD6 - RXDA6

45 - 71 - 21 - 22 RTS6 - CTS6 - DCD6 - TXCLKIN6

95 - 72 TXCLK6 - RXCLK6

70 - 96 - 47 - 20 DTR6 - DSR6 - RI6 - HRS6

7 48 - 74 TXD7 - RXDA7

73 - 24 - 99 - 100 RTS7 - CTS7 - DCD7 - TXCLKIN7

49 - 25 TXCLK7 - RXCLK7

23 - 50 - 75 - 98 DTR7 - DSR7 - RI7 - HRS7

IBM ARTIC960Hx 4-Port Selectable PCI Adapter 120-Pin Wrap Plug

The 120-Pin Wrap plug is used to test local loopback at the 120-Pin connector on the adapter. It has a

cable identifier of FEh.

 IBM ARTIC960Hx 4-Port Selectable PCI Adapter 120-Pin Wrap Plug

Port Connector Pins Signal Wrapped

0 118 - 96 - 102 TXD(A) - RXD(A) - TXC(A) IN

 119 - 97 - 103 TXD(B) - RXD(B) - TXC(B) IN

 105 - 104 - 91 TXD12V - RXD12V - TXC12V IN

 116 - 108 TXC(A) OUT - RXC(A)

 117 - 109 TXC(B) OUT - RXC(B)

 111 - 106 TXC12V OUT - RXC12V IN

 114 - 100 RTS(A) - CTS(A)

Appendix D. X.25 Cables and Connectors 301

115 - 101 RTS(B) - CTS(B)

 114 - 100 RTS12V - CTS12V

 112 - 98 - 94 DTR(A) - DSR(A) - DCD(A)

 113 - 99 - 95 DTR(B) - DSR(B) - DCD(B)

 112 - 98 - 94 DTR12V - DSR12V - DCD12V

1 58 - 36 - 42 TXD(A) - RXD(A) - TXC(A) IN

 59 - 37 - 43 TXD(B) - RXD(B) - TXC(B) IN

 45 - 44 - 31 TXD12V - RXD12V - TXC12V IN

 56 - 48 TXC(A) OUT - RXC(A)

 57 - 49 TXC(B) OUT - RXC(B)

 51 - 46 TXC12V OUT - RXC12V IN

 54 - 40 RTS(A) - CTS(A)

 55 - 41 RTS(B) - CTS(B)

 54 - 40 RTS12V - CTS12V

 52 - 38 - 34 DTR(A) - DSR(A) - DCD(A)

 53 - 39 - 35 DTR(B) - DSR(B) - DCD(B)

 52 - 38 - 34 DTR12V - DSR12V - DCD12V

2 2 - 24 - 18 TXD(A) - RXD(A) - TXC(A) IN

 3 - 25 - 19 TXD(B) - RXD(B) - TXC(B) IN

 17 - 16 - 30 TXD12V - RXD12V - TXC12V IN

 4 - 12 TXC(A) OUT - RXC(A)

 5 - 13 TXC(B) OUT - RXC(B)

 11 - 1 TXC12V OUT - RXC12V IN

 6 - 20 RTS(A) - CTS(A)

 7 - 21 RTS(B) - CTS(B)

 6 - 20 RTS12V - CTS12V

 8 - 22 - 26 DTR(A) - DSR(A) - DCD(A)

 9 - 23 - 27 DTR(B) - DSR(B) - DCD(B)

 8 - 22 - 26 DTR12V - DSR12V - DCD12V

3 62 - 84 - 78 TXD(A) - RXD(A) - TXC(A) IN

 63 - 85 - 79 TXD(B) - RXD(B) - TXC(B) IN

 77 - 76 - 90 TXD12V - RXD12V - TXC12V IN

 64 - 72 TXC(A) OUT - RXC(A)

 65 - 73 TXC(B) OUT - RXC(B)

 71 - 61 TXC12V OUT - RXC12V IN

 66 - 80 RTS(A) - CTS(A)

 67 - 81 RTS(B) - CTS(B)

 66 - 80 RTS12V - CTS12V

 68 - 82 - 86 DTR(A) - DSR(A) - DCD(A)

 69 - 83 - 87 DTR(B) - DSR(B) - DCD(B)

 68 - 82 - 86 DTR12V - DSR12V - DCD12V

302 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Note: The DTR(B) signal is pulled to ground with a 10k Ohm resistor in the wrap plug to allow testing of both 5-volt

balanced and 12-volt signals

Appendix D. X.25 Cables and Connectors 303

304 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix E. CCITT Causes and Diagnostics

The following information includes the X.25 clear and reset causes and diagnostic codes as defined by the

CCITT.

X.25 Clear and Reset Codes

Each clear-indication or reset-indication packet includes a 1-byte cause code and a 1-byte diagnostic code

in the received data. The API subroutines take no specific action on any of the cause or diagnostic codes.

Origins of the Clear or Reset

X.25 clear-indication and reset-indication packets may be generated by the X.25 code, the remote data

terminal equipment (DTE), or the X.25 network itself. The relationship between cause codes and

diagnostic codes is shown in a table in the annexes to ISO 8208. The following sections discuss X.25

clear and reset codes:

v CCITT Clear and Reset Cause for X.25

v X.25 Logical Channel States .

v X.25 Diagnostic Codes .

v SNA Diagnostic Codes .

Notes:

1. When Communications Server (SNA) is being used, use the SNA diagnostic codes; otherwise, use

the CCITT/ISO diagnostic codes.

2. x25mon shows codes in decimal.

CCITT Restart Causes

The CCITT meanings for the restart cause codes are:

 Hex Meaning

00 Originated by the remote X.25 data terminal equipment (DTE).

01 Local procedure error.

03 Network congestion.

07 Network up.

X.25 Logical Channel States

This information lists the CCITT logical channel states referred to in X.25 Diagnostic Codes .

 State Meaning

d1 Flow control ready.

d2 DTE reset request.

d3 DCE reset indication.

p1 Channel ready.

p2 DTE call request.

p3 DCE incoming call.

p4 Data transfer.

p5 Call collision.

p6 DTE clear request.

p7 DCE clear indication.

r1 Packet level ready.

© Copyright IBM Corp. 2001, 2005 305

State Meaning

r2 DTE restart request.

r3 DCE restart indication.

X.25 Diagnostic Codes

Diagnostic codes give additional information about the reason for sending a clear-indication or

reset-indication. (The reason is also indicated in the cause code.) The meaning of each diagnostic code

depends on whether X.25 is being used as a medium for SNA communications, by means of qualified

logical link control (QLLC), or being used directly. If SNA is being used, refer to the SNA Diagnostic

Codes; if X.25 is being used directly, refer to the CCITT/ISO Diagnostic Codes sections that follow.

In addition, some diagnostic codes are used by the xtalk command.

CCITT Clear and Reset Causes for X.25

This section gives the CCITT meanings for cause codes given in clear-indication and reset-indication

packets:

v CCITT clear causes.

v CCITT reset causes.

v CCITT restart causes.

Note: A RESET procedure is invoked to recover a single virtual circuit. A RESTART procedure is

invoked when all virtual circuits on a link are to be reinitialized.

The CCITT defines the X.25 clear cause codes as follows:

 List of CCITT Clear Causes

Hex Dec Meaning

00 00 Originated by the remote X.25 data terminal equipment (DTE).

01 01 Number busy.

03 03 Incorrect facility request.

05 05 Network congestion.

09 09 Out of order.

0B 11 Access barred.

0D 13 Not obtainable.

11 17 Remote procedure error.

13 19 Local procedure error.

15 21 RPOA out of order.

19 25 Reverse charging acceptance not subscribed.

21 33 Incompatible destination.

29 41 Fast select acceptance not subscribed.

80 128 80 through FF not defined by CCITT, but used by SNA.

The CCITT defines the X.25 reset cause codes as follows:

 List of CCITT Reset Causes

306 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Hex Dec Meaning

00 00 Originated by the remote X.25 data terminal equipment (DTE).

01 01 Out of order.

03 03 Remote procedure error.

05 05 Local procedure error.

07 07 Network congestion.

09 09 Remote DTE operational.

0F 15 Network operational.

11 17 Incompatible destination.

1D 19 Network out of order.

80 128 Originated through FF DTE.

Diagnostic Codes for X.25 and Communications Server (SNA)

The CCITT has defined diagnostic codes for X.25 communications and Communications Server (SNA).

CCITT Diagnostic Codes

The CCITT defines the X.25 diagnostic codes as follows:

 List of CCITT Diagnostic Codes

Hex Dec Meaning

00 0 Clear or reset generated during restart.

01 1 Incorrect P(S) in packet from DCE.

02 2 Incorrect P(R) in packet from DCE.

10 16 Incorrect packet type.

11 17 Incorrect packet from DCE for state r1.

12 18 Incorrect packet from DCE for state r2.

13 19 Incorrect packet from DCE for state r3.

14 20 Incorrect packet from DCE for state p1.

15 21 Incorrect packet from DCE for state p2.

16 22 Incorrect packet from DCE for state p3.

17 23 Incorrect packet from DCE for state p4.

18 24 Incorrect packet from DCE for state p5.

19 25 Incorrect packet from DCE for state p6.

1A 26 Incorrect packet from DCE for state p7.

1B 27 Incorrect packet from DCE for state d1.

1C 28 Incorrect packet from DCE for state d2.

1D 29 Incorrect packet from DCE for state d3.

20 32 Packet not allowed.

21 33 Unidentifiable packet received from DCE.

22 34 Call received on one-way channel.

23 35 Clear or call packet received from DCE on a permanent virtual

circuit (PVC).

Appendix E. CCITT Causes and Diagnostics 307

24 36 Packet received on an unassigned logical channel.

25 37 REJECT not subscribed.

26 38 Packet received from DCE was too short.

27 39 Packet received from DCE was too long.

28 40 Incorrect general format identifier (GFI).

29 41 Restart packet received from DCE with non-zero logical channel

identifier.

2A 42 Incorrect fast-select packet received from DCE.

2B 43 Unauthorized interrupt confirmation.

2C 44 Interrupt packet received from DCE when acknowledgment was still

outstanding.

2D 45 Unauthorized reject.

30 48 Timer expired (or limit surpassed).

31 49 Timeout or retries reached on call response from DCE.

32 50 Timeout or retries reached on clear response from DCE.

33 51 Timeout or retries reached on reset response from DCE.

34 52 Timeout or retries reached on restart response from DCE.

35 53 Time expired for call deflection.

40 64 Call setup clearing or registration problem.

41 65 Facility/registration code not allowed.

42 66 Facility not allowed.

43 67 Incorrect called address.

44 68 Invalid address in incoming call from DCE.

45 69 Incorrect facility/registration length field.

46 70 Incoming call barred.

47 71 No logical channel available.

48 72 Call collision.

49 73 Duplicate facility requested.

4A 74 Nonzero address length in fast-select clear from DCE.

