
AIX Version 4.3 Differences Guide

Richard Cutler, Zhu Li, Armin Roell

International Technical Support Organization

SG24-2014-01

http://www.redbooks.ibm.com

International Technical Support Organization SG24-2014-01

AIX Version 4.3 Differences Guide

December 1998

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (December 1998)

This edition applies to AIX Version 4 Release 3, program number 5765-C34 and subsequent releases.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix A,
“Special Notices” on page 305.

Take Note!

Contents

Figures . xv

Tables . xvii

Preface . xix
How this Redbook is Organized . xix
The Team That Wrote This Redbook . xix
Comments Welcome . xxi

Chapter 1. Hardware Announcements .1
1.1 RS/6000 7017 Enterprise Server Model S70 Advanced.1

1.1.1 System Highlights .1
1.1.2 I/O Drawer Specification .2

1.2 RS/6000 43P 7043 Model 150 .3
1.3 RS/6000 43P 7043 Model 260 .4
1.4 GXT3000P PCI Graphics Accelerator .6
1.5 Gigabit Ethernet-SX PCI Adapter .7

1.5.1 Adapter Parameters .8
1.5.2 Error Logging .9

1.6 Gigabit Fibre Channel Adapter .10

Chapter 2. AIX Kernel Enhancements .13
2.1 Binary Compatibility .13

2.1.1 Compatibility between AIX Version 4 Releases13
2.1.2 X11 Compatibility .13
2.1.3 AIX Version 3 Application Compatibility .14
2.1.4 Client/Server Application Compatibility .15
2.1.5 IBM Licensed Program Products Compatibility 15

2.2 AIX 4.3 for 12-Way SMP Performance (4.3.1) .16
2.3 32 GB Real Memory Support (4.3.2) .16
2.4 Lock-Based Dumping .16

2.4.1 Dump Support .17
2.4.2 Programming Interface .17

2.5 Bad Block Relocation during System Dump (4.3.1)17
2.6 Kernel Protection .17

2.6.1 Storage Protection Macro .18
2.6.2 Debug Modifications .19
2.6.3 Stack Overflow Protection .19

2.7 SMP TTY Handling .19
2.8 Faster Per-Thread Data .19
2.9 Expanded Limits on Open Files (4.3.1) .19
2.10 Multiple Concurrent JFS Reads (4.3.1) .20
2.11 Increase in the Upper Limit of Trace Buffer (4.3.1) 21
2.12 Kernel Scaling Enhancements (4.3.2) .21

2.12.1 Network Memory Buffer Pool .21
2.12.1.1 Network Memory Buffer Pool Size Increase. 21
2.12.1.2 Network Memory Buffer Pool Allocation Algorithm. 22
2.12.1.3 Network Memory Buffer Pool Statistics . 22

2.12.2 Expanded Kernel Heap .23
2.12.3 Larger Pipe Buffer Pool .24
2.12.4 Inter-Process Communication Identifier Enhancement 24
© Copyright IBM Corp. 1998 iii

2.12.5 Boot Logical Volume Scaling . 24
2.13 Scheduler Enhancements (4.3.2) . 24

2.13.1 Thread Priority Calculation Changes . 25
2.13.2 Sample Results of Altering Nice Value . 26

Chapter 3. 64-Bit Enablement . 29
3.1 Introduction to 64-Bit Computing . 29

3.1.1 64-Bit Architecture and Benefits. 29
3.1.2 64-Bit Challenges . 30
3.1.3 64-Bit PowerPC Design . 30
3.1.4 AIX 64-Bit Design Criteria . 32

3.2 64-Bit Core Design . 33
3.2.1 Segment Register Mapping . 33
3.2.2 System Calls . 37

3.2.2.1 64-Bit to 32-Bit Data Reformatting .39
3.2.2.2 64-Bit to 32-Bit Address Remapping. .40
3.2.2.3 Remap Library Data Structures. .41
3.2.2.4 Remap Library Programming Interfaces .42
3.2.2.5 Remap Optimization for Multiple Addresses43
3.2.2.6 Remap Kernel Programming Interfaces .44
3.2.2.7 Optimizations for One or Two Parameters .45
3.2.2.8 Using the Remapping Services. .45

3.2.3 64-Bit XCOFF Format . 46
3.2.3.1 XCOFF Design .46
3.2.3.2 Using the XCOFF Formats .47
3.2.3.3 Incomplete aouthdr Structure .48
3.2.3.4 XCOFF Magic Number .48

3.2.4 Device Drivers . 49
3.2.4.1 Changes to ioctl() .49
3.2.4.2 Parameter Passing Examples. .50

3.2.5 Loader . 51
3.2.6 Virtual Memory Manager . 52

3.2.6.1 Executing a 64-Bit Program .52
3.2.6.2 Address Space Management .53
3.2.6.3 Shared Memory Management. .54
3.2.6.4 User Data and Stack Management .55

3.3 Application Development . 56
3.3.1 C Compiler. 56

3.3.1.1 Compiler Mode .57
3.3.1.2 Fixed-Width Types .59
3.3.1.3 Structure Alignment and Bitfields .60
3.3.1.4 Enum Support .61

3.3.2 XL Fortran Version 5 . 61
3.3.3 System Libraries . 61
3.3.4 Linker . 62
3.3.5 Archiver . 64
3.3.6 The dbx Debugger . 65
3.3.7 Commands and Utilities . 65

Chapter 4. Application Development and Pthreads. 67
4.1 C Language Standards . 67
4.2 IEEE POSIX and UNIX98 Conformance . 67

4.2.1 Realtime Options . 67
4.2.2 Unsupported Threads Options . 68
iv AIX Version 4.3 Differences Guide

4.2.3 Dynamic Linking Extension .68
4.2.3.1 dlopen() . 69
4.2.3.2 dlsym() . 69
4.2.3.3 dlclose() . 69
4.2.3.4 dlerror(). 70

4.2.4 Year 2000 .70
4.2.4.1 getdate() . 70
4.2.4.2 strptime() . 70
4.2.4.3 date Command. 71
4.2.4.4 prs Command. 71

4.3 M:N Pthreads (4.3.1). .71
4.3.1 Porting Application from Draft 7 Pthreads .71
4.3.2 The M:N Model .72
4.3.3 User Scheduler .72
4.3.4 Mutex Locks .73
4.3.5 Tuning. .74
4.3.6 Maximum Number of Threads .75
4.3.7 Combined Thread-Safe Libraries. .75

4.4 Pthreads Suspend and Resume (4.3.2). .76
4.5 Preserve Modified Ptrace Data (4.3.2) .76
4.6 Direct I/O .77

4.6.1 Opening Files for Direct I/O .78
4.6.1.1 Inode Flags. 78

4.6.2 JFS Function Calls for Direct I/O .78
4.6.3 System Archive Utilities. .78

4.7 Shared Memory Enhancements .79
4.7.1 Larger Shared Memory Regions (4.3.1). .79
4.7.2 128 KB Shared Memory IDs (4.3.2) .79
4.7.3 Shared Memory Debugging Enhancements (4.3.2)79

4.8 DMA Pre-Translation (4.3.2) .79
4.9 Fast fork() Function (4.3.1) .80
4.10 New Sockets System Call (4.3.2) .80
4.11 Binder Library Enhancements (4.3.2) .82

Chapter 5. Logical Volume Manager Enhancements 83
5.1 Logical Volume Synchronization .83
5.2 importvg Learning Mode .83
5.3 importvg Fast Mode .84
5.4 Raw LV Online Mirror Backup Support (4.3.1) .85

5.4.1 Removal of 1016 PPs per Physical Volume Limit (4.3.1)85
5.5 Physical Partition Support (4.3.1) .87
5.6 Big Volume Groups (4.3.2) .87

5.6.1 Changes to LVCB .88
5.6.2 General Enhancements for Big VG .88

5.6.2.1 Commands Changes . 88
5.6.2.2 Header File Changes . 91
5.6.2.3 Default Maximum PPs for Each Physical Volume - 1016. 91

5.6.3 Small VG to Big VG Conversion .92
5.6.4 Big VG Limitations. .92

5.7 Concurrent Online Mirror Backup and Special File Support (4.3.2)92
5.7.1 Limitations. .93
5.7.2 Commands Changed. .93
 v

Chapter 6. System Management and Utilities . 95
6.1 Overview of Existing AIX Systems Management 95

6.1.1 SMIT Overview . 95
6.1.2 DSMIT Overview . 97
6.1.3 VSM Overview . 97

6.2 Web-Based System Manager Architecture. 98
6.2.1 Web-Based System Manager Components 99
6.2.2 Web-Based System Manager User Interface 99
6.2.3 Web-System Manager Launch Interfaces. 100
6.2.4 Web-Based System Manager User Interface Objects. 101

6.2.4.1 Container Objects .102
6.2.4.2 Open Action .102
6.2.4.3 TaskGuides .102
6.2.4.4 Generic Dialogs. .102

6.2.5 User Interface Elements . 103
6.2.5.1 Menu .103
6.2.5.2 Selected Menu .104
6.2.5.3 View Menu .105
6.2.5.4 Options Menu .106
6.2.5.5 Help Menu. .107
6.2.5.6 Pop-Up (Context) Menus .107
6.2.5.7 Dynamic Status Icon .107
6.2.5.8 Tool Bar. .107
6.2.5.9 Main View Area .107
6.2.5.10 Command Buttons .107
6.2.5.11 Status Line .108
6.2.5.12 Container Views .108

6.2.6 Message Boxes . 110
6.2.7 User Assistance. 110

6.2.7.1 Help. .110
6.2.7.2 Container Help Menu Contents .110
6.2.7.3 Context Sensitive Helps .110
6.2.7.4 Hover Help .111
6.2.7.5 Online Books. .111

6.2.8 Navigation . 111
6.2.8.1 Keyboard Navigation .111
6.2.8.2 Mouse Model. .111

6.2.9 Selection and Multiple Selection . 111
6.3 Web-Based System Manager Enhancements (4.3.1) 112
6.4 Web-Based System Manager Enhancements (4.3.2) 112

6.4.1 Security Enhancements . 112
6.4.2 Diagnostics Enhancements . 114
6.4.3 Registered Applications . 116

6.5 Daylight Savings Time . 118
6.6 Login Performance . 118

6.6.1 Indexing of the /etc/passwd File . 119
6.6.2 Indexing of the /etc/security/passwd File . 119
6.6.3 Indexing and Locking /etc/security/lastlog File 119
6.6.4 mkpasswd Command. 120

6.7 Microcode Packaging . 120
6.8 On-line Alternate Disk Installation . 121

6.8.1 alt_disk_install Command Syntax . 122
6.8.2 Using alt_disk_install . 124
6.8.3 Alternate Disk Installation Enhancements (4.3.1) 124
vi AIX Version 4.3 Differences Guide

6.8.4 Alternate Disk Installation Enhancements (4.3.2) 126
6.8.4.1 New alt_disk_install 4.3.2 Usage . 126
6.8.4.2 Scenarios for Command Enhancements . 126

6.9 Printer Support .129
6.9.1 Remote Printing Robustness .129
6.9.2 Remote Print Job Count .130
6.9.3 Additional Printer Support .130
6.9.4 Print Job Administration Enhancements (4.3.2)131

6.10 System Resource Controller Subsystem Enhancements (4.3.2) 132
6.10.1 Recoverable SRC Daemon .132
6.10.2 Thread-Safe Routines in libsrc .133

6.11 TTY Remote Reboot (4.3.2) .134
6.12 Network Install Manager Enhancements (4.3.2) 135

6.12.1 Restrict Concurrent Group Operations. .135
6.12.2 Resource Lock Contention .136
6.12.3 Administration Enhancements .137

6.13 Paging Space Enhancements (4.3.2) .137
6.13.1 Late and Early Paging Space Allocation .137

6.13.1.1 Early Paging Allocation Mode Considerations 138
6.13.1.2 Late Paging Allocation . 138

6.13.2 Commands Affected by Late Paging .139
6.13.2.1 vmstat Command Updates. 139
6.13.2.2 lsps Command Updates . 139

6.14 Error Message Templates (4.3.2) .140
6.15 Remote File Distribution Enhancements (4.3.2) 141
6.16 Editor Enhancements (4.3.2). .141
6.17 System Backup Usability Enhancements (4.3.2)142
6.18 Operating System Install Enhancement (4.3.2)142
6.19 New Diagnostic Service Aid (4.3.2) .143
6.20 Performance Toolbox Agent Repacking (4.3.2)144

Chapter 7. Networking Enhancements .147
7.1 Internet Protocol Version 6 .147

7.1.1 IPv6 Introduction .147
7.1.2 IPv6 128-Bit Addressing .147

7.1.2.1 Text Representation of Addresses . 148
7.1.2.2 Types of IPv6 Address . 149

7.1.3 Neighbor Discovery/Stateless Address Autoconfiguration150
7.1.3.1 NDP Application Kernel Support . 150

7.1.4 Internet Control Message Protocol (ICMPv6).151
7.1.4.1 ICMPv6 Message Types . 151

7.1.5 Tunneling over IPv4 .152
7.1.5.1 Tunneling Mechanisms . 153

7.1.6 IP Security (IPSec) .153
7.1.6.1 Key Management . 154
7.1.6.2 Transforms Provided with IPSec for AIX 4.3.0 154
7.1.6.3 Encapsulation Forms . 154
7.1.6.4 Compatibility. 155
7.1.6.5 AIX/IPSec Kernel Configuration . 155
7.1.6.6 IPSec/IPv4 Configuration . 155
7.1.6.7 IPSec/IPv6 Configuration . 155
7.1.6.8 Cryptographic Support . 155
7.1.6.9 IPSec Commands . 156

7.1.7 Resolver Support for /etc/hosts .156
 vii

7.1.8 Commands and Applications Enabled for IPv6. 157
7.1.8.1 netstat .157
7.1.8.2 ifconfig .159
7.1.8.3 route .160
7.1.8.4 autoconf6 Command. .160
7.1.8.5 TCP/IP Tracing Commands .161
7.1.8.6 traceroute Command .161
7.1.8.7 ndp Command. .161
7.1.8.8 ndpd-host Command. .162
7.1.8.9 inetd Daemon .163

7.1.9 IPv6 Socket Library Support . 163
7.1.10 System Management Changes and Additions 163
7.1.11 IPv6 and IPSec-Related RFCs Implementation 166

7.2 IP Security Enhancements (4.3.1) . 166
7.3 TCP/IP Command Security Enhancement (4.3.1) 166
7.4 Dynamic Host Configuration Protocol Enhancements (4.3.1) 167
7.5 TFTP Block Size Option (4.3.1) . 167
7.6 IPv6 Routing Support (4.3.2) . 168

7.6.1 Gated Version 6.0 . 168
7.6.1.1 gdc Command. .169
7.6.1.2 ospf_monitor Command .169
7.6.1.3 ripquery Command .169

7.6.2 IPv6 Routing Functions . 169
7.6.2.1 IPv6 Unicast Routing. .170
7.6.2.2 IPv6 Multicast Routing .170
7.6.2.3 IPv6 Anycast Address Support .171
7.6.2.4 IPv6 Multi-Homed Support .171

7.6.3 Commands Changed . 171
7.7 Enhancement for ifconfig Command (4.3.2) . 172
7.8 Latest BIND DNS (NameD) Support (4.3.2) . 172
7.9 Web Server Performance Improved (4.3.2) . 173

7.9.1 Reducing the Number of TCP Packages . 174
7.9.2 Commands Affected . 174
7.9.3 Reducing the Contention of INIFADDR and Route Lock. 175

7.9.3.1 Reducing the Contention of INIFADDR Lock 175
7.9.3.2 Reducing the Contention of Route Lock .176

7.10 TCP Checksum Offload on ATM 155 Mbps PCI Adapter (4.3.2). 176
7.10.1 Limitations . 177
7.10.2 Command Changes . 177

7.11 Thread-Based Application Connection Enhancement (4.3.2) 177
7.12 IBM 10/100 Mbps PCI Ethernet Adapter Device Driver (4.3.2) 178

7.12.1 Packaging . 178
7.12.2 Configuration Parameters . 179
7.12.3 Trace . 180
7.12.4 Error Logging . 180

7.13 SDLC/BSC Support for 4-Port PCI Adapter (4.3.2) 181
7.13.1 Packaging . 181
7.13.2 Trace . 181
7.13.3 Error Logging . 182

7.14 Open Network Computing (ONC+). 182
7.14.1 CacheFS . 182

7.14.1.1 How CacheFS Works .183
7.14.1.2 Configuring CacheFS .183
7.14.1.3 CacheFS Commands .185
viii AIX Version 4.3 Differences Guide

7.14.2 AutoFS (4.3.1). .187
7.14.2.1 How AutoFS Works . 187
7.14.2.2 AutoFS Maps . 188
7.14.2.3 Master Maps. 188
7.14.2.4 Direct Maps . 189
7.14.2.5 Indirect Maps . 190

7.14.3 NFS Server Performance Enhancement (4.3.2).190

Chapter 8. Graphical Environment Enhancements191
8.1 X-Windows Architecture Review .191

8.1.1 Client .191
8.1.2 Protocol. .191
8.1.3 Server .192

8.2 X-Windows System Release 6 .192
8.2.1 X11 Security .193
8.2.2 X Image Extension .193
8.2.3 Inter-Client Communications Conventions Manual 193

8.2.3.1 Window Management. 194
8.2.3.2 Selections. 194
8.2.3.3 Resource Sharing. 194
8.2.3.4 Session Management. 194

8.2.4 ICE (Inter-Client Exchange). .194
8.2.5 SM (Session Management) .195
8.2.6 X Logical Font Description .195
8.2.7 SYNC Extension .195
8.2.8 XC-MISC Extension .195
8.2.9 BIG-REQUESTS Extension .195
8.2.10 Double Buffer Extension (DBE) .195
8.2.11 X Keyboard Extension .196

8.2.11.1 XKB Keyboard Extension Support for Keyboards 196
8.2.11.2 XKB Extension Components . 196
8.2.11.3 Groups and Shift Levels . 198
8.2.11.4 Client Types . 198
8.2.11.5 Protocol Errors . 199
8.2.11.6 Extension Library Functions . 199
8.2.11.7 XKB Client Applications . 199

8.2.12 X Record Extension. .200
8.2.13 ICE X Rendezvous .200
8.2.14 Print Extension .200

8.2.14.1 Running an X Print Server . 200
8.2.15 Xlib Vertical Writing and User-Defined Characters 201
8.2.16 Xlib Library .201
8.2.17 Xt Toolkit .202
8.2.18 Xaw Toolkit .203

8.2.18.1 AsciiText. 203
8.2.19 Header Files .204
8.2.20 Fonts. .204

8.2.20.1 Font Library . 204
8.2.20.2 Font Server. 205

8.2.21 X Input Method .205
8.2.21.1 XIM Module Loader . 205
8.2.21.2 AIX XIM Interface for Input Method Switching 206

8.2.22 Input Method Protocol .206
8.2.23 New Functions .208
 ix

8.2.23.1 Input Method Values .208
8.2.23.2 Input Context Values. .208

8.2.24 X Output Method . 209
8.2.24.1 Output Method Functions .209
8.2.24.2 Output Context Functions .210

8.2.25 X11R6 NLS Database . 210
8.2.25.1 XLC_FONTSET Category .210
8.2.25.2 XLC_XLOCALE Category .211
8.2.25.3 locale_name/Compose .211
8.2.25.4 Configuration Files .211
8.2.25.5 tbl_data/charset_table. .212

8.2.26 Command Line Interfaces . 212
8.2.26.1 xhost .212
8.2.26.2 xrdb .212
8.2.26.3 twm .212
8.2.26.4 xdm .212
8.2.26.5 xterm .213
8.2.26.6 xset .213
8.2.26.7 imake. .213
8.2.26.8 xsm .213
8.2.26.9 xmh .213

8.3 Motif Version 2.1 . 213
8.3.1 New Widgets . 214

8.3.1.1 Container Widget .214
8.3.1.2 Note Book .215
8.3.1.3 Combo Box .217
8.3.1.4 Spin Box .217

8.3.2 Motif Changes in Behavior . 217
8.3.3 The Motif Extensibility Framework . 218

8.3.3.1 Traits .218
8.3.3.2 Uniform Transfer Model (UTM) .219
8.3.3.3 Menu System Improvements .220

8.3.4 Miscellaneous Enhancements . 221
8.3.4.1 Printing .221
8.3.4.2 Thread-Safe Libraries .221
8.3.4.3 File Selection Box .221
8.3.4.4 String Manipulation .221
8.3.4.5 Toggle Button Enhancements .221
8.3.4.6 Support for Right-to-Left Layout .222
8.3.4.7 Support for XPM Format .222
8.3.4.8 Vertical Paned Window .222
8.3.4.9 Unit Conversion. .222
8.3.4.10 List Enhancements .222
8.3.4.11 XmScreen Enhancements .222
8.3.4.12 Virtual Bindings .223
8.3.4.13 Drag and Drop Enhancements .223
8.3.4.14 Scrolled Window and Scroll Bar Enhancements224
8.3.4.15 Drawing Area .224
8.3.4.16 Performance Enhancements. .224
8.3.4.17 UIL Extensibility and Portability .225

8.3.5 Compatibility with Motif 1.2 and 2.0 . 225
8.4 X Virtual Frame Buffer (4.3.2) . 226

8.4.1 Direct Soft OpenGL . 227
8.4.2 CATweb Navigator and XVFB/DSO . 227

8.5 OpenGL Enhancements . 228
x AIX Version 4.3 Differences Guide

8.5.1 OpenGL 64-bit Indirect Rendering (4.3.1) .228
8.5.2 OpenGL Performance Enhancements (4.3.2) 228
8.5.3 OpenGL Version 1.2 and ZAPdb (4.3.2) .228
8.5.4 New OpenGL Extensions (4.3.2) .230

8.6 graPHIGS Enhancements (4.3.2) .230
8.6.1 Performance Enhancements .230
8.6.2 Euro Symbol Support .230

Chapter 9. Online Documentation .233
9.1 Documentation Search Service .233

9.1.1 Installation of Documentation Search Service233
9.1.1.1 Installing the Web Browser. 234
9.1.1.2 Installing the Web Server . 235
9.1.1.3 Installing Documentation Search Service. 235

9.1.2 Configuring Documentation Search Service 236
9.2 Installing Online Manuals .237
9.3 Invoking Documentation Search Service .237
9.4 Internationalization .239
9.5 Man Page Changes .239
9.6 SMIT Documentation .240

Chapter 10. National Language Support .241
10.1 National Language Character Handling .241
10.2 Levels of NLS Enablement .241
10.3 Unicode .242

10.3.1 UTF-8 .243
10.3.2 ULS. .243
10.3.3 Universal Locale .244

10.3.3.1 Locale Definitions . 244
10.3.3.2 Locale Methods . 245
10.3.3.3 Input Methods. 248
10.3.3.4 Fonts and X11 Locales. 248
10.3.3.5 Layout Services . 249

10.3.4 Installation and Packaging. .249
10.3.5 List of Supported Unicode Locales .249

10.4 Java NLS Support .251
10.5 Euro Symbol Support for AIX (4.3.2) .252

10.5.1 Overview .252
10.5.2 Local Definitions for the UTF-8 Code Set 253

10.5.2.1 Euro Sign Character Classification. 254
10.5.2.2 Euro Sign Encoding . 255
10.5.2.3 LC_MONETARY Formatting Information 256
10.5.2.4 Collating Sequence for Euro Locales . 259

10.5.3 Keyboard Definitions .259
10.5.4 Input Methods for the Euro Symbol .262

10.5.4.1 Single-Byte Character Set Input Method 262
10.5.4.2 UNIVERSAL Input Method . 263

10.5.5 Codeset Conversion Tables .266
10.5.6 Euro SBCS Migration Option - IBM-1252 Locale270
10.5.7 Packaging .271
10.5.8 Installation of Euro Symbol Support .272

10.5.8.1 Euro UTF-8: Additional Language Environment. 273
10.5.8.2 Euro UTF-8: Primary Language Environment 275
10.5.8.3 IBM-1252 Code Set Euro Symbol Support. 277
 xi

10.6 National Language Enhancements . 278
10.6.1 Byelorussian and Ukrainian Localization 278
10.6.2 Thai Language Support . 279

10.6.2.1 Systems Management .279
10.6.2.2 Standards Compliance of Thai Language Support280
10.6.2.3 Application Binary Interface (ABI) .280
10.6.2.4 Application Programming Interfaces (API) 280

10.6.3 Vietnamese Language Support . 280
10.6.3.1 Systems Management .281
10.6.3.2 Standards Compliance of Vietnamese Language Support281
10.6.3.3 Migration .281

10.6.4 Japanese Code Page 943 (AIX 4.3.2) . 281
10.6.4.1 Installation and Packaging .282

10.6.5 Korean TrueType Font (AIX 4.3.2) . 282
10.6.5.1 Standards .283
10.6.5.2 Installation and Packaging .283

10.7 Documentation Search Service: DBCS HTML Search Engine (4.3.2). . 284
10.7.1 Documentation Libraries . 285
10.7.2 Limitations . 286
10.7.3 Invoking Documentation Search Service 286

10.7.3.1 Japanese Documentation Search .286
10.7.3.2 Simplified Chinese Search .290

10.7.4 Binary Compatibility . 294

Chapter 11. AIX Stand-Alone LDAP Directory Product 295
11.1 Typical Configurations . 295
11.2 LDAP Protocol Support . 296
11.3 LDAP Client Toolkit . 296
11.4 Stand-Alone LDAP Directory Server . 297

11.4.1 DB2 Back End . 298
11.4.2 ODBC . 299
11.4.3 RDB Glue . 299
11.4.4 SLAPD. 299
11.4.5 Server Replication . 299
11.4.6 HTTP Access to Directory . 299

11.5 Security . 299
11.5.1 Authentication . 300

11.6 Installation . 300
11.6.1 Software Prerequisites . 300

11.7 Administrative Interface . 300
11.7.1 Web-Based Graphical User Interface . 301
11.7.2 Command Line Utilities . 301
11.7.3 Other Administrative Procedures . 301

11.8 LDAP-Related RFCs and Internet Drafts Implemented 302
11.8.1 Internet Drafts . 302
11.8.2 LDAP-Related RFCs . 302
11.8.3 X.500-Related RFCs . 303

Appendix A. Special Notices .305

Appendix B. Related Publications .307
B.1 International Technical Support Organization Publications307
B.2 Redbooks on CD-ROMs .307
B.3 Other Publications .307
xii AIX Version 4.3 Differences Guide

B.4 Internet Sites . 309

How to Get ITSO Redbooks .311
How IBM Employees Can Get ITSO Redbooks . 311
How Customers Can Get ITSO Redbooks . 312
IBM Redbook Order Form . 313

List of Abbreviations .315

Index .319

ITSO Redbook Evaluation .331
 xiii

xiv AIX Version 4.3 Differences Guide

Figures

1. RS/6000 Enterprise Server Model S7A . 2
2. RS/6000 43P Model 150 . 3
3. RS/6000 43P Model 260 . 5
4. Register Implementation of 32-Bit and 64-Bit PowerPC Processors 31
5. Comparison of Address Translation in 32-Bit and 64-Bit Mode 32
6. Interfacing 64-Bit Processes to a 32-Bit Kernel . 38
7. Effective Segment IDs in 32-Bit and 64-Bit Mode . 41
8. M:N Threads Model . 72
9. Sample Output from netstat -c Command . 81
10. Importvg -L Example . 84
11. Default SMIT Menu . 96
12. Default Motif SMIT Menu . 96
13. Sample VSM Storage Manager . 98
14. Web-Based System Manager Launch Interface . 101
15. Web-Based System Manager User Menu . 103
16. Web-Based System Manager Selected Menu . 104
17. Web-Based System Manager View Menu . 105
18. Web-Based System Manager Options Menu. 106
19. Web-Based System Manager Icon View . 108
20. Web-Based System Manager Details View . 109
21. Web-Based System Manager Tree View . 109
22. Example of Secure Mode Connection Using HTTPS. 113
23. Example of Container Window in Secure Mode. 114
24. Example of Diagnostics Menu . 115
25. Example of ELA Day Selection Menu . 115
26. Registered Applications Dialog Box . 116
27. Registered Applications Container. 117
28. Registered Application Host Selection Dialog . 117
29. Sample NIM SMIT Panel Showing Group Controls . 136
30. Sample SMIT Volume Group Backup Screen . 142
31. Memory Exerciser Options Menu. 144
32. System Exerciser Main Menu . 144
33. Typical Output from the netstat -ni Command . 158
34. Routing Tables Shown by netstat -rn Command . 158
35. IPv6 Statistics from netstat -p ipv6 Command . 159
36. Example of ifconfig Command Usage . 159
37. Example of route Command Usage . 160
38. Example of ndp Command Usage . 162
39. New SMIT TCP/IP Configuration Panel Entries . 164
40. Configuring IPv6 Tunnel Interfaces with SMIT. 164
41. IPv6 Daemon Configuration SMIT Panel . 165
42. IPv6 autoconf6 SMIT Configuration Panel . 165
43. CacheFS Components. 183
44. Output of mount Command Showing CacheFS . 187
45. XKB Server Extension . 197
46. Types of XKB Clients . 198
47. Example of the New Motif Widgets . 214
48. Netscape Filesets. 234
49. Domino Go Webserver Filesets . 235
50. Documentation Search Service Filesets . 236
© Copyright IBM Corp. 1998 xv

51. Documentation Search Service. .238
52. Euro Symbol (http://europa.eu.int/euro/html/entry.html)252
53. UNIVERSAL Input Method: Switching .264
54. UNIVERSAL Input Method: Character List Selection265
55. UNIVERSAL Input Method: Character List .266
56. German UTF-8: Add Additional Language Environment.274
57. German UTF-8: Change/Show Cultural Convention, Lang., or Keyboard . . .275
58. Japanese Search Form. .287
59. Searching Japanese Documentation .288
60. A Japanese Search Result .289
61. A Japanese Book .290
62. Chinese Search Form .291
63. Input Chinese Character .292
64. Chinese Searching Result. .293
65. A Chinese Book for Installation .294
66. Typical AIX Stand-Alone LDAP Client/Server Configuration.295
67. Stand-Alone LDAP Directory Server - Details. .298
xvi AIX Version 4.3 Differences Guide

Tables

1. Graphics Adapters Available for the Model 150. 4
2. Graphics Adapters Available for the Model 260. 6
3. Ethernet Adapters Comparison . 8
4. Features of FC-AL and SSA . 11
5. Maximum Supported Memory Sizes . 16
6. IPC Identifier Limits . 24
7. Old Priority Algorithm, sched_R and sched_D Defaulted to 16 27
8. New Priority Algorithm, sched_R and sched_D Defaulted to 16 27
9. Old Priority Algorithm, sched_R=8 . 28
10. New Priority Algorithm, sched_R=8 . 28
11. Size of Address Space as a Function of Address Length 30
12. Address Space Layout in User Mode. 34
13. Old and New Kernel Services Used by Device Drivers 51
14. Settings for OBJECT_MODE and the Resulting Compiler Behavior 57
15. Alignment of Basic Data Types in 32- and 64-Bit Mode. 60
16. Unsupported Real-Time Routines . 67
17. Unsupported Optional Threads Interfaces . 68
18. chlvcopy New Options in AIX 4.3.1 . 85
19. Factor -t . 86
20. Limitations of LVM . 87
21. New Options for chlvcopy Command in AIX 4.3 . 94
22. Possible Values of Phase Value . 125
23. Threadsafe Routines in libsrc. 133
24. Settings of reboot_enable Attribute . 134
25. Paging Space Allocation Policies. 138
26. Possible Values of EXISTING_SYSTEM_OVERWRITE 143
27. AIX Level and Required File Sets . 145
28. ICMPv6 Error Messages . 152
29. ICMPv6 Informational Messages . 152
30. IPSec Command Summary . 156
31. Applications Ported to IPv6 . 157
32. auotconf6 Options . 160
33. traceroute Options . 161
34. ndp Options . 162
35. ndpd-host Options . 163
36. RFCs Implemented in AIX Version 4.3.0 . 166
37. ifconfig New Flags for Display Interface Information 172
38. Ifconfig New Options for Checksum Offload . 177
39. Hook IDs of 10/100 Ethernet PCI Adapter . 180
40. cfsadmin Options . 185
41. CacheFS Resource Parameters . 185
42. fsck_cachefs Options . 186
43. XKB Protocol Errors . 199
44. New X11R6 Xlib Functions . 202
45. XIM Module Loading Priorities . 205
46. New Input Method Values . 208
47. New Input Context Values . 208
48. Internal Locale Methods Called for Each Locale . 247
49. Supported Unicode Locales . 249
50. Encoding for the European Currency Symbol and Euro Sign 255
© Copyright IBM Corp. 1998 xvii

51. List of Locales for Euro-Specific LC_MONETARY Locale256
52. LC_MONETARY Keywords for the Euro Locale .257
53. Locale-Specific Deviations in the LC_MONETARY Category.258
54. Keyboard Definitions to Incorporate the Euro Symbol 260
55. Existing EBCIDIC Code Sets .266
56. Converters for Euro Symbol Support .268
57. Additional Double-Byte Support in Docsearch .284
58. LDAP-Related RFCs .302
59. X.500-Related RFCs. .303
xviii AIX Version 4.3 Differences Guide

Preface

This redbook focuses on the latest enhancements introduced in AIX Version
4.3.2. It is intended to help system administrators, developers, and users
understand these enhancements in order to evaluate potential benefits in their
own environments.

AIX Version 4.3 includes many new features, including 64-bit application support,
IP Version 6, X11 Release 6, Lightweight Directory Access Protocol (LDAP), and
improved scaling over a wider range of platforms. The availability of two new
Web-based utilities, Web-Based Systems Manager and a Web-based
Documentation Search Service, signal AIX’s move toward a standard, unified
interface for system tools. There are many other enhancements available with
AIX Version 4.3, and you can explore them all in this redbook.

This publication is an update to the previously published AIX Version 4.3
Differences Guide, First Edition, which focused on the enhancements introduced
in AIX Version 4.3.0. Certain sections of the First Edition have been removed, or
edited as required, to reflect the fact that the online documentation provided with
AIX Version 4.3 now adequately covers many of the original topics.

How this Redbook is Organized

Throughout this publication, each major section heading indicates which level of
AIX 4.3 introduced the enhancement by including the maintenance level in
parentheses. For example, the following section heading:

Multiple Concurrent Reads (4.3.1)

indicates that the feature was introduced in AIX Version 4.3.1. If no maintenance
level is given, then the feature was included in the initial AIX Version 4.3.0.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Richard Cutler is an AIX Technical Specialist at the RS/6000 Technical Center in
the UK. He has worked with the RS/6000 platform since its introduction and is
currently responsible for assisting software vendors and business partners when
they migrate their products to AIX.

Zhu Li is an RS/6000 and AIX Technical Specialist at the Technical Support
Center in IBM China. She is working on AIX-related problem solving for
customers, business partners, and IBM Internal.

Armin Olaf Roell joined IBM Germany in 1995 and works as an RS/6000 system
engineer responsible for presales technical support. At present, he is a member
of the AIX Technology Focus Group and specializes in general AIX Base
Operating System-related matters.

The project that produced this publication was managed by:

Scott Vetter IBM Austin
© Copyright IBM Corp. 1998 xix

The authors of the First Edition are:

Colin Fearnley IBM Johannesburg, South Africa

Andreas Gruber IBM Munich, Germany

John Hance IBM Australia

Kevin Murrell IBM Austin, USA

John Newman IBM Basingstoke, UK

Thanks to the following people for their invaluable contributions to this project.
Without their help, this publication would have been impossible:

Greg Althaus IBM Austin

Ron Arroyo IBM Austin

David Babbitt IBM Austin

Bill Baker IBM Austin

Greg Birgen IBM Austin

Larry Brenner IBM Austin

Luke Browning IBM Austin

Bill Bulko IBM Austin

Daisy Chang IBM Austin

Lliese Chelstowski IBM Austin

Julie Craft IBM Austin

John Emmons IBM Austin

Kevin Fought IBM Austin

Stan Gowen IBM Austin

Emilia Hezari IBM Austin

Elizabeth Higgins IBM Austin

Dan Hinderliter IBM Austin

Tom Homer IBM Austin

Gary Hook IBM Austin

William J. Hymas IBM Austin

Yohji Kumazawa IBM Japan

Joy Latten IBM Austin

John Maddalozzo IBM Austin

James Manon IBM Austin

Brandon Mayfield IBM Austin

Gerald McBrearty IBM Austin

Mark McConaughy IBM Austin

Dwayne McConnell IBM Austin

Casey McCreary IBM Austin

Hye-Young McCreary IBM Austin
xx AIX Version 4.3 Differences Guide

Bruce Mealey IBM Austin

Steve Nasypany IBM Austin

Chris Nelson IBM Austin

Grover Neuman IBM Austin

Ram Pandiri IBM Austin

Priya Paul IBM Austin

Stephen Peckham IBM Austin

George Penokie IBM Austin

Deanna Quigg IBM Austin

Mark D. Rogers IBM Austin

Ken Rozendal IBM Austin

Ron Saint Pierre IBM Austin

Yim SeongSoo IBM Korea

Jim Shaffer IBM Austin

Jeff A. Smith IBM Austin

Jeanne Sparlin IBM Austin

Marc Stephenson IBM Austin

Randy Swanberg IBM Austin

Andrew Taylor IBM Austin

Ashu Tiwary IBM Austin

Marvin Toungate IBM Austin

Art Tysor IBM Austin

Basu Vaidyanathan IBM Austin

Wayne Wheeler IBM Austin

Dalal Younis IBM Austin

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 331 to
the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xxi

xxii AIX Version 4.3 Differences Guide

Chapter 1. Hardware Announcements

The following RS/6000 severs, workstations, and adapters were companion
announcements with AIX Version 4.3.2. AIX is exhaustively tested on every new
hardware enhancement.

1.1 RS/6000 7017 Enterprise Server Model S70 Advanced

The RS/6000 Enterprise Server Model S70 Advanced (Figure 1) is a member of a
new generation of 64-bit, 4-way, 8-way, or 12-way symmetric multiprocessing
(SMP) enterprise servers. The Model S7A provides the power, capacity, reliability,
and expandability to support your next generation mission-critical commercial
computing.

With the Model S7A, you can manage the evolution of your business into 64-bit
computing while still supporting your existing 32-bit applications. The I/O
subsystem supports 32-bit and 64-bit standard PCI adapters.

1.1.1 System Highlights
The Model S7A is packaged as a central electronics complex (CEC) and an I/O
rack. The Model S7A Central Electronics Complex entry configuration starts with
a 4-way scalable SMP system that uses the 64-bit 262 MHz RS64 II processor
with 8 MB of Level 2 (L2) cache per processor. The 4-way SMP can be expanded
to a 12-way SMP, and the system memory can be expanded to 32 GB.

The I/O rack contains the first drawer containing the following:

 • Service processor

 • High-performance disk drive

 • 32X maximum speed CD-ROM

 • 1.44 MB, 3.5-inch diskette drive

 • Two PCI disk adapters

Up to three additional Model S7A I/O drawers can be added, with the restriction
of a maximum of two I/O drawers per rack. Additional I/O racks can also be
ordered with the S7A. Existing RS/6000 7015 Model R00 racks, or the 7014
Model S00 rack, can also be used for additional storage and communication
drawers. This helps to protect your existing investment in SSA or SCSI DASD.

A fully configured system would be as follows:

 • 12-way processor

 • 32 GB of system memory

 • 55 available PCI adapter slots

 • 48 hot-pluggable disk bays

 • 7 available media bays

The remaining space in the I/O racks can be used for additional storage and
communication subsystems.
© Copyright IBM Corp. 1998 1

The RS/6000 Enterprise Server Model S70 Advanced is shipped and delivered
with all the internal adapters and devices already installed and configured. AIX
Version 4.3.2 software is included with every S7A and can be preinstalled if
desired.

Figure 1. RS/6000 Enterprise Server Model S7A

1.1.2 I/O Drawer Specification
Other than the CPU speed increase and maximum supported memory
configuration, the main difference between the new Model S7A and the Model
S70 is the new I/O drawer.

The new I/O drawer differs from the previous S70 drawer in the following details:

 • Ten EIA units in size instead of seven EIA units.

 • Dual redundant hot pluggable power supplies. Although the previous model
drawer has two power units, they power different drawer components. This
means the failure of a single power supply results in the whole drawer being
unusable.

 • N+1 hot pluggable cooling fans.

 • Support for internal SSA disk drives (not in primary drawer). It is only possible
to have internal SCSI disks in the previous drawer.

 • Ultra SCSI internal disks connected to an Ultra SCSI adapter card. The
previous drawer used Ultra SCSI disks connected to a SCSI-2 F/W adapter.

 • The option of implementing an internal SCSI disk system as two 6-packs,
each driven by a separate SCSI adapter. This is useful when mirroring disks
for availability, as it means the disk adapter is no longer a single point of
failure. The previous drawer implemented the internal SCSI disk as one
12-pack. All disks in the drawer were attached to one SCSI controller.
2 AIX Version 4.3 Differences Guide

 • Two media bays per I/O drawer. The previous model I/O drawer has three
media bays. As with the previous model drawer, the first drawer in a system
comes with a 32X CD-ROM drive in one of the bays.

 • -48v DC power option is no longer available.

1.2 RS/6000 43P 7043 Model 150

The IBM RS/6000 43P 7043 Model 150 is an entry-level desktop RS/6000
workstation, or workgroup server, offered at an affordable price. The 150 provides
a continuation of the successful 43P line of entry workstations.

The Model 150 is a uni-processor system that provides an enhanced
performance over its predecessor, the Model 140, by using a 375 MHz PowerPC
604e processor and an enhanced memory controller. With this memory controller,
the Model 150 uses SDRAM memory and an 83 MHz memory bus speed. The
system memory can also be expanded up to 1 GB.

With Ethernet and Ultra SCSI controllers integrated on the planar, the Model 150
also contains five PCI slots and five bays for expansion and growth capability.
This makes the Model 150 an attractive investment as either a technical
workstation or an entry workgroup server.

The Model 150 supports a variety of 2D and 3D graphics adapters (including a
new advanced 3D graphics adapter), offering excellent graphics price and
performance. In addition, a robust set of disk drive and communications features
are available.

Figure 2. RS/6000 43P Model 150

The Model 150 incorporates the following features:

 • 375 MHz PowerPC 604e processor.
Hardware Announcements 3

 • 1 MB of Level 2 (L2) cache.

 • Four memory slots, which allow system memory from 128 MB to 1 GB of ECC
SDRAM.

 • Integrated 10/100 Mbps Ethernet with RJ45 and AUI connectors.

 • Integrated Ultra SCSI controller.

 • Five PCI slots in total. Two are short slots, and three are full length. The
number of available slots depends on the type of graphics adapter selected, if
any.

 • Five bays in total. There are two disk and three media bays. The standard 4.5
GB SCSI disk occupies one disk bay; the other disk bay is available. A 1.44
MB 3.5-inch diskette drive and a 32X max. speed CD-ROM occupy two of the
media bays. One media bay is available.

 • Two serial ports, one parallel port, keyboard, mouse, and graphics tablet
ports.

A variety of 2D and 3D graphics adapters, including a new advanced 3D graphics
adapter GXT3000, are available for the Model 150. The available adapters are
shown in Table 1.

Table 1. Graphics Adapters Available for the Model 150

1.3 RS/6000 43P 7043 Model 260

The Model 260 is designed for use as a mid- to high-range graphics workstation
and as an entry server. It is a new addition to the RS/6000 workstation and
workgroup server family.

The Model 260 is an affordable 64-bit symmetric multiprocessing (SMP) system
with true multithreaded application support and extended floating-point
capabilities. It provides significant performance enhancements over the Model
150 and the Model 240.

The graphics capability, along with the excellent price and performance, position
the Model 260 as an MCAD, CAE, Geophysical, and entry technical server design
and analysis solution.

It can be used as an entry SMP/64-bit server for ISVs and customers who want a
cost-effective development platform for developing and testing applications that
will run on larger RS/6000 systems.

The dual processing power of the Model 260 and its small package make it an
excellent solution for Internet service providers and customers that need, or want,
a stand-alone Internet server. The Model 260 is well suited for network computing

Adapter Feature Code PCI Slot Type

GXT120P 2838 1-5 (4 max) short

GXT250P 2851 1-5 (4 max) short

GXT255P 2852 1-5 (4 max) short

GXT550P 2855 2, 3 (1 max) long

GXT3000P 2825 3 (1 max) long
4 AIX Version 4.3 Differences Guide

and interoperability. It can be used as either a stand-alone multi-user,
departmental, transaction, or database server.

Figure 3 shows the Model 260 with additional equipment.

Figure 3. RS/6000 43P Model 260

The following is a summary of the Model 260:

 • 1- or 2-way SMP system using the 64-bit 200 MHz POWER3 processor.

 • 4 MB of Level 2 (L2) cache per processor.

 • The system memory can be expanded up to 4 GB.

 • A 10/100 Mbps Ethernet, Ultra SCSI, and a service processor are integrated
within the Model 260.

 • Contains five PCI slots. Two of the slots are 64-bit at 50 MHz, and three are
32-bit at 33 MHz.

 • Contains five bays. There are two disk and three media bays. One disk bay is
available. A 1.44 MB 3.5-inch diskette drive and a 32X CD-ROM occupy two of
the media bays.

 • A variety of 2D and 3D graphics adapters, including a new advanced 3D
graphics adapter (GXT3000), are available for the Model 260.

 • An auto-restart (reboot) option, when enabled, automatically reboots the
system following an unrecoverable software error, hardware failure, or
environmental-induced (power) failure.

The AIX Version 4.2.1 or 4.3.2 operating system is included with each Model 260
and can be preinstalled, if desired.
Hardware Announcements 5

The Model 260 is designed for customer setup of the machine and for
subsequent addition of most features (adapters/devices).

Table 2 shows a summary of all supported graphics adapters for the Model 260.

Table 2. Graphics Adapters Available for the Model 260

1.4 GXT3000P PCI Graphics Accelerator

AIX Version 4.3.2 introduces support for the new high performance RS/6000
POWER GXT3000P PCI Graphics Accelerator that attaches to the RS/6000 43P
7043 Models 150 and 260.

The GXT3000P provides hardware acceleration for the new OpenGL 1.2 version
of the API. This adapter accelerates advanced 3D graphics functions, such as
Gouraud shading, antialiasing, depth buffering, fog, atmospheric effects, and
blending. This enables your 3D applications to run more quickly and with good
interactive performance. Additional benefits when using the POWER GXT3000P
graphics accelerator are:

 • Increased subpixel addressing over previously supported adapters

 • Face culling support

 • OpenGL polygon offset support

 • OpenGL polygon mode support

 • OpenGL specular lighting support in hardware

 • Trilinear texture mapping

The POWER GXT3000P offers a highly flexible frame buffer that can be
dynamically configured to provide a broad set of color and feature options. When
using OpenGL and graPHIGS APIs, the GXT3000P offers support for 8-bit and
24-bit double-buffered color and includes 8-bits of double-buffered alpha buffers
for more realistic transparency control. In addition, this accelerator provides 8-bit
overlay buffers that enhance the speed of a graphical user interface (GUI), 8-bit
stencil buffers, 8-bit window ID buffer, and a 24-bit Z-buffer for hidden surface
removal operations. The POWER GXT3000P allows for the display of up to 16.7
million simultaneous colors.

Feature Code Adapter Max. Quantity Slot Priority Size

2838 GXT120P 4 1,2,3,4,5 short

2851 GXT250P 4 1,2,3,4,5 short

2852 GXT255P 4 1,2,3,4,5 short

28251 GXT3000P 1 2 only long

1 Note: GXT3000P requires AIX 4.3.2. Support for AIX 4.2.1 is planned at a later date.

Any GXT550P shipped before October, 1998 is not compatible. The
GXT800P must be installed in slot 1. Slot 2 and 3 will not be available.

Note
6 AIX Version 4.3 Differences Guide

The GXT3000P graphics accelerator is a single 64-bit PCI card that attaches to
one 32-bit or 64-bit PCI slot in the RS/6000 Models 150 or 260 but covers the slot
adjacent to it (uses two slots of space).

The GXT3000P supports display resolutions of up to 1280x1024 at an 85 Hz
refresh rate, including monitors that comply with the ISO 9241 Part 3 ergonomic
standard.

1.5 Gigabit Ethernet-SX PCI Adapter

The 1 Gb network adapter is the next generation high speed LAN connection
initially targeting backbones and consolidation of 10/100 Mb Ethernet segments.

The device driver of the PCI Gigabit Ethernet adapter is supported in AIX
Versions 4.2.1 and 4.3.2. Earlier versions of AIX will not be supported. The
machine models that support this adapter are: RS/6000 Models 260, F50, H50,
S70, and S7A.

The Gigabit Ethernet-SX PCI adapter is designed for customers that require high
performance LAN networks. It supports:

 • 64-bit wide PCI slots at 33 or 66 MHz

 • Multiple IP subnets without traversing routers

 • Up to 64 IP address assignments on one network connection

 • Hardware for TCP, UDP, and IP checksums (requires AIX 4.3.2 or later)

 • Remote network boot on both Open Firmware and legacy PCI boxes

 • User configurable options for multiprocessor systems

When the user-configurable option for MP systems with high bandwidth adapters
is set, this option enables TCP/IP input processing to be off-loaded to kernel
threads to improve overall throughput (one processor runs the device driver
interrupt, while others perform the TCP/IP processing).

This driver conforms to the following specifications:

 • PCL Local Bus Revision 2.0 and 2.1

 • IEEE 802.1Q frame tagging

 • IEEE 802.3z switches and duplex repeaters

 • IEEE 802.3q VKAN tagging

 • IEEE 802.3x flow control standards

The adapter and device driver support fiber-optic cabling 1000 Base SX and
full-duplex mode. The adapter uses short wave 850 nm multimode 62.5 or 50
micron fiber cables.

The adapter and device driver support jumbo frame 9014 byte Ethernet packets.
AIX Version 4.2.1 only supports standard size Ethernet packets. Currently, jumbo
packets only work when Alteon switches are used.

Installation of AIX using this adapter is supported. The code to support this is a
part of the system firmware. The AIX product device driver will run on the adapter
after control has been passed to AIX.
Hardware Announcements 7

Table 3 is a comparison of various Ethernet adapters.

Table 3. Ethernet Adapters Comparison

More information about the Gigabit Ethernet standard can be found at:

 •http://www.gigabit-ethernet.org

 •http://grouper.ieee.org/groups/802/

1.5.1 Adapter Parameters
You can alter the following adapter parameters:

 • Transmit Queue Size (tx_que_size)

This indicates the number of transmit requests that can be queued for
transmission by the device driver. Valid values range from 512 through 2048.
The default value is 512.

Note: the fixed hardware transmit queue size of 512 is included in this number.

 • Transmit and Receive Jumbo Frames (jumbo_frames)

Setting this attribute to yes indicates that frames up to 9014 bytes in length
may be transmitted or received on this adapter. If you specify the no value, the
maximum size of frames transmitted or received is 1514 bytes.

Note: specifying yes will use additional system memory for buffers.

 • Enable Alternate Ethernet Address (use_alt_addr)

Setting this attribute to yes indicates that the address of the adapter, as it
appears on the LAN network, is the one specified by the ALTERNATE
ETHERNET address attribute. If you specify the no value, the unique adapter
address written in a ROM on the adapter card is used. The default value is no.

 • Alternate Ethernet Address (alt_addr)

This allows the adapter unique address, as it appears on the LAN network, to
be changed. The value entered must be an Ethernet address of 12
hexadecimal digits and must not be the same as the address of any other
Ethernet adapter. There is no default value. This field has no effect unless the
Enable ALTERNATE ETHERNET address attribute is set to the yes value, in
which case, this field must be filled in. A typical Ethernet address is:
0x02608C000001. All 12 hexadecimal digits, including leading zeros, must be
entered.

Note: the universal/local bit does not have to be set to local.

Features Ethernet
10 Base T

Fast Ethernet
100 Base T

Gigabit Ethernet
1000 Base X

Data Rate 10 Mbps 100 Mbps 1 Gbps

Cat 5 UTP 100 m 100 m 100 m (1000 Base-T)

STP/Coax 500 m 100 m 25 m (1000 Base-CX)

Multimode Fiber 2 km 412 m (hd) 500 m (1000 Base-SX)

Singlemode Fiber 25 km 2 km (fd) 3 km (1000 Base-LX)
8 AIX Version 4.3 Differences Guide

 • Use Production Microcode (use_pcode)

Setting this attribute to yes indicates that the production microcode should be
downloaded to the adapter. If you specify the no value, the debug version of
the microcode that has traces enabled is used. The default value is yes.

1.5.2 Error Logging
The following error log entries are currently logged by the device driver:

 • ERRID_GXENT_ADAP_ERR

Indicates that the adapter self-check failed during initialization, and that the
error is irrecoverable. User intervention is necessary to fix the problem.

 • ERRID_GXENT_DOWNLOAD_ERR

Indicates that an error occurred while downloading firmware to the adapter,
and that the error is irrecoverable. User intervention is necessary to fix the
problem.

 • ERRID_GXENT_EEPROM_ERR

Indicates that an error occurred while reading the adapter EEPROM, and that
the error is irrecoverable. This error will only happen at configuration time.
User intervention is necessary to fix the problem.

 • ERRID_GXENT_TX_ERR

Indicates that the device driver has detected a transmission error (transmit
time out). The device driver will enter network recovery mode where it will
reset the adapter, re-download the firmware, and so on. If the recovery is
successful, the driver will log ERRID_GXENT_ERR_RCVRY_EXIT; otherwise,
ERRID_GXENT_ADAP_ERR or ERRID_GXENT_DOWNLOAD_ERR will be
logged. User intervention is not required (unless ERRID_GXENT_ADAP_ERR
or ERRID_GXENT_DOWNLOAD_ERR is also logged).

 • ERRID_GXENT_LINK_DOWN

Indicates that the adapter has detected that the link between the adapter and
the switch is down. The device driver will not enter network recovery mode.
Transmission requests on the hardware and software transmit queues will not
be deleted. The device driver will reject transmission requests until the link is
established. Control operations will still be allowed during this time. When the
link is established, the device driver will log
ERRID_GXENT_ERR_RCVRY_EXIT. User intervention is necessary to fix the
problem.

 • ERRID_GXENT_ERR_RCVRY_EXIT

Indicates that the adapter encountered a temporary error (TX_ERR or
LINK_DOWN) that halted network activity, and the problem has been
resolved.

 • ERRID_GXENT_UNSUPPORTED_ERR

Indicates that the adapter is not an IBM adapter. This error will only happen at
configuration time and is irrecoverable. User intervention is necessary to fix
the problem.
Hardware Announcements 9

1.6 Gigabit Fibre Channel Adapter

AIX 4.3.2 supports the new Gigabit PCI adapter for Fibre Channel Arbitrated
Loop (FC-AL) connectivity on RS 6000 S70/S7A machines. The adapter has an
expected availability date of March 26, 1999. It uses a shortwave over optical
fibre cable for a distance of up to 500 meters. With the use of optical fiber cabling,
this adapter allows users to establish a high speed network for local and remote
storage.

Fibre Channel Arbitrated Loop (FC-AL) began as the Fiber Channel Standard
(FCS) originally developed by IBM as a communications technology for computer
systems. FC-AL provides a high-speed interconnect running at 100 MB/s for a
single loop, 200 MB/s for dual loop-theoretical.

FC-AL is an arbitrated loop technology that allows only one-device access to the
bus for I/O operations.

This adapter is supported on AIX 4.3 with APAR IX81852.

This adapter has the following characteristics:

 • One initiator capability over an optical fiber link, one Gigabit Fibre Channel
Adapter per loop

 • Transmitting distance at 500 meters when using 50/125 micron cable and 175
meters when using 62.5/125 micron cable

 • Data rate throughput at 100 MB/s burst, 75 MB/s sustained

 • 25 MHz to 33 MHz clock speeds

 • 132 MB/s peak data transfer rate

 • 32-bit PCI Bus Master Mode DMA, 32 bit PCI Bus Slave Mode interface

 • Slave Mode supports medium device select timing

 • 32-bit PCI adapter with 64-bit addressing capability

 • Transmitting rate of 1062.5 MB/s

 • Short PCI form factor (6.875 x 4.2 inches)

 • Bus master, scatter/gather architecture

 • Selectable big/little endian

 • GLM medium adapter allows future use of copper or longwave optics

 • Supports 2048 exchanges

 • 6 KBx36 frame buffer (4 KB receive, 2 KB transmit)

 • 128 KBx32 SSRAM for processor memory

 • 512 KB Flash EPROM that contains microcode

 • 233 MHz ARM processor as the adapter controller

 • Support for 5.0 Volt or 3.3 Volt electrical signaling

 • Estimated performance is 5000 to 9000 SCSI 4 KB OP/s

 • PCI Local Bus Revision 2.1 compliant

 • No IPL/Boot support
10 AIX Version 4.3 Differences Guide

The Gigabit Fibre Channel adapter provides an attachment of one or two external
RAID subsystems to one or two hosts. The two host configuration supports
HACMP. Single host configuration with two adapters support fail-over from one
controller to the other. A follow-on product will provide 4-way attachment.

The new adapter supports connectivity to the IBM 2102-F10 Fibre Channel RAID
Disk Array subsystem with IBM 2102-D00 Storage Drawers through the optional
IBM 2103-H07 Fibre Channel Hubs.

The supported configurations include:

 • Point-to-Point

In this configuration, an adapter is connected directly to one RAID subsystem
using the shortwave cable. Even though it is physically a point-to-point
configuration, it logically appears to be a private (closed) arbitrated loop.
Maximum distance between the adapter and subsystem is 500 meters.

 • Private Arbitrated Loop

In this configuration, one hub is attached to the adapter through the shortwave
cable. The hub is a non-intelligent device. It is considered to be part of the
cabling and is not recognized by the adapter as a device. From the hub, up to
two RAID subsystems can be attached.

Although Gigabit Fibre Channel and Gigabit Ethernet could use similar physical
media, such as fiber optic cable, Gigabit Fibre Channel and Gigabit Ethernet
operate at different speeds and protocols. For example, Fibre Channel operates
at 1.0625 Gbps, while Gigabit Ethernet operates at 1.25 Gbps. Fibre Channel
protocol is optimized for the low-latency and high reliability required by storage,
while Gigabit Ethernet protocol is optimized for LAN.

Table 4 compares the features of FC-AL and SSA technology.

Table 4. Features of FC-AL and SSA

Features FC-AL SSA

Bandwidth 100MB/s 80MB/s
(20MB per link)

Connectivity (nodes per loop) 126 nodes 128 nodes

Distance between nodes 30m (copper)
10km (optical)

25m (copper)
2.4km (optical)

Arbitration Yes No

Connector 9-pin DIN (copper) 9-pin DIN
Hardware Announcements 11

12 AIX Version 4.3 Differences Guide

Chapter 2. AIX Kernel Enhancements

This chapter examines the changes in the AIX base kernel that are new with AIX
Version 4.3.

2.1 Binary Compatibility

The AIX architecture and development teams place a very high priority on
ensuring that binary compatibility exists for customers who want to migrate their
applications to later versions of AIX. The following sections explain the extent of
this compatibility and the few areas where problems may arise.

2.1.1 Compatibility between AIX Version 4 Releases
Applications written using earlier releases of AIX Version 4 (Release 1 or Release
2) for RS/6000 POWER, POWER2, POWER3, and PowerPC-based models, can
be executed on AIX Version 4 Release 3 without recompilation for the same and
newer models in that processor family (POWER, POWER2, POWER3, or
PowerPC). The exceptions to this statement are applications using:

 • Non-shared compiles of AIX shared libraries

 • Features explicitly described as non-portable by IBM in the AIX Version 4
reference manuals

 • Undocumented AIX internal features

 • X11R5 server extensions (AIX Version 4.3 Only)

 • Applications compiled using POWER2-, POWER3-, or PowerPC-specific
compiler options but executed on models other than POWER2, POWER3, or
PowerPC.

Note: Applications compiled on a given release level of AIX Version 4 may not
operate properly on systems running an earlier release of AIX Version 4.

Any program intended to run in all environments, POWER, POWER2, POWER3,
and PowerPC (601 and newer PowerPC processors), must be compiled using the
common mode option of the compiler. Programs compiled to exploit POWER2
technology must be run on POWER2-based processors. Programs compiled to
exploit POWER3 technology must be run on POWER3-based processors.
Programs compiled to exploit PowerPC-based technology must be run on
PowerPC-based processors. Existing binaries do not need to be recompiled to
operate on the target processors.

64-bit applications produced using AIX Version 4 Release 3 on any of the 32-bit
processor models, or the 64-bit processor models, will execute without
recompilation on the 64-bit processor models. 32-bit applications produced using
AIX Version 4 Release 3 on either 32- or 64-bit processor models will execute
without recompilation on both models.

2.1.2 X11 Compatibility
The AIX 4.3 X-server has been upgraded to the X Consortium Release 6 version
of X (commonly known as X11R6). The libraries shipped by IBM with X11R6 are
backward-compatible, and the client applications that access these libraries will
© Copyright IBM Corp. 1998 13

work as on previous releases of AIX. As on earlier releases of AIX, IBM will also
ship X11R3, X11R4, and X11R5 compatibility installation options for maximum
customer flexibility. In this way, client applications will experience no problems
with compatibility.

The majority of applications using X fall into this category and will not have any
difficulties. However, a small number of X applications use the loadable extension
facility provided by the X server.

The X-server allows for the addition of new function through its extension
mechanism. For each extension, part of the extension is loaded into the X-server
before it can be executed. X11R6 has modified this mechanism, and it is this part
of the extension that must be made compatible with X11R6 to execute properly.
All extensions supplied by IBM have been made compatible and will execute
properly. In some circumstances, a customer may have an extension that will not
work with X11R6, such as:

 • Customers who have sample extensions downloaded from the X Consortium
FTP site.

 • Customers who have developed their own extensions.

 • Customers using third-party extensions.

In these cases, the extensions will need to be made compatible with X11R6
before they will execute properly. Customer-developed extensions and sample X
consortium extensions will need to be recompiled with the X11R6 environment.
For third-party extensions, the customer should contact the vendor for a
X11R6-compatible update.

Customers using non-IBM display adapters may also be using vendor-supplied
software specific to those devices that use X-server capabilities. If so, this
software must be made compatible with X11R6 to operate properly. The customer
should contact the vendor of the display adapter for this software.

IBM provides a porting guide with AIX Version 4.3 that also appears on The
Developers Connection CD to assist customers and vendors developing adapters
or extensions for AIX. The Developers Connection can be found at the following
URL:

http://www.developer.ibm.com/devcon/

2.1.3 AIX Version 3 Application Compatibility
All AIX applications correctly written using AIX Version 3 Release 2 or greater for
POWER, POWER2, and PowerPC-based models will run on AIX Version 4
without recompilation for the same models. Exceptions are applications that use:

 • Their own loadable kernel extensions

 • Certain High Function Terminal (HFT) control interfaces

 • X11R3 input device interfaces

 • The CIO LAN device driver interface

 • SCSI device configuration methods (IHVs)

 • The nlist() interface

 • DCE threads
14 AIX Version 4.3 Differences Guide

Other exceptions include applications compiled using POWER2 or
PowerPC-specific compiler options that run on models other than POWER2 or
PowerPC.

Any program designed to run in all environments, that is, POWER, POWER2 and
PowerPC (601 and above), must be compiled using the common mode option of
the compiler. Programs compiled to exploit POWER2 technology must be run on
POWER2-based processors. Programs compiled to exploit PowerPC-based
technology must be run on PowerPC-based processors. Existing code does not
need to be recompiled to run.

Note: Applications created on a system using AIX Version 4 may not function
properly on a system using AIX Version 3.

For these statements to apply, applications must have been created using the
AIX shared libraries.

2.1.4 Client/Server Application Compatibility
An RS/6000 system using AIX Version 3 Release 2 or greater can operate as a
server system for client machines using AIX Version 4 with the following
exceptions:

 • Service of Version 4 diskless/dataless machines

 • Network install of Version 4 clients

 • Service SNA or X.25 to Version 4 clients

 • Service HCON to Version 4 clients

 • Service CGE extensions of PEX and PEX-PHIGS

 • Use of AIX Version 4 client install formats

An AIX system using AIX Version 4 may operate as a server system for client
machines using AIX Version 3 Release 2 or greater as long as the proper
compatibility options are installed. All statements about binary compatibility apply
in this case. Version 4 applications may not execute properly on Version 3
systems using remote network mounts of file systems.

In both cases, minor administrative changes must be made to the AIX Version 3
systems to support the new AIX Version 4 LFT terminal type.

2.1.5 IBM Licensed Program Products Compatibility
There are hundreds of Licensed Program Products (LPP) available for AIX
Version 4. IBM LPPs currently sold for AIX Version 4 Release 1 or Release 2 will
operate without change on AIX Version 4 Release 3 with certain exceptions, such
as newer versions or releases of a product being available. For information about
a specific LPP, the AIX Version 4 IBM Licensed Program Products RoadMap can
be found at the following URL.

http://www.rs6000.ibm.com/software/Apps/LPPmap.html

This document contains information about latest LPP version levels, support, and
AIX release compatibility.
AIX Kernel Enhancements 15

For AIX systems using AIX Version 3 Release 2 or greater needing to migrate to
AIX Version 4, the publication A Holistic Approach to AIX V4 Migration, Planning
Guide, SG24-4651, contains information about LPPs and AIX release
compatibility.

2.2 AIX 4.3 for 12-Way SMP Performance (4.3.1)

AIX Version 4.3 is tuned for 12 CPU SMP performance efficiency. This is a
continuation of the scalability evolution. Certain kernel areas identified by the AIX
performance team were investigated, tuned, and redesigned where necessary to
eliminate situations that could have impeded 12-way SMP performance.

2.3 32 GB Real Memory Support (4.3.2)

AIX now supports up to 32 GB of real memory and has been enabled to support
larger memory sizes as hardware grows in capacity.

CHRP (Common Hardware Reference Platform) is the system architecture base
for systems with large physical memory or any memory above 32-bit real
addresses. AIX will only support real memory addressing greater than 32-bits on
CHRP systems. Current AIX versions and their supported maximum memories
are provided in Table 5.

Table 5. Maximum Supported Memory Sizes

2.4 Lock-Based Dumping

In AIX Version 4.1 and 4.2, the AIX dump routines always dumped the same data
areas. This generic policy meant that certain key data areas were kept out of
system dumps because their inclusion would greatly increase the size of the
dump. For AIX Version 4.3, dump routines have been added that gather
additional information for inclusion in a dump (based on the status of certain locks
or flags in the kernel) when the system dump is initiated.

If a lock protecting a structure is held at the time of the dump, then almost
certainly, that structure must have been in the process of being updated and
should be included in the dump. The primary area where this information is of use
is in the Virtual Memory Manager (VMM).

With these additional routines, the need to inconvenience customers with debug
kernels or reproduce the problem on test systems with the kernel debugger is
greatly reduced.

AIX Version Maximum memory supported

AIX 4.1.5 2 GB

AIX 4.2.1 4 GB

AIX 4.3.0 16 GB

AIX 4.3.2 32 GB
16 AIX Version 4.3 Differences Guide

2.4.1 Dump Support
You can now use the dump interface, through a dump table, to dump specified
memory using a real address without requiring the real address to have virtual
address mapping.

To support dumping real memory using a real address, a new data structure, and
a new magic number, DMP_MAGIC_REAL, has been defined. The following are
modified to check for the magic number and handle the new table format:

 • savecore.c
 • copydump.c

savecore() and copycore() check for both DMP_MAGIC and DMP_MAGIC_REAL
and are able to process either of the dump table formats.

When displaying the data for a dump table, crash and dmpfmt use an address
format that distinguishes real addresses from virtual addresses. A real address
can be entered on a crash subcommand as r:address. For example:

> od r:10012

When dump is initialized, it allocates one page from the pinned heap. It also gets
the real address for this page. When dumping memory referenced by a virtual
address, dump will do the following for each page (or page segment) to be
copied:

1. Turn data translation off
2. Copy the data to the buffer at the real address
3. Turn data translation back on
4. Dump the data

This retrieves the data in real mode while calling the device driver code in virtual
mode.

Note: Only one page will be dumped at a time.

2.4.2 Programming Interface
The external dump interfaces are found in /usr/include/sys/dump.h, and new
structures have been defined in this file. In the dumpinfo structure, dm_hostip
becomes __ulong32_t. The structures dump_read and dumpio_stat are defined
for the kernel and extensions only.

2.5 Bad Block Relocation during System Dump (4.3.1)

In previous versions of AIX, if the LVM detected a bad block and received an I/O
error while processing a system dump, the dump was aborted if no secondary
dump device was available. In AIX Version 4.3.1, the LVM will now try to relocate
the bad block so that processing of the system dump can continue and
information is not lost.

2.6 Kernel Protection

Memory overlays are extremely destructive and, in certain cases, can destroy the
kernel's ability to respond to interrupts, making it impossible to obtain a dump. A
AIX Kernel Enhancements 17

destructive overlay can be caught when it occurs if the kernel code is protected
from overwrites. The AIX kernel has therefore been enhanced to provide some
protection against these types of errors. The first page of memory is now
protected from writes by setting page protection bits in virtual page tables. A
similar scheme has been implemented for other pages in the kernel that contain
nothing but code (since code should never be altered). Any attempt to overlay
protected pages now results in dumps that point directly to the program that tried
to do the overwriting. This cuts out the most expensive and time-consuming part
of memory overlay debugging for a large number of overlay cases.

For kernel text, enough symbol information has been added to the kernel space
so that the kernel text is protected during system initialization. Note that pages
containing a mixture of data and text, or data only, cannot be protected, so some
kernel text remains writable.

Kernel extension text areas are optionally protected. A run-time check enables
the system loader to protect kernel extension text areas. If xmdbg is set by the
bosdebug or bosboot commands, text pages are protected at kernel extension load
time. Pages that share text and data are not protected.

Note: This change has impacted kernel and kernel extension code that attempts
to modify text. Self-modifying kernel extensions will cause the system to crash
unless those extensions also modify the protection of the text pages.

This design protects as many pages in the kernel space as is practical without
disturbing delicate assembler routines or increasing the working set needed to
run the kernel.

2.6.1 Storage Protection Macro
The STORE_PROTECT macro has been added to store-protect whole pages that
reside between two symbols (x and y). This macro is defined as follows:

#define STORE_PROTECT(x,y) if (STARTOFPAGE(y) > NEXTPAGE(x)) \
 vm_protect(NEXTPAGE(x),STARTOFPAGE(y)-NEXTPAGE(x),RDONLY)

The STORE_PROTECT macro has the effect of protecting all pages starting with
the next page boundary beyond x until the last page boundary before y. This
macro is used during system initialization for the various regions in the kernel and
conditionally by the loader during kernel extension load time.

During system initialization, k_protect() is called to protect the regions marked by
the bind steps. k_protect() is called from main() in the following sequence:

debugger init(); /* start the kernel debugger */
kmem init(); /* initialize kernel memory heaps */
k_protect(); /* store protect kernel text areas */
strtdisp(); /* start up the dispatcher */

When called, k_protect() does the following:

 • Store protects low.o areas, at least the first three pages
 • Store protects pinned text sub binds
 • Store protects paged text sub binds
18 AIX Version 4.3 Differences Guide

2.6.2 Debug Modifications
Since the debugger cannot store to some areas in virtual mode due to kernel
protection, the debugger has been altered so that all stores to virtual memory
addresses are first transplanted and then performed in real mode. This operation
is transparent to the debug user. It requires a modification to the
get_put_data_aligned() routine so that virtual operations are translated and
performed in real mode. I/O space has not been affected.

2.6.3 Stack Overflow Protection
A stack overflow detection mechanism has been implemented. i_poll() and
i_poll_soft() check the MST save-area located lower in memory to see if the
csa_prev values, that would be used if the interrupt is interrupted, are valid. If this
location contains incorrect data, it is repaired if possible, and the code logs an
error.

2.7 SMP TTY Handling

Currently on J30 and J40 SMP systems equipped with 128-port adapters, when
the system is under load, CPU 0 spends a great deal of time off-level polling the
various 128-port adapters for incoming events.

To alleviate this problem, instead of CPU 0 being used as a timer handler, the
load has been passed to other CPUs that are available, thereby improving the
overall SMP performance.

2.8 Faster Per-Thread Data

In previous versions of AIX, all threads shared an identical address space. When
per-thread data needed to be accessed, a fairly expensive lookup had to be
performed by the get_thread_specific() routine.

In a non-threaded version of the OpenGL API (which is very call intensive), tests
show that you can expect to spend roughly 150 cycles per call (on average) in a
routine. Using the existing get-thread-specific() routine would add approximately
70 cycles (or 50 percent overhead) to enable a multi-threaded OpenGL API. A
much faster mechanism to access per-thread data for 32-bit systems is therefore
required. For 32-bit systems, a separate segment 0 for each processor is now
provided. This segment contains a page of thread-specific data that is modified
as each thread is swapped in. Faster access to private memory should also
provide benefits to the thread libraries.

2.9 Expanded Limits on Open Files (4.3.1)

In previous versions of AIX, a single process was limited to a maximum of 2000
open files at any one time. There was also a total system-wide limit of 200,000
open files. This number was entirely arbitrary, and although it was perfectly
adequate for most processes, it was not enough for some. AIX Version 4.3.1
increases these limits to the following.

 • Maximum of 1,048,576 open files system wide.

 • Maximum of 32,767 open files per process.
AIX Kernel Enhancements 19

The maximum number of file descriptors per process is defined by the constant
OPEN_MAX. In AIX 4.3.1 it is 32767.

However, this change can create certain compatibility problems with programs
that were compiled with the old OPEN_MAX value of 2000. So there must be a
way to enforce the old OPEN_MAX value for existing programs, yet allow new
programs to exploit the new capability. This has been done with the existing
resource limit functions. There was already a limit for number of available file
descriptors, but it has always been set to RLIM_INFINITY. In AIX 4.3.1, the
setrlimit() and getrlimit() system calls can be used to maintain specific values for
RLIMIT_NOFILE. By default, the soft limit will be the old value of OPEN_MAX,
2000. The default and maximum hard limit will be the new OPEN_MAX value,
32767. With these limits, everything should continue to work as before with no
user intervention. If a user increases the soft limit, then programs written to
exploit the increased table size can be used.

In addition to the system calls for managing limits, the user can change their limit
for number of file descriptors with the ulimit -n command. Because the hard limit
is set to OPEN_MAX, any user can increase the limit, privileged access is not
required.

2.10 Multiple Concurrent JFS Reads (4.3.1)

AIX uses a simple lock type to serialize access to the in-core inode of a file or
directory on a JFS file system. This is to ensure data integrity, particularly on MP
systems, where multiple threads can be accessing an inode simultaneously.
When reading a file, the lock is used to serialize updates to the last access time
stamp in the inode. This lock has been identified as a potential performance
bottleneck in the situation where multiple threads are attempting to read the same
file, particularly when migrating from UP to MP systems.

This type of problem affects customers who use databases on JFS file systems
and do not have a choice because their database application does not support
raw partitions. Examples include Progress, and Universe, to name two. There are
also some large customers who use JFS for their databases. The problem stems
from the length of time the lock is held. A thread would obtain the lock and then
initiate the I/O to read the required data before updating the access time field in
the inode and releasing the lock. During this time, other threads would be blocked
from accessing the file.

To alleviate this problem, AIX 4.3.1 has changed the mechanism for reads from
JFS file systems to minimize the length of time the inode lock is held by a thread.

When only one thread is reading the file, no change has been made. The reading
thread obtains the inode lock and sets a flag in the inode to indicate that a read
operation is in place. When the I/O for the read is complete, the thread updates
the access time field in the inode and releases the lock.

When a thread attempts to get the inode lock and determines that a read is in
progress, instead of blocking on the inode lock, it calls a kernel service to
pre-read the data it requires. Once the pre-read has completed, the thread will
attempt to obtain the inode lock to update the access time field. This solution
reduces the amount of time a thread is required to hold the inode lock when
20 AIX Version 4.3 Differences Guide

performing a read operation, therefore allowing greater throughput on multiple
concurrent reads.

If a thread attempting to read from a file cannot get the inode lock and there is a
write operation in progress, then the thread blocks on the lock waiting for the
write operation to complete.

2.11 Increase in the Upper Limit of Trace Buffer (4.3.1)

The current upper limit for a trace buffer produced by the trace command with -T
option is around 55 MB on SMP systems. This only allows a few seconds of a
performance benchmark execution to be recorded. As a consequence, only a
fraction of the data needed can be collected, since the benchmarks can take up
to several minutes.

For AIX Version 4.3.1, the upper limit is increased to the size of a segment and
two segments when double buffering is used or as close to that as possible,
allowing the amount of information collected to be more complete and useful.

2.12 Kernel Scaling Enhancements (4.3.2)

With increasing demands being placed on machines acting as busy network
servers, it is possible that in certain situations some kernel resources may
become exhausted. As machines supporting larger amounts of physical memory,
adapters, and devices are introduced, it makes sense for the kernel to be able to
use larger resource pools when required. Therefore, the crash utility, used for
examining system images and the running kernel, is enhanced to understand the
new increased system resources.

The following sections describe the major enhancements.

