
Performance Toolbox Version 2 and 3

Guide and Reference

SC23-2625-09

���

Performance Toolbox Version 2 and 3

Guide and Reference

SC23-2625-09

���

Note

Before using this information and the product it supports, read the information in Appendix G, “Notices,” on page 409.

Tenth Edition (August 2004)

This edition applies to AIX 5.1 and to all subsequent releases of this product until otherwise indicated in new

editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

(c) Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from

The Regents of the University of California. We acknowledge the following institutions for their role in its

development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.
The Rand MH Message Handling System was developed by the Rand Corporation and the University of California.
Portions of the code and documentation described in this book were derived from code and documentation

developed under the auspices of the Regents of the University of California and have been acquired and modified

under the provisions that the following copyright notice and permission notice appear:
Copyright Regents of the University of California, 1986, 1987, 1988, 1989. All rights reserved.
Redistribution and use in source and binary forms are permitted provided that this notice is preserved and that due

credit is given to the University of California at Berkeley. The name of the University may not be used to endorse or

promote products derived from this software without specific prior written permission. This software is provided "as

is" without express or implied warranty.

(c) Copyright Apollo Computer, Inc., 1987. All rights reserved.

(c) Copyright TITN, Inc., 1984, 1989. All rights reserved.

© Copyright International Business Machines Corporation 1994, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . ix

Subreleases . ix

Content of This Book . ix

Highlighting . ix

Case-Sensitivity in AIX . x

ISO 9000 . x

Related Publications . x

Chapter 1. Performance Toolbox for AIX Overview 1

Why Performance Toolbox for the Operating System? 1

Product Components . 3

Chapter 2. Monitoring Statistics with xmperf . 7

Performance Monitoring . 7

Introducing xmperf . 7

Monitoring Hierarchy . 9

Statistics and Values . 10

Instruments . 12

Consoles . 20

Environments . 23

Monitoring Remote Systems with xmperf . 23

Chapter 3. The xmperf User Interface . 29

The xmperf User Interface Overview . 29

The xmperf Command Line . 29

The xmperf Main Window . 31

The Help Menu . 33

Console Windows . 33

Playback Console Windows . 43

Important xmperf Dialogs . 46

Tabulating Windows . 50

Chapter 4. Recording and Playback with xmperf . 53

Recording of Statistics . 53

Playback of Recordings . 55

Using the Playback Console . 56

Recording File Inconsistencies . 58

Annotations . 58

Chapter 5. The xmperf Command Menu Interface 61

Command Menus . 61

Defining Menus . 61

Executables . 62

Process Controls . 67

Chapter 6. 3D Monitor . 71

Overview of the 3dmon Program . 71

The 3dmon Command Line . 74

Customizing the 3dmon Program . 76

Recording from 3dmon . 80

Chapter 7. 3D Playback . 83

Overview of the 3dplay Program . 83

© Copyright IBM Corp. 1994, 2004 iii

The 3dplay User Interface . 84

Chapter 8. Monitoring Exceptions with exmon . 85

The exmon Main Window . 85

The exmon Monitoring Window . 85

The exmon Main Window Menu Bar . 86

Working with Exception Logs . 86

Working with Hosts . 87

Command Execution from exmon . 89

The exmon Resource File . 90

Chapter 9. Recording Files, Annotation Files, and Recording Support Programs 93

Recording Files . 93

Annotation Files . 95

The a2ptx Recording Generator . 95

The ptxmerge Merge Program . 96

The ptxsplit Split Program . 98

The ptxconv Conversion Program . 99

Listing Recorded Data with ptxtab . 100

The ptxls List Program . 102

The ptxrlog Recording Program . 103

Listing Recorded HotSet Data with ptxhottab . 105

Processing HotSet Recordings with ptx2stat . 105

Chapter 10. Analyzing Performance Recordings with azizo 107

Initial Processing of Recording Files . 107

The azizo Main Window . 108

Main Graphs . 109

The azizo Command Line . 110

The azizo User Interface . 110

Using the azizo Metrics Selection Window . 114

Working with azizo Main Graphs . 117

Common azizo Dialog Boxes . 125

Overview of Valid Drag-and-Drop Operations . 130

Chapter 11. Analyzing Performance Trend Recordings with the jazizo Tool 139

Recording Files . 139

Configuration Files . 140

Jazizo Tool Menus . 140

Legend Panel . 145

Chapter 12. Analyzing WLM with wlmperf . 147

The wlmperf Command . 147

Analysis Overview . 147

WLM Report Browser . 148

Report Properties Panel . 148

Report Displays . 149

Daemon Recording and Configuration . 150

Files . 150

Prerequisite . 151

Exit Status . 151

Related Information . 151

Chapter 13. Monitoring Remote Systems . 153

The System Performance Measurement Interface . 153

The xmservd Command Line . 155

iv Performance Toolbox Guide

The xmservd Interface . 157

The xmquery Network Protocol . 159

Limiting Access to Data Suppliers . 164

Starting Dynamic Data-Supplier Programs . 165

Adjusting Socket Buffer Pool . 166

Chapter 14. Recording Performance Data on Remote and Local Systems 167

Recording on Remote and Local Systems Overview 167

Recording Configuration File . 168

Selecting Metrics for the Recording Configuration File 173

The xmscheck Preparser . 174

Starting Recording Sessions from the xmtrend Command Line 175

Session Recovery by the xmtrend Agent . 176

Chapter 15. SNMP Multiplex Interface . 177

Network Management Principles . 177

Chapter 16. Data Reduction and Alarms with filtd 183

filtd Configuration File . 183

Data Reduction . 184

Defining Alarms . 187

Using Raw Values and Delta Values . 189

Chapter 17. Response Time Measurement . 191

Introduction . 191

IP Response Time Measurement . 192

Application Response Time Measurement (ARM) . 195

Chapter 18. System Performance Measurement Interface Programming Guide 201

SPMI Overview . 201

Understanding the SPMI Data Hierarchy . 202

Understanding SPMI Data Areas . 204

Using the System Performance Measurement Interface API 216

Example of an SPMI Data User Program . 230

Example of an SPMI Data Traversal Program . 234

Example of an SPMI Dynamic Data-Supplier Program 237

SPMI Interface Subroutines . 241

List of SPMI Error Codes . 242

Chapter 19. Remote Statistics Interface Programming Guide 245

Remote Statistics Interface API Overview . 245

Remote Statistics Interface List of Subroutines . 246

RSI Interface Concepts and Terms . 247

A Simple Data-Consumer Program . 251

Expanding the Data-Consumer Program . 254

Inviting Data Suppliers . 255

A Full-Screen, Character-based Monitor . 257

List of RSi Error Codes . 257

Chapter 20. Top Monitoring . 261

Top Monitoring Configuration . 261

Using the jtopas System-Monitoring Tool . 262

Appendix A. Installing the Performance Toolbox for AIX 267

Prerequisites . 267

Installation . 268

Contents v

Installing Performance Toolbox for AIX on Systems Other Than IBM RS/6000 Hosts 268

Appendix B. Performance Toolbox for AIX Files . 271

Files used by xmperf and Other Data Consumers . 271

Explaining the xmperf Configuration File . 272

The xmperf Resource File . 277

The azizo Resource File . 282

Simple Help File Format . 286

Appendix C. Performance Toolbox for AIX Commands 289

3dmon Command . 290

3dplay Command . 292

a2ptx Command . 292

azizo Command . 293

chmon Command . 293

filtd command . 294

ptxconv Command . 294

ptxmerge Command . 294

ptxrlog Command . 295

ptxsplit Command . 296

ptxtab Command . 297

xmpeek Command . 299

xmperf Command . 300

xmscheck Command . 302

xmservd Command . 303

Appendix D. ARM Subroutines and Replacement Library Implementation 305

ARM Subroutines . 305

ARM Replacement Library Implementation . 314

Appendix E. SPMI Subroutines . 327

SpmiAddSetHot Subroutine . 327

SpmiCreateHotSet . 330

SpmiCreateStatSet Subroutine . 331

SpmiDdsAddCx Subroutine . 332

SpmiDdsDelCx Subroutine . 333

SpmiDdsInit Subroutine . 335

SpmiDelSetHot Subroutine . 336

SpmiDelSetStat Subroutine . 338

SpmiExit Subroutine . 339

SpmiFirstCx Subroutine . 340

SpmiFirstHot Subroutine . 341

SpmiFirstStat Subroutine . 342

SpmiFirstVals Subroutine . 343

SpmiFreeHotSet Subroutine . 344

SpmiFreeStatSet Subroutine . 345

SpmiGetCx Subroutine . 347

SpmiGetHotSet Subroutine . 348

SpmiGetStat Subroutine . 349

SpmiGetStatSet Subroutine . 350

SpmiGetValue Subroutine . 352

SpmiInit Subroutine . 353

SpmiInstantiate Subroutine . 355

SpmiNextCx Subroutine . 356

SpmiNextHot Subroutine . 357

SpmiNextHotItem Subroutine . 359

vi Performance Toolbox Guide

SpmiNextStat Subroutine . 361

SpmiNextVals Subroutine . 362

Error Codes . 363

SpmiNextValue Subroutine . 363

SpmiPathAddSetStat Subroutine . 365

SpmiPathGetCx Subroutine . 367

SpmiStatGetPath Subroutine . 368

Appendix F. RSi Subroutines . 371

RSi Subroutines . 371

Appendix G. Notices . 409

Trademarks . 410

Glossary . 413

Index . 415

Contents vii

viii Performance Toolbox Guide

About This Book

The Performance Toolbox Guide and Reference provides experienced system administrators with complete

detailed information about performance monitoring in a network environment that uses the AIX® operating

system. Some of the topics included are load monitoring, analysis and control, and capacity planning. This

publication is also available on the CD that is shipped with the product.

This book describes Version 3 of the Performance Toolbox for AIX.

Subreleases

The Performance Toolbox for AIX consists of two components called the Manager and the Agent. The

Agent is also referred to as the Performance Aide and represents the component that is installed on every

network node in order to enable monitoring by the manager.

Performance Toolbox and the Performance Aide are supported on AIX 5.1 and above. The toolbox

versions include different packages:

 PTX® Version 3

Manager component Type of function Filesets to install

Performance Toolbox A manager capable of monitoring

systems in a distributed environment.

perfmgr.common

perfmgr.network
perfmgr.analysis

Performance Aide Provides remote agent function for

monitoring and recording.

perfagent.server

The Agent component is available separately from the Performance Toolbox for AIX product.

The Local Performance Analysis and Control Commands fileset (perfagent.tools) is now a prerequisite of

the Performance Aide for AIX fileset (perfagent.server). The Local Performance Analysis and Control

Commands ship with the Base Operating System and must be installed before proceeding with the

Performance Aide for AIX installation.

Content of This Book

This edition of this book contains no technical changes. The content is identical to the previous edition.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files, structures, directories, and

other items whose names are predefined by the system. Also identifies

graphical objects such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the

user.

Monospace Identifies examples of specific data values, examples of text similar to what you

might see displayed, examples of portions of program code similar to what you

might write as a programmer, messages from the system, or information you

should actually type.

© Copyright IBM Corp. 1994, 2004 ix

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following publication contains information about some performance monitoring and analysis tools:

v Performance management

v AIX 5L Version 5.3 Performance Tools Guide and Reference

x Performance Toolbox Guide

Chapter 1. Performance Toolbox for AIX Overview

This chapter provides an overview to the Performance Toolbox for AIX (PTX) and Performance Aide for

AIX (PAIDE) products.

Why Performance Toolbox for the Operating System?

Anyone faced with the task of keeping a computer system well-tuned and capable of performing as

expected recognizes the following areas as essential for success:

Load Monitoring

Resource load must be monitored so performance problems can be detected as they

occur or (preferably) predicted well before they do.

Analysis and Control

When a performance problem is encountered, the proper tools must be selected and

applied so that the nature of the problem can be understood and corrective action taken.

Capacity Planning

Long term capacity requirements must be analyzed so sufficient resources can be

acquired well before they are required.

This book describes the Performance Toolbox for AIX which is designed to help a system administrator do

exactly this. The Performance Toolbox for AIX is divided into two components:

v “The Agent” on page 3

v “The Manager” on page 4.

The two components constitute the server (Agent) and the client (Manager) sides of a set of performance

management tools, which allow performance monitoring and analysis in a networked environment.

Legacy programs of the Manager component are all X Window System based programs developed with

the OSF/Motif Toolkit. One program, xmperf, is at the same time a graphical monitor, a tool for analyzing

system load, and an umbrella for other tools, performance related or not. Another monitoring program is

3dmon, which allows the monitoring of a large number of statistics in a single window. The program

exmon is designed to work with the filtd daemon. It monitors alarms generated by filtd.

There are two new Java-based programs in Version 3. The first, jazizo, is a post-processing application for

analyzing trend recordings made by the xmtrend daemon. The second, jtopas, is a client for viewing top

resource usage on local and remote systems. This application can show same time and recorded data.

The main program in the Agent component contains the three daemons. The xmservd daemon acts as a

networked supplier of performance statistics and optionally as a supplier of performance statistics to

Simple Network Management Protocol (SNMP) managers. The xmtrend daemon creates long term and

optimized recordings for analysis by the jazizo trend and jtopas top resource clients. The filtd daemon

supports the filtering function on the existing statistics pool, allows users to create customized metrics, and

generates alarms for the exmon exception monitor.

Both components include application programming interfaces for application controlled access and supply

of performance statistics.

Monitoring Features

The client/server environment allows any program, whether part of Performance Toolbox for AIX or custom

developed applications, to monitor the local host as well as multiple remote hosts. This ability is fully

explored in the Manager component program xmperf whose “monitors” are graphical windows, referred to

as consoles, which can be customized on the fly or kept as pre-configured consoles that can be invoked

© Copyright IBM Corp. 1994, 2004 1

with a few mouse clicks. Consoles can be generic so the actual resource to monitor, whether a remote

host, a disk drive, or a LAN interface, is chosen when the console is opened. Consoles can be told to do a

recording of the data they monitor to disk files and such recordings can be played back with xmperf and

analyzed with the jazizo program.

One of the things that makes xmperf unique is that it is not hardcoded to monitor a fixed set of resources.

It is dynamic in the sense that a system administrator can customize it to focus on exactly the resources

that are critical for each host that must be monitored.

An implementation of the Application Response Management (ARM) specification allows applications to be

instrumented so that the activity and response times of applications can be monitored. In addition, the raw

response time from any host running the PTX agent to any IP capable host in the network can be

monitored.

Another feature is the Agent filter called filtd, which allows you to easily combine existing “raw” statistics

into new statistics that make more sense in your environment. This can be done by entering simple

expressions in a configuration file and requires no programming.

Analysis and Control

By providing an umbrella for tools that can be used to analyze performance data and control system

resources, the Manager program xmperf assists the system administrator in keeping track of available

tools and in applying them in appropriate ways. This is done through a customizable menu interface. Tools

can be added to menus, either with fixed sets of command line arguments to match specific situations or

such that the system administrator has an easy way to remember and enter command line arguments in a

dialog window. The menus of xmperf are preconfigured to include most of the performance tools shipped

as part of the tools option of the Agent component.

Properly customized, xmperf becomes an indispensable repository for tools to analyze and control an

operating system. In addition, the ability to record load scenarios and play them back in graphical windows

at any desired speed gives new and improved ways of analyzing a performance problem.

Outstanding features for analyzing a recording of performance data are provided by the jazizo program

and its support programs. Recordings can be produced from the monitoring programs xmperf and 3dmon

during monitoring, or can be created by the xmservd daemon. This makes constant recording possible so

that you can analyze performance problems after they have occurred. The 3dplay program is provided to

play back recordings created by 3dmon in the same style in which the data was originally displayed.

Finally, using the Agent component filter filtd, you can define conditions that, when met, could trigger any

action you deem appropriate, including alerting yourself and/or initiating corrective action without human

intervention. This facility is entirely configurable so that alarms and actions can be customized to your

installation.

Capacity Planning

If your system is capable of simulating a future load scenario, xmperf can be used to visualize the

resulting performance of your system. By simulating the load scenario on systems with more resources,

such as more memory or disks, the result of increasing the resources can be demonstrated.

Networked Operation

The xmservd data-supplier daemon can provide a stream of data to consumers of performance statistics.

Frequency and contents of each packet of performance data are determined by the consumer program.

Any consumer program can access performance data from the local host and one or more remote hosts;

any data-supplier daemon can supply data to multiple hosts.

2 Performance Toolbox Guide

In addition to its ability to monitor across a network, PTX also allows for monitoring the response time to

and from nodes in the network itself.

Application Programming Interfaces

Each component comes with its own application programming interface (API). In addition, an API is

available for instrumentation of application programs:

Agent API Called the System Performance Measurement Interface (SPMI) (Chapter 18, “System

Performance Measurement Interface Programming Guide,” on page 201) API. It allows an

application program to register custom performance statistics about its own performance

or that of some other system component. When registered, the custom statistics become

available to any consumer of statistics, local or remote. Programs that supply custom

statistics are called dynamic data-supplier programs.

 The Agent API also permits applications to access statistics on the local system without

using the network interface. Such applications are called local data-consumer programs.

Manager API Called the Remote Statistics Interface (RSi) (Chapter 19, “Remote Statistics Interface

Programming Guide,” on page 245) API. Allows an application program to access statistics

from remote nodes (or the local host) through a network interface.

Application Monitoring API

Called the Application Response Management (ARM), this API permits application program

to be instrumented in such a way that the application activity and response time can be

monitored from any of the PTX manager programs.

SNMP Interface

By entering a single keyword in a configuration file, the data-supplier daemon can be told to export all its

statistics to a local snmpd SNMP agent. Users of an SNMP manager such as NetView® see the exported

statistical data as an extension of the set of data already available from snmpd.

Note: The SNMP multiplex interface is only available on IBM System p Agents.

On Statistics, Metrics, and Values

Throughout this book, the terms statistic and metric are used to describe a probe in or instrumentation of a

component of the operating system or, in some cases, application programs. The probe is usually defined

and updated by the system, regardless of the presence of Performance Toolbox for AIX. In the current

version, a probe is always represented by a data field that is either incremented each time a certain event

occurs (a counter) or represents a quantity, such as the amount of free disk or memory.

In this book, the terms statistic and metric are synonymous. Usually metric is used in connection with the

jazizo program and related programs. The term statistic is the preferred term in describing the APIs and

other programs.

Finally, the term value is used to refer to a statistic (metric) when included in a monitoring “device” in the

programs xmperf and 3dmon.

Product Components

The Agent

The Agent component of the Performance Toolbox for AIX is identical to the Performance Aide for AIX

licensed product server option. It has the following main components:

xmservd The data-supplier daemon, which permits a system where this daemon runs to supply

performance statistics to data-consumer programs on the local or remote hosts. This

daemon also provides the interface to SNMP.

Chapter 1. Performance Toolbox for AIX Overview 3

Note: The interface to SNMP is available only on System p Agents.

xmtrend Long term recording daemon. Provides large metric set trend recordings for

post-processing by jazizo and jtopas.

xmscheck A program that lets you pre-check the xmservd recording configuration file. This program

is useful when you want to start and stop xmservd recording at predetermined times.

filtd A daemon that can be used to do data reduction of existing statistics and to define alarm

conditions and triggering of alarms.

xmpeek A program that allows you to display the status of xmservd on the local or a remote host

and to list all available statistics from the daemon.

iphosts A program to initiate monitoring of Internet Protocol performance by specifying which hosts

to monitor. Accepts a list of hosts from the command line or from a file.

armtoleg A program that can convert a pre-existing Application Response Management (ARM)

library into an ARM library that can be accessed concurrently with the ARM library shipped

with PTX. Only required and available on operating systems.

SpmiArmd A daemon that collects Application Response Management (ARM) data and interfaces to

the Spmi library code to allow monitoring of ARM metrics from any PTX manager program.

SpmiResp A daemon that polls for IP response times for selected hosts and interfaces to the Spmi

library code to allow monitoring of IP response time metrics from any PTX manager

program.

Application Response Management API and Libraries

A header file and two libraries support the PTX implementation of ARM. The

implementation allows for coexistence and simultaneous use of the PTX ARM library and

one previously installed ARM library.

System Performance Measurement Interface API and Library

Header files and a library to allow you to develop your own data-supplier and local

data-consumer programs.

Sample Programs

Sample dynamic data-supplier and data-consumer programs that illustrate the use of the

API.

PTX Agents for selected non-IBM platforms

Compressed tar files provide full agent support on multiple HP-UX and Solaris Versions on

various HP and Sun systems.

The Manager

The Manager component of the Performance Toolbox for AIX has the following main components:

xmperf The main user interface program providing graphical display of local and remote

performance information and a menu interface to commands of your choice.

3dmon A program that can monitor up to 576 statistics simultaneously and display the statistics in

a 3-dimensional graph.

3dplay A program to play 3dmon recordings back in a 3dmon-like view.

chmon Supplied as an executable as well as in source form, this program allows monitoring of

vital statistics from a character terminal.

exmon The program that allows monitoring of alarms generated by the filtd daemon running on

remote hosts.

azizo Legacy recording tool replaced by jazizo in PTX Version 3. A program that allows you to

4 Performance Toolbox Guide

analyze any recording of performance data. It lets you zoom-in on sections of the

recording and provides graphical as well as tabular views of the entire recording or

zoomed-in parts of it.

jazizo Program allows you to analyze long term xmtrend recordings of performance data.

Reports can be generated displaying system activity over hours, days, weeks or months.

Tabular views of the entire recording or subsets are provided. This application is available

only in PTX Version 3.

jtopas Provides tabular top resources views of a selected system. Near real-time and recorded

data may be viewed. Reports can be generated over various time periods. Utilizes data

from xmtrend recordings.

ptxtab A program that can format statset date from recording files for printed output.

ptxmerge This program allows you to merge up to 10 recording files into one. For example, you

could merge xmservd recordings from the client and server sides of an application into

one file to better correlate the performance impact of the application on the two sides.

ptxsplit In cases where recording files are too large to analyze as one file, this program allows you

to split the file into multiple smaller files for better overview and faster analysis.

ptxrlog A program to create recordings in ASCII or binary format.

ptxls A program to list the control information of a recording file, including a list of the statistics

defined in the file.

a2ptx The a2ptx program can generate recordings from ASCII files in a format as produced by

the ptxtab or ptxrlog programs or the Performance Toolbox for AIX SpmiLogger sample

program. The generated recording can then be played back by xmperf or analyzed with

jazizo.

ptxconv The format of recordings has changed between Versions of the Performance Toolbox for

AIX. As a convenience to users of multiple versions of the Performance Toolbox for AIX,

this program converts recording files between the formats of the different versions.

ptx2stat Converts hotset data collected in a recording file to a format that resembles the recording

format for statsets. Permits postprocessing of hotset data with the programs that allow

playback and manipulation of recordings.

ptxhottab A program that can format and print hotset information collected in recording files.

wlmperf Program for analyzing Workload Management (WLM) activity from xmtrend recordings.

Provides reports on class activity across hours, days or weeks in a variety of formats. This

application is available only in PTX Version 3.

Remote Statistics Interface API

Header file to allow you to develop your own data-consumer programs.

Sample Programs

Sample data-consumer programs that illustrate the use of the API.

Chapter 1. Performance Toolbox for AIX Overview 5

6 Performance Toolbox Guide

Chapter 2. Monitoring Statistics with xmperf

This chapter provides information about monitoring statistics with the xmperf program.

It is beneficial to have xmperf working while you read this chapter. To do this, follow the instructions in

Appendix A, “Installing the Performance Toolbox for AIX,” on page 267 to install the program and

supporting files. When you have successfully installed the files, follow these steps:

1. To start the X Window System, issue the command xinit.

2. From the aixterm window, issue the command xmperf& to start the program and make it run in the

background.

3. Use the pull-down menu marked Monitor to see the list of available monitoring devices. Click on a few

to see different ones.

4. Adjust the windows opened by xmperf so that they don’t hide each other or the aixterm window.

Performance Monitoring

Monitoring the performance of computer systems is one of the most important tasks of a system

administrator. Performance monitoring is important for many reasons, including:

v The need to identify and possibly improve performance-heavy applications.

v The need to identify scarce system resources and take steps to provide more of those resources.

v The need for load predictions as input to capacity planning for the future.

The xmperf performance monitor is a powerful and comprehensive graphical monitoring system. It is

designed to monitor the performance on the system where it itself is executing and at the same time allow

monitoring of remote systems via a network. Every host to be monitored by xmperf, including the system

where xmperf runs, must have the Agent component installed and properly configured.

Note: Remote systems can only be monitored if the Performance Toolbox Network feature is installed. If

the Performance Toolbox Local feature is installed then only the local host can be monitored.

Discussions about remote system monitoring pertain only to the Performance Toolbox Network

feature.

In addition to monitoring performance in semi-real time, xmperf also is designed to allow recording of

performance data and to play recorded performance data back in graphical windows.

Introducing xmperf

The xmperf program is the most comprehensive and largest program in the Manager component of PTX.

It is an X Window System-based program developed with the OSF/Motif Toolkit. The xmperf program

allows you to define monitoring environments to supervise the performance of the local system and remote

systems. Each monitoring environment consists of a number of consoles. Consoles show up as graphical

windows on the display. Consoles, in turn, contain one or more instruments and each instrument can show

one or more values that are monitored.

Each xmperf environment is kept in a separate configuration file. The configuration file defaults to the file

name xmperf.cf in your home directory but a different file can be specified when xmperf is started. See

Appendix B, “Performance Toolbox for AIX Files,” on page 271 for alternative locations of this file.

Consoles are named entities allowing you to activate one or more consoles by selecting from a menu.

New consoles can be defined and existing ones can be changed interactively. Consoles allow you to

define and group collections of monitoring instruments in whichever configuration is convenient.

Instruments are the actual monitoring devices enclosed within consoles as rectangular graphical

subwindows.

© Copyright IBM Corp. 1994, 2004 7

There are two kinds of instruments:

Recording Instruments The term recording describes the ability to show the statistics for a system

resource over a period of time. Recording does not mean that the

instruments record events to a disk file; all instrument types can do that.

Recording instruments have a time scale with the current time displayed

on the right. The values plotted are moved to the left when new readings

are received.

State Instruments State instruments show the latest statistics for a system resource,

optionally as a weighted average. They do not show the statistics over

time but collect this data in case you want to change the instrument to a

recording instrument.

All instruments are defined with a primary graph style. The following graph styles are currently available:

Recording graphs:

v Line graph

v Area graph

v Skyline graph

v Bar graph

State graphs:

v State bar

v State light

v Pie chart

v Speedometer

All instruments can monitor up to 24 different statistics at a time. Each statistic is represented by a value.

Values can be selected from menus of available statistics. Depending on your system and the availability

of tools, statistics could be local or remote.

To illustrate these concepts, think of a hypothetical example (illustrated in Figure 1 on page 9) of a console

defined to contain three instruments as follows:

State instrument, shaped as a pie chart, showing three values as a percentage of total memory in the local

system:

v Free memory

v Memory used for computational segments

v Memory used for non-computational segments.

Recording instrument, plotted as a state bar graph, showing four values:

v Percent of CPU time spent in kernel mode

v Percent of CPU time spent in user mode

v Percent of CPU time spent waiting for disk input/output

v Percent of CPU time spent in idle state.

Recording instrument, plotted as a line graph, showing:

v Number of page-ins per second

v Number of page-outs per second.

8 Performance Toolbox Guide

In addition to the monitoring features, xmperf also provides an enhanced interface to system commands.

Configure the interface by editing the xmperf configuration file. Commands can be grouped under either of

three main menu items:

v Analysis

v Controls

v Utilities

As another convenience, xmperf also can be used to display a list of active processes in the system. The

list can be sorted after a number of criteria. Associated with the process list is yet another

user-configurable command menu. Commands defined here take a list of process IDs as argument.

Monitoring Hierarchy

Whenever you start xmperf, you must supply a configuration file to define the environment in which you

want to do the monitoring. The file can be an empty (zero-length) file, in which case you must define the

environment from scratch. If no file is specified, xmperf defaults to the file xmperf.cf in your home

directory. If the file does not exist in your home directory, it is searched for as described in Appendix B,

“Performance Toolbox for AIX Files,” on page 271. Usually, the configuration file defines one or more

consoles, each typically used to monitor a related set of performance data. For example, one console

Figure 1. Sample xmperf Console. This console shows a mixture of chart styles, including a pie chart (upper left), a

bar chart (upper right), and a scrolling histograph (bottom). The histograph’s horizontal access represents time while

the vertical axis is set to a user-specified range from 0 to 100.

Chapter 2. Monitoring Statistics with xmperf 9

might be called Network and provide one graph for each network interface in the system. Another might be

called Disks and contain graphs to show the activity of each physical disk and the types of input/output

requests.

The configuration file, thus, defines the environment and contains one or more definitions of consoles.

Together they constitute the top two levels in the hierarchy. The third level is the subdivision of consoles

into instruments. Using the previous Network example, this console might have an instrument defined for

each of your system’s network interfaces. Thus, whenever you want to check the network load, call a

monitoring console by its name, in this case Network, and monitoring starts immediately.

Returning to the example of network monitoring, obviously, there’s more than one thing to keep an eye on

for each of the network interfaces in a system. You might want to monitor the number of retransmissions

and probably want to know how much network load comes from input and how much from output. Those

are just a couple of the many types of data that might interest you. In xmperf terms, each data type is

referred to as a value and represents a flow of data from one particular type of statistics collected by the

system. If each of these data values had to be monitored in separate instruments, it would be difficult to

correlate them and you’d end up with an unmanageable number of instruments for even simple monitoring

tasks. Therefore, an instrument can be made to monitor more than one value so that each instrument

monitors a set of data values. Values comprise the fourth level in the monitoring hierarchy.

Statistics and Values

A given system, at any point in time, has a number of system resources that do not change between

boots. Such resources include, but are not limited to, the following:

v Processing units

v Real memory

v Non-removable disk drives

v Network interfaces.

Your system collects a large amount of performance-related statistics about such resources. This data can

be accessed from application programs through the APIs provided by PTX. One such application program

is xmperf. It provides a user interface that allows you to select the data to monitor from lists of the data

available. By selecting multiple data values, you can build instruments where multiple statistics can be

plotted on a common time scale for easy correlation.

Data Value Properties

When you select a value to monitor, you get a set of default properties for that data value. Each property

can be changed to reflect special needs. The properties associated with a data value and their defaults

are as follows:

Style A secondary graph style, which is ignored for state graphs. By specifying a secondary

graph style different from the primary style of an instrument, interesting effects can be

created. For example, if the instrument’s primary style is a bar graph, then you can choose

a line graph style for one or more values to plot related values so they overlay the bar

graph.

 Default = Same as primary style for instrument.

Color The color used to represent the value when plotted. If the value is displayed as a state

light, the color is used to paint the lights when a data value is lower than a descending

threshold or higher than an ascending threshold.

 Default = As specified in resource file (see “The xmperf Resource File” on page 277) or

generated from colors in the color map and contrasting from neighbor colors (for colors not

defined in resource file).

Tile A pattern (pixmap) used to tile the value as it is drawn in an instrument. Tiles are ignored

10 Performance Toolbox Guide

for line drawing, for text, and for the state light type instruments. When tiling is used, it is

always done by mixing the color of the value and the background color of the instrument

in one out of eleven available patterns, numbered from 1 to 11.

 Default = foreground (tile 1 = 100% foreground color).

Scale, low The lowest value plotted. This property only has a meaning for recording graphs and for

the state bar graph.

 When a low scale value is given for a recording graph or a state bar graph, then the scale

of the graph goes from the low scale value to the high scale value. For example, if the low

scale is 50 and high scale is 100, then the lowest value you will ever see plotted in the

instrument is 51. A value of 75 would extend half-way into the plotting area.

 Default = From system tables, usually zero.

Scale, high The value that determines the scale of the graphs. If values are encountered that exceed

the high scale limit, the graphs are cut off to fit the plotting area. This property has no

meaning for the state light graph type.

 Default = From system tables.

Threshold This property is used only for the state light graph type. It defines the value at which the

“light is turned on.” Whether the light is on, when the value is above or below the

threshold is determined by the threshold type.

 Default = zero.

Threshold Type

This property is used only for the state light graph type. It must be descending or

ascending. If descending, the light is turned on when the last value received is equal to or

below the threshold. If ascending, the light is turned on when the last value received is

equal to or above the threshold.

 Default = Ascending.

Label This property can be used to specify a user-defined text that is used to label the value in

the instrument.

 Default = Null (path name of value is used, see “Path Names”).

Path Names

Many system resources exist in multiple copies. For example, a system can have three disks, and two of

those can be used for paging space. A system can also have multiple network interfaces, and several

other resources can be duplicated. Generally, one set of statistics is collected for each resource copy.

Because of this duplication of statistics, the selection of values to plot in an instrument is done through a

multi-level selection process. Because this process is available, it is also used to group statistics even

when they are not duplicated. The unique name used to identify a value is composed of one-level names

separated by slashes, much like a fully qualified UNIX® file name. The fully qualified name of a value is

called the path name of the value. To identify the percentage of time a particular disk on the host system

with the hostname birte is busy, the path name might be:

hosts/birte/Disk/hdisk02/busy

For space reasons, it is seldom possible to display all of the path name in instruments. For example, given

that the number of characters used to display value names is 12, only the last 12 characters of the above

name would be displayed, yielding:

hdisk02/busy

The default length of a value name is 12, but you can specify up to 32 characters using the command line

argument -w. In addition, the -a command line argument allows you to request adjustment of the text

Chapter 2. Monitoring Statistics with xmperf 11

length to what is necessary to display the value names. When -a is used, the text length can be less than

what is specified by -w (or the default, whichever applies) but never longer. The X Window System

resources LegendAdjust and LegendWidth (see “Execution Control Resources” on page 280) can be

used in place of the command line arguments. See “The xmperf Command Line” on page 29 for a

description of command line options and “The xmperf Resource File” on page 277 for a description of

supported resources.

In many cases, an instrument or a console is used to display statistics that have some of the value path

name in common. When this happens, xmperf automatically removes the common part of the name from

the displayed name and shows it in an appropriate place, dependent on the type of instruments used. This

is explained in “Value Name Display” on page 17 and “The Console Title Bar” on page 22.

User-defined Labels

Regardless of your efforts to carefully name each level in the hierarchy of statistics, your results might

include some that are not informative. In such cases, you might want to specify your own name for a

value. Do this from the dialog box used to add or change a value as described in “Changing the Properties

of a Value” on page 48.

Instruments

An instrument occupies a rectangular area within the window that represents a console. Each instrument

may plot up to 24 values simultaneously. The instrument defines a set of statistics and is fed by network

packets that contain a reading of all the values in the set, taken at the same time. All values in an

instrument must be supplied from the same host system.

The instrument shows the incoming observations of the values as they are received depending on the type

of statistic selected. Statistics can be of types:

SiCounter Value is incremented continuously. Instruments show the delta (change) in the value

between observations, divided by the elapsed time, representing a rate per second.

SiQuantity Value represents a level, such as memory used or available disk space. The actual

observation value is shown by instruments.

Instruments defined in xmperf correspond to statsets in the xmservd daemons of the systems the

instruments are monitoring. The section on “Statsets” on page 153 gives information about statsets and

their relationship to instruments.

Configuring Instruments

Instruments can be configured through a menu-based interface as described in “The Modify Instrument

Submenu” on page 36. In addition to selecting from 1 to 24 values to be monitored by the instrument, the

following properties are established for the instrument as a whole:

Style The primary graph style of the instrument. If the graph is a recording graph, not all values plotted

by the graph need to use this graph style. In the case of state graphs, all values are forced to use

the primary style of the instrument.

 Default = Line graph.

Foreground

The foreground color of the instrument. Most noticeably used to display time stamps and lines to

define the graph limits.

 Default = White.

Background

The background color of the instrument.

 Default = Black.

12 Performance Toolbox Guide

Tile A pattern (pixmap) used to tile the background of the instrument. Tiles are ignored for state light

type instruments. When tiling is used, it is always done by mixing the foreground color and the

background color of the instrument in one out of eleven available patterns.

 Default = Tile 2 (100% background color, that is, no tiling).

Interval

The time interval between observations. Minimum is 0.2 second, maximum is 30 minutes. Even

though the sampling interval can be requested as any value in the above range, it may be

changed by the xmservd daemon on the remote system that supplies the statistics. For example,

if you request a sampling interval of 0.2 second but the remote host’s daemon is configured to

send data no faster than every 500 milliseconds, then the remote host determines the speed. As

explained in “Rounding of Sampling Interval” on page 156, xmservd rounds sampling intervals so

that the previous example would result in an effective sampling interval of 500 milliseconds.

 Default = 5 seconds.

History

The number of observations to be maintained by the instrument. For example, if the interval

between observations is 5 seconds and you have specified that the history is 1,000 readings, then

the time period covered by the graph is 1,000 x 5 seconds or approximately 83 minutes.

 The history property is defined for recording graphs only. If the current size of the instrument is too

small to show the entire time period defined by this property, scroll the instrument to view older

values. State graphs that show only the latest reading, so their history property is undefined.

Because you can change the primary style of an instrument at any time, the actual readings of

data values are kept according to the history property. Thus, data is not lost if you change the

primary style from a state graph to a recording graph.

 The minimum number of observations is 50 and the maximum number you can specify is 5,000.

 Default = 500 readings.

Stacking

The concept of stacking allows you to have data values plotted on top of each other. Stacking

works only for values that use the primary style. To illustrate, think of a bar graph where the

kernel-CPU and user-CPU time are plotted as stacked. If at one point in time the kernel-CPU is

15% and the user-CPU is 40%, then the corresponding bar goes from 0-15% in the color of

kernel-CPU, and from 16-55% in the color used to draw user-CPU.

 If you want to overlay this graph with the number of page-in requests, you could do so by letting

this value use the skyline graph style. It is important to know that values are plotted in the

sequence they are defined. Thus, if you wanted to switch the CPU measurements given

previously, define user-CPU before you define kernel-CPU. Lastly, define values to overlay graphs

in a different style to avoid obscuring these values by the primary style graphs.

 Default = No stacking.

Shifting

This property is meaningful for recording graphs only. It determines the number of pixels the graph

should move as each reading of values is received. The size of this property has a dramatic

influence on the amount of memory used to display the graph because the size of the pixmap

(image) of the graph is proportional with the product:

history x shifting x graph height

If the shifting is set to one pixel, a line graph looks the same as a skyline graph, and an area

graph looks the same as a bar graph. Maximum shifting is 20 pixels, minimum is (spacing + 1)

pixel.

 Default = 4 pixels.

Chapter 2. Monitoring Statistics with xmperf 13

Spacing

A property used only for bar graphs and state bar graphs. It defines the number of pixels

separating the bar of one reading from the bar of the next. For a bar graph, the width of a bar is

always (shifting — spacing) pixels. The property must always be from zero to one less than the

number of pixels to shift.

 Default = 2 pixels.

In addition to the previously mentioned properties that can be modified through a menu interface, four

properties determine the relative position of an instrument within a console. They describe, as a

percentage of the console’s width and height, where the top, bottom, left and right sides of the instrument

are located. In this way, the size of an instrument is defined as a percentage of the size of the monitor

window.

The relative position of the instrument can be modified by moving and resizing it as described in “Moving

Instruments in a Console” on page 22 and “Resizing Instruments in a Console” on page 21.

Use of Colors for State Lights

For the state light graph type, foreground and background colors are used in a special way. To understand

this, consider that state lights are shown as text labels “stuck” onto a background window area like you

would stick paper notes to a bulletin board. The background window area is painted with the foreground

color of the instrument rather than with the background color. The color of the background window area

never changes.

Each state light may be in one of two states: lit (on) or dark (off). When the light is off, the value is shown

with the label background in the instrument’s background color and the text in the instrument’s foreground

color. If the instrument’s foreground and background colors are the same, you see only an instrument

painted with this color; no text or label outline is visible. If the two instrument colors are different, the labels

are seen against the instrument background and label texts are visible.

When the light is on, the instrument’s background color is used to paint the text while the value color is

used to paint the label background. This special use of colors for state lights allows for the definition of

alarms that are invisible when not triggered or alarms that are always visible.

Skeleton Instruments

Some statistics change over time. The most prominent example of statistics that change is the set of

processes running on a system. Because process numbers are assigned by the operating system as new

processes are started, you can never know what process number an execution of a program will be

assigned. This makes it difficult to define consoles and instruments in the configuration file.

To help you cope with this situation, a special form of consoles can be used to define skeleton

instruments. Skeleton instruments are defined as having a “wildcard” in place of one of the hierarchical

levels in the path that defines a value. For example, you could specify that a skeleton instrument has the

following two values defined as follows:

Proc/*/kern

Proc/*/user

The wildcard is represented by the asterisk. It appears in the place where a fully qualified path name

would have a process ID. Whenever you try to start a console with such a wildcard, you are presented

with a list of processes. From this list, you can select one or more instances. To select more than one

instance, move the mouse pointer to the first instance you want, then press the left mouse button and

move the mouse while holding the button down. When all instances you want are selected, release the

mouse button. If you want to select instances that are not adjacent in the list, press and hold the Ctrl key

on the keyboard while you make your selection. When all instances are selected, release the Ctrl key.

14 Performance Toolbox Guide

Skeleton consoles cannot be defined through the menu interface. They must be defined by entering the

skeleton console definitions in the xmperf configuration file. This is described in “Defining Skeleton

Consoles” on page 276.

Each process selected is used to generate a fully qualified path name. If the wildcard represents a context

other than the process context, such as disks, remote hosts, or LAN interfaces, the selection list will

represent the instances of that other context. In either case, the selection you make is used to generate a

list of fully qualified path names. Each path name is then used to define a value to be plotted or to define

a new instrument in the console. Whether you get one or the other, depends on the type of skeleton you

defined. There are two types of skeleton consoles:

v “Skeleton of Type "All"” on page 16

v “Skeleton of Type "Each"” on page 16

Figure 2. Instantiated Skeleton Console. This console shows five instruments (appearing as separate windows within

the larger window). Three processes (kerncpu, usercpu, and the nsignals) were selected to instantiate the skeleton

console; these are shown on the left side using line graphs. On the right side, are two instruments showing three

processes (xmperf, wmservd, and X) that instantiate the skeleton console. Horizontal bar graphs are used to display

the three processes on the right.

Chapter 2. Monitoring Statistics with xmperf 15

Skeleton of Type "All"

The skeleton type named “All” includes all value instances you select into the instrument. A skeleton

instrument creates exactly one instance of an instrument and this single instrument contains values for all

selected value instances. This is shown in the right side of the instantiated skeleton console shown in the

preceding figure, Instantiated Skeleton Console. Two type “All” instruments are defined in the right side of

the console, and three processes were selected to instantiate the skeleton console.

Skeleton instruments of type “All” are defined with only one value because the instantiated instrument

contains one value for each of the selections you make from the instance list.

Consoles can be defined with both skeleton instrument types but any non-skeleton instrument in the same

console is ignored. The relative placement of the defined instruments is kept unchanged. When many

value instances are selected, it can result in crowded instruments; but you can resolve this by resizing the

console. When all the skeleton instruments in a console are type “All” skeletons, xmperf fails to

automatically resize the console.

The type of instrument best suited for the type “All” skeleton instruments is the state bar, but other graph

types may be useful if you allow colors to be assigned to the values automatically. To do the latter, specify

the color as default when you define the skeleton instrument.

Skeleton of Type "Each"

This skeleton type is so named because each value instance that you select creates one instance of the

instrument. When you select five value instances, each of the type “Each” skeletons generates five

instruments, one for each value instance. This is shown in the left side of Figure 2 on page 15. One type

“Each” instrument is defined in the left side of the console and three processes were selected to

instantiate the skeleton console.

Again, one console may define more than one skeleton instrument. You can define consoles with both

skeleton instrument types while any non-skeleton instruments in the same console are ignored. The

relative placement of the defined instrument is kept unchanged. This may give you small instruments that

cannot draw graph data when many value instances are selected, but it is easy to resize the console. If

the generated instruments would otherwise become too small, xmperf attempts to resize the entire

console.

The types of instruments best suited for the “Each” type skeleton instruments are the recording

instruments. This is further emphasized by the way instruments are created from the skeleton:

v The relative horizontal placement is never changed.

v The relative vertical position defined by the skeleton is never changed, but is subdivided into the

number of instruments to be created.

v Each created instrument has the full width of the skeleton instrument.

v Each created instrument has a height which is the total height of the skeleton divided by the number of

value instances selected.

Wildcard Restrictions

Wildcards must represent a section of a value path name which is not the end point of the path. It could

represent any other part of the path, but it only makes sense if that part may vary from time to time or

between systems. Currently, the following wildcards make sense:

CPU/*/... Processing units

Disk/*/... Physical disks

FS/rootvg/*/... File systems

IP/NetIF/*/... IP interfaces

LAN/*/... Network (LAN) interfaces

PagSp/*/... Page spaces

Proc/*/... Processes

16 Performance Toolbox Guide

hosts/*/... Remote hosts

Mem/Kmem/*/... Kernel Memory Allocations

RTime/ARM/xaction/*/... ARM response time and activity

RTime/LAN/*/... IP response time

Note: Not all wildcards are available on non-RS/6000® systems.

The file systems wildcard is one of the two current example of path names where more than one wildcard

would be appropriate. It is not uncommon for a system to have more than one volume group defined, in

which case you need to define an instrument for each volume group, as follows:

FS/rootvg/*/... Root volume group

FS/myvg/*/... Private volume group

FS/yourvg/*/... Another private volume group

The other example is that of ARM response time metrics where the higher level of wildcard is the

application identifier and the lower is the transaction identifier.

The xmperf program prevents you from specifying multiple wildcards in a skeleton instrument. However, it

is possible to use dual wildcards in the 3dmon program as described in Chapter 6, “3D Monitor,” on page

71.

When a console contains skeleton instruments, all such instruments must use the same wildcard. Mixing

wildcards would complicate the selection process beyond the reasonable and the resulting graphical

display would be incomprehensible.

Value Name Display

When all values in an instrument have all or part of the value path name in common, xmperf removes the

common part of the name from the value names displayed in the instrument and displays the common part

in a suitable place. To determine how to do this, xmperf examines the names of all values in the

containing console.

To illustrate, assume you have a single instrument in a console, and that this instrument contains the

values:

hosts/birte/PagSp/paging00/%free

hosts/birte/PagSp/hd6/%free

Names are checked in the following order:

1. It is checked whether all values in a console have any of the beginning of the path name in common.

In this case, all values in the console have the part hosts/birte/PagSp/ in common. Because this

string is common for all instruments in the console it can conveniently be moved to the title bar of the

window containing the console. It is displayed after the name of the console and enclosed in angle

brackets like this:

<hosts/birte/PagSp/>

The parts of the value names left to be displayed in the instrument are:

paging00/%free

hd6/%free

2. Each instrument in the console is checked to see if all the value names of the instrument have a

common ending. In this example, it occurs because both value names end in /%free. Consequently,

The part of the value names to be displayed in the color of the values is reduced to:

paging00

hd6

The common part of the value name (without the separating slash) is displayed within the instrument in

reverse video, using the background and foreground colors of the instrument. The actual place used to

display the common part depends on the primary graph type of the instrument.

Chapter 2. Monitoring Statistics with xmperf 17

An example of displaying value path names in this manner is shown in Figure 2 on page 15, where the

center instrument on the left contains the following values:

hosts/nchris/Proc/4569~xmservd/kerncpu

hosts/nchris/Proc/4569~xmservd/usercpu

hosts/nchris/Proc/4569~xmservd/nsignals

The process number (4569) is not shown in the instrument because the instrument was configured to

only show the name of the executing program.

3. The last type of checking for common parts of the value names is only carried out if the end of the

names do not have a common part. Using this example, no such checking would be done. When

checking is done, it goes like this:

If the beginning of the value names in an instrument (after having been truncated using the checking

described in step 1) have a common part, this string is removed from the value path names and

displayed in reverse video within the instrument.

To illustrate, assume youhave a console with two instruments. The first instrument has the values:

hosts/umbra/Mem/Virt/pagein

hosts/umbra/Mem/Virt/pageout

while the second instrument has:

hosts/umbra/Mem/Real/%comp

hosts/umbra/Mem/Real/%free

The result of applying the three rules to detect common parts of the value names would cause the title bar

of the console window to display <hosts/umbra/Mem/>. The first instrument would then have the text Virt

displayed in reverse video and the value names reduced to:

pagein

pageout

The second instrument would display Real in reverse video and use the value names:

%comp

%free

An example of the previous information can be seen in the Sample xmperf Console figure. The console

shown in the figure has three instruments and the values for each instrument come from the same

contexts. The path names of the three instruments (clockwise from the top left) are:

hosts/nchris/Mem/Real/%free

hosts/nchris/Mem/Real/%comp

hosts/nchris/Mem/Real/%noncomp

hosts/nchris/CPU/cpu0/kern

hosts/nchris/CPU/cpu0/user

hosts/nchris/CPU/cpu0/wait

hosts/nchris/CPU/cpu0/idle

hosts/nchris/Mem/Virt/pagein

hosts/nchris/Mem/Virt/pageout

Hints and Tips for Using Instruments

Certain operations you can perform on an xmperf instrument, even legal operations, can produce

surprising results. Here are a few of the things that may surprise you:

Changing primary style It is quite easy to change the primary style of an instrument. However, if

you change the primary style from a recording graph to a state graph, the

secondary style for all values are changed to that of the new primary style.

If you later want to change the instrument back to its original style, then

any special secondary styles are forgotten.

 Similarly, secondary style information can be lost if you change from one

recording graph style to another. For example, assume an instrument has

a primary style of bar graph, three values using this primary style, and a

single value using a secondary style, which is line graph. If you change

18 Performance Toolbox Guide

this instrument’s primary style to be line graph, then you lose the

information about secondary style. Had you changed the primary style to

skyline, then the secondary style would be remembered.

History and shifting The amount of memory used to retain an image of a recording graph is

dependent on the size of the history and shifting properties of an

instrument. In addition, some versions of the X Window System have a

restriction that allows no pixmap (image) to be larger than the largest

window that fits on the display. You can easily request the creation of

larger pixmaps, by increasing the history or shifting properties.

 If the product (history x shift) is too large, the graph is distorted. The only

way you can currently change that is to reduce one or both properties.

Resizing and moving instruments

When you move or resize an instrument, you see a rubber-band outline of

the instrument until you release the mouse button. When you move or

resize the instrument so that it overlaps other instruments, the instrument

you moved or resized is clipped so as to prevent overlapping instruments.

Only when the clipping would result in the window being reduced to less

than 6 percent of one of the console’s dimensions is the resizing or

moving terminated and the instrument reverted to its original size and

location.

Choosing colors Whenever you change the color of a value or of the foreground or

background of an instrument, you see a palette of available colors

displayed. This palette might obscure the instrument where you want to

change a color. You can move the palette window out of the way by

clicking on the title menu bar of the palette window, and holding the button

down as you reposition the window.

 Notice that when you select a color, the instrument changes immediately.

This allows you to experiment with colors without making permanent

changes to the instrument. After you select the color you want, select

Proceed to make the change permanent.

Using skeleton instruments When a configuration file is created on one system and does not use

skeleton instruments, differences in machine hardware may make this

configuration file less useful on other systems. By using skeleton

instruments to make up for such differences, standardized configuration

files can be designed and moved between systems.

 Some common wildcards are those represented by physical or logical

disks, page space on disks, network interfaces, processes, and remote

hosts.

Ghost instruments A console designed for one system may contain instruments to monitor

values that are not available on another system. If the configuration file for

the first system is moved to the second system, and the console is

opened, you see empty space in the console where the instrument used

to be. The empty space represents what is referred to as a ghost

instrument.

 Ghost instruments occupy the space and prevent you from defining a new

instrument in that same space and moving or resizing other instruments to

use the space. While this is inconvenient, it serves the purpose of

maintaining the console definition intact if you modify other parts of the

console. Ghost instruments cannot be removed except by editing the

xmperf configuration file.

Chapter 2. Monitoring Statistics with xmperf 19

Small instruments that cannot draw graph data

If you resize a console so that a recording instrument becomes so small

that there is no space in the instrument to draw the graph, graph data may

be written into the field at the bottom of the graph usually reserved for

time stamps. The data collected in the history buffer is still correct. To

correct the display, resize the console to make the instruments large

enough to allow graph data to be drawn.

Consoles

Consoles, like instruments, are rectangular areas on a graphical display. They are created in top-level

windows of the OSF/Motif ApplicationShell class, which means that if you use the mwm window

manager, each console has full OSF/Motif window manager decorations. These window decorations allow

you to use the mwm window manager functions to resize, move, minimize, maximize, and close the

console.

Managing Consoles

Consoles are useful for managing instruments. Some uses for consoles are:

v You can move collections of instruments around in consoles, using the console as a convenient

container.

v You can resize a console and still retain the relative size and position of the instruments it contains.

v You can minimize a group of instruments so that historic data is collected and recording of incoming

data continues even when the console is not visible. This also helps to minimize the load on your

system.

v You can close a console and free all memory structures allocated to the console, including the historic

data. Closed consoles use no system resources other than memory to hold the definition of the console.

Consoles can contain non-skeleton instruments or skeleton instruments but not both. Consequently, it

makes sense to classify consoles as either non-skeleton or skeleton consoles.

Non-skeleton Consoles

Non-skeleton consoles can be in either an opened or closed state. Open a console by selecting it from the

Monitor menu. After the console is open, it can be minimized, moved, maximized, and resized using mwm.

None of these actions change the status of the console. You might not see the console on the display, but

it is still considered open. If recording has been started, it continues.

If you look at the Monitor menu after you have opened one or more non-skeleton consoles, the name of

the console is now preceded by an * (asterisk). This indicates that the console is open. If you select one of

the names preceded by an asterisk, you close the corresponding console.

Skeleton Consoles

Skeleton consoles themselves can never be opened. When you select one from the Monitor menu, you

are presented with a list of names matching the wildcard in the value names for the instruments in the

skeleton console. If you select one or more from this list, a new non-skeleton console is created and

added to the Monitor menu. This new non-skeleton console is automatically opened, and given a name

constructed from the skeleton console name suffixed with a sequence number.

The non-skeleton console created from the skeleton is said to be an instance of the skeleton console; you

say that a non-skeleton console has been instantiated from the skeleton. The instantiated non-skeleton

console works exactly as any other non-skeleton console, except that changes you make to it never affect

the configuration file. You can close the new console and reopen it as often as desired. You can also

resize, move, minimize, and maximize the new console.

20 Performance Toolbox Guide

Each time you select a skeleton console from the Monitor menu you get a new instantiation, each one with

a unique name. For each instantiation you’ll be prompted to select values for the wildcard, so each

instantiation can be different from all others.

If you have created an instance of a skeleton console and you’d like to change it into a non-skeleton

console and save it in the configuration file, the easiest way to do so is to select Copy Console from the

Console menu. This prompts you for a name of the new console and the copy is a non-skeleton console

that looks exactly like the instantiated skeleton console from which you copied. After you have copied the

console, you can delete the instantiated skeleton console and save the changes in the configuration file.

Placing Instruments in Consoles

Within their enclosing ApplicationShell windows, all consoles are defined as OSF/Motif widgets of the

XmForm class and the placement of instruments within this container widget is done as relative

positioning. Relative positioning has advantages and disadvantages. One advantage is the easy resizing of

a console without loss of relative positions of the enclosed instruments. A disadvantage is the complexity

involved when adding or removing an instrument in an already full console.

Adding an Instrument to a Console

When you want to add an instrument to a console, you can choose between adding a new instrument or

copying one that’s already in the console. If you choose to create an instrument, the following happens:

1. It is checked if there is enough space to create an instrument with a height that is approximately the

average height of any existing instruments in the console. If no instruments exist, the height is set to

25% of the console. The space must be available in the entire width of the console. If this is the case,

a new instrument is created in the space available.

2. If enough space is unavailable, the existing instruments in the console are resized to provide space for

the new instrument. Then the new instrument is created at the bottom of the console. The height of the

new instrument will be approximately the average height of any existing instruments, after resizing.

3. If the new instrument has a height less than 100 pixels, the console is resized to allow the new

instrument to be 100 pixels high.

If you choose to copy an existing instrument, the following happens:

1. It is checked if there is enough space to create an instrument of the same size as the one you copy. If

this is the case, a new instrument is created in the space available. Unlike what happens when adding

a new instrument, copying will use space that is just wide enough to contain the new instrument. It’s

unnecessary to have space available in the full console width.

2. If enough space is unavailable, the existing instruments in the console are resized to provide space for

the new instrument. Then the new instrument is created. New space is always created at the bottom of

the console, and always in the full width of the console window. However, the new instrument will be

the same width as the one from which it was copied.

3. If the new instrument has a height of less than 100 pixels, the console is resized to allow the new

instrument to be 100 pixels high.

Rounding may cause the height of the new instrument to deviate 1-2 percent from the intended height.

Resizing Instruments in a Console

After selecting an instrument and choosing to resize it, the instrument is replaced by a rubber-band outline

of the instrument. Resize the instrument by holding the left mouse button down and moving the mouse.

When you press the button, the pointer is moved to the lower right corner of the outline. Thus, resizing is

always done by moving this corner while the upper left corner of the outline remains stationary.

During resizing, a small button is shown in the top left corner of the rubberband outline. It shows the

calculated relative size of the instrument as width x height in percent of the console’s total width and

height. The relative size is calculated from the relative positions of the edges of the instrument as:

v width = right_edge - left_edge + 1

Chapter 2. Monitoring Statistics with xmperf 21

v height = bottom_edge - top_edge + 1

For example, for an instrument to have a width of 49 and a height of 20, the edges might have the

following relative positions:

v top_edge = 20

v left_edge = 1

v right_edge = 49

v bottom_edge = 39

When you release the mouse button the instrument is redrawn in its new size.

Note that it’s usually a good idea to move the instrument within the console so that the upper left corner is

at the desired position before resizing.

The position of the resized instrument must be rounded so that it can be expressed in percentage of the

console size. This can cause the instrument to change size slightly from what the rubber-band outline

showed.

Instruments cannot be resized so they overlap other instruments. If this is attempted, the size is reduced

so as to eliminate the overlap.

Moving Instruments in a Console

When you select an instrument to be moved, the instrument disappears and is replaced by a rubber-band

outline of the instrument. To begin moving the instrument, place the mouse cursor within the outline and

press the left mouse button. Hold the button down while moving the mouse until the outline is where you

want it, then release the button to redraw the instrument.

During moving, a small button is shown in the bottom right corner of the rubberband outline. It shows the

calculated relative position of the top left corner of the instrument. This helps in positioning the instrument

so that it aligns with the other instruments in the console.

Instruments can be moved over other instruments, but are not allowed to overlap them when the mouse

button is released. If an overlap would occur, the instrument is truncated to eliminate the overlap.

The Console Title Bar

The title bar of a console window contains three pieces of information. It might look like this, for example:

birte: Virtual Memory hosts/xtra/Mem/Virt/

The first two pieces of information are always present. The third part is only displayed if all statistics

displayed in the console’s instruments have some or all of the beginning of their value names in common.

The three parts of the title bar text are:

1. The hostname of the system where xmperf is executing. It is followed by a colon to separate it from

the next part of the text.

2. The name of the console. In case of instances of skeleton consoles, the name might look like this:

Disks_#01

where the name of the skeleton console would then be Disks and the remainder is added to give the

instantiated skeleton console a unique name.

3. Any common part of all values displayed in the console enclosed in angle brackets. For a description

of how this part is generated, see “Value Name Display” on page 17.

When values are added to or removed from the console, the common part of the value names might

change. When this happens, the console title bar changes to reflect this.

22 Performance Toolbox Guide

Environments

Environments are defined in configuration files. By default, xmperf reads its environment from the

$HOME/xmperf.cf file or, if that file does not exist, then as described in Appendix B, “Performance Toolbox

for AIX Files,” on page 271. You can override the file name through the command line argument -o or the

X Window System resource ConfigFile. Command line arguments are described in “The xmperf

Command Line” on page 29 and supported resources in “The xmperf Resource File” on page 277 section.

In most situations, any person should be able to use a single environment, defining all the consoles

required for the monitoring that person needs. However, because the environment holds console

definitions and command definitions, as described in Chapter 5, “The xmperf Command Menu Interface,”

on page 61, different environments can be defined for different kinds of users. Primarily, this depends on

what privilege is required to run the commands.

A system administrator may be authorized to run commands such as renice and other commands that

require root authority. Therefore, the system administrator may want to have more commands or different

ones. When xmperf uses such environments, it can be necessary to start the program while logged in as

root.

Monitoring Remote Systems with xmperf

Note: This function is only available with the Performance Toolbox Network feature. If you try to access

these functions with the Performance Toolbox Local feature only the local hostname is displayed for

selection.

Visualizing the load statistics (or monitoring the performance) of a single local host on that same host has

been done with a great variety of tools, developed over many years. The tools can be useful for critical

hosts such as database servers and file servers, provided you can get access to the host and that the

host has capacity to run the tool.

Some of the existing tools, especially when based on the X Window System, allow the actual display of

output to take place on another host. Even so, most existing tools depend on the full monitoring program

to run on the host to be monitored, no matter where the output is shown. This induces an overhead from

the monitoring program on the host to be monitored.

Performance Toolbox for AIX introduces true remote monitoring by reducing the executable program on the

system to be monitored to the Agent component’s xmservd program, which consists of a data retrieval

part and a network interface. It is implemented as a daemon that is started by the inetd super-daemon

when requests from data consumers are received. The xmservd program is described in Chapter 13,

“Monitoring Remote Systems,” on page 153.

The obvious advantage of using a daemon is that it minimizes the impact of the monitoring software on

the system to be monitored and reduces the amount of network traffic. Because one host can monitor

many remote hosts, larger installations may want to use dedicated hosts to monitor many or all other hosts

in a network.

The responsibility for supplying data is separated from that of consuming data. Therefore, the term

data-supplier host is used to describe a host that supplies statistics to another host, while a host receiving,

processing, and displaying the statistics is called a data-consumer host.

The Meaning of Localhost in xmperf

All data-consumer programs made to the RSi API (see Chapter 19, “Remote Statistics Interface

Programming Guide”), such as xmperf, are always doing remote monitoring in the sense that they can get

their flow of statistics only from data supplier daemons. It is immaterial to the protocol, as to the programs,

whether the daemon feeding a particular instrument runs on the local or a remote host.

Chapter 2. Monitoring Statistics with xmperf 23

It is, however, convenient that you can create and maintain consoles for the local host. The term Localhost

refers to the host that all instruments in the xmperf configuration file are assumed to refer to when no

hostname is given as part of their value path names.

The Localhost defaults to the host where xmperf is executing. Any other host can be selected at the time

you start xmperf, using the command line argument -h. The Localhost cannot be changed while xmperf is

running.

Note: A change of Localhost has no influence on where commands, defined in the main window

pull-down menus, are executed. Commands are always executed on the host where xmperf runs.

When to Identify Data-Suppliers

The xmperf program attempts to contact potential suppliers of remote statistics in the following situations:

v When the program starts, it always attempts to identify potential Data-Supplier hosts.

v When five minutes have passed since the last attempt to contact potential data-supplier hosts and the

user creates an instrument referencing a remote data-supplier host.

v When five minutes have passed since the last attempt to contact potential data-supplier hosts and the

user activates a console containing a remote instrument.

v When five minutes have passed since the last attempt to contact potential data-supplier hosts and the

user requests the Remote Process Window from the xmperf Utilities menu.

v When the user selects the Refresh Host List entry from the xmperf File menu.

The five-minute limit is implemented to make sure that the data-consumer host has an updated list of

potential data-supplier hosts. Please note that this is not an unconditional broadcast every five minutes.

Rather, the attempt to identify data-supplier hosts is restricted to times where a user wants to initiate

remote monitoring and more than five minutes have elapsed since this was last done.

The five-minute limit not only gets information about potential data-supplier hosts that have recently

started; it also removes from the list of data suppliers such hosts, which are no longer available. In heavily

loaded networks and situations where one or more remote hosts are too busy to respond to invitations

immediately, the refresh process may remove hosts from the list even though they do in fact run the

xmservd daemon. If this happens, use the -r command line argument when you invoke xmperf. Through

this option, you can increase the time xmperf waits for remote hosts to respond to invitations.

How Data-Suppliers are Identified

When xmperf is aware of the need to identify potential data-supplier hosts, it uses one or more of the

following methods to obtain the network address for sending an invitational are_you_there message. For

a full description of network packet types and the network protocol see “The xmquery Network Protocol”

on page 159. The last two methods depend on the presence of the file $HOME/Rsi.hosts. See

Appendix B, “Performance Toolbox for AIX Files,” on page 271 for alternative locations of the Rsi.hosts

file. The three ways to invite data-supplier hosts are:

1. Unless instructed not to by you, xmperf finds the broadcast address corresponding to each of the

network interfaces of the host where xmperf is executing. The invitational message is sent on each

network interface using the corresponding broadcast address. Broadcasts are not attempted on the

Localhost (loopback) interface or on point-to-point interfaces such as X.25 or SLIP (Serial Line

Interface Protocol) connections.

2. If a list of Internet broadcast addresses is supplied in the file $HOME/Rsi.hosts, an invitational

message is sent on each such broadcast address. Every Internet Protocol (IP) address given in the file

is assumed to be a broadcast address if its last component is the number 255. Note that if you specify

the broadcast address of a local interface, broadcasts are sent twice on those interfaces. In large

networks, this may produce an unacceptably large number of response to invitational packets.

3. If a list of hostnames or non-broadcast IP addresses is supplied in the file $HOME/Rsi.hosts, the host

IP address for each host in the list is looked up and a message is sent to each host. The look-up is

24 Performance Toolbox Guide

done through a gethostbyname() call, so that whichever name service is active for the host where

xmperf runs is used to find the host address. If your nameserver is remote or often slow to respond,

specify IP addresses rather than hostnames to avoid the delay caused by the name lookup.

The file $HOME/Rsi.hosts has a simple layout. Only one keyword is recognized and only if placed in

column one of a line. That keyword is: nobroadcast, and means that the are_you_there message should

not be broadcast using method 1 (where an invitation is sent to the broadcast address of each network

interface on the host). This keyword is useful in situations where there is a large number of hosts on the

network and only a well-defined subset should be remotely monitored. To say that you don’t want

broadcasts but want direct contact to three hosts, your $HOME/Rsi.hosts file might look like this:

nobroadcast

birte.austin.ibm.com

gatea.almaden.ibm.com

umbra

The previous example shows that the hosts to monitor do not necessarily have to be in the same domain

or on a local network. However, doing remote monitoring across a low-speed communications line is not

likely to make you popular with other users of that communication line.

Be aware that whenever you want to monitor remote hosts that are not on the same subnet as the

data-consumer host, you must specify the broadcast address of the other subnets or all the host names of

those hosts in the $HOME/Rsi.hosts file. The reason is that IP broadcasts do not propagate through IP

routers or gateways.

Note: Other routers can be configured to disallow UDP broadcast between subnets. If your routers

disallow UDP broadcasts, type the IP address or hostname of all the hosts you want to monitor on

other subnets in the $HOME/Rsi.hosts file.

The following example illustrates a situation where you want to do broadcasting on all local interfaces,

want to broadcast on the subnet identified by the broadcast address 129.49.143.255, and also want to

invite the host called umbra:

129.49.143.255

umbra

Note: The subnet mask corresponding to the broadcast address in this example is 255.255.240.0 and the

range of addresses covered by the broadcast address is 129.49.128.0 through 129.49.143.255.

Requesting Exception Messages

One of the message types passing between dynamic data-supplier and data-consumer hosts has a field

that is used to tell the responding xmservd daemons whether any exception notifications (actually network

packets of type except_rec) they may generate should be sent to the data-consumer host. Application

programs control this field through the last argument to the RSiOpen and RSiInvite subroutine calls of the

Remote Statistics Interface API. By default, the xmperf program does not request exception messages to

be sent to it. This can be controlled through the command line argument -x or the X resource

GetExceptions. Exception messages are used to inform about abnormal conditions detected on a system.

They are described in the “Handling Exceptions” on page 159. When xmperf receives an exception

message, it is displayed in the xmperf main window. No other action is taken. A better way of monitoring

exceptions is provided by the program exmon described in the Chapter 8, “Monitoring Exceptions with

exmon,” on page 85.

Remote Processes

Two of the three main window menus that are used to define command menus have a fixed menu item.

Those main window menus are Controls and Utilities. This section describes the Remote Processes fixed

Chapter 2. Monitoring Statistics with xmperf 25

menu item in the Utilities pull-down menu. The purpose of the Remote Processes menu item is to provide

you with an easy way to display the CPU-intensive processes on a remote host, which runs the xmservd

daemon.

If you are monitoring remote systems you will recognize the need for this function. It is not uncommon that

a console used to monitor a remote host suddenly shows that something unexpected or unusual is

happening on the host. To see what causes this, you would need to look into the processes that run on

the remote host. However, it takes time to do a remote login and may even be impossible for certain types

of errors or certain types of loads. This menu allows you to list key data for all processes running on the

remote host without the need to do a remote login.

When you select Remote Processes you immediately see a list of remote hosts from which to select. A

selection list looks similar to the following Host Selection List from xmperf example:

beany 9.3.84.132

bobcat 9.3.84.143

drperf 9.3.84.240

eel 9.3.84.160

ender 9.3.84.162

hpserv 9.3.70.236

jaboni 9.3.84.183

jasmine 9.3.84.236

lighting 9.3.84.186

oilers 9.3.67.39 **

perfhp 9.3.70.227

rollie 9.3.84.238

trigger 9.3.84.225

turbojet 9.3.84.228 **

Remote Process List

When you select a host to monitor from Remote Processes, you immediately see a list of running

processes in the remote host at the time you made the selection. It depends on the currently active display

option (see “Remote Processes Menu” on page 27 for details of how to set this option) of the remote

process list whether all the processes of the remote host are shown, or whether only CPU-active

processes are included. The list shows the most interesting details about the processes, and is sorted in

descending order according to the CPU percentage used by the process. The following example shows

how a Remote Process List from xmperf may be displayed:

hosts/trigger: Process xlcentry (11644) %cpu 87.0, PgSp: 6.5mb, uid nchris

hosts/trigger: Process wait (516) %cpu 5.8, PgSp: 0.0mb, uid root

hosts/trigger: Process xlC (3450) %cpu 1.5, PgSp: 0.0mb, uid nchris

hosts/trigger: Process xmservd (13146) %cpu 0.6, PgSp: 0.3mb, uid root

hosts/trigger: Process xmperf (12312) %cpu 0.6, PgSp: 1.5mb, uid nchris

hosts/trigger: Process make (13546) %cpu 0.1, PgSp: 0.3mb, uid nchris

hosts/trigger: Process (0) %cpu 0.0, PgSp: 0.0mb, uid root

hosts/trigger: Process syncd (4178) %cpu 0.0, PgSp: 0.0mb, uid root

hosts/trigger: Process inetd (6120) %cpu 0.0, PgSp: 0.1mb, uid root

hosts/trigger: Process AIXPowerM (3796) %cpu 0.0, PgSp: 0.5mb, uid root

hosts/trigger: Process portmap (5854) %cpu 0.0, PgSp: 0.2mb, uid root

The fields in the list are, from left to right:

Host path The path used to get to the remote host in the form hosts/hostname.

Command Name

The text “Process” followed by the (first 9 bytes of) the command that executes in the

process.

Process ID The process ID (PID) of the process.

Latest CPU Percentage

The first time the remote process list is created after the start of the xmservd daemon on

the remote host, this field shows the CPU usage of the process over its life time. The

26 Performance Toolbox Guide

same is true whenever a new process shows up on the process list after a refresh. In all

other cases, this field shows the average CPU usage since the last refresh of the process

list.

Page Space in Megabytes

The number of megabytes currently allocated for paging space on an external disk for this

process.

Effect User-ID

The effective user ID for the process, as changed by setuid or su if applicable.

Note: The fields shown in remote process lists for non-RS/6000 systems may vary from

the fields shown here.

Remote Processes Menu

When the process overview list is displayed, a menu bar is available to control the list. The following menu

items are available:

File This menu item yields a pull-down menu with four menu items:

Refresh Refreshes the list by reading the current process information from the daemon on

the remote host.

Show All Changes the display option of the remote process list so that all processes of the

remote host are shown, regardless of their CPU usage.

Show CPU Active

Changes the display option of the remote process list so that only processes of

the remote host that have been using CPU since the last refresh are shown.

Close Closes the list.

Help Displays any help text supplied in the simple help file and identified by the name Remote Process

List.

Note: The process list is not updated by xmperf automatically. It is your responsibility to use the

Refresh menu item to update the list as needed. It is updated whenever you change the

display option.

Chapter 2. Monitoring Statistics with xmperf 27

28 Performance Toolbox Guide

Chapter 3. The xmperf User Interface

This chapter provides information about the xmperf user interface.

The xmperf User Interface Overview

The xmperf program has one main window that is displayed when you start the program. The main

window provides you with the interface to functions that are not related to active consoles. In addition to

the main window, one or more consoles might be displayed when you start xmperf. This happens if you

have defined one or more default consoles in your configuration file. If no default console is defined,

initially only the main window is displayed. When default consoles are defined, they are opened in the

same sequence as they are displayed in the configuration file. See “Defining Default Consoles” on page

277 for further information.

The xmperf Command Line

The general format of the xmperf command line is:

xmperf [-v auxz] [-w width] [-o options_file] [-p weight] [-h localhostname]

[-r network_timeout]

All command line options are optional and all except -r and -h correspond to X Window System resources

that can be used in place of the command line arguments. The options v, a, u, x, and z are True or False

options. If one of those options is set through an X Window System resource, it cannot be overridden by

the corresponding command line argument. More information on the options can be found in “Execution

Control Resources” on page 280. The options are described as follows:

-v Verbose. This option prints the configuration file lines to the xmperf log file $HOME/xmperf.log as

they are processed. Any errors detected for a line will be printed immediately below the line. The

option is intended as a help to find and correct errors in a configuration file. Use the option to

understand why a line in your configuration file does not have the expected effect.

 Setting the X Window System resource BeVerbose to True has the same effect as this flag.

a Adjust size of the value path name that is displayed in instruments to what is required for the

longest path name in each instrument. The length can be less than the default fixed length (or the

length specified by the -w option if used) but never longer. The use of this option can result in

consoles where the time scales are not aligned from one instrument to the next.

 Note: For pie chart graphs, adjustment is always done, regardless of this command line

argument. Setting the X Window System resource LegendAdjust to True has the same

effect as this flag.

u Use popup menus. As described in “Console Windows” on page 33, the overall menu structure

can be based upon pull-down menus (which is the default) or popup menus as activated with this

flag. Typically, pull-down menus are easier to understand for occasional users; while popup menus

provide a faster, but less intuitive interface.

 Setting the X Window System resource PopupMenus to True has the same effect as this flag.

x Subscribe to exception packets from remote hosts. This option makes xmperf inform all the

remote hosts it identifies that they should forward exception packets produced by the filtd

daemon, if the daemon is running. If this flag is omitted, xmperf will not subscribe to exception

packets.

 Setting the X Window System resource GetExceptions to True has the same effect as this flag.

z For monochrome displays and X stations, you might want to try the -z option, that causes xmperf

© Copyright IBM Corp. 1994, 2004 29

to draw graphical output directly to the display rather than always redrawing from a pixmap. By

default, xmperf first draws graphical output to a pixmap and then, when all changes are done,

moves the pixmap to the display. Generally, with a locally-attached color display, performance is

better when graphical output is redrawn from pixmaps. Also, a flaw in some levels of X Window

System can be bypassed when this option is in effect.

 Setting the X Window System resource DirectDraw to True has the same effect as this flag.

w Must be followed by a number between 8 and 32 to define the number of characters from the

value path name to display in instruments. The default number of characters is 12.

 Alternatively, the legend width can be set through the X Window System resource LegendWidth.

o Must be followed by a file name of a configuration file (environment) to be used in this execution

of xmperf. If this option is omitted, the configuration file name is assumed to be

$HOME/xmperf.cf. If this file is not found, the file is searched for as described in Appendix B,

“Performance Toolbox for AIX Files,” on page 271.

 Alternatively, the configuration file name can be set through the X Window System resource

ConfigFile.

p If given, this flag must be followed by a number in the range 25-100. When specified, this flag

turns on averaging or weighting of all observations for state graphs before they are plotted. The

number is taken as the weight percentage to use when averaging the values plotted in state

graphs. The formula used to calculate the average is:

val = new * weight/100 + old * (100-weight) / 100

where:

val Is the value used to plot.

new Is the latest observation value.

old Is the val calculated for the previous observation.

weight Is the weight specified by the -p flag. If a number outside the valid range is specified, a

value of 50 is used. If this flag is omitted, averaging is not used.

 Alternatively, the averaging weight can be set through the X Window System resource

Averaging (see “Execution Control Resources” on page 280).

 The weight also controls the calculation of weighted average in tabulating windows.

h Must be followed by the host name of a remote host that is to be regarded as Localhost. The

Localhost is used to qualify all value path names that do not have a host name specified. If not

specified, Localhost defaults to the host where xmperf executes.

 Note: With the Performance Toolbox Local feature, this flag always uses the local host name.

r Specifies the timeout (in milliseconds) used when waiting for responses from remote hosts. The

value specified must be between 5 and 10,000. If not specified, this value defaults to 100

milliseconds.

 Note: On networks that extend over several routers, gateways, or bridges, the default value is

likely to be too low.

 One indication of a too low timeout value is when the list of hosts displayed by xmperf contains

many host names that are followed by two asterisks. The two asterisks indicate that the host did

not respond to xmperf broadcasts within the expected timeout period. The Host Selection List

from xmperf (see “Remote Processes” on page 25) shows how some hosts in a host selection list

have asterisks. The list shown was generated in a network with multiple levels of routers where

the default timeout is on the low side during busy hours.

30 Performance Toolbox Guide

The xmperf Main Window

The xmperf main window is shown in the following figure. At the top of the main window is a menu bar.

The menu bar provides access to six pull-down menus. The remainder of the window displays messages

from xmperf as necessary. Message lines in the main window can be scrolled horizontally if they are

longer than the window is wide, and you can scroll vertically to see previous message lines. The

messages you see could be:

Information messages

Messages from xmperf during startup and about commands executed from one of the following

menus, including the exact command line the system attempted to execute.

Error messages

Messages telling you about errors that could not be detected during startup.

Exception messages

Exceptions received from data suppliers.

 The xmperf Main Window is displayed similar to the following example:

Building the color table...

Parsing configuration file...

Xmperf Version 2.2 for AIX.

Xmquery Protocol Version 02.03

Xmperf initialized - use "Monitor" menu to open consoles.

Initial console "Mini Monitor" being opened.

The menu bar of the main window provides major ways to control xmperf. It has the following pull-down

menus:

File The CUA® prescribed File menu.

Monitor

The menu from where you open and close consoles, instantiate skeleton consoles, and create

new consoles.

Analysis

One of three tools menus from where commands can be executed. The menu is customizable and

is intended to be used for analytical tools.

Controls

The second of three tools menus from where commands can be executed. This menu has a fixed

menu item that creates a list of processes in the local system. The rest of the menu is fully

customizable and is intended to be used for commands that influence, or control, the performance

of your system.

Utilities

The last of three tools menus from where commands can be executed. This menu has a fixed

menu item to create a list of processes on a remote host that you must select from a pull-down

menu. The rest of the menu is fully customizable and is intended to be used for miscellaneous

tools and commands.

Help The Help menu.

The File Menu

The xmperf File menu has the following items:

Save All Changes

When you select this menu item, all changes to all consoles are written to the configuration file.

The only exceptions are changes to instances of skeleton consoles. Changes to instantiated

skeleton consoles are never written to the configuration file, because such consoles don’t belong

in the file.

Chapter 3. The xmperf User Interface 31

After all changes are saved, the menu selection is inactivated and cannot be selected until new

changes are made to at least one console.

Playback

This menu selection starts the playback feature described in Chapter 4, “Recording and Playback

with xmperf,” on page 53.

Refresh Host List

Usually, the remote interface makes sure you have an updated list of remote hosts to select from

when you instantiate a remote skeleton console or create a list of processes on a remote host.

This automatic refresh is done once every five minutes. The Refresh Host List menu item allows

you to initiate a refresh whenever you like.

Exit xmperf

Selecting this item terminates the entire xmperf application, but not before a couple of checks are

done:

1. The program checks whether any changes have been made to any console since the last

saving to the configuration file. If so, a small dialog box is displayed, giving you the choice

between discarding the changes or saving them to the configuration file.

2. The program checks if any consoles are still active. If this is the case, you are asked if you

want to exit while consoles are active. This is just a precaution to prevent accidental exiting of

the program when valuable historic data is accumulated in an active console. You can choose

to exit or not.

Note: An attempt to close the main window from the window manager has the same effect as

selecting Exit xmperf from the File menu.

The Monitor Menu

The Monitor menu has four menu items, one of which is representing a submenu:

Instantiate Skeleton

Represents a submenu containing all the skeleton consoles defined in the configuration file. To

instantiate a particular skeleton console, click on it using the left mouse button. Notice that the

skeleton console names are preceded by the letter S. For information on how skeleton consoles

work, see “Skeleton Consoles” on page 20.

Add New Console

Select this option if you want to build a new console interactively from scratch. Details on this

selection are provided in “Creating a Console” on page 47.

Ordinary Consoles

Consoles defined in the configuration file or created interactively are each represented by one

menu selection. When a console is active, the name of the console is preceded by an asterisk. To

activate (open) a console, select one with no asterisk; to deactivate (close) a console, select one

with an asterisk. Observe that when you close a console, all historic data accumulated in any

instrument of that console is lost and the recording of data is stopped.

Instantiated Skeleton Consoles

These consoles are also displayed in the Monitor menu. When a skeleton console is selected from

the Instantiate Skeleton submenu, an instance of that skeleton is created and activated (opened).

This causes it to be displayed in the Monitor menu with an asterisk. From this point, the instance

works exactly as an ordinary console except that the changes you make to the instance are not

saved to the configuration file.

The Tools Menus

The Tools menus are described in detail in Chapter 5, “The xmperf Command Menu Interface,” on page

61. Briefly, they allow you to execute commands from within the xmperf application with an easy way to

fill-in command line arguments. Commands are defined in the configuration file.

32 Performance Toolbox Guide

The Help Menu

This pull-down menu has four menu items:

Help on Main Window

Displays any help text supplied in the simple help file and identified by the name Main Window.

Help on Help

Displays any help text supplied in the simple help file and identified by the name Help on Help.

Help Index

Opens a Help Index window with a list of help topics. To display the help screen for a help topic,

select the corresponding line in the help index window.

On Version...

Displays an information window that states the xmperf version in use.

Console Windows

To give you full flexibility, consoles can be opened and closed from menus associated with each console

as well as from the main window. Equally important, consoles can be configured interactively from the

same menus. This necessitates a rather intricate system of menus, which within the CUA specifications

can be created as either pull-down or popup menus.

By default, xmperf is configured with pull-down menus. If you want popup menus, use the command line

argument -u or set the X Window System resource PopupMenus (see “Execution Control Resources” on

page 280) to True. Command line arguments are described in “The xmperf Command Line” on page 29

and supported resources in “The xmperf Resource File” on page 277.

Console Pull-down Menus

When xmperf is configured with pull-down menus, each console has its own menu bar. The menu bar has

five pull-down menus:

File The CUA prescribed File menu.

Edit Console

A menu used to customize the console and the instruments it contains, not individual values.

Edit Value

A menu for customizing individual values to be plotted by the console’s instruments.

Recording

The menu used to start and stop recording from a console or one or more of its instruments.

Help The Help menu for the console.

 Most choices from the Edit Console and Edit Value menus require that you specify the instruments in the

console with which you want to work. Because of this, those menu items are ghosted or unavailable until

you have selected an instrument.

When an instrument is selected, xmperf attempts to draw a dashed line around it. This is only possible if

there is space between the instrument and neighboring instruments or the console border. Ususally you

can see some of the dashed line. To always see the dashed line, ensure that the instruments never touch

each other or the border of the console which contains it.

After selecting an instrument, inactive menu items in the Edit Console and Edit Value pull-down menus

become active, and any selection that you make applies to the selected instrument.

Chapter 3. The xmperf User Interface 33

The Console File Menu

The File menu of a console contains functions that apply to the console or to the xmperf application as a

whole. The menu items are:

Save Changes

When the console has not been modified by you, or when such modifications have already been

saved previously, this menu selection is inactive so you can’t select it. When you make a change

to the console, this menu selection becomes active.

 When you select this menu item, all changes to the console (but not to other consoles) are written

to the configuration file. After the changes are saved, this menu selection is inactivated until new

changes are made to the console.

Copy Console

When you select this option, a new console is made as an exact copy of the current console. First,

a dialog box prompts you for a name for the new console. You enter the name of your choice as

described in “Choosing a Name” on page 47. All the rest is done automatically.

New Console Path

This menu item gives you the possibility to “remount” all the instruments in the console on a

different host. The name of the menu item means that you replace the hosts part of the path

names of all values in the console with a new host name. For example, assume a console has two

instruments, one monitoring statistics on host umbra and the other monitoring statistics on host

bamse. By selecting a new host name, such as buzzer, you cause both instruments to be

monitoring buzzer.

 The new host name is selected from a popup list of host names containing all the currently

available data-supplier hosts. From this list, pick the one you want by selecting it and then

selecting the Done menu in the menu bar of the box. This produces a small pull-down menu. If

you select the Cancel menu item, the box goes away, and no new path is selected. If you select

the Reselect menu item, the list of data-supplier hosts is refreshed. If you select the Accept

Selection menu item, the selected host is chosen as the remote host for all statistics in the

console.

Note: With the Performance Toolbox Local feature, only the local host is available for selection.

 When the instruments are changed to monitor the new host, some may reference statistics that

are not available on the new host. Such statistics disappear from the changed instrument.

Similarly, an instrument can contain referenced statistics that were not available on the previous

host but exist on the new host. Such statistics are added to the instrument.

Open Console

This selection produces a popup menu containing all the consoles defined. The popup menu

contains all the consoles in the Monitor menu of the main window and its submenu of skeleton

consoles. It is placed here to allow you total control even without having the main window visible.

Close Console

When you select this item, the current console is closed and all historic data collected for its

instruments is lost. If recording was active for the console or any of its instruments, recording

stops and the recording file is closed. You can get the same effect by selecting the console from

the Monitor menu of the main window or from the Open Console menu. Because the console is

active, its name is preceded by an asterisk in the menus, so selecting it deactivates (closes) the

console. An alternative way of closing the console is to select the Close option from the Window

Manager menu of the console window.

Erase Console

Selecting this item erases the console definition from the Monitor menu (and from the configuration

file if and when the changes are saved). Before the console is erased the actions described for the

34 Performance Toolbox Guide

Close Console selection are carried out. To make sure you don’t do this accidentally, you are

prompted to verify the selection before it is carried out.

Exit xmperf

This item works exactly like the Exit xmperf selection of the File menu in the main window. It is

placed here to allow you total control even when the main window is minimized.

Help This item contains three menu lines. The first menu line provides you with the intended use of the

console and related other consoles and tools. Help for the console is shown if the simple help file

(see “Simple Help File Format” on page 286) is present and contains a help screen for the

console. The second takes you to the help index, and the last is the prescribed On Version to

display a short message informing you of the version of xmperf.

 The Help menu item in the File menu is a duplicate of the Help menu item in the console menu

bar.

The Edit Console Menu

The pull-down menu for Edit Console contains ten items. Add Local Instrument and Add Remote

Instrument are always active. Select Instrument is active only when no instruments are selected. The

remaining seven items are active only when an instrument is selected; these menu items are as follows:

Add Local Instrument

Selecting this menu item causes the console to be prepared for the addition of a new instrument.

Space is acquired in the console as described in “Adding an Instrument to a Console” on page 21.

Initially, the instrument is not created. Instead, you are presented with a list of values from which

to select the first value of the instrument. The list allows you to select any value on Localhost (see

“The Meaning of Localhost in xmperf” on page 23). If your first action is to select End Selection in

the selection box, the instrument is not created.

 When you’ve selected a value for your instrument the instrument is created with that value as its

first one. You then see a dialog box that allows you to select the way you want this value to be

plotted. For details on this, see “Changing the Properties of a Value” on page 48. When you have

set the options for the first value of the new instrument, you can select and set the options of

additional values to be added to the instrument. When you’re done, select End Selection in the

selection box.

Add Remote Instrument

Every instrument must show values from one single data-supplier host. If the instrument shows

values from a remote data-supplier host, it is called a remote instrument. This menu selection

allows you to add a remote instrument.

 The first you’ll see when you select Add Remote Instrument is a selection box with a list of all

the currently available data-supplier hosts. From this list, pick the one you want by selecting it and

then selecting the Done menu item in the menu bar of the box. This produces a small pull-down

menu. If you select the Cancel menu item, the box goes away and no instrument is created. If you

select the Reselect menu item, the list of data-supplier hosts is refreshed. If you select the

Accept Selection menu item, things proceed as previously described for Add Local Instrument,

except that you are presented with a list of values on the data-supplier host you selected.

Note: With the Performance Toolbox Local feature of Version 2.2 or later, only the local host is

available for selection.

Tabulating Window

Select this menu item to display a tabulating window for the selected instrument. If a tabulating

window is already displayed when you select this item, that window is closed. Tabulating windows

are special forms of windows that tabulate the values of the instrument as data is received and will

also display a line with a weighted average for each value. Tabulating windows are described in

more detail in “Tabulating Windows” on page 50

Chapter 3. The xmperf User Interface 35

Copy Instrument

Causes a new instrument to be added to the console. The new instrument is an exact copy of the

currently selected instrument and is added as described in “Adding an Instrument to a Console” on

page 21.

Delete Instrument

As a precaution against unintended deletion, a dialog box opens when you ask to delete an

instrument. You then have to accept the deletion or cancel it.

Modify Instrument

This selection causes a cascade menu to open. The cascade menu has ten items, all of which are

concerned with the status and properties (as described in “Instruments” on page 12) of the

instrument rather than the properties of individual values in the instrument. The menu items are:

v Resynchronize

v Autoscale

v Interval

v History

v Shift

v Space

v Style & Stacking

v Foreground

v Background

v Change Path

All these are described in the “Modify Instrument Submenu” on page 43.

Resize Instrument

Allows you to resize the selected instrument as described in “Resizing Instruments in a Console”

on page 21.

Move Instrument

Allows you to move the selected instrument as described in “Moving Instruments in a Console” on

page 22.

Unselect Instrument

Deselects the selected instrument and removes the dashed line around it.

Select Instrument

Serves as a reminder of how you select instruments. When you select this item an information

window opens and gives you a brief description of the selection principles.

The Modify Instrument Submenu

This submenu opens when you select the Modify Instrument menu item from the Edit Console menu. It

contains menu items to modify all of the properties that apply to an instrument. The items are:

Resynchronize

Allows you to ask for the instrument’s network connection to the data-supplier host to be

resynchronized (renegotiated). Make this selection when you notice that the instrument is no

longer receiving input, which indicates that the remote supplier host is no longer on the network or

that its xmservd daemon has aborted or was killed. If you select this menu item and the

instrument is still not receiving input from the data-supplier host, most likely the remote host is not

up. Wait until you can get a response to a ping, before trying again.

 If, after having resynchronized one instrument, xmperf estimates the total resynchronizing to take

more than 12 seconds, a dialog box opens. From the window you can select to terminate the

36 Performance Toolbox Guide

resynchronizing or continue it. If you terminate it, none or only some of the instruments defined for

the remote host will be active. Under usual circumstances, at least one instrument should be

active.

 If the estimated total elapsed time to complete the operation increases greater than 120% of what

you previously approved (during any one resynchronizing operation), the dialog box opens again

showing you the new estimated time to completion of the operation.

Note: While this dialog box is displayed, no other window can be used. You must select either

Continue Resync or Stop Resync to remove the dialog box before other X events are

processed.

Autoscale

Sometimes an instrument receives data values that are far greater than the high range of the

instrument. Because recording type instruments can show no more than 105 percent of the high

range (scale), readings greater than 105 percent are truncated at approximately 105 percent.

 To find the right scale in such situations, use this menu selection. When you select it, xmperf

scans all values in the instrument to determine if any one exceeds 105 percent of the high scale.

The scan uses all data values collected in the history of the instrument. Any value that does

exceed 105 percent of the high scale at any point in the recorded history has its high scale

adjusted so that the highest peak is shown somewhere between the 50% and the 100% mark in

the graph.

 If stacking is in effect for the instrument, the peak is determined as the sum of all values using the

primary style of the graph at any one point in history.

 The changed scales are recorded with the instrument as if you had made the change manually.

Therefore, when you leave xmperf, you’ll be asked whether you want to save the changes to the

configuration file.

Interval

Opens a dialog box and displays a sliding scale with the current value of the interval property of

the instrument. The sliding scale adjusts to the current value so that you can change small values

with a granularity of 0.1 second and larger values with a granularity of one minute. By using the

slider, you can set the sampling interval in the range 0.2 second to 30 minutes. To change the

interval between observations, select the slider with the mouse and move it to the value you want.

Then release the slider and select Proceed. The xmservd daemon on the remote Data-Supplier

host is sent a change_feeding message every time you select Proceed.

 Even though the sampling interval can be requested as any value in the previous range, it may be

rounded by the xmservd daemon on the remote system that supplies the statistics. For example,

if you request a sampling interval of 0.2 second but the remote host’s daemon is configured to

send data no faster than every 500 milliseconds, then the remote host determines the speed.

 When the interval is changed, the instrument is redrawn with the new properties including a new

pixmap (image) of the instrument if it is a recording instrument. Note that until a time

corresponding to the size of the history property has elapsed, the history of the instrument is a

mixture of observations taken with the old interval and the new one you chose.

 If you select the Save Buffer option from one of the recording menus, the data saved to the

recording file will have time stamps that assume the interval has been unchanged (and identical to

the value of the interval property at the time the buffer is saved). It is suggested that you don’t

save buffers of instruments that have had their sampling interval changed if exact timing of historic

events is important.

History

Opens a dialog box and displays a sliding scale, with the current value of the history property of

the instrument. The scale ranges from 50 to 5,000 observations. To change the number of

observations, select the slider with the mouse and move it to the value you want. Then release the

slider, and select Proceed.

Chapter 3. The xmperf User Interface 37

When the history is changed, the instrument is redrawn with the new properties including a new

pixmap (image) of the instrument if it is a recording instrument.

Note: If the history property value is reduced, any excess data the instrument collects is

discarded; similarly, when the value is increased more memory is allocated to keep the

extra history as observations are collected.

Shift Opens a dialog box, and displays a sliding scale with the current value of the shift property of the

instrument. The scale ranges from one more than the current value of the space property to 20

pixels. To change the number of pixels to shift, select the slider with the mouse and move it to the

value you want. Then release the slider, and select Proceed.

 When the shift property is changed, the instrument is redrawn with the new properties including a

new pixmap (image) of the instrument if it is a recording instrument. If you want to reduce the

value of this property to a value smaller than the current value of the space property, you must

first reduce the value of the space property, then repeat the operation for the shift property.

Space Opens a dialog box, and displays a sliding scale with the current value of the space property of

the instrument. The scale ranges from zero to one less than the current value of the shift property.

To change the number of pixels spacing between bars, select the slider with the mouse and move

it to the value you want. Then release the slider, and select Proceed.

 When the space property is changed, the instrument is redrawn with the new properties including

a new pixmap (image) of the instrument if it is a recording instrument. If you want to increase the

value of this property to a value that is larger than the current shift value, you must first increase

the value of the shift property to one more than what you want the space property to be, then

repeat the operation for the space property.

Style & Stacking

 Opens a dialog box so one of the following style choices can be selected (using radio buttons):

v Line

v Area

v Skyline

v Bar

v State_Bar

v State_Light

v Pie_Chart

v Speedometer

Stacking can also be selected. After selecting style and stacking, select Proceed. (Cancel and

Help options are also available.)

Foreground

Opens a dialog box with one button for each of the colors:

v Black, white, and grey10, grey20, ... grey90.

v The colors defined in the X resource file with the resources ValueColor1 through ValueColor24

(see “Resources Defining Default Colors” on page 279).

v Any additional colors referenced in the xmperf configuration file.

Below the color buttons, eleven buttons show how the current selection of foreground and

background colors look when each of the eleven tiles is chosen. The eleven tile buttons are

numbered for easy reference but in the configuration file, tiles are referred to with symbolic

names as described in “Explaining the xmperf Configuration File” on page 272.

Background

Works exactly as foreground color, only it changes the background color of the instrument.

38 Performance Toolbox Guide

Change Path

This menu item gives you the possibility to “remount” the instrument on a different host. The name

of the menu item means that you exchange the hosts part of the path names of all values in the

instrument with a new host name. For example, assume the instrument is monitoring statistics on

host pjank. By selecting a new host name, such as alvor, you cause the instrument to be

monitoring alvor.

 The new host name is selected from a popup list of host names containing all the currently

available data-supplier hosts. From this list, pick the one you want by selecting it and then

selecting the Done menu in the menu bar of the box. This produces a small pull-down menu. If

you select the Cancel menu item, the box goes away, and no new path is selected. If you select

the Reselect menu item, the list of data-supplier hosts is refreshed. If you select the Accept

Selection menu item, the selected host is chosen as the remote host for all statistics in the

instrument.

Note: With the Performance Toolbox Local feature, only the local host is available for selection.

 When the instrument is changed to monitor the new host, it is possible that it references statistics

that are unavailable on the new host. Such statistics are not displayed in the changed instrument.

Similarly, the instrument can reference statistics that were not available on the previous host, but

exist on the new host. Such statistics are added to the instrument.

 If recording is active for the instrument at the time you change one of the following properties of the

instrument, the change has no effect on the recording. The instrument definition is saved when the

recording starts, and subsequent changes do not affect the recording file. The properties influenced are:

v History

v Shift

v Space

v Style

v Stacking

v Foreground

v Background

All this means is that the initial properties of the playback console are as recorded in the recording file. As

described in “Playback Console Windows” on page 43, all the previously listed properties can be changed

before or during playback.

The Edit Value Menu

The Edit Value pull-down menu has five items. The first four items are active only when an instrument is

selected. The last one is active only when no instrument is selected. The menu items are:

Add Value

This menu item is used to add a value to an instrument. It is done by selection from a hierarchy of

value selection windows as described in “Value Selection” on page 46.

Change Value

When you make this menu selection, you must tell xmperf which value you want to change. If the

instrument has more than one value, you’ll see a dialog box with a set of radio buttons one for

each of the values currently defined in the instrument. To continue, select the value you want to

change and then on Proceed.

 When you select a value, or directly if the instrument has only one value, another dialog box

opens. You can change any or all of the properties for the value from this dialogue box. This

dialog box is described in “Changing the Properties of a Value” on page 48.

Chapter 3. The xmperf User Interface 39

Delete Value

When you make this menu selection, you must tell the program which value you want to delete

from the instrument. To allow this, xmperf opens a dialog box with a set of radio buttons one for

each of the values currently defined in the instrument. Select the value you want to delete and

then on Proceed.

 When a value is selected, you are asked if you really want to delete the value from the instrument.

Select OK if you do; otherwise on Cancel.

Unselect Instrument

Deselects the selected instrument and removes the dashed line around it.

Select Instrument

Serves as a reminder of how you select instruments. When you select this item an information

window opens and gives you a brief description of the selection principles.

The Recording Menu

This menu item yields a pull-down menu containing two items. Both items represent cascading submenus.

The first item is always active; the second one is active only when an instrument is selected. The menu

items are:

Console Recording

Opens the recording submenu that allows you to start or stop recording from the entire console.

For details, see “Recording Methods” on page 53.

Instrument Recording

Opens the recording submenu that allows you to start or stop recording from the selected

instrument. For details, see “Recording Methods” on page 53.

The Help Menu

This item contains two menu lines. The first line provides help on understanding the intended use of the

console. Help for the console is shown if a simple help file (see “Simple Help File Format” on page 286) is

present and contains a help screen for the console.

The second line is the prescribed On Version that displays a short message informing you of the version

of xmperf.

Console Popup Menus

When xmperf is configured with popup menus, a popup menu opens whenever you move the mouse

pointer into a console and click the left or middle mouse button. If the mouse pointer is within the outline of

an instrument, that instrument is selected and the full set of pop-up menu choices are active. If the mouse

pointer is positioned outside any instrument, the menu is still opens but some of the menu items that

require an instrument to be selected are inactive or ghosted. Using the right mouse button, select the

menu item that you want to select.

The menu that opens contains the following items. Some menu items produce a cascade menu when

selected; they are marked with the word submenu in parentheses and described in separate sections after

the direct menu items:

v Value Editing (submenu)

v Modify Instrument (submenu)

v Add Instrument (submenu)

v Tabulating Window

v Copy Instrument

v Resize Instrument

v Move Instrument

40 Performance Toolbox Guide

v Delete Instrument

v Console Recording (submenu)

v Instrument Recording (submenu)

v Copy Console

v New Console Path

v Open Console

v Close Console

v Erase Console

v Save Changes

v Exit xmperf

v Help

The xmperf popup menu items that take you directly to a function are the following:

Tabulating Window

Select this menu item to display a tabulating window for the selected instrument. If a tabulating

window is already displayed when you select this item, that window is closed. Tabulating windows

are special forms of windows that will tabulate the values of the instrument as data is received and

will also calculate a line with a weighted average for each value. Tabulating windows are described

in more detail in “Tabulating Windows” on page 50.

Copy Instrument

Causes a new instrument to be added to the console. The new instrument is an exact copy of the

currently selected instrument and is added as described in “Adding an Instrument to a Console” on

page 21.

Resize Instrument

Allows you to resize the selected instrument as described in “Resizing Instruments in a Console”

on page 21.

Move Instrument

Allows you to move the selected instrument as described in “Moving Instruments in a Console” on

page 22.

Delete Instrument

A dialog box opens when you ask to delete an instrument. You then accept the deletion or cancel

it. This safeguards you against unintended deletion of instruments.

Copy Console

When you select this option, a new console is made as an exact copy of the selected console.

The first you’ll see is a dialog box that prompts you for a name for the new console. You enter the

name of your choice as described in “Choosing a Name” on page 47. All the rest is done

automatically.

New Console Path

This menu item gives you the possibility to “remount” all the instruments in the console on a

different host. The name of the menu item means that you replace the hosts part of the path

names of all values in the console with a new host name. For example, assume a console has two

instruments, one monitoring statistics on host pjotr and the other monitoring statistics on host

basse. By selecting a new host name, say mango, you cause both instruments to be monitoring

mango.

 The new host name is selected from a popup list of host names containing all the currently

available data-supplier hosts. From this list, pick the one you want by selecting it and then

selecting the Done menu in the menu bar of the box. This produces a small pull-down menu. If

you select the Cancel menu item, the box goes away, and no new path is selected. If you select

the Reselect menu item, the list of data-supplier hosts is refreshed. If you select the Accept

Chapter 3. The xmperf User Interface 41

Selection menu item, the selected host is chosen as the remote host for all statistics in the

console. Note that with the Performance Toolbox Local feature, only the local host is available for

selection.

 As the instruments are changed to monitor the new host, some may reference statistics that are

not available on the new host. Such statistics are not displayed in the changed instrument.

Similarly, the instrument can contain referenced statistics that were not available on the previous

host but exist on the new host. Such statistics are added to the instrument.

Open Console

This selection produces a popup menu containing all the consoles defined in the Monitor menu of

the main window and its submenu of skeleton consoles. For convenience, this selection is placed

here to allow you total control even without having the main window visible.

Close Console

When you select this item the current console is closed and all historic data collected for its

instruments is lost. If recording is active for the console or any instrument in the console, recording

stops and the recording file is closed. You can get the same effect by selecting the console from

the Monitor menu of the main window or from the Open Console menu. Because the console is

active, its name is preceded by an asterisk in the menus, so selecting it deactivates (or closes) the

console. An alternative way of closing the console is to select the Close option from the Window

Manager menu.

Erase Console

Selecting this item erases the console definition from the Monitor menu (and from the configuration

file if and when changes are saved). Before the console is erased, the actions described for the

Close Console menu item are carried out. To make sure you don’t delete a console accidentally,

you are prompted to verify the selection before it is carried out.

Save Changes

When you have not changed the console, or when changes have previously been saved, this

menu selection is inactive: you cannot select it. When you make a change to the console, this

menu selection becomes active.

 When you select this menu item, all changes to the console (but not to other consoles) are written

to the configuration file. After the changes are saved, the menu selection is inactivated until new

changes are made to the console.

Exit xmperf

This item works exactly like the Exit xmperf selection of the File menu in the main window. It is

placed here to allow you total control even when the main window is minimized.

Help This item is intended to provide help to understand the intended use of the console and related

other consoles and tools. Help for the console is shown if a simple help file (see “Simple Help File

Format” on page 286) is present and contains a help screen for the console.

Value Editing Submenu

The Value Editing submenu has three items:

Add Value

A menu item used to add a value to an instrument. This is done by selection from a hierarchy of

value selection windows as described in “Value Selection” on page 46.

Change Value

When you make this menu selection, you need to indicate which value you want to change. If the

instrument only has one value, the choice is obvious; otherwise you’ll see a dialog box with a set

of radio buttons, one for each of the values currently defined in the instrument. To continue, select

the value you want to change and then on Proceed.

 When you select a value, another dialog box opens. You can change any or all of the properties

for the value from this dialogue box. This dialog box is described in “Changing the Properties of a

Value” on page 48.

42 Performance Toolbox Guide

Delete Value

When you make this menu selection, you must indicate which value you want to delete from the

instrument. To simplify doing this, a dialog box with radio buttons, corresponding to each of the

values currently defined in the instrument, opens. To continue, select the value you want to delete

and then select Proceed.

 When a value is selected you are asked if you really want to delete the value from the instrument.

Select OK if you do; otherwise select Cancel.

Modify Instrument Submenu

The Modify Instrument submenu is identical whether you have configured xmperf for pull-down or popup

menus. It is described in “The Modify Instrument Submenu” on page 36.

Add Instrument Submenu

The Add Instrument submenu has two items:

Local Instrument

Selecting this menu item causes the console to be prepared for the addition of a new instrument.

Space is acquired in the console as described in “Adding an Instrument to a Console” on page 21.

Initially, the instrument is not created. Instead, you are presented with a list of values from which

to select the first value of the instrument. The list allows you to select any value on Localhost (see

“The Meaning of Localhost in xmperf” on page 23). If your first action is to select End Selection in

the selection box, the instrument is not created.

 When you’ve selected a value for your instrument, the instrument is created with that value as its

first one. You will then see a dialog box that allows you to select the way you want this value to be

plotted. For details of this, see “Changing the Properties of a Value” on page 48. When you have

set the options for the first value of the new instrument, you can select and set the options of

additional values to be added to the instrument. When you’re done, select End Selection in the

selection box.