4B 75 Nonzero facility length in fast-select clear from DCE.

4C 76 Facility not provided when expected.

4D 77 Incorrect CCITT-specified DTE facility.

4E 78 Maximum number of call redirections or call deflections exceeded.

50 80 Miscellaneous.

51 81 Improper cause code from DTE.

52 82 Non-octet aligned.

53 83 Inconsistent Q-bit settings.

54 84 NUI problem.

70 112 International problem.

71 113 Remote network problem.

72 114 International protocol problem.

73 115 International link out of order.

308 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

74 116 International link busy.

75 117 Transit network facility problem.

76 118 Remote network facility problem.

77 119 International routing problem.

78 120 Temporary routing problem.

79 121 Unknown called DNIC.

7A 122 Maintenance action (may also apply within a national network).

80 128 Reserved for DTE-defined diagnostic information.

X.25 Licensed Program Specific Diagnostic Codes

The product-specific diagnostic codes are defined as follows:

 X.25 Licensed Program Specific Diagnostics

Hex Dec Meaning

81 129 No listener for incoming call.

82 130 No available LCN for call.

83 131 User error.

84 132 User call rejection.

85 133 Call cleared before accept.

86 134 Invalid call reference.

87 135 Registration timer expired.

88 136 Invalid Link layer state.

ISO 8208 Diagnostic Codes

The ISO 8208 diagnostic codes are defined as follows:

 ISO 8208 Diagnostics

Hex Dec Meaning

90 144 Timer expired or retransmission count surpassed.

91 145 Timer expired or retransmission count surpassed on interrupt-confirm

from DCE.

92 146 T25 timer expired for data packet transmission.

93 147 Timer expired or retransmission count surpassed for reject.

A0 160 DTE-specific signals.

A1 161 DTE operational.

A2 162 DTE not operational (level 2) or no application listening (network).

A3 163 DTE resource constraint.

A4 164 Fast select not subscribed.

A5 165 Incorrect partially full data packet received from DCE.

A6 166 D-bit procedure not supported.

A7 167 Registration or cancellation confirmed.

E0 224 OSI Network Service Problem.

E1 225 Disconnection (transient condition).

Appendix E. CCITT Causes and Diagnostics 309

E2 226 Disconnection (permanent condition).

E3 227 Connection rejection - reason unspecified (transient condition).

E4 228 Connection rejection - reason unspecified (permanent condition).

E5 229 Connection rejection - quality of service not available (transient

condition).

E6 230 Connection rejection - quality of service not available (permanent

condition).

E7 231 Connection rejection - NSAP unreachable (transient condition).

E8 232 Connection rejection - NSAP unreachable (permanent condition).

E9 233 Reset - reason unspecified.

EA 234 Reset - congestion.

EB 235 Connection rejection - NSAP address unknown (permanent

condition).

SNA Diagnostic Codes

The following diagnostic codes are set in clear- and reset-indication packets, when Communications

Server (SNA) is being used.

All diagnostic codes are not necessarily used by all DTEs, but those that are used have the meaning

indicated.

The first diagnostic in each group is a general code that may be used in place of the more specific codes

within the group.

These codes, set by transmitting DTEs in clear, reset, and restart packets that also have the cause code

set to x’80’ transferred on SNA-to-SNA connections, are normally delivered to the remote DTE in a

corresponding indication packet by DCEs. However, DCEs may override DTE requests. In this event,

DCEs place a network-generated nonzero cause code less than 128 in the cause field and insert the

network diagnostic code in the diagnostic code field of the resulting indication packet delivered to the

remote DTE.

 List of CCITT SNA Diagnostic Codes

Hex Dec Meaning

00 0 Normal initialization or termination.

0C 12 Incorrect LLC type.

10 16 Incorrect packet type (general).

11 17 Incorrect packet type for state r1.

12 18 Incorrect packet type for state r2.

13 19 Incorrect packet type for state r3.

14 20 Incorrect packet type for state p1.

15 21 Incorrect packet type for state p2.

16 22 Incorrect packet type for state p3.

17 23 Incorrect packet type for state p4.

18 24 Incorrect packet type for state p5.

19 25 Incorrect packet type for state p6.

1A 26 Incorrect packet type for state p7.

310 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

1B 27 Incorrect packet type for state d1.

1C 28 Incorrect packet type for state d2.

1D 29 Incorrect packet type for state d3.

20 32 DCE timer expired (general).

21 33 DCE timer expired: Incoming call.

22 34 DCE timer expired: Clear indication.

23 35 DCE timer expired: Reset indication.

24 36 DCE timer expired: Restart indication.

30 48 DTE timer expired: (general).

31 49 DTE timer expired: Call request.

32 50 DTE timer expired: Clear request.

33 51 DTE timer expired: Reset request.

34 52 DTE timer expired: Restart request.

40 64 Unassigned (general).

50 80 QLLC error: (general).

51 81 QLLC error: Undefined C-field.

52 82 QLLC error: Unexpected C-field.

53 83 QLLC error: Missing I-field.

54 84 QLLC error: Undefined I-field.

55 85 QLLC error: I-field too long.

56 86 QLLC error: Frame reject received.

57 87 QLLC error: Header incorrect.

58 88 QLLC error: Data received in wrong state.

59 89 QLLC error: Time-out condition.

5A 90 QLLC error: Number incorrect.

5B 91 QLLC error: Recovery rejected or ended.

5D 93 QLLC error: ELLC timeout condition.

60 96 PSH error (general).

61 97 PSH error: Sequence error.

62 98 PSH error: Header too short.

63 99 PSH error: PSH format incorrect.

64 100 PSH error: Command undefined.

65 101 PSH error: Protocol incorrect.

66 102 PSH error: Data received in wrong state.

69 105 PAD error: Timeout condition.

70 112 PAD error: (general).

71 113 PAD error: PAD access facility failure.

72 114 PAD error: SDLC FCS error.

73 115 PAD error: SDLC time-out.

74 116 PAD error: SDLC frame incorrect.

75 117 PAD error: I-field too long.

76 118 PAD error: SDLC sequence error.

Appendix E. CCITT Causes and Diagnostics 311

77 119 PAD error: SDLC frame aborted.

78 120 PAD error: SDLC FRMR received.

79 121 PAD error: SDLC response incorrect.

7B 123 PAD error: Incorrect packet type.

7F 127 PAD error: PAD inoperable.

80 128 DTE-specific (general).

81 129 DTE-specific: 8100_DPPX-specific.

82 130 DTE-specific: INN_QLLC-specific.

83 131 DTE-specific: INN_QLLC-specific.

84 132 DTE-specific: INN_QLLC-specific.

85 133 DTE-specific: INN_QLLC-specific.

86 134 DTE-specific: INN_QLLC-specific.

87 135 DTE-specific: INN_QLLC-specific.

88 136 DTE-specific: INN_QLLC-specific.

89 137 DTE-specific: INN_QLLC-specific.

8A 138 DTE-specific: INN_QLLC-specific.

8B 139 DTE-specific: INN_QLLC-specific.

8C 140 DTE-specific: INN_QLLC-specific.

8D 141 DTE-specific: INN_QLLC-specific.

8E 142 DTE-specific: INN_QLLC-specific.

8F 143 DTE-specific: INN_QLLC-specific.

90 144 Network-specific.

91 145 Network-specific: DDX-P RNR packet received.

A0 160 Packet not allowed (general).

A1 161 Packet not allowed: Incorrect M-bit packet sequence.

A2 162 Packet not allowed: Incorrect packet type received.

A3 163 Packet not allowed: Incorrect packet on PVC.

A4 164 Packet not allowed: Unassigned LC.

A5 165 Packet not allowed: Diagnostic packet received.

A6 166 Packet not allowed: Packet too short.

A7 167 Packet not allowed: Packet too long.

A8 168 Packet not allowed: Incorrect GFI.

A9 169 Packet not allowed: Not identifiable.

AA 170 Packet not allowed: Not supported.

AB 171 Packet not allowed: Incorrect Ps.

AC 172 Packet not allowed: Incorrect Pr.

AD 173 Packet not allowed: Incorrect D-bit received.

AE 174 Packet not allowed: Incorrect Q-bit received.

AE 174 Packet not allowed: Incorrect Q-bit received.

B0 176 DTE-specific: (NPSI gate/date) (general).

B1 177 DTE-specific: No LU-to-LU session.

C0 192 DTE-specific: (general).

312 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

C1 193 DTE-specific: Termination pending.

C2 194 DTE-specific: Channel inoperative.

C3 195 DTE-specific: Unauthorized interrupt confirmation.

C4 196 DTE-specific: Unauthorized interrupt request.

C5 197 DTE-specific: PU (PVC) not available.

C6 198 DTE-specific: Inactivity timeout.

C7 199 DTE-specific: Incompatible line configuration.

D0 208 Resources: (general).

D1 209 Resources: Buffers depleted.

D2 210 Resources: PIU too long.

E0 224 Local procedure error: (general).

E1 225 Local procedure error: Packet with LC=0 not received.

E2 226 Local procedure error: Restart or diagnostic packet on LCI =x’000’.

E3 227 Local procedure error: Incoming call received on wrong LC.

E4 228 Local procedure error: Facility not subscribed.

E5 229 Local procedure error: Packet not restart or diagnostic on LCI =

x’000’.

E6 230 Local procedure error: Facility parameters not supported.

E7 231 Local procedure error: Facility not supported.

E8 232 Local procedure error: Unexpected calling DTE.

E9 233 Local procedure error: Incorrect D-bit request.

EA 234 Local procedure error: Reset indication on virtual call.

EB 235 Local procedure error: Incorrect protocol identifier.

EC 236 Local procedure error: Connection identifier mismatch.

ED 237 Local procedure error: Missing cause or diagnostic code.

Logical Channel States

The following list describes the logical channel states for the CCITT-defined diagnostic codes.

 State Meaning

d1 Flow control ready

d2 DTE reset request

d3 DCE reset indication

p1 Channel ready

p2 DTE call request

p3 DCE incoming call

p4 Data transfer

p5 Call collision

p6 DTE clear request

p7 DCE clear indication

r1 Packet level ready

r2 DTE restart request

r3 DCE restart indication

Appendix E. CCITT Causes and Diagnostics 313

Diagnostic Codes Used by the xtalk Command

The following diagnostic codes are set up by the xtalk program when clearing connections:

 List of xtalk Diagnostic Codes

Hex Dec Meaning

F1 241 Normal disconnection.

F4 244 Connection request rejected. This may occur if the program is busy

(already connected to another program) or if the other program is

not listening.

314 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix F. Supported Facilities for X.25 Communications

The X.25 program supports both standard X.25 facilities and CCITT-defined facilities.

Several types of facilities may be requested in a call packet. Standard X.25 facilities are the most usual

but you may find also non-X.25 facilities specific to your network or CCITT-defined facilities to be used

with the OSI network services. Ask your network provider which facilities are available.