2.12.1 Network Memory Buffer Pool
The kernel allocates memory from the network memory buffer pool, commonly
called the mbuf pool, to be used as buffers by the networking subsystem. The
size of the mbuf pool is a tunable parameter and is changed using the thewall
option of the no command.

2.12.1.1 Network Memory Buffer Pool Size Increase
The maximum size of the mbuf pool is now hardware dependent. Previous
versions of AIX allocated the mbuf pool from the kernel heap. AIX 4.3.2 now uses
a dedicated memory segment for the mbuf pool on most machines, and four
contiguous memory segments on CHRP machines. This allows a maximum mbuf
pool of 256 MB on most machines and 1 GB on CHRP hardware. The kernel will
allocate an amount of virtual memory equal to one half the amount of physical
memory, or the maximum value allowed for the hardware type, whichever is
smaller. For example, on a machine with 128 MB of memory, the default value of
thewall will be 64 MB. On a CHRP machine with 16 GB of memory, the default
value will be 1 GB.

The larger mbuf pool will allow greater network throughput on large SMP
systems.
AIX Kernel Enhancements 21

2.12.1.2 Network Memory Buffer Pool Allocation Algorithm
The algorithm used by the net_malloc kernel service for allocating buffers of
various sizes has been changed. The high-water marks for various buffer sizes
have been increased, particularly the 2 KB size used by the Ethernet and token
ring device drivers.

Requests for memory buffers between 16 KB and 128 KB are now rounded to the
nearest power of 2. Allocations in this range were rounded to the nearest page
size on prior versions of AIX. This change reduces the number of different sizes
of buffers available, which in turn reduces the number of free lists the algorithm is
required to manage.

The method used by net_malloc to maintain free list information has been
changed. On prior versions of AIX, each CPU maintained a free list for each
different size of buffer. There is now one central free list for each buffer size
between 16 KB and 128 KB in size. Each CPU still maintains a free list for each of
the smaller buffer sizes. This change minimizes the amount of memory used by
unallocated large buffers, while at the same time still allowing each CPU to
maintain a list of smaller buffers for faster allocation.

2.12.1.3 Network Memory Buffer Pool Statistics
The kernel maintains usage statistics for the buffers allocated from the network
memory buffer pool. The information contains details of the number of buffers of
each size, and for each size, information on the number of buffers in use and the
number of failed requests. This information can be displayed using the netstat -m
command. In addition to maintaining information indexed by buffer size, the
kernel also maintains information indexed by the purpose the buffer is being used
for. The type indexed information can be expensive to maintain, so AIX Version
4.3.2 has introduced a method to disable it.

The new extendednetstats network variable, which is altered using the no
command, determines whether the by-type statistical information should be
collected by the kernel. The variable has a default value of 1, which means that
the kernel will collect the information. In order to improve networking
performance, the default AIX installation disables collection of this information by
changing the value of extendednetstats to 0. This is performed in the file
/etc/rc.net that is run during system start up. If you want to view the by-type
statistics, you should comment out the section of /etc/rc.net that changes the
value of extendednetstats.

The following section is near the end of the file and appears as:

##
This disables extended netstat statistics for performance
reasons. To have extended netstat statistics enabled on
future reboots, comment out the following three lines.
##
if [-f /usr/sbin/no] ; then
 /usr/sbin/no -o extendednetstats=0 >>/dev/null 2>&1
fi

The information collected when extendednetstats is set to a value of 1 is
displayed near the end of the output produced by the netstat -m command. An
example of the output is shown below.

netstat -m
22 AIX Version 4.3 Differences Guide

61 mbufs in use:
32 mbuf cluster pages in use
143 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 201 749 0 55 640 0
64 98 325 0 30 320 0
128 61 257 0 35 160 0
256 135 7324 0 25 384 0
512 110 937 0 2 40 0
1024 35 276 0 5 100 0
2048 0 482 0 6 100 0
4096 34 68 0 2 120 0
16384 1 1 0 18 24 7
32768 1 1 0 0 511 0

By type inuse calls failed memuse memmax mapb
mbuf 61 6952 0 15616 21760 0
mcluster 32 1123 0 131072 141312 0
socket 212 1034 0 76480 77536 0
pcb 77 457 0 14144 14400 0
routetbl 19 21 0 3008 3648 0
fragtbl 0 132 0 0 32 0
ifaddr 6 6 0 1472 1472 0
mblk 23 196 0 4992 5504 0
mblkdata 2 125 0 512 2816 0
strhead 11 19 0 3232 3680 0
strqueue 18 38 0 9216 10752 0
strmodsw 22 22 0 1408 1408 0
strosr 0 17 0 0 256 0
strsyncq 26 88 0 2752 3200 0
streams 138 153 0 15520 16096 0
file 1 1 0 128 128 0
kernel table 14 14 0 50016 50016 0
locking 3 3 0 384 384 0
temp 9 15 0 5568 10112 0
mcast opts 0 2 0 0 128 0
mcast addrs 2 2 0 128 128 0

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
#

When extendednetstats is set to a value of 0, the by-type information is not
displayed.

2.12.2 Expanded Kernel Heap
AIX version 4.3.2 has added a dedicated memory segment for the kernel heap.
The kernel heap is a general memory allocation area and is used to store the
dynamic data structures created and used by the kernel, kernel extensions, and
device drivers.

This enhancement has increased the maximum size of the heap by an additional
256 MB. The kernel heap was previously located in the upper part of segment 0
that was not used for kernel text pages. The maximum size of the heap depended
on the size of the kernel image that was running. The original location is now
used as an overflow buffer and is only used if the dedicated 256 MB kernel heap
segment becomes exhausted.
AIX Kernel Enhancements 23

2.12.3 Larger Pipe Buffer Pool
The increased size of the kernel heap means that more space can be used for
pipe buffers by the kernel, therefore increasing the number of simultaneously
open pipes. As with the mbuf pool, the amount of kernel virtual memory reserved
for the pipe buffer pool depends on the total amount of physical memory. The
system will allocate an amount of virtual memory equivalent to one eighth of the
physical memory, or 64 MB, whichever is smaller, with a minimum allocation of 16
MB. Of the memory reserved for use as pipe buffers, 1 MB is pinned in physical
memory for faster initial buffer allocation. The size of each individual pipe buffer
remains the same as on previous versions of AIX, at 4 KB.

2.12.4 Inter-Process Communication Identifier Enhancement
The limits of the maximum number of IPC identifiers have been increased, as
provided in Table 6.

Table 6. IPC Identifier Limits

In addition to increasing the number of identifiers available, AIX Version 4.3.2 has
also implemented a new algorithm to handle the ipcget() routine.

The previous implementation used a sequential search algorithm for traversing
the list of IPC identifiers. For a table size of N, the algorithm resulted in N
operations for a search miss and N/2 operations for a search hit. Although this is
very simple, it does not scale very well. The algorithm has been replaced with a
hash table implementation that is better matched to the larger number of IPC
identifiers now available.

The IPC support commands, such as ipcrm and ipcs, have also been changed to
take account of the increased limits.

2.12.5 Boot Logical Volume Scaling
In AIX 4.3.2, the boot logical volume is expanded to enable system configurations
with up to 1,000 devices.

As more and more devices are added to a system, the ODM object classes
containing device configuration data will grow larger and larger. It is possible that
the RAM file system used in the initial stages of booting will not be large enough
for the larger ODM files. The existing boot process accounts for this when booting
from disk by dynamically expanding the RAM file system based on the amount of
system memory. The increased savebase area will not fit on the boot logical
volume when adding large amount of devices.

2.13 Scheduler Enhancements (4.3.2)

The scheduler on AIX Version 4.3.2 has been enhanced to increase the impact of
using the nice command to alter the priority of a thread. The following sections

Value Previous Limit New Limit

Message queue IDs 4096 131072

Semaphore set IDs 4096 131072

Shared memory IDs 4096 131072
24 AIX Version 4.3 Differences Guide

explain how the changes have been implemented and show sample results by
comparing the new scheduler with the previous version.

2.13.1 Thread Priority Calculation Changes
All threads on the system have a priority value between 0 and 127, with 60 being
the default initial value. As a thread runs and consumes CPU time, the priority
value changes numerically as a function of CPU time recently used. A
numerically higher number represents a less favored priority. A thread that
started with the default priority of 60 may have an instantaneous priority in the
range 60 to 126. The value of 127 is reserved for the wait process. The scheduler
runs all threads at priority N that are marked as runable before it runs any threads
at priority N+1, thus favoring threads using less CPU time.

The nice and renice commands, and the setpriority system call, can be used to
change the initial priority of a thread by a given delta. The delta can be in the
range -20 to 19. Thus a thread can have an initial absolute priority in the range 40
to 79. The absolute initial priority, or nice value, is included in the calculation of a
threads priority. This introduces the idea of relative priority between threads.

In addition to the nice value, the schedtune command can be used to fine tune the
method used to calculate the new priority. The calculation also has parameters
that scale the relative importance of recent CPU utilization (the -r option to
schedtune, shown as sched_R) and historical CPU utilization (the -d option to
schedtune, shown as sched_D). Both the sched_R and sched_D parameters
have a default value of 16.

On versions of AIX prior to 4.3.2, thread priority is calculated using the following
algorithm:

 • Once per clock tick: cpu = cpu + 1 for the currently running thread, limited to a
maximum of 120

 • Priority calculation: (cpu * sched_R) / (2 * 16) + nice, limited to a maximum of
126

 • Once per second ageing of all threads: cpu = cpu * sched_D / 32

With the default values in place, this equates to:

 • Priority calculation: cpu / 2 + 60

 • Once per second ageing of all threads: cpu = cpu / 2

The scheduler on AIX 4.3.2 now uses the following algorithm to calculate thread
priorities.

 • Once per clock tick: cpu = cpu + 1 for the currently running thread, limited to a
maximum of 120

 • Priority calculation part 1:

xnice = (nice > DEFAULT_NICE) ? (2*nice) - 60 : nice

 • Priority calculation part 2 (limited to a maximum of 126):

p = (cpu * sched_R * (xnice + 4))/(32*(DEFAULT_NICE + 4)) + xnice

 • Once per second ageing of all threads: cpu = cpu * sched_D / 32
AIX Kernel Enhancements 25

The nice value has a much greater impact on the priority of a thread. It is now
included in the calculation as a multiplier of the recent CPU usage in addition to
the use as a constant factor.

With the default values of 16 for sched_R and sched_D, and 60 for nice and
DEFAULT_NICE, the priority calculation equates to:

 • Priority calculation: cpu / 2 + 60

 • Once per second ageing of all threads: cpu = cpu / 2

Although the algorithm has changed, the default values provide an identical
function.

2.13.2 Sample Results of Altering Nice Value
The following tables list the results of changing the nice value of a thread on two
identical machines; one running the old algorithm, and the other running the new
algorithm. In each case, the tables list the percentage of CPU time delivered to
one thread that has been niced by the indicated delta, which is in competition with
varying numbers of default priority threads. All threads were running the same
CPU bound application.

From comparison of the values in Table 7 and Table 8, it can be seen that the
effect of a positive nice delta on a thread has been enhanced. Take, for example,
a thread running with a nice delta of 19 in competition with one default thread.
Previously, the niced thread would receive 41 percent of the CPU, with the default
thread receiving the remaining 59 percent. With the new algorithm, the niced
thread has been reduced to 15 percent, with the default thread increasing to 85
percent.

In addition, the effect of a negative nice delta has been increased. A thread
running with a nice delta of -20 competing against 31 default threads now
receives 32 percent of the CPU, compared with 23 percent under the previous
26 AIX Version 4.3 Differences Guide

algorithm. Correspondingly, the CPU delivered to each of the remaining 31
default threads has decreased from 2.5 percent to 2.2 percent.

Table 7. Old Priority Algorithm, sched_R and sched_D Defaulted to 16

Table 8. New Priority Algorithm, sched_R and sched_D Defaulted to 16

It can be seen from the values in Table 9 and Table 10 that decreasing the value
of the sched_R parameter makes the effect of the nice delta even greater. By
reducing the value of sched_R, the priority algorithm places less emphasis on
recently used CPU time. Consequently, the thread with a negative nice delta
receives even more CPU time.

nice
delta

Number of threads running (1 niced, others default)

1 2 3 4 5 8 16 32

-20 100 60 47 40 36 30 25 23

-15 100 58 43 36 32 26 21 17

-10 100 55 40 32 28 21 15 13

-5 100 53 37 29 24 17 11 8

0 100 50 33 25 20 13 6 3

5 100 48 30 21 16 7 2 0

10 100 45 27 17 12 4 0 0

15 100 43 23 14 8 0 0 0

19 100 41 21 11 4 0 0 0

nice
delta

Number of threads running (1 niced, others default)

1 2 3 4 5 8 16 32

-20 100 78 60 52 48 42 36 32

-15 100 69 51 43 39 33 26 24

-10 100 60 45 37 32 25 19 16

-5 100 55 39 31 25 19 12 9

0 100 50 33 25 20 13 6 3

5 100 42 24 16 11 4 0 0

10 100 32 17 8 4 0 0 0

15 100 22 11 3 0 0 0 0

19 100 15 6 0 0 0 0 0
AIX Kernel Enhancements 27

Table 9. Old Priority Algorithm, sched_R=8

Table 10. New Priority Algorithm, sched_R=8

nice
delta

Number of threads running (1 niced, others default)

1 2 3 4 5 8 16 32

-20 100 78 60 55 52 47 43 41

-15 100 68 54 48 44 39 34 32

-10 100 60 47 40 36 30 25 23

-5 100 55 40 32 28 21 15 13

0 100 50 33 25 20 13 6 3

5 100 45 27 18 12 3 0 0

10 100 40 20 10 4 0 0 0

15 32 14 2 0 0 0 0 0

19 100 24 8 0 0 0 0 0

nice
delta

Number of threads running (1 niced, others default)

1 2 3 4 5 8 16 32

-20 100 98 96 94 92 86 70 59

-15 100 84 68 58 53 50 43 41

-10 100 68 52 46 41 36 28 27

-5 100 57 42 35 31 23 18 13

0 100 50 33 25 20 13 6 3

5 100 37 18 9 4 0 0 0

10 100 17 6 0 0 0 0 0

15 100 2 0 0 0 0 0 0

19 100 0 0 0 0 0 0 0

Changing system scheduling parameters using the schedtune command can
cause unexpected results, particularly if more than one system parameter is
changed. See RS/6000 Performance Tools In Focus, SG24-4989 for more
information on the schedtune command, its parameters, and other performance
monitoring and tuning tools.

Take Note
28 AIX Version 4.3 Differences Guide

Chapter 3. 64-Bit Enablement

This chapter covers the introduction of 64-bit systems and the support provided in
AIX Version 4.3 for these systems. In the first section, an introduction to 64-bit
architectures and its benefits is provided, including the hardware and software
aspects of 64-bit implementations. The design chosen for RS/6000 systems and
the AIX operating system is also explained.

The second section describes the changes made to the core operating system
that are necessary to run AIX on 64-bit hardware and enable 64-bit applications.
These changes include modifications to the basic application development tools
like compiler, linker, and debugger, and other tools that operate on object files.

3.1 Introduction to 64-Bit Computing

The following sections describe some of the features of the new 64-bit
environment.

3.1.1 64-Bit Architecture and Benefits
From an operational point of view, an architecture is said to be 64-bit when:

 • It can handle 64-bit-long data; in other words, a contiguous block of 64 bits (8
bytes) in memory is defined as one of the elementary units that the CPU can
handle. This means that the instruction set includes instructions for moving
64-bit-long data and instructions for performing arithmetic operations on
64-bit-long integers.

 • It generates 64-bit-long addresses, both as effective addresses (the
addresses generated and used by machine instructions) and as physical
addresses (those that address the memory cards plugged into the machine
memory slots). Individual processor implementations may generate shorter
physical addresses, but the architecture must support 64-bit addresses.

The benefits of 64-bit architectures can be summarized as follows:

 • Extended-precision arithmetic. The ability to use very long integers in
computations is a feature that can be very useful in specialized applications.

 • Access to large data sets. The ability to create and maintain very large file
systems is increasingly important for many users. In particular, data
warehousing applications, scientific, and multimedia applications frequently
require these features.

 • Large address spaces. A 64-bit architecture has the capability of addressing
huge address spaces. You should realize that the step to 64-bits is much more
than just a doubling of 32-bits. In terms of addressability, it represents a four
billion-fold increase. With clever exploitation, these large address spaces can
result in spectacular performance improvements or gains in productivity
through simplified programming of very large technical problems.

The ability to handle large address spaces is considered the greatest potential
benefit for users since, in the future, complex applications such as large
databases, large numeric applications, and multimedia environments will need to
manage and operate on larger data sets. Since internal memory is much faster
than most storage devices, the ability to fetch and keep more data in memory,
© Copyright IBM Corp. 1998 29

where it can be directly manipulated, should provide dramatic performance
improvements. Table 11 shows the size of the address spaces that can be
managed as a function of the length of the address that the CPU generates.

Table 11. Size of Address Space as a Function of Address Length

3.1.2 64-Bit Challenges
As previously mentioned, 64-bit architectures can prove advantageous in many
areas of application. It should be noted, however, that these advantages can
come at a cost. Extra addressability must be accompanied by very large amounts
of system memory to work effectively. Applications compiled in 64-bit mode also
consume more disk space than their 32-bit equivalents, adding to the cost of
system storage. It is also important to remember that 32-bit applications that
cannot or do not take advantage of the features previously mentioned should
remain as 32-bit binaries. If compiled in 64-bit mode without change, they will
probably not see any performance improvement. It is possible that the application
will run slightly slower due to cache effects and longer code-path length.

Although the vast majority of current applications will not fully utilize the functions
and capabilities of a 64-bit architecture, the applications of the near future will
increasingly view 32-bit technology as a limiting factor.

3.1.3 64-Bit PowerPC Design
The PowerPC architecture is, by its nature, an open, extendable design. There is
nothing in the chip architecture itself that would affect binary compatibility as you
migrate across different PowerPC implementations. The PowerPC processor
architecture was defined from the start as a 64-bit architecture that is a superset
of the 32-bit architecture implemented in the 601, 603, and 604 processors.

An important aspect of the 64-bit version of PowerPC is its binary compatibility
with the previous PowerPC processors. From the standpoint of the 32-bit and
64-bit specifications, there are a few differences, as shown in Figure 4. The
number of CPU registers (the basic storage cell where the CPU stores the data
on which it performs its computations) remains the same, but these registers are
now 64 bits long instead of 32 bits. A few other control registers also move from
32 to 64 bits in length. Note that the floating point registers do not change in size,
since they already conform to industry standards for floating-point that require 32-
or 64-bit-long data.

Address Length Flat Address Space

8-bit 256 Bytes

16-bit 64 Kilobytes

32-bit 4 Gigabytes

52-bit 4000 Terabytes

64-bit 16,384,00 Terabytes
30 AIX Version 4.3 Differences Guide

Figure 4. Register Implementation of 32-Bit and 64-Bit PowerPC Processors

In the 64-bit implementation of PowerPC, existing machine instructions do not
change drastically. Many instructions simply work the same in 64-bit mode. That
is, they can manage 64-bit long data and use/generate 64-bit-long addresses.
New instructions, that were not implemented in the previous PowerPC chips, are
included for the handling of 64-bit data.

A 64-bit PowerPC can also work in 32-bit mode. In this way, any application that
currently runs on the 32-bit PowerPCs can run unchanged. For example,
arithmetic instructions running in 32-bit mode operate only on the lower-half of
the CPU register involved and consider only that half of the register in the result.
32-bit addresses are handled in the same way.

The virtual address space is the amount of virtual memory that an application can
address independent of the size of the physical memory actually installed in the
machine on which it is running. Figure 5 shows a simplified representation of the
virtual address space that the PowerPC architecture can manage in 32-bit and in
64-bit mode. As shown, the 32-bit implementation is already capable of
addressing a very large (252 bytes, refer also to Table 11) address space. The
64-bit implementation goes up to 280 bytes (a huge number that signifies nearly
64-Bit Enablement 31

one trillion terabytes. Other 64-bit architectures currently on the market mainly
address a 264 bytes-wide virtual address space.

Figure 5. Comparison of Address Translation in 32-Bit and 64-Bit Mode

3.1.4 AIX 64-Bit Design Criteria
It is important to note that the 64-bit execution environment for application
processes is an upward-compatible addition to AIX capability, not a replacement
for the existing 32-bit function. The design IBM chose for 64-bit AIX allows
existing 32-bit applications to run with 64-bit applications with no changes, thus
protecting the investment users have made in their current applications. Users
can take advantage of the features of 64-bit AIX when business needs dictate.

AIX 64-bit support is intended to be run on 64-bit hardware systems, not simply
any system containing a 64-bit PowerPC processor. A 64-bit hardware system is
one that is based on the CHRP architecture and identifies 64-bit properties for the
processor(s) and processor host bridges (PHBs) in configurations with memory
addressing greater than 32 bits.
32 AIX Version 4.3 Differences Guide

For AIX, and the applications that run on AIX, the 64-bit PowerPCs have two
important attributes. They are very fast when running as 32-bit processors, and
they offer the opportunity of running a 64-bit environment. AIX 4.3 exploits these
attributes separately. There are two different execution environments in AIX 4.3,
the 32-bit execution environment and the 64-bit execution environment. These
two environments are only available for 64-bit hardware. There is no 64-bit
execution environment on 32-bit hardware.

Generally, the AIX 4.3 kernel remains 32-bit, and only selected parts, such as the
Virtual Memory Manager, are upgraded to be aware of the 64-bit address space.
This means that the number of AIX kernels remains two (uniprocessor and
multiprocessor).

Although there were a number of choices regarding the basic data types of 64-bit
processes, the choice that was made by the Aspen working group, formed by
XOPEN, and a consortium of hardware vendors is called LP64, short for
Long-Pointer 64. This is commonly also called the 4/8/8 model, which stands for
the Integer/Long/Pointer type sizes. The benefit of this configuration is that it
provides 64-bit addressing with 8-byte pointers, large object support (8-byte
longs), and backward compatibility (4-byte integers). Other alternatives included
an 8/8/8 solution, called ILP64, and the LLP64 that were not adapted. Obviously,
the choice for AIX was LP64.

3.2 64-Bit Core Design

As stated, the kernel of the AIX operating systems remains 32-bit. To allow 64-bit
applications to run and use memory in the 64-bit address space, extensions to
the kernel were introduced. This is discussed in Section 3.2.2, “System Calls” on
page 37. A fundamental change was also introduced in the object module format
that basically enables executables to overcome the size limit of 232 bytes. The
subsection on XCOFF addresses these changes.

The implications for device drivers of 64-bit and 32-bit devices in a 64-bit
execution environment are explained in Section 3.2.4, “Device Drivers” on page
49.

The loading of 64-bit modules is shared between kernel-space code and
user-space code. The changes to the loader are discussed in 3.2.5, “Loader” on
page 51.

The Virtual Memory Manager is one of the key parts of the operating system
when it comes to large address space and mapping of virtual to real memory. The
consequences are summarized in the last part of this section.

3.2.1 Segment Register Mapping
Since the 64-bit hardware uses 64-bit effective addresses while operating in
64-bit execution mode, keeping sixteen segment registers would have required
increasing the size of segments proportionally to allow for the increased address
space. This is less useful to applications than increasing the number of segments
in a process' address space. Therefore, segmentation on the 64-bit hardware
remains in units of 256 megabytes. In 64-bit execution mode, the sixteen
segment registers used for 32-bit addressing are replaced with a segment table
(analogous to the hardware page table) that contains up to 256 of the most
64-Bit Enablement 33

recently used mappings of segment numbers to segment ID for the process’ user
address space.

The architecture also allows a Segment Lookaside Buffer (SLB) to hold a smaller
number of recently used segment number to segment ID mappings for the
process’ user address space. For 32-bit mode, part of the SLB can be used by
the hardware to represent the sixteen segment registers.

64-bit processes are limited to 60-bit effective addresses. This is a convenient
number for the VMM since 260 represents effective segment IDs up to 32-bits,
which fits into one register in the kernel. The 60-bit effective address space will
be sparsely instantiated up to the rlimit values for the process or up to some
limitation imposed by overall system resources. The choice of address space
layout was made to reduce the number of constraints on the size of each area
and to allow for future expansion and new uses for address spaces. At some
future date, the address space may be expanded to more than 60 bits.

The first sixteen segment numbers are freed as much as possible from default
system use and left for application use. This has many advantages. It makes
finding incorrect use of 32-bit addresses in 64-bit processes easier; it allows
32-bit and 64-bit applications to share memory at the same addresses in each
process, and it allows 64-bit applications to be specially designed to work with
interfaces that do not understand 64-bit addresses. For example ioctl().

Segment number 0 is used for the first kernel segment in user mode. It is
read-protected in user mode, except for the system call (SVC) tables,
svc_instruction code, and system configuration structure.

Segment number 1 is used for the second kernel segment in user mode. It
contains the 64-bit system call (SVC) tables.

Segment number 2 is still used for the process private segment. No
program-allocatable data is contained in this segment. The address of the user
block is at the same location in 32-bit and 64-bit processes.

The segment numbers from 3 to 12 and segment number 14 are reserved for
application use by the shmat() and mmap() interfaces.

Segment numbers 13 and 15 are reserved for the new user space loader (see
3.2.5, “Loader” on page 51) used at exec() and load() time. These segments are
global, read-only, and are always mapped in.

The address space from segment numbers 0xA0000000 to 0xEFFFFFFF are
reserved for future system use. These segments numbers are not given out in
response to user requests.

Table 12. Address Space Layout in User Mode

Segment Number Use in 64-Bit Mode Use in 32-Bit Mode

0 Kernel Kernel

1 Kernel User

2 Process Private Process Private

3 shmat/mmap Available for User
34 AIX Version 4.3 Differences Guide

The following items give more detail on the use of the various segments in 32-bit
and 64-bit mode:

 • Process private data

Segment number 2 continues to contain the process private segment. This
segment is substantially different for 32-bit and 64-bit processes. The process
private segment continues to contain errno, errnop, environ, the top_of_stack
structure, and the exec() arguments. It also contains the user structure,
primary user thread structure, and the primary kernel thread stack.

It does not contain the user thread stack or any user data. The user thread
structures (other than the primary) is moved to the kernel thread stack
segments for both 32-bit and 64-bit processes. The errno, errnop, and environ
locations are different in 32-bit and 64-bit mode. The top_of_stack structure is
reformatted for the 64-bit values for 64-bit processes.

The errno, errnop, environ, the top_of_stack structure, and the exec
arguments (all the user accessible data) are kept in the lowest one megabyte
of this segment and are user-modifiable. All data above this in the segment is
read-protected from user access. The segment table, adspace, and segstate
structures for the process are allocated from a region above the first megabyte
in the segment. The segment table is pinned. The region above these adspace
structures and below the primary kernel thread stack is used for the overflow
heap for the per-process loader heap.

 • Executable text area

The text area starts in segment number 16. All segments from the start of the
executable, through, and including, the loader section of the executable, are
mapped in. No segments beyond the segment containing the loader section of
the executable are mapped in the address space. The text segments are
mapped read-only if the underlying file system supports mapping (JFS, NFS,
CD-ROM file system, AFS, and DFS support mapping). Otherwise, the text
section and the loader section are copied to working storage segments.

4-0xC shmat/mmap shmat/mmap

0xD Loader use Shared libraries

0xE shmat/mmap shmat/mmap

0xF Loader use Shared lib data

0x10-0x6FFFFFFF Application text, data, Bss,
heap

N/A

0x70000000-0x7FFFFFFF Default shmat/mmap N/A

0x80000000-0x8FFFFFFF Private load N/A

0x90000000-0x9FFFFFFF Shared library text and
data

N/A

0xA0000000-0xEFFFFFFF Reserved for system use N/A

0xF0000000-0xFFFFFFFF Application stack N/A

Segment Number Use in 64-Bit Mode Use in 32-Bit Mode
64-Bit Enablement 35

 • Executable data and BSS

Following the text segments are working segments containing the
executable's initialized data and BSS (uninitialized data) areas. The data area
is vm_map()ed from the executable and relocated.

 • Heap

The break value for the process is initialized just above the BSS area. As the
heap is grown (with brk() and sbrk() calls), new segments are allocated above
the current segment containing the current break value up to the segment
containing the new break value. The heap is not allowed to grow into segment
number 0x70000000 or beyond any shmat or mmap segment.

 • shmat and mmap segments

Starting at segment number 0x70000000, shmat and mmap segments are
allocated if no address is specified. Segments are allocated in increasing
order in the first available segment at, or after, segment number 0x70000000.
The shmat and mmap segments are placed where requested if the segment
number is available and less than segment number 0x80000000.

 • Explicitly-loaded modules

Explicitly-loaded modules (using the load() system call) were previously
loaded into the heap of the process. This creates complexity in dealing with
heap expansion/contraction and explicit loads.

Explicitly-loaded objects are now loaded into separate segments starting at
segment number 0x80000000. Segment numbers are allocated in increasing
order in the first available segment number at, or after, segment number
0x80000000.

Explicitly-loaded objects are limited to segment numbers 0x80000000 to
0x8FFFFFFF. To reduce segment table faults, multiple loaded modules are
vm_map()ed into these working storage segments. The data for the loaded
modules is loaded into these segments (and relocated) also.

 • Shared library text and data segments

Starting at segment number 0x90000000, shared library text and data
segments are allocated. These segment numbers are allocated globally (at
the same address in all 64-bit address spaces) to allow sharing of the
segments (in the case of text segments) and vm_map()ing of the segments (in
the case of data segments). Global shared library text and data segments are
maintained by the loader using the current method. Shared library text and
data segments are limited to segment numbers 0x90000000 to 0x9FFFFFFF.

 • User stack

The initial user stack is allocated starting at the top of segment number
0xFFFFFFFF and will consume additional segment numbers below this as the
stack grows. New segment numbers will be allocated at stack growth time.
Only the segment number below the segment number containing the current
top of stack is allocated. References to more than one segment number away
from the current top of the stack are treated as wild references.

Note: This restricts local variable allocation to less than 256 megabytes of the
total allocation in each function. The stack growth is limited to segment
numbers ranging from 0xF0000000 to 0xFFFFFFFF as segment numbers in
the range 0xA0000000 to 0xEFFFFFFF are reserved for future system use.
36 AIX Version 4.3 Differences Guide

 • Big data programs

The maxdata field is used for 32-bit programs to indicate that the heap should
be placed in a different place where a larger heap can be accommodated. In
64-bit processes, the address space will always be able to accommodate a
large heap, so no indication is necessary. The maxdata and maxstack fields, if
set, are used to set the soft rlimit value for 32-bit and 64-bit applications. If the
limit specified is greater than the hard rlimit values, the exec() will fail.

3.2.2 System Calls
Because the AIX kernel remains 32-bit, the interfaces to the various system calls
must be through the types and structures of 32-bit mode C. 64-bit mode
applications, however, are compiled with 64-bit mode types and structures. This
section explains how the different types are communicated to the kernel.

On a 64-bit PowerPC, AIX will run both 32-bit-mode processes and 64-bit-mode
processes. The problem is that 64-bit applications compiled with the same AIX
header files that 32-bit processes use (but compiled for 64-bit execution mode)
build data structures, arrays, and scalars using the rules of 64-bit C, though the
kernel expects data structures, arrays, and scalars that match the ones built by
32-bit applications using 32-bit C. If a 64-bit application builds, for example, an
ioveC structure containing an address and a length, this structure cannot be
passed directly to the kernel's kreadv() system call routine because that routine
cannot interpret the 64-bit address and 64-bit length.

Clearly, some code must be placed between the 64-bit application's system calls
and the 32-bit kernel (see Figure 6). AIX takes advantage of the following two
features in implementing this interface code:

 • The 32-bit and 64-bit name spaces are completely separate, and calls from
64-bit applications are never resolved to 32-bit entry points. Specifically, the
calls from 64-bit applications to traditional system call entry points should not
be resolved to the 32-bit entry points of the same names exported by the
kernel.

 • Since UNIX no longer makes a distinction between system calls and
subroutines, it is no longer necessary to strictly follow the old UNIX semantics.
If a caller passes a bad address to any system-supplied subroutine (whether
system call or not), it is permissible to end the calling process, as will happen
if a library routine dereferences an invalid pointer. This means that routines,
traditionally considered to be system calls, can reside in subroutine libraries,
and almost all of the system call interface code needed for 64-bit processes
can be placed in a user-mode library such as libc.a.
64-Bit Enablement 37

Figure 6. Interfacing 64-Bit Processes to a 32-Bit Kernel

Each system call that is exported by the 32-bit kernel is represented in 64-bit
mode by a 64-bit-mode library routine in libc64.a that is the call target of what
would have been (in 32-bit mode) a system call. These library routines handle
any necessary reformatting of data to communicate with the 32-bit system call
routines in the kernel. In many cases, they build a remapping table that tells how
the required portions of the 64-bit address space should be reflected in a 32-bit
map for the kernel.

On the kernel side, in 32-bit mode, a kernel extension routine is added for each of
the system calls supported in 64-bit mode. These routines are invoked from the
64-bit library routines through AIX’s syscall interface. They accept the
reformatted data from the library routines and perform any necessary remapping
of addresses using data supplied by the library routines. The kernel can then
properly see data structures, buffers, and so on in the user spaces that are
referred to in the call.

A typical system call involves several pieces of code located in various places in
the system. The names of these various pieces are all derived from the original
38 AIX Version 4.3 Differences Guide

name of the 32-bit system call. If a particular 32-bit system call is named bletch(),
then:

 • The name of the C language routine in libc64.a that intercepts 64-bit calls to
bletch() is precisely that: bletch. Note that the kernel does not export a symbol
named bletch to 64-bit-mode processes, so all 64-bit calls to that label reach
the library routine.

 • The C language routine library, at the point where it needs to invoke the kernel
extension routine for this system call, calls __bletch() (two leading
underscores). This is an assembly-language glue routine reached through the
branch-and-link instruction. The name of its actual entry point will be .__bletch
(leading period).

 • The glue routine, still in the 64-bit library, loads an entry from the TOC and
issues a system call instruction. The TOC entry is assembled as a pointer to
bletch64 (no prefix, suffix 64).

 • The kernel extension routine is named bletch64(), and this is the name that
the kernel extension exports as a syscall. The kernel extension routine will
itself call bletch() the existing 32-bit kernel service.

The reason for the two underscores is for conformance with ANSI C, which
reserves names not starting with two underscores (or one underscore and a
capital letter) for the user, except for existing non-conforming UNIX names that
are grandfathered. All external symbols in libc64.a must begin with two
underscores.

3.2.2.1 64-Bit to 32-Bit Data Reformatting
The goal of the 64-bit interface is to make it appear to the kernel that the system
service request came from a 32-bit program. To this end, the width of any data
passed across the interface in either direction must be adjusted to match the
expected size.

Data reformatting is done by the 64-bit library routine that is the call target of
64-bit system calls. It receives 64-bit data from the caller, does any necessary
reformatting to 32-bit data, and calls its corresponding kernel extension routine
that passes the (now 32-bit) data on to the kernel's system call service routine.
On completion of the system call, a return code is (generally) passed back. In
addition, the kernel may have passed data back in user space. When the library
routine regains control, it expands the return code from 32 bits to 64 and expands
any returned data in user space.

For scalar parameters, the library does the following before calling the kernel
extension routine:

 • char, unsigned char - Passed without change.

 • short, unsigned short - Passed without change.

 • int, unsigned int, long, unsigned long - Tested to make sure that the value
being passed will fit in the 32-bit version of int or unsigned int. A value that is
too large generally results in setting errno to EINVAL and returning a return
code of -1. Values that are not too large are passed as 32-bit integers.

Note: Integers that are larger than 232 are valid in some cases. For example,
the lseek() routine takes an off_t (that is a long) as the seek position, a value
64-Bit Enablement 39

that can be larger than 232 for large files. In this case, the system call is
directed to the 32-bit llseek() interface that is prepared to handle long integers.

 • float, double - Passed without change.

 • pointer - Converted from 64-bit effective address to 32-bit effective address as
described in Section 3.2.2.2, “64-Bit to 32-Bit Address Remapping” on page
40.

Many system calls involve passing the address of one or more structures in
storage. If the structures involve any data types whose sizes differ between 32-bit
and 64-bit mode (int, long, pointer), the library routine must pass a (32-bit) pointer
to a local 32-bit copy of the data constructed on its own stack.

Some system calls are 64-bit-enabled, meaning they understand 64-bit pointers
or longs. In such cases, the library code typically passes these by value in
adjacent registers. The kernel code understands to parse the input as such. The
shmat() call is an example of a service that understands a 64-bit address in
adjacent registers.

If the kernel is going to look at the data being passed, the library routine allocates
32-bit versions of the same structure(s) and copies the data, field by field,
through assignment statements. This results in automatic truncation of the int and
long fields, some of which may need testing for magnitude before the conversion
is done. Pointers are converted as described in Section 3.2.2.2, “64-Bit to 32-Bit
Address Remapping” on page 40.

If the kernel fills in data as the result of a system call, the data must be widened
by the library routine on return from the kernel extension. Space for the 32-bit
version of the structures to be filled-in must be allocated by the library routine
before calling the kernel extension. Assignment, field by field, will do the proper
widening (zero extension or sign extension, as appropriate).

Returned pointers, such as from sbrk() or shmat(), require special handling
between the library routine and kernel extension routine to ensure that the proper
64-bit values are returned to the library routine.

Note that some system calls involve data passing in both directions, into and out
of the kernel, and thus require action on the part of the library routine before, and
after, the system call.

3.2.2.2 64-Bit to 32-Bit Address Remapping
As shown in Figure 7, the PowerPC architecture divides the Effective Address
(EA) into three fields:

 • The Effective Segment ID (ESID)

 • A 16-bit page number within the segment

 • A 12-bit byte offset within the page

The width of the ESID varies with execution mode:

 • In 32-bit mode, the ESID is 4 bits and is often referred to as the Segment
Register number.

 • In 64-bit mode, the ESID is 36 bits.
40 AIX Version 4.3 Differences Guide

Figure 7. Effective Segment IDs in 32-Bit and 64-Bit Mode

For each process, the kernel maintains an array of sixteen entries, each holding a
segment register value that defines the mapping of user effective addresses to
system virtual addresses at the point of a system call. When a 32-bit application
issues a system call and passes pointers to data in user space, the entries in this
array are loaded into segment registers by the copyin() and copyout() routines to
access user-space data. The kernel never accesses user-space data directly, but
only through copyin() and copyout().

The 32-bit AIX kernel does not generally understand 64-bit address spaces. To
perform kernel services for 64-bit address spaces, the 16-element mapping array
previously mentioned must be set up so that the relevant user-space data for a
system call can all be accessed through 32-bit addresses.

The VMM provides services to remap 64-bit pointers passed through system calls
into a 32-bit address space. The 64-bit library code fills out a data structure
describing the 64-bit pointers to be remapped using one of the __remap*()
services. This structure is passed to one of the remap*_64() kernel services by
the 64-bit kernel extension to remap the specified segments in the user address
space into a 32-bit address space for use by the normal kernel system call
routines.

The general form of the remapping structure is an array of effective segment
identifiers and an integer indicating the number of such ESIDs to be remapped. A
pointer to this remapping structure is passed to the remap*_64() routine. An ESID
is 36 bits long and is represented as two integers; the high-order 32-bits of the
ESID in the first word, and the remaining four bits of the ESID in the high-order
four bits of the second word. To optimize the remapping of a single ESID, the two
words describing the ESID are passed in registers rather than passing a pointer
to a remapping structure. Additional bits are defined in the unused bits of the
second word to indicate which form is being used – pointer or in-line registers.

Remapped addresses are only valid in the kernel for the duration of the system
call. Subsequent system calls may not rely on 32-bit remapped addresses from
previous system calls. Extensions with such requirements should save the
segment register value and use the long-form virtual address instead or call
as_unremap64() to obtain the 64-bit unremapped address to store.

3.2.2.3 Remap Library Data Structures
All the remap data structures are defined in the header file <sys/remap.h>,
except the kernel MST-extension remap region that was discussed earlier. This
header file is shipped with AIX because all of these structures may be required by
the user.
64-Bit Enablement 41

The addr struct is a library-side structure that holds the information relevant to the
remapping of the address of a single 64-bit area. It also holds the size of the
structure pointed to. Segment crossings are allowed for items in the addr struct,
with the limitation that a single item to remap may not be contained in more than
fifteen segments. This limits the maximum size of an object to be remapped to
3.75 GB, assuming that it is aligned to a segment boundary.

The uremap struct is a library-side structure that consists of an array of addr
structs and an integer giving the size of the array. In the general case, the
number of entries can be quite large, such as the number of addresses of
environment variables passed on execve(). The size is set at 17 in the structure
definition to cover cases that need to pass this many addresses (writev() is one
such case). Cases with more than 17 addresses require individually-constructed
structs similar to uremap or just the C-allowed use of an index greater than an
array-size, with appropriate storage malloc()’d by the caller. The naddr field of the
uremap struct can accommodate large numbers of addr structs input. The point is
that __remap() is not limited to 17 addresses to remap on one call. It can accept
a large quantity. As of this writing, the upper bound has not been set. The number
17 was specifically arrived at from the iovec struct. 17 is iovcnt+1 to allow for the
vectors plus the address of the structure itself.

The remap struct is the basic data structure used to communicate remapping
information from the library side to the kernel extension. A single remap struct
contains an unremapped 64-bit address (actually ESID), and additionally, the low
bits of a remap struct (address) also have meaning. This will be discussed later.

The kremap struct is an array of remap structs plus an integer giving the number
of array elements actually used. In the general case, this structure is passed by
the library side to the kernel extension, which accesses it through copyin64(). The
elements of the r[.] array represent up to fifteen unremapped 64-bit addresses.

The remapping code gets the right answer implicitly by making sure that the
library remap code and the kernel remap code allocate srnos in the same order
while processing the kremap struct. It is particularly important, for segment
crossings, that adjacent segments become allocated in the kernel as needed.
The r_xingcnt field in the remap struct is used to indicate the number of segments
that a particular mapping crosses, so the segments may be created adjacently.

It is important not to confuse the uremap and kremap structures. The uremap
structures are where the full 64-bit to 32-bit address translations are kept for each
64-bit address remapped. The kremap structs are passed to the kernel and
indicate on a segment-basis which 64-bit ESIDs are remapped to which 32-bit
sreg numbers. The mapping of entries in a uremap struct to entries in a kremap
struct is typically many-to-one. For example, two pointers in the same ESID will
create two uremap entries and one kremap entry.

3.2.2.4 Remap Library Programming Interfaces
The remap library services set up the remap data structures to be passed to the
kernel remap services. There are three library remapping interfaces:

 union __remap_handle __remap(struct uremap *up, struct kremap *kp)
 struct remap __remap1(struct addr *ua)
 void __remap2(struct addr *ua, struct kremap *kp)
42 AIX Version 4.3 Differences Guide

Three interfaces exist, rather than just one, to improve performance on
remapping. For the case of syscalls that require only one or two parameters to be
remapped, the parameters may be passed in registers. This avoids the copyin()
to the kernel by remap_64() of a kremap struct and is a significant performance
saving. So, __remap1() or __remap2() should be used when only one or two
parameters require remapping, respectively. The __remap() call should be used
for syscalls requiring three or more remappings.

Like other things in 64-bit libc.a, __remap() is only available to applications
running in 64-bit mode and linked with the correct library. The input to __remap()
are the 64-bit addresses to remap in the addr structs (in uremap). The __remap()
code fills in the addr structs with remapped 32-bit addresses. It also fills in the
kremap struct with the 64-bit ESIDs in the slot corresponding to the 32-bit sreg
number that __remap() picked for the remapping. Slot 0 of the kremap struct
corresponds to 32-bit sreg 1. This is because sreg 0 is never given out for
reasons previously stated having to do with NULL pointers. As such, only fifteen
different segments can be remapped with one kremap struct.

There is no formal provision at the moment for remapping a given user-mode
address to a specific remapped address specified by the library. It is expected
that applications can avoid dependencies such as this. In the event that this is not
possible, two alternatives exist; add a new force-remap service, or create a
kremap structure with the specified remapping as though it had already been
processed by __remap().

3.2.2.5 Remap Optimization for Multiple Addresses
If more than one item must be remapped, there is a folding optimization done by
__remap(). For the second, and subsequent addresses in the uremap struct,
__remap() determines whether the ESID of the address being operated on has
already been remapped. If so, there is no need to make another kremap entry for
it.

The preceding works fine for circumstances where segment crossings are not
involved. It does, however, become complicated when you put
segment-crossings into the equation. Assume that __remap() is to process the
uremap struct in array-order. The addresses will not be sorted. Also assume that
the first parameter, which does not cross a segment boundary and resides in
64-bit ESID 3, becomes remapped to 32-bit srno 1. If the second parameter does
cross a segment boundary and starts at 64-bit ESID 2, in the absence of any
special optimizations, this second parameter would have to be remapped to
32-bit srnos 2 and 3 (0 is unavailable for use). Note that the second parameter
must occupy adjacent 32-bit segments.

There are several ways around this problem. One way is to have __remap()
presort the input addr structs by ascending address, but this could get expensive,
since it could have a virtually unbounded number of input address structures to
process. The actual __remap() implementation is a two-pass method. The first
pass (for a majority of the cases) takes a simple approach. In the preceding
example, it would simply associate the 32-bit srnos 1, 2, and 3 as explained. As
long as the rest of the remappings fit in the maximum fifteen slots that are
available, this is not a problem, and there is no expensive sorting or
post-processing required. The simple first pass will do folding only as far as
checking to see if the 64-bit ESID has been remapped.
64-Bit Enablement 43

It is also possible to have a situation similar to the preceding example, except
that the second remapping could touch fifteen segments, starting with ESID 2.
This case would fail the first pass, and a second pass becomes necessary to sort
them into ascending order. Although this second pass, when required, does add
some overhead, it guarantees that the ranges to be mapped will fit into fifteen
segments.

3.2.2.6 Remap Kernel Programming Interfaces
There are remapping programming interfaces that are exported to kernel
extensions from the kernel. These are primarily for use by the 64-bit kernel
extension; however, applications that add their own system calls will need these
as well. For this reason, these services take up regular namespace and are not
prefixed with an underscore. See the man pages for formal documentation of
these routines as_unremap64() is intended for kernel extensions that really need
to have the unremapped address.

The library-side maps 64-bit addresses to 32-bit in that it selects the sreg
numbers to correspond to the ESIDs of the 64-bit addresses. However, the
kernel-extension still has to update the address space map for the 64-bit thread
to reflect these values, so that when the kernel uses these 32-bit addresses to
access memory, the proper SID will be inferred. These services update the
MST-extension remap struct described previously:

 int remap_64(struct remap r)
 int remap1_64(struct remap r)
 int remap2_64(struct remap r1, struct remap r2)
 unsigned long long as_unremap64(uint addr32)

The reason for three different remap routines is to optimize for cases where only
one or two ESIDs are used. This is a very common case. The remap_64() call
handles the case of greater than two remap structs input as well as all other
cases. Parameters to remap1_64() and remap2_64() are passed entirely in
registers, so these routines do not have to copyin() a remap struct from
user-mode.

There is also an internal kernel routine, remap(), that is used by copyin64() and
others. The purpose of remap() is to support 64-bit-enabled code in the kernel
that handles non-remapped addresses. Code calling remap() passes the address
of a remap-like struct on the stack (typically), and this is used as a save area for
the regular MST remap fields that are overwritten by this remap() call. At the end
of the copyin64(), or any other call, restoremap() is called with the address of the
stack-resident remap-like struct. The original contents of the MST remap fields
that were temporarily overwritten are written back to the MST. An additional
internal routine, as_remapaddr(), is used to return the original 64-bit unremapped
address (modulo SEGSIZE) for a given 32-bit remapped address.

 static void remap(ptr64 addr, uint nbytes, struct remaps * ptr)
 static void restoremap(struct remaps * ptr)
 ptr64 as_remapaddr(uint addr32)

These services take only one address and length to remap, and there is no place,
currently, where calls to remap() are nested without restoremap(). Only one data
structure at a time can be remapped in this fashion. The on-stack remaps
structure is able to store the entire mstext->remaps array when there are fifteen
segments total in the range to be remapped through savemap().
44 AIX Version 4.3 Differences Guide

3.2.2.7 Optimizations for One or Two Parameters
The library-side and the kernel-side remap routines have optimizations built into
them to pass one or two parameters by value if possible. This provides a
significant improvement over requiring a full copyin64() of the kremap structure
every time. There are three cases that the remap() code has to handle:

 • The output library remapping resulted in only one remapping or remap struct
(R_IN_LINE - see the following).

 • The output remapping resulted in two remappings, and __remap2() was called
(with two addr structs only).

 • The output remapping resulted in more than one remapping if __remap() was
called.

The low order bit of the cookie passed to the kernel remap services, all the way
from the library, identifies what the cookie actually is. For example, although
remap_64() is documented to have a struct remap() passed to it, if the
R_IN_LINE bit is not set in this, then this struct remap is a pointer to a struct
kremap, on which a copyin64() must be performed. If, however, the R_IN_LINE
bit is set on input, then that indicates that all of the parameters collapsed into a
single remapping in the library (case 1), and remap_64() can call remap1_64() to
do the work. This avoids the copyin() when many parameters reside in the same
segment (ESID). This should be a common case.

The R_IN_LINE flag is interpreted differently by the remap2_64() kernel service.
The __remap2() subroutine sets the R_IN_LINE flag in the first remap struct if the
output remappings collapsed into one. This indicates that the second parameter
to remap2_64() should be ignored. See the next section for coding and calling
conventions for __remap2().

3.2.2.8 Using the Remapping Services
There are very rigid rules on how to invoke the remapping services and how to
handshake with the kernel-side remapping wrappers. Typically, whatever library
remapping service was invoked for a particular wrapper, it should have the
corresponding kernel remapping service called as well. For example, if
__remap2() is called in the library wrapper, the kernel-extension should call
remap2_64().

The following is very important:

 • For a given system call, it is only permissible to make a single call to the
remapping kernel services. In other words, it is not legal to call remap_64()
twice on the same system call. Similarly, it is not legal to call remap1_64() and
then remap2_64() on the same system call.

To detect potential misuse of the remapping services, the remap data structures
are coded with a unique code for whichever library remap service created them. If
a kernel service other than the correct one for a given library service is called, an
error will result. For example, callers of __remap1() must call remap1_64().

Typically, a library wrapper will call a remap service and check if the return code
is -1. If so, it will fail. After that, the returned value remap structure from the
particular __remap* service is passed as the first parameter. If this is a
__remap2() call, the first parameter is kremap.r[0], and the second parameter is
kremap.r[1]. Of course, each of these parameters is split into two 32-bit registers.
64-Bit Enablement 45

A single remap struct fits into a single 64-bit register in user-mode but requires
two registers each to pass to the kernel.

3.2.3 64-Bit XCOFF Format
The extended common object file format (XCOFF) combines the standard
common object file format (COFF) with the TOC module format concept. This
allows dynamic linking and replacement of units within an object file.

Until AIX 4.2, the XCOFF format assumed that addresses were 32 bits, memory
could be no larger than 232 bytes, and therefore, no object (csect, text section,
and so on) could be larger than 232 bytes. The XCOFF header files contained
32-bit fields for value in the symbol table, 32-bit length-fields for sections, and so
on.

For PowerPC’s 64-bit execution mode, these sizes are too restrictive. The reason
for moving an application from 32-bit mode to 64-bit mode is to use addresses
larger than 32 bits. In general, this means that all fields in XCOFF structures that
can hold an address or a size should be increased to 64 bits. At the very least, it
should be possible to describe a bss (common, or uninitialized data) object with a
size greater than 232 bytes.

3.2.3.1 XCOFF Design
There are two XCOFF formats; one for 32-bit applications, and one for 64-bit
applications. The 64-bit XCOFF differs from the 32-bit XCOFF format in several
ways, as listed in the following:

 • The file size can be up to 263 bytes (rather than 231 bytes).

 • Each XCOFF section can be up to 263 bytes (rather than 231 bytes).

 • The virtual addresses in the process can be up to 264 bytes (rather than 232).

 • The offsets of objects within the XCOFF file can be up to 263 bytes (rather
than 231).

 • Line numbers can be up to 231 (rather than 215).

The 64-bit XCOFF does not differ from the 32-bit XCOFF format in the following
fields because they are considered to be big enough:

 • Symbol table indexes will still be limited to 231, allowing about half this many
symbols in an executable (each symbol uses an average of about two symbol
table entries).

 • The string table will be limited to 231 bytes in size, limiting the sum of the
length of all symbol names to less than this value.

The following design issues have been implemented:

 • All header file declarations for both 32-bit XCOFF and 64-bit XCOFF are
contained in the same files used for 32-bit XCOFF declarations.

 • Field names within structures are the same for structures that have different
versions for 32-bit XCOFF and 64-bit XCOFF.

 • Where possible, the structure sizes and layouts from the 32-bit XCOFF
definition were not changed. Some fields have been rearranged to avoid
alignment padding and to increase the number of fields that are at the same
offset in both XCOFF versions.
46 AIX Version 4.3 Differences Guide

 • Fixed width types are used in all header files. The following are the fixed width
types: char, short, int, and long long. (Of course, these types are only fixed
with respect to AIX.)

Note: Pointers exist in some of the existing header files. Since pointers are
not fixed-width types, source code using these pointers will not compile in
64-bit mode.

 • Source code compatibility is maintained for 32-bit programs written to process
32-bit XCOFF files.

 • Minimal changes are required to port a 32-bit program that manipulates 32-bit
XCOFF files to a 32-bit program that manipulates 64-bit XCOFF files.

 • Minimal changes are required to port a 32-bit program that manipulates 32-bit
XCOFF files to a 64-bit program that manipulates 32-bit XCOFF files.

3.2.3.2 Using the XCOFF Formats
There are different options for an application to use the XCOFF formats. The
following strategies are possible:

 • Using 32-bit XCOFF declarations.

To only use the 32-bit XCOFF definitions, an application must include the
appropriate header files. This will define only the structures for 32-bit XCOFF
files. The 64-bit XCOFF structures and field names will not be defined.
Structure names and field names will match those in previous versions of AIX,
providing source compatibility.

Note: Existing uses of shorthand type notation (for example, uint, ulong) have
been removed.

 • Using 64-bit XCOFF declarations.

To only use the 64-bit XCOFF definitions, an application must define the
preprocessor macro __XCOFF64__ . This will define only the structures for
64-bit XCOFF files. The 32-bit XCOFF structures and field names will not be
defined. Structure names and field names will match the 32-bit XCOFF
versions.

 • Using both XCOFF declarations.

To use separate 32-bit XCOFF and 64-bit XCOFF definitions, an application
must define both the preprocessor macros __XCOFF32__ and
__XCOFF64__. This will define structures for both kinds of XCOFF files.
Structure and typedef names for 64-bit XCOFF will have the suffix _64 added
to them, even if a common structure could be used.

 • Using a hybrid of both XCOFF declarations.

To use a hybrid of both the 32-bit XCOFF and 64-bit XCOFF definitions, an
application must define the preprocessor macro __XCOFF_HYBRID__. This
will define single structures that can be used with both 32-bit XCOFF and
64-bit XCOFF, where possible. Where fields in structures are a different size
or at a different offset, suffixes 32 and 64 are used to differentiate between the
fields. For example, the symbol table definition (in /usr/include/syms.h) will
have the names n_offset32 and n_offset64, which should be used for 32-bit
XCOFF and 64-bit XCOFF files respectively.
64-Bit Enablement 47

Depending on the execution environment of the executable and the targeted
XCOFF format, the following combinations exist:

 • 32-bit program manipulating 32-bit XCOFF files.

A 32-bit program that manipulates 32-bit XCOFF files will require no change to
continue to do so with the new header files.

Note: Since the types of some fields are being changed from long to int, code
that takes the address of such a field will result in a compiler warning when
compiled in ANSI mode.

 • 32-bit program manipulating 64-bit XCOFF files.

An existing 32-bit program that manipulates 32-bit XCOFF files can be
recompiled to manipulate 64-bit XCOFF files by defining the symbol
__XCOFF64__. Some code changes will be necessary, but the changes with
respect to the file format will be limited to cases where 32-bit XCOFF and
64-bit XCOFF use different constructs. In particular, n_name will not be
defined in struct syment, and use of struct auxent will require changes since
auxiliary symbols are redefined.

 • 64-bit program manipulating 32-bit XCOFF files.

An existing 32-bit program that processes 32-bit XCOFF files can be
recompiled to a 64-bit program without change (with respect to the XCOFF
definition) with two exceptions:

 • Pointers in the existing XCOFF files will be defined as ints in 64-bit mode.

 • Existing header files use preprocessor macro definitions in some cases.
These same macros may no longer exist when compiling in 64-bit mode, so
incidental use of the macros may require a code change.

3.2.3.3 Incomplete aouthdr Structure
Non-executable XCOFF files do not require a full-size auxiliary header. Current
practice defines a short 32-bit auxiliary header that is generated by the compiler
or the linker when the output file is not an executable. A short 64-bit auxiliary
header will not be required by this definition. Applications examining
non-executables must examine f_opthdr in the XCOFF header to determine how
much of the auxiliary header is in the file.

There will be no auxiliary header used for non-executable 64-bit XCOFF files.
Applications needing the fields from the auxiliary header for non-executable
64-bit XCOFF files should use the information in the section headers to generate
these values. The fields where this may be necessary are text, data, and BSS
sizes.

3.2.3.4 XCOFF Magic Number
The calling conventions for 32-bit mode and 64-bit mode are different in detail
because one saves 32-bit General Purpose Registers (GPRs) onto the stack
frame, and the other saves 64-bit GPRs. Calling from a program of one mode to a
subroutine of the other mode is not supported. The linkage editor ld refuses a
request to link programs of differing execution mode.

Because of this, a new magic number has been introduced for 64-bit execution
mode. The primary purpose of the XCOFF magic number is to identify the
associated Application Binary Interface (ABI), which implies a hardware system
48 AIX Version 4.3 Differences Guide

and an execution environment. The 64-bit XCOFF magic number implies a 64-bit
PowerPC processor and 64-bit execution mode on that processor.

The magic number keeps the linkage editor from binding 64-bit programs with
32-bit programs and keeps the loader from trying to execute 64-bit programs on
32-bit hardware.

The magic number is defined in the header file /usr/include/filehdr.h and has the
name U803XTOCMAGIC with the value 0757.

3.2.4 Device Drivers
AIX 4.3 supports 64-bit applications on 64-bit PowerPC hosts in addition to
maintaining support for 32-bit applications on all other supported hosts. Thus, on
64-bit hosts, both 32-bit and 64-bit applications can run simultaneously. To
minimize the impact of adding 64-bit support, the kernel continues to run in 32-bit
mode but provides interfaces to 64-bit applications by remapping the 64-bit
application space address into a 32-bit address for the kernel. Thus, the following
is true for device drivers in general and I/O drivers specifically:

 • 32-bit versions of device drivers will operate correctly without change on AIX
Version 4.3 in support of 32-bit applications.

 • 64-bit applications require modification of only the entry points (such as
ioctl()s) for proper operation.

The 4/8/8 model requires two primary changes for an I/O device driver:

 • Providing ioctl support for 64-bit applications.

 • Ensuring that structures describing fixed sized entities are size-invariant
between both 32-bit and 64-bit applications.

3.2.4.1 Changes to ioctl()
The third argument of an ioctl call is referred to as the arg parameter. For some
ioctls, the arg parameter can be a pointer. For AIX 4.3, the kernel guarantees that
the arg parameter received by a device driver is always a 32-bit value. For 64-bit
applications, the kernel will remap the address to a 32-bit address. Often, the arg
parameter is a pointer to a data structure that may contain additional pointers.
The kernel has no knowledge of this and, as a result, it is the device driver's
responsibility to interpret these correctly. Device drivers that support 64-bit
embedded pointers need to notify the kernel of this by setting the DEV_64BIT
define for the d_opts flag passed to the devswadd() call from the config entry
point of the device driver. For example a 64-bit-enabled SMP driver would use the
following code segment:

 devsw_struct.d_opts = DEV_MPSAFE | DEV_64BIT;
 devswadd(devno,&devsw_struct);

For device drivers that do not set the DEV_64BIT flag, all ioctls from 64-bit
applications will fail with an errno of EINVAL.

Since data structures with embedded pointers cannot remain size-invariant
between 32-bit and 64-bit applications, a 64-bit-enabled device driver will need to
maintain an internal-use-only 64-bit equivalent (recall the device driver will be
compiled for 32-bit mode) of all such structures that can be passed as arg
parameters. This can be accomplished by cloning the structure definition and
replacing all pointers with type ptr64 (defined in types.h as unsigned long long).
64-Bit Enablement 49

3.2.4.2 Parameter Passing Examples
For example, assume a device driver’s shipped header file has struct A, and a
device driver supports an ioctl call whose arg parameter is the address of struct
A:

struct A {
 int aaa;
 char *bbb;
 char c;
 int *ddd;
}

For a 32-bit application using struct A as the arg parameter of an ioctl, the device
driver can recast the arg parameter as struct A. However, if the device driver
determines the caller is a 64-bit application (through a call to the IS64U kernel
macro), then the device driver will have to recast struct A to a new struct A64
defined as:

struct A64 {
 int aaa;
 ptr64 bbb;
 char c;
 ptr64 ddd;
}

The code segment of the device driver for this ioctl is similar to this:

 .
 .
 .
 if (IS64U) {
 /* The caller is a 64-bit application */
 x = (struct A64 *) arg;
 .
 .
 .
 } else {
 /* The caller is a 32-bit application */
 x = (struct A *) arg;
 .
 .
 .
 }

The following naming conventions are used to create the device driver’s 64-bit
equivalent structure:

 • The 64-bit equivalent structure used by the device driver is included in the
same shipped header file.

 • It has a comment indicating that this is used for device drivers only and not
applications.

 • The name of the 64-bit equivalent structure is that of the original structure but
with a 64 appended (for example, for sc_iocmd, it will be sc_iocmd64).

For the device driver to manipulate the 64-bit addresses, new 64-bit kernel
services are provided. These kernel services support 32-bit unremapped
addresses as well as 32-bit remapped addresses and 64-bit addresses. Thus all
50 AIX Version 4.3 Differences Guide

64-bit-enabled drivers make the global kernel service replacements provided in
Table 13.

Table 13. Old and New Kernel Services Used by Device Drivers

The xmempin()/xmemunpin() calls use the same arguments as pinu()/unpinu(),
with the exception that the third argument for xmempin()/xmemunpin() is the
address of the cross memory descriptor from xmattach()/xmattach64() instead of
a segflag. The xmattach64() call uses the same arguments as xmattach(), with
the exception that the first argument for xmattach() is of type unsigned long long
(ptr64) instead of type char *.

Note: xmattach64() enables xmempin(), so that the 64-bit address can be recast
as a 32-bit address when passed to xmempin(). The xmdetach() call is used to
undo xmattach64().

3.2.5 Loader
For AIX 4.3, the same basic loader system calls are provided to 64-bit programs.
That is, there are 64-bit versions of execve(), fork(), exit(), load(), and unload()
that are aware of the 64-bit user address space. There are also 64-bit versions of
knlist() and sysconfig(), although these just interface to the existing 32-bit
services. There is no 64-bit version of ptrace(), but 64-bit processes can be
debugged by 32-bit debuggers. Finally, the loadquery(), loadbind(), and __loadx()
functions are no longer system calls for 64-bit programs but are implemented in
libc.a.

Four new external functions are added to the loader in AIX 4.3 to support 64-bit
processing:

 • ldr_init64()

This function is called during kernel initialization when a 64-bit system boots.

 • ldr_config64()

This function is called by sysconfig() when a 64-bit machine is configured to
run 64-bit processes.

 • ldr_gettextusage64()

This function computes the number of real memory pages used by the main
executable of a process. It only needs to be called if the main executable is
loaded in multiple working segments.

 • ldr64()

This is a new system call exported to the special 64-bit process that relocates
shared objects. No other process has access to this system call.

Old Kernel Service New Kernel Service

copyin() copyin64()

copyout() copyout64()

xmattach() xmattach64()

pinu() xmempin()

unpinu() xmemunpin()
64-Bit Enablement 51

On AIX 4.3, the same algorithm is used for loading 64-bit modules, but the work is
split between kernel code and user-space code. The kernel part of the 64-bit
loader is responsible for mapping the modules of a process into the 64-bit user
address space. The user-space part processes the symbol tables and performs
the relocation of the data sections.

Kernel extensions are still in XCOFF32 modules and they are entirely loaded and
resolved by the kernel. The user-space processing of the shared library
segments is handled by a privileged process running in 64-bit mode called the
shared library loader assistant process or SHLAP.

The user-space processing of privately-loaded modules is handled by code that
is loaded into a system-wide segment that is shared by all 64-bit processes. This
code is called user-space loader assistant (USLA) and runs in the process of
loading the module. The USLA is implemented as a loadable module that is
prelinked at a fixed address, so that it will not have to be relocated. When an
execve() system call leaves the kernel, it transfers control to the USLA that
performs symbol resolution and relocation for privately-loaded modules. After
load() calls, library code will be responsible for calling the USLA to complete the
relocation of any newly-loaded modules.

Because the kernel is not performing symbol resolution and relocation for 64-bit
processes, only a small portion of a 64-bit module needs to be addressable in the
kernel. The kernel only needs to examine the XCOFF header, the section
headers, the loader section headers, and the loader section import IDs. Even for
extremely large programs, the size of these areas will be small. Only the import
ID section is variable length, and its length depends on the number of
dependents a module has, not on the size of the module itself. These portions of
a module can be read into allocated memory, avoiding addressability problems
inherent in the existing 32-bit loader.

3.2.6 Virtual Memory Manager
The AIX 4.3 design point is a 60-bit user address space. The areas impacted in
the VMM are the address space code, the shared memory code, teaching VMM
code to understand remapped addresses, and the remapping services
themselves.

3.2.6.1 Executing a 64-Bit Program
The size of a user-address space only changes as a result of exec(). A 32-bit
program may exec a 32 or 64-bit program, and conversely, all combinations are
possible.

The VMM provides support routines for exec() processing to switch between a
32-bit and 64-bit executable. The routine vm_makeme64() is called when the
exec()’d program is a 64-bit program. This routine pins and initializes the 64-bit
u-block extension, initializes the 64-bit address space structures, initializes the
Address Space Register (ASR) in the Machine State (MST) extension with the
real address of the segment table, sets the sbreak and stack sizes, and marks the
process as a 64-bit executable.

The routine vm_makeme32() is called whenever a 64-bit program execs(). It is
called even if the program to be executed is 64-bits. This routine initializes a
32-bit user address space from the 64-bit one, clears the 64-bit MST extension
52 AIX Version 4.3 Differences Guide

address and marks the process as a 32-bit executable. The segstate structure is
handled later by shm_asinit(), and the 64-bit u-block extension is freed in the
subsequent call to vm_cleardata(). The vm_cleardata() call also initializes the
sbreak value for the private segment and adjusts the storage protect key
accordingly in the external page tables covering the user region. There is no
service to re-initialize a 64-bit adspace to a newly-created 64-bit adspace, so it is
necessary to call vm_makeme32, followed by vm_cleardata() and
vm_makeme64(), when a 64-bit program exec()’s another 64-bit program.

3.2.6.2 Address Space Management
The address space management code is significantly impacted for 64-bits. The
code was updated to understand segment numbers, or effective segment IDs,
above the first sixteen IDs.

32-Bit Address Space Programming Interfaces
The following 32-bit services that operate on the process address space are
exported to kernel extensions, so the AIX 4.3 versions of these services are
binary-compatible with prior versions. For internal base kernel use, these address
space services are extended to handle 64-bit address spaces but only by code
that has been modified to be 64-bit aware. This means only by code that knows
how to compute an appropriate adspace_t for a 64-bit address space:

 caddr_t as_att(adspace_t * adsp, vmhandle_t srval, caddr_t addr)
 int as_det(adspace_t * adsp, caddr_t addr)
 vmhandle_t as_geth(adspace_t * adsp, caddr_t addr)
 vmhandle_t as_getsrval(adspace_t * adsp, caddr_t addr)
 void as_puth(adspace_t *adsp, vmhandle_t srval)
 void as_seth(adspace_t * adsp, vmhandle_t srval, caddr_t addr)
 adspace_t *getadsp()

To provide compatibility for 32-bit kernel extensions, the 32-bit getadsp() kernel
service is modified to determine if it is running under a 64-bit user address space,
and if so, it will return the first adspace_t. This represents ESIDS 0-15. This could
enable some extensions to run under the 4 GB boundary for 64-bit.

All of the 32-bit services listed may be used by a kernel extension or device
driver, but they will only operate on addresses below 4 GB, even when under a
64-bit process. The service to compute an adspace_t for 64-bit, getadsp64(), is
not exported from the kernel. Thus, these routines are not enabled outside the
kernel to operate above the 4 GB line.

Kernel services and drivers should use the new 64-bit address space services
described in the following.

For 64-bit address spaces (internal to the kernel, where there is getadsp64()), the
address arguments specified preceding as caddr_ts are actually 32-bit quantities
that are treated as offsets into the appropriate adspace_t. The only reason for
keeping enablement of these services for 64-bit inside the kernel is that, on some
system calls, there should be some performance improvement by only computing
an adspace_t once.

64-Bit Address Space Programming Interfaces
The following additional address space services are provided for use by the
64-bit kernel extension and by other base kernel code that has been modified to
be 64-bit aware.
64-Bit Enablement 53

All of the following services are exported:

 unsigned long long as_att64(vmhandle_t srval, int offset)
 int as_det64(unsigned long long addr64)
 vmhandle_t as_geth64(unsigned long long addr64)
 vmhandle_t as_getsrval64(unsigned long long addr64)
 int as_puth64(unsigned long long addr64, vmhandle_t srval)
 int as_seth64(unsigned long long addr64, vmhandle_t srval)
 int IS64U

The address space programming model for 64-bit introduces a copy of all the
32-bit interfaces appropriately scaled for 64-bit addresses. All of the 64-bit
services work properly under a 32-bit user address space or under a kproc as
well as a 64-bit user address space:

One additional non-exported service is provided:

 adspace_t *getadsp64(unsigned long addr64)

The getadsp64() service exists to provide a bridge between the 64-bit and 32-bit
services. The adspace_t returned by getadsp64() may be passed to any of the
32-bit services, and it will work properly. The one exception to the example is that
32-bit as_att() will not support attaching anywhere other than the first adspace_t.
The advantage of using getadsp64() is the performance improvement of only
computing an adspace_t once per system call.

The concept of an adspace_t really does not exist with the new 64-bit interfaces;
getadsp64() is the only exception, and it is only for use with the 32-bit interfaces
internal to the kernel. The advantage of not having an adspace_t externalized is
that the width of an adspace_t is no longer surfaced to extensions. This saves the
extensions the overhead of having to compute another adspace_t every 4 GB.

Kernel extensions writing new code to enable 64-bit support that need the
address space services, should use the new *64 services instead of the current
32-bit services. The *64 services handle all the general cases for 64-bit and
32-bit address spaces. The 32-bit services will only work for addresses less than
4 GB outside the kernel.

How to Determine if this is a 64-Bit Address Space
The IS64U macro will return true if the user address space for the current process
is 64-bits. This macro is valid only in kernel mode. If used inside the kernel, this
will return the value of U.U_64bit directly. If used outside the kernel in an
extension, this will generate a subroutine call to the new kernel service:
_as_is64(). _as_is64() will simply return the value of the variable. U.U_64bit is
managed by exec() in vm_makeme64/32. IS64U is defined in user.h.

3.2.6.3 Shared Memory Management
The shared memory code is impacted for 64-bit support since it must attach
shared memory segments at large addresses. The functions shmat() and mmap()
will behave as follows regarding segment number (ESID) allocation:

 • If no fixed address is specified, then allocation takes place from the
shmat()/mmap() pool at ESIDs: 0x70000000 - 0x7FFFFFFF.

 • If a fixed address is specified by the user, then the allocation will be allowed
as long as the ESID is less than 0x80000000 and is not ESID 0-2,13, or 15.
54 AIX Version 4.3 Differences Guide

 • The shared memory allocator internally allocates anywhere in the address
space. The reason for this is that other areas of the kernel, for example the
loader, need to insert segments at ESIDs greater than 0x80000000.
Therefore, shm_insert() is allowed to insert anywhere, but the higher-level
user-interfaces perform the validation for the user level.

Shared Memory User and Exported Kernel Programming Interfaces
The shared memory component has numerous system calls surfaced to the user.
All of these system calls are registered in the 64-bit libc.a and the 64-bit kernel
extension. The following is the list of the 32-bit shared memory system calls:

 void* shmat(int shmid, const void *address, int shmflag)
 int shmctl(int shmid, int command, struct shmid_ds *buffer)
 int shmdt(const void *address)
 int shmget(key_t key, size_t size, int shmflag)
 int disclaim(char *address, uint len, uint flag)

The following are the new, 64-bit-ready interfaces for the shared memory
services. These interfaces are called directly from the 64-bit kernel extensions
only:

 ptr64 _shmat64(int shmid, ptr64 address, int shmflag)
 int _shmdt64(ptr64 address)
 int _disclaim64(ptr64 addr,unsigned len,unsigned flag)

The _shmat64(), _shmdt64(), and _disclaim64() calls do not require parameter
remapping, since they are 64-bit-enabled. They do, however, require 64-bit libc.a
to split their address parameters into two adjacent general purpose registers for
processing in 32-bit mode. the shmctl() call does require parameter remapping on
the pointer to the shmid_ds. Additionally, shmget() takes a size_t as input. This
typedef is an unsigned long, which has different widths in 32-bit and 64-bit
programs.

The prototype to shmget() will not change for 64 bits. The low 32 bits of the 64-bit
size will be passed to the kernel, with the size being range-checked for 32 bits in
the library-side. There will be no increase in size of the supported memory region.
The key_t parameter to shmget() is currently a long. It will be changed to always
be an int. This will be true for 32-bit and 64-bit code to make it invariant. This
allows predictable message-passing between 32-bit and 64-bit processes.

3.2.6.4 User Data and Stack Management
The 32-bit programming interfaces for adjusting a program's data size are brk()
and sbrk():

 int brk(void *enddatasegment)
 void * sbrk(int increment)

There is a change to the sbrk() interface required by 64-bit mode and UNIX98
standards. For UNIX98, sbrk() needs to take a long on input.

This poses a breakage for those who want to have the UNIX95-behavior of sbrk()
that obeys the preceding prototype, taking an int in 64-bit mode. The problem is
that the 64-bit library wrapper for sbrk() has no way of determining whether it was
passed a 32-bit value or a 64-bit value. The compiler will not ensure that the high
32-bits of a register are 0 for int's. Since most programmers going to 64-bit with
their applications will require some porting effort to do so, changing sbrk() to the
64-Bit Enablement 55

UNIX98 interface will add very little extra work. This does not mean that they
have to change everything to UNIX98 conformance, just sbrk() in this case.

The sbrk() function prototype in <sys/unistd.h> was changed to pass a long for all
64-bit compilations; that is, if __64BIT__ is set. For 32-bit compilations, the sbrk()
prototype will be conditionally compiled to generate the appropriate UNIX95 or
UNIX98 prototype since the data-width between int and long does not change for
32-bit. Code that wants to run 64-bit must either make sure it passes a long, or if
it obeys UNIX98, it is required to include <sys/unistd.h>. The standards require
header file inclusion. The prototype for sbrk(), which defines it as taking a long, is
as follows:

 void * sbrk(intptr_t increment)

intptr_t is a new type. Defined in <sys/inttypes.h>, it maps to a long.

3.3 Application Development

Section 3.2, “64-Bit Core Design” on page 33, explained the design issues of AIX
4.3 with respect to 64-bit application support. The changes in the core design of
AIX have impacts on various components of the software development
environment. This section describes what decisions have been made to provide a
migration path from 32-bit to 64-bit applications. It shows the modifications that
have been made to the most important tools in the software development area,
such as the compiler, linker, and archiver.

3.3.1 C Compiler
This section discusses the implementation of 64-bit capabilities in the C for AIX
compiler. The C compiler provides supporting functions that can enable the
usability of 64-bit C syntax and semantics.

Each program compiled for execution on AIX is intended for execution in one
particular target execution mode: 32-bit mode or 64-bit mode. The default
compilation and assembly mode is 32-bit. This is the ILP32 model. The change
from the default 32-bit to 64-bit mode is under user control. In the compiler, the
option -q64 is used to change the compilation mode.

The default execution mode is not directly controllable by the user processes but
can be examined indirectly (for code dynamically targeted to multiple
environments) through the pointer or long type size. The compiler provides
porting assistance options wherever there are statements that can be
ambiguously interpreted for the LP64 environment.

When running 32-bit processes on 64-bit platforms, the execution is transparent
and identical to executing on a 32-bit platform with no loss of performance. When
trying to run 64-bit processes on 32-bit platforms, the execution will fail in an
obvious manner.

The 64-bit implementation in the C front end does not change the default
behavior of the compiler. The compiler only changes the behavior of code when
compiled in 64-bit mode. Code that was compiled in 32-bit mode that has no
requirements for large address spaces (pointers) or large object sizes (arrays and
dynamic heaps) will not need to be recompiled to work in 32-bit mode on a 64-bit
56 AIX Version 4.3 Differences Guide

platform. You may recompile the code in 64-bit mode to check performance
implications in 64-bit mode on a 64-bit platform.