Remote Host Instrument

Every instrument must show values from either the host where xmperf is executing or from one

single data-supplier host. If the instrument shows values from a data-supplier host, it is called a

remote instrument. This menu selection allows you to add a remote instrument.

 A selection box with a list of all the currently available data-supplier hosts opens. From this list,

pick the one you want by selecting it and then selecting the Done menu in the box. This produces

a small pull-down menu. If you select the Cancel menu item, the box goes away and no

instrument is created. If you select the Refresh Host List menu item, the list of data-supplier

hosts is refreshed. If you select the Accept Selection menu item, things proceed as described in

Local Instrument (see “Add Instrument Submenu”), except that you are presented with a list of

values on the data-supplier host you selected.

Note: With the Performance Toolbox Local feature of Version 2.2 or later, only the local host is

available for selection.

Recording Submenus

The Recording Submenus Console Recording and Instrument Recording are identical whether you

have configured xmperf for pull-down or popup menus. They are described in “The Recording Menu” on

page 40.

Playback Console Windows

Chapter 4, “Recording and Playback with xmperf,” on page 53 describes the use of the playback facility of

xmperf. This section describes how you modify the appearance of a playback console.

Regardless of whether xmperf is configured for popup or pull-down menus, the menu you use to change

the appearance of a playback instrument is always a popup menu. It is activated by placing the mouse

Chapter 3. The xmperf User Interface 43

pointer within an instrument and then clicking the left or middle mouse button. The popup menu you get is

a subset of the submenu described in “The Modify Instrument Submenu” on page 36 plus some special

items. The menu items are:

v Tabulating Window

v Autoscale

v Maxiscale

v History

v Shift

v Space

v Style and Stacking

v Foreground

v Background

v Change Value

v Delete Value

v Move Instrument

v Resize Instrument

v Erase Instrument

v Annotation Notes

v Write Current View

The things you can do are all related to how the recorded data is presented. You can change any or all of

the previously listed properties of the instrument that was clicked on to bring up the menu. This can be

done before or after you start playback. All changes, except deletions and the effect of the selections

Autoscale and Maxiscale, can be changed as many times as you like, allowing you to re-play a particular

recording with many different appearances.

The following is a brief description of how to use the menu items:

Tabulating Window

Select this menu item to display a tabulating window for the selected instrument. If a tabulating

window is already displayed when you select this item, that window is closed. Tabulating windows

are special forms of windows that tabulate the values of the instrument as data is received and

also calculate a line with a weighted average for each value. Tabulating windows are described in

more detail in “Tabulating Windows” on page 50.

Autoscale

When selected, this menu item causes a scan of all data values collected in the history of the

instrument. Note that for this scan, only values that have actually been played back since the last

Seek or Rewind are part of the history. Any value that does exceed 105 percent of the high scale

at any point in the recorded history has its high scale adjusted so that the highest peak is shown

somewhere between the 50% and the 100% mark in the graph.

 If stacking is in effect for the instrument, the peak is determined as the sum of all values using the

primary style of the graph at any one point in history.

Maxiscale

When selected, this menu item causes a scan of all data values collected in the history of the

instrument. Note that for this scan, only values that have actually been played back since the last

Seek or Rewind are part of the history. All values are adjusted so that the highest peak at any

point in the recorded history is shown somewhere between the 50% and the 100% mark in the

graph.

 If stacking is in effect for the instrument, the peak is determined as the sum of all values using the

primary style of the graph at any one point in history.

44 Performance Toolbox Guide

History

When the history property is changed for a recording instrument, the instrument is redrawn with

the new properties including a new pixmap (image) of the instrument. Note that for playback, the

purpose of the history property is to define the size of the pixmap (image) kept in memory. This is

only useful for recording type instruments and in playback is only used to determine whether you

can scroll the displayed graph and by how much.

Shift When the shift property is changed for a recording instrument, the instrument is redrawn with the

new properties including a new pixmap (image) of the instrument. If you want to reduce the value

of this property to a value smaller than the current value of the space property, you must first

reduce the value of the space property, then repeat the operation for the shift property.

Space When the space property is changed, the instrument is redrawn with the new properties including

a new pixmap (image) of the instrument if it is a recording instrument. If you want to increase the

value of this property to a value that is larger than the current shift value, you first increase the

value of the shift property to one more than what you want the space property to be, then repeat

the operation for the space property.

Style & Stacking

This selection causes a dialog box to open. The window has a set of radio buttons, one for each

possible instrument type, and a single button that allows you to activate or deactivate the stacking

facility.

 Change the primary style of the instrument by selecting the instrument type you want it to be.

Select or deselect stacking using the stacking button. When you’ve made your selections, select

Proceed to implement the changes. After the changes are applied to the instrument, it is redrawn

from the beginning.

Foreground

Allows you to change the foreground color and tile of the instrument.

Background

Allows you to change the background color and tile of the instrument.

Change Value

When you make this menu selection, you must tell xmperf which value you want to change. If the

instrument has more than one value, you will see a dialog box with a set of radio buttons one for

each of the values currently defined in the instrument. To continue, select the value you want to

change and then on Proceed.

 When you select a value, or directly if the instrument has only one value, another dialog box

opens. You can change any or all of the properties for the value from this dialogue box. This

dialog box is described in “Changing the Properties of a Value” on page 48. Because no new data

values can be added to a recording, the data path cannot be changed from the dialog box.

Delete Value

When you make this menu selection, you must tell the program which value you want to delete

from the instrument. To allow this, xmperf opens a dialog box with radio buttons that correspond

to each of the values currently defined in the instrument. Select the value you want to delete and

then on Proceed.

 When a value is selected, you are asked if you really want to delete the value from the instrument.

Select OK if you do; otherwise select Cancel.

Move Instrument

Allows you to move the selected instrument as described in “Moving Instruments in a Console” on

page 22.

Resize Instrument

Allows you to resize the selected instrument as described in “Resizing Instruments in a Console”

on page 21.

Chapter 3. The xmperf User Interface 45

Erase Instrument

As a precaution against unintended deletion, a dialog box opens when you ask to delete an

instrument. You then have to accept the deletion or cancel it.

Annotation Notes

Opens the annotation list window in which any existing annotations are listed and from where new

annotations can be added and existing ones modified or deleted.

Write Current View

Modifies the control information in the recording file to reflect the current layout and contents of the

instrument. The original control information is not saved. If annotations exist in the recording file,

they are reorganized to remove any annotations marked for deletion and inserting the remaining

ones in an optimal place in the file.

Important xmperf Dialogs

This section covers some of the important dialog boxes, or value selection windows, you use to customize

xmperf.

Value Selection

Value selection can be invoked from the Add Value menu, implicitly from one of the Add Instrument

menus, or from the dialog box used to change the properties of a value as described in “Changing the

Properties of a Value” on page 48. Value selection is done from cascading lists that work as follows:

A dialog box (which is called the value selection window) opens, listing the top layer of values from which

you can select. In this list, lines ending in a slash and three dots signify that the line itself represents a list

at the next hierarchical level. These lines are context lines. The remaining lines in the list are called

statistics lines, each of which represents a value.

The content of theValue Selection Dialog Box for xmperf will be similar to the following example. It shows

four statistic lines and six context lines.

hosts/trigger/FS/rootvg/free Free space in volume group, MB

hosts/trigger/FS/rootvg/ppsize Physical partition size

hosts/trigger/FS/rootvg/lvcount Number fo logical volumes in VG

hosts/trigger/FS/rootvg/pvcount Number fo physical volumes in VG

hosts/trigger/FS/rootvg/hd4/... /

hosts/trigger/FS/rootvg/hd2/... /usr

hosts/trigger/FS/rootvg/hd9var/... /var

hosts/trigger/FS/rootvg/hd3/... /tmp

hosts/trigger/FS/rootvg/hd1/... /home

hosts/trigger/FS/rootvg/lv00/... /usr/vice/cache

If you select a context line, you’re shown the next level of statistics in another dialog box that’s placed just

below the top frame of the first dialog box. This new box contains a list that can include context lines as

well as statistics lines. You can repeat the process until the last list you get contains only statistics lines.

Note that as you move through the hierarchy, the names displayed in the list become longer as the

preceding hierarchical levels are prefixed to the names, separated by slashes.

The title bar of each dialog box shows the context path for the lines in that dialog box. This is another way

of showing the hierarchical levels of the values.

If you select a statistics line, the result depends on how you invoked this function:

1. If you invoked the function from the Add Value menu or one of the Add Instrument menus, the line you

selected immediately is added to the instrument. The value is added at the first empty value slot in the

instrument and inherits the color of that slot, whatever that color is. All other properties are initially set

to their default values as described in the data structures behind the list you chose from.

46 Performance Toolbox Guide

Then you see another dialog box (described in “Changing the Properties of a Value” on page 48) that

allows you to modify the new value’s properties. If you want to add the selected value to the

instrument, regardless of whether you changed any of its properties, you need to select Apply in the

dialog box. If you select Cancel, all the changes you made are discarded and the value is removed

from the instrument.

When the property change window disappears, you return to the Value Selection window. You can then

select another value to be added to the instrument. This can be repeated until the maximum number of

values allowed in an instrument is reached. When you have finished adding values, you close the

value selection windows by clicking End Selection.

2. If you invoked the function from the dialog box used to change the properties of a value (see

“Changing the Properties of a Value” on page 48) then the value you selected replaces the value you

are modifying. You can repeat the operation (selecting another value), and each time the selected

value replaces the instrument value. When you are sure you have the value you want, select End

Selection in the selection dialog box to return to the property change Window. Now select Apply for

the change to remain in effect. Select Cancel if you want to return to the original instrument definition.

When you have more than one value selection window displayed you can jump backwards in the stack

of windows using either of the following two ways:

One Level Back

This is one of the buttons in the value selection windows. When you click it, the window

disappears and the immediately lower window becomes active. This way, you can go one level

back before selecting another value.

Closing the Window

Each Value Selection window has window manager decorations, including the window menu

that allows you to close the window. If you close a window this way, you also close all windows

on top of that window. If the window you closed is not the lowest window, one or more Value

Selection windows remains displayed. This gives you a way of skipping more than one level

back before selecting another value. The context path displayed in the window frame helps

you determine which window to close.

Creating a Console

Creating a new console requires two steps:

1. Select a name for the new console and create an empty console.

2. After an empty console is created, add the instruments you want in the new console.

Choosing a Name

When you select Add New Console from the Monitor menu of the main window, a small dialog box

opens. The box has an input field where you can type the name you want the new console to have.

Initially, the input field has a name constructed from the date and time. You can change the name to

anything, if you do not use names of existing consoles.

If the name you enter contains periods (full stops), slashes, or colons, xmperf converts these characters

to commas, underscores, and semicolons, respectively. This is done to prevent characters in a console

name from clashing with the characters used for delimiters in the configuration file or with file names of

recording files.

After you have entered the name you want, press the Enter key or select Proceed to create the empty

new console. The creation of the console causes it to be added to the Monitor menu (with its name

preceded by an asterisk because it is active). If the console is empty (has no instruments), it will not be

saved to the configuration file even if you ask to save all changes. However, when the new console

contains an instrument, it is added to the configuration file when you ask to save it or to save all changes.

Chapter 3. The xmperf User Interface 47

Adding Instruments to the Console

When initially created, the new console is empty. You’ll need to add at least one instrument to the console

before you can use it for anything. If xmperf is configured with pull-down menus, use the Edit Console

pull-down menu and select one of the Add Iinstrument menu items. If you use popup menus, select the

empty console and select Add Instrument from the menu.

Changing the Properties of a Value

The dialog box used to change the properties of a value opens when you do the following:

v Select Change Value.

v Select Add Value.

v Add a new instrument.

The window is a true dialog box in the sense that whatever you change from the window has an

immediate effect on the instrument and value with which you are working. If the instrument is large or

complicated or if your host is heavily loaded, immediate can mean within a few seconds.

The Changing Properties of a Value dialogue box has a check box on the top by the location, and a

statement that system-wide time executing in user mode (percent). A check box for Color and a

corresponding field to type in the color. Below is a row of radio buttons to indicate one of the following:

line, area, skyline, or bar. A field to type in Your Label is below. There are three sliders to set values for

the following: lower range for value, upper range for value, and the threshold for value. Below these three

values are two radio buttons that indicate the alarm be set either to alarm when above threshold or alarm

when below threshold.

Because the effect of your changes are seen as you make them, be sure to start by moving the dialog box

so that it doesn’t obscure the instrument with which you work. After making all the changes, select OK to

remove the dialog box and make the changes permanent. Select Cancel to restore the original instrument

properties.

Three of the properties are represented in the dialog box by a sliding scale. Scales enable you to change

a numerical value by using the mouse instead of the keyboard. However, it can sometimes be difficult to

hit exactly the value you want. To cope with this problem, the sliders in the dialog box adjust to the value

they are displaying. This is done by rounding by 10, 100, 1,000, 10,000, or 100,000. When rounding is

done, a multiplication factor is displayed as part of the slider text. Another way to cope with the precision is

by limiting the high value to five times the current value. This means that if the current value is 100 and

you want to increase it to 100,000, then you must do it in steps. For example:

1. With current value = 100, change to 500.

2. With current value = 500, change to 2,500.

3. With current value = 2,500, change to 10,000.

4. With current value = 10,000, change to 50,000.

5. With current value = 50,000, change to 100,000.

The major advantage is that of not having to accept values such as 99,973 or 100,744 when you want

100,000.

The actual changing of values is done by moving the mouse pointer to the slider and then pressing the left

mouse button; while holding the button down, move the mouse pointer left or right to decrease or increase

the value. As you move the pointer, the value corresponding to the slider position is displayed. When you

have reached the desired value, release the mouse button.

The dialog box always looks the same and contains the following sections:

48 Performance Toolbox Guide

Value path and description

Initially, holds the path name and description of the value you are changing. If you select the

button you are presented with the first of a series of value selection windows as described in

“Value Selection” on page 46.

 As you pick another value for the instrument by selecting from the lists of values, the text

displayed here changes to the path name and the description of the new value.

 As you change the value, the property values for ranges and threshold also change because the

default values corresponding to the new value are taken. Therefore, before changing any other

properties, ensure that you are working with the desired value.

Color The name of the current color for drawing the value is displayed in a label field next to a button.

The label field is painted in the current color and tile of the value.

 To change the color and the tile of the value, select the button. This causes the color selection

dialog box to open. Select a new color or tile from the dialog box by selecting one of the color

selection or tile buttons. Try however many color and tile combinations you want and select

Proceed in the color selection window when you find what suits you.

Secondary style

If the primary style of the instrument you are working with is one of the state graphs, only one

radio button is displayed for secondary style. That is because you cannot have a secondary style

different from the primary style with state graphs. The single radio button and its text are merely

for your information and no action is taken if you select it.

 For recording style graphs, however, you always are presented with a radio button for each of the

recording graph styles. The one that is used as secondary style for the value you are changing

looks as if it is pressed down (selected). You can change the secondary style to any displayed

style by selecting the corresponding radio button.

Your label for the value

Allows you to specify your own label to be displayed in the instrument for this value. By default,

this field is empty, and the path name of the statistic is used in the instrument. By entering a text

string of up to 32 characters, you can override the default.

 In case of values for processes, you can use two keywords to specify which part of the

constructed value name you want displayed as the value name. Processes are identified by a

name constructed by concatenating the process ID (PID) with the name of the executing

command, separated by a ~ (tilde). If you do not enter your own label, this constructed name is

used to identify process values. By entering the keyword cmd, you can change this to be only the

name of the executing command; by entering the keyword pid, you change it to be only the PID of

the process. The distributed configuration file has an example of the use of the two keywords in

the skeleton console named Local Processes.

Lower range

The sliding scale (slider) can move from value zero to one less than the current upper range

property value. If you want a non-zero lower scale, first ensure that you have the upper scale set

correctly.

Upper range

The sliding scale (slider) can move from 1 to 1,000,000,000; but, as described previously, you

might have to do this in steps.

Threshold

The sliding scale (slider) can move from value 0 to 1,000,000,000; but, as described previously,

you might have to do this in steps. The threshold value only has a meaning for state light type

instruments. The threshold type (described as follows) determines how to interpret the threshold

value.

Chapter 3. The xmperf User Interface 49

Threshold type

This section has two radio buttons. One, and only one, must be active. The section describes the

threshold type used for state light type instruments as either ascending or descending.

Tabulating Windows

Whenever an instrument is active, it updates a graphical display of the values it contains. Each time a new

set of values is received, the graphical window is updated. In addition to the graphical display, an

instrument can simultaneously tabulate the data values as they are received. This is done by opening a

tabulating window.

A tabulating window is opened for an instrument when you select the menu item Tabulating Window. If

you do it one more time, the tabulating window is closed. You can also close a tabulating window from its

window manager menu.

A tabulating window has three components:

v Header lines

v Weighted average line

v Detail lines

Tabulating Window Header Lines

The header lines are constructed using either user-supplied labels for the values (if available) or path

names. The path name with most levels determines the number of header lines. The first value in the

Example of a Tabulating Window figure, has a path name of:

hosts/nchris/CPU/cpu0/kern

That gives five levels. To keep the number of header lines as low as possible, all tabulating windows show

the host name in the upper left corner of the window. Because all values of any instrument have the first

two levels of the path name in common, they are not shown for each value.

Tabulating Window Weighted Average Line

The first data line is the weighted average line showing an approximation to an average for each value.

The formula used to calculate the average is:

new_avg = observation x weight + old_avg (1 - weight)

The weight in the formula is specified by the command line argument -p or the X resource Averaging. The

default weight is 50%, is used as 0.5 in the previous formula.

To make the weighted average line stand out from detail lines, it is shown in reverse video.

Tabulating Window Detail Lines

The detail lines show actual data values as they are received. At the far left of each line is a time stamp

showing the time at which the data values were captured, using the time of day of the host that generated

the data values. As new observations are received, previous data lines move down and, eventually,

disappear off the bottom of the list of detail lines.

The default number of detail lines sent to a tabulating window is 20. However, when the window initially

opens, it typically shows only the top four detail lines including the weighted average line. Use the window

manager to resize the window if you want to see more detail lines.

50 Performance Toolbox Guide

The number of detail lines in tabulating windows can be changed with the X resource TabWindowLines.

You can specify from 2 to 100 lines. The number of lines you specify should include the weighted average

line. If you specify more than 25 lines, the tabulating window provides a vertical scroll bar that allows you

to scroll down to see the last of the detail lines.

Column Width in Tabulating Windows

The width of each column in tabulating windows defaults to nine characters. Data values are always cut to

fit the active column width. If this would cause digits to be removed from the value, it is divided by either

1,000 or 1,000,000 as required and suffixed with a K or M, respectively. Where applicable, column headings

are truncated so that at least one space separates two headings.

The default column width can be changed through the X resource TabColumnWidth (see “Execution

Control Resources” on page 280). A value from 5 through 15 can be specified.

Decimal Places in Tabulating Windows

Some values may be tabulated with one decimal place. This is done if the value’s High Scale property is

less than or equal to a global threshold that defaults to 10. This is done to allow extra granularity for

values that never have high readings.

The global threshold can be changed with the X resource DecimalPlaceLimit (see “Execution Control

Resources” on page 280).

Tabulating Window Title Bar

The title bar of tabulating windows shows the name of the host where xmperf is executing followed by

(TAB): and the identification of the instrument. The instrument is identified by the console name and the

sequence number of the instrument within the console.

Chapter 3. The xmperf User Interface 51

52 Performance Toolbox Guide

Chapter 4. Recording and Playback with xmperf

An active console keeps only as many observations as its history property specifies. When using xmperf,

you will likely encounter situations where the observations are moving out of your view too fast. For such

cases, and to facilitate playing of scenarios collected on other hosts, the Recording and Playback feature

of xmperf was implemented. Another feature lets you annotate recording files.

In addition to the recording function of xmperf, recordings can be created by 3dmon, the xmservd

daemon, and by the azizo program, and a set of recording support programs. The creation of recordings

by these programs are described in:

v Chapter 6, “3D Monitor,” on page 71

v Chapter 9, “Recording Files, Annotation Files, and Recording Support Programs,” on page 93

v Chapter 10, “Analyzing Performance Recordings with azizo,” on page 107.

Recording of Statistics

Recording of statistics can be initiated for one or more instruments in a console or for all instruments in a

console. Recording can be active for more than one console at a time. Recordings are always written to a

file, which has a name prefix of “R.”. followed by the name of the console. The file is written to the

directory $HOME/XmRec. For example, the recording file for a console named:

Remote IP Load

would be:

$HOME/XmRec/R.RemoteIPLoad

Be aware of the following information when recording statistics:

1. When a file is created, a full description of the entire console is written as the first records of the file.

This is true whether recording is started for the console as a whole or for only some instruments in the

console.

2. If the file exists when you wish to start recording, you are asked whether you want to append to the file

or re-create it. If you elect to append to the file, it is assumed that a console description already exists

in the file.

3. Recording files are located in a subdirectory named XmRec in the user’s home directory. If this

directory does not exist when recording is requested, xmperf attempts to create it.

Recording Methods

When you select recording from a menu, you are presented with the following choices:

Save Buffer This option transfers the contents of the selected console’s or instrument’s history buffer to

the recording file. The option is only available when recording is not already active for the

console, because the values saved from the buffer would otherwise be out of

synchronization with the ongoing recording’s values. The option is intended for situations

where you detect an interesting pattern in a console and want to capture it for later

analysis. When the recording of the buffer is completed, the recording file is closed.

Begin Recording

This option starts writing data values to the recording file as they are received. Recording

continues until you stop it or the console is closed.

Save & Begin Recording

Combines the previous two options by first saving the buffer data to the file and then

starting recording.

© Copyright IBM Corp. 1994, 2004 53

End Recording

Stops recording and closes the recording file if no other instrument in the console is still

recording.

Annotation Allows a user to add annotations to a recording while the recording is taking place.

Annotations are described in

Active Recording Menu Items

Depending on whether a console or one of its instruments is currently recording, and depending on which

recording menu you select, different items in the recording submenu are active. If you understand this, you

can record information that you need while avoiding recording unwanted information. The status of the

menu items is closely related to the difference between console recording and instrument recording, so

look at that first.

If the Recording submenu is arrived at from a Start Console Recording menu, all menu items in the

submenu are assumed to be concerned with the console as a whole. Thus, whether one, more, or all

instruments in the console are currently being recorded, a selection of End Recording stops recording for

all instruments. Similarly, no matter if one or more instruments are currently being recorded, a selection of

Begin Recording from the submenu causes all instruments in the console to be recorded from this time

on.

If the recording submenu is arrived at from a Start Instrument Recording menu, all menu items in the

submenu are considered to apply to the currently selected instrument. Therefore, if the selected instrument

is not currently being recorded, a selection of Begin Recording starts recording for the instrument. If the

instrument is being recorded, no matter if the recording was started as a consequence of a full console

recording being started, a selection of End Recording stops recording for the selected instrument. In

neither case does the operation affect any other instrument in the console.

The Save Buffer submenu item is valid only if no recording is currently going on for any instrument in the

console. This restriction helps you avoid mixing historic data with a “real-time” recording.

All the previous rules influence what submenu items are active at any point in time. The following table

lists the possible combinations:

 Menu type Selection All

instruments

are recording

Selected

instrument is

recording

Selected

instrument

not recording

No instrument

selected

No instrument

is recording

Console Menu Save Buffer - - - - +

Console Menu Begin

Recording

- + + + +

Console Menu Save & Begin

Rec

- - - - +

Console Menu End Recording + + + + -

Console Menu Annotate + + + + -

Instrument

Menu

Save Buffer - - - N/A +

Instrument

Menu

Begin

Recording

- - + N/A +

Instrument

Menu

Save & Begin

Rec

- - _ N/A +

Instrument

Menu

End Recording + + _ N/A -

54 Performance Toolbox Guide

Menu type Selection All

instruments

are recording

Selected

instrument is

recording

Selected

instrument

not recording

No instrument

selected

No instrument

is recording

Instrument

Menu

Annotate + + _ N/A -

+ means option is available under these conditions.

- means option is not available under these conditions.

Recording Submenu, Active Items

To remind you that recording is in progress, a symbol illustrating a tape reel is shown in the lower right

corner of all instruments with recording active (except state light instruments).

Playback of Recordings

Playback is initiated from the File menu of the main window of xmperf. When you select the Playback

menu item, you are presented with a list of files available for playback. The file list consists of all files in

the $HOME/XmRec directory with a prefix of “R.” You can use the filter part of the file selection box to look

for other masks in whichever directory you want. Select a file to replay, and then select OK or double-click

on the file name.

The selection box remains open after you select a file to replay. This allows you to select multiple files.

Select Cancel to remove the selection box..

Creation of Playback Consoles

Recording files may have been produced by xmperf, in which case they contain information about the

appearance of the console from which they were recorded. Recording files created or modified by 3dmon,

xmservd, azizo or one of the recording support programs do not ly contain console information.

If a recording file does contain console information, this information is used to create the playback console

in the image of the original console. This cannot be done for other types of recordings so xmperf uses

default layouts in playback consoles for such recordings.

Though recording files may lack console information, they must contain information that groups statistics

together in sets. Each set is treated by xmperf as an instrument. If any set contains more than 24

statistics, the set is broken into smaller sets. The playback console for a recording without console

information is built by adding instruments for the sets as they are encountered in the recording file. Initially,

xmperf attempts to allocate space for the instruments in the full width of the console. If too many

instruments or values are present to allow this, the console is divided into multiple columns of instruments.

Default Value Properties

When a recording file lacks console information, it still can contain information about the color or style of

values. Similarly, it can include or lack information about the scales to use for plotting the values. xmperf

uses any such information present and supplies default properties when they are not. The default

properties for values are:

Color Selected from the list of colors provided through the ValueColorX resources. No tile is selected.

Style The secondary style is set to None, which means the value is plotted in the primary style of the

instrument.

Lower range

The lower range (low scale) is set to zero.

Chapter 4. Recording and Playback with xmperf 55

Upper range

The upper range (high scale) is set as if the Maxiscale menu selection (see “Playback Console

Windows” on page 43) had been applied, except that the value is never set to less than 100.

Threshold

The threshold is set to zero.

Threshold type

The threshold type is set to ascending.

Default Instrument Properties

Recording files without console information never carry instrument descriptions. Therefore, a set of

standard instrument properties is assigned to the instruments used to play the recorded statistics back.

The default properties are the same as are assigned to a console you create from scratch. They are

described in “Instruments” on page 12.

Using the Playback Console

When you select a valid recording file, xmperf reads any console configuration from the file and creates

the console. If console information is not available in the recording file, a default console is constructed. A

playback console looks different from other consoles because a row of buttons is displayed below the top

border of the console window. Playback does not start until you select Play. The following figure shows a

playback console for a recording created from the console shown in Figure 1 on page 9.

The functions of the buttons at the top of the window are as follows:

Eject Immediately stops playback, closes the console, and closes the recording file. To restart playback,

you must choose Playback from the File menu of the main window and reselect the recording file.

Figure 3. Sample xmperf Playback Console. This console shows the control buttons at top (Eject, Erase, Rewind,

Seek, Play, Slower, Faster) and the latest playback time. The upper-left pie chart displays the gluser, glkern, glwait

and glidle metrics. The upper right bar chart displays the same metrics in bar format. The bottom display is a

histrogram line chart of the same metrics with a scroll bar.

56 Performance Toolbox Guide

Erase Allows you to erase a recording file. When you select this button, a dialog box pops up. It warns

you that you have selected the erase function and tells you the name of the file you are currently

playing from. To erase the file and close the playback console, select OK. To avoid erasure of the

file, select Cancel.

 If some other program is using the recording file at the time you attempt to erase it or if you are

not authorized to delete the file, you are informed of this and are prevented from erasing the file.

Rewind

Resets the console by clearing all instruments and rewinds the recording file to its start. Playback

does not start until you select Play. The Rewind button is not active while you are playing back.

Seek Opens a dialog box that allows you to specify a time you want to seek for in the recording file. You

can set the time by selecting on the Hour or Minute button. Each click advances the hour or

minute by one. By holding the button down more than one second, you can advance the hour or

minute counter fast. When the digital clock displays the time that you want to seek, select

Proceed. This causes all instruments in the console to be cleared and the playback file to be

searched for the time you specified.

 In situations where a recording file spans over midnight so that the same time stamp exists more

than once in the playback file, the seek proceeds from the current position in the playback file and

wraps to the beginning if the time is not found. Because multiple data records may exist for any

hour and minute combination, use the Play function to advance to the next minute before doing

additional seeks on the same time, or seek for a time one minute earlier than the current playback

time.

 If you are playing back from a file while recording to the file is still in progress, the Seek function

does not permit you to seek beyond the end time of the recording as it were when you first

selected the file for playback.

 The Seek button is not active while you are playing back.

Play Starts playing from the current position in the playback file. While playing, the button’s text

changes to Stop to indicate that playing can be stopped by clicking the button again. Immediately

after opening the playback console, the current position is at the beginning of the recording file.

The same is true after a rewind.

 Initially, playing back is attempted at approximately the same speed at which the data was

originally recorded. When the recording was created by other programs than xmperf, and

especially if the file is produced by merging several files, xmperf might have difficulty determining

this speed. This can cause the start of the playback to be delayed. You can change the speed by

using the Slower and Faster buttons.

 While playing back, neither the Rewind nor the Seek buttons are active.

Slower

Select this button to cut the playback speed to half of the current speed. Note that it may take a

second for the new speed to become active.

Faster Select this button to double the playback speed. Note that it may take a second for the new speed

to become active.

00:00:00

At the far right is a digital clock. It shows the time corresponding to the current position in the

recording file or zeroes if at the beginning of the file. As playing back proceeds, the clock is

updated.

Chapter 4. Recording and Playback with xmperf 57

Recording File Inconsistencies

Recordings from instruments contain control blocks describing the instrument and console from which the

recording was done. If a recording was created by a version of xmperf, which has a control block format

different from the one of the version of the program used for playback, playback is impossible. When you

attempt to play a recording back under such conditions, xmperf detects this and displays a dialog box.

From the window you can choose to keep or delete the old recording file. You do not have the option of

playing it back. If you choose to keep the file, you can convert it to Performance Toolbox for AIX format

used by your version of xmperf with the ptxconv program.

Obviously, if you try to play back from a file that does not contain valid data, results are unpredictable.

There may also be unanticipated side effects of special conditions for recording or playback, such as:

Playing from saved buffers

When the buffer of an instrument or console is saved, that buffer may not be full because the

monitoring has not been going on for a long enough time. If you play such a recording back, the

playback shows values of zeroes up to the point where real data values are available.

Unsynchronized Instruments

Playback from recordings of multiple data-supplier hosts in one console behaves just like the real

console. Thus, time stamps are applied to each instrument (where applicable) as they are read

from the data. This reflects the differences in time of day as set on the data-supplier hosts.

However, be aware that these time differences influence the Seek function and the current position

clock.

Recordings from Instantiated Skeleton Consoles

Each time a skeleton console is instantiated, the actual choices you make are likely to vary. This is

no problem if you create recordings for each instantiated console, but if you append a recording to

a previous one with the same name, things get complicated. The reason is that a recording

contains the definition of the console only once (at the beginning of the recording). During

playback, when you reach the position where a different instantiation was appended to a previous

recording, it is assumed that the relative position of instruments and values is unchanged. It is

unlikely to be unchanged, so you cannot trust the playback.

Annotations

Annotations are special record types in recording files. They contain a several structured fields and a text

of variable length. Because recording files are binary files, so are the annotation records. It requires

special programs to add and delete annotation records. Several programs can be used to do this and one

of those programs is xmperf. This section describes how to work with annotations. The description is

centered around the way it is done in xmperf but applies to the other programs that support annotation.

This includes azizo, 3dmon, and 3dplay.

Annotation Types and Fields

In the current implementation, all annotations added interactively are timestamped annotations, meaning

that they can be related to a specific point in time. The intention is to allow an annotation to describe a

certain pattern of recorded metrics with reference to when it occurs in the recording. Annotations have the

following structured fields:

Timestamp

The timestamp. If in playback mode, the timestamp refers to the time in the recording when

annotation was selected. If in recording mode, the timestamp refers to the time of the recording

when annotation is selected. The field is kept in internal format but displayed in text format by all

programs using it.

Status

An annotation can be active or marked for deletion. This is shown by either ACTIVE or DELETE

being displayed in the Annotation List window.

58 Performance Toolbox Guide

Locale information

Reserved for future use.

Label The abstract or label of the annotation. For example, the label of the first annotation in Annotation

List window is the text List of merged files.

Text The actual text of the annotation. It is inserted automatically by a program.

Annotating while Recording

Annotations can be added from xmperf and 3dmon while recording is taking place. When you request

annotation, a window opens that is empty except for the time stamp set to the time you requested

annotation.

The label (abstract text) can then be entered, as well as the annotation text. The Add Annotation menu

can be used to save the annotation to the recording file.

Using Annotations

The most common way to view or add annotations is during playback of a recording file through xmperf or

3dmon. It is also common during analysis with azizo. After selecting annotation, the Annotation List

window opens and contains one line for each annotation in the recording file. Each line will contain the

status, timestamp, and label.

From the pull-down File menu, Add Note or Quit Annotation can be selected. To add another annotation,

use the pull-down File menu, and select Add Note. This will open the Adding an Annotation window, which

was seen previously. Quit Annotation will exit annotation, and write all added notes to the recording file.

To view the annotation text, select the line that represents the annotation you want to see.

From the Annotation View window, notes can be deleted, undeleted, or quit.

Delete Note will mark the annotation as deleted. The notes will not actually be removed from the

recording file. Undelete Note will mark the note as active. The notes remain in the recording file until

Write Current View is selected from the playback menu. Write Current View will rewrite the recording

file, omitting all notes marked deleted. This will reduce the size of the recording file.

Chapter 4. Recording and Playback with xmperf 59

60 Performance Toolbox Guide

Chapter 5. The xmperf Command Menu Interface

The command menu interface of xmperf is entirely configurable. The intention with this interface is to:

v Provide a handy list of performance-related commands and utilities.

v Provide an easy way to define standard sets of options with which to execute any utility function.

v Provide a user-friendly way of selecting command line options and supplying command line values.

Virtually any command can be defined in the xmperf configuration file. A simple syntax is used to arrange

the commands in multi-level menus and to define the specifics of each command and its options. The

following sections describe how to define menus and commands to xmperf.

Command Menus

Commands are defined as belonging to one of the following xmperf main window pull-down menu items:

Analysis Intended to contain tools that can be used to analyze a specific application, environment

or configuration. For example, this group would contain tools such as tprof (a tool to

determine which part of a program most of the execution time is spent in) and rmss (a

tool to simulate different real memory sizes).

Controls Intended as a place to keep tools to change system parameters that influence

performance. You can have tools to change the number of buffers, the number of biod

daemons, and so forth.

Utilities Intended for any remaining commands you’d like to assign to a menu.

Lines in the configuration file that define menus or commands must have an identifier as the first

characters on each line. This identifier determines what main menu the definition goes to:

analy Analysis main menu

ctrl Controls main menu

util Utilities main menu

Defining Menus

The command menus are cascading menus. This means that each item on any given menu represents

either another level of menu or a single command. A menu tree for the main menu group Analysis might

be represented like this sample menu structure:

Start New xmperf

Time Profiler

 Profiling w/source

 Minimal Profiling

Reduced Memory Simulator

 Memory Simulation

 Standard Simulation

 Special Simulation

 Set Reduced Memory

 Reset Memory

In the preceding example, menu lines are those followed by an indented line. The end-points of each

indentation represent tools or commands that can be selected and executed. Therefore, both of the

following lines are menu lines:

Time Profiler

Memory Simulation

© Copyright IBM Corp. 1994, 2004 61

Yet the following two lines represent executables:

Start New xmperf

Profiling w/source

Executables are defined as described in the following example, Defining the Sample Menu Structure.

Note: The menu structure defined previously is created with the following lines. (Lines enclosed in “<>”

are place holders for lines to define executables; ignore this for now.)

 <lines to define: Start New xmperf>

analy.menubegin.Time Profiler

 <lines to define: Profiling w/source>

 <lines to define: Minimal Profiling>

analy.menuend.analy

analy.menubegin.Reduced Memory Simulator

analy.menubegin.Memory Simulation

 <lines to define: Standard Simulation>

 <lines to define: Special Simulation>

analy.menuend.analy

 <lines to define: Set Reduced Memory>

 <lines to define: Reset Memory>

analy.menuend.analy

The lines to define executables that are displayed between any pair of menubegin and menuend, are added

to the menu named in the menubegin line. Whenever a new menubegin line is encountered, another menu

level is begun.

A menuend line terminates the menu begun by the last menubegin in effect. Excess menuend lines are

ignored.

Menu definition lines must follow the previously discussed format. The menubegin lines define the name of

the menu. The name contains all characters following the menubegin keyword (and the period) up to the

end-of-line character. The menuend lines must have a non-blank character following the menuend keyword

(and a period). By convention, the name of the main menu group is used.

The first five (or six, in the case of the Analysis menu) characters on each menu line must be analy, ctrl,

or util followed by a period.

Executables

The following topics are discussed in this section:

v Defining Executables

v Defining Options for Executables.

Defining Executables

An executable is defined by two line types. For both line types, the first five (or six) characters of each line

must be one of analy, ctrl, or util followed by a period. The first five (or six) characters determine the

menu to which the executable is added.

The characters following the first period and up to the next period (but not including the latter) identify the

executable. The identification is used to group together all the lines that define a particular executable, and

is also the text shown on the menu where the executable is added. After the period that terminates the

identification must come one of the following:

program: A keyword to identify this line as the skeleton command line to be executed.

$token: The $ character identifies this line as an options line. The characters between the $ and

the colon represent the name of a token and are used to match the defined option against

a character string of the format $token in the skeleton command line.

62 Performance Toolbox Guide

As an example, define the executable represented by the following line in the Sample Menu Structure (

“Defining Menus” on page 61):

Set Reduced Memory

That could be done as follows:

analy.Set Reduced Memory.program: rmss $mem

analy.Set Reduced Memory.$mem: -c%r%n%16%Simulated Memory Size

(MB)

What these two lines say is that the command line to execute for this particular tool is:

rmss $mem

The token $mem should be substituted by whatever the user responds when the second line causes him or

her to be prompted for Simulated Memory Size. The line with the program: keyword represents a skeleton

command line. Before the command line is executed, xmperf attempts to replace all tokens in the skeleton

line with the values the user selected. When attempting this, xmperf may end up in the following different

situations:

The user changed the token value.

In this case, the new value is taken and used to replace all occurrences of the token in the

skeleton command line.

The user erased the token value.

This can only happen when the token is defined as optional. When this happens, all occurrences

of the token are removed from the skeleton command line.

The user left the token value unchanged.

When this happens, and no default value is given (when the token is defined as optional), all

occurrences of the token are removed from the skeleton command line. If a default value is given,

this value is used to replace all occurrences of the token in the skeleton command line.

 In all situations where a token value is replaced in (rather than removed from) the command line, the

token value includes the command flag if defined in the option line. Where a token is removed from the

skeleton command line, the flag is not inserted either.

Before the command line is submitted for execution, an & (ampersand) is added at the end of the line.

This causes all commands to be executed in background.

Defining Options for Executables

The general format of an option line is as follows, with the character % (percent sign) as a delimiter

between fields:

menu.identifier.$token:

[flag]%{o|r}%{c|n|f|e}%[default]%description

flag Optional field. Used to specify the flag (or nothing) that must precede the command line

argument when the token is replaced in the command line. If no flag value is given, none

is included when the token substitution is done. For some commands, a blank must

separate the flag value from the argument value. In such cases, the flag defined in the

options line must have a trailing blank.

{ o | r } Required field. Specifies whether the option described by this line is required for proper

execution of the command or not. A value of o denotes optional, while r means that the

value is required. xmperf uses this field to determine whether it is acceptable for the user

to erase a default value or leave an option value empty.

{ c | n | f | e } Required field. The field defines the option type and must be one of the following:

c A character input line. This option line causes the user to be prompted to enter or

change a character value such as a path name.

Chapter 5. The xmperf Command Menu Interface 63

n A numerical input line. This option line causes the user to be prompted to enter or

change a numerical value such as a count or size.

f A flag definition line. This option line either defines a single option (when it is not

followed by extension lines) or a group of options (as defined by succeeding

extension lines).

e A flag extension line. This line is ignored if it it does not match a previously

encountered flag definition line. Multiple extension lines define a group of options.

If the corresponding flag definition line is marked as optional, the group of options

is treated as multiple choice, meaning that one, more, all, or none of the options

can be selected. If the corresponding flag definition line is marked as required, the

group of options is treated as single choice, meaning that one, and only one, of

the options must be selected.

 Some commands require a list of extension values to be separated by a non-blank

character such as a comma. For such commands, the flag value of the extension

line must be followed by that character on all extension lines. When the resulting

command line is generated by xmperf, the last such character is removed.

default Optional field. The field is used differently, depending on the option type of the line:

c or n The contents of the default field are used to display an initial value in the user

input field.

f If the line is not followed by extension lines, a value means that this option is

selected by default. If no default value is specified, the option is not selected by

default. By convention, if a default value is given, it is specified as the character

“y”. If the line is followed by extension lines the default value is ignored.

e For extension lines belonging to an optional flag definition line, each line with a

default value specified is selected by default. For extension lines belonging to a

required flag definition line, the first extension line with a default value specified is

selected by default; default values on following lines are ignored.

description Required field. Specifies the prompt text associated with the defined option.

The following sections show a few examples to clarify how to define some more complex executables.

This first example shows how you might define one particular invocation of the svmon analytical tool.

Example svmon Definition

The svmon tool has many command line options. This example defines only a subset of options, namely

the flags -P (output report selection based on processes) and -i (time between iterations and number of

iterations). The syntax of the selected options is:

[-P{n|s|a}{u|p|g} [count]]

and:

[-i interval [count]]

This means that both flags are optional, as seen from the point of view of svmon, but elect to define them

as required because you are defining one particular invocation of the tool. When the -P flag is specified,

one argument of each of the groups nsa and upg must be selected, which is a good opportunity to show

you a definition of a single choice options list. A count may or may not be given.

The -i flag must be followed by an interval between executions and, optionally, by a number of executions.

Because the default number of executions is limitless, define this number as required.

The lines to define this executable could look like this:

analy.svmon sample.program: (svmon $1$2 $count $int $rep

>$ofile; \

 sleep 10; aixterm -e view $ofile)

64 Performance Toolbox Guide

analy.svmon sample.$1: -P%r%f%%Output selection

analy.svmon sample.$1: n%r%e%y%Non-system segments only

analy.svmon sample.$1: s%r%e%%System segments only

analy.svmon sample.$1: a%r%e%%All segment types

analy.svmon sample.$2: %r%f%%Process sort criteria

analy.svmon sample.$2: u%r%e%y%Decreasing by pages in real memory

analy.svmon sample.$2: p%r%e%%Decreasing by pages pinned

analy.svmon sample.$2: g%r%e%%Decreasing by page space used

analy.svmon sample.$count: %o%n%10%Number of process reports

analy.svmon sample.$int: -i %r%n%5%Interval, number of seconds

analy.svmon sample.$rep: %r%n%3%Number of iterations

analy.svmon sample.$ofile: %r%c%./svmon.out%Filename for svmon output

Defining an Execution of svmon

The program: line is a skeleton for the execution of a series of commands:

v The svmon command itself.

v The sleep command to induce a 10 second delay.

v The aixterm command to open a window and show the output from svmon using the view command.

The commands are separated by semicolons and the entire skeleton line is enclosed in parentheses,

ready for execution under ksh. Notice that when the definition is split over two lines, you terminate the first

line with a \ (backslash); this can be continued up to a maximum of 1024 characters. The skeleton

command line specifies tokens to be substituted for values chosen by the user. Each token is positioned at

the appropriate place for correct execution of the command.

One token is not part of the svmon command line. That’s the token called $ofile, which is used to specify

a file name where the output from svmon is to be written. Because svmon writes its output to stdout, the

token is used to redirect the output to the file name given. Notice how this token is displayed twice in the

skeleton command line: once to do the redirection; once to specify the input file to view.

The option lines are defined so that the skeleton command line would be converted to the following line if

the user changes nothing:

(svmon -Pnu 10 -i 5 3 >./svmon.out; sleep 10; aixterm -e

view ./svmon.out)

Example vmstat Definition

The command vmstat has several command line options. The syntax of the vmstat command line is:

vmstat [-f] [Phys_volume ...] [interval [count]]

When vmstat executes, it sends its output to stdout. Because you want to be able to browse through the

output, send it to a file and then use view to browse that file.

A challenge is the definition of interval and count, because the omission of the first would cause vmstat

to use the second as interval. To overcome this, define both options as being required and give

reasonable default values.

The definition looks as shown in the following example:

analy.vmstat sample.program: (/usr/ucb/vmstat $forks $vols

$int $iter\

 > $ofile; aixterm -n vmstat_out\

 -name vmstat_out -e view $ofile)

analy.vmstat sample.$forks: -f%o%f%%Report number of forks since boot

analy.vmstat sample.$vols: %o%c%%List of physical volumes to analyze

analy.vmstat sample.$int: %r%n%5%Interval between samples

analy.vmstat sample.$iter: %r%n%20%Number of samples

analy.vmstat sample.$ofile: %r%c%$HOME/vmstat.tmp%Output file name

Chapter 5. The xmperf Command Menu Interface 65

Defining an Execution of vmstat

With this definition, you can accept that the user keys in a list of physical volumes to analyze in response

to the prompt for the token $vols. This requires you to remember or look up the names of physical

volumes. To make things easier, you could code this into the definition. Assuming the physical volumes

hdisk0 through hdisk2, defining an enhanced execution of vmstat looks as shown in the following

example.

analy.vmstat sample.program: (/usr/ucb/vmstat $forks $vols

$int $iter\

 > $ofile; aixterm -n vmstat_out\

 -name vmstat_out -e view $ofile)

analy.vmstat sample.$forks: -f%o%f%%Report number of forks since boot

analy.vmstat sample.$vols: %o%f%%Select physical volumes to analyze

analy.vmstat sample.$vols: hdisk0 %o%e%y%Physical volume: hdisk0

analy.vmstat sample.$vols: hdisk1 %o%e%y%Physical volume: hdisk1

analy.vmstat sample.$vols: hdisk2 %o%e%y%Physical volume: hdisk2

analy.vmstat sample.$int: %r%n%5%Interval between samples

analy.vmstat sample.$iter: %r%n%20%Number of samples

analy.vmstat sample.$ofile: %r%c%$HOME/vmstat.tmp%Output file name

Defining an Enhanced Execution of vmstat

This is an example of how you specify a group of flag extensions to be presented in a multiple choice

selection prompt. The advantage of using this technique rather than defining each disk as a separate flag

is that you can use the flag definition line to specify a heading for this group of choices. Notice how each

of the flag values represent data values rather than traditional flags and that each of the values has a

trailing blank. Without the trailing blanks, all choices would be sent to vmstat as one concatenated

character string.

An Alternative vmstat Definition

When you use the technique described in “Example vmstat Definition” on page 65 to redirect output from a

command running in background to a file and then use the view command to show it in an aixterm

window, you don’t have any way of knowing that a popup window should open. Likewise, you might miss

the fact that the commands run in the background and try to run a command multiple times not realizing

that it’s already executing.

This is inherent in UNIX systems, but it becomes less apparent when the command is executed from a

menu. Thus, the typical operating system response to submitting a background job is not seen by the user.

The following example of a vmstat definitionis taken from the distributed configuration file. The example

shows how a clever use of parentheses and double quotation marks can direct the output from the vmstat

command to an aixterm window. You can use the window’s scroll bar to examine the output.

analy.vmstat Monitor.program: aixterm -geometry 85x20 -n

vmstat \

 -name vmstat -sl 1000 -sb -fn Rom10\

 -e ksh -c “(/usr/ucb/vmstat \

 $(cd /dev ; /bin/ls cd* hdisk*) \

 $int $iter; read)” &

analy.vmstat Monitor.$int: %r%n%5%Interval between samples

analy.vmstat Monitor.$iter: %o%n%20%Number of samples

An Even More Enhanced Definition of vmstat

In the preceding example, the execution of vmstat starts is shown by opening an aixterm window as

described by the first two lines. The window has the following characteristics:

v The size is 85x20 characters

v Title bar and icon name are set to vmstat

v History of up to 1000 lines is saved

v Scroll bar is present

v Rom10 font is used

66 Performance Toolbox Guide

The third line specifies to execute the program ksh (-e ksh) and that the shell must run a command which

follows the -c flag. The command to run is actually a series of commands, enclosed in double quotation

marks as well as parentheses. The sequence of commands is as follows:

(/usr/ucb/vmstat $(cd /dev ; /bin/ls cd* hdisk*) $int $iter;

read)

The previous sequence means that the command /usr/ucb/vmstat is to be executed. The arguments

passed to the command are the disk names produced by the command sequence:

cd /dev; /bin/ls cd* hdisk*

This command sequence is followed by the command line arguments represented by the tokens $int

$iter. After this command is executed, issue a read, which terminates the aixterm session when the user

presses the Enter key from the window.

Process Controls

Two of the three main menu items that are used to define command menus have a fixed menu item. The

main menu items are Controls and Utilities. This section describes the fixed menu item in the Controls

pull-down. This fixed menu item is called Process Controls. The purpose of the Process Controls menu

item is twofold:

v To provide a fast and comprehensive overview over all running processes.

v To make it easier to execute commands that take a list of process IDs as argument.

The default sort criterion for the process list is defined to place the largest consumers of CPU resources

(hot processes) at the top of the list.

Process Overview

When you select Process Controls, you immediately see a list of all running processes in your system at

the time you made the selection. The list shows the most interesting details about the processes, and

initially is sorted in descending order after CPU percentage used by the process. An example of a local

process list is shown in the following figure.

The fields in the list are, from left to right:

Process ID (PID) The process ID of the process.

Command Name The command executing.

PRI The priority of the process.

Login User-ID The user ID used to login to the session from where the process is

started.

Effect User-ID The effective user ID for the process, as changed by setuid or su if

applicable.

Data Res (4 KB Pages) The number of 4KB (kilobytes) pages of real memory currently used for

data segment by the process.

Text Res (4 KB Pages) The number of 4KB (kilobytes) pages of real memory currently used for

text segment by the process.

Page Space (4 KB Pages) The number of 4KB (kilobytes) currently allocated for paging space on an

external disk for this process.

Latest CPU Perct When you create the process list from the Controls menu, this field shows

the CPU usage of the process over its life time. The same is true

Chapter 5. The xmperf Command Menu Interface 67

whenever a new process shows up on the process list after a refresh. In

all other cases, this field shows the average CPU usage since the last

refresh of the process list.

 By default, this field is used to sort the list so you can easily pinpoint

processes that are large consumers of CPU resources.

Process Total (CPU Seconds)

The sum of kernel-CPU and user-CPU time (in seconds) used by the

process.

Accum Total (CPU Seconds) The sum of kernel-CPU and user-CPU time (in seconds) used by the

process and all its children processes.

Page-Faults, I/O The number of page faults taken by the process to handle file I/O since

the process was started.

Page-Faults, other The number of page faults taken by the process for other than file I/O

since the process was started.

Parent Relationship A number of # characters to illustrate the nesting of processes. The more

(number signs), the deeper the process is in the process hierarchy.

Process Overview Menu

When the process overview list is displayed, a menu bar is available to control the list. The following menu

items are available:

 File This menu item allows you to close the list (which simply removes the list from the display) or to

refresh the list by reading the current process information from the system. When you select

Refresh, the displayed list is removed and another is created. However, the new list is sorted the

same way the old one was. Note that he process list is not updated by xmperf automatically. It is

your responsibility to use the Refresh menu item to have the list updated as needed.

Sort The process list can be sorted on any of the fields shown. Sorting is in ascending order if one of the

leftmost five fields is used for sorting, otherwise in descending order. Each time a list is sorted,

xmperf remembers the sort criteria you chose. Whenever the list is refreshed, and when it is

removed and later created again, the latest sort criteria is used to sort the list.

One special sort criteria is called “Parent Relationship” which sorts the processes so that a process is

listed before its children. This generates a hierarchical display of parent-child process relationships at

the far right of the list.

Execute This menu selection is another custom-built menu. Items are created as described in “Command

Menus” on page 61 and “Executables” on page 62. This means that you can build a menu hierarchy

and that individual commands can be located anywhere in that hierarchy.

Two things distinguish the Process Execute menu from other tools menus: the identifier for lines to

define the line is proc, and a new token type is introduced. This is explained in “Process Token” on

page 69.

The Execute menu selection is only active if the process overview window is generated by a

selection of the Process Controls item in the Controls pull-down menu of the main window. If the

process overview window is generated while instantiating a skeleton console, the Done menu item is

active instead of Execute.

Done This menu selection is associated with the use of the process overview to instantiate skeleton

instruments that have the process ID as a wildcard. The pull-down menu you get when you select

Done has three menu items. If you select the Cancel menu item, the box goes away and no

instrument is created. If you select the Reselect menu item, the process overview list is refreshed. If

you select the Accept Selection menu item, the skeleton instrument is instantiated with the

processes you selected.

Help Displays any help text supplied in the simple help file and identified by the name Process Controls.

68 Performance Toolbox Guide

Process Token

Executables that are defined as belonging to the process execution menu must be defined so a process

token is present in the skeleton command line. The process token is the # (number sign) character. During

token substitution before the command is executed, the process token is replaced by a list of process IDs

as selected from the process list by you.

If you try to execute a command from the Process Execution menu and no process ID is selected, the

execution is not allowed. Selection can be done as a single-selection of one process by clicking on a line,

or as a multiple-selection by dragging the mouse pointer with left mouse button pressed down. Extensions

or deletions from selections can be done by holding the Ctrl key down on the keyboard while selecting.

Before the command is executed, you are presented with a the list of processes you selected. This way

you can verify that the selection is correct.

Example Definition for renice Command

To illustrate how you use the process token, the following example of using the process token shows how

you could define the renice command in the Process Execution menu:

proc.Increase priority.program: renice -n -$pri -p #

proc.Increase priority.$pri: %r%n%1%Priority increase

proc.Decrease priority.program: renice -n $pri -p #

proc.Decrease priority.$pri: %r%n%1%Priority decrease

Chapter 5. The xmperf Command Menu Interface 69

70 Performance Toolbox Guide

Chapter 6. 3D Monitor

This chapter provides information about the 3dmon program.

A system administrator is often responsible for monitoring the performance of several hosts in a network.

To cope with this job, it is desirable to have a monitor that allows the monitoring of selected key statistics

on multiple hosts. One such monitor is available in the program 3dmon.

The 3dmon program is an X Window System based program that displays statistics in a 3-dimensional

graph where each of the two sides may have up to 24 statistics for a maximum of 576 statistics plotted in

a single graph.

Overview of the 3dmon Program

The graph layout of 3dmon is that of a chessboard except that each side may have from 1 to 24 fields.

The right side always represents a context in the statistics hierarchy. This context may be any context that

can have more than one instance of its subcontexts. The currently valid contexts are:

CPU

Disk

FS

FS/*

IP/NetIF

LAN

Mem/Kmem

PagSp

Proc

RTime/ARM

RTime/ARM/*

RTime/LAN

hosts

Note: Not all wildcards are available on systems other than IBM® RS/6000 systems.

User Interface

For each context you want to use, you must supply a list of statistics in the 3dmon configuration file. The

list of statistics you specify is used to define a set of statistics (statset). In the configuration file, each set is

defined by a wildcard stanza which names the configuration set. When you start 3dmon, you specify

which of the defined configuration sets should be used and as 3dmon starts, it displays a list of all

instances, which match the wildcard specified in the configuration set.

You must then pick the instances you want to monitor. The number of instances you select determines the

number of fields on the right side of the “chessboard”. For certain configuration sets, you must first select

from a list of hosts to monitor, then from a list of context instances on the selected hosts.

To select from the lists displayed by 3dmon, move the mouse pointer to the first instance you want, then

press the left mouse button and move the mouse while holding the button down. When all instances you

want are selected, release the mouse button. If you want to select instances that are not adjacent in the

list, press and hold the Ctrl key on the keyboard while you select. When all instances are selected, release

the key. Using the left mouse button (after all selections are complete), select the button at the top of the

window. This will create the 3dmon monitor window. An example of such a window is shown in the

following figure.

© Copyright IBM Corp. 1994, 2004 71

The left side of the grid lists the statistics you chose to include in the configuration set. Each must be

specified in the configuration file with its full value path name without the part up to and including the

primary wildcard. This is explained in detail in “Customizing the 3dmon Program” on page 76.

The third dimension is represented by the actual statistics values as received from the data supplier

daemons. The values are plotted as rectangular pillars placed on the fields of the chessboard, each filling

its field except for a user modifiable spacing between the pillars. The actual value is displayed at the top of

each pillar.

The 3dmon graph shows the incoming observations of the values as they are received depending on the

type of statistic selected. Statistics can be of type SiCounter or of type SiQuantity:

SiCounter Value is incremented continuously. The graph shows the change (delta) in the value

between observations, divided by the elapsed time, representing a rate per second.

SiQuantity Value represents a level, such as memory used or available disk space. The actual

observation value is shown by the graph.

A user-modifiable color selection is in effect so that each of the statistics represented by the left side of the

grid is drawn in a different color.

Pull-down Menus

The File menu of the 3dmon graph window contains the following valid selections:

Figure 4. 3dmon Graph. This graph displays a three-dimensional grid of metric names (y-axis) and associated

hostnames (x-axis). The intersecting vertical ″z″ axis for each element of the grid represent the metrics value, which is

shown as a vertical bar labeled with a numeric value. The activity off each system can be determined by comparing

the relative displacements of the bars.

72 Performance Toolbox Guide

Playback This option invokes 3dplay. See Chapter 7, “3D Playback,” on page 83 for details.

Exit Stops recording and exits program.

The Recording pull-down menu contains the following valid selections:

Begin Recording

This option starts writing data values to the recording files as they are received. Recording

continues until you stop it or the console is closed.

End Recording

Stops recording and closes the recording file if no other instrument in the console is still

recording.

Annotation Allows you to add an annotation to the currently active eller dormant recording file. When

you select this item, proceed as described in “Annotating while Recording” on page 59.

Autoscaling

To determine the height of a pillar, 3dmon must select a scale. This scale states how many units of the

statistic to be drawn correspond to one pixel on the display. The scale is derived from the expected

maximum value for the statistic. However, it is difficult to set a realistic scaling for many statistics. Because

of that, 3dmon attempts to adjust the scale when the drawn pillars would otherwise disappear off the top

of the window. The autoscaling is done as the following describes.

Prior to a pillar being drawn, if the 3dmon sees that the pillar would be more than 10 percent taller than

the expected maximum height, an autoscaling function is invoked. The autoscaling function slowly adjusts

the scale of a statistic until the scale corresponds to actual measurements. The scale is adjusted by

approximately 50 percent each time autoscaling is invoked. Also, autoscaling is always done for all

instances of the statistic as represented by a row on the chessboard.

Resynchronizing with Multiple Hosts

When 3dmon uses the wildcard value hosts, the user selects the hosts to monitor from the initial selection

list. If the xmservd daemon on one or more of those hosts dies while 3dmon runs, the program

periodically attempts to resynchronize with the hosts. Note that with the Performance Toolbox Local

feature, only the local host is available for selection.

Resynchronizing is attempted every 30 seconds if more than 30 seconds have expired since the last data

feed was received from a host. The interval between checking if resynchronizing is required can be

changed with the command line argument -t.

Viewing Obscured Statistics

As 3dmon displays the statistics, high values for statistics in the front part of the grid can obscure the

drawing of statistics behind them. At any time, you can move a row or column to the front by clicking on

the name associated with the row or column. When you select a name on the left side of the grid, the

colors of statistics are preserved as the rows of statistics are rearranged.

Another way to see obscured statistics is to reduce the height of the 3dmon window. Because the height

of the pillars is calculated from the ratio of window height to window width, decreasing the height reduces

the height until only the base of the pillar is drawn.

How to Record with 3dmon

In the lower left corner of the 3dmon window, you see a small icon resembling a tape reel. Initially, Start

shown in green appears on the icon. When you select the icon with the left mouse button, recording of the

statistics received by 3dmon begins and the text changes to Stop shown in red. The recording facility is

described in “Recording from 3dmon” on page 80.

Chapter 6. 3D Monitor 73

You can also start and stop recording from the pull-down menu.

Path Name Display

The right side of the grid shows the path names of the selections you made from the selection list up to

the part that is displayed at the left side of the grid. If all the names at the right side begin with the same

string, that string is removed from the names and shown in the upper left corner of the window. This

reduces path name lengths and leaves more space to show the graph.

The 3dmon Command Line

To avoid clashes with X Window System command line options, never leave a blank between a command

line option and its argument. For example, do not specify

3dmon -i 1 -p 75 -n

Instead, use:

3dmon -i1 -p75 -n

The 3dmon program takes the following command line arguments, all of which are optional:

3dmon [-vng] [-f config_file] [-i seconds_interval] [-h hostname] [-w weight_percent] [-s spacing]

[-p filter_percent] [-c config] [-a “wildcard_match_list”] [-tresync_timeout] [-d invitation_delay]

[-l left_side_tile] [-r right_side_tile] [-m top_tile]

-v Verbose. Causes the program to display warning messages about potential errors in the

configuration file to stderr. Also causes 3dmon to print a line for each statset created and for each

statistic added to the statset, including the results of resynchronizing.

-n Only has an effect if a filter percentage is specified with the -p argument. When specified, draws

only a simple outline of the grid rectangles for statistics with values that are filtered out. If not

specified, a full rectangle is outlined and the numerical value is displayed in the rectangle.

-g Usually, 3dmon will attempt to resynchronize for each statset it doesn’t receive data-feeds for for

resync-timeout seconds. If more than half of the statsets for any host are found to not supply

data-feeds, resynchronizing is attempted for all the statsets of that host. By specifying the -g

option, you can force resynchronization of all the statsets of a host if any one of them becomes

inactive.

-f Allows you to specify a configuration file name other than the default. If not specified, 3dmon

looks for the file $HOME/3dmon.cf. If that file does not exist the file is searched for as described

in Appendix B, “Performance Toolbox for AIX Files,” on page 271.

-i Sampling interval. If specified, this argument is taken as the number of seconds between sampling

of the statistics. If omitted, the sampling interval is 5 seconds. You can specify from 1 to 60

seconds sampling interval.

-h Used to specify which host to monitor. This argument is ignored if the specified wildcard is “hosts.”

If omitted, the local host is assumed. With the Performance Toolbox Local feature, this flag always

uses the local host name.

-w Modifies the default weight percentage used to calculate a weighted average of statistics values

before plotting them. The default value for the weight is 50%, meaning that the value plotted for

statistics is composed of 50 percent of the previously plotted value for the same statistic and 50

percent of the latest observation. The percentage specified is taken as the percentage of the

previous value to use. For example, if you specify 40 with this argument the value plotted is:

.4 * previous + (1 - .4) * latest

Weight can be specified as any percentage from 0 to 100.

74 Performance Toolbox Guide

-s Spacing (in pixels) between the pillars representing statistics. The default space is 4 pixels. You

can specify from 0 to 20 pixels.

-p Filtering percentage, -p. If specified, only statistics with current values of at least -p percent of the

expected maximum value for the statistic are drawn. The idea is to allow you to specify monitoring

“by exception” so statistics that are approaching a limit stand out while others are not drawn.

Filtering can be specified as any percentage from 0 to 100. Default is 0%.

-c Configuration set. When specified, overrides the default configuration set and causes 3dmon to

configure its graph using the named configuration set. The argument specified after the -c must

match one of the wildcard stanzas in the configuration file. If this argument is omitted, the

configuration set used is the first one defined in the configuration file.

-a Wildcard match list. When specified, is assumed to be a list of host names. If the primary wildcard

in the selected configuration set is hosts, then the list to display host names is suppressed as

3dmon automatically selects the supplied hosts from the list of active remote hosts. Depending on

the configuration set definition, 3dmon then either goes directly on with displaying the monitoring

screen or, when additional wildcards are present, displays the secondary selection list.

 Note: With the Performance Toolbox Local feature, this flag always uses the local host name.

 The list of host names must be enclosed in double quotation marks if it contains more than one

host name. Individual host names must be separated by white space or commas.

 The primary purpose of this option is to allow the invocation of 3dmon from other programs. For

example, you could customize NetView to invoke 3dmon with a list of host names, corresponding

to hosts selected in a NetView window.

-t Resynchronizing timeout. When specified, overrides the default time between checks for whether

resynchronizing is required. The default is 30 seconds; any specified timeout value must be at

least 30 seconds.

-d Invitation delay. Allows you to control the time 3dmon waits for remote hosts to respond to an

invitation. The value must be given in seconds and defaults to 10 seconds. Use this flag if the

default value results in the list of hosts being incomplete when you want to monitor remote hosts.

-l (Lowercase L). Specifies the number of the tile to use when painting the left side of the pillars.

Specify a value in the range 0 to 8. The values correspond to the tile names:

v 0: foreground (100% foreground)

v 1: 75_foreground (75% foreground)

v 2: 50_foreground (50% foreground)

v 3: 25_foreground (25% foreground)

v 4: background (100% background)

v 5: vertical

v 6: horizontal

v 7: slant_right

v 8: slant_left

The default tile number for the left side is 1 (75_foreground).

-r Specifies the number of the tile to use when painting the right side of the pillars. Specify a value in

the range 0 to 8. The values correspond to the tile names specified previously for option -l. The

default tile number for the right side is 8 (slant_left).

-m Specifies the number of the tile to use when painting the top of the pillars. Specify a value in the

range 0 to 8. The values correspond to the tile names specified previously for option -l. The

default tile number for the top is 0 (foreground).

Chapter 6. 3D Monitor 75

Hardware Dependencies

On some graphics adapters in certain configurations, the 3dmon program might not give you proper tiling.

If you notice this, use the following command line arguments to suppress tiling:

3dmon -l0 -r0 -m0

Use the flags shown in addition to any other flags you might require. You can substitute the digit 4 for any

of the zeroes shown previously. The digit 0 means to paint the pillar in the foreground color; the digit 4

means to paint it in the background color.

Exiting 3dmon

To exit the 3dmon program, select Exit from the pull-down menu or close the program’s window with the

window manager. In case of the mwm window manager, click in the upper left corner of the window frame,

then select the Close option from the menu.

Customizing the 3dmon Program

This section includes the following topics:

v 3dmon Configuration File

v Single Wildcard Configuration Sets

v Dual Wildcard Configuration Sets

v Rsi.hosts File

v The 3dmon X Resources.

3dmon Configuration File

The 3dmon program requires a configuration file to describe the set of statistics (statsets) to display. A

configuration file can be specified with the -f command line argument. If it is not, 3dmon first looks for the

file 3dmon.cf in your home directory. If no such file is found, the file is searched for as described in

Appendix B, “Performance Toolbox for AIX Files,” on page 271.

The configuration file may have comment lines beginning with the character # (number sign). It can

contain multiple configuration sets, each of which must begin with a wildcard stanza. The wildcard stanza

must have one or two arguments. The last argument must be a valid context name. Configuration sets can

be constructed as single wildcard sets or dual wildcard sets. Single wildcard sets present only one

selection list to the user, while dual wildcard sets require the user to select from two lists before 3dmon

begins to display statistics.

If the command line argument -c is not used to override the default, the first configuration set in the

configuration file is chosen by 3dmon. Otherwise the set named by the -c argument is chosen. If no set in

the configuration file matches the -c argument, 3dmon terminates with an error message.

Single Wildcard Configuration Sets

The following is an example of a definition of a configuration set where only one argument is provided on

the wildcard stanza. The argument is hosts, and is used both to identify the configuration set and to

specify the wildcard context:

wildcard: hosts

If two arguments are supplied with the wildcard stanza, the first identifies the configuration set. This name

is used to match any name passed with the command line argument -c. The second argument must be

the name of the wildcard context.

76 Performance Toolbox Guide

The remaining lines of a set must each specify a statistic, which is valid for the given wildcard. A set is

terminated when another wildcard stanza is met or at end of file. The following example shows statistics

defined for the wildcard hosts:

wildcard: hosts # remote hosts

Mem/Virt/steal

PagSp/pgspgout

PagSp/pgspgin

Proc/swpque

Proc/runque

PagSp/%totalused

Syscall/total

SysIO/writech

SysIO/readch

Notice how the full path name is specified except for the wildcard part. The resulting path name for the

instance (host name) birte for the first statistic would be hosts/birte/Mem/Virt/steal.

If you want more than one configuration set that uses the hosts wildcard, enter two arguments on the

wildcard line:

wildcard: nodecpu hosts

CPU/cpu0/user

CPU/cpu0/kern

CPU/cpu0/wait

CPU/cpu0/idle

The configuration set shown previously would be activated by the command line:

3dmon -cnodecpu

For process statistics, the statistic path name includes the name of the process context, which is

constructed from the process ID, a ~ (tilde), and the name of the executing program. To reach a specific

process, you can add a line that specifies either the process ID followed by the ~ (tilde), or the name of

the executing program. The following example shows how to specify a statistic for the wait pseudo

process, which (on the operating system UPs) always has a process ID of 516. Both lines point to the

same statistic.

Proc/516~/usercpu

Proc/wait/usercpu

If you specify a name of a program currently executing in more than one process, only the first one

encountered is found.

The distributed sample configuration file for 3dmon defines two single wildcard configuration sets for the

hosts wildcard. One (the default) is called hosts. The other is called 24 because it shows 24 statistics for

each host selected.

To monitor selected statistics for processes, the configuration file might contain:

wildcard: Proc

usercpu

kerncpu

workmem

pagsp

The configuration set shown previously would cause 3dmon to present you with a list of all processes in

the host.

Two contexts are special because they can exist in multiple instances and have subcontexts that can also

exist in multiple instances. One of these contexts describes file systems and is named FS. To allow

3dmon to find all instances in both context levels, you can begin a statistics line with the wildcard

character * (asterisk). This is a use of dual wildcards is described here because it, unlike other dual

Chapter 6. 3D Monitor 77

wildcard configuration sets, presents you with only one selection list. The use of the asterisk in a path

name is shown in the supplied configuration set that follows:

wildcard: FS

*/%totfree

*/size

ppsize

free

The statistics %totfree and size exist for every logical volume, while the remaining two exist for every

volume group. In a system with two volume groups and a total of five logical volumes, this would yield five

columns (right side of graph) and four rows (left side of graph). For example, the right side might show:

rootvg/hd4

rootvg/hd9var

rootvg/hd3

rootvg/hd1

newvg/hd10

The left side would show the four statistic names. Note that because the ppsize and free statistics are at

the volume group level, they are identical across all four columns that are derived from rootvg.

The supplied configuration file contains the following single wildcard configuration sets:

wildcard: hosts # remote hosts

wildcard: 24 hosts # remote hosts, large set

wildcard: Disk # local disks

wildcard: Kmem Mem/Kmem # local kernel memory

wildcard: Proc # local processes

wildcard: LAN # local lan adapters

wildcard: FS # local file systems

wildcard: IP/NetIF # local IP interfaces

wildcard: CPU # local processors

wildcard: RTime/ARM # local application response time

wildcard: lanresp hosts # response time between multiple hosts

The configuration set “lanresp” for response time between multiple hosts is special because it will have

identical labels on the left and right side of the grid. It uses the top context RTime/LAN, which always

creates this type of graph and thus allows only a single metric to be specified. This is described in more

detail in “Monitoring IP Response Time from 3dmon” on page 194.

Dual Wildcard Configuration Sets

If a configuration set begins with a wildcard stanza that defines the wildcard as hosts, then the path

names of the statistics belonging to that set may contain one or more asterisks in place of contexts that

may exist in more than one instance. This is shown in the supplied configuration set called proc:

wildcard: proc hosts # processes on remote hosts

Proc/*/usercpu

Proc/*/kerncpu

Proc/*/workmem

Proc/*/codemem

Proc/*/pagsp

Proc/*/majflt

Proc/*/minflt

When you invoke 3dmon to use this configuration set, you are presented first with a list of all matches of

the primary wildcard, which is the list of hosts that responded to invitation. After you select the hosts you

want to monitor, you are shown a list of all processes on those hosts. To proceed, select the processes

you want to monitor. If you select more than 3dmon can show, excess instances are ignored.

If you use the command line argument -a to specify a list of host names, the first selection list is not

shown. Rather, all responding hosts that match a name in the -a list are automatically selected.

78 Performance Toolbox Guide

Another example of a dual wildcard configuration set is as follows:

wildcard: fs hosts # remote file systems

FS/*/*/%totfree LV

FS/*/*/size LV

FS/*/ppsize VG

FS/*/free VG

FS/iget FS

This time the statistics are at different levels so that the first two are logical volume statistics, the next two

are volume group statistics, and the last one is a statistic directly under the FS context. To show this in the

final graph, a suffix is specified after the name of each statistic. The first word of such a suffix is suffixed to

the statistic name on the graph. Its only purpose is to show you the levels of the statistics in the graph.

The third example of a dual wildcard configuration set is the following set to create a 3dmon graph to

monitor application response time and activity:

wildcard: armresp hosts # application response time

RTime/ARM/*/*/resptime

RTime/ARM/*/*/respavg

RTime/ARM/*/*/respmax

RTime/ARM/*/*/respmin

RTime/ARM/*/*/good

RTime/ARM/*/*/aborted

RTime/ARM/*/*/failed

When one or more lines have the wildcard character * (asterisk), all lines in that configuration set must

either be without wildcards or match the same pattern of wildcards. It would be not be valid to specify the

following two metrics under the same wildcard:

FS/*/*/%totfree

Proc/*/usercpu

3dmon warns about such errors in the configuration file and ignores the offending lines.

The supplied configuration file contains the following dual wildcard configuration sets:

wildcard: disk hosts # disks on remote hosts

wildcard: kmem hosts # kernel memory on remote hosts

wildcard: proc hosts # processes on remote hosts

wildcard: lan hosts # LAN adapters on remote hosts

wildcard: fs hosts # file systems on remote hosts

wildcard: ip hosts # IP interfaces on remote hosts

wildcard: cpu hosts # Processors on remote hosts

wildcard: armresp hosts # application response time

Rsi.hosts File

The 3dmon program uses the RSi application programming interface throughout. This means that to

locate potential data supplier hosts it uses the RsiInvite function call. This function relies on the file

$HOME/Rsi.hosts to specify the rules for broadcasting are_you_there messages. (See Appendix B,

“Performance Toolbox for AIX Files,” on page 271 for alternative locations of the Rsi.hosts file).

If the file does not exist, broadcasting is done only to hosts on the same subnet as defined for the network

adapters in the host where 3dmon runs. For details about the $HOME/Rsi.hosts file, refer to “How

Data-Suppliers are Identified” on page 24.

The 3dmon X Resources

The X Window System resource file for 3dmon defines resources you can use to enhance the appearance

of 3dmon and is installed as /usr/lib/X11/app-defaults/3Dmon.

X Window System Resources for 3dmon (below) lists the defined resources for 3dmon.

Chapter 6. 3D Monitor 79

The sample file first defines the font to use. The resource name to define the font for 3dmon is

GraphFont. If you do not define this resource, 3dmon tries to get a font name from the following

resources:

v graphfont

v FontList

v fontList

v Font

v font

If none are defined, a suitable fixed-pitch font is used.

The next two lines define the foreground and background colors of the graph area. Finally, 24 lines define

the default colors for the up to 24 statistics that can be plotted. In the following example, X Window

System Resources for 3dmon, the colors are the default colors. Only change the ValueColorxx resources

if you do not like the defaults.

 #

 # 3dmon options

 #

 *GraphFont:

-ibm-block-medium-r-normal--15-100-100-100-c-70-iso8859-1

 *DrawArea.background: black

 *DrawArea.foreground: white

 *ValueColor1: ForestGreen

 *ValueColor2: goldenrod

 *ValueColor3: red

 *ValueColor4: MediumVioletRed

 *ValueColor5: LightSteelBlue

 *ValueColor6: SlateBlue

 *ValueColor7: green

 *ValueColor8: yellow

 *ValueColor9: BlueViolet

 *ValueColor10: SkyBlue

 *ValueColor11: pink

 *ValueColor12: GreenYellow

 *ValueColor13: SandyBrown

 *ValueColor14: OrangeRed

 *ValueColor15: plum

 *ValueColor16: MediumTurquoise

 *ValueColor17: LimeGreen

 *ValueColor18: khaki

 *ValueColor19: coral

 *ValueColor20: magenta

 *ValueColor21: turquoise

 *ValueColor22: salmon

 *ValueColor23: white

 *ValueColor24: blue

X Window System Resources for 3dmon

Recording from 3dmon

The icon shown in the lower left corner of the 3dmon window controls recording of the observations

received by 3dmon. Initially, Start that is shown in green is on this icon. Using the left mouse button,

select the icon to start recording to a disk file of the statistics received by 3dmon. Simultaneously, the text

changes to Stop that is shown in red.

The first time you select the icon, the 3dmon Recording File Name window opens and prompts you to

select a file name for the recording file. The window has a default file name constructed from the path

name of the xmperf recording directory $HOME/XmRec followed by R.3dmon.set, where the part

80 Performance Toolbox Guide

following the last period is the name of the configuration set you are using. Change the name if required,

and then select OK to start the recording. If the name you select exists, you will be prompted to overwrite

the file or select a different name.

After recording has been started, it can be stopped and restarted by selecting the icon. Whenever

recording is active, Stop (shown in red) appears on the icon. After you stop recording, the recording file is

kept open by 3dmon to allow quick resumption of the recording without going through the prompting for a

recording file name. The recording file is closed when 3dmon exits. You can also start and stop recording

from the 3dmon Recording pull-down menu.

Recordings produced by 3dmon defines sets of statistics (statsets) for each selection you did from the

selection list (one for each name at the right side of the grid). The value records in the recording file

correspond to sets of statistics (statsets). All 3dmon recordings can be played back by xmperf but they

lack a console definition and therefore use the default playback console format described in “Creation of

Playback Consoles” on page 55.

3dmon recordings can also be played back by 3dplay.

Recordings produced by 3dmon can be analyzed by the azizo program and processed by the recording

support programs.

Chapter 6. 3D Monitor 81

82 Performance Toolbox Guide

Chapter 7. 3D Playback

This chapter provides information about the 3dplay program.

Overview of the 3dplay Program

With 3dplay, 3dmon recordings can be played back in the same style as the one in which they was

originally displayed. When 3dplay is invoked with no argument, a file selection window opens and shows a

list of files that match the filter R.3dmon.*.

When a valid 3dmon recording is provided as an input through the command line or through the file

selection window, 3dplay displays its playback window immediately.

The 3dplay application display format is similar to 3dmon, however, at the top of the window is a row of

buttons, much like those of a video recorder. The buttons have the following functions:

Eject Stops playback and exits 3dplay program.

Annotate Allows you to display a list of any existing recordings and to then show, modify, and delete

any of those. It also allows the creation of new annotations. The technique and windows

used are the same as described in the section “Using Annotations” on page 59.

Erase Allows you to erase a recording file. When you select this button, a dialog box opens. It

warns you that you have selected the erase function and tells you the name of the file you

are currently playing from. To erase the file and close the playback console, select OK. To

avoid erasure of the file, select Cancel.

 If some other program is using the recording file at the time you attempt to erase it or if

you are not authorized to delete the file, you are informed of this and are prevented from

erasing the file.

Rewind Resets the console by clearing all instruments and rewinds the recording file to its start.

Playback does not start until you select Play. The Rewind button is inactive while you are

playing back.

Seek Opens a dialog box that allows you to specify a time you want to seek for in the recording

file. You can set the time by clicking on the Hour or Minute button. Each click advances

the hour or minute by one. By holding the button down more than one second, you can

advance the hour or minute counter fast. When the digital clock shows the time that you

want to seek, select Proceed. This clears all the instruments in the console and searches

for the time you specified in the playback file.

 When a recording file spans midnight so that identical time stamps exist multiple times in

the playback file, the seek proceeds from the current position in the playback file. Then the

seek wraps to the beginning of the playback file if the time is not found. Because multiple

data records may exist for any hour and minute combination, use the Play function to

advance to the next minute before doing additional seeks on the same time. Or you can

seek for a time that is one minute prior to the current playback time.

 If you are playing back from a file while recording to the file is still in progress, the Seek

function does not permit you to seek beyond the end time of the recording as it were when

you first selected the file for playback.

 The Seek button is inactive while you are playing back.

Play Starts playing from the current position in the playback file. While playing, the button’s text

changes to Stop to indicate that playing can be stopped by selecting the button again.

Immediately after opening the playback console, the current position is at the beginning of

the recording file. The same is true after a rewind.

© Copyright IBM Corp. 1994, 2004 83

Initially, playing back is attempted at approximately the same speed at which the data was

originally recorded. When the recording was created by other programs than xmperf, and

especially if the file is produced by merging several files, xmperf may have difficulty

determining this speed. This may cause the start of the playback to be delayed. You can

change the speed by using the Slower and Faster buttons.

 While playing back, neither the Rewind nor the Seek buttons are active.

Slower Select this button to cut the playback speed to half of the current speed. Note that it may

take a second for the new speed to become active.

Faster Select this button to double the playback speed. Note that it may take a second for the

new speed to become active.

00:00:00 At the far right is a digital clock. It shows the time corresponding to the current position in

the recording file or zeroes if at the beginning of the file. As playing back proceeds, the

clock is updated.

The 3dplay User Interface

You can invoke the 3dplay from the following areas:

v Command line

v xmperf utilities

v 3dmon playback.

Command Line Invocation

The syntax to invoke 3dplay from the command line is:

3dplay [RecordingFile]

Where RecordingFile is the name of a recording file created by 3dmon. If a non-3dmon recording file is

provided as input, 3dplay returns an error message and the recording file will not be played back.

Invocation from xmperf

3dplay can be executed from the Utilities pull-down menu of the xmperf main window. The identification

string to create the text shown on the Utilities pull-down menu is 3-D Playback. When you select 3dplay

from the Utilities pull-down menu, 3dplay is invoked with no argument from a window.

Invocation from 3dmon

The 3dplay program can be invoked from the File pull-down menu of a 3dmon graph window. When you

select Playback, 3dplay is invoked with no argument.

84 Performance Toolbox Guide

Chapter 8. Monitoring Exceptions with exmon

The Exception Monitoring program, exmon, works with the filtd daemon described in Chapter 16, “Data

Reduction and Alarms with filtd,” on page 183. The filtd daemon can generate exception packets based

upon alarm conditions defined in the filtd configuration file. The xmservd daemon, on the host where filtd

runs, forwards the exception packets from filtd to any remote Data Consumer program that subscribes to

exception packets.

The exmon program is designed to provide a convenient facility for monitoring exceptions as they are

detected on remote hosts. It does so by allowing its user to register subscriptions for exception packets

from all or selected hosts in the network and to monitor the exception status in a graphical window. Like

any other remote Data-Consumer program, exmon uses the Remote Statistics Interface (RSi) to

communicate with remote hosts. Unlike traditional Data-Consumer programs, however, exmon consumes

exception packets rather than data feed packets containing metrics values.

The exmon program is started from the command line. It does not accept command line arguments. When

started, its first action is to broadcast an invitation to all xmservd daemons in the network, according to

the file $HOME/Rsi.hosts. For details about this file, refer to “How Data-Suppliers are Identified” on page

24. From the responses to the invitation, a list of host names is displayed for the user to select the hosts

of interest. After the user selects the hosts, the exmon main window is displayed.

Note: With the Local Performance Toolbox option, available with Version 2.2 or later, only the local host

will be used. Any discussion of remote hosts apply only to the local host if the Local Performance

Toolbox is installed.

The exmon Main Window

At the top of the main window is a menu bar. Below the menu bar is a graphical window that contains the

monitoring window.

The exmon Monitoring Window

The layout of the exmon monitoring window is that of a matrix with eleven column headings and a

variable number of rows, each with an identifier. Row identifiers are host names that are displayed in a

column along the left side of the matrix. Only hosts that have reported exceptions are shown. Initially, you

see no host names.

The time stamp carried by the last received exception for each host is displayed beside the host name.

Along the top of the matrix the 11 column headings each represent one of the 11 possible “exception

severity codes” that can be associated with an exception when it is defined to filtd. Even though the filtd

daemon refers to the codes as describing severity, in reality they are no more than identifiers. Because of

this, the exmon program refers to the code of an exception as the exception identifier (or exception ID).

As exception packets arrive from remote systems, the matrix starts to become populated. When an

exception arrives, the first action is to determine the host name of the host that generated the exception. If

the host name is not already displayed in the matrix, the existing rows are moved down and the new host

name line is added as the top row. If the host name is already displayed, it is moved to the top of the

matrix, pushing all others down.

The matrix cell corresponding to the host that generated an exception (now at the top of the list) and the

exception ID of the exception is determined. The cell contains the count of exceptions with this exception

ID from the named host. The count is incremented by one to always contain the total number of such

exceptions received in the lifetime of this execution of exmon.

© Copyright IBM Corp. 1994, 2004 85

Matrix cells are assigned colors depending on a coloring scheme as specified in the exmon X resource

file and the exception count in each matrix cell. This is described in “Coloring Scheme” on page 90.

The exmon Main Window Menu Bar

The menu bar in the main window defines the following pull-down menus:

 File This pull-down menu has the following selections available:

Read Log Allows the user to select an exception log to view. An exception log file

exists for each host that has sent exception packets to exmon. See

“Working with Exception Logs” for the placement and naming

conventions for exception log files.

Delete Log Allows the user to select an exception log to delete.

Exit exmon The user selects this entry to stop collection of exception packets and

to exit the exmon program.

Hosts This pull-down menu has the following entries:

Add Hosts

When this entry is selected, exmon displays a selection list that contains the names of hosts on

the network. The list doesn’t include hosts that are already being monitored. From the list, the

user can select additional hosts to monitor for exception packets.

 Note: With the Performance Toolbox Local feature, available with Version 2.2 or later, only the

local host is available for selection.

Delete Hosts

When this entry is selected, exmon displays a selection list of hosts that are currently being

monitored. The user can terminate the monitoring of exceptions from one or more hosts by

selecting hosts from the list.

Help A pull-down menu with the following choices:

On Version...

Displays the standard “About” window for exmon.

Help Index

Displays a list of all help topics in the exmon simple help file.

Working with Exception Logs

As exmon receives exception packets from hosts, it adds a line to the host exception log files for those

hosts. An exception log is created for each host that sent exception packets to exmon.

Exception logs are named after the host that sent the exception packet and have an extension of “.log”.

Exception logs are kept in the directory $HOME/FiltLogs for each exmon user. For example, the

exception log file of user donnau that contains exceptions from host snook would be /home/donnau/
FiltLogs/snook.log.

If exmon is active more than once for a user at the same time, each active exmon will add exceptions to

the log files of hosts as exceptions are received. This causes the log files to contain multiple copies of

exception packets. To avoid this, never run multiple copies of exmon or make sure each copy is

monitoring different hosts.

Viewing an Exception Log

A user selects the Read Log entry from the File pull-down menu of the main window to view an exception

log file. A file selection window is displayed with a list of all the exception log files available. The exception

log to view is selected from the list in the selection window. After selection of the exception log file, the

Show File window is displayed. This window displays the entries in the exception log file in five columns:

86 Performance Toolbox Guide

1. An action code to indicate any action the user takes for the exception log entry.

2. The name of the exception.

3. The exception’s severity code.

4. The date and time the exception was generated.

5. The description of the exception.

The exception log entries are shown in a scrollable list. One or more lines in the list can be selected.

When a line has been selected it can either be marked as read, or for deletion. This is done from the

menu bar at the top of the Show File window. This menu bar has two pull-down menus:

 File Allows you to select from the following:

Mark for

Delete

If the user has selected any line from the scrolled list and then selects this item, an X is

displayed at the beginning of the line to mark it ready for deletion. When the user saves the

changes and closes this window, the selected lines are deleted from the exception log file.

Mark for

Read

If the user has selected any line from the scrolled list and then selects this item, an @

symbol is displayed at the beginning of the line to mark it has been read. When the user

saves the changes and closes this window, the selected lines are rewritten to the exception

log file with an @ symbol at the beginning. The next time the user views the exception log

file, the @ symbol is displayed so the user knows the exception has been looked at before.

Save &

Quit

If the user selects this item, two things are done. First, if any line has been marked as read,

then an @ symbol is placed at the beginning of that line in the exception log file. Second, if

any lines have been marked for deletion, those lines are deleted from the exception log file.

The Show File window then is closed.

Quit The Show File window is closed. If any line has been marked as read or for deletion, that

information is not saved.

Help Index A help menu containing only the Help Index entry.

Deleting an Exception Log

A user selects the Delete Log entry from the File pull-down menu of the main window to delete an

exception log file. A file selection window is displayed with a list of all the exception log files available. The

exception log to delete is selected from the list in the selection window.

After selection of the exception log, the user must select OK to delete the exception log file and refresh

the selection window. To close the file selection window, select Cancel.

Working with Hosts

Selection of hosts to monitor for exceptions is done from a selection window. This window has a list of

hosts to select from and, at the top, a button with the text Click here when selection complete. Similar

looking selection lists are used to add hosts to the ones already being monitored and to remove hosts that

are no longer to be monitored.

Note: With the Performance Toolbox Local feature, available with Version 2.2 or later, only the local host

is available for selection.

In either case, select the hosts from the displayed list by moving the mouse pointer to the first host you

want, then press the left mouse button and move the mouse while holding the button down. When all

hosts you want are selected, release the mouse button. If you want to select hosts that are not adjacent in

the list, press and hold the Ctrl key on the keyboard while you select. When all hosts are selected, release

the key. After all selections have been made, use the left mouse button to click on the button at the top of

the window.

Chapter 8. Monitoring Exceptions with exmon 87

The host selection window is first displayed when you start exmon. From this first window you select the

initial list of hosts to monitor. When you later want to add or delete hosts, use the Hosts pull-down menu in

the main window and select Add Hosts or Delete Hosts as required.

Add Hosts

The user is presented with a selection list of all hosts on the network that have responded to invitations

from exmon. If a host you want to monitor does not show up in the initial selection window, it might be

because the host is down, because its xmservd daemon cannot be activated, or because its xmservd

daemon doesn’t respond fast enough. In either case, the Add Hosts selection window can be used to

refresh the list of hosts and, potentially, make it possible to select the host later.

Note: With the Performance Toolbox Local feature, available with Version 2.2 or later, only the local host

is available for selection.

Delete Hosts

If for some reason you don’t want to continue the monitoring of one or more hosts, you can stop

monitoring them by selecting them from the Delete Hosts window. This window shows a list of the hosts

that are currently being monitored by exmon. When you select a host from the list and click on the Click

here when selection complete button, no more exceptions are received from that host. The selected host

also is deleted from the matrix in the main window and its exception log files are closed but retained.

Resynchronizing

Every five minutes, exmon attempts to reconnect to any hosts that has dropped out for one reason or

another.

Duplicate Hostnames

When exmon generates the list of hostnames available for monitoring, it uses the RSi API to solicit for

host responses on the network. Every response to this solicitation carries the uname (simple, unqualified

hostname) of the responding host and the IP address of the host. Because the hosts respond by sending

their uname, identical hostnames will be returned for each network adapter that received the solicitation

for hosts with multiple adapters. This requires special action in exmon to prevent exceptions from a host

with multiple adapters from being counted multiple times.

In addition to the situation where hosts have multiple adapters, the uname usage could also create

confusion when two or more hosts have the same uname, which could be because the hosts exist in

different IP domains or because a host had its simple hostname changed but not its uname.

The exmon program provides ways to handle these conflicts. The method used depends on the

implementation of nameservice in your network. The term nameservice means the mechanism that is used

to find the IP address or hostname in your network, this can be done with the host command. The

nameservice is usually provided by a domain name server, by Network Information Services (NIS, formerly

Yellow Pages), by the /etc/hosts file, or by a combination of these.

The following example shows how different situations are handled. They are based on a network with the

following hosts, some of which have multiple network adapters:

 Host uname IP address Hostname from nameservice

banana 9.11.22.33 banana.west.com

banana 130.4.5.6 undefined

banana 192.10.10.10 banana.west.com

banana 7.7.7.7 banana.east.com

orange 9.11.22.44 lemon.west.com

88 Performance Toolbox Guide

Host uname IP address Hostname from nameservice

orange 9.11.22.55 orange.west.com

lime 7.8.8.8 lime.east.com

lime 9.11.22.66 lime.west.com

Assuming all these hosts and all their network interfaces receive and respond to solicitation, the list of

hosts presented by exmon will look like this:

130.4.5.6 (banana) 130.4.5.6

banana.east.com 7.7.7.7

banana.west.com 9.11.22.33

lemon.west.com 9.11.22.44

lime.east.com 7.8.8.8

lime.west.com 9.11.22.66

orange.west.com 9.11.22.55

For the host with uname banana, the adapter with IP address 192.10.10.10 does not show up. That is

because the hostname is exactly the same as for the adapter with IP address 9.11.22.33. This generally

means that there are two network adapters on the same machine. The IP address chosen is what the

nameservice returns when you do a name lookup on the hostname. The adapter whose IP address was

not defined with the nameservice shows up with its IP address followed by the uname of the host. Finally,

the adapter that has a different host/domain name assigned to it shows up on a line by itself.

Because all of banana’s adapters received the solicitation and responded to it, exception packets will be

sent once on each interface. Consequently, exmon will receive four exception packets for each exception

that occurs on banana. The one received from IP address 192.10.10.10 is discarded because exmon was

able to determine that the host was the same as the host with IP address 9.11.22.33. All other exception

packets will be processed by exmon provided they have elected to monitor the host entry.

In all the other cases, exmon will detect that the seemingly identical hosts (judging from their unames) are

indeed entities that should be treated as separate. In general, unless there are compelling reasons to

assign different hostnames to multiple interfaces in one host, it is an advantage to explicitly assign the

same hostname to all interfaces. Whether you select different hostnames for each adapter or not, register

each IP address with the nameserver.

Command Execution from exmon

As an exception monitoring program, exmon has the function to alert its user if some exception is reported

from one of the monitored hosts. When this happens, the user might want to look into the causes of the

exception.

To facilitate this, the exmon program gives the user the ability to execute commands for any of the hosts

that reported exceptions. Commands are defined in a configuration file, exmon.cf as explained below. To

execute a command for a host, move the pointer to one of the host names displayed in the exmon

monitoring window and click the left button. This causes a dialog box to pop open and display the

commands the user can execute for that host. To execute a command, the user selects one of the lines

and then selects OK.

The list of commands that are displayed in the dialog box is kept in the user definable exmon.cf file. The

exmon program first looks for this file in the user’s home directory. If the file is not found there, it is looked

for in the /etc/perf/ directory. If the file is not there, then the /usr/lpp/perfmgr directory is searched. If the

file cannot be located in any of the directories, the program will be missing important information and may

terminate or provide reduced function. A sample configuration file is provided in the /usr/lpp/perfmgr

directory.

Chapter 8. Monitoring Exceptions with exmon 89

The exmon Configuration File

The configuration file may contain comment lines that begin with the character # (number sign). All other

lines are assumed to define commands and have the general format:

command_name:command_line

 command_name: The command_name is what appears in the dialog box when a user selects the host name.

It should explain the function of the command in enough detail for a user to determine

which of the defined commands is appropriate for the situation. The command_name must

be followed by a colon.

command_line At the places where a host name is required in the command line, the characters %s

(percent sign followed by a lowercase S) must be present in the command line. The %s

may be included in the command line a maximum of five times.

The configuration file may contain a maximum of 50 commands. Each command line should end with an

ampersand (&) character. This executes the command in the background. If the command is not executed

in the background, then exmon execution is suspended until the command has terminated.

The following is an example of an exmon configuration file:

#Sample Exmon Config File

#Display processes for host with 3dmon

3dmon Processes:3dmon -h%s -cProc &

#chmon for selected host

chmon:aixterm -n chmon -T chmon -e ksh -c “(sleep 1; chmon %s)” &

#Start xmperf for host

xmperf:xmperf -h%s &

#xmpeek statistics

xmpeek:aixterm -n xmpeek -T xmpeek -e ksh -c “(xmpeek %s; read)” &

The exmon Resource File

The AIXwindows resource file for exmon defines resources you can use to enhance the appearance and

behavior of exmon and is installed as /usr/lib/X11/app-defaults/EXmon. The following behavior can be

modified with the exmon resource file.

Coloring Scheme

The user decides whether a separate color should be assigned to the cells belonging to each of the

exception IDs, or whether the cells of all exception IDs should follow a common coloring scheme that

assigns colors depending on the number of exceptions received in each of the cells. To select the first

coloring scheme, set the X resource RangeDisplay to false, otherwise set it to true. If the resource is set

to true, the coloring scheme in the section entitled “Value Ranges” is in effect; otherwise the coloring

scheme described in “Exception Colors” is used.

Exception Colors

Each exception identifier has a different color associated with it. Colors are defined through the X

resources ValueColor0 through ValueColor10.

Value Ranges

The user can define the exception monitor to change colors when the number of exceptions for an

individual exception ID is within a certain range. The definition of color ranges applies across all exception

IDs. Two limits between value ranges are defined with the X resources ValueRange1 and ValueRange2 to

create a total of three ranges. The X resources RangeColor1 through RangeColor3 are used to define

the colors to use when the exception count in a grid cell falls within a range. To illustrate, consider this

example where a user defines the following resources:

90 Performance Toolbox Guide

*RangeDisplay: true

*ValueRange1: 5

*ValueRange2: 10

*RangeColor1: green

*RangeColor2: yellow

*RangeColor3: red

With this resource setting, if the number of exceptions for a particular exception ID is less than or equal to

5, then the color displayed is green. When the number of exceptions is within the range 6-10, then the

color displayed is yellow. When the number of exceptions has increased beyond 10, then the color

displayed is red.

Exception Identifier Text

The filtd daemon allows you to define severity codes for each alarm. These codes are sent as part of any

generated exception packets. Obviously, these codes and exceptions can be defined to represent anything

you want them to represent. By setting the ExceptionText0 through ExceptionText10 resources, you can

define the column headings displayed in the exmon main window for the exception IDs. A maximum of

seven characters is displayed for each column heading.

Chapter 8. Monitoring Exceptions with exmon 91

92 Performance Toolbox Guide

Chapter 9. Recording Files, Annotation Files, and Recording

Support Programs

This chapter explains the contents of recording files and how the files can be created and processed. It

then describes each of the following programs collectively known as the recording support programs:

a2ptx A program to generate recordings from ASCII files.

ptxmerge A program to merge up to 10 recording files into one.

ptxsplit A program to split recording files into multiple files

ptxconv A program to convert between Performance Toolbox for AIX Version 1.1 to Version 2 or

Version 1.2 recording file format.

ptxtab A program to tabulate the contents of recording files.

ptxls A program to list the statistics in a recording file.

ptxrlog A program to create ASCII or binary recording files.

ptx2stat A program to convert binary recording files containing hotset information.

ptxhottab A program to tabulate hotset information in recording files.

The main program for analyzing recordings is the azizo program described in Chapter 10, “Analyzing

Performance Recordings with azizo,” on page 107.

Note: You can access these programs from the xmperf Command Menu Interface.

Recording Files

Recording files are binary files whose first record is a configuration record. This record identifies the file as

a recording file, names the source of the recording, and states the version of the file. To be valid,

recording files must also contain the definition of one or more statistics and must contain at least one

value record.

Creation of Recording Files

Recording files are created by one of the Agent or Manager programs. They can be created by the xmperf

and 3dmon programs during monitoring, by the xmservd daemon at any time it is running, by the

program a2ptx from ASCII files that adhere to a certain format, or by the ptxrlog program.

From the definition of statistics, a program reading the recording file can determine how the statistics are

grouped into sets of statistics (statsets). By the nature of the record layout, at least one such set exists but

the definition records may define multiple. Sets of statistics are defined by the program that creates the

recording:

xmperf A set is created for each instrument in the console from which the recording is created.

3dmon A set is created for each path name at the right side of the graph grid.

xmservd A set is created for each sampling interval. Each statset is assigned a number equal to the

sampling interval divided by the minimum sampling interval of the xmservd daemon.

a2ptx Only one set is created.

ptxrlog Only one set is created.

Recordings created by xmperf also contain console definition records. This record type describes the

layout and other properties of the console that was used to create the recording and is used by xmperf to

reconstruct the console when the recording is played back by xmperf. Recordings created by other

© Copyright IBM Corp. 1994, 2004 93

programs do not contain console definition records. When such recordings are played back with xmperf,

default consoles are constructed as explained in the section entitled “Creation of Playback Consoles” on

page 55.

Records carrying the observations are called value records. They correspond to the sets defined in the

recording file and contain one reading for each of the statistics in the set plus the time stamp of the

reading and the elapsed time since the previous reading. Each reading consists of two fields:

Raw value Regardless of the type of statistic, gives the actual value as observed. Usually, programs

that process a recording file use this field for statistics of type SiQuantity. Such statistics

represent a level, such as the amount of free space on a disk or the percentage of system

memory in use.

Delta The difference between the previous observation for this statistic and the latest

observation. Usually, programs that process a recording file use this field for statistics of

type SiCounter and divide it with the elapsed time in seconds to arrive at a rate per

second. SiCounter statistics represent a count of activity such as the number of disk

operations or the number of timer ticks while the CPU is idle.

A special type of value record is the stop record which signals that recording was stopped for a statset and

gives the time it happened. This allows programs using the recording file to distinguish between gaps in

the recording and variances in recording interval.

Modifying Recording Files

Several programs can modify recording files. As they do so, they may preserve or discard information

about sets of statistics and consoles in the files. The following sections describe how recording files can

be modified. More detail is provided in the detailed description of each of the programs later in this chapter

and in Chapter 13, “Monitoring Remote Systems,” on page 153.

Filtering with azizo

The azizo program allows you to write a filtered recording file from an input recording file. Filtering can

write a subset of statistics for a subset of the time span covered by the input recording file. If the input

recording file contains more than one definition of sets, or if it contains a console definition, you can elect

to discard these definitions and create the filtered file with only one set and no console definition. Creation

of filtered recording files with the azizo program is described in the article entitled “Filtered Recordings” on

page 122.

Merging with ptxmerge

The program ptxmerge allows you to merge multiple recording files into one. When merging only two

recordings, the program can be asked to adjust the time stamps of one of the recordings. If the multiple

recordings you merge into one all contain identical console definitions, the console and set definitions are

retained. Otherwise, all console definitions are discarded while set definitions are retained.

The ptxmerge program also allows you to reorganize recording files where multiple recordings are

concatenated into one file. It does so by first splitting the files into separate files, then merging them

together.

Splitting with ptxsplit

Very large recording files can be time consuming to analyze. The program ptxsplit can be used to divide

such files into smaller files. Splits can be done as simply as dividing the file into sections where the only

change to the sequence and contents of records is that each output file has a copy of the configuration

and definition records.

More advanced features allow you to split the file into groups of selected statistics. When this is done, you

have the option of preserving or discarding definition records, depending on how you have specified the

split to take place. For some splits, it may not be possible to preserve the definition records.

94 Performance Toolbox Guide

Version Conversion with ptxconv

Recording files created by Version 1.1 of the Performance Toolbox for AIX can be converted to the format

used by Versions 1.2 or 2. If so desired, the program also does conversion the other way. Recording files

created by Version 1.1 do not have the special stop records and neither do files converted from Version

1.1 format. When you analyze such files with azizo, a stop in the recording is interpreted as an

extraordinarily long sampling interval.

Annotation Files

Note: Annotation files are available with Version 2.2 or later only.

Annotation files are plain ASCII text files. They are associated with recording files only through a naming

convention. For example, the annotation file for a recording file named R.time_off would be N.time_off. If

the name of a recording file is changed to something that does not begin with the R. prefix, the association

with the annotation file is lost, even if the annotation file is renamed.

If the recording file is moved to a different directory and the annotation file is not moved to the same

directory, then the association with the annotation file is lost.

If the recording file is processed with the recording support programs, then the modified (and differently

named) new recording file will no longer have any association to the annotation file. However, none of the

recording support programs change the original recording file so the association to those files still exists.

Annotation files can be created and modified from xmperf, 3dmon, 3dplay, and azizo. From xmperf and

3dmon, annotation files can only be created and modified if recording is, or has been, activated. From

3dplay and azizo, the user can create or modify annotation files at any time.

The a2ptx Recording Generator

The a2ptx program takes a file with a tabulated list of data as input and produces a recording file in a

format that allows the file to be processed by any recording support program and by xmperf and azizo.

The purpose is to extend the usability of Performance Toolbox for AIX to cover other types of data or

performance data produced by programs that are not part of Performance Toolbox for AIX.

Input Formats of a2ptx

For a2ptx to successfully create a valid recording file from an input file, the latter must be in a certain

format. When used with their -s command line flags, the programs ptxtab and ptxrlog produce output in a

format suitable for a2ptx. For ptxrlog, the -t flag can also be used. There are rules for the following parts

of the input file:

v “Host identifier”

v “Statistic names” on page 96

v “Time stamps” on page 96

v “Data values” on page 96.

For the following explanation, refer to an “ptxspread” on page 102, which shows an example of a valid

a2ptx input file.

Host identifier

If a string in the format hostname: xxxxx is at the end of the first line of the input file, this causes a2ptx to

prefix all statistic names it later reads with the string hosts/xxxxx. The keyword hostname: may start with a

uppercase H and must be followed by a colon. The xxxxx part can be any value you want. The two parts

must be separated by white space. If the host name string is not found on the first line of the file, no prefix

is added to the statistic names.

Chapter 9. Recording Files, Annotation Files, and Recording Support Programs 95

Statistic names

Before any time stamps or data values appear in the input file, a line beginning with the string″Timestamp″

must exist. The double quotation marks are optional. Following the identifier string on the line must be one

column heading for each column of data values on data value lines. The column headings may optionally

be enclosed in double quotation marks and are used as the fully qualified name of the statistic records

written to the output recording file. The line’s identifier string must be separated from the column headings

with white space, which must also separate the column headings.

Time stamps

Each line with data values must begin with a time stamp optionally enclosed in double quotation marks

and followed by white space. The format of the string is:

YYYY/MM/DD hh:mm:ss

Time stamps should appear in ascending order to make the resulting output file usable in other

Performance Toolbox for AIX programs.

Data values

Following the time stamp on data lines must be a number of data values separated by white space. Data

values may have a decimal point or be integers. The number of data values on each line must be the

same as the number of column headings. If one or more data lines do not have data available for a value,

a dash must be inserted in place of the missing data value.

The a2ptx Command Line

The command line to invoke a2ptx is:

a2ptx input_file output_file

Both arguments are required.