Facilities Format

Nonstandard facilities are preceded by a facility marker: 0x0000, 0x00FF or 0x000F. The following diagram

shows the format of these facility markers:

 X.25 facilities

0x0

0x0

non-X.25 facilities provided by the local network

0x0

0xFF

non-X.25 facilities provided by the remote network

0x0

0x0F

CCITT-specified DTE facilities

Facilities Format

If any section is not required, both it and the preceding facility marker can be left out.

Within each section, the facilities format is defined as a series of facility codes, followed by a number of

bytes of arguments. The number of bytes of arguments is defined by the first two bits of the facility code

as shown in the following table.

 0 Class

The class can have one of the following values:

 00 Class A. This has a single-byte parameter field.

01 Class B. This has two bytes as a parameter.

10 Class C. This has three bytes as a parameter.

11 Class D. The next byte defines the length of the parameter.

One special facility code, 0xFF, is reserved for extension of the facility codes. The octet following this code

indicates an extended facility code having the format A, B, C or D class. Repetition of the facility code

0xFF is permitted, resulting in additional extensions.

© Copyright IBM Corp. 2001, 2005 315

X.25 Facilities

The X.25 standard facilities include:

 Value Function Parameter Length

01 Reverse charging and fast select 1

02 Throughput class 1

03 Closed user group selection 1

04 Charging information request 1

08 Called line address modified notification 1

09 CUG with outgoing access 1

0A Quality of Service Negotiation - minimum

throughput class

1

0B Expedited Data Negotiation 1

41 Bilateral closed user group selection 2

42 Packet size selection 2

43 Window size selection 2

44 Recognized Private Operating Agency (RPOA)

selection (basic format)

2

49 Transit delay selection and indication 2

C1 Charging (call duration) variable

C2 Charging (segment count) variable

C3 Call redirection notification variable

C4 Recognized Private Operating Agency (RPOA)

selection (extended format)

variable

C5 Charging (monetary unit) variable

C6 Network User identification (NUI) variable

C9 Called Address Extension (OSI) variable

CA Quality of Service Negotiation - End to end

transit delay

variable

CB Calling Address Extension (OSI) variable

Packet Size Selection

The packet size selection facility has a parameter length of 2 bytes. The following table shows the call

packet coding.

 Packet Size Selection Call Packet

0 0x42

1 Reserved Transmit packet size

2 Reserved Receive packet size

where:

 0x42 Specifies packet size selection.

316 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Transmit packet size Indicates the requested size for packets transmitted from the calling DTE.

Valid values are:

0x04 16 octets

0x05 32 octets

0x06 64 octets

0x07 128 octets

0x08 256 octets

0x09 512 octets

0x0A 1024 octets

0x0B 2048 octets

0x0C 4096 octets

Receive packet size Requested size for packets transmitted from the called DTE. Valid values are

the same as those for the transmitted packet size.

Window Size Selection

The window size selection facility has a parameter length of 2 bytes. The following table shows the call

packet coding.

 Window Size Selection Call Packet

0 0x43

1 Reserved Transmission window size

2 Reserved Receive window size

where:

 0x43 Specifies window size selection.

Transmit window size Specifies requested size for the window for packets transmitted by the calling

DTE. This value represents the maximum number of packets that can be

received without an acknowledgment. Values are in the range from 0x01 to

0x07 inclusive.

Received window size Specifies requested size for the window for packets to be transmitted by the

called DTE. Values are in the range from 0x01 to 0x07 inclusive.

Throughput Class

The throughput class facility has a parameter length of 1 byte. The following table shows the call packet

coding.

 Throughput Class Call Packet

0 0x02

1 Outgoing Throughput class Incoming Throughput Class

where:

 0x02 Specifies the throughput class required facility.

Appendix F. Supported Facilities for X.25 Communications 317

Outgoing throughput Specifies throughput class requested for data to be sent by the calling DTE.

Valid values are:

0x07 1200 bits

0x08 2400 bits

0x09 4800 bits

0x0A 9600 bits

0x0B 19200 bits

0x0C 48000 bits

Incoming throughput Specifies throughput class request for data sent from the called DTE.

Supported values are the same as those for the outgoing throughput class.

Closed User Group (CUG) Selection

The closed user group (CUG) selection facility has a parameter length of 1 byte. The following table shows

the call packet coding for both the basic and extended formats.

 CUG Selection Call Packets

 Basic Format

0 0x03

1 First BCD digit of CUG Second BCD digit of CUG

 Extended Format

 Extended Format

0 0x47

1 First BCD digit of CUG Second BCD digit of CUG

2 Third BCD digit of CUG Fourth BCD digit of CUG

where:

 0x03 Specifies CUG selection required (basic format).

0x47 Specifies CUG selection required (extended format).

CUG Specifies the value of a CUG as follows:

1 to 99 Basic format

1 to 9999

Extended format

CUG with Outgoing Access

The CUG with outgoing access facility has a parameter length of 1 byte for the basic format and 2 bytes

for the extended format. The following table shows the call packet coding for both the basic and extended

formats.

 CUG with Outgoing Access Call Packets

318 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Basic Format

0 0x09

1 First BCD digit of CUG Second BCD digit of CUG

 Extended Format

 Extended Format

0 0x48

1 First BCD digit of CUG Second BCD digit of CUG

2 Third BCD digit of CUG Fourth BCD digit of CUG

where:

 0x09 Specifies CUG with outgoing access (basic format)

0x48 Specifies CUG with outgoing access (extended format)

CUG Specifies the value of a CUG as follows:

1 to 99 Basic format

1 to 9999

Extended format

Bilateral Closed User Group Selection

The bilateral CUG selection facility has a parameter length of 2 bytes. The following table shows the call

packet coding.

 Bilateral CUG Selection Call Packet

0 0x41

1 First BCD digit of CUG Second BCD digit of CUG

2 Third BCD digit of CUG Fourth BCD digit of CUG

where

 0x41 Specifies the bilateral CUG selection required facility.

CUG Indicates the value of a CUG. Valid values are 1 to 9999.

Reverse Charging and Fast Select

The reverse charging and fast select facility has a parameter length of 1 byte. The following table shows

the call packet coding.

 Reverse Charging and Fast Select Call Packet

0 0x01

1 A B

where:

 0x01 Specifies the fast select facility.

Appendix F. Supported Facilities for X.25 Communications 319

A Specifies whether a restricted response is required when fast select is also requested. Valid values are:

00 Indicates fast select not selected.

01 Indicates fast select selected.

10 Indicates fast select requested with no restriction on response.

11 Indicates fast select requested with restriction on response.

B Specifies reverse charge required. Valid values are:

0 No reverse charging requested.

1 Reverse charging requested.

Network User Identification (NUI)

The network user identification facility has a variable parameter length. The following table shows the call

packet coding.

 NUI Call Packet

0 0xC6

1 Length of NUI

2 NUI data

*

where:

 0xC6 Specifies the network user identification facility.

Length of NUI Indicates the number of bytes given in network user identification data

NUI data Indicates network user identification data in the format identified by the network

administrator.

Charging Information Request

The charging information request facility has a parameter length of 1 byte. The following table shows the

call packet coding.

 Charging Information Request Call Packet

0 0x04

1 A

where:

 0x04 Specifies the charging information request facility. Valid values are:

A Specifies the requesting service value. Valid values are:

0 Indicates charging information not requested.

1 Indicates charging information requested.

Charging (Monetary Unit)

The charging (monetary unit) facility has a variable parameter length. The following table shows the call

packet coding.

320 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Charging (Monetary Unit) Call Packet

0 0xC5

1 Length of charging information

2 Charging identification

*

where:

 0xC5 Specifies the charging information (monetary unit) facility.

Length of charging information Specifies the length of the charging information in bytes.

Charging identification Specifies monetary unit charging information.

Charging (Segment Count)

The charging (segment count) facility has a variable parameter length. The following table shows the call

packet coding.

 Charging (Segment Count) Call Packet

0 0xC2

1 Length of charging information

2 Charging Identification

*

where:

 0xC2 Specifies the charging information (segment count) facility.

Length of charging information Specifies the length of the charging information in bytes.

Charging identification Specifies segment count charging information.

Charging (Call Duration)

The charging (call duration) facility has a variable parameter length. The following table shows the call

packet coding.

 Charging (Call Duration) Call Packet

0 0xC1

1 Length of charging information

2 Charging identification

*

where:

 0xC1 Specifies the charging information (call duration) facility.

Length of charging information Specifies the length of the charging information in bytes.

Charging identification Specifies call duration charging information.

Appendix F. Supported Facilities for X.25 Communications 321

Recognized Private Operating Agency (RPOA) Selection

The RPOA selection facility has a parameter length of 1 byte for the basic format and a variable length

parameter for the extended format. The following table shows the call packet coding for both the basic and

extended formats.

 RPOA Selection Call Packets

 Basic Format

0 0x44

1 First BCD digit of RPOA Second BCD digit of RPOA

2 Third BCD digit of RPOA Fourth BCD digit of RPOA

 Extended Format

 Extended Format

0 0xC4

1 Length of RPOA information

2 First BCD digit of RPOA #1 Second BCD digit of RPOA #1

3 Third BCD digit of RPOA #1 Fourth BCD digit of RPOA #1

* First BCD digit of RPOA #n Second BCD digit of RPOA #n

* Third BCD digit of RPOA #n Fourth BCD digit of RPOA #n

where:

 0x44 Specifies the RPOA selection required facility (basic format).

0xC4 Specifies the RPOA selection required facility (extended format).

RPOA Specifies the requested RPOA transit network identification code. Valid values are

1 to 9999.

Length of RPOA information Specifies the length in bytes of the RPOA information in the facility.

Called Line Address Modified Notification

The called line address modified notification facility has a parameter length of 1 byte. The following table

shows the call packet coding when the DCE originates the redirection.

 DCE-Redirected Call Packet

0 0x08

1 0 A

where:

 0x08 Specifies the called line address modified notification facility.

A Specifies one of the following values:

0x7 Call distribution within a hunt group

0x1 Call redirection due to original DTE busy

0x9 Call redirection due to original DTE out of order

0x0F Call redirection due to prior request from originally called DTE for systematic redirection

322 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

The following table shows the call packet coding when the DTE originates the redirection.

 DTE-Redirected Call Packet

0 0x08

1 1 B

where:

 0x08 Specifies the called line address modified notification facility.

B Indicates a reason for the redirection. This value is passed from the remote DTE.

Call Redirection Notification

The call redirection notification facility has a variable parameter length. The following table shows the call

packet coding.

 Call Redirection Notification Call Packet

0 0xC3

1 Length redirection information

2 Call redirection reason

3 Length of called address

4 Called address (BCD)

*

where:

 0xC3 Specifies the call redirection notification facility.

Length of redirection

information

Specifies the length in bytes of the call redirection information in the facility.