While most code will recompile and execute properly in 64-bit mode, some code
will behave differently, or may not function at all, due to nonportability deliberately
or accidentally written into the code. Common causes of behavior changes are
due to mixed use of long and int types in operators, especially comparison
operators that will change the code execution path. Although the usual operand
promotion rules do not change, the changed size of long types may yield
surprising and unexpected results. Function arguments and return types from
functions need to be checked for their actual value. Many library functions return
long types and take long types that are implicit, such as size_t and ptrdiff_t.
Structures, structure alignments, member alignments, bit fields, and enums are
guaranteed to change when compiled in 64-bit mode (especially if they contain
long and pointer types).

3.3.1.1 Compiler Mode
The generation of 64-bit instructions and 64-bit XCOFF is called the 64-bit
compilation mode. The compiler invocation for setting the 64-bit versus 32-bit
mode evaluates several sources. They are:

 • Internal default

 • Environment variable OBJECT_MODE

 • Configuration file

 • Command line

 • Source file

The compiler evaluates the options in the given order of the items. The last one
takes precedence. For example, if the environment variable OBJECT_MODE
exists, it will replace the internal default of the compiler. Table 14 provides a list of
OBJECT_MODE settings and the compilation mode behavior.

Table 14. Settings for OBJECT_MODE and the Resulting Compiler Behavior

This option allows the code to function in a 32- or 64-bit environment without
excessive use of new option names. This will maintain compatibility with other
tools that can exhibit 32/64-bit mode behavior since they will all use the
OBJECT_MODE environment variable. It also maintains compatibility with
machines without 64-bit capability that want to compile in 64-bit mode. In all

OBJECT_MODE setting Compilation Mode Behavior

not set 32-bit mode

32 32-bit mode

64 64-bit mode

32_64 fatal error and stop (unless there is explicit user setting
in the config file or command line) with message:
1501-054 OBJECT_MODE=32_64 is for mixed-mode
and is not a valid setting for the compiler.

anything else fatal error and stop (unless there is explicit user setting
in the config file or command line) with message:
1501-055 OBJECT_MODE setting is not recognized
and is not a valid setting for the compiler.
64-Bit Enablement 57

cases, the user is free to override the environment variable with an explicit option
in the config file or the command line.

32-bit mode is invoked by specifying -q32 on the compiler command line and is
the default if OBJECT_MODE is not set. This option is equivalent to a direct
expansion into the -qarch=com option. For the compilers that do not have 64-bit
yet, use of the -q32 and/or the -q64 option will cause the following warning (this is
the usual warning on unrecognized options):

1501-055 Option -q32, -q64 is not recognized and is ignored.

Problems with #pragma arch Suboptions in Source Files
The -q32/64 option has no pragma equivalence because the compilation mode
must be determined before the compiler driver exits and invokes the compiler.
Implicitly expanded options are parsed with the rest of the command line to
produce a final compilation mode. From this compilation mode, the options are
passed separately to the compiler, linker, and assembler. However, since the
ARCH suboption has an equivalent #pragma arch suboption in the source file, the
individual files may be compiled in a different mode than what was decided by the
command line.

It was decided to disallow the setting of a #pragma arch suboption in a source
file. This is a change in Version 4.0 of the C compiler that means a loss of
backward compatibility with previous C compiler versions.

Mixed-Mode Compilation and Two-Step Compile and Linking
When you cause a mixed 32- and 64-bit compilation mode, your XCOFF objects
will not bind. This will become obvious if the compile and link occurred in one
step. However, you may not know this if the compile and link occurred in different
steps. In other words, if you compiled and produced 64-bit objects, you need to
remember to link using the 64-bit mode (when linking using xlc), otherwise the
objects will not link. If the objects are in mixed XCOFF mode, then they will never
link, and you must recompile completely, making sure that all objects will be in the
same mode.

There is a set of new configuration file attributes that are used in place of the
normal attributes whenever the compiler determines that the 64-bit mode is
enabled. These new attributes are:

 • crt_64

 • gcrt_64

 • mcrt_64

The new definitions for these attributes are:

crt_64 Path name of the object file passed as the first parameter to the
linkage editor. If you do not specify either -p or the -pg option, the
crt_64 value is used. The default depends on the compiler being used.

gcrt_64 Path name of the object file passed as the first parameter to the
linkage editor. If you specify the -pg option, the gcrt value is used. The
default depends on the compiler being used.

mcrt_64 Path name of the object file passed as the first parameter to the
linkage editor if you have specified the -p option. The default depends
on the compiler being used.
58 AIX Version 4.3 Differences Guide

Note: The invocation of 64-bit mode using the -q64 option (either explicitly or
using a stanza) automatically implies linkage in 64-bit mode. The compiler driver
automatically and quietly generates the correct linker options (-b32 or -b64) to
call the binder or the correct assembler option (-a32 or -a64) when calling the
assembler. Therefore, these options do not need to be set by the user.

Predefined __64BIT__ Macro
When the compiler is invoked to compile for 64-bit mode, the preprocessor macro
__64BIT__ is predefined. When it is invoked in 32-bit (default) mode, this macro
is not defined. The variable can be tested through:

 #if defined(__64BIT__)

or

 #ifdef __64BIT__

to select lines of code (such as printf statements) that are appropriate for 64 or
32-bit mode. The ability to choose execution mode (of the final executable) at
compile time and the existence of the __64BIT__ macro implies there is no need
for an application to determine its execution mode at run time.

When the compiler is invoked to compile for 64-bit mode, this macro is set to a
value of 1 internally, so that the C preprocessor and compiler will recognize it. It
cannot be redefined or undefined. Any attempt at redefinition will fail.

3.3.1.2 Fixed-Width Types
There is a a set of types that maintain their width regardless of the compilation
mode of the compiler. These types may be used if the program relies on an exact
and unchanging size for the types.

Programs that exchange formatted messages are, for example:

 • An X-windows server and client executing in different modes.

 • Processes running in different modes that share data (using shmat() to jointly
access and change common memory areas).

 • Data files written by applications running in one mode and read by
applications running in a different mode.

All of these demand the availability of fixed-width types.

ANSI introduced two sets of types. One is the signed fixed-size integral type:

 • int8_t

 • int16_t

 • int32_t

 • int64_t

The other is the unsigned fixed-size integral type:

 • uint8_t

 • uint16_t

 • uint32_t

 • uint64_t
64-Bit Enablement 59

These ANSI types are defined through the header <inttypes.h>. Note that the
signed or unsigned are explicitly coded into the typedefs and not left to chance.
Although it is unlikely that the defaults for short/int/long are unsigned, it is
possible on some machines. Furthermore, by forcing the keyword, this would
have the same error behavior in all cases if the user were to add a sign qualifier
to the ANSI types, as in signed int8_t.

3.3.1.3 Structure Alignment and Bitfields
The LP64 specifications will change the size, member alignment, structure
alignment, and bitfield sizes and alignment of most structures implicitly.
Structures with only long and pointer types will at least double in size depending
on the alignment mode.

Sharing data between 64-bit and 32-bit processes will not be possible unless the
fixed-width types are used, or the structure is devoid of pointer and long types.
Special attention needs to be paid to unions that attempt to overlay int types with
long types or pointer types.

For the details of alignment in different modes and in combination with different
compiler flags, consult the compiler reference manual.

Table 15 provides the different alignments found in 32- or 64-bit modes.

Table 15. Alignment of Basic Data Types in 32- and 64-Bit Mode

According to ANSI, a bit field will have a type that is a qualified or unqualified
version of one of int, unsigned int, or signed int. Therefore, the ANSI mode
cannot change the type.

Bitfields in ANSI mode can only be signed int or unsigned int. In extended mode,
common mode, or k&r mode, non-integer bitfields are tolerated. When a
non-integer bitfield is tolerated, it means that any type other than int will be
converted to int.

The extended mode bitfields are updated to long types to admit 64-bit width in
64-bit mode. If a long type bitfield of length greater than 32-bits is used in 32-bit
extended mode, the following message is given:

1506-003 (S) Width of a bit-field of type "long" cannot exceed 32.

If a long type bitfield of length greater than 64-bits is used in 64-bit extended
mode, the following message is given:

Type 32-Bit 64-Bit

char 1 1

short 2 2

int 4 4

long 4 8

long long 8 8

float 4 4

double 8 8

pointer 4 8
60 AIX Version 4.3 Differences Guide

1506-003 (S) Width of a bit-field of type "long" cannot exceed 64.

Bitfields are packed into the current word. Adjacent bitfields that cross a word
boundary will start at a new storage unit. This storage unit is a word in power, full
or natural alignment in 32-bit mode, but is a double word in 64-bit mode. In 64-bit
mode, adjacent declarations of bitfields of type long can now be contained into
one storage unit. Since long bitfields of greater than 32-bits were not permitted in
32-bit mode, this does not change and is not a portability problem.

Note that the packed alignment option just reduces the alignment ceiling to one,
two, four, or eight bytes depending on the packed=1|2|4|8 setting and leaves the
remaining alignment parameters unchanged.

3.3.1.4 Enum Support
Enum constants are always of type int, except when the range of these constants
is beyond the range of int, in which case, they have type unsigned int. Enum
variables may be smaller depending on the mode of -qenum=small|int|1|2|4|8
option.

small Specifies that enumeration occupies a minimum amount of storage
(either 1, 2, 4, or 8 bytes) depending on the range of enum constants.

int Enumeration occupies 4 bytes and are represented by int.

1 Enumeration occupies 1 byte and are represented by char.

2 Enumeration occupies 2 bytes and are represented by short.

4 Enumeration occupies 4 bytes and are represented by int.

8 Enumeration occupies 8 bytes and are represented by long.

enum=int and enum=4 are not the same. The enum=4 allows signed and
unsigned variant. The enum constants will usually be typed int, even in 64-bit
mode, to enhance compatibility with 32-bit programs. Only when the range
chooses an unsigned long or long, the constant will use unsigned long or long
types respectively. In 32-bit mode, -qenum=8 will yield an warning message:

1506-749 (W) Enum=8 is not valid in 32-bit mode, setting enum=4 instead.

3.3.2 XL Fortran Version 5
XL Fortran Version 5.1 introduced a new compiler option, -q64. This allows the
object code to run in 64-bit mode. The programming conventions are similar to C.
For a better understanding of Fortran tuning on POWER3 processors, see
RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning
Guide, SG24-5155.

3.3.3 System Libraries
AIX 4.3 provides a 32-bit Application Binary Interface (ABI) and a 64-bit ABI. The
32-bit ABI consists of the entire pre-AIX 4.3 ABI and provides binary compatibility
at the same level as maintained by previous releases.

The dual ABI means two different version of all the Application Program
Interfaces (APIs). The mechanism for this are two separate versions of all the
objects in a given library. The objects are distinguished by distinct names. The
linker is able to distinguish which object to use for a given symbol based on the
differing object formats (32-bit and 64-bit).
64-Bit Enablement 61

The following libraries and APIs are not supported in the 64-bit environment:

 • lib300.a - obsolete ASCII graphing library

 • lib300s.a - obsolete ASCII graphing library

 • lib4014.a - obsolete ASCII graphing library

 • lib450.a - obsolete ASCII graphing library

 • libIN.a - Interactive Systems library from RT days

 • libPW.a - obsolete Programmer's Workbench library

 • libcur.a - obsolete IBM-invented curses extensions

 • libplot.a - obsolete ASCII graphing library

 • libbsd.a - nonstandard BSD APIs (others are in libc.a)

The preceding APIs are also obsolete in 32-bit environments and will not be
supported in the future. Also, the back level X11 compatibility and libcurses
libraries do not have 64-bit versions.

The following functions will not be provided in the 64-bit version of libc.a:

 • NC*

 • NL*

 • _NC*

 • _NL*

 • isj*

 • jis*

 • compile

 • step

 • advance

The asterisk represents a wild card.

3.3.4 Linker
Compilers, the assembler, and the binder create XCOFF64 object files when
invoked in 64-bit mode. The AIX 4.3 linker links these object files in the same way
that it links XCOFF32 object files.

The AIX linker supports the development of 64-bit applications, libraries, and
kernel extensions. For 64-bit applications and libraries, the linker is able to read
and write XCOFF64 files, performing internal processing appropriate for 64-bit
mode. For 64-bit kernel extensions, the linker is able to mark exported symbols
with storage-mapping class XMC_SV, XMC_SV64, or XMC_SV3264.

In this section, mode indicates the linking mode, which means whether an
XCOFF32 or XCOFF64 file is generated as the output file. Mixed-mode linking is
not allowed.

Archives may contain both XCOFF32 and XCOFF64 members. Depending on the
mode, members in the appropriate format are processed, while other XCOFF
members are silently ignored. Archives containing XCOFF64 members use a new
62 AIX Version 4.3 Differences Guide

archive file format that provides for separate global symbol tables for XCOFF32
and XCOFF64 members (see Section 3.3.5, “Archiver” on page 64). This new
archive format is also used for all archives created on AIX 4.3, so the binder
reads the new archive format even when running in 32-bit mode.

The following new command line flags and options in import files are introduced:

 • -b32 option

Specifies 32-bit linking mode. In this mode, all input object files must be
XCOFF32 files, or an error is reported. Only XCOFF32 archive members are
processed. Other archive members are ignored. For import files specifying the
mode of certain symbols, 64-bit imports are ignored.

 • -b64 option

Specifies 64-bit linking mode. In this mode, all input object files must be
XCOFF64 files, or an error is reported. Only XCOFF64 archive members are
processed. Other archive members are ignored. For import files specifying the
mode of certain symbols, 32-bit imports are ignored.

 • 32 option in an import file

This option can be used in an import file to specify that subsequent symbols
should be processed when linking in 32-bit mode but ignored when linking in
64-bit mode. If no 32 or 64 option is specified, all symbols are processed in
both 32 and 64-bit modes.

Note: The syntax for import file options is a pound sign (#) followed by a blank
followed by a list of options.

 • 64 option in an import file

This option can be used in an import file to specify that subsequent symbols
should be processed when linking in 64-bit mode but ignored when linking in
32-bit mode. If no 32 or 64 option is specified, all symbols are processed in
both 32 and 64-bit modes.

 • no32 or no64 option in an import file

This option overrides a previous 32 or 64 option. Subsequent symbols are
processed in both 32 and 64-bit modes.

 • OBJECT_MODE environment variable

If the -b32 or -b64 options are not used, the OBJECT_MODE environment
variable is examined to determine the linking mode. If the value of
OBJECT_MODE is 64, 64-bit mode is used. If the value is 32_64, the linker
prints an error message and exits with a non-zero return code. Otherwise,
32-bit mode is used.

If both -b32 and -b64 options are specified, the last specified option is used. If
neither option is specified, the mode is determined from the value of the
environment variable OBJECT_MODE.

New keywords are recognized in import and export files. The keywords are svc64
and svc3264, with synonyms syscall64 and syscall3264. For ease of use, svc32
and syscall32 are added as well. They are equivalent to svc and syscall. All these
keywords may be in upper- or lower-case. The keywords are ignored in import
files. In export files, a symbol exported with the svc64 keyword is given
storage-mapping class XMC_SVC64 in the loader-section symbol table. Similarly,
64-Bit Enablement 63

symbols exported with svc3264 are assigned a storage-mapping class,
XMC_SVC3264. The existing flags and options -T, -D, -S, -bD, -bS, -bmaxdata,
-bmaxstack, -bpD, and -bpT will accept 64-bit values as arguments. The 64-bit
values are passed to the binder in the respective binder subcommands,
regardless of the mode. The binder reports errors for used values that are too
large for 32-bit mode. Depending on the options specified, some values are never
used and do not result in an error.

3.3.5 Archiver
The AIX 4.3 the ar command handles the archiving of 64-bit XCOFF object
modules in addition to the current 32-bit object modules. An archive file in AIX 4.2
supports only a single global symbol table to reference the symbols contained in
all object-file modules within the archive. To support the two formats of object
files, it is important that the symbols of 64-bit objects be distinguishable from
those of 32-bit objects. This is not an issue for the old (pre-AIX 4.3) archive file
format since 64-bit modules are not stored in these archives. For the AIX 4.3
archive format, however, there are two global symbol tables: one for 32-bit object
symbols and one for 64-bit object symbols. The ar command is able to recognize
each type of object file and store its symbols in the appropriate table.

The ar command maintains compatibility with the previous archive file format. If
given an archive file of the old format, ar still adds, deletes, reorders, and lists
members without altering the format of the archive file except in two cases: when
the user explicitly requests conversion to the AIX 4.3 format by using the -o
option, or when the user adds a 64-bit object to the archive. For the latter case, a
64-bit object cannot be handled by the old-format archive, so conversion is
required. A mechanism is provided for ar to refuse the 64-bit object instead of
converting the archive format.

When creating a new archive, the 4.3 ar command automatically uses the new
format. For files that are not XCOFF objects of either type, ar processes them as
usual. If such files are added to a nonexisting archive, the new format is used in
creation. If ar is given an old-format archive, it is not reformatted (unless the user
requests it). The new maximum size of an archive has increased from (1011 - 1)
to (1019 - 1) bytes.

A new flag has been added, -X, which requires an argument of either 32, 64, or
32_64. This flag indicates to ar whether to accept only 32-bit objects or only
64-bit objects (in addition to any non-object files, which are always valid) or both.
If both -X32 and -X64 are specified, ar treats it as if -X32_64 were specified and
accept both object types. If only one of the options is specified, ar ignores all
object files in the archive that are not of the specified type. If such objects are
specified on the command line, an error message is issued, but other acceptable
objects are still processed. If the -X option is given with an unrecognized
argument, an error message is printed with the usage statement, and ar exits.

A new environment variable, OBJECT_MODE, is recognized by ar to determine
the XCOFF file type(s) acceptable for processing. The values of
OBJECT_MODE=32, OBEJECT_MODE=64, and OBJECT_MODE=32_64 all
have the equivalent function of their -X flag counterparts. If both the environment
variable and the -X flag are specified, the flag will take precedence over the
environment variable. If no -X flag is given and OBJECT_MODE is unset or is set
to an unrecognized value, 32-bit mode is used.
64 AIX Version 4.3 Differences Guide

Displaying the symbol table with the -w option shows the symbol table depending
on the chosen mode. In 32-bit mode, only the 32-bit symbol table is displayed; in
64-bit mode, only the 64-bit symbol table is displayed. In mixed mode, both are
displayed. To distinguish the 32-bit table from the 64-bit table in mixed mode,
each symbol table entry is followed by a field containing the characters 32 or 64,
respectively. Each field is separated from the previous field by a single tab
character. The 32-bit table is printed before the 64-bit table if both are present.

3.3.6 The dbx Debugger
The dbx command provides a symbolic debug program for C, C++, Pascal, and
FORTRAN 32-bit and 64-bit programs. It is also able to process and examine
core files generated from both 32-bit and 64-bit processes. dbx itself stays a
32-bit program, but its data is expanded to accommodate debugging of 64-bit
programs. In case of debugging 32-bit code, there are wrapper, or interface
routines, that translate from 32-bit formats to dbx’s internal 64-bit data formats.

The dbx program:

 • Automatically identifies the execution mode of the code

 • Understands the new XCOFF64 format

 • Understands the new archive format

 • Understands the new coredump format

 • Supports M:N threads debugging

 • Accepts 64-bit addresses input

 • Does arithmetical calculations in 64-bit precision

 • Displays 64-bit values

The dbx parser has been changed to accept 64-bit addresses.

Note: To save typing of 16-digit long addresses, the user can set a dbx variable
and use it as a base.

Commands will allow 64-bit values for addresses, subscripts, ranges, offsets, and
so on. The 32-bit dbx required a suffix ll or ull on 64-bit number input. For
example, 0x123456789ull. Any number that was too big for its type was set to the
maximum value without any warning message. For ease of use, dbx now
assumes long long for any input string greater than 8 digits for hex, 11 digits for
octal, and 10 digits for decimal including leading zeroes if any. For convenience,
underscores are allowed in any numeric input. For example,
0x1234_4567_890A_BCDE. They are ignored and not counted in the preceding
sizes like in the assembler.

3.3.7 Commands and Utilities
All commands that needed to be modified for 64-bit support were modified to
work with 32-bit and 64-bit objects (object files or processes). No commands and
utilities were converted to 64-bit executables; they remain 32-bit executables.

There are two major reasons for changing commands:

 • The new XCOFF64 format

 • Data values that might exceed 231
64-Bit Enablement 65

In general, no command user interfaces or new flags were added to these
commands, with the exception of the XCOFF-specific commands and the lint
command. For most of the commands that deal with XCOFF files, a new flag was
added, -X that requires an argument of either 32, 64, or 32_64. This flag indicates
whether to recognize only 32-bit objects, 64-bit objects, or both. If both -X32 and
-X64 are specified, the command treats it as -X32_64 and recognizes both object
types. If only one of the options is specified, the command ignores all object files
that are not of the specified type. If such objects are specified on the command
line, an error message is issued, but other acceptable objects are still processed.
If the -X option is given with an unrecognized argument, an error message is
printed with the, usage statement and the command exits.

For the same XCOFF-specific commands, the environment variable
OBJECT_MODE determines the XCOFF file type(s) to be recognized. The
defined values of OBJECT_MODE=32, OBJECT_MODE=64, and
OBJECT_MODE=32_64 all have the equivalent function of their -X flag
counterparts. If both the environment variable and the -X flag are specified, the
flag takes precedence over the environment variable. If no -X flag is given and
OBJECT_MODE is unset, 32-bit mode is used. If OBJECT_MODE is set to an
undefined value, an error message is printed, and the command fails unless the
value is overridden on the command line.
66 AIX Version 4.3 Differences Guide

Chapter 4. Application Development and Pthreads

This chapter details the changes in AIX 4.3 that may have an impact on the work
of application developers. Applications may exhibit better performance by using
new features and functions that are available in AIX 4.3.

4.1 C Language Standards

AIX Version 4 Release 3 made several changes and additions to conform to the
ISO C Language Standard Normative Addendum One. The changes concern the
handling of multibyte and wide character text formats.

The changes include new and altered programming interface specifications,
many of which are contained in new #include files. For more information, see the
National Language Support chapter of AIX Version 4.3 General Programming
Concepts: Writing and Debugging Programs. The document is part of the online
documentation, which is supplied with AIX. If you have not installed the
documentation on a local machine, it can also be viewed on the internet using the
URL: http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

4.2 IEEE POSIX and UNIX98 Conformance

AIX 4.3 is now aligned with the following standards:

 • ISO/IEC 9945-1:1996 that incorporates ANSI/IEEE Std POSIX 1003.1-1990,
1003.1b-1993, 1003.1c-1995, and 1003.1i-1995 (1003.1b-1993 and
1003.1i-1995 are realtime extensions; 1003.1c-1995 is a threads extension).

 • ISO C Amendment 1: 1995 (multibyte support).

 • The Open Group UNIX98 specification that adds:

 • Extended threads functions over POSIX threads, based on industry input
from Sun, Digital, HP and DCE.

 • Dynamic linking extensions to permit applications to share common code
across many applications and ease maintenance of bug fixes and
performance enhancements for applications.

 • N-bit cleanup (64-bit and beyond) to remove any architectural
dependencies in the UNIX specification. This is of particular relevance with
the IBM move to 64-bit UNIX.

 • Year 2000 alignment to minimize the impact of the millennium rollover.

4.2.1 Realtime Options
AIX 4.3 does not support the realtime optional parts of the IEEE POSIX and
UNIX98 specifications. In particular, the routines provided in Table 16 are not
supported in AIX Version 4.3.

Table 16. Unsupported Real-Time Routines

clock_getres() clock_gettime()

clock_settime() fdatasync()

lio_listio() mlock()
© Copyright IBM Corp. 1998 67

4.2.2 Unsupported Threads Options
AIX 4.3.2 does not support the optional pthread interfaces provided in Table 17.

Table 17. Unsupported Optional Threads Interfaces

4.2.3 Dynamic Linking Extension
The dynamic linking extension that came out of the Aspen group comprises a set
of four routines and a header file to provide a portable API for manipulation of an
implementation-defined class of files, such as shared libraries. These routines
are based on those introduced in UNIX System V Release 4.

Use of dynamic linking allows several benefits for application developers:

 • The ability to share commonly-used code across many applications, leading to
disk and memory savings.

 • It allows the implementation of services to be hidden from applications.

 • It allows the re-implementation of services. For example, to permit bug and
performance fixes or to allow multiple implementations selectable at runtime.

mlockall() mq_close()

mq_getattr() mq_notify()

mq_open() mq_receive()

mq_send() mq_settattr()

mq_unlink() munlock()

munlockall() nanosleep()

sched_get_priority_max() sched_get_priority_min()

sched_getparam() sched_getsceduler()

sched_rr_get_interval() sched_setparam()

sched_setscheduler() sched_yield()

sem_close() sem_destroy()

sem_getvalue() sem_init()

sem_open() sem_post()

sem_trywait() sem_unlink()

sem_wait() shm_open() function

shm_unlink() sigqueue()

sigtimedwait() sigwaitinfo()

timer_create() timer_delete()

timer_getoverrun() timer_gettime()

timer_settime()

pthread_attr_getinheritsched() pthread_attr_setinheritsched()

pthread_mutex_getprioceiling() pthread_mutex_setprioceiling()
68 AIX Version 4.3 Differences Guide

4.2.3.1 dlopen()
The dlopen() function is used to dynamically load a module into a process’
address space. The value returned by dlopen() is a handle that can be passed to
dlsym() to look up symbols in the loaded module. The handle can also be passed
to dlclose() to allow the module to be removed from the address space.

Synopsis: #include <dlfcn.h> void *dlopen(const char *pathname, int flags);

If the <pathname> is /unix, dlopen() returns a handle that can be used to look up
symbols in the current kernel image, including all kernel extensions. If <pathname>
is NULL, a handle for the main executable is returned. Otherwise, <pathname>
names a module that will be loaded.

If <pathname> contains a slash character(/), the pathname is used directly, whether
it is an absolute or a relative path. Otherwise, a search for the named module is
made. Directories to be searched are listed in:

1. Value of LIBPATH when the process was first loaded
2. Current value of LIBPATH that can be modified during execution with the

setenv command

The new module and its dependents are actually loaded with the load() system
call. If the main program was built with the -brtl option, the runtime linker
processes the loaded modules. Next, initialization routines are called for modules
loaded for the first time.

If dlopen() succeeds, it returns a handle that can be used for calls to dlsym() and
dlclose(). Otherwise, dlopen() returns NULL and sets errno. If errno is set to
ENOEXEC, additional information can be obtained by calling dlerror().

4.2.3.2 dlsym()
This function returns the address of a symbol in a module opened by dlopen().

Synopsis: #include <dlfcn.h> void *dlsym(void *handle, const char *name);

The argument <handle> must be a value returned by dlopen() that has not been
passed to dlclose(). The argument <name> is the name of a symbol or the special
value RTLD_EP. For functions, the symbol name should not begin with a period.

If the <name> is RTLD_EP, the address of the entry point of the module is returned.
If there is no entry point, the address of the data section of the module is
returned. The returned value may be passed to loadbind().

In general, the module denoted by <handle> and its original dependents are
searched in breadth-first search order, based on the import file IDs listed in each
module. If a module is linked with the -brtl option or the -G flag, the dependency
list will contain all modules listed on the command line in the same order.
Otherwise, all dependent modules will be listed in an unspecified order.

If dlsym() succeeds, it returns the address of the desired symbol. Otherwise,
NULL is returned.

4.2.3.3 dlclose()
This function is used to unload a module loaded by dlopen(). The function is
implemented by calling unload(). If this is the last use of the module, it is removed
Application Development and Pthreads 69

from the address space. Termination functions are called by unload() before the
modules are actually unloaded.

The following is a synopsis of getdate():

#include <dlfcn.h> int dlclose(void *handle);

If dlclose() succeeds, 0 is returned. Otherwise, errno will be set to EINVAL, and
EINVAL will be returned as well.

4.2.3.4 dlerror()
This function is used to return error information about the most recent call to
dlopen(), dlsym(), or dlclose() call. If dlopen() fails and sets errno to ENOEXEC,
dlerror() will return a pointer to a buffer describing reasons for the failure. In all
other failing cases, errno will have been set, and dlerror() will return the formatted
string corresponding to errno.

Synopsis: #include <dlfcn.h> char *dlerror(void);

Error information is reset after a call to dlerror(). Therefore, if two consecutive
calls are made to dlerror(), the second call will return a pointer to a null string.

Note: The dlerror() function is not thread-safe since the string may reside in a
static area that is overwritten whenever an error occurs.

4.2.4 Year 2000
The following APIs and commands were changed in accordance with the UNIX98
specification:

4.2.4.1 getdate()
The following is a synopsis of getdate():

struct tm *getdate(const char *string);

The entry for getdate() states the following with respect to the format code %y:

 "%y year within century (00-99)"

%y is now defined such that, when a century is not otherwise specified, values in
the range 69-99 refer to the twentieth century, and values in the range 00-68 refer
to the twenty-first century. The %C specifier has been added to the interface to
denote the century and interprets the %y specifier in the absence of a century as
noted in the section above.

4.2.4.2 strptime()
The following is a synopsis of strptime():

char *strptime(const char *buf, const char *format, struct tm *tm);

The entry for strptime() states the following with respect to the format code %y:

"%y is the year within century [00,99]; leading zeros are permitted but not
required
70 AIX Version 4.3 Differences Guide

%y is now defined such that, when a century is not otherwise specified, values in
the range 69-99 refer to the twentieth century, and values in the range 00-68 refer
to the twenty-first century.

4.2.4.3 date Command
Century handling has been added as follows:

date mmddhhmm[[cc]yy]

cc is the century specifier.

4.2.4.4 prs Command
The prs command is part of SCCS and has been changed such that the -c option

-c cutoff

indicates the cut off date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

The YY specifier is a two digit specifier to the year and, therefore, does not
denote the century. YY is now defined such that values in the range 69-99 refer to
the twentieth century, and values in the range 00-68 refer to the twenty-first
century.

4.3 M:N Pthreads (4.3.1)

AIX 4.3.1 replaced the previous 1:1 threads implementation model with an M:N
version. The M:N model complies with the UNIX98 pthreads standard, which
includes the POSIX pthreads standard. Previous releases of AIX Version 4
complied with Draft 7 of the POSIX pthreads standard. AIX 4.3.1 is binary
compatible with previous releases. The UNIX98 implementation is the default for
application development, but you can use the cc_r7 or xlc_r7 compiler interfaces
to develop new applications using Draft 7 pthreads. Users may need to alter
existing source code to obtain the required function on AIX 4.3.1 using the default
UNIX98 pthreads library.

4.3.1 Porting Application from Draft 7 Pthreads
There are very few differences between Draft 7 and the final standard.

 • There are some minor errno differences. The most prevalent is the use of
ESRCH to denote the specified pthread could not be found. Draft 7 frequently
returns EINVAL for this failure.

 • Pthreads are joinable by default. This is a significant change since it can result
in a memory leak if ignored.

 • Pthreads have process scheduling scope by default.

 • The subroutine pthread_yield has been replaced by sched_yield.

 • The various scheduling policies associated with the mutex locks are slightly
different.
Application Development and Pthreads 71

4.3.2 The M:N Model
In the M:N model, there are two underlying types of pthreads. Those with
PTHREAD_SCOPE_SYSTEM, or system scope contention, otherwise known as
global threads, and those with PTHREAD_SCOPE_PROCESS, or process scope
contention. These threads are known as local threads. There are also two types
of thread schedulers in the system. The AIX kernel scheduler schedules all kernel
threads. There is also a user thread scheduler, which schedules the local
pthreads in a process.

Global threads are mapped 1:1 to kernel threads, and hence, are scheduled
exclusively by the AIX kernel scheduler. The 1:1 threads model used by prior
releases of AIX Version 4 only uses global threads.

Figure 8. M:N Threads Model

The local pthreads are multiplexed over a set of kernel threads by the user
scheduler, which is part of the pthreads library.

4.3.3 User Scheduler
The user scheduler is run on a dedicated hidden pthread, which is created when
the pthreads library is initialized in M:N mode at process startup. There is one
user scheduler for each process using the M:N model. The hidden pthread is
created with system scope contention and therefore is scheduled directly by the
kernel scheduler.

User Scheduler

VP VP VP

User Scheduler

VP

Kernel Scheduler

CPU

KKKK

G L L L L L L

CPU

Process A Process B

User
Pthreads

Kernel
Threads

Kernel
Scheduler

Pthreads
Library
72 AIX Version 4.3 Differences Guide

The user scheduler maintains a runqueue of runnable local pthreads and
dispatches them on available kernel threads. Each kernel thread is represented
in the pthreads library by a virtual processor structure (VP). There is a 1:1
mapping between VPs and kernel threads.

The user scheduler catches a SIGWAITING signal. Applications should not catch
this signal, it is only for system use.

Each time a local pthread is created, terminates, or goes to sleep in the library,
the user scheduler examines the ratio of kernel threads to active and sleeping
user pthreads. If they are not consistent with the required values, then VPs, and
hence, kernel threads, are created or destroyed as required. A VP that is to be
deleted first places the user pthread it was running on to the queue of runnable
pthreads maintained by the library. It then adds itself to the list of zombie VPs,
and marks the underlying kernel thread for termination. The user scheduler
traverses the list of zombie VPs on a regular basis and deletes the redundant VP
structures.

Time slicing of local threads is initiated by the AIX scheduler, which sets a flag in
the currently running kernel thread once it has obtained a full timeslice. On return
from the clock tick interrupt handler, if the timeslice flag is set, the thread will call
the user scheduler. The user scheduler places the current local thread on the
local pthreads library runqueue and then selects the highest priority thread to run.
If there are no threads on the run queue, then the current thread continues to run.

The user scheduler controls which pthreads are woken when a pthread event
occurs. For example, when a mutex lock is released. The sleeping pthreads may
have system-wide (global) or process-wide (local) contention scope. The user
scheduler favors pthreads with system-wide scope over those with process-wide
scope, regardless of their priorities. Priority is only used to decide between
pthreads with the same contention scope. If they have the same priority, then the
pthread that has been waiting the longest will be woken first.

When a local pthread makes a system call, it may block in the kernel waiting for a
response from the system call. In this instance, the kernel thread and VP are not
available to run another local pthread.

Consider a process with N+1 local threads, and N VPs, where one thread writes
data to a pipe, and N threads read data from the pipe. The process would
encounter a deadlock situation when the N threads reading from the pipe were
blocked in the kernel. There would be no VP available for the N+1 thread to run
on to write data to the pipe. This situation is avoided by a special check in the
routine that a thread calls when about to block in the kernel. If the thread about to
block is on the only VP of the process that is not already blocked, then the user
scheduler is activated and instructed to create a new VP and kernel thread to run
another local thread.

4.3.4 Mutex Locks
In previous versions of AIX, when a mutex lock is blocked, a pthread attempting
to get the lock sleeps in the kernel. The internal structure of the mutex lock has
been changed so that the list of threads waiting for the mutex is maintained in the
user address space by the pthreads library. This is to allow the user scheduler to
achieve relatively uniform levels of multiplexing over the remaining pthreads
Application Development and Pthreads 73

sharing the VPs. When the mutex lock is freed, the user scheduler examines the
list of threads waiting for the mutex and activates one of them.

4.3.5 Tuning
The M:N pthreads implementation provides several environment variables that
can be used to affect application performance. If possible, the application
developer should provide a front end shell script to invoke the binary executables
in which the user may specify new values to override the system defaults. The
following environment variables can be set by end users and are examined at
process initialization time.

AIXTHREAD_SCOPE
This variable can be used to set the contention scope of pthreads
created using the default pthread attribute object. It is represented by
the following syntax:
AIXTHREAD_SCOPE=[P|S]

The value P indicates process scope, while a value of S indicates
system scope. If no value is specified, then the default pthread attribute
object will use process scope contention.

AIXTHREAD_MNRATIO
This variable allows the user to specify the ratio of pthreads to kernel
threads. It is examined when creating a pthread to determine if a kernel
thread should also be created to maintain the correct ratio. It is
represented with the following syntax:
AIXTHREAD_MNRATIO=p:k

where k is the number of kernel threads to use to handle p pthreads.
Any positive integer value may be specified for p and k. These values
are used in a formula that employs integer arithmetic, which can result
in the loss of some precision when big numbers are specified. If k is
greater than p, then the ratio is treated as 1:1. If no value is specified,
the default ratio depends on the default contention scope. If system
scope contention is the default, the ratio is 1:1. If process scope
contention is set as the default, the ratio is 8:1.

AIXTHREAD_SLPRATIO
This variable is used to determine the number of kernel threads used to
support local pthreads sleeping in the library code on a pthread event.
For example, attempting to obtain a mutex. It is represented by the
following syntax:
AIXTHREAD_SLPRATIO=k:p

where k is the number of kernel threads to reserve for every p sleeping
pthreads. Notice that the relative positions of the numbers indicating
kernel threads and user pthreads are reversed when compared with
AIXTHREAD_MNRATIO. Any positive integer value may be specified
for p and k. These values are used in a formula that employs integer
arithmetic, which can result in the loss of some precision when large
numbers are specified. If k is greater than p, then the ratio is treated as
1:1. If the variable is not set, then a ratio of 1:12 is used.

The reason for maintaining kernel threads for sleeping pthreads is that,
when the pthread event occurs, the pthread will immediately require a
kernel thread to run on. It is more efficient to use a kernel thread that is
74 AIX Version 4.3 Differences Guide

already available than it is to create a new kernel thread once the event
has taken place.

AIXTHREAD_MINKTHREADS
This variable is a manual override to the AIXTHREAD_MNRATIO. It
allows you to stipulate the minimum number of active kernel threads.
The library scheduler will not reclaim kernel threads below this number.

SPINLOOPTIME
This variable controls the number of times the system will try to get a
busy lock without taking a secondary action, such as calling the kernel
to yield the processor. This control is really intended for MP systems
where it is hoped that the lock is held by another actively running
pthread and will soon be released. On uniprocessor systems, this value
is ignored.

YIELDLOOPTIME
This variable controls the number of times that the system yields the
processor when trying to acquire a busy mutex or spin lock before
actually going to sleep on the lock. This variable has been shown to be
effective in complex applications where multiple locks are in use.

4.3.6 Maximum Number of Threads
The maximum number of threads a single process can create has been increased
to 32767. To obtain this limit, it is necessary to increase the data limit for the
process since stacks are malloced out of the heap. If may also be necessary to
use the large program model.

4.3.7 Combined Thread-Safe Libraries
Non-thread-safe and thread-safe libraries have been combined into one set of
libraries, thereby turning thread-safety on by default.

AIX Version 4.2 libc.a (non-thread-safe) and libc_r.a (thread-safe).

AIX Version 4.3.1 libc.a which is thread-safe.

Libraries, such as X11R6, which link with libc.a are not thread-safe by default;
they are thread-aware.

New libraries that are thread-safe include:

 • libbsd.a
 • libm.a
 • libmsaa.a
 • librts.a
 • libodm.a
 • libs.a
 • libdes.a
 • libXm.a
 • libXt.a
 • libX11.a

These thread-safe libraries enable a convenient programming model for
exploiting SMPs and simplify exploitation of threads by applications, middleware,
and other API providers.
Application Development and Pthreads 75

4.4 Pthreads Suspend and Resume (4.3.2)

The pthreads library has been enhanced to provide the ability to suspend and
resume individual threads. This function is added to AIX 4.3.2 to assist in the
porting of applications from other platforms.

The pthreads implementation on AIX 4.3.2 complies with the UNIX98 standard.
The four new API functions are not part of this standard, and this is indicated by
appending _np to their names to indicate that they are NON-POSIX compliant.

The four new user functions are:

 • int pthread_suspend_np(pthread_t thread);

 • int pthread_continue_np(pthread_t thread);

 • int pthread_attr_setsuspendstate_np(pthread_attr_t *attr, int

suspendstate);

 • int pthread_attr_getsuspendstate_np(pthread_attr_t *attr, int

*suspendstate);

The pthread_suspend_np and pthread_continue_np functions are used to
immediately suspend and resume execution of the thread indicated by the
function argument.

The pthread_attr_getsuspendstate_np and pthread_attr_setsuspendstate_np
functions are used to get and set the value of the new suspendstate member of
the pthread_attr_t structure. The suspendstate argument can be set to either
PTHREAD_CREATE_SUSPENDED_NP or
PTHREAD_CREATE_UNSUSPENDED_NP. The default value of the
suspendstate attribute of a pthread_attr_t structure is
PTHREAD_CREATE_UNSUSPENDED_NP.

The new functions work in both the 1:1 and M:N threading environments.

4.5 Preserve Modified Ptrace Data (4.3.2)

AIX 4.3.2 has improved the performance of the ptrace() subroutine, which is
used by debuggers to control the execution of applications under their control.
Debuggers use a private copy of the text pages for the application being traced
and any shared libraries it uses. This allows the debugger to modify the text
pages to insert breakpoints without affecting any other processes on the system
that may be running the same executable or shared library text.

Prior to AIX 4.3.2, when the application being debugged calls the load(), or
loadbind() routines to load a private module into its address space, the system
loader reloads fresh copies of all the text pages for the application and any
required shared libraries. In so doing, any modifications made to the text pages
are lost, so the debugger has to reinsert breakpoints after the application calls
load() or loadbind().

The function of the ptrace routine has been modified along with the system loader
to maintain ptrace altered copies of text pages across calls to load or loadbind.
This will improve the performance of the debugger when controlling large
76 AIX Version 4.3 Differences Guide

applications that call load or loadbind many times since breakpoints and other
changes will not have to be reinserted.

4.6 Direct I/O

Direct I/O is a way of opening JFS files that allows for disk reads and writes using
less CPU cycles than normal I/O. The main CPU savings come from avoiding the
memory-to-memory copy done by the JFS. As the difference between memory
and CPU cycle times increases, the savings achieved by avoiding this copy
becomes greater.

Direct I/O offers a big performance gain for applications that do large block I/O
(32 KB or greater) to JFS files and a smaller increase in performance for small
block I/O. It does not improve raw I/O performance.

With normal I/O, the I/O request is first sent to the device driver. To service the
request the device driver uses Direct Memory Access (DMA) to copy the data to
or from pages in a file persistent segment. The data is then copied between the
persistent segment and userspace through calls to vmcopyin() or vmcopyout().
Thus, a files persistent segment acts as a file cache.

With direct I/O, the data is not cached, but rather, I/O is done directly to a user
supplied buffer through cross-memory technology. In other words, DMA is done
directly from the disk to user space and conversely through the device strategy
routine of the JFS file system.

Optimization was also made to the DMA setup routines. This improves large
block I/O to JFS files and to raw logical volumes. However, the benefits of the
DMA changes are much less than the benefits of direct I/O.

Direct I/O is considered advisory. This means that if a file is opened for direct I/O,
and another application decides to open that same file for normal I/O, the file will
be opened using normal cached I/O until direct I/O can be resumed (the normal
I/O application closes the file).

Files can also be opened for a deferred update using the O_DEFER flag. If a file
is opened with O_DEFER, and a subsequent open for direct I/O is issued, all
writes will use normal cached I/O. Similarly, if another application opens the file
with O_DEFER while it is already opened for direct I/O, all I/O to the file will be
cached.

It is important to note that since direct I/O reads are done synchronously and
there is no read-ahead benefit, if they are not used correctly, they can also take
much longer. The only read-ahead-like semantics that direct I/O can benefit
from will be read-ahead performed by the disk device driver (normally 32 KB).
For this reason, it is very important for a direct I/O reader to specify large read
requests to match the performance of normal cached I/O readers. To match the
performance of normal cached I/O readers, a direct I/O reader should issue
read requests of at least 128 KB.

Take Note
Application Development and Pthreads 77

4.6.1 Opening Files for Direct I/O
A new flag, O_DIRECT has been defined in fcntl.h. When an application opens a
file specifying or calling this flag through the fcntl() system call, I/O to this file will
be done using direct I/O.

4.6.1.1 Inode Flags
When a file is using direct I/O, the i_flag field in the inode is set with the IDIRECT
flag, defined in inode.h. Even so, it is not enough to simply have a flag in the
inode to determine if the file is using direct I/O or not. If a normal I/O application
opens the file while a direct I/O application currently has it open, then all I/O will
be done using normal I/O until the normal I/O reader or writer closes the file. A
count of direct I/O readers is maintained to determine if the direct I/O can be
resumed. A new field in the inode, i_diocnt, has been added for this purpose. This
field indicates if any application has the file opened for direct I/O.

4.6.2 JFS Function Calls for Direct I/O
There are only a few functions that were affected in the JFS for direct I/O to be
implemented. These functions are serialized by the inode lock and are described
below.

jfs_map() If a file opened for direct I/O is mapped, the IDIRECT flag is reset,
and all subsequent I/O will be done using normal I/O. If the mapped
file is then closed, direct I/O will be resumed.

jfs_close() Close semantics are closed with direct I/O. When the final close
occurs, (checked by the counts on gnode) the IDIRECT flag in the
inode is turned off. If a close is initiated by a normal I/O reader or
writer and another application opens the file for direct I/O, all cached
pages are flushed to disk, and direct I/O is resumed on the file.

jfs_dio() jfs_dio() is called from jfs_rdwr(). If the FDIRECT flag is set, jfs_dio()
evaluates if direct I/O can be done for a particular file. This function
performs all alignment and file state consistency checking.

If a read or write request cannot be done using direct I/O, jfs_dio()
returns a non-zero return code, and the request is done through
normal cached I/O.

4.6.3 System Archive Utilities
Archive commands are typical applications that can benefit from the use of direct
I/O. Therefore, the standard system commands tar, backup, restore, and cpio
have been enabled to use direct I/O. Since these commands are read-once
commands, that is, they do not reference the data again after it has been read
and written to media, the copyin() and copyout() characteristics of normal cached
I/O consume a lot of unnecessary CPU when these commands are executing.
The enabling of these commands has been accomplished by changing all calls to
open() and setting the O_DIRECT flag.
78 AIX Version 4.3 Differences Guide

4.7 Shared Memory Enhancements

The following enhancements reflect changes to the shared memory function in
AIX.

4.7.1 Larger Shared Memory Regions (4.3.1)
The maximum size of a shared memory region created by the shmget() routine
and attached to a process’ address space by the shmat() routine has been
increased from 256 MB to 2 GB. Prior to AIX 4.3.1, it was possible to mmap() a
memory mapped file of up to 2 GB, but an anonymous memory region was limited
to 256 MB. This meant that a large memory region had to be created in several
256 MB portions and each portion attached individually. AIX 4.3.1 has removed
this restriction, so it is now possible to attach a 2 GB memory region with one call
to the shmat() routine.

If EXTSHM=ON is set and an application performs a shmget() with a size greater
than SEGSIZE-PAGESIZE, the system will use the traditional shmat() and not
mmap() as would be the case when EXTSHM=ON.

4.7.2 128 KB Shared Memory IDs (4.3.2)
AIX 4.3.2 now supports 128 KB mem, sem, and shm IDs, up from 4 KB in the
previous releases.

4.7.3 Shared Memory Debugging Enhancements (4.3.2)
AIX 4.3.2 has added the facility for additional information to be included in the
core file that may be produced by an application program when it encounters
certain types of error.

There are two methods of enabling the extra information to be included in the
core dump.

 • The application can use the sigaction routine to set the SA_FULLDUMP flag
for the signal that will cause the core file to be generated.

 • Enable full core information as the default, either from the SMIT Change /
Show Characteristics of Operating System panel, the WebSM Devices panel
by selecting sys0, or by using the command:

chdev -l sys0 -a fullcore=’true’

When an application faults, and a full core is generated, the core will include all
the shared memory regions of the faulting process that are currently attached.

The dbx debugger has been changed to understand the extra information in the
core file and allow the developer to interrogate the user defined variables
contained in the shared memory regions of the process at the time of termination.

4.8 DMA Pre-Translation (4.3.2)

DMA pretranslation of memory buffers reduces the cost of setting up DMA
operations. Its objective is to reduce DMA setup pathlength for selected and
predetermined I/O operations to improve performance. The enhances the
Application Development and Pthreads 79

performance of network memory buffers (mbufs), filesystem I/O, raw I/O, and
page I/O.

In previous AIX versions, during a DMA operation, the majority of pathlength was
spent in page translation/lookup paths to get the virtual to physical address
translations for DMA.

The term pretranslation refers to the concept of performing the virtual to physical
address translations for a data buffer to be involved in a DMA operation once, for
the life of the data buffer, instead of for each individual I/O setup for the buffer. In
general, a subsystem desiring to benefit from the performance gain of
pretranslation calls a new kernel service passing in a buffer address, length, and
cross-memory descriptor. The kernel service will attach to the cross memory
descriptor pretranslation information for the buffer. Then, whenever the buffer is
used for I/O, the DMA services recognize the presence of pretranslation info in
the cross-memory descriptor and avoid page table lookups.

There is no change required by device drivers to take advantage of this
enhancement, as long as a network driver is using mbufs from the global
net_malloc pool and performing dynamic on-the-fly DMA mappings (compared
with copying data to premapped buffers).

4.9 Fast fork() Function (4.3.1)

AIX Version 4.3.1 introduces a fast-fork function called f_fork() that is based on
IEEE POSIX specifications. The f_fork() call is precisely like fork() except:

 • It is required that the child process calls one of the exec functions immediately
after it is created. Since fork handlers are never called, the application data,
mutexes, and the locks are all undefined in the child process.

The use of f_fork() will significantly enhances the performance of Internet and
Web server applications that need to create many short lived child processes.

4.10 New Sockets System Call (4.3.2)

AIX 4.3.2 has added the new send_file() system call. Its use is aimed at
applications that transmit file data across the network using a socket connection.
It offers a speed improvement over the traditional method of sending a file across
the network by avoiding unnecessary data copying where possible.

#include <sys/socket.h>

ssize_t send_file(Socket_p, sf_iobuf, flags)

int *Socket_p;
struct sf_parms *sf_iobuf;
uint_t flags;

Using send_file eliminates the need to read a file just to send it across the
network. Applications can remove the read() call, and therefore avoid redundant
transfer of data between kernel space and user space. The send_file call reads
file data into the new Network Buffer Cache (NBC). The NBC is allocated from an
area of the mbuf pool and uses mbufs for file data storage. The networking
subsystem then transmits the data directly from the mbufs in the NBC across the
80 AIX Version 4.3 Differences Guide

specified socket. The system call dynamically caches the data in the NBC, thus
improving performance for files that are sent frequently across the network, and
which do not change often. This feature can be disabled on a file by file basis.

The application sending the data will need to be altered to use the send_file call.
The greatest improvement in performance can be gained by using direct I/O to
read the file that is to be transmitted. This can be achieved simply by opening the
file using the O_DIRECT flag. This flag enables send_file to bypass the JFS
cache when reading the file, thus further reducing the number of data transfers
required.

The size of the NBC, and various cache tuning parameters can be altered using
the no command. The options that can be changed are:

nbc_limit Maximum size of the NBC. Specifies in KB the maximum
amount of memory that can be used for the NBC. The
default value is derived from the size of the mbuf pool
(thewall), which in turn, is determined from the amount of
physical memory. If a system has less than 512 MB of
memory, the default value of nbc_limit is 0.

nbc_max_cache Maximum size of a cache object in the NBC. Specified in
bytes, default value is 131072 (128 KB) bytes.

nbc_min_cache Minimum size of a cache object in the NBC. Specified in
bytes, default value is 1.

send_file_duration Specifies the cache validation duration for all the file objects
that system call send_file accessed in the Network Buffer
Cache. This attribute is in number of seconds, the default is
300 for 5 minutes. 0 means that the cache will be validated
for every access.

Cache statistics can be viewed using the command netstat -c. Sample output is
shown in Figure 9.

Figure 9. Sample Output from netstat -c Command
Application Development and Pthreads 81

The send_file call only supports the TCP/IP protocol. In other words, the sockets
of type SOCK_STREAM in address family AF_INET. Both blocking and
non-blocking connections are supported. In blocking mode, send_file blocks until
all of the file data has been transmitted. In non-blocking mode, or in the event
send_file is interrupted, the system call updates parameters in the sf_parms
structure to indicate the amount of data that has actually been transmitted.

4.11 Binder Library Enhancements (4.3.2)

The binder library, libld.a, that provides functions to allow an application to create
and manipulate XCOFF object files, has been enhanced in AIX Version 4.3.2 to
support a cross mode environment.

This allows 32-bit applications to create and manipulate both 32-bit and 64-bit
objects using a consistent interface. The changes also allow 64-bit objects to
create and manipulate both 32-bit and 64-bit objects. The functions in the library
transparently open both 32-bit and 64-bit object files, as well as both small format
and large format archive files.

An application need not know the format of an object file before opening it. It can
call the ldopen function and then check the magic number of the file or archive
member.
82 AIX Version 4.3 Differences Guide

Chapter 5. Logical Volume Manager Enhancements

AIX 4.3, AIX 4.3.1, and AIX 4.3.2 received enhancements to the logical volume
group scalability, synchronization performance, and on-line mirror backup
functions. These changes enhance AIX’s image as a robust and powerful
operating system for increasingly demanding customer requirements.

In this chapter, the major new features of logical volume manager are described.

5.1 Logical Volume Synchronization

The following commands now support the -P flag to allow the user to specify the
number of LPs to sync. in parallel.

 • /usr/sbin/syncvg

 • /usr/sbin/lresynclv

The -P flag is followed on the command line by the number of partitions to be
synchronized as follows:

syncvg [-i] [-f] [-H] [-P NumParalleLPs] {-l|-p|-v} Name[-P num_parallel_lps]
lresynclv [-H] [-P NumParalleLps] -l LVid

The valid range for NumParallelLps is 1 to 32. If the number entered is less than
one then num_parallel_lps defaults to one. If the number entered is greater than
32 then num_parallel_lps will be set to 32.

The mklv and chlv commands were updated in AIX 4.3.0 to allow synchronized
updates of volume groups in a concurrent environment. All nodes that share disks
must be available at the time the updated command is issued in order for updates
to take place. If a system already has an existing LV with the same name as a
new one being added to another system, the command will fail. Other conflicts
are also detected to provide stable LV updates in a shared environment. All
systems must be running AIX 4.3.0 or higher in order to use this enhancement.

5.2 importvg Learning Mode

A new option has been created for the LVM importvg command. This new option,
-L for learning mode, is executed on a shared volume group in a cluster. It allows
the LVM actions of creation, deletion, or extension performed on one cluster node
to be propagated to other nodes connected to the same shared volume group.

importvg [-V MajorNumber] [-y VolumeGroup] [-f] [-c] [-x] | [-L VolumeGroup] [
-n] [-F] PhysicalVolume

The -L flag takes a volume group and learns about possible changes performed
to that volume group. Any new logical volumes created as a result of this
command inherit the ownership, group identification, and permissions of the /dev
special file for the volume group listed in the -y flag.

To use this feature, note the following:

 • The volume group must not be in an active state on the system executing the
-L flag.
© Copyright IBM Corp. 1998 83

 • The volume group's disks must be unlocked on all systems that have the
volume group varied on and operational. Volume groups, and their disks, may
be unlocked, remain active, and used through the varyonvg -b -u command.

 • If an active node has both added and deleted logical volumes on the volume
group, the -L flag may produce inconsistent results. The -L flag should be
used after each addition or deletion rather than being deferred until after a
sequence of changes.

Figure 10 shows an example of a multi-tailed system.

Figure 10. Importvg -L Example

There are two machines, goofy and mickey, that share one disk. The volume
group sharevg is created on the shared disk. Both goofy and mickey are aware of
the sharevg volume group. The sharevg in node mickey is varied on and in node
goofy, it is varied off.

On node mickey, to make the sharevg unlocked, enter:

#varyonvg -b -u sharevg

On node goofy, to read the LVM information made by node mickey, enter:

importvg -L sharvg datavg hdisk3

On node mickey, to return to the normal mode and release the lock, enter:

varyonvg sharevg

It should be noted that the volume group sharevg remained on line during the
entire operation, therefore, not affecting production work.

5.3 importvg Fast Mode

A new option -F has been added to importvg command. The command syntax is
shown in the following example.

importvg [-V MajorNumber] [-y VolumeGroup] [-f] [-c] [-x] | [-L VolumeGroup] [
-n] [-F] PhysicalVolume

hdisk3

node: mickey node: goofy
sharevg
84 AIX Version 4.3 Differences Guide

It provides a fast version of importvg that checks the Volume Group Descriptor
Areas (VGDA) of only the disks that are members of the designated volume
group. As a result, if a user exercises this flag, they must ensure that all physical
volumes in the volume group are in a good and known state. If this flag is used on
a volume group where a disk may be in missing or removed state, the command
may fail, or the results may be inconsistent. This flag has the advantage of
avoiding a lengthy search for missing disks that happens during normal importvg
processing. Administration of large SSA disk arrays will greatly benefit from the
terse search the -F option provides.

5.4 Raw LV Online Mirror Backup Support (4.3.1)

The LVM in AIX 4.3.1 provides a snap shot capability for raw mirrored logical
volumes. One mirror of a mirrored logical volume can be used to archive the data
on the raw logical volume without splitting the mirror copies from each other (only
the logical partitions that have changed during the system backup need to be
resynchronized).

Table 18 lists the new options added to chlvcopy command.

Table 18. chlvcopy New Options in AIX 4.3.1

5.4.1 Removal of 1016 PPs per Physical Volume Limit (4.3.1)
The support for greater than 1016 PPs per physical volume has been added in
AIX Version 4.3.1. To support a VG exceeding the limit of 1016 PPs using the
same VGDA and VGSA areas, the number of disks supported in the volume
group has been reduced.

The -t flag was added to the chvg and mkvg commands to convert and create a
volume group with multiples of 1016 partitions per disk. This reduces the total
number of disks that can be added to the volume group by same fraction. Once a
volume group is changed or created to hold more than 1016 physical partitions
per disk, it cannot be imported into AIX versions earlier than 4.3.1.

The -t factor allows (factor * 1016) PPs per physical volume. For example, a
partition size of at least 16 MB would be needed to create a volume group with a
10 GB disk. Or with at factor size of 2, a smaller partition size of 8 MB can be
used. However, this limits the total number of disks that can be added to the
volume group. If a factor value is used, a maximum of MAXPVS/factor disks can
be included in the volume group.

Flag Description

-b Mark a mirror copy as an online backup copy.

-c Identify which mirror copy used as on-line backup copy. The
allowed values of copy are 1, 2, or 3. If this option is not
specified, the default for copy is the last mirror copy of the
logical volume.

-B Unmark a mirror as an online backup copy.

-f Force LV copy to be marked as backup even if there are stale
partitions.
Logical Volume Manager Enhancements 85

The relationship of factor -t, PP numbers per physical disk, and the number of
disks allowed in one VG is provided in Table 19.

Table 19. Factor -t

Following is an example of a 4.3 GB disk. The PP size 8 MB is needed for
creating the volume group vg1 without the factor -t:

lsvg vg1
VOLUME GROUP: vg1 VG IDENTIFIER:00091974e54218d7
VG STATE: active PP SIZE: 8 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 537 (4296 megabytes)
MAX LVs: 256 FREE PPs: 537 (4296 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32

When using the factor -t to create vg1, the PP size of 4 MB can be used. Then,
the maximum PPs per physical volume becomes 2032, and the maximum
physical volumes allowed in the volume group is 16. Following is an example:

mkvg -t 2 -y vg1 hdisk4
0516-1193 mkvg: WARNING, once this operation is completed, volume group vg1
 cannot be imported into AIX 430 or lower versions. Continue (y/n) ?
y
0516-631 mkvg: Warning, all data belonging to physical
 volume hdisk4 will be destroyed.
mkvg: Do you wish to continue? y(es) n(o)? y
vg1

lsvg vg1
VOLUME GROUP: vg1 VG IDENTIFIER: 00091974e54743e9
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 1075 (4300 megabytes)
MAX LVs: 256 FREE PPs: 1075 (4300 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0

Factor t PP numbers Number of disks in VG

1 1016 32

2 2032 16

3 3048 10

4 4064 8

5 5080 6

6 6096 5

7 7112 4

8 8128 4

16 16256 2
86 AIX Version 4.3 Differences Guide

ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 2032 MAX PVs: 16

5.5 Physical Partition Support (4.3.1)

The support for physical partition sizes of 512 MB and 1024 MB have been added
to AIX 4.3.1. Volume groups created with this new size cannot be imported into
previous versions of AIX.

In pre-AIX 4.3.1 versions, if you add a new volume group, the physical partition
sizes in megabytes you are allowed to chose are: 1, 2, 4, 8, 16, 32, 64, 128, and
256.

For AIX 4.3.1, and later releases, if you add a new volume group, the physical
partition sizes in megabytes you are allowed to chose are: 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, and 1024 MBs.

If you select a physical partition size of 512 or 1024 MBs on a AIX 4.3.1 or later
system, the volume group created cannot be imported on older versions of AIX.

5.6 Big Volume Groups (4.3.2)

A new volume group (VG) format is added in AIX 4.3.2, which increases the
maximum number of disks that can be included in a volume group from 32 to 128.
The maximum number of logical volumes in this new volume group format is
increased from 256 to 512. This means:

 • The maximum physical volume (PV) number in one volume group is increased
from 32 to 128 (1024 in the future)

 • The maximum logical volume (LV) number in one volume group is increased
from 256 to 512 (1024 in the future)

Table 20 provides information about LVM restrictions in several AIX versions.

Table 20. Limitations of LVM

Version Volume
group
(per system)

Physical volume
(per volume
group)

Physical partition
(per physical
volume)

Logical volume
(per volume
group)

Logical partition
(per logical
partition)

AIX
4.3.2

255 128 1016*-t factor 512 32,512

AIX
4.3.1

255 32 1016*-t factor 256 32,512

AIX
4.3.0

255 32 1016*-t factor 256 32,512

AIX 4.2 255 32 1016 256 32,512

When using the -t flag with chvg and mkvg, it must be entered from the command
line.

Note
Logical Volume Manager Enhancements 87

The LVM in AIX 4.3.2 supports both the small VG configurations of the previous
versions of AIX and the new big VG configuration. A migration path is provided to
convert old volume groups to the new volume group format, provided there are
sufficient free partitions on each of the physical volumes in the volume group to
be allocated.

The following sections explain the changes for the bigger VGDA/VGSA, which
describe a volume group to a system completely. The changes needed for
commands, library, and the LV device driver are also discussed.

5.6.1 Changes to LVCB
The original design of the VGDA and VGSA limited the number of disks that can
be added to the volume group at 32 and the total number of logical volumes at
256 (including one reserved for LVM internal use). With the increasing use of disk
arrays, the need for the increased capacity for a single volume group is greater.

Following are the basic concepts of VGDA, VGSA, and LVCB.

VGDA Stands for volume group descriptor area. The VGDA contains
information that describes the mapping of physical partitions to logical
partitions for each logical volume in the volume group, as well as other
vital information, including a time stamp. The VGDA is stored on each
physical volume of the volume group.

VGSA Stands for volume group status area. VGSA contains information,
such as which physical partitions are stale and which physical
volumes are missing (that is, not available or active), when a vary-on
operation is attempted on a volume group. The VGSA is stored on
each physical volume of the volume group.

LVCB Stands for logical volume control block. The LVCB is the first 512 bytes
of a logical volume. This area holds important information, such as the
creation date of the logical volume, information about mirrored copies,
and possible mount points in the journaled filesystem (JFS). Certain
LVM commands are required to update the LVCB as part of the
algorithms in LVM.

The Logical Volume Control Block has been moved from the first block of the
logical volume to inside the VGDA for better preservation. Though database
programs that use logical volumes as raw devices skip this block, obliteration of
the LVCB has caused confusion and loss of information such as intra-policy,
inter-policy, upperbound, and so on. Since other subsystems, such as
diagnostics, IPL, and ROS, do use the LVCB without using the LVM access
routines, the LVCB will be maintained at both places.

5.6.2 General Enhancements for Big VG
The following sections describe the general limitations and updates required to
implement big VG support on AIX.

5.6.2.1 Commands Changes
To support the big VG format, some new options have been added to the
commands mkvg, chvg, importvg, mklv, and chlv commands.

The mkvg Command
The following lists some of the major changes to the mkvg command.
88 AIX Version 4.3 Differences Guide

 • The new option -B creates a big VG format volume group. This can
accommodate up to 128 physical volumes and 511 logical volumes (one
reserved for LVM internal use).

 • If you do not use the -B option, the mkvg command will create the a VG with
1016*factor(-t) physical partitions and 32/factor(-t) disks per volume group.

 • The option -G creates the volume group with enough space reserved at the
beginning of the disk to expand the VGDA to include 1024 disks in the future
without having to migrate the physical partitions.

Following is an example of the mkvg command. To create a big VG, testvg, on
hdisk1, enter:

mkvg -B -y testvg hdisk1

To see the attributes of this VG, enter:

lsvg testvg
VOLUME GROUP: testvg VGIDENTIFIER:061515169c44a3e
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 80 (320megabytes)
MAX LVs: 512 FREE PPs: 80 (320 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 128

This example shows the new limit values for big VG: MAX PVs is 128 and MAX
LVs is 512.

The chvg Command
The option -B converts a small VG to a big VG. Once all the logical volumes are
in closed/synced state (file systems unmounted), and if all the physical volumes
are in the ACTIVE state in the volume group, the -B flag can be used to convert
the small VG to a big VG format. This operation expands the VGDA/VGSA to
change the total number of disks that can be added to the volume group from 32
to 128.

If you want to convert the rootvg, you will get the following error message:

chvg -B rootvg
0516-1212 chvg: rootvg cannot be converted to the big volume group format.
0516-732 chvg: Unable to change volume group rootvg.

If both -t and -B flags are specified, factor will be updated first, and then the VG
is converted to the big VG format (sequential operation).

First create a small VG, testvg, on hdisk1:

#mkvg -y testvg hdisk1

To see the small VG information, enter:

#lsvg hdisk1
VOLUME GROUP: testvg VG IDENTIFIER: 00615151692724b1
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 81 (324 megabytes)
Logical Volume Manager Enhancements 89

MAX LVs: 256 FREE PPs: 81 (324 megabytes)
LVs: 0 USED PPs: 0 (0 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32

To convert a small VG into a big VG:

chvg -B test
0516-1224 chvg: WARNING, once this operation is completed, volume group test
cannot be imported into AIX 431 or lower versions. Continue (y/n) ?
y
0516-1164 chvg: Volume group testvg changed. With given characteristics testvg
can include up to 128 physical volumes with 1016 physical partitions each
physical volume.

To see the attributes of this VG, enter:

lsvg test
VOLUME GROUP: test VG IDENTIFIER: 00615151692724b1
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 81 (324 megabytes)
MAX LVs: 512 FREE PPs: 79 (316 megabytes)
LVs: 0 USED PPs: 2 (8 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 128

As shown, the number of TOTAL PPs remain unchanged. The number of free
PPs are reduced by two. These two PPs are reserved for the larger VGDA/VGSA.

If you do not have enough space on your disk, suppose disk1 on the small VG is
full, such as:

lspv hdisk1
PHYSICAL VOLUME: hdisk1 VOLUME GROUP: testvg
PV IDENTIFIER: 00615151648abe10 VG IDENTIFIER:006151516a0af1a9 PV
STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: megabyte(s) LOGICAL VOLUMES: 2
TOTAL PPs: 81 (324 megabytes) VG DESCRIPTORS: 2
FREE PPs: 0 (0 megabytes)
USED PPs: 81 (324 megabytes)
FREE DISTRIBUTION: 00..00..00..00..00
USED DISTRIBUTION: 17..16..16..16..16

The following example shows what happens if you want to convert the small
testvg into big testvg:

chvg -B testvg
0516-1214 chvg: Not enough free physical partitions exist on hdisk1 for the
expansion of the volume group descriptor area. Migrate/reorganize to free up 2
partitions and run chvg again.
0516-732 chvg: Unable to change volume group testvg.
90 AIX Version 4.3 Differences Guide

You must migrate or reorganize the volume group using migratepv or reorgvg to
free up enough physical partitions for the system to expand the VGDA/VGSA.

The importvg Command
The option -R restores the ownership, group ID, and permissions of the logical
volume special device files. These values will be restored only if they were set
using -U, -G, and -P flags of mklv or chlv commands. The -U, -G, and -P flags are
for root to define the ownership, group, and permissions of the LV you are
creating respectively. This flag is applicable only for big VG format volume
groups.

The mklv Command
If you create a logical volume in a big VG, you can use the following three new
options (using root privileges):

 • Option -U specifies the user ID for logical volume special file

 • Option -G specifies the group ID for the logical volume special file

 • Option -P specifies the permissions (file modes) for the logical volume special
file.

The chlv Command
The three new options are the same with mklv command (using root privileges):

 • Option -U specifies the user ID for logical volume special file

 • Option -G specifies the group ID for the logical volume special file

 • Option -P specifies the permissions (file modes) for the logical volume special
file.

5.6.2.2 Header File Changes
The following header file was changed to support big VGs:

 • lvmrec.h

5.6.2.3 Default Maximum PPs for Each Physical Volume - 1016
No matter if you create a big VG or small VG, the mkvg command will still be using
1016 as the default value for the number of physical partitions per physical
volume. If you use the -t (factor) option together with the big VG option, you can
create the volume group with the desired partition size and number of partitions.

The -t volume group factor was first introduced in AIX 4.3.1. See 5.5, “Physical
Partition Support (4.3.1)” on page 87 for reference. The number of physical
partitions calculated is 1016 * t factor per physical volume. The size for each of
the physical partition is up to 1024 MB.

The mkvg command, by default, creates a volume group that can accommodate
255 logical volumes and 32 physical volumes (disks). These limits can be

When using the above new options in mkvg, chvg, importvg, mklv, and chlv
commands, the commands must be entered from the command line. There are
no smit or wsm interfaces for them.

Note
Logical Volume Manager Enhancements 91

extended to 511 logical volumes and 128 physical volumes by specifying the -B
flag.

5.6.3 Small VG to Big VG Conversion
To convert the small VG to a big VG, a number of free physical partitions are
needed to expand the VGDA/VGSA. Depending on the size of the physical
partition and the current size of the VGDA, the number of partitions required are
calculated. Since the first partition starts immediately after the end of the
secondary VGDA, if it is occupied by a logical partition, it will be migrated to
another free physical partition on the disk. This first physical partition will then be
removed from the list of available partitions (not be moved or allocated for any
reason), and the remaining partitions will be renumbered. After the conversion,
the total number of physical partitions on the disk will not change, except that the
extra partitions allocated for the VGDA are marked non allocatable.

You should be aware of the following items when you perform a conversion from
a small VG to a big VG:

 • All the disks in the volume group should have enough free PPs for the
conversion to be possible.

 • All the logical volumes in the volume group must be in closed/synced state.

 • All physical volumes must be available and be in the ACTIVE state.

 • The volume group is varied on in management mode to prevent opening of
any logical volumes.

 • The ownership/permissions of special device files will only be preserved if mklv
or chlv are used with the -U, -G, or -P flags.

Currently, the migratepv command does not allow the migration of individual
physical partitions. The conversion needs to free up just enough physical
partitions from the beginning of the disk to elsewhere. The current
implementation will try to migrate the partitions within the physical volume, and
the user must move the partitions to other disks in the volume group.

5.6.4 Big VG Limitations
The following list are the limitations of a big VG:

 • A big VG is not enabled for concurrent access. This is posed by the
communication path used by the concurrent logical volumes. It will be
prohibitively slower for the big VG to communicate across nodes due to an
increase in the number of disks.

 • The rootvg cannot be converted to the big VG format.

 • A big VG cannot be imported or activated on pre-AIX 4.3.2 levels.

5.7 Concurrent Online Mirror Backup and Special File Support (4.3.2)

AIX 4.3.1 provided support for an on-line backup mechanism for a mirrored raw
logical volume. But it lacked support for file system access and restricts
concurrent mode access for the volume group.

AIX 4.3.2 enhances the capabilities of the online backup in AIX 4.3 to support:
92 AIX Version 4.3 Differences Guide

 • Concurrent mode volume groups

 • Filesystem and database access

Note that filesystem access does not mean JFS access. This enhancement to the
LVM still requires additional steps (such as unmounting a file system) to prevent
data loss.

This new feature is used for HACMP concurrent mode (mode 3). While in
concurrent mode, you can designate a mirror copy in a VG as a backup copy to
archive the data on the raw logical volume without affecting the other mirror
copies. It improves the system availability to end users.

Use a second LV and special device to allow access to the backup mirror copy.
All I/O and ioctls coming to this second LV would be routed to the actual logical
volume to be serviced. A number of changes were made to VGDA to support this
new type of LV.

If the LV contains a filesystem, there will be two serial writes to support the new
mountpoint. In order to support this function, there are updates to the LVCB and
the superblock of the new filesystem.

5.7.1 Limitations
Following are some limitations:

 • The original logical volume cannot be removed while the on-line backup copy
exists. No changes are allowed to the original logical volume structure, or
attributes, while the on-line backup exists. But you still can make changes to
the filesystem mounted over the logical volume.

 • All partitions of a logical volume must be fresh before you mark a mirror copy
as an on-line backup. Only one copy may be designated as an on-line backup
copy.

 • This function is currently documented only in the man pages. Use at your own
risk.

5.7.2 Commands Changed
Using the chlvcopy command, you can mark, or unmark, a mirror copy as an
on-line backup copy and change the backup mirror copy characteristics for a
logical volume.

The syntax is:

chlvcopy -B | { -b [-c copy] [-f] [-P] [-l newlvname] [-w] } LV name
Logical Volume Manager Enhancements 93

The -P,-l, and -w are new options for AIX 4.3.2.

If the persistence flag -P is not set to prevent the loss of backup data, the volume
group should be set to not automatically varyon, and the -n flag should be used
with varyonvg to prevent stale partitions from being resynced. If the persistence
flag -P is set, the following applies: in the event of a crash while an on-line
backup copy exists (or multiples exist), the existence of copies is retained when
the system is rebooted.

Use the -l or -P flag to prevent the volume group from being unstable on prior
releases of AIX.

Table 21 lists the new options of chlvcopy command in AIX 4.3.2.

Table 21. New Options for chlvcopy Command in AIX 4.3

To create an on-line backup, perform the following steps:

1. Unmount the filesystem from the mirrored LV

2. Execute chlvcopy -b -c <#> -l <newlvname> <original_lvname>

3. Remount the original filesystem

4. Execute mount -o ro /dev/<newlvname> /<backupfs>

5. Backup the backupfs

6. Execute unmount /<backupfs>

7. Execute chlvcopy -B original_lvname

In general, use chlvcopy the same as you would splitlvcopy.

Flag Description

-P Maintains information about the existence of an online backup copy across a
reboot and also allows other nodes (in a concurrent mode environment) to be
aware of the existence of the online backup(s).

 -l New name of the backup logical volume. If one is not provided, one will be
created by the system.

-w Allow backup copy to be writable (default is to create the backup copy as
READ ONLY)

Although the chlvcopy command can mark on-line backup copies on logical
volumes that are open (including logical volumes containing mounted file
systems), this is not recommended unless the application is at a known state at
the time the copy is marked as a backup. The backup copy is internally
consistent at the time the chlvcopy command is run, but consistency is lost
between the logical volume and the backup copy if the logical volume is
accessed by multiple processes simultaneously, and the application is not at a
known state. When marking an open logical volume, data may be lost or
corrupted. Logical volumes should be closed before marking on-line backup
copies in order to avoid a potential corruption window.

Note
94 AIX Version 4.3 Differences Guide

Chapter 6. System Management and Utilities

Web-Based System Manager is an AIX system administration tool for
administering an AIX host locally or over the Internet. Web-Based System
Manager is the next step in the evolution of AIX system administration tools. This
evolution has included System Management Interface tool (SMIT), Motif SMIT,
Distributed SMIT, and Visual System Manager (VSM). SMIT and VSM have been
major contributors to customer satisfaction regarding AIX system management
and usability. It is an objective for Web-Based System Manager to encompass the
system administration capabilities and surpass the usability of these
predecessors.

The objectives of Web-Based System Manager are:

 • Simplification of AIX administration by a single new interface.

 • Enable AIX systems to be administered from almost any client platform.

 • Enable AIX systems to be administered remotely.

 • Provide an administrative environment that exploits the similarities of the
Windows 95/NT and AIX CDE desktop environments so that users of the
system will find a large degree of look and feel consistency between
Web-Based System Manager and these two primary desktop environments.

Web-Based System Manager provides a comprehensive system management
environment and covers most of the tasks in the SMIT user interface.

Note: SMIT continues to fulfill the need for system administration from an ASCII
terminal.

6.1 Overview of Existing AIX Systems Management

Since the introduction of AIX Version 3.1 there have been a number of system
management tools available to help system administrators manage their
installations. These include SMIT, DSMIT, and VSM.

6.1.1 SMIT Overview
SMIT was introduced in AIX Version 3.1. It provides a menu-driven interface for
approximately 160 local system management tasks. In SMIT, the user is guided
by a series of interactive menus and dialogs that automatically build, execute,
and log commands required to accomplish selected operations. SMIT eliminates
the need to know, or learn, command-level syntax for system management tasks.
SMIT is easily extendable, and many LPPs and customers have added their own
SMIT menus and dialogs.