The ptxmerge Merge Program

The ptxmerge program has two modes of operation:

Rearrange To rearrange the sequence of records in a recording file that contains more than one set

of control information.

Merging To merge multiple recording files into one.

When you supply only one input file name on the ptxmerge command line, it is assumed that you want to

rearrange the records in that file. In all other cases, merging is assumed.

The actual implementation of the rearrange function divides the input file into separate temporary files, one

for each set of control information in the file. Those temporary files are then merged into one to create the

final output file and deleted.

The created output file always has only one group of control records at the beginning of the file. This set is

created from the groups of control records in the input files. If all input files were created by xmperf and

have identical definitions (were created from identically configured consoles that contain identical

instruments), all control records, including the console definition, are preserved and written to the output

file.

If there’s the slightest difference between the control records of the input files, then ptxmerge creates the

output file so that any console information is discarded. Definitions of sets of statistics (statsets) is then

only retained if the -z command line argument is used. In all other cases, the resulting output file contains

only a single set of statistics (statset).

96 Performance Toolbox Guide

The value records that carry observations of statistics are arranged so they appear in time order in the

resulting output recording file.

When to Use ptxmerge

The ptxmerge program is safe to use because it always leaves the original files unchanged and it is

reasonably fast in doing what it does. It can be used to organize recordings for optimal analysis or

playback, and it works in concert with the other recording support programs as well as the filtering function

of azizo. The following two sections give some examples of when to use ptxmerge.

Rearranging Recording Files

The xmservd daemon can produce recording files with more than one set of control information. It

happens whenever xmservd resumes recording to an existing recording file and the xmservd recording

configuration file (xmservd.cf) has been changed since the recording file was created. It is done to

prevent the recording from being corrupted when changes are made to the sets of statistics being

recorded.

The xmservd daemon makes no attempt at keeping track of what the changes to its configuration file

were, so it is possible that the two or more sets of control information in the recording file are identical. On

the other hand, there’s no guarantee that they are. The ptxmerge program allows you to rearrange the file

and detects if the sets are indeed identical. If they are, the resulting output file are identical to the input

file, except that only the first set of control records is preserved.

If a recording file produced by xmservd has different sets of statistics, or if a recording file was produced

by concatenating two or more recording files with different sets of statistics, then the sets are merged into

one single set of statistics unless the -z command line argument is used.

The only other program that can create recording files with more than one set of control information is

ptxrlog. See “The ptxrlog Recording Program” on page 103 for more information.

Merging Recording Files

There can be many reasons to merge one or more recording files into one. Generally, it is done because

you want to analyze multiple recordings as one with azizo or because you want to play multiple recordings

back as one with xmperf. The separate recording files may represent recordings from the same invocation

of xmperf, but from different instruments. They may be produced simultaneously on different hosts,

possibly to record the effects of a distributed application on the application’s server and client sides. Or

they may represent identical recordings for different time periods that you want to analyze together.

If the intention is to play the recordings back with xmperf, then it is often a good idea to use the -z flag to

preserve instrument definitions. This allows you to keep track of the original sets of statistics, which is

especially important if you use ptxmerge to adjust the time stamps of one of the input files.

The ptxmerge Command Line

The ptxmerge program allows the user to specify up to 10 input files that are to be merged into one file.

All files must be valid Performance Toolbox for AIX recording files in Version 2 format. When more than

one input file is specified and one or more of the input files contain multiple sets of control information,

only the records belonging to the first such set participate in the merge operation.

If only one input file is given, the program assumes you want it to rearrange the records in that file. If this

file contains only one set of control information, then the output file is identical to the input file.

The command line to invoke ptxmerge is:

ptxmerge [-m| -p incr|-t inc r] [-z] outfile input1 [input2 [input3...]]

The command line flags have the following meaning:

Chapter 9. Recording Files, Annotation Files, and Recording Support Programs 97

-m Only valid if exactly two input files are specified. Merges files, modifying all time stamps in the

oldest file by the difference in time between the time stamps of the first value record in the two

files.

-p Only valid if exactly two input files are specified. Must be followed by the number of seconds to be

added to all time stamps in the first input file before merging the files. This value may be negative.

-t Only valid if exactly two input files are specified. Must be followed by the number of seconds to be

added to all time stamps in the second input file before merging the files. This value may be

negative.

-z Optional. Preserves information about sets of statistics (statsets) when creating the resulting file.

This is useful if the output file is to be used for playback with xmperf. The input files are merged

together but each set of statistics are played back in instruments of the same contents (though not

necessarily the same appearance) as the originals.

The ptxsplit Split Program

At times, it is advantageous to divide one recording file into multiple. This may be because the file is too

large to allow timely analysis or playback, because it contains statistics that are irrelevant for the current

use of the file, or because it contains more than one set of control records. In either case, ptxsplit splits a

recording file to your specifications.

The ptxsplit Command Line

The ptxsplit program is invoked with the following command line:

ptxsplit { -p parts| -s size| -h| -b| -fcfile| -d hhmm [-t dhhmm]} infile

The command line arguments are all mutually exclusive, except that the -t argument is only valid if the -d

argument is given. One of the arguments must be specified. The arguments are:

-p Split in parts of equal size. Must be followed by the number of parts the input file shall be divided

into. The output files are approximately the same size and begin with a set of control records. The

output file names are infile.p1, infile.p2, ... infile.pn. Statsets are preserved in the output as are

any console records.

-s Split in parts of equal size. Must be followed by the size you want each output file to have. The

output files, except the last one, usually are slightly smaller than the specified size; the last file

may be much smaller. The output files all begin with a set of control records. The output file

names are infile.s1, infile.s2, ... infile.sn. Statsets are preserved in the output as are any console

records.

-h Split into files according to the host name of individual observations. The output files all begin with

a set of control records. The output file names are infile.hostname1, infile.hostname2, ...

infile.hostname. Statsets are preserved in the output. Any console records are discarded.

-b Split into files for each set of control records encountered. The output files all begin with a set of

control records. The output file names are infile.b1, infile.b2, ... infile.bn. Statsets are preserved

in the output as are any console records.

-f Split into two files. The flag must be followed by a file name of a control file. The first output file is

to contain all occurrences of the statistics listed in the control file. Remaining statistics are written

to the second output file. Statistics are specified in the control file with their full path name. The

control file may contain comment lines beginning with the character # (number sign). If the

hostspart of the path name is omitted, statistics are selected across all host names. If the

hostspart of the path name is supplied, an exact match is required for a statistic to be selected.

The first output file has the name infile.sel, the second outfile is called infile.rem. Statsets are not

preserved in the output files.

98 Performance Toolbox Guide

The program ptxls can produce a list of the statistics contained in a recording file. The output from

the program has the format required for the control file. Use it by redirecting ptxls output to a file;

then edit the file to include only the statistics you want in the file infile.sel.

-d Split after duration into parts covering time periods of equal size. Must be followed by the duration

span of each file, given as hhmm, where:

 hh = Hours.

 mm = Minutes.

 If the -t argument is omitted, the time period begins with the earliest value record in the input file;

otherwise with the time specified on the -t argument. The output files all begin with a set of control

records. The output file names are infile.d1, infile.d2, ... infile.dn. Statsets are preserved in the

output as are any console records.

-t Only valid if the -d argument is given. Specifies a point in time that shall be used to split the input

file. Must be followed by a time in the format dhhmm, where:

 d = Day of week, Sunday = day 0.

 hh = Hours.

 mm = Minutes.

 The time given may lie outside the time period covered by the input recording file. If the time given

differs from the time stamp of the first value record in the input file, the first output file contains

data for an interval smaller than that requested with the -d argument.

 For example, assume a recording file’s first value record has a time stamp corresponding to 30830

(day 3, at 8:30 a.m.) and you invoke ptxsplit with the command line:

ptxsplit -d0600 -t00000 recording_file

This causes the first file to cover the interval from 8:30 a.m. until 11:59 a.m., the next one from

12:00 noon until 5:59 p.m., and so on until there’s no more value records in the input file.

 Consider splitting the same file with the command line:

ptxsplit -d0600 -t40800 recording_file

The -t argument, in this case, gives a point in time later than the first value record’s time stamp.

The program determines the time to place the first split point by stepping backwards in time from

day 4 at 8:00 a.m. in steps of six hours (as per the -d argument) until it has passed the time

stamp of the first value record. This would be on day 3 at 8:00 a.m. This is the reference point.

The first output file covers day 3 from 8:30 a.m. to 1:59 p.m., the next from 2 p.m. to 7:59 p.m.,

and so forth.

The ptxconv Conversion Program

In Version 1.1 of the Performance Toolbox for AIX, recording files could only be created with the xmperf

program. The only other program in Version 1.1 that used recording files was the xmtab program, which is

renamed ptxtab in later versions of Performance Toolbox for AIX. Neither program was concerned with the

possibility of a recording file being created from a monitoring session where the recording of instruments

was stopped and started one or more times. Similarly, neither program ever attempted to read a recording

file backwards.

This changed with the introduction of the azizo program and the recording support programs. The azizo

program wants to know if a recording session was stopped and restarted, and to speed the analysis, the

program reads some records off the end of the recording file. Consequently, the recording file format was

changed so that stop records are added when a recording stops, and so a recording file can be read

backwards. The changes mean that Version 1.1 files cannot be processed by azizo or other Version 2 or

Version 1.2 Performance Toolbox for AIX programs.

Chapter 9. Recording Files, Annotation Files, and Recording Support Programs 99

To allow a user of Version 1.1 of Performance Toolbox for AIX to upgrade to later versions without losing

the ability to view existing recording files, the ptxconv program was added to Performance Toolbox for

AIX. This program allows conversion between Version 1.1 and Version 2 and Version 1.2 recording files in

either direction.

Note: When a recording file has the Version 1.1 format, whether it was created that way or was converted

from a later format, a conversion to the later format will not add stop records to the file. This causes

azizo to treat gaps in the recording of a set of statistics as an extraordinarily long sampling interval.

The ptxconv Command Line

The ptxconv program is invoked with the following command line:

ptxconv -v{1|2} input_file output_file

All command line arguments are required and have the following meaning:

-v1 Converts a recording file with Version 2 or Version 1.2 format into the Version 1.1 format. This

allows the use of an older version of xmperf to play the recording back.

-v2 Converts a recording file with Version 1.1 format into the later format. This allows any of the

Performance Toolbox for AIX Version 1.2 and Version 2 programs that process recording files to

work with the converted file.

input_file

The path name of a recording file. The input file should be a file that was created with the version

level the user wishes to convert from.

output_file

The path name the user wishes the new recording file to have.

Listing Recorded Data with ptxtab

A simple utility program, ptxtab lets you format a recording for tabulated output. In earlier versions of

Performance Toolbox for AIX, this program was called xmtab. The program takes a recording file as input

and produces one output file for each set of statistics (statset) in the recording file.

Each of the output files are named by suffixing the statset sequence number to the name of the recording

file. If the recording file has an original file name as created by xmperf or 3dmon, the initial ″R″. is

changed to ″A″. to distinguish between Recordings and ASCII output files. This also ensures that ASCII

output files do not show up in the dialog window used to select recordings in the programs xmperf and

azizo. As an example, assume the recording file $HOME/XmRec/R.NiceMonitor was created by xmperf

and has instruments (statsets) with sequence numbers 3 and 8. Running the ptxtab program would then

produce the ASCII output files $HOME/XmRec/A.NiceMonitor_3 and $HOME/XmRec/A.NiceMonitor_8.

By default, each of the output files produced by ptxtab is formatted for printing with a multiline heading

that begins with a page eject. The first line lists the name of the console (if console information is available

in the recording file) or program (when the recording file was not created by xmperf) that created the

recording and the host name of the host providing the data. The second line is blank and the remaining

lines provide headings for each column of tabulated data. The following is an example of output from

ptxtab as produced with no command line flags.

Example of ptxtab Default Output Format

#Monitor: Nice Monitor --- hostname: nchris

 Mem Mem

 PagSp PagSp Virt Virt

Timestamp %totalused %totalfree pagein pageout

1994/01/07 15:36:03 27.8 72.2 8 20

100 Performance Toolbox Guide

1994/01/07 15:36:07 27.8 72.2 7 17

1994/01/07 15:36:11 27.8 72.2 3 283

1994/01/07 15:36:15 27.8 72.2 28 48

1994/01/07 15:36:19 28.2 71.8 56 41

1994/01/07 15:36:23 29.5 70.5 29 38

1994/01/07 15:36:27 31.5 68.5 0 62

1994/01/07 15:36:31 32.4 67.6 70 1

1994/01/07 15:36:35 32.6 67.4 73 32

1994/01/07 15:36:39 32.8 67.2 156 0

1994/01/07 15:36:43 34.5 65.5 167 4

1994/01/07 15:36:47 34.4 65.6 163 0

1994/01/07 15:36:51 31.1 68.9 12 57

1994/01/07 15:36:55 30.2 69.8 35 34

1994/01/07 15:36:59 28.0 72.0 15 0

1994/01/07 15:37:04 28.0 72.0 15 0

The ptxtab Command Line

The ptxtab command line looks as follows:

ptxtab [-l lines| -c | -s [-r | -t] recording_file

-l The flag -l (lowercase L) is used to specify the number of lines per page you want the output files

formatted for. The default is 23 lines per page, which is ideal for viewing the output in a 25-line

window or on a terminal with 25 lines. If you specify 0 (zero) lines per page, pagination is

suppressed. If the value is given as non-zero, it must be between 10 and 10,000. The flags -l, -c,

and -s are mutually exclusive.

-c The flag -c causes ptxtab to format the output files as comma separated ASCII. Each line in the

output files contains one time stamp and one observation. Both fields are preceded by a label that

describes the fields. An example of output formatted this way is shown in the“Example of ptxtab

Comma-Separated Output Format.” The eight detail lines shown correspond to the first two detail

lines in the “Example of ptxtab Default Output Format” on page 100. The flags -l, -c, and -s are

mutually exclusive.

-s The flag -s causes ptxtab to format the output files in a format suitable for input to spreadsheet

programs. When this flag is specified, it is always assumed that the -r flag is also given. An

example of formatting with the -s flag is shown in the “ptxspread” on page 102. The detail lines

shown correspond to the detail lines in the “Example of ptxtab Default Output Format” on page

100. This output format also matches the requirements of the a2ptx input file format. The flags -l,

-c, and -s are mutually exclusive.

-r The flag -r is independent of the other flags. It specifies that when SiCounter data is sent to the

ptxtab output files, they are presented as rates per second. Without this option, ptxtab presents

this data as the delta value in the interval. The flags -r and -t are mutually exclusive.

-t The flag -t is independent of the other flags. It specifies that when SiCounter data is sent to the

ptxtab output files, they are presented as absolute values. In other words, this flag causes

SiCounter values to be treated as SiQuantity values. Without this option, ptxtab presents this data

as the delta value in the interval. The flags -r and -t are mutually exclusive.

Example of ptxtab Comma-Separated Output Format

#Monitor: Nice Monitor --- hostname: nchris

Time="1994/01/07 15:36:03", PagSp/%totalused=27.82

Time="1994/01/07 15:36:03", PagSp/%totalfree=72.18

Time="1994/01/07 15:36:03", Mem/Virt/pagein=8

Time="1994/01/07 15:36:03", Mem/Virt/pageout=20

Time="1994/01/07 15:36:07", PagSp/%totalused=27.82

Time="1994/01/07 15:36:07", PagSp/%totalfree=72.18

Time="1994/01/07 15:36:07", Mem/Virt/pagein=7

Time="1994/01/07 15:36:07", Mem/Virt/pageout=17

Chapter 9. Recording Files, Annotation Files, and Recording Support Programs 101

ptxspread

#Monitor: Nice Monitor --- hostname: nchris

"Timestamp" "PagSp/ "PgSp/ "Mem/Vir/ "Mem/Vir/

 %totused" %totfree" pagein" pageout"

"1994/01/07 15:36:03" 27.8 72.2 8 20

"1994/01/07 15:36:07" 27.8 72.2 7 17

"1994/01/07 15:36:11" 27.8 72.2 3 283

"1994/01/07 15:36:15" 27.8 72.2 28 48

"1994/01/07 15:36:19" 28.2 71.8 56 41

"1994/01/07 15:36:23" 29.5 70.5 29 38

"1994/01/07 15:36:27" 31.5 68.5 0 62

"1994/01/07 15:36:31" 32.4 67.6 70 1

"1994/01/07 15:36:35" 32.6 67.4 73 32

"1994/01/07 15:36:39" 32.8 67.2 156 0

"1994/01/07 15:36:43" 34.5 65.5 167 4

"1994/01/07 15:36:47" 34.4 65.6 163 0

"1994/01/07 15:36:51" 31.1 68.9 12 57

"1994/01/07 15:36:55" 30.2 69.8 35 34

"1994/01/07 15:36:59" 28.0 72.0 15 0

"1994/01/07 15:37:04" 28.0 72.0 15 0

The ptxls List Program

The ptxls program allows you to list the control records of a recording file. You can use it to find out if

more than one set of control records exist, and it tells you which statistics are contained in a recording file.

In addition, it lists the time period covered by the recording and the number of value records (observation

count) for each set of control records in the file.

The output created by ptxls is suitable for use with the -f option of the ptxsplit program. That option

requires a file name of a file that contains a list of statistics to extract from a recording. This file can be

created by redirecting the output of ptxls to a file and then deleting the path names that should not be

extracted.

The ptxls command line takes no flags but you must specify the name of a recording file to process.

The first output line names the set of control records in the line displaying Configuration. Then, each

instrument in the console is identified by one line displaying Console giving the number assigned to the

instrument plus one line for each of the statistics belonging to that instrument (statset). Each statistic line

ends with two numbers. The first identifies the statset and the second is the statistic identifier within the

statset.

The following is an example of ptxls output. The example is created from a recording of the xmperf

console ″Combo Style Sample″ as supplied in the sample xmperf configuration file:

Configuration: ID=Combo Style Sample

Console #00001: ID=Combo Style Sample hosts/nchris/SysIO/writech

00001/00002 hosts/nchris/SysIO/readch

00001/00003

Console #00002: ID=Combo Style Sample hosts/nchris/Mem/Real/%local

00002/00001 hosts/nchris/Mem/Real/%clnt

00002/00003 hosts/nchris/Mem/Real/%free

00002/00005

Console #00006: ID=Combo Style Sample hosts/nchris/Disk/hdisk0/xfer

00006/00001 hosts/nchris/Disk/hdisk1/xfer

00006/00002 hosts/nchris/Disk/hdisk2/xfer

00006/00003 hosts/nchris/Proc/pswitch

00006/00005 hosts/nchris/Proc/runque

00006/00007

Console #00003: ID=Combo Style Sample hosts/nchris/CPU/cpu0/wait

00003/00001 hosts/nchris/CPU/cpu0/kern

00003/00002 hosts/nchris/CPU/cpu0/user

00003/00004 hosts/nchris/Syscall/total

102 Performance Toolbox Guide

00003/00005

Console #00008: ID=Combo Style Sample hosts/nchris/CPU/cpu0/kern

00008/00001 hosts/nchris/CPU/cpu0/wait

00008/00002 hosts/nchris/Mem/Real/%free

00008/00003 hosts/nchris/PagSp/%totalfree

00008/00004 hosts/nchris/Proc/swpque

00008/00005

Console #00004: ID=Combo Style Sample hosts/nchris/Disk/hdisk0/busy

00004/00001 hosts/nchris/Disk/hdisk1/busy

00004/00002 hosts/nchris/Disk/hdisk2/busy

00004/00003

Console #00009: ID=Combo Style Sample hosts/nchris/Mem/Virt/pagein

00009/00001 hosts/nchris/Mem/Virt/pageout

00009/00002 hosts/nchris/Mem/Virt/pgrclm

00009/00003 hosts/nchris/PagSp/hd6/%free

00009/00004 hosts/nchris/Mem/Real/%free

00009/00006

Statistics for above: Start time Wed Jan 12 18:11:19 1994

End time Wed Jan 12 18:20:09 1994

Observation count 1881

The ptxrlog Recording Program

The ptxrlog program can produce recordings in either ASCII format, which allows you to print the output or

postprocess it with database or spreadsheet programs or with the a2ptx program to produce a standard

Performance Toolbox for AIX recording file, or it can produce a standard Performance Toolbox for AIX

recording file in binary format. Statistics to record are specified from a control file, the command line, or

both. If ptxrlog is executed in the background, the list of statistics to record must be specified in a control

file.

The ptxrlog program uses the RSI to access statistics and can collect and record statistics from one host

at a time across the network. All statistics are defined in one statset.

The ptxrlog Command Line

The ptxrlog command line looks as follows:

ptxrlog {-f infile | -m | -mf infile } [-h hostname] [-i seconds] [-o outfile [-c | -s | -t] | -r binoutfile] [-l

pagelen] [-b hhmm] [-e hh.mm]

-f Name of a control file that contains a list of statistics to record. In the control file, each statistic

must be given on a line on its own and with its full path name, excluding the host part, which is

supplied by ptxrlog either from the -h argument or by using the local host name. If the -f

argument is not given, the user is prompted for a list of statistics. If both the -f and the -m

arguments are given, ptxrlog first selects the statistics given in the control file, then prompts the

user to specify additional statistics.

-m Manual input of statistic names. The user is prompted for a list of statistic names to be entered as

full path names without the host part. The host part is supplied by ptxrlog either from the -h

argument or by using the local host name. If both the -f and the -m arguments are given, ptxrlog

first selects the statistics given in the control file, then prompts the user to specify additional

statistics.

-h Hostname of the host to monitor. This argument is used to identify the host to be monitored and,

thus, to create the hosts part of the path names for the statistics to monitor. If this argument is not

supplied, the host name of the local host is used.

Chapter 9. Recording Files, Annotation Files, and Recording Support Programs 103

-i Sampling interval. Specifies the number of seconds between sampling of the specified statistics. If

this argument is not supplied, the sampling interval defaults to 2 seconds.

-o Output file name. Specify the name of the output file you want. If this argument is omitted, output

goes to standard output and neither of the format flags -c, -s, or -t is permitted. If -o is given but

neither of the three format flags is, the output looks the same as the output from ptxtab shown in

the “Example of ptxtab Default Output Format” on page 100. The -o flag and the -r flag are

mutually exclusive.

-c The flag -c causes ptxrlog to format the output file as comma separated ASCII. The flag is only

valid if -o is given. Each line in the output file contains one time stamp and one observation. Both

fields are preceded by a label that describes the fields. The output looks the same as the ptxtab

output shown in the “Example of ptxtab Comma-Separated Output Format” on page 101. The flags

-c, -s, and -t are mutually exclusive.

-s The flag -s causes ptxrlog to format the output file in a format suitable for input to spreadsheet

programs. The flag is only valid if -o is given. The output looks the same as the output from

ptxtab output shown in the “ptxspread” on page 102. The flags -c, -s, and -t are mutually

exclusive.

-t Tab separated format. This flag is identical to the -s flag except that individual fields on the lines of

the output file are separated by tabs rather than blanks. The flag is only valid if -o is given. The

flags -c, -s, and -t are mutually exclusive.

-r The -r flag specifies that the output from ptxrlog goes to a binary recording file in standard

recording file format. The name of the output file must be specified after the flag. The -o flag and

the -r flag are mutually exclusive.

-l (Lowercase L) Specifies the number of lines per page when neither the -o nor the -r flag is

specified or when the -o flag is specified but neither of the -c, -s, or -t flags is specified. If this flag

is omitted, the output is formatted with 23 lines per page if the -o flag is omitted; otherwise with 65

lines per page. When the -o flag is given, a page eject is inserted at the beginning of each page.

-b Begin recording. If this argument is omitted, ptxrlog begins recording immediately. The flag and

arguments are used to start the recording at a specified later time. The flag must be followed by

the start time in the format hhmm, where:

 hh = Hour in 24 hour time (midnight is 00).

 mm = Minutes.

-e End recording. Specifies the number of hours and minutes recording must be active. The flag must

be followed by the number of hours and minutes in the format hh.mm, where:

 hh = Number of hours to record.

 mm = Number of minutes to record.

 If this argument is omitted, the recording continues for 12 hours. A maximum of 24 hours can be

specified. When the time specified by this argument has elapsed, ptxrlog terminates.

Binary Recording Files

When the -r flag is used, output is written to the file name specified after the flag. If the file exists when

recording starts, it is opened for append. After opening the binary output file, whether for creation or

append, ptxrlog writes the control records to the file. For existing files, this causes the file to contain more

than one set of control records and may require you to process the file with ptxmerge or ptxsplit before

you can process the file with xmperf or azizo.

104 Performance Toolbox Guide

Resynchronizing with ptxrlog

The ptxrlog program initiates a resynchronizing with the data-supplier host if the data-supplier host sends

an i_am_back packet. This usually happens if the data-supplier host’s xmservd daemon has died and is

restarted.

The ptxrlog program also initiates a resynchronizing with the data-supplier host if no data_feed packets

have been received for ten times the specified sampling interval.

Listing Recorded HotSet Data with ptxhottab

The ptxhottab program was included after support for HotSet data was added to PTX. The program is

used to tabulate data from a recording file like ptxtab, but it tabulates HotSet data while ignoring other

data.

The ptxhottab Command Line

The ptxhottab command line looks as follows:

ptxhottab [-c] recording_file

-c Condensed output

The program has two output formats: uncondensed and condensed. Uncondensed output uses a format

with name-equals-value pairs separated by semicolons.

Processing HotSet Recordings with ptx2stat

The ptx2stat program was included after support for HotSet data was added to PTX. The program is used

to modify the HotSet data collected in a recording file so it appears to be collected in StatSets. Because

HotSets and StatSets are inherently different, and especially because HotSet data is likely to exist for only

a few time periods, the conversion can usually not make the data appear exactly as StatSet data.

The erratic scattering of actual observations makes it difficult to see observations over a time period when

played back with xmperf. To make it more usable, it is a good idea to postprocess the converted recording

file so that the old HotSet data appears in the same StatSet as real StatSet data. The converted HotSet

observations then appear as ″blips″ in the playback window.

For use with azizo, conversion with ptx2stat can be done so each observation is followed by a stop

record.

The ptx2stat Command Line

The ptx2stat command line looks as follows:

ptx2stat [-s] infile outfile

-s Insert stop-records after each value set.

Chapter 9. Recording Files, Annotation Files, and Recording Support Programs 105

106 Performance Toolbox Guide

Chapter 10. Analyzing Performance Recordings with azizo

The azizo recording application has been replaced with the java-based jazizo application in Performance

Toolbox for AIX Version 3. This new tool provides more functionality than azizo and is easier to use. The

jazizo application processes long-term, large metric set recordings from the xmtrend daemon.

Initial Processing of Recording Files

The azizo program analyzes one recording file at a time. If multiple recordings must be analyzed together,

the support program ptxmerge can be used to merge multiple recording files into one for simultaneous

analysis of statistics from multiple sources.

When recording files contain console definitions, the definitions are not usable in the analysis performed

by azizo and are ignored, except when a filtered recording is produced. All other record types in recording

files are used to build the data tables used in the analysis.

Whenever azizo reads a recording file, it first finds all the statistics defined in the file. For each statistic, it

builds a table with a number of elements corresponding to the width of the graph area. Each element has

the following fields:

Maximum The highest observation received for this statistic in the time interval corresponding to the

table element.

Minimum The lowest observation received for this statistic in the time interval corresponding to the

table element.

Sum The sum of all observations received for this statistic in the time interval corresponding to

the table element.

Count The count of observations received for this statistic in the time interval corresponding to

the table element.

The same statistic can occur in more than one of the sets of statistics (statsets) in the recording file and it

can occur more than once in any set. All such statistics are collected into one table by azizo.

After building the statistics tables, azizo determines the time period covered by the recording. From this, it

calculates how time stamps correspond to elements in the statistics tables. Next, all value records are

read and their observations are routed to the table elements that correspond to the value record’s time

stamp.

When extracting statistic values from the recording file, azizo uses one of the two observation fields in the

value record depending on the type of the statistic. Statistics can be of type SiCounter or of type

SiQuantity:

SiCounter The value of such statistics is incremented continuously by the monitored system. The

delta value, which represents the difference between two consecutive observations, is

used by azizo for this type of statistic. When moved to the tables, the observation is

converted into a rate per second.

SiQuantity Value represents a level, such as memory used or available disk space. The actual

observation value is used by azizo.

When the entire recording file has been read, azizo calculates statistical data for each statistic. This

includes:

Average The average of all observations covered by the recording.

Standard deviation

The standard deviation.

© Copyright IBM Corp. 1994, 2004 107

Maximum The highest value of all observations covered by the recording.

Minimum The lowest value of all observations covered by the recording.

In the next step, azizo creates small graphs for each of the statistics it has detected. Such graphs are

called metrics graphs and are displayed in the azizo main window in a scrollable list.

The maximum number of statistics azizo can process is 256. If greater than 256 statistics exist in a

recording file, metrics graphs are created for only the first 256. When greater than 256 statistics are

encountered, azizo informs the user through a message window. Even though only 256 metrics graphs are

created, if you use the Rescan option when zooming in on a main graph, all the statistics in the recording

file are included in the scan because the scan is done on the actual file rather than the set of metrics

graphs. Up to 256 metrics are included in the zoomed-in main graph but some of those may not have a

corresponding metrics graph. Zooming-in on main graphs is described in “Zooming-in on Main Graphs” on

page 119.

As the final step, azizo creates a main graph in a separate window. This graph contains all or a selection

of the statistics in the recording file in a single graph, depending on the number of statistics at hand and

the characteristics of the observations for each.

The azizo Main Window

The azizo main window is divided horizontally into the following three sections:

v Icon section

v Metrics selection window

v Message window

The main window has full window decorations, but the Close option of the window manager menu has

been disabled to prevent accidental exit of azizo.

The Icon Section

At the top of the main window is the icon section. The icon section of the window always has a fixed

height. It is subdivided into three sections:

Actions This section contains icons, which represent actions that can be applied to supported

objects. Generally, the action is performed when a compatible object is dragged to an icon

and dropped there.

Files This section contains icons representing locations where recording files can be retrieved

from. To activate a source, select the corresponding icon to open a window with possible

choices. Currently, this section contains only one source, represented by the Local Files

icon.

Zoom Views Currently unused. This section is intended as a graphical illustration of the current

zoomed-in views of the recording.

The Metrics Selection Window

The metrics selection window occupies the middle part of the main window. It is the only section of the

main window that changes height when the main window is resized. At its top is the title part, which

identifies the recording file and shows a time scale and the time stamps of the earliest and the latest

observation in that file. Following the title part comes a scrollable list of the metrics graphs that were

created from the statistics contained in the recording file.

The title part is considered an object as is each of the metrics graphs. Actions can be performed on

individual metrics by dragging their metrics graphs to an action icon. Actions can be performed on all of

the metrics in the metrics selection window by dragging the title part object to an action icon.

108 Performance Toolbox Guide

“Using the azizo Metrics Selection Window” on page 114 describes how to work with the metrics selection

window.

The Message Window

The message window is a scrollable text window at the bottom of the main window. It is used to display

messages from azizo to the end user. Approximately 80 message lines are retained for the user to scroll

back in.

Error messages sent to the message window are also logged to the azizo log file in $HOME/azizo.log.

This log file is overwritten each time azizo starts and is not closed until azizo terminates. Therefore, its

contents are not dependable until you exit azizo.

Main Graphs

 Main graphs are the principal viewing windows of azizo. When azizo reads a recording file, it always

displays a top-level main graph that covers the entire time interval of the recording file. You can create

additional main graphs by zooming in on the top-level graph or any zoomed-in main graph.

Main graphs contain two sections. To the left is a list of metrics that are included in the graph. The metric

names are displayed using the same color as is used to draw the data. If the list of metrics is longer than

the window can display, a scroll bar allows you to scroll the list of metrics.

To the right is the actual graphical display of the metrics data for the time period covered by the graph.

Graphs are drawn from tables with elements corresponding to time intervals of equal length. Each element

can house one, multiple, or no raw observations from the recording file. The drawing style is line graph,

meaning that the observation points for a metric are connected by a line drawn in the assigned color.

Where the recording file contains stop records to signify that recording for one or more sets of statistics

was stopped, the line graphs are broken so that it is immediately apparent that some elements do not

contain data.

Lines for a metric can be drawn from the maximum value encountered in the time intervals, from the

minimum value, from the average value, or from both the minimum and the maximum values. Below the

actual graph area is a scale that divides the displayed graph into seconds, minutes, hours, days, or weeks,

depending on the time period covered by the graph. The scale carries time stamps that are inserted as

close as space permits. The start time and the stop time limiting the interval covered by the graph are

displayed at the ends of the scale.

Figure 5. Top-level Main Graph, azizo. This figure shows the scrolling list of metric names on the right and a scrolling

histrogram graph of the metric values on the right.

Chapter 10. Analyzing Performance Recordings with azizo 109

If you resize the window containing a main graph, the graph adjusts to the changed height. It does not

adjust to a changed window width, except when the window is made so narrow that the whole graph

cannot be displayed. In that case, a scroll bar is displayed so you can scroll the main graph horizontally.

Top-Level Main Graph

When the top-level main graph is created, metrics are ordered after a factor calculated as the maximum

value encountered in the recording divided by the anticipated maximum value for the metric as defined in

the recording file. Included in the top-level main graph is up to a user-defined number of metrics. This

number is defined by the X resource MainGraphCount. It defaults to 16. The metrics to be included are

selected from the top of the ordered list.

Colors are allocated from the colors defined by the X resources ValueColor1 through ValueColor24. If

greater than 24 metrics are displayed, the color table is reused.

The width of the top-level graph is determined by the X resource MetricWidth. It defaults to 600 pixels.

This effectively sets the width of the top-level main graph to the same as that of the metrics graphs in the

metrics selection window and allows for easy correlation between the two windows. The height of the

top-level graph is set according to the X resource MainGraphHeight, which defaults to 300.

A top-level main graph cannot be deleted. However, you can remove all the metrics from it in one

operation.

Zoomed-in Main Graph

A zoomed-in main graph is always derived from some other main graph. Its ancestor may be the top-level

main graph or a zoomed-in main graph. The zoom-in operation is described in “Zooming-in on Main

Graphs” on page 119.

All zoomed-in main graphs are created with a width determined by the X resource MainGraphWidth and a

height set by the X resource MainGraphHeight. These two default to 600 and 300 pixels, respectively.

Zoomed-in main graphs can be deleted by dragging them to the Pit icon. If a main graph has zoomed-in

descendants, all those are deleted when the main graph itself is dragged to the Pit icon.

The azizo Command Line

The azizo program is started with the following command line:

azizo [-f recording_file]

The command line argument is optional and has the following meaning:

-f Recording file path name. Used to specify the name of a recording file to analyze. If the file is a

valid recording file, azizo reads the file and processes it. If this argument is omitted or the

specified file is invalid, azizo starts and awaits your selection of a recording file by selecting the

Local Files icon.

 Beginning with Version 2.2, this argument also brings up the recording’s existing annotation file, or

creates a new one, so that the user can take notes about the recording.

The azizo User Interface

This section explains the mechanics of the azizo user interface. It is significantly different from the user

interface of the xmperf program because it uses a drag-and-drop technique rather than a menu interface.

110 Performance Toolbox Guide

The drag-and-drop interface is based on a notion of objects, which are things you can manipulate, and

actions, that represent the ways you can manipulate the objects. In most cases, you specify what you

want by dragging an object to an action. If the action is valid for the object, the action is performed on the

object, sometimes after further interaction with you.

Most actions are represented by icons but main graph windows also represent actions for certain types of

objects. For example, you can add a metric to a main graph by dragging a metrics graph object to the

main graph.

A few operations are not implemented as drag-and-drop operations. They are explained in the sections,

“Non-drag Operations” on page 113 and “Zooming-in on Main Graphs” on page 119.

Icons

Icons are the little square buttons displayed in the Actions and Files sections of the azizo main window.

The icons in the Files section act as activators for windows that you use to access recording files. Select

one of these icons to activate the corresponding window.

Icons in the Actions window are mostly receivers of objects on which you wish to perform the associated

action. For example, if you want to delete an object, you drag it to the Pit icon and drop it there. When

you drag an object to an icon, you can immediately see if the action represented by the icon can be

performed on the object. If it can, the icon changes shape to indicate that it accepts objects of the type

you drag. If the icon does not accept objects of this type, the icon remains unchanged and an attempt to

drop the object causes the dragged object representation to snap back to the object.

All icons, with the exception of the Help icon itself, can be dragged to and dropped onto the Help. This

opens a help window that explains the function of the dragged icon.

Usually, icons are colorful little things that are generated from icon description files in directory

/usr/lib/X11/app-defaults/perfmgr/icons on your system. If one or more icon description files have been

deleted, or if resources (such as colors) are not available on your system, the icons are displayed as text

buttons. Whenever this occurs, the azizo log file in your home directory ($HOME/azizo.log) explains the

reason for not displaying color icons.

The text shows one of the following error codes:

 1 Error matching color

-1 Unable to open icon description file

-2 Icon description file has invalid data

-3 X Server is out of memory

-4 Unable to allocate color

Note: The log file contents are not dependable until you exit azizo.

Icon description files must be in the format defined by XPM2 (X Pixmap Format 2).

Dragging and Dropping

Dragging is performed with the mouse. To drag an object, move the pointer over the object you want to

drag, then press the right mouse button. Keep the mouse button pressed and move the pointer to where

you want to drop the object.

As you move the pointer, the shape of the pointer changes to a drag icon that identifies the object you are

dragging. At the top left of the drag icon is a small arrow. The tip of the arrow is considered the active

point of the drag icon.

If the action you drag the object to can be performed on the object, the action indicates this by changing

shape. Where the action is represented by an icon, the icon itself changes to a slightly larger icon. If the

Chapter 10. Analyzing Performance Recordings with azizo 111

action is represented by a window, the window is surrounded by a highlighting frame. This allows you to

validate a drag-and-drop operation before you complete it.

To complete the drag-and-drop operation, release the right mouse button while the active point of the drag

icon is within the outline of the action. If the action can be performed on the object, the drag icon displays

to be absorbed by the action icon or window. If the action can’t be performed on the object, the drag icon

is displayed to “snap back” into the object as if connected to it with a rubber band.

A special action is represented by the help icon in the action icon section of the main window. You can

drag other action icons and objects to this icon to display a help screen that explains the action or object.

For each action, the help screen explains to which objects it can be applied; for each object, the help

screen explains which actions can be performed on it.

Objects

The azizo program defines the following objects:

Main Graph The actual graph part of a main graph window. The object is considered to be the main

graph as a whole, including the metric labels in the left part of the main graph window.

Metric Label One of the metric labels in the left part of a main graph window. The object is considered

to be the metric as it is displayed in the main graph.

Title Part of Metrics

Selection Window

The title part of the metrics selection window. The object is considered to be all of the

metrics or metrics graphs currently part of the metrics selection window.

Metrics Graph

The object is the metric identified by the metrics graph or the metrics graph itself.

Information Window

The object is the entire information window.

Config Icon The object is the configuration file.

Configuration Line

The object is a single named configuration from the configuration file.

Each of the defined objects is associated with a different drag icon. If your current setup prevents the drag

icon from being created as a color drag icon, a simpler icon that shows the name of the drag icon is used.

Actions

Most of the actions you can perform on azizo objects are represented by icons. The only exception is that

main graphs can act as actions for certain objects. The full list of actions is the following:

Config Icon The action is to save the current view of a main graph to the configuration file.

Info Icon The action is to display an information window with a tabulated view of the statistical data

for a single or multiple metrics.

Print Icon The action is to print a graphical or tabulated view of metrics, optionally to a file.

Filter Icon The action is to produce a filtered recording file, based upon a main graph.

View Icon The action is to change the way a graph is drawn.

Scale Icon The action is to change the scale used to draw a main graph.

Annotate Icon

Available with Version 2.2 or later, the action of this icon is to open an editor window for

creation or modification of annotations.

112 Performance Toolbox Guide

Pit Icon The action is to remove an object.

Help Icon The action is to display a help screen for an object or action.

Main Graph The action is to add a metric (if the drag object is a metrics graph) or to apply a presaved

view from the configuration file to the graph.

Non-drag Operations

Non-drag operations are defined for special cases. Non-drag operations on main graphs are described in

“Zooming-in on Main Graphs” on page 119; others in the sections below.

Selecting a Recording File

When you want to select a recording file to analyze, this can be done on the command line when you start

azizo or it can be done by selecting the Local Files icon in the Files icon section of the main window.

When you select the icon, the Select Recording File selection box opens.

It is a standard file selection box, which allows you to change the filter to show any selection of files that

match the filter. The default filter is:

$HOME/XmRec/R.*

All xmperf and 3dmon recordings in the designated recording directory for your user ID match this filter.

To see all xmservd recordings on your machine, change the filter to the following and select Filter:

/etc/perf/azizo.*

When the file you wish to analyze is shown in the Files section of the selection box, double-click on the file

name, or select the file name and then select OK. This causes the selected file to become the current

recording file. All previous main graphs are removed and so are all metrics graphs in the metrics selection

window; azizo then resets itself and reads the new file as described in “Initial Processing of Recording

Files” on page 107. When a top-level main graph is displayed, you can start working with the new file.

Exiting azizo

To exit the azizo program, you must select the Exit icon with the left mouse button. This opens the Exit

azizo dialog box which asks you to confirm that you want to exit the program by selecting OK. To resume

using the program, select Cancel.

The Help Facility

In azizo, help can be invoked in three ways:

v You can select the Help icon to be taken to the index of help topics.

v You can drag an object or an action icon to the Help icon and drop it there to get help on the object or

action.

v You can select the help button in a dialog window to get help on how to use the dialog box.

The help function depends on the presence of a help file for azizo with a format as described in “Simple

Help File Format” on page 286. The file is looked for under the name $HOME/azizo.log in the user’s

home directory. If the file is not found there, it is searched for as described in Appendix B, “Performance

Toolbox for AIX Files,” on page 271.

The help file contains help texts that are identified by a string of characters. Every object and every action

defined by azizo and every dialog box has an identifier (a string of characters) associated with it.

Whenever you select help by dragging an object or action to the Help icon or from a dialog window, the

identifier of the object, action, or dialog box is used to locate the associated help text. In the resulting help

window, the window frame shows the identifier used to locate the help text.

Chapter 10. Analyzing Performance Recordings with azizo 113

Browsing

You can browse through the help text by using the scroll bar to the right in the help window. The help

window shows up to 25 lines at a time.

Help Index

From any help window, you can get to an index of help topics by using the pull-down Help menu and then

select Help Index. The index is a list of all help identifiers available. When you select a line, a help

window is created with the associated help text. From the menu bar’s Help item, you can select the menu

item Help on Help for detailed instructions on how to use help.

Annotating a Recording

When using Performance Toolbox for AIX, Version 2.2 or later, to create or modify an annotation to the

current recording file, drag the graph area of the main graph to the Annotate icon and drop it there. An

editor window will open. From the editor window, you can modify any existing annotation text or create a

new annotation file if none existed before.

When you have made the changes you want, exit the editor window with the file or save option of the

editor in use. If you exit the editor with the quit without saving option of the editor in use, any existing

annotation file is left unchanged and no new annotation file is created if none existed before.

Using the azizo Metrics Selection Window

The metrics selection window is created as an OSF/Motif widget of type XmForm, which contains an

XmLabel widget to display the title part of the window and an XmScrolledWindow widget used to display

a scrollable list of metrics graphs. If all the contained metrics graphs can be displayed in the window, the

vertical scroll bar is missing; if the full width of the metrics graphs can be shown in the window, no

horizontal scroll bar is present. When the vertical scroll bar is active, it can be used to scroll through the

metrics graphs. When the horizontal scroll bar is visible, it can be used to scroll the entire set of metrics

graphs left and right.

The Title Part of the Metrics Selection Window

The title part of the window has a left part that gives information about the way metrics graphs are

displayed and a right part, which shows the time scale and other information as it applies to all the metrics

graphs.

The left side of the title part shows the graph style used to draw the metrics graphs. If the same style is

not used for all metrics graphs, the graph style is shown as Mixed. Below the graph style is a line showing

the meaning of the tick marks of the scale in the right section of the title part. It may show that each tick

mark on the scale corresponds to a minute, an hour, a day, or a week, depending on the time period

covered by the graph.

The right side of the title part contains a time scale that applies to all metrics graphs. It is aligned so each

tick mark on the scale corresponds to full minutes, hours, days, or weeks. Above and at each end of the

scale is a full time stamp that shows the times of the earliest and the latest observation as encountered in

the recording file. Above and over the center of the scale is shown the file name of the current recording

file. If the title part is too narrow to allow time stamps and file name to be displayed side by side, the file

name is overlapping the time stamps.

The end time is determined by the highest time stamp found among the last several value records of the

file. If the current recording file is a file produced by concatenating multiple recording files into one without

using the ptxmerge program, then you may see interesting, though not necessarily useful, side effects,

especially when the end time is lower than the start time. It is not recommended to use azizo to analyze

such files without first using the ptxmerge program to rearrange records in the files or using the ptxsplit

program to split the file into its individual recordings.

114 Performance Toolbox Guide

Metrics Graphs

Each metrics graph has a left side used to display the full path name of the metric it represents and a right

side that displays a graph representing the observations for the metric. The width of the left side is set by

the X resource MetricLegendWidth. When the graph is initially created, the style of the graph is

determined by the horizontal scale of the graph and the X resources MetricLinePlot and

MetricLineDouble. The colors used to draw the graph are determined by the X resources

OnlyMetricColorIndex, FirstMetricColorIndex, and SecondMetricColorIndex. The width of the

individual metrics graphs is set through the X Resource MetricWidth.

By default, neither the MetricLinePlot nor the MetricLineDouble resource is set true. The style then

defaults to Bar, Max-to-Min. If each pixel on the horizontal scale corresponds less than one second, the

Bar, Max-to-Min style is not meaningful and the default style is changed to Line, Max & Min.

The style of individual or all metrics graphs can be changed as explained in “Changing the Style of

Metrics” on page 117.

X Resources for the Metrics Selection Window

The following X resources control the initial appearance of metrics selection windows:

AZMetrics The name of all widgets used to create the metrics selection window. By

referencing the AZMetrics widget name, you can set the foreground and

background color of the metrics selection window and the metrics graphs.

The colors you assign for foreground becomes the default color for

drawing the metrics graphs. It can be overridden by other X resources as

explained below. To set the background color of the metrics selection

window, use *AZMetrics.background as the resource name.

MetricLegendWidth Sets the width of the area at the left side of a metrics graph that is used to

display the metric path name. Default is 20 characters; permitted range is

8 - 32 characters.

MetricLineDouble This resource can be set to either true or false. It is ignored if the resource

MetricLinePlot is set to false. If both these resources are true, the default

way of drawing individual metrics graphs is with two lines: one for the

maximum and one for the minimum values. If this resource is set false

while MetricLinePlot is true, only the maximum values are drawn.

MetricLinePlot This resource can be set to either true or false. If this resource and the

resource MetricLineDouble are both set to true, the default way of

drawing individual metrics graphs is with two lines: one for the maximum

and one for the minimum values. If this resource is set to true while

MetricLineDouble is false, only the maximum values are drawn. If this

resource is set to false, individual metrics graphs are drawn in the Bar,

Max-to-Min style as a series of vertical lines, each one connecting the

maximum and minimum value in an interval.

OnlyMetricColorIndex This resource is used to select the foreground color of a metrics graph

when only one line is drawn in each metrics graph. The resource defines

an index into a table of defined ValueColor1 through ValueColor24

resources to use for main graphs. Default is the foreground color of the

metrics selection window as set by the AZMetrics resource.

FirstMetricColorIndex This resource specifies the index into a table of defined ValueColor1

through ValueColor24 resources. The color selected by the index is used

to draw the maximum value line of metrics in the metrics selection window

when both maximum and minimum values are drawn. Default is

foreground color of the metrics selection window as set by the AZMetrics

resource.

Chapter 10. Analyzing Performance Recordings with azizo 115

SecondMetricColorIndex This resource specifies the index into a table of defined ValueColor1

through ValueColor24 resources. The color selected by the index is used

to draw the minimum value line of metrics in the metrics selection window

when both maximum and minimum values are drawn. Default is

foreground color of the metrics selection window as set by the AZMetrics

resource.

MetricHeight Sets the height in pixels of individual metrics graphs in the metrics

selection window. Default is 40 pixels; permitted range is 10 - 200 pixels.

MetricWidth This resource sets the width of the individual metrics graphs in the metrics

selection window. It also sets the width of the graph area of the top-level

main graph. The default is 600 pixels. Specify in the range 100 through

1,000.

Tabular View of Metrics

Each of the metrics graphs represents a single statistic as recorded in the current file. You can see a

tabular view of the statistical data for one or all metrics in the metrics selection window by dragging a

single metrics graph or the title part of the metrics selection window to the Info icon. The tabular view is

shown in an information window similar to the following example. The color of information windows can be

set through the X resource InfoWindow®.

Summary for graph 100%, Jul 28 00:00:05 1999 - Jul 28 23:59:59 1999

No. of Average Standard Maximum Minimum

Observ Value Deviation Value Value Metric path name

------ ------- --------- ------- ------- ----------------------

17280 877 14137 268505 28 sunra/SysIO/writech

17280 877 14137 268505 28 sunra/CPU/cpu0/writech

17280 580 5651 249235 48 sunra/SysIO/readch

17280 580 5651 249235 48 sunra/CPU/cpu0/readch

If the object you drag to the Info icon is a single metrics graph, a small window displays the statistical data

as calculated for the corresponding metric. This window cannot be used as an object. All you can do is

look at it, and then select OK to close the window.

If the object you drag is the title part of the metrics selection window, a larger information window opens.

This window contains a line for each of the metrics graphs in the metrics selection window.

The tabular view can be printed by dragging the information window to the Print icon. To drag the window,

place the mouse pointer anywhere within the data part of the window and start the drag operation from

there. To close the window, select OK.

Printing Metrics from the Metrics Selection Window

The metrics graphs can be printed individually or they can be printed as a selection of metrics graphs. To

print an individual metrics graph, drag the metrics graph to the Print icon. To print multiple metrics graphs,

position the vertical scroll bar of the metrics selection window so the metrics graphs you want to print are

visible in the metrics selection window and then drag the title part of the metrics selection window to the

Print icon. The printed image contains everything that is visible in the metrics selection window, including

the title part. Tabular views of all metrics in the metrics selection window can be printed by dragging the

data part of the information window to the Print icon.

After you drop a graph object on the Print icon to print one or more graphs, the Print Box dialog box

opens. From this dialog box, you can specify the destination as a printer or a named file. You can also

specify other options to use for printing. This is explained in “The Print Box” on page 126.

116 Performance Toolbox Guide

For printing of information windows, the Report Box opens. This dialog box allows you to specify the

destination of the print output as a printer or a named file. You can also specify other options to use for

printing. It is explained in “The Report Box” on page 127.

Changing the Style of Metrics

The style of one or all metrics graphs can be changed by dragging the metrics graph or the title part of the

metrics selection window to the View icon. This causes the Changing View Options dialog box to pop

open. From this dialog box you can change the graph style of the metrics graph or all the metrics graphs

into either of:

v Line, Maximum

v Line, Max & Min

v Bar, Max-to-Min

These styles and the dialog box are explained in “Changing View Options Dialog Box” on page 129.

Removing Metrics

If a metrics graph represents a statistic you don’t need in the analysis, you can remove it from the metrics

selection window. You do so by dragging the metrics graph to the Pit icon. When the metrics graph is

removed, the corresponding metric is also removed from all the main graphs it is part of.

When a metric is removed from the metrics selection window, it cannot be added back to the metrics

selection window except by rereading the recording file. However, if you use the Rescan option when

zooming in on a main graph, the deleted metric is included in the scan, because the scan is done on the

actual file rather than the metrics selection window.

Working with azizo Main Graphs

Main graph windows are created as OSF/Motif top-level windows of the ApplicationShell widget class.

They contain two subwindows, both of which are scrollable. To the left is the metrics label part, to the right

is the actual graph part of the window. The parts have horizontal scroll bars if the current width of the main

graph window doesn’t allow all of the information in the windows to be displayed in its entirety.

The metrics label part have a vertical scroll bar if the height of the main graph window doesn’t allow all

metric labels to be displayed at the same time. The graph part never has a vertical scroll bar. It resizes the

height of the graph area to fit the size of the enclosing main graph window. The graph area might not be

resized after the main graph window is made smaller. Requesting a refresh from the window manager

forces the resizing.

The Main Graph Window Frame

The window frames of main graph windows have full window manager decorations. However, the Close

option of the Window Manager menu is disabled to prevent accidental closure of a main graph window.

The title bar of a main graph window indicates the degree of zoom-in applied to create the window. The

top-level main graph always has the text 100% in the title bar. All other main graphs have a title bar that

shows the time span they cover in percent of the time span of the top-level main graph. Such percentages

are shown with two decimal places so that a graph derived from the top-level graph but covering the same

time span, has a title bar that says 100.00%.

Because it is possible to have multiple derived main graphs that cover the same percentage of the total

time or even the exact same interval, multiple main graph windows can have identical title bars.

Chapter 10. Analyzing Performance Recordings with azizo 117

The Metric Label Part of a Main Graph Window

Metrics represent statistics and are identified by the full path name of the statistic. The metrics label part of

a main graph window contains a list of path names to illustrate which metrics are included in the main

graph. Each entry in the list is called a metric label.

Each of the metric labels consists of two lines. The first line shows the full path name of the metric. The

second line first lists the scale used when drawing the line graph of the metric. The scale is given as a

from-to value. Note that the scale for a statistic of type SiCounter represents a rate per second.

The metric label part of the main graph window has a fixed width determined by the longest path name

displayed and the font in use. Occasionally, the metric label part of the main graph window is too narrow

to show the entire path name. When this happens, a horizontal scroll bar allows you to scroll horizontally

in the entire list of metric labels.

Following the scale and on the same line, is the current drawing style for the metric. The style is enclosed

in square brackets and is one of the following words or abbreviations:

v Avg

v Max

v Min

v Both

The meaning of these and how to change the style of a metric is explained in the sections “Changing the

Appearance of Main Graphs” on page 121 and “Changing View Options Dialog Box” on page 129.

Colors are assigned to metrics in the order they are displayed in the metrics label part. The first metric

gets the color defined by the X resource ValueColor1, the next gets the color defined by ValueColor2.

This continues until there are no more metric labels to add or until the 24th color is assigned. If more

labels need to be assigned a color, assignment starts over again from ValueColor1.

The Graph Part of a Main Graph Window

The graph part of the main graph window is used to draw a line graph for each of the metric labels in the

left part of the window. The lines are drawn in the same colors as are used to display the metric labels.

The drawing area extends from the top inner frame of the enclosing window and down to the scale line at

the bottom of the window. The distance between the scale line and the bottom inner frame of the window

is twice the height of the active font.

The graph has four horizontal lines drawn to indicate the 25%, 50%, 75%, and 100% vertical scale lines.

Only the 50% and the 100% lines are drawn if the height of the graph area is too small to make four

vertical scale lines feasible. The 100% vertical scale line is positioned so it is possible to draw values up to

approximately 105% within the drawing area. As an illustration of the use of vertical scale lines, assume a

metric label shows a scale of 0-2000. The 25% vertical scale line for this metric would correspond to an

observation value of 500.

The line graphs are drawn according to the style selected for the metrics as shown in the metric labels.

Initially, all metrics have the same style, as determined by the X resource MainPlotStyle. Styles for

individual or all metrics can be changed later as described in “Changing the Appearance of Main Graphs”

on page 121 and “Changing View Options Dialog Box” on page 129.

The scale line at the bottom of the graph area has tick marks that divide the interval covered by the main

graph into units of seconds, minutes, hours, days, or weeks. Some of the tick marks are slightly longer

than others and correspond to time stamps placed directly below.

118 Performance Toolbox Guide

At the bottom left of the graph area is a time stamp that gives the time of the earliest observation included

in the graph. At the bottom right of the graph area is a time stamp that gives the time of the latest

observation included in the graph.

X Resources for Main Graphs

The following X resources control the initial appearance of Main Graphs:

GraphFont The font to use for all text in azizo. Defaults to a fixed-width font suitable for azizo. The

font determines how much space is reserved for scale and time stamps at the bottom of

the graph area and how closely time stamps can be spaced under the bottom scale line.

GraphWindowWidth

The initial width of main graph windows. This width is the width of the window itself, not

the main graph area alone. Default is 862 pixels.

MainGraphCount

Defines the maximum number of metrics that are part of the top-level main graph after a

new recording file has been read in. Defaults to 16 metrics.

MainGraphHeight

Sets the initial height (in pixels) of all main graphs. Default is 300 pixels; permitted range

is 50 - 1,000 pixels.

MainGraphWidth

Sets the initial width (in pixels) of all main graphs except the top-level main graph. Default

is 600 pixels; permitted range is 100 - 1,200 pixels. Note that main graphs are never

scaled horizontally. If you increase the width of the main graph window beyond what is

required to show the full graph width, empty space is displayed to the right of the graph. If

you reduce the width of the main graph window to less than what is required to display the

main graph, then a scroll bar is added to allow horizontal scrolling of the graph area.

MainPlotStyle Sets the default plotting style for metrics in main graphs. Defaults to average. Permitted

values are: maximum, minimum, both, and average.

MetricWidth Sets the width of the graph area of the top-level main graph. Zoomed-in main graphs get a

width as set by the MainGraphWidth X resource. The default is 600 pixels. Specify in the

range 100 through 1,000.

MonoLegends

If this resource is set true, all labels in main graphs are shown in the foreground color of

the label part of the main graph. It is probably not useful because then it is impossible to

see which line in the graph corresponds to the label.

MainGraph The name of all the widgets used to create main graphs is MainGraph. By assigning color

values to the X resources defined as MainGraph*XmLabel.background and

MainGraph*XmLabel.foreground, the appearance of the metrics label part can be

changed. Similarly, the colors used in the graph part can be changed with the resources

MainGraph*XmDrawingArea.background and

MainGraph*XmDrawingArea.foreground. The supplied X resource file for azizo sets the

background color for both parts of the main graph window.

Zooming-in on Main Graphs

One of the vital functions of azizo is the ability to zoom-in on subsections of a main graph. The zoom-in is

achieved by drawing an outline in the main graph area and then selecting the type of zoom-in from a

dialog window. The outline is shaped as a rectangle and defines an area of interest.

You draw the outline by moving the mouse pointer to the place where you want one of the corners of the

rectangle to be. Then press the left mouse button and hold it down while moving the mouse pointer. This

draws a rubberband outline of the rectangle. When the outline has the size you want, release the mouse

Chapter 10. Analyzing Performance Recordings with azizo 119

button. The left and right sides of the rectangle define the area of interest in time. The top and bottom

sides of the rectangle declare the observation value area of interest.

When the outline is drawn, the Zoom-in dialog box opens. From this dialog box, you must select Rescan

or Keep Metrics to go through with the zoom-in operation.

Rescan

When you select Rescan, the left and right sides of the rectangle are used to exclude all observations in

the recording file that fall outside the time period limited by the two sides. Then all remaining observations

are analyzed to see if any one of them has at least one observation that falls within the top and bottom

lines of the rectangle. When determining if an observation falls within the area, the plot point is calculated

from the assumption that the 100% line in the graph area corresponds to the anticipated maximum value

as retrieved from the recording file. All metrics that have at least one observation within the area of interest

are included in the zoomed-in graph.

Note that a metric can have an observation value that falls within the outline without the source graph

showing this. It often is the case when each interval contains multiple observation values because the

main graph shows only the maximum, minimum, or average values for each interval.

Keep Metrics

When you select Keep Metrics the zoomed-in graph is created with the same metrics as the source main

graph. The left and right sides of the rectangle are used to exclude all metric observations in the recording

file that fall outside the time period limited by the two sides. This selection corresponds to a zoom-in in

time.

Adding Metrics to Main Graphs

For recording files that contain many statistics, it can be difficult to select exactly the metrics of interest

through the Rescan option of the zoom-in operation. This can be remedied by adding and deleting single

metrics from a main graph. This section describes how to add metrics to a main graph.

The operation is as simple as dragging a metrics graph from the metrics selection window to the graph

area of the main graph window and dropping it there. If the metric is already part of the main graph,

nothing happens. Otherwise, the metric is added to the main graph and both parts of the main graph

window are updated to reflect this. The added metric is given the first free color from the table defined by

the X resources ValueColor1 through ValueColor24.

Removing Metrics from Main Graphs

A metric can be removed from a main graph as easily as it can be added to it. To remove a metric from a

main graph, drag the corresponding metric label from the metrics label area to the Pit icon. This removes

the metric from the main graph and updates both parts of the main graph window to reflect the change.

Removing Main Graphs

When a main graph is no longer needed, it can be deleted by dragging it to the Pit icon and dropping it

there. This causes the main graph and all its descendants (all main graphs created by zooming-in on the

dragged graph) to be deleted. If the dragged graph is the top-level main graph, this graph itself is not

deleted but all its metrics are removed from it. To make the empty main graph show metrics again, you

must drag individual metrics graphs to the main graph from the metrics selection window.

Tabular View of Main Graphs

Each of the metrics in a main graph represents a single metric as recorded in the current file. You can see

a tabular view of the statistical data as calculated for the metrics that are included in the main graph by

dragging the graph area of the main graph to the Info icon.

120 Performance Toolbox Guide

This creates an information window that contains a line for each of the metrics in the main graph. If the

graph is the top-level main graph, the information window has only one part, showing the statistical data

as calculated for the entire time period covered by the recording file. If the graph is a zoomed-in main

graph, the window has one part that displays the statistical data for the full time period and another

showing them for the zoomed-in time period.

If a metric is part of a main graph but is no longer in the metrics selection window, statistical information

for the metric in the full time period of the recording is not available and cannot be shown in the window. If

the information window is printed, such metrics are not displayed in the part of the report that covers the

entire recording time period.

The tabular view can be printed by dragging the information window to the Print icon. To drag the window,

place the mouse pointer anywhere within the data part of the window and start the drag operation from

there. To close the Information window, select OK.

You can also drag a metric label to the Info icon. This produces a small window that displays the statistical

data as calculated for the corresponding metric. This window cannot be used as an object. All you can do

is look at it, and then select OK to remove the window.

Printing Main Graphs

If you drag the graph area of a main graph to the Print icon and drop it there, you can print the graphical

representation of the entire main graph window. This is done from the Print Box dialog that opens after

you drop the main graph. From the Print Box you must select the options to use when printing the graph

and enter the description you want printed with the graph. You can select to print directly to one of the

printers known by your system, or you can send the print image to a file. Print images are in PostScript

format. The Print Box is described in “The Print Box” on page 126.

Changing the Appearance of Main Graphs

The appearance of a main graph can be altered by changing the height of the main graph with the window

manager. This causes the graph to be redrawn so the graph area fills the entire height of the enclosing

window. Another way to change the appearance is to apply a previously saved configuration view to it.

This is explained in “Using the azizo Configuration File” on page 123.

Finally, the appearance can be changed through either or both of the two drag-and-drop operations

described below. You invoke these operations for a single metric in a main graph by dragging its metric

label to the View icon or the Scale icon. You invoke them for all metrics in the main graph by dragging the

graph area of a main graph to the View icon or the Scale icon.

Dragging to the View Icon

Dragging a main graph to the View icon signals to azizo that you want to change the view (drawing style)

for all of the metrics that are currently included in the main graph. When you drop the main graph on the

View icon, azizo displays a dialog box titled Changing View Options. This dialog box allows you to change

the way all metrics are plotted in the main graph. The view style you select becomes the default view style

for the main graph.

Dragging a metric label of a main graph to the View icon tells azizo that you want to change the view

(drawing style) of the corresponding metric in the main graph. The Changing View Options dialog box is

displayed for you to select the new drawing style.

In either case, the view (drawing style) can be selected as one of the following:

v Maximum

v Minimum

v Both

Chapter 10. Analyzing Performance Recordings with azizo 121

v Average

The styles and the Changing View Options dialog box are described in section “Changing View Options

Dialog Box” on page 129.

Dragging to the Scale Icon

When you drop a main graph on the Scale icon, you see a dialog box titled Rescaling from which you can

change the scale of all the metrics in the main graph. The same dialog box opens when you drag a metric

label of a main graph to the Scale icon.

The Rescaling dialog box identifies the main graph by its title and if the object was a metric label, identifies

the metric label by its path name. Where the main graph is the object, any change you select from this

dialog box applies to all the metrics in the graph; otherwise only the selected metric is affected.

The dialog box gives you three options for setting the scale of the metric:

Autoscale The maximum value for the metric encountered in the interval covered by the main graph

is used to determine the scale used to plot the metric. The scale is chosen so the

maximum value falls between the 50% and the 100% lines in the graph.

Normscale The scale is reset to its initial value as determined by the metric information carried in the

recording file.

Cancel Leave the scaling unchanged.

When one of the first two options is selected, both parts of the main graph are updated to reflect the

change.

Filtered Recordings

In most instances, a main graph represents a subset of the observations available in a recording file. The

subset may be defined by a reduced time interval, by a reduced number of metrics, or both. When it is

desired to preserve such a subset for later analysis, as a source for creating merged files, or for other

reasons, you can use the filtering function of azizo to produce a filtered recording file. Filtering is initiated

by dragging the graph area of a main graph to the Filter icon and dropping it there.

Filtering, thus, is the writing of a subset of the current recording file to a new file, the subset being defined

by the set of metrics that are part of the main graph, which you dragged to the filter icon. For example, if

the current recording file contains 20 metrics but the main graph shows only five of those, the filtered file

contains data values for only five metrics.

Even though the filtered file contains data values for only the metrics that are part of the main graph, the

filtered recording file contains all metrics definitions from the original file. By default, it also contains the

other control record types that allow the filtered file to be played back by the xmperf program. The default

can be changed as described in “Maintaining Instrument Definitions when Filtering” on page 123.

After you drop the main graph on the Filter icon, the Writing Filtered Recording dialog box opens. This

dialog box has default values for the lowest and the highest time stamps to be included when data values

are copied to the filtered output file. The defaults correspond to the interval covered by the main graph.

You can change either time stamp to extend or reduce the time period covered by the filtered output, as

long as the time period covers at least 2 seconds.

If you specify a start time lower than that of the oldest data value in the source recording file, copying

starts from the beginning of the source file. If you specify an end time higher than that of the youngest

data value in the source recording file, copying continues to the end of the source file.

122 Performance Toolbox Guide

The default file name for the filtered output is the source file name with .filt appended. You can change the

file name to anything you want. If the file exists, you are asked whether you want to overwrite it.

Maintaining Instrument Definitions when Filtering

If the source recording file was produced by xmperf, it includes data that defines the console and

instruments from which the recording was produced. Recordings produced by other programs never have

console information but always have a grouping of statistics into sets, which would be interpreted as

instruments when the file is played back by xmperf.

A single button in the Writing Filtered Recording dialog box allows you to specify whether you want any

console and statset definitions in the source recording file to be carried over to the filtered output file. This

button is only displayed if the source file contains more than one set of statistics (statsets) or contains a

console definition. For source files produced by xmperf, neither console nor instrument information is

retained if you elect to not maintain instrument definitions. For source files produced by other programs,

the grouping of statistics into sets is broken. In all cases where you elected not to maintain instrument

definitions, the filtered recording contains only one set of statistics.

Handling of Annotation Files when Filtering

Note: Annotation files are available with Version 2.2 or later only.

As described in “Annotation Files” on page 95, only recording files with names beginning with R. can have

annotation files associated with them. Consequently, the azizo program only considers copying and

merging of annotation files if the file created by the filtering function follows the recording file naming

conventions.

If this is the case, an annotation file is created for the recording file produced by filtering if the original

recording file had an associated annotation file or if an annotation file already exists that matches the

recording file produced by the filtering.

The new annotation file is created using these steps:

1. Copy any existing annotation file that matches the name of the recording file produced by the filtering

operation to a temporary file, surrounding the text with lines that identify the source of the text.

2. Append to the temporary file any annotation text that exists for the source recording file, surrounding

the text with lines that identify the source of the text.

3. Rename the temporary file to match the recording file name produced by the filtering.

After the new annotation file is created, an editor window is opened for you to make any changes to the

resulting annotation file.

Using the azizo Configuration File

The azizo configuration file resides in each user’s home directory. The file name is $HOME/azizo.cf. The

file contains user-defined configurations that provide standardized views to be applied to main graphs.

Configurations are named entities that save a customized view of a main graph. Configuration views are

used for viewing different recordings in a uniform manner that allows you to immediately compare the data

in the recordings.

The configuration file is a binary file that cannot be modified by the end user, except through the interface

provided by azizo.

Saving Configurations

The current view of a main graph can be saved by dragging the graph part of the main graph window to

the Config icon. This drag-and-drop operation indicates to azizo that you want to save the view of the

Chapter 10. Analyzing Performance Recordings with azizo 123

main graph as a named configuration that can later be recalled and applied to other main graphs. After

you drop the drag icon, the Writing Configuration dialog box shown as follows.

For the configuration to be saved, you must enter a name for it in the dialog box. If the name you specify

already exists, you are given the option of overwriting the existing configuration or changing the name of

the new one you want to create.

In the dialog box, you can specify which parts of the combined view of the dragged main graph you want

to be part of the saved configuration. You can elect to include or exclude the following options:

Individual style

Individual style is the view option you may have specified for one or more of the metrics in

the main graph. When this selection is active, metrics in any main graph that is modified

with the saved configuration has the same view style as the metrics in the graph you save

the configuration from. Individual style overrides the default style for all metrics.

Default style Default style is the view option that is used to draw metrics in any main graph that is

modified with the saved configuration, provided you have not elected to save the individual

style. Whether you saved individual style or not, it is also the view style that is used to

draw any metrics you add to the main graph after you have applied the configuration. If

you do not save the default style, the default style is taken from the X resource

MainPlotStyle, which defaults to average.

Current scaling

If you save the current scaling of the metrics in the main graph, metrics in any main graph

that is modified with the saved configuration uses the same scale as used in the main

graph you save the configuration from.

Current colors

Color assignment to the metrics can only be saved if you do not decide to save the

configuration as host-independent (see the following). The reason is that when a

host-independent configuration is used to change the view of a main graph that includes

metrics from multiple hosts, the same metric name may exist for more than one host. A

fixed color assignment would make the graph difficult to read.

Current graph size

If you elect to save the size of the main graph, the window of any main graph that is

modified with the saved configuration is resized to become the same size as the window

of the main graph you save the configuration from.

Host dependency

Usually, metric names include the name of the host where the metrics were collected.

When you save a configuration you can elect to save it so the host-dependent part is not

saved. This allows you to apply the saved configuration to any main graph, no matter

which host produced the recording and even when some metrics are displayed for more

than one host. If you do not save the configuration as host-independent, it can only be

used to view metrics in the exact same host/metric combinations as those of the main

graph you save the configuration from.

Applying Configurations

The Replace Configuration dialog box is displayed when you drag the Config icon to a main graph. The

dialog box contains a list of all the configurations available in your configuration file. If necessary, a scroll

bar allows you to scroll in the list of configurations.

To use a named configuration to customize the main graph, you can use either of the following methods:

1. Select a line from the list and then select OK. This customizes the main graph with the selected

configuration and closes the dialog box.

2. Drag one of the lines to the main graph and drop it there. The configuration is used to customize the

main graph and the dialog box stays open so you can repeat this operation.

124 Performance Toolbox Guide

If you decide not to change the view of the main graph, select Cancel. Selecting Cancel after you have

dragged a configuration line to the main graph does not undo the effect of the drag,

Each of the lines in the list can also be drawn to the Pit icon. Each time you do this, the corresponding

configuration is deleted from the configuration file and the list is updated.

Because the Replace Configuration dialog box stays open after you have dragged a configuration line to a

main graph, it is possible to drag configuration lines to other main graphs than the one you dragged the

Config icon to when the dialog box opened. Because this seems like a useful facility, it is permitted to do

so. It has the side effect, though, that whenever you select OK, the selected configuration line is applied to

the last main graph you dragged a configuration line to. Because of this, always select Cancel to close the

dialog box if you have dragged configuration lines from the box to one or more main graphs.

Deleting Configurations

Named configurations can be deleted from the Replace Configuration dialog box as explained in the

section “Applying Configurations” on page 124. They can also be deleted from a dialog box titled Delete

Configuration. This dialog box opens when you drag the Config icon to the Pit icon. Both the Replace

Configuration dialog box and the Delete Configuration dialog box contain a list of all configurations in your

configuration file.

To delete a configuration view, drag the corresponding line in the dialog box to the Pit icon. The

configuration is deleted and the list of configurations in the dialog box is updated.

When you have no more deletions to do, close the dialog box by selecting Cancel.

Techniques for Using Configuration Views

A recording file frequently contains more statistics than it is practical to view in a single main graph. The

azizo configuration file, when properly customized, allows multiple views of the same data simultaneously.

When applying configuration views, realize that the top-level main graph is unlikely to include all the

metrics from the recording file. Because of this, any configuration view you apply to the top-level main

graph may fail to show the metrics that were filtered out when the main graph was created. This same is

true if you apply a configuration view to a main graph that you applied a different configuration view to

earlier.

Therefore, before applying a configuration view, create another main graph by zooming in on whichever

time period you are interested in and selecting Rescan. After the new main graph is displayed, apply the

configuration view to that graph.

For multiple views of the same data simultaneously, create as many zoomed-in main graphs as you want

views. Then apply different configuration views to each main graph. For easy correlation, let all of the

zoomed-in main graphs cover the same time period.

The supplied sample configuration file in /usr/samples/perfmgr/azizo.cf has configurations defined for

different views of recordings from the Local System Monitor and Comby Style Sample Consoles and the

Multi-host Monitor and Single-host Monitor skeleton consoles defined in the distributed xmperf

configuration file.

Common azizo Dialog Boxes

Some of the azizo dialog boxes are identical or similar for multiple object types. Such dialog boxes are

described in the following sections.

Chapter 10. Analyzing Performance Recordings with azizo 125

The Print Box

The Print Box opens when you drag a metrics graph from the metrics selection window, the title part of the

metrics selection window, or a main graph to the Print icon and drop it there. In other words, whenever

you want to print a graph. The Print Box is used to control printing of the graph. It is divided in two by a

vertical separator.

The left part of the dialog box has three sections:

Graph Description

Allows you to enter a text that is printed below the graph.

Available Printers

Allows you to select the printer where you want the summary report to be printed. This

field is ignored if you enter a file name in the next input field. The list of available printers

is derived from the printers defined on your system.

 When print is directed to a printer, azizo uses a print command defined by the X resource

PrintCommand. The command defaults to lp -d. The resulting command line used to print

on a printer called psprint would then be lp -d psprint followed by a temporary file name

created by azizo.

File name if not direct print

If you don’t want the printed output to go directly to a printer, enter a file name in this field.

The print output is written to the specified file name.

The right part of the dialog box is divided in two by a horizontal separator. The top section has a series of

on/off options. In the bottom section, you can enter numerical values to control the printing. The on/off

options are as follows:

Reverse Colors

If selected, inverts all colors when producing the PostScript output. This option is useful if

your graph has a dark background, which often gives inferior print quality and reduced

legibility.

Check Printer Memory

If selected, causes azizo to check if the selected printer has sufficient memory to print the

image. Because the print image is sent to the printer as a background job, you are not

warned if the image is too large, but the print output is orderly terminated with a message

that states the reason.

Use Color PostScript

If your printer supports color PostScript, select this option. It gives you superior quality.

Landscape If selected, prints the graph in landscape format.

Generate Binary Image

Reduces the size of the PostScript output file. Recommended if you print to a file and if

your printer supports this format. Try it out to make sure.

Encapsulate If selected, wraps the PostScript output in EPSF (Encapsulated PostScript Format) tags

and suppresses PostScript commands to position the image and scale it. Use this option if

you want to imbed the generated PostScript output in another PostScript document. The

generated output, as a rule, is not directly printable.

Compress output

Uses the standard UNIX compress command to compress the output from the print

function. Recommended because it saves disk space. Some printers may not be able to

print this format.

The options that accept numeric input in the bottom part are:

126 Performance Toolbox Guide

Brighten factor

Allows you to modify the brightness of the generated print image. The factor is used to

brighten or darken the image. 100 is the base and a larger number brightens the image

while a smaller number darkens the image. Permitted range of the brighten factor is 0

through 200. For black and white printing, a brightness factor of 100 is recommended. The

initial default for brighten factor is set with the X resource BrightenFactor, which has a

default of 100.

Paper width Specifies the width of the paper you are using. The width is given in inches with two

decimal positions. The initial default for paper width is set by the X resource PaperWidth,

which defaults to 8.5 inches.

Paper height Specifies the height of the paper you are using. The height is given in inches with two

decimal positions. The initial default for paper height is set by the X resource

PaperHeight, which defaults to 11 inches.

Horizontal margins

Specifies the horizontal margins to use when scaling the graph. This value determines the

minimum distance between the graph and the left and right edges of the paper. The

printed graph is always centered on the page. Margins are given in inches with two

decimal places. The initial default for horizontal margin is set by the X resource

HorizontalMargin, which defaults to 0.5 inch.

Vertical margins

Specifies the vertical margins to use when scaling the graph. This value determines the

minimum distance between the graph and the top and bottom edges of the paper. The

printed graph is always centered on the page. Margins are given in inches with two

decimal places. The initial default for vertical margin is set by the X resource

VerticalMargin, which defaults to 0.5 inch.

When you have selected the print options you want, select OK to proceed. To cancel the print, select

Cancel.

How Graphs Are Printed

Printing of graphs is done by capturing the image of the graph as it opens on your display and converting

that image to PostScript format. To ensure that the image is correctly captured, the first thing to do when

planning to print a graph is to position the graph window so that it is fully visible and does not obscure the

Print icon.

To initiate the printing, drag the graph to the Print icon. This causes the Print Box to open. From the dialog

box you set the options as explained earlier. After you select the OK button in the Print Box, the dialog box

goes away and azizo waits two seconds before it begins the capture of the graph image you want to print.

The two-second delay allows the X server to refresh the window so that any part of the graph that was

obscured by the dialog box is also refreshed. When the two seconds have elapsed, you hear a beep. This

beep signals the start of the capture of the graph image. When the capture is completed, another beep

sounds.

Anything you do on your screen in the time between the two beeps can potentially cause the print image

to be obscured so the output generated by the image capture is corrupted. Therefore, do not use the

mouse or keyboard until you hear the second beep.

The Report Box

The Report Box opens when you drag the data part of an information window to the Print icon and drop it

there. In other words, whenever you want to print the tabular view of the statistical data for a main graph

or the metrics selection window. The Report Box is used to control printing of the report.

The dialog box has three parts:

Chapter 10. Analyzing Performance Recordings with azizo 127

Print Heading Allows you to enter a text string that is printed as the heading on all pages produced.

Available Printers

Allows you to select the printer where you want the summary report to be printed. This

field is ignored if you enter a file name in the next input field. The list of available printers

is derived from the printers defined on your system.

 When print is directed to a printer, azizo uses a print command defined by the X resource

PrintCommand. The command defaults to lp -d. The resulting command line used to print

on a printer is called ascprint would then be lp -d ascprint followed by a temporary file

name created by azizo.

File name if not direct print

If you don’t want the printed output to go directly to a printer, enter a file name in this field.

The print output is written to the specified file name.

After you have changed the fields in the dialog box, select OK to execute the printing. If you don’t want to

go through with the printing, select Cancel.

The generated print file is a plain ASCII file. When you print the information window of the metrics

selection window or the top-level main graph, the print output contains only one section that lists the

statistical data for all the metrics in the object. If the object you drag to the Print icon is a zoomed-in main

graph, the printed report contains two parts: one for the entire time period covered by the recording file;

another for the zoomed-in time period. Each part may contain multiple pages.

All Metrics Page 1

Summary for graph 100%, Dec 20 13:32:19 1993-Dec 20 15:49:10 1993

No of Average Standard

Maximum Minimum

Observ Value Deviation Value Value Metric pathname

------ ----- --------- ----- ----- ------------------

 774 0.87 3.61 44.80 0.00 hosts/snook/Disk/hdisk0/wblk

 774 0.00 0.06 1.60 0.00 hosts/snook/Disk/hdisk0/rblk

 774 0.09 0.32 4.20 0.00 hosts/snook/Disk/hdisk0/xfer

 774 0.11 0.40 5.80 0.00 hosts/snook/Disk/hdisk0/busy

 721 1.77 7.37 89.63 0.00 hosts/nchris/Disk/hdisk1/wblk

 721 0.34 4.19 108.87 0.00 hosts/nchris/Disk/hdisk1/rblk

 721 0.22 0.85 11.41 0.00 hosts/nchris/Disk/hdisk1/xfer

 721 0.49 1.93 26.42 0.00 hosts/nchris/Disk/hdisk1/busy

 721 29.96 96.66 875.38 0.00 hosts/nchris/Disk/hdisk0/wblk

 721 6.83 87.48 2248.02 0.00 hosts/nchris/Disk/hdisk0/rblk

 721 1.73 3.97 49.80 0.00 hosts/nchris/Disk/hdisk0/xfer

 721 3.42 7.79 86.80 0.00 hosts/nchris/Disk/hdisk0/busy

 777 2.82 10.10 91.20 0.00 hosts/drperf/Disk/hdisk0/wblk

 777 2.95 42.95 1070.44 0.00 hosts/drperf/Disk/hdisk0/rblk

 777 0.46 1.67 19.80 0.00 hosts/drperf/Disk/hdisk0/xfer

 777 1.04 3.91 46.20 0.00 hosts/drperf/Disk/hdisk0/busy

37.68% Page 1

Summary for graph 44.66%, Dec 20 13:33:00 1993 - Dec 20 14:34:07

1993

No of Average Standard Maximum Minimum

Observ Value Deviation Value Value Metric path name

------ ------- --------- ------- ------- ----------------

619 28.44 90.47 875.38 0.00 hosts/nchris/Disk/hdisk0/wblk

619 7.89 94.38 2248.02 0.00 hosts/nchris/Disk/hdisk0/rblk

619 1.76 4.06 49.80 0.00 hosts/nchris/Disk/hdisk0/xfer

619 3.45 7.79 86.80 0.00 hosts/nchris/Disk/hdisk0/busy

 100% Page 2

Summary for graph 100%, Dec 20 13:32:19 1993 - Dec 20 15:49:10 1993

No of Average Standard Maximum Minimum

Observ Value Deviation Value Value Metric path name

128 Performance Toolbox Guide

------ ------- --------- ------- ------- ----------------

721 29.96 96.66 875.38 0.00 hosts/nchris/Disk/hdisk0/wblk

721 6.83 87.48 2248.02 0.00 hosts/nchris/Disk/hdisk0/rblk

721 1.73 3.97 49.80 0.00 hosts/nchris/Disk/hdisk0/xfer

721 3.42 7.79 86.80 0.00 hosts/nchris/Disk/hdisk0/busy

Changing View Options Dialog Box

The purpose of the Changing View Options dialog box is to allow you to change the way one or all metrics

are plotted in an object. The dialog box is displayed when you drag one of the following object types to the

View icon:

A main graph The new style is used for all metrics in the main graph.

A metric label

The new style is used only for the metric corresponding to the metric label that was

dragged to the View icon.

Title part When the object is the title part of the metrics selection window, the new style is used for

all metrics graphs in the metrics selection window.

A metrics graph

The new style is used only for the metrics graph that was dragged to the View icon.

The dialog box has two incarnations. The first is displayed when the drag object comes from a main

graph; the second when the object is part of the metrics selection window. The dialog box identifies the

object you dragged to the View icon on the first text line in the box. The next two lines further point out the

type of the selected object. The remaining lines give a brief explanation of the available view styles. The

row of buttons at the bottom allows you to select the view style you want or to keep the current view style

by selecting Cancel.

To understand how the view style is affected by the available data, consider that each metric is drawn from

an array of observations where each element in the array corresponds to a time interval into which a

single observation, multiple observations, or none of those in the recording file may fit. Only if the time

interval covers multiple observations can there be a difference between plotting the maximum value, the

minimum value, or the average value in the interval.

The incarnation of the dialog box when the object is a main graph or a single metric label from a main

graph is has the following view types, all of which are drawn as line graphs:

Average The metrics are drawn from the average observation value in each of the intervals.

Maximum The metrics are drawn from the highest observation value in each of the intervals.

Minimum The metrics are drawn from the lowest observation value in each of the intervals.

Both Two lines are drawn, one from the highest observation value in each of the intervals, the

other from the lowest observation value in each of the intervals.

If the object is a single metrics graph from the metrics selection window or the title part of the metrics

selection window, the view types available are:

Line, Maximum

The metrics are drawn as a line graph, using the highest observation value in each of the

intervals.

Line, Max & Min

The metrics are drawn as a line graph. For each metric, two lines are drawn, one using

the highest observation value in each of the intervals, the other using the lowest

observation value in each interval.

Bar, Max-to-Min

The metrics are drawn as vertical lines (bars) in each of the intervals that have

Chapter 10. Analyzing Performance Recordings with azizo 129

observations. The vertical line is drawn from the lowest observation value to the highest

observation value in the interval. This gives a graphical representation of the variance of

the observations. If the time interval covered by each of the interval slots in the metrics

graphs is less than one second, attempts to select this drawing style reverts to the Line,

Max & Min style.

Overview of Valid Drag-and-Drop Operations

The drag and drop interface of azizo may be new and strange to some users. This section is intended to

be used as a reference section and may be useful to such users. It contains subsections for each of the

objects and actions defined by azizo. Where applicable, each subsection describes:

1. What can be dragged to the object or action.

2. Where the object or action can be dropped.

Annotation Icon

The Annotate icon, available with Version 2.2 or later, is used to add or modify annotation text to a

recording. Annotation text is kept in a separate file, linked to the recording file by a naming convention, as

explained in “Annotation Files” on page 95.

What Can Be Dragged to the Annotate Icon

Only main graphs can be dragged to the Annotate icon. When you drop the main graph, an editor window

will open. From the editor window, you can modify any existing annotation text or create a new annotation

file, if none existed before. When you have made the changes you want, exit the editor window with the

file or save option of the editor in use. If you exit the editor with the quit without saving option of the

editor in use, any existing file is left unchanged and no new annotation file is created if none existed

before.

Where Can You Drop the Annotate Icon

The Help icon displays a help text.

Config Icon

The Config icon is used to save, retrieve, and delete customized views of main graphs. The idea is that

by saving a particular view, you can later use it for viewing other recordings and display the graphs in a

way that allows you to immediately compare the data in the recordings. Each saved view is called a

configuration. The Config icon is used to maintain and use configurations.

What Can Be Dragged to the Config Icon

Only main graphs can be dragged to the Config icon. When you drop the main graph, the dialog box

Writing Configuration opens. You can then set the properties you wish to save and give a name to the

configuration.

Where Can You Drop the Config Icon

Main graphs The Replace Configuration dialog box is displayed. From that dialog box you can select a

configuration to customize the view of the data currently displayed in the main graph.

Pit Icon The Delete Configuration dialog box is displayed. From that dialog box you can drag

individual configurations to the Pit icon to delete them.

Help Icon Displays a help text.

Configuration Lines

Configuration lines are the detail lines in the dialog boxes Delete Configuration and Replace Configuration.

Each line represents a named configuration view as it is saved in the configuration file. To use a

configuration line as a drag object, place the pointer on the line and start the drag operation from there.

Nothing can be dropped on configuration lines.

130 Performance Toolbox Guide

Where Can You Drop a Configuration Line

Main Graph When the configuration line resides in the Replace Configuration dialog box, you can drag

it to and drop it on a main graph. Each time, the configuration dropped is used to

customize the view of the main graph.

Pit Icon When either of the Delete Configuration or Replace Configuration dialog boxes is

displayed, individual lines can be dragged to the Pit icon to delete them from the

configuration file.

Help Icon Displays a help text.

Exit Icon

The Exit icon allows you to exit the azizo program. The only drag-and-drop operation permitted for this

icon is to drag the icon to the Help icon to display a help text.

Filter Icon

The Filter icon is used when you want to produce a filtered recording file as a subset of the current

recording file. The only place where the Filter icon can be dropped is the Help icon.

What Can Be Dragged to the Filter Icon

If you drop a main graph on the Filter icon, the dialog box titled Writing Filtered Recording opens. Filtering

is the process of creating a copy of the recording file you are currently analyzing, using the current main

graph to select the metrics you want the copy of the recording file to contain. The dialog box allows you to

give the filtered recording file a name and to change the time interval it covers from the default displayed

in the dialog box. The default is the time interval covered by the main graph you dragged to the Filter

icon.

Help Icon

The Help icon is the entry point to the help facility. It is the only icon that cannot be dragged anywhere. If

you select the Help icon, the help index is displayed.

What Can Be Dragged to the Help Icon

All objects and all other icons can be dragged to the Help icon to display the help text for the object or

icon.

Info Icon

The Info icon is used to display summary information for either a single metric or all metrics in a main

graph or in the metrics selection window. The only place where the Info icon can be dropped is the Help

icon. Doing so gives you a help text for the Info icon.

What Can Be Dragged to the Info Icon

Main graphs When you drop a main graph on the Info icon, an information window opens. If the main

graph is the top-level main graph, the information window includes summary information

for the entire time period covered by the recording. If the main graph is a zoomed-in

graph, one set of summary information is shown for the zoomed-in time period and one for

the full time interval covered by the recording. In either case, one line is shown for each of

the metrics in the main graph.

Metric label

from a main graph

When you drag one of the metric labels of a main graph and drop it on the Info icon, an

information window opens. If the main graph is the top-level main graph, the information

window includes summary information for the entire time period covered by the recording.

If the main graph is a zoomed-in graph, the summary information is shown for the

zoomed-in time period. Only information about the selected metric is shown.

Chapter 10. Analyzing Performance Recordings with azizo 131

Title part of the metrics

selection window

When you drag the title part of the metrics selection window and drop it on the Info icon,

an information window opens. The information window includes summary information for

the entire time period covered by the recording. The window contains one line for each of

the metrics in the metrics selection window.

Metrics graph from the

metrics selection window

When you drag one of the metrics from the metrics selection window and drop it on the

Info icon, an information window opens. The information window includes summary

information for the entire time period covered by the recording for the selected metric.

Information Window

Information windows that are generated from a main graph or from all the metrics in the metrics selection

window can be used as objects. No objects can be dropped on information windows.

Where Can You Drop an Information Window

Print Icon Causes the Report Box dialog box to open. From this dialog box you can print a report

with the data as shown in the information window.

Help Icon Displays a help text.

Local Files Icon

This icon is used to select a recording file to analyze. When you select the icon, the Select Recording File

selection box is displayed. No objects can be dragged to the Local Files icon. The only place where the

Local Files icon can be dropped is the Help icon. Doing so gives you a help text for the Local Files icon.

Main Graphs

Main graphs can be used as objects that can be dragged to and dropped on actions. Selected other

objects can be dragged to main graphs. To drag a main graph, start the drag operation with the pointer in

the graph section of the main graph window. Similarly, when objects are dropped onto a main graph, the

point where you drop the object must be within the graph area.

What Can Be Dragged to a Main Graph

Metrics graph Drag a metrics graph from the metrics selection window to the main graph to add that

metric to the graph. If the metric already is part of the main graph, this is handled as a

no-operation. When the metric is added to the main graph, it is given the next free color.

Config Icon When you drop the Config icon on a main graph, the configuration file is searched for

available configurations. If such exist, a dialog box opens and gives a list of all

configuration names. You can then select which configuration view to apply to the main

graph. When the configuration name is selected, select OK to apply it to the graph; select

Cancel to leave the graph unchanged. Alternatively, you can drag a configuration line to

the main graph as explained below.

Configuration Line

When the Replace Configuration dialog box is displayed, you can drag individual lines

from the list of configurations and drop them on the main graph. Each time, the

configuration dropped is used to customize the view of the main graph. The dialog box

stays up until you close it by selecting Cancel.

Where Can You Drop a Main Graph

Annotate Icon

Beginning with Version 2.2, when you drop a main graph on the Annotate icon, an editor

window will open. From the editor window, you can modify an existing annotation text or

132 Performance Toolbox Guide

create a new annotation file if none existed before. When you have made the changes you

want, exit the editor window with the file or save option of the editor in use. If you exit the

editor with the quit without saving option of the editor in use, any existing annotation file

is left unchanged and no new annotation file is created if none existed before.

Config Icon When you drop a main graph on the Config icon, the Writing Configuration dialog box

opens. You can then set the properties you wish to save and give a name to the

configuration. Select OK to save the configuration view to the configuration file.

Info Icon When you drop a main graph on the Info icon, an information window opens. If the main

graph is the top-level main graph, the information window includes summary information

for the entire time period covered by the recording. If the main graph is a zoomed-in

graph, one set of summary information is shown for the zoomed-in time period and one for

the full time interval covered by the recording. In either case, one line is shown for each of

the metrics in the main graph.

Print Icon Dropping a main graph on the Print icon causes the Print Box dialog box to pop open.

From this box you select the options to use when printing the graph and enter the

description you want printed for the graph. You can select to print directly to one of the

printers known by your system, or you can send the print image to a file. Print images are

in PostScript format.

Filter Icon If you drop a main graph on the Filter icon, the Writing Filtered Recording dialog box

opens. Filtering is the process of creating a copy of the recording file you are currently

analyzing, using the current main graph to select the metrics you want the copy of the

recording file to contain. The dialog box allows you to give the filtered recording file a

name, and to change the time interval it covers from the default displayed in the dialog

box. The default is the time interval covered by the main graph you dragged to the Filter

icon.

View Icon Dragging a main graph to the View icon displays a dialog box titled Changing View

Options. The purpose of this dialog box is to allow you to change the way metrics are

plotted in the main graph. The view style you select becomes the default view style for the

main graph.

Scale Icon When you drop a main graph on the Scale icon, you see a dialog box titled Rescaling

from which you can change the scale of all the metrics in the main graph. You can elect to

use Autoscale, which adjusts the scales of all metrics so the maximum value in the time

interval covered by the main graph falls within the 50% and 100% lines in the graph. If you

select Normscale all metrics revert to the scale contained in the recording file.

Pit Icon By dropping a main graph on the Pit icon, you cause the main graph and all its

descendants (all main graphs created by zooming-in on the dragged graph) to be deleted.

If the dragged graph is the top-level main graph, this graph itself is not deleted but all

metrics are removed from it.

Help Icon Displays a help text.

Metric Label from Main Graph

A metric label represents a single metric of a main graph. Any action performed when dropping a metric

label onto an icon affects only the metric represented by the metric label and only in the main graph from

where the metric label is dragged. Nothing can be dropped on a metric label.

Where Can You Drop a Metric Label

Info Icon When you drop one of the metric labels of a main graph onto the Info icon, an information

window opens. If the main graph is the top-level main graph, the information window

includes summary information for the entire time period covered by the recording. If the

main graph is a zoomed-in graph, the summary information is shown for the zoomed-in

time period. Only information about the selected metric is shown.

Chapter 10. Analyzing Performance Recordings with azizo 133

View Icon Dragging a metric label of a main graph to the View icon displays a dialog box titled

Changing View Options. The purpose of this dialog box is to allow you to change the way

the dragged metric is plotted in the main graph.

Scale Icon When you drop a metric label of a main graph on the Scale icon, you see the Rescaling

dialog box from which you can change the scale of the dragged metrics in the main graph.

You can elect to use Autoscale, which adjusts the scale of the metric so the maximum

value in the time interval covered by the main graph falls within the 50% and 100% lines

in the graph. If you select Normscale the metric reverts to the scale contained in the

recording file.

Pit Icon By dropping a metric label from a main graph on the Pit icon, you delete the metric from

the main graph.

Help Icon Displays a help text.

Metrics Graph

A metrics graph is the graphical representation of the values for a single statistic as shown in the metrics

selection window. The metrics graph is intended to give users a visual representation of how the observed

values for the statistic have varied over the time period covered by the graph. When a metrics graph is

dropped on an action, the action is applied only to the metric represented by the metrics graph. Other

metrics in the metrics selection window are unchanged. No objects can be dropped on a metrics graph.

Where Can You Drop a Metrics Graph

Main Graph When you drag a metrics graph icon from the metrics selection window to a main graph,

you tell the azizo program that you want to add the corresponding metric to the main

graph. If the metric is not already included in the main graph, it is added to the graph and

the main graph is redrawn. When the metric is added to the main graph, it is given the

next free color. If the metric already was part of the main graph, this action is handled as a

no-operation.

Info Icon When you drag a metrics graph to the Info icon and drop it there, an information window

opens. The information window includes summary information for the entire time period

covered by the recording for the selected metric.

Print Icon Dropping a metrics graph on the Print icon tells azizo that you want to print the graphical

image of the metrics graph and causes the Print Box dialog box to pop up. From this box

you select the options to use when printing the graph and enter the description you want

printed for the graph. You can select to print directly to one of the printers known by your

system or you can send the print image to a file. Print images are in PostScript format.

View Icon Dragging a metrics graph from the metrics selection window to the View icon displays a

dialog box called Changing View Options. The purpose of this dialog box is to allow you to

change the way the metric is plotted in the metrics selection window.

Pit Icon Dragging a metrics graph to the Pit icon causes the graph to be removed from the metrics

selection window. Consequently, you can no longer use the metric for any purpose, such

as adding it to a main graph. However, the recording file is not modified and you can

always start over by rereading the recording file. The metric is also deleted from any main

graph it was part of.

 Even though the metric no longer seems to be available, it is not completely forgotten: If

you zoom-in on a main graph and select the Rescan option, then the recording file is

scanned for all metrics that have observations within the zoom-in outline. If the metric you

deleted from the metrics selection window meets the criterias for being included in the

zoomed-in graph, then it is included regardless of it no longer being accessible from the

metrics selection window.

Help Icon Displays a help text.

134 Performance Toolbox Guide

Metrics Selection Window

The metrics selection window consists of a title part followed by a list of metrics graphs. The title part is an

object and can be dropped on various actions. When this is done, the action is performed on all the

metrics in the metrics selection window. No objects can be dropped on the metrics selection window.

Where Can You Drop the Title Part

Info Icon When you drag the title part of the metrics selection window to the Info icon and drop it

there, an information window opens. The information window includes summary

information for the entire time period covered by the recording for all metrics in the metrics

selection window.

Print Icon Dropping the title part of the metrics selection window on the Print icon is interpreted as a

request to print the graphical image of the metrics graphs currently visible in the metrics

selection window. It causes the Print Box dialog to opens. From this box, select the

options to use when printing the graph and enter the description you want for the graph.

You can select to print directly to one of the printers known by your system, or you can

send the print image to a file. Print images are in PostScript format.

 The generated print image contains the entire metrics selection window, including scroll

bars, if present, and including the title part of the window. Only those metrics graphs

visible in the window when printing starts are included in the print image.

View Icon Dragging the title part of the metrics selection window to the View icon displays the

Changing View Options dialog box whose purpose is to allow you to change the way

metrics are plotted in the metrics selection window. Any selection of style you make affects

all metrics in the metrics selection window.

Help Icon Displays a help text.

Pit icon

The Pit icon is where you drop objects you no longer need. This causes the object you drop to be

removed from where you dragged it but never causes changes to the recording file. Thus, removal of

objects is only from the viewing environment you are in. It is always possible to start over by re-reading

the recording file. When you drag configuration lines to the Pit icon, however, you permanently delete the

named configuration from the configuration file. The only place where the Pit icon can be dropped is the

Help icon.

What Can Be Dragged to the Pit Icon

Config Icon The Delete Configuration dialog box is displayed. From the dialog box you can drag

individual configurations to the Pit icon to delete them from the configuration file.

Configuration lines

When either of the Delete Configuration or Replace Configuration dialog boxes is

displayed, individual lines can be dragged to the Pit icon to delete them from the

configuration file.

Main graph By dropping a main graph onto the Pit icon, you cause the main graph and all its

descendants (all main graphs created by zooming-in on the selected graph) to be deleted.

If the selected graph is the top-level main graph, this graph itself is not deleted but all

metrics are removed from it.

Metric label from

main graph By dropping a metric label of a main graph on the Pit icon, you delete the metric from the

main graph.

Metrics graph from

metrics selection window

If you drag one of the metrics graphs from the metrics selection window to the Pit icon

Chapter 10. Analyzing Performance Recordings with azizo 135

and drop it there, the corresponding metric is deleted from the metrics selection window. In

addition, the metric is deleted from all main graphs.

 The metric cannot be added back to the metrics selection window except by rereading the

recording file. However, if you use the Rescan option when zooming in on a main graph,

the deleted metric again is included in the scan, because the scan is done on the actual

file rather than from the metrics selection window.

Print Icon

The Print icon is where you drop objects you want to print. This causes either the Print Box or the Report

Box to open. The former when the object is a graph; the latter when the object is an information window.

The only place where the Print icon can be dropped is the Help icon.

When printing graphs, azizo first captures the image of the graph, then converts the image to PostScript

format, and finally sends the print file to a printer or a file. The capture of the image depends on the graph

being visible on the screen as explained in the section “How Graphs Are Printed” on page 127.

What Can Be Dragged to the Print Icon

Main Graph Used to print the image of an entire main graph window. Causes the Print Box dialog box

to open.

Title part of metrics selection window

Used to print the image of the metrics selection window exactly as it is displayed in the

main window. The entire window including scroll bars, metrics graphs, and title part is

printed. The Print Box allows you to customize the printing.

Metrics graph from the

metrics selection window

Used to print the image of a single metrics graph from the metrics selection window. The

Print Box allows you to customize the way the graph is printed.

Information window

Used to print the contents of an information window. Only information windows for main

graphs and the entire metrics selection window can be printed. The Report Box allows you

to customize the way the data is printed.

Scale Icon

The Scale icon is used to change the scale for one or more metrics in a main graph. This is done by

dragging an object to the icon. The only place where the Scale icon can be dropped is the Help icon.

What Can Be Dragged to the Scale Icon

Main Graph When you drop a main graph onto the Scale icon, you see the Rescaling dialog box from

which you can change the scale of all the metrics in the main graph. You can elect to use

Autoscale, which adjusts the scales of all metrics so the maximum value in the time

interval covered by the main graph all fall within the 50% and 100% lines in the graph. If

you select Normscale, all metrics revert to the scale contained in the recording file.

Metric label from

Main Graph When you drop a metric label of a main graph onto the Scale icon, you get the Rescaling

dialog box from which you can change the scale of the selected metric in the main graph.

You can elect to use Autoscale, which adjusts the scale of the metric so the maximum

value in the time interval covered by the main graph falls within the 50% and 100% lines

in the graph. If you select Normscale the metric reverts to the scale contained in the

recording file.

136 Performance Toolbox Guide

View Icon

The View icon is used to change the way one or more metrics is plotted in the graph where it is displayed.

This is done by dragging a metrics object, a main graph, or the title part of the metrics selection window

onto the icon. The only place where the View icon can be dropped is the Help icon.

What Can Be Dragged to the View Icon

Main Graph Dragging a main graph to the View icon displays the Changing View Options dialog box.

The purpose of this dialog box is to allow you to change the way metrics are plotted in the

main graph. The view style you select becomes the default view style for the main graph.

Metric label from

Main Graph Dragging a metric label of a main graph to the View icon displays the Changing View

Options dialog box, which allows you to change the way the selected metric is plotted in

the main graph.

Title part of the metrics

selection window

When you drop the title part of the metrics selection window onto the View icon, the

Changing View Options dialog box opens. From this dialog box you can change the

plotting method for all the metrics in the window in one operation.

Metrics graph from the

metrics selection window

Dragging a metrics graph from the metrics selection window to the View icon displays the

Changing View Options dialog box. The dialog box allows you to change the way the

metric is plotted in the metrics selection window.

Chapter 10. Analyzing Performance Recordings with azizo 137

138 Performance Toolbox Guide

Chapter 11. Analyzing Performance Trend Recordings with the

jazizo Tool

This section discusses the following jazizo topics:

v “Recording Files”

v “Configuration Files” on page 140

v “Jazizo Tool Menus” on page 140

v “Legend Panel” on page 145

Jazizo is a tool for analyzing the long-term performance characteristics of a system. It analyzes recordings

created by the xmtrend daemon, and provides displays of the recorded data that can be customized. The

jazizo tool can be configured to show only the data of interest, in concise graphical or tabular formats.

Users can create, edit, and save custom configurations. In addition, reports can be generated covering

specific time periods, and data-reduction options are provided to assist analysis.

Recording Files

A recording file contains trend metric values recorded by xmtrend. The trend metrics are timestamped and

more than one file may be used to record data over time. If xmtrend was directed to record for three

months and create one file per month, then the jazizo tool would use three recording files to graph trends

across the three months. From the command line, either a specific recording file could be specified or a

directory where the recording files reside. Recording files can also be selected from the jazizo menus.

Trend Statistics (Metric) Definitions

Trend statistics are called trend metrics. These are system values such as free memory or %CPU Idle that

xmtrend gathers from the system and converts to statistical values such as mean, maximum, minimum,

and standard deviation. In other words, xmtrend may monitor a metric every second and compile these

observations into a set of statistics once per hour. In this fashion, large amounts of data can be recorded

over long periods of time. See “Starting Recording Sessions from the xmtrend Command Line” on page

175 for further explanation of the xmtrend tool.

Trend metrics gathered by xmtrend have various attributes to help interpret the data. Some of these

attributes can be modified by jazizo to further refine analysis. The attributes are hiRange and loRange.

hiRange and loRange

These values are interpreted by the graph as being the lowest and highest values to show. Although the

data may be outside of this range, the graph will not display those values. Usually, the loRange and

hiRange contain all the data points. These values can be changed per metric from the Metric Selection

menu from the Legend Panel. The new settings can be saved to a configuration file.

For example, a metric such as %CPU Idle would have a loRange of 0, and a hiRange of 100, because it

represents a percent.

Recording Frequency

Recording frequency is how often a trend value is recorded. It should not be confused with sampling

frequency, which represents the rate at which values from the system are sampled by the performance

agents. Although the minimum recording frequency is once per minute, xmtrend samples the data at

much higher frequencies (typically once per second). Trend metrics are statistical measurement (mean,

maximum, minimum and standard deviation) gathered over the recording period. Internal sampling

frequencies are determined by the agent, and cannot be configured by the user. Although xmtrend can

record trend values at one frequency, jazizo can further reduce the data to a different display frequency,

so that the number of data points represented on a graph are manageable.

© Copyright IBM Corp. 1994, 2004 139

Counter versus Quantity

Metrics are one of two types, counter or quantity. A counter type measures a value that counts integrally,

such as the number of page faults. The value recorded is the delta since the last time it was sampled. A

quantity type measures a value that can increase or decrease, such as %CPU Idle.

Configuration Files

Configuration files can be used and customized to select which metrics are graphed, and how they should

be displayed. Configuration files can be created and modified by using the menu options in jazizo.