Call redirection reason Specifies the reason for call redirection. Valid values are:

0x1 Call redirection due to original DTE busy

0x9 Call redirection due to original DTE out of order

0x0F Call redirection due to prior request from originally called DTE for systematic

redirection

Called address Specifies the original called DTE address coded in BCD.

Transit Delay Selection and Indication

The transit delay selection and indication facility has a parameter length of 2 bytes. The following table

shows the call packet coding.

 Transit Delay Selection and Indication Call Packet

0 0x49

1 Transit delay (in milliseconds, binary, high byte first)

2 Transit delay (in milliseconds, binary, high byte first)

Appendix F. Supported Facilities for X.25 Communications 323

where:

 0x49 Specifies the transit delay selection and notification facility.

Transit delay Specifies the transit delay in milliseconds, coded in binary, high byte first.

Calling Address Extension

The calling address extension has a variable parameter length. The following table shows the call packet

coding.

 Calling Address Extension

0 0xCB

1 Number of bytes following

2 Use Length of calling extension address

3 Calling extension address (BCD)

where:

 0xCB Specifies the calling address extension.

Use May have one of the following values:

00 To carry an entire calling OSI NSAP address

01 To carry a partial calling OSI NSAP address

10 To carry a non-OSI calling address

11 Reserved

Calling extension address Specifies up to 40 decimal digits coded in BCD containing the calling address

extension.

Called Address Extension

 0 0xC9

1 Number of bytes following

2 Use Length of called extension address

3 Called extension address (BCD)

 0xC9 Specifies the called address extension.

Use May have one of the following values:

00 To carry an entire calling OSI NSAP address

01 To carry a partial calling OSI NSAP address

10 To carry a non-OSI calling address

11 Reserved

Called address extension Specifies up to 40 decimal digits containing the called address extension coded in

BCD.

Quality of Service Negotiation - Minimum Throughput Class

 0 0xCA

2 Calling minimum throughput Called minimum throughput

324 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

0x0A Specifies the Quality of Service Negotiation - minimum throughput class.

Calling minimum throughput Specifies the throughput class requested for data to be sent by the calling DTE.

Supported values are:

0x07 1200 bit/s

0x08 2400 bit/s

0x09 4800 bit/s

0x0A 9600 bit/s

0x0B 19200 bit/s

0x0C 48000 bit/s

Called minimum throughput Specifies throughput class request for data sent from the called DTE. Supported

values are the same as for the calling minimum throughput class.

Quality of Service Negotiation - End-to-End Transmit Delay

 0 0xCA

1 Length of the following area

2 Cumulative transit delay in milliseconds (in binary, high byte first)

3 Cumulative transit delay in milliseconds (in binary, high byte first)

4 Requested end-to-end delay in milliseconds (in binary, high byte first)

5 Requested end-to-end delay in milliseconds (in binary, high byte first)

6 Maximum acceptable transit delay in milliseconds (in binary, high byte first)

7 Maximum acceptable transit delay in milliseconds (in binary, high byte first)

 0xCA Quality of Service Negotiation - End-to-end transit delay.

Length Specifies the number of values in the stream. This can be one of 1, 2 or 3, as the requested

end-to-end delay and maximum acceptable transit delay are optional.

End-to-end delay Specifies cumulative, requested end-to-end and maximum acceptable transit delays.

Expedited Data Negotiation

 0 0x0B

1 A

 0x0B Expedited Data Negotiation

A Can be one of:

0 Specifies no use of expedited data.

1 Specifies the use of expedited data.

CCITT-Specified Facilities to Support the OSI Network

The CCITT-specified facilities that support the OSI network include:

v Calling Address Extension.

v Called Address Extension.

v Minimum Throughput Class.

Appendix F. Supported Facilities for X.25 Communications 325

v End-to-End Transmit Delay Facility.

v Expedited Data Negotiation.

Calling Address Extension

The calling address extension facility has a variable parameter length. The following table shows the call

packet coding.

 0 0xCB

1 Number of bytes following

2 Use Length of calling extension address

3 Calling extension address (BCD)

*

where:

 0xCB Specifies the calling address extension facility.

Use Indicates the usage for the calling address extension. Valid values are:

00 Carry an entire calling OSI NSAP address.

01 Carry a partial calling OSI NSAP address.

10 Carry a non-OSI calling address.

11 Reserved.

Length of calling extension

address

Specifies the length of the calling extension address in bytes.

Calling extension address Specifies the calling address extension. The value can be up to 40 decimal digits,

coded in BCD.

Called Address Extension

The called address extension facility has a variable parameter length. The following table shows the call

packet coding.

 0 0xC9

1 Number of bytes following

2 Use Length of called extension address

3 Called extension address (BCD)

*

where:

 0xC9 Specifies the called address extension facility.

Use Indicates the usage for the called address extension. Valid values are:

00 Carry an entire called OSI NSAP address.

01 Carry a partial called OSI NSAP address.

10 Carry a non-OSI called address.

11 Reserved.

Length of calling extension

address

Specifies the length of the called extension address in bytes.

326 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Calling extension address Specifies the called address extension. The value can be up to 40 decimal digits,

coded in BCD.

Minimum Throughput Class

The minimum throughput facility has a parameter length of 1 byte. The following table shows the call

packet coding.

 0 0x0A

1 Calling minimum throughput Called minimum throughput

where:

 0x0A Specifies the minimum throughput class facility for quality of service negotiation.

Calling minimum throughput Specifies the throughput class requested for data to be sent by the calling DTE. Valid

values are:

0x07 1200 bits

0x08 2400 bits

0x09 4800 bits

0x0A 9600 bits

0x0B 19200 bits

0x0C 48000 bits

Called minimum throughput Specifies the throughput class request for data sent from the called DTE. Valid values

are the same as those for the calling minimum throughput class.

End-to-End Transmit Delay Facility

The end-to-end transmit delay facility has a variable parameter length. The following table shows the call

packet coding.

 0 0xCA

1 Length (of the following area)

2 Cumulative (transit delay in milliseconds, binary, high byte first)

3 Cumulative (transit delay in milliseconds, binary, high byte first)

4 Requested end-to-end (delay in milliseconds, binary, high byte first)

5 Requested end-to-end (delay in milliseconds, binary, high byte first)

6 Maximum acceptable (transit delay in milliseconds, binary, high byte first)

7 Maximum acceptable (transit delay in milliseconds, binary, high byte first)

where:

 0xCA Specifies the end-to-end transit delay facility for quality of service negotiation.

Length Specifies he number of values in the stream. Valid values are 1, 2, or 3, since

requested end-to-end delay and maximum acceptable transit delay are optional.

Cumulative Specifies the cumulative transit delay in milliseconds, coded in binary, high byte first.

Requested end-to-end Specifies requested end-to-end delay in milliseconds, coded in binary, high byte first.

Maximum acceptable Specifies the maximum acceptable transit delay in milliseconds, coded in binary, high

byte first.

Appendix F. Supported Facilities for X.25 Communications 327

Expedited Data Negotiation

The expedited data negotiation facility has a parameter length of 1 byte. The following table shows the call

packet coding.

 0 0x0B

1 A

where

 0x0B Specifies the expedited data negotiation facility.

A Specifies one of the following values:

0 No use of expedited data

1 Use of expedited data

328 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix G. Communications Server (SNA) Problem

Determination

The following information, techniques and procedures have been reviewed for technical accuracy and

applicability, but have not been tested in every possible environment or situation. Normal precautions

should be taken in adopting these same techniques and procedures, because as product and system

interfaces change, so would the use of this information.

When you experience a problem with Communications Server, certain information is necessary to

investigate your problem. This appendix informs you of what information is available, how to create that

information, and how to package that information to send to the support center.

The more information that is available when you report the problem, the more quickly the problem can be

resolved. It is very important that all information be collected at the same time. Synchronize the clocks of

all of the machines involved in the problem so that the time stamps of the events will be as close as

possible.

When you report a problem, be prepared to send certain information to the support center. Send the

information, in a single directory, to the support center by using one of the following methods:

v Copy the directory to a diskette in compressed tar format.

v Upload the directory, in binary format, to a mainframe and send it over the network.

The problem determination information uses the following terminology:

 /tmp/pmr Specifies the directory into which problem determination files are copied. This directory is the

directory that would be sent to the support center.

ProfName Specifies the SNA Services link station profile.

Information Required for Communications Server (SNA) Support for

X.25

Supplying specific details to your support personnel helps them determine the problem more quickly.

Basic Information

The /usr/bin/snagetpd command creates a compressed tar file of all the SNA files needed for debugging.

The compressed file is pd.tar.Z and is left in the current directory. Run /usr/bin/snagetpd as soon as

possible after you encounter a problem.

Note: You must log in as the root user to run the commands necessary to provide the appropriate

information to the support center.

Problem Definition

First, and most important, is a clear definition of the problem. Include this definition in a file called

README on the diskette. This file should also include a list of the files on the diskette and a brief

description of those files. Be sure to answer the following questions in the problem description:

v What happened?

v Is the problem reproducible? If so, list the steps to re-create it.

v What were the exact error messages generated? Include messages from all machines involved (such

as AS/400® or mainframes).

v Which release of the Communications Server for AIX program is active and committed?

© Copyright IBM Corp. 2001, 2005 329

v Which release of the operating system is active and committed?

v What fixes have been applied to the system?

v Has Communications Server for AIX ever worked? If so, what changes occurred before it stopped

working?

Definitions

Always provide your CS/AIX definitions when you have a problem. To copy definitions to the /tmp/pmr

directory, log in as the root user and type the following command:

cp -pr /etc/sna/* /tmp/pmr

SNA Error Log

The SNA error log is used to keep track of SNA errors. This log is located in the /var/sna directory and is

named sna.err. The sna.err log is always active. When it reaches a specified size (defaults to

10Megabytes), it is renamed to bak.err and a new sna.err log is created.

Run a test case to re-create the problem.

Copy the sna.err log that was current for the duration of the test to the /tmp/pmr directory:

cp -pr /var/sna/*err /tmp/pmr

System Error Log

Before updating a system error log, ensure that it is cleared, so that all entries relate to the current

problem. The errclear command deletes error log entries that are older than the number of days specified

by the Days parameter. To delete all error log entries, specify a 0 value for the Days parameter. Type the

following command:

errclear 0

Run a test case to reproduce the problem, then type the following command:

cp /var/adm/ras/errlog /tmp/pmr/errlog

SNA Link Station Trace

To turn on tracing for an X.25 link station, type the following command:

snaadmin add_dlc_trace

If you have multiple link stations or dlc types, tracing can be limited by using the optional resource_name

and resource_type fields. For example:

snaadmin add_dlc_trace, resource_type=LS, resource_name=MYX25LS

The add_dlc_trace command can be run before the link station is started to capture the link start-up

exchanges.