Figure 11 shows the default SMIT menu, as seen on an X-based display.
© Copyright IBM Corp. 1998 95

Figure 11. Default SMIT Menu

SMIT provides a character-based interface and a graphical interface. The
character-based interface, ASCII SMIT (as shown in Figure 11), can be run on a
dumb terminal, while the graphical interface, Motif SMIT (as shown in Figure 12),
requires an X Windows compatible graphical display. Motif SMIT provides a point
and click interface to the SMIT menus.

Figure 12. Default Motif SMIT Menu
96 AIX Version 4.3 Differences Guide

6.1.2 DSMIT Overview
DSMIT (Distributed SMIT) makes the function of SMIT available in a distributed
systems environment. DSMIT allows the administrator to perform SMIT tasks
across multiple systems simultaneously from a single point of control. Concurrent
and sequential modes of execution are supported. DSMIT provides both the
ASCII and graphical user interfaces of SMIT.

DSMIT is a Licensed Program Product (LPP) originally introduced on AIX 3.2.5
and later enhanced and released for AIX V4. In the most recent version, Version
2.2, DSMIT provides an ongoing secure operation including the secure
modification of the security configuration and updates of passwords and keys.
DSMIT security is based on well established cryptographic routines and
DSMIT-specific (modeled after Kerberos 5) communication protocols. DSMIT
security features include integrated sign on, authentication, data integrity, data
confidentiality, and logging.

Like SMIT, the DSMIT menus and dialogs are easily extendable. Furthermore,
DSMIT provides a command line interface that allows the user to run commands,
scripts, and programs of their choice on distributed systems. The command line
interface allows the user to exploit the capability of DSMIT beyond the provided
menus and dialogs without adding additional menus or dialogs. The command
line interface also supports interactive commands in the sequential mode of
execution. For example, you can run ksh and perform interactive tasks over the
secure DSMIT connection.

DSMIT also extends the function of SMIT to heterogeneous systems, with agents
available for managing SunOS 4.1.3, Solaris 2.3, and HP-UX 9.0, although the
DSMIT agents have not remained current with new releases of Solaris and
HP-UX.

6.1.3 VSM Overview
VSM (Visual System Manager) is a graphical user interface that enables you to
perform system management tasks through the direct manipulation of objects
(icons). Due to VSMs drag and drop graphical interface, you do not need to have
a complete understanding of the AIX commands.

VSM was originally introduced as part of AIX 3.2.5 and was enhanced on AIX
Version 4. VSM is composed of independent application programs that currently
include:

 • Device Manager

 • Print Manager

 • Storage Manager (as shown in Figure 13)

 • Users and Groups Manager

 • Install and Update Software Manager

 • Set Date and Time

 • Schedule a Job

 • Remove or View Scheduled Jobs

 • Maintain Installed Software

 • RAID Device Manager
System Management and Utilities 97

 • NIM Install Manager

Figure 13 shows a sample VSM dialog.

Figure 13. Sample VSM Storage Manager

6.2 Web-Based System Manager Architecture

Web-Based System Manager enables a system administrator to manage an AIX
machine either locally from a graphics terminal or remotely from a PC or RS/6000
client. Information is entered through the use of GUI components on the client
side. The information is then sent over the network to the Web-Based System
Manager server, which runs the commands necessary to perform the required
action.

Web-Based System Manager is implemented using the Java programming
language. The implementation of Web-Based System Manager in Java provides:

 • Cross-platform portability. Any client platform with a Java 1.1-enabled Web
browser is able to run a Web-Based System Manager client object.

 • Remote administration. A Web-Based System Manager client is able to
administer an AIX machine remotely through the Internet.

 • A richer and more flexible GUI environment than is available with either HTML
forms or Java Script.
98 AIX Version 4.3 Differences Guide

Java programs can be delivered as applets that require a Web browser to
download the executable code or as stand-alone applications that are stored
locally and run independently of a browser or viewer.

Web-Based System Manager has been packaged in a browser-based applet
mode, and for local execution, an application mode has been implemented. The
application mode uses the AIX Java Virtual-Machine that, in turn, executes the
Java applications as threads on the system.

Note: When referring to Java applications, the term application is used differently
than the conventional use of application as in word processing application or in
the discussion on application-oriented user interfaces below. Java application
refers to the manner in which Java code is invoked.

6.2.1 Web-Based System Manager Components
Web-Based System Manager includes the following components:

 • Backups

 • Devices

 • File Systems

 • Network (interfaces for configuring network communications)

 • Printer Queues

 • Processes

 • Registered Applications

 • Software (installable software, software installed, and objects related to
installation)

 • Subsystems

 • System (user interface, console, date/time, language, OS characteristics,
system logs, and dump devices)

 • Users

 • Volumes

6.2.2 Web-Based System Manager User Interface
The Web-Based System Manager user interface is an Object-Oriented User
Interface (OOUI). OOUIs are distinguished from traditional, application-oriented
user interfaces, in that the user focuses on readily identifiable things on which the
user works. In an application-oriented environment, the user focuses on a tool for
manipulating the work. Some examples may clarify the distinction. In a document
processing context with an application-oriented interface, the user focuses on the
tool (a word processing program). While in OOUI, the user focuses on the object
of the task itself (the document). In a system management context, an
application-oriented interface would require the user to learn management tools
(for example, a Print Manager application), while an OOUI would enable the user
to directly manipulate a representation of the managed object (for example, a
printer or group of printers).

In the evolution of AIX system management user interfaces, SMIT was an
application-oriented interface, and VSM was a mixed application/object-oriented
System Management and Utilities 99

interface. Web-Based System Manager is intended to significantly increase the
object-orientation of system management of AIX.

The reasons for this approach, as opposed to an application-oriented user
interface are:

 • By focusing on objects rather than tools for manipulating objects, OOUIs are
more direct and require less learning than application-oriented GUI's.

 • OOUIs (especially if implemented using object-oriented programming
techniques) have a more consistent user interface than application-oriented
interfaces, further reducing the amount of learning required by the user.

 • OOUIs follow the current trends in user interface development. User interface
styles such as CDE, OS/2, and Windows reflect a trend of increasing
object-orientation.

6.2.3 Web-System Manager Launch Interfaces
Web-Based System Manager has been implemented in a modular fashion so that
it can be accessed from a variety of launch points. Some launch points are:

 • A Web-Based System Manager launch page running inside a Java-enabled
browser.

 • A Web-Based System Manager application icon in the CDE application
manager.

The launch pad icon in the CDE Application Manager loads the Web-Based
System Manager environment with launch icons for all of the Web-Based System
Manager applications. Multiple applications can be started without the need to
restart the Web-Based System Manager environment each time.

The remote launch pad icon in the CDE application manager enables the
administrator to login to another AIX 4.3 host and manage it with Web-Based
System Manager.

The command line allows Web-Based System Manager to be in X Windows from
an aixterm window or in the CDE desktop from a dtterm window.

When an applet is invoked from a Web-Based System Manager launch interface
it appears as a Java frame (essentially a child widow) above the launch interface.
Additional dialogs are always opened as child windows. The initial Web-Based
System Manager frame appears in Figure 14.
100 AIX Version 4.3 Differences Guide

Figure 14. Web-Based System Manager Launch Interface

6.2.4 Web-Based System Manager User Interface Objects
Many system administration and configuration tasks are performed by interacting
with simple objects. Simple objects represent individual managed objects that
cannot be further decomposed into a collection of objects.

Each instance of a simple object in the system is represented as an icon in a
container’s view area. Double-clicking on a simple object opens the object so that
administrative tasks may be performed. The Web-Based System Manager user
interface consists of the following hierarchy of objects:

Container Objects
Container objects include other container objects and simple objects
representing elements of system resources to be configured and
managed.

Objects
Objects include the following user interface classes:

Property Notebook Objects
Property notebooks (tabbed dialogs) are used for displaying and
changing settings associated with a managed resource or container.
Property notebooks are useful because they can organize a large
collection of system settings into individual pages. They are used in
Web-Based System Manager for viewing configuration settings and for
System Management and Utilities 101

configuration change tasks in which there is no predefined order of
steps for the user to perform.

TaskGuide Objects
TaskGuides are dialogs designed to assist the user in performing
complex tasks. Unlike property dialogs, TaskGuides lead the user
through a task in an ordered series of steps.

6.2.4.1 Container Objects
Simple objects are viewed and manipulated in container objects. Containers
consist of a view area, objects within the view, and a group of actions. Actions
apply to the container view area and individual objects in the view area.

Web-Based System Manager containers are specialized, that is, each type of
Web-Based System Manager simple object (for example, user) is viewed within
its own container type (for example, the Users container). The classification of
containers provides rules for actions to be applied to included objects and any
specialized views of objects within the container type.

Containers are viewed and manipulated in their own primary windows. Container
windows perform the functions of CDE and Windows NT file manager folders. All
the container windows support the following behaviors:

Open Iconized containers may be opened to reveal their contents.

Close Containers may be closed, returning control to the parent
container (or in the case of the top-level container, exiting the
application).

Find Find an object by specifying its name.

Reload Now Rediscover the objects and their current states.

Stop Loading Halt the loading, or reloading, of a container.

Select All Select all objects in a container.

Deselect All Remove selection from all objects in a container.

Scroll When containers are sized such that their entire contents cannot
be shown, they can be scrolled up/down and right/left.

6.2.4.2 Open Action
Opening a container causes the container view area to be populated with objects.

6.2.4.3 TaskGuides
TaskGuides are the IBM/Lotus equivalent of Wizards. Wizards are a Microsoft
tool for assisting users in performing complex tasks. They direct the user through
the task using questions, instructions, prompts, and controls specific to each step
in the task. TaskGuides are used for rarely-performed, and otherwise complex,
tasks, such as printer and queue configuration, installing software, and so forth.

Further information on the use and requirements for TaskGuides may be found in
the User Assistance section below.

6.2.4.4 Generic Dialogs
Generic dialogs are used to represent objects where notebook or TaskGuide
functions are not necessary.
102 AIX Version 4.3 Differences Guide

6.2.5 User Interface Elements
The user interface elements of the Web-Based System Manager container are
described in the following sections:

Note: The figures are provided as an example to illustrate the user interface
elements. The rendering of details of the title bar, menu bar, and so on, vary
depending upon the client system on which the applet is running (Figure 15).

Figure 15. Web-Based System Manager User Menu

The menu bar may be shown or hidden at the user’s option. A hidden menu bar
may be retrieved through a pop-up menu on the main view area background.

The following menu items are meant to reflect actions that are common across
most Web-Based System Managers containers. Additional choices are included
for functions that have specific object types.

6.2.5.1 Menu
The object menu contains actions that globally apply to the current container. In
each container type, the object menu is titled with the name of the type of object
included in the menu. For example, in the users container the object menu is
titled User, in the printer’s container, the menu is titled Printer, and so on. The
basic object menu choices are:

New Create a new instance of the object type contained in current window.
This action is equivalent to opening the default template object for the
container.

Switch Administrator (applet and remote mode only)
Switch to another user. A dialog box is opened for logging in as
another user. Following authentication, the new user's administrative
rights are used for actions on the contents of the current container.
System Management and Utilities 103

Find Opens a search dialog for locating objects. The result of the find action
is displayed by providing selection emphasis for visible objects
matched in the view area and scrolling the view area to the first object
found.

The find dialog also includes a list area for displaying the objects
found (because some may not be visible since they are nested in
subcontainers) and provide a method of saving the results in a new
subcontainer.

Close Close the container window.

Exit Exit Web-Based System Manager. An exit menu choice is present on
all Web-Based System Manager containers. When Exit is selected
from secondary containers, it generates a confirmation dialog,
otherwise, Web-Based System Manager exits.

6.2.5.2 Selected Menu
The selected menu contains actions that are applied against one or more
selected objects in the view area. The contents of the Selected menu will differ
depending on the type of object container. The selected menu lists only these
actions that apply to an object or the set of objects selected. Actions for an object
that are temporarily unavailable (for example, start when the object has already
been started) are dimmed.

Note: The pop-up menu for an object in the view area is roughly equivalent to the
selected menu. Additionally, the enabled/disabled menu choices for a pop-up
menu on a given object will be equivalent to the enabled/disabled menu choices
on the selected menu when the same object has selection emphasis.

Figure 16 shows an example of the Web-Based System Manager Selected menu.

Figure 16. Web-Based System Manager Selected Menu
104 AIX Version 4.3 Differences Guide

The basic Selected menu choices are:

Open Opens a selected container or TaskGuide.

Properties Opens a properties notebook dialog for the selected object.

Delete Deletes the selected objects.

Select all Selects all of the objects in the container.

Deselect all Deselects all of the objects in the container.

6.2.5.3 View Menu
The view menu contains options that change the way objects are presented in the
view area. The view menu is shown in Figure 17.

Figure 17. Web-Based System Manager View Menu

The View menu choices are:

Reload Now
Updates the view area with the latest data from the target system. This
is analogous to the Netscape Reload function.

Stop Loading
Halts an update of the view.

Open New Window
Opens another instance of the current container window. This is
equivalent to the Netscape New Web Browser action and the CDE file
manager Open New View action.

Large/Small Icons
Selects either small or large icons for the display.

Icon View
Displays icons in a grid arrangement.
System Management and Utilities 105

Tree
Changes the presentation of icons to tree view.

Details
Changes the presentation to a tabular view that displays small icons in
the first column, object names in the second column, and other
relevant properties in one or more additional columns (for example,
object description, status, and so on). The exact information displayed
in the details view will vary depending upon the application.

Tree Details
Changes the presentation of icons to a tree that also lists properties of
each node.

Filter
Opens a dialog box for filtering objects based on user-specified
criteria. (Filter is available only in icon and detail views).

Sort
Open a dialog box for sorting the objects based on user-specified
criteria. (Filter is available only in icon and detail views).

6.2.5.4 Options Menu
The Options menu contains choices that specify the inclusion, or exclusion, of
main user interface elements in the primary window, such as tool bar, status line,
and so on. These menu items are selected by a check box for each menu choice,
as shown in Figure 18.

Figure 18. Web-Based System Manager Options Menu

The Options menu choices are:

Show Menu Bar (check box)
Default position is checked. Unchecking removes the menu bar from
106 AIX Version 4.3 Differences Guide

the window. The menu bar is restored through a pop-up menu choice
on the view area background.

Show Tool Bar (check box)
Default position is checked. Unchecking removes the tool bar from the
window and subsequent subcontainers windows.

Show Status Line (check box)
Default position is checked. Unchecking removes the status line from
the container and subsequent containers.

6.2.5.5 Help Menu
See Section 6.2.7.2, “Container Help Menu Contents” on page 110.

6.2.5.6 Pop-Up (Context) Menus
Pop-up menus are available for each object in a view area. When the cursor is
positioned over an object, the Selected menu for that object is presented in a
pop-up menu. When the cursor is over the main view area background, the
pop-up menu contains the Options menu contents.

When a group of dissimilar objects is selected, the pop-up menu for the collection
reflects only the actions that are applicable to all of the collection.

6.2.5.7 Dynamic Status Icon
A dynamic status icon is used to indicate the status of:

 • Communications

 • Processing on the target system

6.2.5.8 Tool Bar
Frequently used actions are represented on a tool bar. The tool bar can be
displayed, or hidden, at the user's option.

The contents of the tool bar consists of some icons common to all containers (for
example, Reload Now, Stop Loading, View Type) and other icons unique to
specific container types. For example, the Users container includes a Change
Password icon.

6.2.5.9 Main View Area
The main view area displays the objects and containers within the current
container.

6.2.5.10 Command Buttons
The following command buttons are included on the background panel of the
dialog. They are:

OK Applies all of the parameters specified on each of the tab pages
visited and closes the dialog box.

Apply Applies all of the parameters specified on each of the tab pages
visited and leaves the dialog box open.

Cancel Closes the dialog box without applying any parameters.

Help Launches a help window for the tab page currently visible.
System Management and Utilities 107

6.2.5.11 Status Line
The status line is used to display current status information about the container.
The status line may be shown, or hidden, at the user’s option. Examples of
information displayed in the status line are: number of objects shown in the view
area, number of objects hidden, and loading status.

6.2.5.12 Container Views
Container views present a variety of representations of a group of objects that
can be altered according to user needs or preferences. Many containers are able
to present more than one view. Because different view types may be more or less
appropriate for different object types, there is no one default view for all object
containers.

Examples of standard views are listed in the following:

Icon Icon view arranges icons for managed objects in a grid. This view is
useful for displaying a large number of objects in a small area (Figure
19).

Figure 19. Web-Based System Manager Icon View

Details The icons in the view are displayed in a grid or table with the object
icons, or names, in the columns on the far-left and additional property
information in the remaining columns. See Figure 20 for an example of
the details view for system devices.
108 AIX Version 4.3 Differences Guide

Figure 20. Web-Based System Manager Details View

Tree A tree view displays a hierarchical relationship with parent and child
nodes. The tree view is useful for displaying users and groups,
printers and queues, bundles and file sets, and devices. See Figure 21
for an example of a tree view for system devices.

Figure 21. Web-Based System Manager Tree View
System Management and Utilities 109

Note: The Web-Based System Manager UI architecture includes single-rooted
and multiple-rooted tree views and trees of an arbitrary number of levels.

6.2.6 Message Boxes
Where it is necessary to alert the user to various conditions, a message box is
used for the following purposes:

 • Informational messages

 • Warning messages

 • Critical conditions

 • Confirmation prompts

6.2.7 User Assistance
User assistance includes on-line information designed to aid users in performing
unfamiliar tasks. Web-Based System Manager user assistance includes: on-line
books, help, TaskGuides, hover help, and context help. These are described
below.

6.2.7.1 Help
General help for each Web-Based System Manager application is provided
through a container-level help for that application. The general help also contains
an overview section common to all Web-Based System Manager applications.

All help text is written in HTML and is accessed through the Web browser on the
client system.

6.2.7.2 Container Help Menu Contents
Container help menu choices are provided for the following:

 • Contents (contents of extended or reference help)

 • What's this? (places the application in context-sensitive help mode)

 • Search for help on topic (Web page for accessing the help search engine)

 • How to use Help

 • About Web-Based System Manager (product information)

6.2.7.3 Context Sensitive Helps
Context-sensitive help is provided in a child window that pops up above the user
interface element for which help is requested. It is available when the user:

 • Selects What’s this? from the application help menu. This enters
context-sensitive help mode.

 • Clicks on a tool bar icon containing a question mark to get help on the
contents of a window.

 • Presses the help button on a dialog.

Context-sensitive help is available for:

 • Fields with a dialog

 • Objects in a view area
110 AIX Version 4.3 Differences Guide

6.2.7.4 Hover Help
Web-Based System Manager displays hover help when the user pauses the
mouse pointer over a toolbar icon.

6.2.7.5 Online Books
Web-Based System Manager users have access to the complete AIX on-line
documentation library through hypertext links in extended help.

6.2.8 Navigation
Although the usual method of navigation through Web-Based System Manager is
by use of a mouse, it also possible through the keyboard.

6.2.8.1 Keyboard Navigation
To meet the needs of a wide range of users of different abilities and skills,
Web-Based System Manager supports keyboard navigation. Specific key
assignments for keyboard navigation are similar to Windows and Netscape
Navigator.

The following keyboard navigation methods are supported:

Focus Traversal
Tab and Shift-Tab are used to move forward and backward among
controls.

Menu Shortcuts
Short cuts (or accelerators) are keyboard equivalents for menu
commands that are executed by key combinations (such as CTRL-F
for Find).

6.2.8.2 Mouse Model
For a three-button mouse, the mouse button functions are:

 • Button 1 - select, drag, activate.

 • Button 3 - context (pop-up) menu

For a two button mouse, the mouse button functions are:

 • Button 1 - select, drag, activate

 • Button 2 - context menu

A single-click of button 1 is used for selecting icons and activating button
controls.

A double-click of button 1 activates view area icons with their default behaviors.
For container objects, the default behavior is to open-contents-view. For simple
objects (that is, without contents), the default behavior is open-properties-dialog.
For objects that have both properties and contents (for example, UNIX groups),
the double-click action is to open-contents-view. Pop-up and Selected menu
choices (Open=contents, Properties=properties dialog) for each action are provided.

6.2.9 Selection and Multiple Selection
A single selection defines to which object the actions in the selected menu, or
pop-up menu, apply. Specific actions are enabled, or disabled, depending upon
the type of object selected. A single-click of button 1 is used to select an object.
System Management and Utilities 111

A multiple selection is enabled for various types of objects and actions. Specific
actions in the selected and pop-up menu will be enabled or disabled depending
upon whether or not multiple selection is allowed for the collection of objects
selected. The menu choices enabled are the intersection of the enabled states of
the objects in the selected collection.

Most standard multiple selection interaction techniques are supported, including
range selection, use of Ctrl-Select to modify a selection, and use of shift-select to
select a contiguous range of objects.

6.3 Web-Based System Manager Enhancements (4.3.1)

Web-Based System Manager was introduced with AIX version 4.3.0 as a
technology evaluation release. It did not provide all of the function required for
system management but was intended to demonstrate to customers the direction
of system management products.

The version of Web-Based System Manager shipped with AIX version 4.3.1
contained significant performance enhancements over the previous release. The
improvements were mostly due to improvements in the underlying Java run time
system.

6.4 Web-Based System Manager Enhancements (4.3.2)

The following sections describe the enhancements to Web-Based System
Manager that were introduced by AIX version 4.3.2.

6.4.1 Security Enhancements
AIX 4.3.2 has enhanced the function of Web-Based System Manger to allow
remote administration sessions to be carried out using the Secure Socket Layer
(SSL) protocol. This allows all data transmitted on the network between the
Web-Based System Manager client and the machine being managed to be
encrypted and, therefore, prevent unauthorized systems from viewing the data.

The software required to implement this function is included on the AIX Bonus
Pack that ships with AIX 4.3.2. The required package is sysmgt.websm.security.
Users in the United States and Canada can additionally install the package
sysmgt.websm.security-us, which provides stronger encryption facilities.

The configuration process for using the SSL protocol involves generating a public
and private key for each machine to be managed. The certificates can be
obtained from an external Certificate Authority or generated on a designated
Web-Based System Manager server for use in a private network. The keys are
installed on the machine being managed and, additionally, on any AIX machines
that will use the Web-Based System Manager client to manage the machine in
client-server mode. In this scenario, all communication between the client and
server takes place using the SSL protocol.

In applet mode, where the Web-Based System Manager client is run in a browser,
the client is required to download the Web-Based System Manager servers public
key in order to verify the applet files that are being downloaded. For maximum
security, the client should connect to the server using the HTTPS protocol.
112 AIX Version 4.3 Differences Guide

The encryption facilities provided work in conjunction with a Web server that uses
SSL to support the HTTPS protocol. The Lotus Domino Go Web server, that is
also provided on the Bonus Pack can be configured to accept requests using the
HTTPS protocol, either in addition to, or instead of, the HTTP protocol. Similarly,
the Web-Based System Manager server running on the managed machine can be
configured to respond to HTTPS requests either in addition to, or instead, of
HTTP requests.

A client session with a server that has been configured with the optional security
is shown in Figure 22.

Figure 22. Example of Secure Mode Connection Using HTTPS

The only visible differences when using the secure version are:

 • The URL of the initial Web-Based System Manager login page specifies the
HTTPS protocol.

 • The browser indicates that the Web page being viewed has been obtained
using a secure connection. The Netscape Navigator browser shipped on the
Bonus Pack indicates this with a locked padlock icon in the lower left corner of
the window.

 • Web-Based System Manger child windows have the message Secure
Connection displayed in the status bar at the base of the window. See Figure
23.
System Management and Utilities 113

Figure 23. Example of Container Window in Secure Mode

6.4.2 Diagnostics Enhancements
Web-Based System Manager has been enhanced to allow diagnostic and service
aid functions to be carried out on devices that support these actions. The menu
presented depends on the capabilities of the selected device. For example, it is
possible to perform format or certify operations on certain models of disk drives,
as shown in Figure 24.

It is also possible to perform Error Log Analysis when running diagnostics on the
selected device. The AIX error log can be searched for errors logged against the
selected device for errors between 1 and 60 days old.

If a device is marked with a warning triangle (containing an explanation point), the
Run Diagnostics selection can be used to determine what is wrong with the
device, or if it has just been removed from the system.
114 AIX Version 4.3 Differences Guide

Figure 24. Example of Diagnostics Menu

Using the previous selections, the menu shown in Figure 25 is presented. Here,
you may select how the diagnostics are run.

Figure 25. Example of ELA Day Selection Menu
System Management and Utilities 115

6.4.3 Registered Applications
This function allows a system administrator to register remote applications with
Web-Based System Manager. It only supports an application that can be
accessed using a URL. For example, it allows a system administrator to register
the Netfinity Manager application with Web-Based System Manager. The dialog
screen, shown in Figure 26, prompts the user to enter the URL to start the
application and shows a list of machines that have the application installed.

Figure 26. Registered Applications Dialog Box

The registered application then appears on the Registered Applications container
as an icon, shown in Figure 27.
116 AIX Version 4.3 Differences Guide

Figure 27. Registered Applications Container

When the icon is opened, the user is prompted to select the required target
machine if the application is registered with multiple machines. This is shown in
Figure 28. Web-Based System Manager then starts the Netscape Web browser
with an initial URL of the registered application on the target machine.

Figure 28. Registered Application Host Selection Dialog
System Management and Utilities 117

6.5 Daylight Savings Time

Before AIX Version 4.3, daylight savings time could be selected through SMIT,
but the date of change for this characteristic was restricted to USA standard.
Once the daylight savings YES or NO question had been answered, a list of
available time zones was presented, but there was no option within SMIT for
specifying the start and end dates for daylight savings.

By default, the daylight saving time starts on the first Sunday of April at 2:00am
and stops on the last Sunday of October at 2:00am. AIX Version 4.3 now has the
capability of overriding these settings by specifying the start time and stop time in
the TZ environment variable.

Additional fields have been added to the SMIT time setting menu to set the TZ
variable. A back-end script performs the actual setting of the TZ variable.

6.6 Login Performance

The original design of the UNIX/AIX login system dates back to the early days of
UNIX when the number of users to be catered for was relatively small. As such,
the login process was perfectly adequate. With the commercial acceptance of
UNIX, however, the number of users per system has grown dramatically with tens
of thousands of users now being seen on some servers. This increase in the
number of users has highlighted some of the deficiencies in the original design of
the login process that are now beginning to affect system performance.

A problem exists, which once a user has entered their name and password, the
system must then search through the /etc/passwd and /etc/security/passwd files
trying to find a match for that user and, if successful, must also update a number
of other files. All the files are searched sequentially, and the time consumed can
be substantial if there are a large number of records to search through. In
extreme cases, if a user’s entry is near the end of the files, it is possible for the
login attempt to time out before completion. Also, the amount of CPU time being
consumed by the login process is a cause for concern. Login CPU usage has
been recorded as high as 47 percent on some systems.

The three major bottlenecks that have been identified are:

 • Reading the /etc/passwd file

 • Reading the /etc/security/passwd file

 • Updating the /etc/security/lastlog file

A limited solution was used in previous versions of AIX to address some of these
issues by creating a hashed version of the /etc/passwd file. The mkpasswd
command took the /etc/passwd file as input and created the /etc/passwd.dir and
/etc/passwd.pag files. Then during login, if these hashed files existed, they were
read instead of the ASCII file. This partial solution provided some relief, but there
were still other areas that could also be improved.

A further improvement has been introduced in AIX Version 4.3 that provides
indexed access to the data files instead of sequential reads. Indexes are created
using the user name and user ID as keys with offsets into the data file. The data
118 AIX Version 4.3 Differences Guide

files remain as ASCII files, but the design allows for them to be upgraded to
binary files at a later date if this is found to be necessary.

The /etc/passwd and /etc/security/passwd files have been indexed, and the
/etc/security/lastlog file has been indexed with a corresponding change in the way
that this file is processed.

6.6.1 Indexing of the /etc/passwd File
The actual /etc/passwd file has not been changed. However, two new files have
been created, /etc/passwd.nm.idx and /etc/passwd.id.idx, through the mkpasswd
command. These files are indexes created using the username (string) and the
user ID (number) as keys. A record in the index file contains the key, offset of the
corresponding record in the data file (/etc/passwd), and the status of the record.
A negative offset value implies the corresponding record is deleted.

A hook was also added at the point where the file is read to check for the
existence of the index file. If the corresponding index exists, then the index read
mechanism is called with the key as a parameter.

6.6.2 Indexing of the /etc/security/passwd File
The /etc/security/passwd file is a text file that contains one stanza for each user.
It is searched one line at a time looking for the user name. Similar to the
/etc/passwd file, the user name that is physically located at the top of the file is at
an advantage compared to the user name at the bottom of the file. This file is also
indexed by the mkpasswd command. The index is based on the username string as
the key and provides an offset into the file where the stanza can be located. Once
the stanza is located, it is then searched sequentially for the relevant information.

6.6.3 Indexing and Locking /etc/security/lastlog File
The lastlog file is a text stanza file similar to the /etc/security/passwd file that
contains one stanza per user. It is accessed in a similar manner, sequentially
looking for a username. However, unlike the /etc/passwd and
/etc/security/passwd files, this file is accessed for update, which means that
file-locking and crash-recovery must be taken into account. In the existing design,
locking is done at a file-level, and the whole file is backed up, representing a
major overhead. Note that there are no external commands or system and library
calls to access this file. It is accessed internally by the tsmlogin() module to
display lastlog information.

In AIX Version 4.3, the /etc/security/lastlog file remains a text file but has been
changed in the following ways:

Indexed access
An index called /etc/security/lastlognm.id is built using the username
string. This index provides the offset to a stanza. Once a stanza is
located, the lines in it are processed sequentially as in AIX Version
4.2. The index is created by the mkpasswd command.

Fixed record length
Since a user stanza is updated upon login, if the file needed to be
reorganized after every update (because of the variable length text
fields), this would cause the record (or stanza) offsets for all stanzas
after the changed stanza to be changed by a fixed delta. This would
System Management and Utilities 119

keep the data and index files synchronized but would be expensive in
processing time. The extra processing was avoided by keeping some
unused space in each variable length field. By padding the fields with
spaces, they can shrink or grow within limits, and a record can be
updated without having to rearrange the file and rebuild the index.

Record level lock
Locking is now done at the record-level instead of the file-level by
using advisory locks for updates. This prevents having to read and
write the entire file. There is no longer a need for the /etc/olastlog file,
and it has therefore been removed.

6.6.4 mkpasswd Command
The index system is created when the mkpasswd command is executed. It deletes
any existing outdated indexes (except for the lastlog index) and builds new
indexes. New flags allow complete control of this enhancement.

6.7 Microcode Packaging

In versions of AIX prior to Version 4.3, some IBM microcode entities resided in
filesets that were prerequisites of other filesets. This meant that our OEM
customers had to ship these filesets even if they were not required. In some
cases, customers who developed their own additional features preferred to use
their own microcode instead of the IBM-supplied microcode. In order for these
OEM customers to replace the IBM microcode, it was necessary for them to
modify AIX.

To rectify this situation, the following filesets were modified to remove the IBM
microcode so that our OEM customers can ship AIX without having to perform
any changes:

 • bos.sysmgt.nim.master
 • devices.mca.8fc8

– Common token-ring Software
– Token-Ring high-performance adapter diagnostics
– Token-Ring high-performance adapter microcode
– Token-Ring high-performance adapter software

 • devices.mca.df9f
– Direct-Attached disk diagnostics
– Direct-Attached disk software

 • devices.mca.ffe1
– 128-port asynchronous adapter diagnostics
– 128-port asynchronous adapter microcode
– 128-port asynchronous adapter software

The devices.mca packages were a source of error because even though some
systems do not have an MCA bus, other rspc packages regarded these MCA
packages as prerequisites. The files needed by the other rspc packages were
moved out of the devices.mca.* packages and into a separate fileset.
120 AIX Version 4.3 Differences Guide

6.8 On-line Alternate Disk Installation

The alt_disk_install command gives users another way to update AIX to the
next release or maintenance level without having to schedule an extended period
of system downtime.

The update can be performed in two ways:

mksysb image
Installing a mksysb requires a 4.3 mksysb image or 4.3 mksysb tape.
The alt_disk_install command is called, specifying a disk or disks
that are installed in the system but are not currently in use. The
mksysb is restored to those disks, such that, if the user chooses, the
next reboot will boot the system on a 4.3 system.

Note: If needed, the bootlist command can be run after the new disk
has been booted, and the bootlist can be changed to boot back to the
older version of AIX.

Cloning
Cloning allows the user to create a backup copy of the root volume
group. Once created, the copy may be used either as a back up, or it
can be modified by installing additional updates. One possible use
might be to clone a running production system, then install updates to
bring the cloned rootvg to a later maintenance level. This would
update the cloned rootvg while the system was still in production.
Rebooting from the new rootvg would then bring the level of the
running system up to the newly installed maintenance level. If there
was a problem with this level, simply changing the bootlist back to the
original disk and rebooting would bring the system back to the old
level.

Currently, you can run the alt_disk_install command on 4.1.4 and higher
systems for both of these functions. The bos.alt_disk_install.rte fileset must be
installed on the system to do cloning to an alternate disk, and the
bos.alt_disk_install.boot_images fileset must be installed to allow a mksysb
install to an alternate disk.

The mksysb image that is used must be created before installation and include all
the necessary device and kernel support required for the system on which it is
installed. No new device, or kernel support, can be installed before the system is
rebooted from the newly-installed disk.

Note: The level of mksysb that you are installing must match the level of the
bos.alt_disk_install.boot_images fileset. At this time, 4.3.2, 4.3.1, and 4.3.0
mksysb images are supported. AIX 4.3.1 boot images are available only on the
4.3.1 installation media.

When cloning the rootvg volume group, a new boot image is created with the
bosboot command. When installing a mksysb image, a boot image for the level of
mksysb and platform type is copied to the boot logical volume for the new
alternate rootvg. When the system is rebooted, the bosboot command is run in the
early stage of boot, and the system will be rebooted again. This is to synchronize
the boot image with the mksysb that was just restored. The system will then boot
in normal mode.
System Management and Utilities 121

At the end of the install a volume group, altinst_rootvg, is left on the target disks
in the varied off state as a place holder. If varied on, it will show as owning no
logical volumes, but it does, in fact, contain logical volumes. Their definitions
have been removed from the ODM because their names now conflict with the
names of the logical volumes on the running system. It is recommended that you
do not vary on the altinst_rootvg volume group but just leave the definition there
as a place holder.

When the system reboots from the new disk, the former rootvg will not show up in
an lspv listing. The disks that were occupied by the rootvg will show up as not
having a volume group. However, you can still use the bootlist command to
change the bootlist to reboot from the old rootvg if necessary.

When the system is rebooted from the new altinst_rootvg, then lspv will show the
old rootvg as old_rootvg so you will know which disk or disks your previous rootvg
was on. There is also a -q option in alt_disk_install that will allow you to query to
see which disk has the boot logical volume so you can set your bootlist correctly
for cases when old_rootvg has more than one disk.

The alternate root file system is mounted as /alt_inst, so other file systems also
have that prefix (/alt_inst/usr, /alt_inst/var). This is how they must be accessed if
using a customization script.

Note: If you have created an alternate rootvg with alt_disk_install, but no
longer want use it, or you want to run alt_disk_install commands again, do not
run exportvg on altinst_rootvg. Simply run the alt_disk_install -X command to
remove the altinst_rootvg definition from the ODM database.

The reason you cannot run the exportvg command (or the reducevg command) is
that the logical volume names and file systems now have the real names, and
exportvg removes the stanzas for the real file system from /etc/filesystems for the
real rootvg.

If exportvg is run by accident, be sure to recreate the /etc/filesystems file before
rebooting the system. The system will not reboot without a correct
/etc/filesystems file.

6.8.1 alt_disk_install Command Syntax
The following is an example of the alt_disk_install command:

alt_disk_install -d device || -C [-i image.data] [-s script] [-R resolv_conf
]
[-D] [-B] [-V] [-r] [-p platform] [-L mksysb_level]
[-b bundle_name [[-I installp_flags] [-l images_location] [-f fix_bundle]
[-F fixes] [-e exclude_list] [-w filesets] target_disks...

alt_disk_install -X

The following is a description of alt_disk_install flags:

-d device
The value for device can be:

 • Tape device - for example, /dev/rmt0.
122 AIX Version 4.3 Differences Guide

 • Path name of mksysb image in a file system.

Note: -d and -C are mutually exclusive.

-C Clone rootvg.

Note: -d and -C are mutually exclusive.

-i image.data
Optional image.data file to use instead of default image.data from
mksysb image or image.data created from rootvg. The image.date file
name must be a full path name. For example, /tmp/my_image.data.

-s script Optional customization script to run at the end of the mksysb install or
the rootvg clone. This file must be executable. This script is called on
the running system before the /alt_inst file systems are unmounted, so
files can be copied from the running system to the /alt_inst file
systems before the reboot. This is the only opportunity to copy or
modify files in the alternate file system because the logical volume
names will be changed to match rootvg's, and they will not be
accessible until the system is rebooted with the new alternate rootvg.
You must use a full path name for script.

-R resolv_conf
Specifies the path name of the resolv.conf file you want to replace the
existing one after the mksysb has been restored, or the rootvg has
been cloned. You must use a full path name for resolv_conf.

-D Turn on debug (set -x output).

-V Turn on verbose output. This will show the files that are being backed
up for rootvg clones. This flag will show files that are restored for
mksysb alt_disk_installs.

-B Specifies not running bootlist after the mksysb or clone. If set, then the
-r flag cannot be used.

-r Specifies to reboot from the new disk when the alt_disk_install
command is complete.

-p platform
This is the platform to use to create the name of the disk boot image.
The default value is the platform of the running system obtained with
the bootinfo -T command on 4.1 or the bootinfo -p command in 4.2.
This flag is only valid for mksysb installs (-d flag).

-L mksysb_level
This level is combined with the platform type to create the name of the
boot image to use (IE rspc_4.3.0_boot). This must be in the form
V.R.M. The default is 4.3.0. The mksysb image is checked against this
level to verify that they are the same.

The following flags are only valid for use when cloning the rootvg (-C):

-b bundle_name
Path name of optional file with a list of packages, or filesets, that will
be installed after a rootvg clone. The -l flag must be used with this
option.

-I installp_flags
The flags to use when updating, or installing, new filesets into the
System Management and Utilities 123

cloned alt_inst_rootvg. The default flags are -acgX. The -l flag must be
used with this option.

-l images_location
Location of the installp images, or updates, to apply after a clone of
the rootvg. This can be a directory full path name or a device name
(for example, /dev/rmt0).

-f fix_bundle
Optional file with a list of APARs to install after a clone of the rootvg.
The -l flag must be used with this option.

-F fixes Optional list of APARs (such as IX123456) to install after a clone of the
rootvg. The -l flag must be used with this option.

-e exclude_list
Optional exclude list to use when cloning rootvg. The rules for
exclusion follow the pattern matching rules of the grep command. The
exclude_list must be a full path name.

-w filesets
List of filesets to install after cloning a rootvg. The -l flag must be used
with this option.

The following are supplied as parameters

Target Disks
Specifies the name, or names, of the target disks where the alternate
rootvg will be created. The disk, or disks, must not currently contain
any volume group definition. The lspv command should show these
disks as belonging to volume group None.

6.8.2 Using alt_disk_install
The following are examples of using the alt_disk_install command:

1. To clone the running 4.2.0 rootvg to hdisk3 and apply updates from /updates
to bring the cloned rootvg to a 4.2.1 level:

alt_disk_install -C -F 4.2.1.0_AIX_ML -l /updates hdisk3

The bootlist will then be set to boot from hdisk3 at the next reboot.

2. To install a 4.3 mksysb image on hdisk3, then run a customized script
(/home/myscript) to copy some user files over to the alternate rootvg file
systems before reboot:

alt_disk_install -d /mksysb_images/4.3_mksysb -s /home/myscript hdisk3

6.8.3 Alternate Disk Installation Enhancements (4.3.1)
The alt_disk_install command gives users another way to update AIX to the
next release or maintenance level without having to schedule an extended period
of system downtime. The function is included in the bos.alt_disk_install package,
which is shipped on the AIX media. The package is not installed by default during
system installation.

AIX 4.3.1 has enhanced the alternate disk installation function by splitting the
task into three distinct phases. A system administrator now has greater control
124 AIX Version 4.3 Differences Guide

over the task by being able to perform each phase in isolation from the others. It
is not required to perform them all at once.

The three phases of the alternate disk install are:

1. Phase 1

 • Create the altinst_rootvg, logical volumes and file systems.

 • Restore or copy files to the /alt_inst file systems.

2. Phase 2

 • Copy a resolv.conf file to the /alt_inst/etc file system if specified.

 • Copy NIM client configuration information if specified.

 • For clones, install any new filesets, updates, and fixes.

 • Run any user specified customization script.

3. Phase 3

 • Manipulate the ODM databases and /etc/filesystems file.

 • Build the boot image.

 • Unmount the /alt_inst file systems and rename the logical volumes and file
systems.

Phase two can be performed with phase one or phase three and can also be
performed on its own multiple times if required before phase three is run.

The phases performed are controlled by the new -P option that has possible
values as shown in Table 22.

Table 22. Possible Values of Phase Value

The target disk name is required for all phases, even though the altinst_rootvg
has already been created.

Some standard alt_disk_install options, such as the reboot option and the no
bootlist option, are not allowed in phase one or phase two.

Specifying an exclude list (-e exclude_list) is not allowed in phase two or phase
three.

If a flag is used in a wrong phase, a warning is displayed, but the install does not
terminate.

Flag value Result

1 Phase one performed

2 Phase two performed

3 Phase three performed

12 Phases one and two performed

23 Phases two and three performed

all Phases one, two, and three performed
System Management and Utilities 125

6.8.4 Alternate Disk Installation Enhancements (4.3.2)
In this section, the enhancements made at the AIX 4.3.2 introduction are given.

6.8.4.1 New alt_disk_install 4.3.2 Usage
Listed below are the new command formats for the various tasks given.

Create Alternate Disk: mksysb (-d) or clone (-C):
 alt_disk_install {-d <device> | -C} [-i <image.data>] [-s <script>]
 [-R <resolv_conf>] [-D] [-B] [-V] [-r]
 [-p <platform>] [-L <mksysb_level>]
 [-b <bundle_name>] [-I <installp_flags>]
 [-l <images_location>] [-f <fix_bundle>]
 [-F <fixes>] [-e <exclude_list>] [-w <filesets>]
 [-n] [-P <phase_option>] <target_disks...>

Determine Volume Group Boot Disk (-q):
 alt_disk_install -q <disk>

Rename Alternate Disk Volume Group (-v):
 alt_disk_install -v <new volume group name> <disk>

Wake-up Volume Group (-W):
 alt_disk_install -W <disk>

Put-to-sleep Volume Group (-S):
 alt_disk_install -S

Clean Up Alternate Disk Volume Group (-X):
 alt_disk_install -X [<volume group>]

6.8.4.2 Scenarios for Command Enhancements
To see which disks belong to the original rootvg volume group after the system
has been rebooted from the alternate disk, an entry has been added to the
database, so that when the system is rebooted from the alternate disk, and the
lspv command is executed, a volume group name old_rootvg will be listed for the
original rootvg disks.

lspv
hdisk0 00006091aef8b687 old_rootvg
hdisk1 00076443210a72ea rootvg

This volume group will be set to NOT varyon at reboot, and should ONLY be
removed with:

alt_disk_install -X old_rootvg
lspv
hdisk0 00006091aef8b687 None
hdisk1 00076443210a72ea rootvg

New function was added to the -X flag to allow for specified volume group name
information removal. It is recommended that you always use alt_disk_install -X
when removing any information about an alternate volume group (altinst_rootvg,
old_rootvg, and so on). alt_disk_install manages changes to the ODM that are
required. Using exportvg or reducevg could cause serious problems to your system
(like removing base entries in /etc/filesystems). alt_disk_install -X and
alt_disk_install -X <new volume group name> will not remove actual data from the
126 AIX Version 4.3 Differences Guide

volume group. Therefore, you can still reboot from that volume group, if you reset
your bootlist.

To see which disk is the boot disk, of the old_rootvg volume group, after a reboot
from the alternate disk, the -q flag has been added to alt_disk_install to
determine the boot disk, from the user specified disk and its associated volume
group. The command syntax is:

alt_disk_install -q <disk>

Given any disk in the volume group, and the command will return the actual boot
disk (contains hd5), for that volume group.

lspv
hdisk0 00006091aef8b687 old_rootvg
hdisk1 00076443210a72ea rootvg
hdisk2 0000875f48998649 old_rootvg
alt_disk_install -q hdisk0
hdisk1

In this case, the boot disk for old_rootvg is actually hdisk1. Therefore, you could
reset your bootlist to hdisk1 and reboot to the original rootvg volume group.

bootlist -m normal hdisk1
reboot -q

This query will work on any volume group that has a boot (hd5) logical volume.

Different names for altinst_rootvg are now possible for the case that a user would
want to have multiple alternate disks on one system (one with 4.3.2, one with
4.2.1, and so on). The -v flag was added to allow non-rootvg volume group
names to be changed. The syntax for this is:

alt_disk_install -v <new volume group name> <disk>

For example, on a 4.2.1 system, run alt_disk_install to restore a 4.3.2 mksysb to
hdisk2 and hdisk3. Execute alt_disk_install, with the -v flag, to rename the
altinst_rootvg volume group name. Then, on the same system, run
alt_disk_install to clone the 4.2.1 system to hdisk4 and hdisk5. Finally, rename
the cloned altinst_rootvg.

lspv
hdisk0 00006091aef8b687 rootvg
hdisk1 00000103000d1a78 rootvg
hdisk2 000040445043d9f3 None
hdisk3 00076443210a72ea None
hdisk4 0000875f48998649 None
hdisk5 000005317c58000e None
alt_disk_install -d /dev/rmt0 hdisk2 hdisk3
...
lspv
hdisk0 00006091aef8b687 rootvg
hdisk1 00000103000d1a78 rootvg
hdisk2 000040445043d9f3 altinst_rootvg
hdisk3 00076443210a72ea altinst_rootvg
hdisk4 0000875f48998649 None
hdisk5 000005317c58000e None
alt_disk_install -v alt_disk_432 hdisk2
lspv
System Management and Utilities 127

hdisk0 00006091aef8b687 rootvg
hdisk1 00000103000d1a78 rootvg
hdisk2 000040445043d9f3 alt_disk_432
hdisk3 00076443210a72ea alt_disk_432
hdisk4 0000875f48998649 None
hdisk5 000005317c58000e None
alt_disk_install -C hdisk4 hdisk5
...
lspv
hdisk0 00006091aef8b687 rootvg
hdisk1 00000103000d1a78 rootvg
hdisk2 000040445043d9f3 alt_disk_432
hdisk3 00076443210a72ea alt_disk_432
hdisk4 0000875f48998649 altinst_rootvg
hdisk5 000005317c58000e altinst_rootvg
alt_disk_install -v alt_disk_421 hdisk4
lspv
hdisk0 00006091aef8b687 rootvg
hdisk1 00000103000d1a78 rootvg
hdisk2 000040445043d9f3 alt_disk_432
hdisk3 00076443210a72ea alt_disk_432
hdisk4 0000875f48998649 alt_disk_421
hdisk5 000005317c58000e alt_disk_421
alt_disk_install -q hdisk3
hdisk2
bootlist -m normal hdisk2
sync
reboot -q

After the system reboot, perform the following steps:

lspv
hdisk0 00006091aef8b687 old_rootvg
hdisk1 00000103000d1a78 old_rootvg
hdisk2 000040445043d9f3 rootvg
hdisk3 00076443210a72ea rootvg
hdisk4 0000875f48998649 alt_disk_421
hdisk5 000005317c58000e alt_disk_421

A way to wake up a volume group for data access between the alternate disk and
the original rootvg and also a way to put the volume group back to sleep is
provided.

The syntax for the wake-up function is:

alt_disk_install -W <disk>

Note, the volume group that will experience the wake-up will be renamed
altinst_rootvg.

The booted volume group’s version of AIX must be later or equal to the version of
AIX on the volume group that will undergo the wake-up. This may mean that you
will need to boot from the altinst_rootvg and wake-up the old_rootvg.

oslevel
4.1.0.0
lspv
hdisk0 000040445043d9f3 rootvg
hdisk1 00076443210a72ea None
128 AIX Version 4.3 Differences Guide

alt_disk_install -d /dev/rmt0 hdisk1
...
lspv
hdisk0 000040445043d9f3 rootvg
hdisk1 00076443210a72ea altinst_rootvg
reboot -q

After rebooting...

oslevel
4.3.0.0
lspv
hdisk0 000040445043d9f3 old_rootvg
hdisk1 00076443210a72ea rootvg
alt_disk_install -W hdisk0
lspv
hdisk0 000040445043d9f3 altinst_rootvg
hdisk1 00076443210a72ea rootvg

At this point, you will find the altinst_rootvg volume group varied-on and the
/alt_inst file systems will be mounted.

Now, to put the volume group to sleep the command syntax is:

alt_disk_install -S
lspv
hdisk0 000040445043d9f3 altinst_rootvg
hdisk1 00076443210a72ea rootvg

The altinst_rootvg is no longer varied-on and the /alt_inst file systems are no
longer mounted. If desired and the bootlist is reset, this volume group is now
ready for booting. If it is necessary for the altinst_rootvg volume group name to
be changed back to old_rootvg, this can be done with the -v flag.

alt_disk_install -v old_rootvg hdisk0
lspv
hdisk0 000040445043d9f3 old_rootvg
hdisk1 00076443210a72ea rootvg

6.9 Printer Support

The AIX spooler subsystem was already significantly enhanced over the basic
UNIX spooler. For AIX Version 4.3, the following additional enhancements have
been included:

6.9.1 Remote Printing Robustness
Both rembak and lpd have new flags that allow you to build a log file. A log file is
helpful in determining why a daemon failed. Use the following commands to start
error logging:

startsrc -s lpd -a "-D /tmp/lpddebug"

/etc/qconfig -D /tmp/remback_debug flag backend=/usr/lib/lpd/rembak
System Management and Utilities 129

Support in SMIT was updated to allow rembak error logging to be enabled when
adding a remote queue.

6.9.2 Remote Print Job Count
On a print server, when a job is received from the print client, lpd receives a
control file and one or more data files. The control file contains information on the
job to be printed, including the name of the corresponding data files. The datafiles
contain the actual data to be printed. The control file is used to generate the
arguments to the enq command. It is subsequently deleted. The datafiles are
copied to the spooling directory so they can be processed by qdaemon.

The LPR/LPD protocol (RFC 1179) specifically designates the naming convention
for print data files sent from print clients to print servers. Part of the name is a
three-digit job ID. Due to this specification, problems could arise when a single
print client sent more than 1000 print jobs to a print server. The datafiles became
non-unique and the older file with the same name would get deleted. This could
cause major problems for high-volume printing installations.

AIX version 4.3.0 has modified the function of the print server. When files are
received by lpd, (before they are copied to the spooling directory) a time stamp is
appended to the data file names, thus generating unique file names. This enables
a large number of jobs to be submitted. The print server still conforms to the
specification of the LPD protocol, which does not stipulate what happens to the
data file once it has been received by the server.

6.9.3 Additional Printer Support
AIX Version 4.3 now includes native support for five additional Lexmark
dot-matrix printers:

 • Lexmark 2380 Model 3
 • Lexmark 2381 Model 3
 • Lexmark 2390 Model 3
 • Lexmark 2391 Model 3
 • Lexmark Forms Printer Model 4227

More printer support was specifically introduced in AIX 4.3.1:

 • Hewlett-Packard 4000
 • IBM InfoPrint 20

More printer support was specifically introduced in AIX 4.3.2 for IBM, Lexmark
and Hewlett-Packard printers:

 • IBM InfoPrint 32
 • Lexmark Optra Color 40
 • Lexmark Optra Color 45
 • Lexmark Optra Color 1200
 • Lexmark Optra K 1220
 • Hewlett-Packard 8000
 • Hewlett-Packard 8500 Color

The HP 8000 and HP 8500 Color printers and the associated AIX print drivers
support A3 paper size.

For all printers, this includes:
130 AIX Version 4.3 Differences Guide

 • Printer backend colon files for each printer data stream supported by the
printer.

 • ODM parameters for the printer device driver and diagnostics.
 • New message catalog entries for the printer name and new printer attributes

(if required).
 • Packaging files to make support for the printer's separately installable

packages.

More information and colon files can be obtained from Lexmark. In the USA, call
1-800-Lexmark (1-800-539-6275) or visit their Web site at the following URL:

http://www.lexmark.com

6.9.4 Print Job Administration Enhancements (4.3.2)
The print queue administration commands have been enhanced to support print
queues with more than 1000 jobs. Previous editions of AIX would allow more than
1000 jobs in a print queue. Cancelling or altering a job when the queue size grew
more than 1000 became difficult, because job numbers would repeat, and
specifying a specific job number would not guarantee that the job selected would
be unique and the one desired.

The formatting of the output of the qchk command, when used with the -W flag,
has been changed to show the six-figure print job number. The lpstat command
has been changed to also accept the -W flag to show information in wide format.
Use of the -W flag results in output where the lines are over 106 characters in
length. It can be quite confusing to read the output when using a screen that is
only 80 characters wide. To maintain compatibility for any user scripts that parse
the output of these commands, the default format for both remains unchanged
from previous versions.

qchk -W
Queue Dev Status Job Files User
 PP % Blks Cp Rnk
-------------------- -------------- --------- ------ ------------------ --------
-- ---- --- ----- --- ---
ps lp0 DOWN
 QUEUED 2228 /etc/passwd root
 1 1 1
 QUEUED 2229 /etc/passwd root
 1 1 2
 QUEUED 2230 /etc/passwd root
 1 1 3
 QUEUED 2231 /etc/passwd root
 1 1 4
#

The enq, cancel, qpri, qcan, and lprm commands have been altered to accept
six-figure job numbers.

The enhancement applies only to jobs submitted to local print queues. Jobs
submitted to remote printers will still have three digit print job numbers. This is
because of a restriction in the lpd protocol.

Although AIX 4.3.2 now generates six digit job numbers for local jobs, the
response time of the qchk and lpstat commands is identical to that on AIX 4.3.0.
The time taken to list the jobs on the queue is proportional to the number of jobs.
It is suggested that you maintain a queue size less than 1000 unless absolutely
necessary, because larger queue sizes will impact performance.
System Management and Utilities 131

6.10 System Resource Controller Subsystem Enhancements (4.3.2)

Two major enhancements have been introduced to the System Resource
Controller (SRC) subsystem in AIX 4.3.2. They are aimed at increasing the
reliability and scalability of both the various subsystems that are controlled by
SRC and the SRC itself. The following sections explain these enhancements:

6.10.1 Recoverable SRC Daemon
The SRC is a subsystem controller that facilitates the management and control of
complex subsystems. The SRC provides a single set of commands to start, stop,
trace, refresh, and query the status of a subsystem. If a subsystem should fail for
any reason, the SRC can automatically restart it.

If the SRC itself were to fail for any reason, it would be restarted due to its entry
in /etc/inittab, as shown in the following example:

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller

The respawned SRC is, however, unable to control or monitor the subsystems
started by the previous instance of SRC since they will have been inherited by the
init process when the original SRC terminated. As a result, the lssrc command
will show such a subsystem as inoperative, even though it is still running. In
addition, the startsrc command can be used to start a second instance of the
subsystem, even though the subsystem definition explicitly forbids multiple
instances.

The SRC in AIX 4.3.2 has been enhanced to allow a respawned srcmstr daemon
to monitor and control the subsystems started by the previous instance of the
daemon. This has been achieved using the following enhancements.

The SRC now keeps an external list of the subsystems under its control in the file
/var/adm/SRC/active_list. This file is for use by the SRC system only, therefore
the format is unpublished. A respawned srcmstr daemon will read the contents of
this file to update its internal list of the currently running subsystems. This will
allow the lssrc command to correctly determine the status of the running
subsystems, even though they were not necessarily started by the current
instance of the srcmstr daemon.

A respawned srcmstr daemon uses a new kernel extension to register interest in
the termination of certain processes. This allows a respawned srcmstr daemon to
be informed of the termination of subsystems started by the previous instance of
the daemon. A child process is created to communicate with the kernel extension.
The child process in turn communicates with the srcmstr daemon. The presence
of the child process, called srcd, indicates that the srcmstr daemon has been
restarted.

ps -ef | grep src
 root 4650 1 0 Aug 21 - 0:00 /usr/sbin/srcmstr
 root 24680 4650 0 Aug 21 - 0:00 srcd
 root 25894 7030 2 10:03:38 pts/1 0:00 grep src
#

If a subsystem fails for any reason while under the control of a respawned srcmstr
daemon, it will be restarted if the subsystem policy requires it. In this case the exit
code of the subsystem is not available to SRC due to the method used by the
132 AIX Version 4.3 Differences Guide

kernel extension to detect process termination. This is still preferable however to
the previous function of SRC that would not detect subsystem failure at all in this
situation.

If you run the lssrc command with the -S flag, you receive a list of the subsystem
attributes. The action is set to -R (for respawn) or -O (for once). The value of
action must be -R to have the subsystem restarted. Also, there is a retry limit. If
the subsystem fails more than once within the configured waittime (20 seconds
by default), it will not be restarted.

The action and waittime attributes can be set using the mkssys command or
changed with the chssys command.

This new feature of the srcmstr daemon can be disabled if required by specifying
the -B option when starting the daemon. This is usually performed by an entry in
/etc/inittab.

6.10.2 Thread-Safe Routines in libsrc
In previous versions of AIX, some of the libsrc subroutines are neither threadsafe
nor reentrant. This prevents other libraries and applications that call these libsrc
subroutines from achieving thread-safety and reentrance requirements.

The libsrc subroutines of interest in a threaded environment are those that
support communication with an SRC subsystem. In other words, the routines that
are used by an application, that may be multi-threaded, to interrogate the SRC.

The libsrc subroutines that update the subsystem configuration data, and those
that are used by SRC commands to process input parameters, are not required in
a threaded environment. This is because the applications that use these routines,
the srcmstr daemon itself along with lssrc and related commands, are not
threaded applications.

The threadsafe and reentrant routines are shown in Table 23. The new function
has been implemented by changing the internals of some routines and by
providing new threadsafe and reentrant versions of other routines. The new
routines are indicated by the _r extension on the name. Where a new routine has
been implemented, the original non-threadsafe version has been retained for use
by non-threaded applications and for binary compatibility with previous versions
of AIX.

Table 23. Threadsafe Routines in libsrc

New threadsafe routines Existing routines made threadsafe

src_err_msg_r srcsrpy

srcrrqs_r srcstathdr

srcstattxt_r srcstop

srcstat_r srcstrt

srcsrqt_r

srcsbuf_r
System Management and Utilities 133

6.11 TTY Remote Reboot (4.3.2)

AIX 4.3.2 has added the ability to communicate with a system that has stopped
responding on the network but is still processing device interrupts. The feature
allows a system administrator to force a machine to take a predetermined action
when a user defined character sequence is entered on a serial port. The feature
can only be enabled on native serial ports. Only one serial port on a machine can
be configured for remote reboot. Serial ports configured on 8, 16, 64, and 128
port adapter cards are not supported.

The feature is configured by setting two ODM attributes that have been added to
native serial ports. The new attributes are reboot_enable and reboot_string. The
reboot_enable attribute has possible values of no, reboot, and dump. The
reboot_string attribute is used to store a case sensitive user defined string up to
16 characters in length. It is advised to choose an unusual character sequence
that would never normally be typed. For example ReEbOoTmE. This allows the
serial port to be used for a normal login session, if required, without the possibility
of accidentally rebooting the system.

Table 24. Settings of reboot_enable Attribute

The settings appear on the SMIT Add a TTY, and Change / Show
Characteristics of a TTY panels as:

REMOTE reboot ENABLE no
REMOTE reboot STRING [#@reb@#]

Interrupts must be enabled on the port for this feature to be active. One way to
insure interrupts are enabled is to enable login on the port; with the port enabled,
getty is running and holding the device open, although the user does not need to
be logged in for the system to recognize the reboot string.

If the user defined reboot string is entered when reboot_enable is set to reboot or
dump, the user defined string is erased from the screen and replaced with the
symbol > that is the confirmation prompt. If the user presses the 1 key on the
keyboard, then the predefined action specified by reboot_enable will occur. If the
user presses any other key, the user defined string reappears on screen; the
subsequent character is appended, and no other action is taken.

An error log entry is made when the remote reboot facility is enabled or disabled
on a serial port. An entry is also made when the facility is used to reboot a
machine or force a system dump. The entry is created when the machine next
starts the errorlog daemon indicating the action taken and the name of the tty
device used to initiate the action.

Value of reboot_enable
Attribute

Result

no Remote reboot disabled. No action taken if
reboot_string is entered.

reboot Machine will reboot when reboot_string is entered and
confirmed.

dump Machine will dump system image to dump device when
reboot_string is entered and confirmed.
134 AIX Version 4.3 Differences Guide

LABEL: TTY_RRB
IDENTIFIER: 1960E672

Date/Time: Fri Aug 28 14:54:41
Sequence Number: 20
Machine Id: 000044091C00
Node Id: aix4xdev
Class: O
Type: INFO
Resource Name: Remote Reboot

Description
SYSTEM REBOOTED USING TTY REMOTE REBOOT.

User Causes
SYSTEM REBOOTED USING TTY REMOTE REBOOT.

Detail Data
TTY LOGICAL NAME
tty0

The remote reboot function is intended to be used on remote server machines
that do not have a service processor. Ordinarily, the serial port with remote reboot
enabled would be connected to a modem to allow remote support staff to reboot
the machine if it fails to respond on the network in the normal manner.

It is the system administrators responsibility to provide physical security on any
serial port with remote reboot enabled. This is because any user can determine
the reboot string by using the lsattr command with the appropriate logical device
name. It is not possible to enable a password protected reboot string, as this
would require the code checking the password to use the crypt() function. Since
the code checking the string is running at the highest interrupt priority, any
increase in the time taken to service the interrupt may cause other device
interrupts to be lost with unpredictable results.

6.12 Network Install Manager Enhancements (4.3.2)

The Network Install Manager (NIM) subsystem has been enhanced in AIX 4.3.2
to offer greater control over NIM operations. The system has been changed to
allow more concurrent NIM operations and restrict the number of concurrent NIM
operations.

6.12.1 Restrict Concurrent Group Operations
A NIM machine group allows an administrator to use a single command to initiate
the same NIM action on many machines at the same time. Depending on the NIM
operation and numbers of machines involved, this can sometimes lead to
resource constraints. For example, many machines performing a BOS install
action could saturate a network segment.

Two new settings are available when performing NIM operations on group
resources. Together they allow the administrator to specify how many concurrent
operations should be attempted on machines in the group and for how long the
NIM server should continue to initiate the operations.

For example, this would allow the administrator of a NIM environment with a
machine group of 100 machines to initiate a NIM operation on the group and to
specify that no more than 10 machines in the group should have the operation in
progress at any one time. This ensures that the network bandwidth is not
System Management and Utilities 135

exhaustively consumed. When a NIM operation completes on a client machine,
the NIM server initiates an operation on the next machine in the group until all
group members have been processed, or the time limit has been exceeded. The
options are in place for the duration of the NIM operation. Subsequent NIM
operations on the group can use different values if desired.

The options are valid only for certain operations when a NIM group is used as the
target. The NIM operation will fail with an error message if the options are used
for individual machine, LPP, or SPOT targets. The options appear near the end of
the following NIM SMIT panels that initiate operations likely to generate large
amounts of network traffic:

 • Install the Base Operating System on Stand-alone Clients
 • Install and Update from LATEST Available Software
 • Update Installed Software to Latest Level (Update All)
 • Install and Update Software by Package Name (includes devices and printers)
 • Install Software Bundle (Easy Install)
 • Update Software by Fix (APAR)
 • Install and Update from ALL Available Software
 • Install mksysb on an Alternate Disk
 • Clone the rootvg to an Alternate Disk

Figure 29 shows an example of the new NIM settings within SMIT.

Figure 29. Sample NIM SMIT Panel Showing Group Controls

6.12.2 Resource Lock Contention
The lock granularity of the NIM subsystem has been improved to allow more
operations in parallel. Previous versions of NIM would lock an object for the
duration of some operations, thus preventing any other operation on the same
object.
136 AIX Version 4.3 Differences Guide

The locking methodology has been changed to lock the object only for critical
parts of the operation. This will allow other operations on the object to complete
when in the past they may have waited or timed out. For example, this change
will allow a showlog operation to be carried out on a machine resource, which a
customer operation is also being carried out. Previously, the machine object
would be locked for the entire duration of the customer operation.

6.12.3 Administration Enhancements
The NIM sections of SMIT and Web-Based System Manager have been updated
to offer function that was previously only available using the NIM command line
interface. This includes support for ATM network types and IEEE 802.3 Ethernet
networks.

6.13 Paging Space Enhancements (4.3.2)

AIX Version 4.3.2 now provides support for up to 32 GBs of memory on RS/6000
64-bit SMP servers. Before AIX 4.3.2, paging space was allocated for the
executing process at the time the memory was requested or accessed. This
required backing paging space allocated for all pages in the real memory, to save
the image of the page. On a large-memory machine where paging was never or
rarely required, these paging space blocks were allocated but never be used. In
this case, resources were wasted.

In AIX 4.3.2, the policy for paging space allocation has been modified to allow a
deferred paging space allocation. The allocation of paging space is delayed until
it is necessary to page out the page, which results in no wasted paging space
allocation. This new paging space allocation method greatly reduces the paging
space requirements for systems with large physical memory.

6.13.1 Late and Early Paging Space Allocation
There are three kinds of paging space allocation policies used with AIX. The
setting of the PSALLOC environment variable determines the paging space
allocation mode.

Early Allocation

If the environment variable PSALLOC is set to early, then the early allocation
policy is used. This will cause a disk block to be allocated whenever a memory
request is made. If there is insufficient paging space available at the time of the
request, the early allocation mechanism fails the memory request. This
guarantees that the paging space will be available if it is needed.

Late Allocation in Pre-AIX 4.3.2

If the environment variable is not set, then the default late allocation policy is
used and a disk block is allocated only when a page in memory is initially
accessed, not when it is allocated.

Late Allocation in AIX 4.3.2

AIX 4.3.2 modifies the late allocation policy so that a disk block is not allocated
until it becomes necessary to page out the page from memory into paging space.
In AIX 4.3.2, late allocation will not allocate any disk blocks if there is enough real
memory and no paging required for a given application set.
System Management and Utilities 137

In summary, Table 25 shows the different policies used in various AIX versions.

Table 25. Paging Space Allocation Policies

Paging space slots are only released by process (not thread) termination or by
the disclaim system call. They are not released by the free call.

6.13.1.1 Early Paging Allocation Mode Considerations
If the PSALLOC environment variable is set to early, then every program started
in that environment from that point on, but not including currently running
processes, will run in the early allocation environment. The early allocation
algorithm causes the appropriate number of paging space slots to be allocated at
the time the virtual-memory address range is allocated. For example, with malloc.
Interfaces, such as the malloc subroutine and the brk subroutine, will fail if
sufficient paging space cannot be reserved when the request is made.

The early allocation algorithm guarantees as much paging space as requested by
a memory allocation request. Thus, proper paging space allocation on the system
disk is important for efficient operations. When available paging space drops
below a certain threshold, new processes cannot be started, and currently
running processes may not be able to get more memory. Any processes running
under the default late allocation mode become highly vulnerable to the SIGKILL
signal mechanism. In addition, since the operating system kernel sometimes
requires memory allocation, it is possible to crash the system by using up all
available paging space.

Before you use the early allocation mode throughout the system, it is very
important to define an adequate amount of paging space for the system. The
paging space required for early allocation mode will almost always be greater
than the paging space required for the default late allocation mode. How much
paging space to define depends on how your system is used and what programs
you run. A good starting point for determining the right mix for your system is to
define a paging space four times greater than the amount of physical memory.

Certain applications can use extreme amounts of paging space if they are run in
early allocation mode. The AIXwindows server currently requires more than 250
MB of paging space when the application runs in early allocation mode. The
paging space required for any application depends on how the application is
written and how it is run.

6.13.1.2 Late Paging Allocation
If the environment variable PSALLOC is not set, is set to null, or is set to any
value other than early, the default late paging space allocation policy is used, and
a disk block is allocated only when a page is initially used, not when a memory
request is made.

PSALLOC = early All AIX versions

Paging space is allocated when memory is requested

PSALLOC is not set
or set to any value
other than early

Pre-AIX 4.3.2 AIX 4.3.2

Paging space is allocated when
the page in memory is accessed

Paging space is allocated when
the page in memory needs to be
paged out
138 AIX Version 4.3 Differences Guide

The default late allocation algorithm for paging space allocation assists in the
efficient use of disk resources and supports applications of customers who wish
to take advantage of a sparse allocation algorithm for resource management.

Some programs allocate large amounts of virtual memory and then use only a
fraction of the memory. Examples of such programs are technical applications
that use sparse vectors or matrices as data structures. The late allocation
algorithm is also more efficient for a real-time, demand-paged kernel, such as the
one in the operating system.

6.13.2 Commands Affected by Late Paging
The following commands are affected by the change in paging policy.

6.13.2.1 vmstat Command Updates
The avm column reported by vmstat command means active virtual pages. In
previous AIX versions, the description of avm states "virtual pages are
considered active if they are allocated". This is not true for every release of AIX
and is changed to "virtual pages are considered active if they have been
accessed".

6.13.2.2 lsps Command Updates
If you set the environment variable PSALLOC=early, the -s flag displays a value
different from the value returned when using the -a flag for all the paging spaces.
In this case, the value of -s flag displays the percentage of paging space
allocated (reserved), whether the paging space has been assigned (used) or not.
The -a flag specifies the percentage of paging space used. Therefore, the
percentage reported by the -s flag is usually larger than that reported by the -a
flag.

The following is an example. First, set the paging space allocation to early:

#export PSALLOC=early

After the system is running for some time, the paging space looks like:

#lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6 hdisk0 rootvg 256MB 8 yes yes lv
#lsps -s
Total Paging Space Percent Used
 256MB 9%

The paging space used reported by using -s (9%) is larger than using -a (8%).

Set the paging space allocation to late:

#export PSALLOC=

The lsps command displays the same percentage value with -a and -s flag (8%).

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6 hdisk0 rootvg 256MB 8 yes yes lv

lsps -s
Total Paging Space Percent Used
 256MB 8%
System Management and Utilities 139

6.14 Error Message Templates (4.3.2)

When an application wants to log an error to the AIX error log, it writes
information about the error, specifically the error identifier, resource name, and
error specific data to the /dev/error special file. The error daemon reads from the
special file and logs the information in the error log. The errpt command, which is
used to display error messages, reads the error message template repository to
determine how to interpret and display the error data.

On previous versions of AIX, it is not possible for an error message template
definition to contain any message text. It can only contain codepoints, which are
two byte message numbers used to reference predefined message strings. The
codepoints refer to messages defined by the IBM SNA Generic Alert Architecture
described in SNA Formats, GA27-3136. The architecture imposes restrictions on
the message numbering and message length that can be used. The message
strings are kept in the codepoint.cat file, which is a specially formatted message
catalog.

AIX 4.3.2 has updated the errpt command, along with the commands used for
updating the error template repository, to understand an additional error template
format, which can define messages from a normal format NLS message catalog
as well as using the previous codepoint method.

A template may contain all NLS messages, all codepoints, or a combination of
both. An NLS message is represented with a message set number, a message
number, and a default text string to be printed if the associated message catalog
is not present. Each error template also specifies the message catalog to be used
for messages referenced by that template.

*!sample.cat
* sample error template using NLS messages
+ SAMPLE:

Err_Type = UNKN
Class = S
Report = TRUE
Log = TRUE
Alert = FALSE
Comment = "Sample of msgs in templates"
Err_Desc = {1, 2, "SAMPLE DESCRIPTION TEXT"}
Fail_Causes = {0, 0xeb54, ""), (1, 5, "default cause"},

{3, 5, "default cause 2"}, {3, 6, "default cause3"}
Prob_Causes = {2, 1, "Bad Operator"}, {2, 2, "Bad Programmer"}
User_Causes = {2, 5, "User pressing wrong key"}
User_Actions = {2, 6, "Read the manual"},

{2, 7, "Take a long long long\n\t\
long, really long, look at the manual."}

Inst_Causes = {0, 0, ""}
Inst_Actions= {2, 8, "reinstall"}
Fail_Actions = {2, 9, "kick it"}
Detail_Data = 226, {0, 0x8004,""} ,ALPHA
Detail_Data = 4, {2, 10, "regester value"} ,HEX

This dramatically increases the number of messages that can be used by an error
template, as it is no longer restricted to the messages defined by the IBM Alert
Architecture. The trade off is that the new error messages are no longer alertable.

In addition to increasing the number of messages available to an error template,
this enhancement has also increased the number of detail data items up to a
maximum of sixteen.
140 AIX Version 4.3 Differences Guide

6.15 Remote File Distribution Enhancements (4.3.2)

Previous versions of AIX included Version 5.1 of the rdist command, which is
used to distribute and maintain identical copies of files on multiple hosts. The
rdist command on AIX 4.3.2 has been updated to Version 6.1.3, which includes
some new features, namely:

 • Multiple target hosts are now updated in parallel. This improves the update
time when working with large numbers of hosts. This behavior can be
controlled by changing the number of hosts updated in parallel, or disabling
the feature, in which case, hosts are updated sequentially.

 • The new version of rdist avoids problems when communicating with a remote
host by setting a time-out value. If the remote host fails to respond within a set
period during a transfer, rdist displays an error message and continues to
update other hosts. The previous version of rdist would continue to wait until
the remote host responded.

 • Local and remote error messages are distinctly marked for better clarity.

 • The amount of free space can optionally be checked to avoid filling up a
filesystem. Before actually installing or updating a file, rdist will calculate
whether the update would exceed the minimum amount of free space as
specified on the command line. If the minimum space would be exceeded by
the update, no update is performed and an error message is displayed.

 • The client and server portions are split into two distinct programs, rdist and
rdistd. This lowers the risk of security vulnerabilities since the server rdistd
does not need to be setuid to root. It also allows for greater ease in
maintaining different versions of rdist.

Version 6.1 of rdist implements a new protocol for communicating between
machines. Both versions of the rdist command are shipped with AIX 4.3.2 to
allow users to distribute files to machines running either version of rdist. The
new version is shipped as /usr/bin/rdist, and the old version as
/usr/bin/oldrdist.

When the rdist program contacts a target machine, it requests the target to start
the rdist server side program. Version 6.1 rdist will start the rdistd server
program. Version 5.1 rdist requests the target machine to run rdist -Server. If
the version 6.1 rdist is run with the -Server option, then it will exec a copy of
oldrdist. In this way, you can get compatibility with hosts running rdist Version
5.1 attempting to distribute files to a machine running rdist Version 6.1. If a host
running rdist Version 6.1 wants to distribute files to a host running the rdist
Version 5.1, then it must run the oldrdist program.

6.16 Editor Enhancements (4.3.2)

The ed editor program has been enhanced to examine the environment variable
EDTMPDIR to determine the directory location for temporary files. This has been
done to allow a system to better handle the start up of multiple ed sessions by
avoiding a bottleneck on the inode for the default temporary directory used by ed.
System Management and Utilities 141

6.17 System Backup Usability Enhancements (4.3.2)

The mksysb and savevg commands have been enhanced to include information in
the backup image about block size of the tape device being used to store the
backup image.

This change means that when using SMIT to list the contents of the backup,
restore individual files, or restore the complete backup. The system can read the
information on the tape indicating the block size used to create the image. It can
then change the block size of the tape device being used to read the backup to be
the same, therefore maximizing the data transfer rate. Once the operation to list,
or restore the backup has completed, the system changes the block size of the
tape device back to the previous setting.

The following SMIT panels have been updated to include a new option that allows
the user to specify whether the system should attempt to determine the tape
block size used to create the backup image:

 • List Files in a System Image

 • Restore Files in a System Image

 • List Files in a Volume Group Backup

 • Restore Files in a Volume Group Backup

An example of the change is shown in Figure 30. If the option is set to yes, and
the tape being read was created on a previous version of AIX that did not include
the tape block size information on the tape, then the underlying commands will
set the block size to 0 and continue with the required operation.

Figure 30. Sample SMIT Volume Group Backup Screen

6.18 Operating System Install Enhancement (4.3.2)

The function of the non-prompted install method has been improved to provide a
means of protecting user defined volume groups already on the system. A
non-prompted install can be carried out by supplying a customized bosinst.data
142 AIX Version 4.3 Differences Guide

file when restoring a mksysb or installing the base operating system from
CD-ROM, tape, or NIM server.

The EXISTING_SYSTEM_OVERWRITE variable now has three possible values,
provided in Table 26, which determine the action taken.

Table 26. Possible Values of EXISTING_SYSTEM_OVERWRITE

The value of EXISTING_SYSTEM_OVERWRITE is only examined if the
bosinst.data file also sets PROMPT=no and INSTALL_METHOD=overwrite.