Because they are text files, they can also be modified manually. A sample configuration file, provided for

initialization, is located at /usr/lpp/perfmgr/jazizo.cf. To see graphs as defined in the sample configuration

file, a trend recording file containing the metrics referenced in the configuration file would need to be

available. One configuration file may contain several graph configurations, such as a graph configuration

for CPU utilization and another for Memory usage. Syntax jazizo configuration files consist of stanzas.

Stanzas contain title and optional attribute definitions. Attributes consist of a keyword followed by values.

Comments can appear anywhere in the file. Thus, the comments start with # and continue to the end of

the line. Blank lines are permitted.

Display options can be defined as a default to be applied to all metrics, or to individual metrics. Individual

metric stanzas allow specification of which metrics to include, as well as optional attributes for those

metrics. In the case where an attribute is specified in both the display options and in individual metric

options, the value of the attribute for the individual metric overrides the display options.

The attribute values are specified as strings.

Jazizo Tool Menus

This section describes the various menus associated with the jazizo tool.

There are five types of jazizo menus:

1. File menu

2. Edit menu

3. View menu

4. Configuration menu

5. Report menu.

File Menu

The following options are contained in the File menu:

Open Recording File

 This option is used to select a recording file if one was not selected from the command line, or a

new recording is to be opened. Jazizo will display all files that start with xmtrend because this is

how xmtrend names recording files by default. Change the file type to the following to display all

files:

All Files (*.*)

Use Look in:, or navigation icons, or by double-clicking on a directory folder to select different

recordings. When the recording file is chosen, select OK to continue or Cancel to exit the menu

without selection. When a recording file is selected, the Metric Selection menu is displayed.

Metrics and the time frame to be graphed can then be input. See the Edit/Metric-Selection for a

view of the Metric Selection menu.

140 Performance Toolbox Guide

Open Configuration

 Configuration files can contain one or more graph configurations. This menu option opens a

configuration file and installs the graph configurations into jazizo. Navigation and selection of a

configuration files works similarly to opening a recording file except that the file suffix is .cf for

configurations. Unlike recording files where the file can have any name, jazizo expects

configuration files to end with .cf and does not accept any file without this suffix.

Save Configuration

Saves current configurations to a configuration file. This provides an alternative to modifying the

configuration file by hand.

Print Starts a print dialog to print the current graph to either a printer or a Postscript file.

Exit Closes all windows and exits jazizo.

Figure 6. Jazizo Main Graph Window. This figure shows menu options displayed at the top of the window. The center

section is a scrollable graph window showing the activity of two metrics. The top horizontal axis represents time, and

the left vertical axis displays a range for the measurements. At the bottom is the metric legend table. Each metric in

the table has an associated color box and default range which associate it with the graph. In this case, each metric

has a different range, so the vertical axis is only labelled if the metric is selected.

Chapter 11. Analyzing Performance Trend Recordings with the jazizo Tool 141

Edit Menu

The following options are contained in the Edit menu:

Metric Selection

 Use this menu option to add or remove metrics that are to be displayed on the graph. The Metric

Select window opens automatically when a recording file is loaded from the File menu or entered

from the command line with no configuration file.

 The metrics on the left of the recording file are those in the Recording, the metrics on the right are

to be displayed. Both the available metrics and the selected metrics can be viewed in either tree

or list format. Use the tabs to select either the Tree View or the List View.

 Selecting the Tree View shows metrics organized into folders and subfolders. These folders are

determined by the metrics’ classification. A general class of CPU metrics, subclassified into CPU

IDs, are further subclassified into type of CPU metric, such as kernel or user. To expand a folder

and see its contents, either double-click on its name or single-click on the magnifying-glass icon.

 Selecting the List View puts every metric on its own line, with no folders for classification. The

metrics are listed in alphabetic order.

 Highlight the metrics or folders using one of the following methods:

v Single click (one selection)

v Shift and click (more than one selection)

v Ctrl and click (a range of selections)

The metrics can either be added or removed by pressing the Add or the Remove button. By

selecting Edit → Start/Stop in the Time (X-Axis) section, the start date and time and a stop date

and time for all metrics can be selected. Jazizo will graph the metric values between the two

dates/times. Use this when the recording files are for long periods of time such as a year and only

one month’s data is needed.

Graph Properties

 Graph Properties defines how trend metric data is graphed and which statistical values should be

graphed. Changes to this menu will be applied to all metrics graphed. Each section of the menu is

described in the following section.

Title The title of the graph that is synonymous with the configuration name.

Y-Axis

Separate Scales

Refers to graphing all metrics based on their own scale but having the y-axis scale

set to the metric that is selected or hightlighted at the time.

Common Scale

Jazizo finds a scale that fits all the metrics plotted, generally the highest high and

lowest low value among all the metrics selected. All metric data is then graphed to

that scale.

Mean Options

For trend values, the mean is displayed by default. Standard deviation can also be

displayed at the same time.

Trend Line

A straight line that represents the overall trend of the mean data. This line is calculated

using the Least Squares Best-fit formula.

All Data

A trend line is a mathematical best fit line that is drawn on the graph. The Line

refers to using all the metric points from the recording to calculate the trend line.

142 Performance Toolbox Guide

Visible Data

This is similar to the Line in that it is a calculated best fit line but only the points

within the window will be used for the calculation.

Off Turns off the trend line.

Ranges

Activates the maximum or minimum values.

Max Options

Displays the maximum value for each trend mean sample.

Min Options

Displays the minimum value for each trend mean sample.

OK Selecting OK will apply any changes to all metrics. To set these values individually, refer to

the following Metric Properties menu.

Select A Metric

A list of selected metrics is displayed from the menu. By selecting a metric, the Metric Properties

menu will be displayed. You can change the metric’s label, color, and various settings. In addition,

the same properties that were described in the “Edit Menu” on page 142 section can be changed,

but these changes will only apply to the selected metric. Metric Properties are described further in

the “Metric Properties” on page 145 section.

View Menu

The View menu provides a set of selections for controlling the displayed graph. Selections are based on

logical time periods such as All, Year, Quarter, Month, Week, and Day. These selections provide a basic

means of filtering the data for viewing. Jazizo allows the specification of how much time is displayed in the

graph window, and adds scroll bars to view what is not shown.

You can specify the amount of data that will be on the visible graph using All, Year, Quarter, or Month from

the View menu. This results in a cascading menu that allows the selection of a corresponding value for the

horizontal axis tick increment. For example, if View → Quarter → by Month is chosen, then the visible

portion of the graph will represent one quarter-year of data, and each tick on the horizontal axis will

represent one month.

For finer granularity, select Week by Day or Day by Hour from the View menu . In those cases as well,

the first unit is the visible X range and the second unit is the tick increment. The visible X range and tick

increment affect the behavior of the horizontal scroll bar. Selecting the arrows to the left or right of the

horizontal scroll bar will scroll the graph by the value of the tick increment. Selecting inside the scroll bar

to the left or right of the slider, the graph scrolls by the value of the visible X range. The scroll bar slider

can also be dragged.

The View → Reduce Data by Tick check box reduces the number of samples in the graph for better

manageability. Graph values will be sampled so that there is one data point at every tick mark, but none

between the tick marks.

For example, a week might be displayed with day ticks. Looking at the graph lines, one could see that in

addition to a point being at every tick, there are also points between the ticks, by selecting Reduce Data

by Tick, the additional measurements per day would be averaged to 1. In another example, an entire year

may be displayed with each tick representing one month. If there are 30 points (days) for every month,

and the user wants a monthly average, by selecting Reduce Data by Tick, the points will be averaged.

Thus, one point will be plotted per month. By deselecting it, the raw data will be graphed.

Configurations Menu

A jazizo graph consists of many options: the metrics that are graphed, their particular options, along with

graph-wide options (for example, title of the graph). Jazizo allows the storage of multiple configurations

Chapter 11. Analyzing Performance Trend Recordings with the jazizo Tool 143

within the Configurations menu. These configurations can be saved or loaded to or from a file using File

Menu Save Configuration. A configuration file can store multiple graph configurations. Use a predefined

configuration by selecting it from the Configuration menu. Configuration names are based on graph titles.

Add Current Configuration to Menu

Saves the current configuration as a new configuration. This may include graph properties, metric

properties, and which metrics to display. The Title chosen from the Graph Properties menu

identifies the configuration in the list.

Remove A Configuration from Menu

Removes configurations from the menu. To remove, select a configuration and select Remove. To

quit without removing a configuration, select Cancel.

Update the Current Configuration

Saves the current graph properties and metric selection to the currently selected configuration in

the menu.

Select a Configuration

To select the active configuration (that is, one which applies to the data in the graph), select the

name of the configuration from the Configurations menu. Modified, new, and removed

configurations are not automatically saved to a file, configurations must be saved before exiting by

using File → Save Configuration.

Report Menu

Summary Reports

Displays and prints tabulated reports about the metrics being graphed. The table is organized by individual

metrics, and then within each metric into rows that represent the number of samples, the average mean,

and the minimum and maximum values. Some Report menu options are:

Graph The report generated will be based on all points from the recording file.

Window

The report generated will be based on points currently visible in the window.

The report itself is in the form of a table. Each row in the table represents a single metric. There are five

columns in the table:

Name Contains the metric’s label

Observations

Shows the total number of data points for that metric

Average

Shows the average taken of all the mean values for that metric

Maximum

Shows the maximum of all the maximum values for that metric

Minimum

Shows the minimum of all the minimum values for that metric

Selected Metric Reports

Provides a summary of a single highlighted metric. Values for each measurement are displayed with a

timestamp.

To print a Report, select Print. To close a report, select Close.

144 Performance Toolbox Guide

Legend Panel

The Legend Panel of the jazizo tool is displayed below the graph. It contains a list of all the metrics that

are currently selected for the graph. To the left of each metric name is a rectangle showing the metric’s

color. To the right of each metric is that metric’s Y-range on the graph.

The Legend Panel is interactive. Metrics can be manipulated in the graph by left- or right-clicking on the

metric in the Legend Panel.

By left-clicking on the metric in the Legend Panel, the metric will be highlighted in the graph. Use this

when there are many metrics graphed simultaneously and it is difficult to tell them apart.

Highlighting a metric in the graph changes its color to a bright white. It also changes the Y-Axis labels to

reflect the Y-range for this metric. Left-clicking the metric name again deselects it.

Right-clicking on the metric in the Legend Panel starts the legend menu from which the following can be

performed:

Edit Metric

Opens a Metric Properties menu. This is the same menu that displays when Edit from the main

menu bar is selected and a metric label is selected.

Edit Graph

Opens a Graph Properties menu. This is the same menu that displays when Edit → Graph

Properties from the main menu bar is selected.

Hide or Show the metric in the graph

Allows finer control over which metrics are displayed than the Metric Select window. When

evaluating a specific set of metrics in a graph, it is sometimes helpful to temporarily hide certain

metrics to make others stand out. This can be done by using the Hide and Show choices on this

menu.

Hide-All

Hides all metric graphs defined in the legend from the graph. Metrics can then be layered in.

Show-All

Shows all metric graphs defined in the legend from the graph. Metrics can then be layered in.

The jazizo tool is keyboard accessible. After a jazizo graph is displayed, press Tab to select the first

metric in the Legend Panel. Use arrow keys to navigate to other metrics. When a metric is chosen, press

Enter to highlight its graph. Press the M key to display the legend menu.

Just below the Legend Panel is the status panel. This panel provides general information such as the

name of the recording file being used and information messages.

Metric Properties

Every metric has a group of options specifying how it is displayed within the graph. From the metric

properties panel, graphing options can be changed or the graph-wide defaults can be used. The changes

apply only to the selected metric. All metrics by default use the overall system setting, configured in the

Edit/Graph Properties menu.

Each metric has one Metric Properties window. The panel lists the technical name of the Metric and the

user-definable label (the technical name is the default). The user-definable label is displayed in the legend

next to the color block and in the metric properties select panel listed previously.

From this panel the color can be changed from a color list. If no configFile is loaded that specifies the

metric’s color, jazizo automatically assigns one.

Chapter 11. Analyzing Performance Trend Recordings with the jazizo Tool 145

Some metrics are on a percentage scale while others are on the scale of thousands per second, so

graphing them together is problematic because the Y-values of the metrics may not be on the same order

of magnitude. Although the metrics will be drawn in the same graph, they will all have their own scales

(the scales will be displayed in the legend below the graph, next to the name).

Y-range allows the selection of the low and high Y-values on the visible graph, effectively stretching or

compressing the data in the vertical direction. This function can also be used to shift the data up or down.

Finally, the options panel is displayed. These values only apply to the metric. The metric can either select

its own, or use the user-defined defaults by selecting Use Default.

When you are satisfied with the choices, select OK. To return to the default values, select Use Default. To

quit without making changes, select Cancel.

146 Performance Toolbox Guide

Chapter 12. Analyzing WLM with wlmperf

The following wlmperf command is used when analyzing WLM.

The wlmperf Command

Purpose

The wlmmon and wlmperf tools provide graphical views of Workload Manager (WLM) resource activities

by class.

Syntax

wilmon

wlmperf

Description

The wlmmon and wlmperf tools graphically display the resource usage of system WLM activity. The

wlmmon tool is a disabled version of the wlmperf tool, which is part of the Performance Toolbox (PTX)

product . The primary difference between the two tools is the period of WLM activity that can be analyzed.

The wlmperf product can generate reports from trend recordings made by the PTX daemons covering

minutes, hours, days, weeks, or monthly periods. The wlmmon tool is limited to generating reports within

the last 24–hour period.

No usage options exist for the wlmmon tool. Three types of visual reports can be generated:

v Snapshot Display

v Detailed Display

v Tabulation Display

The type of report can be customized to cover specified WLM classes over specific time periods. In

addition, the WLM activity from two different time periods can be compared (trended) for any chosen

display type.

The reports are generated from data that is collected using the same mechanism as the wlmstat

command. However, this tool uses recordings made by a daemon that must operate at all times to collect

WLM data. In the case of wlmmon, this daemon is called xmwlm, and ships with the base AIX. For the

PTX, the xmtrend daemon is used to collect and record WLM data.

Analysis Overview

While the wlmstat command provides a per-second view of WLM activity, it is not suited for the long-term

analysis. To supplement the wlmstat command, the wlmmon and wlmperf tools provide reports of WLM

activity over much longer time periods, with minimal system impact.

The reports generated by this tool are based off samplings made by the associated recording daemon.

These daemons sample the WLM and system statistics at a very high rate (measured in seconds), but

only record supersampled values at low rate (measured in minutes). These values represent the minimum,

maximum, mean, and standard deviation values for each collected statistic over the recording period.

© Copyright IBM Corp. 1994, 2004 147

WLM Report Browser

Upon startup, the Report Browser displays. The browser shows a collection of reports. The type of display,

which is user configurable, is based off the properties chosen to generate the report.

Report Browser menu options:

New Create report

Close Exit browser

Open Display a selected report

Properties Allow the properties of a report to be viewed and edited

Delete Delete a selected report

Report Properties Panel

The Report Properties Panel allows the user to define the attributes that control the actual graphical

representation of the WLM data. There are three tabbed panes in this panel:

v General Menu

v Tier/Class Menu

v Advanced Menu

Report Name A user-editable field for naming the report. Reports should end with the .rpt extension

General Menu

The first tabbed pane allows the user to edit the general properties of a display as follows:

Trend Box Indicates that a trend report of the selected type will be generated. Trend reports allow the

comparison of two different time periods on the same display. Selecting this box enables

the ″End of first interval″ field for editing.

Resource Allows selections for the WLM resources to be displayed (such as CPU or memory). Refer

to the WLM user’s guide and documentation for information about the resources that can

be managed.

Width of interval

Represents the period of time covered by any display type measuring either from the

latest values available in the recording, or from user-input time selections. Interval widths

are selected from this menu. The available selections vary, depending upon the tool being

used:

wlmmon Multiple selections for minutes and hours

wlmperf Multiple selections for minutes, hours, days, weeks, and months

End of first interval

Represents the end time of a period of interest for generating a trend report. The first

interval always represents a time period ending earlier than the last interval. This field can

only be edited if the Trend Box is selected.

End of last interval

Represents the end time of a period of interest for trend and non-trend reports The last

interval always represents the latest time frame to be used in generating a display report.

There are two exclusive selection options for this field:

Latest Uses the latest time available in the recording as the end time for the

report.

148 Performance Toolbox Guide

Selected Time

Allows the user to input the end time of the last interval.

Tier/Class Menu

The second tabbed pane allows users to define the set of WLM tiers and classes to be included in a

report.

Scope Allows the user to select a tier or class-based scope for the display. This display will vary,

as tier and class concepts vary between the AIX releases (AIX 4.3 classes versus AIX 5.1

superclass and subclass definitions).

Selection Allows selection of including and excluding the WLM tiers or classes available in the

recording.

Advanced Menu

The third tabbed pane of the Report Properties Panel provides advanced options, primarily for the

snapshot display. For snapshots, exclusive methods for coloring the display are provided for user

selection. Option 1 ignores the minimum and maximum settings defined in the configuration of the WLM

environment. Option 2 uses the minimum and maximum settings.

Report Displays

There are three types of report displays:

v Snapshot Display

v Detailed Display

v Tabulation Display

Each of these displays has the following common elements:

WLM Console

Selections for printing or closing the display.

Time Period Displays the time period defined in the Report Properties Panel. For trend reports

comparing two time periods, two time displays are shown.

Tier Column Displays the tier number associated with a class. For AIX 5.1, the column has two entries,

for superclass tier (left) and subclass tier (right).

Class Column

Displays the class name.

Resource Columns

Displays the resource information based off of the type of graphical report selection

chosen. These are described below.

Status Area Displays a set of global system performance metrics that are also recorded to aid in

analysis. The set displayed may vary between AIX releases, but will include metrics such

as run, queue, swap queue, and CPU busy.

Snapshot Display

This display is a quick ″Am I OK?″ overview. The display focuses on showing class resource relationships

based off user-specified variation from the defined target shares. To select or adjust the variation

parameters for this display, use the Report Properties Panel Advanced Menu.

If the snapshot display is trended, the earlier (first) analysis period is shown by an arrow pointing from the

earlier measurement to the later (second) measurement. If there has been no change between the

periods, no arrow is shown.

Chapter 12. Analyzing WLM with wlmperf 149

Detailed Display

In this display, the resource columns are displayed in bar-graph style, along with the percentage of

measured resource activity over the time period specified. The percentage is calculated based off the total

system resources defined by the WLM subsystem. If the detailed display is trended, the later (second)

measurement is shown above the earlier (first) measurement interval.

Tabulation Display

The third type of display report is a tabulation report. In this report, the following fields are provided:

Number Sampled

Number of recorded samples for this period

Share Value Computed share value target by WLM

Mean Value Calculated average over the sample period

Standard Deviation

Computed standard deviation

Defined Min Class minimum defined in WLM limits

Observed Min

Actual observed minimum across time period

Defined Soft Max

Class soft maximum defined in WLM limits

Defined Hard Max

Class hard maximum defined in WLM limits

Observed Max

Actual observed minimum across time period

Daemon Recording and Configuration

The daemons create recordings in the /etc/perf/wlm directory. For the base AIX tool wlmmon, these

recordings are limited to the last 24–hour period.

For the Performance Toolbox tool wlmperf, these recordings are limited to 1 year. For the PTX, the

xmtrend daemon is used, and uses a configuration file for recording preferences. A sample of this

configuration file for WLM— related recordings is located at /usr/lpp/perfagent.server/xmtrend_wlm.cf.

Recording customization, startup, and operation are the same as those described for the xmtrend daemon

in Chapter 14, “Recording Performance Data on Remote and Local Systems,” on page 167.

For the base AIX, the xmwlm daemon is used and cannot be customized.

For recordings to be created, adequate disk allocations must be made for the /etc/perf/wlm directory,

allowing at least 10 MB of disk space. Additionally, the daemon should be started from an /etc/inittab

entry so that recordings can automatically restart after system reboots. The daemon will operate whether

the WLM subsystem is in active, passive, or disabled (off) modes. However, recording activity is limited

when WLM is off.

Files

/usr/bin/wlmmon base AIX

/usr/bin/xmwlm base AIX

/usr/bin/wlmperf Performance Toolbox

150 Performance Toolbox Guide

/usr/lpp/perfagent.server/xmtrend.cf

Performance Toolbox

wlmmon and xmwlm Located in the perfagent.tools fileset.

wlmperf and xmtrend Available only with the Performance Toolbox product media.

Prerequisite

Java™ 1.3

perfagent.tools

Exit Status

A warning message is issued by the tool if no WLM recordings are located.

Related Information

The wlmstat, wlmcntrl, and topas commands.

Chapter 12. Analyzing WLM with wlmperf 151

152 Performance Toolbox Guide

Chapter 13. Monitoring Remote Systems

The Performance Toolbox for AIX Agent component is a collection of programs that make it possible for a

host to act as a provider of performance statistics across a network or locally. The key program is the

daemon xmservd. This chapter and Chapter 14, “Recording Performance Data on Remote and Local

Systems,” on page 167 and Chapter 15, “SNMP Multiplex Interface,” on page 177 describe the features of

xmservd. Chapter 16, “Data Reduction and Alarms with filtd,” on page 183 describes the other important

daemon in the Agent component, filtd. Finally, Chapter 18, “System Performance Measurement Interface

Programming Guide,” on page 201 describes the local API provided with the Agent.

The remainder of this chapter first explains important features of the System Performance Measurement

Interface (SPMI), which is the mechanism that provides statistics to xmservd, and then explains in detail

how monitoring of remote systems is made possible. For that discussion, the term data-supplier host was

adopted to describe a host that supplies statistics to another host across a network, while a host receiving

the statistics over the network, processing, and displaying them is called a data-consumer host.

The System Performance Measurement Interface

Monitoring statistics supplied by xmservd is made possible through an API called System Performance

Measurement Interface (SPMI). Through the SPMI, an application can access statistics available on the

local system. This is done by defining sets of statistics (statsets). Observations are taken for all the

statistics of a statset at the same time. The concept of statsets is key to understanding how statistics are

monitored. It is explained in the section entitled “Statsets.”

The SPMI makes extensive use of shared memory. Similarly, any dynamic data-supplier programs that

extend the set of provided statistics use shared memory to export their data. The xmservd daemon (and

properly written dynamic data-supplier programs) allocates and frees shared memory segments when

starting and terminating. Some important things to know about the use of shared memory are explained in

“Shared Memory Types” on page 154 and subsequent sections.

Statsets

Each system provides a range of statistics, some of which are fixed while others, such as process

statistics come and go over time. Most monitoring tasks involve the monitoring of more than one of the

statistics provided by a system. In the simplest possible way to access the statistics, the requestor would

ask for observations for each statistic and would issue a series of requests to get multiple statistics. This

would create a number of inconveniences:

v The observations would not be taken at the same point in time.

v The overhead involved would be proportional to the number of statistics the requestor wanted.

v There would be no architected way to keep track of delta values for observations, except by the

requesting program itself.

All of these inconveniences are eliminated by the definition of statsets as implemented in the SPMI.

Statsets represent views of the entire data repository of statistics and are implemented as data structures

that are used to keep track of delta values (difference between the latest observation and the previous

one) for statistics. The only way an application program can read observations is by defining a statset and

then requesting a reading for all the statistics in the statset. Because statsets are defined to the SPMI,

which permits access to local statistics, all statistics in a statset must come from the same system.

The concept of statsets applies throughout Performance Toolbox for AIX. The program xmperf uses

statsets to define instruments. There’s always a one-to-one relationship between an xmperf instrument

and a statset. Similarly, every right side column of a 3dmon graph corresponds to a statset.

© Copyright IBM Corp. 1994, 2004 153

Statsets are also closely related to the data packets that carry observations over the network. The

xmservd daemon supplies data across the network in the form of data packets that correspond to

statsets. Each data packet contains a time stamp that shows when a set of observations was taken and

the elapsed time since the previous observation. It then contains two fields for each of the statistics in the

statset. The first gives the delta value. The second contains the actual observation value.

In recording files, value records are used to carry observations. They have the same contents as the data

packets and maintain the concept of statsets. When recordings are played back with xmperf, the statsets

are used to define instruments. When a recording file is analyzed by azizo, statsets are not important but

they are preserved when writing a filtered recording file, if requested.

Shared Memory Types

Two types of shared memory are used by the daemon and dynamic data-supplier programs. The first is

called common shared memory and is memory that all running dynamic data-supplier and local

data-consumer programs (data-consumer programs that do not use the Remote Statistics Interface API)

share with the daemon. The second type is allocated in one copy for each dynamic data-supplier program

and is supposed to be deallocated and removed by that dynamic data-supplier program when the program

exits. This second type of shared memory is called DDS shared memory.

Common Shared Memory

The common shared memory is allocated by the SPMI library on behalf of whichever local data-consumer

or data-supplier program (including xmservd) starts first. Each additional such program detects the

common shared memory and uses the allocated segment. A counter in the common shared memory

segment is incremented by one for each starting data-supplier or local data-consumer program and is

decremented by one whenever one of the running programs terminate. When the counter reaches zero,

the common shared memory segment is released.

Properly written data-supplier and local data-consumer programs issue a subroutine call when they

terminate. This call detaches from the common shared memory segment and decrements the counter. To

be properly written, the programs must detect various signals, which indicate that the program (process) is

about to terminate. When one of the signals is received the program must issue the subroutine call. The

call must also be issued when the program terminates in the usual way.

Most signals can be detected by a program, but some cannot. If one of the undetectable signals causes

the program (process) to terminate, the subroutine call is not issued. As a result, the common shared

memory segment never is released, since the counter never reaches zero. If this happens, you must

release the common shared memory manually, as described in “Releasing Shared Memory Manually” on

page 155.

To avoid the situation, never stop a data-supplier or local data-consumer program with the option -9. That

would end the program with a SIGKILL signal, which is not detectable.

DDS Shared Memory

A dynamic data-supplier program exports its data through a private shared memory area, called the DDS

shared memory area, which is allocated by the SPMI API. If the memory area exists when the dynamic

data-supplier program starts, the program stops. This ensures that the same dynamic data-supplier

program is not running in multiple copies. It also places the responsibility for releasing the DDS shared

memory segment whenever the dynamic data-supplier program stops on the program itself.

Properly designed dynamic data-supplier programs detect signals, which cause the program to stop and

issue a subroutine call to release shared memory. One single subroutine call is used to release DDS

shared memory and disassociate the program from the common shared memory.

154 Performance Toolbox Guide

If a dynamic data-supplier program is stopped in a way that cannot be detected from the program itself,

the DDS shared memory is not released and subsequent attempts to start the dynamic data-supplier

program fail. If this happens, you must release the DDS shared memory manually, as described in section

entitled “Releasing Shared Memory Manually.”

To avoid the situation, never kill a dynamic data-supplier program with the option -9. That would stop the

program with a SIGKILL signal, which is not detectable.

Releasing Shared Memory Manually

In situations where one or more data-supplier or local data-consumer programs have stopped in such a

way that their shared memory allocations have not been released, the shared memory segments should

be released from the command line before attempting to restart the programs. It is recommended that all

data-supplier and local data-consumer programs, including xmservd, are killed before you attempt to

release shared memory. Clearing of all shared memory segments could be done through the following

steps.

1. Identify all data-supplier and local data-consumer programs that are running. Use the ps command

and your knowledge of the programs in use on your system to locate all of them. For each of the

running data-supplier or local data-consumer programs, note their process IDs.

2. Stop all processes associated with data-supplier and local data-consumer programs without using a

command line flag.

3. Verify that all data-supplier and local data-consumer processes have been stopped. If not, use the kill

-9 command to stop them.

4. List the shared memory segments in use with the command ipcs -m. This produces a list like the

following:

IPC status from /dev/mem as of

Fri Dec 31 07:54:44 CST 1993

T ID KEY MODE OWNER GROUP

Shared Memory:

m 0 0x0d050296 --rw------- root system

m 20481 0x5806188b --rw-rw-rw- nchris system

m 28674 0x780502ea --rw-rw-rw- root system

m 12292 0x780502e3 --rw-rw-rw- root system

m 20485 0x780502d1 --rw-rw-rw- root system

5. Identify all shared memory segments with a KEY that begins with “0x78”. All shared memory allocated

by data-supplier and local data-consumer programs has this key. Now use the ipcrm command to

remove the shared memory segments, specifying as command arguments the IDs of the segments you

want to remove. To remove all three data-supplier and local data-consumer segments listed above,

your command would be:

ipcrm -m 28674 -m 12292 -m 20485

6. Restart the dynamic data-supplier and data-consumer programs as required. To start xmservd and

any dynamic data-supplier programs started by it, simply execute the command xmpeek.

The xmservd Command Line

The xmservd daemon is always started from inetd. Therefore, command line options must be specified

on the line defining xmservd to inetd in the file /etc/inetd.conf. The general format of the command line

is:

xmservd [-v] [-b UDP_buffer_size] [-i min_remote_interval] [-l remove_consumer_timeout] [-m

supplier_timeout] [-p trace_level] [-s max_logfile_size] [-t keep_alive_limit] [-x xmservd_execution_priority]

All command line options are optional. The options are:

-v Verbose. Causes parsing information for the xmservd recording configuration file to be written to

the xmservd log file.

Chapter 13. Monitoring Remote Systems 155

-b Defines the size of the buffer used by the daemon to send and receive UDP packets. The buffer

size must be specified in bytes and can be from 4,096 to 16,384 bytes. The buffer size determines

the maximum number of data values that can be sent in one data_feed packet. The default buffer

size is 4096 bytes, which allows for up to 124 data values in one packet.

-i Defines the minimum interval in milliseconds with which data feeds can be sent. Default is 500

milliseconds. A value between 100 and 5,000 milliseconds can be specified. Any value specified is

rounded to a multiple of 100 milliseconds. Whichever minimum remote interval is specified causes

all requests for data feeds to be rounded to a multiple of this value. See further details in

“Rounding of Sampling Interval.”

-l (Lowercase L). Sets the time_to_live after feeding of statistics data has ceased as described in

“Life and Death of xmservd” on page 157. Must be followed by a number of minutes. A value of 0

(zero) minutes causes the daemon to stay alive forever. The default time_to_live is 15 minutes.

 This value is also used to control when to remove inactive data-consumers as described in

“Removing Inactive Data Consumers” on page 158.

-m When a dynamic data-supplier is active, this value sets the number of seconds of inactivity from

the DDS before the SPMI assumes the DDS is dead. When the timeout value is exceeded, the

SiShGoAway flag is set in the shared memory area and the SPMI disconnects from the area. If

this flag is not given, the timeout period is set to 90 seconds.

 The size of the timeout period is kept in the SPMI common shared memory area. The value stored

is the maximum value requested by any data consumer program, including xmservd.

-p Sets the trace level, which determines the types of events written to the log file

/etc/perf/xmservd.log1 or /etc/perf/xmservd.log2. Must be followed by a digit from 0 to 9, with 9

being the most detailed trace level. Default trace level is 0 (zero), which disables tracing and

logging of events but logs error messages.

-s Specifies the approximate maximum size of the log files. At least every time_to_live minutes, it is

checked if the currently active log file is bigger than max_logfile_size. If so, the current log file is

closed and logging continues to the alternate log file, which is first reset to zero length. The two

log files are /etc/perf/xmservd.log1 and /etc/perf/xmservd.log2. Default maximum file size is

100,000 bytes. You cannot make max_logfile_size smaller than 5,000 or larger than 10,000,000

bytes.

-t Sets the keep_alive_limit described in section “Life and Death of xmservd” on page 157. Must be

followed by a number of seconds from 60 to 900 (1 to 15 minutes). Default is 300 seconds (5

minutes).

-x Sets the execution priority of xmservd. Use this option if the default execution priority of xmservd

is unsuitable in your environment. Generally, the daemon should be given as high execution

priority as possible (a smaller number gives a higher execution priority).

Rounding of Sampling Interval

As explained under the -i command line argument, all sampling intervals requested by remote

data-consumer programs are rounded to the effective minimum sampling interval of xmservd. This can

cause unintended rounding of sampling intervals as shown in the rounding of sampling interval by

xmservd. This rounding can be eliminated by always using 100 milliseconds as the minimum sampling

interval. However, if you use 100 milliseconds, and remote data-consumer programs use a wide variety of

sampling intervals, then the overhead of xmservd increases because it has to set its interval timer to do

processing more frequently. Generally, the minimum sampling interval should be set to as large a value as

possible, preferably 1000 milliseconds or more.

The following example illustrates rounding of sampling interval for different minimum sampling intervals

and various requested sampling intervals:

156 Performance Toolbox Guide

minimum remote interval requested interval resulting interval

----------------------- ------------------ ------------------

 200 500 600

 200 3,000 3,000

 200 1,000 1,000

 300 500 600

 300 3,000 3,000

 300 1,000 900

 400 500 400

 400 3,000 3,200

 400 1,000 1,200

 500 500 500

 500 3,000 3,000

 500 1,000 1,000

The xmservd Interface

The xmservd daemon is designed to be started from the inetd “super daemon.” Even when you start the

daemon manually it reschedules itself via inetd and lets the manually started process die. The following

sections describe how xmservd starts, terminates, and keeps track of data-consumer programs.

Life and Death of xmservd

The xmservd daemon must be configured as an inetd daemon to run properly. If you do start the daemon

manually, it attempts to reschedule itself by invoking the program xmpeek and then exit. This causes

xmservd to be rescheduled via inetd. The line defining the daemon in /etc/inetd.conf must specify the

“wait” option to prevent inetd from starting more than one copy of the daemon at a time. The file

/etc/inetd.conf is prepared during the installation of the Agent component.

If you want the daemon to be started automatically as part of the boot process, you can add the following

two lines at the very end of the file /etc/rc.tcpip:

/usr/bin/sleep 10

/usr/bin/xmpeek

The first line is necessary only when you intend to use the xmservd/SMUX interface to export statistics to

the local SNMP agent.

Note: The xmservd/SMUX interface is only available on RS/6000 Agents.

The Chapter 15, “SNMP Multiplex Interface,” on page 177 describes the xmservd/SMUX interface. The line

with the sleep command makes sure the start of the snmpd daemon is completed before xmservd starts.

The second line uses the program xmpeek (described later in this chapter) to kick off the xmservd

daemon.

The xmservd daemon is started by inetd immediately after a UDP datagram is received on its port. Note

that the daemon is not scheduled by a request through the SMUX interface from the local SNMP agent.

This is because the SNMP agent uses a different port number. Unless xmservd ends abnormally or is

killed, it continues to run as long as any data-consumer needs its input or a connection to the SNMP agent

is established and alive. When no data-consumer needs its input and either no connection was established

through the SMUX interface or any such connection is terminated, the daemon hangs around for

time_to_live minutes as specified with the -l (lowercase L) command line argument to xmservd. The

default number of time_to_live minutes is 15.

In some environments, it make take some time for a system’s xmservd daemon to respond to invitations

from remote data-consumers. This can be because the network route is long or the network congested; it

may be because all memory on the system is in use so pages must be paged out before xmservd can be

Chapter 13. Monitoring Remote Systems 157

loaded; it may be because the xmservd executable is loaded off a server, as on diskless systems. In

either case, the data-consumer program may not receive a response from the system in time. Most remote

data-consumer programs in Performance Toolbox for AIX have ways to extend the time they wait for

responses. See the command lines for each data-consumer program for specifics.

Whenever a connection to the SNMP agent through the SMUX interface is active, or whenever xmservd

is configured to record performance data to a file (see Chapter 14, “Recording Performance Data on

Remote and Local Systems,” on page 167) the daemon does not time out and die even when there are no

data-consumers to supply. In these situations, the time_to_live limit is used only to determine when to

look for inactive remote consumers that can be deleted from the tables in xmservd.

Signals Understood by xmservd

Like many other daemons, xmservd interprets the receipt of the signal SIGHUP (kill -1) as a request to

refresh itself. It does this by spawning another copy of itself via inetd and kill itself. When this happens,

the spawned copy of xmservd is initially unaware of any data consumers that may have been using the

copy of xmservd that received the signal. Consequently, all data-consumer programs must request a

resynchronizing with the spawned daemon to continue their monitoring.

The other signal recognized by xmservd is SIGINT (kill -2) that causes the daemon to dump any MIB data

it has to a file as described in the section Interaction Between xmserv and SNMP (“Interaction Between

xmservd and SNMP” on page 178).

Removing Inactive Data Consumers

When a data-consumer program such as xmperf uses broadcasts to contact data-supplier hosts, most

likely the monitor defines instruments (each of which causes xmservd to create a statset) with only a few

of the daemons that respond. Consequently, most daemons have been contacted by many data

consumers but supply statistics to only a few. This causes the host tables in the daemon to swell and, in

the case of large installations, can induce unnecessary load on the daemon. To cope with this, the

daemon attempts to get rid of data consumers that appear not to be interested in its service.

The time_to_live parameter is used to check for inactive partners. A data consumer is removed from the

daemon’s tables if either of the following conditions is true:

1. No packet was received from the data consumer for twice the time_to_live period and no statsets

were defined for the data consumer.

2. No packet was received from the data consumer for eight times the time_to_live period and none of

the defined statsets are feeding data to the data consumer.

A data consumer that is subscribing to except_rec messages is treated as if it had a statset defined with

the daemon.

Checking that Data Consumers are Alive

When xmservd is running and supplying input to one or more data consumers, it must make sure that the

data consumers are still alive and needing its input. If not, it would be a waste of system resources to

continue sending statistics across the network. The daemon uses a keep_alive_limit to determine when

it’s time to check that data-consumer hosts are still alive. The alive limit is reset whenever the user makes

changes to the remote monitoring configuration from the data-consumer host, but not when data is fed to

the data consumer.

When the keep_alive_limit is reached, xmservd sends a message of type still_alive to the data

consumer. The data-consumer program has keep_alive_limit seconds to respond. If a response is not

received after keep_alive_limit seconds, the daemon sends another still_alive message and waits

another keep_alive_limit seconds. If there’s still no response, the daemon assumes the data consumer to

be dead or no longer interested and stops sending statistics to it. The default keep_alive_limit is 300

seconds (five minutes); it can be set with the -t command line argument to xmservd.

158 Performance Toolbox Guide

Handling Exceptions

Through the program filtd described in Data Reductions and Alarms with filtd (Chapter 16, “Data

Reduction and Alarms with filtd,” on page 183), you can define exception conditions that can cause one or

more actions to be taken. One such action is the execution of a command on the host where the daemon

runs; another is the sending of an exception message. The message type except_rec is used for the

latter.

The contents of each exception message is:

1. The host name of the host sending the exception message.

2. The time when the exception was detected.

3. The severity of the exception, a number between 0 and 10.

4. The minimum number of minutes between two exception messages from a given exception definition.

5. A symbolic name describing the exception.

6. A more verbose description of the exception.

The xmservd daemon sends exceptions to all hosts it knows that have declared that they want to receive

exception messages. The RSiOpen and RSiInvite subroutine calls of the API are used by the

data-consumer application to declare whether it wants to receive exception messages.

The program exmon is especially designed to monitor exception messages. It allows its user to specify

which hosts to monitor for exceptions and displays a window with a matrix that shows which hosts

generated exceptions, what types were generated, and how many of each type. This program is described

in Chapter 8, “Monitoring Exceptions with exmon,” on page 85.

Currently, xmperf does not request exception messages unless you set the X resource GetExceptions to

true or use the -x command line argument. If you have requested exceptions this way and one is received

by xmperf, it is sent to the xmperf main window where it appears as a text message. No other action is

taken by xmperf.

Session Recovery by xmservd

If the xmservd daemon dies or is killed while one or more data consumers have statsets defined with it,

the daemon attempts to record the connections in the file /etc/perf/xmservd.state. If this file exists when

xmservd later is restarted, a message of type i_am_back is sent to each of the data-consumer hosts

recorded in the file. The file is then erased.

If the programs acting as data consumers are capable of doing a resynchronizing, the interrupted

monitoring can resume swiftly and without requiring manual intervention. The xmperf and 3dmon

programs can and do resynchronize all active monitors for a host whenever an i_am_back message is

received from that host.

The xmquery Network Protocol

Several types of messages (packets) that flow between data-supplier hosts and data-consumer hosts were

previously mentioned. Message types are organized in four groups as follows:

Configuration Messages

 create_stat_set Type = 01

 del_set_stat Type = 02

 first_cx Type = 03

 first_stat Type = 04

 instantiate Type = 05

 next_cx Type = 06

 next_stat Type = 07

 path_add_set_stat Type = 08

 path_get_cx Type = 09

 path_get_stat Type = 10

Chapter 13. Monitoring Remote Systems 159

stat_get_path Type = 11

Data Feed and Feed Control Messages

 begin_feeding Type = 31

 change_feeding Type = 32

 end_feeding Type = 33

 data_feed Type = 34

 going_down Type = 35

Session Control Messages

 are_you_there Type = 51

 still_alive Type = 52

 i_am_back Type = 53

 except_rec Type = 54

Status Messages

 send_status Type = 81

 host_status Type = 82

Configuration Messages

All the configuration messages are specific to the negotiation between the data consumer and the data

supplier about what statistics should be sent by the data supplier. Note that all such messages require a

response, and that they all are initiated by the data consumer.

Data Feed and Data Feed Control Messages

When the negotiation of what data to supply is completed, the data-supplier host’s xmservd maintains a

set of information about the statistics to supply. A separate set is kept for each data-consumer program.

No feeding of data is started until a begin_feeding message is received from the data-consumer program.

The begin_feeding message includes information about the frequency of data feeds and causes xmservd

to start feeding data at that frequency, using data_feed packets.

Data feed to a data consumer continues until that data consumer sends an end_feeding message or until

the data consumer does no longer respond to still_alive messages. At that time data feeding stops.

The frequency of data feeds can be changed by the data-consumer program by sending the

change_feeding message. This message is sent whenever the user changes the interval property of an

xmperf instrument.

The final message type in this group is going_down. This message is sent by xmperf and the other

remote data-consumer programs in Performance Toolbox for AIX whenever they terminate orderly and

whenever any other program written to the RSi API (see Chapter 19, “Remote Statistics Interface

Programming Guide,” on page 245) issues the RSiClose call. The message is sent to all data-supplier

hosts that the data-consumer program knows about (or the host RSiClose is issued against) and causes

the daemons on the data-supplier hosts to erase all information about the terminating data-consumer

program.

Session Control Messages

Two of the session control message types have already been mentioned in previous sections. To

recapture, are_you_there is sent from a data consumer to provoke potential data-supplier hosts to identify

themselves. The still_alive message is the only message type that is initiated by xmservd without input

from a data consumer. It prompts remote monitors to respond and thus prove that they are still alive.

The third session control message is the i_am_back message, which is always the response to the first

message xmservd receives from a data consumer.

160 Performance Toolbox Guide

Resynchronizing in xmperf

When an i_am_back message is received by a data-consumer host’s xmperf program, it responds by

marking the configuration tables for the data-supplier host as void. This is because the data-supplier host’s

xmservd daemon has obviously restarted, which means that earlier negotiations about statsets are now

invalidated.

If an i_am_back message is received from a remote supplier while an instrument for that supplier is

active, a renegotiation for that instrument is started immediately. If other remote instruments for the

supplier are defined to the data-consumer host, renegotiation for those instruments is delayed until the

time each instrument is activated.

Renegotiation is not started unless xmperf on the data-consumer host takes action. It is quite possible

that a data-supplier host is rebooted and its xmservd daemon therefore goes quietly away. The data

consumer no longer receives data, and the remote instruments stop playing. Currently, no facility detects

this situation but a menu option allows the user to resynchronize with a data supplier. When this option is

chosen, an are_you_there message is sent from the xmperf. If the data-supplier daemon is running or

can be started, it responds with an i_am_back message and renegotiation starts.

Status Messages and the xmpeek Program

If a large number of data-consumer programs each is monitoring several statistics from one single

data-supplier host, the sheer number of requests that must be processed can result in more load on the

data-supplier host than is feasible.

Two features allow you to control the daemon on any host you are responsible for. The first one is a

facility to display the status of a daemon, as described in this section. The other is the ability to control the

access to the xmservd daemon as described in “Limiting Access to Data Suppliers” on page 164.

Because the xmservd daemon runs in the background and may start and stop as required, special action

is needed to determine the status of the daemon. Such action is implemented through the two message

types send_status and host_status. The first can be sent to any xmservd daemon, which then responds

by returning the message with total counts for the daemon’s activity, followed by a message of type

host_status for each data consumer it knows.

A program called xmpeek is supplied as part of the Performance Toolbox for AIX. This program allows you

to ask any host about the status of its xmservd daemon. The command line is simple:

xmpeek [-a|-l] [hostname]

Both flags are optional. The -l flag (lowercase L) is explained in “Using the xmpeek Program to Print

Available Statistics” on page 163. If the flag -a is specified, one line is listed for each data consumer

known by the daemon. If omitted, only data consumers that currently have instruments (statsets) defined

with the daemon are listed.

If a host name is specified, the daemon on the named host is asked. If no host name is specified, the

daemon on the local host is asked. The following is an example of the output from the xmpeek program:

Statistics for xmservd daemon on *** birte ***

Instruments currently defined: 1

Instruments currently active: 1

Remote monitors currently known: 2

--Instruments--- Values Packets

Defined Active Active Sent

Internet Address Port Hostname

------- ------- ------- ------- ---------------- ---- --------

1 1 16 3,344 129.49.115.208 3885 xtra

Output from xmpeek can take two forms.

Chapter 13. Monitoring Remote Systems 161

The first form is a line that informs you that the xmservd daemon is not feeding any data-consumer

programs. This form is used if no statsets are defined with the daemon and no command flags are

supplied.

The second form includes at least as much as is shown in the Sample Output from xmpeek (“Status

Messages and the xmpeek Program” on page 161), except that the single detail line for the data consumer

on host xtra only is shown if either the -a flag is used or if the data consumer has at least one instrument

(statset) defined with the daemon. Note that xmpeek itself appears as a data consumer because it uses

the RSi API to contact the daemon. Therefore, the output always shows at least one known monitor.

In the fixed output, first the name of the host where the daemon is running is shown. Then follows three

lines giving the totals for current status of the daemon. In the above example, you can see that only one

instrument is defined and that it’s active. You can also see that two data consumers are known by the

daemon, but that only one of them has an instrument defined with the daemon in birte. Obviously, this

output was produced without the -a flag.

An example of more activity is shown in the following example output from xmpeek. The output is

produced with the command:

xmpeek -a birte

Note: Some detail lines show zero instruments defined. Such lines indicate that an are_you_there

message was received from the data consumer but that no states were ever defined or that any

previously defined states were erased.
Statistics for smeared daemon on *** birte ***

 Instruments currently defined: 16

 Instruments currently active: 14

 Remote monitors currently known: 6

--Instruments--- Values Packets Internet Protocol

 Defined Active Active Sent Address Port Hostname

 ------- ------ ------ ------ ---------------- ---- --------

 8 8 35 10,232 129.49.115.203 4184 birte

 6 4 28 8,322 129.49.246.14 3211 umbra

 0 0 0 0 129.49.115.208 3861 xtra

 1 1 16 3,332 129.49.246.14 3219 umbra

 0 0 0 0 129.49.115.203 4209 birte

 1 1 16 422 129.49.115.208 3874 xtra

------- ------- ------- ------

 16 14 95 22,308

Notice that the same host name may appear more than once. This is because every running copy of

xmperf and every other active data-consumer program is counted and treated as a separate data

consumer, each identified by the port number used for UDP packets as shown in the xmpeek output.

The second detail line in the Sample Output from xmpeek (“Status Messages and the xmpeek Program”

on page 161) shows that one particular monitor on host umbra has six instruments defined but only four

active. This would happen if a remote xmperf console has been opened but is now closed. When you

close an xmperf console, it stays in the Monitor menu of the xmperf main window and the definition of the

instruments of that console remains in the tables of the data-supplier daemon but the instruments are not

active.

Instrument Status in xmperf

If the data-consumer program is xmperf, there are only three ways an instrument can be erased from the

tables in the xmservd daemon after it is defined. They are:

1. You can erase an instrument in a remote console or in an instantiated remote skeleton console.

2. You can erase a remote console or an instantiated remote skeleton console.

3. The daemon takes the initiative to erase its information about an instrument after it has detected that

the data consumer, which defined the instrument is no longer active.

162 Performance Toolbox Guide

In most cases, the latter situation occurs because the data consumer has been killed (as opposed to

closed down orderly). As the daemon detects that the instruments of the data-consumer hosts are no

longer active, it deletes them one at a time. When the last instrument of a data consumer is deleted from

the tables in xmservd, all information about the remote monitor is deleted too, and the monitor no longer

shows up in the output from xmpeek.

Using the xmpeek Program to Print Available Statistics

If the xmpeek program is invoked with the -l flag (lowercase L) it lists all the available statistics of the

remote host given on the command line, or the local host if no host name is given. The list of statistics is

sent to standard output, which permits you to redirect it to a file or pipe it into another command. The

following figure shows a partial listing of statistics on an HP 9000/7255:

/hp2/CPU/ Central processor statistics

/hp2/CPU/gluser System-wide time executing in user mode (percent)

/hp2/CPU/glkern System-wide time executing in kernel mode (percent)

/hp2/CPU/glwait System-wide time waiting for IO (percent)

/hp2/CPU/glidle System-wide time CPU is idle (percent)

/hp2/CPU/glnice System-wide time CPU is running w/nice priority (%)

 . . .

/hp2/CPU/cpu0/ Statistics for processor #0

/hp2/CPU/cpu0/user Time executing in user mode (percent)

/hp2/CPU/cpu0/kern Time executing in kernel mode (percent)

/hp2/CPU/cpu0/wait Time waiting for IO (percent)

/hp2/CPU/cpu0/idle Time CPU is idle (percent)

/hp2/CPU/cpu0/nice Time CPU is running code with nice priority

 . . .

/hp2/Mem/ Memory Statistics

/hp2/Mem/Real/ Physical memory statistics

/hp2/Mem/Real/size Size of physical memory (4K pages)

/hp2/Mem/Real/numfrb Number of pages on free list

/hp2/Mem/Real/%free % memory which is free

/hp2/Mem/Real/totreal Total real memory (Kbytes?’

/hp2/Mem/Real/actreal Active real memory (Kbytes?’

/hp2/Mem/Virt/ Virtual memory management statistics

/hp2/Mem/Virt/pagein 4K pages read by VMM

/hp2/Mem/Virt/pageout 4K pages written by VMM

/hp2/Mem/Virt/zerofill Page faults satisfied by zero-filling memory frames

/hp2/Mem/Virt/pagexct Total page faults

 . . .

When a host’s statistics include contexts that may exist in multiple instantiations and such instantiations

are volatile, the list does not break all such contexts down in their components. Rather, only the first

instance of the context is broken down and all further instances are listed with five dots appended to the

statistics path name. The following example shows this. The process identified by 514~wait (actually a

pseudo process) is fully broken down. All other processes are merely listed with their identifier since they

would all break down to the same base statistics as the wait process.

/birte/Proc/ Process statistics

/birte/Proc/pswitch Process context switches

/birte/Proc/runque Average count of processes waiting for the CPU

/birte/Proc/runocc Number of samplings of runque

/birte/Proc/swpque Average count of processes waiting to be paged in

/birte/Proc/swpocc Number of samplings of swpque

/birte/Proc/ksched Number of kernel process creations

/birte/Proc/kexit Number of kernel process exits

/birte/Proc/514~wait/ Process wait (514) %cpu 54.6, PgSp: 0.0mb, uid:

/birte/Proc/514~wait/pri Process priority

/birte/Proc/514~wait/wtype Process wait status

/birte/Proc/514~wait/majflt Process page faults involving IO

Chapter 13. Monitoring Remote Systems 163

/birte/Proc/514~wait/minflt Process page faults not involving IO

/birte/Proc/514~wait/cpums CPU time in milliseconds in interval

/birte/Proc/514~wait/cpuacc CPU time in milliseconds in life of process

/birte/Proc/514~wait/cpupct CPU time in percent in interval

/birte/Proc/514~wait/usercpu Process CPU use in user mode (percent)

/birte/Proc/514~wait/kerncpu Process CPU use in kernel mode (percent)

/birte/Proc/514~wait/workmem Physical memory used by process private data (4K)

/birte/Proc/514~wait/codemem Physical memory used by process code (4K pages)

/birte/Proc/514~wait/pagsp Page space used by process private data (4K page

/birte/Proc/514~wait/nsignals Signals received by process

/birte/Proc/514~wait/nvcsw Voluntary context switches by process

/birte/Proc/514~wait/tsize Code size (bytes)

/birte/Proc/514~wait/maxrss Maximum code+data resident set size (4K pages)

/birte/Proc/12002~x/.....

/birte/Proc/13207~xlock/.....

/birte/Proc/771~netw/.....

/birte/Proc/1~init/.....

/birte/Proc/5723~trapgend/.....

/birte/Proc/0~/.....

/birte/Proc/15339~aixterm/.....

/birte/Proc/2823~syncd/.....

/birte/Proc/13047~xmservd/.....

/birte/Proc/15593~aixterm/.....

 . . .

Protocol Version Control

Because the Performance Toolbox for AIX can be expanded in the future, it is likely that changes to

messages or network protocol will be introduced. For this reason, the message types are_you_there,

i_am_back, and send_status carry information about the xmquery protocol level they are using.

In case of a difference in protocol version, data-consumer programs do not attempt to negotiate with the

data-supplier host. This does not prevent the data supplier from negotiating with, and supplying data to,

other remote monitors at the same protocol level as itself.

Limiting Access to Data Suppliers

Access to the xmservd daemon can be limited by supplying stanzas in the configuration file

/etc/perf/xmservd.res (or /usr/lpp/perfagent/xmservd.res if the file /usr/lpp/perfagent/xmservd.res

/etc/perf/xmservd.res does not exist). The three stanzas follow. Note that the colon is part of the stanza.

The stanza must begin in column one of a line. There may be more than one line for each stanza type,

but in the case of the max: stanza, the last instance overrides any earlier.

only: When this stanza type is used, access to the daemon is restricted to hosts that are named after

the stanza. Hostnames are specified separated by blanks, tabs or commas. Access from any host

that is not specified in an only: line is rejected at the time an are_you_there message is received.

 Be sure you understand this: If one or more only: lines are specified, only hosts specified in such lines get

through to the data retrieval functions of the daemon.

always:

When this stanza type is used, access to the daemon is always granted to hosts that are named

after the stanza. Hostnames are specified separated by blanks, tabs or commas. The idea is to

make sure that persons who need to do remote monitoring from their hosts can indeed get

through, even if the number of active data consumers exceeds the limit established.

 However, if an only: stanza is also specified, but the host is not named in such stanza line, access is

denied even before the always: stanza can be checked. Consequently, if you use the always: stanza, you

must either refrain from using the only: stanza or make sure that all hosts named in the always: lines are

also named in the only: lines.

164 Performance Toolbox Guide

max: This stanza must be followed by the number of simultaneous data consumers that are allowed to

define statsets with the daemon at any one time. Any data consumers running from hosts named

in always: lines are not counted when it is checked if the maximum is exceeded.

 Access is denied at the time a statset is defined, which usually is when a remote console is opened from

the data-consumer host.

If no max: line is found, the maximum number of data consumers defaults to 16.

The following shows a sample xmservd configuration file. Two only: lines define a total of nine hosts that

can access the xmservd daemon. No other host is allowed to request statistics from the daemon on the

host with this configuration file.

Two always: lines name two hosts from where remote monitoring should always be allowed. Finally, a

maximum of three data consumers at a time are permitted to have statsets defined. Note that each copy

of xmperf and the other remote data-consumer programs of Performance Toolbox for AIX count as one

data consumer, no matter on which host they run.

only: srv1 srv2 birte snavs xtra jones chris

only: savanna rhumba

always: birte

always: chris

max: 3

Starting Dynamic Data-Supplier Programs

The xmservd daemon supplies statistics to data consumers. Such statistics may be maintained and

updated internally by xmservd itself through the SPMI API or may be marketed by xmservd to data

consumers on behalf of other manufacturers of statistics. Programs that provide xmservd with statistics in

this way are called dynamic data-supplier (DDS) programs. They are written to the application

programming interface of the System Performance Measurement Interface (see the System Performance

Measurement Interface API (Chapter 18, “System Performance Measurement Interface Programming

Guide,” on page 201)).

Before a DDS can start supplying statistics to xmservd, the DDS must register with xmservd. Before it

can do this, it must be started. DDS programs can be started manually or by any other process when their

presence is required, but some dynamic data suppliers may always be required to start when xmservd

starts. To facilitate this, the xmservd configuration file in /etc/perf/xmservd.res (If the file

/etc/perf/xmservd.res does not exist, the file /usr/lpp/perfagent/xmservd.res is used.) has a special type

of stanza to identify DDS programs that must be started by xmservd whenever xmservd starts. The

stanza can occur as many times as you have DDS programs to start, each line describing one DDS

program. The stanza is:

supplier:

The stanza must be followed by at least one byte of white space and the full path name of the

executable dynamic data-supplier program as shown in the following example:

supplier: /usr/samples/perfagent/server/SpmiSupl

supplier: /u/jensen/mysuppl -x -k 100

supplier: /usr/bin/filtd -p5

 The example contains three stanzas as follows:

v One of the sample programs described in the System Performance Measurement Interface API

(Chapter 18, “System Performance Measurement Interface Programming Guide,” on page 201).

v A DDS program called mysuppl which you may eventually write.

v The data reduction and alarm daemon filtd as described in the Chapter 16, “Data Reduction and Alarms

with filtd,” on page 183 chapter.

Chapter 13. Monitoring Remote Systems 165

Your mysuppl program, apparently, takes command line arguments as does the filtd daemon. The

example also shows how these command line arguments can be put into the file.

supplier: /usr/samples/perfagent/server/SpmiSupl

supplier: /u/jensen/mysuppl -x -k 100

supplier: /usr/bin/filtd -p5

Adjusting Socket Buffer Pool

If you use the Performance Toolbox for AIX in a network where a large number of hosts are running the

xmservd daemon, you may have to increase the maximum size of the socket buffer pool on data

consumer hosts to reduce the probability of UDP packets being dropped.

If you notice that xmperf does not see all the hosts that run xmservd, chances are that UDP drops

packets. Use the no command to increase the socket buffer pool from four to eight times the default. For

example: no -o sb_max=262144

In AIX 3.2, if packets still seem to be dropped, use the netstat -m command to display the “requests for

memory denied.” If this number grows as you refresh the host list, use the no command to increase the

“lowclust” option like this:

no -o lowclust=50

To make sure the values are increased each time your host boots, add the previous commands to the file

/etc/rc.tcpip.

166 Performance Toolbox Guide

Chapter 14. Recording Performance Data on Remote and

Local Systems

This chapter provides information about recording performance data on remote and local systems.

Recording on Remote and Local Systems Overview

Monitoring of performance data through the network is important and extremely useful if you know when

and what to monitor. Unfortunately, that is not usually the case. Often performance problems arise and

impact end users while the system administrator is unaware these problems until it is too late to start a

monitoring session.

The xmtrend daemon and the xmservd daemon can be used to record system performance data,

xmtrend and xmservd. Both daemons permit any system with the Agent component installed to record

the activity on the system at all or selected times and for any set of performance statistics. This allows a

system administrator to use the activity recording for an after-the-fact analysis of the performance

problems. Both daemons are controlled through recording configuration files.

The two recording daemons are provided to address different recording and analysis philosophies. The

xmservd agent is an existing daemon that can simultaneously provide near real-time network-based data

monitoring and local recording on a given node. It focuses on high access rates for local and remote

consumers like xmperf and 3dmon. Local recordings created by xmservd are also typically high-rate on a

limited set of metrics. This capability, however, is not optimized for long-term recordings. Typical xmservd

recordings can consume several megabytes of disk storage every hour.

For this reason, the xmtrend agent was created to focus on providing manageable 24 x 7 long-term

recordings of large metric sets. This daemon operates independently of xmservd. These recordings are

used by jazizo, jtopas and other analysis tools supporting the trend recording format. The user specifies

in a configuration file which statistics are to be recorded. The daemon then automatically computes and

records the Maximum, Minimum, Mean, and Standard Deviation for each listed metric, across a frequency

specified by the user. Like xmservd, the xmtrend agent uses the Spmi interface to request data at an

internal cycle rate of at least once per second. For xmtrend, this cycle rate is independent of the

recording frequency specified by the user, which by default is once per 10 minutes.

Whenever xmservd is configured to record the activity of the system where it is running, the daemon is

prevented from dying as described in “Life and Death of xmservd” on page 157. The daemon considers

itself to be configured for local recording only if a recording configuration file is present.

All recording files created by xmservd or xmtrend are placed in the /etc/perf directory unless otherwise

specified. Recording file names are of the format azizo.yymmdd for xmservd and xmtrend.yymmdd for

xmtrend where the part after the period is built from the day the first record was written to the file. A

recording for February 26, 1994 would thus be called /etc/perf/azizo.940226. The recording activity for

any one day always goes to the same file, even when xmservd or xmtrend is stopped and started over

the same day. If a recording file for the day exists when xmservd or xmtrend starts, it appends additional

activity to that file; otherwise it creates the file. For further details about how xmservd or xmtrend uses

recording files, see the “Retain Line” on page 168 section.

For top recordings supporting the jtopas client, a special configuration file is used, along with the -T

command line option. Top recordings are created in the /etc/perf/Top directory, and only recordings in that

directory are recognized by the jtopas client. Recordings are made in the following format:

jtopas.YYMMDD

© Copyright IBM Corp. 1994, 2004 167

Recordings produced by either daemon have one or more sets of statistics. One is created for each

recording interval defined in the recording configuration file. Each statset is assigned a number equal to

the recording interval divided by the minimum sampling interval of the daemon.

Recording Configuration File

The recording configuration file must be supplied by the system administrator who configures a host. No

recording configuration file is supplied as part of the Performance Toolbox for AIX. The file is in ASCII

format. When xmservd starts, it first tries to locate the recording configuration file as /etc/perf/
xmservd.cf. If this file doesn’t exist, xmservd looks for the recording configuration file as

/usr/lpp/perfagent/xmservd.cf. If either file exists, xmservd considers itself configured for recording and

parses the recording configuration file for instructions about when and what to record. The xmtrend agent

works in a similar manner with a few exceptions.

The xmtrend agent looks for the /etc/perf/xmtrend.cf configuration file. If not found, the program exits. A

sample configuration file is provided at /usr/lpp/perfagent/xmtrend.cf. The xmtrend agent does have

some command line arguments to allow the user to specify where xmtrend should look for the

configuration file, this is described later.

The recording configuration file must contain the following lines:

v One retain line

v One frequency line

v One or more metric lines

v One or more start-stop lines

The recording configuration file may also contain the following:

v One or more command lines

v One or more hot lines

Configuration File Lines

The following sections describe the lines in the recording configuration file. They must be displayed in the

sequence shown, and the keywords or metric names must begin in column one of each line. White space

must separate individual entries on the lines. In addition to the required line types, the recording

configuration file may contain blank lines and comment lines that begin with the # (number sign) character.

An xmscheck program, to parse and analyze a recording configuration file, is supplied as part of the

Agent component. This program allows you to check the validity of a recording configuration file before it is

moved to the /etc/perf directory. The program is described in “The xmscheck Preparser” on page 174. To

check for errors, run the xmscheck command after creating or editing the recording configuration file. If a

metric is not valid on the local system, xmservd or xmtrend will terminate processing the recording file.

Retain Line

The retain line specifies how long time-recording files must be retained. It also defines how many days

each recording file covers. The format of the retain line is as follows:

 retain days_to_keep [days_per_file]

retain Identifies the line.

days_to_keep Must be a number greater than one. It specifies the minimum number of days a recording

file must be kept before xmservd or xmtrend deletes it.

days_per_file Optional. If specified, gives the number of days a recording file shall contain. This number

must be less than or equal to days_to_keep. If not specified, this value defaults to the

value specified for days_to_keep.

168 Performance Toolbox Guide

The days_to_keep or days_per_file, or both, can also be specified by an m for months. Because the

number of days varies from month to month, a user that wanted a recording file per month could specify

this by using the m character.

Examples:

v To specify a recording file per week and to remove any recording file that is 12 weeks old, use the

following:

retain 84 7

v To specify a recording file per month and to remove any recording file that is 1 year 1 day old, use the

following:

retain 366 m

v To specify a recording file per every 3 months and to remove any recording file that is 13 months old,

use the following:

retain m3 m13

Whenever xmservd or xmtrend is started and running and midnight is passed, they check to see if any of

the recording files in the /etc/perf directory are old enough to be deleted. This is done by calculating a

factor, rf as the integer value:

rf = (days_to_keep + days_per_file - 1) / days_per_file

If the number d1 is the day number corresponding to the yymmdd part of the recording file name, and the

current day number is d2, then the recording file is retained when the following expression is true;

otherwise it is erased:

d2 - d1 rf x days_per_file

If days_per_file is greater than one, xmservd or xmtrend looks for a file with a name that indicates it is

less than days_per_file old. If such a file exists, recording continues to that file. If not, a new file with a

name generated from today’s date is created.

When an existing recording file is opened by xmservd or xmtrend, it checks the first (configuration)

record in the file. This record contains the time and date of the last modification to the recording

configuration file (as of the time the recording file was created). If the recording configuration file has been

modified since that time, xmservd or xmtrend begins the recording by appending a full set of control

records to the file and adding the @ character to the end of the file name. Most programs that process

such a file only process the part of the file up to the second set of control records.

v To rearrange the records in the file, use the ptxmerge program described in “The ptxmerge Merge

Program” on page 96, (xmservd only).

v To split the file into multiple parts, use the ptxsplit program with the command line flag -b. The ptxsplit

program is described in “The ptxsplit Split Program” on page 98 (xmservd only).

Frequency Line

The frequency line sets the default sampling interval for metrics. This interval is used for all metrics that do

not have a different sampling interval specified on their metric lines.

The format of the frequency line is as follows:

frequency interval

frequency Identifies the line.

interval Specifies the sampling interval in milliseconds for xmservd and in minutes for xmtrend.

The value specified is rounded to the nearest multiple of the min_remote_interval value as

specified with the -i command line argument to xmservd or its default value. The default

recording interval for xmtrend is once per 10 minutes.

Chapter 14. Recording Performance Data on Remote and Local Systems 169

Recordings contain one set of statistics for each sampling interval you specify with this line type and on

metric lines. It is recommended that no set of statistics ever has more than 256 metrics.

Start-Stop Lines

The start-stop lines specify when recordings shall start and stop. Multiple lines may be used. The format of

a start-stop line is as follows:

start dd hh mm dd hh mm

The first set of dd hh mm values specifies the time to start recording; the second set specifies the time to

stop recording.

start Identifies the line.

dd Specifies the number indicating the day of the week when you want a recording to start and stop.

Sunday is day number 0, Saturday is day number 6. Can be specified as a single day number, as

a range such as 1-5 (Monday through Friday), or as a series of day numbers separated by

commas such as 1,3,5 (Monday, Wednesday, and Friday).

hh Specifies the hour on a 24-hour clock (midnight is 00) when you want a recording to start and

stop. Can be specified as a single hour, as a range of hours such as 07-19 (7 a.m. through 7

p.m.), or as a series of hours separated by commas such as 9,12,15 (9 a.m., 12 noon, 3 p.m.).

mm Specifies the minute when you want a recording to start and stop. Can be specified as a single

minute value or as a series of minute values separated by commas such as 0,30 (every 30

minutes).

Exercise care when matching start and stop times -- especially when using multiple start-stop lines. It can

be difficult to do this without plotting the recording intervals on a time scale. Therefore, the xmscheck

program is available to preparse a recording configuration file and help you evaluate the resulting

recording intervals.

The following examples help you understand how recording intervals are defined.

Examples:

v First, consider the following start-stop line, which causes recording to take place for 10 minutes every

half hour between 9 a.m. and 6 p.m. on all weekdays. Notice that the last time recording starts every

day is at 17:30 (5:30 p.m.):

start 1-5 9-17 0,30 1-5 9-17 10,40

v If another start-stop line was added, that line would augment the first one. This is done by laying the

intervals out on a time scale where all start and stop points are marked. The time scale is then

processed from the beginning, creating a final set of start and stop marks by eliminating all stop marks

that fall at the same minute as a start mark. Assume you supply the following two start-stop lines:

start 1-5 9-17 0,30 1-5 9-17 10,40

start 5 18-19 0,30 5 18-19 10,40

v This would cause recording to take place for 10 minutes every half hour between 9 a.m. and 6 p.m. on

the first four weekdays and between 9 a.m. and 8 p.m. on Fridays. The same could have been specified

with the following:

start 1-4 9-17 0,30 1-4 9-17 10,40

start 5 9-19 0,30 5 9-19 10,40

v The time scale created by xmservd or xmtrend does not wrap to the next week. Therefore, if you want

recording from 11.30 p.m. to 12.30 a.m. every night of the week, you need the following two lines:

start 0-6 23 30 1-6 00

30 start 0 0 0 0 0 30

v For continuous recording at all times, specify the following:

start 0 0 0 0 0 0

170 Performance Toolbox Guide

Command Lines (xmservd Daemon Only)

Command lines allow the xmservd recording facility to execute commands or scripts when an old

recording file is deleted. These commands or scripts are specified in the recording configuration file with

the following format:

command /bin/ptxmerge /var/perf/temp %s /var/perf/year_to_date

command /bin/mv -f /var/perf/temp /var/perf/year_to_data

The %s in the line refers to the file to delete. The first line uses the ptxmerge program to merge the

recording file, which is about to be deleted with the year_to_date file of accumulated recording files, and

place the output from the merge to a temporary file. The last line moves the temporary file over to the

previous year_to_date file. Note that this series of commands is not safe; it is meant only to illustrate the

facility. To perform the previous task, use a script that ensures there is adequate disk space so that you do

not lose data.

Metric Lines

One metric line must be supplied for each metric you want recorded or a wildcard can be used to specify

a group of metrics. For more information on wildcards, see the chapter on Using Wildcards in the

Configuration File. The metric lines have the following format:

metric_name [interval]

metric_name Must be the full path name of a statistic. Because xmservd or xmtrend can only access

local statistics, the path name must not include the hosts part of the path name. The path

name does not begin with a / (slash).

 Process contexts have a name consisting of the process ID, a ~ (tilde), and the name of

the executing program. To reach a statistic for a specific process, you can specify the

process context name as either the process ID followed by the tilde, or the name of the

executing program. The following example shows how to specify a statistic for the wait

pseudo process, which, on AIX Version 3.2, always has a process ID of 514. Both lines

point to the same statistic.

Proc/514~/usercpu

Proc/wait/usercpu

If you specify a name of a program currently executing in more than one process, only the

first one encountered is used. Generally, recording of process statistics from xmservd or

xmtrend is discouraged except for processes that are expected to never die. If a process

dies, it is deleted from the statset and is not added back, should the process be restarted

later.

interval Optional. If specified, defines the sampling interval in milliseconds to use for recording this

metric. If omitted, the metric is recorded with the sampling interval specified on the

frequency line.

Use the xmpeek command to determine which local metrics can be recorded.

Using Wildcards in the Configuration File (xmtrend and xmservd Recording)

With wildcards, users can specify groups of metrics without having to specify each metric individually. In

the following example, individual processes without using wildcards would be listed as:

Proc/2156~X/cpupct

Proc/3216~X/cpupct

To use wildcards in xmtrend and xmservd the following specifies all processes:

Proc/*/cpupct

Or, the following form specifies all process names starting with ora:

Proc/ora*/cpupct

Chapter 14. Recording Performance Data on Remote and Local Systems 171

The number of processes is limited by the total number of statistics limit within xmtrend, which is 256.

When xmtrend reads and resolves the configuration file, no new processes are evaluated and added to

the trend list.

Similarly, using wildcards can be applied to any parent context with multiple instances, such as the

following example:

CPU/[cpuid], PagSp/[disk], Disk[diskid], LAN/[adapterid], [volume group]/[diskid],

 [volume group]/[lvid],NetIF/[adapterid]

If a user wants to record the kern and user statistics for all the processors, the metric line in the

configuration file is displayed as follows:

CPU/*/kern CPU/*/user

In a two-CPU system, this expands to the following:

CPU/cpu0/kern

CPU/cpu1/kern

CPU/cpu0/user

CPU/cpu1/user

To record the data busy for all the disks on your system, the metric line would be as follows:

Disk/*/busy

Depending upon the number of active hdisks in the system, this expands to the following:

Disk/hdisk0/busy

Disk/hdisk1/busy

Disk/hdisk2/busy

Hot Lines (xmservd Recording Only)

HotSets allow metrics to be monitored by activity rather than by name. HotSets are defined by the

following format. The values correspond to the arguments of the SpmiAddSetHot subroutine call:

format of line to define hotfeed followed by examples:

#key max thres freq seve trap

#word metric resp hold uency feed_type except_type rity no

hot LAN/*/framesin 1 0 60000 Always

hot Disk/*/busy 3 50 10000 Threshold Trap 0 14

hot FS/*/%totfree 3 95 300000 Threshold Both 4 16

hot FS/rootvg/*/%totfree 0 95 300000 Always

hot RTime/LAN/*/above99 3 80 300000 Threshold Exception 2

hot The keyword indicating HotSet recording.

metric The metric with a wildcard in the specification.

maxresp The maximum number of responses to record. If the feed_type is Threshold, this value

must be greater than one. One exception/trap is sent for each metric that exceeds the

threshold up to the maximum value of this field.

threshold If feed_type is set as the Threshold, this field is the value that must be exceeded for the

exception/trap to be sent. If the value is specified as a negative number, the threshold is

considered to be exceeded if the monitored metric is less than the numeric threshold

value.

frequency The frequency to monitor the metrics. This value is in milliseconds.

feed_type The valid types are: Always or Threshold.

exception_type

The valid types are: Exception, Trap, or Both.

severity If sending an exception, the severity level for the exception.

172 Performance Toolbox Guide

trap_number If sending a trap, the trap number to send.

Each line defines a separate HotSet. No more than MAX_HOT_COUNT (40) Hot events will be processed

at any given time. Use HotSets to monitor thresholds that represent unusual performance behavior, and

not the usual.

Use the ptxhottab and ptx2stat recording support programs to process xmservd recording files that

contain HotSet values.

The following is an example of an xmservd recording configuration file:

SAMPLE RECORDING CONFIGURATION FILE

Keep files at least 7 days and let each file contain

two day’s recordings

retain 7 2

Set default sampling interval to one minute

frequency 60000

Give five statistics to record with default frequency

CPU/cpu0/user

CPU/cpu0/kern

Mem/Real/sysrepag

Mem/Virt/pagein

Mem/Virt/steal

Two additional statistics are recorded every 20 seconds

IP/NetIF/tr0/ioctet 20000

IP/NetIF/tr0/ooctet 20000

record every weekday from 8.30 a.m. to 5 p.m., except during

the lunch hour from noon to 1 p.m.

start 1-5 8 30 1-5 17 0

start 1-5 13 0 1-5 12 0

Selecting Metrics for the Recording Configuration File

The xmpeek program is supplied as part of the Performance Toolbox for AIX. The command line is as

follows:

xmpeek -l

If the xmpeek program is invoked with the -l flag (lowercase L), it lists all the available statistics of the

local host. The list of statistics is sent to standard output, which permits you to redirect it to a file or pipe it

into another command. The following example shows a partial listing of statistics:

/hostname/CPU/ Central processor statistics

/hostname/CPU/gluser System-wide time executing in user mode (percent)

/hostname/CPU/glkern System-wide time executing in kernel mode (percent)

/hostname/CPU/glwait System-wide time waiting for IO (percent)

/hostname/CPU/glidle System-wide time CPU is idle (percent)

/hostname/CPU/glnice System-wide time CPU is running w/nice priority (%)

 . . .

When a host’s statistics include contexts that may exist in multiple instantiations and such instantiations

are volatile, the list does not break all such contexts down in their components. Rather, only the first

instance of the context is broken down and all further instances are listed with five dots appended to the

statistics path name, as shown in the following example. The process identified by 514~wait (actually a

pseudo process) is fully broken down. All other processes are listed only with their identifiers because they

would all break down to the same base statistics as the wait process.

/hostname/Proc/ Process statistics

/hostname/Proc/pswitch Process context switches

/hostname/Proc/runque Average count of processes waiting for the CPU

/hostname/Proc/runocc Number of samplings of runque

/hostname/Proc/swpque Average count of processes waiting to be paged in

/hostname/Proc/swpocc Number of samplings of swpque

/hostname/Proc/ksched Number of kernel process creations

Chapter 14. Recording Performance Data on Remote and Local Systems 173

/hostname/Proc/kexit Number of kernel process exits

/hostname/Proc/514~wait/ Process wait (514) %cpu 54.6, PgSp: 0.0mb, uid:

/hostname/Proc/514~wait/pri Process priority

/hostname/Proc/514~wait/wtype Process wait status

/hostname/Proc/514~wait/majflt Process page faults involving IO

/hostname/Proc/514~wait/minflt Process page faults not involving IO

/hostname/Proc/514~wait/cpums CPU time in milliseconds in interval

/hostname/Proc/514~wait/cpuacc CPU time in milliseconds in life of process

/hostname/Proc/514~wait/cpupct CPU time in percent in interval

/hostname/Proc/514~wait/usercpu Process CPU use in user mode (percent)

/hostname/Proc/514~wait/kerncpu Process CPU use in kernel mode (percent)

/hostname/Proc/514~wait/workmem Physical memory used by process private data (4K)

/hostname/Proc/514~wait/codemem Physical memory used by process code (4K pages)

/hostname/Proc/514~wait/pagsp Page space used by process private data (4K page

/hostname/Proc/514~wait/nsignals Signals received by process

/hostname/Proc/514~wait/nvcsw Voluntary context switches by process

/hostname/Proc/514~wait/tsize Code size (bytes)

/hostname/Proc/514~wait/maxrss Maximum code+data resident set size (4K pages)

/hostname/Proc/12002~x/.....

/hostname/Proc/13207~xlock/.....

/hostname/Proc/771~netw/.....

/hostname/Proc/1~init/.....

/hostname/Proc/5723~trapgend/.....

/hostname/Proc/0~/.....

/hostname/Proc/15339~aixterm/.....

/hostname/Proc/2823~syncd/.....

/hostname/Proc/13047~xmtrend/.....

/hostname/Proc/15593~aixterm/.....

 . . .

Strip the hostname from the description on the right of the statistic when using statistics in configuration file.

For example, the following information:

/hostname/Mem/Virt/pageout 4K pages written by VMM

/hostname/Proc/514~wait/cpupct CPU time in percent in interval

would be placed in the xmtrend configuration file as follows:

Mem/Virt/pageout Proc/514~wait/cpupct

The xmscheck Preparser

When xmservd is started with the -v command line argument, its recording configuration file parser writes

the result of the parsing to the log file. The output includes a copy of all lines in the recording configuration

file, any error messages, and a map of the time scale, indicating when recording starts and stops.

Although the log file is useful to document what is read from the recording configuration file, it is not a

useful tool for debugging of a new or modified recording configuration file. Therefore, the xmscheck

program is available to preparse a recording configuration file before you move it to the /etc/perf directory,

where xmservd and xmtrend look for the recording configuration files.

When xmscheck is started without any command line argument, it parses the /etc/perf/xmservd.cf file.

You can therefore determine how the running daemon is configured for recording. For xmtrend recording

files, specify on the command line the file to parse.

Output from xmscheck goes to standard output. The parsing is done by the same module that does the

parsing in xmservd and xmtrend. That module is linked in as part of each program. The parsing checks

that all statistics specified are valid and prints the time scale for starting and stopping recording in the form

of a time table.

In the time table, each minute has a numeric code as follows:

0 Recording is inactive. Neither a start nor a stop request was given for the minute.

174 Performance Toolbox Guide

1 Recording is active. Neither a start nor a stop request was given for the minute.

2 Recording is inactive. A stop request was given for the minute.

3 Recording is active. A start request was given for the minute.

The following Sample xmscheck Time Table shows how xmscheck formats the time table. Only the part

of the table that covers Tuesday is shown.

Day 2, Hour 00:

00

Day 2, Hour 01:

00

Day 2, Hour 02:

00

Day 2, Hour 03:

00

Day 2, Hour 04:

00

Day 2, Hour 05:

00

Day 2, Hour 06:

00

Day 2, Hour 07:

00

Day 2, Hour 08:

000000000000000000000000000000311111111111111111111111111111

Day 2, Hour 09:

11

Day 2, Hour 10:

11

Day 2, Hour 11:

11

Day 2, Hour 12:

2000

Day 2, Hour 13:

3111

Day 2, Hour 14:

11

Day 2, Hour 15:

11

Day 2, Hour 16:

11

Day 2, Hour 17:

2000

Day 2, Hour 18:

00

Day 2, Hour 19:

00

Day 2, Hour 20:

00

Day 2, Hour 21:

00

Day 2, Hour 22:

00

Day 2, Hour 23:

00

Starting Recording Sessions from the xmtrend Command Line

The xmservd daemon is always started from the inetd daemon. For a full description on how to start and

stop xmservd as well as the command line options, see Chapter 13, “Monitoring Remote Systems,” on

page 153. The xmtrend command line options are described here, but because xmtrend uses the SPMI

library and shared memory, refer to “Releasing Shared Memory Manually” on page 155.

Chapter 14. Recording Performance Data on Remote and Local Systems 175

The xmtrend agent can be started from the command line or near the end of the /etc/inittab file. The

general format of the command line is as follows:

xmtrend {-f infile} {-d recording_dir} {-s max_log_file_size}

 {-n recording_name} {-t trace_level} {-T}

The following flags can be specified when starting xmtrend. All command line options are optional.

-f Allows the user to specify a configuration file to use, instead of the default. By default if the -f is

not used, xmtrend looks for and uses /etc/perf/xmtrend.cf as the configuration file. A

configuration file must be available so xmtrend knows what to monitor.

-d Specifies the output directory for the recording files. The default is to place the recording files in

the /etc/perf directory.

-s Specifies the maximum log file size for xmtrend. The default log file size value is 100000 bytes.

-n Specifies a name for the recording file. By default, xmtrend creates recording files named

xmtrend.some date. If -n myrecording is specified, the recording files will be named

myrecording.some date

-t Specifies a trace level. xmtrend prints various information to a log file in /etc/perf. The trace level

can be set from 1 to 9. The higher the trace level, the more trace data is generated. This trace

data is useful to determine xmtrend recording status and for debugging purposes. The log file

name is either xmtrend.log1 or xmtrend.log2. xmtrend will cycle between these two files after a

file reaches the maximum size.

-T Enables top processing to support the jtopas client. This option must be used for top recordings

and near real-time data support. The xmtrend daemon uses the shipped jtopas.cf configuration

file for all recordings and will place them in the /etc/perf/Top directory. The configuration file’s

metrics-list section for all recordings is fixed and cannot be changed. CPU DR detection is not

supported for this option.

Session Recovery by the xmtrend Agent

If the xmtrend agent is terminated then restarted, xmtrend examines the recording files in /etc/perf or the

directory specified by the -d flag. If a recording file exists with the current date, xmtrend appends to this

file and continues to write to the recording file. Otherwise it creates a new recording file.

176 Performance Toolbox Guide

Chapter 15. SNMP Multiplex Interface

The SNMP (Simple Network Management Protocol) is a network protocol based upon the Internet

protocol. As its name implies, its main purpose is to provide a protocol that allows management of

networks of computers. Programs based upon SNMP are currently dominating the network management

arena in non-SNA environments. One set of commonly used SNMP-based network management programs

are the programs in NetView.

Network Management Principles

Network management is primarily concerned with the availability of resources in a network. As

implemented on top of SNMP, it uses a client/server model where one or a few hosts in the network run

the client programs (known as SNMP Managers) and all network nodes (if possible) run the server code.

On most host types the server code is implemented as a daemon, snmpd, usually referred to as the

SNMP Agent.

Communication between the SNMP manager and the SNMP daemon uses two protocol models. The first

model is entirely a request/response type protocol; the other is based upon traps, which are unsolicited

packets sent from a server (agent) to the client (manager) to inform of some event.

The request/response protocol supports three request types:

 Get Issued from the manager to an agent, requesting the current value of a particular variable. The agent

will return the value if it is available.

Set Issued from the manager to an agent, requesting the change of a particular variable. By implication,

the changing of a value will be interpreted by the agent as also meaning that the change of the value

must be enforced. For example, if the number of memory buffers is changed, the agent is expected

to implement this change on the system it runs on. A large number of system variables cannot be set

but are read-only variables.

Get next Issued from the manager to the agent, requesting the agent to go one step further in the hierarchy of

variables and return the value of the next variable.

As is implied by the “get next” request type, variables are arranged in a hierarchy much like the hierarchy

used to maintain the statistics provided by the System Performance Measurement Interface (SPMI) and

the xmservd daemon. Unlike the SPMI context hierarchy, however, even though an SNMP manager can

traverse the hierarchy of variables to see what’s available, it identifies those variables by a decimal coding

system and is not able to convert these codes to textual descriptions by itself. To make the SNMP

manager able to translate decimal coding into text, you must provide a file that describes the variables and

the hierarchy. The file must describe the variables in a subset of the Abstract Syntax Notation (ASN.1) as

defined by ISO. The subset used by SNMP is defined in RFC 1065. A file that describes a set or subset of

variables and the hierarchy is referred to as a MIB file because it is said to describe a management

information base (MIB).

Usually, an SNMP agent will know what variables it is supposed to provide and uses a fixed set. In other

situations, the SNMP agent’s set of variables may need to be expanded because special programs or

special hardware is installed. This can be done through a programming interface called SMUX (SNMP

Multiplex). The remainder of this topic describes how SMUX is used by the xmservd daemon to expand

the set of variables available from the SNMP agent.

Note: The interface between xmservd and SMUX is only available on IBM RS/6000 Agents.

© Copyright IBM Corp. 1994, 2004 177

Interaction Between xmservd and SNMP

The objective of the xmperf program suite is much different from that of the NetView programs. The latter

are concerned primarily with supervision and corrective action aiming at keeping the network resources

available and accessible. Generally, resource availability is of more concern than resource utilization.

The xmperf program suite is primarily concerned with the continuous monitoring of resource utilization,

aiming at:

v Identifying and possibly improving performance-heavy applications.

v Identifying scarce system resources and taking steps to provide more of those resources.

v Predicting loads as input to capacity planning for the future.

v Identifying acute performance culprits and taking steps to resolve the problems they cause.

Somewhere between the two products is a vaguely defined area in which both are interested. This means

that certain of the variables (or statistics) must be available in both environments. It also means that if the

two products do not share information, they both access the same information, inducing an overhead that

could be eliminated if they had a common access mechanism.

Such a common access mechanism is available through the xmservd/SMUX interface. It allows the

xmservd daemon to present all its statistics to the SNMP agent as read-only variables. The

xmservd/SMUX interface is invoked by placing a single stanza in the configuration file/etc/perf/
xmservd.res. See “Files used by xmservd” on page 272 for alternative locations for xmservd.res. The

stanza must begin in column one of a line of its own and must be:

dosmux

When the dosmux stanza is in effect, every statistic available to the xmservd daemon is automatically

registered with the snmpd daemon on the local host. Dynamic data suppliers can add to or delete from

the hierarchy of statistics. Any changes induced by dynamic data suppliers are communicated to the

snmpd daemon. Every 15 seconds xmservd checks for such changes.

The xmservd daemon can produce an MIB file that describes all the variables currently exported to

snmpd. This is done whenever you send a SIGINT (kill -2) to the xmservd process. The MIB file is

created in ASN.1 notation and placed in /etc/perf/xmservd.mib. Any old copy of the file is overwritten.

The generated MIB file can be moved to the host where NetView runs and imported by NetView.

When you need to generate a MIB file by sending a SIGINT to the xmservd daemon, make sure you have

all relevant dynamic data-supplier programs running and registered with the daemon. Also have at least

one data consumer registered with the daemon. This makes sure the generated MIB file includes all

possible statistics in your host.

To be able to test the xmservd/SMUX interface with the SNMP program snmpinfo it is convenient to have

a makefile for easy updating of the MIB file used by snmpinfo. This file is /etc/mib.defs. You must be root

to update it. Consequently, you must have root authority to run the makefile.

A sample makefile to update the snmpinfo MIB file is shown in the following example and is available in

/usr/samples/perfagent/server/Make.mib:

all: /etc/mib.defs.org /etc/mib.defs

/etc/mib.defs.org:

 cp /etc/mib.defs /etc/mib.defs.org

/etc/mib.defs: /etc/perf/xmservd.mib

 mosy -o /tmp/mib.defs /etc/perf/xmservd.mib

 cp /etc/mib.defs.org /etc/mib.defs

 cat /tmp/mib.defs >> /etc/mib.defs

 rm /tmp/mib.defs

178 Performance Toolbox Guide

SMUX Configuration Conflicts

During the installation, and provided the snmp option of the base system’s bosnet or tcpip component is

installed, two configuration files are updated to allow the xmservd daemon to connect to the SNMP agent.

The two files are updated with default identification strings and passwords.

/etc/snmpd.conf:

smux 1.3.6.1.4.1.2.3.1.2.1.3 xmservd_pw # xmservd

/etc/snmpd.peers:

“xmservd” 1.3.6.1.4.1.2.3.1.2.1.3 “xmservd_pw”

If the xmservd/SMUX interface does not work as intended, even after you inserted dosmux in the file

/etc/perf/xmservd.res, there may be a conflict between the xmservd/SMUX strings and other strings in

the configuration files. To resolve the problem, simply change the last digit in the identification string for

xmservd to something unique, then restart the snmpd daemon.

Limitations Induced by SMUX

One of the advanced features of the SPMI context hierarchy is that it allows you to instantiate in multiple

levels. One context may define disks and the actual number of disks varies from host to host. Through

instantiation, subcontexts are added for each disk present in a particular host.

The SNMP data structures allow for a similar facility, namely the definition of tables. In the previous case,

the table would be “Disks” and it would contain as many elements as there were disk drives, each element

containing all the fields defined for a disk.

With the SPMI interface, you can continue the instantiation at the next level in the context hierarchy. For

example, each disk may have a variable number of logical volumes assigned to them, each with its

identical set of statistics. Instantiation would then allow you to adjust the context hierarchy as logical

volume assignment changes.

SNMP does not allow such a thing. A table is the only type of structure that can be instantiated, and it

must always be at the lowest level in the hierarchy. Because of this, the SPMI context hierarchy has been

adjusted so it only in one case instantiates in multiple levels. Otherwise, it would not be possible to export

the context hierarchy to the SNMP agent.

The one situation where the SPMI instantiates in multiple levels is the context FS. When this context is

exported to snmpd, only the top-level is exported. Statistics for individual file systems are not available

through snmpd.

SMUX Instantiation

Because of the differences between SPMI and the MIB definitions when it comes to instantiation, it seems

warranted to illustrate what instantiation looks like in the two cases. This is illustrated by looking at the

instantiation of disk drives.

The following example shows the list of disk statistics clipped from the output of the command xmpeek -l.

Notice that each disk (there are three of them) has four statistics defined:

/nchris/Disk/ Disk and CD ROM statistics

/nchris/Disk/hdisk0/ Statistics for disk hdisk0

/nchris/Disk/hdisk0/busy Time disk is busy (percent)

/nchris/Disk/hdisk0/xfer Transfers to/from disk

/nchris/Disk/hdisk0/rblk 512 byte blocks read from disk

/nchris/Disk/hdisk0/wblk 512 byte blocks written to disk

/nchris/Disk/hdisk1/ Statistics for disk hdisk1

/nchris/Disk/hdisk1/busy Time disk is busy (percent)

/nchris/Disk/hdisk1/xfer Transfers to/from disk

/nchris/Disk/hdisk1/rblk 512 byte blocks read from disk

/nchris/Disk/hdisk1/wblk 512 byte blocks written to disk

/nchris/Disk/hdisk2/ Statistics for disk hdisk2

/nchris/Disk/hdisk2/busy Time disk is busy (percent)

Chapter 15. SNMP Multiplex Interface 179

/nchris/Disk/hdisk2/xfer Transfers to/from disk

/nchris/Disk/hdisk2/rblk 512 byte blocks read from disk

/nchris/Disk/hdisk2/wblk 512 byte blocks written to disk

The SNMP perception of this context structure is somewhat different. As the structure is exported from

xmservd through the SMUX interface it is converted to an MIB table. This structure is illustrated in

Figure 14 on page 227.

Type the following command:

snmpinfo -md -v xmdDisk

To print output as shown in the following example:

xmdDiskIndex.0 = 1

xmdDiskIndex.1 = 2

xmdDiskIndex.2 = 3

xmdDiskInstName.0 = “hdisk0”

xmdDiskInstName.1 = “hdisk1”

xmdDiskInstName.2 = “hdisk2”

xmdDiskBusy.0 = 20943

xmdDiskBusy.1 = 679

xmdDiskBusy.2 = 386

xmdDiskXfer.0 = 11832

xmdDiskXfer.1 = 444

xmdDiskXfer.2 = 89

xmdDiskRblk.0 = 73201

xmdDiskRblk.1 = 2967

xmdDiskRblk.2 = 6595

xmdDiskWblk.0 = 137449

xmdDiskWblk.1 = 1585

xmdDiskWblk.2 = 105

As you can see, the retrieval sequence is inverted. Where the SPMI retrieves all statistics for one disk

before proceeding to the next disk, SMUX traverses the structure by reading one statistic for all disks

before proceeding to the next statistic.

You’ll see that for each disk instance, an artificial statistic is created to provide the index of each value

(with the name xmdDiskIndex).

Also notice how the name of the instance (in this case the name of the disk drive) is displayed as another

artificial type of statistic, which always has the name InstName meaning “instance name.”

The MIB definition for disk statistics is shown in the “Example MIB Description for Disk Instantiation” on

page 181.

Instantiation Rules

In SPMI, a context can be defined as having an instantiation type of:

 SiNoInst Context is never instantiated, not even if requested.

SiCfgInst Context is instantiated when xmservd is started. Further attempts to instantiate are done only

when explicitly requested. Most data-consumer programs will not attempt to instantiate contexts

with this context type; xmperf does not. Examples of contexts with this instantiation type are

disks and page spaces.

SiContInst Context is instantiated when it is created and when instantiation is requested. Most

data-consumer programs should attempt to instantiate contexts with this context type; xmperf

does. The classical example of a context with this instantiation type is the context defining

processes.

When exporting contexts through SMUX, contexts with instantiation type of SiCfgInst or SiContInst are

converted to tables.

180 Performance Toolbox Guide

For dynamic data-supplier programs, a special restriction applies to the use of SiCfgInst and SiContInst.

Neither can be used for contexts that are at the top of the hierarchy of non-volatile contexts defined by a

dynamic data supplier (DDS). Also, neither may be used for contexts that are added as volatile extensions.

Generally, because a request for instantiation is not passed to a dynamic data-supplier program, avoid

using anything but SiNoInst in your DDS programs. If you want to use SiContInst, all of the subcontexts

of the context with SiContInst should be volatile contexts of the same type.

Example MIB Description for Disk Instantiation

xmdDisk OBJECT-TYPE

 SYNTAX SEQUENCE OF XmdDisk

 ACCESS not-accessible

 STATUS mandatory

 DESCRIPTION

 "Disk and CD ROM statistics

 ::= {xmd 4 }

xmdDiskEntry OBJECT-TYPE

 SYNTAX XmdDiskEntry

 ACCESS not-accessible

 STATUS mandatory

 DESCRIPTION

 “Element of above table”

 ::= {xmdDisk 1 }

XmdDiskEntry ::=

 SEQUENCE

 {

 xmdDiskIndex INTEGER,

 xmdDiskInstName DisplayString,

 xmdDiskBusy Counter,

 xmdDiskXfer Counter,

 xmdDiskRblk Counter,

 xmdDiskWblk Counter

 }

xmdDiskIndex OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 “Index Number”

 ::= {xmdDiskEntry 1 }

xmdDiskInstName OBJECT-TYPE

 SYNTAX DisplayString

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 “Instance Name”

 ::= {xmdDiskEntry 2 }

xmdDiskBusy OBJECT-TYPE

 SYNTAX Counter

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 “Time disk is busy (percent)”

 ::= {xmdDiskEntry 3 }

 .

 .

 .

xmdDiskWblk OBJECT-TYPE

 SYNTAX Counter

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 “512 byte blocks written to disk”

 ::= {xmdDiskEntry 6 }

Chapter 15. SNMP Multiplex Interface 181

182 Performance Toolbox Guide

Chapter 16. Data Reduction and Alarms with filtd

The filtd program is designed to run as a daemon. It takes three command line arguments, all of which

are optional:

filtd [-f config_file] [-b buffer_size] [-p trace_level]

Command Line Arguments for filtd:

 -f Overrides the default configuration file name. If this option is not given, the file name is assumed to be

available in /etc/perf/filter.cf or else as described in Appendix B, “Performance Toolbox for AIX Files,” on page

271. The configuration file is where you tell filtd what data reduction and alarm definitions you want.

-p Specifies the level of detail written to the log file. The trace level must be between 1 and 9. The higher the

trace level the more is written to the log file. If this option is not specified, the trace level is set to zero.

-b Buffer size for communications with xmservd via RSI. The default buffer of 4096 bytes will allow for up to 120

statistics to be used in defining new statistics and alarms. If more are needed, the buffer size must be

increased. It may also be necessary to increase the xmservd buffer size.

filtd Configuration File

When filtd is started, it immediately issues an RSiOpen() call (see the RSiOpen subroutine) to register

with the local xmservd daemon. This causes xmservd to start if it is not already running. Following a

successful connection to xmservd, filtd then reads the configuration file and parses the information you

supplied in the file.

The configuration file contains expressions, which either define new statistics from existing ones or define

alarms from statistics. Each time the name of a statistic is encountered while parsing an expression, it is

checked with the xmservd daemon whether it is valid. If not, the entire expression is discarded and filtd

proceeds to parsing the next expression in the configuration file, if any. Errors detected are reported to the

log file.

When all expressions have been parsed, filtd processes all expressions that define new statistics. First it

registers the subscription for statistics it needs to build the new ones with xmservd. Then it registers with

xmservd as a dynamic data supplier. At this point, filtd is both a consumer and a supplier of statistics. At

the end of this initialization phase, filtd instructs xmservd to start feeding the statistics it subscribed to.

The next phase runs through any alarm definitions. No new statistics are defined at this point, but because

this is the last of the initialization phases, alarms may refer to statistics that are defined by the previous

phase.

Sampling Interval

Whenever new statistics are defined through the filtd configuration file, raw data statistics are initially

requested from xmservd every five seconds. As long as no data-consumer program subscribes to the new

statistics, the sampling interval remains at five seconds or some smaller value as required to meet the

minimum requirements for alarm duration as described in “Alarm Duration and Frequency” on page 188.

When other data-consumer programs subscribe to one or more of the new statistics, the sampling interval

is adjusted to match the data-consumer program that requires the fastest sampling. Again, if the

requirements of an alarm’s duration dictates a smaller interval, that is selected.

For most purposes, sampling intervals can safely be set at two seconds or more. Be aware that if you

have defined thirty new statistics but subscribe to only one, all thirty are calculated each time you are sent

a data feed for the one you subscribe to.

© Copyright IBM Corp. 1994, 2004 183

Automatic Start of filtd

Since filtd is a dynamic data-supplier program, you may want to always have it running when the

xmservd daemon runs. You can cause this to happen if you add a line to the xmservd configuration file,

specifying the full path name of the filtd program and any command line arguments. For example:

supplier: /usr/bin/filtd -p5

Termination of filtd

The filtd daemon can be terminated by killing its process (but don’t use kill -9). The daemon will terminate

itself if it has not received data_feed packets from xmservd for 10 times the data feed interval. This

ensures that filtd is terminated whenever xmservd is.

Data Reduction

Although the term data reduction is used, you can actually use the data reduction facilities of filtd to do

exactly the opposite. You can define as many new statistics as you want to. However, the most common

use of the data reduction facility will likely be to reduce a large number of statistics to a reasonable set of

combined values.

Whether you define lots of new statistics or combine existing ones into fewer new ones, you do it by

entering expressions into the configuration file. The general syntax format of expressions for defining new

statistics is target = expression description where target is the unqualified name of non-existing

variable.

The expression must start with an alpha and contain only alpha-numeric characters and percent signs and

is in the form {variable|wildcard|const} operator {variable|wildcard|const}.

A variable must be a fully qualified xmperf variable name with slashes replaced by underscores. Valid

names have at least one underscore. The first name component must start with an alpha character and

subsequent names may also begin with a percent sign. All must contain only alpha-numeric characters, a

percent sign, a tilde (~), a period, an underscore preceded by an escape character (the backslash ’/’), or a

wildcard. The referenced variable must already exist (cannot be defined in this configuration file).

A wildcard is a fully qualified xmperf variable name with slashes replaced by underscores. Valid names

have at least one underscore. The first name component must start with an alpha character, and

subsequent names may also begin with a percent sign. All must contain only alpha-numeric characters

and percent sign or must be a wildcard The wildcard character must appear in place of a context name,

must only appear once, and must be one of the characters ’+’, ’*’, ’#’, ’>’, ’<’.

An operator is one of *, /, %, or +.

The const consists of [digits].

The digits description is text describing the defined target variable. The descriptio must be enclosed in

double quotation marks and the length of the text should not exceed 64 characters.

The expression can contain as many parentheses as are required to make the expression unambiguous. It

is a good idea to use parentheses liberally if you are in doubt. If you are uncertain how your expression is

interpreted, run the program with the command line option -p5. This writes the interpretation of the

expression to the log file. If the interpretation is not what you intended, add parentheses.

All numeric constants you specify in an expression are evaluated as floating-point numbers. Similarly, the

resulting new statistics (the “target” statistics) are always defined as floating-point numbers.

All new statistics are added to the context called DDS/IBM/Filters so that a new statistic called “avgload”

would be known to data-consumer programs as DDS/IBM/Filters/avgload.

184 Performance Toolbox Guide

Wildcards

The use of wildcards is a way of referring to multiple instances of a given statistic with one name but,

more important, it makes your expression independent of the actual configuration of the system it is used

on. For example, the expression:

allreads= Disk_+_rblk

could evaluate to different expressions on different machines, such as:

allreads =((Disk/cd0/rblk + Disk/hdisk1/rblk) + Disk/hdisk0/rblk)

allreads = Disk/hdisk0/rblk

The possible wildcard characters and their meaning are as follows:

 + All values matching the wildcard are added together.

* All values matching the wildcard are multiplied with each other. Note that unless all the values are non-zero,

the result will be zero.

Evaluates to a constant, which is the number of values that match the wildcard.

> Evaluates to the maximum value of all those matching the wildcard.

Evaluates to the minimum value of all those matching the wildcard.

Quantities and Counters

As described in the discussion of how to define statistics in System Performance Measurement Interface

API (Chapter 18, “System Performance Measurement Interface Programming Guide,” on page 201) a

statistic provided by the SPMI is either of type SiCounter or of type SiQuantity. You can combine the two

types in expressions to define new statistics, but the resulting statistics as added by filtd are always

defined as of type SiQuantity.

This has consequences you need to understand in order to define and interpret new statistics. To see how

it works, assume you have a raw statistics value defined as a counter. If data feeds for a raw statistic from

xmservd called widgets are received with an interval of two seconds, you might get the results illustrated

in the following table:

 Elapsed Counter Delta Calculated

 seconds value value rate/second

 ------- ------- ------- -----------

 0 33,206

 2 33,246 40 20

 4 33,296 50 25

 6 33,460 164 82

 8 33,468 8 4

 10 33,568 100 50

If you define a new statistic with the expression:

gadgets = widgets

and use xmperf to monitor this new statistic, you will always see the rate as it was calculated when the

latest data feed was received. The following table shows what you see with different viewing intervals:

Elapsed Interval Interval Interval Raw rate at

seconds 1 second 2 seconds 4 seconds 4 seconds

------- -------- --------- --------- ---------

 1 ?

 2 20 20

 3 20

 4 25 25 25 23

 5 25

 6 82 82

Chapter 16. Data Reduction and Alarms with filtd 185

7 82

 8 4 4 4 43

 9 4

 10 50 50

The last column in the previous table shows what the values would have been at four-second intervals if

the raw counter value had been used to arrive at the average rate. Obviously, you need to take this into

consideration when you define new statistics. The best way is to standardize the intervals you use.

To summarize, when new values are defined by you, any raw values of type SiQuantity are used as they

are while the latest calculated rate per second is used for raw values of type SiCounter.

Data Reduction Delay

Because filtd must read the raw statistics before it can calculate the values of the new ones, the new

statistics are always one “cycle” behind the raw statistics. An xmperf instrument that plots a statistic you

defined along with the raw statistics used to calculate it always shows a time lag between the new value

and the raw ones. This is obvious when the filtd program receives data feeds at the same speed as the

xmperf instrument does, however, whether you see it or not, the delay is always effective.

If you want to see what it looks like, put only the following line in the filtd configuration file:

user = CPU_cpu0_user

and then define an instrument in xmperf to display the values:

CPU/cpu0/user

DDS/IBM/Filters/user

Data Reduction Examples

The xmservd daemon divides usage of the CPU resource on IBM RS/6000 systems into four groups:

kernel, user, wait, and idle. If you wanted to present it as only two: busy and notbusy, you could define

those two new statistics with the following expressions.

busy = CPU_cpu0_kern + CPU_cpu0_user “CPU running”

notbusy = CPU_cpu0_wait + CPU_cpu0_idle “CPU not running”

If you want to see the average number of bytes per transmitted packet for an IP interface, your expression

would be:

packsize = IP/NetIf_tr0_ooctet / IP/NetIf_tr0_opacket \

 “Average packet size”

In the previous example, the divisor may often be zero. Whenever a division by zero is attempted, the

resulting value is set to zero. The example also shows that expressions can be continued over more than

one line by terminating each line except the last one with a \ (backslash).

If you want to see how large a percentage of the network packets are using the loopback interface in your

system, try a definition like the following:

localpct = (IP/NetIf_lo0_ipacket + IP/NetIf_lo0_opacket) * 100 \

 / (IP/NetIf_+_ipacket + IP/NetIf_+_opacket) \

 “Percent of network packets on loopback interface”

The previous example iillustrates the usefulness of wildcards. Another, more advanced use of wildcards is

shown in the following example. The new value is readdistr and will hold the average percent of reads

from all disks expressed as a percentage of the reads from the disk that had the most reads.

readdistr = (Disk_+_rblk / Disk_#_rblk) * 100 / (Disk_>_rblk) \

 “Average disk reads in percent of most busy disk”

186 Performance Toolbox Guide

Rounding

All calculations are done in floating-point. Rounding occurs when a data-consumer program defines the

receiving field as SiLong. Most data-consumer programs use the standard function RSiGetValue() to

retrieve the fields. This function rounds the data values when they are retrieved. If you display raw values

that are supplied in floating-point and values computed from these values, then you may get rounded

values, which seem to be wrong.