After the problem has been reproduced, turn off link station tracing using the following command:

snaadmin remove_dlc_trace

The raw trace data is stored in the /var/sna/sna1.trc and /var/sna/sna2.trc files. These files can be

formatted with the snatrcfmt command:

snatrcfmt -D -f /var/sna/sna.trc

The snatrcfmt command writes the formatted output to the snatrc.dmp file. Copy the resulting link station

trace file to /tmp/pmr:

cp -pr /var/sna/*trc /tmp/pmr

330 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

LU0 Information

You may need to supply LU0 information to the support center.

LU0 Line Trace

The lu0 command initiates the LU0 subsystem. The LU0 subsystem initiates and centralizes control of

both the LU0 primary and secondary support servers. The servers’ data paths are independent of each

other. However, pass-through support provides for the logical coupling of the two servers.

The lu0 command provides a common operator interface through the interactive commands. These

commands allow you to manipulate the LU0 subsystem while it is running, and help to minimize system

resource consumption. You can use the interactive commands to display status summaries, start a

secondary server, stop a server, terminate all servers, and exit the program. The lu0server process may

also be run in the background by entering the lu0 & command. While running the lu0server in the

background, the lu0sndmsg command is used to send commands to the lu0server. A line trace facility for

the lu0 subsystem may be initiated with the lu0 -T command or if the lu0server is started in the

background, with the lu0sndmsg -T command. The trace facility records the first 20 bytes of the SNA PIU

block for traffic in either direction.

Up to 15 characters of run data are saved in the file. Two files are created containing trace information for

the primary server and the secondary server, respectively: /var/lu0/LU0Prime and /var/lu0/LU0Sec.

To create LU0 line trace files, do the following:

sna - sna /*start sna

lu0 -T /*start the lu0server process

or

lu0 & /*either in the foreground or background

lu0sndmsg -T /*specifying the -T option for trace if *lu0 is background

Run a test case to reproduce the problem, then stop the lu0server process by entering X to the lu0 shell

(foreground) or kill -9 xxxxx (background), where xxxxx is the process ID. The process ID was returned

from the lu0 & command. You can also obtain the process ID by entering kill %1 if no other background

processing has been started from the shell.

Event Tracing

The support organization may ask you to generate an event trace. All of the traces generate arguments to

the trace command. The trace command uses hook IDs to determine what to trace. The support

organization needs both a formatted and an unformatted copy of the event trace.

View the /usr/include/sys/trchkid.h file to see a list of all hook IDs.

For example, to create and capture event information for the X.25 packet driver do the following:

1. Start system trace using the hook ID for the X.25 packet driver (25C):

trace -a -j 25c

2. Start SNA:

sna -s sna

3. Run a test case to reproduce the problem.

4. Stop the system trace:

trcstop

5. Format and save the trace report.

trcrpt > /tmp/pmr/trcfile.fmt

6. Copy the unformatted trace file to /tmp/pmr.

cp /var/adm/ras/trcfile/tmp/pmr

Appendix G. Communications Server (SNA) Problem Determination 331

Additional Problem Determination Information for X.25

In addition to the information required for basic problem determination, you may be asked to supply

additional information.

The support center may ask that additional CS/AIX traces be enabled and collected. For details, see the

″IBM Communications Server for AIX Diagnostics Guide Version 6″. In all cases, make sure that the

/usr/bin/snagetpd command is run as soon as possible after the problem is detected.

System Error Log

To ensure that all the data in the system error log is relevant, clear the error log first.

Clearing the System Error Log

The errclear command deletes error log entries that are older than the number of days specified by the

Days parameter. To delete all error log entries, specify a 0 value for the Days parameter.

To use the SMIT fast path, type:

smit errclear

Alternatively, you can type the following at the command line:

errclear 0

Showing the System Error Log

The errpt command generates an error report from entries in the system error log. The errpt command

includes flags for limiting the report to events matching specified criteria. A concurrent error report flag is

provided that formats and displays each error entry at the time the entry is logged.

The default report is a summary report consisting of a single line of data for each error entry. Error log

entries display the most recent entries first.

The system error report may be viewed by using either SMIT or the errpt command. To use the SMIT fast

path, type:

smit errpt

To use the errpt command, enter:

errpt -a | more

QLLC - Data Link Control

For suspected problems in the data link control (DLC) area, the following information may be helpful in

debugging trace information provided by the /dev/dlcqllc device:

 Starting a QLLC Trace Type the trace -a -j 227 command.

Stopping a QLLC Trace Type the trcstop command.

Showing a QLLC Trace Type the trcrpt -d 227 -t /etc/trcfmt.x25 /var/sna/snaservice.X command.

Note: The X.25 device driver and dlcqllc currently share the 227 tracehook. The /etc/trcfmt.x25

formatter file is necessary to interpret and format the trace information.

332 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix H. X.25 Virtual License Information

The AIXlink/X.25 Version 2.1 product requires the virtual circuit license information.

To enter the X.25 license level, use the SMIT tool with the following path:

Software License Management

Manage X.25 Server License Database

A screen appears entitled Change/Show Number of X.25 Virtual Circuits.

In this screen, select one of the following license levels depending on the X.25 virtual circuit license

purchased.

Basic (<17)

Extended (<65)

Advanced (<257)

Unrestricted

Once this information is entered, X.25 ports can be configured on the system.

© Copyright IBM Corp. 2001, 2005 333

334 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix I. Using AIXlink/X.25 over the IBM 2-Port

Multiprotocol Adapter

This chapter describes the use of the AIXlink/X.25 product over the IBM 2-Port Multiprotocol adapter.

Overview

The AIXlink/X.25 product supports the use of the IBM 2-Port Multiprotocol dpmp adapter for X.25

communications. As compared to previous releases of the AIXlink/X.25 product, there are minor

differences in configuration. However, it is important to note that these differences are primarily internal to

the product and do not change the product’s capabilities or usage.

The dpmp adapter is different from the adapters historically used by the AIXlink product, most notably

because it has no internal CPU with its own resident operating system (microcode). The dpmp adapter is

called a ″shallow″ adapter, whereas other adapters supported by the AIXlink product are called ″deep,″

since they have the capability to change their operation by loading and running a different microcode.

Also, the dpmp adapter driver has its own interface, different from the interface to the existing AIXlink/X.25

twd driver. The dpmp driver (called hdlc) presents a CDLI (non-STREAMS) interface and the twd driver

uses a STREAMS interface.

The net effect of these differences is the following:

1. AIXlink/X.25 ports are configured over instances of either the twd driver or the hdlc driver, depending

on which adapter type is available for use in the system.

2. The Frame layer of the X.25 product runs in the kernel when a port is configured over the hdlc driver.

Standard kernel trace utilities provide diagnostics.

3. Applications which use the AIXlink DLPI interface to ports that are configured over the hdlc driver no

longer require the twd driver as an intermediary. These user streams are linked directly to the frame

layer running in the kernel.

4. The AIXlink/X.25 ’sx25debug’ utility, which interfaces with microcode running on a deep adapter,

cannot be used on ports which are configured over the hdlc driver. The kernel trace is used for

diagnosing frame layer problems when using the IBM 2–Port Multiprotocol Adapter.

5. hdlc driver utilities are available for diagnosing problems below the frame layer for AIXlink ports on

dpmp adapters.

Note: Item 3 above requires existing applications which use the AIXlink DLPI interface to ″open″ the

DLPI devices differently. Note that this change is required only if the application needs to utilize

AIXlink ports configured over dpmp adapters.

The AIXlink/X.25 sample programs included with the product show how to perform the new ″open.″

The updated ″open″ method allows DLPI applications to communicate with all adapter types

supported by the AIXlink/X.25 product.

Configuration Object Model

The relationships between objects of the AIXlink/X.25 product is different for ports using the dpmp driver,

as shown in the following figure.

© Copyright IBM Corp. 2001, 2005 335

As shown in Figure 13, the overall structure of the different objects is similar, but different drivers and

adapters are used. The figure shows the four different API interfaces available through AIXlink/X.25 and

the different layers that form the stack from the API interface to the dpmp adapter. The layers within the

stack are: Applications, AIXlink interface, Port Instances, Device Driver Instances, and Adapter Instances.

The first column depicts information for DLPI applications. Reading from the top of the stack to the bottom,

the DLPI application corresponds to the Application layer, DLPI is the AIXlink Interface, sx25a8 is the Port

Instance, hldc1 is the Device Driver Instance, and dpmpa0 is the Adapter Instance.

The second column depicts information for COMIO applications. The COMIO stack has additional

interfaces on top of the Application layer. These interfaces are SNA and xtalk. This depicts the fact that

SNA and xtalk run over the COMIO layer of AIXlink/X.25. Reading the rest of the stack from top to bottom:

COMIO Applications correspond to the Application layer, x25s4 is the AIXlink Interface, sx25a4 is the Port

Instance, hdlc3 is the Device Driver Instance, and dpmpa1 is the Adapter Instance.

The third column depicts information for TCP/IP applications. The TCP/IP applications correspond to the

Application Layer, xs2 is the AIXlink Interface, sx25a17 is the Port Instance, hdlc0 is the Device Driver

Instance, and dpmpa0 is the Adapter Instance.

The fourth column depicts information for NPI Applications. The NPI applications correspond to the

Application Layer, NPI corresponds to the AIXlink Interface, hdlc2 is the Device Driver Instance, and

dpmpa1 is the Adapter Instance. Because NPI is not concerned with the Port Instance, this information is

blank.

The physical linking of STREAMS devices is also different for the AIXlink/X.25 ports using the dpmp driver

and is illustrated in the following chart:

Figure 13. STREAMS Configuration

336 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

The chart displays the differences between deep adapters and a shallow adapters. The chart is divided

horizontally between User Space (top), Kernel Space (middle), and Adapter Space (bottom) and shows the

stack of layers for each type of adapter. PSE is the Portable Streams Environment.

The stack of layers for the deep adapter from top to bottom are:

v Directly available to the User Space are the Stream head, the application interface layer (in this case

NPI), Packet Layer, the Frame layer, and the twd Device Driver.

v In Adapter Space is the adapter code consisting of Streams and the Physical Layer.

The stack of layers for the shallow adapter from top to bottom are:

v Directly available to the User Space are the Stream head, the application interface layer (in this case

TCP/IP), the Packet Layer, the Frame and ″glue″ layers, and the hdlc Device Driver which contains the

adapter code.

v The Adapter Space consists of hardware only, no software.

Note: The ″glue″ layer shown in the diagram above presents the physical layer interface to the frame

layer. It’s purpose is to translate the CDLI interface presented by the hdlc driver into a STREAMS

interface that the Frame layer requires.

The X.25 applications attached above the Stream head are shielded from these internal differences.