6.19 New Diagnostic Service Aid (4.3.2)

The diagnostics subsystem in AIX 4.3.2 has been enhanced by the addition of a
system memory exerciser, which can be used to check system memory on CHRP
systems. The tool is implemented as a service aid and is only available when
running on-line diagnostics in service or maintenance modes. Service mode
diagnostics are entered when the machine boots in service mode. Maintenance
mode diagnostics are entered by first taking the machine to maintenance mode
using the shutdown -m command.

The machine to be tested is required to have the bos.acct package installed and
paging space of at least one and a half times the amount of physical memory. The
service aid will exit with an error if the bos.acct package is not installed. If the
paging space requirement is not met, the service aid will give a warning message
informing the user that it is not possible to test the maximum amount of physical
memory.

The service aid will then display the memory exerciser options screen, which
allows the user to select the characteristics of the testing that will be performed.

The service aid memory exerciser options screen is shown in Figure 31.

EXISTING_SYSTEM_OVERWRITE= Action Taken

any Any disk can be used for the system install. This
is the behavior of the ’yes’ option on releases prior
to AIX 4.3.2.

no Only disks containing no volume groups (user
defined or previous rootvg) can be used.

yes Only disks in the current rootvg, or containing no
volume groups, can be used for the system install
System Management and Utilities 143

Figure 31. Memory Exerciser Options Menu

Once the desired options have been selected, the system exerciser menu (Figure
32) is displayed, which allows the user to start and stop the exerciser and view
the error logs.

Figure 32. System Exerciser Main Menu

6.20 Performance Toolbox Agent Repacking (4.3.2)

The Performance Toolbox is a Motif-based AIX licensed program product (LPP)
that consolidates AIX performance tools into a toolbox framework. Users can
easily access tools for system and network performance tuning, monitoring, and
analysis. It consists of two major components: Performance Toolbox Manager
and Performance Toolbox Agent.

The Performance Toolbox Manager has three packages:

perfmgr.local This package contains the commands and utilities that allow
monitoring of only the local system.
144 AIX Version 4.3 Differences Guide

perfmgr.network This package contains the commands and utilities that allow
monitoring of remote systems as well as the local system.

perfmgr.common This package contains the commands and utilities that are
common between the network support and the local
support.

The Performance Toolbox Agent has one package:

perfagent.server This package contains the performance agent component
required by Performance Toolbox as well as some local AIX
analysis and control tools.

The packaging of the previous Performance Toolbox contained two filesets:
perfagent.server and perfagent.tool causing installation difficulty. To improve this
process, those pieces that are required to be built with the AIX kernel are moved
into the perfagent.tools fileset. Then the agent becomes mainly an interface
routine to those pieces.

The perfagent.tools fileset is shipped with the AIX 4.3.2 base. For AIX 4.3.2, The
Performance Toolbox Agent will prereq perfagent.tools. So the .tools fileset must
be installed first.

Note: The on-line PTX Guide and Reference for AIX 4.3 (perfagent.html.en_US)
is available by ordering APAR IX80484 (PTF U458736). In AIX Version 4.3.0, this
document is shipped with the Performance Aide CD. In AIX Version 4.3.2, it is
included in the base AIX documentation.

Table 27 lists the various minimum file set levels required with a particular AIX
level.

Table 27. AIX Level and Required File Sets

AIX Version File Set

AIX 4.1.5 perfagent.tools 2.1.6.*
perfagent.server 2.1.6.*

AIX 4.2.1 perfagent.tools 2.2.1.*
perfagent.server 2.2.1.*

AIX 4.3.1 perfagent.tools 2.2.31.*
perfagent.server 2.2.31.* (replaced by 32)

AIX 4.3.0 perfagent.tool 2.2.32.0
perfagent.server 2.2.32.0 (prereqs 3.3.32.0 perfagent.tools)
System Management and Utilities 145

146 AIX Version 4.3 Differences Guide

Chapter 7. Networking Enhancements

Internet Protocol Version 6 (IPv6) was first introduced in AIX version 4.3. In AIX
version 4.3.2, IPV6 routing is supported. Some important network improvements
for Web servers are also supported in AIX version 4.3.2.

In these sections, the networking enhancements in AIX version 4.3, 4.3.1, and
4.3.2 are discussed.

7.1 Internet Protocol Version 6

Internet Protocol Version 6 (IPv6) is the next generation Internet Engineering
Task Force (IETF) networking protocol that will become the industry standard
network protocol for the internet of the future.

IPv6 extends the maximum number of Internet addresses to handle the
ever-increasing Internet user population. IPv6 is an evolutionary change from
IPv4 that has the advantage of allowing a mixture of the new and the old to
coexist on the same network. This coexistence enables an orderly migration from
IPv4 (32-bit addressing) to IPv6 (128-bit addressing) on an operational network.

7.1.1 IPv6 Introduction
This initial release of IPv6 in AIX 4.3.0 is a migration platform to enable user
migration to IPv6. The AIX IPv6 migration platform in AIX 4.3.0 supports IPv6
host function only. This means that no gateway support is included, so IPv6
packets cannot be forwarded from one interface to another on the same RS/6000.

The following function is included in this release:

 • IPv6 128-bit addressing
 • Neighbor Discovery/Stateless Address Autoconfiguration
 • Internet Control Message Protocol (ICMPv6)
 • Tunneling over IPv4
 • IP Security (IPSec)
 • Resolver support for /etc/hosts
 • Commands/applications enabled for IPv6
 • IPv6 Socket Library Support
 • System management changes

The following network media is supported in the AIX IPv6 migration platform:

 • Ethernet
 • Token-Ring
 • FDDI

7.1.2 IPv6 128-Bit Addressing
A brief introduction to IPv6 addressing is presented here. For more detail, refer to
the appropriate RFC documents. See section 7.1.11, “IPv6 and IPSec-Related
RFCs Implementation” on page 166 for a listing of RFCs supported by the AIX
IPv6 migration platform in AIX 4.3.0.
© Copyright IBM Corp. 1998 147

7.1.2.1 Text Representation of Addresses
As shown in the following example, an IPv6 address is represented by
hexadecimal digits separated by colons, where IPv4 addresses are represented
by decimal digits separated by dots or full-stops. IPv6 is, therefore, also known as
colon-hex addressing, compared to IPv4’s dotted-decimal notation.

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces. Note
that IPv6 refers to interfaces and not to hosts, common to IPv4.

There are three conventional forms for representing IPv6 addresses as text
strings:

1. The preferred form is x:x:x:x:x:x:x:x:, where the x’s are the hexadecimal
values of the eight 16-bit pieces of the address, each separated by a colon.

Examples are:

 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
 1080:0:0:0:8:800:200C:417A

Note that it is not necessary to write the leading zeros in an individual field, but
there must be at least one numeral in every field (except for the case
described in 2).

2. Due to the method used for allocating certain styles of IPv6 addresses, it will
be common for addresses to contain long strings of zero bits. To make writing
addresses containing zero bits easier, a special syntax is available to
compress the zeros. The use of :: (two colons) indicates multiple groups of
16-bits of zeros. Note that the :: can only appear once in an address. The ::
can also be used to compress the leading and/or trailing zeros in an address.

For example, the following addresses:

 1080:0:0:0:8:800:200C:417A a unicast address
 FF01:0:0:0:0:0:0:43 a multicast address
 0:0:0:0:0:0:0:1 the loopback address
 0:0:0:0:0:0:0:0 the unspecified addresses

may be represented as:

 1080::8:800:200C:417A a unicast address
 FF01::43 a multicast address
 ::1 the loopback address
 :: the unspecified addresses

3. An alternative form that is sometimes more convenient when dealing with a
mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where x is
the hexadecimal values of the six high-order 16-bit pieces of the address, and
d is the decimal values of the four low-order 8-bit pieces of the address
(standard IPv4 representation).

Examples:

 0:0:0:0:0:0:13.1.68.3
148 AIX Version 4.3 Differences Guide

 0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:

 ::13.1.68.3
 ::FFFF:129.144.52.38

Note: FFFF is used to represent addresses of IPv4-only nodes (those that do not
support IPv6).

7.1.2.2 Types of IPv6 Address
In IPv6, there are three types of addresses:

Unicast
An identifier for a single interface. A packet sent to a unicast address
is delivered to the interface identified by that address. A unicast
address has a particular scope as shown in the following lists:

 • link-local

– Valid only on the local link (that is, only one hop away).
– Prefix is fe80::/16.

 • site-local

– Valid only at the local site (for example, inside IBM Austin).
– Prefix is fec0::/16.

 • global

– Valid anywhere in the Internet.
– Prefix may be allocated from unassigned unicast space.

There are also two special unicast addresses:

 • ::/128 (unspecified address).
 • ::1/128 (loopback address - note that in IPv6 this is only one

address not an entire network).

Multicast
An identifier for a set of interfaces (typically belonging to different
nodes). A packet sent to a multicast address is delivered to all
interfaces identified by that address. A multicast address is identified
by the prefix ff::/8. As with unicast addresses, multicast addresses
have a similar scope. This is shown in the following lists:

 • Node-local

– Valid only on the source node (for example, multiple processes
listening on a port).

– Prefix is ff01::/16 or ff11::/16.

 • Link-local

– Valid only on hosts sharing a link with the source node (for
example, Neighbor Discovery Protocol [NDP] data).

– Prefix is ff02::/16 or ff12::/16.
Networking Enhancements 149

 • Site-local

– Valid only on hosts sharing a site with the source node (for
example, multicasts within IBM Austin).

– Prefix is ff05::/16 or ff15::/16.

 • Organization-local.

– Valid only on hosts sharing organization with the source node
(for example, multicasts to all of IBM).

– Prefix is ff08::/16 or ff18::/16.

 • The 0 or 1 part in these prefixes indicates whether the address is
permanently assigned (1) or temporarily assigned (0).

Anycast
An identifier for a set of interfaces (typically belonging to different
nodes). An anycast address is an address that has a single sender,
multiple listeners, and only one responder (normally the nearest one,
according to the routing protocols' measure of distance). An example
may be several Web servers listening on an anycast address. When a
request is sent to the anycast address, only one responds.

Anycast addresses are indistinguishable from unicast addresses. A
unicast address becomes an anycast address when more than one
interface is configured with that address.

Note: There are no broadcast addresses in IPv6, their function being
superseded by multicast addresses.

7.1.3 Neighbor Discovery/Stateless Address Autoconfiguration
Neighbor Discovery (ND) protocol for IPv6 is used by nodes (hosts and routers)
to determine the link-layer addresses for neighbors known to reside on attached
links and maintain per-destination routing tables for active connections. Hosts
also use Neighbor Discovery to find neighboring routers that forward packets on
their behalf and detect changed link-layer addresses. Neighbor Discovery
protocol (NDP) uses the ICMPv6 protocol with a unique message types to
achieve the above function. In general terms, the IPv6 Neighbor Discovery
protocol corresponds to a combination of the IPv4 protocols Address Resolution
Protocol (ARP), ICMP Router Discovery (RDISC), and ICMP Redirect (ICMPv4),
but with many improvements over these IPv4 protocols.

IPv6 defines both a stateful and stateless address autoconfiguration mechanism.
Stateless autoconfiguration requires no manual configuration of hosts, minimal (if
any) configuration of routers, and no additional servers. The stateless
mechanism allows a host to generate its own addresses using a combination of
locally available information and information advertised by routers. Routers
advertise prefixes that identify the subnet(s) associated with a link, while hosts
generate an interface-token that uniquely identifies an interface on a subnet. An
address is formed by combining the two. In the absence of routers, a host can
only generate link-local addresses. However, link-local addresses are sufficient
for allowing communication among nodes attached to the same link.

7.1.3.1 NDP Application Kernel Support
For kernel function, a new version of the netinet kernel extension has been
provided that contains code to handle both IPv4 and IPv6. New special
processing handled by the kernel (or NDP applications) includes:
150 AIX Version 4.3 Differences Guide

 • Interface initialization
– Autoconfiguration
– Duplicate address detection (DAD)
– Joining the all nodes multicast group
– Sending router solicitations
– Responding to router advertisements

 • Interface maintenance
– Managing prefixes (changing, if necessary, when router advertisements are

received)
– Timing out prefixes when advertised lifetime expires
– Forming an appropriate address for received prefixes
– DAD as necessary

 • NDP support
– Destination routing (NDP table)
– Path MTU
– Determination of neighbor unreachability (NUD)

 • Source address selection
– For multihomed hosts (problems with link-local)

 • Routing
– Uses version 4 routes for compatible addresses (through the Simple

Internet Transition [SIT] interface)
– Maintains multiple default routes, with fast switching based on NUD

 • Tunneling
– See section 7.1.5, “Tunneling over IPv4” on page 152 for more details.

 • ICMPv6 - control messages
– See section 7.1.4, “Internet Control Message Protocol (ICMPv6)” on page

151 for more details.
 • Address mapping

– Incoming v4 packets passed up to v6-aware applications through mapping
the address to v6

Note: For more detailed information on this topic, refer to RFCs 1970 and 1971.

7.1.4 Internet Control Message Protocol (ICMPv6)
ICMPv6 is used by IPv6 nodes to report errors encountered in processing
packets and to perform other internet-layer functions, such as diagnostics
(ICMPv6 ping) and multicast membership reporting.

7.1.4.1 ICMPv6 Message Types
ICMPv6 messages are grouped into two classes:

 • Error messages
 • Informational messages
Networking Enhancements 151

Error messages are identified by having a zero in the high-order bit of their
message Type field values. Thus, error messages have message Types from 0 to
127. Table 28 lists the different types and their meanings.

Table 28. ICMPv6 Error Messages

Informational messages have message Type values from 128 to 255. Table 28
lists the information types and their meanings.

Table 29. ICMPv6 Informational Messages

Note: For more detailed information relating to message types and formats, refer
to RFC 1885.

7.1.5 Tunneling over IPv4
The key to a successful IPv6 transition is compatibility with the existing installed
base of IPv4 hosts and routers. Maintaining compatibility with IPv4, while
deploying IPv6, streamlines the task of transitioning the Internet to IPv6.

In most deployment scenarios, the IPv6 routing infrastructure will be built-up over
time. While the IPv6 infrastructure is being deployed, the existing IPv4 routing
infrastructure can remain functional and can be used to carry IPv6 traffic.

Type Description Code Cause

1 Destination unreachable 0 No route to destination

1 Communication with
destination administratively
prohibited

2 Not a neighbor

3 Address unreachable

4 Port unreachable

2 Packet too big 0 Packet too big

3 Time exceeded 0 Hop limit exceeded in transit

1 Fragment reassembly time
exceeded

4 Parameter problem 0 Erroneous header field
encountered

1 Unrecognized Next Header
type encountered

2 Unrecognized IPv6 option
encountered

Type Description

128 Echo request

129 Echo reply

130 Group membership query

131 Group membership report

132 Group membership reduction
152 AIX Version 4.3 Differences Guide

Tunneling provides a way to use an existing IPv4 routing infrastructure to carry
IPv6 traffic.

IPv6/IPv4 hosts and routers can tunnel IPv6 datagrams over regions of IPv4
routing topology by encapsulating them within IPv4 packets. Tunneling can be
used in a variety of ways:

 • Router-to-Router. IPv6/IPv4 routers interconnected by an IPv4 infrastructure
can tunnel IPv6 packets between themselves. In this case, the tunnel spans
one segment of the end-to-end path that the IPv6 packet takes.

 • Host-to-Router. IPv6/IPv4 hosts can tunnel IPv6 packets to an intermediary
IPv6/IPv4 router that is reachable through an IPv4 infrastructure. This type of
tunnel spans the first segment of the packet's end-to-end path.

 • Host-to-Host. IPv6/IPv4 hosts that are interconnected by an IPv4
infrastructure can tunnel IPv6 packets between themselves. In this case, the
tunnel spans the entire end-to-end path that the packet takes.

 • Router-to-Host. IPv6/IPv4 routers can tunnel IPv6 packets to their final
destination IPv6/IPv4 host. This tunnel spans only the last segment of the
end-to-end path.

Tunneling techniques are usually classified according to the mechanism by which
the encapsulating node determines the address of the node at the end of the
tunnel. In the first two tunneling methods listed above, router-to-router and
host-to-router, the IPv6 packet is being tunneled to a router. In the last two
tunneling methods, host-to-host and router-to-host, the IPv6 packet is tunneled
all the way to its final destination.

7.1.5.1 Tunneling Mechanisms
The following is the path taken when tunneling:

 • The entry node of the tunnel (the encapsulating node) creates an
encapsulating IPv4 header and transmits the encapsulated packet.

 • The exit node of the tunnel (the decapsulating node) receives the
encapsulated packet, removes the IPv4 header, updates the IPv6 header, and
processes the received IPv6 packet.

 • The encapsulating node needs to maintain soft state information for each
tunnel, such as the MTU of the tunnel, to process IPv6 packets forwarded into
the tunnel.

Note: The information presented above is a brief summary of tunneling from RFC
1933. Refer to the RFC for more detailed information on this topic.

7.1.6 IP Security (IPSec)
IPSec (IP Security) is an IP-layer security mechanism for IP Version 4 (IPv4) and
IP Version 6 (IPv6).

IPSec is a security protocol in the IP layer that provides security services to
ensure packet authentication, integrity, access control, and confidentiality. A
secure tunnel is established between the two systems to perform message
encryption and message authentication.

There are two security mechanisms for IP. The first is the Authentication Header
(AH) that provides integrity and authentication without encryption. The second is
Networking Enhancements 153

the Encapsulating Security Payload (ESP) that always provides confidentiality
and usually provides integrity and authentication. The protocol formats for the IP
AH and IP ESP are independent of the cryptographic algorithm. The use of the
RFC-compliant combinations of AH and ESP are supported in the initial release
of IPSec for AIX 4.3.0.

IPSec also provides filtering capability without the use of secure tunnels. This
may be very useful for setting up filters based on addresses, protocol, interface or
port, and so on.

7.1.6.1 Key Management
Key management for AIX/IPSec supports a static key used during the lifetime of a
tunnel and a dynamically refreshed session key that is updated periodically by a
session key daemon using an IBM proprietary protocol. Master keys for both
tunnel types can be manually input by the user or autogenerated using a
pseudorandom number generator.

Note: Session key refresh is not supported for IPv6 tunnels.

IPSec for AIX allows for additional key management modules, including
automatic master key exchange and key management user interface, as new
protocols are defined. The current design does not include any distributed key
management engines, such as Internet Security Association Management
Protocol (ISAKMP/Oakley) or Simple Key Management for IP (SKIP).

In summary, the major key management elements in this release are:

 • Manual master key exchange
 • Static session key
 • Dynamic session key refresh

Note: Master key access is restricted to root user only.

7.1.6.2 Transforms Provided with IPSec for AIX 4.3.0
The following transforms are provided with IPSec for AIX 4.3.0:

 • keyed-md5
 • hmac-md5 with _optional_ replay protection
 • esp-des-cbc
 • esp-des-md5 (with replay protection)
 • hmac-sha with _optional_ replay protection

The design of IPSec for AIX allows plug-in and replaceable kernel modules for
encryption and authentication.

7.1.6.3 Encapsulation Forms
The following list describes the encapsulation forms:

 • IPSec for AIX supports both AH and ESP.
 • On outgoing packets, the RFCs recommendations for AH and ESP order of

processing is followed.
 • On incoming packets, any order and combination of AH and ESP ordering is

allowed.
154 AIX Version 4.3 Differences Guide

7.1.6.4 Compatibility
Compatibility issues are described as follows:

 • Current IP applications are not effected.
 • IPSec concurrently interoperates with Internet Connection Secured Network

Gateway (SNG) for AIX. Although both SNG and IPSec support IPv4, SNG
code supersedes the IPSec code in providing IPv4 secure tunnel support. This
means that if SNG is configured on a system, IPv4 will use the SNG tunnel
code. Note that files belonging to IPSec fileset are unique, so both products
can be installed without overwriting problems.

Note: IPv6 uses the IPSec code for secure tunnel support.

7.1.6.5 AIX/IPSec Kernel Configuration
The kernel configuration for AIX/IPSec comprises the configuration of all
IPSec-related kernel extensions. The administrator controls the enablement of
IPSec either through SMIT or mkdev/rmdev commands. Filter rules are downloaded
and tunnels are activated during the configuration. The command to activate the
tunnels also starts the session key daemon; therefore, filter rules must be
generated before IP Security is loaded. On reboot, the kernel configuration is
performed by the cfgmgr command.

7.1.6.6 IPSec/IPv4 Configuration
The system administrator has the option of enabling IPSec for either IPv4, IPv6,
or both. Enabling IPSec for IPv4 loads all kernel extensions necessary to support
IPSec for IPv4. The IPSec.v4 filter module configuration function assigns entry
points to the IPv4 ip_fltr_*_hooks, and the IPSec encapsulation module
configuration function assigns the ipsec_decap_hook. If IPSec.v4 detects that
SNG is installed, it does not load.

The system call, sysconfig (SYS_QUERYLOAD,...), uses the SNG driver tuif.o as
a search string to detect SNG kernel extensions. If SNG is installed after the
IPSec.v4 is loaded, the SNG code changes the ip_*_hooks to point to SNG
entry-points. IPSec.v4 checks to see if kernel extensions common to IPSec.v4
and IPSec.v6 have been loaded and only loads those that have not been loaded
already. Once loaded, these modules are not unloaded from the kernel until next
reboot. An ODM object in the CuDv, ipsec_v4 database represents the state of
IPSec.v4 module. If the IPSec.v4 is defined, then the IPSec.v4 modules are
loaded during boot time, and the ODM state changes to available.

7.1.6.7 IPSec/IPv6 Configuration
Enabling IPSec.v6 loads all kernel extensions necessary to support IPSec for
IPv6. It checks to see if kernel extensions common to IPSec.v4 and IPSec.v6
have been loaded and only loads those that have not been loaded already. The
statements concerning ODM in the preceding IPSec/IPv4 section also apply to
IPSec.v6, with the exception that the CuDv object is called ipsec_v6.

7.1.6.8 Cryptographic Support
Cryptographic kernel extensions and supporting crypto-capsulation kernel
extensions are selectively loaded based on the state of the ODM object that
represents the cryptographic module. This process is similar to the one used for
ODM object ipsec_v4, except it only affects the cryptographic modules. By
default, the KEYED_MD5, HMAC_MD5, DES, and CDMF cryptographic kernel
extensions are enabled. Additional cryptographic modules, as applicable, may be
Networking Enhancements 155

loaded as well if the administrator has enabled them through SMIT or the
cryptographic configuration method from the command line, as shown:

 # mkdev -d -l des

7.1.6.9 IPSec Commands
The following administrative commands have been added. All of the commands
require root access to run.

Table 30. IPSec Command Summary

7.1.7 Resolver Support for /etc/hosts
IPv6 hosts entries in the /etc/hosts database follow the same standards used for
IPv4-only. The hosts file may contain IPv4 and IPv6 addresses as shown in the
following example:

An example of the entries in a typical /etc/hosts file:

127.0.0.1 loopback localhost
129.144.248.127 percy
129.144.1.45 jumbuck
::8190:3584 redback
129.144.53.132 redback
::129.144.248.127 percy
fec0:1::11 ethspook
::ffff:129.144.248.127 taipan
fec0:1:: ethpercy

Command Description

gentun Adds a tunnel entry

chtun Changes a tunnel entry

rmtun Removes a tunnel entry or deactivate a tunnel

lstun List tunnels

exptun Exports a tunnel entry

imptun Imports a tunnel entry

mktun Activates a tunnel entry

lsipsec Shows IPSec status

genfilt Adds a filter rule

chfilt Changes a filter rule

mvfilt Moves a filter rule

lsfilt Lists a filter rule

rmfilt Removes a filter rule

mkfilt Activates or deactivates the filter rules

expfilt Exports filter rule

impfilt Imports filter rule
156 AIX Version 4.3 Differences Guide

7.1.8 Commands and Applications Enabled for IPv6
The AIX IPv6 migration platform in AIX 4.3.0 has enabled a significant subset of
TCP applications to support the IPv6 protocol. It is, however, important to note
here that applications not supporting IPv6 in this first release will still function
normally for IPv4 networks. Lack of IPv6 support simply means that the
application has not been made IPv6 aware.

Some of the major applications that have not been made IPv6 aware are:

 • DCE/DFS
 • NFS/NIS
 • HACMP
 • AnyNet

The applications shown in Table 31 are able to run on either the IPv4 or IPv6
stacks. The code automatically determines the appropriate IP version to use.

Table 31. Applications Ported to IPv6

7.1.8.1 netstat
netstat displays the contents of various network-related data structures. There
are the same number of output formats, but they now show additional IPv6
information. Typical output from the netstat -ni command is shown in Figure 33.
Note the display of IPv6 addresses.

Command Description

autoconf6 Automatically configures IPv6 addresses

crash/ndb Network debugger updated for IPv6

ftp/ftpd File transfer

ifconfig Network interface configuration

inetd Inetd server

iptrace/ipreport Trace and dump network packets including IPv6

ndb Display/update ND cache

ndpd-host Support for receiving Router Advertisements

netstat Network statistics

ping ICMP echo/reply diagnostic

rcp Remote copy

rexec/rexecd Remote command execution

rlogin/rlogind Remote login

route Add/delete IPv4 and IPv6 routes

rsh/rshd Remote shell access

tcpdump Dumps Network packets, including IPv6

telnet/telnetd Remote login

tftp/tftpd File transfer
Networking Enhancements 157

Figure 33. Typical Output from the netstat -ni Command

Typical output from the netstat -rn command is shown in Figure 34.

Figure 34. Routing Tables Shown by netstat -rn Command

Again, note the IPv6 style addresses and the use of the :: (double colon).

For displaying IPv6 statistics, a new option has been added to netstat. By using
the -p ipv6 option, netstat will display all the statistics associated with IPv6.
Typical output from this command is shown in Figure 35.
158 AIX Version 4.3 Differences Guide

Figure 35. IPv6 Statistics from netstat -p ipv6 Command

7.1.8.2 ifconfig
ifconfig is used to assign an address to a network interface or configure network
interface parameters. Address family inet6 has been added to the list of ifconfig
address family arguments. A new parameter called first can be set. This puts an
IPv6 address at the first place on an interface to select it as the source for
unbound sockets. Examples of the use of ifconfig are shown in Figure 36. This
example shows the interface status, binding a site-local address to tr0, then
making the site-local address the primary IPv6 address. Finally, the results of the
actions are displayed.

Figure 36. Example of ifconfig Command Usage
Networking Enhancements 159

7.1.8.3 route
route was modified to process IPv6 addresses and structures. For the IPv6
address family, -inet6 must be used. The length of a destination prefix can be
specified with the option -prefixlen or with the syntax prefix/length. There is also a
new command to route called get that looks up and displays the route for a
destination. See Figure 37 for route command usage examples.

Note: The get command works for all protocol families, not just IPv6.

Figure 37. Example of route Command Usage

7.1.8.4 autoconf6 Command
autoconf6 is a new command with IPv6. The autoconf6 command is used to
assign addresses to network interfaces and add some needed routes at boot
time. It configures the link-local address, adds the appropriate interface route,
and adds a compatibility address if an IPv4 address exists. autoconf6 should be
used after configuration of IPv4 and before any IPv6 action. It can take, as an
argument, the name of the main IEEE LAN interface.

Table 32. auotconf6 Options

The following shows an example of the typical output that is received when
running the autoconf6 -v command:

got interface lo0
got interface en0
got interface sit0
default IEEE interface is en0
interface en0 is booting
setup IEEE interface en0
config en0 fe80::260:8c2e:a445/80
add route flags=801
 dest=ff02::
 gateway=fe80::260:8c2e:a445
 mask=ffff::
add route flags=801

Flag Description

-v Verbose output.

-6 Do not install the SIT tunnel interface.
160 AIX Version 4.3 Differences Guide

 dest=ff12::
 gateway=fe80::260:8c2e:a445
 mask=ffff::
Sending ND sol for fe80::260:8c2e:a445 on en0
en0 setup good
interface en0 is booted
setup SIT interface sit0
config sit0 9.3.145.129
config sit0 ::903:9181/96
add route flags=901
 dest=::
 gateway=::903:9181
 mask=ffff:ffff:ffff:ffff:ffff:ffff::
setup loopback interface lo0
config lo0 ::1/128
add route flags=801
 dest=ff01::
 gateway=::1
 mask=ffff::
add route flags=801
 dest=ff11::
 gateway=::1
 mask=ffff::
add route flags=901
 dest=::
 gateway=fe80::260:8c2e:a445
 mask=::
setup2 IEEE interface en0
config en0 ::903:9181 alias
 with mask ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffc0
setup2 loopback interface lo0
config lo0 ::7f00:1/128 alias

7.1.8.5 TCP/IP Tracing Commands
The TCP/IP tracing commands tcpdump, iptrace, and ipreport have been modified
to understand IPv6 addresses and data structures. Tracing IPv6 data flow is
therefore as easy as IPv4.

7.1.8.6 traceroute Command
The traceroute command now takes advantage of the IPv6 protocol hop limit field
and attempts to elicit an ICMPv6 TIME_EXCEEDED response from each
gateway along the path to some host. The only mandatory parameter is the
destination host name or IPv6 address. It infers the interface MTU at the
beginning or uses the packet size argument. It also tries to get the path MTU
using ICMPv6 PACKET_TOO_BIG messages. There are three new options with
traceroute: -d, -f, and -g. These are described in Table 33.

Table 33. traceroute Options

7.1.8.7 ndp Command
The ndp command displays and modifies the IPv6-to-Ethernet address translation
tables used by the IPv6 Neighbor Discovery Protocol. With no flags, the
command displays the current NDP entry for hostname. The host may be

Flag Description

-d Turn on socket-level debugging.

-f flow Set the flow identifier in probe packets (default zero).

-g gateway_addr Add gateway_addr to the list of addresses in the IPv6
Source Record Route header. If no gateways are
specified, the SRR extra header is omitted.
Networking Enhancements 161

specified by name or by number using IPv6 textual notation. Table 34 shows
these options.

Table 34. ndp Options

Figure 38 shows use of the ndp command to first show all the current NDP entries
and then delete the entry associated with e-crankv6-11.

Figure 38. Example of ndp Command Usage

7.1.8.8 ndpd-host Command
The ndpd-host command manages the NDP (Neighbor Discovery Protocol) for
non-kernel activities, such as router discovery, prefix discovery, parameter
discovery, and redirects. ndpd-host deals with the default route, including default

Flag Description

-a The program displays all of the current NDP entries.

-d A superuser may delete an entry for the host called
hostname with the -d flag.

-i interface_index Specify the index of the interface to use when a NDP entry
is added with the -s flag (useful with the local-link
interface).

-n Show network addresses as numbers (normally ndp
attempts to display addresses symbolically).

-s <media_type>
hostname hardware_addr

Hostname with the hardware address hardware_addr for
the specified media type. The hardware address is given
as six hex bytes separated by colons. The valid media
types are: ether, 802.3, fddi, and 802.5. For 802.5
(token-ring), an optional src route can be appended to the
hardware_addr. The src route is specified as a list of 16-bit
hex numbers separated by colons. The entry is made
permanent unless the word temp is given in the command.

-t <if type> Invoke an interface-specific ndp command. The remaining
syntax for the command is based on the interface-specific
command.
162 AIX Version 4.3 Differences Guide

router, default interface, and default interface address. Table 35 provides the
flags for the ndpd-host command.

Table 35. ndpd-host Options

7.1.8.9 inetd Daemon
The inetd daemon creates AF_INET sockets for services that are tcp4 and udp4
and AF_INET6 sockets for services that are tcp6 and udp6. If the -6 option is
used, inetd creates AF_INET6 sockets for services that are TCP and UDP.
Otherwise, it creates AF_INET sockets for these services. The new members of
the servtab structure are se_family (address family) and se_ctrladdr_size (for the
differences in size of sockaddr_in and sockaddr_in6). Also, the se_un member
was modified to include the sockaddr_in6 structure. The config() function has an
added AF_INET6 case.

7.1.9 IPv6 Socket Library Support
Socket library support has been modified to allow for application developers to
begin porting to IPv6:

 • IPv6 data structures (include files define these).
 • socket(), bind() and connect() support the AF_INET6 address family and the

sockaddr_in6 address structure.
 • ASCII print function is provided with inet_pton() and inet_ntop().
 • Address/name translations with IPv6 addresses.
 • Interface/index information retrieval.
 • Address manipulation/query (in6_ifXXX(), XXX_ADDR6()).
 • IPv6-specific getsockopt() and setsockopt() calls.

7.1.10 System Management Changes and Additions
The recommended method of configuring IPv6 is through SMIT. New SMIT
panels have been added and existing ones changed to achieve this. Existing
system configuration commands, such as mkdev and chdev, can also be used but
will not be described here.

The IPv6 configuration panels are reached through a new option added to the
standard TCP/IP panel, as shown in Figure 39.

Flag Description

-d Enables debugging (exceptional conditions and dump)

-v Logs all interesting events (daemon.info and console)
Networking Enhancements 163

Figure 39. New SMIT TCP/IP Configuration Panel Entries

Many of the IPv6 SMIT panels are virtually identical, in both layout and function,
to their IPv4 equivalents, so we will not give examples in this publication. One
panel that does not exist in non-IPv6-enabled releases is the panel for
configuration of tunnel interfaces. This is shown in Figure 40.

When adding an interface, both the IPv6 and IPv4 source and destination
addresses must be specified.

Figure 40. Configuring IPv6 Tunnel Interfaces with SMIT

This panel executes the chdev command that calls ifconfig and adds an entry to
the ODM.

There is also a SMIT panel that allows configuration of the IPv6 daemons, shown
in Figure 41. It is reached through the SMIT fastpath, smit daemon6.
164 AIX Version 4.3 Differences Guide

This panel presents the user with options to configure the autoconf6 process, the
ndpd-host subsystem, and also provides a link to the inetd subsystem
configuration.

Figure 41. IPv6 Daemon Configuration SMIT Panel

If the Change / Show option is selected from the Autoconf6 SMIT configuration
panel, the following panel is displayed. The VERBOSE parameter instructs the
autoconf6 process to display what it is doing and also show any errors it is
encountering. The SIT option allows the autoconf6 process to be started without
the SIT interface and IPv4-compatible parameters being installed. Once you have
made any changes you want to the default parameters and pressed the Enter
key, SMIT uncomments the autoconf6 entry in the /etc/rc.tcpip file and starts the
autoconf6 process.

Figure 42. IPv6 autoconf6 SMIT Configuration Panel
Networking Enhancements 165

7.1.11 IPv6 and IPSec-Related RFCs Implementation
Table 36 shows the RFCs that have been implemented in the IP Version 6
support included with AIX Version 4.3.0. Please consult these RFCs, or their
successors, for the latest information on IP Version 6 protocols.

Table 36. RFCs Implemented in AIX Version 4.3.0

7.2 IP Security Enhancements (4.3.1)

AIX 4.3.1 has added new functions to IP Security:

 • Triple-DES is an additional choice for U.S. and Canada customers.

 • Performance improvements have been made to the CDMF and DES
encryption.

 • The filter table now supports unlimited number of rules.

 • Any combination of installed authentication and encryption algorithms can be
used for ESP with Authentication.

In addition, new parameters have been added to the following IPSec commands:

 • exptun

 • imptun

 • mktun

 • rmfilt

7.3 TCP/IP Command Security Enhancement (4.3.1)

AIX Version 4.3.1 offers secure remote TCP/IP commands: rsh, rcp, rlogin, telnet,
and ftp. With this capability, Kerberos 5 authentication is used between these
commands and server daemons, avoiding the need for user passwords to pass in
the clear on the network. Instead, Kerberos 5 credentials are used to authenticate
users. User credentials can be forwarded to the server.

RFC number RFC Title

1825 Security Architecture for the Internet Protocol

1826 IP Authentification Header (AH)

1827 IP Encapsulating Security Payload (ESP)

1828 IP Authentification Using Keyed MD5

1829 The ESP DES-CBC Transform

1883 Internet Protocol, Version 6 (IPv6) Specification

1884 IP Version 6 Addressing Architecture

1885 Internet Control Message Protocol (ICMPv6) for IPv6

1933 Transition Mechanisms for IPv6 Hosts and Routers

1970 IPv6 Stateless Address Autoconfiguration

1971 Neighbor Discovery for IP Version 6 (IPv6)
166 AIX Version 4.3 Differences Guide

7.4 Dynamic Host Configuration Protocol Enhancements (4.3.1)

A new command dadmin has been added to assist the DHCP administrator.

The dadmin command lets the DHCP administrator query and modify the state of
his DHCP servers’ databases. It gives the administrator the ability to locally or
remotely query the DHCP server for the status of an IP address, query for a pool
of IP addresses, query for a client, delete an IP address mapping, refresh the
server, and change the server’s tracing level. The dadmin command is backwards
compatible with previous AIX release DHCP servers to list their IP address status
and refresh.

When querying for IP address information, the dadmin command returns the IP
address’s status, and depending on this, may return the lease duration, start
lease time, last leased time, whether the server supports DNS A record updates
for this IP address, and the client identifier that is mapped to this IP address.

When querying for client information, the dadmin command returns the client’s IP
address and IP address status, whether the server supports DNS A record
updates for this IP address, the last time the client was given any IP address, and
the hostname and domain name used by the client.

When modifying the server tracing level, the dadmin command sets and returns
the server tracing level in the form of a tracing mask. This mask represents a bit
string, where each bit represents whether a specific log item is being traced by
the server (see DHCP Server Configuration in the online documentation). From
least significant to most significant order, these log items are LOG_NONE,
LOG_SYSERR, LOG_OBJERR, LOG_PROTOCOL and LOG_PROTERR (same
value), LOG_WARN and LOG_CONFIG (same value), LOG_EVENT and
LOG_PARSEERR (same value), LOG_ACTION, LOG_INFM, LOG_ACNTING,
LOG_STAT, LOG_TRACE, LOG_START, and LOG_RTRACE.

7.5 TFTP Block Size Option (4.3.1)

The implementation of TFTP in AIX Version 4.3.1 has been enhanced to include
the Block Size Option proposed in RFC 1783. Older implementations of TFTP
relied upon a fixed block size of 512 octets that although easy to code and
implement in the limited ROM space available in some clients, proves to be very
inefficient on LANs whose MTU size may be 1500 octets or more.

This implementation of TFTP has modified the TFTP Read Request and TFTP
Write Request packets to include a block size option. When a client sends a read
or write request, it can now include an option to request that the server uses a
block size other than 512 octets. If the server is willing to accept the blocksize
option, it responds with an Option Acknowledgment (OACK) containing the
blocksize that must be equal to, or smaller than, that requested by the client. If
the client is unable to accept the blocksize returned by the server, it must reply
with an error packet and terminate the transfer.

Tests on the performance of TFTP with different blocksizes have revealed that file
transfer time can be reduced by as much as 80 percent by using larger block
sizes.
Networking Enhancements 167

Benefits are only gained when a client is able to perform block size negotiation.
At the time of writing, the IBM Network Station TFTP client has this function. This
change does not affect the current AIX TFTP client application.

7.6 IPv6 Routing Support (4.3.2)

The first release of IPv6 support in AIX 4.3 was a host implementation. It did not
support routing between interfaces on the same server. Also, the routing
applications were not well defined and not available in the INRIA code base to
interpret IPv6 routing protocols.

AIX Version 4.3.2 supports IPv6 gateway capability in addition to IPv6 host
supported in AIX Version 4.3. Version 6.0 of gated from INRIA is ported from
INRIA to AIX 4.3.2 with IPV6 support so that gated and some of its routing
protocols can manipulate IPv6 addresses. Some changes have been made to the
AIX kernel, netinet kernel extension, and non-gated applications to support IPv6
routing.

7.6.1 Gated Version 6.0
The gated daemon provides gateway routing functions for the following protocols:

 • Routing Information Protocol (RIP)

 • Routing Information Protocol Next Generation (RIPng)

 • Exterior Gateway Protocol (EGP)

 • Border Gateway Protocol (BGP) and BGP4+

 • Defense Communications Network Local-Network Protocol (HELLO)

 • Open Shortest Path First (OSPF)

 • Intermediate System to Intermediate System (IS-IS)

 • Internet Control Message Protocol (ICMP) / Router Discovery routing
protocols

 • Simple Network Management Protocol (SNMP)

The gated process can be configured to perform all of these protocols or any
combination of them.

Dynamic routing tables change according to the network conditions. They are
built from information passed to gated by the routing protocols.

Each protocol performs the same basic functions, in that they determine the best
route for a destination and then distribute the routing information to other systems
on the network. Each protocol performs these tasks based on their own particular
algorithms.

If the blocksize exceeds the MTU of the path, then fragmenting will occur, and
performance improvements will be reduced by the need to perform reassembly
of packets.

Note
168 AIX Version 4.3 Differences Guide

Gated collects the routing information from each protocol and then selects the
best route per destination among them. Each routing protocol has its own way of
calculating the cost of a route, that is, the metric value of a route. For example,
RIP uses distance (hop count) and HELLO uses time (delay in milliseconds) to
determine the cost of a route. Gated uses its own preference values to determine
who has the best route. Preference values range from 0-255 with lower numbers
indicating more preferred routes. Once gated has selected its best route to a
destination, it puts that route in its routing table and later installs it into the
kernel’s routing table.

There are three new commands delivered along with the new gated supporting
IPv6 routing. They are gdc, ospf_monitor, and ripquery.

Following are some brief descriptions of these new introduced commands:

7.6.1.1 gdc Command
The gdc command provides an operational user interface for gated. The interface
is user-oriented for the operation of the gated routing daemon. It provides
supports for:

 • Starting and stopping gated daemon

 • Delivering signals to manipulate the gated daemon

 • Maintenance and syntax checking of configuration files

 • Removal of state dumps and core dumps

The gdc command can reliably determine the running state of gated and produces
a reliable exit status when errors occur, making it advantageous for use in shell
scripts that manipulate gated.

7.6.1.2 ospf_monitor Command
The ospf_monitor command queries OSPF routers to provide the detailed
statistics. It monitors the OSPF gateways.

7.6.1.3 ripquery Command
The ripquery command sends a RIP request or POLL command, to a RIP
gateway to request all the routes known by the gateway. It queries the RIP
gateways. This command is used as a tool for debugging gateways.

Gated has the following enhancements:

 • SRC support is added to gated. You can start gated using SRC or gdc.

 • Message catalog is added for gated, ripquery, ospf_monitor, and gdc.

Following IPv6 protocols are added in gated:

 • IPv6 Routing Information Protocol (RIPNG)

 • IPv6 Internet Control Message Protocol (ICMPv6)

 • IPv6 Border Gateway Protocol (BGP4+)

7.6.2 IPv6 Routing Functions
The changes for IPv6 routing in Institut National de Recherche en Informatique et
en Automatique (INRIA) are merged into the AIX netinet and kernel. Also, some
Networking Enhancements 169

of the routing applications are ported to AIX, specifically, ndpd-router and
updates to ndpd-host and ndp.

AIX 4.3.2 adds the following IPv6 functions:

 • IPv6 unicast routing support

 • IPv6 multicast routing support - no mrouted6 though

 • IPv6 anycast address support - mostly receive processing

 • IPv6 multi-homed link local and site local support. The reason for adding
multi-homed host support is because most routers are multi-homed and need
the ability to reference different hosts on different links at the link local and site
local levels.

7.6.2.1 IPv6 Unicast Routing
A packet sent to a unicast address is delivered to the interface identified by that
address.

There are two main aspects added in AIX 4.3.2: ndpd-router and the some netinet
changes.

The first major function is ndpd-router. The ndpd-router command provides a
protocol engine for NDP and RIPng. It provides a simple method to distribute
routes between gateways. This function is redundantly provided by gated. The
routing specific mechanisms, like router advertisements and answers to router
solicitations are handled by ndpd-router. RIPng is the follow-on for RIP with
regards to IPv6.

The other major function is to provide extensions to the icmpv6 support so that all
the NDP messages are supported. The new messages are for handling redirects.

The modifications to the IP input path allows the forwarding of IPv6 packets
between interfaces on the same machine. This function is identical to the IPv4
low-level routing function. The ip6forwarding function handles redirecting
incoming packets.

7.6.2.2 IPv6 Multicast Routing
The use of Internet Protocol (IP) multicasting enables a message to be
transmitted to a group of hosts, instead of having to address and send the
message to each group member individually. The Class D Internet addressing is
used for multicasting.

In general, there are two pieces to multicast routing. One piece is a method to
determine where the multicast message should be sent, and the other is a
method to dynamically change the place the packet goes based on network
conditions. In IPv4, the mrouted daemon handles both functions with the help of
IGMP. In IPv6, multicasting, and its related membership function, is all handled in
icmpv6. Usually, this is done by maintaining a table similar to a routing table that
is used to direct messages. In IPv4, this table is maintained in netinet and
updated by mrouted. In IPv6, INRIA adds it as an additional routing table. This way
the route command could be used to manipulate static multicast routes.
170 AIX Version 4.3 Differences Guide

7.6.2.3 IPv6 Anycast Address Support
In AIX 4.3, the anycast is similar to INRIA. This method involved creating anycast
addresses and associating them with a specific interface. This is acceptable
because, on incoming packet reception, AIX would talk to all the addresses on
the address lists. But to modify these addresses, a user would have to remember
the associated interface. INRIA has moved anycast addresses on to a private list.
The management is separate from the normal addresses. In fact, a command
called any6 is added to manipulate these addresses.

7.6.2.4 IPv6 Multi-Homed Support
AIX 4.3.0 is supported for IPv6 and multi-homed global addresses. This falls out
naturally from the IPv6 routing table. The problem is with site local and link local
addresses. The problem with site local addresses is the definition of network
boundaries. This is not handled by the kernel. The problem with link local
addresses is which interface to go out of for doing the initial NDP neighbor
solicitations. The code defines a #define, MULTI_HOMED, that can have four
values. Each value has different actions and operations.

The AIX IPv6 will support the host requirements from the following RFCs:

 • RFC 1883 - Internet Protocol, Version 6 (IPv6) Specification

 • RFC 1884 - IP Version 6 Addressing Architecture

 • RFC 1885 - Internet Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6)

 • RFC 1886 - DNS Extensions to support IP Version 6

 • RFC 1887 - An Architecture for IPv6 Unicast Address Allocation

 • RFC 1970 - Neighbor Discovery for IP Version 6 (IPv6)

 • RFC 1971 - IPv6 Stateless Address Autoconfiguration

 • RFC 1972 - A Method for the Transmission of IPv6 Packets over Ethernet
networks

 • RFC 1981 - Path MTU Discovery for IP Version 6

 • RFC 2019 - A Method for the Transmission of IPv6 Packets over FDDI
networks

For a complete list of all RFCs and Internet drafts pertaining to IPv6, refer to
http://www.ietf.org/html.charters/ipngwg-charter.html. This is an evolving list,
and AIX conforms to a subset of these.

7.6.3 Commands Changed
The following AIX commands have been changed to support IPv6 routing:

 • ndpd-host

 • ndp

 • route

 • autoconf6

 • hostnew

 • nslookup

 • ifconfig
Networking Enhancements 171

There are new no options added:

 • ip6forwarding

This option works like the existing ipforwarding only for IPv6 packets.

The IP packets forwarding function will be enabled by the following command:

#no -o ip6forwarding=1

The value of ipforwarding specifies whether the kernel should forward
packets. The default value of 0 prevents forwarding of IP packets. A value of 1
enables forwarding.

 • multi_homed

 • main_if6

 • main_site6

 • site6_index

7.7 Enhancement for ifconfig Command (4.3.2)

The new flags introduced to ifconfig command are:

ifconfig [-m] Interface [ProtocolFamily] Interface ProtocolFamily
ifconfig -a [-m] [-d] [-u] [ProtocolFamily]

Table 37 provides the descriptions of the new ifconfig flags:

Table 37. ifconfig New Flags for Display Interface Information

7.8 Latest BIND DNS (NameD) Support (4.3.2)

The Domain Naming System (DNS) is a method to distribute a large database of
IP addresses, hostnames, and other record data across administrative areas.
The end result is a distributed database maintained in sections by authorized
administrators per domain.

AIX, similar to other UNIX platforms, offers the BIND DNS server. BIND, or the
Berkeley Internet Name Daemon, is a DNS server implementation provided by
the Internet Software Consortium. It has become the standard for DNS server
implementations and a benchmark for DNS server intercompatibility.

AIX 4.3.2 incorporates IBM DNS value-added functions to the latest level of
BIND, Version 8.1.2. This involves adding IBM secure dynamic DNS update
protocol and incremental zone transfers to BIND 8.1.2, as well as extending this
BIND's NOTIFY ability and parameter configuration.

Flags Descriptions

-a The -a flag can be used instead of an interface name. This flag instructs
ifconfig to display information about all interfaces in the system.

-d The -d flag displays interfaces that are down.

-m If the -m flag is passed before an interface name, ifconfig will display
all of the supported media for the specified interface.

-u The -u flag displays interfaces that are up.
172 AIX Version 4.3 Differences Guide

The following are the new functions provided Bind Version 8.1.2:

 • Secure dynamic DNS updates

Currently, BIND offers only the unsecured RFC 2136 update protocol. This is
an insufficient offering to customers desiring to implement a dynamic DNS
environment in their networks. The secure update protocol is added as the
solution for RFC 2136's insecure shortcomings and to provide backward
compatibility with current AIX dynamic DNS customers.

 • Incremental zone transfer

Implement the RFC 1995 Incremental Zone Transfer protocol. This protocol
defines a method through which secondary DNS servers can update their
existing zone data to incorporate all the cumulative changes to the primary
zone since the last transfer. This protocol supersedes the performance of
ordinary zone transfers by limiting the amount of network traffic between
primary and secondary DNS servers and the subsequent computation time in
incorporating an entirely new zone. The protocol ensures that incremental
zone transfers can be sent to indicate changes from both dynamic updates
and from zones changed on disk (those reincorporated through a refresh
signal or server restart).

 • Notify

Implementing the RFC 1996 Notify process. This is a method by which the
primary DNS server can indicate to its secondary nameservers that zone data
has been updated. This decreases the time periods in which a secondary DNS
server will have data out of synchronization with its primary DNS server.

 • File Conversion Utility

Extending the configuration file conversion utility to support IBM functional
additions to previous BIND releases. This involves mapping the dynamic
keywords of previous named.boot files to a functional equivalent in the
named.conf configuration file.

 • Proprietary protocol for secure updates of dynamic notify dynamic zones.

Bind 4.9.3 is available using named4. Bind 8.1.2 uses named8.

7.9 Web Server Performance Improved (4.3.2)

Web server workload has a large number of small file operations. In smaller file
operations, the cost of processing connection set-up/tear-down far exceeds the
data touching (such as copy or checksum) operations. By reducing the number of
packets that are sent or received for connection set-up/tear down, performance is
improved. IBM has developed a set of TCP changes to reduce the number of
packets from 9 to 7 or 6.

For Web transaction oriented environments using HTTP protocols, AIX Version
4.3.2 reduces the number of network packets that are exchanged between the
workstation and the server. This lowers the CPU packet processing overhead,
increasing server performance and capacity.
Networking Enhancements 173

7.9.1 Reducing the Number of TCP Packages
There are some modifications to the TCP protocol implementation in AIX 4.3.2
that improves the performances of HTTP-like transactions on Web servers and
clients.

A performance improvement for Web servers and clients can be achieved by
reducing the total number of TCP packets that are exchanged, without violating
the TCP protocol. For Web servers and clients, this can be done by delaying
certain ACK messages and piggybacking them with the next packet that will be
sent and also by sending the FIN message along with the last data packet.

A typical HTTP transaction requires the exchange of nine TCP packets:

1. The client sends a SYN TCP packet to connect to the server.

2. The server acknowledges the client’s SYN and sends a SYN to accept the
connection.

3. The client acknowledges the server’s SYN.

4. The client sends its HTTP request in a data packet.

5. The server sends a data packet containing the acknowledgment and the
answer to the client’s request.

6. The server shuts down its side of the connection by sending a FIN packet.

7. The client acknowledges the server’s FIN

8. The client shuts down its side of the connection by sending a FIN packet.

9. The server acknowledges the client’s FIN.

In AIX 4.3.2, the TCP exchange packets are reduced from nine to seven by using
no command and to six by using send_file() system call with the SF_CLOSE flag.

7.9.2 Commands Affected
Reducing the TCP package number can be set by the user from the command
line or by an application on a per process basis.

Two new options, delayack and delayackports, have been added into the no
command.

delayack

The delayack options delays ACKs for certain TCP packets and attempts to
piggyback them with the next packet sent instead. It enables the user to specify
whether the delay will be performed for the SYN ACKs, the FIN ACKs, or both.
This will only be performed for connections whose destination port is specified in
the list of the delayackports attribute.

The delayack option may have one of the following four values:

0 No delay, This is the default value.

1 Delay the ACK for the SYN only

2 Delay the ACK for the FIN only

3 Delay the ACK for both.

Setting delayack to any other value will result in a failure with EINVAL error code.
174 AIX Version 4.3 Differences Guide

Following are some examples of using delayack:

no -o delayack=3

sets delay the ACK for both SYN and FIN.

no -d delayack

sets delayack to the default value 0.

delayackports

The delayackports option allows a user to specify a list of up to ten ports for
which the ACKs for SYNs and/or FINs defined by the delayack port option will be
performed.

This allows a system administrator to configure this operation for specific
applications that use a specific port. Although this will improve the performance
for Web servers, this may not be good for other applications.

The delayackports option takes a list of ports numbers separated by commas and
enclosed in curly braces.

For example: no -o delayackports={80,1080,1180}

An empty list, no -o delayackports={}, will clear the ports.

no -d delayackports, sets delayackports to the default. "{}" means no ports.

The send_file() system call with the SF_CLOSE flag will send the FIN packet with
the last data.

7.9.3 Reducing the Contention of INIFADDR and Route Lock

There are some changes in kernel to the route lock and inifaddr lock in order to
improve performance. These changes decrease the processing time for each
incoming and outgoing packet. These changes are internal and do not affect
external user interfaces.

The route lock and inifaddr are used by the TCP/IP protocol packets:

INIFADDR lock examined by every incoming packet

Route lock examined by every outgoing packet

7.9.3.1 Reducing the Contention of INIFADDR Lock
Currently, for every incoming packet, the inifaddr list must be searched with the
lock held. This causes a great deal of lock contention.

The INIFADDR lock contention is serious for SMP machines. This lock is used for
all input packets, causing unacceptable lock contention on machines with
multiple adapters. Therefore, it is a critical lock on 12-way RS/6000 S70 machine
with multiple adapters.

Since this inifaddr list is changed very rarely, but searched so often, the lock
contention is reduced by:

 • Allowing concurrent searches
Networking Enhancements 175

 • New macros to allow for simple read-write locking, and the INIFADDR lock
macros are changed to use them.

7.9.3.2 Reducing the Contention of Route Lock
Currently, all outgoing IP packets must take the single route lock. On an SMP
machine with multiple adapters, a large number of packets must take this lock, so
it is the hot (critical) lock on output. Reducing the contention on this lock can
increase the throughput on SMP systems with multiple adapters.

There is a global route lock that must be taken any time any route is changed or
used. Each connection keeps a pointer to a cached route, but it still must take the
route lock to check the validity of its cached route. So, the route lock must be
taken for every outgoing packet.

The new design eliminates the requirement to take the global route lock for
outgoing packets in the case where the cached route is valid. This should
improve performance for TCP, where the cached route will usually be valid so the
global lock will not be needed on packet output. For UDP, the cached route often
is not valid, and so the global lock will still be needed for output. But since the
contention on this lock from other code will be reduced, there is also a
performance improvement for UDP.

The global route lock that protects the structure of the routing table has also been
changed to use the same read/write lock in places where the global lock is still
needed.

7.10 TCP Checksum Offload on ATM 155 Mbps PCI Adapter (4.3.2)

The PCI ATM 155 adapter has a hardware TCP/UDP checksum capability. In AIX
4.3.2, the ATM network device driver is modified to use this feature.

In the new ATM 155 adapter device driver, the workload of TCP data checksum
processing is offloaded from the AIX TCP/IP protocol stack to the adapter itself. A
related enhancement automatically remembers the mapping of virtual addresses
to physical addresses for the entire networking buffer pool to save address
translation during networking I/O operations.

TCP checksum offload for ATM reduces the amount of time spent on the main
CPU computing checksums, thereby reducing latency and allowing the system to
handle more work, in particular, to handle more packets in the same amount of
time. This results in performance improvements.

The SpecWeb96 benchmark is published on the 7017-S70 using ATM interfaces.
It benefits from this checksum offload capability.

TCP and the other network layers continue to perform as they do today,
particularly on adapters that do not support checksum offload. All TCP functions
are the same.

In order to improve performance for TCP over ATM, small packets do not have
their checksum processing offloaded since setting up the offload will probably use
as much processor time as computing the checksum. There is no gain, and may
actually be a loss, in offloading checksum processing for these small packets.
176 AIX Version 4.3 Differences Guide

There is a packet size threshold where it is cheaper to do the checksum
processing completely on the CPU. The driver only offloads checksums for
packets larger than this threshold. This threshold is maintained internally as a
variable or constant.

Currently, AIX checksums transmitted packets before copying them to the
network adapter, and checksum received packets after they have been copied
from the adapter to processor memory. Checksumming packets on the adapter
increases the possibility of undetected corruption during the copy from or to the
processor. This possibility is very small. The NDD provides a way for you to turn
off the checksum offload capability for an adapter in cases where corruption is
believed to be occurring.

7.10.1 Limitations
The feature of checksum offload only applies to TCP on ATM over IP Version 4. It
means:

 • This driver does not offload checksum processing for IPv6 TCP connections,

 • This driver does not offload checksum processing for UDP datagrams.

 • The checksum processing is not allowed when IPSEC is running since IPSEC
may encrypt data, and the checksum for the data should be done before it is
encrypted. Offloading, in this case, will cause the checksum to be calculated
after the data has been encrypted, which is wrong. When IPSEC is running,
the checksum must be calculated before the data is encrypted.

7.10.2 Command Changes
The command ifconfig is changed to handle a new interface option,
checksum_offload. Table 38 lists the new options.

Table 38. Ifconfig New Options for Checksum Offload

7.11 Thread-Based Application Connection Enhancement (4.3.2)

The thundering herd problem is a well-known, industry-wide performance
problem that effects some Web servers. When multiple threads call accept()
function on the same socket, all of these threads are woken up for a single new
connection. For example, if there are 256 threads sleeping in accept(), only one
thread needs to be woken up to handle the new connection. However, currently
all 256 threads are woken up. Since only one thread receives the connection, the
other 255 immediately go back to sleep. This results in wasted CPU time due to
the unnecessary scheduling, running, and sleeping of the 255 threads.

The cause for this problem is that the socket layer uses a hash table to keep
chains of threads waiting for events on specific sockets. All threads waiting for an
event on a specific socket will hash to the same slot, but other threads waiting for
events on other sockets could also hash to the same slot. For this reason, all the
threads in the slot must be woken up when the event occurs, so that the right

checksum_offload Enables checksum offload if the adapter associated with the
interface supports it. This is the default for adapters that
support checksum offload.

-checksum_offload Disables checksum offload. This is the default for adapters
that do not support checksum offload.
Networking Enhancements 177

thread will have a chance to handle the event. The other threads will simply go
back to sleep.

In AIX Version 4.3.2, only a single thread is awakened, thus reducing CPU
overhead. And the system now is able to handle higher loads of socket
connections. Industry multi-threaded network server application developers will
appreciate that AIX Version 4.3.2 overcomes the thundering herd problem of
wasted CPU cycles resulting from waking up multiple threads of a network server
when new connections arrive.

7.12 IBM 10/100 Mbps PCI Ethernet Adapter Device Driver (4.3.2)

In previous AIX version, the Ethernet device driver copies data from mbufs to its
own buffers. Recent prototypes have shown that transmitting data directly from
mbufs would lead to better performance.

AIX 4.3.2 provides a new device driver for IBM 10/100 Mbps PCI Ethernet
adapter. The new device driver reduces data copy operations from network
buffers to its private buffers. The network performance in AIX 4.3.2 benefits from
enhancements in this new PCI network device drivers. These enhancements
reduce CPU demand, thus increasing overall server capacity.

The device driver supports the PCI 10/100 Ethernet adapter for AIX Versions
4.2.1 and 4.3.0. The new PCI 10/100 Ethernet is modified to support AUI and
BNC ports starting at AIX 4.3.2 and is backwards compatible. The performance
enhancements for reducing the data copies in AIX 4.3.2 is backwards compatible
to AIX 4.2.

The device driver is conform to the Common Data Link Interface (CDLI) interface
specifications.

This adapter now supports the twisted pair, AUI and BNC ports.

The speeds supported are:

 • 10 (10 Mbps, half-duplex)

 • 20 (10 Mbps, full-duplex)

 • 100 (100Mbps, half-duplex)

 • 200 (100Mbps, full-duplex)

 • Auto-negotiate.

7.12.1 Packaging
The PCI 10/100 Ethernet adapter software package includes:

devices.pci.23100020.rte

devices.pci.23100020.diag
178 AIX Version 4.3 Differences Guide

7.12.2 Configuration Parameters
The following parameters are user configurable:

Transmit Queue Size (tx_que_size)

The device driver supports a user-configurable transmit queue. This is the queue
the adapter uses (not an extension of the adapter’s queue). It is configurable
among the values of 16, 32, 64, 128, and 256, with a default of 256.

Because of the configurable size of the adapter’s hardware queue, the driver
does not support a software queue.

Receive Queue Size (rx_que_size)

The device driver supports a user-configurable receive queue. This is the queue
the adapter uses (not an extention of the adapter’s queue). It is configurable
among the values of 16, 32, 64, 128, and 256, with a default of 256.

Receive Buffer Pool Size (rxbuf_pool_size)

The device driver supports a user-configurable receive buffer pool size. The
buffer is the number of pre-allocated mbufs for receiving packets. The minimum
size of the buffer is the receive queue size, and the maximum is 2 KB, with a
default value of 384.

Media Speed (media_speed)

The device driver supports speeds of 10 (10 Mbps, half-duplex), 20 (10 Mbps,
full-duplex), 100 (100 Mbps, half-duplex), 200 (100 Mbps, full-duplex), and
auto-negotiate on twisted pair. On the AUI port the device driver will support
speeds of 10 (10 Mbps, half-duplex) and 20 (10 Mbps, full-duplex). The BNC port
will only support 10 (10 Mbps, half-duplex). This attribute is user-configurable,
with a default of auto-negotiate on twisted pair.

Enable Alternate Address (use_alt_addr)

The device driver supports a configuration option to turn on and off use of an
alternate network address. The values are yes and no, with a default of no. When
this value is set to yes, the alt_addr parameter will define the address.

Alternate Network Address (alt_addr)

For the network address, the device driver accepts the adapter’s hardware
address or a configured alternate network address. When the use_alt_addr
configuration option is set to yes, this alternate address is used. Any valid
Individual Address can be used, but a multicast address can not be defined as a
network address.

Inter-Packet Gap (ip_gap)

The inter-packet gap bit rate setting controls the aggressiveness of the adapter
on the network. A smaller number will increase the aggressiveness of the
adapter, while a larger number will decrease the aggressiveness (and increase
the fairness) of the adapter. If the adapter statistics show a large number of
collisions and deferrals, this number should be increased. Valid values range
from 96 to 252, in increments of 4. The default value of 96 results in IPG of 9.6
microseconds for 10 Mb and 0.96 microseconds for 100 Mb media speeds. Each
Networking Enhancements 179

unit of bit rate introduces an IPG of 100 ns at 10 Mb and 10 ns at 100 Mb media
speed.

7.12.3 Trace
The device driver sets up three trace hook IDs (defined in
/usr/include/sys/cdli_entuser.phxent.h). The first hook traces the transmit path,
the second trace the receive path, and the third will trace everything else.

The device driver has three trace points: transmit, receive, and other, and has a
trace table of at least 1000 entries when complied normally. It traces entry/exit
from transmit/receive routines at the interrupt and user layers, as well as on entry
to the interrupt handler when compiled normally.

Table 39 lists these hook IDs.

Table 39. Hook IDs of 10/100 Ethernet PCI Adapter

7.12.4 Error Logging
The device driver logs errors in the error log whenever one of the following errors
occur: hardware failures, DMA operations, and memory faults.

Following are the error log entries returned by the 10/100 Mbps PCI Ethernet
device driver:

ERRID_PHXENT_ADAP_ERR

Indicates that the adapter is not responding to initialization commands.
User-intervention is necessary to fix the problem.

ERRID_PHXENT_ERR_RCVRY

Indicates that the adapter hit a temporary error requiring that it enter network
recovery mode. It has reset the adapter in an attempt to fix the problem.

ERRID_PHXENT_TX_ERR

Indicates that the device driver has detected a transmission error.
User-intervention is not required unless the problem persists.

ERRID_PHXENT_PIO

Indicates the device driver has detected a program I/O error. The driver was
unable to fix the problem. User-intervention is required.

ERRID_PHXENT_DOWN

Indicates that the device has been shutdown due to an irrecoverable error. The
device is no longer functional due to the error. The irrecoverable error that

Trace Trace hook ID

Transmit 0x2E6

Receive 0x2E7

Other 0x2e8
180 AIX Version 4.3 Differences Guide

caused the device to be shutdown is logged immediately before this error log
entry. User-intervention is required to bring the device back online.

ERRID_PHXENT_EEPROM_ERR

Indicates that the device driver has detected an error in the EEPROM of the
device. The driver will not become available. Hardware support should be
contacted.

7.13 SDLC/BSC Support for 4-Port PCI Adapter (4.3.2)

This enhancement enables the existing AIX SLDC and BSC (Binary Synchronous
Communications) protocols to run on the 4-port PCI adapter IBM ARTIC960Hx. It
provides a high performance multiprotocol WAN connectivity on PCI based
machines. Both SDLC and Bisync can run on the same adapter on a per port
basis.

BSC is required for banks that have Automated Teller Machines (ATM) and want
to upgrade to latest RS/6000 models. Newer systems like the 7017-S70 no longer
have ISA slots.

The 4-port PCI Adapter has up to four leased lines connectivity. Each port can
communicate at 2.0 Mbps. It replaces the ISA adapter (#2701). The adapter is
implemented for use in systems that support 64 bit wide PCI local bus operating
at 33 or 66 MHz.

4-Port Multi-Interface PMC is the daughter card connected to a 4-port PCI
adapter and provides the hardware to support up to four network links. For each
port of the adapter, the physical interface of the attached cable is auto selected.
There are four connection ports on the adapter. Each function as individual
network devices simultaneously. The user can configure which physical interface
(V.24, V.35, V.36 or X.21) that should be used per port or the adapter can
autoselect the physical interface based on the cable connected.

Installation of AIX using this adapter is also be supported. The code to support
this is part of the system firmware. The AIX product device driver will run on the
adapter after control has been passed to AIX.

7.13.1 Packaging
SDLC and Bisync are both shipped with base AIX.

Following PTFs are needed for using the SDLC and Bisync protocol:

 • AIX 4.3.2 with IX81860

 • AIX 4.2.1 with IX81861

7.13.2 Trace
The device driver will issue trace points for the following conditions:

 • All error conditions

 • At the beginning and end of each main function in the main path

 • At the beginning and end of each function that is tracking buffers outside of
the main path
Networking Enhancements 181

 • Debugging purposes. These trace points are only enabled when the driver is
compiled with -DDEBUG turned on, and therefore, the driver can contain as
many of these trace points as desired.

The main goals for having trace points in a CDLI device driver are to be able to
monitor drivers for errors and to track packets as they move through the driver. To
this end, it is important that trace points be placed at the beginning and end of
each main routine that does processing on packets. Also, it is important to try and
trace the flow of buffers (for example, mbufs) as they flow through the system.
There should also be trace points placed at each point where an error could
occur.

The device driver also has trace points to support the netpmon program
(component cmdperft). There are generally five trace points:

WQUE An output packet has been queued for transmission.

WEND The output of a packet is complete.

RDAT An input packet has been received by the device driver.

RNOT An input packet has been given to the demuxer.

REND The demuxer has returned.

All CDLI drivers must register for a trace hook IDs.

NOTE: CDLI device drivers may register for more than one trace hook ID. In the
case of multiple trace hook IDs, one could be used for transmit, one for receive,
and another for errors.

7.13.3 Error Logging
The device driver will do error logging when the following situations occur:

 • An error on PIO operations

 • A hardware failure on the device

 • An error on DMA operations

 • Network errors

 • Other device specific errors

7.14 Open Network Computing (ONC+)

The ONC+ technology has been licensed from SunSoft and is being included
within AIX to meet customer requirements. This technology contains many
different functional components; the main ones being: NFS Version 3, NIS+,
CacheFS, TIRPC, and AutoFS. Not all of these components are included with this
release of AIX. NFS V3 was introduced in AIX Version 4.2.1. CacheFS was
introduced in AIX Version 4.3.0, and AutoFS was included in AIX 4.3.1.

7.14.1 CacheFS
CacheFS is a local disk cache mechanism for NFS clients. It provides the ability
for an NFS client to cache file system data on its local disk, thereby avoiding use
of the network and NFS server when the data is accessed and is not in physical
memory. This improves NFS server performance and scalability by reducing
182 AIX Version 4.3 Differences Guide

server and network load. Designed as a layered file system, CacheFS provides
the ability to cache one file system on another. In an NFS environment, CacheFS
increases the clients per server ratio, reduces server and network loads, and
improves performance for clients particularly on slow links.

CacheFS is contained in the bos.net.cachefs fileset, which is not automatically
installed when installing AIX.

7.14.1.1 How CacheFS Works
After creating a CacheFS file system on a client system, the system administrator
specifies which file systems are to be mounted in the cache. When a user on that
client attempts to access files that are part of the back file system, those files are
placed in the cache. Note that the cache does not get filled until a user requests
access to a file or files. Therefore, the initial request to access a file will be at
normal NFS speeds, but subsequent accesses to the same file will be at local
JFS file system speeds. Refer to Figure 43 to see the relationship of the
components in CacheFS.

Figure 43. CacheFS Components

7.14.1.2 Configuring CacheFS
There are two steps involved in setting up a cached file system:

1. Create the local cache.

2. Specify and mount the file systems to cached.
Networking Enhancements 183

Creating the Local Cache File System
A local cache file system is created by using the cfsadmin command with the -c
flag, as shown in the following steps:

1. Login as root.

2. Create a cache using the -c flag of the cfsadmin command

 # cfsadmin -c -o <parameters> <cache-directory>

where parameters specify resource parameters, and cache-directory is the
name of the directory where the cache should be created. A list of
configurable parameters is shown in Table 40 on page 185. Although the
cache is referred to as a cache filesystem, it is not a filesystem in the true sense.
It is, in fact, a cache directory, which resides on a normal JFS. For this reason,
if you are creating a large cache filesystem, it is advisable to create a
dedicated JFS to be used for this purpose. This is because the cache
filesystem is created with parameters that indicate the percentage of the
underlying filesystem it is allowed to use.

3. Mount the back file system in the cache

 # mount -V cachefs -o backfstype=nfs,cachedir=/<cache-directory> \
 remhost:/<remote-directory> <local-mount-point>

where remhost:/<remote-directory> is the name of the remote host and file
system where the data resides, and <local-mount-point> is the mount point on
the client where the remote file system should be mounted.

CacheFS can also be administered using SMIT.

Cached File Systems Consistency Checking
To ensure that the cached directories and files are kept up to date, CacheFS
periodically checks consistency of files stored in the cache. To check consistency,
CacheFS compares the current modification time to the previous modification
time. If the modification times are different, all data and attributes for the directory
or file, are purged from the cache, and new data and attributes are retrieved from
the back file system.

When a user requests an operation on a directory or file, CacheFS checks if it is
time to verify consistency. If so, CacheFS obtains the modification time from the
back file system and performs the comparison.

Note: It is important to remember that CacheFS is intended to be used as a
mechanism for reducing network and server workload. Because the remote file
system data is held locally on the client, and consistency is only checked at
intervals, it means that the data on the server can change, and the client is
unaware of this for a period of time. You should, therefore, only use it for
read-only, or read-mostly, file systems where the file system contents do not
change rapidly.

One example where CacheFS would be suitable is in a CAD environment where
master-copies of drawing components can be held on the server and
cached-copies kept on the client workstation when in use.
184 AIX Version 4.3 Differences Guide

7.14.1.3 CacheFS Commands
New commands specific to CacheFS are:

 • cfsadmin

 • fsck_cachefs

cfsadmin
The cfsadmin command provides for the following CacheFS administration
functions:

 • Creating cached file systems
 • Deleting cached file systems
 • Listing cache contents and statistics
 • Changing CacheFS resource parameters

The cfsadmin command syntax is:

 cfsadmin -c [-o cachefs-parameters] cache_directory
 cfsadmin -d [cache_id | all] cache_directory
 cfsadmin -l cache_directory
 cfsadmin -s [mount point | all] cache_directory
 cfsadmin -u [-o cachefs-parameters]

Table 40 details the cfsadmin options.

Table 40. cfsadmin Options

Table 41 details CacheFS resource parameters.

Table 41. CacheFS Resource Parameters

Flag Description

-c Creates a cache under the directory specified by
cache_directory. The directory must not exist prior to cache
creation.

-d Removes the file system specified by cache_id and releases its
resources or removes all file systems if all is specified.

-l Lists file systems stored in the specified cache with their
statistics.

-s Requests a consistency check on the specified file system, or
all file systems, if all is specified.

-u Updates resource parameters of the specified cache directory.
Note that parameter values can only be increased, decreasing
requires cache removal and recreation.

-o CacheFS resource parameters see Table Table 41 for details.

Parameter Description

maxblocks=n Maximum amount of storage space that CacheFS can use,
expressed as a percentage of the total number of blocks in the
front file system. Default=90%

minblocks=n Minimum amount of storage space that CacheFS is always
allowed to use, expressed as a percentage of the total number
of blocks in the front file system. Default=0%
Networking Enhancements 185

fsck_cachefs
The fsck_cachefs command checks the integrity of cached file systems. By default
it corrects any CacheFS problems it finds. Unlike the standard fsck command
there is no interactive mode.

The fsck_cachefs command syntax is:

 fsck -F cachefs [-m | -o noclean] cache_directory

Table 42 provides the available flags for this command.

Table 42. fsck_cachefs Options

The following example shows the actions required to allow an NFS client machine
to mount the remote filesystem /images from the server aix4xdev and use the
CacheFS mechanism to improve performance.

The /images filesystem on the server is a large filesystem, so a dedicated JFS
will be used to store the local cache.

1. Use SMIT to create a JFS of the required size to act as the cache. For
example, /cacheFS.

2. Mount the JFS to be used for the cache.

mount /cacheFS

Create an empty cache structure to be used as the cache. This is created
using the cfsadmin command. The argument is the name of the cache
directory object you want to create. The object should not exist.

cfsadmin -c /cacheFS/cachedir

threshblocks=n A percentage of the total blocks in the front file system beyond
which, CacheFS cannot claim resources once its block usage
has reached the minblocks level. Default=85%

maxfiles=n Maximum number of files that CacheFS can use, expressed as
a percentage of the total number of inodes in the front file
system. Default=90%

minfiles=n Minimum number of files that CacheFS is always allowed to
use, expressed as a percentage of the total number of inodes in
the front file system. Default=0%

maxfilesize=n Largest file size, expressed in megabytes, that CacheFS is
allowed to cache. Default=3

Flag Description

-m Check, but do not repair.

-o noclean Force a check on the cache even if there is no reason to
suspect there is a problem.

cache-directory The name of the directory where the cache resides.

Parameter Description
186 AIX Version 4.3 Differences Guide

The command uses default values for the various resource thresholds of the
cache object. If you want to alter these, you should create the cache object
using SMIT with the cachefs_admin_create fastpath.

3. Mount the remote filesystem from the server as a cacheFS filesystem type,
specifying the cache object to use for backing store and the name of the
mount point that will be used to access the filesystem.

mount -V cachefs -o backfstype=nfs,cachedir=/cachefs/cachedir

aix4xdev:/images /images

The result of the action can be checked using the mount command with no
arguments to list all mounted filesystems. Three new entries are present. The first
entry is for the JFS used to store the cache object. The second shows the remote
filesystem mounted onto the cache object as an NFS mount. The remote
filesystem should not be accessed through this mount point. The third new
filesystem mount shows /images as a CacheFS mount on the cache object.

Figure 44 shows the mount output of a CacheFS enabled system.

Figure 44. Output of mount Command Showing CacheFS

7.14.2 AutoFS (4.3.1)
AutoFS is the component of ONC+ that provides automatic mounting of NFS file
systems. The automounting file system, autofs, mounts file systems when access
is requested and unmounts the file system after a few minutes of inactivity, thus
saving the network overhead traffic required to maintain the NFS connection.
AutoFS allows you to break the connection when the file system is not being used
and restart it again automatically when access is next desired.

7.14.2.1 How AutoFS Works
AutoFS is a client-side service. It is implemented using three components to
accomplish automatic mounts. The components are:

 • The automount command

 • The autofs kernel extension

 • The automountd daemon
Networking Enhancements 187

The automount command is called at system startup time from /etc/rc.tcpip. It
loads the autofs kernel extension if it is not already loaded and reads the master
map information from the file /etc/auto_master. The automount command then
passes the information it read from the master map to the autofs kernel
extension. It then starts the automountd daemon and terminates.