For example, two raw values may be 4.3 and 2.4, which would usually be displayed as 4 and 2, but the

product computed by filtd would be 4.3 x 2.4 = 10.32 (rounded to 10 when displayed) rather than 4 x 2 =

8.

Defining Alarms

An alarm consists of an action part that describes what action to trigger, and a condition part that defines

the conditions for triggering the alarm. The general format for an alarm is as follows:

 Action Condition

@action The symbolic name of an alarm. Alarm names must start with ’@’ and otherwise contain only

alphanumeric characters.

alarm_definition One or more of ″[command line]″, ″{TRAPxx}″, and ″{EXCEPTION}″.

bool_expression {evariable|wildcard|const} (boolean_operator {evariable|wildcard|const}) ...

boolean_operator An operator which evaluates an expression to produce a value of true or false. Supported

operators:

 ’=’ Equal

 "!=" Not Equal

 ’>’ Greater Than

 ’<’ Less Than

 ">=" Greater Than or Equal

 "<=’ Less Than or Equal

 ’&’ AND

 ’|’ OR

const [digits]

description Text describing the alarm. must be enclosed in double quotation marks. The text cannot be

more than 512 bytes in length.

evariable Fully qualified xmperf variable name with slashes replaced by underscores. Valid names have

at least one underscore. The first name component must start with an alpha character,

subsequent ones may also begin with a percent sign. All must contain only alpha-numeric

characters, a percent sign, a tilde (~), a period, or an underscore preceded by an escape

character (the backslash ’\’, or a wildcard. The referenced variable may be defined by this

same filter, in which case it must be specified as: DDS_IBM_Filters_target, where “target” is

the name of the new statistic.

wildcard A fully qualified xmperf variable name with slashes replaced by underscores. Valid names

have at least one underscore. The first name component must start with an alpha character,

subsequent ones may also begin with a percent sign. All must contain only alpha-numeric

characters and percent signs or must be a wildcard. The wildcard character must appear in

place of a context name must only appear once and must be one of the characters ’+’, ’*’, ’#’,

’>’, ’<’ .

Alarm Definition

An alarm can define up to three actions to take place when the alarm condition is met. These three

actions are:

Chapter 16. Data Reduction and Alarms with filtd 187

[command line] A command line to be executed when the alarm condition is met. The command line must be

enclosed in square brackets. The command line is always executed in the background and

with the same credentials as that of the filtd daemon. If the filtd daemon has been started by

xmservd, the command line is executed with root authority.

{TRAPxx} This action can always be specified but it only produces the desired results if the xmservd

daemon is configured to export its statistics to the snmpd daemon through the xmservd/SMUX

interface described in Chapter 15, “SNMP Multiplex Interface,” on page 177.

Note: The interface to SMUX is only available on RS/6000 Agents.

If xmservd does talk to the snmpd daemon, this type of action will, when the defined

condition becomes true, produce an SNMP trap that is passed on through xmservd to snmpd

and, eventually, to an SNMP manager such as NetView. The keyword TRAP must be in

uppercase letters and must be followed by one or more decimal digits defining the trap

number. Both the keyword and the trap number must be enclosed in curly braces. The trap

sent to snmpd is an enterprise-specific trap (generic type 6) with a specific trap number equal

to the number specified after the TRAP keyword.

{EXCEPTION} This action causes the filtd daemon to inform the xmservd daemon each time the defined

condition is met. This makes xmservd send a message of type except_rec to all hosts having

declared that they want to receive such messages. “Requesting Exception Messages” on page

25 explains how a data-consumer program can request to be informed about exceptions. The

message contains the identification, description and other data from the alarm definition. The

exact layout of the message is declared in the file /usr/include/sys/Spmidef.h as

Exception_Rec and is included in the union of message types in file /usr/include/sys/Rsi.h.

Alarm Duration and Frequency

The two keywords DURATION and FREQUENCY are used to determine how long time a condition must

remain

true

 Default Minimum

 ---------- ---------

DURATION 60 seconds 1 second

FREQUENCY 30 minutes 1 minute

For an alarm to be triggered, at least FREQUENCY minutes must have elapsed since the last time this

same alarm was triggered. When this is the case, the condition is monitored constantly. Each time the

condition switches from false to true, a time stamp is taken. As long as the condition stays true, the

elapsed time since the last time stamp is compared to DURATION and, if it equals or exceeds

DURATION, the alarm is triggered.

When it can be done without forcing the data feed interval to become less than one second, filtd makes

sure at least three data feeds will be taken in DURATION seconds. This is done by modifying the data

feed interval, if necessary. Doing this can have side effects on new statistics you have defined, since

there’s only one data feed interval in use for all raw statistics received by the filtd program, whether the

raw statistics are used to define new statistics, to define alarms, or both.

Alarm Severity

A severity code can be associated with an alarm. This is intended to be used when you define one of the

actions that result from an alarm shall be to send an except_rec to a data-consumer program.

Unfortunately, there’s no way to associate a severity level with an SNMP trap.

If you do not specify a severity code, a default of 1 is used. Severity can currently be specified as a value

from 0 to 10. The higher the value, the more severe the alarm.

188 Performance Toolbox Guide

Examples of Alarm Definitions

Alarms need not really be alarms. It would be much nicer if the conditions that would usually trigger an

alarm could cause corrective action to be taken without human intervention. One example of such

corrective action is that of increasing the UDP receive buffers in case of UDP overrun. You could do this

with the following “alarm” definition:

@udpfull:[no -o sb_max=262144] UDP_fullsock > 5 DURATION 1

If you wanted an SNMP trap with specific number 31 to be sent in addition to the execution of the no

command, you would define the alarm as:

@udpfull:[no -o sb_max=262144]{TRAP31} UDP_fullsock > 5 DURATION 1 \

 “Another UDP buffer overrun”

If you wanted to be informed whenever the paging space on your host has less than 10 percent free

space or there’s less than 100 pages free paging space, you could use an alarm definition like the

following:

Our final example defines an alarm to send an except_rec to interested data-consumer programs

whenever the average busy percent for the disks exceeds 50 for more than 5 seconds:

@diskbusy:{EXCEPTION} (Disk_+_busy) / (Disk_#_busy) > 50 DURATION 5 \

 SEVERITY 3 “Disks are more than 50% busy on average”

Using Raw Values and Delta Values

“Quantities and Counters” on page 185 explains the consequences of using counter values when you

define new statistics. For an SiCounter statistic, the filtd daemon always assumes that you are referring

to the rate per second if you specify the path name of the statistic with no suffix. This means that of the

two value fields in a data_feed packet, the one that contains the delta value is used and divided by the

time interval covered by the packet to arrive at the rate.

If this is not what you want, one of two available suffixes can be added to the path name to take the

corresponding value and not divide it with the time interval. Those two suffixes are:

 @Raw When you use this suffix, the value used to construct the new statistic is the raw counter value of the

counter if the statistic is of type SiCounter. If this suffix is used for statistics of type SiQuantity you will

see no difference from not using a suffix.

@Delta When used for statistics of type SiQuantity, the value used to construct the new statistic is undefined.

Don’t use this suffix for quantities. When used for SiCounter type statistics, the value used to construct

the new statistic is the delta value as it appears in the data_feed packet. The value is not divided by

the time interval.

The suffixes do not change the anomalies explained in “Quantities and Counters” on page 185. They are

available because the raw data values or the delta values may be useful in other contexts. It is strongly

suggested that any use of the suffixes is thoroughly tested before the results are made available to end

users.

To illustrate the use of the suffixes, a few examples follow. The first example shows how to define a new

statistic that contains the change in the counter of ticks in user mode:

userdelt = CPU_cpu0_uticks@Delta

The value of userdelt is the change of the counter value over the time interval. If the sampling interval is

5 seconds, the value will be approximately five times the average percent user CPU over the interval. If

you want to see the absolute counter value for the number of ticks in kernel mode, type the following

code:

userkern = CPU_cpu0_kticks@Raw

Chapter 16. Data Reduction and Alarms with filtd 189

The final example defines one new statistic and an alarm that will be triggered when the counter of CPU

idle ticks wraps. It looks like this:

idleraw = CPU_cpu0_iticks@Raw

@wrap:{EXCEPTION} CPU_cpu0_iticks@Raw dds_ibm_filters_idleraw \ severity 8

duration 1 "idle counter wrapped"

The trick here is that the statistic idleraw is one cycle behind the statistic from which it is derived.

Therefore, a wrap can be detected as shown.

190 Performance Toolbox Guide

Chapter 17. Response Time Measurement

This chapter provides information about the response time measurement facilities of the Performance

Toolbox for AIX (PTX) and the Performance Aide for AIX. Except where otherwise noted, the facilities

described are available on all platforms supported by the Performance Aide. Monitoring of response times

across the network can be done from workstations only.

Introduction

Response time measurement is especially important in a client/server environment and is ideally done on

a transaction basis. The problem is that a transaction is an elusive concept. Between client and server,

transactions may range from causing a single network transmission with no response to involving a large

number of transmissions. In any one customer installation, one or a few typical transactions may be found,

and the selected transactions can then be instrumented (possibly through the implementation of the

Application Response Measurement API (ARM) described in “Application Response Time Measurement

(ARM)” on page 195. Using the response time measurement of a few transaction types representing a

large percentage of the actual transactions performed, it is possible to get a feel for the responsiveness of

all or most transaction types.

Transaction instrumentation is the most precise vehicle for response time measurement but for this

concept to work, the installation must be willing to invest in the analysis of transaction patterns and

instrumentation of transaction programs. The installation must also be able to modify the transaction

programs, which is not always possible. For example, how does one instrument a standard SQL query

program? Because it is expensive, somewhat complex, and often impossible to use the transaction

instrumentation concept, other means must be used in an attempt to monitor system responsiveness.

Those other means involve the measurement of the atomic components that, together, add up to the

response time of a given transaction. The following is a list of some major steps in a client/server

application. Each is followed by some resources that are required by the task and, hence, will influence

the response time component if they are scarce.

1. Client application processes user input (CPU, disk)

2. Client machine enqueues network request (CPU, adapter, network)

3. Request is transferred over network (network capacity and speed)

4. Server enqueues request (CPU, adapter)

5. Server application processes request (CPU, disk, possibly access to other servers)

6. Server machine enqueues response(CPU, adapter, network)

7. Response is transferred over network (network capacity and speed)

8. Client application processes response (CPU, disk, possibly access to other servers)

9. Client application sends response to end-user (CPU, terminal network).

All of the resources in the previous list can be monitored by PTX when it comes to activity counts. Disks

can be monitored for the percent of time they are busy, which give a good feel for their responsiveness,

but networks can be monitored only for the activity counts. Furthermore, while activity counts for disks can

be used to judge how close a disk is to being saturated, the activity counts for one machine’s network

adapter may have little or no connection to the actual load on the network. Maybe one machine is

constantly accessing remote files while another seldom is. The low activity count on the second machine is

no guarantee for a fast response when the machine does need remote access.

It only makes the situation worse that, in a typical client/server application, the largest response time

component is usually the time is takes to get the request sent and the response back. That’s why the IP

response time measurement facility was added to PTX. IP response time measurement works by using the

low level Internet Control Management Protocol (ICMP) to send responses to selected hosts and

© Copyright IBM Corp. 1994, 2004 191

measuring the time it takes to get a response back. The ICMP protocol was chosen because it doesn’t

require an application to be running on the remote host, because the protocol is handled by the IP

implementation itself.

IP Response Time Measurement

In PTX, IP response time measurement is implemented through a daemon and corresponding contexts in

the Spmi data hierarchy. The Spmi will start the daemon as required and will dynamically add contexts for

all the remote hosts, for which monitoring is started.

IP Response Time Daemon

Measuring of response times is done by a daemon called SpmiResp. If this daemon is not running when

the Spmi receives a request for IP response time measurements, it is started by the Spmi library code.

The daemon will continue to run until it has been the only user of the Spmi interface for 60 seconds or no

data consumer has requested response time data for 300 seconds. When running, the SpmiResp daemon

is controlled by an interval timer loop. The interval timer is, by default, set to interrupt the daemon every

10 seconds but the interval value can be changed from the daemon’s configuration file

/etc/perf/Resptime.cf.

Whenever the daemon is interrupted by the timer, it starts a new cycle, sending one ICMP packet to each

host for which response time is being monitored and calculating the response time from the time it takes

for the response to come back. The daemon will not attempt to send more frequently than specified by a

variable maxrate (“Configuring the SpmiResp Daemon” on page 193 section), which defaults to 10 packets

per second but can be changed from the daemon’s configuration file /etc/perf/Resptime.cf. When sending

packets, the daemon will attempt to spread its activity evenly over the interval (“Configuring the SpmiResp

Daemon” on page 193 section) seconds a cycle lasts. If the number of monitored hosts is too large for all

hosts to be contacted within interval seconds without exceeding maxrate, then interruptions by the interval

timer are ignored until a full cycle has been completed. The reason for having the maxrate parameter is to

prevent the measurement of network activity from being distorted by burst of ICMP packets from the

response time monitor.

When a response is received to an ICMP package, the response time is calculated as a fixed point value

in milliseconds. In addition. the weighted average response time is calculated as a floating point value

using a variable weight (“Configuring the SpmiResp Daemon” on page 193 section), that defaults to 75%.

The average response time is calculated as weight percent of the previous value of the average plus (100

- weight) percent of the latest response time observation. The value of weight can also be changed from

the daemon’s configuration file /etc/perf/Resptime.cf.

IP Response Time Metrics

The following metrics are maintained. Except where noted, all values are floating point values:

resptime The latest observed response time in milliseconds (fixed point value).

respavg The weighed average response time in milliseconds.

below10 The percentage of observations of response time that were less than 10 milliseconds.

below20 The percentage of observations of response time that were less than 20 milliseconds but

greater than 10 milliseconds.

below100 The percentage of observations of response time that were less than 100 milliseconds but

greater than 20 milliseconds.

above99 The percentage of observations of response time that were at 100 or more milliseconds.

requests A counter value giving the number of ICMP requests sent to the host (fixed point value).

responses A counter value giving the number of ICMP responses received from the host (fixed point

value).

192 Performance Toolbox Guide

Configuring the SpmiResp Daemon

The SpmiResp daemon looks for a configuration file in /etc/perf/Resptime.cf. Three values can be

specified in this file. A keyword identifies which value is being set. The keyword must appear in column

one of a line and white space must separate the keyword and the value. The three values, as identified by

the corresponding keywords are:

interval The interval in seconds between each loop of SpmiResp. Default is 10 second intervals.

maxrate The maximum rate SpmiResp will send ICMP packets with; packets per second. Default

is 10 packets per second.

weight The weight a previous value has in finding the weighted average of the response time.

Default is 75%.

If no configuration file is found, SpmiResp continues with default control values. The detailed meaning and

use of the three values is described in “IP Response Time Daemon” on page 192.

The daemon will catch all major signals. All, with the exception of SIGHUP, will cause the daemon to shut

gracefully down. SIGHUP will cause the daemon to reread its configuration file. Any value specified in the

configuration file will replace whichever corresponding value is currently active.

IP Response Time Contexts

For applications to be able to monitor response time through the Spmi and, ultimately, the RSi interface,

the data must be available in context and metric data structures in the Spmi shared memory area.

However, it would consume many resources to create these data structures for all hosts in a large

network, so the Spmi has been modified to handle response time contexts different from all other context

types. What happens is that a context for a particular host is not created until some consumer of data

refers to that context by its path name.

For a data consumer program to see the IP response time context for a host, either some other program

must have created the context, or the program itself must attempt to get to the context through the

context’s path name. For example, to create (or access if somebody else created it) the context for the

host farvel, the application could issue the following call:

SpmiPathGetCx(“RTime/LAN/farvel”, NULL);

The same effect is achieved by issuing the RSiPathGetCx subroutine call, which ultimately leads to an

SpmiPathGetCx subroutine call on the agent host the RSi call is issued against.

This implementation leaves the Data Consumer applications with the responsibility of identifying hosts to

monitor for IP response time. This is contrary to all other contexts in the Spmi, which can be instantiated

simply by traversing their parent contexts. If an installation wants to make sure all IP response time

contexts are created, the sample Data Consumer program in /usr/samples/perfagent/server/iphosts.c,

which is also shipped as the executable iphosts, can be executed from the xmservd.res file whenever

xmservd starts. This program will take a file with a list of hostnames as input and will issue the

SpmiPathGetCx call for each host.

Because IP response time measurement uses the ICMP protocol, the hosts you want to monitor do not

need to run the xmservd daemon. All that is required is that they can respond properly to ICMP echo

requests. Because of this, response time to any node that talks ICMP, including dedicated routers and

gateways, can be measured.

Two PTX applications use their knowledge of hosts in the network to present their users with lists of

potential IP response time contexts. The two are xmperf and 3dmon. This is described in “Monitoring IP

Response Time from xmperf” on page 194 and “Monitoring IP Response Time from 3dmon” on page 194.

Chapter 17. Response Time Measurement 193

Monitoring IP Response Time from xmperf

The xmperf program presents its user with potential IP response time contexts in two situations:

1. When the user displays the value selection window for the context RTime/LAN.

2. When a user instantiates a skeleton console that refers to IP response time measurement.

In both cases, the list of potential IP response time contexts includes the hosts whose xmservd daemons

responded to invitations from xmperf, as well as hosts for which contexts were added by other means

such as by the iphosts program. If the host is known by two names (typically by the short hostname and

the full host/domain name) the same host may appear twice in the list. The same may happen if the

iphosts program identifies hosts by their IP addresses rather than their hostnames.

Host List in Value Selection Window

When the user wants to add a statistic to an instrument or exchange one statistic value with another, the

value selection windows are used to select the new statistic. If the user selects RTime from the top value

selection window and from the next window selects LAN, then the new value selection window displayed

will show one context for each host that can be monitored. By selecting a host, you automatically create

the context for measurement of response time for that host if the context doesn’t exist. You then proceed

to the value selection window for that context.

Instantiating an IP Response Time Skeleton Console

When a user instantiates an IP response time measurement skeleton console, the list of hosts to select

from looks like any other host selection list, except that the list may contain lines that do not show an IP

address. Such lines represent hosts for which an IP response time context exists but that have not

responded to the xmperf invitation. If instantiation is tried again after the host list has been refreshed,

more hosts may have IP addresses shown. This reflects how the host list is created. If the same hostname

is available from both the list of hosts that responded to invitations and from existing IP response time

contexts, then the entry from the list of responding hosts is used. Also, if a host is a little late responding

to an invitation, it may first show up without its IP address. After the response to the invitation finally is

received, it will show up with its IP address.

Remounting an IP Response Time Monitor

It is possible to create xmperf instruments that monitor response times for multiple hosts. This illustrates

that even though it looks like the instrument receives data_feed packets from multiple hosts, in reality it

receives packets from only one host. All values in an instrument must come from the same host and must

be defined in the same statset. The Spmi on the measurement host receives ICMP responses (not data

feeds) from the monitored hosts and has been instructed to supply the calculated response time data in

statsets.

The looks of an instrument measurement IP response time for multiple hosts and of a console with

multiple instruments, each monitoring IP response time for multiple hosts can be deceiving, though. You

might be tempted to change the path of an instrument or the entire console, expecting to be able to select

a new list of hosts to monitor. You will get a list of hosts from which you can select one host; that will then

be the new monitoring (not monitored) host.

Monitoring IP Response Time from 3dmon

The 3dmon program takes a different approach to monitoring IP response time. It does so in a matrix that

monitors the response time in both directions. For example, if you elect to monitor response times for

three hosts, trist, ked, and nede, then the matrix would look like this:

 NN

 KN NK

 TN KK NT

nede TK KT nede

194 Performance Toolbox Guide

ked TT ked

 trist trist

The right side of the matrix represents the monitoring hosts, and the left side represents the monitored

hosts. Thus, the value represented in the cell marked NT is the response time for a response to an ICMP

echo packet sent from host nede to host trist. The response time for a response to an ICMP echo packet

sent in the other direction is shown in the cell marked TN. This measuring of response time in both

directions allows for the detection of situations where two hosts use different routes to reach each other

and it can also be used to pinpoint other anomalies in a network.

Because of the way 3dmon monitors IP response time, all of the hosts must be running the xmservd

daemon. Therefore, when 3dmon shows a list of hosts to monitor IP response times for, only hosts that

responded to invitations from 3dmon are included. The distributed 3dmon.cf sample configuration file

includes a configuration set named lanresp for monitoring of IP network response time.

Application Response Time Measurement (ARM)

This section describes the Performance Aide and Performance Toolbox implementation of the Application

Response Measurement API (ARM). To see where ARM would be useful, revisit the following list of

common steps a client/server transaction goes through:

1. Client application processes user input (CPU, disk)

2. Client machine enqueues network request (CPU, adapter, network)

3. Request is transferred over network (network capacity and speed)

4. Server enqueues request (CPU, adapter)

5. Server application processes request (CPU, disk, possibly access to other servers)

6. Server machine enqueues response (CPU, adapter, network)

7. Response is transferred over network (network capacity and speed)

8. Client application processes response (CPU, disk, possibly access to other servers)

9. Client application sends response to end-user (CPU, terminal network)

An application can be instrumented at many levels. For example, one set of measurements could cover

the entire period from the beginning of step 1 to the end of step 9. Another, potentially simultaneous, set of

measurements could cover the server side beginning with step 4 or 5 and ending with step 6. The ARM

API, in its current, unfinished state, depends on the instrumentation to supply meaningful names to

applications and transactions. Without such names, measurement would be impossible.

ARM Contexts in Spmi Data Space

As implemented in PTX, the ARM support is limited by the design of ARM as done by the original

designers. The two-level naming structure of PTX, where every context and metric has a short name and

a long descriptive name was not implemented in ARM. This puts a single requirement on how an

application is instrumented. The first 31 bytes of the description of an application and a transaction must

uniquely define that application and transaction within the application.

Applications are added to the Spmi data hierarchy as contexts. An application with the description

“Checking Account Query” will be added as the context:

RTime/ARM/CheckingAccountQuery

A transaction of that application called “Last Check Query” would be added to the previous context as

another context level and get a full path name as follows:

RTime/ARM/CheckingAccountQuery/LastCheckQuery

Chapter 17. Response Time Measurement 195

If the transaction was named “Check if any check of this account has bounced during the past 12 months”,

the full path name of the transaction context would be:

RTime/ARM/CheckingAccountQuery/Checkifanycheckofthisaccounthas

With the short name being truncated to 31 characters. The full name of the transaction would appear in

the description of the transaction context, truncated to 63 characters if necessary.

ARM Transaction Metrics

For each transaction, the following metrics are maintained. All metrics, with the exception of respavg are

fixed point values:

resptime The last measured response time for successful transaction in milliseconds.

respavg The weighted average response time for successful transactions in milliseconds.

count The number of successful transactions.

aborted The number of aborted transactions.

failed The number of failed transaction.

respmax The maximum response time for successful transactions in milliseconds.

respmin The minimum response time for successful transactions in milliseconds.

To reduce the memory usage, do not attempt to determine the median response time or the 80-percentile.

Implementation Restrictions

The ARM API is not implemented by Performance Aide on the SunOS operating system.

At this point, the arm_update subroutine is implemented as a null function. This is because the current

monitors of PTX wouldn’t be able to monitor transaction progress in a well-defined manner. This may

change in a future version of PTX. Other implementation restrictions are listed under each API function.

For the SpmiArmd daemon to get write access to the Spmi common shared memory, the daemon must

be started with root or system group authority. The safest way to make this happen is to make sure the

xmservd daemon is always running. This can be accomplished by entering the flag -l0 (lowercase L

followed by a zero) to the server’s line in /etc/inetd.conf. It is also recommended that the following line is

added to the appropriate xmservd.res file, which is used to start data suppliers:

supplier: /usr/bin/SpmiArmd

Because the PTX implementation uses shared memory, and because library code cannot feasibly catch all

relevant signals, application instrumentors must make sure that an arm_end call is issued for each active

application. If a program exits while applications it defined are still active, the shared memory area will not

be released and the SpmiArmd daemon will assume that data is still being supplied and will not attempt

to exit. This is not likely to be a major draw-back but if things get tricky, it may be necessary to stop the

daemon (and all other programs using the Spmi) and clear shared memory manually as described in

Releasing Shared Memory Manually.

Library Implementation

The ARM specifications prescribe that the ARM library is shipped as a shared library such as libarm.a or

libarm.so. Replacing the installed library with another library with the same interfaces will redirect

application subroutine calls to the library installed last. The implementation of ARM in PTX follows these

specifications but also allows a customer installation to invoke both an existing ARM library and the PTX

implementation of ARM. This is achieved by shipping the following two libraries:

196 Performance Toolbox Guide

/usr/lib/libarm.a A plain ARM implementation, which does not invoke any pre-existing ARM

implementation.

/usr/lib/libarm2.a A replacement library for the plain library.

To use the replacement library, convert the preexisting ARM library by running the following command:

armtoleg /usr/lib/libarm.a /usr/lib/libarmrepl.a >

/dev/null

Then copy /usr/lib/libarm2.a over /usr/lib/libarm.a. The replacement library will invoke the ARM functions

in /usr/lib/libarmrepl.a before invoking the PTX ARM implementation in the replacement library. This way,

a customer installation can continue to use an earlier ARM instrumentation and at the same time take

advantage of the PTX implementation of ARM. When the replacement library is used, the behavior of the

PTX ARM implementation changes but remains compliant with the ARM specifications. Further information

on these subroutines are in the AIX 5L Version 5.3 Technical Reference.

Both PTX libraries depend on the SpmiResp daemon to be started by the Spmi library code. This daemon

must run with root authority in order to interface directly with the Spmi common shared memory area. The

daemon is described in the “SpmiArmd Daemon” section.

The library code maintains state in a private shared memory area, which can be accessed with any

authority, thus allowing applications to do so through the library calls. The library communicates with the

Spmi through the SpmiArmd daemon, which issues standard Spmi subroutine calls. No direct

communication takes place between the Spmi and the ARM library.

Run-time Control

The use of two environment variables allows an application to turn both levels of ARM instrumentation on

and off. Because they are environment variables, they work for the shell from which the application is

executed and have no effect on the execution from other shells. The two environment variables are as

follows:

INVOKE_ARM

Controls the PTX ARM instrumentation. If the environment variable is not defined or if it

has any value other than False, PTX ARM instrumentation is active. If the replacement

library is not used, the effect of setting this environment variable to False is that the PTX

ARM library will function as a no-operation library and return zero on all calls.

INVOKE_ARMPREV

Controls any ARM instrumentation that can be invoked from the PTX implementation

through the replacement library. If the environment variable is not defined or if it has any

value other than False, the preexisting ARM instrumentation will be invoked, regardless of

whether the PTX ARM instrumentation is active. If the replacement library is not used, this

environment variable has no effect.

If both environment variables are set to False, either PTX ARM library will function as a no-operation

library and return zero on all calls.

SpmiArmd Daemon

Collection of application response times is done by a daemon called SpmiArmd. If this daemon is not

running when the Spmi receives an SpmiGetCx, see the SpmiGetCx subroutine call referencing ARM

contexts, it is started by the Spmi. The daemon will continue to run until it has been the only user of the

Spmi interface for 15 minutes and no data has been received from an instrumented application for 15

minutes. The time to live can be changed from the daemon’s configuration file /etc/perf/SpmiArmd.cf.

When running, the SpmiArmd daemon is controlled by an interval timer loop. The interval timer is, by

Chapter 17. Response Time Measurement 197

default, set to interrupt the daemon every second but the interval (see interval in the“Configuring the

SpmiArmd Daemon” section table) value can be changed from the daemon’s configuration file

/etc/perf/SpmiArmd.cf.

Whenever the daemon is interrupted by the timer, it empties the entire queue of post structures with the

exception of the last entry (see ATake, in the “SpmiArmd Daemon” on page 197 section table), using each

to update the corresponding metrics. The metrics are updated as follows:

1. If the post element indicates that the transaction instance completed successfully, response time is

calculated. The response time is calculated as a fixed point value in milliseconds. In addition, the

weighted average response time is calculated as a floating point value using a variable weight

(“Configuring the SpmiArmd Daemon” section), that defaults to 75%. The average response time is

calculated as weight percent of the previous value of the average plus (100 - weight) percent of the

latest response time observation. The value of weight can be changed from the SpmiArmd daemon’s

configuration file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum response time for

this transaction is updated, if required. Finally the counter of successful transaction executions is

incremented.

2. If the post element doesn’t indicate a successful execution, either the aborted or failed counters are

incremented. No other updates occur.

To eliminate the daemon from the need to lock data in the ARM library’s private shared memory area, the

following technique is used to control the linked list of post structures. The following three fields in the

shared memory control area are used as anchors:

ATake Points to the first post element to be processed by the daemon. After initializing, this field

is never updated by the library code. The daemon reads elements starting at ATake and

processes them. It stops when the next element has a next pointer of NULL and then sets

ATake to point at that element.

AGive Points to an uninitialized post element and is used by the library code to add new post

elements. When the shared memory area is first initialized, both ATake and AGive point to

an empty element. As new post elements are needed, the library code allocates them or

takes them from the AFreePost list. The element pointed to by AGive is then updated.

The last step in updating this element is the setting of its next pointer to the newly

acquired element, which will have a NULL next pointer.

AFreePost Points to a linked list of post elements. The elements between this pointer and ATake are

unused elements and will be reused by the library code. This field is never updated by the

daemon. Whenever an element is taken off this list, the AFreePost anchor is updated to

point at the next element. Initially, this anchor is set equal to AGive an ATake.

The daemon catches all viable signals and will exit for all but SIGHUP. When the daemon receives a

SIGHUP signal, it rereads the configuration file and re-initializes its control variables to any new values

specified in the configuration file.

Configuring the SpmiArmd Daemon

The SpmiArmd daemon looks for a configuration file in /etc/perf/SpmiArmd.cf. Three values can be

specified in this file. A keyword identifies which value is being set. The keyword must appear in column

one of a line and white space must separate the keyword and the value. The three values, as identified by

the corresponding keywords are as follows:

interval The interval in seconds between each loop of SpmiArmd. Default is 1 second.

weight The weight a previous value has in finding the weighted average of the response time.

Default is 75%.

timeout The number of seconds the daemon should live with no activity going on. The default is

900 seconds (15 minutes). A value of zero for this parameter will cause the daemon to live

forever.

198 Performance Toolbox Guide

If no configuration file is found, SpmiArmd continues with default control values.

Monitoring ARM Metrics from xmperf

The xmperf program presents its user with ARM contexts in the following two situations:

1. When the user displays the value selection window for the context RTime/ARM.

2. When a user instantiates a skeleton console that refers to measurement of ARM metrics.

ARM Context List in Value Selection Window

When the user wants to add a statistic to an instrument or exchange one statistic value with another, the

value selection windows are used to select the new statistic. If the user selects RTime from the top value

selection window and from the next window selects ARM, then the new value selection window displayed

will show one context for each application that can be monitored. By selecting an application you are taken

to the next selection window, which will present a list of the transactions defined for the application. By

selecting a transaction context you proceed to the value selection window for that application/transaction

context.

Instantiating ARM Skeleton Console

ARM skeleton consoles must be defined for each application you want to monitor because xmperf doesn’t

support dual wildcards (as does 3dmon). When a user instantiates an ARM skeleton console, a list of

transactions within the application is presented for the user to select from. Each line represent an

application/transaction context. One or multiple lines can be selected.

Remounting an ARM Monitor

It is not possible to create xmperf instruments that monitor ARM data for multiple hosts. However,

consoles can be constructed with instruments that each monitor a different host. ARM instruments can be

remounted on different hosts as any other instrument.

Monitoring ARM Metrics from 3dmon

The 3dmon program permits wildcarding in multiple levels. This allows you to create configurations

corresponding to those available for file systems. You can chose to be presented first with a list of hosts

and then by a list of all application/transaction combinations defined for that host. You can also restrict the

list to the application/transaction combinations for a single host.

The resulting 3dmon display will show the host/application/transaction name on the left side and the name

of configured metrics on the right side. A configuration set named armresp for monitoring of application

response time is available in the distributed 3dmon.cf configuration file.

Sample Applications

Source code for an instrumented application is not supplied with PTX but a modified version of the

xmpeek program is shipped as /usr/samples/perfagent/server/armpeek. This program is an

instrumented version of the ordinary xmpeek. It creates an application called armpeek and one transaction

for each combination of command line flag and hostname. For example, the command armpeek -l

myhost will create and measure a transaction called myhost-l; the command armpeek refers to the local

host and would create a transaction called localhost; the command armpeek -a server would create the

transaction server-a.

Chapter 17. Response Time Measurement 199

200 Performance Toolbox Guide

Chapter 18. System Performance Measurement Interface

Programming Guide

The System Performance Measurement Interface (SPMI) is an application programming interface (API)

that provides standardized access to local system resource statistics. By developing SPMI application

programs, a user can retrieve information about system performance with minimum system overhead.

SPMI Overview

Two types of application programs can use the SPMI:

v Data user applications that use the API to access SPMI data structures

v Dynamic Data Supplier (DDS) applications that use the API to add statistics and data structures to

those already available from the SPMI.

AIX 5L Version 5.3 Technical Reference: Communications Volume 2 must be installed to see the SPMI

subroutines.

The following figure illustrates the two different application types using the SPMI:

Possible Uses for the SPMI

The SPMI assists programmers with the following tasks:

v Developing performance monitoring products.

Figure 7. Application Types. This illustration shows the DDS program on the left and the Data User Application Code

on the right. Both are connected to an API library and SPMI code. The DDS program column has one way

communication with the Dynamic Data Supplier Shared Memory that has two-way communication with the SPMI

Common Shared Memory. The Dynamic Data Supplier Shared Memory has two-way communication with the SPMI

Common Shared Memory.

© Copyright IBM Corp. 1994, 2004 201

v Retrieving performance statistics using applications created with minimal programming and without

programming at the kernel level.

v Exporting an application’s performance statistics. The exporting application would be a dynamic data

supplier. A performance monitoring program could access these statistics without requiring changes to

the performance monitoring program.

SPMI Features

The SPMI offers the following features:

 Counter Data Enables access of activity rate statistics, such as the number of disk-read operations per

second.

Level Data Enables access of system-usage statistics, such as the usage level of real memory.

Single Data

Repository

Enables multiple data-user application programs, running simultaneously, to access the same

set of statistics.

Self Declarative Data Enables programs to dynamically present a list of available statistics to a user. The SPMI

arranges all performance data in a hierarchy, with related statistics grouped together. The

hierarchy contains context nodes (called contexts) and leaf nodes (called statistics). Each

context may have subordinate contexts, statistics, or both. A program can traverse the data

hierarchy through simple get and get-next calls to the SPMI API. Each context and statistic

has a short name and a descriptive name.

Instantiation Enables the SPMI to monitor multiple copies of a system resource. A context (and its

subcontexts and statistics) may exist in multiple instances, such as for each disk, each CPU,

or each active process.

Expandable Interface Enables a DDS application program to expand the set of statistics without affecting the API.

Note: Versions earlier than 2.3 of the SPMI in Performance Toolbox for AIX do not allow

simultaneous access of SPMI subroutines from multiple threads of a process.

Understanding the SPMI Data Hierarchy

SPMI data is organized in a multilevel hierarchy of contexts. A context may have subordinate contexts,

known as subcontexts, as well as statistics. The higher-level context is called a parent context.

The following figure illustrates a data hierarchy for a multiprocessor system. Each ellipse depicts a context

or subcontext, and each rectangle depicts a statistic. The CPU context consists of a subcontext for each of

the processors. The Top context serves as an anchor point for all other contexts.

202 Performance Toolbox Guide

If a SPMI application program (while looking for a statistic called %kernel), follows the CPU context

(shown in the previous figure), that program finds the following instances:

CPU/cpu_0/%kernel

CPU/cpu_1/%kernel

. . .

CPU/cpu_n/%kernel

Instantiation

When multiple copies of a resource are available, the SPMI uses a base context description as a template.

The SPMI creates one instance of that context for each copy of the resource or system object. This

process is known as instantiation. The previous figure illustrates instantiation by showing multiple copies of

the CPU context used to describe the processors. A context is considered instantiable if at least one of its

immediate subcontexts can exist in more than one copy.

The SPMI can generate new instances of the subcontexts of instantiable contexts prior to the execution of

API subroutines that traverse the data hierarchy. An application program can also request instantiation

explicitly. In either case, instantiation is accomplished by requesting the instantiation for the parent context

of the instances. For example, to instantiate all processor contexts in the previous figure, the application

would request instantiation at the CPU context.

Some instantiable contexts always generate a fixed number of subcontext instances in a given system, as

long as the system configuration remains unchanged. Examples of this type of instantiability are contexts

that contain subcontexts for network interface cards or processors.

Figure 8. Sample Data Hierarchy. This illustration depicts several ellipses and rectangles. Each ellipse depicts a

context or subcontext; CPU, Memory, Disk and so on. Each rectangle depicts a statistic; %user, %kernel, %wait, and

so on.. The CPU context consists of a subcontext for each of the processors. The Top context serves as an anchor

point for all other contexts. If, while looking for a statistic called %kernel, a SPMI application program follows the CPU

context, that program finds the following instances; CPU/cpu_0/%kernel, or CPU/cpu_1/%kernel, or

CPU/cpu_n/%kernel.

Chapter 18. System Performance Measurement Interface Programming Guide 203

Some contexts generate a fixed number of subcontexts on one system, but not on another. Using the Disk

context as an example, if System A has a fixed number of disks while System B has removable disk

drives, the number of subcontexts for the Disk context of System B changes as disk drives are added and

removed while the number of subcontexts for System A is constant.

A final type of context is entirely dynamic in that it will add and delete instances as required during

operation. For example, process subcontexts are repeatedly added and deleted during usual system

operation.

Instantiability

Because an application program can request instantiation for any context, the contexts are defined as

having one of three types of instantiability:

 Not instantiable The context contains either no subcontexts or a fixed number of subcontexts.

Most contexts that are themselves subcontexts of an instantiable context

belong to this group. In the Sample Data Hierarchy figure, the Top context

and the cpu_0 through cpu_n subcontexts are not instantiable because none

of their immediate subcontexts can occur in more than one copy. The Mem

context is also not instantiable, assuming the system processors share one

contiguous bank of memory.

Instantiable at system-

configuration time

The number of instances never changes unless the system is reconfigured.

In the Sample Data Hierarchy figure, the CPU context is an example of this

kind of instantiability because the number of processors is constant.

Dynamically instantiable The actual number of instances can vary during system operation.

Subcontexts need not be of the same context type. For example, one

dynamically instantiable context may have a group of subcontexts with an

instance for each active socket and another group with an instance for each

Transmission Control Protocol (TCP) connection. In such an arrangement,

the number of instances of both groups is likely to change quite frequently in

a network system.

Understanding SPMI Data Areas

The SPMI uses a shared memory segment created from user space. When an SPMI application program

starts, the SPMI checks whether another program has already set up the SPMI data structures in shared

memory. If the SPMI does not find the shared memory area, it creates one and generates and initializes all

data structures. If the SPMI finds the shared memory area, it bypasses the initialization process. A counter,

called users, shows the number of processes currently using the SPMI.

When an application program terminates, the SPMI releases all memory allocated for the application and

decrements the users counter. If the counter drops to less than 1, the entire common shared memory area

is freed. Subsequent execution of an SPMI application reallocates the common shared memory area.

The sys/Spmidef.h file contains declarations of all the SPMI data structures.

Traversing the Data Hierarchy

An application program has access to the data hierarchy through the API. The following figure gives a

simplified picture of the underlying data structures. A set of subroutines allows the application program to

navigate through the structures, reviewing what data is available. This action is known as traversing the

data hierarchy. The traversal process allows a user to find statistics of interest. To extract data from these

statistics, an application program must define a set of statistics, called a statset. See “Data Access

Structures and Handles, StatSets” on page 208 for additional information.

204 Performance Toolbox Guide

Data Traversal Structures and Handles

To traverse the data hierarchy, an application program uses four data structures, two handles, and a set of

subroutines. The structures include:

v “Declaring a Context - the cx_create Structure” on page 214

v “SpmiCx Structure” on page 206

v “SpmiCxHdl Handle” on page 206

v “SpmiCxLink Structure” on page 207

v “SpmiHotItems” on page 211

v “SpmiHotSet Structure” on page 210

v “SpmiHotVals Structure” on page 210

v “Declaring a Statistic - the SpmiRawStat Structure” on page 213

v “SpmiStat Structure” on page 206

v “SpmiStatHdl Handle” on page 207

v “SpmiStatLink Structure” on page 207

v “SpmiStatSet Structure” on page 208

v “SpmiStatVals Structure” on page 209.

Figure 9. Application Program View of Data Hierarchy. This illustration shows a hierarchy or organizational-type chart

with context at the top. It has a set of contexts and a set of statistics branching off from it. Each set of contexts has

another set of contexts and a set of statistics branching off from it. The dashed lines at the bottom signify the

continuing set of contexts and statistics that follow all sets of contexts.

Chapter 18. System Performance Measurement Interface Programming Guide 205

SpmiCx Structure

The SpmiCx structure describes a context node in the data hierarchy. As seen by an application program,

an SpmiCx data structure is always an instance of a context. The data structure names and describes the

context in the name and description fields, respectively. The structure also contains a symbolic reference,

called a handle, for accessing the parent context (this handle is NULL if the parent context is Top) and a

field describing the instantiability of the context. The asnno field contains an Abstract Syntax Notation One

(ASN.1) number that makes the structure unique. See “Making Dynamic Data-Supplier Statistics Unique”

on page 214 for more information about ASN.1.

The SpmiCx structure is defined as follows:

#define SI_MAXNAME 32

#define SI_MAXLNAME 64

enum SiInstFreq

{

 SiNoInst, /* Subcontexts never change */

 SiCfgInst, /* Subcontext changes are system configuration changes */

 SiContInst, /* System operation changes subcontexts continuously */

};

struct SpmiCx

{

 char name[SI_MAXNAME]; /* short name of the context */

 char description[SI_MAXLNAME]; /* descriptive name */

 SpmiCxHdl parent; /* handle of parent context */

 enum SiInstFreq inst_freq; /* instantiability of context */

 u_short asnno; /* ASN.1 number */

 u_char deleted; /* nonzero if context deleted */

 u_char dummy; /* alignment */

};

SpmiCxHdl Handle

The SpmiCxHdl handle is a symbolic reference to a context. To access the SpmiCx structure identified by

the handle, use the SpmiGetCx subroutine as follows:

struct SpmiCx *spmicx;

SpmiCxHdl cxhdl;

spmicx = SpmiGetCx(cxhdl);

SpmiStat Structure

The SpmiStat structure describes a statistics object. The object always describes a single-field counter or

level statistic. Typically, a system component updates these fields and the update process is asynchronous

to any requests to read the field. The field itself is not contained in the SpmiStat structure, but SPMI

subroutines allow an application program to retrieve the field value.

The SpmiStat structure, like the SpmiCx structure, associates a name and a description with each object.

It also defines default scale values by anticipating the low and high ranges of the field. For a counter field,

the SpmiStat structure defines the low and high ranges of the change anticipated for a 1-second time

period (the event rate per second).

The ValType enum defines the SiCounter and SiQuantity used to describe the data type as either a

counter or a level, respectively. The SpmiStat structure also contains the format of the field. Though the

enum DataType field defines many field formats, only SiLong and SiFloat are currently supported.

The asnno field contains an abstract syntax notation number that makes the structure unique from other

structures. See “Making Dynamic Data-Supplier Statistics Unique” on page 214 for more information.

The SpmiStat structure is defined as follows:

#define SI_MAXNAME 32

#define SI_MAXLNAME 64

206 Performance Toolbox Guide

enum ValType

{

 SiCounter, /* field is always incremented */

 SiQuantity, /* field maintains a level */

};

enum DataType

{

 SiULong,

 SiLong,

 SiUInt,

 SiInt,

 SiUShort,

 SiShort,

 SiChar,

 SiAddr,

 SiTimeval,

 SiFloat,

 SiDouble,

 SiPtr,

 SiUnsign,

};

struct SpmiStat

{

 char name[SI_MAXNAME]; /* short name of statistic */

 char description[SI_MAXLNAME]; /* descriptive name */

 long min; /* default low scale value */

 long max; /* default high scale value */

 enum ValType value_type; /* data type presented to API */

 enum DataType data_type; /* data format presented to API*/

 u_short asnno; /* ASN.1 number */

 u_short dummy; /* alignment */

};

SpmiCxLink Structure

The “SpmiFirstCx Subroutine” on page 340 and SpmiNextCx subroutines use the SpmiCxLink structure

to traverse the subcontexts of a context. The SpmiCxLink structure serves as a handle when passed as a

parameter to the SpmiNextCx subroutine. The structure contains both a reserved field and a field that is

the handle of the subcontext.

The SpmiCxLink structure is defined as follows:

struct SpmiCxLink

{

 void *reserved; /* reserved field, don’t change */

 SpmiCxHdl context; /* handle of subcontext */

};

SpmiStatLink Structure

The SpmiFirstStat and SpmiNextStat subroutines use the SpmiStatLink structure to traverse the

statistics of a context. This structure serves as a handle when passed as a parameter to the

SpmiNextStat subroutine. The structure contains both a reserved field and a field that is the handle of the

statistic.

The SpmiStatLink structure is defined as follows:

struct SpmiStatLink

{

 void *reserved; /* reserved field, don’t change */

 SpmiStatHdl stat; /* handle of statistic */

};

SpmiStatHdl Handle

The SpmiStatHdl handle is a symbolic reference to a statistic. To access the SpmiStat structure identified

by the handle, use the SpmiGetStat subroutine as follows:

Chapter 18. System Performance Measurement Interface Programming Guide 207

struct SpmiStat *spmistat;

SpmiStatHdl stathdl;

spmistat = SpmiGetStat(stathdl);

Data Access Structures and Handles, StatSets

To access data values, the application program must define the data values it needs to the SPMI. For this

purpose, the application program defines sets of statistics, or statsets, through the API. A set of statistics is

anchored to a data structure defined as an SpmiStatSet structure. The address of a defined SpmiStatSet

structure must be passed to the SPMI through the API each time the application program needs to access

the actual data values referenced by the structure.

When the SPMI receives a read request for an SpmiStatSet structure, the SPMI returns the latest value

for all the statistics in the set of statistics. This action reduces the system overhead caused by access of

kernel structures and other system areas, and ensures that all data values for the statistics within a set are

read at the same time. The set of statistics may consist of one or many statistics fields.

The SPMI builds internal data structures for the set in response to API calls from the application program.

The following figure illustrates a simplified look at the way the application views these structures through

the API.

One “SpmiStatVals Structure” on page 209 is created for each of the data values selected for the set.

When the SPMI executes a request from the application program to read the data values for a set, all

SpmiStatVals structures in the set are updated. The application program can then either traverse the list

of SpmiStatVals structures, by using the SpmiFirstVals and SpmiNextVals subroutines, or retrieve single

values by using the SpmiGetValue or SpmiGetNextValue subroutines.

An application program uses the following data structures to create, delete, and access sets of statistics.

SpmiStatSet Structure

This structure is an anchor point for the structures that define a set of statistics. The application program is

responsible for creating the SpmiStatSet structure, adding and deleting statistics, and deleting the

SpmiStatSet structure when no longer needed. The SPMI depends on the application program to supply

the address of an SpmiStatSet structure. The structure holds only the time stamp for the most recent

reading of its associated statistics and the elapsed time since the previous reading.

The SpmiStatSet structure is defined as follows:

Figure 10. Data Value Access Structures. This illustration shows an organization chart with a rectangle for StatSet at

the top linking to a set of StatVal rectangles that individually link to contexts and statistics.

208 Performance Toolbox Guide

struct SpmiStatSet

{

 struct timeval time; /* time of current get */

 struct timeval time_change; /* elapsed time since last get */

};

SpmiStatVals Structure

The SpmiStatVals structure carries the data values from the SPMI to the application program. It contains

handles that allow an application to access the parent context and the SpmiStat structure of the value.

The ref_count field indicates the number of times a particular statistic is included in the same set. The

ref_count field usually has a value of 1.

The SpmiStatVals structure is defined as follows:

union Value

{

 long l;

 float f;

};

struct SpmiStatVals

{

 void *reserved; /* reserved field */

 SpmiStatHdl stat; /* handle of statistic */

 SpmiCxHdl context; /* handle of context */

 int ref_count; /* count of simultaneous users */

 union Value val; /* counter/level data value */

 union Value val_change; /* delta change if counter data*/

 enum Error error; /* error code */

};

The last three fields actually transfer the data values, as follows:

 val Returns the value of the counter or level field. This field returns the statistic’s value as maintained

by the original supplier of the value. However, the val field is converted to an SPMI data format.

val_change Returns the difference between the previous reading of the counter and the current reading when

the statistic contains counter data. When this value is divided by the elapsed time returned in

theSpmiStatSet structure, an event rate-per-time unit can be calculated.

error Returns a zero value if the SPMI’s last attempt to read a data value was successful. Otherwise,

this field contains an error code as defined in thesys/Spmidef.h file. See the “List of SPMI Error

Codes” on page 242 for more information.

Data Access Structures and Handles, HotSets

To access data values, the application program can define a different type of StatSet to the SPMI. It is

used to extract data values for the most or least active statistics for a group of peer contexts. For example,

it can be used to define that the program wants to receive information about the two highest loaded disks,

optionally subject to those values exceeding a specified threshold. For this purpose, the application

program defines sets of peer statistics, called hotsets, through the API.

A hotset is anchored to a data structure defined as an “SpmiHotSet Structure” on page 210. The

address of a defined SpmiHotSet structure must be passed to the SPMI through the API each time the

application program needs to access the actual data values referenced by the structure.

When the SPMI receives a read request for an SpmiHotSet structure, the SPMI reads the latest value for

all the peer sets of statistics in the hotset in one operation. This action reduces the system overhead

caused by access of kernel structures and other system areas, and ensures that all data values for the

peer sets of statistics within a hotset are read at the same time. The hotset may consist of one or many

sets of peer statistics.

Chapter 18. System Performance Measurement Interface Programming Guide 209

The SPMI builds internal data structures for the set in response to API calls from the application program.

Figure 10 on page 208 illustrates the statset access structures. The structures for the hotset look exactly

the same but the referenced context is now the parent context of all peers to examine. This parent context

is what groups the peers together. All of the subcontexts of that parent context are of the same type and

are considered peer contexts. By naming a specific statistic for one peer context, you reference the same

statistic for each of the peer contexts, hence the term a set of peer statistics.

One “SpmiHotVals Structure” structure is created for each set of peer statistics selected for the hotset.

When the SPMI executes a request from the application program to read the data values for a hotset, all

SpmiHotVals structures in the set are updated. The application program can then either traverse the list of

SpmiStatVals structures, by using the SpmiFirstHot and SpmiNextHot subroutines, or retrieve single

values by using the SpmiNextHotItem subroutine.

An application program uses the following data structures to create, delete, and access hotsets.

SpmiHotSet Structure

This structure is an anchor point for the structures that define a group of peer statistic sets. The

application program is responsible for creating the SpmiHotSet structure, adding and deleting peer sets of

statistics, and deleting the SpmiHotSet structure when no longer needed. The SPMI depends on the

application program to supply the address of an SpmiHotSet structure. The structure holds only the time

stamp for the most recent reading of its associated statistics and the elapsed time since the previous

reading.

The SpmiHotSet structure is defined as follows:

struct SpmiHotSet

{

 struct timeval time; /* time of current get */

 struct timeval time_change; /* elapsed time since last get */

};

SpmiHotVals Structure

The SpmiHotVals structure carries the data values from the SPMI to the application program. It contains

handles that allow an application to access the parent context of the peer contexts and the SpmiStat

structure of the peer statistic. The ref_count field indicates the number of times a particular set of peer

statistics is included in the same set. The ref_count field usually has a value of 1.

The SpmiHotVals structure is defined as follows:

union Value

{

 long l;

 float f;

};

enum HotExcept {

 SiHotNoException = 0,

 SiHotException,

 SiHotTrap,

 SiHotBoth

};

enum HotFeed {

 SiHotNoFeed = 0,

 SiHotThreshold,

 SiHotAlways

};

struct SpmiHotItems

{

 char name[SI_MAXLNAME]; /* name of the peer context */

 union Value val; /* counter/level data value */

 union Value val_change; /* delta change if counter data*/

};

210 Performance Toolbox Guide

struct SpmiHotVals

{

 void *reserved; /* reserved field */

 SpmiStatHdl stat; /* handle of statistic */

 SpmiCxHdl grandpa; /* parent of the peer contexts */

 int ref_count; /* count of simultaneous users */

 enum Error error; /* error code */

 enum HotExcept except_type; /* when to send exceptions */

 short trap_no; /* trap number for SNMP traps */

 short severity; /* severity for exception pckt */

 enum HotFeed feed_type; /* when to send data feeds */

 int threshold; /* threshold for what to send */

 short frequency; /* max frequency of exceptions */

 short max_responses; /* max # of responses to send */

 short avail_resp; /* # of available hot readings */

 short count; /* # of returned hot readings */

 char *path; /* path to grandpa context */

 struct SpmiHotItems *items; /* array of returned readings */

};

The data carrying fields are:

 error Returns a zero value if the SPMI’s last attempt to read the data values for a set of peer statistics

was successful. Otherwise, this field contains an error code as defined in the sys/Spmidef.h file.

See the “List of SPMI Error Codes” on page 242 for more information.

avail_resp Used to return the number of peer statistic data values that meet the selection criteria (threshold).

The field max_responses determines the maximum number of entries actually returned.

count Contains the number of elements returned in the array items. This number will be the number of

data values that met the selection criteria (threshold), capped at max_responses.

items The array used to return count elements. This array is defined in the SpmiHotItems data

structure.

SpmiHotItems

An array of this structure is pointed to by the field items in the SpmiHotVals structure. Elements are

ordered after the returned data values; ascending if threshold is negative, otherwise descending. Each

element in the array has the following fields, used to return the result. Note that each instance of this

structure corresponds to one single peek statistic within a set of peer statistics as defined in an instance of

an SpmiHotVals structure.

 name The name of the peer context for which the values are returned.

val Returns the value of the counter or level field for the peer statistic. This field returns the statistic’s

value as maintained by the original supplier of the value. However, the val field is converted to an

SPMI data format.

val_change Returns the difference between the previous reading of the counter and the current reading when

the statistic contains counter data. When this value is divided by the elapsed time returned in the

SpmiStatSet structure, an event rate-per-time-unit can be calculated.

Dynamic Data Supplier (DDS) Program Structures

A DDS program can register and supply private statistics to the SPMI by calling SPMI subroutines. The

following information describes the program structures used to communicate between a DDS program and

the SPMI.

A DDS program initializes the API by using the “SpmiDdsInit Subroutine” on page 335 subroutine. This

subroutine allocates the DDS shared memory area, shown in “Data-Supplier Shared Memory Layout” on

page 212, based on the two data structures described in:

v “Declaring a Statistic - the SpmiRawStat Structure” on page 213

v “Declaring a Context - the cx_create Structure” on page 214

Chapter 18. System Performance Measurement Interface Programming Guide 211

DDS programs should not directly manipulate the shared memory area, its control information, or its data

structures except by using the following fields:

 SiShGoAway Indicates that the DDS program is no longer needed or that its data is corrupted. This field may

be set by any data-consumer program. Usually when a DDS program sees that this field has

true value, the program calls the SpmiExit subroutine to free the allocated shared memory and

unlink from the SPMI interface. Failure to call the SpmiExit subroutine before exiting retains

the allocated shared memory. As a result, the DDS program cannot be restarted until the

shared memory is freed using the ipcrm command.

SiShT Specifies a time stamp that must be updated by the DDS program each time the shared data

area is updated. Data-consumer programs may check this field to see when the DDS program

was last active. If too much time elapses without a time-stamp update, the data-consumer

program may assume the DDS is inoperative, and will set the SiShGoAway field and release

its access to the shared memory area.

Note: The time stamp is a structure with two integer elements. It is expected to be stored in

Big Endian notation. Hosts that use Little Endian notation must convert the integer fields to Big

Endian notation before storing them.

SiShArea DDS programs must use the SiShArea field. This field contains the address of the data area in

the shared memory segment. A DDS program must load a pointer with this field and use that

pointer to access the shared memory data area. The program can do calculations directly in the

area allocated in shared memory or do the calculations in local data fields and then move the

results to shared memory.

Data-Supplier Shared Memory Layout

The following structure shows the DDS shared memory layout:

typedef struct

{

 short SiShMajor; /* Major version of shm protocol */

 short SiShMinor; /* Minor version of shm protocol */

 char SiShName[64]; /* Path name for shm allocation */

 char SiShId; /* ID for ftok() function */

 key_t SiShKey; /* shared memory key (RSi interface)*/

 /* creating process ID (Spmi I/F) */

 int SiShMemId; /* shared memory identifier */

 u_long SiShInetAddr; /* IP address of owning host */

 u_short SiShPortNo; /* port number to talk to daemon */

 int SiShAllocLen; /* length of allocated area */

 int SiShInstBegun; /* instantiations begun */

 int SiShInstDone; /* instantiations completed */

 int SiShRefrBegun; /* refreshes begun */

 int SiShRefrDone; /* refreshes completed */

 boolean SiShGoAway; /* signal supplier to terminate */

 boolean SiShAlarmSw; /* switch to indicate alarm is set */

 cx_create *SiShCxTab; /* pointer to fixed context table */

 int SiShCxCnt; /* count of contexts in above table */

 cx_create *SiShInstTab; /* pointer instantiable contexts */

 int SiShInstCnt; /* count of contexts in above table */

 struct SpmiRawStat *SiShStatTab; /* pointer to consolidated Stats */

 int SiShStatCnt; /* count of Stats in above table */

 char *SiShArea; /* pointer to statistics area */

 int SiShAreaLen; /* length of statistics area */

 struct timeval SiShT; /* time of last area update BY US */

 struct timeval SiShPost; /* time of update of fields below */

 int SiShInterval; /* sample frequency in milliseconds */

 int SiShSubscrib; /* current number of values used */

 struct SpmiCxLink *SiShAddCx; /* instantiated contexts to add */

 struct SpmiCxLink *SiShActCx; /* active instantiated contexts */

 struct SpmiCxLink *SiShDelCx; /* contexts to delete */

 struct SpmiCxLink *SiShFreeCx; /* freed contexts */

 void *SiShAlarm; /* addr of Shm alarm data area */

 u_long SiShLock1; /* lock words to serialize access */

212 Performance Toolbox Guide

u_long SiShLock2; /* .. from multiple threads/CPUs */

 u_long SiShRes[4]; /* reserved for future use */

 char SiShData; /* start of data area */

} SpmiShare;

Declaring a Statistic - the SpmiRawStat Structure

To add permanent statistics, a DDS program must describe the statistics in the SpmiRawStat structure.

For each context with statistics that the program wants to add, the program must create a table of

statistics.

The SpmiRawStat structure is defined as follows:

#define SI_MAXNAME 32

#define SI_MAXLNAME 64

enum ValType

{

 SiCounter, /* field is always incremented */

 SiQuantity, /* field maintains a level */

};

enum DataType

{

 SiULong,

 SiLong,

 SiUInt,

 SiInt,

 SiUShort,

 SiShort,

 SiChar,

 SiAddr,

 SiTimeval,

 SiFloat,

 SiDouble,

 SiPtr,

 SiUnsign,

};

struct SpmiRawStat

{

 char name[SI_MAXNAME]; /* short name of statistic */

 char description[SI_MAXLNAME]; /* descriptive name */

 long min; /* default low scale value */

 long max; /* default high scale value */

 enum ValType value_type; /* data type presented to API */

 enum DataType data_type; /* data format presented to API*/

 u_short asnno; /* ASN.1 number */

 u_short size; /* source data field size */

 int offset; /* source data field offset */

 enum DataType type; /* source data field format */

 int (*get_fun)(); /* data access function pointer*/

#ifdef _SOLARIS

 int ksnoffs; /* Solaris ksn_struct offset */

 char module[SI_MODL]; /* Solaris kstat source module */

 char statname[SI_STAL]; /* Solaris kstat stat name */

 char fieldname[SI_FLDL];/* Solaris kstat field name */

 int datoffs; /* Solaris ksn data offset */

#endif /* _SOLARIS */

};

Application programs should leave the section inside #ifdef _SOLARIS uninitialized, even on Solaris

systems. The following example defines the “gadgets” and “widgets” statistics. See “Example of an SPMI

Dynamic Data-Supplier Program” on page 237 for a sample program that uses this definition.

static CONST struct SpmiRawStat PUStats[] = {

{ “gadgets”, “Fake counter value”, 0, 100, SiCounter,

 SiLong, 1, SZ_OFF(dat, a, SiULong), NULL},

Chapter 18. System Performance Measurement Interface Programming Guide 213

{ “widgets”, “Another fake counter value”, 0, 100,

SiCounter,

 SiLong, 2, SZ_OFF(dat, b, SiULong), NULL},

};

Declaring a Context - the cx_create Structure

After declaring the statistics, the DDS program must link them to their parent contexts. To do so, the

program uses a single table of structures that defines all the contexts as permanent contexts. Each

context requires one element of the cx_create type.

The cx_create structure is defined as follows:

#define SI_MAXNAME 32

#define SI_MAXLNAME 64

typedef struct

{

 char path[SI_MAXLNAME]; /* context path name */

 char descr[SI_MAXLNAME]; /* context description */

 u_short asnno; /* ASN.1 number */

 u_short datasize; /* size of context record */

 struct SpmiRawStat *stats; /* Stat array pointer for context */

 int num_stats; /* element count of Stat array */

 struct SpmiRawStat *inst_stats; /* Stat array for multiple */

 /* instances of this context */

 int num_inst_stats; /* element count for above array */

 int (*inst_subs)(); /* function to instantiate context*/

 int inst_freq; /* instantiate frequency */

 u_long level; /* relative level (work field) */

 char *area; /* data area pointer */

 u_long arealen; /* length of above data area */

} cx_create;

The following example defines the DDS/IBM and DDS/IBM/sample1 contexts. See “Example of an SPMI

Dynamic Data-Supplier Program” on page 237 for a sample program that uses this definition.

static CONST cx_create cx_table[] = {

 {“DDS/IBM”, “IBM-defined Dynamic Data Suppliers”, 2, 0,

 NULL, 0, NULL, 0, NULL, SiNoInst},

 {“DDS/IBM/sample1”, “Bogus Context Number 1”, 191, 0,

 PUStats, STAT_L(PUStats), NULL, 0, NULL, SiNoInst},

};

Making Dynamic Data-Supplier Statistics Unique

Some structures contain an asnno field. The SPMI assigns each context and statistic a unique number in

Abstract Syntax Notation One (ASN.1) format and stores the number in this field. As a result, the SPMI

can export SPMI and DDS statistics to other interfaces, such as the Simple Network Management Protocol

(SNMP). ASN.1 identifiers are composed of a series of integers separated by dots. That is, the context

called CPU has the ASN.1 identifier of 1. The subcontexts of CPU have ASN.1 identifiers that are

numbered starting with 1. The ASN.1 identifiers for statistics belonging to each subcontext of CPU are also

numbered starting with 1. For instance, for the CPU/cpu0/idle path name the CPU context has an ASN.1

identifier of 1, the CPU/cpu0 subcontext has an ASN.1 identifier of 1.1, and the CPU/cpu0/idle statistic

has an ASN.1 identifier of 1.1.4. This identifier is referred to as the relative dotted-decimal identifier.

The dotted-decimal identifiers of all statistics can be thought of as a substructure or subtree, which can be

attached to any point in another network, such as the SNMP Management Information Base (MIB) tree.

For example, an SNMP tree has a point defined as the following:

internet.private.enterprises.ibm.ibmAgents.aix.risc6000.risc6000private

This subtree is graphically illustrated in the following figure.

214 Performance Toolbox Guide

This description corresponds to a dotted-decimal identifier of 1.3.6.1.4.1.2.3.1.2.2 (the numbers 1.3.6.1

correspond to the internet portion of the tree). If the SPMI contexts were attached at this point, the fully

qualified dotted-decimal identifier for the CPU/cpu0/idle path name (1.1.4) would be

1.3.6.1.4.1.2.3.1.2.2.1.1.4.

No two contexts or statistics can have the same relative dotted-decimal identifier. The API checks that you

do not assign the same ASN.1 number more than once at each level in the subtree defined by your DDS

program. This ensures unique relative dotted-decimal identifiers.

In addition, statistics and contexts must have unique names within the parent context. The API checks that

DDS programs adhere to this rule so that the full path name of statistics and contexts remains unique.

Figure 11. Hierarchical Organization of Private MIB Subtrees. This diagram shows eight layers within the subtree.

Private is below internet. Enterprises branches off private and so on, as the previous point is defined. (The items

within the same layer and stemming from the same base are numbered from left to right.)

Chapter 18. System Performance Measurement Interface Programming Guide 215

However, the API can only detect name or ASN.1 number clashes, not resolve them. Therefore, it is

recommended that DDS programs use the following naming and numbering scheme. This scheme uses an

SPMI-defined context, called DDS, with a relative dotted-decimal identifier of 99. When adding subtrees,

DDS programs should use the DDS context as the parent context.

This naming and numbering scheme is graphically illustrated in the following figure.

Vendors of DDS programs should define a private subcontext of the DDS context as the parent context for

all DDS subtrees that the program creates. Assign this private subcontext a meaningful name and an

ASN.1 number that corresponds to the ASN.1 number assigned to the vendor in the SNMP subtree

enterprises. Such a number is called an Assigned Enterprise Number. For example, IBM has an Assigned

Enterprise Number of 2. Therefore, the subcontext for the path name DDS/IBM would have a relative

dotted-decimal identifier of 99.2.

DDS programs can be loaded in any sequence. However, because all DDS programs depend on the

presence of the vendor-specific context (such as DDS/IBM), each program must attempt to add this

context to make sure it exists. After a program has created the vendor-specific context, it remains defined

as long as the common shared memory area exists. When other DDS programs attempt to add the same

vendor-specific context, they simply use the already created context. Vendor-specific contexts must never

have statistics defined. Statistics should be added to subcontexts of the vendor-specific context.

Note: Vendors without SNMP numbers should register for one by contacting the Internet Assigned

Numbers Authority at the following address:

Internet Assigned Numbers Authority

USC/Information Sciences Institute

4676 Admiralty Way

Marina del Rey, California 90202-6695

The e-mail address for the Internet Assigned Numbers Authority is iana@isi.edu.

Using the System Performance Measurement Interface API

The API supplied with the Agent component is called the System Performance Measurement Interface

(SPMI). It allows you to write programs that extend the number of statistics available from a host’s

xmservd daemon (dynamic data-supplier programs) and to write programs that access statistics on the

local host without using the network interface (local data-consumer programs).

This chapter describes how you use this API to create your own dynamic data-supplier program. The

sample programs used to explain the API and several additional ones are provided in machine-readable

form as part of the Agent component. The sample programs and a Makefile can be found in directory:

/usr/samples/perfagent/server

Using SPMI to Create a Dynamic Data Supplier

When you want to extend the set of statistics available from the xmservd daemon on a host, you create a

dynamic data-supplier (DDS) program using the SPMI API. When the DDS program executes, it registers

its statistics with the SPMI. This makes the new statistics immediately available to the local data-consumer

programs and to the xmservd daemon so any program that gets its statistics from the extended xmservd

daemon can access the additional statistics provided by the DDS. DDS programs must execute on the

same host as the one running the xmservd whose set of statistics is to be extended.

Makefiles

The include files are based upon a number of pre-processor define directives being properly set. They

must be defined with the -D preprocessor flag.

v _AIX Tells the include files to generate code for any version of the operating system.

216 Performance Toolbox Guide

v _AIX_41 Tells the include files to generate code for AIX 4.1 and AIX 4.2 of the operating system.

v _AIX_32 Tells the include files to generate code for AIX 3.2 of the operating system.

v _BSD Required for proper BSD compatibility.

A Makefile to build all the sample programs provided could look like the following:

LIBS = -lbsd -lSpmi

CC = cc

CFLAGS = -D_BSD -D_AIX-D_AIX_41

all:: SpmiDds SpmiSupl SpmiSupl1 SpmiLogger SpmiPeek lchmon

lfiltd

SpmiDds: SpmiDds.c

 $(CC) -o SpmiDds SpmiDds.c $(CFLAGS) $(LIBS)

SpmiSupl: SpmiSupl.c

 $(CC) -o SpmiSupl SpmiSupl.c $(CFLAGS) $(LIBS)

SpmiSupl1: SpmiSupl1.c

 $(CC) -o SpmiSupl1 SpmiSupl1.c $(CFLAGS) $(LIBS)

SpmiLogger: SpmiLogger.c

 $(CC) -o SpmiLogger SpmiLogger.c $(CFLAGS) $(LIBS)

SpmiPeek: SpmiPeek.c

 $(CC) -o SpmiPeek SpmiPeek.c $(CFLAGS) $(LIBS)

lchmon: lchmon.c $(CC) -o lchmon lchmon.c $(CFLAGS) $(LIBS)

 -lcurses

lfiltd: lfiltd.c lex.lfiltd.o lfiltd.h

 $(CC) -o lfiltd lfiltd.c lex.lfiltd.o $(CFLAGS) $(LIBS)

lex.lfiltd.o: lfiltd.lex lfiltd.h

 lex lfiltd.lex

 cp lex.yy.c lex.lfiltd.c

 rm lex.yy.c

 $(CC) -c lex.lfiltd.c $(CFLAGS)

To compile on non-AIX systems, other flags must be used. A Makefile is included with each non-AIX agent.

Please use flags as defined in that Makefile. If the compiler you are using doesn’t support ANSI function

prototyping, add the flag:

-D_NO_PROTO

Writing Dynamic Data-Supplier Programs

A dynamic data-supplier program is intended to extend the set of statistics that data-consumer programs

can be supplied with, either from the xmservd daemon of a host or directly from the SPMI repository

through local data-consumer programs. A dynamic data-supplier can add statistics as permanent

(non-volatile) or dynamic (volatile) contexts with subcontexts and statistics. To illustrate this concept,

assume the SPMI has a set of contexts and statistics as illustrated in the following figure.

Chapter 18. System Performance Measurement Interface Programming Guide 217

The set of statistics on an IBM RS/6000 is much larger than shown, so this is used as an illustration. Now

assume that you have access to other statistics and want them added to the set. This is when you want to

create a dynamic data-supplier program. For example, you could extend the tree structure of contexts and

statistics to look as shown in the following figure.

Figure 12. Start Set of Statistics. This figure shows a set of parent contexts named Mem, PagSp, and DDS. The first

contexts have subcontexts representing samples of those found on the operating system.

218 Performance Toolbox Guide

In the preceeding figure, two contexts have been added as subcontexts of a context called DDS/IBM and

are named Test and Moretest. The first of these contexts has two statistics called gadgets and widgets.

The second has no directly descendent statistics but has a subcontext called SubTest, which in turn has

two statistics: level and queue.

By convention, DDS programs always add statistics below the context DDS/vendor where vendor is the

name of the vendor or customer that develops the DDS program; not the name of the machine type that

the programs run on. This convention is established to prevent name clashes between the DDS programs

developed by different vendors. Statistics should only be added to subcontexts of the DDS/vendor

contexts, never to the DDS/vendor context itself.

The hierarchy shown in Figure 13 could be displayed with the program xmpeek. This generates output as

follows:

/birte/Mem/ Memory statistics

/birte/Mem/Real/ Physical memory statistics

/birte/Mem/Real/size Size of physical memory (4K pages)

/birte/Mem/Real/%free % memory which is free

/birte/Mem/Real/%comp % memory allocated to computational segments

/birte/Mem/Virt/ Virtual memory management statistics

/birte/Mem/Virt/pagein 4K pages read by VMM

/birte/Mem/Virt/pageout 4K pages written by VMM

/birte/Mem/Virt/steal Physical memory 4K frames stolen by VMM

/birte/PagSp/ Paging space statistics

/birte/PagSp/size Total active paging space size (4K pages)

/birte/PagSp/free Total free disk paging space (4K pages)

/birte/PagSp/hd6/ Statistics for paging space hd6

/birte/PagSp/hd6/size Size of paging space (4K pages)

/birte/PagSp/hd6/%free Free portion of this paging space (percent)

/birte/DDS/ Dynamic Data-Supplier Statistics

/birte/DDS/IBM/ IBM-defined Dynamic Data-Suppliers

Figure 13. Extended Set of Statistics. This figure shows a set of subcontexts have been added to the DDS context.

Chapter 18. System Performance Measurement Interface Programming Guide 219

/birte/DDS/IBM/Test/ Bogus Context Number 1

/birte/DDS/IBM/Test/gadgets Fake counter value

/birte/DDS/IBM/Test/widgets Another fake counter value

/birte/DDS/IBM/Moretest/ Bogus Context Number 2

/birte/DDS/IBM/Moretest/SubTest/ Bogus Context Number 3

/birte/DDS/IBM/Moretest/SubTest/level Fake quantity value

/birte/DDS/IBM/Moretest/SubTest/queue Another fake quantity value

Dynamic Data Supplier for Permanent Extensions

For this first exercise, it is assumed that the added contexts and statistics are non-volatile and as such can

be added as permanent statistics. This requires the use of only one subroutine and the following

programming steps:

1. “Declare Data Structures to Describe Statistics.”

2. “Declare Data Structures to Describe Contexts” on page 221.

3. “Declare Other Data Areas as Required” on page 222.

4. “Initialize the SPMI Interface” on page 223.

5. “Initialize Exception Handling” on page 223.

6. “Initialize Statistics Fields” on page 223.

7. “Create Main Loop” on page 224.

Declare Data Structures to Describe Statistics

Statistics are described in a simple structure of type structSpmiRawStat (“Declaring a Statistic - the

SpmiRawStat Structure” on page 213). For each of the contexts you define that has statistics, you must

create a table of statistics. The definition of the statistics gadgets and widgets would look as follows:

static const struct SpmiRawStat PUStats[] = {

{ “gadgets”, “Fake counter value”, 0, 100, SiCounter,

 SiLong, 1, SZ_OFF(dat, a, SiULong)},

{ “widgets”, “Another fake counter value”, 0, 100,

SiCounter,

 SiLong, 2, SZ_OFF(dat, b, SiULong)},

};

The fields in the structure are the following:

v Short name of statistic, 32 bytes character data.

v Description of statistic, 64 bytes character data.

v Lower Range for plotting, numeric, less than upper range.

v Upper Range for plotting, numeric, higher than lower range.

v Symbolic Constant defining the way data values should be interpreted. Currently, only the following are

defined:

SiCounter Value is incremented continuously. Usually, data-consumer programs show the delta (change)

in the value between observations, divided by the elapsed time, representing a rate.

SiQuantity Value represents a level, such as memory used or available disk space.

v Symbolic Constant describing the format of data as it is delivered to the data consumers. The data

format must be one of the types defined by the “enum” DataType (“SpmiStat Structure” on page 206

section) in the include file /usr/include/sys/Spmidef.h. Currently, only the types SiLong and SiFloat

are valid. If any other type is specified, SiFloat is assumed.

v ASN.1 (Abstract Syntax Notation One) Number, or sequence number, used when statistics defined to

the SPMI are exported to the SNMP (Simple Network Management Protocol). Each of the statistics

belonging to a context must have a unique ASN.1 number.

v SZ_OFF Macro as defined in the include file /usr/include/sys/Spmidef.h. The macro takes three

arguments as follows:

220 Performance Toolbox Guide

– Name of a structure containing the source data field for this statistics value.

– Name of the source data field for this statistics value in the structure named previously.

– Data format of the source data field.

Because you actually want to add two sets of statistics at two different places in the context hierarchy, you

also need to declare the second set. The following code piece shows how that can be done:

static const struct SpmiRawStat FakeMemStats[] = {

{ “level”, “Fake quantity value”, 0, 100, SiQuantity,

 SiLong, 1, SZ_OFF(dat, c, SiULong)},

{ “queue”, “Another fake quantity value”, 0, 100,

SiQuantity,

 SiLong, 2, SZ_OFF(dat, d, SiULong)},

};

Declare Data Structures to Describe Contexts

After you have the statistics declared, you need to link them to their parent contexts. This is also done by

defining a table of data structures. You need a single table of structures holding all the contexts you want

to define as permanent contexts. Each context requires one element of the type cx_create (see the

“Declaring a Context - the cx_create Structure” on page 214section). To create the three contexts you

wanted to add, declare the four contexts as shown in the following code segment:

static const cx_create cx_table[] = {

{“DDS/IBM”, “IBM-defined Dynamic Data-Suppliers”, 2, 0,

 NULL, 0, NULL, 0, NULL, SiNoInst},

{“DDS/IBM/Test”, “Bogus Context Number 1”, 220, 0,

 PUStats, STAT_L(PUStats), NULL, 0, NULL, SiNoInst},

{“DDS/IBM/Moretest”, “Bogus Context Number 2”, 221, 0,

 NULL, 0, NULL, 0, NULL, SiNoInst},

{“DDS/IBM/Moretest/SubTest”, “Bogus Context Number 3”, 222,

0,

 FakeMemStats, STAT_L(FakeMemStats), NULL, 0, NULL, SiNoInst}

};

The first context declared is the vendor context. Because DDS programs from a vendor may be started in

any sequence, there is no guarantee that this context exists. All DDS programs, therefore, must attempt to

add the vendor context. If the vendor context exists, the attempt is ignored; otherwise the context is

added. Note that this is the only type of context that is handled this way. Attempts to add other contexts

twice cause the API to return an error to your program.

Each context element must have the following fields:

v Full path name of context, 64 bytes character data.

v Description of context, 64 bytes character data.

v The ASN.1 number assigned to the context. Each context within a parent context must have a unique

ASN.1 number. For vendor contexts, the ASN.1 number should be set equal to the SNMP Assigned

Enterprise Number.

v This field provides compatibility with internal data tables. It must be specified as zero.

v Pointer to the table of statistics for this context or NULL if none are defined.

v Count of elements in the table of statistics for this context or zero if none are defined. If statistics are

defined, use the macro STAT_L to get the number of table elements.

v This field provides compatibility with internal data tables. It must be specified as NULL.

v This field provides compatibility with internal data tables. It must be specified as zero.

v This field provides compatibility with internal data tables. It must be specified as NULL.

v A symbolic constant describing the type of instantiation available for this context. The include file

/usr/include/sys/Spmidef.h defines three constants you can use. If the context you are defining never will

be extended by addition of subcontexts dynamically, specify the constant SiNoInst; otherwise use the

constant SiContInst. The last of the three instantiation types has no meaning for dynamic data-supplier

Chapter 18. System Performance Measurement Interface Programming Guide 221

statistics. Certain restrictions apply when defining DDS contexts that are to be made available to the

SNMP agent. Refer to “Limitations Induced by SMUX” on page 179 and “Instantiation Rules” on page

180 to learn about these restrictions.

Declare Other Data Areas as Required

Your dynamic data-supplier program must define its own data areas as required. The structure and fields

are defined as follows:

extern char SpmiErrmsg[];

struct dat

{

 u_long a;

 u_long b;

 u_long c;

 u_long d;

};

static int CxCount = CX_L(cx_table); /* Count of contexts defined */

static SpmiShare *dataarea = NULL; /* Shared memory pointer */

static struct dat *d = NULL; /* Pointer to stats data area */

The first line declares an external variable used by the SPMI API to return an error text to the invoking

program if an error occurs.

The next lines define the data structure where the raw statistics are calculated to present to System

Performance Measurement Interface (SPMI) interface. The data area must hold all the data fields

referenced by non-volatile statistics.

Next, define a counter that you will use the CX_L macro to initialize with the number of static contexts that

you want to add. Finally, define a pointer that will eventually be initialized to point to the data area you

share with the SPMI interface.

The SPMI interface and the DDS use shared memory to communicate between themselves. When

programs share memory, conventions must be established and adhered to for the use of the shared

memory areas. The shared memory used by the SPMI is divided into two main areas: the shared memory

structured fields and the shared memory data area.

Shared Memory Structured Fields

The shared memory area is created by subroutines and its control information and generated data

structures should (with few exceptions) never be used or manipulated by the DDS program directly. You

can see the control information as it is defined in the include file /usr/include/sys/Spmidef.h as the

structure SpmiShare (“Dynamic Data Supplier (DDS) Program Structures” on page 211). The fields that

must be used by the DDS program are:

 SiShGoAway This flag may be set by any data-consumer program to indicate that some condition indicates that

the DDS program is no longer needed or that its data is corrupted. Usually, when a DDS sees

this flag, it should call the SpmiExit subroutine to free the shared memory it allocated and to

unlink from the SPMI interface. Failure to call SpmiExit before exiting retains the allocated DDS

shared memory which, in turn, renders it impossible to restart the DDS program until the shared

memory is freed through the command ipcrm.

SiShT A time stamp which must be updated by the DDS program each time the shared data area is

updated. Data-consumer programs, and the xmservd daemon in particular, checks this field to

see when your DDS was last active. If more than 30 seconds elapse without the time stamp

being updated, xmservd assumes your dynamic data-supplier has died, sets the SiShGoAway

flag and releases its access of the shared memory area. (30 seconds is the default. A value from

15 to 600 seconds can be specified using the command line option -m for xmservd.

Note: The time stamp is a structure with two integer elements. It is expected to be stored in

Big-Endian notation. Hosts that use Little-Endian notation must convert the integer fields to

Big-Endian notation before storing them.

222 Performance Toolbox Guide

SiShArea The address of the data area in the shared memory segment. Your DDS program must load a

pointer with the contents of this field and use that pointer to access the shared memory data

area.

Shared Memory Data Area

The shared memory data area is where your DDS is supposed to place its statistics values as they are

calculated. You can do your calculations directly in the area allocated in shared memory, or you can do the

calculations in local data fields and then move the result to shared memory. The important thing is to be

aware that the shared memory area is guaranteed to be large enough to contain the last of those fields in

your data structure that are referenced in any one of the tables defining statistics, but no larger.

Thus, if the structure dat as defined in the code segment in section “Declare Other Data Areas as

Required” on page 222 had additional data fields, those would not be available in shared memory because

no declared statistics reference them. Attempts to access such fields would cause segmentation faults.

Initialize the SPMI Interface

With all required declarations in place, you can register with the SPMI interface. This is done through a

single subroutine called SpmiDDsAddCx. For the purpose of this example, the subroutine is invoked with

the following statements:

dataarea = SpmiDdsInit(cx_table, CxCount, NULL,0,

“/etc/SpmiSupl1SHM”);

if (!dataarea)

{

 printf(“%s”, SpmiErrmsg);

 exit(-1);

}

d = (struct dat *) &dataarea->SiShArea[0];

Initialize Exception Handling

Because a DDS uses shared memory to talk to SPMI, it is important to make sure the shared memory

area is released when your DDS program dies. The best way to make sure this happens is to catch the

signals that indicate that your program dies. The same function used to process the signals can

conveniently be used for typical program exit. This could be done as shown in this code piece:

void SpmiStopMe()

{

 dataarea = NULL;

 SpmiExit();

 exit(0);

}

signal(SIGTERM, SpmiStopMe);

signal(SIGHUP, SpmiStopMe);

signal(SIGINT, SpmiStopMe);

signal(SIGSEGV, SpmiStopMe);

The function SpmiStopMe makes sure the shared memory area is freed and then exits. The “signal” lines

defining the signal handler should be placed around the place in the DDS program where the program

registers with SPMI.

Initialize Statistics Fields

In most cases, statistics values are a combination of the types SiCounter and SiQuantity. Data

consumers usually are interested in delta values for the former, so the first thing to do is take the first

reading and initialize the statistics fields in shared memory. That way, even the first delta values read by a

data consumer are likely to be valid.

Updating data fields always requires updating the time stamp. The lines used to do this and to give the

initial field values could follow the scheme that follows. In this example, the fields are updated directly in

the shared memory data area.

Chapter 18. System Performance Measurement Interface Programming Guide 223

gettimeofday(&dataarea->SiShT, NULL);

d->a = ... ;

d->b = ... ;

d->c = ... ;

d->d = ... ;

Create Main Loop

The main loop is usually simple and is conveniently made as a while loop. Always include in your while

loop a test for the SiShGoAway flag. Your program may have additional conditions added to terminate the

program as required by the application. The following example main loop only tests for the flag:

while(!dataarea->SiShGoAway)

{

 usleep(499000);

 gettimeofday($dataarea->SiShT, NULL);

 d->a = ... ;

 d->b = ... ;

 d->c = ... ;

 d->d = ... ;

}

SpmiStopMe();

Although the main loop can be as simple as shown previously, such simplicity may cause the DDS

program to update the values in the shared memory area more often than required. In situations where the

DDS has defined values but no data-consumer program is using any of those, updating the data fields is

entirely unnecessary.

Two fields let you add a little more finesse to your dynamic data-supplier program. Both fields are Shared

Memory Structured Fields and can be accessed through the pointer returned by SpmiDDsAddCx. The

fields are not updated by every data-consumer program; only by the xmservd daemon. Therefore, your

DDS program must be able to cope with the situation that the two fields are not updated. The fields are:

 SiShInterval An integer that gives you the number of milliseconds between requests for data values from

xmservd. Because different requestors of values may request with different intervals, this

value reflects the smallest interval of those defined (i.e., the interval defined for the

instrument that runs fastest).

SiShSubscrib The number of data values currently being requested from this DDS program by xmservd.

Obviously, if SiShSubscrib is zero, nobody is requesting continuous supply of data values and you can

reduce the update frequency in your DDS accordingly. It is recommended that you do not stop the

updating of the data fields but that you do so with intervals of, say, five seconds.

If SiShSubscrib is nonzero, somebody is requesting continuous supply of data values, so adjust the

update frequency to match the request frequency as given in SiShInterval.

A main loop that uses these principles could look as shown here:

while(!dataarea->SiShGoAway)

{

 if (datarea->SiShSubscrib)

 usleep(dataarea->SiShInterval * 1000);

 else

 sleep(5);

 gettimeofday(&dataarea->SiShT, NULL);

 d->a = ... ;

 d->b = ... ;

 d->c = ... ;

 d->d = ... ;

}

SpmiStopMe();

224 Performance Toolbox Guide

The SiShSubscrib field usually holds a count of all data-consumer programs written to the RSi API (see

Chapter 19, “Remote Statistics Interface Programming Guide,” on page 245) that are currently subscribing

to data values in the shared memory area. However, in order to allow a program that acts both as a data

consumer and a dynamic data supplier, you can move the port number of the port assigned to the data

consumer side of the program to the field SiShPortNo, which is another shared memory structured field. A

data-consumer/dynamic data-supplier program could use a statement like the following to insert the port

number:

dataarea->SiShPortNo = rsh->portno;

where rsh is the RSiHandle for the host. The field portno in the RSiHandle structure is updated by the

RSiOpen subroutine.

When the port number is inserted in the shared memory area, the xmservd does not count subscriptions

for data values in the shared memory area that originate at that port number on the local host.

The Entire Program

The program shown previously in segments is combined into a working DDS program that follows. Source

code for the program can be found in /usr/samples/perfagent/server/SpmiSupl1.c:

#include stdio.h

#include sys/signal.h

#include sys/types.h

#include netinet/in.h

#include sys/Spmidef.h

extern char SpmiErrmsg[];

struct dat

{

 u_long a;

 u_long b;

 u_long c;

 u_long d;

};

static const struct SpmiRawStat PUStats[] = {

{ “gadgets”, “Fake counter value”, 0, 100, SiCounter,

 SiLong, 1, SZ_OFF(dat, a, SiULong)},

{ “widgets”, “Another fake counter value”, 0, 100,

SiCounter,

 SiLong, 2, SZ_OFF(dat, b, SiULong)},

};

static const struct SpmiRawStat FakeMemStats[] = {

{ “level”, “Fake quantity value”, 0, 100, SiQuantity,

 SiLong, 1, SZ_OFF(dat, c, SiULong)},

{ “queue”, “Another fake quantity value”, 0, 100,

SiQuantity,

 SiLong, 2, SZ_OFF(dat, d, SiULong)},

};

static const cx_create cx_table[] = {

{“DDS/IBM”, “IBM-defined Dynamic Data-Suppliers”, 2, 0,

 NULL, 0, NULL, 0, NULL, SiNoInst},

{“DDS/IBM/Test”, “Bogus Context Number 1”, 220, 0,

 PUStats, STAT_L(PUStats), NULL, 0, NULL, SiNoInst},

{“DDS/IBM/Moretest”, “Bogus Context Number 2”, 221, 0,

 NULL, 0, NULL, 0, NULL, SiNoInst},

{“DDS/IBM/Moretest/SubTest”, “Bogus Context Number 3”, 222,

0,

 FakeMemStats, STAT_L(FakeMemStats), NULL, 0, NULL, SiNoInst},

};

static int CxCount = CX_L(cx_table); /* Count of contexts defined */

static SpmiShare *dataarea = NULL; /* Shared memory pointer */

static struct dat *d = NULL; /* Pointer to stats data area */

void SpmiStopMe()

{

 dataarea = NULL;

Chapter 18. System Performance Measurement Interface Programming Guide 225

SpmiExit();

 exit(0);

}

void main()

{

 dataarea = SpmiDdsInit(cx_table, CxCount, NULL, 0,

“/etc/SpmiSul1SHM”);

 if (!dataarea)

 {

 printf(“%s”, SpmiErrmsg);

 exit(-1);

 }

 d = (struct dat *)&dataarea->SiShArea[0];

 signal(SIGTERM, SpmiStopMe);

 signal(SIGHUP, SpmiStopMe);

 signal(SIGINT, SpmiStopMe);

 signal(SIGSEGV, SpmiStopMe);

 gettimeofday &dataarea >SiShT, NULL);

 d->a = 22;

 d->b = 42;

 d->c = 28;

 d->d = 62;

while(!dataarea->SiShT, NULL);

{

 usleep(499000);

 gettimeofday(&dataarea->SiShT, NULL);

 d->a += dataarea->SiShT.tv_sec & 0xff;

 d->b += dataarea->SiShT.tv_sec & 0xf;

 d->c += (dataarea->SiShT.tv_sec & 0x20f) & 0xffff;

 d->d += (dataarea->SiShT.tv_sec & 0x7f) & 0xffff;

 }

 SpmiStopMe();

}

Dynamic Data Supplier for Volatile Extensions

A DDS program may allow contexts and statistics to be added and deleted on the fly. For example,

assume your DDS is concerned with monitoring of the response times between pairs of network hosts. On

even a small network, it would be quite excessive to define all possible host pairs and keep track of them

all. At any point in time, however, a limited number of sessions are active, but this number changes as do

the host pairs involved. If you wanted to reflect this volatility in the statistics you present, you would need

the ability to add and delete statistics on the fly.

To illustrate the use of the two subroutines that allow you to add and delete contexts dynamically, expand

the first sample program. Extend the context hierarchy shown in Figure 13 on page 219 to look like the

hierarchy in the following figure.

226 Performance Toolbox Guide

As you can see, there are plans to add a context called Bingo to the hierarchy with the previously added

context Moretest as parent of the new context. The context that is added has two statistics values, namely

problems and solutions. The plan is to allow the context to be added and deleted dynamically. For lack

of a better trigger, let the time-of-day determine when to add and delete the context.

Rather than writing an entirely new program, take the previous example program and merely add the code

lines required for the additional functionality using the following steps:

v “Declare Data Structures to Describe Dynamic Statistics.”

v “Declare Data Structures to Describe Dynamic Context” on page 228.

v “Declare Other Data Areas as Required” on page 228.

v “Modify Registration with the Spmi Interface” on page 228.

v “Modify Main Loop to Add and Delete Dynamic Context” on page 229.

Declare Data Structures to Describe Dynamic Statistics

Statistics are defined almost the same way whether they are to be added permanently or dynamically. It is

still true that all statistics for a context must be defined in one array. That one array may be referenced by

more contexts, if appropriate; but most likely, it is not. The only real difference is that each set of statistics

meant to be added dynamically must reference a separate data structure as source of its data fields. This

is quite different from permanent statistics where all statistics source fields must reside in a common

structure.

Obviously, there’s a reason for this. Static data values occur only once. They all reside in one contiguous

area in shared memory. Dynamic data values, on the contrary, may exist in multiple instances and may

Figure 14. Dynamic Extension of Statistics. This figure shows the hierarchy of a changing set of subcontexts.

Chapter 18. System Performance Measurement Interface Programming Guide 227

come and go. They are allocated dynamically in shared memory when they are required and when the

values are deleted, their shared memory areas are returned to the free list.

The definition of statistics to add the problems and solutions values is shown as follows:

static CONST struct SpmiRawStat InstStats[] = {

{ “problems”, “Fake counter value”, 0, 100, SiCounter,

 SiLong, 1, SZ_OFF(inst, a, SiLong)},

{ “solutions”, “Another fake counter value”, 0, 100,

SiCounter,

 SiLong, 2, SZ_OFF(inst, b, SiLong)} };

Notice that this time you do not reference the structure dat used previously, but a different structure called

inst, which is yet to be defined.

Declare Data Structures to Describe Dynamic Context

In this example, you add only a single context. You could have added many more but for each context,

which the DDS program may want to add, one element must be defined in a table of contexts. No context

can be dynamically added unless it was defined in a table and passed to the SpmiDDsAddCx function

when your DDS registered with the SPMI. The table has exactly the same format as the table of

permanent contexts but must not be the same table. The following code segment shows how to define the

single context you need to add:

Note: The pack name, description, and ASN.1 number of the context are used as placeholders, only. The

real values to use are supplied on the SpmiDDsAddCx subroutine each time a context is called.

static CONST cx_create inst_table[] = {

{“DDS/IBM/Moretest/INST1”, “Instantiable Context Number 1”,

215, 0,

 InstStats, STAT_L(InstStats), NULL, 0, NULL, SiNoInst}

};

Declare Other Data Areas as Required

You need only define the structure referenced by the declared statistics and a pointer to be used for

accessing the allocated shared data area. For convenience, also define an integer to hold the number of

dynamic contexts:

struct inst

{

 float a;

 u_long b;

};

int InstCount = CX_L(inst_table); /* Count of contexts defined */

struct inst *pt1 = NULL; /* Pointer to stats data area */

Modify Registration with the Spmi Interface

Registration with the SPMI is almost unchanged. All you need is to tell the subroutine where the dynamic

context table is and how many elements it has. This is shown in the following code segment:

dataarea = SpmiDdsInit(cx_table, CxCount, inst_table, InstCount,

“/etc/SpmiSupl_hook”);

if (!dataarea)

{

 fprintf(stderr, “%s\n”, SpmiErrmsg);

 exit(-1);

}

d = (struct dat *)&dataarea->SiShArea[0];

228 Performance Toolbox Guide

Modify Main Loop to Add and Delete Dynamic Context

Finally, the following code segment shows the modified main loop. The loop has been extended with three

pieces of code. The first one uses a SpmiDDsAddCx subroutine to add the context. The second uses

SpmiDdsDelCx to delete the context again, and the third updates the values in the shared data area

whenever the context and its statistics are active:

while(!dataarea->SiShGoAway)

{

 if (dataarea->SiShSubscrib)

 usleep(dataarea->SiShInterval * 1000);

 else

 sleep(5);

 gettimeofday(&dataarea>SiShT, NULL);

 d->a = ... ;

 d->b = ... ;

 d->c = ... ;

 d->d = ... ;

 if (((dataarea->SiShT.tv_sec % 59) == 0) && (!pt1))

 {

 if (!(pt1 = (struct inst *)SpmiDdsAddCx(0,

“DDS/IBM/Moretest/Bingo”,

 “Dynamically added”, 1)))

 fprintf(stderr, “Add failed: \”%s\“\n”,

SpmiErrmsg);

 }

 if (((dataarea->SiShT.tv_sec % 120) == 0) && (pt1))

 {

 if (i = SpmiDdsDelCx((char *)pt1))

 fprintf(stderr, “Delete failed: \”%s\“\n”,

SpmiErrmsg);

 else

 pt1 = NULL;

 }

 if (pt1)

 {

 pt1->a = ... ;

 pt1->b = ... ;

 }

}

SpmiStopMe();

The supplied sample program SpmiSupl.c does what has just been explained. It also adds yet another

context dynamically. You may want to play with that program before writing your own.

Recognizing Volatile Extensions

When your dynamic data-supplier program adds or deletes volatile extensions, this is indicated to SPMI

through fields in the shared memory area. Neither the xmservd daemon nor other local data-consumer

programs become aware of your changes until some event prompts them to look in the shared memory

area.

This approach keeps the updating of the context structure to a minimum. The changes are only

implemented if requested. The following is a list of events that causes xmservd or other local

data-consumer programs to check the shared memory area for changes to volatile extensions. The RSi

calls represent requests received by xmservd over the network interface; the SPMI calls would be issued

by xmservd because of incoming requests or by other local data-consumer programs as required:

v Whenever the RSiPathGetCx or the SpmiPathGetCx subroutine is used on any of the contexts defined

by your DDS (that is, whenever a program attempts to find a context pointer from a value path name).

This function is usually required for any traversal of the context hierarchy.

v Whenever the RSiFirstCx or the “SpmiFirstCx Subroutine” on page 340 subroutine is used on any of

the contexts defined by your DDS (that is, whenever a program starts traversing the subcontexts of a

context in your DDS).

Chapter 18. System Performance Measurement Interface Programming Guide 229

v Whenever the RSiFirstStat or the SpmiFirstStat subroutine is used on any of the contexts defined by

your DDS (that is, whenever a program starts traversing the statistics of a context in your DDS).

v Whenever the RSiInstantiate or the SpmiInstantiate subroutine is used on any of the contexts defined

by your DDS (that is, whenever a program explicitly asks for instantiation of any of the contexts defined

by your dynamic data-supplier program).

Example of an SPMI Data User Program

The following example program accesses the SPMI data:

/* The following statistics are added by the SpmiPathAddSetStat

 * subroutine to form a set of statistics:

 * CPU/cpu0/kern

 * CPU/cpu0/idle

 * Mem/Real/%free

 * PagSp/%free

 * Proc/runque

 * Proc/swpque

 * These statistics are then retrieved every 2 seconds and their

 * value is displayed to the user.

 */

#include sys/types.h

#include sys/errno.h

#include signal.h

#include stdio.h

#include sys/Spmidef.h

#define TIME_DELAY 2 /* time between samplings */

extern char SpmiErrmsg[]; /* Spmi Error message array */

extern int SpmiErrno; /* Spmi Error indicator */

struct SpmiStatSet *statset; /* statistics set */

/*====================== must_exit() ==========================*/

/* This subroutine is called when the program is ready to exit.

 * It frees any statsets that were defined and exits the

 * interface.

 */

/*===*/

void must_exit()

{

 /* free statsets */

 if (statset)

 if (SpmiFreeStatSet(statset))

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 /* exit SPMI */

 SpmiExit();

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 exit(0);

}

/*======================== getstats() =========================*/

/* getstats() traverses the set of statistics and outputs the

 * statistics values.

 */

/*===*/

void getstats()

{

 int counter=20; /* every 20 lines output

 * the header

 */

 struct SpmiStatVals *statval1;

 float spmivalue;

230 Performance Toolbox Guide

/* loop until a stop signal is received. */

 while (1)

 {

 if(counter == 20)

 {

 /* output header info */

 /* The statistics are displayed in reverse order of how

 * they were entered into the set of statistics.

 */

 printf(“\nCPU/cpu0 CPU/cpu0 Mem/Real PagSp ”);

 printf(“Proc Proc\n”);

 printf(“ kern idle %%free %%free ”);

 printf(“runque swpque\n”);

 printf(“==”);

 printf(“===============\n”);

 counter=0;

 }

 /* retrieve set of statistics */

 if (SpmiGetStatSet(statset, TRUE) != 0)

 {

 printf(“SpmiGetStatSet failed.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 /* retrieve first statistic */

 statval1 = SpmiFirstVals(statset);

 if (statval1 == NULL)

 {

 printf(“SpmiFirstVals Failed\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 /* traverse the set of statistics */

 while (statval1 != NULL)

 {

 /* value to be displayed */

 Spmivalue = SpmiGetValue(statset, statval1);

 if (spmivalue < 0.0)

 {

 printf(“SpmiGetValue Failed\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 printf(“ %6.2f ”,spmivalue);

 statval1 = SpmiNextVals(statset, statval1);

 } /* end while (statval1) */

 printf(“\n”);

 counter++;

 sleep(TIME_DELAY);

 }

 return;

}

/*======================== addstats() =========================*/

/* addstats() adds statistics to the statistics set. */

/* addstats() also takes advantage of the different ways a

 * statistic may be added to the set.

 */

/*===*/

Chapter 18. System Performance Measurement Interface Programming Guide 231

void addstats()

{

 SpmiCxHdl cxhdl, parenthdl;

 /* initialize the statistics set */

 statset = SpmiCreateStatSet();

 if (statset == NULL)

 {

 printf(“SpmiCreateStatSet Failed\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 /* Pass SpmiPathGetCx the fully qualified path name of the

 * context

 */

 if (!(cxhdl = SpmiPathGetCx(“Proc”, NULL)))

 {

 printf(“SpmiPathGetCx failed for Proc context.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 /* Pass SpmiPathAddSetStat the name of the statistic */

 /* & the handle of the parent */

 if (!SpmiPathAddSetStat(statset,“swpque”, cxhdl))

 {

 printf(“SpmiPathAddSetStat failed for Proc/swpque

 statistic.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 if (!SpmiPathAddSetStat(statset,“runque”, cxhdl))

 {

 printf(“SpmiPathAddSetStat failed for Proc/runque

 statistic.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 /* Pass SpmiPathAddSetStat the fully qualified name of the

 * statistic

 */

 if (!SpmiPathAddSetStat(statset,“PagSp/%free”, NULL))

 {

 printf(“SpmiPathAddSetStat failed for PagSp/%%free

 statistic.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 if (!(parenthdl = SpmiPathGetCx(“Mem”, NULL)))

 {

 printf(“SpmiPathGetCx failed for Mem context.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 /* Pass SpmiPathGetCx the name of the context */

 /* & the handle of the parent context */

 if (!(cxhdl = SpmiPathGetCx(“Real”, parenthdl)))

 {

 printf(“SpmiPathGetCx failed for Mem/Real context.\n”);

232 Performance Toolbox Guide

if (SpmiErrmsg)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 if (!SpmiPathAddSetStat(statset,“%free”, cxhdl))

 {

 printf(“SpmiPathAddSetStat failed for Mem/Real/%%free

 statistic.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 /* Pass SpmiPathGetCx the fully qualified path name of the

 * context

 */

 if (!(cxhdl = SpmiPathGetCx(“CPU/cpu0”, NULL)))

 {

 printf(“SpmiPathGetCx failed for CPU/cpu0 context.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 if (!SpmiPathAddSetStat(statset,“idle”, cxhdl))

 {

 printf(“SpmiPathAddSetStat failed for CPU/cpu0/idle

 statistic.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 if (!SpmiPathAddSetStat(statset,“kern”, cxhdl))

 {

 printf(“SpmiPathAddSetStat failed for CPU/cpu0/kern

 statistic.\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 must_exit();

 }

 return;

}

/*===*/

main(int argc, char **argv)

{

 int spmierr=0;

 /* Initialize SPMI */

 if ((spmierr = SpmiInit(15)) != 0)

 {

 printf(“Unable to initialize SPMI interface\n”);

 if (SpmiErrno)

 printf(“%s”, SpmiErrmsg);

 exit(-98);

 }

 /* set up interrupt signals */

 signal(SIGINT,must_exit);

 signal(SIGTERM,must_exit);

 signal(SIGSEGV,must_exit);

 signal(SIGQUIT,must_exit);

 /* Go to statistics routines. */

 addstats();

 getstats();

Chapter 18. System Performance Measurement Interface Programming Guide 233

/* Exit SPMI */

 must_exit();

}

Example of an SPMI Data Traversal Program

The following SPMI example program traverses a data hierarchy:

#include sys/types.h

#include sys/errno.h

#include stdio.h

#include sys/Spmidef.h

extern char SpmiErrmsg[]; /* Error Msg array */

char stats[256]; /* statistic name info */

char cxt[256]; /* context name info */

char subcxt[256]; /* text holder */

char *blanks=“ ”; /* blanks for text */

char *blank2=“ ”;

int instantiable=0;

/*======================= findstats() =========================*/

/* findstats is a function that traverses recursively down a

 * context link. When the end of the context link is found,

 * findstats traverses down the statistics links and writes the

 * statistic name to stdout. findstats is originally passed the

 * context handle for the TOP context.