Figure 14. Linking STREAMS Devices

Appendix I. Using AIXlink/X.25 over the IBM 2-Port Multiprotocol Adapter 337

338 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Appendix J. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 2001, 2005 339

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AS/400

 CICS

 IBM

 IBM eServer pSeries

 IBM eServer zSeries

 Micro Channel

 Portmaster

 PS/2

 RS/6000

 System/390

 VTAM

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

340 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Index

Numerics
7-layer model 2

A
address

network user 5

unique 5, 6

addressing standard 5, 6

Advanced Program-to-Program Communications

(APPC) 101

agent
SNMP 133

API
X.25 137

architecture
Qualified Logical Link Control 100

B
backupx25 command 179

C
call-accepted packets

generating and sending 214

calls
accepting 214

clearing 216

discontinuing listening 223

handling 53

listening for incoming 229

making by setting up SVCs 213

optional facilities 9

receiving and indicating type 233

setup 8

time facilities 8

CCITT 5

channel
logical 4

CIO_DNLD operation
x25_ioctl 244

CIO_GET_STAT operation
x25_ioctl 245

CIO_HALT operation
x25_ioctl 247

CIO_QUERY operation
x25_ioctl 249

CIO_START operation
x25_ioctl 251

circuit ix

clear-request packets
generating and sending 216

COMIO emulation 14, 101

managing 40

command
configuration 44

command (continued)
xtalk 1, 10, 15

commands
SNA

configuration 102

communications device handlers 242

Communications Server (SNA)
creating definitions 107

creating the CS/AIX definitions
defining the node 107

defining the SNA X.25 DLC 108

defining the SNA X.25 Link Station 109

defining the SNA X.25 Port 108

customizing for X.25 105

defining LU profiles 110

display SNA node status 110

starting SNA Link Station 110

starting SNA node 110

getting host definitions 107

problem determination 329

program installation 106

QLLC installation 106

setup 105

support 329

Communications Server (SNA) for AIX
configuration commands 102

configuration definitions 101

introduction 101

profile parameters 103

profile types 103

configuration
commands 44

configuration structure 13

counters
allocating 219

removing 220

returning current values 221

waiting for values to change 222

D
daemon

SNMP agent (snmpd) 133

SNMP multiplexer (x25smuxd) 133

data circuit-terminating equipment 1, 4, 8, 10, 111

data link layer ix

Data Link Service 82

Data Link Service data unit ix

data network identification code 6

data packets
acknowledging receipt 211

sending 237

data-switching equipment 1

data-terminal equipment 1, 4, 6, 8, 10, 111

definition
SNA 101

device driver
managing 33, 44

© Copyright IBM Corp. 2001, 2005 341

dial-up configuration 38

dial-up parameters 38

DLPI 15, 81, 83, 84

overview 81

primitive 82

connection-mode service 83

local management service 83

primitives
DL_BIND_ACK 84

DL_BIND_REQ 85

DL_CONNECT_CON 86

DL_CONNECT_REQ 87

DL_DISCONNECT_IND 88

DL_DISCONNECT_REQ 89

DL_ERROR_ACK 91

DL_INFO_ACK 92

DL_OK_ACK 94

DL_RESET_CON 94

DL_RESET_IND 95

DL_RESET_REQ 96

DL_RESET_RES 97

DL_UNBIND_REQ 98

E
emulation

COMIO 14, 101

environment
STREAMS 16

equipment
terminology 1

error codes
list of 164

X.25
overview 139

system 165

example code
X.25 147

example programs
compiling 147

running 147

F
facility

call redirection notification 9

call time 8

charging requesting service 10

closed user group 9

coding and decoding 10

fast select 9

flow-control parameters 9

network user identification 9

requested by DTE 10

reverse charging 9

RPOA selection 9

frame level
types 3

H
hardware installation 31

hlpx25dev 241

I
identification code

data network 6

incoming logical channel 5

information frame 3

installation
hardware 31

X.25 protocol 30

interface
Data Link Provider 81

DLPI 15

Network Provider 47

NPI 15

statistical data
analyzing with SNMP 133

forming a MIB 133

STREAMS 52

interrupt packets
sending 226

IOCINFO operation
x25_ioctl 255

L
LAP-B 15

layers
OSI Reference Model 2

x.25
physical 3

X.25 2

frame 3, 133

link 3

packet 4

listen identifier (X.25) 142

logical channel 4

Logical Link Control (LLC) 101

M
Management Information Base ix

MIB 133

definition file
x25smuxd.defs 133

multiport adapter 13

N
N_BIND_ACK primitive 56

N_BIND_REQ primitive 53

N_CONN_CON primitive 67

N_CONN_IND primitive 63

N_CONN_REQ primitive 62

N_CONN_RES primitive 65

N_DATA_IND primitive 69

N_DATA_REQ primitive 68

342 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

N_DATACK_IND primitive 71

N_DATACK_REQ primitive 70

N_DISCON_IND primitive 78

N_DISCON_REQ primitive 76

N_ERROR_ACK primitive 59

N_EXDATA__IND primitive 72

N_EXDATA__REQ primitive 71

N_INFO_ACK primitive 60

N_INFO_REQ primitive 60

N_OK_ACK primitive 58

N_RESET_CON primitive 76

N_RESET_IND primitive 74

N_RESET_REQ primitive 73

N_RESET_RES primitive 75

N_UNBIND_REQ primitive 57

national terminal number 6

network
System Network Architecture (SNA) 99

network communications 1

Network Provider interface ix

network subscription 10

network user address 5

NPI 15, 47

overview 47

primitive
connection-mode 50, 51, 52

connection-mode service 49

local management service 49

N_BIND_ACK 56

N_BIND_REQ 53

N_CONN_CON 67

N_CONN_IND 63

N_CONN_REQ 62

N_CONN_RES 65

N_DATA_IND 69

N_DATA_REQ 68

N_DATACK_IND 71

N_DATACK_REQ 70

N_DISCON_IND 78

N_DISCON_REQ 76

N_ERROR_ACK 59

N_EXDATA_IND 72

N_EXDATA_REQ 71

N_INFO_ACK 60

N_INFO_REQ 60

N_OK_ACK 58

N_RESET_CON 76

N_RESET_IND 74

N_RESET_REQ 73

N_RESET_RES 75

N_UNBIND_REQ 57

primitives 47

programming with STREAMS 52

NUA 5

O
object

frame layer 133

packet layer 134

Open System Interconnect reference model
layers

data link (layer 2) 81

X.25 82

Open Systems Interconnect reference model 2

outgoing logical channel 5

P
packet

call setup 8

X.25 6

qualifier-bit (q-bit) 100

Packet Assembler Disassembler (PAD) 111

packet layer 134

Packet-Switched Data network 1

packets
X.25

problem diagnosis 176

PAD
AIXlink/X.25 1.1.3 (and later) 121

configuration file format 130

configuration files 121

parameters 117

printing (AIXlink/X.25 1.1.3 (and later) 127

profiles 120

setup 113

triple-x 14

using 113

PAD, basic functions of 111

permanent virtual circuit 140

permanent virtual circuits 231

port
adding 34

configuring 35

managing 33

moving 34

parameters 35

port parameter
frame 37

general 35

packet 35

PVC 37

power management
overview 167

warnings 168

primitive 83

connection-mode
DLPI 83

NPI 49

connection-mode service 50, 52

DLPI 83, 84

NPI 50, 51

DLPI 81, 82

DL_BIND_ACK 84

DL_BIND_REQ 85

DL_CONNECT_CON 86

DL_CONNECT_REQ 87

DL_DISCONNECT_IND 88

DL_DISCONNECT_REQ 89

DL_ERROR_ACK 91

Index 343

primitive (continued)
DLPI (continued)

DL_INFO_ACK 92

DL_OK_ACK 94

DL_RESET_CON 94

DL_RESET_IND 95

DL_RESET_REQ 96

DL_RESET_RES 97

DL_UNBIND_REQ 98

local management service
NPI 49

NPI 47

N_BIND_ACK 56

N_BIND_REQ 53

N_UNBIND_REQ 57

programming reference
DLPI 81

NPI 47

protocol
converter 111

DCE 1

DSE 1

DTE 1

facilities 9

high-level 1

high-level data-link control 3

LAP-B 3

levels 3

SNMP 133

STREAMS 82

System Network Architecture 1, 10

Transmission Control Protocol/Internet Protocol 1,

5, 10, 14, 15, 32, 40

usage 6

X.25 100

proxy agent
SNMP 133

x25smuxd 133

PSDN 1

PVC
allocating 140

freeing 140

PVCs
allocating 231

freeing 232

Q
qualified logical link control

SNA support 100

Qualified Logical Link Control 100

qualifier bit (Q-bit) 100

query_params parameter block 249

R
reference model

Open Systems Interconnect 2

removex25 command 189

reset-indication packets 236

restorex25 command 190

RFC
1381 ix, 133

1382 ix, 133

RJE workstation 101

S
service

Data Link Service 82

session
connected 115

stty settings 115

TERM type 115

set asynchronous balanced mode 4

SMIT
COMIO emulation 40

configuration 32

device driver 33

port 33

TCP/IP 40

Triple-X PAD 42

SNA 10

Communications Server for AIX 99

SNMP 133

multiplexer
x25smuxd 133

special files
/dev/x25sn 138

standards
x.28 111

x.29 111

x.3 111

status blocks
X.25 245

STREAMS
protocol 82

STREAMS environment 16, 52

NPI programming 52

stty attribute
changing 115

subroutine
getmsg 82

putmsg 82

supervisory frame 3

SVC
make a call using 147

receiving a call with 151

SVCs
setting up and making calls 213

switched virtual circuit 147

switched virtual circuits 213

sx25debug command 191

Synchronous Data Link Control (SDLC) 100

mapping between frames and X.25 packets 100

System Management Interface Tools (SMIT) 99, 106

System Network Architecture 1, 10, 102

System Network Architecture (SNA)
accessing 99

components 101

logical unit (LU) 101

physical unit (PU) 101

344 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

System Network Architecture (SNA) network 99

T
TCP/IP 5, 10, 14

adding interface 40

adding routes 40

IP/X.25 translate information
updating or displaying 194

managing 40

removing interface 41

TCP/IP commands
x25ip 194

terminal
asynchronous 111

Triple-X PAD 14

terminology
equipment 1

Transmission Control Protocol/Internet Protocol 1, 5,

10, 14, 15, 32, 40

Triple-X PAD 42

managing 42

two-way logical channel 5

U
unnumbered frame 4

V
V.25bis

configuring a port 37

V25bis addressed mode 38

V25bis direct mode 38

virtual circuit 5

permanent 5

switched 5

logical channels 5

virtual circuits
resynchronizing communications 235

returning configuration information 217

X
X.121 specification 5, 6

x.25
power management 167

X.25 147

accepting a call 144

application programming interface (API) 137

applications
using processes in 139

calls
interrupting 146

receiving fast-select data 145

rejecting 145

resetting 146

terminating 145

connection identifiers
assigning 140

X.25 (continued)
connection identifiers (continued)