The autofs kernel extension reads the information passed to it from the
automount command and maintains an internal table of the autofs mounts. These
autofs mounts are not automatically mounted at startup time. They are points
under which file systems can be mounted in the future.

When a client attempts to access a file system that is not presently mounted, the
autofs kernel extension intercepts the request and gets the automountd to mount
the requested directory. The automountd daemon locates the directory, mounts it
within autofs, and replies. On receiving the reply, autofs allows the waiting
request to proceed. Subsequent references to the mount are redirected by the
autofs. No further participation is required by automountd.

With this implementation of automatic mounting, the automountd daemon is
completely independent from the automount command. Because of this
separation, it is possible to add, delete, or change map information without first
having to stop and start the automountd daemon process. Once the file system is
mounted, further access does not require any action from automountd.

7.14.2.2 AutoFS Maps
AutoFS uses files referred to as maps for administration of network files. The map
files contain information about filesystems and the names of the hosts on the
network where the filesystems reside. Maps can be available locally or through a
network name service like NIS. AutoFS uses three types of maps:

 • Master maps
 • Direct maps
 • Indirect maps

7.14.2.3 Master Maps
The auto_master map associates a directory with a map. It is a master list
specifying all the maps that autofs should know about.

Each line in the master map /etc/auto_master has the following syntax:

mount-point map-name [mount-options]

Mount-point
mount-point is the full (absolute) path name of a directory. If the directory does
not exist, autofs creates it if possible. If the directory exists and is not empty,
mounting on it hides its contents. In this case, autofs issues a warning message.

Map-name
map-name is the map autofs uses to find directions to locations, or mount
information. If the name is preceded by a slash (/), autofs interprets the name as
a local file. Otherwise, autofs searches for the mount information using the
search specified in the name service switch configuration file.
188 AIX Version 4.3 Differences Guide

Mount-options
mount-options is an optional, comma-separated list of options that apply to the
mounting of the entries specified in map-name unless the entries in map-name
list other options. The mount-options are the same as those for a standard NFS
mount, except that bg (background) and fg (foreground) do not apply.

The auto_master map also has two special entries. They are:

+auto_master
/net -hosts -nosuid

The +auto_master entry is a reference to an external NIS master map. If one
exists, then its entries are read as if they occurred in place of the +auto_master
entry.

The /net entry is a mechanism that allows an NFS client to access all filesystems
exported by a server. For example, accessing /net/fred will cause the autofs
system to mount all of the filesystems exported by the machine fred under the
root mount point /net/fred.

7.14.2.4 Direct Maps
A direct map is an automount point. With a direct map, there is a direct
association between a mount point on the client and a directory on the server.
Direct maps have a full path name and indicate the relationship explicitly. Lines in
direct maps have the following syntax:

 mount-point [mount-options] location

Key
The key is the path name of the mount point in a direct map.

Mount-options
The mount-options are the options you want to apply to this particular mount.
They are required only if they differ from the map default.

Location
The location is the location of the file system. Specified as server:pathname.

An example of typical /etc/auto_direct map is:

 /usr/local -ro \
 /bin goanna:/export/local/bin \
 /share goanna:/export/local/share \
 /src goanna:/export/local/src
 /usr/man -ro echidna:/usr/man \
 platypus:/usr/man \
 wombat:/usr/man \
 /usr/games -ro koala:/usr/games
 /usr/spool/news -ro wallaby:/usr/spool/news \
 wombat:/var/spool/news
Networking Enhancements 189

7.14.2.5 Indirect Maps
An indirect map uses a substitution value of a key to establish the association
between a mount point on the client and a directory on the server. Indirect maps
are useful for accessing specific file systems like home directories. The
auto_home map is an example of an indirect map. Lines in indirect maps have
the following syntax:

 key [mount-options] location

Key
key is a simple name (no slashes) in an indirect map.

Mount-options
The mount-options are the options you want to apply to this particular mount.
They are required only if they differ from the map default.

Location
The location is the location of the file system, specified as server:pathname.

An example of a typical auto_home map is:

 dale wombat:/export/home/dale
 victor taipan:/export/home/victor
 andrew emu:/export/home/andrew
 swamy wallaby:/export/home/swamy
 julia redback:/export/home/julia
 tony goanna:/export/home/tony
 george -rw,nosuid koala:/export/home/george

As an example, assume that the previous map is on host echidna. If user george
has an entry in the password database specifying his home directory as
/home/george, then whenever he logs into computer echidna, autofs mounts the
directory/export/home/george residing on the computer koala.

7.14.3 NFS Server Performance Enhancement (4.3.2)
The NFS server performance of AIX 4.3.2 is enhanced with the implementation of
a vnode cache in the JFS component of the kernel. The cache enables the NFS
server code to translate an NFS file handle to a local vnode structure more
efficiently than previous versions of AIX. As a result, the NFS server code spends
less time holding a VFS lock word, which in turn, increases the available
throughput of the NFS server.
190 AIX Version 4.3 Differences Guide

Chapter 8. Graphical Environment Enhancements

Prior to the release of AIX Version 4.3, IBM shipped X11 Release 5 and additional
backward-compatibility libraries plus Motif Version 1.2. AIX Version 4.3 provides
graphics updates to two existing products. The first update, release 6 of the
X-window system (X11R6), allows developers to use new extensions and
enhancements to existing extensions. The second update, MotifNext or Motif 2.1,
provides a range of new function including thread safe libraries and 64-bit
enablement.

8.1 X-Windows Architecture Review

The X-windows architecture consists of three basic components: The client,
protocol, and server. These components will be the subject of the following
sections.

8.1.1 Client
The X Client is a software application that requests services from another
application called the server, possibly across a network. A typical example would
be a stock control application that used the services of an X Station to display
output and accept user input from a keyboard or other input device. It is normally
written in a high-level language, commonly C, and is linked with one or more of
the X libraries. The instructions that the application developer uses to interact
with the server are very low-level and allow them to open a connection with the
server, create and manipulate windows, draw elementary shapes (lines,
rectangles, circles, characters, and so on), and handle events, such as mouse
movements or keystrokes. To increase productivity, toolkits have been developed
that perform complex operations by calling several elementary subroutines. The
most elaborate toolkits, such as Athena or Motif, also contain widgets. Widgets
are program objects with a predefined appearance and behavior, such as a menu
push button. The standard toolkits provided with AIX are:

Xt The basic X toolkit with hundreds of standard functions, also called
intrinsics.

Xaw The Athena Widget set from the X Consortium.

Xmu Miscellaneous utilities.

Xext The extension library.

Xi The input extension library. It manages the peripherals, that is,
keyboard and mouse.

Xm The Motif library of widgets with a 3D-look.

8.1.2 Protocol
The protocol is a formal description of the conversation that is carried out
between the client and the server. The server and clients exchange information
using messages. These messages are contained in packets that can be
transported over a network if necessary. There are four packet types:

Request Used by the client to ask the server to perform an action.

Reply Used by the server to answer the client after a request has been
received.
© Copyright IBM Corp. 1998 191

Event Used by the server to inform the client that something has happened
that requires action by the client.

Error Used to indicate that something went wrong.

8.1.3 Server
The server is a program that runs on the workstation in which a graphical display
is attached. The server program, called X, consists of two parts. One part is
device-independent (dix) and interprets requests from Xlib, schedules client
activity, manages the return of events and input to the Xlib library, and performs
other generic actions. The second part is device-dependent (ddx) and renders
the 2D graphic operations defined by the X-window system for the specific
display adapter. The loadddx GAI (Graphic Adapter Interface) load module
implements this interface. The server modules have strictly-defined function and
peripheral support, and the only way to increase the capability of the X-server is
through extensions. Extensions are new modules that can be loaded into the
server and used to perform actions that the basic modules are incapable of.

For example, the core server (the core server is the name given to the server
without any extensions) only supports the keyboard and mouse as peripherals. If
you intend to use other peripherals such as a spaceball, dials, or scanner, you
need to load an extension that is capable of handling these devices.

All of the extensions that are capable of being loaded will be discussed in the
following section.

8.2 X-Windows System Release 6

The sixth release of the X-window system has been ported to AIX Version 4.3
from software provided by the X Consortium. The X Consortium is an
independent, non-profit corporation, the successor to the MIT X Consortium,
which was part of the MIT Laboratory for Computer Science. The actual source
for the port was X11 Release 6.2, which is a proper subset of X11 R6.3 produced
at the request of the OSF Common Desktop Environment (CDE) program. It was
produced by the X Consortium and is being released by OSF simultaneously with
CDE 2.1. Release 6.2 contains only the print extension and the Xlib
implementation of vertical writing and user-defined character support. R6.3 is an
update to R6.1. It is compatible with R6 and R6.1 at the source and protocol
levels in all respects, and binaries are upward-compatible.

This section describes changes in X11 since Release 5. Release 6.2 contains
new function in many areas. In addition, many errors have been corrected.
Except where noted, all libraries, protocols, and servers are upward-compatible
with Release 5. That is, R5 clients and applications should continue to work with
R6 libraries and servers.

The following are new X Consortium standards in Release 6. Each is described in
its own section below:

 • X11 Security

 • X Image Extension

 • Inter-Client Communications Conventions Manual (update)

 • Inter-Client Exchange Protocol
192 AIX Version 4.3 Differences Guide

 • Inter-Client Exchange Library

 • X Session Management Protocol

 • X Session Management Library

 • Input Method Protocol

 • X Logical Font Descriptions (update)

 • SYNC Extension

 • XTEST Extension

 • BIG-REQUESTS Extension

 • XC-MISC Extension

 • X Keyboard Extension (XKB)

 • RECORD Extension

 • Double Buffer Extension (DBE)

 • ICE X Rendezvous

 • Print Extension

 • Xlib Vertical Writing and User-Defined Characters

8.2.1 X11 Security
The X11R6 implementation provides five access control mechanisms, of which
the two listed below are supported in AIX 4.3:

Host Access
Any client on a host in the host access control list is allowed access to
the X-server. The access control list is changed with the xhost
command.

MIT-MAGIC-COOKIE-1
A 128-bit plain-text cookie is provided by the client with the connection
setup information. The xdm program automatically configures the
X-server and client for each new login session.

8.2.2 X Image Extension
The sample implementation in Release 6 is a complete implementation of the full
XIE 5.0 protocol except for the following techniques that are excluded from the
sample implementation:

 • ColorAlloc: Match, Requantize

 • Convolve: Replicate

 • Decode: JPEG (lossless)

 • Encode: JPEG (lossless)

 • Geometry: AntialiasByArea, AntialiasByLowpass

8.2.3 Inter-Client Communications Conventions Manual
X11 Release 6 includes Version 2.0 of the Inter-Client Communications
Conventions Manual (ICCCM). This version contains a large number of changes
and clarifications in the areas of window management, selections, session
management, and resource sharing.
Graphical Environment Enhancements 193

8.2.3.1 Window Management
The circumstances under which the window manager is required to send
synthetic ConfigureNotify events have been clarified to ensure that any
ConfigureWindow request issued by the client will result in a ConfigureNotify
event, either from the server or from the window manager. It also added advice
about how a client should inspect events to minimize the number of situations
where it is necessary to use the TranslateCoordinates request.

The window_gravity field of WM_NORMAL_HINTS has a new value,
StaticGravity, which specifies that the window manager should not shift the client
windows location when re-parenting the window.

The base size in the WM_NORMAL_HINTS property is now to be included in the
aspect-ratio calculation.

The WM_STATE property now has a formal definition (it was previously only
suggested).

8.2.3.2 Selections
The CLIENT_WINDOW, LENGTH, and MULTIPLE targets have been clarified. A
number of new targets for Encapsulated PostScript and the Apple Macintosh
PICT-structured graphics format have been added. Also, a new selection property
type C_STRING (a string of non-zero bytes) was defined. This is in contrast to
the STRING type, which excludes many control characters. A selection requester
can now pass parameters with the request. Another new facility is manager
selections. This use of the selection mechanism is not to transfer data, but to allow
clients known as managers to provide services to other clients. Version 2.0 also
specifies that window managers should hold a manager selection. Currently, the
only service defined for window managers is to report the ICCCM version number
in which the window manager complies. Now that this facility is in place,
additional services can be added in the future.

8.2.3.3 Resource Sharing
A prominent new addition in Version 2.0 is the ability of clients to take control of
colormap installation under certain circumstances. Earlier versions of the ICCCM
specified that the window manager had exclusive control over colormap
installation. This proved to be inconvenient for certain situations, such as when a
client has the server grabbed. Version 2.0 allows clients to install colormaps after
having informed the window manager. Clients must hold a pointer grab for the
entire time they are doing their own colormap installation.

Version 2.0 also clarifies a number of rules about how clients can exchange
resources. These rules are important when a client places a resource ID into a
hints property or passes a resource ID through the selection mechanism.

8.2.3.4 Session Management
Some of the properties in Section 5 of ICCCM 1.1 are now obsolete, and new
properties for session management have been defined.

8.2.4 ICE (Inter-Client Exchange)
ICE provides a common framework in which to build protocols. It supplies
authentication, byte order negotiation, version negotiation, and error reporting
conventions. It supports multiplexing multiple protocols over a single transport
194 AIX Version 4.3 Differences Guide

connection. ICElib provides a common interface to these mechanisms so that
protocol implementors do not need to reinvent them. An iceauth program was
written to manipulate an ICE authority file. It is very similar to the xauth program.

8.2.5 SM (Session Management)
The X Session Management Protocol (XSMP) provides a uniform mechanism for
users to save and restore their sessions using the services of a network-based
session manager. It is built on ICE. SMlib is the C interface to the protocol. There
is also support for XSMP in Xt. A simple session manager, xsm, is included.

A new protocol, rstart, greatly simplifies the task of starting applications on
remote machines. It is built upon already existing remote execution protocols
such as rsh. The most important feature that it adds is the ability to pass
environment variables and authentication data to the applications being started.

8.2.6 X Logical Font Description
The X Logical Font Description has been enhanced to include general 2D linear
transformations, character set subsets, and support for polymorphic fonts.

8.2.7 SYNC Extension
The SYNC extension lets clients synchronize through the X- server. This
eliminates the network delays and the differences in synchronization primitives
between operating systems. The extension provides a general counter resource,
allowing clients to alter the value of a counter and block their execution until a
counter reaches a specific threshold. For example, two clients share a counter
initialized to zero; one client can draw some graphics and then increment the
counter. The other client can block until the counter reaches a value of one and
then draw some additional graphics.

8.2.8 XC-MISC Extension
A new extension, XC-MISC, allows clients to retrieve ID ranges from the server.
Xlib handles this automatically. This is useful for long-running applications that
use many IDs over their lifetime.

8.2.9 BIG-REQUESTS Extension
The standard X protocol only allows requests up to 218 bytes long. A new protocol
extension, BIG-REQUESTS, has been added that allows a client to extend the
length field in protocol requests to be a 32-bit value. This is useful for PEX and
other extensions that transmit complex information to the server. The
BIG-REQUESTS have already been implemented by IBM as an extension to X11
Release 5.

8.2.10 Double Buffer Extension (DBE)
The Double Buffer Extension (DBE) provides a standard way to utilize
double-buffering, allowing flicker-free animation.

The older Multi-Buffering extension is not linked in to the X-server by default. It
will move to unsupported status at the next release.
Graphical Environment Enhancements 195

8.2.11 X Keyboard Extension
Prior to the introduction of the X Keyboard Extension (XKB) in X11R6, the core X
protocol was used for keyboard interaction. The core X protocol has a number of
limitations that make it difficult, or impossible, to properly support many common
varieties of keyboard behavior. The X Keyboard Extension provides capabilities
that are lacking, or cumbersome, in the core X protocol.

8.2.11.1 XKB Keyboard Extension Support for Keyboards
The X Keyboard Extension makes it possible to clearly and explicitly specify most
aspects of keyboard behavior on a per-key basis. It adds the notion of a keyboard
group to the global keyboard state and provides mechanisms to closely track the
logical and physical state of the keyboard. For keyboard-control clients, XKB
provides descriptions and symbolic names for many aspects of keyboard
appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls
designed to make keyboards more accessible to people with mobility
impairments.

8.2.11.2 XKB Extension Components
The XKB extension is composed of two parts:

 • A server extension.

 • A client-side Xlibrary extension.

The server portion of the XKB extension encompasses a database of named
keyboard components, in unspecified format, that may be used to configure a
keyboard. Internally, the server maintains a keyboard description that includes the
keyboard state and configuration (mapping). Keyboard is defined as the logical
keyboard device, which includes not only the physical keys, but also potentially a
set of up to 32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of
which may be manipulated separately. The individual components are shown in
Figure 45.
196 AIX Version 4.3 Differences Guide

Figure 45. XKB Server Extension

Client Map The key mapping information needed to convert arbitrary
keycodes to symbols.

Server Map The key mapping information categorizing keys by function
(which keys are modifiers, how keys behave, and so on).

Controls Client configured quantities affecting how the keyboard
behaves, such as repeat behavior and modifications for
people with movement impairments.

Indicators The mapping of behavior to indicators.

Geometry A complete description of the physical keyboard layout
sufficient to draw a representation of the keyboard.

Names A mapping of names to various aspects of the keyboard,
such as individual virtual modifiers, indicators, and bells.

Compatibility Map The definition of how to map core protocol keyboard state to
XKB keyboard state.

A client application interrogates and manipulates the keyboard by reading and
writing portions of the server description for the keyboard. In a typical sequence,
a client would fetch the current information it is interested in, modify it, and write it
back. If a client wants to track some portion of the keyboard state, it typically
maintains a local copy of the portion of the server keyboard description working
with the items of interest and updates this local copy from events describing state
transitions that are sent by the server. A client may request the server to
reconfigure the keyboard either by sending explicit reconfiguration instructions or

X Server
XKB Server Extension

Client Map Server Map Compatibility Map

Controls Indicator Map Names Geometry

Server Database of Keyboard
Components
Graphical Environment Enhancements 197

by telling it to load a new configuration from its database of named components.
Partial reconfiguration and incremental reconfiguration are both supported

8.2.11.3 Groups and Shift Levels
The graphic characters, or control functions, that can be accessed by one key are
logically arranged in groups and levels. For example, the Radio Group is a set of
keys whose behavior simulates a set of radio buttons. Once a key in a radio
group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously-depressed key is logically released.
Consequently, at most one key in a radio group can be logically depressed at one
time. A radio group is defined by a radio group index, an optional name, and by
assigning each key in the radio group XKBKB_RadioGroup behavior and the
radio group index.

8.2.11.4 Client Types
The X11R6 specification differentiates between three different classes of client
applications as shown in Figure 46.

Figure 46. Types of XKB Clients

 • XKB-aware applications. These applications make specific use of XKB
function and Application Programming Interfaces (APIs) not present in the
core protocol.

X Server

Core Xlib

XKB-Unaware
Application

XKB-Capable
Application

XKB-Aware
Application

Core Xlib

XKB Extensions
to Xlib

XKB Modifications
to Xlib
198 AIX Version 4.3 Differences Guide

 • XKB-capable applications. These applications do not use XKB extended
function and APIs directly. However, they are linked with a version of Xlib that
includes XKB and indirectly benefit from some of XKB's features.

 • XKB-unaware applications. These applications do not make use of XKB
extended function or APIs and require XKB's function to be mapped to core
Xlib function to operate properly.

8.2.11.5 Protocol Errors
The XKB extension adds a single protocol error, BadKeyboard, to the core
protocol errorset. Table 43 lists the protocol errors that can be generated and
their causes.

Table 43. XKB Protocol Errors

8.2.11.6 Extension Library Functions
The X Keyboard Extension replaces the core protocol definition of a keyboard
with a more comprehensive one. The X Keyboard Extension library interfaces are
included in Xlib.

Xlib detects the presence of the X Keyboard server extension and uses XKB
protocol to replace some standard X library functions related to the keyboard. If
an application uses only standard X library functions to examine the keyboard or
process key events, it should not need to be modified when linked with an X
library containing the X keyboard extension. All of the keyboard-related X library
functions have been modified to automatically use XKB protocol when the server
extension is present.

The XKB extension adds library interfaces to allow a client application to directly
manipulate the new capabilities.

8.2.11.7 XKB Client Applications
With XKB, there are several new core clients:

 • xkbcomp

 • xkbevd

 • kbevd

 • xkbprint

Protocol error Error cause

BadAccess The XKB extension has not been properly initialized.

BadKeyboard The device specified was not a valid core or input extension
device.

BadImplementation Incorrect reply from server.

BadAlloc Unable to allocate storage.

BadMatch A compatible version of XKB was not available in the server or an
argument has correct type and range but is otherwise in error.

BadValue An argument is out of range.

BadAtom A name is neither a valid Atom nor None.

BadDevice Device, Feedback Class, or Feedback ID is in error.
Graphical Environment Enhancements 199

8.2.12 X Record Extension
The purpose of this extension is to support the recording and reporting of all core
X protocol and arbitrary X extension protocol.

The extension is used to record the core X protocol and arbitrary X extension
protocol entirely within the X server itself. When the extension has been
requested to record specific protocol by one or more recording clients, the
protocol data is formatted and returned to the recording clients. The extension
provides a mechanism for capturing all events, including input device events that
do not go to any clients.

8.2.13 ICE X Rendezvous
The Inter-Client Exchange protocol (ICE) that became a standard in X11R6
specifies a generic communication framework for data exchange between
arbitrary clients. The ICE protocol itself does not specify the manner in which two
clients interested in communicating using ICE are made aware of each other’s
existence.

The ICE X Rendezvous protocol is one standard protocol by which two clients
who have connections to a common X server can rendezvous. This new protocol
is included in the ICE Protocol Specification document.

8.2.14 Print Extension
The print extension supports output to hardcopy devices using the core X drawing
requests. The print extension adds requests for job and page control and defines
how specific printer attributes are communicated between the server and printing
clients. Printer attribute specifications are modeled after the ISO 10175
specification.

An X Client that wants to produce hardcopy output will typically open a second
connection to an X print server, produce a print job, and then close the print
server connection. The print server may be the same process as the display
server (the term video server is sometimes used), although the implementation
provided in R6.2 does not completely support video and print servers in the same
binary.

8.2.14.1 Running an X Print Server
The print server is simply an X-server with the print extension and special DDX
implementations. The X print server is started like any other X-server. The
following command line is an example for use with a typical configuration:

 # Xprt :1 -ac

The options used in the example are:

:1 On a host that is running a video display server you will need to
specify a different display from the default.

-ac Disable access control since no simple mechanism for sharing keys is
provided.

The X print server also supports the following additional options:

-XpFile
Points to the directory containing the print server configuration files.
200 AIX Version 4.3 Differences Guide

XPCONFIGDIR
Environment variable specifying alternative location of the print server
configuration files.

The print server is configured through a directory of configuration files that define
printer model types and instances of printer models. An example configuration
tree is provided.

By convention, clients locate the print server using the environment variable
XPRINTER. The syntax of XPRINTER is an augmented DISPLAY:

 printerName@host:display

where printerName is one of the printer instances listed in the print server
configuration files. The use of XPRINTER, and its syntax, is an application
convention only; there is nothing in the supplied libraries that uses (or parses)
this environment variable.

8.2.15 Xlib Vertical Writing and User-Defined Characters
The Xlib output method implementation has been enhanced to support the XOM
drawing direction XOMOrientation_TTB_RTL. Vertical writing information, and
other locale specific information, is read from the file
<XLocaleDir>/%L/XLC_LOCALE.

The X[mb|wc]TextEscapement functions now return the text escapement in pixels
for the vertical or horizontal direction depending on the XNOrientation XOCValue.

The X[mb|wc]DrawString functions will now render a character string in the
vertical or horizontal direction depending on the XNOrientation XOCValue.

The Xlib NLS database implementation has been enhanced to support extended
segments used for interchanging non-standard code sets. Support has been
added for control sequences and encoding names used in extended segments
and conversion of glyph indexes when interchanging data in extended segments.

8.2.16 Xlib Library
Xlib now supports multi-threaded access to a single display connection. Xlib
functions lock the display structure, causing other threads calling Xlib functions to
be suspended until the first thread unlocks. Threads inside Xlib waiting to read to
or write from the X-server do not keep the display locked, so, for example, a
thread hanging on XNextEvent() will not prevent other threads from doing output
to the server.

The display and GC structures have been made opaque to normal application
code; references to private fields will get compiler errors. You can work around
some of these by compiling with -DXLIB_ILLEGAL_ACCESS, but it is better to fix
the offending code.

The Xlib implementation has been changed to support a form of asynchronous
replies, meaning that a request can be sent to the server, and then other requests
can be generated without waiting for the first reply to come back. This is used to
an advantage in two new functions, XInternAtoms() and XGetAtomNames(),
which reduce what would otherwise require multiple round trips to the server
Graphical Environment Enhancements 201

down to a single round trip. It is also used in some existing functions, such as
XGetWindowAttributes(), to reduce two round trips to just one.

Support for using poll(), rather than select(), is implemented, selected by the
HasPoll configuration option.

Table 44 provides the Xlib functions that are new in Release 6.

Table 44. New X11R6 Xlib Functions

8.2.17 Xt Toolkit
Support has been added for participation in session management, with call-backs
to application function in response to messages from the session manager. In
addition, the entire library is now thread-safe. This allows one thread at a time to
enter the library and also protects global data from concurrent use. Support is
also provided for registering event handlers for events generated by X protocol
extensions and for dispatching those events to the appropriate widget.

A mechanism has also been added for dispatching events for non-widget
drawings (such as pixmaps used within a widget) to a widget.

Two new widget methods, for instance, allocation and deallocation, allow widgets
to be treated as C++ objects in a C++ environment.

A new interface allows bundled changes to the managed set of children of a
Composite, reducing the visual disruption of multiple changes to geometry layout.

_XAllocTemp() _XFreeTemp()

IsPrivateKeypadKey() XAddConnectionWatch()

XAllocIDs() XCloseOM()

XCreateOC() XContextualDrawing()

XConvertCase() XDestroyOC()

XDirectionalDependentDrawing() XDisplayOfOM()

XESetBeforeFlush() XExtendedMaxRequestSize()

XGetAtomNames() XGetOCValues()

XGetOMValues() XInitImage()

XInitThreads() XInternalConnectionNumbers()

XInternAtoms() XLocaleOfOM()

XLockDisplay() XOMOfOC()

XOpenOM() XProcessInternalConnection()

XReadBitmapFileData() XRegisterIMInstantiateCallback()

XRemoveConnectionWatch() XSetIMValues()

XSetOCValues() XSetOMValues()

XUnlockDisplay() XUnregisterIMInstantiateCallback()
202 AIX Version 4.3 Differences Guide

Several new resources have been added to shell widgets, making the library
compliant with the Release 6 ICCCM. Parameterized targets of selections (new in
Release 6) and the MULTIPLE target are supported with new APIs.

The client will be able to register callbacks on a per-display basis for notification
of a large variety of operations in the X toolkit. This feature is useful to external
agents, such as screen readers.

The file search path syntax has a new %D substitution that inserts the default
search path, making it easy to prepend and append to the default search path.

The Xt implementation allows a configuration choice of poll() or select() for I/O
multiplexing, selectable at compile time by the HasPoll configuration option.

The Release 6 Xt implementation requires Release 6 Xlib. Specifically, it uses the
following new Xlib features: XInternAtoms() instead of multiple XInternAtom()
calls where possible, input method support (Xlib internal connections), and tests
for the XVisibleHint in the flags of XWMHints.

When linking with Xt, you now need to link with SMlib and ICElib as well. This is
automatic if you use the XTOOLLIB make variable or XawClientLibs make
variable in your Imakefiles.

This implementation no longer allows NULL to be passed as the value in the
name/value pair in a request to XtGetValues(). The default behavior is to print the
following error message and exit:

NULL ArgVal In XtGetValues

8.2.18 Xaw Toolkit
Some minor code corrections have been integrated. Text and Panner widget
translations have been augmented to include keypad cursor keysyms in addition
to the normal cursor keysyms.

The Clock, Logo, and Mailbox widgets have moved to their respective
applications.

Internationalization support is now included. Xaw uses native widechar support
when available; otherwise, it uses the Xlib widechar routines. Per-system
specifics are set in XawI18n.h.

8.2.18.1 AsciiText
The name AsciiText is now a misnomer but has been retained for
backward-compatibility. A new resource, XtNinternational, has been added. If the
value of the XtNinternational resource is False (the default), AsciiSrc and
AsciiSink source and sink widgets are created, and the widget behaves as it did
for R5. If the value is True, MultiSrc and MultiSink source and sink widgets are
created. The MultiSrc widget will connect to an input method server if one is
available, or if one is not available, it will use an Xlib internal pseudo-input
method that, at a minimum, does compose processing. Application programmers
who want to use this feature will need to add a call to XtSetLanguageProc() to
their programs.

The symbolic constant FMT8BIT has been changed to XawFmt8Bit to be
consistent with the new symbolic constant XawFmtWide. FMT8BIT remains for
Graphical Environment Enhancements 203

backwards compatibility; however, its use is discouraged as it will eventually be
removed from the implementation.

Two new resources have been added, XtNinternational and XtNfontSet. These
resources have been added to the following widgets:

 • Command widget

 • Label widget

 • List widget

 • MenuButton widget

 • Repeater widget

 • SmeBSB widget

 • Toggle widget

If XtNinternational is set to True, the widget displays its text using the specified
font set.

8.2.19 Header Files
Two new macros are defined in Xos.h, X_GETTIMEOFDAY and strerror.

X_GETTIMEOFDAY is like gettimeofday() but takes one argument on all systems.
strerror is defined only on systems that do not already have it.

A new header file, Xthreads.h, provides a platform-independent interface to
threads functions on various systems. When programming, include it instead of
the system threads header file. Use the macros defined in it instead of the system
threads functions.

Xalloca.h is solely responsible for defining ALLOCATE_LOCAL and
DEALLOCATE_LOCAL. You should be able to add or update a platform's support
for alloca() by editing this one file instead of finding and changing the multiple
definitions that existed previously. Xpoll.h allows more portable, consistent
select() and poll() use in the clients, including getting the fd_set properly defined.
The servers still use select() on all systems, even those that have poll().

8.2.20 Fonts
There are three new Chinese bdf fonts: gb16fs.bdf, gb16st.bdf, and gb24st.bdf.

The Type 1 fonts contributed by Bitstream, IBM, and Adobe that shipped in
/contrib in Release 5 have been moved into the core. Some of the misc fonts,
mostly in the Clean family, have only the ASCII characters but were incorrectly
labeled ISO8859-1. These fonts have been renamed to be ISO646.1991-IRV.
Aliases have been provided for the Release 5 names.

The 9x15 font has new shapes for some characters. The 6x10 font has the entire
ISO 8859-1 character set.

8.2.20.1 Font Library
The Type 1 rasterizer that shipped in /contrib in Release 5 is now part of the core.

There is an option to have the X server request glyphs only as it needs them. The
X-server then caches the glyphs for future use.
204 AIX Version 4.3 Differences Guide

Aliases in a fonts.alias file can allow one scalable alias name to match all
instances of another font. The exclamation (!) character introduces a comment
line in fonts.alias files.

A sample font authorization protocol, hp-hostname-1, has been added. It is based
on host names and is non-authenticating. The client requesting a font from a font
server provides (or passes through from its client) the host name of the ultimate
client of the font.

Note: There is no check that this host name is accurate, as this is a sample
protocol only.

The Speedo rasterizer can now read fonts with retail encryption. This means that
fonts bought over-the-counter at a computer store can be used by the font server
and X-server.

8.2.20.2 Font Server
The font server has been renamed from fs to xfs to avoid confusion with an AFS
program. The fsconf utility is also renamed to xfsconf. The default port has
changed from 7000 (used by AFS) to 7100 and has been registered with the
Internet Assigned Numbers Authority. Until AIX 4.2.1, the default port was 7500
to avoid conflict with the IBM X Station at the time R5 was first shipped on AIX.
This is changed to the new X11R6 default port.

You can now connect to xfs using the local/transport.

8.2.21 X Input Method
For each of the different locales, there is a single default input method associated
with it. The AIX X-window system, prior to the release of X11R6, used the
following default X Input Methods (XIM):

Local A local single byte input method

Thai A local type Thai input method

X11R6 XIM Protocol All of server type input methods

As well as these input methods, AIX provides a native input method, AIX IM, with
the release of X11R6. The AIX implementation of X11R6 puts the AIX Input
Method as the default input method.

8.2.21.1 XIM Module Loader
The introduction of the AIX Input Method as the default input method changes the
loading priority of the different input method modules. The new order is show in
the Table 45.

Table 45. XIM Module Loading Priorities

Priority XIM Module Locales XMODIFIERS

1 AIX IM AIX system Depend on AIX IM

2 XC’s Local XLOCALEDIR Local, none

3 XC’s Thai th Don’t care

4 XC’s Proto XIM server Depend on IM servers
Graphical Environment Enhancements 205

The following is a list of AIX XIM module features:

 • AIX XIM module has the first loading priority.

 • AIX XIM module tries to query specified language and IM modifier
(XMODIFIERS) to the AIX Input Method.

8.2.21.2 AIX XIM Interface for Input Method Switching
X Consortium's sample code implements an input method switching mechanism
at the top of XIM layer. All X input methods are registered at _XimImSportRec in
the imImSw.c file. The _XimOpenIM() function invokes the checkprocessing
method of the registered X input method to check that the X input method is
supported by the specified locale and IM modifier. If the input method is
supported, then the _XimOpenIM() function calls im_open method of the XIM. If it
fails to open IM, then the im_free method is called to close it down.

The following section describes the methods provided by AIX's XIM module:

(*checkprocessing)() - _XimCheckIfAIXProcessing
This routine is called from the _XimOpenIM() function to check that a XIM module
supports specified IM information (locale and modifiers).

This function returns True with the following conditions:

 • If the XMODIFIERS is not specified, and the specified locale is supported by
the AIX Input Method.

 • If the specified XMODIFIERS and locale combination are supported by the
AIX Input Method.

If the XMODIFIERS is specified, a combined AIX IM name is used to check if the
specified locale and modifier combination are supported by the AIX IM. To make
a combined AIX name, concatenate the IM modifier to the locale name. The AIX
IM function accepts a language name that contains the IM modifier @im=.

For example:

$LANG = xx_XX

$XMODIFIERS = @im=foo

Combined Name = xx_XX@im=foo

AIX IM module = xx_XX@foo

(*im_open)() - _XimAIXOpenIM
This routine is called from the _XimOpenIM() function when an application calls
XOpenIM().

(*im_free)() - _XimAIXIMFree
This routine is called from the im_free() function and is used to close down the
input method.

8.2.22 Input Method Protocol
Some languages need complex pre-editing input methods. Such an input method
may be implemented separately from applications in a process called an Input
Method (IM) Server. The IM Server handles the display of pre-edit text and the
user's input operation. The Input Method (IM) Protocol standardizes the
206 AIX Version 4.3 Differences Guide

communication between the IM Server and the IM library linked with the
application.

The IM Protocol is a completely new protocol based on experience with R5’s
sample implementations. The following new features are added beyond the
mechanisms in the R5 sample implementations:

 • The IM Server can support any of several transports for connection with the IM
library.

 • Both the IM Server and clients can authenticate each other for security.

 • A client can connect to an IM Server without restarting, even if it starts up
before the IM Server.

 • A client can initiate string conversion to the IM Server for reconversion of text.

 • A client can specify some keys as hot keys, which can be used to escape from
the normal input method processing regardless of the input method state.

The R6 sample implementation for the internationalization support in Xlib has a
new plugin framework with the capability of loading and switching locale object
modules dynamically. For backward compatibility, the R6 sample implementation
can support the R5 protocols by switching to IM modules supporting those
protocols. In addition, the framework provides the following new functions and
mechanisms:

X Locale database format
An X locale database format is defined, and the subset of a user's
environment dependent on language is provided as a plain ASCII text
file. You can customize the behavior of Xlib without changing Xlib
itself.

ANSI C and non-ANSI C bindings
The common set of methods and structures are defined that bind the X
locale to the system locales within libc, and a framework for
implementing this common set under non-ANSI C base system is
provided.

Converters
The sample implementation has a mechanism to support various
encodings by plugin converters and provides the following converters:

 • Light-weight converter for C and ISO 8859

 • Generic converter

 • High-performance converter for Shift-JIS and EUC

 • Converter for UCS-2 defined in ISO/IEC 10646-1

Locale modules
The library is implemented so that input methods and output methods
are separated and are independent of each other. Therefore, an
output-only client does not link with the IM code, and an input-only
client does not link with the OM code. Locale modules can be loaded
on demand if the platform supports dynamic loading.

Transport Layer
There are several kinds of transports for connection between the IM
library and the IM Server. The IM Protocol is independent of a specific
transport layer protocol, and the sample implementation has a
Graphical Environment Enhancements 207

mechanism to permit an IM Server to define the transports that the IM
Server is willing to use. The sample implementation supports transport
over the X protocol, TCP/IP, and DECnet.

There are IM Servers for Japanese, Korean, and internationalized clients using
IM services.

8.2.23 New Functions
The following sections discuss the newest AIX functions.

8.2.23.1 Input Method Values
Table 46 provides the input method values.

Table 46. New Input Method Values

8.2.23.2 Input Context Values
Table 47 provides the input context values.

Table 47. New Input Context Values

XIM Value Supported as XIM Value Optional in R6

XNQueryInputStyle Yes

XNResourceName Yes

XNResourceClass Yes

XNDestroyCallback Yes

XNQueryIMValuesList Yes

XNQueryICValuesList Yes

XNVisiblePostion No Optional

XNR6PreeditCallbackBehavior No Optional

XIC Value Supported as XIC Value Optional in R6

XNArea Yes

XNAreaNeeded Yes

XNBackground Yes

XNBackgroundPixmap Yes

XNClientWindow Yes

XNColormap Yes

XNCursor Yes

XNDestroyCallback Yes

XNFilterEvents Yes

XNFocus Window Yes

XNFontSet Yes

XNForeground Yes

XNGeometryCallback Yes
208 AIX Version 4.3 Differences Guide

8.2.24 X Output Method
Locale-dependent text may include one or more text components, each of which
may require different fonts and character set encodings. In some languages,
each component might have a different drawing direction, and some components
might contain context-dependent characters that change shape based on
relationships with neighboring characters.

When drawing such locale-dependent text, some locale-specific knowledge is
required; for example, what fonts are required to draw the text, how the text can
be separated into components, and which fonts are selected to draw each
component. Furthermore, when bidirectional text must be drawn, the internal
representation order of the text must be changed into the visual representation
order to be drawn. An X Output Method provides a functional interface so that
clients do not have to be aware of locale-dependent details.

Two different abstractions are used in the representation of the output method for
clients:

 • The abstraction used to communicate with an output method is an opaque
data structure represented by the XOM datatype.

 • The abstraction for representing the state of a particular output thread is
called an output context. The Xlib representation of an output context is an
XOC, which is compatible with XFontSet (see Section 8.2.25.1,
“XLC_FONTSET Category” on page 210) in terms of its functional interface.

8.2.24.1 Output Method Functions
The following are the various output method functions:

 • XOpenOM()

 • XCloseOM()

 • XSetOMValues()

XNHotKey Yes Optional

XNHotKeyState Yes

XNInputStyle Yes

XNLineSpacing Yes

XNPreeditCallbacks Yes

XNPreeditState Yes Optional

XNPreeditStateNotifyCallback Yes

XNResetState Yes Optional

XNResourceClass Yes

XNResourceName Yes

XNStatusCallbacks Yes

XNStringConversion No Optional

XNStringConversionCallback No Optional

XIC Value Supported as XIC Value Optional in R6
Graphical Environment Enhancements 209

 • XGetOMValues()

 • XDisplayOfOM()

 • XLocaleOfOM()

8.2.24.2 Output Context Functions
An output context is an abstraction that contains both the data required by an
output method and the information required to display that data. There can be
multiple output contexts for one output method. The programming interfaces for
creating, reading, or modifying an output context use a variable argument list.
The name elements of the argument lists are referred to as XOCvalues. It is
intended that output methods be controlled by these XOCvalues. As new
XOCvalues are created, they should be registered with the X Consortium. An
XOC can be used anywhere an XFontSet() can be used, and conversely.

The concepts of output methods and output contexts include broader, more
generalized, abstraction than font set, supporting complex and more intelligent
text display, and dealing not only with multiple fonts but also with context
dependencies. However, XFontSet() is widely-used in several interfaces, so XOC
is defined as an upward-compatible type of XFontSet().

8.2.25 X11R6 NLS Database
The locale sensitive functions in Xlib refer to the X NLS database or X Locale
Database. The Locale Database is the internationalized portion of Xlib but is not
actually part of Xlib itself. This allows easier customizing of the X Locale
Database without affecting the X environment.

In X11R6 the constituent elements of an X NLS database are:

 • locale_name/XLC_LOCALE

 • locale_name/Compose

 • locale.alias

 • locale.dir

 • locale.ldx

 • compose.dir

 • tbl_data/charset_table

In X11R6 the location of the NLS database has changed from that of X11R5.
Currently, the X11R5 NLS database is found under /usr/lib/X11/nls, and the
X11R6 NLS database is found under /usr/lib/X11/locale. This is of importance
from a binary-compatibility standpoint with X11R5 libX11.a provided for
backwards-compatibility.

Each locale database file (XLC_LOCALE) contains one or more category
definitions. In X11R6, the category XLC_FONTSET defines the XFontSet-related
information, and the category XLC_XLOCALE defines the character classification
and encoding conversion information.

8.2.25.1 XLC_FONTSET Category
The XLC_FONTSET category defines the XFontSet relative information. It
contains the CHARSET_REGISTRY_CHARSET_ENCODING name and
210 AIX Version 4.3 Differences Guide

character mapping side (GL, GR, and so on), which is used in the X output
method, see Section 8.2.24, “X Output Method” on page 209.

The XLC_FONTSET information is held in the class fsN (where N=0,1, 2,...). The
fsN class includes encoding information for the Nth character set or charset. For
example, if there are four charsets available in the current locale, four fontsets,
fs0, fs1, fs2, and fs3, should be defined. This class has two subclasses:

charset Specifies encoding information to be used internally in Xlib for this
fontset. An example of the charset format is ISO8859-1:GL

font Specifies a code set of the font to be used internally in Xlib for
searching appropriate fonts for this fontset. The left-most entry in this
field has the highest priority.

The XLC_FONTSET category also contains two classes not documented in the
X11R6 "X Locale Database Definition". These are:

object_name
Allows selection of which X Output Method (XOM) will be used.

on_demand_loading
Delays loading the fonts (not the font information) until they are
actually needed. In some cases the on_demand_loading feature has
been used to improve font performance.

8.2.25.2 XLC_XLOCALE Category
The XLC_XLOCALE category defines character classification, conversion, and
other character attributes.

Note: The X11R5's locale database is not compatible with X11R6's locale
database.

8.2.25.3 locale_name/Compose
The locale_name/Compose file contains the compose sequence rule of the locale
for the local input method. This file is mapped to the compose.dir file according to
a locale full name (see Section 8.2.25.4, “Configuration Files” on page 211). This
file is not used by the AIX specific input methods. AIX supplies compose tables
as part of the base operating system.

8.2.25.4 Configuration Files
All configuration files of the X11R6 NLS database are under the
/usr/lib/X11/locale directory.

locale.alias This file maps a simplified locale name, or alias, to a full locale
name. For example, en_US to en_US.ISO8859-1. The
locale.alias file is referenced first by Xlib to map the simplified
platform-specific locale name to the X internal full locale name.
Xlib uses the full locale name to lookup further information.

locale.dir This file maps a full locale name to the locale database file that
should be read. The locale.dir file is referenced after the
locale.alias file to determine the locale definition file
corresponding to the X internal locale name. For example,
en_US.ISO8859-1 to iso8859-1/XLC_LOCALE. Note that
/usr/lib/X11/locale is assumed, so libX11 should read in the file
Graphical Environment Enhancements 211

/usr/lib/X11/locale/iso88590-1/XLC_LOCALE when running in the
en_US locale.

locale.ldx This file is read by the AIX dynamic locale loader and maps a
locale name to an AIX-specific XLC. For every locale, one of the
following is specified:

STATIC - Tells the AIX locale loader to use the statically linked AIX
XLC object.

DYNAMIC - Specifies that an XLC should be dynamically loaded.

NONE - Tells the AIX locale loader to return without loading a
locale.

8.2.25.5 tbl_data/charset_table
The tbl_data/charset_table file contains the charset conversion table for each
charset. This file is used by the UTF locale in the sample implementation and is
not used by AIX X11R6 XLC.

8.2.26 Command Line Interfaces
The following sections describe several command line interfaces.

8.2.26.1 xhost
Two new families have been registered: LocalHost, for connections over a
non-network transport, and Krb5Principal, for Kerberos V5 principals.

To distinguish between different host families, a new xhost syntax, family:name,
has been introduced. Names are as before, families are as follows:

inet: Internet host
dnet: DECnet host
nis: Secure RPC network name
krb: Kerberos V5 principal
local: contains only one name, ""

The old-style syntax for names is still supported when the name does not contain
a colon.

8.2.26.2 xrdb
Many new symbols are defined to tell you what extensions and visual classes are
available.

8.2.26.3 twm
An interface for setting client priorities with the SYNC extension has been added.

8.2.26.4 xdm
There is a new resource, choiceTimeout, that controls how long to wait for a
display to respond after the user has selected a host from the chooser.

Support has been added for a modular, dynamically-loaded, greeter library. This
feature allows different dynamic libraries to by loaded by xdm at run time to
provide different login window interfaces without access to the xdm sources. The
name of the greeter library is controlled by another new resource, greeterLib.
212 AIX Version 4.3 Differences Guide

When you log in through xdm, xdm will use your password to obtain the initial
Kerberos tickets and store them in a local credentials cache file. The credentials
cache is destroyed when the session ends.

8.2.26.5 xterm
The xterm terminal emulator has been minimally internationalized to use the Xlib
built-in input method with 8-bit character sets.

There is now support for a few escape sequences from HP terminals, such as
memory locking. The termcap and terminfo files have been updated to reflect
this.

The logging feature of xterm has been removed. This change first appeared as a
public patch to Release 5.

8.2.26.6 xset
The screen saver control option has two new suboptions to immediately activate,
or deactivate, the screen saver:

 xset s activate
 xset s reset

8.2.26.7 imake
The command line option -C filename has been added to imake. This option
specifies the name of the .c file that is constructed in the current directory. The
default is Imakefile.c. Threads.tmpl will be added for multithreaded rules.

8.2.26.8 xsm
The xsm session manager has many enhancements. Advanced signal handling in
xsm appears for the first time in release 6.1. The session manager dtsession from
CDE is the default for AIX.

8.2.26.9 xmh
The xmh mail reader is now session-aware.

8.3 Motif Version 2.1

This chapter provides an overview of all the changes in Motif 2.1 with respect to
Motif 1.2 (and Motif 2.0). Compatibility with CDE/Motif 1.2 was given great
emphasis in this release, even at the expense of compatibility with OSF/Motif 2.0.
Some OSF/Motif 2.0 applications may experience problems because of the
changes.

The next section reviews the features most visible to a desktop end-user, the new
widgets. The following sections concern the toolkit and detail the extensibility
framework, new features in the toolkit, namely Uniform Transfer Model (UTM),
reorganization of the menu system, as well as miscellaneous enhancements.

We also describe how the UIL technology has been enhanced to support the
extensibility framework and how it has become architecture-neutral with regards
to the underlying operating system and computer processor.

A load-only version of the Motif 1.2 libraries is shipped in the X11.motif.lib fileset.
The Motif libraries shipping on AIX 4.3 contain the Motif 1.2 and 2.1 shared
Graphical Environment Enhancements 213

objects, so the default installation of Motif provides versions of Motif for existing
applications (Motif 1.2) and for development of 64-bit and threaded Motif
applications (Motif 2.1). However, there is no binary compatibility path for Motif
1.2 to Motif 2.1 since the shr4.o shared object shipping in libXm.a is Motif 1.2,
and not Motif 2.1.

8.3.1 New Widgets
To match the function of other GUIs, OSF issued a request for widgets in July
1992. The widgets that were selected through this process are a multiple-font text
widget (from Digital), a Container and a Note Book (both from IBM), and a
combo-box also called drop down list, from Lotus. Finally, OSF also included a
thermometer-like scale and a spin box widget. A graphical example of all the new
widgets is presented in Figure 47.

Figure 47. Example of the New Motif Widgets

8.3.1.1 Container Widget
The Container is a critical widget for the direct manipulation, object-oriented
world toward which application software is moving. A container object offers
views of the objects that the application can handle. Through direct manipulation,
the user can select, move, copy, or delete these objects, drag them into other
applications, or drop new objects into the container. The Container widget is a
very powerful tool for application writers. Potentially, every application can be
implemented with a Main Window and a Container. The menu bar of the Main
Window specifies the generic operations on objects, and the container displays
214 AIX Version 4.3 Differences Guide

the objects. A double click on an object activates it, and pop-up menus can be
available for specific operations on the objects.

A Container can contain hierarchical objects that can be decomposed into further
objects. The Container widget offers three kind of views:

 • An icon view, in which every object is represented by an icon.

 • A hierarchical view, also called outline or tree view, which displays the object
tree.

 • A detail view, a tabular view where every object appears as a line in a table
and properties of the object are listed in the columns.

Icon View A container may display the objects in the typical large icon view. In
this view, every object (a top level object of the tree) is displayed as
an icon with a label. The Container widgets support different types
of layout for those icons. The most popular are:

 • Grid mode, where each icon fits into a grid cell.

 • Free mode, where the user can freely move the icons around.

As an illustration, see the right side of Figure 47 with the Aquarium
and the Circuit icons.

Tree View In the tree view, every object at the top level of the hierarchy is
displayed with a small icon. If the object has sub-objects attached,
the hierarchical organization is displayed with lines and indentation
reflecting the tree structure. This can be seen on the left side of
Figure 47 with the folder structuring.

For very large hierarchies that would take too much space, the
Container widget offers a browsing facility. For each level of the
hierarchy, the application can first decide whether or not the
information below that level should be displayed. Secondly it can
tell the container whether or not the user should be allowed to
browse further.

If the user is not allowed to explore that branch of the tree, a
mini-icon is displayed called the collapsed pixmap.

If the user is allowed to explore that branch of the tree, a mini-icon
is displayed called the expand pixmap. Clicking on the expand
pixmaps displays one more level in the hierarchy. As this new level
is displayed, the mini-icon is turned into a collapse pixmap. When
you click on the icon again, that tree branch is removed from the
view.

Detail View The detailed view displays a table where each row represents an
object, and each item in the row is a property of that object. The
application is responsible for providing the detail data and the
rendition attributes for it to be displayed.

8.3.1.2 Note Book
The Note Book is another powerful widget, simulating a real notebook that allows
the application to display one page among a stack of pages, maintaining a
constant page size. The Note Book widget includes pages, tabs, a status area
and the page scroller. It stacks its page children so that all page children occupy
Graphical Environment Enhancements 215

the same area just like real-world book pages. Tabs simulate notebook tabs.
Major tabs are used for dividing pages into several sections, and minor tabs are
used for subdividing the sections. The page scroller is used for switching the
current page back and forth. The Note Book also provides tab scrollers for
scrolling major and minor tabs when it cannot display all tabs. Tab scrollers are
visible and enabled only when there is insufficient space to display all the major
tabs or the minor tabs appropriate to the page. A complex implementation of a
Note Book can be seen in Figure 47.

Major tabs displayed on the side of the Note Book allow the user to quickly
access data. Once a primary tab is chosen (for example, a chapter), the minor
tabs appear in the orthogonal direction (for example, sections) and allow further
indexing inside the relevant parts of the document.

Pages, tabs, status areas, and the page scroller are created by the application as
children of the Note Book widget. Any Motif widget may be a page of the Note
Book. A major tab, or a minor tab, may be attached to a page by creating a tab
child of the Note Book and setting a constraint to the page number of the targeted
page. Note that the notebook widget makes heavy use of the traits of its child
widgets to invoke their class methods. A tab, either a major tab or a minor tab,
must be a Motif widget with a trait that can be activated (such as a push button).
Tabs in a Note Book are associated with a page number not attached to any
actual page widget. Therefore, it is possible to have a tab with an empty page.
Destroying a page widget leaves an empty page. It does not tear the page out of
the XmNotebook.

The page scroller child is not associated with a certain page. There is only one
valid page scroller per Note Book, and it must carry the navigator trait. Since the
application of the Note Book can provide page numbers, it is possible to have
duplicate pages and empty pages. An empty page is a page slot where no page
is inserted. This page displays just a blank background unless the application
provides some visual information to this area while processing. Note that this
feature is very useful for applications that have to display hundreds (or even
thousands) of pages. It is not necessary to have hundreds of physical pages in
memory. An application may actually use only one physical empty page, provide
adequate tab indexing for the real number of pages it supports, and only update
the contents of the (single) physical page with the information when required.

The Note Book widget is a versatile tool. Typical uses are:

 • The display of on-line documentation, with quick access to information by
using the tabs index.

 • Reducing the real estate occupied by an application on the screen by making
visible only the information required at that particular moment. A Note Book
allows a developer to very quickly implement any kind of agenda or calendar
application. It is the optimal base for a card filer application and provides good
support for a hypertext applications.

 • Dialog boxes that have variants. For example, a property sheet dialog box for
a document editor might have a font part and a margin part as pages of the
Note Book.

A Note Book allows a developer to very quickly prototype all kinds of applications
that display organized information, such as a card filer, an agenda, or a calendar
application.
216 AIX Version 4.3 Differences Guide

8.3.1.3 Combo Box
As its name indicates, Combo Box combines the capabilities of a single line text
widget and a list widget that allows users to type in information and also provides
a list of choices to complete the text entry field. The list can either be displayed at
all times or dropped down by the user. That is why Combo Box is sometimes
referred to as drop-down list. An example of a Combo Box is shown on the top right
of Figure 47 with the label Leinad.rev.

When the list portion of the Combo Box is hidden, users are given a visual cue, a
downward-pointing arrow next to the text field. These drop down Combo Boxes
are useful when presentation space is limited or when users will complete the text
entry field more often by typing text than by choosing the entry field text from the
list. The drop down Combo Box list should pop-up in the visible area of the screen
but stay aligned with the text field (that is, at the bottom-edge of the screen, the
list will be up).

The application programmer provides an array of strings that will fill the list. Each
string becomes an item in the list, with the first string becoming the item in
position one, the second string becoming the item in position two, and so on. The
list can actually be manipulated with the regular API of the XmList widget.

Similarly, the text entry may be accessed by using XmTextField API. The size of
the list is set by specifying the number of items that are visible in the list
(XmNvisibleItemCount). If the number of items in the list exceeds the number of
items that are visible, a vertical scroll bar will appear that allows the user to scroll
easily through a large number of items.

A Combo Box allows a single item to be selected in two ways: by scrolling
through the List and selecting the desired item, or by entering text into the text
entry field. Selecting an item from the list causes that item to be displayed in the
text portion of the Combo Box. The single-line text field in a Combo Box can be
either editable or non-editable. If the text field is editable, the user can type
directly into it to enter a new list item. If the application needs to validate the
entered text, it can do so by installing a XmNmodifyVerifyCallbacks on the text
field. If the text field is non-editable, typing text invokes a matching algorithm that
attempts to match the entered text with items in the list.

8.3.1.4 Spin Box
Although more modest, the Spin Box widget offers a quick way of selecting,
cycling, or setting a value within a range. It can be used by a very large range of
applications. The Spin Box function can be implemented using the existing Motif
Arrow Button widget and a label widget. However, the Spin Box widget makes it
much easier for the developer and uses much less memory.

8.3.2 Motif Changes in Behavior
The following changes have been made to the behavior of Motif 2.1:

 • Take focus without activating on Ctrl+Btn1 in List and Button widgets.

 • Supports an indeterminate state and associated visual in the existing toggle
button and toggle button gadget. The indeterminate state is useful in
application property sheets.
Graphical Environment Enhancements 217

 • Snap-back scrolling, a feature that allows users to have the scroll bar slider
snap-back to its starting position when the mouse is dragged beyond a certain
distance from the scroll bar area.

8.3.3 The Motif Extensibility Framework
One of the problems Motif developers are facing is the complexity of developing
new widgets for their applications. Subclassing Motif widgets without the source
code of the parent class is a challenge with Motif 1.2. Even developing a new
class from the superclass source code is not always easy. There are four sets of
issues for the widget developer:

 • Developing a new widget from scratch can take a significant amount of time.
For its internal widget development, OSF built a library of internal functions
that are commonly used in the widget set. For example, there are functions to
draw 3D shadows. If those functions were available to widget writers, it would
speed up the development process.

 • The Motif widget class methods are currently not documented. Widget writers
have to browse into the superclass source to figure out the class methods and
what they do. Documenting the widget class methods of the most frequently
subclassed widgets helps widget development.

 • Sometimes, it is not possible to have new widgets behave as expected when
they are managed by a standard parent. One of the key issues is that, in a
number of cases, manager widgets perform tests about the nature of their
children. These tests are typically done by testing the class pointers of the
children. When applied to a custom widget, they fail, and the widget does not
behave properly.

 • Motif subclassing requires use of the Xt object framework, implemented in C.
Most C++ application programmers, now a significant number, want to write
subclasses of the Motif widgets directly in C++.

OSF has addressed these issues by developing an extensibility framework for
Motif that will significantly help OSF/Motif widget developers and application
programmers. This framework consists of four parts:

 • A new mechanism has been developed on top of intrinsics, called Traits.

 • A new set of APIs has been documented by OSF for widget writers.

 • A new book hs been published by OSF with documentation on how to correctly
subclass a Motif widget. This documentation is accompanied by a CD-ROM
containing source code illustrations. The book also contains documentation
for the existing class methods that can be re-used by developers.

 • A set of C++ base classes has been developed that makes it possible to
derive subclasses of the Motif Manager and Primitive widgets (the most
frequently derived) directly in C++ while retaining the ability to use Motif
functions on those widgets, such as keyboard traversal function
XmProcessTraversal().

8.3.3.1 Traits
The trait abstraction was first introduced by Xerox. A trait is a characteristic of an
object that can be expressed by a set of methods/data applied to, or carried by
the object holding that trait. At a higher level, a trait implements a behavior that
can be shared by different objects of a system without requiring any particular
218 AIX Version 4.3 Differences Guide

hierarchical relationship between these objects or any particular implementation
of the trait.

For example, consider the I am a navigator trait. This trait characterizes the fact that
an object can set a value between a minimum and a maximum limit, regardless of
the particular method used to set the value or the particular look and feel. A
navigator can be implemented by a scroll bar, a thermometer-like control, or even
a choice in the list of all possible values. The navigator provides the abstraction
that guarantees that any object carrying this trait can be used to navigate
arbitrarily between two values.

The I am a navigator trait implements methods that make it possible for clients of
the object carrying the trait to set and get the min/max/current value
independently of the implementation.

In Motif 2.1, both the XmScrollBar (an XmPrimitive subclass) widget and the
XmSpinBox (an XmManager subclass) hold the I am a navigator trait, and they
can both inherit, or specialize, the methods of that trait.

Therefore, the traits mechanism makes it possible to implement a form of multiple
inheritance on top of the Xt object oriented framework, which only supports single
inheritance. In the Motif 2.1 model, traits are seen as light abstract classes,
sometimes called mix-ins.

Traits also make it possible to implement a form of polymorphism on the various
widgets. For example, if a trait has a setvalue method, it can be used to set
values of resources that actually have a different name. For example, a
trait::setvalue() replaces XtSetValues() on multiple XmNresource names.

A side effect of traits is the potential reduction of code size in applications. In
many cases, a Motif Manager widget would check the class of its children. Doing
so requires access to the class pointer and at link time. Linking the class pointer
global variable usually links chained modules in the application. Because those
tests are replaced in the manager code with checking the children’s traits, the
spaghetti effect is eliminated.

Traits also augment code re-use inside Motif. A widget writer can simply decide to
inherit a trait from another widget. It then inherits the class methods implemented
by the OSF engineers at no cost.

8.3.3.2 Uniform Transfer Model (UTM)
OSF/Motif 1.2 provides the application programmer and widget writer with a
number of different mechanisms to interchange data between applications. There
are four forms of data transfer supported within Motif:

 • Primary transfer. When the user clicks on pointer button BTransfer, the data
currently selected (possibly in another application) is immediately transferred
at the pointer location.

 • The clipboard. This is probably the most widely-known mechanism. When the
user activates the cut key (or the cut command into the Edit menu) the
selected data is cut into the clipboard. Activating the paste key inserts the data
at the current location of the destination cursor.

 • Drag and drop. The visual metaphor for data exchange. The user can select
data, drag it over the screen and drop it onto a recipient.
Graphical Environment Enhancements 219

 • Secondary transfer, also referred to as quick-copy, where the user first selects
a destination and then uses Alt-BTransfer to select data that is moved to the
destination by releasing the pointer button.

In each case, a data transfer can be characterized by the fact that:

 • Some data is owned by an application, called the source.

 • Another application, called the destination, wants to acquire the data. To
acquire the data, the destination usually sends a request to the owner. The
destination is also called the requestor.

Each particular transfer mechanism in Motif requires a new programming effort to
accommodate, and thus, there is a burden on the programmer if all modes are to
be supported, as recommended by the Motif Style Guide.

In Motif 2.1, OSF has implemented a new mechanism to unify access to the
different mechanisms. Moreover, this mechanism allows the application
programmer the ability to extend the function of toolkit-supplied widgets in the
area of data interchange.

The model is very simple:

 • On every widget that can act as source emit data, a convertCallback is
available.

 • On every widget that can act as a destination (receive data), a
selectionCallback is available.

The convert callback is called each time the user has requested data through any
mechanism. The programmer only needs to provide a buffer containing the data
and the name of the data type (an atom). Motif automatically transfers the data
and frees the memory after the data has been received. Similarly, the selection
callback tells the programmer that data has arrived.

8.3.3.3 Menu System Improvements
Motif pop-up menus were never simple to program with Motif 1.2. When a pop-up
menu was created, it did not pop-up automatically on the screen when a button
was pressed, some programming was required to make it pop-up. It had the
sense of a task left incomplete, particularly since the code would pop-up a menu
when invoked from the Menu key of the keyboard.

In Motif 2.1, the following was implemented:

 • Programmers can freely install pop-up menus on arbitrary widgets in the tree.
For each menu, it is only necessary to specify whether the menu is only valid
for the widget it is installed upon or for children of that widget as well.

 • The menu system automatically pops-up the appropriate pop-up menu when
the user of the application presses the appropriate button within the
application.

For the most simple specification of an automatic pop-up, nothing else needs to
be done by the application programmer other than creating the pop-up menu
associated with its manager.
220 AIX Version 4.3 Differences Guide

8.3.4 Miscellaneous Enhancements
The following sections describe various Motif enhancements:

8.3.4.1 Printing
Starting with Release 2.1, Motif includes support for printing using an X
protocol-based print server. This print server produces output in three formats:
PCL, PostScript, and Raster.

8.3.4.2 Thread-Safe Libraries
Xm and Mrm are thread-safe-enabled. This means that the libraries themselves
are thread-safe, and a multithreaded application need not do explicit locking
when accessing these libraries.

8.3.4.3 File Selection Box
The Motif File Selection Box offers a powerful, but complex, filtering mechanism
for file selection. It offers all the power of the UNIX file system to users. The CDE
User Model group, however, has come up with a design that seems better-suited
for the average user.

The CDE File Selection Box replaces the regular filter control with two controls:
the base directory entry and a wild-card entry for file name pattern. Only the
subdirectories are shown in the directory list and the file names in the file list.
Hence, scroll bars are not needed in this case.

OSF did not want to make obsolete the documentation for existing applications.
They also wanted to maintain the old Motif 1.2 behavior. For these reasons, they
decided to maintain both the old and the new styles. However, the new CDE style
has become the default since it is more intuitive for most users.

8.3.4.4 String Manipulation
Motif offers string manipulation through an abstract object called XmString. The
XmString abstraction associates a multi-lingual string with the encoding
information attached to each locale and rendition to be used for a particular
substring.

In Motif 1.2, the XmString abstraction supports the display with multiple fonts.
However, the programmer has to separately create each character string that
uses a different font, associate that string with a tag, and match that tag with a
font. In Motif 2.1, the rendition is both simplified and extended. It is extended to
support multiple fonts as well as multiple colors and TAB marks. It is simplified
with the availability of a new API. This new API offers construction of the
XmString.

8.3.4.5 Toggle Button Enhancements
When used as check boxes, toggle buttons (on/off buttons) are often not intuitive
in Motif 1.x releases. Users are sometimes confused whether the etched-in
appearance means on or off. The 3D effect used for the etched-in look is not
always easily recognized in unusual light conditions (for example, industrial or
military environments) or screens with limited color range. This has lead to
enhancing the ToggleButton widget to support these new features:

 • A check mark can be used inside the toggle square area.
Graphical Environment Enhancements 221

 • Since the check mark sign is particular to the US, for other cultures check
boxes can be crossed instead.

 • In addition to the regular button colors, two additional colors can be used to
indicate On or Off.

 • In radio boxes, a circular shape can be used instead of the diamond shape.

An example of the new toggle buttons are shown in Figure 47 in the upper-left
and right corners.

8.3.4.6 Support for Right-to-Left Layout
Support has been added for languages written from right to left. Many of the Motif
widgets now automatically reverse the geometry when the direction is
right-to-left. For example, the Form widget automatically switches the left margin
and the right margin, as well as the attachment constraints. The result is that
developers can design applications using the internationalization facilities and
specify a constrained layout that will work in both left-to-right and right-to-left
environments.

8.3.4.7 Support for XPM Format
Motif 2.1 requires that applications are linked with the Xpm library. This library is
freely available from the /contrib directory of the X Consortium and is also
duplicated on the Motif tape. Xpm support makes it possible to support multi-color
pixmap icons instead of two-color bitmaps.

8.3.4.8 Vertical Paned Window
The Motif 1.x Paned Window widget can only have horizontally-separated panes.
Motif 2.1 adds a vertical mode.

8.3.4.9 Unit Conversion
New conversion methods have been added so that a user can specify a window
size in inches, millimeters, or typographical points.

8.3.4.10 List Enhancements
When a selection is made from XmList, a new resource specifies whether XmList
takes ownership of the primary selection. A keyboard navigation facility was
added allowing the user to navigate directly to an item by typing the first
character of that item. This is useful in lists organized in alphabetical order.

The Motif 1.2 List widget does not exhibit very good startup performance with
large lists. An optimization was found in the algorithms and memory allocation
strategy that reduces the startup time of a List widget by more than 30 percent on
a typical workstation.

8.3.4.11 XmScreen Enhancements
Several resources have been added to the XmScreen widget to allow per-screen
behavior.

A new resource is available to specify whether pixmaps or bitmaps should be
used in an application. If bitmaps are used, the application is limited to two-color
icons, or stipples, and it uses much less memory (typically eight times less on
8-bit color screens).
222 AIX Version 4.3 Differences Guide

A set of resources was added to enable control of the color schemes by the
application. The goal of these new resources makes it possible for an application
to:

 • Override the color calculation method used by Motif to generate 3D effects.

 • Allocate the pixels in the colormap.

Color-intensive applications generally want to control the color schema and color
allocation to optimize their own algorithms and use of the colormap. For example,
on a system with 256 entries in the colormap, an application may want to reserve
all 256 colors for its own usage. There are then no colors left for the Motif toolkit.
With Motif 2.1, the application can plug-in its own allocation function. Then, each
time Motif needs a new color, it calls that function. The application can then loan
to Motif one of the colors it is already using.

A new screen resource allows an application to customize the bitmap that is used
by Motif for the rendering of insensitive visuals. Support is also added for
applications that want to display menus in overlay planes. Menus can now be
displayed in a visual that is different than that of the application.

8.3.4.12 Virtual Bindings
As of Motif 1.2, users can customize the keyboard mapping by defining a keymap
between virtual keys (for example, osfCancel) and real keys (for example, Cancel
or Escape). They then run the xmbind command to bind the real keys to the virtual
keys. However, a single real key can only be assigned to a single virtual key.

In Motif 2.1, each virtual key can be associated with multiple real keys, allowing
users to use, for example, both the Escape key or the Cancel key to cancel an
operation. Of course, errors can occur if a user incorrectly maps the same real
key to multiple virtual keys.

8.3.4.13 Drag and Drop Enhancements
Several enhancements have been made to Drag and Drop. The following
features are useful for sophisticated applications that are advanced in drag and
drop technology.

A function has been added to query if a widget is a dropsite or not. A generic
application-wide dragStartCallback has been added, so an application can be
aware and take action for any drag occurring at any time in the application.

To provide better drag and drop feedback to the user, Motif 2.1 makes it possible
for the drag icon to change in real time to show the effect that a drop would have
if it occurred at the current location of the mouse cursor. The effect depends on
the individual item, or items, that are being dragged.

Another enhancement that has no API, but is fairly visible to end users, is
drag-scroll support. Users of small screens are often faced with the problem of
not being able to drag data from one place and drop it in another because the
target window is currently scrolled out of view. The user has to drop the icon on
the desktop, scroll the window so that the destination is visible, and restart the
drag. Drag scrolling prevents this, allowing the user to move the cursor over the
scroll bar direction control and pause. After a customizable delay, the scrollable
window automatically begins to scroll and makes the destination appear. As soon
as the user moves the cursor, scrolling stops.
Graphical Environment Enhancements 223

8.3.4.14 Scrolled Window and Scroll Bar Enhancements
The Scrollbar widget has been extended to support a look and feel like
OpenStep, where both up and down controls are close together at one end of the
scroll bar, as opposed to one control at each end. A new resource was added to
give applications more control over the appearance of the slider.

It is practically impossible with Motif 1.2 for an application to implement a scrolled
window that has a fixed title or a status bar inside the scrolled window area. Motif
2.1 makes it possible to have one or more arbitrary controls be displayed as
non-scrollable in any direction.

Using this feature, users can simply implement a spreadsheet application with a
column title that cannot be scrolled out vertically, a rows title that cannot be
scrolled out horizontally, and a RowColumn widget for the cells. MainWindow, a
subclass of ScrolledWindow, inherits this feature too.

8.3.4.15 Drawing Area
The drawing area is now traversable with the keyboard, making it possible for
users to traverse to a drawing area and get its associated functions (for example,
pop-up menus).

8.3.4.16 Performance Enhancements
A number of performance enhancements have been made and are described
below.

XmString Performance
The memory used by an XmString that uses a single font and is smaller than 256
bytes (256 characters in Latin-based language environments) is less than it used
to be. Note that this kind of string represents the majority of strings displayed in a
typical user interface, for example, menu items, list items, and labels. The
memory size of every XmString has also been reduced by four bytes (from Motif
1.2). Every string that consists of less than 256 characters uses a single
encoding, single color, and single font.

Copying XmString is now managed by reference counting in 2.1, which makes
XmString copy much faster and uses no memory. Since Motif does a lot of
XmString copies internally, this should reduce the memory size used by many
applications that do not release the memory of an XmString after they have
passed it to a widget.

List Performance
The startup time for the List widget has been decreased compared to Motif 1.2.
This is particularly noticeable for applications that handle large lists of several
hundred items. See Section 8.3.4.10, “List Enhancements” on page 222.

X-Related Performance
In general, the amount of resources allocated in the X server, clients, and the
number of round trips between client and server has been decreased.

Client-side memory has been decreased by using bitmaps instead of pixmaps
whenever possible. In Motif 1.2, when a widget uses a background pixmap, a
pixmap is allocated using the available depth of the screen. In Motif 2.1, a bitmap
is used if only two colors are required.
224 AIX Version 4.3 Differences Guide

Motif 2.1 has been optimized to generate fewer mouse events from the X server
when using gadgets.

8.3.4.17 UIL Extensibility and Portability
Since OSF introduced an extensibility framework, it was necessary to reflect that
in the UIL language. Once a developer has developed a new widget, that new
widget should be usable from UIL as well. However, they should not have to
generate a new compiler for every new widget supported. It was, therefore,
necessary for OSF to develop a mechanism such that the UIL compiler could
dynamically incorporate new widgets to be accepted in UIL source files and
generate the appropriate binary UID code.

In the past, OSF received numerous enhancements requests because the UID
files in the 1.x releases were not architecture neutral. You had to compile the
same UIL source file for every target platform. Moreover, only 32-bit platforms
were supported.

With OSF/Motif 2.1, OSF developed a new UIL technology that reaches those
three objectives simultaneously:

 • The UIL compiler can be told to dynamically accept new widgets.

 • The UID files generated by the compiler are architecture neutral.

Note that the architecture neutral format is still dependent on 32-bit versus 64-bit
architectures. A UIL file compiled on a 32-bit architecture can be read on any
other 32-bit architecture but not on a 64-bit architecture. Similarly, a UIL file
compiled on a 64-bit architecture can be read on any other 64-bit architecture but
not on a 32-bit architecture. This design decision was made because the memory
used for 64-bit architectures is about twice the size of that used on 32-bit, and
32-bit platforms should not have to bear a 100 percent penalty.

8.3.5 Compatibility with Motif 1.2 and 2.0
As stated at the beginning of this chapter, compatibility with CDE/Motif 1.2 was
given greater emphasis than compatibility with OSF/Motif 2.0. The following
issues should be noted concerning compatibility with Motif 1.2:

 • If a customer application subclasses a widget in the group of DrawingArea,
Label, List, Manager, or Primitive, there is a potential for binary incompatibility.
The Class Records for these widgets changed from Motif 1.2 to Motif 2.0. The
only resolution in this instance is to re-compile, unless the application writer
used XmResolvePartOffsets (now known as XmeResolvePartOffsets in the
Motif 2.1 Widget Writer’s Guide).

 • The XmString definition has changed in Motif 2.1. It is now a union instead of
a typedef of char *. Existing Motif applications running on Motif 2.1 may have
problems depending upon their usage of XmString.

Some OSF/Motif 2.0 applications may experience problems because of the
following changes:

 • The XmCSText widget has been withdrawn, as have those APIs added to
OSF/Motif 2.0 solely to support it.

 • Mrm support for word size-independent .uid files has been removed. Existing
.uid files compiled with Motif 2.0 UIL may not be readable. As in OSF/Motif
1.2, .uid files are portable only between machines with the same word size.
Graphical Environment Enhancements 225

 • New XmComboBox XmNpositionMode and XmSpinBox XmNpositionType
resources default to incompatible index values and should be forced by all
applications using these widgets. XmONE _BASED is recommended for
XmComboBox widgets because it lets applications distinguish between new
values entered in the text field and the first item in the list.

 • XmStringCreateLocalized now handles new lines and tabs.

 • The _XmStrings array has, on some machines, been split into multiple
subarrays with the same techniques used by libXt. This preserves
compatibility with Motif 1.2 and permits future expansion.

 • Labels for automatically-created subwidgets, like the buttons in a file selection
box, are now unconditionally localized and may not be set or overridden by the
user.

 • The XmDisplay XmNenableThinThickness resource now has wider effect than
it did in Motif 2.0.

 • The XmDisplay XmNenableToggleVisual resource now changes the way
XmNindicatorOn and XmNindicatorType values are rendered, instead of
simply changing their default values. Motif 2.0 applications that called
XtSetValues() for these resources may notice a change. New constants have
been added to obtain the old behavior.

 • In Motif 2.0, there were two distinct XmREPLACE constants with different
values. The XmMergeMode constant has been renamed
XmMERGE_REPLACE. This is a source compatibility issue; binary
compatibility is unaffected.

 • XmDisplay XmNdragReceiverProtocolStyle default value has been reverted to
XmDRAG_PREFER_PREREGISTER. Users may find that
XmDRAG_PREFER_DYNAMIC is more efficient.

 • The XmNenableEtchedInMenu resource causes buttons and toggles in menus
to be rendered with different colors than those in earlier releases.

 • XmScrolledList and XmScrolledText scroll bar colors are computed differently.
They are now derived from the scrolled window's background color, not the
color of the XmList or XmText widget.

 • To promote convergence with dtwm, mwm's panning, and virtual screen
support has been removed, as has mwm's support for workspaces.

 • The XmCxx library of C++ wrappers has been moved to the demos/lib
directory.

8.4 X Virtual Frame Buffer (4.3.2)

The X Virtual Frame Buffer (XVFB) software technology was first introduced in
AIX 4.3.1 and has been further enhanced in AIX 4.3.2 to support the RS/6000 SP.

The XVFB provides a virtual graphics adapter that allows the X Windows Server
to start and operate on a server machine that has no physical graphics adapter.
In addition, the OpenGL 3D Graphics rendering library can be used with the
XVFB technology.

This capability was introduced primarily to provide improved support for 3D
Rendering Server Applications. By removing the single shared resource (graphics
adapter) from the system, and replacing it with a dynamic resource (system
226 AIX Version 4.3 Differences Guide

memory), 3D Rendering Server Applications can scale in performance as
processors are added to an SMP capable system. Other advantages of XVFB
include:

 • Less expensive 3D Rendering Server (since no graphics adapter or display is
required)

 • Better security (since the 3D Rendering Server does not have to be left logged
in, XVFB runs in the background)

 • Better scaling with SMP machines (since each process gets a private XVFB
rendering area)

8.4.1 Direct Soft OpenGL
Direct Soft OpenGL (DSO) is a new IBM OpenGL rendering technology for AIX
and RS/6000. Implemented to work with the XVFB, DSO was designed
specifically to enhance the performance of 3D Rendering Server Applications by
eliminating extraneous interprocess communication, eliminating process context
switching overhead, and making rendering and image reading more direct and
efficient.