 */

/*==*/

void findstats(SpmiCxHdl cxhdl)

{

 struct SpmiCxLink *cxlink;

 struct SpmiStatLink *statlink;

 struct SpmiCx *spmicx, *spmicxparent;

 struct SpmiStat *spmistat;

 char *statname;

 char num_string[30];

 int cxtlen1, cxtlen2, descplace;

 /* Get first context */

 if (cxlink = SpmiFirstCx(cxhdl))

 {

 while (cxlink)

 {

 /* output context name */

 spmicx = SpmiGetCx(cxlink->context);

 /* if the subcxt is a child of another context */

 if (strcmp(subcxt,NULL))

 {

 strcat(subcxt,“/”);

 strcat(subcxt,spmicx->name);

 }

 else

 strcpy(subcxt,spmicx->name);

 cxtlen1 = strlen(spmicx->name);

 cxtlen2 = strlen(subcxt);

 /* determine if the context’s parent is instantiable */

 /* because you don’t want to have to print stats twice */

 spmicxparent = SpmiGetCx(spmicx->parent);

 if (spmicxparent->inst_freq == SiContInst)

234 Performance Toolbox Guide

{

 instantiable++;

 }

 else

 instantiable = 0;

 /* only want to print out the stats for any contexts */

 /* whose parents aren’t instantiable. If the parent */

 /* is instantiable then you only want to print out */

 /* the stats for the first instance of that parent. */

 if (instantiable <= 1)

 {

 strcpy(cxt,subcxt);

 if (!instantiable)

 {

 if (cxtlen1 == cxtlen2)

 descplace = 30 - cxtlen2;

 else

 descplace = 35 - cxtlen2;

 strncat(cxt,blanks,descplace);

 strcat(cxt,spmicx->description);

 }

 fprintf(stdout,“%s\n”,cxt);

 /* Traverse the stats list for the context */

 if (statlink = SpmiFirstStat(cxlink->context))

 {

 while (statlink)

 {

 spmistat = SpmiGetStat(statlink->stat);

 statname = SpmiStatGetPath(cxlink->context,

 statlink->stat, 10);

 /* output statistic name */

 strcpy(stats,statname);

 descplace = strlen(stats);

 descplace = 40 - descplace;

 strncat(stats,blanks,descplace);

 strcat(stats,spmistat->description);

 fprintf(stdout, “%s\n”,stats);

 /* output stat info */

 strcpy(stats,“Data Type(”);

 if (spmistat->data_type == SiLong)

 strcat(stats,“Long) ”);

 else

 strcat(stats,“Float)”);

 strcat(stats,“ Value Type(”);

 if (spmistat->value_type == SiCounter)

 strcat(stats,“Counter)”);

 else

 strcat(stats,“Quantity)”);

 fprintf(stdout, “%s%s\n”,blank2,stats);

 /* output max/min info */

 sprintf(num_string,“min = %ld max =

 %ld”,spmistat->min,spmistat->max);

 strcpy(stats,num_string);

 fprintf(stdout, “%s%s\n”,blank2,stats);

 /* Go to next statistic */

 statlink = SpmiNextStat(statlink);

 } /* end while(statlink) */

 } /* end if (statlink) */

 } /* end if (instantiable) */

 else

 {

Chapter 18. System Performance Measurement Interface Programming Guide 235

/* print out stat name info for stats with */

 /* instantiable parents */

 strcpy(cxt,spmicxparent->name);

 strcat(cxt,“/”);

 strcat(cxt,spmicx->name);

 strcat(cxt,“/.....”);

 fprintf(stdout,“%s\n”,cxt);

 } cxtlen1 = strlen(spmicx->name)+6;

/* recursive call to function */

 /* this gets the next context link */

 findstats(cxlink->context);

 if (cxtlen2 == cxtlen1)

 strcpy(subcxt,NULL);

 else

 subcxt[cxtlen2-cxtlen1-1] = NULL;

 /* Go to next context */

 cxlink = SpmiNextCx(cxlink);

 } /* end while(cxlink) */

 } /* end if (cxlink) */

 return;

}

/*========================= lststats() ========================*/

/* lststats gets the TOP context handle. This handle is then

 * passed to the findstats routine

 */

/*===*/

void lststats()

{

 SpmiCxHdl cxhdl;

 if ((cxhdl = SpmiPathGetCx(NULL, NULL)) == NULL)

 {

 fprintf(stderr, “SpmiPathGetCx failed.\n”);

 if (strlen(SpmiErrmsg))

 fprintf(stderr, “%s”, SpmiErrmsg);

 return;

 }

 /* routine to traverse the context links */

 findstats(cxhdl);

 return;

}

/*============================ main() =======================*/

main(int argc, char **argv)

{

 int spmierr=0;

 /* Initialize SPMI interface */

 if ((spmierr = SpmiInit(15)) != 0)

 {

 fprintf(stderr, “Unable to initialize SPMI interface\n”);

 fprintf(stderr, “%s”, SpmiErrmsg);

 exit(-98);

 }

 /* Traversal routine. */

 lststats();

 /* Exit SPMI Interface */

 SpmiExit();

236 Performance Toolbox Guide

if (strlen(SpmiErrmsg))

 fprintf(stderr, “%s”, SpmiErrmsg);

 exit(0);

}

Example of an SPMI Dynamic Data-Supplier Program

The following SPMI example program expands the data hierarchy:

/*

==

 This module is a sample data supplier module for the Spmi

 interface. It is provided only as an example and has no

 practical use whatsoever.

 ==

*/

#include stdio.h

#include sys/signal.h

#include sys/types.h

#include netinet/in.h

#include sys/Spmidef.h

#ifdef _AIX

#define CONST const

#else

#define CONST

#endif

extern char SpmiErrmsg[];

/*

 The data area where statistics are passed to the Spmi

 interface must be defined as a structure (not typedef’ed).

 The structure can reside in local memory and be copied to

 shared memory whenever new statistics values are calculated --

 or it can be updated directly in shared memory as this module

 does.

 Please note that shared memory is NOT reserved for the entire

 structure size unless the last field in the structure is

 referenced in the table of statistics referring to the

 structure. For example, the structure “dat” defines 6 4-byte

 long integers but only the first four are referenced in the

 statistics table. The shared memory area reserved is thus

 4x4 = 16 bytes. Attempts to reference the two last elements

 in shared memory will cause a segmentation fault or destroy

 other data areas.

 The following structure is used as data area definition for the

 sample program.

*/

struct dat

{

 u_long a;

 u_long b;

 u_long c;

 u_long d;

 u_long e;

 u_long f;

};/*

 The following two tables of type (struct SpmiRawStat) define

 two sets of statistics. You must define one table for each

 set of statistics you have. A set of statistics is defines as

 all statistics that have identical path names, except for the

 name of the statistic itself. For example,

Chapter 18. System Performance Measurement Interface Programming Guide 237

DDS/IBM/Bingo/players/losers and

 DDS/IBM/Bingo/players/winners

 belong to the same set of statistics, while

 DDS/IBM/Bingo/players/losers and

 DDS/IBM/Blackjack/players/losers

 belong to two different sets. When the (struct SpmiRawStat)

 entry is defined in a dynamic data supplier program, the last

 field in the structure need not be specified or must be

 specified as NULL. Other fields must be filled in as follows:

 Field Format Contents

 ----- -------- --------------------------------------

 1 char[32] Short name of statistic

 2 char[64] Description of statistic

 3 numeric Lower range for plotting

 4 numeric Upper range for plotting

 5 ValType See Spmidef.h

 6 DataType Data format to deliver to consumer

 (see Spmidef.h)

 7 numeric The ASN.1 number assigned to the

 statistic

 8.1 structure Name of defined statistics structure

 8.2 fieldname Name of data field in statistics

 structure

 8.3 DataType Data format of field in statistics

 structure

*/

static CONST struct SpmiRawStat PUStats[] = {

 {“gadgets”, “Fake counter value”, 0, 100, SiCounter,

 SiLong, 1, SZ_OFF(dat, a, SiULong), NULL},

 {“widgets”, “Another fake counter value”, 0, 100,

SiCounter,

 SiLong, 2, SZ_OFF(dat, b, SiULong), NULL},

};

static CONST struct SpmiRawStat FakeMemStats[] = {

 {“level”, “Fake quantity value”, 0, 100, SiQuantity,

 SiLong, 1, SZ_OFF(dat, c, SiULong), NULL},

 {“queue”, “Another fake quantity value”, 0, 100,

SiQuantity,

 SiLong, 2, SZ_OFF(dat, d, SiULong), NULL},

};/*

 The following table defines the tree structure of contexts as

 defined by this module. Each context is defined by one table

 entry. The fields in the contexts are:

 Field Format Contents

 ----- -------- --------------------------------------

 1 char[64] Full path name of the context to create

 2 char[64] Description of context

 3 numeric ASN.1 number to be assigned to the

 context

 4 pointer Pointer to statistics table, NULL if

 none

 5 numeric Count of elements in above statistics

 table

 Use STAT_L to find number of elements.

 7 pointer Must be specified as NULL

 8 numeric Must be specified as 0 (zero)

 9 pointer Must be specified as NULL

 10 SiInstFreq See Spmidef.h

*/

 static CONST cx_create cx_table[] = {

238 Performance Toolbox Guide

{“DDS/IBM”, “IBM-defined Dynamic Data Suppliers”, 2, 0,

 NULL, 0, NULL, 0, NULL, SiNoInst},

 {“DDS/IBM/sample1”, “Bogus Context Number 1”, 191, 0,

 PUStats, STAT_L(PUStats), NULL, 0, NULL, SiNoInst},

 {“DDS/IBM/sample2”, “Bogus Context Number 2”, 192, 0,

 NULL, 0, NULL, 0, NULL, SiNoInst},

 {“DDS/IBM/sample1/SubContext”, “Bogus Context Number 3”,

 193, 0, FakeMemStats, STAT_L(FakeMemStats), NULL, 0, NULL,

 SiNoInst},

};

static int CxCount = CX_L(cx_table); /* Count of

 * context defined

 */

static SpmiShare *dataarea = NULL; /* Shared memory

 * pointer

 */

static struct dat *d = NULL; /* Pointer to stats

 * data area

 */

/*

 This subroutine will make sure the shared memory allocated by

 this module is released before the module exits. The

 subroutine is called whenever the module is about to exit.

*/

void SpmiStopMe(sig)

int sig;

{

 if (sig)

 printf(“SiSupl killed by signal %d\n”, sig);

 else

 printf(“SiSupl exiting (%s)\n”, SpmidmiErrmsg);

 SpmiExit();

 dataarea = NULL;

 exit(0);

}/*

 SiSupl module main function - starts by checking that the

 program is executed with (required) root credentials.

*/

void main()

{

 if (geteuid())

 {

 fprintf(stderr,“Root authority req’d\n”);

 exit(0);

 }

 /*

 Call the SpmiDdsInit subroutine to allocate shared memory

 and contact the SPMI interface. If this succeeds, the

 subroutine will return with the address of the shared

 memory.

 The first two arguments are the table of static contexts

 to create and the count of elements in that table. The

 next two arguments are the table of instantiable contexts

 and the count of elements in that table. The latter two can

 be NULL and zero if your data supplier module does not

 require contexts to be added or deleted on the fly.

 The last argument is the name of a file, which either (1)

 must exist and be writeable by the user executing this

 code, or (2) can be created by the user. It is used to

 generate a key for the shared memory area and must, of

 course, be UNIQUE between data supplier modules.

 */

#ifdef _AIX

Chapter 18. System Performance Measurement Interface Programming Guide 239

dataarea = SpmiDdsInit(cx_table, CxCount, NULL, 0,

 “/etc/SiSuplSHM”);

#else

 dataarea = SpmiDdsInit(cx_table, CxCount, NULL, 0,

 “/etc/SiSuplSHM”, 8092);

#endif

 if (!dataarea)

 {

 printf(“%s”, SpmiErrmsg);

 exit(-1);

 }

 /*

 The field SiShArea in shared memory has the address of the

 area where you are supposed to deliver your statistics. In

 this sample module, simply set a pointer to point at

 this data area.

 */

 d = (struct dat *)&dataarea->SiShArea[0];

 /*

 You’ve got the shared memory and SPMI registered your presence.

 Now make sure you free the shared memory area if you get

 killed.

 */ signal(SIGTERM, SpmiStopMe);

 signal(SIGHUP, SpmiStopMe);

 signal(SIGINT, SpmiStopMe);

 signal(SIGSEGV, SpmiStopMe); /*

 It is usual and recommended that you initialize the data

 area with values that make sense, even before anybody uses

 the data. This includes setting the time stamp at the time

 you do it.

 */

 gettimeofday(&dataarea->SiShT, NULL);

 d->a = 22;

 d->b = 42;

 d->c = 28;

 d->d = 62;

 /*

 The module now runs as long as the flag SiShGoAway is

 false. Data consumer programs may set this flag if

 abnormal conditions are detected. For each iteration, the

 module produces whatever statistics it can supply. In this

 module everything is bogus, and the loop is a sleep loop.

 In a real data supplier module, you could use any timer

 function to drive you, or you could depend on some external

 function waking you up.

 For each time the module updates the data area, the time

 must be set as shown in the gettimeofday() call.

 */

 while(!dataarea->SiShGoAway)

 {

 #ifdef _AIX

 usleep(499000);

 #else

 sleep(1);

 #endif

 gettimeofday(&dataarea->SiShT, NULL);

 d->a += dataarea->SiShT.tv_sec & 0xff;

 d->b += dataarea->SiShT.tv_sec & 0xf;

 d->c += (dataarea->SiShT.tv_sec & 0x20f) & 0xffff;

 d->d += (dataarea->SiShT.tv_sec & 0x7f) & 0xffff;

 }

 SpmiStopMe(0);

}

240 Performance Toolbox Guide

SPMI Interface Subroutines

The SPMI subroutines are organized according to function.

The following functional lists of SPMI subroutines are provided:

v Initialize, Terminate, and Instantiate subroutines

v Data Hierarchy Traversal subroutines

v StatSet Maintenance subroutines

v HotSet Maintenance subroutines

v Data Access subroutines

v Expand or Reduce the Data Hierarchy subroutines.

Initialize, Terminate, and Instantiate Subroutines

The following subroutines prepare a system for SPMI processing, free memory after SPMI processing, or

create an instance of a system resource or object:

 SpmiGetCx Initializes the SPMI.

SpmiExit Releases allocated memory and disconnects from the SPMI library.

SpmiInstantiate Explicitly instantiates the subcontexts of an instantiable context.

Data Hierarchy Traversal Subroutines

The following subroutines navigate through an SPMI data hierarchy:

 SpmiPathGetCx Returns a handle to use when referencing a context.

SpmiFirstCx Locates the first subcontext of a context.

SpmiNextCx Locates the next subcontext of a context.

SpmiFirstStat Locates the first statistic belonging to a context.

SpmiNextStat Locates the next statistic belonging to a context.

SpmiStatGetPath Returns the full path name of a statistic.

SpmiGetCx Returns a pointer to the “SpmiCx Structure” on page 206 structure

corresponding to a specified context handle.

SpmiGetStat Returns a pointer to the “SpmiStat Structure” on page 206 structure

corresponding to a specified statistic handle.

StatSet Maintenance Subroutines

The followings SPMI subroutines create or remove a set of statistics, or add or delete statistics from the

set:

 SpmiCreateStatSet Creates an empty set of statistics.

SpmiPathAddSetStat Adds a statistics value to a set of statistics.

SpmiFreeStatSet Erases a set of statistics.

SpmiDelSetStat Removes a single statistic from a set of statistics.

HotSet Maintenance Subroutines

The followings SPMI subroutines create or remove a hotset, or add or delete sets of peer statistics to or

from the set:

Chapter 18. System Performance Measurement Interface Programming Guide 241

SpmiCreateHotSet Creates an empty set of peer statistics (hotset).

SpmiAddSetHot Adds a set of peer statistics values to a hotset.

SpmiFreeHotSet Erases a hotset.

SpmiDelSetHot Removes a set of peer statistics from a hotset.

Data Access Subroutines

The following subroutines access SPMI statistics:

 SpmiGetStatSet Requests the SPMI to read the data values for all statistics belonging to a

specified statset.

SpmiFirstVals Returns a pointer to the first “SpmiStatVals Structure” on page 209 belonging

to a statset.

SpmiNextVals Returns a pointer to the next “SpmiStatVals Structure” on page 209 belonging

to a statset.

SpmiGetValue Returns a decoded value based on the type of data value extracted from the

data field of an (“SpmiStatVals Structure” on page 209.

SpmiFirstVals Returns a pointer to the next “SpmiStatVals Structure” on page 209 in a set of

statistics. Combines calls to SpmiFirstVals, SpmiNextVals, and

SpmiGetValue into a single call for more efficient startset processing.

SpmiGetHotSet Requests the SPMI to read the data values for all sets of peer statistics

belonging to a specified hotset.

SpmiFirstHot Returns a pointer to the first set of peer statistics (“SpmiHotVals Structure” on

page 210) belonging to a hotset.

SpmiNextHot Returns a pointer to the next set of peer statistics (“SpmiHotVals Structure” on

page 210) belonging to a hotset.

SpmiNextHotItem Returns a pointer to the next set of peer statistics (“SpmiHotVals Structure” on

page 210) belonging to a hotset and decodes the next data value from the

SpmiHotVals structure. Used to walk all the returned “SpmiHotItems” on

page 211 elements returned by SpmiGetHotSet.

Expand or Reduce the Data Hierarchy Subroutines

The following subroutines are used by SPMI Dynamic Data Supplier (DDS) programs:

 “SpmiDdsInit Subroutine” on page 335 Initializes a DDS program, establishes access to the common shared memory

area, and connects the DDS shared memory area to the SPMI.

SpmiDdsAddCx Adds a volatile context from a DDS program.

SpmiDdsDelCx Deletes a volatile context previously added from the DDS program.

List of SPMI Error Codes

All SPMI subroutines use constants to define error codes. The SPMI Error Code table lists the error

descriptions.

 Symbolic Name Number Description

SiSuccess 0 Successful execution.

SiInvalidCx 180 The referenced context doesn’t exist.

SiNoShmPtr 181 Unable to identify shared memory segment.

SiShmemFailed 182 Unable to access shared memory.

242 Performance Toolbox Guide

Symbolic Name Number Description

SiAssumedDead 183 A data-supplier program seems to have terminated.

SiInstBusy 184 Can’t instantiate; shared memory update in

progress.

SiNotInst 185 Requested instantiation could not be performed.

SiNotInit 186 SPMI interface not initialized.

SiBadArgument 187 One or more arguments to a subroutine call is not

valid.

SiNotFound 188 A requested data structure doesn’t exist.

SiNoValue 189 No data value returned from the SpmiGetValue

subroutine.

SiInitFailed 190 Initializing of the SPMI API failed.

SiSmuxFailed 191 Context could not be exported to the snmpddaemon

through the SMUX protocol.

SiLocked 192 Some other process or thread has locked the

common shared memory area and prevents the

subroutine from executing its the requested function.

Retry the subroutine call.

SiDuplicate 193 Attempt to add a context path that already exists.

SiCallocFailed 194 Memory allocation error.

SiNoLicense 195 No license to use is installed and valid.

SiDeleted 196 The requested context has been deleted.

SiOtherErr 197 Unspecified internal error.

Chapter 18. System Performance Measurement Interface Programming Guide 243

244 Performance Toolbox Guide

Chapter 19. Remote Statistics Interface Programming Guide

This chapter provides information about the Remote Statistics Interface.

v Remote Statistics Interface API Overview

v Remote Statistics Interface List of Subroutines

v RSI Interface Concepts and Terms

v A Simple Data-Consumer Program

v Expanding the Data-Consumer Program

v Inviting Data Suppliers

v A Full-Screen, Character-based Monitor

v List of RSi Error Codes.

Remote Statistics Interface API Overview

An application programming interface (API) is available for those who want to develop programs that

access the statistics available from one or more xmservd daemons. The API is called the Remote

Statistics Interface or the RSI Interface. This chapter describes how you use the RSI Interface API by

walking you through a couple of sample programs. Those sample programs, and others, are provided in

machine-readable form as well. The sample programs can be found in the /usr/samples/perfmgr

directory.

Use the RSI Interface API to write programs that access one or more xmservd daemons. This allows you

to develop programs that print, post-process, or otherwise manipulate the raw statistics provided by the

xmservd daemons. Such programs are known as Data-Consumer programs.

AIX 5L Version 5.3 Technical Reference: Communications Volume 2 must be installed to see the RSi

subroutines.

Makefiles

The include files are based upon a number of define directives being properly set. They are usually

defined with the -D preprocessor flag.

v _AIX Tells the include files to generate code for AIX.

v _BSD Required for proper BSD compatibility.

A Makefile to build all the sample programs provided could look like the one shown in the following listing:

LIBS = -L./ -lbsd -lSpmi

CC = cc

CFLAGS = -D_BSD -D_AIX

all:: RsiCons RsiCons1 chmon

RsiCons: RsiCons.c

 $(CC) -o RsiCons RsiCons.c $(CFLAGS) $(LIBS)

RsiCons1: RsiCons1.c

 $(CC) -o RsiCons1 RsiCons1.c $(CFLAGS) $(LIBS)

chmon: chmon.c $

 $(CC) -o chmon chmon.c $(CFLAGS) $(LIBS) -lcurses

If the system on which you compile doesn’t support ANSI function prototypes, add the following flag:

-D_NO_PROTO

© Copyright IBM Corp. 1994, 2004 245

Remote Statistics Interface List of Subroutines

As interesting and useful as it may be to watch the graphics display of statistics shown by xmperf, many

other uses of the wealth of statistics are available through the xmservd daemons on all the hosts in a

network. The Remote Statistics Interface API allows you to create data-consumer programs that can get

full access to the statistics of any host’s xmservd daemon.

The RSI interface consists of several groups of subroutines that are discussed in the following section.

Initialization and Termination

 RSiInit Allocates or changes the table of RSI handles.

RSiOpen Initializes the RSI interface for a remote host.

RSiClose Terminates the RSI interface for a remote host and releases all memory allocated.

RSiInvite Invites data suppliers on the network to identify themselves and returns a table of

data-supplier host names.

Instantiation and Traversal of Context Hierarchy

 RSiInstantiate Creates (instantiates) all subcontexts of a context object.

RSiPathGetCx Searches the context hierarchy for a context that matches a context path name.

RSiFirstCx Returns the first subcontext of a context.

RSiNextCx Returns the next subcontext of a context.

RSiFirstStat Returns the first statistic of a context.

RSiNextStat Returns the next statistic of a context.

Defining Sets of Statistics to Receive

 RSiAddSetHot Adds a single set of peer statistics to a hotset.

RSiCreateHotSet Creates an empty hotset.

RSiCreateStatSet Creates an empty statset.

RSiPathAddSetStat Adds a single statistic to a statset.

RSiDelSetHot Deletes a single set of peer statistics from a hotset.

RSiDelSetStat Deletes a single statistic from a statset.

RSiStatGetPath Finds the full path name of a statistic identified by an SpmiStatVals pointer.

Starting, Changing and Stopping Data Feeding

 RSiStartFeed Tells xmservd to start sending data feeds for a statset.

RSiStartHotFeed Tells xmservd to start sending hot feeds for a hotset.

RSiChangeFeed Tells xmservd to change the time interval between sending data feeds for a statset.

RSiChangeHotFeed Tells xmservd to change the time interval between sending hot feeds for a hotset.

RSiStopFeed Tells xmservd to stop sending data feeds for a statset.

RSiStopHotFeed Tells xmservd to stop sending hot feeds for a hotset.

246 Performance Toolbox Guide

Receiving and Decoding Data Feed Packets

 RSiGetHotItem Returns the peer context name and data value for the first (next) “SpmiHotItems” on

page 211 element by extraction from data feed packet.

RSiMainLoop Allows an application to suspend execution and wait to get waked up when data feeds

arrive.

RSiGetValue Returns data value for a given SpmiStatVals pointer by extraction from data feed

packet.

RSiGetRawValue Returns a pointer to a valid SpmiStatVals structure for a given SpmiStatVals pointer by

extraction from data feed packet.

RSI Interface Concepts and Terms

Before you start using the RSI interface API you need to be aware of the format and use of the RSI

interface data structures. This section explains the structures and also introduces you to the commonalities

of the library functions and to some important design concepts. This section has the following subsections:

v “RSI Interface Data Structures.”

v “The RSI Request-Response Interface” on page 249.

v “The RSI Network Driven Interface” on page 249.

v “Resynchronizing” on page 250.

RSI Interface Data Structures

The RSI interface is based upon control blocks (data structures) that describe the current view of the

statistics on a remote host and the state of the interaction between a data consumer program and the

remote host’s xmservd daemon. Data structures to know about are as follows:

RSI handle

An RSI handle is a pointer to a data structure of type RSiHandleStruct. Prior to using any other RSI call,

a data-consumer program must use the RSiInit subroutine to allocate a table of RSI handles. An RSI

handle from the table is initialized when you open the logical connection to a host and that RSI handle

must be specified as an argument on all subsequent subroutines to the same host. Only one of the

internal fields of the RSI handle should be used by the data-consumer program, namely the pointer to

received network packets, pi. Only in very special cases will you ever need to use this pointer, which is

initialized by RSiOpen and must never be modified by a data-consumer program. If your program changes

any field in the RSI handle structure, results are highly unpredictable. The RSI handle is defined in

/usr/include/sys/Rsi.h.

SpmiStatVals

A single data value is represented by a structure defined in /usr/include/sys/Spmidef.h as struct

SpmiStatVals. Be aware that none of the fields defined in the structure must be modified by application

programs. The two handles in the structure are symbolic references to contexts and statistics and should

not be confused with pointers. The last three fields are updated whenever a data_feed packet is received.

These fields are as follows:

 val The latest actual contents of the statistics data field.

val_change The difference (delta value) between the latest actual contents of the statistics data field and

the previous value observed.

error An error code as defined by the enum Error in include file /usr/include/sys/Spmidef.h.

Notice that the two value fields are defined as union Value, which means that the actual data fields may

be long or float, depending on flags in the corresponding SpmiStat structure. The SpmiStat structure

cannot be accessed directly from the StatVals structure (the pointer is not valid, as previously mentioned).

Chapter 19. Remote Statistics Interface Programming Guide 247

Therefore, to determine the type of data in the val and val_change fields, you must have saved the

SpmiStat structure as returned by the RSiPathAddSetStat subroutine. This is rather clumsy, so the

RSiGetValue subroutine does everything for you and you do not need to keep track of SpmiStat

structures.

The SpmiStat structure is used to describe a statistic. It is defined in /usr/include/sys/Spmidef.h as type

struct SpmiStat. If you ever need information from this data structure (apart from information that can be

returned by the RSiStatGetPath subroutine) be sure to save it as it is returned by the

RSiPathAddSetStat subroutine.

The RSiGetRawValue subroutine provides another way of getting access to an SpmiStat structure but

can only do so while a data feed packet is being processed.

SpmiStatSet The xmservd daemon accepts the definition of sets of statistics that are to be extracted

simultaneously and sent to the data-consumer program in a single data packet. The structure that

describes such a set of statistics is defined in /usr/include/sys/Spmidef.h as of type struct SpmiStatSet.

As returned by the RSiCreateStatSet, the SpmiStatSet pointer should be treated as a handle whose only

purpose is to identify the correct set of statistics to several other subroutines.

When returned in a data feed packet, the SpmiStatSet structure holds the actual time the data feed

packet was created (according to the remote host’s clock) and the elapsed time since the latest previous

data feed packet for the same SpmiStatSet was created.

SpmiHotSet (“SpmiHotSet Structure” on page 210)Represents another set of access structures that

allow an application program to define an alternative way of extracting and processing metrics. They are

used to extract data values for the most or least active statistics for a group of peer contexts. For example,

it can be used to define that the program wants to receive information about the two highest loaded disks,

optionally subject to the load exceeding a specified threshold.

When the SPMI receives a read request for an SpmiHotSet, the SPMI reads the latest value for all the

peer sets of statistics in the hotset in one operation. This action reduces the system overhead caused by

access of kernel structures and other system areas, and ensures that all data values for the peer sets of

statistics within a hotset are read at the same time. The hotset may consist of one or many sets of peer

statistics.

SpmiHotVals One SpmiHotVals structure is created for each set of peer statistics selected for the hotset.

When the SPMI executes a request from the application program to read the data values for a hotset, all

SpmiHotVals structures in the set are updated. The RSi application program can then traverse the list of

SpmiHotVals structures by using the RSiGetHotItem subroutine call.

The SpmiHotVals structure carries the data values from the SPMI to the application program. Its data

carrying fields are:

 error Returns a zero value if the SPMI’s last attempt to read the data values for a set of peer

statistics was successful. Otherwise, this field contains an error code as defined in the

sys/Spmidef.h file.

avail_resp Used to return the number of peer statistic data values that meet the selection criteria

(threshold). The field max_responses determines the maximum number of entries actually

returned.

count Contains the number of elements returned in the array items. This number will be the number

of data values that met the selection criteria (threshold), capped at max_responses.

248 Performance Toolbox Guide

items The array used to return count elements. This array is defined in the SpmiHotItems data

structure. Each element in the “SpmiHotItems” on page 211 array has the following fields:

name The name of the peer context for which the values are returned.

val Returns the value of the counter or level field for the peer statistic. This field returns

the statistic’s value as maintained by the original supplier of the value. However, the

val field is converted to an SPMI data format.

val_change

Returns the difference between the previous reading of the counter and the current

reading when the statistic contains counter data. When this value is divided by the

elapsed time returned in the “SpmiHotSet Structure” on page 210, an event

rate-per-time-unit can be calculated.

The RSI Request-Response Interface

The RSI interface API has two distinctly different ways of operation. This section describes the RSI

request-response protocol that sends a single request to xmservd and waits for a response. A timeout

occurs if no response has been received within a specified time limit in which case one single retry is

attempted. If the retry also results in a timeout, that fact is communicated to the caller by placing the

constant RSiTimeout in the external integer field RSiErrno. If any other error occurred, the external

integer field has some other non-zero value.

If neither a communications error nor a timeout occurred, a packet is available in the receive buffer pointed

to by the pi pointer in the RSI handle. The packet includes a status code that tells whether the subroutine

was successful at the xmservd side. You need only be concerned with checking the status code in a

packet if it matters what exactly it is because the constant RSiBadStat is placed in RSiErrno to indicate to

your program that a bad status code was received.

You can use the indication of error or success as defined for each subroutine to determine if the

subroutine succeeded or you can test the external integer RSiErrno. If this field is RSiOkay the subroutine

succeeded; otherwise it did not. The error codes returned in RSiErrno are defined in the enum

RSiErrorType.

All the library functions use the request-response interface, except for RSiMainLoop (which uses a

network driven interface) and RSiInit, RSiGetValue, and RSiGetRawValue (that do not involve network

traffic).

The RSI Network Driven Interface

The xmquery protocol, which is described in detail in “The xmservd Interface”, defines three types of data

packets that are sent from the data supplier side (xmservd) without being solicited by a request packet.

Those packet types are the still_alive, the data_feed, and the except_rec packets. The still_alive

packets are handled internally in the RSI interface and require no programming in the data-consumer

program.

The data_feed packets are received asynchronously with any packets produced by the request-response

type subroutines. If a data_feed packet is received when processing a request-response function, control

is passed to a callback function, which must be named when the RSI handle is initialized with the

RSiOpen subroutine.

When the data-consumer program is not using the request-response functions, it still needs to be able to

receive and process data_feed packets. This is done with the RSiMainLoop function, which invokes the

callback function whenever a packet is received.

Chapter 19. Remote Statistics Interface Programming Guide 249

Actually, the data feed callback function is invoked for all packets received that cannot be identified as a

response to the latest request sent, except if such packets are of type i_am_back, still_alive, or

except_rec. Note that this means that responses to “request-response” packets that arrive after a timeout

is sent to the callback function. It is the responsibility of your callback function to test for the packet type

received.

The except_rec packets are received asynchronously with any packets produced by the request-response

type subroutines. If an except_rec packet is received when processing a request-response function,

control is passed to a callback function, which must be named when the RSI handle is initialized with the

RSiOpen subroutine.

When the data-consumer program is not using the request-response functions, it still needs to be able to

receive and process except_rec packets. This is done with the RSiMainLoop function which invokes the

callback function whenever a packet is received.

Note that the API discards except_rec messages from a remote host unless a callback function to process

the message type was specified on the RSiOpen subroutine call for that host.

Resynchronizing

Network connections can go bad, hosts can go down, interfaces can be taken down and processes can

die. In the case of the xmservd protocol, such situations usually result in one or more of the following:

Missing packets

Responses to outstanding requests are not received, which generate a timeout. That’s fairly easy

to cope with because the data-consumer program has to handle other error return codes anyway.

It also results in expected data feeds not being received. Your program may want to test for this

happening. The proper way to handle this situation is to use the RSiClose function to release all

memory related to the dead host and to free the RSI handle. After this is done, the data-consumer

program may attempt another RSiOpen to the remote system or may simply exit.

Resynchronizing requests

Whenever an xmservd daemon hears from a given data-consumer program on a particular host

for the first time, it responds with a packet of type i_am_back, effectively prompting the

data-consumer program to resynchronize with the daemon. Also, when the daemon attempts to

reconnect to data-consumer programs that it talked to when it was killed or died, it sends an

i_am_back packet.

 It is important that you understand how the xmservd daemon handles “first time contacted.” It is

based upon tables internal to the daemon. Those tables identify all the data-consumers that the

daemon knows about. Be aware that a data-consumer program is known by the host name of the

host where it executes suffixed by the IP port number used to talk to the daemon. Each

data-consumer program running is identified uniquely as are multiple running copies of the same

data-consumer program.

 Whenever a data-consumer program exits orderly, it alerts the daemon that it intends to exit and

the daemon removes it from the internal tables. If, however, the data-consumer program decides

to not request data feeds from the daemon for some time, the daemon detects that the data

consumer has lost interest and removes the data consumer from its tables as described in “Life

and Death of xmservd” on page 157. If the data-consumer program decides later that it wants to

talk to the xmservd again, the daemon responds with an i_am_back packet.

 The i_am_back packets are given special treatment by the RSI interface. Each time one is

received, a resynchronizing callback function is invoked. This function must be defined on the

RSiOpen subroutine.

 Note that all data-consumer programs can expect to have this callback invoked once during

execution of the RSiOpen subroutine because the remote xmservd does not know the data

250 Performance Toolbox Guide

consumer. This is usual and should not cause your program to panic. If the resynchronize callback

is invoked twice during processing of the RSiOpen function, the open failed and can be retried, if

appropriate.

A Simple Data-Consumer Program

In this section, the use of the API is illustrated by creating a small data-consumer program to produce a

continuous list of statistics from a host. The first version accesses only CPU-related statistics. It assumes

you want to get your statistics from the local host unless you specify a host name on the command line.

The program continues to display the statistics until it is killed. Source code for the sample program can

be found in /usr/samples/perfmgr/RsiCons1.c.

Initializing and Terminating the Program

The main function of the sample program uses the three subroutines as shown in the following code

segment. The lines 12 through 15 use any command line argument to override the default host name

obtained by the uname function. Then lines 17 through 28 initialize the RSI interface using the RSiInit and

RSiOpen subroutines. The program exits if the initialization fails.

[01] extern char RSiEMsg[];

[02] extern int RSiErrno;

[03] char host[64], apath[256], head1[24][10], head2[24][10];

[04] char *nptr, **navn = &nptr, *dptr, **desc = &dptr;

[05] struct utsname uname_struct;

[06] RSiHandle rsh;

[07] struct SpmiStatVals *svp[24];

[08] int lct = 99, tix = 0;

[09]

[10] main(int argc, char **argv)

[11] {

[12] uname(&uname_struct);

[13] strcpy(host, uname_struct.nodename);

[14] if (argc > 1)

[15] strcpy(host, argv[1]);

[16]

[17] if (!(rsh = RSiInit(1)))

[18] {

[19] fprintf(stderr, “Unable to initialize RSI interface\n”);

[20] exit(98);

[21] }

[22] if (RSiOpen(rsh, 100, 2048, host, feeding, resync, NULL))

[23] {

[24] if (strlen(RSiEMsg))

[25] fprintf(stderr, “%s”, RSiEMsg);

[26] fprintf(stderr, “Error contacting host\”%s\“\n”, host);

[27] exit(-99);

[28] }

[29] signal(SIGINT, must_exit);

[30] signal(SIGTERM, must_exit);

[31] signal(SIGSEGV, must_exit);

[32] signal(SIGQUIT, must_exit);

[33]

[34] strcpy(apath, “hosts/”);

[35] strcat(apath, host);

[36] strcat(apath, “/”);

[37] lststats(apath);

[38] RSiClose(rsh);

[39] exit(0);

[40] }

The following lines (29-32) make sure that the program detects any attempt to kill or terminate it. If this

happens, the function must_exit is invoked. This function has the sole purpose of making sure the

association with the xmservd daemon is terminated. It does this as shown in the following piece of code:

Chapter 19. Remote Statistics Interface Programming Guide 251

void must_exit()

{

 RSiClose(rsh);

 exit(-9);

}

Finally, lines 34 through 36 prepare an initial value path name for the main processing loop of the

data-consumer program. This is the way all value path names should be prepared. After doing this, the

main processing loop in the internal function lststats is called. If this function returns, issue an RSiClose

call and exit the program.

Defining a Statset

Eventually, you want the sample of the data-consumer program to receive data feeds from the xmservd

daemon. Thus, start preparing the SpmiStatSet, which defines the set of statistics with which you are

interested. This is done with the RSiCreateStatSet subroutine.

[01] voidlststats(char *basepath)

[02] {

[03] struct SpmiStatSet *ssp;

[04] char tmp[128];

[05]

[06] if (!(ssp = RSiCreateStatSet(rsh)))

[07] {

[08] fprintf(stderr, “RsiCons1 can\’t create StatSet\n”);

[09] exit(62);

[10] }

[11]

[12] strcpy(tmp, basepath);

[13] strcat(tmp, “CPU/cpu0”);

[14] if ((tix = addstat(tix, ssp, tmp, “cpu0”)) == -1)

[15] {

[16] if (strlen(RSiEMsg))

[17] fprintf(stderr, “%s”, RSiEMsg);

[18] exit(63);

[19] }

[20]

[21] RSiStartFeed(rsh, ssp, 1000);

[22] while(TRUE)

[23] RSiMainLoop(499);

[24] }

In the sample program, the SpmiStatSet is created in the local function lststats shown previously in lines

6 through 10.

Lines 12 through 19 invoke the local function addstat (“Adding Statistics to the Statset”), which finds all the

CPU-related statistics in the context hierarchy and initializes the arrays to collect and print the information.

The first two lines expand the value path name passed to the function by appending CPU/cpu0. The

resulting string is the path name of the context where all CPU-related statistics for “cpu0” are held. The

path name has the format hosts/hostname/CPU/cpu0 without a terminating slash, which is what is

expected by the subroutines that take a value path name as an argument. The function addstat is shown

in the next section. It uses three of the traversal functions to access the CPU-related statistics.

Adding Statistics to the Statset

[01] int addstat(int ix, struct SpmiStatSet *ssp, char *path, char *txt)

[02] {

[03] cx_handle *cxh;

[04] int i = ix;

[05] char tmp[128];

[06] struct SpmiStatLink *statlink;

[07]

[08] if (!(cxh = RSiPathGetCx(rsh, path)))

[09] {

252 Performance Toolbox Guide

[10] fprintf(stderr, “RSiPathGetCx can\’t access host %s (path %s)\n”, host, path);

[11] exit(61);

[12] }

[13]

[14] if ((statlink = RSiFirstStat(rsh, cxh, navn, desc)))

[15] {

[16] while (statlink)

[17] {

[18] if (i > 23)

[19] break;

[20] strcpy(head1[i], txt);

[21] strcpy(head2[i], *navn);

[22] strcpy(tmp, path);

[23] strcat(tmp, “/”);

[24] strcat(tmp, *navn);

[25] if (!(svp[i] = RSiPathAddSetStat(rsh, ssp, tmp)))

[26] return(-1);

[27] i++;

[28] statlink = RSiNextStat(rsh, cxh, statlink, navn, desc);

[29] }

[30] }

[31] return(i);

[32] }

The use of RSiPathGetCx by the sample program is shown in lines 8 through 12. Following that, in lines

14 through 30, two subroutines are used to get all the statistics values defined for the CPU context. This is

done by using RSiFirstStat and RSiNextStat.

In lines 20-21, the short name of the context (“cpu0”) and the short name of the statistic are saved in two

arrays for use when printing the column headings. Lines 22-24 construct the full path name of the statistics

value by concatenating the full context path name and the short name of the value. This is necessary to

proceed with adding the value to the SpmiStatSet with the RSiPathAddSetStat. The value is added by

lines 25 and 26.

<H3>Data-Consumer Initialization of Data Feeds

The only part of the main processing function in the main section yet to explain consists of lines 21

through 23. The first line simply tells the xmservd daemon to start feeding observations of statistics for an

SpmiStatSet by issuing the RSiStartFeed subroutine call. The next two lines define an infinite loop that

calls the function RSiMainLoop to check for incoming data_feed packets.

There are two more subroutines concerned with controlling the flow of data feeds from xmservd. Neither

is used in the sample program. The subroutines are described in RSiChangeFeed and RSiStopFeed.

Data-Consumer Decoding of Data Feeds

Whenever a data_feed is detected by the RSI interface, the data feed callback function defined in the

RSiOpen subroutine is invoked, passing the RSI handle as an argument to the callback function. The

sample program’s callback function for data feeds is shown in the following example. Most of the lines in

the function are concerned with printing headings after each 20 detail lines printed. This is in line numbers

9 through 19 and 26.

[01] void feeding(RSiHandle rsh, pack *p)

[02] {

[03] int i;

[04] float f;

[05] long v;

[06]

[07] if (p->type != data_feed)

[08] return;

[09] if (lct > 20)

[10] {

[11] printf(“\n\n”);

Chapter 19. Remote Statistics Interface Programming Guide 253

[12] for (i = 0; i < tix; i++)

[13] printf(“%08s”, head1[i]);

[14] printf(“\n”);

[15] for (i = 0; i < tix; i++)

[16] printf(“%08s”, head2[i]);

[17] printf(“\n”);

[18] lct = 0;

[19] }

[20] for (i = 0; i < tix; i++)

[21] {

[22] v = RSiGetValue(rsh, svp[i]) * 10.0;

[23] printf(“%6d.%d”, v/10, v%10);

[24] }

[25] printf(“\n”);

[26] lct++;

[27] }

Actual processing of received statistics values is done by the lines 20-24. It involves the use of the library

subroutine RSiGetValue. The following is an example of output from the sample program RsiCons1:

$ RsiCons1 umbra

 cpu0 cpu0 cpu0 cpu0 cpu0 cpu0 cpu0 cpu0

 user kern wait idle uticks kticks wticks iticks

 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0

 0.0 0.0 0.0 100.0 0.0 0.0 0.0 99.9

 0.2 3.1 0.0 96.5 0.2 3.2 0.0 96.6

 3.5 5.5 1.5 89.1 3.5 5.5 1.5 89.1

 5.8 3.4 0.0 90.8 5.8 3.4 0.0 90.8

 8.8 8.3 0.1 82.5 8.8 8.3 0.2 82.5

 67.5 2.4 3.0 27.0 67.5 2.3 2.9 26.9

 16.0 0.6 0.8 82.5 16.0 0.6 0.8 82.6

 67.5 5.0 0.0 27.3 67.5 5.0 0.0 27.3

 19.0 6.1 0.9 73.8 19.1 6.1 0.9 73.8

 22.5 0.8 1.6 75.0 22.5 0.8 1.6 74.9

 60.2 6.1 0.0 33.5 60.2 6.1 0.0 33.5

$

An Alternative Way to Decode Data Feeds

If you need to know more about the data received in data_feed packets than what can be obtained using

theRSiGetValue subroutine, you can use the library subroutine RSiGetRawValue.

Expanding the Data-Consumer Program

A slightly more capable version of the sample program discussed in the previous sections is provided as

/usr/samples/perfmgr/RsiCons.c. This program also lists the statistics with the short name xfer for all the

disks found in the system where the daemon runs. To do so, the program uses some additional

subroutines to traverse contexts as described in the following section.

Traversing Contexts

The adddisk function in the following list shows how the RSiFirstCx, RSiNextCx, and the RSiInstantiate

subroutines are combined with RSiPathGetCx to make sure all subcontexts are accessed. The sample

program’s internal function addstat is used to add the statistics of each subcontext to the SpmiStatSet in

turn. A programmer who wanted to traverse all levels of subcontexts below a start context could easily

create a recursive function to do this.

[01] int adddisk(int ix, struct SpmiStatSet *ssp, char *path)

[02] {

[03] int i = ix;

[04] char tmp[128];

[05] cx_handle *cxh;

[06] struct SpmiStatLink *statlink;

[07] struct SpmiCxLink *cxlink;

254 Performance Toolbox Guide

[08]

[09] cxh = RSiPathGetCx(rsh, path);

[10] if ((!cxh) || (!cxh->cxt))

[11] {

[12] if (strlen(RSiEMsg))

[13] fprintf(stderr, “%s”, RSiEMsg);

[14] fprintf(stderr, “RSiPathGetCx can\’t access host %s (path %s)\n”,

[15] host, path);

[16] exit(64);

[17] }

[18] if (rsh->pi->data.getcx.context.inst_freq == SiContInst)

[19] {

[20] if ((i = RSiInstantiate(rsh, cxh)))

[21] return(-1);

[22] }

[23] if ((cxlink = RSiFirstCx(rsh, cxh, navn, desc)))

[24] {

[25] while (cxlink)

[26] {

[27] strcpy(tmp, path);

[28] if (strlen(tmp))

[29] strcat(tmp, “/”);

[30] if (*navn)

[31] strcat(tmp, *navn);

[32] if ((i = addstat(i, ssp, tmp, *navn)) == -1)

[33] {

[34] if (strlen(RSiEMsg))

[35] fprintf(stderr, “%s”, RSiEMsg);

[36] exit(63);

[37] }

[38] cxlink = RSiNextCx(rsh, cxh, cxlink, navn, desc);

[39] }

[40] }

[41] return(i);

[42] }

The output from the RsiCons program when xmservd runs on an AIX 4.1 host is shown in the following

example.

$ RsiCons encee

 CPU CPU CPU CPU hdisk3 hdisk1 hdisk0 cd0

 uticks kticks wticks iticks xfer xfer xfer xfer

 19.6 10.0 4.1 67.1 2.7 4.1 0.0 0.0

 10.9 15.3 8.2 65.3 0.0 8.2 0.0 0.0

 0.5 2.0 0.0 97.5 0.0 0.0 0.0 0.0

 10.5 4.0 0.0 85.5 0.0 0.0 0.0 0.0

 55.4 8.9 0.0 35.4 2.4 0.0 0.0 0.0

 19.0 5.5 0.0 75.5 0.0 0.0 0.0 0.0

 5.9 6.4 0.0 87.4 0.0 0.0 0.0 0.0

 10.5 7.0 0.0 82.5 0.0 0.0 0.0 0.0

 7.9 7.4 0.0 84.4 0.0 0.0 0.0 0.0

 88.5 8.5 3.0 0.0 9.5 4.5 0.0 0.0

 89.4 8.9 1.4 0.0 5.9 0.0 0.0 0.0

 92.5 5.5 2.0 0.0 9.0 8.5 0.0 0.0

 71.0 6.0 23.0 0.0 44.0 41.0 0.0 0.0

 37.9 2.4 58.9 0.4 67.9 61.4 0.0 0.0

 17.5 4.5 0.0 78.0 1.5 3.0 0.0 0.0

 0.5 1.5 10.0 88.0 7.5 1.5 0.0 0.0

$

Inviting Data Suppliers

Sometimes you want to design programs that can present the end user with a list of potential data-supplier

hosts rather than requiring the user to specify which host to monitor. The RSiInvite allows you to create

such programs.

Chapter 19. Remote Statistics Interface Programming Guide 255

Identifying Data Suppliers

The RSiInvite subroutine uses one or more of the following methods to obtain the Internet Protocol (IP)

addresses to which an invitational are_you_there message can be sent. The last two methods depend on

the presence of the $HOME/Rsi.hosts file. PTX also has alternative locations of the Rsi.hosts file. The

three ways to invite data-supplier hosts are:

1. Unless instructed not to by the user, the broadcast address corresponding to each of the network

interfaces of the local host is found. The invitational message is sent on each network interface using

the corresponding broadcast address. Broadcasts are not attempted on the Localhost (loopback)

interface or on point-to-point interfaces such as X.25 or SLIP (Serial Line Interface Protocol)

connections.

2. If a list of Internet broadcast addresses is supplied in the file $HOME/Rsi.hosts, an invitational

message is sent on each such broadcast address. Note that if you specify the broadcast address of a

local interface, broadcasts are sent twice on those interfaces. You may want to use this as a feature in

order to minimize the likelihood of the invitation being lost.

3. If a list of host names is supplied in the file $HOME/Rsi.hosts, the host IP address for each host in

the list is looked up and a message is sent to each host. The look-up is done through a

gethostbyname() call, so that whichever name service is active for the host where the data-consumer

application runs is used to find the host address.

The file $HOME/Rsi.hosts has a simple layout. Only one keyword is recognized and only if placed in

column one of a line. That keyword is:

nobroadcast

and means that the are_you_there message should not be broadcast using method 1 shown previously.

This option is useful in situations where a large number of hosts are on the network and only a

well-defined subset should be remotely monitored. To say that you don’t want broadcasts but want direct

contact to three hosts, your $HOME/Rsi.hosts file might look like this:

nobroadcast

birte.austin.ibm.com

gatea.almaden.ibm.com

umbra

This example shows that the hosts to monitor do not necessarily have to be in the same domain or on a

local network. However, doing remote monitoring across a low-speed communications line is unlikely to be

popular; neither with other users of that communications line nor with yourself.

Be aware that whenever you want to monitor remote hosts that are not on the same subnet as the

data-consumer host, you must specify the broadcast address of the other subnets or all the host names of

those hosts in the $HOME/Rsi.hosts file. The reason is that IP broadcasts do not propagate through IP

routers or gateways.

The following example illustrates a situation where you want to do broadcasting on all local interfaces,

want to broadcast on the subnet identified by the broadcast address 129.49.143.255, and also want to

invite the host called umbra. (The subnet mask corresponding to the broadcast address in this example is

255.255.240.0 and the range of addresses covered by the broadcast is 129.49.128.0 - 129.49.143.255.)

129.49.143.255

If the RSiInvite subroutine detects that the name server is inoperational or has abnormally long response

time, it returns the IP addresses of hosts rather than the host names. If the name server fails after the list

of hosts is partly built, the same host may appear twice, once with its IP address and once with its host

name.

The execution time of the RSiInvite subroutine depends primarily on the number of broadcast addresses

you place in the $HOME/Rsi.hosts file. Each broadcast address increases the execution time with roughly

50 milliseconds plus the time required to process the responses. The minimum execution time of the

256 Performance Toolbox Guide

subroutine is roughly 1.5 seconds, during which time your application only gets control if callback functions

are specified and if packets arrive that must be given to those callback functions.

A Full-Screen, Character-based Monitor

Another sample program written to the data-consumer API is the program chmon. Source code to the

program is in /usr/samples/perfmgr/chmon.c. The chmon program is also stored as an executable

during the installation of the Manager component. This program uses the API and the curses programming

interface to create a screen full of statistics as shown in the following example:

Data-Consumer API Remote Monitor for host Tue Apr 14 09:09:05

1992

CHMON Sample Program *** birte *** Interval: 5 seconds

% CPU EVENTS/QUEUES FILE/TTY

Kernel 13.3 |#### | Pswitch 1295 Readch 24589

User 23.7 |####### | Syscall 6173 Writech 1646

Wait 6.5 |## | Reads 487 Rawin 0

Idle 56.1 |################ | Writes 143 Ttyout 106

 Forks 1 Igets 1763

PAGING counts PAGING SPACE REAL MEM 48MB Execs 1 Namei 809

Faults 131 % Used 33.7 % Comp 68.0 Runqueue 1 Dirblk 174

Steals 0 % Free 66.2 % NonComp 15.0 Swapqueue 0 Reads 48

Reclaim 0 Size,MB 96 % Client 4.0 Writes 143

PAGING page/s DISK Read Write % NETWORK Read Write

Pgspin 0 ACTIVITY KB/sec KB/sec Busy ACTIVITY KB/sec KB/sec

Pgspout 0 hdisk0 0.0 35.1 15.7 lo0 1.1 1.1

Pagein 0 hdisk1 0.0 0.0 0.0 tr0 1.1 0.0

Pageout 11 hdisk2 0.0 9.5 3.5

Sios 10 cd1 0.0 0.0 0.0

 Process wait (514) %cpu 63.2, PgSp: 0.0mb, uid:

 Process xlcentry (12657) %cpu 58.0, PgSp: 1.1mb, uid: birte

 Process make (21868) %cpu 15.0, PgSp: 0.2mb, uid: birte

 Process make (5998) %cpu 15.0, PgSp: 0.1mb, uid: birte

The chmon command line is:

chmon[-iseconds_interval][-pno_of_processes][hostname>]

where:

 seconds_interval Is the interval between observations. Must be specified in seconds. No blanks must

be entered between the flag and the interval. Defaults to 5 seconds.

no_of_processes Is the number of “hot” processes to be shown. A process is considered “hotter” the

more CPU it uses. No blanks must be entered between the flag and the count field.

Defaults to 0 (no) processes.

hostname Is the host name of the host to be monitored. Default is the local host.

The sample program exits after 2,000 observations have been taken, or when you type the letter “q” in its

window.

List of RSi Error Codes

All RSI subroutines use constants to define error codes. The RSI Error Code table lists the error

descriptions.

 Symbolic Name Number Description

RSiTimeout 280 A time-out occurred while waiting for a response to a request.

Chapter 19. Remote Statistics Interface Programming Guide 257

Symbolic Name Number Description

RSiBusy 281 An RSiOpen subroutine was issued, but another is already active.

RSiSendErr 282 An error occurred when the library attempted to send a UDP packet with the

sendto() system call.

RSiPollErr 283 A system error occurred while issuing or processing a poll() or select() system

call.

RSiRecvErr 284 A system error occurred while attempting to read an incoming UDP packet with

the recvfrom() system call.

RSiSizeErr 285 A recvfrom() system call returned a UDP packet with incorrect length or

incorrect source address.

RSiResync 286 While waiting for a response to an outgoing request, one of the following

occurred and cause an error return to the calling program:

1. An error occurred while processing an exception packet.

2. An error occurred while processing an i_am_back packet.

3. An i_am_back packet was received in response to an output request other

than are_you_there.

4. While waiting for a response to an outgoing request, some asynchronous

function closed the handle for the remote host.

The code may also be set when a success return code is returned to the caller,

in which case it shows that either an exception packet or an i_am_back packet

was processed successfully while waiting for a response.

RSiBadStat 287 A bad status code was received in the data packet received.

RSiBadArg 288 An argument that is not valid was passed to an RSi subroutine.

RSiBadHost 289 A valid host address cannot be constructed from an IP address or the

nameservice doesn’t know the hostname.

RSiDupHost 290 An RSiOpen call was issued against a host but a connection is already open

to a host with this IP address and a different hostname.

RSiSockErr 291 An error occurred while opening or communicating with a socket.

RSiNoPort 292 The RSi is unable to find the port number to use when inviting remote

suppliers. The likely cause is that the xmquery entry is missing from the

/etc/services file or the NIS (Yellow Pages) server.

RSiNoMatch 293 One of the following occurred:

1. The SpmiStatVals argument on the RSiStatGetPath call is not valid.

2. On an RSiPathAddSetStat call, the SpmiStatSet argument is not valid or

the path name given in the last argument does not exist.

3. On an RSiAddSetHot call, the SpmiHotSet argument is not valid, the

grand parent context doesn’t exist or none of its subcontexts contain the

specified statistic.

4. On an RSiDelSetStat call, the SpmiStatSet or the SpmiStatVals argument

is not valid.

5. On an RSiDelSetHot call, the SpmiHotSet or the SpmiHotVals argument

is not valid.

6. On an RSiPathGetCx call, the path name given does not exist.

7. On an RSiGetValue or RSiGetRawValue call, the SpmiStatVals argument

is not valid

8. On an RSiGetHotItem call, the SpmiHotSet argument was not valid.

RSiInstErr 294 An error was returned when attempting to instantiate a remote context.

RSiNoFeed 295 When extracting a data value with the RSiGetValue call, the data value was

marked as not valid by the remote data supplier.

258 Performance Toolbox Guide

Symbolic Name Number Description

RSiTooMany 296 An attempt was made to add more values to a statset than the current buffer

size permits.

RSiNoMem 297 Memory allocation error.

RSiNotInit 298 An RSi call was attempted before an RSiInit call was issued.

RSiNoLicense 299 License expired or no license found.

RSiNotSupported 300 The subroutine call requires a later protocol version that the one supported by

the remote system’s xmservd.

Chapter 19. Remote Statistics Interface Programming Guide 259

260 Performance Toolbox Guide

Chapter 20. Top Monitoring

Performance Toolbox Version 3.1 introduced top monitoring to simplify performance analysis of large

server configurations. These systems typically contain a large number of CPUs, network adapters, and

disk devices, which makes it difficult to visualize or represent system performance in a graphical manner.

Top monitoring, also known as hot monitoring, focuses on elements consuming the most system resources

and these elements are then sorted into lists referred to as top-lists. For example, the top ten processes

consuming the most CPU resources would make up a top-list. System administrators and performance

analysts can identify and diagnose issues of interest more quickly by focusing on the most constrained

resources.

This chapter discusses the following topics:

v Top Monitoring Configuration

v Using the jtopas System-Monitoring Tool

Note: The Performance Aide for AIX trend agent, xmtrend, has been modified to support perpetual

collection of top resource data. This agent is described in more detail in Chapter 11, “Analyzing

Performance Trend Recordings with the jazizo Tool,” on page 139 and Chapter 14, “Recording

Performance Data on Remote and Local Systems,” on page 167.

Top Monitoring Configuration

The top framework records a defined number of performance metrics, by resource, at all times for all

systems on which Performance Aide for AIX is installed. The framework consists of:

v User-centered distributed top resource client

v Always-on agent data collection and recording

v Tabular report summaries

v Near real-time response for active monitoring

v Playback function

v Common recording format allows support by existing trend analysis client (jazizo)

The jtopas client can retrieve this data for display and reporting. The ptxtab command-line utility can also

output reports of data recordings. This utility is described in more detail in “ptxtab Command” on page 297.

No user configuration of the top agents’ recorded metric set is currently provided. The daemon records a

predefined set of information for optimal performance on AIX systems. In addition, the daemon exports

sampled data for near real-time retrieval by the jtopas client. The xmtrend agent that provides top data,

operates independently of any other instance of a user-configured xmtrend or xmservd agent. That is, if a

user intends to monitor or record other performance metrics, the user must manually configure the

xmtrend or xmservd agents.

The top agent uses the /usr/lpp/perfagent/jtopas.cf configuration file. The only user-modifiable sections

of this configuration file are:

v Retain Line

v Start-Stop Lines

These lines control recording retention and when a recording is active.

Note: Modification of other than these lines or removal of the jtopas.cf file disables the top agent.

© Copyright IBM Corp. 1994, 2004 261

In addition to recording top resource data, the top agent also records a set of global system metrics that

do not correspond to list data, for example, system memory size. The complete list of available global

metrics is provided in the jtopas.cf configuration file.

Top data is recorded into the /etc/perf/Top/ directory by default. Users requiring a separate recording file

system for management purposes can create that file system and relink the /etc/perf/Top directory as

desired. Top data recordings can also be viewed by the jtopas client or the jazizo trend analysis tool.

Upon installation, the top agent is added to the /etc/inittab file, so that it is enabled by default. Users who

want to disable the top agent can comment out the xmtrend entry in the file.

Additional entries in the /etc/inittab file are the tnameserv program and the feed program. Both of these

entries are required for the jtopas tool to register remote Java classes and communicate with the local

and remote servers. These entries are added when Performance Toolbox for AIX is installed and can be

disabled along with the top agent.

Using the jtopas System-Monitoring Tool

The jtopas tool is a Java-based system-monitoring tool that provides a console to view a summary of the

overall system, as well as separate consoles to focus on particular subsystems. Top instruments are

featured in thejtopas tool for various resources such as processes and disks. The data streams available

are Near Real-Time (NRT) and Playback (PB). PB data can be viewed from the local host or a remote

host, as long as Performance Toolbox for AIX has been installed and configured.

The jtopas tool interface displays a set of tabs that represent the various consoles. The main console

provides a view of several resources and subsystems and lends itself to providing an overall view of a

computer system, while the other consoles focus more on particular areas of the system. The main

console contains several top instruments. A top instrument is a monitoring window that displays a group of

devices or processes. For instance, these top instruments can be sorted by the largest consumers of a

system resource, such as memory, CPU, storage, or network adapters. Even though there might be

thousands of processes, for example, only the top 10 or 20 are displayed by the jtopas tool.

Each of the other consoles is composed of one or more instruments. An instrument is similar to a window

that can be resized, minimized, or moved. A divider bar is used to separate top-instrument information

from global information about the system, and the bar can be moved or either side of the bar can be made

to use the entire console display area.

At initialization, the jtopas tool displays all consoles with their instruments. If a user configuration file is

found, the consoles are constructed based on that file. Otherwise, the default configuration is used. By

default, the jtopas tool tries to establish a communication link with the local host to drive the consoles.

To run the jtopas tool, type:

jtopas

Files Used by the jtopas Tool

The jtopas tool uses recording files and a configuration file, as follows:

Recording Files

Recording files contain metric values recorded by an instance of the xmtrend agent, acting as the

top agent. This xmtrend agent is directed to record metric data specifically for top data. The

xmtrend agent creates a recording file of top metric data as defined in the jtopas.cf configuration

file. This recording file can be used by the jtopas tool to display historical system events, or by the

jazizo trend analysis tool. Not all data and data rates are available to the jtopas tool during a

playback. For top recordings and Near Real-Time data, the xmtrend daemon must be started with

the -T option. The top recordings are placed in the /etc/perf/Top/ directory.

262 Performance Toolbox Guide

Configuration File

The jtopas tool uses a default configuration file that determines the size, location, and metrics

viewed for each instrument. If any instrument is changed, upon exit, users are asked if they want

to save the current configuration. If Yes is selected, a configuration file is placed in the user’s

HOME directory and is named .jtopas.cfg. Users can return to using the default configuration by

deleting the /$HOME/.jtopas.cfg file.

Menus for the Jtopas Tool

This section describes the various menus associated with the jtopas tool. The following are the jtopas

menus:

v File Menu

v Data Source Menu

v Reports Menu

v Host List

v Options Menu

File Menu

The following option is contained in the File menu:

Exit Closes all windows and exits the jtopas tool. If the configuration has changed, the user is asked

whether to save the new configuration.

Data Source Menu

The following options are contained in the Data Source menu:

Near Real-Time Data

Changes the data stream to near real-time data. Near real-time data is gathered from a machine

in real time and then made available to the jtopas tool. The refresh rate, which can be changed in

the jtopas tool, defines how often data is requested and displayed.

PlayBack Data

Changes the data stream to PlayBack data. The PlayBack control panel is displayed when users

select this option. The jtopas tool continues to display data at the refresh rate. The data is

gathered from the local or a remote machine. Recorded data is saved on a server by the xmtrend

agent at 1-minute intervals. Although the refresh rate updates the console at a given interval by

default, the clock associated with the data increments at the 1-minute interval. For example, if the

refresh rate is every 5 seconds and the recording file is recorded every minute, the data and clock

on the PlayBack panel refreshes every 5 seconds by 1 minute.

Reports Menu

The Reports menu provides a set of report formats. Each report summarizes the data in a tabular format

that can be viewed and printed. The font and size of the data can be changed. Some reports might offer

report options to change how the data is summarized and displayed.

Host List

The Host List menu allows users to add or delete a host name from the host list.

Options Menu

The following options are contained in the Options menu:

Refresh Rate

The jtopas tool cycles through at the refresh rate. The cycle includes requesting the data and

updating the console. The refresh rate can be changed by either clicking the refresh rate/status

button or selecting the menu option. The user can enter values of whole seconds. The jtopas tool

uses the default refresh rate. The greater the refresh rate value, the less load the jtopas tool

consumes on the CPU. If the jtopas tool is unable to complete an operation within the cycle time,

Chapter 20. Top Monitoring 263

the status button turns yellow and an appropriate message is displayed. If data cycles are

consistently missed, the refresh rate should be adjusted to increase the time between updates.

Message Filter

The message filter option allows users to filter out and display messages based on a specific

priority.

 The following are priorities for messages, each priority having a color associated with it:

v Priority 1 Red - Critical message, such as losing a host connection

v Priority 2 Yellow - Important message, such as losing a data cycle

v Priority 3 Black - Informational messages

The text of each message displayed is color-coded and is preceded by the priority and the

timestamp.

Info Section for the jtopas Tool

The info section provides status information and allows users to select the host from which to gather the

data. The following are the data fields:

Host Name

By default, the local host name is displayed. Host names can be added, deleted, or selected.

 To add a new host, select Host List from the menu bar and then select Add Host. The new host

is immediately contacted for a connection and is added to the host list pull-down. If the host list is

modified in any way, upon exit, the user is asked whether to save the new configuration. If OK is

selected, the new host list is saved in the $HOME/.jtopas.cfg file and made available the next

time the same user starts the jtopas tool.

 To delete a host, select Host List from the menu bar and then select Delete Host. The old host is

still selected until a new host is selected.

 To select a new host from the host list, open the list and select the host name.

Message Section

The jtopas tool generates informational messages. These messages are assigned a priority to

classify them by importance and to allow users to hide messages of a particular priority for easier

viewing. As stated in the Message Filter section of the Options menu, the following priorities are

assigned to messages: P1, P2, or P3. The highest in importance is P1, as it is used for critical

messages. Messages can be filtered by selecting Message Filter under the Options menu.

Status/Refresh Rate Button

The status button reflects the status of data acquisition per the selected refresh rate. The refresh

rate defines how often the console data is updated. The value is in seconds. The refresh rate can

be changed by selecting the button or selecting Refresh Rate under the Options menu. If data is

not retrieved and updated within the refresh cycle, the button turns yellow and the button label

changes to No Update. If the data connection is lost, the button turns red and the button label

displays No Data. Appropriate messages are also added to the message section.

Current Time

This field reflects the current day and time.

Consoles of the jtopas Tool

The various consoles are displayed under tabs on the interface. The initial console is the main console. By

selecting a different tab, the corresponding console is activated and displayed. Each console contains one

or more instruments. Each instrument is displayed as a window that can be minimized, maximized, moved,

and resized. If there are multiple columns with headers, the columns can be reorganized and resized.

Some instruments implement a scroll bar to view additional data.

264 Performance Toolbox Guide

Top instruments monitor a group of common metrics ordered by a particular column metric. For example,

CPUs are by default ordered highest to lowest by largest consumer of kernel CPU used. This default can

be changed to largest consumer of user CPU by clicking the User header label. Even if there are 64

CPUs, only a subset is displayed.

PlayBack Panel for the jtopas Tool

When the PlayBack data source is selected, the PlayBack panel is displayed. The panel allows a user to

control the playback. Closing the PlayBack panel returns the user to the NRT data source. Playbacks

begin in a paused state. To begin displaying the playback, click Play. The PlayBack panel contains the

following information:

Host Name

The initial playback host is the host that was selected for the NRT data. This can be changed in

the same manner as it is changed in the main console.

Start / Stop

The available start and stop times of all recorded data on a particular host are displayed. By

clicking Change, the start and stop date and times can be altered. The Time Selection panel

displays dates and times of available recorded data. Select a date and indicate whether it is the

start or stop date for the playback. Then select a start time and stop time. Click OK to use the

dates and times selected.

PlayBack Time

This time stamp represents the time stamp for the playback sample that is displayed.

Sample Interval

Even though the recording frequency is in minutes, metric samples are taken at a much finer

granularity. These samples are combined to determine the mean across the recording cycle. By

default, sample updates to the jtopas tool in the playback mode are at the recording frequency.

This is not the same as the refresh rate of the screen. The refresh rate represents how often the

data in the jtopas console is refreshed. Having a refresh rate for the console, as well as a sample

interval, allows the user to view a week’s worth of data in hourly intervals and have the console

refresh at a rate that is comfortable to view and analyze.

PlayBack Controls

The following are the playback controls:

Rewind

Plays the recording back in reverse. The sample interval value becomes negative, which

indicates that the recording file is being traversed in reverse order and at the interval

displayed. Each time Rewind is selected, the time interval increases. Clicking Play returns

the playback to the default sample rate.

Play Displays the recording file.

Fast Forward

Increases the time between data samples. The sample interval value increases, which

indicates that the recording file is being traversed at greater intervals. Each time Fast

Forward is selected, the time interval increases. Clicking Play returns the playback to the

default or selected sample rate.

Pause Stops the playback but maintains the current playback time in the recording file.

Stop Stops the playback and resets the playback time to the beginning.

Step Forward

Moves the playback forward one time interval and pauses.

Step Backward

Moves the playback backward one time interval and pauses.

Chapter 20. Top Monitoring 265

266 Performance Toolbox Guide

Appendix A. Installing the Performance Toolbox for AIX

If you are installing Performance Toolbox for AIX, the distribution media contains two install images: one

for the Agent component and one for the Manager component. If you are installing Performance Aide for

AIX, the distribution media contains only the install image for the Agent component. In both cases, the

install image for the Agent component contains two installable options: server and tools.

In AIX 4.3 of the operating system, the Performance Aide for AIX tools component (perfagent.tools) is

shipped as an optionally installable component with the base operating system media. In AIX 4.3 and later

releases of the operating system, the tools component must be installed before proceeding with the Agent

or Manager installations.

Prerequisites

Version 2 of Performance Toolbox for AIX runs only with AIX 4.1 or later releases of the operating system.

Attempts to install Version 2 on other levels of the operating system may succeed, but the product will not

run correctly.

Ordering Information

These are the Performance Toolbox for AIX Version 2 feature codes:

Performance Toolbox Network feature

Performance Manager which allows monitoring of remote systems in a

networked environment.

Performance Toolbox Local feature

Performance Manager which allows monitoring of the local system. If you

have the Performance Toolbox Network feature listed above it contains

this local feature.

Performance Aide for 4.1 Supplies data from AIX 4.1 of the operating system to either the Network

or Local features listed above.

Performance Aide for 4.2 Supplies data from AIX 4.2 of the operating system to either the Network

or Local features listed above.

Performance Aide for 4.3 Supplies data from AIX 4.3 of the operating system to either the Network

or Local features listed above.

Performance Aide for AIX (Performance Toolbox for AIX Agent)

The prerequisites for Version 2 for both Performance Aide for AIX and the Agent component of

Performance Toolbox for AIX are the following:

v AIX Version 4 or later releases of the operating system

v bos.net.tcp.client at level 4.1 or higher (required for server option)

v bos.sysmgt.trace at level 4.1 or higher (required for tools option)

Performance Toolbox for AIX Manager

The prerequisites for the Manager component of Performance Toolbox for AIX Version 2 are the following:

v AIX Version 4 or later releases of the operating system

v X11.base.rte at level 4.1 or higher

v X11.base.lib at level 4.1 or higher

v X11.motif.lib at level 4.1 or higher

v perfagent.server at level 2.1 or higher

© Copyright IBM Corp. 1994, 2004 267

v perfmgr.common at level 2.2 or higher

Installation

Before you install Performance Toolbox for AIX on a system, you must decide whether you will be using

that system to monitor other systems or if it is simply a system you want to monitor.

v If you plan to monitor only the local system, you need to install the complete Performance Toolbox Local

feature (both the Manager and Agent components).

v If you plan to monitor local and remote systems, you need to install the complete Performance Toolbox

Network feature (both the Manager and Agent components) on the system.

v If you plan to use local performance tools or monitor this system only from another system and not use

this system to monitor other systems, you need to install either:

– Performance Toolbox for AIX Agent component

– Performance Aide for AIX (which provides Agent components for computers that are not RS/6000

computers).

Performance Aide for AIX (Performance Toolbox for AIX Agent)

To install the Performance Aide for AIX, use SMIT or the following command (if installing from tape,

otherwise substitute the proper installation device for /dev/rmt0.1):

installp -avgIX -d /dev/rmt0.1 perfagent

The Performance Aide server component has a prerequisite to the tools component. Because the tools

component (perfagent.tools) resides on the base installation media, it must be installed before the server

component (perfagent.server). The Agent installation can then be installed with the following command:

installp -avgIX -d /dev/rmt0.0 perfagent.server

Performance Toolbox for AIX (Agent and Manager components)

To install the Performance Aide for AIX (both Agent and Manager components), use SMIT or the following

command (if installing from tape, otherwise substitute the proper installation device for /dev/rmt0.1) as

described here.

For the Performance Toolbox Network feature:

installp -avgIX -d /dev/rmt0.1 perfmgr.network

For the Performance Toolbox Local feature:

installp -avgIX -d /dev/rmt0.1 perfmgr.local

Note: If you use SMIT to install, make sure to request that prerequisite software be installed.

Before executing the Performance Toolbox Manager or Agent components, the Internet superserver must

be updated. This is performed by executing the following command on each installed node:

refresh -s inetd

Installing Performance Toolbox for AIX on Systems Other Than IBM

RS/6000 Hosts

The actual installation procedure varies between systems. Specific installation instructions are provided in

a readme file included with the software.

Prerequisites

The prerequisites for installing an Agent component on a host that is not a RS/6000 host are the following:

v Performance Toolbox for AIX or Performance Aide for AIX is properly installed on a RS/6000 computer.

268 Performance Toolbox Guide

v TCP/IP network access (with root authority) to the host that is not a RS/6000 host.

v /usr/lpp/perfagent/README.perfagent

Installation

After Performance Toolbox for AIX or Performance Aide for AIX is installed on a RS/6000, read the

/usr/lpp/perfagent/README.perfagent file for further installation instructions.

Appendix A. Installing the Performance Toolbox for AIX 269

270 Performance Toolbox Guide

Appendix B. Performance Toolbox for AIX Files

Several of the programs in Performance Toolbox for AIX use files, either to customize the programs’

behavior or as output or log files. The programs access their files according to an access scheme that

allows a user of a host system to override the default information in the files without affecting the defaults

available to other users. This appendix gives an overview of the files and their access scheme.

An access scheme is defined as:

v The directories where the program attempts to locate the file.

v The sequence in which directories are searched.

v The possibility to override the above.

Files used by xmperf and Other Data Consumers

The following files share a standard access scheme:

xmperf.cf The xmperf configuration file.

xmperf.hlp The xmperf simple help file.

exmon.cf The exmon configuration file.

exmon.hlp The exmon simple help file.

azizo.hlp The azizo simple help file.

Rsi.hosts The file that defines broadcast options to use.

3dmon.cf The 3dmon configuration file.

3dplay.hlp The 3dplay help file, available with Version 2.2 or later.

filter.cf The filtd configuration file

When a program needs one of these files, the file is first searched for in the user’s home directory. If the

file is found there, that file is used.

If the file doesn’t exist in the user’s home directory, the file is looked for in the directory /etc/perf. Because

the /etc directory is always unique for all hosts, even when some hosts are diskless hosts, this allows for

defining defaults on a per host basis. Again, if the file is found in this directory, that file is used.

The last place the file is looked for is in /usr/lpp/perfmgr (in case of the filter.cf, the last place the file is

looked for is in /usr/lpp/perfagent). If the file cannot be located in any of the directories, the program will

be missing important information and may terminate or provide reduced function.

The standard access scheme can be overridden by specifying a full file name on the command line when

starting the program. This is the case for the files:

xmperf.cf The xmperf configuration file.

3dmon.cf The 3dmon configuration file.

filter.cf The filtd configuration file.

The xmperf configuration file can be saved from the menus of xmperf. When this happens, the file is

usually saved to the user’s home directory. Only if the file name has been overridden on the xmperf

command line, is the file saved to that same name. This gives users an easy way to modify the default

configuration file.

© Copyright IBM Corp. 1994, 2004 271

The filtd program produces a log, which alternates between two file names that are identical, apart from

one ending in 1 and the other in 2. The file names of the log files are as follows:

v /etc/perf/filter.log1

v /etc/perf/filter.log2

The xmperf and azizo programs use a log file to record any error or warning messages and state

information. The file is written to $HOME/xmperf.log or $HOME/azizo.log, if possible, otherwise the

output is directed to stdout. Each time xmperf and azizo execute, they overwrite any previous copy of

their files.

Files used by xmservd

The files xmservd.res and xmservd.cf can exist in two directories. The xmservd daemon first attempts to

locate the files in the directory /etc/perf. Because the /etc directory is always unique for all hosts, even

when some hosts are diskless hosts, defaults can be defined on a per-host basis. If one or both files are

found in this directory, that file is used.

If a file is not found, it is searched for in /usr/lpp/perfagent. If the file cannot be located in this directory

either, the xmservd continues without any of the actions that can be started from the file.

The xmservd usually produces a log, which alternates between two file names that are identical, apart

from one ending in 1 and the other in 2. The file name of the log files are as follows:

v /etc/perf/xmservd.log1

v /etc/perf/xmservd.log2

Two more files are created by xmservd under certain circumstances:

v /etc/perf/xmservd.mib

v /etc/perf/xmservd.state

The xmservd.mib file is created whenever the xmservd daemon was started with the xmservd/SMUX

interface active and subsequently sent a SIGINT signal (kill -2).

The xmservd.state file is created when the xmservd daemon is killed or aborts.

Neither of the four output files are created in other places than specified above.

Explaining the xmperf Configuration File

This section explains the format of those lines in the xmperf configuration file that you use to define

consoles and instruments. This is described in “Defining Consoles,” and “Defining Skeleton Consoles” on

page 276 explains how to convert ordinary console definitions into skeleton console definitions.

The command line option -v is provided to assist you in debugging changes you make to the configuration

file. It prints all configuration file lines to the xmperf log file. Lines with errors are followed by a line that

begins with *** and explains the error or inconsistency.

Defining Consoles

All console definition lines in the configuration file must have an identifier. This identifier is divided in four

parts by periods (full stops). A few sample console definition lines are shown in the following example:

monitor.Mini Monitor.1.width: 180

monitor.Mini Monitor.1.height: 340

monitor.Mini Monitor.1.x: 1108

monitor.Mini Monitor.1.y: 580

monitor.Mini Monitor.1.background: black

monitor.Mini Monitor.1.foreground: grey70

272 Performance Toolbox Guide

The first element of the identifier is a keyword, which must be monitor. Next follows the name of the

console you define. All lines with this same name are taken as part of the definition of the console, no

matter where they appear in the configuration file. In the example above, the name of the defined console

is “Mini Monitor.” You’ll see that the name may have embedded blanks.

The third part of the identifier is used to identify the instrument within the console. The example above is

thus defining part of the first instrument within the console “Mini Monitor.”

The fourth part of the identifier describes which property of the instrument is defined. It may be a single

keyword, in which case it describes a property for the console itself or for an instrument as a whole. It may

be followed by a period and a sequence number, in which case it describes a property for a value in an

instrument. In all cases, the fourth element of the identifier must be followed by a colon.

After the colon comes the actual value of the property. In the preceding figure, for example, the first line

sets the width of the console to 180 pixels while the last line sets the foreground color of instrument

number 1 in the console to a color called “grey70.”

The keyword in the fourth part of the identifier determines whether the line defines a property for a

console, an instrument, or a value. The following three sections describe the keywords that are valid for

each of these groups.

The only keyword, which is required to define a console, is the input keyword defining a statistic to be

plotted in an instrument of the console. All other keywords have defaults as detailed in the next sections.

Console Keywords

Keywords that define console properties should always be defined using an instrument sequence number

equal to the lowest instrument number in the console. It is strongly suggested that this always be

sequence number 1. The valid keywords are:

width Defines the width in pixels of the window that will contain the console. Default is 400 pixels.

height Defines the height in pixels of the window that will contain the console. Default is 500 pixels.

x Defines the position of the left side of the console window, measured in pixels from the left side of

the display. Default is position zero.

y Defines the position of the top side of the console window, measured in pixels from the top of the

display. Default is position zero.

Instrument Keywords

All keywords that describe instruments must be immediately followed by a colon and never by a sequence

number. The valid keywords and related values are:

left Relative position of the left side of the instrument, given as a percentage of the width of

the console window. Must be from 0 to 100 and at least 10 less than “right.” Default is 1.

top Relative position of the top side of the instrument, given as a percentage of the height of

the console window. Must be from 0 to 100 and at least 10 less than “bottom.” Default is

1.

right Relative position of the right side of the instrument, given as a percentage of the width of

the console window. Must be from 0 to 100 and at least 10 larger than “left.” Default is 99.

bottom Relative position of the bottom side of the instrument, given as a percentage of the height

of the console window. Must be from 0 to 100 and at least 10 less than “top.” Default is

99.

shift Number of pixels to shift. Only used for recording graphs. Must be from one more than

“space” to 20. Default is 4.

Appendix B. Performance Toolbox for AIX Files 273

space Space between bars. Only used for bar graphs. Must be from 0 to one less than “shift.”

Default is 2.

history Number of observations to keep in memory. Must be from 50 to 5,000. Default is 500.

interval Number of milliseconds between observations. Must be from 100 to 15,000. Default is

5000.

background Background color of instrument. Must be a color defined in the X color file. Default is

black.

foreground Foreground color of instrument. Must be a color defined in the X color file. Default is white.

backtile Specifies the name of a tile (pixmap) that is used to paint the instrument. The tile name

must be one of the following. The number in parentheses after the tile name indicates the

number of the tile as shown in the color/tile dialog window of xmperf:

foreground (1)

Instrument is painted with 100% foreground and 0% background color.

background (2)

Instrument is painted with 0% foreground and 100% background color.

This is the default tile.

vertical (3) Instrument is painted with a pattern that mixes foreground and background

colors to produce a pattern of vertical lines.

horizontal (4) Instrument is painted with a pattern that mixes foreground and background

colors to produce a pattern of horizontal lines.

slant_right (5)

Instrument is painted with a pattern that mixes foreground and background

colors to produce a pattern of lines slanted to the right.

slant_left (6) Instrument is painted with a pattern that mixes foreground and background

colors to produce a pattern of lines slanted to the left.

plaid (7) Instrument is painted with a pattern resembling the pattern in a plaid.

triangles (8) Instrument is painted with a pattern composed of triangles.

wallpaper (9) Instrument is painted with a pattern that resembles wallpaper.

zigzags (10) Instrument is painted with a zigzag pattern.

fabric (11) Instrument is painted with a pattern that looks somewhat like woven fabric.

style Defines the primary style of the instrument. Must be one of the following values:

line Line graph (default)

area Area graph

skyline

Skyline graph

bar Bar graph

level State bar graph

light State light graph

pie Pie chart

meter Speedometer graph

 Actually, only the first three characters of the property name are used, because

three characters are enough to make the graph type unique.

274 Performance Toolbox Guide

stacked Specifies whether stacking is to be used for values that use the primary style. Specify True

if you want stacking to be used; otherwise specify False. Default is False.

Value Keywords

This section describes how to define values for non-skeleton consoles. To see how to define values for

skeleton consoles, see “Defining Skeleton Consoles” on page 276. The keywords used to define values

must be followed by a period and the sequence number of the value. The value sequence number

determines the sequence in which values are plotted, and influences the visual results when stacking is in

use.

Plotting for each observation is done so that the lowest sequence number is plotted first. In the case of

stacking, this means that the value with the lowest sequence number is plotted relative to zero. The next

value is plotted relative to the previously plotted value, and so forth.

The keywords (here all shown with the sequence number 1, but it could be from 1 to 24) are:

input.1 The path name of the value to be plotted. For non-skeleton consoles, this must always be

a fully qualified path name (no wildcards). Below are a few examples of the use of this

keyword:

 monitor.Mini

Monitor.1.input.4: IP/NetIF/tr0/ipacket

monitor.Mini Monitor.1.input.20: Disk/hdisk0/busy

monitor.Maxi Monitor.7.input.18: hosts/birte/Proc/runque

The third of the above lines specifies a path name qualified with a host name. Lines with such path names

are bound to a specific host. The other two lines do not bind to any specific host. The xmperf program

assumes that such lines refer to the host defined through the concept of Localhost as described in “The

Meaning of Localhost in xmperf” on page 23.

For process statistics, where the statistic name includes the process ID, a tilde, and the name of the

executing program, you can specify either the process ID followed by the tilde, or the name of the

executing program. The example below shows how to specify a statistic for the wait pseudo process. The

wait pseudo process always has a process ID of 514 on AIX 4.3.2. Both lines point to the same statistic.

monitor.Wait Monitor.1.input.1: Proc/514~/usercpu

monitor.Wait Monitor.1.input.2: Proc/wait/usercpu

If you specify a name of a program currently executing in more than one process, only the first one

encountered will be found.

color.1 The color used to plot the value. Must be a color defined in the X color file. Default is

generated from a table of default values for the ValueColor1 through ValueColor24 X

resources, depending on the sequence number of the value.

tile.1 Specifies the name of a tile (pixmap) that is used to paint the value if the style of the value

is neither line nor skyline and if the style of the instrument is not state light. The tile name

must be one of the following. The number in parentheses after the tile name indicates the

number of the tile as shown in the color/tile dialog window:

foreground (1)

Value is painted with 100% value color and 0% background color. This is

the default tile.

background (2)

Value is painted with 0% value color and 100% background color.

vertical (3) Value is painted with a pattern that mixes value color and background

colors to produce a pattern of vertical lines.

horizontal (4) Value is painted with a pattern that mixes value color and background

colors to produce a pattern of horizontal lines.

Appendix B. Performance Toolbox for AIX Files 275

slant_right (5)

Value is painted with a pattern that mixes value color and background

colors to produce a pattern of lines slanted to the right.

slant_left (6) Value is painted with a pattern that mixes value color and background

colors to produce a pattern of lines slanted to the left.

plaid (7) Value is painted with a pattern resembling the pattern in a plaid. This

pattern is not suited for instruments with low shift values because it

requires some space to be recognizable.

triangles (8) Instrument is painted with a pattern composed of triangles.

wallpaper (9) Instrument is painted with a pattern that resembles wallpaper.

zigzags (10) Instrument is painted with a zigzag pattern.

fabric (11) Instrument is painted with a pattern that looks somewhat like woven fabric.

range.1 The scale (range) used to plot the value. Given as two values separated by a dash.

Default is supplied from the SPMI data repository. A couple of examples:

 monitor.Mini Monitor.1.range.1: 0-100 monitor.Mini Monitor.1.range.18:

0-8

thresh.1 Threshold value. Used only by the state light graph. Default is zero.

descending.1 Type of threshold value. Used only by the state light graph. Specify True if the light must

go on when the current value is below the threshold value. If you want the light to go on

when the value is above the threshold, specify False or don’t specify the keyword. Default

is False.

label.1 Defines the user-specified text that is used to label the value in the instrument. Default is

no user-specified text (the value path name is used).

style.1 Defines the secondary style for the value defined. Only valid for recording graphs. Must be

one of the following values:

line Line graph

area Area graph

skyline Skyline graph

Bar Bar graph

 The default is chosen as the same as the graph style of the instrument.

Defining Skeleton Consoles

Skeleton consoles are defined like any other console with two exceptions. Neither the keywords defining

the console, nor those defining the instruments, are different. The only difference is in the keyword used to

define the values in the instruments of the console. The keyword that’s different is the input.1 keyword,

which must be changed to all.1 or each.1.

The difference is that the path name of the value must contain exactly one wildcard, and that the path of

all the all.1 and each.1 keywords in the console must be the same up to, and including the wildcard.

Whether you use all.1 or each.1 for the keyword depends on what type of skeleton you want. See

“Skeleton Instruments” on page 14 for an explanation of the two types of skeletons.

The following are three examples of sets of skeleton definitions:

monitor.Single-host Monitor.3.each.1: hosts/*/CPU/kern

monitor.Single-host Monitor.3.each.2: hosts/*/Syscall/total

monitor.Remote Mini Monitor.1.each.4: IP/NetIF/*/ipacket monitor.Remote Mini

276 Performance Toolbox Guide

Monitor.1.each.5: IP/NetIF/*/opacket

monitor.Uziza Disk Monitor.1.all.21: hosts/uziza/Disk/*/busy

The last line binds the skeleton to a specific host. When this is done, all value definitions in the console

must be bound to the same host. If no host binding is done (as in the first two sets above), the concept of

Localhost as described in “The Meaning of Localhost in xmperf” on page 23 applies.

Note: You can mix skeleton types within a console; just remember that all paths up to the wildcard must

be the same, not only in an instrument but for all instruments in a console.

As mentioned previously, skeleton instruments of type “all” can only have one value defined. Thus, all

values in the instantiated instrument will have the same color, namely as defined for the value in the

skeleton instrument. Not only can it be dull, it effectively restricts the “all” type skeletons to use the state

bar graph type. Otherwise you wouldn’t be able to tell one value from another.

To cope with this, you can define the color for a value in a skeleton instrument of type “all” as default.

This causes xmperf to allocate colors to the values dynamically as values are inserted during instantiation

of the skeleton. Below is an example of a full value definition using this feature:

monitor.Processes.1.all.1: hosts/myhost/Proc/*/kerncpu

monitor.Processes.1.color.1: default

monitor.Processes.1.range.1: 0-100

monitor.Processes.1.label.1: cmd

Defining Default Consoles

When xmperf is started, you can have one or more consoles opened automatically. This is done by

adding one line to the configuration file for each console you want to be automatically opened. The

following shows an example of such a line:

monitor.Mini Monitor.default

The line states the name of the default console, in this case “Mini Monitor,” followed by the keyword

default. More than one such line may exist in the configuration file. One console is opened for each such

line. The consoles are opened sequentially in the same order as they appear in the configuration file.

The xmperf Resource File

The X Window System resource file for xmperf defines resources you can use to enhance the

appearance and behavior of xmperf and is installed as /usr/lib/X11/app-defaults/XMperf.

Resources Defining Appearance

 # xmperf options

 #

 *GraphFont:

 -ibm-block-medium-r-normal--15-1

00-100-100-c-70-iso8859-1

 *background: grey70

 *XMMenubar.background: #cdb54d

 *XmCascadeButton.background: #cdb54d

 Console*XMMenubar.background: pink

 Console*XmCascadeButton.background: pink

 Console*XMMenubar.foreground: black

 Console*XmCascadeButton.foreground: black

 *XMProcMenubar.background: blue

 *XMProcList*XmCascadeButton.background: blue

 *XMProcList*XmCascadeButton.foreground: turquoise

 *XMSkelMenubar.background: blue

 *XMSkelList*XmCascadeButton.background: blue

Appendix B. Performance Toolbox for AIX Files 277

*XMSkelList*XmCascadeButton.foreground: turquoise

 *XMHostMenubar.background: blue

 *XMHostList*XmCascadeButton.background: blue

 *XMHostList*XmCascadeButton.foreground: turquoise

 *XMHelpMenubar.background: ForestGreen

 *XMHelp*XmCascadeButton.background: ForestGreen

 *XMHelp*XmCascadeButton.foreground: yellow

 *XMColorWindow.background: black

 *XMTabWindow.background: grey70

 *XMTabWindow.foreground: black

 #

 # Dialog Colors

 #

 *XMessage.background: #eaeaad

 *XMessage.foreground: black

 *XMOptions.background: medium aquamarine

 *XMOptions.foreground: black

 *XMDelete.background: blue

 *XMDelete.foreground: yellow

 *XMExit.background: firebrick

 *XMExit.foreground: black

 *XMChanged.background: yellow

 *XMChanged.foreground: black

 *XMHelp.background: DarkGreen

 *XMHelp.foreground: MediumSpringGreen

 *XMStop.background: pink

 *XMStop.foreground: black

 *XMMsgbox.background: DarkGreen

 *XMMsgbox.foreground: light grey

 #

 # Light Colors

 #

 *XMLight.background: #729fff

 *XMLight.foreground: black

 #

 # Digital Clock Colors

 #

 *XMSeekTime.foreground: red

 *XMSeekTime.background: black

 *XMPlayTime.foreground: yellow

 *XMPlayTime.background: black

The sample file first defines the font used for all windows. The resource name to define the font

specifically for Performance Toolbox for AIX is GraphFont. If you don’t define this resource, xmperf tries

to get a font name from the following resources:

v graphfont

v FontList

v fontList

v Font

v font

If none are defined, a suitable fixed-width font is used.

The next line defines the default color for all widgets with the name XMMenubar, which happens to be the

menu bar in the main window and in the console windows when pull-down menus are used. The line

defines the background color as a yellowish color.

The third line defines the background color for all widgets of the class XmCascadeButton to be the same

yellowish color. This effectively paints all menu lines representing a cascade menu with this color.

278 Performance Toolbox Guide

The next four lines define the menu bar and cascading menu items as having foreground and background

colors different from the defaults in consoles that are created when xmperf runs with pull-down menus. All

consoles use the name Console for their top-level widget.

Ending this group of resource definitions are four sets of definitions that refer to special widget names. In

all cases, resources are set that override menu bar and cascade menu colors for specific windows. The

first six letters of each resource name tells which windows it’s related to:

XMProc

List of processes, whether used to instantiate skeleton consoles or selected from the Controls

menu.

XMSkel

Dialog boxes used to instantiate skeleton consoles except when wildcard is process or remote

host.

XMHost

Dialog box used to select from a list of hosts.

XMHelp

Help windows.

Finally, the background color is defined for the window you use to select colors and tiles, and both

foreground and background color is set for tabulating windows.

The next group of resources contains definitions of colors for seven distinct uses of dialog windows. The

first one (XMessage) sets the colors for the main window used to display messages from xmperf. The

next pair of lines (XMOptions) sets colors for all dialog windows used to change the configuration of

instruments and consoles. The next three line pairs are used for dialog windows that pop up when you

delete something, when you exit the program, and when you are warned that something has changed and

you may want to save the changes. The last three pairs of resources define fore- and background colors

for help windows, for the dialog box that warns about slow resynchronizing of remote instruments, and for

general informational message boxes.

The two lines shown under the group “Light Colors” define the colors to use for the widgets containing

state light instruments.

Finally, in the last group of resources, four lines define colors to use in the “digital clocks” used to seek in

a recording file and show the playback time, respectively.

The colors used are examples and are chosen to make it easy for you to know what type of dialog window

you see. The color difference makes it less likely that you confuse one type of dialog with another.

Resources Defining Default Colors

Whenever a new value is added to an instrument, a default color is assigned to the value based upon the

sequence number of the value within the instrument. The default colors are defined through resources.

The following example shows the definition of default colors for values as supplied in the sample resource

file.

 # Default Value Colors

 #

 *ValueColor1: ForestGreen

 *ValueColor2: Goldenrod

 *ValueColor3: red

 *ValueColor4: MediumVioletRed

 *ValueColor5: LightSteelBlue

 *ValueColor6: SlateBlue

 *ValueColor7: green

 *ValueColor8: yellow

 *ValueColor9: BlueViolet

Appendix B. Performance Toolbox for AIX Files 279

*ValueColor10: SkyBlue

 *ValueColor11: pink

 *ValueColor12: GreenYellow

 *ValueColor13: SandyBrown

 *ValueColor14: orange

 *ValueColor15: plum

 *ValueColor16: MediumTurquoise

 *ValueColor17: LimeGreen

 *ValueColor18: khaki

 *ValueColor19: coral

 *ValueColor20: magenta

 *ValueColor21: cyan

 *ValueColor22: salmon

 *ValueColor23: sienna

 *ValueColor24: blue

Execution Control Resources

The following example shows most of the resources that can be used to control the program execution. If

a True or False option is set to True with an X resource, it cannot be overridden by a command line

option.

 # Execution Options

 #

 *LegendAdjust: false

 *LegendWidth: 14

 *TabColumnWidth: 9

 *TabWindowLines: 20

 *DecimalPlaceLimit: 10

 *GetExceptions: false

 *MonoLegends: false

 *PopupMenus: false

 *DirectDraw: false

 *Averaging: 100

 *ScaleLines: front

 *BeVerbose: false

All resources can be specified as command line options rather than resources, except for the following:

ScaleLines

DecimalPlaceLimit

MonoLegends

TabColumnWidth

TabWindowLines

The following is a list of all execution control resources defined for xmperf:

ConfigFile

Must be followed by a file name of a configuration file (environment) to be used in this execution

of xmperf. If this resource is not given, the configuration file name is assumed to be

$HOME/xmperf.cf. If this file does not exist, the file is searched for as described in Appendix B,

“Performance Toolbox for AIX Files,” on page 271.

 This resource can alternatively be specified by the command line argument -o.

LegendAdjust

If this resource is set to True, the size of value path names to display in instruments is adjusted to

what is required for the longest path name in each instrument. The length may be less than the

default fixed length (or the length specified by the -w option if used or the LegendWidth resource)

but never longer than that. Note that the use of this option may result in instruments with time

scales that are not aligned.

 For pie chart graphs, adjustment is always done, regardless of the setting of this resource.

 This resource can alternatively be specified by the command line argument -a.

280 Performance Toolbox Guide

LegendWidth

Must be followed by a number between 8 and 32 to define the number of characters from the

value path name to display in instruments. The default number of characters is 12.

 This resource can alternatively be specified by the command line argument -w.

TabColumnWidth

Must be followed by a number from 5 through 15 to define the width in characters of each column

displayed in a tabulating window. The default width is 9.

TabWindowLines

Must be followed by a number from 2 through 100 to define the number of lines displayed in a

tabulating window. The default line count is 20. If more than 25 lines are specified, tabulating

windows have a vertical scroll bar to allow you to see all the detail lines in the window.

DecimalPlaceLimit

Defines the limit that determines if a data value is displayed with or without a decimal place in

tabulating windows and in the state bar graph type. If the upper range defined for the value is less

than or equal to this value, a decimal place is displayed. Otherwise no decimal place is displayed.

The default upper range limit is 10.

GetExceptions

If this resource is set to True, xmperf requests all its data suppliers to forward exceptions. If this

resource is set to False, data-supplier hosts will not forward exceptions to this invocation of

xmperf.

 This resource can alternatively be specified by the -x command line argument.

MonoLegends

If this resource is set to True, the text describing values in instruments with a primary style of line,

skyline, area, bar, state bar, and pie is drawn in the instrument’s foreground color. If this resource

is set to False, the text is drawn in the value’s color.

 This resource cannot be specified by a command line argument.

PopupMenus

If this resource is set to True, popup menus are used rather than the pull-down menus. As

described in Chapter 3, “The xmperf User Interface,” on page 29, the overall menu structure may

be based upon pull-down menus (which is the default) or popup menus as activated by setting this

resource True. Pull-down menus may be easier to understand for occasional users, although

popup menus generally provide a faster but less intuitive interface.

 This resource can alternatively be specified by the command line argument -u.

DirectDraw

Usually, xmperf first draws graphical output to a pixmap and then, when all changes are done,

moves the pixmap to the display. Generally, with a locally attached color display, performance is

better when graphical output is redrawn from pixmaps, which is why this is the default. Also, a flaw

in some levels of X Window System can be bypassed when this option is in effect. For

monochrome displays and X stations, you may want to set this resource to True, which causes

xmperf to draw graphical output directly to the display rather than always redrawing from a

pixmap.

 This resource can alternatively be specified by the command line argument -z.

Averaging

If this resource is set to a value greater than 25 and smaller than 100, averaging is activated.

Averaging causes an “averaging” or “weighting” of all observations for state graphs before they are

plotted. The number assigned to the resource is taken as the “weight percentage” to use when

averaging the values plotted in state graphs. The formula used to calculate the average is:

 val = new * weight/100 + old *

(100-weight) / 100

Appendix B. Performance Toolbox for AIX Files 281

where:

val Is the value used to plot.

new Is the latest observation value.

old Is the val calculated for the previous observation.

weight Is the weight specified by the resource.

 If a number outside the valid range is specified, averaging is not activated. This resource

can alternatively be specified by the command line argument -p.

 The weight is also used to calculate the weighted average line in tabulating windows.

ScaleLines

If this resource has a value of back or front, all recording graphs will have a horizontal, stippled

line drawn at the 50% mark and the 100% mark. If the resource value is back, the lines are drawn

before the values are plotted so that the actual graph is overlaying the scale lines. If the resource

value is front, the lines are superimposed on top of the plotted values and will always be visible.

 The default value for this resource is back. If the resource is set to any value but the two valid

ones, scale lines are not drawn. The resource does not have corresponding command line

arguments.

BeVerbose

If this resource is set True, configuration file lines are printed to the log file as they are processed.

Any errors detected for a line are printed immediately below the line. This option is intended as a

help to find and correct errors in the configuration file. Use this option if you don’t understand why

a line in your configuration file does not have the expected effect.

 This resource can alternatively be specified by the command line argument -v.

The azizo Resource File

The X Window System resource file for azizo defines resources you can use to enhance the appearance

and behavior of azizo and is installed as:

/usr/lib/X11/app-defaults/Azizo.

General azizo options

*GraphFont: -ibm-block-medium-r-normal--15-100-100-100-c-70-iso8859-1

*background: grey70

*MetricHeight: 40

*MetricWidth: 600

*MetricLineDouble: False

*MetricLinePlot: False

*MainGraphCount: 16

*GraphWindowWidth: 862

*OnlyMetricColorIndex: 6

*FirstMetricColorIndex: 3

*SecondMetricColorIndex: 7

Major screen colors

*AZMain.background: grey70

*AZMetrics.background: grey70

MainGraph*XmDrawingArea.background: black

MainGraph*XmLabel.background: black

Dialog Colors

*XMHelpMenubar.background: ForestGreen

*XMHelp*XmCascadeButton.background: ForestGreen

*XMHelp*XmCascadeButton.foreground: yellow

*XMHelp.background: DarkGreen

282 Performance Toolbox Guide

*XMHelp.foreground: MediumSpringGreen

*InfoWindow.background: grey70

*AZAction.background: grey70

*AZMessage.background: grey70

*AZMessage.foreground: black

*ExitWindow.background: red

*ExitWindow.foreground: white

*PromptWindow.background: LightSteelBlue

*PromptWindow.foreground: black

*QuestionWindow.background: goldenrod

*QuestionWindow.foreground: black

*XMMsgbox.background: medium aquamarine

*XMMsgbox.foreground: black

The sample file first defines the default background color for all windows whenever this color is not

overridden by some later resource setting. It then sets the font used for all windows. The resource name

to define the font specifically is GraphFont. If you don’t define this resource, azizo tries to get a font name

from the following resources:

v graphfont

v FontList

v fontList

v Font

v font

If none are defined, a suitable, fixed-pitch font is used. Other X resources are, in alphabetical order:

AZAction

The name of the widgets used to create action buttons. Use to set background color of the

buttons.

AZMain

The name of the base widgets used to create the main window. By referencing the AZMain widget

name, you can set the foreground and background color of the main window.

AZMessage

The name of the widget used to create the message window shown below the metrics selection

window. Use to set the colors of the message window.

AZMetrics

The name of all widgets used to create the metrics selection window. By referencing the

AZMetrics widget name, you can set the foreground and background color of the metrics selection

window and the metrics graphs. The color you assign for foreground becomes the default color for

drawing the metrics graphs. It can be overridden by other X resources as explained below. To set

the background color of the metrics selection window, use *AZMetrics.background as the

resource name.

BrightenFactor

Default brighten factor to use in the Print Box. Default is 100; permitted range is 0 - 200.

ExitWindow

Can be used to give the exit dialog box a different color to make it stand out from other dialog

boxes.

FirstMetricColorIndex

This resource specifies the index into a table of defined ValueColor1 through ValueColor24

resources. The color selected by the index is used to draw the maximum value line of metrics in

the metrics selection window when both maximum and minimum values are drawn. Default is

foreground color of the metrics selection window as set by the AZMetrics resource.

Appendix B. Performance Toolbox for AIX Files 283

GraphWindowWidth

The initial width of main graph windows. This width is the width of the window itself, not the main

graph area alone. Default is 862 pixels.

InfoWindow

The name of all widgets used to create information windows. By referencing the InfoWindow

widget name, you can set the foreground and background color of all information windows.

HorizontalMargin

The default horizontal margin for the Print Box. Default is 0.5 inch.

MainGraph

The name of all the widgets used to create main graphs is MainGraph. By assigning color values

to the X resources defined as MainGraph*XmLabel.background and

MainGraph*XmLabel.foreground, the appearance of the metrics label part can be changed.

Similarly, the colors used in the graph part can be changed with the resources

MainGraph*XmDrawingArea.background and MainGraph*XmDrawingArea.foreground. The

supplied X resource file for azizo shows the setting of the background color for both parts of the

main graph window.

MainGraphCount

Defines the maximum number of metrics that will be part of the top-level main graph after a new

recording file has been read in. Defaults to 16 metrics.

MainGraphHeight

Sets the initial height (in pixels) of all main graphs. Default is 300 pixels; permitted range is 50 -

1,000 pixels.

MainGraphWidth

Sets the initial width (in pixels) of all main graphs except the top-level main graph. Default is 600

pixels; permitted range is 100 - 1,200 pixels. Note that main graphs are never scaled horizontally.

If you increase the width of the main graph window beyond what is required to show the full graph

width, empty space appears to the right of the graph. If you reduce the width of the main graph

window to less than what is required to display the main graph, then a scrollbar is added to allow

horizontal scrolling of the graph area.

MainPlotStyle

Sets the default plotting style for metrics in main graphs. Defaults to “average.” Permitted values

are: “maximum,” “minimum,” “both,” and “average.”

MetricHeight

Sets the height in pixels of individual metrics graphs in the metrics selection window. Default is 40

pixels; permitted range is 10 - 200 pixels.

MetricLegendWidth

Sets the width of the area at the left side of a metrics graph that is used to display the metric path

name. Default is 20 characters; permitted range is 8 - 32 characters.

MetricLineDouble

This resource can be set to either True or False. It is ignored if the resource MetricLinePlot is set

to False. If both these resources are True, the default way of drawing individual metrics graphs is

with two lines: one for the maximum and one for the minimum values. If this resource is set to

False while MetricLinePlot is set to True, only the maximum values are drawn.

MetricLinePlot

This resource can be set to either True or False. If this resource and the resource

MetricLineDouble are both set to True, the default way of drawing individual metrics graphs is

with two lines: one for the maximum and one for the minimum values. If this resource is set to

True while MetricLineDouble is set to False, only the maximum values are drawn. If this resource

is set to False, individual metrics graphs are drawn in the “Bar, Max-to-Min” style as a series of

vertical lines, each one connecting the maximum and minimum value in an interval.

284 Performance Toolbox Guide

MetricWidth

This resource sets the width of the individual metrics graphs in the metrics selection window. It

also sets the width of the graph area of the top-level main graph. The default is 600 pixels. Specify

in the range 100 through 1,000.

MonoLegends

If this resource is set True, all labels in main graphs are shown in the foreground color of the label

part of the main graph. Probably not useful because it is not possible to see which line in the

graph corresponds to the label.

OnlyMetricColorIndex

This resource is used to select the foreground color of a metrics graph when the style is not “Line,

Max & Min.” That is, when only one line is drawn in each metrics graph. The resource defines an

index into a table of defined ValueColor1 through ValueColor24 resources to use for main

graphs. Default is the foreground color of the metrics selection window as set by the AZMetrics

resource.

PaperHeight

Default paper height to use in the Print Box. Default is 11 inches.

PaperWidth

Default paper width to use in the Print Box. Default is 8.5 inches.

PrintCommand

The default print command to use for all print operations. Default is lp -d.

PromptWindow

Can be used to give the prompt dialog boxes different foreground and background color to make

them stand out from other dialog boxes. Prompt dialogs are those that request you to supply input

before an action is performed.

QuestionWindow

Can be used to give the question dialog boxes different foreground and background color to make

them stand out from other dialog boxes. Question dialogs are those that ask you to confirm or

reject an action.

SecondMetricColorIndex

This resource specifies the index into a table of defined ValueColor1 through ValueColor24

resources. The color selected by the index is used to draw the minimum value line of metrics in

the metrics selection window when both maximum and minimum values are drawn. Default is

foreground color of the metrics selection window as set by the AZMetrics resource.

VerticalMargin

The default Vertical margin for the Print Box. Default is 0.5 inch.

XMHelp

Used to set the colors of help screens and their menus. See the figure “The azizo Resource File”

on page 282 for examples.

XMHelpMenubar

Used to set the colors of help screen menu bars. See the figure “The azizo Resource File” on

page 282 for an example.

AZIcons

The name of the widgets used to create the image of icons that indicate that a drop action is

permitted. Use to set color.

XMMsgbox

The name of the widgets used to create message windows that inform the user of some condition.

Use to set colors.

Appendix B. Performance Toolbox for AIX Files 285

Simple Help File Format

Several of the X Window System based programs in the Performance Toolbox for AIX share a common

help file layout and have the same help function linked with the executables. These programs are xmperf,

exmon, azizo, and 3dplay.

The help function identifies a help screen from a string of characters, called the help ID. Only if a help text

with this help ID is present in the help file for the program, can help be given. If no help text is found, a

message box will inform the user of this.