obtaining 140

correlating messages 141

counters
applications and 141

correlating messages 141

obtaining 141

removing 142

restrictions 142

data
acknowledging 144, 145

asking for acknowledgement 144

long messages 145

receiving 145

transferring 144

error codes 139

of 164

system 165

example programs 146

flags 138

initializing 140

installation requirements 137

listen identifier 143

removing 143

restrictions 143

listen identifiers
obtaining 143

listening for calls 142

making a call 143

messages
incoming 142

overview 137

processing calls with 139

PVC example
receiving 159

sending 156

receiving a call 143

rejecting a call 144

special file 138

structures, overview 138

SVC 147

SVC example
receiving 151

terminating 140

X.25 adapters
returning configuration information 224

X.25 API 101

allocating a PVC 140

C subroutines 137

freeing a PVC 140

identifiers 138

terminating
each X.25 port 140

X.25 APIs
initializing 225

terminating 239

X.25 codes
clear 305

diagnostic
list of 306

Index 345

X.25 codes (continued)
diagnostic (continued)

logical channel states 305

reset 305

X.25 command
backup configuration information 179

check microcode 191

remove configuration information 189

restore configuration information 190

X.25 counter subroutines
x25_ctr_get 219

x25_ctr_remove 220

x25_ctr_test 221

x25_ctr_wait 222

X.25 device handler entry points
x25_close 241

x25_ioctl 242

x25_mpx 273

x25_open 275

x25_read 278

x25_select 280

x25_write 281

X.25 device handlers
allocating channels 273

closing channels 241

connecting to network 266

controlling 242

deallocating channels 273

determining link status 268

determining packet size 256

disabling data packet receipt 269

disconnecting from network 267

downloading diagnostics 265

downloading tasks to kernel 244

enabling data packet receipt 269

getting counters 257

halting sessions 247

I/O character information
obtaining 255

I/O register
reading from 261

opening channels 275

query_params parameter block 249

querying devices 249

querying for events 280

querying router IDs 270

querying sessions 271

querying status 245

reading counters 258

reading from memory 263

receiving data from adapter 278

registering routing names 256

rejecting incoming calls 272

removing counters 259

removing router names 261

resetting the adapter 264

rx_fn kernel procedure 276

sending data to adapter 281

starting sessions 251

stat_fn kernel procedure 277

X.25 device handlers (continued)
status blocks

CIO_NULL_BLK 246

CIO_START_DONE 246

CIO_TX_DONE 247

X25_REJECT_DONE 247

tx_fn kernel procedure 276

waiting for counter change 260

writing I/O registers 262

writing to memory 264

x25_stats structure 250

X.25 example programs
pvcrcv 159

pvcxmit 156

X.25 initialization and termination subroutines
x25_init 225

x25_term 239

X.25 installation
planning 30

X.25 ioctl operations
CIO_DNLD 244

CIO_GET_STAT 245

CIO_HALT 247

CIO_START 251

IOCINFO 255

X25_ADD_ROUTER_ID 256

X25_COUNTER_GET 257

X25_COUNTER_READ 258

X25_COUNTER_REMOVE 259

X25_COUNTER_WAIT 260

X25_DELETE_ROUTER_ID 261

X25_DIAG_IO_READ 261

X25_DIAG_IO_WRITE 262

X25_DIAG_MEM_READ 263

X25_DIAG_MEM_WRITE 264

X25_DIAG_RESET 264

X25_DIAG_TASK 265

X25_LINK_CONNECT 266

X25_LINK_DISCONNECT 267

X25_LINK_STATUS 268

X25_LOCAL_BUSY 269

X25_QUERY_ROUTER_ID 270

X25_QUERY_SESSION 271

X25_REJECT_CALL 272

X.25 levels 2

frame level 3

link level 3

OSI Reference Model 2

packet level 4

physical level 3

X.25 management subroutines
x25_circuit_query 217

x25_device_query 224

x25_link_query 228

X.25 network subroutines
x25_ack 211

x25_call 213

x25_call_accept 214

x25_call_clear 216

x25_deafen 223

x25_interrupt 226

346 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

X.25 network subroutines (continued)
x25_listen 229

x25_pvc_alloc 231

x25_pvc_free 232

x25_receive 233

x25_reset 235

x25_reset_confirm 236

x25_send 237

X.25 ports
returning current status 228

X.25 problem diagnosis
commands 176

incoming call
receiving an 175

network
connection with the 174

outgoing call
making an 175

packets 176

X.25 protocol 100, 101

configuration 32

X.25 subroutines
multiple processes 139

X.28 112

X.29 112

X.3 111

x25_ack subroutine 211

X25_ADD_ROUTER_ID operation 256

x25_call subroutine 213

x25_call_accept subroutine 214

x25_call_clear subroutine 216

x25_circuit_query subroutine 217

x25_close entry point 241

X25_COUNTER_GET operation 257

X25_COUNTER_READ operation 258

X25_COUNTER_REMOVE operation 259

X25_COUNTER_WAIT operation 260

x25_ctr_get subroutine 219

x25_ctr_remove subroutine 220

x25_ctr_test subroutine 221

x25_ctr_wait subroutine 222

x25_deafen subroutine 223

X25_DELETE_ROUTER_ID operation 261

x25_device_query subroutine 224

X25_DIAG_IO_READ operation 261

x25_init subroutine 225

x25_interrupt subroutine 226

x25_ioctl entry point 242

x25_ioctl operations
CIO_QUERY 249

x25_link_query subroutine 228

x25_listen subroutine 223, 229

x25_mpx entry point 273

x25_open entry point 275

x25_pvc_alloc subroutine 231

x25_pvc_free subroutine 232

x25_read entry point 278

x25_receive subroutine 233

x25_reset subroutine 235

x25_reset_confirm subroutine 236

x25_select entry point 280

x25_send subroutine 237

x25_stats structure 250

x25_term subroutine 239

x25_write entry point 281

x25ip command 194

x25sn special file 138

xspad
exiting 116

exiting for AIXlink/X.25 1.1.3 (and later) 116

xtalk 1

xtalk command 10, 15

Index 347

348 AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

Readers’ Comments — We’d Like to Hear from You

AIXlink/X.25 Version 2.1 for AIX: Guide and Reference

 Publication No. SC23-2520-07

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC23-2520-07

SC23-2520-07

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A.

SC23-2520-07

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. X.25 Network Communications Overview
	X.25 Equipment Terminology
	X.25 Levels
	Physical Level
	Link Level or Frame Level
	Packet Level

	X.25 Usage
	Call Setup
	Call-Time Facilities
	Coding and Decoding Facilities
	Facilities Requested by the DTE

	X.25 Network Subscription

	Chapter 2. X.25 Licensed Program Functionality
	Configuration Structure
	Triple-X PAD
	COMIO
	TCP/IP
	NPI
	DLPI
	XOT
	XOL

	STREAMS

	Chapter 3. X.25 Migration
	X.25 Functional Comparison
	Differences Between X.25 Licensed Programs Version 2.1 and Version 1.1

	Chapter 4. X.25 Installation and Configuration
	Minimum Requirements
	Software
	Hardware

	Planning Your X.25 Installation
	Installation Procedure
	Hardware Installation
	Configuring X.25 Communications with SMIT
	Initial SMIT Path
	Managing Device Drivers
	Managing Ports
	Configuring a Port for X.32
	Managing COMIO Emulation
	Managing TCP/IP Configuration
	Managing the Triple-X PAD
	Managing XOT
	Managing XOL

	Configuration Commands
	Managing Device Driver
	Managing X.25 Ports

	Chapter 5. Network Provider Interface Programming Reference
	NPI Enhancements for AIXlink/X.25 Version 2.1
	Support for 64 Bit Applications
	Structure Changes for 64-bit Mode
	Sample Program
	Local Management Primitives
	Connection-Mode Primitive Formats and Rules
	Connection Establishment Primitives
	Normal Data Transfer Primitives
	Receipt Confirmation Service Primitives
	Expedited Data Transfer Service
	Reset Service Primitives
	Network Connection Release Primitives

	NPI STREAMS Programming
	Handling Calls

	N_BIND_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_BIND_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	N_UNBIND_REQ Primitive
	Purpose
	Syntax
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_OK_ACK Primitive
	Purpose
	Syntax
	Description
	Parameters
	Implementation Specifics

	N_ERROR_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	Error Codes
	Implementation Specifics

	N_INFO_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Implementation Specifics

	N_INFO_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	N_CONN_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_CONN_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	N_CONN_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_CONN_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	N_DATA_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_DATA_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	N_DATACK_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_DATACK_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	N_EXDATA_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_EXDATA_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	N_RESET_REQ Primitive
	Purpose
	Syntax
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_RESET_IND Primitive
	Purpose
	Syntax
	Description
	Parameters
	Implementation Specifics

	N_RESET_RES Primitive
	Purpose
	Syntax
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_RESET_CON Primitive
	Purpose
	Syntax
	Description
	Parameters
	Implementation Specifics

	N_DISCON_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	Acknowledgments
	Error Codes
	Implementation Specifics

	N_DISCON_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	Chapter 6. Data Link Provider Interface Programming Reference
	Structure Changes for 64-bit Mode
	The Data Link Layer
	Model of the Service Interface
	DLPI Primitives
	Local Management Service Primitives
	Connection-Mode Service Primitives

	DL_BIND_ACK Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	Implementation Specifics

	DL_BIND_REQ Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Implementation Specifics

	DL_CONNECT_CON Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Implementation Specifics

	DL_CONNECT_REQ Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments

	DL_DISCONNECT_IND Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Implementation Specifics

	DL_DISCONNECT_REQ Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Implementation Specifics

	DL_ERROR_ACK Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Implementation Specifics

	DL_INFO_ACK Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Implementation Specifics

	DL_OK_ACK Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Implementation Specifics

	DL_RESET_CON Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Implementation Specifics

	DL_RESET_IND Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Implementation Specifics

	DL_RESET_REQ Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Implementation Specifics

	DL_RESET_RES Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Implementation Specifics

	DL_UNBIND_REQ Primitive for X.25
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Implementation Specifics

	Chapter 7. X.25 and SNA Networks
	Accessing an SNA Network with X.25
	QLLC with Reference to X.25 Support
	Introducing Communications Server Version 6
	SNA Configuration Definitions
	SNA Configuration Commands
	Communications Server for AIX Definition Types and Parameters

	Customizing Communications Server for AIX
	Customizing Communications Server to Use X.25
	Installation of the Communications Server (SNA) Program
	Installation of the Qualified Logical Link Control
	Getting Host Definitions
	Create the CS/AIX Definitions
	Defining the LU Profiles for 3270 Communication

	Chapter 8. Packet Assembler/Disassembler (PAD)
	X.3, X.28 and X.29 Standards
	PAD Setup
	Using the PAD
	Commands
	Establishing Calls
	Connected Sessions
	Ending Calls
	Exiting xspad
	Automatic Termination and Identification for AIXlink/X.25 1.1.3 (and later)
	Getting Help
	Clearing Codes
	PAD Parameters
	PAD Profiles

	PAD for AIXlink/X.25 Running on AIX Version 4 (and later)
	Default Initial Application
	Selectable Profile
	Configurable Profile
	Security Features
	PAD Printing