DSO is a pure software implementation of OpenGL that runs as a direct OpenGL
Context. Basically this means that all of the CPU intensive OpenGL work (3D
rendering) is part of the application process (not part of the X Server process). By
running direct, all of the interprocess communications with the X Server are
eliminated, making 3D rendering much more efficient. In addition, the AIX
operating system is not having to context switch between the X Server and the
3D rendering applications, making system utilization more efficient.

Using the XVFB and DSO software is as simple as installing the XVFB file sets
(X11.vfb and OpenGL.OpenGL_X.dev.vfb) and starting the X server with the
appropriate options (for example, X -vfb -x GLX -x abx -x dbe -force).

8.4.2 CATweb Navigator and XVFB/DSO
CATweb Navigator allows end users with Java Enabled Web Browsers to view
and navigate product information created with CATIA Solutions. By using the
intuitive set of Java Applets that make up the CATweb Navigator Client, users can
connect to a CATweb Server machine, select models for viewing, and then view
and navigate the models with a 3D viewer, 2D schematic viewer, or a report style
viewer.

One CATweb Server machine can support multiple concurrently active CATweb
Navigator Clients. For each CATweb Client that attaches to the CATweb Server,
one or more CATweb processes will be started on the CATweb Server to handle
the requests of that particular CATweb Client. One of these CATweb processes is
a 3D rendering application. This application runs on the CATweb Server and is
responsible for:

 • Loading the requested CATIA model

 • Rendering the 3D model on the fly as the CATweb Client requests new views

 • Compressing the final rendered image

 • Transferring the image to the Java CATweb Client
Graphical Environment Enhancements 227

This application uses both the X Windows and OpenGL libraries to quickly and
accurately render 3D images In addition, CATweb Navigator V2.0 and above has
been enhanced to effectively exploit the capabilities of XVFB and DSO.

8.5 OpenGL Enhancements

The following section describes the enhancements to OpenGL.

8.5.1 OpenGL 64-bit Indirect Rendering (4.3.1)
In AIX 4.3.1, OpenGL has added 64-bit support for indirect rendering. To use this
function, a new level of the xlc++ compiler is required. See
/usr/lpp/OpenGL/README for more information.

8.5.2 OpenGL Performance Enhancements (4.3.2)
IBM OpenGL Versions 1.1 and 1.2 are enhanced to improve performance in
several areas. Users of uniprocessor systems will note faster drawing of
primitives under most conditions. All users should see improvements in:

 • Throughput and cache utilization

 • Latency when lighting is enabled

 • Overall performance on any primitives using the new MultiDrawArray
extension

8.5.3 OpenGL Version 1.2 and ZAPdb (4.3.2)
OpenGL Version 1.2, released on March 16, 1998, is the second revision since
the original Version 1.0. OpenGL within AIX Version 4.3.2 is enhanced to support
OpenGL Version 1.2. Several additions were made to the graphics library (GL),
especially to the texture mapping capabilities and the pixel processing pipeline.
Following are brief descriptions of each addition:

 • Three-Dimensional-Texturing

Three/dimensional textures can be defined and used. In-memory formats for
the three-dimensional images, and pixel storage modes to support them, are
also defined. One important application of three-dimensional texture is
rendering volumes of image data.

 • BGRA Pixel Formats

BGRA extends the list of host-memory color formats. Specifically, it provides a
component order matching file and framebuffer formats common on Windows
platforms.

 • Packet Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The fields with the packed pixels
are not proper machine types, but the pixel as a whole is. Thus the pixel
storage modes and their unpacking counterparts all work correctly with
packed pixels.

 • Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview
matrix. Rescaling can operate faster than renormalization in many cases,
while resulting in the same unit normals.
228 AIX Version 4.3 Differences Guide

 • Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of
emissive, ambient, and diffuse terms of the usual GL lighting equation, and a
secondary color consisting of specular terms. Only the primary color is
modified by the texture environment; the secondary color is added to the
result of texturing to produce a single post-texturing color. This allows
highlights whose color is based on the light source creating them, rather than
the surface properties.

 • Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
range [0,1]. When a texture coordinate is clamped using this algorithm, the
texture sampling filter straddles the edge of the texture image, taking half its
sample values from within the texture image, and the other half from the
texture border. It is sometimes desirable to clamp the texture without requiring
a border, and without using the constant border color.

A new texture clamping algorithm, CLAMP_TO_EDGE, clamps texture
coordinates at all mipmap levels such that the texture filter never samples a
border texel. The color returned when clamping is derived only from the edge
of the texture image.

 • Texture Level of Detail Control

Two constraints related to the texture level of detail parameter λ (lambda) are
added. One constraint clamps λ (lambda) to a specified floating point range.
The other limits the selection of mipmap image arrays to a subset of the arrays
that would otherwise be considered.

Together, these constraints allow a large texture to be loaded and used initially
at low resolution and to have its resolution raised gradually as more resolution
is desired or available. Image array specification is necessarily integral rather
than continuous. By providing separate, continuous clamping of the λ
(lambda) parameter, it is possible to avoid popping artifacts when higher
resolution images are provided.

 • Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take
advantage of this additional information to process vertex data without having
to scan the index data to determine which vertices are referenced.

Because OpenGL 1.2 is a superset of OpenGL 1.1, all programs written for
OpenGL 1.1 run on OpenGL 1.2 without modification, recompiling, or relinking.
OpenGL 1.2 support is available in AIX 4.3.2 only on the GXT3000P PCI
Graphics Accelerator. Users of other graphics adapters are limited to functions
contained in OpenGL 1.1 and OpenGL 1.1 extensions. The optional Imaging
Extension subset is not supported by the IBM OpenGL 1.2 implementation (at this
time).

The ZAPdb interactive OpenGL debugger is enhanced to support all new features
provided in OpenGL Version 1.2.
Graphical Environment Enhancements 229

8.5.4 New OpenGL Extensions (4.3.2)
Three new extensions to OpenGL are available in AIX Version 4.3.2. For details
on implementation, consult the user documentation. Brief descriptions of the new
extensions follow as such:

 • MultiDrawArray Extension

Enables users to group together multiple primitives and send them to the
adapter with one call. This is supported on all OpenGL-capable adapters
except the GXT1000.

 • Texture Mirrored Repeat Extension

Gives users the capability of specifying texture maps without discontinuities at
the edges. This is supported only on the GXT3000P.

 • Color Blend Extension

Gives users more options in creating blended and/or translucent colors
without having to use an alpha buffer. This is supported only on the
GXT3000P.

8.6 graPHIGS Enhancements (4.3.2)

IBM graPHIGS has been enhanced in AIX Version 4.3.2 to support the new high
performance GXT3000P PCI Graphics Accelerator that attaches to the RS/6000
43P 7043 Models 150 and 260. Further performance improvements were made,
and support for the new Euro symbol has been added.

8.6.1 Performance Enhancements
IBM graPHIGS within AIX Version 4.3.2 has been altered to improve the
performance of polygon rendering under most conditions. Throughput to the
graphics adapter has also been enhanced, often resulting in performance
improvements for the rendering of all primitives.

8.6.2 Euro Symbol Support
The graPHIGS API offers several facilities for the display of text information:

 • Geometric text and annotation text that allow an application to specify a
character string that is to be displayed on a workstation.

 • Echo of string device input that allows a user to see the input being entered on
a string device (for example, a keyboard).

Your application can specify two attributes that affect the interpretation and
display of text information: the character set identifier (CSID) and the font
identifier. When the application specifies a character to be displayed, the CSID
and font identifier together determine the symbol that is displayed to represent
the character.

The application can specify a character string to be displayed in geometric text.
The graPHIGS API, in processing that character string, accesses a character set
file and a symbol file to get the information necessary to interpret and display the
text:

 • The character set file contains information about a particular character set.
The contents of the character set file tell, amongst other things, the available
230 AIX Version 4.3 Differences Guide

code points of the character set and the index that is used to locate the
symbol in a symbol file. There is only one character set file for a particular
character set identifier.

 • The symbol file contains the drawing controls for each symbol that is
displayed to represent the character. There is a symbol file for each available
font within a particular character set.

IBM graPHIGS will use the same locales as AIX to support the Euro symbol. For
details about the Euro symbol support through AIX locales refer to 10.5, “Euro
Symbol Support for AIX (4.3.2)” on page 252. graPHIGS selects the appropriate
code set and font support based on the value of the LANG environment variable:

 • LANG=xx_XX

The effective character set is given by CSID 10 - ISO 8859-1 (Latin 1) with the
Euro in the x80 character position. The font related symbol file is
afm0a01.sym, thus the graPHIGS default FONT 1 is used.

 • LANG=xx_XX.IBM-1252

graPHIGS does not refer to the explicitly stated code set in the name of the
locale. That means that the code set designation IBM-1252 is ignored and the
same conditions as LANG=xx_XX apply. The code set IBM-1252 is of
particular interest for the Euro symbol support in conjunction with the
single-byte migration option. This option provides customers with the
opportunity to get Euro symbol support through a single-byte character set
instead of using the Unicode locales. For further details, refer to section
10.5.6, “Euro SBCS Migration Option - IBM-1252 Locale” on page 270.

 • LANG=XX_XX

The effective character set is given by CSID 131 - Unicode with the Euro glyph
in the standard U+20AC character position. The font related symbol file is
afm8301.sym, thus the graPHIGS default FONT 1 is used.

 • LANG=Xx_XX

The effective character set is PC850, and no Euro symbol support is available.

Note: xx_XX, Xx_XX, and XX_XX represent the language and territory
designation with respect to a given code set. For example, the national language
support for German allows you to select between the de_DE, the De_DE, and the
DE_DE locale.

The graPHIGS default font files for CSID 10 have added the Euro character at
codepoint 0x80. If you have used these font files as a basis for your user defined
font files, you will need to evaluate your use of the codepoint 0x80.
Graphical Environment Enhancements 231

232 AIX Version 4.3 Differences Guide

Chapter 9. Online Documentation

There have been several changes made to the way on-line assistance is provided
in AIX Version 4.3. The main change is the move from InfoExplorer, that is
essentially proprietary in nature, to a more generalized HTML-based system.

9.1 Documentation Search Service

The growing influence of the World Wide Web has made the Web browser a
common element of users day-to-day work. For many, the Web browser is a core
component of how they perform tasks. To meet this user need, InfoExplorer on
AIX is replaced with the Documentation Search Service and HTML-based product
documentation. InfoExplorer will no longer be part of the base AIX installation
media; however, it will remain available as a separately orderable LPP to service
the InfoExplorer libraries that still exist.

AIX 4.3 provides an optionally installable component called the Documentation
Search Service. It allows you to search on-line HTML documents, such as the
AIX product documentation. It provides a search form for use with a Web
browser. When you enter key words into the search form, the Document Search
Service searches for the words, and then presents a search results page that
contains links that lead to the documents that contain the target words.

The Documentation Search Service contains all of the features that you would
normally expect to see from InfoExplorer, such as:

 • List of Books

 • Commands Reference

 • Programming Reference

 • Search Facility

9.1.1 Installation of Documentation Search Service
You can set up one of your AIX systems in your organization to be the
documentation server and all other systems as documentation clients. This will
allow documentation to be installed only on one system and all other systems can
access this system without needing the documentation installed locally.

You need the following products and components installed for a complete set of
services:

 • For the client:

1. A Web browser

2. The bos.docsearch.client.* filesets (for AIX integration)

 • For the documentation server (which may also act as a client)

1. The entire bos.docsearch package

2. The documentation libraries

3. A Web browser

4. A Web server
© Copyright IBM Corp. 1998 233

The browser must be a forms-capable browser and the Web server must be
CGI-compliant.

If you are planning on integrating your own documentation on the documentation
server, you will also need to build the document’s indexes.

Except for the section 9.3, “Invoking Documentation Search Service” on page
237, you need root authority to perform the installation and configuration tasks

There are a variety of ways to install the documentation, Web server, and
Document Search Service. You can use the Configuration Assistant TaskGuide,
Web-Based Systems Management, or SMIT.

The easiest way for a non-technical user to install and configure Documentation
Search Services, is by using Configuration Assistant TaskGuide. To run the
Configuration Assistant TaskGuide, use the configassist command. Then select
the item titled Configure Online Documentation and Search.

If you would rather install Documentation Search Services manually, you can use
SMIT.

9.1.1.1 Installing the Web Browser
Use smit install_latest to install Netscape supplied on the AIX 4.3 Bonus Pack
CD. Use smit list_installed to check whether you have the following filesets
installed, as shown in Figure 48:

Figure 48. Netscape Filesets

If you are installing the Netscape browser from other sources or you are installing
other Web browsers, follow the installation instructions that come with the
software. Note that there will not be any records in the ODM if your product
source is not in installp format.
234 AIX Version 4.3 Differences Guide

9.1.1.2 Installing the Web Server
You may install any CGI-compliant Web Server. The Lotus Domino Go Webserver
is used here. It is supplied on one of the AIX 4.3 Bonus Pack CDs.

The Documentation Search Service uses its own search engine CGIs. Therefore,
you do not need to install the NetQ fileset, the Webserver Search Engine. The
following shows the filesets installed (Figure 49):

Figure 49. Domino Go Webserver Filesets

If you are installing the Domino Go Webserver from other sources or you are
installing another Web server, follow the installation instructions that come with
the software. Note that there will not be any records in the ODM if your product
source is not in installp format.

9.1.1.3 Installing Documentation Search Service
The Documentation Search Service is (at the time of writing) on Volume 2 of the
AIX 4.3 installation CDs. Install the client portions for a client AIX image, or install
the entire bos.docsearch package for a documentation server. These filesets
prereq other filesets during the install (such as IMNSearch).

 • bos.docsearch.client.Dt

 • bos.docsearch.client.com

 • bos.docsearch.rte

For the documentation clients, you need only a Web browser. Installation of the
bos.docsearch.client fileset will give you the CDE desktop icon and the docsearch
command. Refer to 9.3, “Invoking Documentation Search Service” on page 237
for further details.

Use smit list_installed to check whether you have the following filesets installed
as shown in Figure 50:
Online Documentation 235

Figure 50. Documentation Search Service Filesets

9.1.2 Configuring Documentation Search Service
Use either wsm or smit to configure the documentation search service. If you used
the Configuration Assistant TaskGuide to install and configure the Documentation
Search Service, you will not need to perform any further configuration.

For wsm, double-click on Internet Environment icon, or you can use smit
web_configure to configure the following:

 • Default browser

Type into the field the command that launches the browser that you want to be
the default browser for all users on this computer, for example,
/usr/prod/bin/netscape. This will set the /etc/environment variable
DEFAULT_BROWSER to the string you type in.

 • Documentation and search server

You can define the documentation search server location to be:

 • None - disabled

 • Remote computer

Type the remote documentation server name. The default TCP/IP port
address is 80. Change it to the port address used by the documentation
server.

 • Local - this computer

If you are using Lotus Domino Go Webserver or IBM Internet Connection
Server in the default location, all the default settings of the cgi-bin directory
and HTML directory will have been filled in for you. If you are using other
Web servers, or you are not using the default location, you have to fill in
your cgi-bin directory and HTML directory that the Web server requires.
You may change the port address used by the server. If you change the
236 AIX Version 4.3 Differences Guide

port address, you have to use the same address for all your documentation
clients.

9.2 Installing Online Manuals

You can either install the documentation information onto the hard disk or mount
the documentation CD in the CD-ROM drive. Mounting the CD will save some
amount of hard disk space, but it requires the CD to be kept in the CD-ROM drive
at all times. Also, searching the documentation from the CD-ROM drive can be
significantly slower (in some cases up to 10 times slower) than searching the
information if it is installed on a hard disk. In addition, there are two
documentation CDs:

 • The AIX Version 4.3 Base Documentation CD

 • The AIX Version 4.3 Extended Documentation CD

Use smit install_latest to install the on-line manuals onto the hard disk. The
fileset bos.docregister is a prerequisite for all on-line manuals. It will be
automatically installed the first time you install any on-line manuals even if you
have not selected this fileset.

9.3 Invoking Documentation Search Service

You must logout and login again after the Documentation Search Service has
been configured so that you will pick up the environment variables set up during
the configuration.

If you are running the CDE desktop environment, double-click the Documentation
Search Service icon in the Application Manager window.

Alternatively, you can use the command docsearch to invoke the documentation
search service. Netscape will start and you should see the Documentation
Search Service page.

You can invoke the Documentation Search Service without installing the
docsearch client component. In fact, you do not even need to invoke the
documentation search service from an AIX machine. You can do this by first
invoking the browser and enter the following URL:

http://<server_name>[:<port_number>]/cgi-bin/ds_form

This URL points to a global search form on the document server where the name
of the remote server given in server_name. The port_number only needs to be
entered if the port is different from 80.

The installation images located on the AIX Version 4.3 Base Documentation
and Extended Documentation CDs do not contain the HTML files. These files
exist separately on the CD to allow access from non-AIX platforms. Installing
the images from the CD will work correctly; however copying the installation
images by themselves to another location is not enough for a proper install.

Note
Online Documentation 237

If you have not run Netscape previously, a lot of informational messages and
windows will be shown while Netscape is setting up the environment in your
home directory. This is standard behavior for the first execution of Netscape. The
messages will not be shown again the next time you start Netscape.

The top part of the Documentation Search Service page allows you to specify
your search criteria and the bottom part shows what on-line manuals have been
installed. The following shows the documentation search service page with only
the command reference manuals and the programming guide manuals installed
(Figure 51):

Figure 51. Documentation Search Service

If you have a problem starting the Documentation Search Service, check the
following environment variables. These environment variables may be set,
displayed, and changed using SMIT. Start SMIT, select System Environments,
then select Internet and Documentation Services.

 • On the client machine

1. Invoke the Web browser manually and enter the URL
http://<server_name>[:<port_number>]/cgi-bin/ds_form to ensure that the
server is up and running.

2. Ensure the DEFAULT_BROWSER variable is set to the command for
starting your Web browser.
238 AIX Version 4.3 Differences Guide

Use the command echo $DEFAULT_BROWSER to find out the command used in
starting the browser. Test whether that command can bring up the browser
by manually entering it on the command line.

3. Ensure the DOCUMENT_SERVER_MACHINE_NAME variable is set to the
document server’s hostname or ip address.

4. Ensure the DOCUMENT_SERVER_PORT variable is set to the port
address used by the document server’s port address.

 • On the server machine

1. Ensure the DEFAULT_BROWSER variable is set to the command for
starting your Web browser.

Use the command echo $DEFAULT_BROWSER to find out the command used in
starting the browser. Test whether that command can bring up the browser
by manually entering it on the command line.

2. Ensure the DOCUMENT_SERVER_MACHINE_NAME variable is set to the
local hostname.

3. Ensure the DOCUMENT_SERVER_PORT variable is set to the port
address used by the local Web server.

4. Ensure that the CGI_DIRECTORY variable is set to the correct cgi-bin
directory used by the local Web server.

5. Ensure that the DOCUMENT_DIRECTORY is set to the directory where the
symbolic links doc_link and ds_images reside. If you have not changed the
default, it should be in /usr/lpp/internet/server_root/pub for both IBM
Internet Connection Server and Lotus Domino Go Web Server.

6. If you are not using the default directory, ensure that you have defined the
necessary directory mapping in your Web server configuration file such
that the directory can be resolved.

9.4 Internationalization

At the time of writing, the Documentation Search Service has language support
for several languages and codesets. For a list of supported languages, codesets,
and locales, see the language support table section in AIX Version 4.3 General
Programming Concepts: Writing and Debugging Programs, SG23-2533.

Web browers also have a set of supported languages and codesets. You should
be aware that differences between the client and server’s language and codeset
may cause some documents to become difficult to read.

For more information on the latest internationalization, see 10.7, “Documentation
Search Service: DBCS HTML Search Engine (4.3.2)” on page 284.

9.5 Man Page Changes

Prior to AIX Version 4.3, the man command extracted its information from the
InfoExplorer database. In AIX Version 4.3, the traditional InfoExplorer LPP is no
longer part of the base. The replacement of InfoExplorer with HTML-based
documentation has brought about a change in the way the man command now
operates.
Online Documentation 239

Previously, the man command had to search the InfoExplorer database to locate
the information that it required. Now under AIX Version 4.3, the information is
stored in HTML files. The HTML files are stored in the directory structure by
COLLECTION_ID and BOOK_ID. The man command uses this structure to locate the
required information. This new structure provides the user with performance
benefits, because the search criteria is more narrowly defined.

In terms of overall function, the man command remains unchanged, performing the
way it always has.

9.6 SMIT Documentation

With the introduction of HTML-based product libraries, the SMIT documentation
and all of the SMIT helps have been converted to HTML. SMIT is updated to
access the HTML versions of the help files. The naming convention of the filesets
has also been changed to reflect the introduction of Web-Based Systems
Management.
240 AIX Version 4.3 Differences Guide

Chapter 10. National Language Support

The AIX operating system has no built-in dependencies on code set, character
classification, character comparison rules, character collation order, monetary
formatting, numeric punctuation, date and time formatting, or the text of
messages. The national language support (NLS) environment is defined by a
combination of language and geographic or cultural requirements. These
conventions consist of four basic components:

 • Translated language of the screens, panels, and messages

 • Language convention of the geographical area and culture

 • Language of the keyboard

 • Language of the documentation

Customers are free to mix and match the above components for each user. The
NLS environment allows AIX to be tailored to the individual user's language and
cultural expectations.

To support this design, applications use standard APIs to display messages and
handle characters in code set independent fashion. Additionally, libraries hide all
code set-independent processing and do not alter the locale set by applications.

10.1 National Language Character Handling

The NLS feature of AIX Version 4.3 allows input and output of national language
(NL) characters. NL-specific cultural conventions can be set by the user from the
command line or by an application on a per-process basis. These cultural
conventions include the territory-unique ways to represent date, time, monetary
values, numbers, and collating sequences. By setting the appropriate
environment variables, users can define their own NL behavior. Individual users
may even operate using different locales, keyboards, and language text on the
same system.

10.2 Levels of NLS Enablement

AIX provides the following levels of national language support enablement. To
determine the level of NL support provided by any particular IBM licensed
product, please consult the program product announcement material. To assist in
classifying the extent to which a product provides national language support, the
levels are listed following in descending order of national language capability:

Universal Language Support (ULS)
Support for multiple languages based on universal character set ISO
10646. See Section 10.3, “Unicode” on page 242 for more information.

Full International Language Support (ILS)
Support for all locales in the underlying operating system.

Multi-Byte Character Set Support (MBCS)
Support for all locales based on multi-byte and single-byte code sets
in the underlying operating system. Bidirectional code set support is
limited.
© Copyright IBM Corp. 1998 241

Single-Byte Character Set Support (SBCS)
Support is limited to single-byte locales in the underlying operating
system. Bidirectional code set support is limited.

PASSTHRU
Support is limited to the ability of the product to pass data through the
program without processing. The information is handled in such a
manner that all data, control, and graphics characters flow unaltered
through the program directly to its output.

The following products and commands do not support full ILS:

 • Adobe Acrobat Reader supports PASSTHRU only graphics, tplot, graph, and
spline commands.

 • Netscape Navigator supports PASSTHRU only.

 • NFS supports PASSTHRU only.

 • NCS supports PASSTHRU only.

 • TCP/IP telnet command does not support NLS.

10.3 Unicode

The Universal Coded Character Set (UCS), or Unicode (UCS-2), is a character
code designed to encode text for display and storage in computer-based files.
The UCS global character encoding was developed jointly by the computer
industry and the International Organization for Standardization (ISO) and defines
the state of the art for character handling.

The design of the Unicode standard is based on the simplicity and consistency of
today's prevalent character code set, ASCII (and Latin-1, an extended version of
the ASCII code set), but goes beyond ASCII's limited ability to encode only the
Latin alphabet. The Unicode encoding provides the capability to encode all of the
characters used by all the principle written languages throughout the world.

To accommodate the many thousands of characters used in international text, the
Universal Coded Character Set was developed and implemented in two
variations:

UCS-2 A 16-bit code

UCS-4 A 32-bit code

However, UCS-2, the 16-bit code (Unicode), has already been established as the
predominant code, while the 32-bit code is of limited practical interest. The
Unicode implementation keeps character coding simple and efficient since the
Unicode standard assigns each character a unique 16-bit value. It does not
require complex modes or escape codes to specify modified characters or special
cases.

The development of UCS on AIX Version 4.3 is based on Unicode code set
Version 2.0, which is a widely accepted standard for encoding international
character data. The AIX implementation of Unicode (UCS-2) will allow the user to
process data from any of the supported Unicode scripts and to mix and match
characters from differing language scripts within the same session.
242 AIX Version 4.3 Differences Guide

Note: The terms UCS-2 and Unicode will be used interchangeably throughout
this documentation.

The Unicode 2.0 standard (ISBN 0-201-48345-9) is the basis for the AIX
implementation and is used as the primary reference.

Further information is also available at the Unicode URL: http://www.unicode.org

10.3.1 UTF-8
For file systems to be able to work with Unicode, a UCS Transformation Format
was developed by the X/Open Internationalization (also known as I18N, because
there are 18 letters between the I and the N) working group. This transformation,
called UTF-8, provides a way of transforming Unicode into an ASCII
representation.

The UTF-8 transformation is important when considering that the majority of file
systems are ACSII-based. When using the UTF-8 Transformation Format, you
are assured of a file system-safe way of using Unicode to store files.

The UTF-8 transformation format is a multi-byte code set capable of encoding the
same set of characters of UCS-2 in 1 to 3 bytes or UCS-4 in 1 to 6 bytes. It has
the following characteristics:

 • ASCII (7-bit code) is a proper subset.

 • It preserves the semantics of the portable character set.

 • It preserves the semantics of a null octet for the C programming language.

Note: It is expected that UTF-8 will be a dominant transformation method where
the UCS is not practical.

10.3.2 ULS
ULS, or Universal Language Support, refers to a toolkit of functions that enable
applications to work with UCS. The ULS is designed to be operating
system-independent, so the functions can be ported to any system.

The Universal Language Support specification describes a set of functions and
utilities for addressing a wide range of national language support (NLS)
problems. In summary, it provides:

 • A universal coded character set capable of encoding most of today's
languages and scripts.

 • A set of universal language support functions for the processing of input and
output of supported characters.

 • A set of universal locale objects that describe processing of text on a global
scope.

 • A set of universal layout objects that describe processing of text on a global
scope.

 • A set of universal conversion objects for import/export of traditional data into
the ULS environment.

This specification identifies the level of support expected for the Universal Coded
Character Sets in the AIX operating system and all future releases of it. Without
National Language Support 243

abandoning its standards-based internationalization support, ULS will add
support for a set of UCS locales as an extension to the existing
internationalization language support.

10.3.3 Universal Locale
The Universal Locale is a method of using Unicode as a wchar_t or wide
character encoding. As mentioned earlier, Unicode is based on a 16-bit encoding,
whereas an ASCII character is based on an a 7-bit encoding.

For AIX to use Unicode across the entire system, it uses the UTF-8 encoding for
files and uses Unicode as the process code. Process code is the actual code that
is being executed in memory.

Note: All supported locales will function correctly in both their current code as
well as UTF-8.

10.3.3.1 Locale Definitions
The following can be said about locale definitions:

 • Unicode-based locales must be compiled based on a UTF-8 charmap
containing all characters currently defined in Unicode 2.0. The names for such
characters must be the exact character names as outlined in the standard,
with any spaces imbedded in the character name changed to underscores. For
example, the correct symbol name for the Unicode value U+00A1 would be
<INVERTED_EXCLAMATION_MARK>.

 • Character symbol names that are currently required to be defined by the
localedef command must be defined with both the Unicode and POSIX symbol
names in the charmap. For example, the value U+0041 would be defined as
both <A> and <LATIN_CAPITAL_LETTER_A>.

 • To ensure that multiple locales can be built from a given locale, all existing
charmaps must be modified to use the Unicode names. Each charmap will
define only those actually contained within the code set.

Many of the locale definitions have similar characteristics across multiple locales,
especially in the LC_CTYPE section. From a maintenance perspective, it is highly
desirable to be able to maintain a common source for these and allow them to
have an include facility. The C preprocessor can be used for this purpose,
provided that the localedef comment character and escape character (line
continuation) be changed to values that do not conflict with the C preprocessor.

Currently, the default comment character for locales is "#", and the default
continuation character is "\". By changing these to "*" and "/", respectively, you
can use C preprocessor directives in the context of a localedef source file, such
as #include and #ifdef statements to tailor the locale definition based on the
characters available in the codeset. Thus, before running localedef, each locale
source is run through the C preprocessor with the code set name to be used
specified as an option to the C preprocessor through -D on the command line. For
example, suppose your locale definition was to be compiled with four different
code sets, ISO8859-1 (Latin), ISO8859-5 (Cyrillic), ISO8859-7 (Greek), and
UTF-8 (Unicode). Moreover, suppose that in the LC_CTYPE section you wanted
to declare the following three characters as uppercase:

<LATIN_CAPITAL_LETTER_A>
244 AIX Version 4.3 Differences Guide

<GREEK_CAPITAL_LETTER_ALPHA>

<CYRILLIC_CAPITAL_LETTER_A>

This presents a bit of a problem since <LATIN_CAPITAL_LETTER_A> is defined
in all four codesets, <GREEK_CAPITAL_LETTER_ALPHA> is only defined in
ISO8859-7 and UTF-8, and <CYRILLIC_CAPITAL_LETTER_A> is defined only in
ISO8859-5 and UTF-8. Such a situation could be coded as follows with the
preprocessor directives:

upper /
<LATIN_CAPITAL_LETTER_A>/
#if defined(ISO88597) || defined(UTF8)
;<GREEK_CAPITAL_LETTER_ALPHA>/
#endif
#if defined(ISO88595) || defined(UTF8)
;<CYRILLIC_CAPITAL_LETTER_A>
#endif

Using such techniques, it is possible to create a locale definition that tailors itself
to the code set being compiled against while not requiring you to define dummy
codepoints in the charmap. This technique also fulfills the requirement that all
locales for a given country be generated from the same locale source definition,
so that consistency is achieved within a given language/territory combination.

To support Unicode symbol names in charmaps and localedef source files, the
localedef command has been modified to accept symbol names of at least 85
characters instead of the current limit of 32. Currently, the longest symbol name
from the Unicode standard is 83 characters long, not including the required < and
> delimiters. This is a simple modification to symtab.h and has been done without
any impact on performance, as the symbol names are only used during locale
compilation, not at run time.

10.3.3.2 Locale Methods
The current set of locale methods, as provided in libc, was implemented based on
the locales supported in AIX Version 3.2. Since that time, many new locales have
been added to the system, mostly with corresponding locale-specific methods. It
is a goal of this design to minimize the number of locale-specific method objects
required and also to provide a framework under which future AIX locales can be
easily added.

Locale-specific methods that are no longer used will remain in the libc.a library in
order to insure binary compatibility. The following is the set of locale-specific
methods that are provided with AIX Version 4.3. These locale methods have been
placed into libi18n.a, instead of libc.a, to minimize incompatibilities with previous
releases.

mblen()
Determine the length (in bytes) of a multi-byte character. This is the
most difficult method to generalize. The following locale-specific
variants are supported:

 • __mblen_sb() - For single-byte code sets, always returns 1.

 • __mblen_utf() - multi-byte determination rules for UTF-8-based
locales.
National Language Support 245

 • __mblen_std() - For all other code sets, use the __mbtowc_std()
method to determine the number of bytes in the character by calling
the appropriate iconv() converter and seeing how many bytes were
able to be converted.

mbstopcs() Convert multi-byte string to process code string. This function is
somewhat obsolete, as mbstowcs() is the preferred alternative.
There is one standard locale method, __mbstopcs_std(), which
loops through the multi-byte string calling mbtopc() to convert each
multi-byte character to the appropriate process code.

mbstowcs() Convert multi-byte string to wide character string. There is one
standard locale method, __mbstowcs_std(), which loops through
the multi-byte string calling mbtowc() to convert each multi-byte
character to the appropriate wide character.

mbtopc() Convert multi-byte character to process code. This function is
somewhat obsolete, as its function is duplicated by the mbtowc()
function. There is one standard locale method, __mbtopc_std(),
which calls mbtowc() to perform the intended function of converting
the multi-byte character to process code (wide character).

mbtowc() Convert multi-byte character to wide character. All of the provided
mbtowc() methods convert the multi-byte character to a Unicode
value. There are three different methods provided in order to
optimize performance of this operation based on the nature of the
multi-byte codeset:

 • __mbtowc_iso1() - Since ISO8859-1 is a proper subset of Unicode.
Its data can be converted to Unicode by simply casting its 8-bit
value to a 16-bit value. This is the fastest method for converting
ISO8859-1 to Unicode.

 • __mbtowc_utf() - UTF-8-based data can be converted to Unicode
by using a simple bit-shifting algorithm. This method should be
used for all UTF-8 based locales since it is faster than the
__mbtowc_std() method listed below.

 • __mbtowc_std() - For all other codesets, the __mbtowc_std()
method converts the multi-byte data to Unicode using the iconv()
interface. The conversion descriptor is defined as a static pointer so
that multiple calls to __mbtowc_std() will not incur the overhead of
multiple iconv_open() calls. Because this locale method is
dependent on libiconv, it has been placed into a common locale
method object in /usr/lib/nls/loc/methods/stdmeth.o instead of in the
libc library, to avoid creating an unnecessary dependency between
libc and libiconv.

pcstombs() This method is obsolete since its function has been replaced by the
method wcstombs(). Currently, this function just returns -1.

pctomb() This method is obsolete since its function has been replaced by the
method wctomb(). Currently, this function just returns -1.

wcstombs() Convert wide character string to multi-byte string. There is one
standard locale method __wcstombs_std(), which loops through the
wide character string calling wctomb() to convert each wide
character to the appropriate multi-byte string.
246 AIX Version 4.3 Differences Guide

wctomb() Convert wide character to multi-byte character. All of the provided
wctomb() methods convert a Unicode value to the appropriate
multi-byte string. There are three different methods provided to
optimize performance of this operation based on the nature of the
multi-byte codeset:

 • __wctomb_iso1() - Since ISO8859-1 is a proper subset of Unicode,
its data can be converted from Unicode by simply casting its 16-bit
value to an 8-bit value. This is the fastest method for converting
Unicode to ISO8859-1.

 • __wctomb_utf() - UTF-8-based data can be converted from
Unicode by using a simple bit-shifting algorithm. This method
should be used for all UTF-8-based locales since it is faster than
the __wctomb_std() method listed below.

 • __wctomb_std() - For all other codesets, the __wctomb_std()
method converts the multi-byte data from Unicode using the iconv()
interface. The conversion descriptor is defined as a static pointer so
that multiple calls to __wctomb_std() will not occur. Because this
locale method is dependent on libiconv, it has been placed into a
common locale method object in /usr/lib/nls/loc/methods/stdmeth.o
instead of the libc library to avoid creating an unnecessary
dependency between libc and libiconv.

wcswidth() Determine the display width of a wide character string. There is one
standard locale method, __wcswidth_std(), that loops through the
wide character string calling wcwidth() to determine the display
width of each character.

wcwidth() Determine the display width of a wide character. Since all wide
characters can be assumed to have the Unicode encoding, each
character's display width can be determined with a single locale
method.

 • __wcwidth_std() - Determine the display width of a character based
on its Unicode value. Most characters that can be displayed have a
display width of 1; CJK ideographs and Hangul syllables will have a
display width of 2, and combining characters have a width of 0. The
assumption that the wide character encoding is Unicode allows for
a single wcwidth() method that is appropriate for all locales.

Localedef Command Impacts
The localedef command has a global method table that is defined
internally to the command and is used if the localedef command
user does not explicitly state the methods desired using the -m flag.
These tables will need to be modified and expanded to reflect the
newly-available methods.

Table 48. Internal Locale Methods Called for Each Locale

Locale method Unicode locales ISO8859-1-based
locales

Single byte
non-ISO1-based
locales

Multi-byte locales

mblen() __mblen_utf() __mblen_sb() __mblen_sb() __mblen_std()

mbstopcs() __mbstopcs_std() __mbstopcs_std() __mbstopcs_std() __mbstopcs_std()

mbstowcs() __mbstowcs_std() __mbstowcs_std() __mbstowcs_std() __mbstowcs_std()
National Language Support 247

10.3.3.3 Input Methods
The universal input method that is currently used in the UNIVERSAL locale is the
basis for input methods in Unicode-based locales. ISO/IEC DIS 14755 basic
operation support has been added, which provides the ability to enter a Unicode
character by holding down <Ctrl>,<Shift> and entering the appropriate
hexadecimal representation. The character set lists align with the script
designations in the Unicode 2.0 standard. Input method lists contain simply the
xx_XX designation for the input method to be selected. These attributes are
configurable through the .imcfg file for the universal locale.

The default input method selected should match that of the corresponding locale.
For example, bringing up the JA_JP (Unicode) locale should default to the
Japanese input method.

10.3.3.4 Fonts and X11 Locales
AIX currently provides bitmap fonts for UTF-8-based versions of the Baltic locales
in the fileset X11.fnt.ucs.com. However, these fonts currently contain only those
characters necessary for Baltic support. Similar types and sizes for these fonts
already exist for a full complement of characters from ISO8859-1 to ISO8859-9,
IBM-1046 and IBM-850. These existing bdf fonts have been combined to provide
a nearly-complete set of single wide bitmap fonts.

In the same way, 19 point and 27 point CJK fonts can be generated to provide a
complete set of UCS-based fonts in two sizes that cover the entire CJK
Ideograph Range (4E00 - 9FFF) and the Hangul Syllables Range (AC00 - D7FF).
These fonts are shipped with the fileset X11.fnt.ucs.cjk.

Dt font aliases have been created to provide the appropriate font sets, so that any
Unicode-based locale should operate with a similar set of compatible fonts.

An alternate X11 locale has been made available for use in those installations
where CJK font support is not desired and where loading of complete CJK fonts
would be a severe hindrance to proper performance.

mbtopc() __mbtopc_std() __mbtopc_std() __mbtopc_std() __mbtopc_std()

mbtowc() __mbtowc_utf() __mbtowc_isol() __mbtowc_std() __mdtowc_std()

pcstombs() __pcstombs_std() __pcstombs_std() __pcstombs_std() __pcstombs_std()

pctomb() __pctomb_std() __pctomb_std() __pctomb_std() __pctomb_std()

wcstombs() __wcstombs_std() __wcstombs_std() __wcstombs_std() __wcstombs_std()

wcswidth() __wcswidth_std() __wcswidth_std() __wcswidth_std() __wcswidth_std()

wctomb() __wctomb_utf() __wctomb_isol() __wctomb_std() __wctomb_std()

wcwidth() __wcwidth_std() __wcwidth_std() __wcwidth_std() __wcwidth_std()

Locale method Unicode locales ISO8859-1-based
locales

Single byte
non-ISO1-based
locales

Multi-byte locales
248 AIX Version 4.3 Differences Guide

10.3.3.5 Layout Services
A single layout object, /usr/lib/nls/loc/methods/uni_layout.o, has been provided
that will format Unicode characters according to the following sets of rules:

 • For Hebrew and Arabic, characters are presented according to the
bidirectional behavior rules as presented in the Unicode 2.0 standard, section
3.11.

 • For Vietnamese, combining sequences that correspond to characters in the
Unicode range U+1EA0 through U+1EF9 have been changed to their
precombined forms for presentation purposes.

 • Simple combining sequences for characters in the Basic Latin and Latin A
extensions shall be honored and altered to the precomposed forms for
presentation (that is, characters less than U+01FF).

 • Where fonts exist to do so, combining sequences other than those mentioned
above are presented as show hidden sequences.

 • An optional layout engine that formats Korean according to the rules in
Section 3.10 of the Unicode Standard.

10.3.4 Installation and Packaging
The following is true regarding installation and packaging:

 • Unicode-based locales are selectable for install from SMIT and from the BOS
install menus.

 • Any locale support that is common to all UTF-8 Unicode based platforms is
packaged and shipped in the fileset bos.loc.com.utf.

 • Each Unicode based locale is packaged as bos.loc.XX_XX, where XX_XX is
the language designation (that is, EN_US, FR_FR, and so on).

 • If locale-specific X11 resources are necessary, they are packaged as
X11.loc.XX_XX, as appropriate.

 • Translated message filesets have been created for all Unicode-based locales
that directly correspond with a translatable AIX language. For example,
bos.msg.KO_KR was created for Korean messages in the Unicode-based
locale.

 • See 10.3.5, “List of Supported Unicode Locales” on page 249 for a list of
supported Unicode locales.

10.3.5 List of Supported Unicode Locales
Table 49 provides the currently supported Unicode locales:

Table 49. Supported Unicode Locales

Unicode Locale Language Designation

Albanian SQ_AL

Arabic AR_AA

Bulgarian BG_BG

Catalan CA_ES

Chinese (Simplified) ZH_CN
National Language Support 249

Chinese (Traditional) ZH_TW

Croatian HR_HR

Czech CS_CZ

Danish DA_DK

Dutch NL_NL

Dutch (Belgium) NL_BE

English (Great Britain) EN_GB

English (United States) EN_US

Estonian ET_EE

Finnish FI_FI

French FR_FR

French (Belgium) FR_BE

French (Canada) FR_CA

French (Switzerland) FR_CH

German DE_DE

German (Switzerland) DE_CH

Greek EL_GR

Hebrew IW_IL

Hungarian HU_HU

Icelandic IS_IS

Italian IT_IT

Japanese JA_JP

Korean KO_KR

Latvian LV_LV

Lithuanian LT_LT

Macedonia MK_MK

Norwegian NO_NO

Polish PL_PL

Portuguese PT_PT

Portuguese (Brazil) PT_BR

Romanian RO_RO

Russian RU_RU

Serbian Cyrillic SR_SP

Serbian Latin SH_SP

Unicode Locale Language Designation
250 AIX Version 4.3 Differences Guide

10.4 Java NLS Support

Prior to AIX Version 4.3, Java Version 1.02 was shipped with AIX. In AIX Version
4.3, Java Version 1.11 is shipped as part of the base operating system.

The previous version of Java (1.02) had virtually no national language support
(Java 1.02 only really has support for the English language). However, Java 1.1 is
NLS enabled for the G7 countries: France, the United States, U.K., Germany,
Japan, Italy and Canada. Currently, there is no support within Java 1.1 for
bidirectional languages. All of the locale support within Java is based on Unicode.

Below is a summary of the Java 1.1 NLS support:

 • Locale support

– Character types based on Unicode 2.0

– Date, time, number, and currency formatting

– Collation

 • External character sets

– Font handling

– Use OS-provided input methods

– Message handling

– Printing support

– Text line-break

Slovak SK_SK

Slovene SL_SI

Spanish ES_ES

Swedish SV_SE

Thai TH_TH

Turkish TR_TR

Vietnamese VI_VN

Unicode Locale Language Designation
National Language Support 251

10.5 Euro Symbol Support for AIX (4.3.2)

Figure 52. Euro Symbol (http://europa.eu.int/euro/html/entry.html)

This section will provide you with the necessary information required to introduce
the Euro symbol as a valid graphical and printable character to your AIX system.

The primary means of code set support for the Euro symbol is achieved by use of
the UTF-8 multi-byte encoded locales for each country. A detailed outline of the
locale definitions for the UTF-8 code set, the keyboard definitions, the input
methods, and the codeset conversion tables is given.

For those customers that have applications that will not support multi-byte
encoding, such as UTF-8, a Euro single-byte migration option based on the
IBM-1252 code set is provided. This topic is addressed in 10.5.6, “Euro SBCS
Migration Option - IBM-1252 Locale” on page 270.

10.5.7, “Packaging” on page 271, and 10.5.8, “Installation of Euro Symbol
Support” on page 272 cover the Euro symbol support in more practical terms. You
may want to skip over to these sections first and install the Euro symbol related
locales by following the documented step-by-step instructions, gain some
experience in the new environment, then come back to the more theoretical
oriented sections at a later time.

10.5.1 Overview
The Euro is being introduced by the European Monetary Union (EMU) as a
common currency to be adopted by all EMU member countries. Initial use of the
Euro in banking and industry is planned beginning in January of 1999. During the
first three years after introduction, the Euro currency and the existing national
currencies will both be used, and a fixed exchange rate will be established. The
goal is to completely replace the existing national currencies by the year 2002.

The primary means of achieving code set support for the Euro symbol is to make
use of the UTF-8 locales for each country. UTF-8 refers to the X/Open file system
safe UCS transformation format (FSS-UTF). It is a multi-byte code set suitable to
encode plain text on traditional byte-oriented systems, such as AIX, and is
directly related to the universal code character set (UCS). The Unicode standard
has adopted code point position U+20AC as <EURO_SIGN>. This is not to be
confused with the old European currency symbol located at U+20A0.
252 AIX Version 4.3 Differences Guide

The new locales must be able to effectively support the dual currency situation
that will exist between the years 1999 - 2002. During this time period, the locale
definition will still use the country’s national currency definition as the default, but
a mechanism is provided to switch the LC_MONETARY definition so that the Euro
currency formatting is used instead of the country’s national currency formatting
rules.

For those customers that have applications that will not support multi-byte
encodings such as UTF-8, a Euro single-byte migration option is provided as well.
This option is based on the Windows 1252 placement of the Euro at 0x80 to
provide the best compatibility with Windows 98/NT clients.

10.5.2 Local Definitions for the UTF-8 Code Set
A locale is made up of the language, territory, and code set combination used to
identify a set of language conventions. The language specific information is
accessed through the locale database that is compiled by the localedef
command. The localedef command takes three different files as input:

 • One file describes the local methods to be overridden in respect to the
defaults when constructing a locale.

 • The second file contains a mapping from the character symbols and collating
element symbols to actual character encodings.

 • Finally, the language conventions are grouped in six categories to include
information about collation, case conversion, and character classification, the
language of message catalogs, date-and-time representation, the monetary
symbol, and numeric representation.

The local category source definitions are given in the third input file, the local
definition source file.

The following categories can be defined for a given local:

LC_COLLATE Determines character-collation or string-collation information.
LC_CTYPE Determines character classification, case conversion, and

other character attributes.
LC_MESSAGES Determines the format for affirmative and negative

responses.
LC_MONETARY Determines rules and symbols for formatting monetary

numeric information.
LC_NUMERIC Determines rules and symbols for formatting and

non-monetary numeric information.
LC_TIME Determines a list of rules and symbols for formatting time and

date information.

NLS uses the environment variables LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC and LC_TIME to define the
current values for their respective categories and to influence the selection of
locales. In addition to the previously mentioned medium priority class
environment variables, the LANG low priority class environment variable
specifies the installation default locale. You can change the LANG variable at any
time. Furthermore, the high priority class variable LC_ALL is provided that takes
precedence above all the other NLS environment variables mentioned before.
National Language Support 253

Any UTF-8 based locale installed on an AIX system will provide the desired
support for the Euro symbol. For those countries that may have to actively use
the Euro (Table 51 on page 256), the locales will deliver the input methods and
the keyboard maps required to enter the Euro symbol through the keyboard. For
the same group of countries, an additional LC_MONETARY locale is available to
enable the Euro currency formatting. This locale is identified by the suffix @euro.
For example, if you are using the UTF-8 locale DE_DE, which specifies German
language and territory, and your system is configured for Euro currency
formatting, then the locale command will return the following output:

locale
LANG=DE_DE
LC_COLLATE="DE_DE"
LC_CTYPE="DE_DE"
LC_MONETARY="DE_DE@euro"
LC_NUMERIC="DE_DE"
LC_TIME="DE_DE"
LC_MESSAGES="DE_DE"
LC_ALL=

The related locale definition source files and the locale databases can be found in
the /usr/lib/nls/loc directory:

cd /usr/lib/nls/loc
ls -l DE_DE* | egrep -v "\.[il]" | cut -c55-
DE_DE -> /usr/lib/nls/loc/DE_DE.UTF-8
DE_DE.UTF-8
DE_DE.UTF-8.src
DE_DE.UTF-8@euro
DE_DE.UTF-8@euro.src
DE_DE.UTF-8@euro__64
DE_DE.UTF-8__64
DE_DE@euro -> /usr/lib/nls/loc/DE_DE.UTF-8@euro
DE_DE@euro__64 -> /usr/lib/nls/loc/DE_DE.UTF-8@euro__64
DE_DE__64 -> /usr/lib/nls/loc/DE_DE.UTF-8__64

The locale database for the DE_DE locale is actually an alias for DE_DE.UTF-8,
and likewise, the database for the DE_DE@euro locale is linked to
DE_DE.UTF-8@euro. Note, you should not use the referenced locale databases
DE_DE.UTF-8 and DE_DE.UTF-8@euro explicitly as parameter to the chlang
command or as variable value for LANG. The names of the locales are aligned to
the traditional AIX locale naming convention.

Since a locale is a loadable object module, a different object is required when
running in the 64-bit environment. Consequently, you find one 64-bit enabled
locale database for any 32-bit locale database. The 64-bit databases are readily
identified by the __64 suffix. In the 64-bit environment, the application will
automatically append __64 to the name of the locale when searching for the
proper NLS.

The locale definition source files hold the suffix .src and belong to the separately
installable bos.loc.adt.locale fileset.

10.5.2.1 Euro Sign Character Classification
For each UTF-8 based locale, the Euro sign was added as a valid graphical and
printable character. The Euro sign is not classified as an alphabetic, upper or
lower case letter, nor a numeric symbol.
254 AIX Version 4.3 Differences Guide

For example, if you display the locale definition source file
/usr/lib/nls/loc/DE_DE.UTF-8.src for the German UTF-8 locale, you will find one
entry for each of the keywords graph and print in the LC_CTYPE category
statement:

LC_CTYPE

...
graph /
...

;<EURO-CURRENCY_SIGN>/
...

;<EURO_SIGN>/
...
print /
...

;<EURO-CURRENCY_SIGN>/
...

;<EURO_SIGN>/
...
END LC_CTYPE

(<EURO-CURRENCY_SIGN> refers to the old European currency symbol.)

The locale definition source files belong to the separately installable
bos.loc.adt.locale fileset. Note that the Euro sign is added for all UTF-8 based
locales not only for the locales of the countries which are member of the
European Monetary Union. Indeed, this is one of the advantages of the Universal
Coded Character Set (UCS).

10.5.2.2 Euro Sign Encoding
For each UTF-8 based locale, the UTF-8 character set description source file
/usr/lib/nls/charmap/UTF-8 maps the old European currency symbol to U+20A0
and the new Euro sign to U+20AC. Each character symbol definition consists of a
symbol name and the character encoding. In our case, the code value is given as
a set of three hexadecimal constants:

...
Currency Symbols : U20A0 - U20CF
#

<EURO-CURRENCY_SIGN> \xe2\x82\xa0
...
<EURO_SIGN> \xe2\x82\xac
...

Table 50 provides an overview of the different encoding for the
<EURO-CURRENCY_SIGN> and the <EURO_SIGN>:

Table 50. Encoding for the European Currency Symbol and Euro Sign

Encoding <EURO-CURRENCY_SIGN> <EURO_SIGN>

UCS-2:
Hexadecimal
Representation

20A0 20AC
National Language Support 255

For more details about character encoding refer to Code Set Overview in AIX
Version 4.3 General Programming Concepts: Writing and Debugging Programs.

The character set description source files belong to the separately installable
fileset bos.loc.adt.locale.

10.5.2.3 LC_MONETARY Formatting Information
For each Western European locale that may actively use the Euro symbol, an
additional locale that contains the LC_MONETARY information for the Euro
currency is provided. A list of all affected locales is given in Table 51:

Table 51. List of Locales for Euro-Specific LC_MONETARY Locale

To obtain the traditional local currency definition, the standard locale is used as
before. Whenever the Euro currency formatting is desired, the LC_MONETARY
category should be set by the application (using the setlocale() subroutine) or by
the user (using the LC_MONETARY environment variable) to "XX_XX@euro",
where XX_XX represents the language and territory designation for any of the
locales listed in the previous table.

The LC_MONETARY information for each @euro variant is defined by the related
locale definition source file. For example, you will find in the DE_DE@euro locale

UTF-8 multi-byte:
Byte Sequence
in Hexadecimal
Representation

e2 82 a0 e2 82 ac

UTF-8 multi-byte:
Byte Sequence
in Binary

11100010 10000010 10100000 11100010 10000010 10101100

Language/Territory Identifier

Catalan CA_ES

Dutch (Belgium) NL_BE

Dutch NL_NL

English (Great Britain) EN_GB

Finnish FI_FI

French (Belgium) FR_BE

French (Switzerland) FR_CH

French FR_FR

German (Switzerland) DE_CH

German DE_DE

Italian IT_IT

Portuguese PT_PT

Spanish ES_ES

Encoding <EURO-CURRENCY_SIGN> <EURO_SIGN>
256 AIX Version 4.3 Differences Guide

definition source file /usr/lib/nls/loc/DE_DE.UTF-8@euro.src the following entries
for the LC_MONETARY category:

LC_MONETARY

int_curr_symbol "<E><U><R><SPACE>"
currency_symbol "<EURO_SIGN>"
mon_decimal_point <COMMA>
mon_thousands_sep "<FULL_STOP>"
mon_grouping 3
positive_sign ""
negative_sign "<HYPHEN-MINUS>"
int_frac_digits 2
frac_digits 2
p_cs_precedes 0
p_sep_by_space 1
n_cs_precedes 0
n_sep_by_space 1
p_sign_posn 1
n_sign_posn 1

END LC_MONETARY

The XPG monetary formatting subroutine strfmon() uses the information provided
to format monetary quantities according to the settings for the keywords, as
provided in Table 52.

Table 52. LC_MONETARY Keywords for the Euro Locale

Keyword Description

int_curr_symbol Specifies the string used for the international currency symbol.

currency_symbol Specifies the string used for the local currency symbol.

mon_decimal_point Specifies the string used for the decimal delimiter.

mon_thousands_sep Specifies the character separator used for grouping digits to the
left of the decimal delimiter.

mon_grouping Specifies a string that defines the size of each group of digits.

positive_sign
negative_sign

Specifies the string used to indicate a nonnegative /
negative-valued formatted monetary quantity.

int_frac_digits
frac_digits

Specifies an integer value representing the number of fractional
digits (those after the decimal delimiter) to be displayed in a
formatted monetary quantity using the int_curr_symbol /
currency_symbol value.

p_cs_precedes
n_cs_precedes

Specifies an integer value indicating whether the int_curr_symbol
or currency_symbol string, precedes (1) or follows (0) the value
for a nonnegative / negative formatted monetary quantity

p_sep_by_space
n_sep_by_space

Specifies an integer value indicating whether the int_curr_symbol
or currency_symbol string is separated (1) or not separated (0) by
a space from a nonnegative / negative formatted monetary
quantity
National Language Support 257

For a detailed description of the LC_MONETARY category keywords refer to
LC_MONETARY Category for the Locale Definition Source File Format in AIX
Version 4 Files Reference. The locale definition source files are part of the
separately installable bos.loc.adt.locale fileset.

Generally, the LC_MONETARY information for each @euro variant of the locale
contains the same formatting information as the country’s historical currency
formatting with the following modifications, as necessary:

 • The alphabetic international currency symbol as defined by the
int_curr_symbol keyword is set to "<E><U><R><space>".

 • The string to use for the locale currency symbol as defined by currency_symbol
keyword is set to <EURO_SIGN> (the Euro symbol).

 • The number of decimal places for Euro symbol formatting, as defined by the
keywords int_frac_digits and frac_digits is set to two decimal places in all cases.

 • Other formatting conventions, such as decimal point and thousands separator,
can be uniquely specified by each country. The relevant keywords where
minor deviations occur are mon_decimal_point, mon_thousands_sep, p_cs_precedes,
n_cs_precedes, p_sign_posn, n_sign_posn. Table 53 summarizes the differences
between the Euro LC_MONETARY locales

Table 53. Locale-Specific Deviations in the LC_MONETARY Category

Note: the <FULL_STOP> character is similar in appearance to a period (.).

p_sign_posn
n_sign_posn

Specifies an integer value indicating the positioning of the
positive_sign/negative_sign string for a nonnegative/negative
formatted monetary quantity.
1 Indicates that the positive_sign/negative string precedes the
quantity and the int_curr_symbol or currency_symbol string.
2 Indicates that the positive_sign/negative string follows the
quantity and the int_curr_symbol or currency_symbol string.
4 Indicates that the positive_sign string immediately follows the
int_curr_symbol or currency_symbol string.

Locale mon_decimal_point mon_thousands_sep p_cs_precedes
n_cs_precedes

p_sign_posn n_sign_posn

CA_ES@euro <COMMA> <FULL_STOP> 1 1 1

DE_DE@euro <COMMA> <FULL_STOP> 0 1 1

ES_ES@euro <COMMA> <FULL_STOP> 1 1 1

FI_FI@euro <COMMA> <SPACE> 0 1 1

FR_BE@euro <COMMA> <FULL_STOP> 0 1 1

FR_FR@euro <COMMA> <SPACE> 0 1 1

IT_IT@euro <COMMA> <FULL_STOP> 1 4 4

NL_BE@euro <COMMA> <FULL_STOP> 0 1 1

NL_NL@euro <COMMA> <FULL_STOP> 1 1 2

PT_PT@euro <DOLLAR_SIGN> <FULL_STOP> 0 1 1

Keyword Description
258 AIX Version 4.3 Differences Guide

10.5.2.4 Collating Sequence for Euro Locales
For each UTF-8 based locale, the collation sequence for that locale was modified
to contain the Euro symbol. The UTF-8 locales adhere to a multiple pass collation
sequence, and the Euro sign will be collated in the fourth pass between the dollar
sign and the sterling sign (British Pound). The appropriate entry for this behavior,
in the associated locale definition source file, appear as follows:

...
LC_COLLATE

...
<DOLLAR_SIGN> IGNORE;IGNORE;IGNORE;<DOLLAR_SIGN>
<EURO_SIGN> IGNORE;IGNORE;IGNORE;<EURO_SIGN>
<POUND_SIGN> IGNORE;IGNORE;IGNORE;<POUND_SIGN>
...

END LC_COLLATE
...

If the LC_MONETARY locale is set to activate the Euro symbol formatting, the
Euro sign collates in the first pass between the dollar sign and the percent sign
for all UTF-8 based locales listed in Table 53 on page 258. Any of the relevant
locale definition source files /usr/lib/nls/loc/XX_XX.UTF-8@euro.src will have the
following entries:

...

LC_COLLATE

oder_start

...
<DOLLAR_SIGN>
<EURO_SIGN>
<PERCENT_SIGN>
...

order_end

END LC_COLLATE
...

10.5.3 Keyboard Definitions
IBM follows the recommendation of the European Commission (EC) regarding
placement of the Euro symbol on keyboards. This recommendation, along with
other information from the EC, can be found at IT impact of the Euro, (EC
Information Society Project Office (ISPO)) http://www.ispo.cec.be/y2keuro/euroit.htm.
The European Commission’s recommendation is to place the Euro symbol at the
position AltGr+e on all European keyboards, except on those keyboard layouts
where the key combination AltGr+e is already assigned to produce a different
character. In those cases, a combination of AltGr+4 or AltGr+5 will be assigned,
depending on the particular keyboard layout. The AltGr (Alt Graphics) key allows
you to enter additional characters through the keyboard and is located to the right
of the space bar on keyboards with this feature.
National Language Support 259

Table 54 summarizes the AIX keyboards that will be modified to incorporate the
Euro symbol and specifies the placement of the Euro symbol on each European
keyboard. As of the writing of this document, these keyboard placements match
the current recommendation of the EC regarding placement of the Euro symbol
on keyboards.

Table 54. Keyboard Definitions to Incorporate the Euro Symbol

AIX supports two different types of keyboards: low function terminal (LFT) and X
server keyboards. Although these two keyboard maps appear to be the same,
they are separate and distinct.

Low-function terminals (LFTs) support single-byte code-set languages using key
maps. An LFT key map translates a key stroke into a character string in the code
set of the given locale. LFT does not support languages that require multi-byte
code sets. Hence, you will not have any Euro support on behalf of the lft0 pseudo
device driver. However, if you configure your system to use UTF-8 locales to gain
Euro symbol support, you will find by the use of the lskbd command, that the
name of the LFT software keyboard map suggests a multi-byte keyboard map.

Language/Territory AIX Keyboard Name Keyboard ID Euro Placement

Catalan/Spain CA_ES 172 AltGr+e

Danish/Denmark DA_DK 159 AltGr+5

Dutch/Belgium NL_BE 120 AltGr+e

Dutch/Netherlands NL_NL 143 AltGr+e

English/UK EN_GB 166 AltGr+4

English/UK EN_GB@alt 168 AltGr+e

Finnish/Finland FI_FI 153 AltGr+5

Finnish/Finland FI_FI@alt 285 AltGr+5

French/Belgium FR_BE 120 AltGr+e

French/France FR_FR 189 AltGr+e

French/France FR_FR@alt 251 AltGr+e

French/Switzerland FR_CH 150F AltGr+e

German/Germany DE_DE 129 AltGr+e

German/Switzerland DE_CH 150G AltGr+e

Icelandic/Iceland IS_IS 197 AltGr+5

Italian/Italy IT_IT 142 AltGr+5

Italian/Italy IT_IT@alt 293 AltGr+5

Norwegian/Norway NO_NO 155 AltGr+5

Portuguese/Portugal PT_PT 163 AltGr+5

Spanish/Spain ES_ES 172 AltGr+e

Swedish/Sweden SV_SE 153 AltGr+5

Swedish/Sweden SV_SE@alt 285 AltGr+5
260 AIX Version 4.3 Differences Guide

For example, in a German UTF-8 locale environment, you would get the following
response by the lskbd command:

lskbd
The current software keyboard map = /usr/lib/nls/loc/DE_DE.lftkeyboard

But a closer examination of the relevant keyboard map files reveals that they are
symbolic links to the regular C locale LFT keyboard map:
/usr/lib/nls/loc/C.lftkeymap.

For a full graphical Euro symbol enablement, you have to be in an X environment.
The associated X server has an attached keyboard, and the server uses mapping
tables to manage the mapping of keyboard events. The mapping of an X server
keyboard can be changed by using the xmodmap command. This command
converts the keyboard so that it returns the key symbol supported by the system.

At startup of the X server, a query to the ODM returns the locale that determined
the keyboard map for the LFT pseudo device driver; that is, the swkb_path attribute
of lft0 is examined for the currently used locale for the keyboard map. In the next
step, the xmodmap command defines the proper keyboard mapping to the server
according to the found locale.

When characters are typed in on the keyboard reach the server, the characters
are in the form of key codes. These key codes are converted into keysyms (key
symbols), or if applicable, into a pair of keysym/modifier as defined by the table
provided in the client.(A modifier indicates the state of the keyboard as
determined by the modifier keys: Shift, Lock, Ctrl, Alt and Alt Graphic. The
keyboard table was defined to the sever by the xmodmap command and contains
mappings for each of the keycodes into a predefined set of codes called keysyms
or keysym/modifier.

The file containing the xmodmap command expressions to be run by the xmodmap
command is in the directory /usr/lpp/X11/defaults/xmodmap/XX_XX, where XX_XX
represents the language/territory designation for the UTF-8 locale. The following
example shows the Euro specific entry for the German UTF-8 locale in
/usr/lpp/X11/defaults/xmodmap/DE_DE/keyboard:

...
! Row 2 Base Shift Alt-Gr (Mod2)
! ----- ---- ----- -------------
!
!keycode 24 = Tab NoSymbol NoSymbol
 keycode 25 = q Q at
 keycode 26 = w W NoSymbol
 keycode 27 = e E EuroSign
 keycode 28 = r R NoSymbol
...

If you press the AltGr+e key combination on a German keyboard, the first step of
the input processing is completed when the keycode to keysym/modifier
conversion is done. In this specific case, the modifier is masked. For example,
the AltGr modifier and the character "e" are combined to map to the EuroSign key
symbol. But the keysym still has to be mapped to the related character string in
the code set specified by your locale before an application can process the input.
This conversion is governed by the input method.
National Language Support 261

10.5.4 Input Methods for the Euro Symbol
For an application to run in the international environment, for which National
Language Support provides a base, input methods are needed. An input method
is a set of functions that translates key strokes, or more precisely, key
symbol/modifier pairs into character strings in the code set specified by your
locale. Each type of input method has the following features:

Keymaps Set of input method keymaps (imkeymaps) that work with the input
method and determine the supported locales.

Keysyms Set of key symbols (keysyms) that the input method can handle.

Modifiers Set of modifiers, or states, each having a mask value, that the input
method supports.

Your locale determines which input method should be loaded, how the input
method runs, and which devices are used. The /usr/lib/nls/loc directory contains
the input methods installed on your system. Input method file names have the
format XX_XX.im where XX_XX represents the language and territory designation
for any of the locales. For a given input method, you may find an associated
configuration file identified by the suffix .imcfg .The input method provides support
for user-defined imkeymaps, allowing you to customize input method mapping.
The input methods support imkeymaps for each locale. The file name for
imkeymaps is similar to that of input methods, except that the suffix for imkeymap
files is .imkeymap instead of .im. The imkeymaps are generated by the keycomp
command. The keycomp command compiles a keyboard mapping file into an input
method keymap file. The locale specific keyboard mapping files are recognized
by the suffix .imkeymap.src .

For a system set up for German UTF-8 Euro symbol support (DE_DE), you would
find all the files mentioned above in the /usr/lib/nls/loc directory:

ch /usr/lib/nls/loc
ls -l DE_DE*im* | cut -c55-
DE_DE.UTF-8.im -> /usr/lib/nls/loc/sbcs.im
DE_DE.UTF-8.imcfg -> /usr/lib/nls/loc/UNIVERSAL.imcfg
DE_DE.UTF-8.imkeymap
DE_DE.UTF-8.imkeymap.src
DE_DE.im -> /usr/lib/nls/loc/UNIVERSAL.im
DE_DE.imcfg -> /usr/lib/nls/loc/UNIVERSAL.imcfg
DE_DE.imkeymap -> /usr/lib/nls/loc/DE_DE.UTF-8.imkeymap

Note that actually two input methods are present, and indeed, both are needed
for your UTF-8 Euro environment. DE_DE.im is linked to the standard
UNIVERSAL input method and DE_DE.UTF-8.im is an alias for the traditional
single-byte input method commonly used in conjunction with the ISO8859 and the
IBM-850 PC code sets. Both input methods are related by the use of the same
UNIVERSAL input method configuration file UNIVERSAL.imcfg.

10.5.4.1 Single-Byte Character Set Input Method
The Single-Byte Character Set Input Method (SIM) is the standard that supports
most of the locales. It is a mapping function that supports simple composition
defined on workstation keyboards associated with single-byte locales.

SIM supports any keyboard, code set, and language that the keycomp command
can describe. You can customize SIM using imkeymaps. The coded strings
returned by the input method depend on the imkeymap. Due to this feature, you
262 AIX Version 4.3 Differences Guide

can extend the capability of the SIM to support multi-byte UTF-8 locales. Adding
just one new key combination (AltGr+e, AltGr+4 or AltGr+5) to make the input of
the Euro sign from the keyboard feasible does not require an entire input method
to be rewritten.

Similar to the German DE_DE alias for the DE_DE.UTF-8 locale contains the
following entry in the keycomp source file
/usr/lib/nls/loc/DE_DE.UTF-8.imkeymap.src:

...
XK_EuroSign \
 "\xe2\x82\xac" \
 XK_EuroSign \
 U \
 U \
 U \
 U \
 U
...
XK_e \
 ’e’ \
 XK_E \
 XK_E \
 XK_e \
 ’\x05’ \
 U \
 XK_EuroSign
...

The XK_e maps to the XK_EuroSign keysym when the modifier key AltGr is used
while entering the character e on the keyboard. The XK_EuroSign keysym, in
turn, is mapped to the code point \xe2\x82\xac.

10.5.4.2 UNIVERSAL Input Method
If you configured your system to use a UTF-8 locale for Euro symbol support, you
have access to the entire range of UTF-8 encoded characters. In order to allow
for character input from the keyboard for several thousand different characters,
the single-byte input method is not sufficient, and consequently, a UNIVERSAL
input method is provided. Note, if your system is configured for a UTF-8 locale
that does not support the character input of the Euro sign through a key
combination, the UNIVERSAL input method has to be used.

The UNIVERSAL input method supports two general modes of character input:

 • Switching between installed AIX locale input methods

 • Selection of characters from character lists

The UNIVERSAL input method is configured by the default UNIVERSAL.imcfg file
in the /usr/lib/nls directory. This file defines the set of available AIX locale input
methods and the lists of characters for list-based input. It also defines the key
combinations used to invoke the input method selection menus.

The default key combinations recognized by the UNIVERSAL input method are:

Ctrl+Alt+i Invokes the input method selection menu
Ctrl+Alt+l Invokes the menu of character lists
Ctrl+Alt+c Invokes the current list of characters
National Language Support 263

A selection menu can be closed by pressing the Enter key.

After an input method is selected from the input method selection menu (see
Figure 53 on page 264), it can be used in the same way as in its associated
locale. The label at the left edge of the input method status bar describes the
locale for the currently selected input method. For example, if the Simplified
Chinese input method is selected from the selection menu, the CN_ZH label is
displayed in the status area. Any status information specific to the current input
method is displayed immediately to the right of this label. Of course, if you want to
switch the input method, the related locale has to be installed on the system.

Most input methods require a locale-specific keyboard mapping to support certain
input sequences. In the X environment, the keyboard can be remapped by
invoking the xmodmap command with the keyboard files under the
/usr/lpp/X11/defaults/xmodmap directory. For example, the following command
remaps the keyboard so as to support the Chinese input method:

xmodmap /usr/lpp/X11/defaults/xmodmap/CN_ZH/keyboard

Note that the keyboard mappings assume an associated physical keyboard.

Figure 53. UNIVERSAL Input Method: Switching

By default, the Ctrl+Alt+l key combination invokes the menu of character lists
(Figure 54 on page 265). After a list is selected from this menu, characters can be
input by selecting them from the list with the mouse. The characters will initially
be inserted in the input method pre-edit area. The characters can be committed by
pressing the Enter key.
264 AIX Version 4.3 Differences Guide

Figure 54. UNIVERSAL Input Method: Character List Selection

When a character list is selected from the character list menu, it becomes the
current character list. It can then be invoked by simply entering the default
Ctrl+Alt+c key combination (Figure 55 on page 266).

To enter the Euro sign, select the Currency character list and select the Euro sign
from the list.
National Language Support 265

Figure 55. UNIVERSAL Input Method: Character List

10.5.5 Codeset Conversion Tables
As more code sets are supported, it becomes important not to clutter programs
with the dependency of any particular code set. This is known as code set
independence. To aid in code set independence, NLS supplies converters that
translate character encoding values found in different code sets. Using these
converters, a system can accurately process data generated in different code set
environments

In addition to Unicode, a number of new 8-bit codesets have been proposed that
will contain the Euro symbol. Although AIX will not have supported locales in
many of these code sets, it will provide data conversion capabilities to, and from,
these code sets. The new code sets that are being introduced are as follows:

 • IBM-1252 (extended) - This code set will be used by the Euro single-byte
(SBCS) migration option.

 • IBM-858 - This code set is identical to IBM-850 except that the dotless letter i,
which is used only in Turkish, is replaced with the Euro symbol. This code set
will be used in OS/2.

 • IBM-114x - Ten new code sets are being introduced that serve the same
function as the existing EBCDIC code sets, except that one character is
replaced with the Euro. The new code sets are summarized in Table 55.

Table 55. Existing EBCIDIC Code Sets

Existing EBCDIC Code Set New Euro Code Set Countries

IBM-037 IBM-1140 US

IBM-273 IBM-1141 Germany
266 AIX Version 4.3 Differences Guide

The new iconv converters use either the UCSTBL or the Universal_UCS_Conv
conversion method.

The UCSTBL method is located in the /usr/lib/nls/loc/uconv directory and loads
UCS-2 (Unicode) conversion tables created by the uconvdef command. In order to
compile the UCS-2 (Unicode) conversion table, the uconvdef command reads a
source file that defines a mapping between the UCS-2 and a particular multi-byte
code set. The source files are in the /usr/lib/nls/uconv table directory with names
that are composed of the code set name appended by the suffix .ucmap. The
UCSTBL method uses the table to support UCS-2 conversions in both directions.
The setup of a converter is complete if the proper symbolic links for conversions
in each direction are created in the /usr/lib/nls/iconv directory. For example, the
links for the conversion of the IBM-850 code set to UCS-2, and vice versa, are
defined as shown below:

cd /usr/lib/nls/loc/iconv
ln -s /usr/lib/nls/loc/uconv/UCSTBL IBM-850_UCS-2
ln -s /usr/lib/nls/loc/uconv/UCSTBL UCS-2_IBM-850

The Universal_UCS_Conv method is located in the /usr/lib/nls/loc/iconv directory
and can be used to convert between any two code sets whose conversions to,
and from, UCS-2 are defined. The conversion is instantiated by setting the proper
links. Assuming that someone wants to define the conversion of the IBM-850 to,
and from, the UTF-8 code set, you would have to enter the following sequence of
commands:

cd /usr/lib/nls/loc/iconv
ln -s /usr/lib/nls/loc/uconv/Universal_UCS_Conv IBM-850_UTF-8
ln -s /usr/lib/nls/loc/uconv/UCSTBL IBM-850_UCS-2
ln-s /usr/lib/nls/loc/uconv/UCSTBL UCS-2_UTF-8
ln -s /usr/lib/nls/loc/uconv/UCSTBL IBM-850
ln -s /usr/lib/nls/loc/uconv/UCSTBL UTF-8

As you can see from the example above, UTF-8 converters are usually done by
using the Universal_UCS_Conv and the /usr/lib/nls/loc/uconv/UTF-8 conversion.

It should be noted that, for some conversion pairs, a substitution character may
be inserted when converting a Euro symbol from a codeset that contains the Euro
to a codeset that does not (For example: Converting IBM-114x to ISO8859-1).

IBM-277 IBM-1142 Denmark, Norway

IBM-278 IBM-1143 Finland, Sweden

IBM-280 IBM-1144 Italy

IBM-284 IBM-1145 Spain

IBM-285 IBM-1146 Great Britain

IBM-297 IBM-1147 France

IBM-500 IBM-1148 Belgium, Canada, Switzerland

IBM-871 IBM-1149 Iceland

Existing EBCDIC Code Set New Euro Code Set Countries
National Language Support 267

Table 56 summarizes the new iconv converters that are provided for Euro
support.

Table 56. Converters for Euro Symbol Support

Converter Type Fileset

 IBM-1140_IBM-858 Universal bos.iconv.com

 IBM-1140_ISO8859-1 Universal bos.iconv.com

 IBM-1140_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1140_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-1141_IBM-858 Universal bos.iconv.de_DE

 IBM-1141_ISO8859-1 Universal bos.iconv.de_DE

 IBM-1141_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1142_IBM-858 Universal bos.iconv.da_DK

 IBM-1142_ISO8859-1 Universal bos.iconv.da_DK

 IBM-1142_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1142_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-1143_IBM-858 Universal bos.iconv.com

 IBM-1143_ISO8859-1 Universal bos.iconv.com

 IBM-1143_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1143_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-1144_IBM-858 Universal bos.iconv.it_IT

 IBM-1144_ISO8859-1 Universal bos.iconv.it_IT

 IBM-1144_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1144_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-1145_IBM-858 Universal bos.iconv.es_ES

 IBM-1145_ISO8859-1 Universal bos.iconv.es_ES

 IBM-1145_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1145_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-1146_IBM-858 Universal bos.iconv.en_GB

 IBM-1146_ISO8859-1 Universal bos.iconv.en_GB

 IBM-1146_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1146_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-1147_IBM-858 Universal bos.iconv.fr_FR

 IBM-1147_ISO8859-1 Universal bos.iconv.fr_FR

 IBM-1147_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1147_UTF-8 Universal bos.iconv.ucs.ebcdic
268 AIX Version 4.3 Differences Guide

 IBM-1148_IBM-858 Universal bos.iconv.com

 IBM-1148_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1148_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-1149_IBM-858 Universal bos.iconv.is_IS

 IBM-1149_ISO8859-1 Universal bos.iconv.is_IS

 IBM-1149_UCS-2 UCSTBL bos.iconv.ucs.ebcdic

 IBM-1149_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM-850_IBM-858 Universal bos.iconv.ucs.com

 IBM-858_IBM-1140 Universal bos.iconv.com

 IBM-858_IBM-1141 Universal bos.iconv.de_DE

 IBM-858_IBM-1142 Universal bos.iconv.da_DK

 IBM-858_IBM-1143 Universal bos.iconv.com

 IBM-858_IBM-1144 Universal bos.iconv.it_IT

 IBM-858_IBM-1145 Universal bos.iconv.es_ES

 IBM-858_IBM-1146 Universal bos.iconv.en_GB

 IBM-858_IBM-1147 Universal bos.iconv.fr_FR

 IBM-858_IBM-1148 Universal bos.iconv.com

 IBM-858_IBM-1149 Universal bos.iconv.is_IS

 IBM-858_IBM-850 Universal bos.iconv.ucs.com

 IBM-858_ISO8859-1 Universal bos.iconv.ucs.com

 IBM-858_UCS-2 UCSTBL bos.iconv.ucs.com

 IBM-858_UTF-8 Universal bos.iconv.ucs.com

 IBM_1141_UTF-8 Universal bos.iconv.ucs.ebcdic

 IBM_1148_ISO8859-1 Universal bos.iconv.com

 ISO8859-1_IBM-1140 Universal bos.iconv.com

 ISO8859-1_IBM-1141 Universal bos.iconv.de_DE

 ISO8859-1_IBM-1142 Universal bos.iconv.da_DK

 ISO8859-1_IBM-1143 Universal bos.iconv.com

 ISO8859-1_IBM-1145 Universal bos.iconv.es_ES

 ISO8859-1_IBM-1146 Universal bos.iconv.en_GB

 ISO8859-1_IBM-1147 Universal bos.iconv.fr_FR

 ISO8859-1_IBM-1148 Universal bos.iconv.com

 ISO8859-1_IBM-1149 Universal bos.iconv.is_IS

 ISO8859-1_IBM-858 Universal bos.iconv.ucs.com

Converter Type Fileset
National Language Support 269

10.5.6 Euro SBCS Migration Option - IBM-1252 Locale
Use of a Unicode (UTF-8) locale provides the most standardized and widely
accepted way of achieving Euro support on AIX. However, not all applications or
customers, are ready to migrate to the Unicode solution at this time. The Euro
Single-Byte Code Set (SBCS) migration option provides a temporary solution for
those customers who need Euro support immediately but are not yet ready to
migrate to Unicode.