When help is requested by a user, the help function is called with a help ID that depends on the way help

is requested. The different ways to request help and how the help ID is retrieved for each of those is

explained below:

 Help requested for xmperf console The help ID is the name of the console. If the console is

an instantiated skeleton console, the help ID is assumed

to be the name of the skeleton console, rather than the

instance of it.

Help requested for xmperf tools dialog The help ID is the string of characters that identify the tool

as shown in the window frame of the tools dialog window.

Help requested from other dialog box The help ID is hard-coded for the dialog box. In most

cases, the help ID is identical to the text shown in the

window frame of the dialog window.

Help requested from menu The help ID is hard-coded for the menu item.

Help requested from help index The help ID is the text shown in the selected help index

line.

Help requested for azizo action or object The help ID is hard coded for the action or object.

When a program that uses the simple help file starts, it looks in your home directory for a file with the

same name as the program but with a file name extension of .hlp. If found, that file is used. If the file does

not exist in your home directory, xmperf attempts to find it as described in Appendix B, “Performance

Toolbox for AIX Files,” on page 271.

The format of a definition of a help screen is identical for all types of help texts. “Simple Help File Format”

is an example of a help text for an xmperf console:

$help: Mini Monitor

This console contains a single state instrument. It is

the default console and is intended to be permanently

open as a monitor of important activity on the local system.

All values shown in the console are lively to experience

shorter or longer peaks during normal system operation.

The keyword $help: must appear exactly as shown (including the dollar sign and the colon) and must

begin in column one. It must be followed by at least one byte of white space and the help ID.

Following the line that defines the help ID, you specify the help text exactly as you want it to appear in the

help screen. When the text is displayed by the help function, the window is sized to match the line length

and the number of lines in the help screen, up to 25 lines. If the help window has more than 25 lines, the

scroll bar in the help window must be used to scroll the help text up and down.

The help ID (shown as “Mini Monitor” in the figure) identifies the help text and binds it to the situation

where it is displayed. If the name matches a console name or tool name as defined in the configuration

file, the help text is bound to the console or tool; otherwise the help text is assumed to be a general help

text, possibly associated with a help button or a help menu item.

Each of the programs that use the help function has a set of hard coded help IDs. These are listed in the

following sections:

286 Performance Toolbox Guide

Predefined help IDs for xmperf

Change Value

Color Selection

Erase Recording File

Help on Help

History, number of observations

Host Selection

Interval, seconds

Main Window

Name of New Console

Primary Style and Stacking

Process Controls

Recording file exists

Remote Process List

Select Value

Shift, pixels per observation

Slow Resync

Space between bars

Wildcard Selection

Predefined help IDs for exmon

Add Hosts

Command Execution

Delete Hosts

Delete Log

Exception Logs

Exit exmon

Files Changed

Help on Help

Read Log

Predefined help IDs for azizo

Changing View Options

Config Icon

Configuration Exists

Configuration File

Configuration Line

Delete Configuration

Exit azizo

Exit Icon

Filter Icon

Help Icon

Help on Help

Info Icon

Information Window

Local Files Icon

Main Graph

Metrics Graph

Metrics Graph List

Metric Label in Main Graph

Pit Icon

Print Box

Print Icon

Replace Configuration

Report Box

Rescaling

Scale Icon

Select Recording File

View Icon

Writing Configuration

Writing Filtered Recording

Zoom-in

Appendix B. Performance Toolbox for AIX Files 287

Predefined help IDs for 3dplay

Erase Annotation File

Erase Recording File

Help on Help

Select 3dmon Recording File

288 Performance Toolbox Guide

Appendix C. Performance Toolbox for AIX Commands

Following is a list of Performance Toolbox for AIX commands and operating system commands related to

performance tuning:

a2ptx A program to generate recordings from ASCII files.

azizo The main program for analyzing recordings.

chmon

A sample program written to the data-consumer API.

fdpr A performance tuning utility for improving execution time and real memory utilization of user-level

application programs.

filemon

Monitors the performance of the file system, and reports the I/O activity on behalf of logical files,

virtual memory segments, logical volumes, and physical volumes.

fileplace

Displays the placement of file blocks within logical or physical volumes.

filtd The filtd programs allow you to define new statistics from existing ones through data reduction

and alarms that are triggered by conditions you define and which can execute any command you

desire.

genkex

The genkex command extracts the list of kernel extensions currently loaded onto the system and

displays the address, size, and path name for each kernel extension in the list.

genkld

The genkld command extracts the list of shared objects currently loaded onto the system and

displays the address, size, and path name for each object on the list.

genld The genld command extracts a list of loaded objects for each process currently running on the

system.

lockstat

Displays simple and complex lock contention information.

netpmon

Monitors activity and reports statistics on network I/O and network-related CPU usage.

ptxconv

A program to convert between Performance Toolbox for AIX Version 1.1 to Version 2 or Version

1.2 recording file format.

ptxmerge

The ptxmerge program allows the user to specify up to 10 input files that are to be merged into

one file.

ptxrlog

A program to create ASCII or binary recording files.

ptxsplit

A program to split recording files into multiple files.

ptxtab A program to tabulate the contents of recording files.

rmss Simulates a system with various sizes of memory for performance testing of applications.

stripnm

Displays the symbol information of a specified object file.

© Copyright IBM Corp. 1994, 2004 289

svmon

Captures and analyzes a snapshot of virtual memory.

tprof Reports CPU usage.

xmpeek

The xmpeek program allows you to ask any host about the status of its xmservd daemon.

xmperf

The xmperf program allows you to define monitoring environments to supervise the performance

of the local system and remote systems.

xmscheck

When xmservd is started with the command line argument -v, its recording configuration file

parser writes the result of the parsing to the log file.

xmservd

The xmservd daemon is always started from inetd. Therefore, command line options must be

specified on the line defining xmservd to inetd in the file /etc/inetd.conf.

3dmon

The 3dmon program is an X Window System-based program that displays statistics in a

3-dimensional graph where each of the two sides may have up to 24 statistics for a maximum of

576 statistics plotted— in a single graph.

3dplay

Beginning with Version 2.2., 3dplay is provided to play back 3dmon recordings in the same style

that the data was originally displayed.

3dmon Command

The 3dmon program is an X Window System based program that displays statistics in a 3-dimensional

graph where each of the two sides may have up to 24 statistics for a maximum of 576 statistics plotted in

a single graph.

To avoid clashes with X Window System command line options, never leave a blank between a command

line option and its argument. For example, do not specify

3dmon -i 1 -p 75 -n

Instead, use:

3dmon -i1 -p75 -n

Syntax

The 3dmon program takes the following command line arguments, all of which are optional:

3dmon [-vng] [-f config_file] [-i seconds_interval] [-h hostname] [-w weight_percent] [-s spacing]

[-p filter_percent] [-c config] [-a “wildcard_match_list”] [-tresync_timeout] [-d invitation_delay]

[-l left_side_tile] [-r right_side_tile] [-m top_tile]

Flags

-v Verbose. Causes the program to display warning messages about potential errors in the

configuration file to stderr. Also causes 3dmon to print a line for each statset created and for each

statistic added to the statset, including the results of resynchronizing.

-n Only has an effect if a filter percentage is specified with the -p argument. When specified, draws

only a simple outline of the grid rectangles for statistics with values that are filtered out. If not

specified, a full rectangle is outlined and the numerical value is displayed in the rectangle.

-g Usually, 3dmon will attempt to resynchronize for each statset it doesn’t receive data-feeds for for

290 Performance Toolbox Guide

resync-timeout seconds. If more than half of the statsets for any host are found to not supply

data-feeds, resynchronizing is attempted for all the statsets of that host. By specifying the -g

option, you can force resynchronization of all the statsets of a host if any one of them becomes

inactive.

-f Allows you to specify a configuration file name other than the default. If not specified, 3dmon

looks for the file $HOME/3dmon.cf. If that file does not exist the file is searched for as described

in Appendix B, “Performance Toolbox for AIX Files,” on page 271.

-i Sampling interval. If specified, this argument is taken as the number of seconds between sampling

of the statistics. If omitted, the sampling interval is 5 seconds. You can specify from 1 to 60

seconds sampling interval.

-h Used to specify which host to monitor. This argument is ignored if the specified wildcard is “hosts.”

If omitted, the local host is assumed.

Note: With the Performance Toolbox Local feature of Version 2.2 or later, this flag always uses

the local host name.

-w Modifies the default weight percentage used to calculate a weighted average of statistics values

before plotting them. The default value for the weight is 50%, meaning that the value plotted for

statistics is composed of 50 percent of the previously plotted value for the same statistic and 50

percent of the latest observation. The percentage specified is taken as the percentage of the

previous value to use. For example, if you specify 40 with this argument the value plotted is:

.4 * previous + (1 - .4) * latest

Weight can be specified as any percentage from 0 to 100.

-s Spacing (in pixels) between the pillars representing statistics. The default space is 4 pixels. You

can specify from 0 to 20 pixels.

-p Filtering percentage, -p. If specified, only statistics with current values of at least -p percent of the

expected maximum value for the statistic are drawn. The idea is to allow you to specify monitoring

“by exception” so statistics that are approaching a limit stand out while others are not drawn.

Filtering can be specified as any percentage from 0 to 100. Default is 0%.

-c Configuration set. When specified, overrides the default configuration set and causes 3dmon to

configure its graph using the named configuration set. The argument specified after the -c must

match one of the wildcard stanzas in the configuration file. If this argument is omitted, the

configuration set used is the first one defined in the configuration file.

-a Wildcard match list. When specified, is assumed to be a list of host names. If the primary wildcard

in the selected configuration set is hosts, then the list to display host names is suppressed as

3dmon automatically selects the supplied hosts from the list of active remote hosts. Depending on

the configuration set definition, 3dmon then either goes directly on with displaying the monitoring

screen or, when additional wildcards are present, displays the secondary selection list.

Note: With the Performance Toolbox Local feature of Version 2.2 or later, this flag always uses

the local host name.

The list of host names must be enclosed in double quotation marks if it contains more than one

host name. Individual host names must be separated by white space or commas.

 The primary purpose of this option is to allow the invocation of 3dmon from other programs. For

example, you could customize NetView to invoke 3dmon with a list of host names, corresponding

to hosts selected in a NetView window.

-t Resynchronizing timeout. When specified, overrides the default time between checks for whether

synchronizing is required. The default is 30 seconds; any specified timeout value must be at least

30 seconds.

-d Invitation delay. Allows you to control the time 3dmon waits for remote hosts to respond to an

Appendix C. Performance Toolbox for AIX Commands 291

invitation. The value must be given in seconds and defaults to 10 seconds. Use this flag if the

default value results in the list of hosts being incomplete when you want to monitor remote hosts.

-l (Lowercase L). Specifies the number of the tile to use when painting the left side of the pillars.

Specify a value in the range 0 to 8. The values correspond to the tile names:

v 0: foreground (100% foreground)

v 1: 75_foreground (75% foreground)

v 2: 50_foreground (50% foreground)

v 3: 25_foreground (25% foreground)

v 4: background (100% background)

v 5: vertical

v 6: horizontal

v 7: slant_right

v 8: slant_left

The default tile number for the left side is 1 (75_foreground).

-r Specifies the number of the tile to use when painting the right side of the pillars. Specify a value in

the range 0 to 8. The values correspond to the tile names specified above for option -l. The

default tile number for the right side is 8 (slant_left).

-m Specifies the number of the tile to use when painting the top of the pillars. Specify a value in the

range 0 to 8. The values correspond to the tile names specified above for option -l. The default tile

number for the top is 0 (foreground).

Hardware Dependencies

On some graphics adapters in certain configurations, the 3dmon program might not give you proper tiling.

If you notice this, use the following command line arguments to suppress tiling:

3dmon -l0 -r0 -m0

Use the flags shown in addition to any other flags you may require. You can substitute the digit 4 for any

of the zeroes shown above. The digit 0 means to paint the pillar in the foreground color; the digit 4 means

to paint it in the background color.

3dplay Command

Beginning with Version 2.2., 3dplay is provided to play back 3dmon recordings in the same style that the

data was originally displayed.

Syntax

3dplay RecordFile>

Parameters

 Recordfile The name of a recording file created by 3dmon.

Errors

If a non-3dmon recording file is provided as input, 3dplay returns an error message and the recording file

will not be played back.

a2ptx Command

A program to generate recordings from ASCII files.

292 Performance Toolbox Guide

Syntax

a2ptx input_file output_file

Parameters

 input_file This is a required parameter.

output_file This is a required parameter.

azizo Command

The main program for analyzing recordings.

Syntax

azizo [-f recording_file]

Flags

The command line argument is optional and has the following meaning:

 -f Recording file path name. Used to specify the name of a recording file to analyze. If the file is a valid recording

file, azizo reads the file and processes it. If this argument is omitted or the specified file is not valid, azizo

starts and awaits your selection of a recording file by clicking on the Local Files Icon.

Beginning with Version 2.2, this argument also brings up the recording’s existing annotation file, or creates a

new one, so that the user can take notes about the recording.

chmon Command

Another sample program written to the data-consumer API is the program chmon. Source code to the

program is in /usr/samples/perfmgr/chmon.c. The chmon program is also stored as an executable

during the installation of the Manager component.

Syntax

chmon [-i seconds_interval] [-p no_of_processes] [hostname]

Parameters

 seconds_interval Is the interval between observations. Must be specified in seconds. No blanks must

be entered between the flag and the interval. Defaults to 5 seconds.

no_of_processes Is the number of “hot” processes to be shown. A process is considered “hotter” the

more CPU it uses. No blanks must be entered between the flag and the count field.

Defaults to 0 (no) processes.

hostname Is the host name of the host to be monitored. Default is the local host.

The sample program exits after 2,000 observations have been taken, or when you type the letter q in its

window.

Appendix C. Performance Toolbox for AIX Commands 293

filtd command

The filtd programs allows you to define:

v New statistics from existing ones through data reduction.

v Alarms that are triggered by conditions you define and which can execute any command you desire.

Syntax

The filtd program is designed to run as a daemon. It takes three command line arguments, all of which

are optional:

filtd [-f config_file] [-b buffer_size] [-p trace_level]

Flags

 -f Overrides the default configuration file name. If this option is not given, the file name is assumed to be

available in /etc/perf/filter.cf or else as described in Appendix B, “Performance Toolbox for AIX Files,” on page

271. The configuration file is where you tell filtd what data reduction and alarm definitions you want.

-p Specifies the level of detail written to the log file. The trace level must be between 1 and 9. The higher the

trace level the more is written to the log file. If this option is not specified, the trace level is set to zero.

-b Buffer size for communications with xmservd via RSI. The default buffer of 4096 bytes will allow for up to 120

statistics to be used in defining new statistics and alarms. If more are needed, the buffer size must be

increased. It may also be necessary to increase the xmservd buffer size.

ptxconv Command

A program to convert between Performance Toolbox for AIX Version 1.1 to Version 2 or Version 1.2

recording file format.

Syntax

ptxconv -v {1 | 2} input_file output_file

Flags

 v1 Converts a recording file with Version 2 or Version 1.2 format into the Version 1.1 format. This

allows the use of an older version of xmperf to play the recording back.

v2 Converts a recording file with Version 1.1 format into the later format. This allows any of the

Performance Toolbox for AIX Version 1.2 and Version 2 programs that process recording files

to work with the converted file.

input_file The path name of a recording file. The input file should be a file that was created with the

version level the user wishes to convert from.

output_file The path name the user wishes the new recording file to have.

ptxmerge Command

The ptxmerge program allows the user to specify up to 10 input files that are to be merged into one file.

All files must be valid Performance Toolbox for AIX recording files in Version 2 format. When more than

one input file is specified and one or more of the input files contain multiple sets of control information,

only the records belonging to the first such set participate in the merge operation.

If only one input file is given, the program assumes you want it to rearrange the records in that file. If this

file contains only one set of control information, then the output file is identical to the input file.

294 Performance Toolbox Guide

Syntax

ptxmerge [-m| -p incr|-t inc r] [-z] outfile input1 [input2 [input3...]]

Flags

 m Only valid if exactly two input files are specified. Merges files, modifying all time stamps in the oldest

file by the difference in time between the time stamps of the first value record in the two files.

p Only valid if exactly two input files are specified. Must be followed by the number of seconds to be

added to all time stamps in the first input file before merging the files. This value may be negative.

t Only valid if exactly two input files are specified. Must be followed by the number of seconds to be

added to all time stamps in the second input file before merging the files. This value may be

negative.

z Optional. Preserves information about sets of statistics (statsets) when creating the resulting file. This

is useful if the output file is to be used for playback with xmperf. The input files are merged together

but each set of statistics are played back in instruments of the same contents (though not

necessarily the same appearance) as the originals

ptxrlog Command

A program to create ASCII or binary recording files.

Syntax

ptxrlog {-f infile|-m|-mfinfile} [-h hostname] [-i seconds] [-o outfile [-c|-s|-t]|-r binoutfile] [-l pagelen] [-b

hhmm] [-e hh.mm]

Flags

 f Name of a control file that contains a list of statistics to record. In the control file, each statistic must be given

on a line on its own and with its full path name, excluding the host part, which is supplied by ptxrlog either

from the -h argument or by using the local host name. If the -f argument is not given, the user is prompted for

a list of statistics. If both the -f and the -m arguments are given, ptxrlog first selects the statistics given in the

control file, then prompts the user to specify additional statistics.

m Manual input of statistic names. The user is prompted for a list of statistic names to be entered as full path

names without the host part. The host part is supplied by ptxrlog either from the -h argument or by using the

local host name. If both the -f and the -m arguments are given, ptxrlog first selects the statistics given in the

control file, then prompts the user to specify additional statistics.

h Hostname of the host to monitor. This argument is used to identify the host to be monitored and, thus, to

create the hosts part of the path names for the statistics to monitor. If this argument is not supplied, the host

name of the local host is used.

i Sampling interval. Specifies the number of seconds between sampling of the specified statistics. If this

argument is not supplied, the sampling interval defaults to 2 seconds.

o Output file name. Specify the name of the output file you want. If this argument is omitted, output goes to

standard output and neither of the format flags -c, -s, or -t is permitted. If -o is given but neither of the three

format flags is, the output looks the same as the output from ptxtab shown in the “Example of ptxtab Default

Output Format” on page 100. The -o flag and the -r flag are mutually exclusive.

c The flag -c causes ptxrlog to format the output file as comma separated ASCII. The flag is only valid if -o is

given. Each line in the output file contains one time stamp and one observation. Both fields are preceded by a

label that describes the fields. The output looks the same as the ptxtab output shown in the “Example of

ptxtab Comma Separated Output Format” on page 298. The flags -c, -s, and -t are mutually exclusive.

s The flag -s causes ptxrlog to format the output file in a format suitable for input to spreadsheet programs. The

flag is only valid if -o is given. The output looks the same as the output from ptxtab output shown in the

“Example of ptxtab Spreadsheet Output Format” on page 298. The flags -c, -s, and -t are mutually exclusive.

t Tab separated format. This flag is identical to the -s flag except that individual fields on the lines of the output

file are separated by tabs rather than blanks. The flag is only valid if -o is given. The flags -c, -s, and -t are

mutually exclusive.

Appendix C. Performance Toolbox for AIX Commands 295

r The -r flag specifies that the output from ptxrlog goes to a binary recording file in standard recording file

format. The name of the output file must be specified after the flag. The -o flag and the -r flag are mutually

exclusive.

l (Lowercase L) Specifies the number of lines per page when neither the -o nor the -r flag is specified or when

the -o flag is specified but neither of the -c, -s, or -t flags is specified. If this flag is omitted, the output is

formatted with 23 lines per page if the -o flag is omitted; otherwise with 65 lines per page. When the -o flag is

given, a page eject is inserted at the beginning of each page.

b Begin recording. If this argument is omitted, ptxrlog begins recording immediately. The flag and arguments are

used to start the recording at a specified later time. The flag must be followed by the start time in the format

hhmm, where:

hh = Hour in 24 hour time (midnight is 00).

mm = Minutes.

e End recording. Specifies the number of hours and minutes recording must be active. The flag must be followed

by the number of hours and minutes in the format hh.mm, where:

hh = Number of hours to record.

mm = Number of minutes to record.

 If this argument is omitted, the recording continues for 12 hours. A maximum of 24 hours can be specified.

When the time specified by this argument has elapsed, ptxrlog terminates.

Binary Recording Files

When the -r flag is used, output is written to the file name specified after the flag. If the file exists when

recording starts, it is opened for append. After opening the binary output file, whether for creation or

append, ptxrlog writes the control records to the file. For existing files, this causes the file to contain more

than one set of control records and may require you to process the file with ptxmerge or ptxsplit before

you can process the file with xmperf or azizo.

Resynchronizing by ptxrlog

The ptxrlog program initiates a resynchronizing with the data-supplier host if the data-supplier host sends

an i_am_back packet. This usually happens if the data-supplier host’s xmservd daemon has died and is

restarted.

The ptxrlog initiates a resynchronizing with the data-supplier host if no data_feed packets have been

received for ten times the specified sampling interval.

ptxsplit Command

A program to split recording files into multiple files.

Syntax

ptxsplit { -p parts| -s size| -h| -b| -f cfile| -d hhmm [-t dhhmm]} infile

Flags

The command line arguments are all mutually exclusive, except that the -t argument is only valid if the -d

argument is given. One of the arguments must be specified. The arguments are:

 p Split in parts of equal size. Must be followed by the number of parts the input file shall be divided into. The

output files are approximately the same size and begin with a set of control records. The output file names are

infile.p1, infile.p2, ... infile.pn. Statsets are preserved in the output as are any console records.

s Split in parts of equal size. Must be followed by the size you want each output file to have. The output files,

except the last one, usually are slightly smaller than the specified size; the last file may be much smaller. The

output files all begin with a set of control records. The output file names are infile.s1, infile.s2, ... infile.sn.

Statsets are preserved in the output as are any console records.

296 Performance Toolbox Guide

h Split into files according to the host name of individual observations. The output files all begin with a set of

control records. The output file names are infile.hostname1, infile.hostname2, ... infile.hostnamen. Statsets

are preserved in the output. Any console records are discarded.

b Split into files for each set of control records encountered. The output files all begin with a set of control

records. The output file names are infile.b1,infile.b2, ... infile.bn. Statsets are preserved in the output as are

any console records.

f Split into two files. The flag must be followed by a file name of a control file. The first output file is to contain all

occurrences of the statistics listed in the control file. Remaining statistics are written to the second output file.

Statistics are specified in the control file with their full path name. The control file may contain comment lines

beginning with the character # (number sign). If the hosts part of the path name is omitted, statistics are

selected across all host names. If the hosts part of the path name is supplied, an exact match is required for a

statistic to be selected. The first output file has the name infile.sel, the second outfile is called infile.rem.

Statsets are not preserved in the output files.

The program ptxls can produce a list of the statistics contained in a recording file. The output from the

program has the format required for the control file. Use it by redirecting ptxls output to a file; then edit the file

to include only the statistics you want in the file infile.sel.

d Split after duration into parts covering time periods of equal size. Must be followed by the duration span of

each file, given as hhmm, where:

hh = Hours.

mm = Minutes.

If the -t argument is omitted, the time period begins with the earliest value record in the input file; otherwise

with the time specified on the -t argument. The output files all begin with a set of control records. The output

file names are infile.d1, infile.d2, ... infile.dn. Statsets are preserved in the output as are any console records.

t Only valid if the -d argument is given. Specifies a point in time that shall be used to split the input file. Must be

followed by a time in the format dhhmm, where:

d = Day of week, Sunday = day 0.

hh = Hours.

mm = Minutes.

The time given may lie outside the time period covered by the input recording file. If the time given differs from

the time stamp of the first value record in the input file, the first output file contains data for an interval smaller

than that requested with the -d argument.

For example, assume a recording file’s first value record has a time stamp corresponding to 30830 (day 3, at

8:30 a.m.) and you invoke ptxsplit with the command line:

ptxsplit -d0600 -t00000 recording_file

This causes the first file to cover the interval from 8:30 a.m. until 11:59 a.m., the next one from 12:00 noon

until 5:59 p.m., and so on until there are no more value records in the input file.

Consider splitting the same file with the command line:

ptxsplit -d0600 -t40800 recording_file

The -t argument, in this case, gives a point in time later than the first value record’s time stamp. The program

determines the time to place the first split point by stepping backwards in time from day 4 at 8:00 a.m. in steps

of six hours (as per the -d argument) until it has passed the time stamp of the first value record. This would be

on day 3 at 8:00 a.m. This is the reference point. The first output file covers day 3 from 8:30 a.m. to 1:59 p.m.,

the next from 2 p.m. to 7:59 p.m., and so forth.

ptxtab Command

A program to tabulate the contents of recording files.

Appendix C. Performance Toolbox for AIX Commands 297

Syntax

ptxtab [-l lines | -c | -s] [-r | -t] recording_file

Flags

 l The flag -l (lowercase L) is used to specify the number of lines per page you want the output files formatted

for. The default is 23 lines per page, which is ideal for viewing the output in a 25-line window or on a terminal

with 25 lines. If you specify 0 (zero) lines per page, pagination is suppressed. If the value is given as non-zero,

it must be between 10 and 10,000. The flags -l, -c, and -s are mutually exclusive.

c The flag -c causes ptxtab to format the output files as comma separated ASCII. Each line in the output files

contains one time stamp and one observation. Both fields are preceded by a label that describes the fields. An

example of output formatted this way is shown in the “Example of ptxtab Comma Separated Output Format.”

The eight detail lines shown correspond to the first two detail lines in the “Example of ptxtab Default Output

Format” on page 100. The flags -l, -c, and -s are mutually exclusive.

s The flag -s causes ptxtab to format the output files in a format suitable for input to spreadsheet programs.

When this flag is specified, it is always assumed that the -r flag is also given. An example of formatting with

the -s flag is shown in the “Example of ptxtab Spreadsheet Output Format.” The detail lines shown correspond

to the detail lines in the “Example of ptxtab Default Output Format” on page 100. This output format also

matches the requirements of the a2ptx input file format. The flags -l, -c, and -s are mutually exclusive.

r The flag -r is independent of the other flags. It specifies that when SiCounter data is sent to the ptxtab output

files, they are presented as rates per second. Without this option, ptxtab presents this data as the delta value

in the interval. The flags -r and -tare mutually exclusive.

t The flag -t is independent of the other flags. It specifies that when SiCounter data is sent to the ptxtab output

files, they are presented as absolute values. In other words, this flag causes SiCounter values to be treated as

SiQuantity values. Without this option, ptxtab presents this data as the delta value in the interval. The flags -r

and -t are mutually exclusive.

Example of ptxtab Comma Separated Output Format

#Monitor: Nice Monitor --- hostname: nchris

Time=“1994/01/07 15:36:03”, PagSp/%totalused=27.82

Time=“1994/01/07 15:36:03”, PagSp/%totalfree=72.18

Time=“1994/01/07 15:36:03”, Mem/Virt/pagein=8

Time=“1994/01/07 15:36:03”, Mem/Virt/pageout=20

Time=“1994/01/07 15:36:07”, PagSp/%totalused=27.82

Time=“1994/01/07 15:36:07”, PagSp/%totalfree=72.18

Time=“1994/01/07 15:36:07”, Mem/Virt/pagein=7

Time=“1994/01/07 15:36:07”, Mem/Virt/pageout=17

Example of ptxtab Spreadsheet Output Format

#Monitor: Nice Monitor --- hostname: nchris

"Timestamp" "PagSp/%totalused" "PagSp/%totalfree" "Mem/Virt/pagein "Mem/Virt/pageout"

"1994/01/07 15:36:03" 27.8 72.2 8 20

"1994/01/07 15:36:07" 27.8 72.2 7 17

"1994/01/07 15:36:11" 27.8 72.2 3 283

"1994/01/07 15:36:15" 27.8 72.2 28 48

"1994/01/07 15:36:19" 28.2 71.8 56 41

"1994/01/07 15:36:23" 29.5 70.5 29 38

"1994/01/07 15:36:27" 31.5 68.5 0 62

"1994/01/07 15:36:31" 32.4 67.6 70 1

"1994/01/07 15:36:35" 32.6 67.4 73 32

"1994/01/07 15:36:39" 32.8 67.2 156 0

"1994/01/07 15:36:43" 34.5 65.5 167 4

"1994/01/07 15:36:47" 34.4 65.6 163 0

"1994/01/07 15:36:51" 31.1 68.9 12 57

"1994/01/07 15:36:55" 30.2 69.8 35 34

"1994/01/07 15:36:59" 28.0 72.0 15 0

"1994/01/07 15:37:04" 28.0 72.0 15 0

298 Performance Toolbox Guide

xmpeek Command

The xmpeek program allows you to ask any host about the status of its xmservd daemon.

Syntax

xmpeek [-a|-l] [hostname]

Flags

 -a If this flag is specified, one line is listed for each data consumer known by the daemon. If omitted,

only data consumers that currently have instruments (statsets) defined with the daemon are listed.

This flag is optional.

-l (lowercase L) is explained in “Using the xmpeek Program to Print Available Statistics” on page 163.

This flag is optional.

host name If host name is specified, the daemon on the named host is asked. If no host name is specified, the

daemon on the local host is asked.

Examples

The following is an example of the output from the xmpeek program:

Statistics for xmservd daemon on *** birte ***

Instruments currently defined: 1

Instruments currently active: 1

Remote monitors currently known: 2

--Instruments--- Values Packets

 Internet Protocol

Defined Active Active Sent Address Port Hostname

------- ------- ------- ------- ---------------- ---- ----------

1 1 16 3,344 129.49.115.208 3885 xtra

Output from xmpeek can take two forms.

The first form is a line that informs you that the xmservd daemon is not feeding any data-consumer

programs. This form is used if no statsets are defined with the daemon and no command flags are

supplied.

The second form includes at least as much as is shown in the preceding example, except that the single

detail line for the data consumer on host xtra is shown only if either the -a flag is used or if the data

consumer has at least one instrument (statset) defined with the daemon. Note that xmpeek itself appears

as a data consumer because it uses the RSi API to contact the daemon. Therefore, the output always

shows at least one known monitor.

In the fixed output, first the name of the host where the daemon is running is shown. Then follows three

lines giving the totals for current status of the daemon. In the above example, you can see that only one

instrument is defined and that it’s active. You can also see that two data consumers are known by the

daemon, but that only one of them has an instrument defined with the daemon in birte. Obviously, this

output was produced without the -a flag.

An example of more activity is shown in the following sample output from xmpeek. The output is produced

with the command:

xmpeek -a birte

Notice that some detail lines show zero instruments defined. Such lines indicate that an are_you_there

message was received from the data consumer but that no states were ever defined or that any

previously defined states were erased.

Appendix C. Performance Toolbox for AIX Commands 299

Statistics for smeared daemon on *** birte ***

 Instruments currently defined: 16

 Instruments currently active: 14

 Remote monitors currently known: 6

--Instruments--- Values Packets Internet Protocol

 Defined Active Active Sent Address Port Hostname

 8 8 35 10,232 129.49.115.203 4184 birte

 6 4 28 8,322 129.49.246.14 3211 umbra

 0 0 0 0 129.49.115.208 3861 xtra

 1 1 16 3,332 129.49.246.14 3219 umbra

 0 0 0 0 129.49.115.203 4209 birte

 1 1 16 422 129.49.115.208 3874 xtra

------- ------- ------- ----------

 16 14 95 22,308

Notice that the same host name may appear more than once. This is because every running copy of

xmperf and every other active data-consumer program is counted and treated as a separate data

consumer, each identified by the port number used for UDP packets as shown in the xmpeek output.

The second detail shows that one particular monitor on host umbra has six instruments defined but only

four active. This would happen if a remote xmperf console has been opened but is now closed. When you

close an xmperf console, it stays in the Monitor menu of the xmperf main window and the definition of the

instruments of that console remains in the tables of the data-supplier daemon but the instruments are not

active.

xmperf Command

The xmperf program allows you to define monitoring environments to supervise the performance of the

local system and remote systems.

Syntax

xmperf [-v auxz] [-w width] [-o options_file] [-p weight] [-h localhostname] [-r network_timeout]

Flags

All command line options are optional and all except -r and -h correspond to X Window System resources

that can be used in place of the command line arguments. The options v, a, u, x, and z are true or false

options. If one of those options is set through an X Window System resource, it cannot be overridden by

the corresponding command line argument. The options are described as follows:

 v Verbose. This option prints the configuration file lines to the xmperf log file $HOME/xmperf.log as they are

processed. Any errors detected for a line will be printed immediately below the line. The option is intended as a

help to find and correct errors in a configuration file. Use the option if you don’t understand why a line in your

configuration file does not have the expected effect.

Setting the X Window System resource BeVerbose to true has the same effect as this flag.

a Adjust size of the value path name that is displayed in instruments to what is required for the longest path

name in each instrument. The length can be less than the default fixed length (or the length specified by the -w

option if used) but never longer. The use of this option can result in consoles where the time scales are not

aligned from one instrument to the next.

Note: For pie chart graphs, adjustment is always done, regardless of this command line argument.

Setting the X Window System resource LegendAdjust to true has the same effect as this flag.

u Use popup menus. As described in “Console Windows” on page 33, the overall menu structure can be based

upon pull-down menus (which is the default) or popup menus as activated with this flag. Typically, pull-down

menus are easier to understand for occasional users; while popup menus provide a faster, but less intuitive

interface.

Setting the X Window System resource PopupMenus to true has the same effect as this flag.

300 Performance Toolbox Guide

x Subscribe to exception packets from remote hosts. This option makes xmperf inform all the remote hosts it

identifies that they should forward exception packets produced by the filtd daemon, if the daemon is running. If

this flag is omitted, xmperf will not subscribe to exception packets.

Setting the X Window System resource GetExceptions to true has the same effect as this flag.

z For monochrome displays and X stations, you might want to try the -z option, which causes xmperf to draw

graphical output directly to the display rather than always redrawing from a pixmap. By default, xmperf first

draws graphical output to a pixmap and then, when all changes are done, moves the pixmap to the display.

Generally, with a locally-attached color display, performance is better when graphical output is redrawn from

pixmaps. Also, a flaw in some levels of X Window System can be bypassed when this option is in effect.

Setting the X Window System resource DirectDraw to true has the same effect as this flag.

w Must be followed by a number between 8 and 32 to define the number of characters from the value path name

to display in instruments. The default number of characters is 12.

Alternatively, the legend width can be set through the X Window System resource LegendWidth.

o Must be followed by a file name of a configuration file (environment) to be used in this execution of xmperf. If

this option is omitted, the configuration file name is assumed to be $HOME/xmperf.cf. If this file is not found,

the file is searched for as described in Performance Toolbox for AIX Files (Appendix B, “Performance Toolbox

for AIX Files,” on page 271).

Alternatively, the configuration file name can be set through the X Window System resource ConfigFile.

p If given, this flag must be followed by a number in the range 25-100. When specified, this flag turns on

“averaging” or “weighting” of all observations for state graphs before they are plotted. The number is taken as

the “weight percentage” to use when averaging the values plotted in state graphs. The formula used to

calculate the average is:

val = new * weight/100 + old * (100-weight) / 100

where:

val Is the value used to plot.

new Is the latest observation value.

old Is the val calculated for the previous observation.

weight Is the weight specified by the -p flag. If a number outside the valid range is specified, a value of 50 is

used. If this flag is omitted, averaging is not used.

 Alternatively, the averaging weight can be set through the X Window System resource Averaging.

 The weight also controls the calculation of weighted average in tabulating windows.

h Must be followed by the host name of a remote host that is to be regarded as Localhost. The Localhost is used

to qualify all value path names that do not have a host name specified. If not specified, Localhost defaults to

the host where xmperf executes.

Note: With the Performance Toolbox Local feature of Version 2.2 or later, this flag always uses the local host

name.

r Specifies the timeout (in milliseconds) used when waiting for responses from remote hosts. The value specified

must be between 5 and 10,000. If not specified, this value defaults to 100 milliseconds.

Note: On networks that extend over several routers, gateways, or bridges, the default value is likely to be too

low.

One indication of a too low timeout value is when the list of hosts displayed by xmperf contains many host

names that are followed by two asterisks. The two asterisks indicate that the host did not respond to xmperf

broadcasts within the expected timeout period. The “ Host Selection List from xmperf” shows how some hosts

in a host selection list have asterisks. The list shown was generated in a network with multiple levels of routers

where the default timeout is on the low side during busy hours.

Appendix C. Performance Toolbox for AIX Commands 301

xmscheck Command

When xmservd is started with the command line argument -v, its recording configuration file parser writes

the result of the parsing to the log file. The output includes a copy of all lines in the recording configuration

file, any error messages, and a map of the time scale with indication of when recording starts and stops.

Although this is useful to document what is read from the recording configuration file, it is not a useful tool

for debugging of a new or modified recording configuration file. Therefore, the program xmscheck is

available to preparse a recording configuration file before you move it to the directory /etc/perf, where

xmservd looks for the recording configuration file.

When xmscheck is started without any command line argument, it parses the file /etc/perf/xmservd.cf.

This way, you can determine how the running daemon is configured for recording. If a file name is

specified on the command line, that file is parsed.

Output from xmscheck goes to stdout. The parsing is done by the exact same module that does the

parsing in xmservd. That module is linked in as part of both programs. The parsing checks that all

statistics specified are valid and prints the time scale for starting and stopping recording in the form of a

“time table.”

In the time table, each minute has a numeric code. The meaning of codes is as follows:

 0 Recording is inactive. Neither a start nor a stop request was given for the minute.

1 Recording is active. Neither a start nor a stop request was given for the minute.

2 Recording is inactive. A stop request was given for the minute.

3 Recording is active. A start request was given for the minute.

The following example shows how xmscheck formats the time table. Only the part of the table that covers

Tuesday is shown. The example shown in Example of Recording Configuration File (in the “Hot Lines

(xmservd Recording Only)” on page 172 section) was used to produce this output.

Day 2, Hour 00: 00

Day 2, Hour 01: 00

Day 2, Hour 02: 00

Day 2, Hour 03: 00

Day 2, Hour 04: 00

Day 2, Hour 05: 00

Day 2, Hour 06: 00

Day 2, Hour 07: 00

Day 2, Hour 08: 000000000000000000000000000000311111111111111111111111111111

Day 2, Hour 09: 11

Day 2, Hour 10: 11

Day 2, Hour 11: 11

Day 2, Hour 12: 2000

Day 2, Hour 13: 3111

Day 2, Hour 14: 11

Day 2, Hour 15: 11

Day 2, Hour 16: 11

Day 2, Hour 17: 2000

Day 2, Hour 18: 00

Day 2, Hour 19: 00

Day 2, Hour 20: 00

Day 2, Hour 21: 00

Day 2, Hour 22: 00

Day 2, Hour 23: 00

302 Performance Toolbox Guide

xmservd Command

The xmservd daemon is always started from inetd. Therefore, command line options must be specified

on the line defining xmservd to inetd in the file /etc/inetd.conf.

Syntax

xmservd [-v] [-b UDP_buffer_size] [-i min_remote_interval] [-l remove_consumer_timeout] [-m

supplier_timeout] [-p trace_level] [-s max_logfile_size] [-t keep_alive_limit] [-x xmservd_execution_priority]

Flags

All command line options are optional. The options are:

 v Verbose. Causes parsing information for the xmservd recording configuration file to be written to the xmservd

log file.

b Defines the size of the buffer used by the daemon to send and receive UDP packets. The buffer size must be

specified in bytes and can be from 4,096 to 16,384 bytes. The buffer size determines the maximum number of

data values that can be sent in one data_feed packet. The default buffer size is 4096 bytes, which allows for

up to 124 data values in one packet.

i Defines the minimum interval in milliseconds with which data feeds can be sent. Default is 500 milliseconds. A

value between 100 and 5,000 milliseconds can be specified. Any value specified is rounded to a multiple of

100 milliseconds. Whichever minimum remote interval is specified causes all requests for data feeds to be

rounded to a multiple of this value. See further details in section “Rounding of Sampling Interval” on page 156.

l (Lowercase L). Sets the time_to_live after feeding of statistics data has ceased as described in section “Life

and Death of xmservd” on page 157. Must be followed by a number of minutes. A value of 0 (zero) minutes

causes the daemon to stay alive forever. The default time_to_live is 15 minutes.

This value is also used to control when to remove inactive data-consumers as described in Removing Inactive

Data-Consumers (“Removing Inactive Data Consumers” on page 158).

m When a dynamic data-supplier is active, this value sets the number of seconds of inactivity from the DDS

before the SPMI assumes the DDS is dead. When the timeout value is exceeded, the SiShGoAway flag is set

in the shared memory area and the SPMI disconnects from the area. If this flag is not given, the timeout period

is set to 90 seconds.

The size of the timeout period is kept in the SPMI common shared memory area. The value stored is the

maximum value requested by any data consumer program, including xmservd.

p Sets the trace level, which determines the types of events written to the log file /etc/perf/xmservd.log1 or

/etc/perf/xmservd.log2. Must be followed by a digit from 0 to 9, with 9 being the most detailed trace level.

Default trace level is 0 (zero), which disables tracing and logging of events but logs error messages.

s Specifies the approximate maximum size of the log files. At least every time_to_live minutes, it is checked if

the currently active log file is bigger than max_logfile_size. If so, the current log file is closed and logging

continues to the alternate log file, which is first reset to zero length. The two log files are /etc/perf/
xmservd.log1 and /etc/perf/xmservd.log2. Default maximum file size is 100,000 bytes. You cannot make

max_logfile_size smaller than 5,000 or larger than 10,000,000 bytes.

t Sets the keep_alive_limit described in section “Life and Death of xmservd” on page 157. Must be followed by

a number of seconds from 60 to 900 (1 to 15 minutes). Default is 300 seconds (5 minutes).

x Sets the execution priority of xmservd. Use this option if the default execution priority of xmservd is unsuitable

in your environment. Generally, the daemon should be given as high execution priority as possible (a smaller

number gives a higher execution priority).

On systems other than IBM RS/6000 systems, the -x flag is used to set the nice priority of xmservd. The nice

priority is a value from -20 to 19. Default is -20.

Appendix C. Performance Toolbox for AIX Commands 303

304 Performance Toolbox Guide

Appendix D. ARM Subroutines and Replacement Library

Implementation

This appendix provides information about the following:

v “ARM Subroutines”

v “ARM Replacement Library Implementation” on page 314

For further information, see Chapter 17, “Response Time Measurement,” on page 191.

ARM Subroutines

This section describes the use and implementation of the PTX version of the ARM library.

arm_init Subroutine

Purpose

The arm_init subroutine is used to define an application or a unique instance of an application to the ARM

library. In the PTX implementation of ARM, instances of applications can’t be defined. See “Implementation

Specifics” on page 306. An application must be defined before any other ARM subroutine is issued.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_appl_id_t arm_init(arm_ptr_t *appname, /* application name

*/

 arm_ptr_t *appl_user_id, /* Name of the application user */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each application needs to be defined by a unique name. An application can be defined as loosely or as

rigidly as required. It may be defined as a single execution of one program, multiple (possibly

simultaneous) executions of one program, or multiple executions of multiple programs that together

constitute an application. Any one user of ARM may define the application so it best fits the measurement

granularity desired. Measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Parameters

appname

A unique application name. The maximum length is 128 characters including the terminating zero.

The argument is converted to a key by removing all blanks and truncating the string to 32

characters, including a terminating zero. This key is used to look for an application structure in the

library’s private shared memory area. If a structure is found, its use-count is incremented and the

application ID stored in the structure is returned to the caller. If the structure is not found, one is

created, assigned the next free application ID and given a use-count of one. The new assigned

application ID is returned to the caller.

© Copyright IBM Corp. 1994, 2004 305

Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the

description of the SpmiCx context (“SpmiCx Structure” on page 206) that represents the

application in the Spmi hierarchy. The key is used as the short name of the context.

appl_user_id

 Can be passed in as NULL or some means of specifying a user ID for the application. This allows

the calling program to define unique instances of an application. In the PTX implementation of the

ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of

an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes

in length, including the terminating zero.

 For the implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns an appl_id application identifier. If the subroutine fails, a value less

than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.

The appl_id associated with an application is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

program that defines one or more applications will usually have the same ID returned for the application

each time. The same is true when different programs define the same application: As long as the shared

memory area exists, they will all have the same ID returned. This is done to minimize the use of memory

for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application

names to pass on the arm_init subroutine call.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195.

arm_getid Subroutine

Purpose

The arm_getid subroutine is used to register a transaction as belonging to an application and assign a

unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances

of a transaction within one application can’t be defined. See “Implementation Specifics” on page 308. A

transaction must be registered before any ARM measurements can begin.

306 Performance Toolbox Guide

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_tran_id_t arm_getid(arm_appl_id_t appl_id, /* application handle

*/

 arm_ptr_t *tran_name, /* transaction name */

 arm_ptr_t *tran_detail, /* transaction additional info */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each transaction needs to be defined by a unique name within an application. Transactions can be defined

so they best fit the application environment. For example, if a given environment has thousands of unique

transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other

situations, you may want to use generated transaction names that reflect what data a transaction carries

along with the transaction type. For example, the type of SQL query could be analyzed to group customer

query transactions according to complexity, such as customer_simple, customer, customer_complex.

Whichever method is used to name transactions, in the PTX implementation of the ARM API,

measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Parameters

appl_id

 The identifier returned by an earlier call to arm_init (“arm_init Subroutine” on page 305). The PTX

implementation does not require that the arm_init subroutine call was issued by the same

program or process now issuing the arm_getid subroutine call. However, the number of issued

arm_init subroutine calls for the application name must exceed the number of issued arm_end

subroutine calls for this appl_id.

 The appl_id is used to look for an application structure. If one is not found or if the use-count of

the one found is zero, no action is taken and the function returns -1.

tran_name

 A unique transaction name. The name only needs to be unique within the appl_id. The maximum

length is 128 characters including the terminating zero. The argument is converted to a key by

removing all blanks and truncating the string to 32 characters, including a terminating zero. This

key is used to look for a transaction structure (that belongs to the application identified in the first

argument) in the library’s private shared memory area. If a transaction structure is found, its

use-count is set to one and the transaction ID stored in the structure is returned to the caller. If the

structure is not found, one is created and assigned the next free transaction ID, given a use-count

of one and added to the application’s linked list of transactions. The new assigned transaction ID

is returned to the caller.

 Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the

description of the SpmiCx context (“SpmiCx Structure” on page 206) that represents the

transaction in the Spmi hierarchy. The key is used as the short name of the context.

tran_detail

 Can be passed in as NULL or some means of specifying a unique instance of the transaction. In

the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not

Appendix D. ARM Subroutines and Replacement Library Implementation 307

possible to define unique instances of a transaction. If specified as non-NULL, this parameter must

be a string not exceeding 128 bytes in length, including the terminating zero.

 For the implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less

than zero is returned. In compliance with the ARM API specifications, the error return value can be passed

to the arm_start (“arm_start Subroutine”) subroutine, which will cause arm_start to function as a

no-operation.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the

application structure is active, so are all transactions for which an arm_getid call was issued after the

application was activated by an arm_init (“arm_init Subroutine” on page 305) call. The transaction

use-count is reset to zero by the arm_end (“arm_end Subroutine” on page 313) call if this call causes the

application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.

The tran_id associated with a transaction is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

program that defines one or more transactions under a given application will usually have the same

ID returned for the transactions each time. The same is true when different programs define the same

transaction within an application: As long as the shared memory area exists, they will all have the same

ID returned. This is done to minimize the use of memory for transaction definitions and because it makes

no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction

names to pass on the arm_getid subroutine call.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Subroutine” on page 305)

subroutine, arm_end (“arm_end Subroutine” on page 313) subroutine.

arm_start Subroutine

Purpose

The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of

the transaction response time starts at the execution of this subroutine.

308 Performance Toolbox Guide

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_start_handle_t arm_start(arm_tran_id_t tran_id, /* transaction name identifier

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each arm_start subroutine call marks the beginning of another instance of a transaction within an

application. Multiple instances (simultaneous executions of the transaction) may exist. Control information

for the transaction instance is held until the execution of a matching arm_stop (“arm_stop Subroutine” on

page 311) subroutine call, at which time the elapsed time is calculated and used to update transaction

measurement metrics for the transaction. Metrics are accumulated for each unique combination of the

following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Parameters

tran_id

 The identifier is returned by an earlier call to arm_getid, “arm_getid Subroutine” on page 306. The

PTX implementation does not require that the arm_getid subroutine call was issued by the same

program or process now issuing the arm_start subroutine call. However, the transaction’s

application structure must be active, which means that the number of issued arm_init subroutine

calls for the application name must exceed the number of issued arm_end subroutine calls for the

application’s appl_id. If an application was inactivated by issuing a sufficient number of arm_end

calls, all transactions defined for that application will have their use_count set to zero. The count

remains zero (and the transaction inactive) until a new arm_getid subroutine is issued for the

transaction.

 The tran_id argument is used to look for a transaction structure. If one is not found or if the

use-count of the one found is zero, no action is taken and the function returns -1. If one is found,

a transaction instance structure (called a slot structure) is allocated, assigned the next free

instance ID, and updated with the start time of the transaction instance. The assigned instance ID

is returned to the caller.

 In compliance with the ARM API specifications, if the tran_id passed is one returned from a

previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a

no-operation function. It will return a NULL start_handle, which can be passed to subsequent

arm_update (“arm_update Subroutine” on page 310) and arm_stop (“arm_stop Subroutine” on

page 311) subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution

instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM

API specifications, the error return value can be passed to the arm_update (“arm_update Subroutine” on

page 310) and arm_stop (“arm_stop Subroutine” on page 311) subroutines, which will cause those

subroutines to operate as no-operation functions.

Appendix D. ARM Subroutines and Replacement Library Implementation 309

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Subroutine” on page 305)

subroutine, arm_getid (“arm_getid Subroutine” on page 306) subroutine, arm_end (“arm_end Subroutine”

on page 313) subroutine.

arm_update Subroutine

Purpose

The arm_update subroutine is used to collect information about a transaction’s progress. It is a

no-operation subroutine in the PTX implementation.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is

intended to be used for providing status information for a long-running transaction. Because there’s no

feasible way to display such information in current PTX monitors, the subroutine is a NULL function.

Parameters

start_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Subroutine” on page 308. The

start_handle argument is used to look for the slot structure created by the arm_start subroutine

call. If one is not found, no action is taken and the function returns -1. Otherwise a zero is

returned.

 In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_update subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

310 Performance Toolbox Guide

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product. It is implemented as a NULL subroutine call.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Subroutine” on page 305)

subroutine, arm_getid (“arm_getid Subroutine” on page 306) subroutine, arm_start (“arm_start

Subroutine” on page 308) subroutine, arm_stop (“arm_stop Subroutine”) subroutine, arm_end (“arm_end

Subroutine” on page 313) subroutine.

arm_stop Subroutine

Purpose

The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the

transaction response time completes at the execution of this subroutine.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle, /* unique transaction handle

*/

 const arm_status_t comp_status, /* Good=0, Abort=1, Failed=2 */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each arm_stop subroutine call marks the end of an instance of a transaction within an application.

Multiple instances (simultaneous executions of the transaction) may exist. Control information for the

transaction instance is held from the execution of the arm_start (“arm_start Subroutine” on page 308)

subroutine call and until the execution of a matching arm_stop subroutine call, at which time the elapsed

time is calculated and used to update transaction measurement metrics for the transaction. Metrics are

accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Parameters

arm_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Subroutine” on page 308. The

arm_handle argument is used to look for a slot structure created by the arm_start (“arm_start

Subroutine” on page 308) call, which returned this arm_handle. If one is not found, no action is

Appendix D. ARM Subroutines and Replacement Library Implementation 311

taken and the function returns -1. If one is found, a post structure is allocated and added to the

linked list of post structures used to pass data to the SpmiArmd daemon. The post structure is

updated with the start time from the slot structure, the path to the transaction context, and the stop

time of the transaction instance.

 In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_stop subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

comp_status

 User supplied transaction completion code. The following codes are defined:

v ARM_GOOD - successful completion

Response time is calculated. The response time is calculated as a fixed point value in

milliseconds and saved in the metric resptime (page “ARM Transaction Metrics” on page 196).

In addition, the weighted average response time (in respavg (page “ARM Transaction Metrics”

on page 196) is calculated as a floating point value using a variable weight (page “ARM

Transaction Metrics” on page 196) that defaults to 75%. The average response time is

calculated as weight percent of the previous value of the average plus (100 - weight) percent of

the latest response time observation. The value of weight can be changed from the SpmiArmd

daemon’s configuration file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum

response time for this transaction is updated, if required. Finally the count (page “ARM

Transaction Metrics” on page 196) of successful transaction executions is incremented.

v ARM_ABORT - transaction aborted

The aborted (page “ARM Transaction Metrics” on page 196) counter is incremented. No other

updates occur.

v ARM_FAILED - transaction failed

The failed (page “ARM Transaction Metrics” on page 196) counter is incremented. No other

updates occur.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Subroutine” on page 305)

subroutine, arm_getid (“arm_getid Subroutine” on page 306) subroutine, arm_start (“arm_start

Subroutine” on page 308) subroutine, arm_end (“arm_end Subroutine” on page 313) subroutine.

312 Performance Toolbox Guide

arm_end Subroutine

Purpose

The arm_end subroutine is used to mark the end of an application. This subroutine call must always be

called when a program that issued an arm_init (“arm_init Subroutine” on page 305) subroutine call

terminates. In the PTX implementation of ARM, application data structures may persist after arm_end is

issued. See “Implementation Specifics” on page 314.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t ARM_API arm_end(arm_appl_id_t appl_id, /* application id

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased

issuing ARM subroutine calls for the application specified and that the library code can remove references

to the application. As far as the calling program is concerned, all references to transactions defined for the

named application can be removed as well.

Parameters

appl_id

 The identifier is returned by an earlier call to arm_init, “arm_init Subroutine” on page 305. The

PTX implementation does not require that the arm_init subroutine call was issued by the same

program or process now issuing the arm_end subroutine call. However, each time the arm_end

subroutine call is issued against an appl_id, the use-count of the transaction structure is

decremented. When the count reaches zero, the application structure and all associated

transaction structures are marked as inactive. Subsequent arm_init calls can reactivate the

application structure but transaction structures formerly associated with the application are not

automatically activated. Each transaction must be reactivated through the arm_getid (“arm_getid

Subroutine” on page 306) subroutine call.

 The appl_id is used to look for an application structure. If none is found, no action is taken and the

function returns -1. If one is found, the use-count of the application structure is decremented. If

that makes the counter zero, the use-counts of all associated transaction structures are set to

zero. The total number of application structures that have been initialized for the calling process

but not ended is decremented. If this count reaches zero, access to the shared memory from the

process is released and the count of users of the shared memory area is decremented. If the

count of users of the shared memory segment reaches zero, the shared memory segment is

deleted.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Appendix D. ARM Subroutines and Replacement Library Implementation 313

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init (“arm_init

Subroutine” on page 305) subroutine calls for a given application with the effect that multiple simultaneous

definitions of the application are effective. The ARM library code points all these definitions to a single

application structure in the ARM private shared memory area. A use-count keeps track of the number of

simultaneous definitions. Each time arm_init is issued for the application name, the counter is

incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter

is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Only when the counter reaches zero is the application structure inactivated. As long as the counter is

non-zero, transactions defined for the application remain active and new transactions can be defined for

the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more

restrictive implementation would have increased memory use significantly and would be useless for PTX

monitoring purposes.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Subroutine” on page 305)

subroutine, arm_getid (“arm_getid Subroutine” on page 306) subroutine.

ARM Replacement Library Implementation

This section describes the implementation of the PTX version of the ARM replacement library. The

replacement library differs from the standard PTX ARM implementation by invoking an earlier installed

ARM implementation in addition to invoking the PTX implementation. For the following description, the

previously installed ARM library is referred to as the lower library.

arm_init Dual Call Subroutine

Purpose

The arm_init subroutine is used to define an application or a unique instance of an application to the ARM

library. While, in the PTX implementation of ARM, instances of applications can’t be defined, the ARM

implementation in the lower library may permit this. An application must be defined before any other ARM

subroutine is issued.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_appl_id_t arm_init(arm_ptr_t *appname, /* application name

*/

 arm_ptr_t *appl_user_id, /* Name of the application user */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

314 Performance Toolbox Guide

Description

Each application needs to be defined by a unique name. An application can be defined as loosely or as

rigidly as required. It may be defined as a single execution of one program, multiple (possibly

simultaneous) executions of one program, or multiple executions of multiple programs that together

constitute an application. Any one user of ARM may define the application so it best fits the measurement

granularity desired. For the PTX implementation, measurements are always collected for each unique

combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value

greater than zero, that return value is passed to the caller as the application ID. If the returned value from

the lower library is zero or negative, the return value is the one generated by the PTX library code.

Parameters

appname

 A unique application name. The maximum length is 128 characters including the terminating zero.

The PTX library code converts this value to a key by removing all blanks and truncating the string

to 32 characters, including a terminating zero. This key is used to look for an application structure

in the library’s private shared memory area. If a structure is found, its use-count is incremented

and the application ID stored in the structure is saved. If the structure is not found, one is created,

assigned the next free application ID and given a use-count of one. The new assigned application

ID is saved. If the call to the lower library was successful, a cross-reference is created from the

lower library’s application ID to the PTX library’s application ID for use by arm_getid (“arm_getid

Dual Call Subroutine” on page 316) and arm_end (“arm_end Dual Call Subroutine” on page 323).

 Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the

description of the SpmiCx context (“SpmiCx Structure” on page 206) that represents the

application in the Spmi hierarchy. The key is used as the short name of the context.

appl_user_id

 Can be passed in as NULL or some means of specifying a user ID for the application. This allows

the calling program to define unique instances of an application. In the PTX implementation of the

ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of

an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes

in length, including the terminating zero.

 For the PTX implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

 For the lower library implementation of this subroutine call, the appl_user_id argument may have

significance. If so, it’s transparent to the PTX implementation.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If the call to the lower library was successful, the subroutine returns an appl_id application identifier as

returned from the lower library. If the subroutine call to the lower library fails but the PTX implementation

doesn’t fail, the appl_id returned is the one assigned by the PTX library. If both implementations fail, a

value less than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Appendix D. ARM Subroutines and Replacement Library Implementation 315

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.

The appl_id associated with an application is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

program that defines one or more applications will usually have the same ID returned for the application

each time. The same is true when different programs define the same application: As long as the shared

memory area exists, they will all have the same ID returned. This is done to minimize the use of memory

for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application

names to pass on the arm_init subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its

own implementation restrictions.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195.

arm_getid Dual Call Subroutine

Purpose

The arm_getid subroutine is used to register a transaction as belonging to an application and assign a

unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances

of a transaction within one application can’t be defined. The lower library implementation of this subroutine

may provide support for instances of transactions. A transaction must be registered before any ARM

measurements can begin.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_tran_id_t arm_getid(arm_appl_id_t appl_id, /* application handle

*/

 arm_ptr_t *tran_name, /* transaction name */

 arm_ptr_t *tran_detail, /* transaction additional info */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each transaction needs to be defined by a unique name within an application. Transactions can be defined

so they best fit the application environment. For example, if a given environment has thousands of unique

transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other

situations, you may want to use generated transaction names that reflect what data a transaction carries

along with the transaction type. For example, the type of SQL query could be analyzed to group customer

query transactions according to complexity, such as customer_simple, customer, customer_complex.

316 Performance Toolbox Guide

Whichever method is used to name transactions, in the PTX implementation of the ARM API,

measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value

greater than zero, that return value is passed to the caller as the transaction ID. If the returned value from

the lower library is zero or negative, the return value is the one generated by the PTX library code.

Parameters

appl_id

 The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 314).

The identifier is passed to the arm_getid function of the lower library. If the lower library returns

an identifier greater than zero, that identifier is the one that’ll eventually be returned to the caller.

After the invocation of the lower library, the PTX implementation attempts to translate the appl_id

argument to its own identifier by consulting the cross-reference table created by arm_init. If one

can be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is

used as passed in. The PTX implementation does not require that the arm_init subroutine call

was issued by the same program or process now issuing the arm_getid subroutine call. However,

the number of issued arm_init subroutine calls for the application name must exceed the number

of issued arm_end subroutine calls for this appl_id.

 In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to

look for an application structure. If one is not found or if the use-count of the one found is zero,

the PTX implementation is considered to have failed and no action is taken by the PTX library.

tran_name

 A unique transaction name. The name only needs to be unique within the appl_id. The maximum

length is 128 characters including the terminating zero. In the PTX implementation, the argument

is converted to a key by removing all blanks and truncating the string to 32 characters, including a

terminating zero. This key is used to look for a transaction structure (that belongs to the

application identified in the first argument) in the library’s private shared memory area. If a

transaction structure is found, its use-count is set to one and the transaction ID stored in the

structure is saved. If the structure is not found, one is created and assigned the next free

transaction ID, given a use-count of one and added to the application’s linked list of transactions.

The new assigned transaction ID is saved. If the call to the lower library was successful, a

cross-reference is created from the lower library’s transaction ID to the PTX library’s transaction ID

for use by arm_start (“arm_start Dual Call Subroutine” on page 319).

 Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the

description of the SpmiCx context (“SpmiCx Structure” on page 206) that represents the

transaction in the Spmi hierarchy. The key is used as the short name of the context.

tran_detail

 Can be passed in as NULL or some means of specifying a unique instance of the transaction. In

the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not

possible to define unique instances of a transaction. If specified as non-NULL, this parameter must

be a string not exceeding 128 bytes in length, including the terminating zero.

 For the implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

 For the lower library implementation of this subroutine call, the tran_detail argument may have

significance. If so, it’s transparent to the PTX implementation.

flags, data, data_size

Appendix D. ARM Subroutines and Replacement Library Implementation 317

In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less

than zero is returned. In compliance with the ARM API specifications, the error return value can be passed

to the arm_start (“arm_start Dual Call Subroutine” on page 319) subroutine, which will cause arm_start to

function as a no-operation.

If the call to the lower library was successful, the tran_id transaction identifier returned is the one

assigned by the lower library. If the subroutine call to the lower library failed but the PTX implementation

didn’t fail, the tran_id returned is the one assigned by the PTX library. If both implementations fail, a value

less than zero is returned. In compliance with the ARM API specification, an error return value can be

passed to the arm_start (“arm_start Dual Call Subroutine” on page 319) subroutine, which will cause

arm_start to function as a no-operation.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the

application structure is active, so are all transactions for which an arm_getid call was issued after the

application was activated by an arm_init (“arm_init Dual Call Subroutine” on page 314) call. The

transaction use-count is reset to zero by the arm_end (“arm_end Dual Call Subroutine” on page 323) call

if this call causes the application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.

The tran_id associated with a transaction is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

program that defines one or more transactions under a given application will usually have the same

ID returned for the transactions each time. The same is true when different programs define the same

transaction within an application: As long as the shared memory area exists, they will all have the same

ID returned. This is done to minimize the use of memory for transaction definitions and because it makes

no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction

names to pass on the arm_getid subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its

own implementation restrictions.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Dual Call Subroutine” on page 314)

subroutine, arm_end (“arm_end Dual Call Subroutine” on page 323) subroutine.

318 Performance Toolbox Guide

arm_start Dual Call Subroutine

Purpose

The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of

the transaction response time starts at the execution of this subroutine.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_start_handle_t arm_start(arm_tran_id_t tran_id, /* transaction name identifier

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each arm_start subroutine call marks the beginning of another instance of a transaction within an

application. Multiple instances (simultaneous executions of the transaction) may exist. Control information

for the transaction instance is held until the execution of a matching arm_stop (“arm_stop Dual Call

Subroutine” on page 322) subroutine call, at which time the elapsed time is calculated and used to update

transaction measurement metrics for the transaction. Metrics are accumulated for each unique combination

of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value

greater than zero, that return value is passed to the caller as the start handle. If the value returned by the

lower library is zero or negative, the return value is the one generated by the PTX library code.

Parameters

tran_id

 The identifier is returned by an earlier call to arm_getid, “arm_getid Dual Call Subroutine” on page

316. The identifier is passed to the arm_start function of the lower library. If the lower library

returns an identifier greater than zero, that identifier is the one that’ll eventually be returned to the

caller. After the invocation of the lower library, the PTX implementation attempts to translate the

tran_id argument to its own identifier from the cross-reference table created by arm_getid. If one

can be found, it is used for the PTX implementation; if no cross reference is found, the tran_idis

used as passed in.The PTX implementation does not require that the arm_getid subroutine call

was issued by the same program or process now issuing the arm_start subroutine call. However,

the transaction’s application structure must be active, which means that the number of issued

arm_init subroutine calls for the application name must exceed the number of issued arm_end

subroutine calls for the application’s appl_id. If an application was inactivated by issuing a

sufficient number of arm_end calls, all transactions defined for that application will have their

use_count set to zero. The count remains zero (and the transaction inactive) until a new

arm_getid subroutine is issued for the transaction.

 In the PTX implementation, the tran_id (as retrieved from the cross-reference table) is used to look

for a transaction structure. If one is not found or if the use-count of the one found is zero, the PTX

implementation is considered to have failed and no action is taken by the PTX library. If one is

found, a transaction instance structure (called a slot structure) is allocated, assigned the next free

instance ID, and updated with the start time of the transaction instance. The assigned instance ID

is saved as the start_handle. If the call to the lower library was successful, a cross-reference is

Appendix D. ARM Subroutines and Replacement Library Implementation 319

created from the lower library’s start_handle to the PTX library’s start_handle for use by

arm_update (“arm_update Dual Call Subroutine”) and arm_stop (“arm_stop Dual Call Subroutine”

on page 322).

 In compliance with the ARM API specifications, if the tran_id passed is one returned from a

previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a

no-operation function. It will return a NULL start_handle, which can be passed to subsequent

arm_update (“arm_update Dual Call Subroutine”) and arm_stop (“arm_stop Dual Call Subroutine”

on page 322) subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution

instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM

API specifications, the error return value can be passed to the arm_update (“arm_update Dual Call

Subroutine”) and arm_stop (“arm_stop Dual Call Subroutine” on page 322) subroutines, which will cause

those subroutines to operate as no-operation functions.

If the call to the lower library was successful, the start_handle instance ID returned is the one assigned

by the lower library. If the subroutine call to the lower library failed but the PTX implementation didn’t fail,

the start_handle returned is the one assigned by the PTX library. If both implementations fail, a value less

than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Dual Call Subroutine” on page 314)

subroutine, arm_getid (“arm_getid Dual Call Subroutine” on page 316) subroutine, arm_end (“arm_end

Dual Call Subroutine” on page 323) subroutine.

arm_update Dual Call Subroutine

Purpose

The arm_update subroutine is used to collect information about a transaction’s progress. It is a

no-operation subroutine in the PTX implementation but may be fully implemented by the lower library.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle

320 Performance Toolbox Guide

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is

intended to be used for providing status information for a long-running transaction. Because there’s no

feasible way to display such information in current PTX monitors, the subroutine is a NULL function.

The lower library implementation of the arm_update subroutine is always invoked.

Parameters

start_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Dual Call Subroutine” on page

319. The identifier is passed to the arm_update function of the lower library. If the lower library

returns a zero return code., that return code is returned to the caller. After the invocation of the

lower library, the PTX implementation attempts to translate the arm_handleargument to its own

identifier from the cross-reference table created by arm_start. If one can be found, it is used for

the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The

PTX implementation uses the start_handle argument to look for the slot structure created by the

arm_start subroutine call. If one is found the PTX implementation is considered to have

succeeded, otherwise it is considered to have failed.

 In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_update subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the

call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed

but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than

zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product. It is implemented as a NULL subroutine call.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Dual Call Subroutine” on page 314)

subroutine, arm_getid (“arm_getid Dual Call Subroutine” on page 316) subroutine, arm_start (“arm_start

Appendix D. ARM Subroutines and Replacement Library Implementation 321

Dual Call Subroutine” on page 319) subroutine, arm_stop (“arm_stop Dual Call Subroutine”) subroutine,

arm_end (“arm_end Dual Call Subroutine” on page 323) subroutine.

arm_stop Dual Call Subroutine

Purpose

The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the

transaction response time completes at the execution of this subroutine.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle, /* unique transaction handle

*/

 const arm_status_t comp_status, /* Good=0, Abort=1, Failed=2 */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each arm_stop subroutine call marks the end of an instance of a transaction within an application.

Multiple instances (simultaneous executions of the transaction) may exist. Control information for the

transaction instance is held from the execution of the arm_start (“arm_start Dual Call Subroutine” on page

319) subroutine call and until the execution of a matching arm_stop subroutine call, at which time the

elapsed time is calculated and used to update transaction measurement metrics for the transaction.

Metrics are accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of

zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the

return value is the one generated by the PTX library code.

Parameters

arm_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Dual Call Subroutine” on page

319. The identifier is passed to the arm_stop function of the lower library. If the lower library

returns a zero return code, that return code is returned to the caller. After the invocation of the

lower library, the PTX implementation attempts to translate the arm_handleargument to its own

identifier from the cross-reference table created by arm_start. If one can be found, it is used for

the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The

PTX implementation uses the start_handle argument to look for the slot structure created by the

arm_start subroutine call. If one is found, a post structure is allocated and added to the linked list

of post structures used to pass data to the SpmiArmd daemon. The post structure is updated with

the start time from the slot structure, the path to the transaction context, and the stop time of the

transaction instance. If no slot structure was found, the PTX implementation is considered to have

failed.

 In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_stop subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

322 Performance Toolbox Guide

comp_status

 User supplied transaction completion code. The following codes are defined:

v ARM_GOOD - successful completion

Response time is calculated. The response time is calculated as a fixed point value in

milliseconds and saved in the metric resptime (page “ARM Transaction Metrics” on page 196).

In addition, the weighted average response time (in respavg (page “ARM Transaction Metrics”

on page 196)) is calculated as a floating point value using a variable weight (page “ARM

Transaction Metrics” on page 196), that defaults to 75%. The average response time is

calculated as weight percent of the previous value of the average plus (100 - weight) percent of

the latest response time observation. The value of weight can be changed from the SpmiArmd

daemon’s configuration file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum

response time for this transaction is updated, if required. Finally the count (page “ARM

Transaction Metrics” on page 196) of successful transaction executions is incremented.

v ARM_ABORT - transaction aborted

The aborted (page “ARM Transaction Metrics” on page 196) counter is incremented. No other

updates occur.

v ARM_FAILED - transaction failed

The failed (page “ARM Transaction Metrics” on page 196) counter is incremented. No other

updates occur.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the

call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed

but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than

zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

“ARM Contexts in Spmi Data Space” on page 195, arm_init (“arm_init Dual Call Subroutine” on page 314)

subroutine, arm_getid (“arm_getid Dual Call Subroutine” on page 316) subroutine, arm_start (“arm_start

Dual Call Subroutine” on page 319) subroutine, arm_end (“arm_end Dual Call Subroutine”) subroutine.

arm_end Dual Call Subroutine

Purpose

The arm_end subroutine is used to mark the end of an application. This subroutine call must always be

called when a program that issued an arm_init (“arm_init Dual Call Subroutine” on page 314) subroutine

Appendix D. ARM Subroutines and Replacement Library Implementation 323

call terminates. In the PTX implementation of ARM, application data structures may persist after arm_end

is issued. See “Implementation Specifics” on page 314. This may not be the case for the lower library

implementation.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t ARM_API arm_end(arm_appl_id_t appl_id, /* application id

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased

issuing ARM subroutine calls for the application specified and that the library code can remove references

to the application. As far as the calling program is concerned, all references to transactions defined for the

named application can be removed as well.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of

zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the

return value is the one generated by the PTX library code.

Parameters

appl_id

 The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 314).

The identifier is passed to the arm_end function of the lower library. If the lower library returns a

zero, a zero is returned to the caller. After the invocation of the lower library, the

PTX implementation attempts to translate the appl_id argument to its own identifier from the

cross-reference table created by arm_init (“arm_init Dual Call Subroutine” on page 314). If one

can be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is

used as passed in. The PTX implementation does not require that the arm_init subroutine call

was issued by the same program or process now issuing the arm_end subroutine call. However,

each time the arm_end subroutine call is issued against an appl_id, the use-count of the

transaction structure is decremented. When the count reaches zero, the application structure and

all associated transaction structures are marked as inactive. Subsequent arm_init calls can

reactivate the application structure but transaction structures formerly associated with the

application are not automatically activated. Each transaction must be reactivated through the

arm_getid (“arm_getid Dual Call Subroutine” on page 316) subroutine call.

 In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to

look for an application structure. If none is found, no action is taken and the PTX function is

considered to have failed. If one is found, the use-count of the application structure is

decremented. If that makes the counter zero, the use-counts of all associated transaction

structures are set to zero. The total number of application structures that have been initialized for

the calling process but not ended is decremented. If this count reaches zero, access to the shared

memory from the process is released and the count of users of the shared memory area is

decremented. If the count of users of the shared memory segment reaches zero, the shared

memory segment is deleted.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

324 Performance Toolbox Guide

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the

call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed

but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than

zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Implementation Specifics

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init (“arm_init Dual Call

Subroutine” on page 314) subroutine calls for a given application with the effect that multiple simultaneous

definitions of the application are effective. The ARM library code points all these definitions to a single

application structure in the ARM private shared memory area. A use-count keeps track of the number of

simultaneous definitions. Each time arm_init is issued for the application name, the counter is

incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter

is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Only when the counter reaches zero is the application structure inactivated. As long as the counter is

non-zero, transactions defined for the application remain active and new transactions can be defined for

the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more

restrictive implementation would have increased memory use significantly and would be useless for PTX

monitoring purposes.

For the implementation of arm_end in the lower library, other restrictions may exist.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

v “ARM Contexts in Spmi Data Space” on page 195

v “arm_init Dual Call Subroutine” on page 314

v “arm_getid Dual Call Subroutine” on page 316

Appendix D. ARM Subroutines and Replacement Library Implementation 325

326 Performance Toolbox Guide

Appendix E. SPMI Subroutines

The SPMI subroutines constitute the application programming interface (API) to the SPMI.

SpmiAddSetHot Subroutine

Purpose

Adds a set of peer statistics values to a hotset.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiAddSetHot(HotSet, StatName,

GrandParent, maxresp,

 threshold, frequency, feed_type,

 except_type, severity, trap_no)

struct SpmiHotSet *HotSet;

char *StatName;

SpmiCxHdl GrandParent;

int maxresp;

int threshold;

int frequency;

int feed_type;

int excp_type;

int severity;

int trap_no;

Description

The SpmiAddSetHot subroutine adds a set of peer statistics to a hotset. The SpmiHotSet (“SpmiHotSet

Structure” on page 210) structure that provides the anchor point to the set must exist before the

SpmiAddSetHot subroutine call can succeed.

Parameters

HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the SpmiCreateHotSet

(“SpmiCreateHotSet” on page 330) subroutine call.

StatName

Specifies the name of the statistic within the subcontexts (peer contexts) of the context identified

by the GrandParent parameter.

GrandParent

 Specifies a valid SpmiCxHdl (“SpmiCxHdl Handle” on page 206) handle as obtained by another

subroutine call. The handle must identify a context with at least one subcontext, which contains

the statistic identified by the StatName parameter. If the context specified is one of the RTime

contexts, no subcontext need to exist at the time the SpmiAddSetHot subroutine call is issued;

the presence of the metric identified by the StatName parameter is checked against the context

class description.

 If the context specified has or may have multiple levels of instantiable context below it (such as

the FS and RTime/ARM contexts), the metric is only searched for at the lowest context level. The

SpmiHotSet created is a pseudo hotvals structure used to link together a peer group of

© Copyright IBM Corp. 1994, 2004 327

SpmiHotValsstructures, which are created under the covers, one for each subcontext of the

GrandParent context. In the case of RTime/ARM, if additional contexts are later added under the

GrandParent contexts, additional hotsets are added to the peer group. This is transparent to the

application program, except that the SpmiFirstHot, SpmiNextHot, and SpmiNextHotItem

subroutine calls will return the peer group SpmiHotVals pointer rather than the pointer to the

pseudo structure.

 Note that specifying a specific volume group context (such as FS/rootvg) or a specific application

context (such as RTime/ARN/armpeek) is still valid and won’t involve creation of pseudo

SpmiHotVals structures.

maxresp

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If

specified as zero, indicates that all “SpmiHotItems” on page 211 that meet the criteria specified by

threshold must be returned, up-to a maximum of maxresp items. If both exceptions/traps and

feeds are requested, the maxresp value is used to cap the number of exceptions/alerts as well as

the number of items returned. If feed_type is specified as SiHotAlways, the maxresp parameter is

still used to return at most maxresp items.

 Where the GrandParent argument specifies a context that has multiple levels of instantiable

contexts below it, the maxresp is applied to each of the lowest level contexts above the the actual

peer contexts at a time. For example, if the GrandParent context is FS (file systems) and the

system has three volume groups, then a maxresp value of 2 could cause up to a maximum of 2 x

3 = 6 responses to be generated.

threshold

 Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If

specified as zero, indicates that all values read qualify to be returned in feeds. The value specified

is compared to the data value read for each peer statistic. If the data value exceeds the threshold,

it qualifies to be returned as an SpmiHotItems element in the SpmiHotVals (“SpmiHotVals

Structure” on page 210) structure. If the threshold is specified as a negative value, the value

qualifies if it is lower than the numeric value of threshold. If feed_type is specified as

SiHotAlways, the threshold value is ignored for feeds. For peer statistics of type SiCounter, the

threshold must be specified as a rate per second; for SiQuantity statistics the threshold is

specified as a level.

frequency

 Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated.

Ignored for feeds. Specifies the minimum number of minutes that must expire between any two

exceptions/traps generated from this SpmiHotVals structure. This value must be specified as no

less than 5 minutes.

feed_type

 Specifies if feeds of SpmiHotItems should be returned for this SpmiHotVals structure. The

following values are valid:

SiHotNoFeed

No feeds should be generated

SiHotThreshold

Feeds are controlled by threshold.

SiHotAlways

All values, up-to a maximum of maxresp must be returned as feeds.

excp_type

 Controls the generation of exception data packets and/or the generation of SNMP Traps from

xmservd. Note that these types of packets and traps can only actually be sent if xmservd is

running. Because of this, exception packets and SNMP traps are only generated as long as

328 Performance Toolbox Guide

xmservd is active. Traps can only be generated on AIX systems. The conditions for generating

exceptions and traps are controlled by the threshold and frequency parameters. The following

values are valid for excp_type:

SiNoHotException

Generate neither exceptions not traps.

SiHotException

Generate exceptions but not traps.

SiHotTrap

Generate SNMP traps but not exceptions.

SiHotBoth

Generate both exceptions and SNMP traps.

severity

 Required to be positive and greater than zero if exceptions are generated, otherwise specify as

zero. Used to assign a severity code to the exception for display by exmon.

trap_no

 Required to be positive and greater than zero if SNMP traps are generated, otherwise specify as

zero. Used to assign the trap number in the generated SNMP trap.

Return Values

The SpmiAddSetHot subroutine returns a pointer to a structure of type SpmiHotVals (“SpmiHotVals

Structure” on page 210) if successful. If unsuccessful, the subroutine returns a NULL value.

Programming Notes

The SpmiAddSetHot functions in a straight forward manner and as described previously in all cases

where the GrandParent context is a context that has only one level of instantiable contexts below it. This

covers most context types such as CPU, Disk, LAN, etc. In a few cases, currently only the FS (file system)

and RTime/ARM (application response) contexts, the SPMI works by creating pseudo-hotvals structures

that effectively expand the hotset. These pseudo-hotvals structures are created either at the time the

SpmiAddSetHot call is issued or when new subcontexts are created for a context that’s already the

GrandParent of a hotvals peer set. For example:

When a peer set is created for RTime/ARM, maybe only a few or no subcontexts of this context exists. If

two applications were defined at this point, say checking and savings, one valsset would be created for

the RTime/ARM context and a pseudo-valsset for each of RTime/ARM/checking and

RTime/ARM/savings. As new applications are added to the RTime/ARM contexts, new pseudo-valssets

are automatically added to the hotset.

Pseudo-valssets represent an implementation convenience and also helps minimize the impact of

retrieving and presenting data for hotsets. As far as the caller of the RSiGetHotItem subroutine call is

concerned, it is completely transparent. All this caller will ever see is the real hotvals structure. That is not

the case for callers of SpmiFirstHot, SpmiNextHot, and SpmiNextHotItem. All of these subroutines will

return pseudo-valssets and the calling program should be prepared to handle this.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

Appendix E. SPMI Subroutines 329

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

SpmiCreateHotSet

Purpose

Creates an empty hotset.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotSet *SpmiCreateHotSet()

Description

The SpmiCreateHotSet subroutine creates an empty hotset and returns a pointer to an SpmiHotSet

(“SpmiHotSet Structure” on page 210) structure.This structure provides the anchor point for a hotset and

must exist before the SpmiAddSetHot (“SpmiAddSetHot Subroutine” on page 327) subroutine can be

successfully called.

Return Values

The SpmiCreateHotSet subroutine returns a pointer to a structure of type SpmiHotSet if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

330 Performance Toolbox Guide

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiDelSetHot Subroutine” on page 336

v “SpmiFreeHotSet Subroutine” on page 344

v “SpmiAddSetHot Subroutine” on page 327

v “Understanding SPMI Data Areas” on page 204.

SpmiCreateStatSet Subroutine

Purpose

Creates an empty set of statistics.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatSet *SpmiCreateStatSet()

Description

The SpmiCreateStatSet subroutine creates an empty set of statistics and returns a pointer to an

SpmiStatSet (“SpmiStatSet Structure” on page 208) structure.

The SpmiStatSet structure provides the anchor point to a set of statistics and must exist before the

SpmiPathAddSetStat (“SpmiPathAddSetStat Subroutine” on page 365) subroutine can be successfully

called.

Return Values

The SpmiCreateStatSet subroutine returns a pointer to a structure of type SpmiStatSet if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

Appendix E. SPMI Subroutines 331

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiDelSetStat Subroutine” on page 338

v “SpmiFreeStatSet Subroutine” on page 345

v “SpmiPathAddSetStat Subroutine” on page 365

v “Understanding SPMI Data Areas” on page 204

SpmiDdsAddCx Subroutine

Purpose

Adds a volatile context to the contexts defined by an application.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

char *SpmiDdsAddCx(Ix, Path, Descr, Asnno)

ushort Ix;

char *Path, *Descr;

int Asnno;

Description

The SpmiDdsAddCx subroutine uses the shared memory area to inform the SPMI that a context is

available to be added to the context hierarchy, moves a copy of the context to shared memory, and

allocates memory for the data area.

Parameters

Ix

 Specifies the element number of the added context in the table of dynamic contexts. No context

can be added if the table of dynamic contexts has not been defined in the SpmiDdsInit, see

“SpmiDdsInit Subroutine” on page 335 subroutine call. The first element of the table is element

number 0.

Path

 Specifies the full path name of the context to be added. If the context is not at the top-level, the

parent context must already exist.

332 Performance Toolbox Guide

Descr

 Provides the description of the context to be added as it will be presented to data consumers.

Asnno

 Specifies the ASN.1 number to be assigned to the new context. All subcontexts on the same level

as the new context must have unique ASN.1 numbers. Typically, each time the SpmiDdsAddCx

subroutine adds a subcontext to the same parent context, the Asnno parameter is incremented.

See “Making Dynamic Data-Supplier Statistics Unique” on page 214 for more information about

ASN.1 numbers.

Return Values

If successful, the SpmiDdsAddCx subroutine returns the address of the shared memory data area. If an

error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine

returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiDdsDelCx Subroutine”

v “SpmiDdsInit Subroutine” on page 335

v “Understanding SPMI Data Areas” on page 204

SpmiDdsDelCx Subroutine

Purpose

Deletes a volatile context.

Library

SPMI Library (libSpmi.a)

Appendix E. SPMI Subroutines 333

Syntax

#include sys/Spmidef.h

int SpmiDdsDelCx(Area)

char *Area;

Description

The SpmiDdsDelCx subroutine informs the SPMI that a previously added, volatile context should be

deleted.

If the SPMI has not detected that the context to delete was previously added dynamically, the

SpmiDdsDelCx subroutine removes the context from the list of to-be-added contexts and returns the

allocated shared memory to the free list. Otherwise, the SpmiDdsDelCx subroutine indicates to the SPMI

that a context and its associated statistics must be removed from the context hierarchy and any allocated

shared memory must be returned to the free list.

Parameters

Area

 Specifies the address of the previously allocated shared memory data area as returned by an

SpmiDdsAddCx subroutine call.

Return Values

If successful, the SpmiDdsDelCx subroutine returns a value of 0. If an error occurs, an error text is placed

in the external SpmiErrmsg character array, and the subroutine returns a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiDdsAddCx Subroutine” on page 332

v “SpmiDdsInit Subroutine” on page 335

v “Understanding SPMI Data Areas” on page 204

334 Performance Toolbox Guide

SpmiDdsInit Subroutine

Purpose

v Establishes a program as a dynamic data-supplier (DDS) program.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

SpmiShare *SpmiDdsInit(CxTab, CxCnt, IxTab, IxCnt,

FileName)

cx_create *CxTab, *IxTab;

int CxCnt, IxCnt;

char *FileName;

Description

The SpmiDdsInit subroutine establishes a program as a dynamic data-supplier (DDS) program. To do so,

the SpmiDdsInit subroutine:

1. Determines the size of the shared memory required and creates a shared memory segment of that

size.

2. Moves all static contexts and all statistics referenced by those contexts to the shared memory.

3. Calls the SPMI and requests it to add all of the DDS static contexts to the context tree.

Notes:

1. The SpmiDdsInit subroutine issues an SpmiInit subroutine call if the application program has

not issued one.

2. If the calling program uses shared memory for other purposes, including memory mapping of

files, the SpmiDdsInit or the SpmiInit (“SpmiInit Subroutine” on page 353) subroutine call must

be issued before access is established to other shared memory areas.

Parameters

CxTab

 Specifies a pointer to the table of nonvolatile contexts to be added.

CxCnt

 Specifies the number of elements in the table of nonvolatile contexts. Use the CX_L macro to find

this value.

IxTab

 Specifies a pointer to the table of volatile contexts the program may want to add later. If no

contexts are defined, specify NULL.

IxCnt

 Specifies the number of elements in the table of volatile contexts. Use the CX_L macro to find this

value. If no contexts are defined, specify 0.

FileName

 Specifies the fully qualified path and file name to use when creating the shared memory segment.

At execution time, if the file exists, the process running the DDS must be able to write to the file.

Otherwise, the SpmiDdsInit subroutine call does not succeed. If the file does not exist, it is

Appendix E. SPMI Subroutines 335

created. If the file cannot be created, the subroutine returns an error. If the file name includes

directories that do not exist, the subroutine returns an error.

 For non-AIX systems, a sixth argument is required to inform the SPMI how much memory to

allocate in the DDS shared memory segment. This is not required for AIX systems because

facilities exist to expand a memory allocation in shared memory. The sixth argument is:

size

 Size in bytes of the shared memory area to allocate for the DDS program. This parameter is of

type int.

Return Values

If successful, the SpmiDdsInit subroutine returns the address of the shared memory control area. If an

error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine

returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiExit Subroutine” on page 339

v “SpmiInit Subroutine” on page 353

v “Understanding SPMI Data Areas” on page 204

SpmiDelSetHot Subroutine

Purpose

Removes a single set of peer statistics from a hotset.

Library

SPMI Library (libSpmi.a)

336 Performance Toolbox Guide

Syntax

#include sys/Spmidef.h

int SpmiDelSetHot(HotSet, HotVal)

struct SpmiHotSet *HotSet;

struct SpmiHotVals *HotVal;

Description

The SpmiDelSetHot subroutine removes a single set of peer statistics, identified by the HotVal parameter,

from a hotset, identified by the HotSet parameter.

Parameters

HotSet

 Specifies a pointer to a valid structure of type SpmiHotSet, “SpmiHotSet Structure” on page 210,

as created by the “SpmiCreateHotSet” on page 330 subroutine call.

HotVal

 Specifies a pointer to a valid structure of type SpmiHotVals, see“SpmiHotVals Structure” on page

210, as created by the SpmiAddSetHot, see “SpmiAddSetHot Subroutine” on page 327

subroutine call. You cannot specify an SpmiHotVals that was internally generated by the SPMI

library code as described under the GrandParent parameter to SpmiAddSetHot (“SpmiAddSetHot

Subroutine” on page 327).

Return Values

The SpmiDelSetHot subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a

nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateHotSet” on page 330

v “SpmiFreeHotSet Subroutine” on page 344

Appendix E. SPMI Subroutines 337

v “SpmiAddSetHot Subroutine” on page 327

v “Understanding SPMI Data Areas” on page 204

SpmiDelSetStat Subroutine

Purpose

Removes a single statistic from a set of statistics.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiDelSetStat(StatSet, StatVal)

struct SpmiStatSet *StatSet;

struct SpmiStatVals *StatVal;

Description

The SpmiDelSetStat subroutine removes a single statistic, identified by the StatVal parameter, from a set

of statistics, identified by the StatSet parameter.

Parameters

StatSet

 Specifies a pointer to a valid structure of type SpmiStatSet, “SpmiStatSet Structure” on page 208,

as created by the SpmiCreateStatSet “SpmiCreateStatSet Subroutine” on page 331) subroutine

call.

StatVal

 Specifies a pointer to a valid structure of type SpmiStatVals, “SpmiStatVals Structure” on page

209) as created by the SpmiPathAddSetStat, “SpmiPathAddSetStat Subroutine” on page 365)

subroutine call.

Return Values

The SpmiDelSetStat subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns

a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

338 Performance Toolbox Guide

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiFreeStatSet Subroutine” on page 345

v “SpmiPathAddSetStat Subroutine” on page 365

v “Understanding SPMI Data Areas” on page 204

SpmiExit Subroutine

Purpose

Terminates a dynamic data supplier (DDS) or local data consumer program’s association with the SPMI,

and releases allocated memory.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

void SpmiExit()

Description

A successful SpmiInit (“SpmiInit Subroutine” on page 353) or SpmiDdsInit (“SpmiDdsInit Subroutine” on

page 335) subroutine call allocates shared memory. Therefore, a Dynamic Data Supplier (DDS) program

that has issued a successful SpmiInit or SpmiDdsInit subroutine call should issue an SpmiExit

subroutine call before the program exits the SPMI. Allocated memory is not released until the program

issues an SpmiExit subroutine call.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiInit Subroutine” on page 353

v “SpmiDdsInit Subroutine” on page 335

Appendix E. SPMI Subroutines 339

SpmiFirstCx Subroutine

Purpose

Locates the first subcontext of a context.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiCxLink *SpmiFirstCx(CxHandle)

SpmiCxHdl CxHandle;

Description

The SpmiFirstCx subroutine locates the first subcontext of a context. The subroutine returns a NULL

value if no subcontexts are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the

corresponding SpmiCx (“SpmiCx Structure” on page 206) structure through the SpmiGetCx (“SpmiGetCx

Subroutine” on page 347) subroutine call.

Parameters

CxHandle

 Specifies a valid SpmiCxHdl, see “SpmiCxHdl Handle” on page 206 handle as obtained by

another subroutine call.

Return Values

The SpmiFirstCx subroutine returns a pointer to an SpmiCxLink (“SpmiCxLink Structure” on page 207)

structure if successful. If unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

340 Performance Toolbox Guide

Related Information

For related information, see:

v “SpmiGetCx Subroutine” on page 347

v “SpmiNextCx Subroutine” on page 356

v “Understanding SPMI Data Areas” on page 204

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiFirstHot Subroutine

Purpose

Locates the first of the sets of peer statistics belonging to a hotset.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiFirstHot(HotSet)

struct SpmiHotSet HotSet;

Description

The SpmiFirstHot subroutine locates the first of the SpmiHotVals (“SpmiHotVals Structure” on page 210)

structures belonging to the specified SpmiHotSet (“SpmiHotSet Structure” on page 210). Using the

returned pointer, the SpmiHotSet can then either be decoded directly by the calling program, or it can be

used to specify the starting point for a subsequent SpmiNextHotItem (“SpmiNextHotItem Subroutine” on

page 359) subroutine call. The SpmiFirstHot subroutine should only be executed after a successful call to

the SpmiGetHotSet (“SpmiGetHotSet Subroutine” on page 348) subroutine.

Parameters

HotSet

 Specifies a valid SpmiHotSet structure as obtained by another subroutine call.

Return Values

The SpmiFirstHot subroutine returns a pointer to a structure of type SpmiHotVals structure if successful.

If unsuccessful, the subroutine returns a NULL value. A returned pointer may refer to a pseudo-hotvals

structure as described in “Programming Notes” on page 329 for the SpmiAddSetHot (“SpmiAddSetHot

Subroutine” on page 327) subroutine.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Appendix E. SPMI Subroutines 341

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateHotSet” on page 330

v “SpmiAddSetHot Subroutine” on page 327

v “SpmiNextHot Subroutine” on page 357

v “SpmiNextHotItem Subroutine” on page 359

v “Understanding SPMI Data Areas” on page 204

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiFirstStat Subroutine

Purpose

Locates the first of the statistics belonging to a context.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatLink *SpmiFirstStat(CxHandle)

SpmiCxHdl CxHandle;

Description

The SpmiFirstStat subroutine locates the first of the statistics belonging to a context. The subroutine

returns a NULL value if no statistics are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the

corresponding SpmiStat (“SpmiStat Structure” on page 206) structure through the SpmiGetStat

(“SpmiGetStat Subroutine” on page 349) subroutine call.

Parameters

CxHandle

 Specifies a valid SpmiCxHdl, “SpmiCxHdl Handle” on page 206, handle as obtained by another

subroutine call.

Return Values

The SpmiFirstStat subroutine returns a pointer to a structure of type SpmiStatLink (“SpmiStatLink

Structure” on page 207) if successful. If unsuccessful, the subroutine returns a NULL value.

342 Performance Toolbox Guide

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiGetStat Subroutine” on page 349

v “SpmiNextStat Subroutine” on page 361

v “Understanding SPMI Data Areas” on page 204

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiFirstVals Subroutine

Purpose

Returns a pointer to the first SpmiStatVals structure belonging to a set of statistics.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals *SpmiFirstVals(StatSet)

struct SpmiStatSet *StatSet;

Description

The SpmiFirstVals subroutine returns a pointer to the first SpmiStatVals (“SpmiStatVals Structure” on

page 209) structure belonging to the set of statistics identified by the StatSet parameter. SpmiStatVals

structures are accessed in reverse order so the last statistic added to the set of statistics is the first one

returned. This subroutine call should only be issued after an SpmiGetStatSet (“SpmiGetStatSet

Subroutine” on page 350) subroutine has been issued against the statset.

Parameters

StatSet

Appendix E. SPMI Subroutines 343

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet

subroutine call.

Return Values

The SpmiFirstVals subroutine returns a pointer to an SpmiStatVals structure if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiNextVals Subroutine” on page 362

v “Understanding SPMI Data Areas” on page 204

SpmiFreeHotSet Subroutine

Purpose

Erases a hotset.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiFreeHotSet(HotSet)

struct SpmiHotSet *HotSet;

344 Performance Toolbox Guide

Description

The SpmiFreeHotSet subroutine erases the hotset identified by the HotSet parameter. All SpmiHotVals

(“SpmiHotVals Structure” on page 210) structures chained off the SpmiHotSet (“SpmiHotSet Structure” on

page 210) structure are deleted before the set itself is deleted.

Parameters

HotSet

 Specifies a pointer to a valid structure of type SpmiHotSet as created by the “SpmiCreateHotSet”

on page 330 subroutine call.

Return Values

The SpmiFreeHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns

a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateHotSet” on page 330

v “SpmiDelSetHot Subroutine” on page 336

v “SpmiAddSetHot Subroutine” on page 327

v “Understanding SPMI Data Areas” on page 204

SpmiFreeStatSet Subroutine

Purpose

Erases a set of statistics.

Library

SPMI Library (libSpmi.a)

Appendix E. SPMI Subroutines 345

Syntax

#include sys/Spmidef.h

int SpmiFreeStatSet(StatSet)

struct SpmiStatSet *StatSet;

Description

The SpmiFreeStatSet subroutine erases the set of statistics identified by the StatSet parameter. All

SpmiStatVals (“SpmiStatVals Structure” on page 209) structures chained off the SpmiStatSet

(“SpmiStatSet Structure” on page 208) structure are deleted before the set itself is deleted.

Parameters

StatSet

 Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet,

see “SpmiCreateStatSet Subroutine” on page 331, subroutine call.

Return Values

The SpmiFreeStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns

a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiDelSetStat Subroutine” on page 338

v “SpmiPathAddSetStat Subroutine” on page 365

v “Understanding SPMI Data Areas” on page 204

346 Performance Toolbox Guide

SpmiGetCx Subroutine

Purpose

Returns a pointer to the SpmiCx (“SpmiCx Structure” on page 206) structure corresponding to a specified

context handle.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiCx *SpmiGetCx(CxHandle)

SpmiCxHdl CxHandle;

Description

The SpmiGetCx subroutine returns a pointer to the SpmiCx structure corresponding to the context handle

identified by the CxHandle parameter.

Parameters

CxHandle

 Specifies a valid SpmiCxHdl, see “SpmiCxHdl Handle” on page 206, handle as obtained by

another subroutine call.

Return Values

The SpmiGetCx subroutine returns a a pointer to an SpmiCx data structure if successful. If unsuccessful,

the subroutine returns NULL.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Appendix E. SPMI Subroutines 347

Related Information

For related information, see:

v “SpmiFirstCx Subroutine” on page 340

v “SpmiNextCx Subroutine” on page 356

v “Understanding SPMI Data Areas” on page 204

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiGetHotSet Subroutine

Purpose

Requests the SPMI to read the data values for all sets of peer statistics belonging to a specified

SpmiHotSet (“SpmiHotSet Structure” on page 210).

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiGetHotSet(HotSet, Force);

struct SpmiHotSet *HotSet;

boolean Force;

Description

The SpmiGetHotSet subroutine requests the SPMI to read the data values for all peer sets of statistics

belonging to the SpmiHotSet identified by the HotSet parameter. The Force parameter is used to force the

data values to be refreshed from their source.

The Force parameter works by resetting a switch held internally in the SPMI for all SpmiStatVals

(“SpmiStatVals Structure” on page 209) and SpmiHotVals (“SpmiHotVals Structure” on page 210)

structures, regardless of the SpmiStatSets (“SpmiStatSet Structure” on page 208) and SpmiHotSets to

which they belong. Whenever the data value for a peer statistic is requested, this switch is checked. If the

switch is set, the SPMI reads the latest data value from the original data source. If the switch is not set,

the SPMI reads the data value stored in the SpmiHotVals structure. This mechanism allows a program to

synchronize and minimize the number of times values are retrieved from the source. One method

programs can use is to ensure the force request is not issued more than once per elapsed amount of time.

Parameters

HotSet

 Specifies a pointer to a valid structure of type SpmiHotSet as created by the “SpmiCreateHotSet”

on page 330 subroutine call.

Force

 If set to true, forces a refresh from the original source before the SPMI reads the data values for

the set. If set to false, causes the SPMI to read the data values as they were previously retrieved

from the data source.

 When the force argument is set true, the effect is that of marking all statistics known by the SPMI

as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other

sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of the

HotSet specified in the subroutine call remain marked as obsolete. Therefore, if an application

348 Performance Toolbox Guide

repetitively issues a series of, SpmiGetHotSet and SpmiGetStatSet “SpmiGetStatSet Subroutine”

on page 350, subroutine calls for multiple hotsets and statsets, each time, only the first such call

need set the force argument to true.

Return Values

The SpmiGetHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a

nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateHotSet” on page 330

v “SpmiAddSetHot Subroutine” on page 327

v “Data Access Structures and Handles, HotSets” on page 209

SpmiGetStat Subroutine

Purpose

Returns a pointer to the SpmiStat (“SpmiStat Structure” on page 206) structure corresponding to a

specified statistic handle.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStat *SpmiGetStat(StatHandle)

SpmiStatHdl StatHandle;

Appendix E. SPMI Subroutines 349

Description

The SpmiGetStat subroutine returns a pointer to the SpmiStat structure corresponding to the statistic

handle identified by the StatHandle parameter.

Parameters

StatHandle

 Specifies a valid SpmiStatHdl. see “SpmiStatHdl Handle” on page 207 handle as obtained by

another subroutine call.

Return Values

The SpmiGetStat subroutine returns a pointer to a structure of type SpmiStat if successful. If

unsuccessful, the subroutine returns a NULL value.

Return Values

The SpmiGetStat subroutine returns a pointer to a structure of type SpmiStat if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiFirstStat Subroutine” on page 342

v “SpmiNextStat Subroutine” on page 361

v “Understanding SPMI Data Areas” on page 204

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiGetStatSet Subroutine

Purpose

Requests the SPMI to read the data values for all statistics belonging to a specified set.

350 Performance Toolbox Guide

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiGetStatSet(StatSet, Force);

struct SpmiStatSet *StatSet;

boolean Force;

Description

The SpmiGetStatSet subroutine requests the SPMI to read the data values for all statistics belonging to

the SpmiStatSet (“SpmiStatSet Structure” on page 208) identified by the StatSet parameter. The Force

parameter is used to force the data values to be refreshed from their source.

The Force parameter works by resetting a switch held internally in the SPMI for all SpmiStatVals

(“SpmiStatVals Structure” on page 209) and SpmiHotVals (“SpmiHotVals Structure” on page 210)

structures, regardless of the SpmiStatSets and SpmiHotSets (“SpmiHotSet Structure” on page 210) to

which they belong. Whenever the data value for a statistic is requested, this switch is checked. If the

switch is set, the SPMI reads the latest data value from the original data source. If the switch is not set,

the SPMI reads the data value stored for the SpmiStatVals structure. This mechanism allows a program

to synchronize and minimize the number of times values are retrieved from the source. One method is to

ensure the force request is not issued more than once per elapsed amount of time.

Parameters

StatSet

 Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet

(“SpmiCreateStatSet Subroutine” on page 331) subroutine call.

Force

 If set to true, forces a refresh from the original source before the SPMI reads the data values for

the set. If set to false, causes the SPMI to read the data values as they were previously retrieved

from the data source.

 When the force argument is set true, the effect is that of marking all statistics known by the SPMI

as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other

sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of the

StatSet specified in the subroutine call remain marked as obsolete. Therefore, if an application

repetitively issues the SpmiGetStatSet and SpmiGetHotSet (“SpmiGetHotSet Subroutine” on

page 348) subroutine calls for multiple statsets and hotsets, each time, only the first such call

need set the force argument to true.

Return Values

The SpmiGetStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a

nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

Appendix E. SPMI Subroutines 351

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiPathAddSetStat Subroutine” on page 365

v “Data Access Structures and Handles, StatSets” on page 208

SpmiGetValue Subroutine

Purpose

Returns a decoded value based on the type of data value extracted from the data field of an

SpmiStatVals (“SpmiStatVals Structure” on page 209) structure.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

float SpmiGetValue(StatSet, StatVal)

struct SpmiStatSet *StatSet;

struct SpmiStatVals *StatVal;

Description

The SpmiGetValue subroutine performs the following steps:

1. Verifies that an SpmiStatVals structure exists in the set of statistics identified by the StatSet

parameter.

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value

for further processing.

3. Determines the data value as being of either type SiQuantity or type SiCounter.

4. If the data value is of type SiQuantity, returns the val field of the SpmiStatVals structure.

5. If the data value is of type SiCounter, returns the value of the val_change field of the SpmiStatVals

structure divided by the elapsed number of seconds since the previous time a data value was

requested for this set of statistics.

This subroutine call should only be issued after an SpmiGetStatSet (“SpmiGetStatSet Subroutine” on

page 350) subroutine has been issued against the statset.

352 Performance Toolbox Guide

Parameters

StatSet

 Specifies a pointer to a valid structure of type SpmiStatSet, “SpmiStatSet Structure” on page 208,

as created by the SpmiCreateStatSet, see “SpmiCreateStatSet Subroutine” on page 331,

subroutine call.

StatVal

 Specifies a pointer to a valid structure of type SpmiStatVals as created by the

SpmiPathAddSetStat, “SpmiPathAddSetStat Subroutine” on page 365, subroutine call or returned

by the SpmiFirstVals (“SpmiFirstVals Subroutine” on page 343) or SpmiNextVals (“SpmiNextVals

Subroutine” on page 362) subroutine calls.

Return Values

The SpmiGetValue subroutine returns the decoded value if successful. If unsuccessful, the subroutine

returns a negative value that has a numerical value of at least 1.1.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiGetStatSet Subroutine” on page 350

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiPathAddSetStat Subroutine” on page 365

v “Data Access Structures and Handles, StatSets” on page 208

v “Understanding SPMI Data Areas” on page 204

SpmiInit Subroutine

Purpose

Initializes the SPMI for a local data consumer program.

Appendix E. SPMI Subroutines 353

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiInit (TimeOut)

int TimeOut;

Description

The SpmiInit subroutine initializes the SPMI. During SPMI initialization, a memory segment is allocated

and the application program obtains basic addressability to that segment. An application program must

issue the SpmiInit subroutine call before issuing any other subroutine calls to the SPMI.

Notes:

1. The SpmiInit subroutine is automatically issued by the SpmiDdsInit (“SpmiDdsInit Subroutine” on

page 335) subroutine call. Successive SpmiInit subroutine calls are ignored.

2. If the calling program uses shared memory for other purposes, including memory mapping of files, the

SpmiInit subroutine call must be issued before access is established to other shared memory areas.

The SPMI entry point called by the SpmiInit subroutine assigns a segment register to be used by the

SPMI subroutines (and the application program) for accessing common shared memory and establishes

the access mode to the common shared memory segment. After SPMI initialization, the SPMI subroutines

are able to access the common shared memory segment in read-only mode.

Parameters

TimeOut

 Specifies the number of seconds the SPMI waits for a Dynamic Data Supplier (DDS) program to

update its shared memory segment. If a DDS program does not update its shared memory

segment in the time specified, the SPMI assumes that the DDS program has terminated or

disconnected from shared memory and removes all contexts and statistics added by the DDS

program.

 The SPMI saves the largest TimeOut value received from the programs that invoke the SPMI. The

TimeOut value must be zero or must be greater than or equal to 15 seconds and less than or

equal to 600 seconds. A value of zero overrides any other value from any other program that

invokes the SPMI and disables the checking for terminated DDS programs.

Return Values

The SpmiInit subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a

nonzero value. If a nonzero value is returned, the application program should not attempt to issue

additional SPMI subroutine calls.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

354 Performance Toolbox Guide

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiDdsInit Subroutine” on page 335

v “SpmiExit Subroutine” on page 339

SpmiInstantiate Subroutine

Purpose

Explicitly instantiates the subcontexts of an instantiable context.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiInstantiate(CxHandle)

SpmiCxHdl CxHandle;

Description

The SpmiInstantiate subroutine explicitly instantiates the subcontexts of an instantiable context. If the

context is not instantiable, do not call the SpmiInstantiate subroutine.