	Configuration File Format (AIXlink/X.25 Version 1 and later)
	x29d Usage Changes

	Chapter 9. X.25 Simple Network Management Protocol
	Installation Notes for SNMP Multiplexer X.25 Peer Daemon (x25smuxd)
	Frame Layer Objects
	Packet Layer Objects

	Chapter 10. Common Input/Output Emulation
	X.25 Application Programming Interface Overview
	X.25 Application Programming Interface (API)
	Using the X.25 Structures and Flags
	/dev/x25sn Special File
	X.25 Error Codes
	Using Processes in X.25 Applications

	Processing Calls with the X.25 API
	Initializing and Terminating
	Using the Connection Identifier for Calls
	Using Counters to Correlate Messages
	Listening for Incoming Calls
	Making and Receiving a Call
	Transferring and Acknowledging Data
	Clearing, Resetting, and Interrupting Calls

	X.25 Example Programs
	Preparing, Compiling, and Running the Example Programs
	Using the Example Code

	X.25 Example Program svcxmit: Make a Call Using an SVC
	Program Description
	Example Program svcxmit

	X.25 Example Program svcrcv: Receive a Call Using an SVC
	Program Description
	Example Program svcrcv

	X.25 Example Program pvcxmit: Send Data Using a PVC
	Program Description
	Example Program pvcxmit

	X.25 Example Program pvcrcv: Receive Data Using a PVC
	Program Description
	Example Program pvcrcv

	List of X.25 Programming References
	Subroutines
	API Structures
	API Error Codes
	Header Files
	Example Programs

	Chapter 11. X.25 Power Management
	Impact to External Connection - Network Provider
	Impact to Local Applications: DLPI, TCP/IP, NPI, COMIO, and PAD
	Power Management Limitation Warnings

	Chapter 12. X.25 Problem Determination
	Flashing 888 Problems
	Flashing 888-102
	Flashing 888-103

	Forcing a System Dump
	X.25 Problem Diagnosis
	Starting Traces
	Possible Causes

	Diagnosing Problems with Connecting to the X.25 Network
	Problem 1
	Problem 2
	Problem 3
	Problem 4

	Diagnosing Problems with Making an Outgoing X.25 Call
	Problem 5
	Problem 6
	Problem 7

	Diagnosing Problems with Receiving an Incoming X.25 Call
	Problem 8

	Diagnosing X.25 Packet Problems
	Problem 9
	Problem 10
	Problem 11
	Problem 12
	Problem 13

	Diagnosing X.25 Command Problems
	Problem 14
	Problem 15
	Problem 16
	Problem 17

	Diagnosing PAD Problems
	Problem 18
	Problem 19
	Problem 20

	Diagnosing XOT Problems
	Problem 21
	Problem 22

	Diagnosing XOL Problems
	Problem 23

	Appendix A. X.25 Commands
	backupx25 Command
	Purpose
	Syntax
	Description
	Flags
	Security
	Example
	Files
	Related Information

	chsx25 Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Related Information

	lspvc Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Related Information

	lsx25 Command
	Purpose
	Syntax
	Description
	Examples
	Related Information

	mkpvc Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Related Information

	mksx25 Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Related Information

	removex25 Command
	Purpose
	Syntax
	Description
	Flags
	Security
	Example
	Files
	Related Information

	restorex25 Command
	Purpose
	Syntax
	Description
	Flags
	Security
	Examples
	Files
	Related Information

	rmsx25 Command
	Purpose
	Syntax
	Description
	Flags
	Examples

	sx25debug Command
	Purpose
	Syntax
	Description
	Flags
	Security
	Examples
	Files

	x25ip Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Related Information

	x25mon Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Trace components

	x25sessions Command
	Purpose
	Syntax
	Description
	Exit Status
	Security
	Example
	Files
	Related Information

	X25status Command
	Syntax
	Description
	Exit Status
	Security
	Example
	Files
	Related Information

	xotstat Command
	Purpose
	Syntax
	Description
	Flags
	Examples

	xotdisplay Command
	Purpose
	Syntax
	Description
	Flags
	Examples

	xroute Command
	Purpose
	Syntax
	Description
	Flags
	Updating the X.25 Routing Table with the xroute Command

	xspad Command
	Purpose
	Syntax
	Description
	Flags
	Options
	Exit Status
	Security
	Examples
	Files
	Related Information

	xtalk Command
	Purpose
	Syntax
	Flags
	Description
	Starting the xtalk Command
	Creating Address List Entries
	Making a Call
	Problems

	Appendix B. COMIO Emulator
	x25_ack Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_call Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_call_accept Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_call_clear Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_circuit_query Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_ctr_get Subroutine
	Purpose
	Library
	C Syntax
	Description
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_ctr_remove Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_ctr_test Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_ctr_wait Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_deafen Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_device_query Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_init Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_interrupt Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_link_query Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_listen Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_pvc_alloc Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_pvc_free Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_receive Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_reset Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_reset_confirm Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_send Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	x25_term Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	Appendix C. Device Handler API
	Device Driver Emulation
	x25_close X.25 Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	x25_ioctl X.25 Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Implementation Specifics
	Related Information

	CIO_DNLD (Download Task) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	CIO_GET_STAT (Get Status) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Status Blocks for the X.25 Device Handler
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	CIO_HALT (Halt Session) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	CIO_QUERY (Query Device) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	CIO_START (Start Session) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	IOCINFO (Identify Device) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_ADD_ROUTER_ID (Add Router ID) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_COUNTER_GET (Get Counter) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_COUNTER_READ (Read Counter) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_COUNTER_REMOVE (Remove Counter) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_COUNTER_WAIT (Wait Counter) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_DELETE_ROUTER_ID (Delete Router ID) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_DIAG_IO_READ (Read Register) x25_ioctl X.25 Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_DIAG_IO_WRITE (Write to Register) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_DIAG_MEM_READ (Read Memory) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_DIAG_MEM_WRITE (Write Memory) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_DIAG_RESET (Reset Adapter) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_DIAG_TASK (Download Diagnostics) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_LINK_CONNECT (Connect Link) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_LINK_DISCONNECT (Disconnect Link) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_LINK_STATUS (Link Status) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_LOCAL_BUSY (Local Busy) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_QUERY_ROUTER_ID (Query Router) ID x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_QUERY_SESSION (Query Session) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	X25_REJECT_CALL (Reject Call) x25_ioctl Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	x25_mpx X.25 Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	x25_open X.25 Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	x25_read X.25 Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	x25_select X.25 Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	x25_write X.25 Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	Appendix D. X.25 Cables and Connectors
	X.25 Coprocessor 37-Pin Connector Pin Assignments
	Modem Attachment Pin Assignments
	X.21 Pin Assignments
	V.24/X.21bis Pin Assignments
	V.35/X.21bis Pin Assignments
	V.36 Pin Assignments

	X.25 Interconnection Cables
	X.21 Interface Cable
	X.21bis/V.24 Interface Cable
	X.21bis/V.35 Interface Cable

	6-Port X.21 Portmaster Adapter
	X.21 Interface Cable
	X.21bis/V.24 for 8-Port Portmaster and 8-Port ARTIC960 Adapters
	6-Port /V.35 Portmaster and 6-Port/V.36 ARTIC960 Adapters (V.35 Configuration)

	X.25 Adapter and Cable Diagnostics Wrap Plugs and Pinouts
	X.25 Co-Processor Adapter D-37 Wrap Plug
	X.25 Co-Processor Adapter D-15 Wrap Plug
	X.25 Co-Processor Adapter D-25 Wrap Plug
	X.25 Co-Processor Adapter M/34 Wrap Plug
	6-Port X.21 Portmaster and 8-Port X.21 ARTIC960 D-15 Wrap Plug
	8-Port V.24 Portmaster and 8-Port EIA-232E ARTIC960 D-25 Wrap Plug
	6-Port V.35 Portmaster M/34 Wrap Plug
	6-Port X.21 Portmaster D-25 Wrap Plug
	6-Port V.35 Portmaster Wrap Plug
	6-Port V.36 ARTIC960 DB-37 Wrap Plug
	IBM ARTIC960Hx 4-Port Selectable PCI Adapter V.35 M/34 Wrap Plug
	IBM ARTIC960Hx 4-Port Selectable PCI Adapter EIA-232 D-25 Wrap Plug
	IBM ARTIC960Hx 4-Port Selectable PCI Adapter X.21 D-15 Wrap Plug
	6-Port X.21 Portmaster D-78 Wrap Plug
	8-Port X.21 ARTIC960 D-100 Wrap Plug
	6-Port V.35 Portmaster and 6-Port V.36 ARTIC960 D-100 Wrap Plug
	8-Port X.21bis/V.24 Portmaster and 8-Port X.21bis/V.24 ARTIC960 D-100 Wrap Plug
	IBM ARTIC960Hx 4-Port Selectable PCI Adapter 120-Pin Wrap Plug

	Appendix E. CCITT Causes and Diagnostics
	X.25 Clear and Reset Codes
	Origins of the Clear or Reset

	CCITT Restart Causes
	X.25 Logical Channel States
	X.25 Diagnostic Codes
	CCITT Clear and Reset Causes for X.25
	Diagnostic Codes for X.25 and Communications Server (SNA)
	CCITT Diagnostic Codes
	X.25 Licensed Program Specific Diagnostic Codes
	ISO 8208 Diagnostic Codes
	SNA Diagnostic Codes

	Diagnostic Codes Used by the xtalk Command

	Appendix F. Supported Facilities for X.25 Communications
	Facilities Format
	X.25 Facilities
	Packet Size Selection
	Window Size Selection
	Throughput Class
	Closed User Group (CUG) Selection
	CUG with Outgoing Access
	Bilateral Closed User Group Selection
	Reverse Charging and Fast Select
	Network User Identification (NUI)
	Charging Information Request
	Charging (Monetary Unit)
	Charging (Segment Count)
	Charging (Call Duration)
	Recognized Private Operating Agency (RPOA) Selection
	Called Line Address Modified Notification
	Call Redirection Notification
	Transit Delay Selection and Indication
	Calling Address Extension
	Called Address Extension
	Quality of Service Negotiation - Minimum Throughput Class
	Quality of Service Negotiation - End-to-End Transmit Delay
	Expedited Data Negotiation

	CCITT-Specified Facilities to Support the OSI Network
	Calling Address Extension
	Called Address Extension
	Minimum Throughput Class
	End-to-End Transmit Delay Facility
	Expedited Data Negotiation

	Appendix G. Communications Server (SNA) Problem Determination
	Information Required for Communications Server (SNA) Support for X.25
	Basic Information
	Problem Definition
	Definitions
	SNA Error Log
	System Error Log
	SNA Link Station Trace
	LU0 Information
	Event Tracing

	Additional Problem Determination Information for X.25
	System Error Log
	QLLC - Data Link Control

	Appendix H. X.25 Virtual License Information
	Appendix I. Using AIXlink/X.25 over the IBM 2-Port Multiprotocol Adapter
	Overview

	Appendix J. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