An instantiation is done implicitly by the SpmiPathGetCx (“SpmiPathGetCx Subroutine” on page 367) and

SpmiFirstCx (“SpmiFirstCx Subroutine” on page 340) subroutine calls. Therefore, application programs

usually do not need to instantiate explicitly.

Parameters

CxHandle

 Specifies a valid context handle SpmiCxHdl, see “SpmiCxHdl Handle” on page 206, as obtained

by another subroutine call.

Return Values

The SpmiInstantiate subroutine returns a value of 0 if successful. If the context is not instantiable, the

subroutine returns a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

Appendix E. SPMI Subroutines 355

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiFirstCx Subroutine” on page 340

v “SpmiPathGetCx Subroutine” on page 367

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiNextCx Subroutine

Purpose

Locates the next subcontext of a context.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiCxLink *SpmiNextCx(CxLink)struct SpmiCxLink *CxLink;

Description

The SpmiNextCx subroutine locates the next subcontext of a context, taking the context identified by the

CxLink parameter as the current subcontext. The subroutine returns a NULL value if no further

subcontexts are found.

The structure pointed to by the returned pointer contains an SpmiCxHdl (“SpmiCxHdl Handle” on page

206) handle to access the contents of the corresponding SpmiCx (“SpmiCx Structure” on page 206)

structure through the SpmiGetCx (“SpmiGetCx Subroutine” on page 347) subroutine call.

Parameters

CxLink

 Specifies a pointer to a valid SpmiCxLink, “SpmiCxLink Structure” on page 207, structure as

obtained by a previous SpmiFirstCx, see “SpmiFirstCx Subroutine” on page 340, subroutine call.

356 Performance Toolbox Guide

Return Values

The SpmiNextCx subroutine returns a pointer to a structure of type SpmiCxLink if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiFirstCx Subroutine” on page 340

v “SpmiGetCx Subroutine” on page 347

v “Understanding SPMI Data Areas” on page 204.

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiNextHot Subroutine

Purpose

Locates the next set of peer statistics (SpmiHotVals (“SpmiHotVals Structure” on page 210) structure)

belonging to an SpmiHotSet (“SpmiHotSet Structure” on page 210).

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHot(HotSet, HotVals)

struct SpmiHotSet *HotSet;

struct SpmiHotVals *HotVals;

Description

The SpmiNextHot subroutine locates the next SpmiHotVals structure belonging to an SpmiHotSet, taking

the set of peer statistics identified by the HotVals parameter as the current one. The subroutine returns a

Appendix E. SPMI Subroutines 357

NULL value if no further SpmiHotVals structures are found. The SpmiNextHot subroutine should only be

executed after a successful call to the SpmiGetHotSet (“SpmiGetHotSet Subroutine” on page 348)

subroutine and (usually, but not necessarily) a call to the SpmiFirstHot (“SpmiFirstHot Subroutine” on

page 341) subroutine and one or more subsequent calls to SpmiNextHot.

The subroutine allows the application programmer to position at the next set of peer statistics in

preparation for using the SpmiNextHotItem (“SpmiNextHotItem Subroutine” on page 359) subroutine call

to traverse this peer set’s array of “SpmiHotItems” on page 211 elements. Use of this subroutine is only

necessary if it is desired to skip over some SpmiHotVals structures in an SpmiHotSet. Under most

circumstances, the SpmiNextHotItem will be the sole means of accessing all elements of the

“SpmiHotItems” on page 211 arrays of all peer sets belonging to an SpmiHotSet.

Parameters

HotSet

 Specifies a valid pointer to an SpmiHotSet, “SpmiHotSet Structure” on page 210, structure as

obtained by a previous “SpmiCreateHotSet” on page 330 subroutine call.

HotVals

 Specifies a pointer to an SpmiHotVals, “SpmiHotVals Structure” on page 210, structure as

returned by a previous SpmiFirstHot or SpmiNextHot subroutine call or as returned by an

SpmiAddSetHot, see “SpmiAddSetHot Subroutine” on page 327, subroutine call.

Return Values

The SpmiNextHot subroutine returns a pointer to the next SpmiHotVals structure within the hotset. If no

more SpmiHotVals structures are available, the subroutine returns a NULL value. A returned pointer may

refer to a pseudo-hotvals structure as described in “Programming Notes” on page 329 for the

SpmiAddSetHot (“SpmiAddSetHot Subroutine” on page 327) subroutine.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For more information, see:

v “SpmiFirstHot Subroutine” on page 341

358 Performance Toolbox Guide

v “SpmiGetHotSet Subroutine” on page 348

v “SpmiNextHotItem Subroutine.”

v “Data Access Structures and Handles, HotSets” on page 209

SpmiNextHotItem Subroutine

Purpose

Locates and decodes the next “SpmiHotItems” on page 211 element at the current position in an

SpmiHotSet (“SpmiHotSet Structure” on page 210).

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHotItem(HotSet, HotVals, index,

value, name)

struct SpmiHotSet *HotSet;

struct SpmiHotVals *HotVals;

int *index;

float *value;

char **name;

Description

The SpmiNextHotItem subroutine locates the next SpmiHotItems structure belonging to an SpmiHotSet,

taking the element identified by the HotVals and index parameters as the current one. The subroutine

returns a NULL value if no further SpmiHotItems structures are found. The SpmiNextHotItem subroutine

should only be executed after a successful call to the SpmiGetHotSet (“SpmiGetHotSet Subroutine” on

page 348) subroutine.

The SpmiNextHotItem subroutine is designed to be used for walking all SpmiHotItems elements returned

by a call to the SpmiGetHotSet subroutine, visiting the SpmiHotVals (“SpmiHotVals Structure” on page

210) structures one by one. By feeding the returned value and the updated integer pointed to by index

back to the next call, this can be done in a tight loop. Successful calls to SpmiNextHotItem will decode

each SpmiHotItems element and return the data value in value and the name of the peer context that

owns the corresponding statistic in name.

Parameters

HotSet

 Specifies a valid pointer to an SpmiHotSet, “SpmiHotSet Structure” on page 210, structure as

obtained by a previous “SpmiCreateHotSet” on page 330 subroutine call.

HotVals

 Specifies a pointer to an SpmiHotVals, “SpmiHotVals Structure” on page 210, structure as

returned by a previousSpmiNextHotItem, SpmiFirstHot, or SpmiNextHot subroutine call or as

returned by an SpmiAddSetHot (“SpmiAddSetHot Subroutine” on page 327) subroutine call. If this

parameter is specified as NULL, the first SpmiHotVals structure of the SpmiHotSet is used and

the index parameter is assumed to be set to zero, regardless of its actual value.

index

 A pointer to an integer that contains the desired element number in the SpmiHotItems array of the

SpmiHotVals structure specified by HotVals. A value of zero points to the first element. When the

Appendix E. SPMI Subroutines 359

SpmiNextHotItem subroutine returns, the integer contain the index of the next SpmiHotItems

element within the returned SpmiHotVals structure. If the last element of the array is decoded, the

value in the integer will point beyond the end of the array, and the SpmiHotVals pointer returned

will point to the peer set, which has now been completely decoded. By passing the returned

SpmiHotVals pointer and the index parameter to the next call to SpmiNextHotItem, the

subroutine will detect this and proceed to the first SpmiHotItems element of the next

SpmiHotVals structure if one exists.

value

 A pointer to a float variable. A successful call will return the decoded data value for the statistic.

Before the value is returned, the SpmiNextHotItem function:

v Determines the format of the data field as being either SiFloat or SiLong and extracts the data

value for further processing.

v Determines the data value as being either type SiQuantity or type SiCounter and performs one

of the actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the

SpmiHotItems structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change

field of the SpmiHotItems structure divided by the elapsed number of seconds since the

previous time a data value was requested for this set of statistics.

name

 A pointer to a character pointer. A successful call will return a pointer to the name of the peer

context for which the data value was read.

Return Values

The SpmiNextHotItem subroutine returns a pointer to the current SpmiHotVals structure within the

hotset. If no more SpmiHotVals structures are available, the subroutine returns a NULL value. The

structure returned contains the data, such as threshold, which may be relevant for presentation of the

results of an SpmiGetHotSet subroutine call to end-users. A returned pointer may refer to a

pseudo-hotvals structure as described in “Programming Notes” on page 329 for the SpmiAddSetHot

(“SpmiAddSetHot Subroutine” on page 327) subroutine.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

360 Performance Toolbox Guide

Related Information

For more information, see:

v “SpmiFirstHot Subroutine” on page 341

v “SpmiNextHot Subroutine” on page 357

v “SpmiGetHotSet Subroutine” on page 348.

v “Data Access Structures and Handles, HotSets” on page 209.

SpmiNextStat Subroutine

Purpose

Locates the next statistic belonging to a context.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatLink *SpmiNextStat(StatLink)

struct SpmiStatLink *StatLink;

Description

The SpmiNextStat subroutine locates the next statistic belonging to a context, taking the statistic identified

by the StatLink parameter as the current statistic. The subroutine returns a NULL value if no further

statistics are found.

The structure pointed to by the returned pointer contains an SpmiStatHdl (“SpmiStatHdl Handle” on page

207) handle to access the contents of the corresponding SpmiStat (“SpmiStat Structure” on page 206)

structure through the SpmiGetStat (“SpmiGetStat Subroutine” on page 349) subroutine call.

Parameters

StatLink

 Specifies a valid pointer to a SpmiStatLink, “SpmiStatLink Structure” on page 207, structure as

obtained by a previous SpmiFirstStat, see “SpmiFirstStat Subroutine” on page 342, subroutine

call.

Return Values

The SpmiNextStat subroutine returns a pointer to a structure of type SpmiStatLink if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Appendix E. SPMI Subroutines 361

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiFirstStat Subroutine” on page 342

v “SpmiGetStat Subroutine” on page 349

v “Understanding SPMI Data Areas” on page 204.

v “Understanding the SPMI Data Hierarchy” on page 202

SpmiNextVals Subroutine

Purpose

Returns a pointer to the next SpmiStatVals (“SpmiStatVals Structure” on page 209) structure in a set of

statistics.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals *SpmiNextVals(StatSet, StatVal)

struct SpmiStatSet *StatSet;

struct SpmiStatVals *StatVal;

Description

The SpmiNextVals subroutine returns a pointer to the next SpmiStatVals structure in a set of statistics,

taking the structure identified by the StatVal parameter as the current structure. The SpmiStatVals

structures are accessed in reverse order so the statistic added before the current one is returned. This

subroutine call should only be issued after an SpmiGetStatSet (“SpmiGetStatSet Subroutine” on page

350) subroutine has been issued against the statset.

Parameters

StatSet

 Specifies a pointer to a valid structure of type SpmiStatSet, “SpmiStatSet Structure” on page 208,

as created by the SpmiCreateStatSet, see “SpmiCreateStatSet Subroutine” on page 331,

subroutine call.

StatVal

 Specifies a pointer to a valid structure of type SpmiStatVals as created by the

SpmiPathAddSetStat, “SpmiPathAddSetStat Subroutine” on page 365, subroutine call or returned

by a previous SpmiFirstVals, “SpmiFirstVals Subroutine” on page 343, or SpmiNextVals,

“SpmiNextVals Subroutine,” subroutine call.

362 Performance Toolbox Guide

Return Values

The SpmiNextVals subroutine returns a pointer to a SpmiStatVals structure if successful. If unsuccessful,

the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiFirstVals Subroutine” on page 343

v “SpmiPathAddSetStat Subroutine” on page 365.

v “Data Access Structures and Handles, StatSets” on page 208

SpmiNextValue Subroutine

Purpose

Returns either the first SpmiStatVals (“SpmiStatVals Structure” on page 209) structure in a set of statistics

or the next SpmiStatVals structure in a set of statistics and a decoded value based on the type of data

value extracted from the data field of an SpmiStatVals structure.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals*SpmiNextValue(StatSet, StatVal, value)

struct SpmiStatSet *StatSet;

struct SpmiStatVals *StatVal;

float *value;

Appendix E. SPMI Subroutines 363

Description

Instead of issuing subroutine calls to SpmiFirstVals (“SpmiFirstVals Subroutine” on page 343)/

SpmiNextVals (“SpmiNextVals Subroutine” on page 362) (to get the first or next SpmiStatVals structure)

followed by calls to SpmiGetValue (“SpmiGetValue Subroutine” on page 352) (to get the decoded value

from the SpmiStatVals structure), the SpmiNextValue subroutine returns both in one call. This subroutine

call returns a pointer to the first SpmiStatVals structure belonging to the StatSet parameter if the StatVal

parameter is NULL. If the StatVal parameter is not NULL, the next SpmiStatVals structure is returned,

taking the structure identified by the StatVal parameter as the current structure. The data value

corresponding to the returned SpmiStatVals structure is decoded and returned in the field pointed to by

the value argument. In decoding the data value, the subroutine does the following:

v Determines the format of the data field as being either SiFloat or SiLong and extracts the data value

for further processing.

v Determines the data value as being either type SiQuantity or type SiCounter and performs one of the

actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiStatVals

structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change field of the

SpmiStatVals structure divided by the elapsed number of seconds since the previous time a data

value was requested for this set of statistics.

Note: This subroutine call should only be issued after an SpmiGetStatSet (“SpmiGetStatSet Subroutine”

on page 350) subroutine has been issued against the statset.

Parameters

StatSet

 Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet,

see “SpmiCreateStatSet Subroutine” on page 331, subroutine call.

StatVal

 Specifies either a NULL pointer or a pointer to a valid structure of type SpmiStatVals as created

by the SpmiPathAddSetStat, see “SpmiPathAddSetStat Subroutine” on page 365, subroutine call

or returned by a previous SpmiNextValue subroutine call. If StatVal is NULL, then the first

SpmiStatVals pointer belonging to the set of statistics pointed to by StatSet is returned.

 valueA pointer used to return a decoded value based on the type of data value extracted from the data

field of the returned SpmiStatVals structure.

Return Value

The SpmiNextValue subroutine returns a pointer to a SpmiStatVals structure if successful. If

unsuccessful, the subroutine returns a NULL value.

If the StatVal parameter is:

NULL
The first SpmiStatVals structure belonging to the StatSet parameter is returned.

not NULL
The next SpmiStatVals structure after the structure identified by the StatVal parameter is returned and the

value parameter is used to return a decoded value based on the type of data value extracted from the

data field of the returned SpmiStatVals structure.

364 Performance Toolbox Guide

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Programming Notes

The SpmiNextValue subroutine maintains internal state information so that retrieval of the next data value

from a statset can be done without traversing linked lists of data structures. The stats information is kept

separate for each process, but is shared by all threads of a process.

If the subroutine is accessed from multiple threads, the state information is useless and the performance

advantage is lost. The same is true if the program is simultaneously accessing two or more statsets. To

benefit from the performance advantage of the SpmiNextValue subroutine, a program should retrieve all

values in order from one stat set before retrieving values from the next statset.

The implementation of the subroutine allows a program to retrieve data values beginning at any point in

the statset if the SpmiStatVals pointer is known. Doing so will cause a linked list traversal. If subsequent

invocations of SpmiNextValue uses the value returned from the first and following invocation as their

second argument, the traversal of the link list can be avoided.

It should be noted that the value returned by a successful SpmiNextValue invocation is always the pointer

to the SpmiStatVals structure whose data value is decoded and returned in the value argument.

Implementation Specifics

v This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiGetStatSet Subroutine” on page 350

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiPathAddSetStat Subroutine.”

v “Data Access Structures and Handles, StatSets” on page 208

SpmiPathAddSetStat Subroutine

Purpose

Adds a statistics value to a set of statistics.

Appendix E. SPMI Subroutines 365

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals *SpmiPathAddSetStat(StatSet, StatName,

Parent)

struct SpmiStatSet *StatSet;

char *StatName;

SpmiCxHdl Parent;

Description

The SpmiPathAddSetStat subroutine adds a statistics value to a set of statistics. The SpmiStatSet

(“SpmiStatSet Structure” on page 208) structure that provides the anchor point to the set must exist before

the SpmiPathAddSetStat subroutine call can succeed.

Parameters

StatSet

 Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet,

see “SpmiCreateStatSet Subroutine” on page 331, subroutine call.

StatName

 Specifies the name of the statistic within the context identified by the Parent parameter.If the

Parent parameter is NULL, you must specify the fully qualified path name of the statistic in the

StatName parameter.

Parent

 Specifies either a valid SpmiCxHdl, “SpmiCxHdl Handle” on page 206, handle as obtained by

another subroutine call or a NULL value.

Return Values

The SpmiPathAddSetStat subroutine returns a pointer to a structure of type SpmiStatVals

(“SpmiStatVals Structure” on page 209) if successful. If unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

366 Performance Toolbox Guide

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “SpmiGetStatSet Subroutine” on page 350

v “SpmiCreateStatSet Subroutine” on page 331

v “SpmiDelSetStat Subroutine” on page 338

v “SpmiFreeStatSet Subroutine” on page 345.

v “Data Access Structures and Handles, StatSets” on page 208

SpmiPathGetCx Subroutine

Purpose

Returns a handle to use when referencing a context.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

SpmiCxHdl SpmiPathGetCx(CxPath, Parent)

char *CxPath;

SpmiCxHdl Parent;

Description

The SpmiPathGetCx subroutine searches the context hierarchy for a given path name of a context and

returns a handle to use when subsequently referencing the context.

Parameters

CxPath

 Specifies the path name of the context to find. If you specify the fully qualified path name in the

CxPath parameter, you must set the Parent parameter to NULL. If the path name is not qualified

or is only partly qualified (that is, if it does not include the names of all contexts higher in the data

hierarchy), the SpmiPathGetCx subroutine begins searching the hierarchy at the context identified

by the Parent parameter. If the CxPath parameter is either NULL or an empty string, the

subroutine returns a handle identifying the Top context.

Parent

 Specifies the anchor context that fully qualifies the CxPath parameter. If you specify a fully

qualified path name in the CxPath parameter, you must set the Parent parameter to NULL.

Return Values

The SpmiPathGetCx subroutine returns a handle to a context if successful. If unsuccessful, the subroutine

returns a NULL value.

Appendix E. SPMI Subroutines 367

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “Understanding SPMI Data Areas” on page 204

v “Understanding the SPMI Data Hierarchy” on page 202.

SpmiStatGetPath Subroutine

Purpose

Returns the full path name of a statistic.

Library

SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h>

char *miStatGetPath(Parent, StatHandle, MaxLevels)

SpmiCxHdlSp Parent;

SpmiStatHdl StatHandle;

int MaxLevels;

Description

The SpmiStatGetPath subroutine returns the full path name of a statistic, given a parent context

SpmiCxHdl (“SpmiCxHdl Handle” on page 206) handle and a statistics SpmiStatHdl (“SpmiStatHdl

Handle” on page 207) handle. The MaxLevels parameter can limit the number of levels in the hierarchy

that must be searched to generate the path name of the statistic.

The memory area pointed to by the returned pointer is freed when the SpmiStatGetPath subroutine call is

repeated. For each invocation of the subroutine, a new memory area is allocated and its address

368 Performance Toolbox Guide

returned.If the calling program needs the returned character string after issuing the SpmiStatGetPath

subroutine call, the program must copy the returned string to locally allocated memory before reissuing the

subroutine call.

Parameters

Parent

 Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

StatHandle

 Specifies a valid SpmiStatHdl handle as obtained by another subroutine call. This handle must

point to a statistic belonging to the context identified by the Parent parameter.

MaxLevels

 Limits the number of levels in the hierarchy that must be searched to generate the path name. If

this parameter is set to 0, no limit is imposed.

Return Values

If successful, the SpmiStatGetPath subroutine returns a pointer to a character array containing the full

path name of the statistic. If unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg

character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of

the error. See the “List of SPMI Error Codes” on page 242 for more information.

Implementation Specifics

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros

that an application program can use to access the SPMI.

Related Information

For related information, see:

v “Understanding SPMI Data Areas” on page 204

v “Understanding the SPMI Data Hierarchy” on page 202.

Appendix E. SPMI Subroutines 369

370 Performance Toolbox Guide

Appendix F. RSi Subroutines

This appendix discusses the following topics:

v “RSi Subroutines”

RSi Subroutines

RSiAddSetHot Subroutine

Purpose

Add a single set of peer statistics to an already defined SpmiHotSet (“SpmiHotSet Structure” on page

210).

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiHotVals *RSiAddSetHot(rhandle, HotSet, StatName,

GrandParent,

 maxresp, threshold, frequency, feed_type,

 except_type, severity, trap_no)

RSiHandle rhandle;

struct SpmiHotSet *HotSet;

char *StatName;

cx_handle GrandParent;

int maxresp;

int threshold;

int frequency;

int feed_type;

int excp_type;

int severity;

int trap_no;

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

HotSet
Specifies a pointer to a valid structure of type SpmiHotSet as created by the RSiCreateHotSet

(“RSiCreateHotSet Subroutine” on page 377) subroutine call.

StatName
Specifies the name of the statistic within the subcontexts (peer contexts) of the context identified by the

GrandParent parameter.

GrandParent
Specifies a valid cx_handle handle as obtained by another subroutine call. The handle must identify a

context with at least one subcontext, which contains the statistic identified by the StatName parameter. If

the context specified is one of the RTime contexts, no subcontext need to be created at the time the

SpmiAddSetHot subroutine call is issued; the presence of the metric identified by the StatName

parameter is checked against the context class description.

If the context specified has or may have multiple levels of instantiable context below it (such as the FS

and RTime/ARM contexts), the metric is only searched for at the lowest context level. The SpmiHotSet

© Copyright IBM Corp. 1994, 2004 371

created is a pseudo hotvals structure used to link together a peer group of SpmiHotVals structures, which

are created under the covers, one for each subcontext of the GrandParent context. In the case of

RTime/ARM, if additional contexts are later added under the GrandParent contexts, additional hotsets are

added to the peer group. This is transparent to the application program, except that the RSiGetHotItem

(“RSiGetHotItem Subroutine” on page 384) subroutine call will return the peer group SpmiHotVals pointer

rather than the pointer to the pseudo structure.

Note that specifying a specific volume group context (such as FS/rootvg) or a specific application context

(such as RTime/ARN/armpeek) is still valid and won’t involve creation of pseudo SpmiHotVals structures.

maxresp
Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If specified as

zero, indicates that all “SpmiHotItems” on page 211 that meet the criteria specified by threshold must be

returned, up-to a maximum of maxresp items. If both exceptions/traps and feeds are requested, the

maxresp value is used to cap the number of exceptions/alerts as well as the number of items returned. If

feed_type is specified as SiHotAlways, the maxresp parameter is still used to return at most maxresp

items.

Where the GrandParent argument specifies a context that has multiple levels of instantiable contexts

below it, the maxresp is applied to each of the lowest level contexts above the the actual peer contexts at

a time. For example, if the GrandParent context is FS (file systems) and the system has three volume

groups, then a maxresp value of 2 could cause up to a maximum of 2 x 3 = 6 responses to be generated.

threshold
Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If specified as

zero, indicates that all values read qualify to be returned in feeds. The value specified is compared to the

data value read for each peer statistic. If the data value exceeds the threshold, it qualifies to be returned

as an SpmiHotItems element in the SpmiHotVals structure. If the threshold is specified as a negative

value, the value qualifies if it is lower than the numeric value of threshold. If feed_type is specified as

SiHotAlways, the threshold value is ignored for feeds. For peer statistics of type SiCounter, the threshold

must be specified as a rate per second; for SiQuantity statistics the threshold is specified as a level.

frequency
Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. Ignored for

feeds. Specifies the minimum number of minutes that must expire between any two exceptions/traps

generated from this SpmiHotVals (“SpmiHotVals Structure” on page 210) structure. This value must be

specified as no less than 5 minutes.

feed_type
Specifies if feeds of SpmiHotItems should be returned for this SpmiHotVals structure. The following

values are valid:

v SiHotNoFeed
No feeds should be generated

v SiHotThreshold
Feeds are controlled by threshold.

v SiHotAlways
All values, up-to a maximum of maxresp must be returned as feeds.

excp_type
Controls the generation of exception data packets and/or the generation of SNMP Traps from xmservd.

Note that these types of packets and traps can only actually be sent if xmservd is running. Because of

this, exception packets and SNMP traps are only generated as long as xmservd is active. Traps can only

be generated on AIX. The conditions for generating exceptions and traps are controlled by the threshold

and frequency parameters. The following values are valid for excp_type:

372 Performance Toolbox Guide

v SiNoHotException
Generate neither exceptions not traps.

v SiHotException
Generate exceptions but not traps.

v SiHotTrap
Generate SNMP traps but not exceptions.

v SiHotBoth
Generate both exceptions and SNMP traps.

severity
Required to be positive and greater than zero if exceptions are generated, otherwise specify as zero. Used

to assign a severity code to the exception for display by exmon.

trap_no
Required to be positive and greater than zero if SNMP traps are generated, otherwise specify as zero.

Used to assign the trap number in the generated SNMP trap.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct SpmiHotVals (“SpmiHotVals

Structure” on page 210). If an error occurs, NULL is returned and an error text may be placed in the

external character array RSiEMsg. If you attempt to add more values to a statset than the current local

buffer size allows, RSiErrno is set to RSiTooMany. If you attempt to add more values than the buffer size

of the remote host’s xmservd daemon allows, RSiErrno is set to RSiBadStat and the status field in the

returned packet is set to too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the

data-consumer’s buffer size.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242) .

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiCreateHotSet Subroutine” on page 377

v “RSiOpen Subroutine” on page 396.

Appendix F. RSi Subroutines 373

RSiChangeFeed Subroutine

Purpose

Changes the frequency at which the xmservd on the host identified by the first argument daemon is

sending data_feed packets for a statset.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiChangeFeed(rhandle, statset, msecs)

RSiHandle rhandle;struct SpmiStatSet *statset;int msecs;

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

statset
Must be a pointer to a structure of type struct SpmiStatSet (“SpmiStatSet Structure” on page 208), which

was previously returned by a successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 378)

subroutine call. Data feeding must have been started for this SpmiStatSet via a previous RSiStartFeed

(“RSiStartFeed Subroutine” on page 402) subroutine call.

msecs
The number of milliseconds between the sending of data_feed packets. This number is rounded to a

multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum

interval can be modified through the -i command line interval to xmservd.

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external

character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

374 Performance Toolbox Guide

Related Information

For related information, see:

v “RSiCreateStatSet Subroutine” on page 378

v “RSiOpen Subroutine” on page 396

v “RSiStartFeed Subroutine” on page 402.

RSiChangeHotFeed Subroutine

Purpose

Changes the frequency at which the xmservd on the host identified by the first argument daemon is

sending hot_feed packets for a statset or checking if exceptions or SNMP traps should be generated.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiChangeFeed(rhandle, hotset, msecs)

RSiHandle rhandle;struct SpmiHotSet *hotset;int msecs;

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

hotset
Must be a pointer to a structure of type struct SpmiHotSet (“SpmiHotSet Structure” on page 210), which

was previously returned by a successful RsiCreateHotSet (“RSiCreateHotSet Subroutine” on page 377)

subroutine call. Data feeding must have been started for this SpmiHotSet via a previous

RSiStartHotFeed (“RSiStartHotFeed Subroutine” on page 403) subroutine call.

msecs
The number of milliseconds between the sending of Hot_feed packets. This number is rounded to a

multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum

interval can be modified through the -i command line interval to xmservd.

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external

character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Appendix F. RSi Subroutines 375

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

In the sample program, the SpmiStatSet is created in the local function lststats shown previously in lines

6 through 10.

v “RSiCreateHotSet Subroutine” on page 377

v “RSiOpen Subroutine” on page 396

v “RSiStartHotFeed Subroutine” on page 403.

RSiClose Subroutine

Purpose

Terminates the RSI interface for a remote host connection.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

void RSiClose(rhandle)

RSiHandle rhandle;

Description

The RSiClose subroutine is responsible for:

1. Removing the data-consumer program as a known data consumer on a particular host. This is done by

sending a going_down packet to the host.

2. Marking the RSI handle as not active.

3. Releasing all memory allocated in connection with the RSI handle.

4. Terminating the RSI interface for a remote host.

A successful RSiOpen (“RSiOpen Subroutine” on page 396) subroutine creates tables on the remote host

it was issued against. Therefore, a data consumer program that has issued successful RSiOpen

subroutine calls should issue an RSiClose (“RSiClose Subroutine”) subroutine call for each RSiOpen call

before the program exits so that the tables in the remote xmservd daemon can be released.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen subroutine.

The macro RSiIsOpen can be used to test whether an RSI handle is open. It takes an RSiHandle as

argument and returns true (1) if the handle is open, otherwise false (0).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h
Declares the subroutines, data structures, handles, and macros that an application program can use to

access the RSI.

376 Performance Toolbox Guide

Related Information

For related information, see:

v “RSiInit Subroutine” on page 388

v “RSiOpen Subroutine” on page 396

RSiCreateHotSet Subroutine

Purpose

Creates an empty hotset on the remote host identified by the argument.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiHotSet *RSiCreateHotSet(rhandle)

RSiHandle rhandle;

Description

The RSiCreateHotSet subroutine allocates an SpmiHotSet structure. The structure is initialized as an

empty SpmiHotSet and a pointer to the SpmiHotSet structure is returned.

The SpmiHotSet structure provides the anchor point to a set of peer statistics and must exist before the

RSiAddSetHot (“RSiAddSetHot Subroutine” on page 371) subroutine can be successfully called.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

Return Values

The RSiCreateHotSet subroutine returns a pointer to a structure of type SpmiHotSet if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Appendix F. RSi Subroutines 377

Related Information

For related information, see:

v “RSiOpen Subroutine” on page 396

v “RSiAddSetHot Subroutine” on page 371.

RSiCreateStatSet Subroutine

Purpose

Creates an empty statset on the remote host identified by the argument.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatSet *RSiCreateStatSet(rhandle)

RSiHandle rhandle;

Description

The RSiCreateStatSet subroutine allocates an SpmiStatSet (“SpmiStatSet Structure” on page 208)

structure. The structure is initialized as an empty SpmiStatSet and a pointer to the SpmiStatSet structure

is returned.

The SpmiStatSet structure provides the anchor point to a set of statistics and must exist before the

RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 398) subroutine can be successfully

called.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

Return Values

The RSiCreateStatSet subroutine returns a pointer to a structure of type SpmiStatSet if successful. If

unsuccessful, the subroutine returns a NULL value.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

378 Performance Toolbox Guide

Related Information

For related information, see:

v “RSiOpen Subroutine” on page 396

v “RSiPathAddSetStat Subroutine” on page 398.

RSiDelSetHot Subroutine

Purpose

Deletes a single set of peer statistics identified by an SpmiHotVals (“SpmiHotVals Structure” on page 210)

structure from an SpmiHotSet (“SpmiHotSet Structure” on page 210).

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiDelSetHot(rhandle, hsp, hvp)

RSiHandle rhandle;struct SpmiHotSet *hsp;struct SpmiHotVals*hvp;

Description

The RSiDelSetHot subroutine performs the following actions:

1. Validates that the SpmiHotSet identified by the second argument exists and contains the

SpmiHotVals statistic identified by the third argument.

2. Deletes the SpmiHotVals value from the SpmiHotSet so that future data_feed packets do not include

the deleted statistic.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

hsp
Must be a pointer to a structure type struct SpmiHotSet (“SpmiHotSet Structure” on page 210), which

was previously returned by a successful RSiCreateHotSet (“RSiCreateHotSet Subroutine” on page 377)

subroutine call.

hvp
Must be a handle of type struct SpmiHotVals (“SpmiHotVals Structure” on page 210) as returned by a

successful RSiAddSetHot (“RSiAddSetHot Subroutine” on page 371) subroutine call. You cannot specify

an SpmiHotVals that was internally generated by the Spmi library code as described under the

GrandParent parameter to RSiAddSetHot (“RSiAddSetHot Subroutine” on page 371).

Return Values

If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text

may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

Appendix F. RSi Subroutines 379

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiCreateHotSet Subroutine” on page 377

v “RSiOpen Subroutine” on page 396

v “RSiAddSetHot Subroutine” on page 371.

RSiDelSetStat Subroutine

Purpose

Deletes a single statistic identified by an SpmiStatVals (“SpmiStatVals Structure” on page 209) pointer

from an SpmiStatSet (“SpmiStatSet Structure” on page 208).

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiDelSetStat(rhandle, ssp, svp)

RSiHandle rhandle;struct SpmiStatSet *ssp;struct SpmiStatVals*svp;

Description

The RSiDelSetStat subroutine performs the following actions:

1. Validates the SpmiStatSet identified by the second argument exists and contains the SpmiStatVals

statistic identified by the third argument.

2. Deletes the SpmiStatVals value from the SpmiStatSet so that future data_feed packets do not

include the deleted statistic.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

ssp
Must be a pointer to a structure type struct SpmiStatSet (“SpmiStatSet Structure” on page 208), which

was previously returned by a successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 378)

subroutine call.

svp
Must be a handle of type struct SpmiStatVals (“SpmiStatVals Structure” on page 209) as returned by a

successful RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 398) subroutine call.

380 Performance Toolbox Guide

Return Values

If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text

may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiCreateStatSet Subroutine” on page 378

v “RSiOpen Subroutine” on page 396

v “RSiPathAddSetStat Subroutine” on page 398.

RSiFirstCx Subroutine

Purpose

Returns the first subcontext of an SpmiCx (“SpmiCx Structure” on page 206) context.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiCxLink *RSiFirstCx(rhandle, context, name,

descr)

RSiHandle rhandle;

cx_handle *context;

char **name;

char **descr;

Description

The RSiFirstCx subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the first element of the list of subcontexts defined for the context.

3. Returns the short name and description of the subcontext.

Appendix F. RSi Subroutines 381

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

context
Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx

(“RSiPathGetCx Subroutine” on page 400) subroutine call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the short name of the subcontext is returned in the

character array pointer.

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the description of the subcontext is returned in the

character array pointer.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct SpmiCxLink (“SpmiCxLink

Structure” on page 207). If an error occurs or if the context doesn’t contain subcontexts, NULL is returned

and an error text may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiNextCx Subroutine” on page 393

v “RSiOpen Subroutine” on page 396

v “RSiPathGetCx Subroutine” on page 400.

RSiFirstStat Subroutine

Purpose

Returns the first statistic of an SpmiCx (“SpmiCx Structure” on page 206) context.

382 Performance Toolbox Guide

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatLink *RSiFirstStat(rhandle, context, name,

descr)

RSiHandle rhandle;

cx_handle *context;

char **name;

char **descr;

Description

The RSiFirstStat subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the first element of the list of statistics defined for the context.

3. Returns the short name and description of the statistic.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

context
Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx

(“RSiPathGetCx Subroutine” on page 400) subroutine call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the short name of the statistics value is returned in

the character array pointer.

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the description of the statistics value is returned in

the character array pointer.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct SpmiStatLink (“SpmiStatLink

Structure” on page 207). If an error occurs, NULL is returned and an error text may be placed in the

external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Appendix F. RSi Subroutines 383

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiNextStat Subroutine” on page 395

v “RSiOpen Subroutine” on page 396

v “RSiPathGetCx Subroutine” on page 400.

RSiGetHotItem Subroutine

Purpose

Locates and decodes the next “SpmiHotItems” on page 211 element at the current position in an incoming

data packet of type hot_feed.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiHotVals *RSiGetHotItem(rhandle, HotSet, index, value,

absvalue, name)

RSiHandle rhandle;

struct SpmiHotSet **HotSet;

int *index;

float *value;

flost absvalue;

char **name;

Description

The RSiGetHotItem subroutine locates the SpmiHotItems structure in the hot_feed data packet indexed

by the value of the index parameter. The subroutine returns a NULL value if no further SpmiHotItems

structures are found. The RSiGetHotItem subroutine should only be executed after a successful call to the

RSiGetHotSet subroutine.

The RSiGetHotItem subroutine is designed to be used for walking all SpmiHotItems elements returned in

a hot_feed data packet. Because the data packet may contain elements belonging to more than one

SpmiHotSet, the index is purely abstract and is only used to keep position. By feeding the updated integer

pointed to by index back to the next call, the walking of the hot_feed packet can be done in a tight loop.

Successful calls to RSiGetHotItem will decode each SpmiHotItems element and return the data value in

value and the name of the peer context that owns the corresponding statistic in name.

Parameters

 rhandle Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on

page 396) subroutine.

HotSet Used to return a pointer to a valid SpmiHotSet (“SpmiHotSet Structure” on page 210) structure as

obtained by a previous RSiCreateHotSet (“RSiCreateHotSet Subroutine” on page 377) subroutine

call. The calling program can use this value to locate the SpmiHotSet if its address was stored by

the program after it was created. The time stamps in the SpmiHotSet are updated with the time

stamps of the decoded SpmiHotItems element.

384 Performance Toolbox Guide

index A pointer to an integer that contains the desired relative element number in the “SpmiHotItems” on

page 211 array across all SpmiStatVals (“SpmiStatVals Structure” on page 209) contained in the

data packet. A value of zero points to the first element. When the RSiGetHotItem subroutine returns,

the integer contain the index of the next SpmiHotItems element in the data packet. By passing the

returned index parameter to the next call to RSiGetHotItem, the calling program can iterate through

all SpmiHotItems elements in the hot_feed data packet.

value A pointer to a float variable. A successful call will return the decoded data value of the peer statistic.

Before the value is returned, the RSiGetHotItem function:

v Determines the format of the data field as being either SiFloat or SiLong and extracts the data

value for further processing.

v Determines the data value as being either type SiQuantity or type SiCounter and performs one of

the actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiHotItems

structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change field

of the SpmiHotItems structure divided by the elapsed number of seconds since the previous

time a data value was requested for this set of statistics.

absvalue A pointer to a float variable. A successful call will return the decoded value of the val field of the

SpmiHotItems structure of the peer statistic. In case of a statistic of type SiQuantity, this value will

be the same as the one returned in the argument value. In case of a peer statistic of type SiCounter,

the value returned is the absolute value of the counter.

name A pointer to a character pointer. A successful call will return a pointer to the name of the peer context

for which the data value was read.

Return Values

The RSiGetHotItem subroutine returns a pointer to the current SpmiHotVals (“SpmiHotVals Structure” on

page 210) structure within the hotset. If no more SpmiHotItems elements are available, the subroutine

returns a NULL value. The structure returned contains the data, such as threshold, which may be relevant

for presentation of the results of an SpmiGetHotSet subroutine call to end-users. In the returned

SpmiHotVals structure, all fields contain the correct values as declared, except for the following:

 stat Declared as SpmiStatHdl, actually points to a valid SpmiStat (“SpmiStat Structure” on page 206)

structure. By casting the handle to a pointer to SpmiStat, data in the structure can be accessed.

grandpa Contains the cx_handle for the parent context of the peer contexts.

items When using the Spmi interface this is an array of “SpmiHotItems” on page 211 structures. When

using the RSiGetHotItem subroutine, the array is empty and attempts to access it will likely result in

segmentation faults or access of not valid data.

path Will contain the path to the parent of the peer contexts. Even when the peer contexts are multiple

levels below the parent context, the path points to the top context because the peer context

identifiers in the SpmiHotItems elements will contain the path name from there and on. For example,

if the hotvals peer set defines all volume groups, the path specified in the returned SpmiHotVals

structure would be “FS” and the path name in one SpmiHotItems element may be “rootvg/lv01”.

When combined with the metric name from the stat field, the full path name can be constructed as,

for example, “FS/rootvg/lv01/%totfree”.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Appendix F. RSi Subroutines 385

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiOpen Subroutine” on page 396

v “RSiCreateHotSet Subroutine” on page 377.

RSiGetRawValue Subroutine

Purpose

Returns a pointer to a valid SpmiStatVals (“SpmiStatVals Structure” on page 209) structure for a given

SpmiStatVals pointer by extraction from a data_feed packet. This subroutine call should only be issued

from a callback function after it has been verified that a data_feed packet was received from the host

identified by the first argument.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatVals RSiGetRawValue(rhandle, svp, index)

RSiHandle rhandle;

struct SpmiStatVals *svp;

int *index;

Description

The RSiGetRawValue subroutine performs the following:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the

subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

2. Updates the struct SpmiStat pointer in the SpmiStatVals structure to point at a valid SpmiStat

structure.

3. Returns a pointer to the SpmiStatVals structure. The returned pointer points to a static area and is

only valid until the next execution of RSiGetRawValue.

4. Updates an integer variable with the index into the ValsSet array of the data_feed packet, which

corresponds to the second argument to the call.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

svp
A handle of type struct SpmiStatVals (“SpmiStatVals Structure” on page 209), which was previously

returned by a successful RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 398) subroutine

call.

386 Performance Toolbox Guide

index
A pointer to an integer variable. When the subroutine call succeeds, the index into the ValsSet array of the

data feed packet is returned. The index corresponds to the element that matches the svp argument to the

subroutine.

Return Values

If successful, the subroutine returns a pointer; otherwise NULL is returned and an error text may be placed

in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiGetRawValue Subroutine” on page 386

v “RSiOpen Subroutine” on page 396

v “RSiPathAddSetStat Subroutine” on page 398.

RSiGetValue Subroutine

Purpose

Returns a data value for a given SpmiStatVals (“SpmiStatVals Structure” on page 209) pointer by

extraction from the data_feed packet. This subroutine call should only be issued from a callback function

after it has been verified that a data_feed packet was received from the host identified by the first

argument.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

float RSiGetValue(rhandle, svp)

RSiHandle rhandle;

struct SpmiStatVals *svp;

Description

The RSiGetValue subroutine provides the following:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the

subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

Appendix F. RSi Subroutines 387

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value

for further processing based upon its data format.

3. Determines the value as either of type SiQuantity or SiCounter. If the former is the case, the data

value returned is the val field in the SpmiStatVals structure. If the latter type is found, the value

returned by the subroutine is the val_change field divided by the elapsed number of seconds since the

previous data packet’s time stamp.

Parameters

rhandle
Must be an RSiHandle, previously initialized by the RSiOpen (“RSiOpen Subroutine” on page 396)

subroutine.

svp
A handle of type struct SpmiStatVals (“SpmiStatVals Structure” on page 209), which was previously

returned by a successful RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 398) subroutine

call.

Return Values

If successful, the subroutine returns a non-negative value; otherwise it returns a negative value less than

or equal to -1.0. A NULL error text is placed in the external character array RSiEMsg regardless of the

subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiOpen Subroutine” on page 396

v “RSiPathAddSetStat Subroutine” on page 398

RSiInit Subroutine

Purpose

Allocates or changes the table of RSi handles.

Library

RSI Library (libSpmi.a)

388 Performance Toolbox Guide

Syntax

#include sys/Rsi.h

RSiHandle RSiInit(count)

int count;

Description

Before any other RSi call is executed, a data-consumer program must issue the RSiInit call. Its purpose is

to either:

v Allocate an array of RSiHandleStruct structures and return the address of the array to the

data-consumer program.

v Increase the size of a previously allocated array of RSiHandleStruct structures and initialize the new

array with the contents of the previous one.

Parameters

count
Must specify the number of elements in the array of RSi handles. If the call is used to expand a previously

allocated array, this argument must be larger than the current number of array elements. It must always be

larger than zero. Specify the size of the array to be at least as large as the number of hosts your

data-consumer program can talk to at any point in time.

Return Values

If successful, the subroutine returns the address of the allocated array. If an error occurs, an error text is

placed in the external character array RSiEMsg and the subroutine returns NULL. When used to increase

the size of a previously allocated array, the subroutine first allocates the new array, then moves the entire

old array to the new area. Application programs should, therefore, refer to elements in the RSi handle

array by index rather than by address if they anticipate the need for expanding the array. The array only

needs to be expanded if the number of remote hosts a data-consumer program talks to might increase

over the life of the program.

An application that calls RSiInit repeatedly needs to preserve the previous address of the RSiHandle

array while the RSiInit call is re-executed. After the call has completed successfully, the calling program

should free the previous array using the free subroutine.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see the “RSiClose Subroutine” on page 376.

Appendix F. RSi Subroutines 389

RSiInstantiate Subroutine

Purpose

Creates (instantiates) all subcontexts of an SpmiCx (“SpmiCx Structure” on page 206) context object.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiInstantiate(rhandle, context)

RSiHandle rhandle;

cx_handle *context;

Description

The RSiInstantiate subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

2. Instantiates the context so that all subcontexts of that context are created in the context hierarchy.

Note that this subroutine call currently only makes sense if the context’s SiInstFreq is set to

SiContInst or SiCfgInst because all other contexts would have been instantiated whenever the

xmservd daemon was started.

The RSiInstantiate subroutine explicitly instantiates the subcontexts of an instantiable context. If the

context is not instantiable, do not call the RSiInstantiate subroutine.

Parameters

rhandle
Must point to a structure of type RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen

Subroutine” on page 396) subroutine.

context
Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx

(“RSiPathGetCx Subroutine” on page 400) subroutine call.

Return Values

If successful, the subroutine returns a zero value; otherwise it returns an error code as defined in SiError

and an error text may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

390 Performance Toolbox Guide

Related Information

For related information, see:

v “RSiFirstCx Subroutine” on page 381

v “RSiOpen Subroutine” on page 396

v “RSiPathGetCx Subroutine” on page 400.

RSiInvite Subroutine

Purpose

Invites data suppliers on the network to identify themselves and returns a table of data-supplier host

names.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

char **RSiInvite(resy_callb, excp_callb)

int (*resy_callb)();

int (*excp_callb)();

Description

The RSiInvite subroutine call broadcasts are_you_there messages on the network to provoke xmservd

daemons on remote hosts to respond and returns a table of all responding hosts.

Parameters

The arguments to the subroutine are:

resy_callb
Must be either NULL or a pointer to a function that processes i_am_back packets as they are received

from the xmservd daemons on remote hosts for the duration of the RSiInvite subroutine call. When the

callback function is invoked, it is passed three arguments as described in the following information.

If this argument is specified as NULL, a callback function internal to the RSiInvite subroutine receives any

i_am_back packets and uses them to build the table of host names the function returns.

excp_callb
Must be NULL or a pointer to a function that processes except_rec packets as they are received from the

xmservd daemons on remote hosts. If a NULL pointer is passed, your application does not receive

except_rec messages. When this callback function is invoked, it is passed three arguments as described

in the following information.

This argument always overrides the corresponding argument of any previous RSiInvite or RSiOpen call,

and it can be overridden by subsequent executions of either. In this way, your application can turn

exception monitoring on and off. For an RSiOpen to override the exception processing specified by a

previous open call, the connection must first be closed with the RSiClose call. That’s because an

RSiOpen against an already active handle is treated as a no-operation.

The resy_callb and excp_callb functions in your application are called with the following three arguments:

v An RSiHandle. The RSi handle pointed to is almost certain not to represent the host that sent the

packet. Ignore this argument, and use only the second one: the pointer to the input buffer.

v A pointer of type pack * to the input buffer containing the received packet. Always use this pointer

rather than the pointer in the RSiHandle structure.

Appendix F. RSi Subroutines 391

v A pointer of type struct sockaddr_in * to the IP address of the originating host.

Return Values

If successful, the subroutine returns an array of character pointers, each of which contains a host name of

a host that responded to the invitation. The returned host names are actually constructed as two “words”

with the first one being the host name returned by the host in response to an are_you_there request; the

second one being the character form of the host’s IP address. The two “words” are separated by one or

more blanks. This format is suitable as an argument to the RSiOpen (“RSiOpen Subroutine” on page 396)

subroutine call. In addition, the external integer variable RSiInvTabActive contains the number of host

names found. The returned pointer to an array of host names must not be freed by the subroutine call.

The calling program should not assume that the pointer returned by this subroutine call remains valid after

subsequent calls to RSiInvite. If the call is not successful, an error text is placed in the external character

array RSiEMsg, an error number is placed in RSiErrno, and the subroutine returns NULL.

The list of host names returned by RSiInvite does not include the hosts your program has already

established a connection with through an RSiOpen call. Your program is responsible for keeping track of

such hosts. If you need a list of both sets of hosts, either let the RSiInvite call be the first one issued from

your program or merge the list of host names returned by the call with the list of hosts to which you have

connections.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see“RSiOpen Subroutine” on page 396.

RSiMainLoop Subroutine

Purpose

Allows an application to suspend execution and wait to get awakened when data feeds arrive.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

void RSiMainLoop(msecs)

int msecs;

392 Performance Toolbox Guide

Description

The RSiMainLoop subroutine:

1. Allows the data-consumer program to suspend processing while waiting for data_feed packets to

arrive from one or more xmservd daemons.

2. Tells the subroutine that waits for data feeds to return control to the data-consumer program so that

the latter can check for and react to other events.

3. Invokes the subroutine to process data_feed packets for each such packet received.

To work properly, the RSiMainLoop subroutine requires that at least one RSiOpen (“RSiOpen Subroutine”

on page 396) call has been successfully completed and that the connection has not been closed.

Parameters

msecs
The minimum elapsed time in milliseconds that the subroutine should continue to attempt receives before

returning to the caller. Notice that your program releases control for as many milliseconds you specify but

that the callback functions defined on the RSiOpen call may be called repetitively during that time.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see “RSiOpen Subroutine” on page 396.

RSiNextCx Subroutine

Purpose

Returns the next subcontext of an SpmiCx (“SpmiCx Structure” on page 206) context.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiCxLink *RSiNextCx(rhandle, context, link, name,

descr)

RSiHandle rhandle;

Appendix F. RSi Subroutines 393

cx_handle *context;

struct SpmiCxLink *link;

char **name;

char **descr;

Description

The RSiNextCx subroutine:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the next element of the list of subcontexts defined for the context.

3. Returns the short name and description of the subcontext.

Parameters

rhandle
Must point to a structure of type RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen

Subroutine” on page 396) subroutine.

context
Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx

(“RSiPathGetCx Subroutine” on page 400) subroutine call.

link
Must be a pointer to a structure of type struct SpmiCxLink (“SpmiCxLink Structure” on page 207), which

was previously returned by a successful RSiFirstCx (“RSiFirstCx Subroutine” on page 381) or RSiNextCx

(“RSiNextCx Subroutine” on page 393) subroutine call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the short name of the subcontext is returned in the

character array pointer.

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the description of the subcontext is returned in the

character array pointer.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct SpmiCxLink (“SpmiCxLink

Structure” on page 207). If an error occurs, or if no more subcontexts exist for the context, NULL is

returned and an error text may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

394 Performance Toolbox Guide

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiFirstCx Subroutine” on page 381

v “RSiOpen Subroutine” on page 396

v “RSiPathGetCx Subroutine” on page 400.

RSiNextStat Subroutine

Purpose

Returns the next statistic of an SpmiCx (“SpmiCx Structure” on page 206) context.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatLink *RSiNextStat(rhandle, context, link, name,

descr)

RSiHandle rhandle;

cx_handle *context;

struct SpmiStatLink *link;

char **name;

char **descr;

Description

The RSiNextStat subroutine:

1. Validates that a context identified by the second argument exists.

2. Returns a handle to the next element of the list of statistics defined for the context.

3. Returns the short name and description of the statistic.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

context
Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx

(“RSiPathGetCx Subroutine” on page 400) subroutine call.

link
Must be a pointer to a structure of type struct SpmiStatLink (“SpmiStatLink Structure” on page 207),

which was previously returned by a successful RSiFirstStat (“RSiFirstStat Subroutine” on page 382) or

RSiNextStat subroutine call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the short name of the statistics value is returned in

the character array pointer.

Appendix F. RSi Subroutines 395

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a character

array pointer. When the subroutine call is successful, the description of the statistics value is returned in

the character array pointer.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct SpmiStatLink. If an error

occurs, or if no more statistics exists for the context, NULL is returned and an error text may be placed in

the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiFirstStat Subroutine” on page 382

v “RSiOpen Subroutine”

v “RSiPathGetCx Subroutine” on page 400.

RSiOpen Subroutine

Purpose

Initializes the RSi interface for a remote host.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiOpen(rhandle, wait, bufsize, hostID, feed_callb,

 resy_callb, excp_callb)

RSiHandle rhandle;

int wait;

int bufsize;

char *hostID;

int (*feed_callb)();

int (*resy_callb)();

int (*excp_callb)();

396 Performance Toolbox Guide

Description

The RSiOpen subroutine performs the following actions:

1. Establishes the issuing data-consumer program as a data consumer known to the xmservd daemon

on a particular host. The subroutine does this by sending an are_you_there packet to the host.

2. Initializes an RSi handle for subsequent use by the data-consumer program.

Parameters

The arguments to the subroutine are:

rhandle
Must point to an element of the RSiHandleStruct array, which is returned by a previous RSiInit (“RSiInit

Subroutine” on page 388) call. If the subroutine is successful the structure is initialized and ready to use

as a handle for subsequent RSi interface subroutine calls.

wait
Must specify the timeout in milliseconds that the RSi interface shall wait for a response when using the

request-response functions. On LANs, a reasonable value for this argument is 100 milliseconds. If the

response is not received after the specified wait time, the library subroutines retry the receive operation

until five times the wait time has elapsed before returning a timeout indication. The wait time must be zero

or more milliseconds.

bufsize
Specifies the maximum buffer size to be used for constructing network packets. This size must be at least

4,096 bytes. The buffer size determines the maximum packet length that can be received by your program

and sets the limit for the number of data values that can be received in one data_feed packet. There’s no

point in setting the buffer size larger than that of the xmservd daemon because both must be able to

handle the packets. If you need large sets of values, you can use the command line argument -b of

xmservd to increase its buffer size up to 16,384 bytes.

The fixed part of a data_feed packet is 104 bytes and each value takes 32 bytes. A buffer size of 4,096

bytes allows up to 124 values per packet.

hostID
Must be a character array containing the identification of the remote host whose xmservd daemon is the

one with which you want to talk. The first characters of the host identification (up to the first white space)

is used as the host name. The full host identification is stored in the RSiHandle field longname and may

contain any description that helps the end user identify the host used. The host name may be either in

long format (including domain name) or in short format.

feed_callb
Must be a pointer to a function that processes data_feed packets as they are received from the xmservd

daemon. When this callback function is invoked, it is passed three arguments as described in the following

information.

resy_callb
Must be a pointer to a function that processes i_am_back packets as they are received from the xmservd

daemon. When this callback function is invoked it is passed three arguments as described in the following

information.

excp_callb
Must be NULL or a pointer to a function that processes except_rec packets as they are received from the

xmservd daemon. If a NULL pointer is passed, your application does not receive except_rec messages.

When this callback function is invoked, it is passed three arguments as described in the following

information. This argument always overrides the corresponding argument of any previous RSiInvite

(“RSiInvite Subroutine” on page 391) or RSiOpen (“RSiOpen Subroutine” on page 396) subroutine call and

Appendix F. RSi Subroutines 397

can itself be overridden by subsequent executions of either. In this way, your application can turn

exception monitoring on and off. For an RSiOpen call to override the exception processing specified by a

previous open call, the connection must first be closed with the RSiClose (“RSiClose Subroutine” on page

376) subroutine call.

The feed_callb, resy_callb, and excp_callb functions are called with the arguments:

RSiHandle. When a data_feed packet is received, the structure pointed to is guaranteed to represent the

host sending the packet. In all other situations the RSiHandle structure may represent any of the hosts to

which your application is talking.

Pointer of type pack * to the input buffer containing the received packet. In callback functions, always use

this pointer rather than the pointer in the RSiHandle structure.

Pointer of type struct sockaddr_in * to the IP address of the originating host.

Return Values

If successful, the subroutine returns zero and initializes the array element of type RSiHandle pointed to by

rhandle. If an error occurs, error text is placed in the external character array RSiEMsg and the

subroutine returns a negative value.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiClose Subroutine” on page 376

v “RSiInvite Subroutine” on page 391

v “RSiOpen Subroutine” on page 396.

RSiPathAddSetStat Subroutine

Purpose

Add a single statistics value to an already defined SpmiStatSet (“SpmiStatSet Structure” on page 208).

Library

RSI Library (libSpmi.a)

398 Performance Toolbox Guide

Syntax

#include sys/Rsi.h

struct SpmiStatVals *RSiPathAddSetStat(rhandle, statset,

path)

RSiHandle rhandle;

struct SpmiStatSet *statset;

char *path;

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

statset
Must be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a

successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 378) subroutine call.

path
Must be the full value path name of the statistics value to add to the SpmiStatSet. The value path name

must not include a terminating slash. Note that value path names never start with a slash.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct SpmiStatVals (“SpmiStatVals

Structure” on page 209). If an error occurs, NULL is returned and an error text may be placed in the

external character array RSiEMsg. If you attempt to add more values to a statset than the current local

buffer size allows, RSiErrno is set to RSiTooMany. If you attempt to add more values than the buffer size

of the remote host’s xmservd daemon allows, RSiErrno is set to RSiBadStat and the status field in the

returned packet is set to too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the

data-consumer’s buffer size.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiCreateStatSet Subroutine” on page 378

v “RSiOpen Subroutine” on page 396.

Appendix F. RSi Subroutines 399

RSiPathGetCx Subroutine

Purpose

Searches the context hierarchy for an SpmiCx (“SpmiCx Structure” on page 206) context that matches a

context path name.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

cx_handle *RSiPathGetCx(rhandle, path)

RSiHandle rhandle;

char *path;

Description

The RSiPathGetCx subroutine performs the following actions:

1. Searches the context hierarchy for a given path name of a context.

2. Returns a handle to be used when subsequently referencing the context.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

path
A path name of a context for which a handle is to be returned. The context path name must be the full

path name and must not include a terminating slash. Note that context path names never start with a

slash.

Return Values

If successful, the subroutine returns a handle defined as a pointer to a structure of type cx_handle. If an

error occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

400 Performance Toolbox Guide

Related Information

For related information, see:

v “RSiFirstCx Subroutine” on page 381

v “RSiOpen Subroutine” on page 396

v “RSiNextCx Subroutine” on page 393.

RSiStatGetPath Subroutine

Purpose

Finds the full path name of a statistic identified by a SpmiStatVals (“SpmiStatVals Structure” on page 209)

pointer.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

char *RSiStatGetPath(rhandle, svp)

RSiHandle rhandle;

struct SpmiStatVals *svp;

Description

The RSiStatGetPath subroutine performs the following:

1. Validates that the SpmiStatVals statistic identified by the second argument does exist.

2. Returns a pointer to a character array containing the full value path name of the statistic.

The memory area pointed to by the returned pointer is freed when the RSiStatGetPath subroutine call is

repeated. For each invocation of the subroutine, a new memory area is allocated and its address returned.

If the calling program needs the returned character string after issuing the RSiStatGetPath subroutine call,

the program must copy the returned string to locally allocated memory before reissuing the subroutine call.

Parameters

rhandle
Must be an RSiHandle, previously initialized by the RSiOpen (“RSiOpen Subroutine” on page 396)

subroutine.

svp
Must be a handle of type struct SpmiStatVals as returned by a successful RSiPathAddSetStat

(“RSiPathAddSetStat Subroutine” on page 398) subroutine call.

Return Values

If successful, the RSiStatGetPath subroutine returns a pointer to a character array containing the full path

name of the statistic. If unsuccessful, the subroutine returns a NULL value and an error text may be

placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

Appendix F. RSi Subroutines 401

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiOpen Subroutine” on page 396

v “RSiPathAddSetStat Subroutine” on page 398.

RSiStartFeed Subroutine

Purpose

Tells xmservd to start sending data feeds for a statset.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStartFeed(rhandle, statset, msecs)

RSiHandle rhandle;

struct SpmiStatSet *statset;

int msecs;

Description

The RSiStartFeed subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send data_feed packets.

2. Tells the xmservd to start sending data_feed packets.

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

statset
Must be a pointer to a structure of type struct SpmiStatSet (“SpmiStatSet Structure” on page 208), which

was previously returned by a successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 378)

subroutine call.

msecs
The number of milliseconds between the sending of data_feed packets. This number is rounded to a

multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum

interval can be modified through the -i command line interval to xmservd.

402 Performance Toolbox Guide

Return Values

If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the

external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiCreateStatSet Subroutine” on page 378

v “RSiOpen Subroutine” on page 396

v “RSiStopFeed Subroutine” on page 404.

RSiStartHotFeed Subroutine

Purpose

Tells xmservd to start sending hot feeds for a hotset or to start checking for if exceptions or SNMP traps

should be generated.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStartFeed(rhandle, hotset, msecs)

RSiHandle rhandle;

struct SpmiHotSet *hotset;

int msecs;

Description

The RSiStartHotFeed subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send hot_feed packets, if the hotset is

defined to generate hot_feed packets.

2. Informs xmservd of the frequency with which it is required to check if exceptions or SNMP traps

should be generated. This is only done if it is specified for the hotset that exceptions and/or

SNMP traps should be generated.

3. Tells the xmservd to start sending data_feed packets and/or start checking for exceptions or traps.

Appendix F. RSi Subroutines 403

Parameters

rhandle
Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on page

396) subroutine.

hotset
Must be a pointer to a structure of type struc SpmiHotSet (“SpmiHotSet Structure” on page 210), which

was previously returned by a successful RSiCreateHot (“RSiCreateHotSet Subroutine” on page 377)

subroutine call.

msecs
The number of milliseconds between the sending of hot_feed packets and/or the number of milliseconds

between checks for if exceptions or SNMP traps should be generated. This number is rounded to a

multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum

interval can be modified through the -i command line interval to xmservd.

Return Values

If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the

external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiCreateHotSet Subroutine” on page 377

v “RSiOpen Subroutine” on page 396

v “RSiChangeHotFeed Subroutine” on page 375

v “RSiStopHotFeed Subroutine” on page 406.

RSiStopFeed Subroutine

Purpose

Tells xmservd to stop sending data feeds for a statset.

Library

RSI Library (libSpmi.a)

404 Performance Toolbox Guide

Syntax

#include sys/Rsi.h

int RSiStopFeed(rhandle, statset, erase)

RSiHandle rhandle;

struct SpmiStatSet *statset;

boolean erase;

Description

The RSiStopFeed subroutine instructs the xmservd of a remote system to:

1. Stop sending data_feed packets for a given SpmiStatSet (“SpmiStatSet Structure” on page 208). If

the daemon is not told to erase the SpmiStatSet, feeding of data can be resumed by issuing the

RSiStartFeed (“RSiStartFeed Subroutine” on page 402) subroutine call for the SpmiStatSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the

SpmiStatSet. Subsequent references to the erased SpmiStatSet are not valid.

Parameters

rhandle
Must point to a structure of type RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen

Subroutine” on page 396) subroutine.

statset
Must be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a

successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 378) subroutine call. Data feeding

must have been started for this SpmiStatSet via a previous RSiStartFeed (“RSiStartFeed Subroutine” on

page 402) subroutine call.

erase
If this argument is set to true, the xmservd daemon on the remote host discards all information about the

named SpmiStatSet. Otherwise the daemon maintains its definition of the set of statistics.

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external

character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Appendix F. RSi Subroutines 405

Related Information

For related information, see:

v “RSiOpen Subroutine” on page 396

v “RSiStartFeed Subroutine” on page 402.

RSiStopHotFeed Subroutine

Purpose

Tells xmservd to stop sending hot feeds for a hotset and to stop checking for exception and SNMP trap

generation.

Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStopFeed(rhandle, hotset, erase)

RSiHandle rhandle;

struct SpmiHotSet *hotset;

boolean erase;

Description

The RSiStopHotFeed subroutine instructs the xmservd of a remote system to:

1. Stop sending hot_feed packets or check if exceptions or SNMP traps should be generated for a given

SpmiHotSet (“SpmiHotSet Structure” on page 210). If the daemon is not told to erase the

SpmiHotSet, feeding of data can be resumed by issuing the RSiStartHotFeed (“RSiStartHotFeed

Subroutine” on page 403) subroutine call for the SpmiHotSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the

SpmiHotSet. Subsequent references to the erased SpmiHotSet are not valid.

Parameters

rhandle
Must point to a structure of type RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen

Subroutine” on page 396) subroutine.

hotset
Must be a pointer to a structure of type struct SpmiHotSet, which was previously returned by a

successful RSiCreateHotSet (“RSiCreateHotSet Subroutine” on page 377) subroutine call. Data feeding

must have been started for this SpmiStatSet via a previous RSiStartHotFeed (“RSiStartHotFeed

Subroutine” on page 403) subroutine call.

erase
If this argument is set to true, the xmservd daemon on the remote host discards all information about the

named SpmiHotSet. Otherwise the daemon maintains its definition of the set of statistics.

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external

character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an

application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

406 Performance Toolbox Guide

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes (“List of SPMI Error

Codes” on page 242).

Implementation Specifics

This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

 /usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information

For related information, see:

v “RSiOpen Subroutine” on page 396

v “RSiStartHotFeed Subroutine” on page 403

v “RSiChangeHotFeed Subroutine” on page 375.

Appendix F. RSi Subroutines 407

408 Performance Toolbox Guide

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1994, 2004 409

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c)

Copyright IBM Corp. _enter the year or years_. All rights reserved.

Any performance data contained herein was determined in a controlled environment. Therefore, the results

obtained in other operating environments may vary significantly. Some measurements may have been

made on development-level systems and there is no guarantee that these measurements will be the same

on generally available systems. Furthermore, some measurement may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

 CUA

 IBM

 RS/6000

 pSeries

410 Performance Toolbox Guide

NetView

Java and all Java-based trademarks and logos are registered trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

Appendix G. Notices 411

412 Performance Toolbox Guide

Glossary

agent. Data collecting component of PTX.

azizo. A powerful tool used to analyze

performance recordings.

cascading menu. A submenu of related choices

that is invoked when the parent item, is selected.

Usually, a choice that offers a cascading menu is

designated by an arrow to the right of the choice.

Similar to a context line.

context line. Menu items ending in a slash and

three dots (/...). The slash and three dots signify

that the line itself represents a list at the next

hierarchical level. Contrast with statistics lines.

console. A customizable graphical window

monitoring component of xmperf.

data-consumer. A description of a host, program,

or such that receives statistics over the network

from the xmservd daemon and prints,

post-processes, or otherwise manipulates the raw

statistics. Synonymous with client. Contrast with

data-supplier.

data-supplier host. Describes a host, program, or

such that supplies statistics across a network.

Synonymous with server. Contrast with

data-consumer.

ghost instrument. An empty space in the console

where an instrument used to be. Usually caused

when a console designed for one system contains

instruments not available on the current system.

Ghost instruments occupy the space and prevent

you from defining a new instrument in that same

space and moving or resizing other instruments to

use the space.

ghosted. A description of an unavailable choice.

Menu items are ghosted to indicate that a

standard choice is not available under the current

circumstances.

instrument. The actual monitoring device

enclosed within consoles as rectangular graphical

subwindows.

localhost. The assumed host when no hostname

is given.

manager. The analytical, monitoring, and display

component of PTX.

metric.A probe in or instrumentation of a

component of the operating system.

pixel. An abbreviation for picture element.

pixel map. A three-dimensional array of bits. A

pixel map can be thought of as a two-dimensional

array of pixels, with each pixel being a value from

zero to 2 to the power N -1, where N is the depth

of the pixel map.

pixmap. (1) A data type to which icons, originally

created as bitmaps, are converted. After this

conversion, the appropriate subroutines can

generate pixmaps through references to a defaults

file, by name, and through an argument list, by

pixmap. (2) An abbreviation for pixel map. See

pixel map.

radio button. Indicates a fixed set of choices.

Only one of the buttons in the set can be selected

at a time. A circle with text beside it. The circle is

partially filled when a choice is selected.

Remote Statistics Interface (RSi). The Manager

API which allows an application program to

access statistics from remote nodes (or the local

host) through a network interface.

rmss. A tool used to simulate different real

memory sizes.

statistic line. The lines in a list that represent a

specific value. Contrast with context line.

SiCounter. A value that’s incremented

continuously. Instruments show the delta (change)

in the value between observations, divided by the

elapsed time, representing a rate per second.

SiQuantity value. Represents a level, such as

memory used or available disk space. The actual

observation value is shown by instruments.

statistic.A probe in or instrumentation of a

component of the operating system.

stop record. A special type of value record which

signals that recording was stopped for a statset

and gives the time it happened. This allows

© Copyright IBM Corp. 1994, 2004 413

programs using the recording file to distinguish

between gaps in the recording and variances in

recording interval.

System Performance Measurement Interface

(Spmi). The Agent API which allows an application

program to register custom performance statistics

about its own performance or that of some other

system component. Once registered, the custom

statistics become available to any consumer of

statistics, local or remote. Also permits

applications to access statistics on the local

system without using the network interface. Such

applications are called local data-consumer

programs.

tabulating windows. Special forms of windows

that tabulate the values of an instrument as data

is received and will also calculate a line with a

weighted average for each value.

tprof. A tool used to determine which part of a

program most of the execution time is spent.

value. Used to refer to a statistic (metric) when

included in a monitoring device.

xmpeek. A program that allows you to ask any

host about the status of its xmservd daemon.

414 Performance Toolbox Guide

Index

Numerics
3dmon 71, 290

autoscaling 73

command line 74

configuration file 76

customizing 76

dual wildcard configuration 78

exiting 76

hardware dependencies 76

how to record 73

menus 72

Monitoring ARM metrics from 199

monitoring IP response time 194

overview 71

path name display 74

recording 80

resynchronizing with multiple hosts 73

Rsi.hosts file 79

single wildcard configuration 76

user interface 71

viewing obscured statistics 73

X Resources 79

3dplay 83, 292

command line invocation 84

invocation from 3dmon 84

invocation from xmperf 84

overview 83

user interface 84

A
a2ptx

command line 96

data values 96

formatting files 95

host identifier 95

input file format 95

recording generator 95

statistic names 96

time stamps 96

add instrument submenu
xmperf 43

agent 3

agent installation 268

alarm definition
filtd 187

alarms with filtd 183

All skeleton type 16

analysis and control 2

annotations
xmperf 58

types and fields 58

using 59

while recording 59

application programming interfaces 3

application response time measurement 195

ARM contexts in Spmi data space 195

application response time measurement (continued)
ARM implementation restrictions 196

ARM library implementation 196

ARM run-time control 197

ARM transaction metrics 196

SpmiArmd daemon 197

configuring 198

applying configurations 124

ARM Subroutines 305

arm_end 313

arm_end Dual Call 323

arm_getid 306

arm_getid Dual Call 316

arm_init 305

arm_init Dual Call 314

arm_start 308

arm_start Dual Call 319

arm_stop 311

arm_stop Dual Call 322

arm_update 310

arm_update Dual Call 320

azizo
adding metrics to main graphs 120

annotate icon 130

changing the appearance of main graphs 121

changing the style of metrics 117

command line 110

config icon 130

configuration file 123

configuration lines 130

dialog boxes 125

drag and drop operations 130

exit icon 131

exiting 113

filter icon 131

filtered recordings 122

filtering files 94

help facility 113

help icon 131

icon section 108

info icon 131

information window 132

inital file processing 107

local files icon 132

main graphs 109, 132

main window 108

metrics graphs 107, 115

metrics selection 114

metrics sellectin window 108

overview 107

pit icon 135

print icon 136

printing main graphs 121

printing metrics 116

recording files 107

removing main graphs 120

removing metrics from main graphs 120

scale icon 136

© Copyright IBM Corp. 1994, 2004 415

azizo (continued)
tabular view of main graphs 120

tabular view of metrics 116

user interface 110

view icon 137

working with main graphs 117

X Resources 115

X Resources for Main Graphs 119

C
capacity planning 2

chmon
parameters 293

syntax 293

choosing a console name 47

colors
exmon coloring scheme 90

exmon exception 90

exmon value ranges 90

for state lights 14

command line
3dmon 74

a2ptx 96

azizo 110

filtd 183

ptx2stat 105

ptxconv 100

ptxhottab 105

ptxmerge 97

ptxrlog 103

ptxsplit 98

ptxtab 101

xmperf 29

xmservd 155, 171

xmtrend 175

command menu interface
xmperf 61

commands
3dmon 290

3dplay 292

a2ptx 292

azizo 293

chmon 293

filtd 294

PTX 289

ptxconv 294

ptxmerge 294

ptxrlog 295

ptxsplit 296

ptxtab 297

wlmmon 147

wlmperf 147

xmpeek 299

xmperf 300

xmscheck 302

xmservd 303

common shared memory 154

components
agent 3

manager 4

components of Performance Toolbox for AIX 1

configuration files
3dmon 76

configurations
applying 124

deleting 125

saving 123

configuring the SpmiResp daemon 193

console
adding instruments 48

console file menu
xmperf 34

console instruments 12

console popup menus
xmperf 40

console pull-down menus
xmperf 33

console title bar 22

console windows
xmperf 33

consoles 20

adding an instrument to 21

creating 47

managing 20

moving instruments in 22

non-skeleton 20

placing instruments in 21

resizing instruments 21

skeleton 20

D
data reduction with filtd 183

data suppliers
limiting access 164

data value properties 10

data values
a2ptx 96

data-supplier shared memory layout 212

data-suppliers
how to identify 24

when to identify 24

DDS shared memory 154

decimal places
tabulating windows 51

default instrument properties 56

default value properties 55

defining an enhanced execution of vmstat 66

defining an execution of vmstat 66

defining executables
xmperf 62

deleting configurations 125

dialog boxes
azizo 125

dialogs
important

xmperf 46

dynamic data-supplier programs 165

416 Performance Toolbox Guide

E
Each skeleton type 16

edit console menu
xmperf 35

edit value menu
xmperf 39

environments
configuration files 23

example
svmon definition 64

vmstat definition 65

example definition for renice command 69

examples
alarm definitions 189

filtd data reduction 186

exception identifier text
exmon 91

exception messages
requesting 25

executables
defining options 63

xmperf 62

exmon
adding hosts 88

color value ranges 90

coloring scheme 90

command execution 89

configuration file 90

deleting an exception log 87

deleting hosts 88

duplicate host names 88

exception colors 90

exception identifier text 91

main window menu bar 86

monitoring exceptions 85

overview 85

resource file 90

resynchronizing hosts 88

viewing an exception log 86

windows
main 85

monitoring 85

working with exception logs 86

working with hosts 87

F
file menu

xmperf 31

files
a2ptx input format 95

annotation 93, 95

azizo 282

configuration 123

binary recording
ptxrlog 104

configuration 168

filtd 183

exmon configuration 90

exmon resource 90

files (continued)
filtering with azizo 94

formatting with a2ptx 95

jazizo configuration 140

jazizo recording 139

merging with ptxmerge 94

PTX 271

recording 93

creation 93

modifying 94

recording configuration 168

command lines 171

frequency line 169

hot lines 172

metric lines 171

recovery 176

retain line 168

selecting metrics 173

start-stop 170

starting from the command line 175

wildcards 171

Rsi.hosts 79

splitting with ptxsplit 94

version conversion with ptxconv 95

wlmperf 150

X Resources
3dmon 79

xmperf 271

xmperf configuration 272

xmperf help file format 286

xmperf resource 277

xmservd 272

filtd
alarm definition examples 189

alarm duration and frequency 188

alarm severity 188

automatic start 184

command line 183

configuration file 183

data reduction 184

data reduction and alarms 183

data reduction delay 186

data reduction examples 186

defining alarms 187

overview 183

quantities and counters 185

rounding 187

sampling interval 183

termination 184

using raw and delta values 189

wildcards 185

frequency
recording 139

G
graph

metrics
azizo 134

guide
performance tuning 147

Index 417

H
header lines

xmperf tabulating window 50

help menu
xmperf 33, 40

hierarchy
monitoring with xmperf 9

host identifier
a2ptx 95

hotset data
listing recorded 105

I
installation 268

other than RS/6000 268

installing PTX
prerequisites 267

orderining information 267

Installing PTX 267

instruments 12

adding to a console 21

configuring 12

hints and tips 18

moving in consoles 22

placing in consoles 21

resizing in consoles 21

skeleton 14

interface
application programming 3

SNMP 3

J
jazizo 139

configuration files 140

hiRange
loRange 139

legend panel 145

menus 140

configuration 143

edit 142

file 140

report 144

view 143

metric definitions 139

metric properties 145

recording files 139

recording frequency 139

jtopas 262

configuration file 263

consoles 264

info section 264

menus 263

data source 263

file 263

host list 263

options 263

reports 263

playback panel 265

jtopas (continued)
recording file 262

K
keep metrics 120

L
labels

user defined 12

lines
configuration file 168

hot 172

metric 171

retain 168

start-stop 170

localhost in xmperf 23

M
main graphs in azizo 109

main graphs, working with azizo 117

main window
xmperf 31

Makefiles
remote statistics interface 245

manager 4

manager installation 268

menus
jazizo 140

jtopas 263

process overview 68

messages
exception 25

metrics 3

counter versus quantity 140

recording configuration file 173

removing 117

trend 139

metrics graph
azizo 134

modify instrument submenu
xmperf 36, 43

monitor menu
xmperf 32

monitoring features 1

monitoring remote systems 153

monitoring statistics 7

multiplex interface
SNMP 177

N
network management principles

SNMP 177

networked operation 2

non-skeleton consoles 20

418 Performance Toolbox Guide

P
PAIDE

see Performance Aide for AIX 1

path name display with 3dmon 74

path names 11

performance
analyzing

azizo 107

jazizo 139

monitoring with xmperf 7

performance data
recording

local systems 167

remote systems 167

Performance Toolbox for AIX
components of 1

overview 1

playback
xmperf 53

playback console windows
xmperf 43

playback console, using 56

playback consoles
creation of 55

preparser
xmscheck 174

print box 126

print statistics, xmpeek 163

printing metrics, azizo 116

process controls
vmstat 67

process overview
vmstat 67

process token 69

processes
remote 25

list 26

menu 27

product components 3

programs
ptx2stat 105

ptxconv 99

ptxhottab 105

ptxls 102

ptxrlog 103

ptxsplit 98

recording support 93

properties
data value 10

protocol version control 164

PTX
see Performance Toolbox for AIX 1

PTX agent 267

PTX manager 267

ptx2stat 105

ptxconv 99

command line 100

version conversion 95

ptxls 102

ptxmerge 96

command line 97

ptxmerge (continued)
merging files 94

when to use 97

ptxrlog 103

binary recording files 104

command line 103

resynchronizing 105

ptxsplit 98

command line 98

splitting files 94

ptxtab
command line 101

example of default output format 100

listing recorded data 100

R
recording

with 3dmon 73

xmperf 53

recording configuration file 168

frequency line 169

recording file inconsistencies 58

recording files 93

azizo 107

creation 93

initial processing 107

recording menu
xmperf 40

recording submenus
xmperf 43

recovery
recording configuration file 176

remote process list 26

remote processes 25

remote processes menu 27

Remote Statistics Interface 245, 247, 249

adding statistics to the statset, example 252

alternative way to decode data feeds 254

concepts and terms 247

data structure 247

data-consumer decoding of data feeds 253

data-consumer program 251

defining a statset, example 252

expanding the data-consumer program 254

full-screen, character-based monitor 257

initializing and terminating the program,

example 251

inviting data suppliers 255

Makefiles 245

network driven interface 249

overview 245

request-response interface 249

resynchronizing 250

subroutines 371

defining sets of statistics to receive 246

error codes 257

initialization and termination 246

instantiation and traversal of context

hierarchy 246

list 246

Index 419

Remote Statistics Interface (continued)
subroutines (continued)

receiving and decoding data feed packets 247

RSiAddSetHot 371

RSiChangeFeed 374

RSiChangeHotFeed 375

RSiClose 376

RSiCreateStatSet 378

RSiDelSetHot 379

RSiDelSetStat 380

RSiFirstCx 381

RSiFirstStat 382

RSiGetHotItem 384

RSiGetRawValue 386

RSiGetValue 387

RSiInit 388

RSiInstantiate 390

RSiMainLoop 392

RSiNextCx 393

RSiNextStat 395

RSiOpen 396

RSiPathAddSetStat 398

RSiPathGetCx 400

RSiStartFeed 402

RSiStartHotFeed 403

RSiStatGetPath 401

RSiStopHotFeed 406

starting, changing and stopping data feeding 246

remote systems
monitoring

overview 153

monitoring with xmperf 23

performance data recording 167

removing metrics 117

renice
example definition 69

report box 127

report displays 149

report properties panel 148

rescan 120

response time measurement 191

application 195

ARM contexts in Spmi data space 195

ARM implementation restrictions 196

ARM library implementation 196

ARM run-time control 197

ARM Subroutines 305

ARM transaction metrics 196

configuring the SpmiResp daemon 193

introduction 191

IP 192

IP metrics 192

IP response time contexts 193

Monitoring ARM metrics from 3dmon 199

Monitoring ARM metrics from xmperf 199

monitoring IP response time from 3dmon 194

monitoring IP response time from xmperf 194

SpmiArmd daemon 197

configuring 198

resynchronizing by ptxrlog 105

resynchronizing multiple hosts with 3dmon 73

RSi
see Remote Statistic Interface 371

Rsi.hosts file 79

S
saving configurations 123

scale icon 122

shared memory types 154

simple network management protocol
see SNMP 177

skeleton consoles 20

skeleton instruments 14

skeleton type
All 16

Each 16

SMUX
Configuration Conflicts 179

instantiation 179

instantiation rules 180

limitations induced by 179

SNMP interface 3

SNMP multiplex interface
instantiation Rules 180

interaction between xmservd and SNMP 178

limitations induced by SMUX 179

network management principles 177

overview 177

SMUX Configuration Conflicts 179

SMUX instantiation 179

socket buffer pool
adjusting 166

SPMI 153

common shared memory 154

create a dynamic data supplier 216

create main loop 224

cx_create structure
declaring a context 214

data access structures and handles 208

HotSets 209

data areas 204

data traversal structures and handles 205

data-supplier shared memory layout 212

DDS shared memory 154

declare data structures to describe contexts 221

declare data structures to describe dynamic

context 228

declare data structures to describe dynamic

statistics 227

declare data structures to describe statistics 220

declare other data areas as required 222

dynamic data supplier for permanent

extensions 220

dynamic data supplier for volatile extensions 226

dynamic data supplier program 211

error codes, list of 242

features 202

initialize exception handling 223

initialize statistics fields 223

initialize the interface 223

instantiability 204

420 Performance Toolbox Guide

SPMI (continued)
instantiation 203

makefiles 216

making dynamic data-supplier statistics unique 214

modify main loop to add and delete dynamic

context 229

modify registration with the Spmi interface 228

recognizing volatile extensions 229

releasing shared memory manually 155

shared memory data area 223

shared memory structured fields 222

shared memory types 154

SPMI data traversal program, example of 234

SPMI data user program, example of 230

SPMI dynamic data-supplier program, example

of 237

SpmiCx structure 206

SpmiCxHdl handle 206

SpmiCxLink structure 207

SpmiHotItems structure 211

SpmiHotSet structure 210

SpmiHotVals structure 210

SpmiRawStat structure
declaring a statistic 213

SpmiStat structure 206

SpmiStatHdl handle 207

SpmiStatLink structure 207

SpmiStatSet structure 208

SpmiStatVals structure 209

statsets 153, 208

subroutines 241

data access 242

data hierarchy traversal 241

expand or reduce the data hierarchy 242

HotSet maintenance 241

initialize, terminate, and instantiate 241

StatSet maintenance 241

the entire program 225

traversing the data hierarchy 204

understanding the SPMI data hierarchy 202

uses 201

using the API 216

writing dynamic data-supplier programs 217

SPMI overview 201

SpmiArmd daemon
configuring 198

SpmiCx structure 206

SpmiCxHdl handle 206

SpmiCxLink structure 207

SpmiHotItems structure 211

SpmiHotSet structure 210

SpmiHotVals structure 210

SpmiStat structure 206

SpmiStatHdl handle 207

SpmiStatLink structure 207

SpmiStatSet structure 208

SpmiStatVals structure 209

state lights
colors for 14

statistic names
a2ptx 96

statistics
monitoring with xmperf 7

recording 53

trend 139

statistics, metrics, and values 3

subroutines
remote statistics interface

adding statistics to the statset, example 252

alternative way to decode data feeds 254

concepts and terms 247

data structure 247

data-consumer decoding of data feeds 253

data-consumer program 251

defining a statset, example 252

defining sets of statistics to receive 246

error codes 257

expanding the data-consumer program 254

full-screen, character-based monitor 257

initialization and termination 246

initializing and terminating the program,

example 251

instantiation and traversal of context

hierarchy 246

inviting data suppliers 255

list 246

network driven interface 249

receiving and decoding data feed packets 247

resynchronizing 250

RSiAddSetHot 371

RSiChangeFeed 374

RSiChangeHotFeed 375

RSiClose 376

RSiCreateStatSet 378

RSiDelSetHot 379

RSiDelSetStat 380

RSiFirstCx 381

RSiFirstStat 382

RSiGetHotItem 384

RSiGetRawValue 386

RSiGetValue 387

RSiInit 388

RSiInstantiate 390

RSiMainLoop 392

RSiNextCx 393

RSiNextStat 395

RSiOpen 396

RSiPathAddSetStat 398

RSiPathGetCx 400

RSiStartFeed 402

RSiStartHotFeed 403

RSiStatGetPath 401

RSiStopHotFeed 406

starting, changing and stopping data feeding 246

request-response interface 249

RSi 371

SPMI interface 241

data access 242

data hierarchy traversal 241

expand or reduce the data hierarchy 242

HotSet maintenance 241

initialize, terminate, and instantiate 241

Index 421

subroutines (continued)
SPMI interface (continued)

SpmiAddSetHot 327

SpmiCreateHotSet 330

SpmiCreateStatSet 331

SpmiDdsAddCx 332

SpmiDdsDelCx 333

SpmiDdsInit 335

SpmiDelSetHot 336

SpmiDelSetStat 338

SpmiExit 339

SpmiFirstCx 340

SpmiFirstHot 341

SpmiFirstStat 342

SpmiFirstVals 343

SpmiFreeHotSet 344

SpmiFreeStatSet 345

SpmiGetCx 347

SpmiGetHotSet 348

SpmiGetStat 349

SpmiGetStatSet 350

SpmiGetValue 352

SpmiInit 353

SpmiInstantiate 355

SpmiNextCx 356

SpmiNextHot 357

SpmiNextHotItem 359

SpmiNextStat 361

SpmiNextVals 362

SpmiNextValue 363

SpmiPathAddSetStat 365

SpmiPathGetCx 367

SpmiStatGetPath 368

StatSet maintenance 241

svmon
defining an execution 65

definition example 64

system performance measurement interface
see SPMI 153

System Performance Measurement Interface
see SPMI 201

subroutines
SpmiAddSetHot 327

SpmiCreateHotSet 330

SpmiCreateStatSet 331

SpmiDdsAddCx 332

SpmiDdsDelCx 333

SpmiDdsInit 335

SpmiDelSetHot 336

SpmiDelSetStat 338

SpmiExit 339

SpmiFirstCx 340

SpmiFirstHot 341

SpmiFirstStat 342

SpmiFirstVals 343

SpmiFreeHotSet 344

SpmiFreeStatSet 345

SpmiGetCx 347

SpmiGetHotSet 348

SpmiGetStat 349

SpmiGetStatSet 350

System Performance Measurement Interface

(continued)
subroutines (continued)

SpmiGetValue 352

SpmiInit 353

SpmiInstantiate 355

SpmiNextCx 356

SpmiNextHot 357

SpmiNextHotItem 359

SpmiNextStat 361

SpmiNextVals 362

SpmiNextValue 363

SpmiPathAddSetStat 365

SpmiPathGetCx 367

SpmiStatGetPath 368

T
tabulating window decimal places 51

tabulating window title bar 51

tabulating windows
xmperf 50

time stamps
a2ptx 96

title bar
consoles 22

tools menus
xmperf 32

top monitoring
configuration 261

Top Monitoring 261

U
user-defined labels 12

V
value

changing properties 48

path names 11

value editing submenu
xmperf 42

value name display 17

value selection
xmperf 46

values 3

view icon 121

vmstat
alternative definition 66

defining an execution 66

definition example 65

process controls 67

process overview 67

W
wildcards 14

configuration file 171

filtd 185

422 Performance Toolbox Guide

wildcards (continued)
restrictions 16

WLM
analyzing 147

WLM report browser 148

wlmmon 147

wlmperf 147

advanced menu 149

analysis overview 147

daemon recording 150

general menu 148

tier/class menu 149

Workload Manager
see WLM 147

X
X Resources

3dmon 79

X Resources for Main Graphs, azizo 119

X Resources, azizo 115

xmpeek
print statistics 163

status messages 161

xmperf 29

active recording menu items 54

annotating while recording 59

annotation types and fields 58

annotations 58

command menu interface 61

command menus 61

configuration file 272

console
adding instruments 48

console name
choosing 47

creating a console 47

creation of playback consoles 55

default instrument properties 56

default value properties 55

defining consoles 272

defining executables 62

defining menus 61

defining options for executables 63

executables 62

help file 286

important dialogs 46

instrument status 162

introduction 7

invoking 3dplay 84

localhost 23

menus
console file 34

console popup 40

console pull-down 33

edit console 35

edit value 39

file 31

help 33, 40

monitor 32

recording 40

xmperf (continued)
menus (continued)

tools 32

Monitoring ARM metrics from 199

monitoring hierarchy 9

monitoring IP response time 194

monitoring performance 7

monitoring remote systems with 23

monitoring statistics with 7

playback of recordings 55

recording and playback 53

recording file inconsistencies 58

recording methods 53

recording of statistics 53

resource file 277

resynchronizing in 161

statistics 10

submenus
add instrument 43

modify instrument 36, 43

recording 43

value editing 42

tabulating window
column width 51

decimal places 51

detail lines 50

header lines 50

title bar 51

weighted average line 50

user interface 29

user interface overview 29

using annotations 59

using the play console 56

value selection 46

values 10

windows
console 33

main 31

playback console 43

tabulating 50

xmperf files 271

xmpert
command line 29

xmquery network protocol 159

xmscheck preparser 174

xmservd
checking that data consumers are alive 158

command line 155

configuration messages 160

data feed and data feed control messages 160

handling exceptions 159

interaction between xmservd and SNMP 178

interface 157

life and death of 157

removing inactive data consumers 158

rounding of sampling interval 156

session control messages 160

session recovery 159

understood signals 158

xmservd files 272

xmtrend 175

Index 423

424 Performance Toolbox Guide

Readers’ Comments — We’d Like to Hear from You

Performance Toolbox Version 2 and 3 Guide and Reference

 Publication No. SC23-2625-09

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: aix6koub@austin.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-2625-09

SC23-2625-09

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A.

SC23-2625-09

	Contents
	About This Book
	Subreleases
	Content of This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Performance Toolbox for AIX Overview
	Why Performance Toolbox for the Operating System?
	Monitoring Features
	Analysis and Control
	Capacity Planning
	Networked Operation
	Application Programming Interfaces
	SNMP Interface
	On Statistics, Metrics, and Values

	Product Components
	The Agent
	The Manager

	Chapter 2. Monitoring Statistics with xmperf
	Performance Monitoring
	Introducing xmperf
	Monitoring Hierarchy
	Statistics and Values
	Data Value Properties
	Path Names

	Instruments
	Configuring Instruments
	Skeleton Instruments
	Value Name Display
	Hints and Tips for Using Instruments

	Consoles
	Managing Consoles
	Placing Instruments in Consoles
	The Console Title Bar

	Environments
	Monitoring Remote Systems with xmperf
	The Meaning of Localhost in xmperf
	When to Identify Data-Suppliers
	How Data-Suppliers are Identified
	Requesting Exception Messages
	Remote Processes

	Chapter 3. The xmperf User Interface
	The xmperf User Interface Overview
	The xmperf Command Line
	The xmperf Main Window
	The File Menu
	The Monitor Menu
	The Tools Menus

	The Help Menu
	Console Windows
	Console Pull-down Menus
	The Console File Menu
	The Edit Console Menu
	The Modify Instrument Submenu
	The Edit Value Menu
	The Recording Menu
	The Help Menu
	Console Popup Menus

	Playback Console Windows
	Important xmperf Dialogs
	Value Selection
	Creating a Console
	Changing the Properties of a Value

	Tabulating Windows
	Tabulating Window Header Lines
	Tabulating Window Weighted Average Line
	Tabulating Window Detail Lines
	Column Width in Tabulating Windows
	Decimal Places in Tabulating Windows
	Tabulating Window Title Bar

	Chapter 4. Recording and Playback with xmperf
	Recording of Statistics
	Recording Methods
	Active Recording Menu Items

	Playback of Recordings
	Creation of Playback Consoles

	Using the Playback Console
	Recording File Inconsistencies
	Annotations
	Annotation Types and Fields
	Annotating while Recording
	Using Annotations

	Chapter 5. The xmperf Command Menu Interface
	Command Menus
	Defining Menus
	Executables
	Defining Executables
	Defining Options for Executables
	Example svmon Definition
	Defining an Execution of svmon
	Example vmstat Definition
	An Alternative vmstat Definition

	Process Controls
	Process Overview
	Process Overview Menu
	Process Token
	Example Definition for renice Command

	Chapter 6. 3D Monitor
	Overview of the 3dmon Program
	User Interface
	Pull-down Menus
	Autoscaling
	Resynchronizing with Multiple Hosts
	Viewing Obscured Statistics
	How to Record with 3dmon
	Path Name Display

	The 3dmon Command Line
	Hardware Dependencies
	Exiting 3dmon

	Customizing the 3dmon Program
	3dmon Configuration File
	Single Wildcard Configuration Sets
	Dual Wildcard Configuration Sets
	Rsi.hosts File
	The 3dmon X Resources

	Recording from 3dmon

	Chapter 7. 3D Playback
	Overview of the 3dplay Program
	The 3dplay User Interface
	Command Line Invocation
	Invocation from xmperf
	Invocation from 3dmon

	Chapter 8. Monitoring Exceptions with exmon
	The exmon Main Window
	The exmon Monitoring Window
	The exmon Main Window Menu Bar
	Working with Exception Logs
	Viewing an Exception Log
	Deleting an Exception Log

	Working with Hosts
	Add Hosts
	Delete Hosts
	Resynchronizing
	Duplicate Hostnames

	Command Execution from exmon
	The exmon Configuration File

	The exmon Resource File
	Coloring Scheme
	Exception Identifier Text

	Chapter 9. Recording Files, Annotation Files, and Recording Support Programs
	Recording Files
	Creation of Recording Files
	Modifying Recording Files

	Annotation Files
	The a2ptx Recording Generator
	Input Formats of a2ptx
	The a2ptx Command Line

	The ptxmerge Merge Program
	When to Use ptxmerge
	The ptxmerge Command Line

	The ptxsplit Split Program
	The ptxsplit Command Line

	The ptxconv Conversion Program
	The ptxconv Command Line

	Listing Recorded Data with ptxtab
	Example of ptxtab Default Output Format
	The ptxtab Command Line
	Example of ptxtab Comma-Separated Output Format
	ptxspread

	The ptxls List Program
	The ptxrlog Recording Program
	The ptxrlog Command Line
	Binary Recording Files
	Resynchronizing with ptxrlog

	Listing Recorded HotSet Data with ptxhottab
	The ptxhottab Command Line

	Processing HotSet Recordings with ptx2stat
	The ptx2stat Command Line

	Chapter 10. Analyzing Performance Recordings with azizo
	Initial Processing of Recording Files
	The azizo Main Window
	The Icon Section
	The Metrics Selection Window
	The Message Window

	Main Graphs
	Top-Level Main Graph
	Zoomed-in Main Graph

	The azizo Command Line
	The azizo User Interface
	Icons
	Dragging and Dropping
	Objects
	Actions
	Non-drag Operations
	Selecting a Recording File
	Exiting azizo
	The Help Facility
	Browsing
	Help Index
	Annotating a Recording

	Using the azizo Metrics Selection Window
	The Title Part of the Metrics Selection Window
	Metrics Graphs
	X Resources for the Metrics Selection Window
	Tabular View of Metrics
	Printing Metrics from the Metrics Selection Window
	Changing the Style of Metrics
	Removing Metrics

	Working with azizo Main Graphs
	The Main Graph Window Frame
	The Metric Label Part of a Main Graph Window
	The Graph Part of a Main Graph Window
	X Resources for Main Graphs
	Zooming-in on Main Graphs
	Rescan
	Keep Metrics
	Removing Main Graphs
	Tabular View of Main Graphs
	Printing Main Graphs
	Changing the Appearance of Main Graphs
	Dragging to the View Icon
	Dragging to the Scale Icon
	Filtered Recordings
	Maintaining Instrument Definitions when Filtering
	Handling of Annotation Files when Filtering
	Using the azizo Configuration File

	Common azizo Dialog Boxes
	The Print Box
	The Report Box
	Changing View Options Dialog Box

	Overview of Valid Drag-and-Drop Operations
	Annotation Icon
	Config Icon
	Configuration Lines
	Exit Icon
	Filter Icon
	Help Icon
	Info Icon
	Information Window
	Local Files Icon
	Main Graphs
	Metric Label from Main Graph
	Metrics Graph
	Metrics Selection Window
	Pit icon
	Print Icon
	Scale Icon
	View Icon

	Chapter 11. Analyzing Performance Trend Recordings with the jazizo Tool
	Recording Files
	Trend Statistics (Metric) Definitions

	Configuration Files
	Jazizo Tool Menus
	File Menu
	Edit Menu
	View Menu
	Configurations Menu
	Report Menu

	Legend Panel
	Metric Properties

	Chapter 12. Analyzing WLM with wlmperf
	The wlmperf Command
	Purpose
	Syntax
	Description

	Analysis Overview
	WLM Report Browser
	Report Properties Panel
	General Menu
	Tier/Class Menu
	Advanced Menu

	Report Displays
	Snapshot Display
	Detailed Display
	Tabulation Display

	Daemon Recording and Configuration
	Files
	Prerequisite
	Exit Status
	Related Information

	Chapter 13. Monitoring Remote Systems
	The System Performance Measurement Interface
	Statsets
	Shared Memory Types
	Common Shared Memory
	DDS Shared Memory
	Releasing Shared Memory Manually

	The xmservd Command Line
	Rounding of Sampling Interval

	The xmservd Interface
	Life and Death of xmservd
	Signals Understood by xmservd
	Removing Inactive Data Consumers
	Checking that Data Consumers are Alive
	Handling Exceptions
	Session Recovery by xmservd

	The xmquery Network Protocol
	Configuration Messages
	Data Feed and Data Feed Control Messages
	Session Control Messages
	Status Messages and the xmpeek Program
	Using the xmpeek Program to Print Available Statistics
	Protocol Version Control

	Limiting Access to Data Suppliers
	Starting Dynamic Data-Supplier Programs
	Adjusting Socket Buffer Pool

	Chapter 14. Recording Performance Data on Remote and Local Systems
	Recording on Remote and Local Systems Overview
	Recording Configuration File
	Configuration File Lines

	Selecting Metrics for the Recording Configuration File
	The xmscheck Preparser
	Starting Recording Sessions from the xmtrend Command Line
	Session Recovery by the xmtrend Agent

	Chapter 15. SNMP Multiplex Interface
	Network Management Principles
	Interaction Between xmservd and SNMP
	Limitations Induced by SMUX

	Chapter 16. Data Reduction and Alarms with filtd
	filtd Configuration File
	Sampling Interval
	Automatic Start of filtd
	Termination of filtd

	Data Reduction
	Wildcards
	Quantities and Counters
	Data Reduction Delay
	Data Reduction Examples
	Rounding

	Defining Alarms
	Alarm Definition
	Alarm Duration and Frequency
	Alarm Severity
	Examples of Alarm Definitions

	Using Raw Values and Delta Values

	Chapter 17. Response Time Measurement
	Introduction
	IP Response Time Measurement
	IP Response Time Daemon
	IP Response Time Metrics
	Configuring the SpmiResp Daemon
	IP Response Time Contexts
	Monitoring IP Response Time from xmperf
	Monitoring IP Response Time from 3dmon

	Application Response Time Measurement (ARM)
	ARM Contexts in Spmi Data Space
	ARM Transaction Metrics
	Implementation Restrictions
	Library Implementation
	Run-time Control
	SpmiArmd Daemon
	Configuring the SpmiArmd Daemon
	Monitoring ARM Metrics from xmperf
	Monitoring ARM Metrics from 3dmon
	Sample Applications

	Chapter 18. System Performance Measurement Interface Programming Guide
	SPMI Overview
	Possible Uses for the SPMI
	SPMI Features

	Understanding the SPMI Data Hierarchy
	Instantiation
	Instantiability

	Understanding SPMI Data Areas
	Traversing the Data Hierarchy
	Data Traversal Structures and Handles
	Data Access Structures and Handles, StatSets
	Data Access Structures and Handles, HotSets
	Dynamic Data Supplier (DDS) Program Structures
	Making Dynamic Data-Supplier Statistics Unique

	Using the System Performance Measurement Interface API
	Using SPMI to Create a Dynamic Data Supplier
	Makefiles
	Writing Dynamic Data-Supplier Programs
	Dynamic Data Supplier for Permanent Extensions
	Dynamic Data Supplier for Volatile Extensions

	Example of an SPMI Data User Program
	Example of an SPMI Data Traversal Program
	Example of an SPMI Dynamic Data-Supplier Program
	SPMI Interface Subroutines
	Initialize, Terminate, and Instantiate Subroutines
	Data Hierarchy Traversal Subroutines
	StatSet Maintenance Subroutines
	HotSet Maintenance Subroutines
	Data Access Subroutines
	Expand or Reduce the Data Hierarchy Subroutines

	List of SPMI Error Codes

	Chapter 19. Remote Statistics Interface Programming Guide
	Remote Statistics Interface API Overview
	Makefiles

	Remote Statistics Interface List of Subroutines
	Initialization and Termination
	Instantiation and Traversal of Context Hierarchy
	Defining Sets of Statistics to Receive
	Starting, Changing and Stopping Data Feeding
	Receiving and Decoding Data Feed Packets

	RSI Interface Concepts and Terms
	RSI Interface Data Structures
	The RSI Request-Response Interface
	The RSI Network Driven Interface
	Resynchronizing

	A Simple Data-Consumer Program
	Initializing and Terminating the Program
	Defining a Statset
	Adding Statistics to the Statset
	Data-Consumer Decoding of Data Feeds
	An Alternative Way to Decode Data Feeds

	Expanding the Data-Consumer Program
	Traversing Contexts

	Inviting Data Suppliers
	Identifying Data Suppliers

	A Full-Screen, Character-based Monitor
	List of RSi Error Codes

	Chapter 20. Top Monitoring
	Top Monitoring Configuration
	Using the jtopas System-Monitoring Tool
	Files Used by the jtopas Tool
	Menus for the Jtopas Tool
	Info Section for the jtopas Tool
	Consoles of the jtopas Tool
	PlayBack Panel for the jtopas Tool

	Appendix A. Installing the Performance Toolbox for AIX
	Prerequisites
	Ordering Information
	Performance Aide for AIX (Performance Toolbox for AIX Agent)
	Performance Toolbox for AIX Manager

	Installation
	Performance Aide for AIX (Performance Toolbox for AIX Agent)
	Performance Toolbox for AIX (Agent and Manager components)

	Installing Performance Toolbox for AIX on Systems Other Than IBM RS/6000 Hosts
	Prerequisites
	Installation

	Appendix B. Performance Toolbox for AIX Files
	Files used by xmperf and Other Data Consumers
	Files used by xmservd

	Explaining the xmperf Configuration File
	Defining Consoles
	Defining Skeleton Consoles
	Defining Default Consoles

	The xmperf Resource File
	Resources Defining Appearance
	Resources Defining Default Colors
	Execution Control Resources

	The azizo Resource File
	Simple Help File Format
	Predefined help IDs for xmperf
	Predefined help IDs for exmon
	Predefined help IDs for azizo
	Predefined help IDs for 3dplay

	Appendix C. Performance Toolbox for AIX Commands
	3dmon Command
	Syntax
	Flags

	3dplay Command
	Syntax
	Parameters
	Errors

	a2ptx Command
	Syntax
	Parameters

	azizo Command
	Syntax
	Flags

	chmon Command
	Syntax
	Parameters

	filtd command
	Syntax
	Flags

	ptxconv Command
	Syntax
	Flags

	ptxmerge Command
	Syntax
	Flags

	ptxrlog Command
	Syntax
	Flags

	ptxsplit Command
	Syntax
	Flags

	ptxtab Command
	Syntax
	Flags
	Example of ptxtab Comma Separated Output Format
	Example of ptxtab Spreadsheet Output Format

	xmpeek Command
	Syntax
	Flags
	Examples

	xmperf Command
	Syntax
	Flags

	xmscheck Command
	xmservd Command
	Syntax
	Flags

	Appendix D. ARM Subroutines and Replacement Library Implementation
	ARM Subroutines
	arm_init Subroutine
	arm_getid Subroutine
	arm_start Subroutine
	arm_update Subroutine
	arm_stop Subroutine
	arm_end Subroutine

	ARM Replacement Library Implementation
	arm_init Dual Call Subroutine
	arm_getid Dual Call Subroutine
	arm_start Dual Call Subroutine
	arm_update Dual Call Subroutine
	arm_stop Dual Call Subroutine
	arm_end Dual Call Subroutine

	Appendix E. SPMI Subroutines
	SpmiAddSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Programming Notes
	Error Codes
	Implementation Specifics
	Files

	SpmiCreateHotSet
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiCreateStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDdsAddCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDdsDelCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDdsInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDelSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDelSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiExit Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Files
	Related Information

	SpmiFirstCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFirstHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFirstStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFirstVals Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFreeHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFreeStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiInstantiate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextHotItem Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextVals Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Programming Notes
	Implementation Specifics
	Files
	Related Information

	SpmiPathAddSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiPathGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiStatGetPath Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	Appendix F. RSi Subroutines
	RSi Subroutines
	RSiAddSetHot Subroutine
	RSiChangeFeed Subroutine
	RSiChangeHotFeed Subroutine
	RSiClose Subroutine
	RSiCreateHotSet Subroutine
	RSiCreateStatSet Subroutine
	RSiDelSetHot Subroutine
	RSiDelSetStat Subroutine
	RSiFirstCx Subroutine
	RSiFirstStat Subroutine
	RSiGetHotItem Subroutine
	RSiGetRawValue Subroutine
	RSiGetValue Subroutine
	RSiInit Subroutine
	RSiInstantiate Subroutine
	RSiInvite Subroutine
	RSiMainLoop Subroutine
	RSiNextCx Subroutine
	RSiNextStat Subroutine
	RSiOpen Subroutine
	RSiPathAddSetStat Subroutine
	RSiPathGetCx Subroutine
	RSiStatGetPath Subroutine
	RSiStartFeed Subroutine
	RSiStartHotFeed Subroutine
	RSiStopFeed Subroutine
	RSiStopHotFeed Subroutine

	Appendix G. Notices
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