The migration option consists of an additional set of locales bound to the
IBM-1252 code set (same as Windows 1252 extended) for each
language/territory listed in Table 51 on page 256. ISO8859-1 is a proper subset of
IBM-1252, and as such, all data currently encoded in ISO8859-1 can be used in
the IBM-1252 environment without any requirement for data conversion. The
IBM-1252 code set differs in relation to the industry standard code set ISO8859-1
to the extend that additional graphic characters are added in the ISO control
characters range from 0x80 through 0x9F. The Euro character is defined at code
point 0x80 in the IBM-1252 environment, which is identical to the Windows NT

 UCS-2_IBM-1140 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1141 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1142 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1143 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1144 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1145 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1146 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1147 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1148 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-1149 UCSTBL bos.iconv.ucs.ebcdic

 UCS-2_IBM-858 UCSTBL bos.iconv.ucs.com

 UTF-8_IBM-1140 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1142 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1143 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1144 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1145 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1146 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1147 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1148 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM-1149 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM_1141 Universal bos.iconv.ucs.ebcdic

 UTF-8_IBM_858 Universal bos.iconv.ucs.com

Converter Type Fileset
270 AIX Version 4.3 Differences Guide

and Windows 98 value. This will provide some level of compatibility for Windows
clients running AIX server applications.

While all code page 1252 graphics will be processed correctly, the AIX font set
will only be extended to support the Euro symbol not the additional unique
graphics in code page 1252. Customers selecting this approach are cautioned to
review display requirements for 1252 graphics.

Furthermore, assigning characters to the ASCII control points in the code page
1252 can be a significant problem for customers who use ASCII terminals or have
applications that use ASCII terminal emulators. Trying to use ASCII terminals
with the Euro symbol will require additional customization such as fonts or INOUT
transforms, or will be limited to the existing non-euro character sets. AIX provides
terminal definition tables that may have to be modified depending on the usage.
Since AIX locales can be changed based on an application basis, the only
applications to be reviewed for potential customization are those applications that
require ASCII terminal input and/or ASCII terminal emulation support and must
handle the Euro at the same time.

Usage of the SBCS migration option will require the use of the fully qualified
locale and code set name, as follows:

For example, in order to use the German locale with the Euro SBCS migration
option, the user would set LANG=de_DE.IBM-1252. This would provide the
proper code set environment for the Euro character but would still format
monetary quantities in the traditional national currency format. In order to specify
Euro currency formatting, the user would additionally set
LC_MONETARY=de_DE.IBM-1252@euro.

Keyboard mappings, including the Euro and bound to IBM-1252, are provided as
links to the related ISO keyboard maps.

Although SBCS migration option locales are bound to IBM-1252, full font support
for the additional group of characters in IBM-1252 that is not currently defined in
ISO8859-1 (other than the Euro) is not guaranteed, nor is it guaranteed that all
existing ISO8859-1 fonts will be extended to include the Euro or additional
characters. At a minimum, the set of fonts corresponding to the Common Desktop
Environment (CDE) dt aliases for IBM-1252 (such as "-dt-interface system-*" and
"-dt-interface user-*") are enhanced to include the Euro.

Documentation is provided that will instruct customers who are using IBM-850
based locales how they can achieve Euro support on AIX by creating their own
customized locale using the localedef facility. Refer to AIX Version 4.3 Base
Documentation and AIX Version 4.3 Extended Documentation.

10.5.7 Packaging
Each Unicode based locale listed in Table 51 on page 256, and commonly
referred to by XX_XX in this paragraph, is separately installable and contains the
complete set of function to provide both traditional monetary as well as Euro
monetary formatting. All locale specific modules are separately installable and
are grouped and distributed in two different entities:

 • bos.loc.utf.XX_XX fileset

 • X11.loc.XX_XX package comprised of the filesets:
National Language Support 271

 • X11.loc.XX_XX.Dt.rte
 • X11.loc.XX_XX.base.lib
 • X11.loc.XX_XX.base.rte

The scope of the files in the bos.loc.utf.XX_XX fileset is limited to provide the
locale support for the Base Operating System (BOS) and the X11.loc.XX_XX
package will add the locale support for the X environment. Several filesets will be
automatically installed if the installation process can not find them on the system:

 • bos.loc.com.utf (coreq. to bos.loc.utf.XX_XX)

 • X11.fnt.ucs.ttf (coreq. to X11.loc.base.rte)

For a complete list of dependencies, examine the output of the suitable lslpp
command after you installed the filesets on your system. For example, let your
UTF-8 locale identifier be DE_DE, so you will get for the bos.loc.utf.DE_DE fileset
the following requisites:

lslpp -p "bos.loc.utf.DE_DE"

 Fileset Requisites
 --
Path: /usr/lib/objrepos
 bos.loc.utf.DE_DE 4.3.2.0
 *coreq bos.loc.com.utf 4.3.2.0

For the X11.loc.DE_DE package, the lslpp -p command will yield:

lslpp -p "X11.loc.DE_DE*"
 Fileset Requisites
 --
Path: /usr/lib/objrepos
 X11.loc.DE_DE.Dt.rte 4.3.2.0
 *instreq X11.Dt.rte 4.3.2.0
 X11.loc.DE_DE.base.lib 4.3.2.0
 *instreq X11.base.common 4.3.2.0
 X11.loc.DE_DE.base.rte 4.3.2.0
 *coreq X11.fnt.ucs.ttf 4.3.2.0
 *instreq X11.base.rte 4.3.2.0

Path: /etc/objrepos
 X11.loc.DE_DE.Dt.rte 4.3.2.0
 *instreq X11.Dt.rte 4.3.2.0

Locale definitions for the Euro single-byte migration option is packaged in the
same filesets as their non-Euro Latin-1 counterparts; that is, bos.loc.iso.xx_XX
where xx_XX represents the language and territory designation. The
bos.iconv.xx_XX filesets are requisites for the bos.loc.iso.xx_XX filesets.

10.5.8 Installation of Euro Symbol Support
This section is intended to give a step-by-step instruction for the configuration
changes a system administrator has to accomplish in order to make an AIX
system ready to support the Euro symbol. The UTF-8 and the SBCS environment
for the German language and territory designation DE_DE, or de_DE.IBM-1252,
are covered respectively. All the following statements apply to any of the
language/territory combinations that are listed in Table 51 on page 256, you just
replace DE_DE or de_DE.IBM-1252 by the locale identifier of your choice.
272 AIX Version 4.3 Differences Guide

An assumption is that the AIX system was installed using the following default
settings for the new and complete override installation for the primary language
environment (RS/6000 Hardware with German keyboard attached):

...
2 Primary Language Environment Settings (AFTER Install):

Cultural Convention English (United States)
Language English (United States)
Keyboard German
Keyboard Type Default

...

Note, the UTF-8 Unicode locales are not available as optional choices for the
primary language environment settings at the time of installation.

After installation the output of the locale command would be:

locale
LANG=en_US
LC_COLLATE="en_US"
LC_CTYPE="en_US"
LC_MONETARY="en_US"
LC_NUMERIC="en_US"
LC_TIME="en_US"
LC_MESSAGES="en_US"
LC_ALL=

The software keyboard for the lft0 pseudo device driver would be:

lskbd
The current software keyboard map = /usr/lib/nls/loc/de_DE.lftkeymap

The X server, and hence the Common Desktop Environment, will use the
/usr/lpp/X11/defaults/xmodmap/de_DE/keyboard file to configure the German
keyboard map at startup.

There are two different ways to gain UTF-8 Euro symbol support. Either you
decide to have your system default environment configured to be UTF-8 or you
prefer to offer the locale just as an additional language environment on the
system.

10.5.8.1 Euro UTF-8: Additional Language Environment
In order to activate Euro symbol support using the German UTF-8 locale as an
additional language environment, insert one of the AIX BOS CDs in the CD-ROM
drive, issue the smitty mlang command, select the Add Additional Language
Environments item from the menu, and press Enter. In the Add Additional
Language Environment menu, you enter, by the aide of the F4 function key, the
UTF-8 German[DE_DE] identifier in the appropriate entry fields as shown in Figure 56
on page 274.
National Language Support 273

Figure 56. German UTF-8: Add Additional Language Environment

SMIT will install all necessary filesets for the locale support and you will receive
the following output after SMIT has completed its task:

...

Installation Summary

Name Level Part Event Result
--
bos.loc.com.utf 4.3.2.0 USR APPLY SUCCESS
X11.loc.DE_DE.base.rte 4.3.2.0 USR APPLY SUCCESS
X11.loc.DE_DE.base.lib 4.3.2.0 USR APPLY SUCCESS
X11.loc.DE_DE.Dt.rte 4.3.2.0 USR APPLY SUCCESS
X11.loc.DE_DE.Dt.rte 4.3.2.0 ROOT APPLY SUCCESS
X11.fnt.ucs.ttf 4.3.2.0 USR APPLY SUCCESS
bos.loc.utf.DE_DE 4.3.2.0 USR APPLY SUCCESS
bos.msg.DE_DE.net.tcp.cli 4.3.2.0 USR APPLY SUCCESS
bos.msg.DE_DE.rte 4.3.2.0 USR APPLY SUCCESS

---- end ----

The fileset bos.loc.com.utf is a requisite for the bos.loc.utf.DE_DE fileset and
supplies the common locale support for UTF-8. Also, the fileset X11.fnt.ucs.ttf is
pulled as a requisite by the installation process and gives you the indispensable
AIXwindows Unicode TrueType Font support. All UTF fonts in AIX are TrueType
fonts.

Now a user can begin executing in the DE_DE UTF-8 locale environment by
setting the LANG environment variable to DE_DE:

export LANG=DE_DE

The locale command will return:

locale
DE_DELANG=DE_DE
LC_COLLATE="DE_DE"
274 AIX Version 4.3 Differences Guide

LC_CTYPE="DE_DE"
LC_MONETARY="DE_DE"
LC_NUMERIC="DE_DE"
LC_TIME="DE_DE"
LC_MESSAGES="DE_DE"
LC_ALL=

With this setting, all internationalized programs will execute in the German UTF-8
locale environment. If the Euro currency formatting is desired, you must change
the LC_MONETARY variable in the following way:

export LC_MONETARY=DE_DE@euro

There is no need to complete the installation process and the system
configuration by remapping the X server keyboard. The X server keyboard map
/usr/lpp/X11/defaults/xmodmap/DE_DE/keyboard is implemented as a link to the
German ISO keyboard map that is already set for your system.

Use the AltGr+e key combination to enter the Euro symbol through your keyboard
or alternatively take advantage of the UNIVERSAL Input Method, invoke the
menu of the character list by Ctrl+Alt+l, and enjoy the variety of different
characters that are now available to you. For more information about the new
input method, refer to the Chapter 10.5.4.2, “UNIVERSAL Input Method” on page
263.

10.5.8.2 Euro UTF-8: Primary Language Environment
In order to activate Euro symbol support using the German UTF-8 locale as
primary language environment, insert one of the AIX BOS CDs in the CD-ROM
drive and issue:

smitty chlang

on the command line and enter by the aide of the appropriate function keys the
UTF-8 German[DE_DE] identifier in the relevant entry fields as shown in Figure 57.

Figure 57. German UTF-8: Change/Show Cultural Convention, Lang., or Keyboard
National Language Support 275

SMIT uses the chlang command to set the environment variable LANG to DE_DE
in the /etc/environment file and modifies the lft0 pseudo device driver’s
predefined ODM attribute swkb_path to match the UTF-8 keymap
/usr/lib/nls/loc/DE_DE.lftkeymap. If necessary the chdev command changes the
predefined primary and secondary font path of the lft0 pseudo device driver in the
ODM to be /usr/lpp/fonts/Erg22.iso1.snf and /usr/lpp/fonts/Erg11.iso1.snf
respectively. Furthermore, SMIT will install all necessary filesets for the BOS
locale support and you will receive the following output after SMIT completed its
task:

...

SUCCESSES

 Filesets listed in this section passed pre-installation verification
 and will be installed.

 Selected Filesets

 bos.loc.utf.DE_DE 4.3.2.0 # Base System Locale UTF Code...
 bos.msg.DE_DE.net.tcp.client
 bos.msg.DE_DE.rte

 Requisites

 (being installed automatically; required by filesets listed above)
 bos.loc.com.utf 4.3.2.0 # Common Locale Support - UTF-8

 << End of Success Section >>

Installation Summary

Name Level Part Event Result
--
bos.loc.com.utf 4.3.2.0 USR APPLY SUCCESS
bos.loc.utf.DE_DE 4.3.2.0 USR APPLY SUCCESS
bos.msg.DE_DE.net.tcp.cli 4.3.2.0 USR APPLY SUCCESS
bos.msg.DE_DE.rte 4.3.2.0 USR APPLY SUCCESS
lft0 changed

---- end ----

The lft0 pseudo device driver does not allow for a dynamic reconfiguration, and
consequently, you must reboot the system to put the new software keyboard map,
the primary, and the secondary font paths in effect. But prior to the reboot, it is
absolutely essential to install the X11 locale support for the new UTF-8 locale of
choice on your system. The command smit install_latest brings you to the
proper SMIT menu. Fill in X11.loc.DE_DE in the SOFTWARE to install entry filed.
SMIT displays the following:

...
Installation Summary

Name Level Part Event Result
--
-

276 AIX Version 4.3 Differences Guide

X11.loc.DE_DE.base.rte 4.3.2.0 USR APPLY SUCCESS
X11.loc.DE_DE.base.lib 4.3.2.0 USR APPLY SUCCESS
X11.loc.DE_DE.Dt.rte 4.3.2.0 USR APPLY SUCCESS
X11.loc.DE_DE.Dt.rte 4.3.2.0 ROOT APPLY SUCCESS
X11.fnt.ucs.ttf 4.3.2.0 USR APPLY SUCCESS

---- end ----

The fileset X11.fnt.ucs.ttf, pulled as a requisite by the installation process, gives
you the AIXwindows Unicode TrueType Font support. All UTF fonts in AIX are
TrueType fonts.

Optionally, you may modify the /etc/environment file to activate, on a system wide
scope, the new Euro currency formatting. Add the following line:

LC_MONETARY=DE_DE@euro

Now you are ready to reboot your system. When the system comes up, and you
are logged in again, you can enter the Euro symbol through the AltGr+e key
combination, and by the aide of the UNIVERSAL input method, you will have
access to several thousand different characters. Just use the Ctrl+Alt+l key
combination, select the character list you want, and enter the characters out of
the pop-up menu using a mouse click. If you are looking for a sample file that is
actually encoded in UTF-8, install the Developers Toolkit for Unicode fileset
bos.loc.adt.unicode and use the vi editor to examine the
/usr/lib/nls/Unicode/samples/ut8.txt file.

10.5.8.3 IBM-1252 Code Set Euro Symbol Support
Within the framework of this test set up (LANG=en_US and German keyboard
software support by swkd_path=/usr/lib/nls/loc/de_DE.lftkeymap), the IBM-1252
locale support for the BOS is already installed. The software keyboard support is
contained in the same fileset as the IBM-1252 locale support: bos.loc.iso.de_DE.

You can verify that the IBM-1252 locale resides on the system. This means the
locale database, the input method, the input method keymap, the
LC_MONETARY locale database, and the 64-bit object modules are installed:

ls -l /usr/lib/nls/loc/de_DE.IBM-1252* | cut -c55-

/usr/lib/nls/loc/de_DE.IBM-1252
/usr/lib/nls/loc/de_DE.IBM-1252.im -> /usr/lib/nls/loc/sbcs.im
/usr/lib/nls/loc/de_DE.IBM-1252.imkeymap
/usr/lib/nls/loc/de_DE.IBM-1252@euro
/usr/lib/nls/loc/de_DE.IBM-1252@euro__64
/usr/lib/nls/loc/de_DE.IBM-1252__64

In case the German keyboard would not have been attached and configured you
may first have to verify that the bos.loc.iso.xx_XX fileset of the desired locale is
on the system. (xx_XX refers to one of the locale identifier as listed in Table 51 on
page 256 modified to the extent that the first two letters are converted to lower
case.) Use the lslpp command to accomplish this task. The lslpp command
returns:

lslpp -l "bos.loc.iso.*"
 Fileset Level State Description
 --
Path: /usr/lib/objrepos
National Language Support 277

 bos.loc.iso.de_DE 4.3.2.0 COMMITTED Base System Locale ISO Code
 Set - German
 bos.loc.iso.en_US 4.3.2.0 COMMITTED Base System Locale ISO Code
 Set - U.S. English

The bos.loc.iso.de_DE is installed, and hence, no action is required.

If for some reason the bos.loc.iso.de_DE is missing on your system, you will have
to install the fileset. The command smit install_latest brings you to the proper
SMIT menu. Fill in bos.loc.iso.de_DE in the SOFTWARE to install entry field and
press Enter. SMIT reports the progress.

Since you verified the existence of the BOS de_DE locale support, add the X11
locale support next. The package that must be installed is named X11.loc.de_DE,
and it is recommend to use SMIT in conjunction with the fastpath install_latest
to lay the foundation for the graphical locale support. Fill in X11.loc.de_DE in the
SOFTWARE to install entry field, let SMIT do the work, and wait until you see the
following lines at the end of the output:

...
Installation Summary

Name Level Part Event Result
--
X11.loc.de_DE.base.rte 4.3.2.0 USR APPLY SUCCESS
X11.loc.de_DE.base.lib 4.3.2.0 USR APPLY SUCCESS
X11.loc.de_DE.Dt.rte 4.3.2.0 USR APPLY SUCCESS
X11.loc.de_DE.Dt.rte 4.3.2.0 ROOT APPLY SUCCESS

---- end ----

Set your LANG environment variable to de_DE.IBM-1252, export LANG and open
a new dtterm that is aware of your new locale by the /usr/dt/bin/dtterm
command. Note, that you do not have to introduce a new keymap to the X server
since you are already using the German ISO keymap. Now you can enter the
Euro symbol by the AltGr+e key combination. The Euro currency formatting will
be to your service as soon as the LC_MONETARY environment variable is set
and exported:

export LC_MONETARY=de_DE.IBM-1252@euro

It should be mentioned that there is intentionally no SMIT support through the fast
paths chlang and mle_add_lang. for the SBCS migration option. This means the
smit menus Change/Show Primary Language Environment (smit chlang) and
Add Additional Language Environments (smit mle_add_lang) will not allow
you to establish the Euro symbol support through the IBM-1252 code set.

10.6 National Language Enhancements

The following enhancements have been made to national language support in
AIX Version 4.3 and AIX Version 4.3.2.

10.6.1 Byelorussian and Ukrainian Localization
AIX Version 4.3 has introduced support for the Byelorussian and Ukrainian
localization. Both languages use the existing ISO8859-5 codeset that contains all
278 AIX Version 4.3 Differences Guide

of the characters needed to display the languages. The Localization provides the
following items:

 • A new input method for the input of characters to the Byelorussian and
Ukrainian languages.

 • Localized conventions are defined for Byelorussian and Ukrainian imkeymaps
and lftkeymaps.

 • Localized resource files for X clients.

 • Additions to X locale database (I18N).

 • Localized X keyboard mapping.

10.6.2 Thai Language Support
Previous to AIX 4.3, Thai language support was based on a solution from IBM
Thailand. AIX Version 4.3 formally implements support for the Thai language.

The features implemented in AIX Version 4.3 include:

Locale The Thai locale is based on either TIS620-1 or Unicode Version 2.
The wide character processing for UTF-8 Thai locales is based on
Unicode.

Input Method
The Thai input method provides users with a facility for composing
characters by combining several key strokes to produce a single
Thai character.

cmdpios AIX Version 4.3 provides a printer filter for Thai/Vietnamese that
supports downloadable UCS-2 fonts and can print data for both Thai
and UTF-8 locales.

cmdiconv New iconv converters are present for the following Thai language
codesets:

 •TIS620-1

 •Unicode

charmap New character map for Thai code set definition.

cmdtty Thai csmap is included in AIX Version 4.3.

xmodmap Localized X keysyms and server keyboard maps are present for
Thai.

Aixterm Enhanced to support the Thai language.

imkeymap AIX Input Method keymaps (imkeymaps) for the Thai language have
been added.

Motif Motif contains enhancements to support of Thai language.

Unicode Unicode support for the Thai language has been added.

10.6.2.1 Systems Management
The Thai locales are configurable just like any other locale in the system using
the SMIT panel Manage Language Environment.

The user can install the following items:

 • Thai Cultural Conventions (TIS620-1)
National Language Support 279

 • Thai Cultural Conventions (Unicode)

10.6.2.2 Standards Compliance of Thai Language Support
The UTF-8 support for the Thai locale consists of the entire Base Multilingual
Plane of ISO 10646. It complies with the following standards:

 • X/Open Portability Guide, issue 3 and issue 4

 • POSIX.2

 • X Window System Version 11 Release 5

 • Unicode Version 2.0 for display and fonts

Note: The localization components for this locale will only support the Thai and
ISO8859-1 characters.

10.6.2.3 Application Binary Interface (ABI)
The Thai locale, input method, and conversions comply with the AIX NLS
subsystem loadable interfaces.

10.6.2.4 Application Programming Interfaces (API)
AIX Input Method defines the API that is used by other programs to support
multi-byte input. The Thai input method complies with the AIX Input Method APIs.

The Universal input method treats the Thai input method as another option in the
list of input methods.

10.6.3 Vietnamese Language Support
Previous to AIX 4.3, Vietnamese language support was based on a solution from
IBM Vietnam. AIX Version 4.3 formally implements support for the Vietnamese
language.

The features implemented in AIX Version 4.3 include:

Locale The Vietnamese locale is based on either IBM-1129 or Unicode
Version 2. The wide character processing for UTF-8 Vietnamese
locales is based on Unicode.

Input method
In Vietnam, it is not possible to assign each character to a key on the
keyboard. The input method provides a character composing
mechanism for the user. In other words, several key combinations
can be used to build or compose a character. The Vietnamese input
methods are based on IBM 461 A/B on a 101 key US keyboard where
some of the Vietnamese and French characters are mapped to the
first and second rows.

cmdiconv
New iconv converters are present for the following Vietnamese
Language code sets:

 •IBM-1129

 •Unicode

 •EBCDIC Code (IBM-1130)

 •PC Code (IBM-1258, which is the same as Windows Code page)
280 AIX Version 4.3 Differences Guide

 •TCVN2 (current standard code set used in Vietnam)

charmap New character map for Vietnamese code set definition.

cmdpios AIX Version 4.3 provides a printer filter for Vietnamese that supports
downloadable UCS-2 fonts and can print data for both IBM-1129 and
UTF-8 locales.

libmeth Locale-specific methods for wide character processing (based on
Unicode).

cmdtty Vietnamese csmap.

i18n The Vietnamese language has been added to the X locale database.

xmodmap Localized X keysyms and server keyboard maps are present for
Vietnamese.

CTL layout engine
Vietnamese makes use of combining zero width characters that
require the use of layout services as defined by the CTL APIs.

10.6.3.1 Systems Management
The Vietnamese locales are configurable through the SMIT panel Manage
Language Environment.

The user can install the following items:

 • Vietnamese Cultural Conventions (IBM-1129)

 • Vietnamese Cultural Conventions (Unicode)

10.6.3.2 Standards Compliance of Vietnamese Language Support
Vietnamese Language Support follows the standards that the AIX NLS
Architecture follows, especially those standards listed below. The UTF-8 support
for the Vietnamese locale consists of the portion of the Base Multilingual Plane of
ISO 10646 that is supported by other locales on AIX. The relevant standards and
resources are:

 • X/Open Portability Guide, issue 3 and issue 4

 • POSIX.2

 • X Window System Version 11 Release 6

 • IBM 1129 for internal Code Page

 • IBM 461 A/B for Keyboard layout

 • IBM 1130 for EBCDIC code Convert

 • Unicode Version 2.0 for display and fonts

10.6.3.3 Migration
Current users of the country solution for Vietnam are expected to migrate to AIX
Version 4.3 with the Vietnamese localization support. The new Vietnamese
Language support is binary-compatible with the previous country solution for
Vietnam.

10.6.4 Japanese Code Page 943 (AIX 4.3.2)
IBM-943 is a compatible code set for the Japanese Microsoft Windows
environment. This code set is known as ’83 ordered Shift JIS.
National Language Support 281

In Japan, most of operating systems on PC clients support JIS 83 ordered Shift
JIS code set (IBM-943) to implement Japanese. AIX has supported JIS 78
ordered Shift JIS code (IBM-932) since AIX Version 3. This was one of the
advantages in enabling a UNIX-PC mixed environment. Recently, most Japanese
PCs use JIS 83 ordered Shift JIS code set as the default, and this causes a data
incompatibility between PC and AIX environments.

AIX 4.3.2 supports the IBM-943 code set that is needed for PC interoperability.
The code page 943 supports interoperability with Microsoft Windows clients in
Japan and makes AIX Version 4.3.2 the preferred release for Japan.

The difference between IBM-932 in previous AIX versions and IBM-943 is as
follows:

 • New JIS sequence ('83 ordered).

 • NEC selected characters (83) are added.

 • NEC's IBM selected characters (374) are added.

 • Two new characters are added (defined by JIS90).

Ja_JP is used for a short locale name of the IBM-943 locale. The short locale
name of IBM-932 is no longer supported.

If you want to use IBM-932 rather than IBM-943, you can use the IBM-932 by
specifying the long locale name Ja_JP.IBM-932.

10.6.4.1 Installation and Packaging
Following list describes the installation and packaging of IBM-943 locale:

 • The IBM-943 locale is selectable for installation from SMIT.

 • Any locale support that is common to all Japanese locales are packaged and
shipped in the existing fileset bos.loc.com.JP.

 • The IBM-943 locale is packaged in bos.loc.pc.Ja_JP. This fileset contains both
IBM-932 and IBM-943 locales.

 • The IBM-943 locale-specific X11 resource is shared with the IBM-932 X11
resource.

10.6.5 Korean TrueType Font (AIX 4.3.2)
TrueType is the scalable font technology built into Windows and Macintosh
workstations. AIX 4.3.2 now supports Korean TrueType fonts in the AIX
X-environment.

A TrueType rasterizer is available in the AIXwindows environment in AIX 4.3. All
scalable font systems need a rasterizer to convert their glyph outlines into
bitmaps suitable for direct copying to the screen.

The TrueType rasterizer in AIX 4.3.2 supports TrueType 1.0 Font Files and most
of the character sets currently defined in the Unicode 2.0 specification.
282 AIX Version 4.3 Differences Guide

There are three kinds of extensions for the font file:

TTF The recommended file extension for TrueType font files.

TTC TrueType Collection file. A scheme where multiple TrueType fonts can
be stored in a single file, typically used when only a subset of glyphs
changes among different designs. They are used in Japanese fonts,
where the Kana glyphs change but the Kanji remain the same.

OTF The recommended file extension for the Type 1 font (not for
TrueType).

Changes to existing TTF rasterizer is described as follows:

 • Korean support added

 • Font types added: Batang, Dotum, and Sammul

 • Font sizes supported: 9, 10, 12, 18, 24, 32, 40, 48, and 72

 • Application support: X-window application, Netscape, and dtterm

AIX has two locales related with Korean: ko_KR (IBM-eucKR) and KO_KR
(Unicode). In AIX 4.3.2, Korean TrueType font rasterizer works only on ko_KR
locale based on ksc5601.

The TrueType rasterizer is available in the AIXwindows font library, which is
shipped with both the AIXwindows Font Server and X server.

The Korean TrueType font file supplied in AIX 4.3.2 is a TrueType collection file
that has two TrueType Korean font sets. One is proportional, and the other is
monospaced. The font file name is hmfmm.ttc. This font file is packaged in the
X11.fnt.ksc5601.ttf fileset. It is installed in the /usr/lib/X11/fonts/TrueType
directory.

10.6.5.1 Standards
The AIXwindows Font server supports the X window System Font Protocol
Version 2.0 and X Version 1.1 Release 6.1.

The TrueType rasterizer supports TrueType 1.0 font files.

The name of the AIX windows Font server in AIX 4.3 is changed from fs to xfs.
Also, the font server's port number is changed from 7500 to 7100. These changes
between X11R5 and X11R6 were made by the X consortium, suppliers of the X
Window System technology.

10.6.5.2 Installation and Packaging
The TrueType rasterizer is automatically installed as part of the AIX window X
server and font server.

The following is some information about Korean True Type font packaging:

X11.fnt.fontServer

The TrueType rasterizer is shipped in the AIXwindows font server, which can
serve fonts to different X servers across the network.
National Language Support 283

X11.base.rte

This fileset ships the AIXwindows X server. The pre-req.s for this fileset are not
be updated since the X server serves mostly local clients. If remote clients
require additional fonts, then the X server should be configured to use an
AIXwindow font server configured with the proper converters.

X11.samples.fnt.util

This fileset includes the ttfinfo sample utility, which displays the header
information of a TrueType font.

10.7 Documentation Search Service: DBCS HTML Search Engine (4.3.2)

The AIX Documentation Search Service is extended to add the capability to
search specified Double Byte Character Set (DBCS) codesets in Japanese,
Korean, Simplified Chinese, and Traditional Chinese.

The doublebyte languages and code sets supported by Documentation Search
Service (docsearch) in AIX 4.3.2 are listed in the Table 57. For a complete list of
supported languages, codesets, and locales, see the language support table
section in AIX Version 4.3 General Programming Concepts: Writing and
Debugging Programs, SG23-2533.

Table 57. Additional Double-Byte Support in Docsearch

The Document Search Service is browser and Web-server based. It allows you to
search registered HTML documents using a search form that appears in the Web
browser. When you type words into the search form, the service searches for
those words and then presents a search results page containing links that lead to
the documents containing the target words.

The browser of a desired language code set is both used for display of text and
the form based text entry fields.

The AIX search form allows you to search all documents that are registered on a
host. Before any document can be searched using the documentation search
service, it must have an index created, and the index must be registered with the
search service. Some applications ship prebuilt document indexes inside their
install package. When the application is installed, the indexes are automatically
registered. The AIX Version 4.3 documentation and the Web-Based System
Management application both ship prebuilt indexes for their documents. You can
also create indexes for your own HTML documents and register them with the
search engine so that they can be searched on line. For further information on

Language CCSID Codeset Locale

Japanese 932 * IBM-932 * Ja_JP *

Korean 970 IBM-eucKR ko_KR

Simplified Chinese 1383 IBM-eucCN zh_CN

Traditional Chinese 950 big5 Zh_TW

* Note: The Ja_JP locale uses the 943 codeset and CCSID, however the Documentation
Search Service currently supports 932.
284 AIX Version 4.3 Differences Guide

how to create indexes, see AIX Documentation Search Service in AIX Version 4.3
General Programming Concepts: Writing and Debugging Programs, SC23-2533.

If more than one language is installed, you can switch to other installed
languages. The Documentation Search Service GUI is consistent across
languages. Although there may be some locale differences such as the sort
technique and display layout.

Functions available for nongraphical displays will depend on function provided by
the browser used on the nongraphical display. For example, if an ASCII browser
does not support the code sets used, the ASCII user of that browser will not be
able to search the translated documents written in that code set.

The function for the double byte languages is implemented by the DBCS
IMNSearch search engine. DBCS search duplicates the function provided for
single byte languages. The functions of both the single and double byte CGIs in
AIX 4.3.2 are the same as that of the AIX 4.3.0 single byte CGI with the following
conditions noteworthy:

 • Two languages cannot be displayed or searched at the same time.
Documentation Search Service GUIs only display a single language at a time.
Only the indexes of the current language are visible within the GUI for
selection and searching. A selection menu button in the search form allows
you to switch between languages.

For example, if the GUI search from is being displayed in Spanish, then only
Spanish books will show in the "select volumes to search" section at the
bottom of the form. It is not possible to display indexes from different code
sets on the same HTML page and have them display correctly.

 • The results page adds a start-over button that allows you to jump back to the
home search page from any results page.

Translation of the changes and additions to Documentation Search Service
messages, GUI, and help search form are done by program integrated
information (PII).

10.7.1 Documentation Libraries
The AIX 4.3.2 documentation library consists of two CDs. The first is the AIX
Base Documentation in HTML format and the second is the AIX Extended
Documentation in HTML and PDF format. As of this writing, the AIX Extended
Documentation is only available in English.

The base documentation library contains most of the AIX user, system
administrator, and application programmer guides. This library also contains
basic reference documents such as the Commands Reference, Files Reference,
and Technical Reference volumes intended for application programmers.

The extended documentation library contains books concerning adapters, books
intended for system programmers, and technical specifications describing
industry standards.

Most of the documentation in these libraries is in HTML format and must be
viewed using an HTML version 3.2-compliant Web browser, such as the
Netscape Navigator 4.0 browser. A few documents in these libraries are in PDF
format and must be viewed using the Adobe Acrobat Reader, Version 3.0.
National Language Support 285

Documentation Search Service does not support PDF files. The Netscape
Navigator browser and Acrobat Reader Version 3.0.1 are shipped with AIX 4.3.2
Bonus Pack.

The HTML documents can be searched using the Documentation Search
Service, bos.docsearch, an optionally installable component of the AIX base
operating system. It is highly recommended to install and configure the
Documentation Search Services since this service may be used by other
applications installed on the system. Chapter 9, “Online Documentation” on page
233 for installation information.

On-line documentation is also available at: http://www.rs6000.ibm.com/aix/library

10.7.2 Limitations
East European locales are not supported for searching, however product libraries
may be available if they are translated.

For the supported locales, it is not necessary to do any conversions for the
components to communicate with each other.

10.7.3 Invoking Documentation Search Service
The global search form can be accessed by:

 • Type docsearch on the command line

 • Click the Documentation Search Service icon in the CDE Desktop Help
subpanel.

The Documentation Search Service desktop action and the docsearch command
will both check for the existence of an environment variable DOC_LANG. This
variable is used to define the language in which to display the search form GUI. It
also specifies the language in which the search engine will conduct the search. If
not defined, the language used will be that of the launching environment, if
possible.

Set the DOC_LANG environment variable with the language locale you want to
search. The search form will only display indexes of the currently selected
language. The hit list will return hits from all books that were selected for search
in the search form. The chdoclang command will set the DOC_LANG environment
variable for you. See the AIX 4.3.2 Release Notes for more information on the
chdoclang command.

The language selection menu in the search form allows you to select the
language of the GUI. When a language is selected, the GUI is displayed in that
language and displays only the indexes for that language. The selection menu is
intelligent in that its contents are dynamically generated and it will display only
those languages that are currently available on the system being used.

10.7.3.1 Japanese Documentation Search
A Japanese search can be done in a Japanese CDE environment. If you are in
another language’s CDE environment, you need to set LANG to Ja_JP and map
the keyboard using the following command:

#xmodmap /usr/lpp/X11/defaults/xmodmap/Ja_JP/keyboard
286 AIX Version 4.3 Differences Guide

When you enter:

#docsearch

you get the screen such as shown in Figure 58 on page 287.

Figure 58. Japanese Search Form

After remapping the keyboard, using a US keyboard, you can input the words you
want to search into the search field. Note that the entire product library is not
installed for this example. Figure 59 shows an example of searching for "ls".
National Language Support 287

Figure 59. Searching Japanese Documentation

The resulting page is shown in Figure 59 on page 288.
288 AIX Version 4.3 Differences Guide

Figure 60. A Japanese Search Result

The results page lists documents that contain the term you searched for. To see
one of the documents containing the term you searched for, click on the title of
the document that you want to see. It is a hyperlink to that document. For
example, Figure 61 on page 290 displays a page containing the term searched
for in this example.
National Language Support 289

Figure 61. A Japanese Book

10.7.3.2 Simplified Chinese Search
A Chinese document search can be done in a Chinese CDE environment. If you
are in other language’s CDE environment, you need to set the LANG to zh_CN
and map the keyboard using the following command:

#xmodmap /usr/lpp/X11/defaults/xmodmap/zh_CN/keyboard

When you enter:

#docsearch

you see the screen similar to Figure 62:
290 AIX Version 4.3 Differences Guide

Figure 62. Chinese Search Form

After remapping the keyboard, using a US keyboard, you can input the Chinese
words you want to search into the search field, as shown in Figure 63. Note that
the entire product library is not installed for this example.
National Language Support 291

Figure 63. Input Chinese Character

The searching result is similar to Figure 64 on page 293:
292 AIX Version 4.3 Differences Guide

Figure 64. Chinese Searching Result

The results page lists documents that contain the term you searched for. To see
one of the documents containing the term you searched for, click on the title of
the document that you want to see. It is a hyperlink to that document. For
example, Figure 65 on page 294 displays a page containing the term searched
for in this example.
National Language Support 293

Figure 65. A Chinese Book for Installation

10.7.4 Binary Compatibility
Single byte indexes created using AIX 4.3 will work correctly with the AIX 4.3.2
single byte Documentation Search Service. The Documentation Search Service
should be maintained at the latest level.
294 AIX Version 4.3 Differences Guide

Chapter 11. AIX Stand-Alone LDAP Directory Product

The AIX Stand-alone Lightweight Directory Access Protocol (LDAP) product
provides client access to directory data on a server using standard Internet
protocols (LDAP and HTTP). The following discussions are representative of AIX
Version 4.3.0.

11.1 Typical Configurations

Figure 66 shows a typical client/server network with examples of many of the
capabilities provided. A description of each component follows:

Figure 66. Typical AIX Stand-Alone LDAP Client/Server Configuration

The components of the previous figure are as follows:

Client 1
This represents an end-user of the directory working with a generic
Web browser that has no built-in LDAP support. The user may connect
to the server using standard HTTP and supply the URL of the HTTP
gateway provided with the product. The user is then presented with a
form to fill in to specify the desired search parameters. The HTTP
gateway performs the search on behalf of the client and returns the
matching entries from the directory to the Web browser.

Client 2
At this client, a directory administrator uses a Web browser to monitor
or configure the directory. The Web browser requires no specific LDAP
© Copyright IBM Corp. 1998 295

capabilities. In this case, the administrator connects through an
install-time-selected port to a Web server located on the system
containing the directory server. The HTML panels of the administration
interface are presented to the administrator through the Web browser
and guides them through viewing or setting configuration options for
the directory.

Client 3
This represents an end-user who has a Web browser that is
LDAP-enabled. The protocol flow from this client to the server is
LDAP; therefore, it requires no protocol conversion on the LDAP
server system.

Client 4
This client is running an application that is LDAP-enabled. The
application may have been built using the LDAP Client Toolkit
provided with this product, or it may have been built using an LDAP
client library from another source. Note that the client is shown
connecting to the Replica server but is able to search the directory by
connecting to either the Master or Replica.

Replica directory server
This server is shown with the AIX Stand-alone LDAP Directory product
installed. However, because the replication is achieved using a
standard LDAP connection, the replica server could be any LDAP
server that supports Version 2 of the LDAP. Replicas are read-only. A
given master directory server may have multiple replicas configured.

Master directory server
This system runs the server software from the AIX Stand-alone LDAP
Directory product.

11.2 LDAP Protocol Support

AIX Stand-alone LDAP supports Version 3 of the LDAP protocol. There is
currently no LDAP Version 3 RFC that is approved. This product has been
developed using Internet Draft "Lightweight Directory Access Protocol (v3)
<draft-ietf-asid-ldapv3-protocol-04.txt>", that replaces LDAP (v2) RFC 1777.

Both V2 and V3 LDAP clients and servers are supported. The following
combinations of clients and servers have been tested:

 • AIX Stand-alone LDAP version 3 client with Netscape version 2 server
 • A University of Michigan version 2 client with AIX Stand-alone LDAP server
 • Netscape Version 2 client with AIX Stand-alone LDAP server

11.3 LDAP Client Toolkit

The LDAP client is represented as a toolkit that provides two types of LDAP
interface. The first is a set of C APIs with associated header files and shared
libraries. The second is a set of Java classes providing functionality equivalent to
the C interface. The toolkit includes man pages describing the LDAP programming
interface.

The LDAP client toolkit includes the following components:
296 AIX Version 4.3 Differences Guide

 • LDAP APIs (for Version 3, based on the Internet Draft "The LDAP Application
Program Interface", <draft-howes-ldap-api-00.txt>)

 • LDAP command line utilities

– ldapsearch

– ldapadd

– ldapmodify

– ldapdelete

– ldapmodrdn

 • C header files

 • LDAP client Java classes

 • Sample directory data

 • Sample applications using LDAP

The application is linked with the shared library that exports the APIs and
contains the routines behind the APIs that handle the client-side protocol.

11.4 Stand-Alone LDAP Directory Server

The key distinguishing feature between the AIX Stand-alone LDAP server
implementation and other LDAP server implementations is the use of DB2 as the
back-end data store. See Figure 67 for the major components included in the
server package. The numbers along the top of the diagram refer back to the client
types represented in Figure 66 as examples of the sort of clients that generate
HTTP or LDAP flows to the server.

The features included in the AIX Stand-alone LDAP product are:

 • DB2 back-end
 • ODBC Driver Manager and DB2 driver
 • RDB Glue
 • SLAPD
 • Server replication
 • Administration utilities
 • Administration GUI
 • HTTP gateway

Note: The references to Oracle and Oracle driver in Figure 67 are merely an
example of future possibilities. DB2 is the only supported database in this
release.
AIX Stand-Alone LDAP Directory Product 297

Figure 67. Stand-Alone LDAP Directory Server - Details

11.4.1 DB2 Back End
DB2 provides a robust, scalable, industry-tested basis for storage of the directory
data. It includes support of Binary Large Objects (BLOBs) that facilitates use of
the directory as an efficient object store. The Open DataBase Connectivity
(ODBC) interface is used to connect DB2 as the directory back end. Using ODBC
as the interface allows for the future inclusion of other relational databases as
back-ends.
298 AIX Version 4.3 Differences Guide

11.4.2 ODBC
This includes ODBC Driver Manager and the DB2 (ODBC) Driver. The ODBC
Driver Manager provides the ODBC API to the LDAP directory server. The DB2
driver plugs into the ODBC framework and connects with the DB2 interfaces.
Both of these components of ODBC are provided with the single-user version of
DB2 that is shipped with the AIX Stand-alone LDAP Directory product.

11.4.3 RDB Glue
The Relational DataBase (RDB) Glue code ties together two architected
interfaces to provide the data store for the directory. The SLAPD component
handles incoming LDAP requests and generates calls to a set of APIs defined as
the SLAPI interface. The RDB Glue provides a matching set of routines that plug
into this API, take the previously mentioned API calls and generate SQL
statements in the form required by the ODBC interface to read or write
information to DB2.

11.4.4 SLAPD
SLAPD is the portion of the directory server that understands LDAP. It is a
multithreaded daemon that receives client requests, works with the DB2
back-end to process them, and returns the results.

11.4.5 Server Replication
SLAPD process threads also monitor the replication log file and pass the
corresponding update requests on to the replica server(s).

No shutdown of LDAP server is necessary to copy directory data to initialize a
replica server. The process of setting up a replica server involves the following
steps:

 • Put the master directory into read-only mode.
 • Create a backup of the directory contents.
 • Use the backup file to populate the replica directory.
 • Update the master directory configuration with all the information about the

replica server.
 • Dynamically reconfigure the master directory server (SLAPD) to pick up the

new configuration.
 • Take the master out of read-only mode (back to read-write).

11.4.6 HTTP Access to Directory
An HTTP gateway is provided to allow web browsers that are not LDAP-enabled
to do searches on the directory. The gateway is a cgi-bin program that presents a
form to the user, through the browser, to gather the parameters for the search
(such as a search base, scope, search filter, and so on). Once the search
information has been passed to the gateway program, it acts as an LDAP client,
generating the requests to do the search, then receiving the results and passing
them back to the browser for display to the end-user.

11.5 Security

The AIX Stand-alone LDAP client and server implementation supports SSL
(Version 2.0 or higher), an emerging standard for World Wide Web security. SSL
AIX Stand-Alone LDAP Directory Product 299

provides encryption of data and transport of X.509v3 public-key certificates and
revocation lists. The server may be configured to run with or without the SSL
support. When the server is configured to support SSL (accepting connections
over a secure port - defaults to 636), it still accepts connections from clients that
choose not to use SSL (these clients still specify the standard unsecure port -
defaults to 389). The LDAP either flows directly over TCP/IP (using the standard
sockets interfaces) or over the SSL.

11.5.1 Authentication
The following authentication options are supported:

 • No authentication

 • Simple authentication (password)

 • X.509v3 public-key certificate at the SSL

Note: Kerberos authentication is not supported.

11.6 Installation

The Stand-alone LDAP Directory is a component of the Base Operating System
for AIX 4.3; therefore, installation is done using standard installp facilities. In this
release, there are no other BOS components that have dependencies on LDAP
so users have the option of installing LDAP or not, depending on their
requirements.

11.6.1 Software Prerequisites
The web-based interface for administration of the AIX Stand-alone LDAP
Directory server requires a web server to be present, located with the directory
server. Only the Netscape Fasttrack Web server has been tested, but any other
web server that supports HTML 3.0/3.2 should work.

DB2 Single-User (Version 3) is automatically shipped with the directory server.
DB2 is considered an install prereq. on the server system. If a supported version
of DB2 has been previously installed, the prereq. requirement will be satisfied.
Otherwise, the Single-User version is installed with the directory server (as a
separate instance of DB2). The supported versions of DB2 are:

 • DB2 Version 2.1.1 and above when packaged with any of the following
products:

– DB2 Single-User
– DB2 Common Server
– DB2 Parallel Edition
– DB2 Universal Database
– IBM Database Server

11.7 Administrative Interface

Most of the administration can be performed through a graphical user interface
accessed through a web browser. The features of the interface and additional
command line utilities are described below.
300 AIX Version 4.3 Differences Guide

11.7.1 Web-Based Graphical User Interface
A Web-based graphical user interface has been provided to ease the task of
administration of the AIX Stand-alone LDAP Directory server. An administrator is
able to use a Web browser to do initial set-up of the directory, change
configuration options, and manage the day-to-day operation of the server. HTML
panels are presented through the browser to guide the administrator in viewing or
changing the following:

 • General server settings

 • General database/back end settings

 • Performance tuning options

 • Directory server activity/performance data

 • Directory replication configuration

and management of the following:

 • Start up and shutdown of the directory server

 • Access control lists

 • Group membership

 • Security measures (encryption options, server certificate management)

 • Database creation, backup, and restore

11.7.2 Command Line Utilities
There are two command line utilities provided:

 •LDIF2DB
 •DB2LDIF

The LDIF2DB command line utility creates a directory database in DB2 based on
the directory entries specified in LDAP Directory Interchange Format (LDIF)
format in an input file.

The DB2LDIF command line utility creates a standard LDIF format file containing all
the data from the specified DB2 directory database.

A set of command line utilities to perform LDAP operations has been included as
a sample. These utilities are:

 • ldapsearch
 • ldapadd
 • ldapmodify
 • ldapdelete
 • ldapmoddn
 • ldapcompare

11.7.3 Other Administrative Procedures
Definition of the Directory Schema (object classes, attribute types, and directory
structure) is managed through ASCII configuration files. A default schema
definition is shipped in the configuration files with the product. To add to the
defaults, the administrator must edit these configuration files. In this initial
release, the administrator is allowed to add object class definitions, attribute type
definitions, or directory structure rules.
AIX Stand-Alone LDAP Directory Product 301

Changes to schema definitions previously in effect for a database are not
allowed.

11.8 LDAP-Related RFCs and Internet Drafts Implemented

The following lists contain Internet drafts and RFCs for LDAP and X.500
implemented in the AIX Stand alone LDAP Directory product.

11.8.1 Internet Drafts
Internet drafts may be viewed at: http://www.internic.net/internet-drafts

 • Protocol Definition (March 25, 1997)

– <draft-ietf-asid-ldapv3-protocol-04.txt>

 • Standard and Pilot Attribute Definitions (March 1997)

– <draft-ietf-asid-ldapv3-attributes-04.txt>

 • A String Representation of LDAP Search Filters (March 1997)

– <draft-ietf-asid-ldapv3-filter-00.txt> (obsolete)
– Replaced by <draft-ietf-asid-ldapv3-filter-02.txt> (May 1997)

 • Extensions for Dynamic Directory Services (March 25, 1996)

– <draft-ietf-asid-ldapv3ext-03.txt> (obsolete)
– Replaced by <draft-ietf-asid-ldapv3ext-04.txt> (May 1997)

 • A UTF-8 String Representation of Distinguished Names (March 1997)

– <draft-ietf-asid-ldapv3-dn-02.txt> (obsolete)
– Replaced by <draft-ietf-asid-ldapv3-dn-03.txt> (April 1997)

 • The LDAP Application Program Interface (October 1996)

– <draft-howes-ldap-api-00.txt>

 • Use of Language Codes in LDAP V3 (March 1997)

– <draft-ietf-asid-ldapv3-lang-01.txt>

 • Definition of an Object Class to Hold LDAP Change (March 25 1997)

– <draft-ietf-asid-changelog-00.txt>

 • LDAP Multi-master Replication Protocol (March 20, 1997)

– <draft-ietf-asid-ldap-mult-mast-rep-00.txt>

 • The LDAP Data Interchange Format(LDIF) (Nov 25, 1996)(March 24 1997)

– <draft-ietf-asid-ldif-00.txt>

11.8.2 LDAP-Related RFCs
For more information on LDAP and its associated components please refer to the
RFCs shown in Table 58.

Table 58. LDAP-Related RFCs

RFC Number RFC Title

1558 A String Representation of LDAP Search Filters

1738 Uniform Resource Locators
302 AIX Version 4.3 Differences Guide

11.8.3 X.500-Related RFCs
For information on X.500, refer to the RFCs shown in Table 59. They may be
useful as a source of background information for the LDAP RFCs.

Table 59. X.500-Related RFCs

1777 Lightweight Directory Access Protocol

1778 The String Representation of Standard Attribute Syntaxes

1779 A String Representation of Distinguished Names

1798 Connectionless LDAP

1823 The LDAP Application Program Interface

1959 An LDAP URL Format

1960 String format of LDAP search filter

RFC
Number

RFC Title

1274 The COSINE and Internet X.500 Schema

1275 Replication Requirements to Provide an Internet Directory Using X.500

1276 Replication and Distributed Operations Extensions to Provide an Internet
Directory Using X.500

1279 X.500 and Domains

1308 Executive Introduction to Directory Services Using the X.500 Protocol

1309 Technical Overview of Directory Services Using the X.500 Protocol

1484 Using the OSI Directory to Achieve User Friendly Naming

1485 A String Representation of Distinguished Names

1487 X.500 Lightweight Directory Access Protocol

1488 The X.500 String Representation of Standard Attribute Syntaxes

1491 A Survey of Advanced Uses of X.500

1558 A String Representation of LDAP Search Filters

1564 DSA Metrics

1608 Representing IP Information in the X.500 Directory

1609 Charting Networks in the X.500 Directory

1617 Naming and Structuring Guidelines for X.500 Directory Pilots

1684 Introduction to White Pages Services based on X.500

RFC Number RFC Title
AIX Stand-Alone LDAP Directory Product 303

304 AIX Version 4.3 Differences Guide

Appendix A. Special Notices

This publication is intended to help AIX system administrators, developers, and
support professionals understand the key technical differences between AIX
Version 4.3 and previous releases. It takes AIX Version 4.2 as the basis for these
differences. The information in this publication is not intended as the specification
of any programming interfaces that are provided by AIX Version 4.3. See the
PUBLICATIONS section of the IBM Programming Announcement for AIX Version
4.3 for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM’s intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the
customer’s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
© Copyright IBM Corp. 1998 305

environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AIX® PowerPC Architecture
AS/400® PowerPC 604
BookManager® POWER2 Architecture
eNetwork POWER3 Architecture
IBM ® RETAIN®
IBMLink RISC System/6000®
Magstar® RS/6000®
Micro Channel® Service Director®
Network Station SP
OS/2® System/390
POWERparallel® TURBOWAYS®
PowerPC® VisualAge®
306 AIX Version 4.3 Differences Guide

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see, “How to Get ITSO
Redbooks” on page 311.

 • A Technical Introduction to PCI-Based RS/6000 Servers, SG24-4690

 • Managing AIX V4 on PCI-Based RISC System/6000 Workstations, SG24-2581

 • TCP/IP Tutorial and Technical Overview, GG24-3376

 • Learning Practical TCP/IP for AIX V3.2/4.1 Users: Hints and Tips for
Debugging and Tuning, SG24-4381

 • Managing One or More AIX Systems - Overview, GG24-4160

 • AIX/6000 X.25 LPP Cookbook, SG24-4475

 • AIX Version 4.1 Software Problem Debugging and Reporting for the RISC
System/6000, GG24-2513

 • AIX Version 4.2 Differences Guide, SG24-4807

 • A Holistic Approach to AIX V4.1 Migration, Planning Guide, SG24-4651

 • RS/6000 Performance Tools In Focus, SG24-4989

 • RS/6000 Technical and Scientific Computing: POWER3 Introduction and
Tuning Guide, SG24-5155

B.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

B.3 Other Publications

These publications are also relevant as further information sources:

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022

Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044

AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 307

 • AIX Version 4 Getting Started, SC23-2527

 • AIX Version 4.2 Installation Guide, SC23-1924

 • AIX Version 4.2 Quick Installation Guide, SC23-1925

 • AIX Version 4.2 Network Installation Management Guide and Reference,
SC23-1926

 • AIX Version 4 System Management Guide: Operating System and Devices,
SC23-2525

 • AIX Version 4 System Management Guide: Communications and Networks,
SC23-2526

 • AIX Version 4 System User’s Guide: Operating System and Devices,
SC23-2544

 • AIX Version 4 System User’s Guide: Communications and Networks,
SC23-2545

 • AIX Version 4 Problem Solving Guide and Reference, SC23-2606

 • AIX Version 4 Messages Guide and Reference, SC23-2641

 • AIX Versions 3.2 and 4 Performance Tuning Guide, SC23-2365

 • AIX Version 4 Files Reference, SC23-2512

 • AIX Version 4 Commands Reference, SBOF-1851 (Contains the following
publications that may also be ordered separately.)

– AIX Version 4 Commands Reference, Volume 1, SC23-2537

– AIX Version 4 Commands Reference, Volume 2, SC23-2538

– AIX Version 4 Commands Reference, Volume 3, SC23-2539

– AIX Version 4 Commands Reference, Volume 4, SC23-2540

– AIX Version 4 Commands Reference, Volume 5, SC23-2639

– AIX Version 4 Commands Reference, Volume 6, SC23-2640

– Go Solo 2, SR28-5705

 • AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

 • AIX Version 4 Communications Programming Concepts, SC23-2610

 • AIX Version 4 Technical Reference, SBOF-1852 (Contains the following
publications that may also be ordered separately.)

– AIX Version 4 Technical Reference, Volume 1: Base Operating System and
Extensions, SC23-2614

– AIX Version 4 Technical Reference, Volume 2: Base Operating System and
Extensions, SC23-2615

– AIX Version 4 Technical Reference, Volume 3: Communications,
SC23-2616

– AIX Version 4 Technical Reference, Volume 4: Communications,
SC23-2617

– AIX Version 4 Technical Reference, Volume 5: Kernel and Subsystems,
SC23-2618
308 AIX Version 4.3 Differences Guide

– AIX Version 4 Technical Reference, Volume 6: Kernel and Subsystems,
SC23-2619

– AIX Version 4 Technical Reference, Volume 7: AIXwindows, SC23-2620

– AIX Version 4 Technical Reference, Volume 8: Enhanced Xwindows,
SC23-2621

– AIX Version 4 Technical Reference, Volume 9: Enhanced Xwindows,
SC23-2622

– AIX Version 4 Technical Reference, Volume 10: Enhanced Xwindows,
SC23-2623

– AIX Version 4 Technical Reference, Volume 11: Master Index, SC23-2624

 • AIX Version 4 Quick Reference, SC23-2529

 • AIX Version 4 iFOR/LS Tips and Techniques, SC23-2666

 • AIX Version 4 AIXwindows Programming Guide, SC23-2632

 • AIX Version 4 Enhanced Xwindows Programming Guide, SC23-2636

 • Common Desktop Environment 1.0, SBOF-1869 (Contains the following
Publications that may also be ordered separately.)

– Common Desktop Environment 1.0: Application Builder User’s Guide,
SC23-2785

– Common Desktop Environment 1.0: Desktop KornShell User’s Guide,
SC23-2786

– Common Desktop Environment 1.0: Help System Author’s and
Programmer’s Guide, SC23-2787

– Common Desktop Environment 1.0: Internationalization Programmer’s
Guide, SC23-2788

– Common Desktop Environment 1.0: Programmer’s Overview, SC23-2789

– Common Desktop Environment 1.0: Programmer’s Guide, SC23-2790

– Common Desktop Environment 1.0: Style Guide and Certification
Checklist, SC23-2791

– Common Desktop Environment 1.0: ToolTalk Messaging Overview,
SC23-2792

 • AIX Version 4.3 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

B.4 Internet Sites

The following are valuable resources located on the Internet.

 • http://www.gigabit-ethernet.org

 • http://grouper.ieee.org/groups/802/

 • http://www.developer.ibm.com/devcon/

 • http://www.rs6000.ibm.com/software/Apps/LPPmap.html

 • http://www.ietf.org/html.charters/ipngwg-charter.html

 • http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/
Related Publications 309

 • http://www.lexmark.com

 • http://www.ietf.org/html.charters/ipngwg-charter.html

 • http://europa.eu.int/euro
310 AIX Version 4.3 Differences Guide

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
© Copyright IBM Corp. 1998 311

How Customers Can Get ITSO Redbooks
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
312 AIX Version 4.3 Differences Guide

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 313

314 AIX Version 4.3 Differences Guide

List of Abbreviations

ABI Application Binary Interface

AH Authentication Header

ANSI American National Standards
Institute

API Application Programming
Interface

ARP Address Resolution Protocol

ASR Address Space Register

AUI Attached Unit Interface

BLOB Binary Large Object

CDE Common Desktop
Environment

CDLI Common Data Link Interface

CEC Central Electronics Complex

CGE Common Graphics
Environment

CHRP Common Hardware
Reference Platform

CISPR International Special
Committee on Radio
Interference

CLVM Concurrent LVM

CMOS Complimentary Metal-Oxide
Semiconductor

DAD Duplicate Address Detection

DASD Direct Access Storage Device

DBE Double Buffer Extension

DCE Distributed Computing
Environment

DES Data Encryption Standard

DMA Direct Memory Access

DSMIT Distributed SMIT

DTE Data Terminating Equipment

EA Effective Address

ECC Error Checking and
Correcting

EIA Electronic Industries
Association

EMU European Monetary Union

EOF End of File

ESID Effective Segment ID

ESP Encapsulating Security
Payload
© Copyright IBM Corp. 1998
FCC Federal Communication
Commission

FCAL Fibre Channel Arbitrated Loop

FDDI Fiber Distributed Data
Interface

FIFO First-In First-Out

FLASH EPROM Flash Erasable
Programmable Read-Only
Memory

GAI Graphic Adapter Interface

GPR General Purpose Register

HCON IBM AIX host connection
program/6000

HFT High Function Terminal

I/O Input/Output

ICCCM Inter-Client Communications
Conventions Manual

ICE Inter-Client Exchange

ICElib Inter-Client Exchange library

ICMP Internet Control Message
Protocol

IETF Internet Engineering Task
Force

IHV Independent Hardware
Vendor

IJG Independent JPEG Group

ILS International Language
Support

IM Input Method

IPL Initial Program Load

IPSec IP Security

ISA Industry Standard
Architecture

ISAKMP/Oakley Internet Security Association
Management Protocol

ISO International Organization for
Standardization

ISV Independent Software Vendor

ITSO International Technical
Support Organization

JFS Journaled File System

LDAP Lightweight Directory Access
Protocol
 315

LDIF LDAP Directory Interchange
Format

LFT Low Function Terminal

LID Load ID

LP Logical Partition

LPI Lines Per Inch

LPP Licensed Program Products

LPR/LPD Line Printer/Line Printer
Daemon

LP64 Long-Pointer 64

LTG Logical Track Group

LVM Logical Volume Manager

L2 Level 2

MBCS Multi-Byte Character Support

MCA Micro Channel Architecture

MDI Media Dependent Interface

MII Media Independent Interface

MST Machine State

NBC Network Buffer Cache

ND Neighbor Discovery

NDP Neighbor Discovery Protocol

NFS Network File System

NIM Network Install Manager

NIS Network Information System

NL National Language

NLS National Language Support

NVRAM Non-Volatile Random Access
Memory

ODBC Open DataBase Connectivity

ODM Object Data Manager

OEM Original Equipment
Manufacturer

ONC + Open Network Computing

OOUI Object-Oriented User
Interface

OSF Open Software Foundation,
Inc.

PCI Peripheral Component
Interconnect

PEX PHIGS extension to X

PHB Processor Host Bridges

PHY Physical Layer Device

PID Process ID

PPC PowerPC

PSE Portable Streams
Environment

PTF Program Temporary Fix

RAID Redundant Array of
Independent Disks

RAN Remote Asynchronous Node

RDB Relational DataBase

RDISC ICMP Router Discovery

RFC Request for comments

RIO Remote I/O

RPC Remote Procedure Call

RPL Remote Program Loader

SBCS Single-Byte Character
Support

SCSI Small Computer System
Interface

SCSI-SE SCSI-Single Ended

SDRAM Synchronous DRAM

SHLAP Shared Library Assistant
Process

SID Segment ID

SIT Simple Internet Transition

SKIP Simple Key Management for
IP

SLB Segment Lookaside Buffer

SM Session Management

SMIT System Management
Interface Tool

SMP Symmetrical Multi-Processor

SNG Secured Network Gateway

SP Service Processor

SPOT Shared Product Object Tree

SRC System Resource Controller

SSA Serial Storage Architecture

SSL Secure Socket Layer

STP Shielded Twisted Pair

SVC supervisor or system call

SYNC synchronization

TCE Translate Control Entry

TCP/IP Transmission Control
Protocol/Internet Protocol

UCS Universal Coded Character
Set

UIL User Interface Language
316 AIX Version 4.3 Differences Guide

ULS Universal Language Support

USLA User-Space Loader Assistant

UTF UCS Transformation Format

UTM Uniform Transfer Model

UTP Unshielded Twisted Pair

VFB Virtual Frame Buffer

VMM Virtual Memory Manager

VP Virtual Processor

VSM Visual System Manager

XCOFF Extended Common Object
File Format

XIE X Image Extension

XIM X Input Method

XKB X Keyboard Extension

XPM X Pixmap
 317

318 AIX Version 4.3 Differences Guide

Index

Symbols
/etc/hosts file 156
/etc/passwd file 119
/etc/security/lastlog file 119
/etc/security/passwd file 119
__64BIT__ macro 59
__remap() services 41
_as_is64 54
_disclaim64 55
_disclaim64() function 55
_shmat64() function 55
_shmdt64() function 55
_XAlocTemp() function 202
_XFreeTemp() function 202
_XmStrings array 226

Numerics
1 Gb network adapter 7
12 way processor performance 16
128-bit addressing 147
32 GB memory support 16
4/8/8 model 33
43P Model 150 3
43P Model 260 5
64-bit 29

address space programming interfaces 53
address translation comparison 32
architecture and benefits 29
archiver 64
binary compatibility 31
C compiler 56
changes to ioctl 49
command and utility changes 65
core design 33
default compilation mode 56
determining the address space size 54
device drivers 49
disadvantages 30
effective segment id comparison 41
execution mode 56
linker 62
loader 51
optimization of address remapping 43
optimizations for one or two parameters 45
PowerPC chip design 30
PowerPC registers 30
remap kernel programming interfaces 44
remap library data structures 41
remap library programming interfaces 42
remap services 45
segment register mapping 33
shared memory management 54
shared memory programming interfaces 55
system call address remapping 40
system call data reformatting 39
system call diagram 38
© Copyright IBM Corp. 1998
system calls 37
system libraries 61
unsupported functions 62
unsupported libraries 62
user address space 33
user data and stack management 55
user mode address space layout 34
virtual memory manager 52
XCOFF format 46

64-bit PowerPC 30
7017 Model S70 1

A
abbreviations 315, 317
access control 193
acronyms 315, 317
adapter

Gigabit Ethernet 7
gigabit fibre channel 10
GXT3000P PCI graphics accelerator 6

address mapping in IPv6 151
address remapping 40
address space services 53
address unreachable message 152
AF_INET 163
AF_INET6 163
AH (Authentication Header) 153
AIX 16

bad block relocation 18
dump routines 16
installation 142
memory support 16
paging 137
performance 145
per-thread data 19
recoverability 132
scaling 24
tuning 25

alignment of data types 60
alt_disk_install command 121
alternate disk installation 121, 124
ANSI/IEEE 67
anycast IPv6 addresses 150
AnyNet 157
APAR IX81852 10
ar command 64
archive utilities 78
archiver 64
ARP (Address Resolution Protocol) 150
as_att64() function 54
as_det64() function 54
as_geth64() function 54
as_getsrval64() function 54
as_puth64() function 54
as_seth64() function 54
ASCII text resource 203
ATM 155 Mbps PCI adapter 176
319

authentication 300
authentication header 153
autoconf6 command 157, 160
automount command 188
automountd daemon 188

B
backup command 78
BadAccess error 199
BadAlloc error 199
BadAtom error 199
BadDevice error 199
BadImplementation error 199
BadKeyboard error 199
BadMatch error 199
BadValue error 199
bibliography 307
Big VG 92
big volume group 87

limitation of logical storage management 87
LVCB 88
VGDA 88
VGSA 88

BIG-REQUESTS Extension, X11 195
binary compatibility 13

AIX Version 3 applications 14
between AIX V4 releases 13
client/server applications 15
IBM LPPs 15
X11 issues 13

binary large objects 298
BIND DNS 172
binder library 82
BLOB 298
boot logical volume 24
BOS install 142
bosboot command 18
bosdebug command 18
bosinst.data 142
brk() function 55
broadcast address 150
Byelorussion localization 278

C
C Compiler 56
C Language 67

__64BIT__ macro 59
alignment of basic data types 60
arch option 58
bitfields 60
compilation mode 57
default compilation mode 56
dynamic linking extension 68
enum support 61
fixed width data types 59
getdate() function 70
mixed mode compilation 58
non-portability 57
OBJECT_MODE variable 57

pragma arch suboptions 58
realtime options 67
standards 67
strptime() function 70
structure alignment 60
system libraries 61
two step compiling and linking 58
unsupported functions 62
unsupported libraries 62

cancel command 131
CATweb Navigator 227
CDE (Common Desktop Environment) 100
CDE Application Manager 100
century handling 71
Certificate Authority 112
cfsadmin command 185
CGI-compliant Web server, online documentation 234,
235
chdev command 164
chdoclang command 286
chfilt command 156
chlv command 91
chlvcopy command 85, 93
chlvcopy new options in AIX 4.3.1 85
CHRP memory support 16
chtun command 156
chvg command 89
client/server compatibility 15
clients, online documentation 233, 235
codepoints 140
colon-hex notation 147
commands

alt_disk_install 121
autoconf6 157
automount 188
bosboot 18
bosdebug 18
chdev 164
chdoclang 286
chfilt 156
chlv 91
chlvcopy 85, 93
chtun 156
chvg 89
dbx 65
docsearch 235, 237
expfilt 156
exptun 156
genfilt 156
ifconfig 159, 172
impfilt 156
importvg 84, 91
imptun 156
lpd 130
lsfilt 156
lsipsec 156
lsps 139
lspv 90, 128
lstun 156
mkfilt 156
320 AIX Version 4.3 Differences Guide

mklv 91
mkpasswd 120
mksysb 142
mktun 156
mkvg 86, 89
mvfilt 156
ndp 161
ndpd-host 162
ndpd-router 170
netstat 157
nice 26
npdp-host 157
oslevel 129
qchk 131
rdist 141
reboot 128
rmfilt 156
rmtun 156
route 160
savevg 142
splitlvcopy 94
sync 128
syncvg 83
traceroute 161
varyonvg 84
vmstat 139
wsm 236

communication administratively prohibited message 152
compatibility 13
compilers

fortran 61
components, Documentation Search Service 233, 237
concurrent online mirror backup 92

commands changed 93
ConfigureNotify event 194
configuring, Documentation Search Service 236
container object 102
container objects 101
control messages 151
cpio command 78
crash command 17
crytographic support, IPSec 155

D
DAD (Duplicate Address Detection) 150
data reformatting 39
data sizes 33
data widening 40
date command 71
daylight savings time 118
DB2 298
DBCS HTML search engine 284

additional doublebyte support in docsearch 284
docsearch command 286
limitations 286
simplified Chinese search 290
usability 286

DBE (Double Buffer Extension) 195
dbx command 65
DCE/DFS 157

decapsulating node 153
DEFAULT_BROWSER, online documentation 236, 238
delayack option 174
delayackports option 175
destination unreachable message 152
Developers Connection 14
diagnostics 143
direct i/o 77

inode flags 78
JFS function calls 78
O_DEFER flag 77
O_DIRECT flag 78
system archive utilities 78

Direct Soft OpenGL 227
directory schema 301
disclaim() function 55
DLC/BSC support for 4-port PCI adapter

error log 182
packaging 181
trace 181

dlclose() function 69
DLE (Dynamin Link Extension) 68
dlerror() function 70
dlopen() function 69
dlsym() function 69
DMA pre-translation 79
DMP_MAGIC 17
DMP_MAGIC_REAL 17
dmpfmt command 17
Docsearch 284
docsearch command 235, 237
document search service 284
document’s indexes, online documentation 234
documentation clients, online documentation 235
Documentation Search Service 233

components 233, 237
configuring 236
installing 235
Invoking 237
invoking 237
problem starting 238
Web based 233

documentation server, online documentation 236, 237,
239
dotted-decimal notation 147
double buffer extension 195
doublebyte support in Docsearch 284
DSMIT 95
dsmit command 97
dump command 16
dump support

programming interface 17
duplicate address detection 150
dynamic host configuration protocol enhancements 167
dynamic linking 68

dlclose() function 69
dlerror() function 70
dlopen() function 69
dlsym() function 69

dynamic status icon, (Web-Based System Manager) 107
 321

E
ed command 141
EDTMPDIR 141
effective addresses 33, 34
effective segment id 40
emap1_64 44
encapsulating node 153
encapsulating security payload 153
encapsulation forms 154
enq command 131
entry points 37
enum support 61
environment variable

DEFAULT_BROWSER 236, 238
erroneous header field message 152
error message template 140
errpt command 140
ESID 43
ESID (Effective Segment ID) 40
ESP (Encapsulating Security Payload) 153
esp-des-cbc transform 154
esp-des-md5 transform 154
etc/hosts file 156
etc/passwd file 118
etc/security/lastlog file 118
etc/security/passwd file 118
Ethernet adapters comparison 8
Euro symbol support 252

@euro locale modifier 254, 256
graPHIGS Euro support 230
input methods 262
keyboard definitions 259
LC_COLLATE collating sequence 259
LC_CTYPE character classification 254
LC_MONETARY formatting information 256
LC_MONETARY keywords 257
LC_MONETARY locale 254
locale categories 253
locale support installation overview 272

IBM-1252 locale installation 277
UTF-8 locale installation 273

low-function terminal (LFT) keyboards 260
SBCS input method 262
strfmon() function 257
UTF-8 encoding 255
UTF-8 local definitions 253
X server keyboard 261

executable text area 35
EXISTING_SYSTEM_OVERWRITE 143
expfilt command 156
explicitly-loaded modules 36
exptun command 156
extended-precision arithmetic 29
EXTSHM=ON 79

F
Factor -t for mkvg command 86
FC-AL and SSA technology features 11
FC-AL compared to SSA 11

Fibre Channel Arbitrated Loop (FC-AL) 10
fileset

NetQ, online documentation 235
online manuals 237
Web browser 234
Web browser, online documentation 235

filter option in Web-Based System Manager 106
filtering, IP 154
fixed width data types 59
forms-capable browser, online documentation 234
Fortran 61
fragment reassembly time exceeded message 152
fs font server 205
fsck_cachefs command 186

G
gdc command 169
generic dialogues 102
genfilt command 156
gentun 156
gentun command

commands 156
get_thread_specific() function 19
getadsp64 54
getadsp64() function 54
getdate() function 70
Gigabit Ethernet-SX PCI adapter 7

error logging 9
user defined parameters 8

Gigabit fibre channel adapter for PCI bus 10
global IPv6 addresses 149
graPHIGS enhancements 230

Euro symbol support 230
performance enhancements 230

GXT3000P PCI graphics accelerator 6, 229, 230

H
HACMP 157
HasPoll configuration option 202
heap 36
hmac-md5 transform 154
hmac-sha transform 154
hop limit exceeded message 152
HP-UX 97
http gateway 295
HTTPS protocol 112

I
i_diocnt field in inode 78
i_flag field in inode 78
i_poll() function 19
i_poll_soft() function 19
IBM 10/100 M PCI Ethernet adapter 178

configuration parameters 179
error logging 180
packaging 178
trace 180

ICCM (Inter-Client Communications Conventions Manu-
322 AIX Version 4.3 Differences Guide

al) 193
ICE (Inter-Client Exchange) 194
ICMP redirect 150
ICMP router discovery 150
ICMPv6 150
ICMPv6 message types 151
IDIRECT flag 78
IEEE 67
IEEE 802.1Q 7
IEEE 802.3q 7
IEEE 802.3x 7
IEEE 802.3z 7
IETF (Internet Engineering Task Force) 147
ifconfig command 159, 172
ifconfig new flags for interface information 172
Ifconfig new options for checksum offload 177
ILP64 33
imake command 213
impfilt command 156
importvg command 83, 84, 91
importvg fast mode 84
Importvg -L example 84
importvg learning mode 83
imptun command 156
indexes, online documentation 234
indexing of login files 118
inet6 159
inetd daemon 163
Infoexplorer 88, 233
INIFADDR lock 175
inode flags 78
input methods 248
Installing

online manuals 237
Web browser, online documentation 234
Web server, online documentation 235

installing
Documentation Search Service 235

int16_t data type 59
int32_t data type 59
int64_t data type 59
int8_t data type 59
internationalization 239
Internet drafts 302
Internet Engineering Task Force 147
Internet protocol version 6 147
Internet security key association 154
Inter-Process Communication Identifier 24
invoking, Documentation Search Service 237
IP security 153
IP security function enhancements 166
IP version 6 147

addressing 147
autoconf6 command 160
automatic address configuration 160
compressing multiple zeroes 148
configuring IPv6 163
ICMPv6 151
ifconfig command changes 159
inetd daemon 163

IPv6-aware commands 157
ndpd-host command 162
neighbor discovery 150
netstat command changes 157
resolver support 156
RFCs 166
route command changes 160
security 153

commands 156
compatibility 155
cryptographic support 155
encapsulation forms 154
kernel configuration 155
key management 154
transforms 154

smit interface 163
socket library 163
trace utilities 161
tunneling 152
types of address 149

ip_fltr_*_hooks 155
ip6forwarding option 172
ipcget() routine 24
ipcrm command 24
ipcs command 24
ipreport command 161
IPSec 153
ipsec_decap_hook 155
ipsec_v4 ODM object 155
ipsec_v6 ODM object 155
iptrace command 161
IPv6 anycast address support 171
IPv6 routing 168

gated version 3.5.9 168
IPv6 multicast routing 170
IPv6 multi-homed support 171
IPv6 routing functions 169
IPv6 unicast routing 170

IS64U macro 54
ISAKMP (Internet Security Association Management Pro-
tocol) 154
ISO 10175 200
ISO C language standards 67
ISO/IEC 67
IsPrivateKeypadKey() function 202

J
java 98
java nls support 251
java virtual machine 99
jfs_close() function 78
jfs_dio() function 78
jfs_map() function 78
jfs_rdwr() function 78

K
k_protect() function 18
kbevd command 199
kerberos 300
 323

kernel changes.
crash command 17
debug modifications 19
dumpfmt command 17
faster per-thread data 19
k_protect() function 18
lock based dumping 16
memory overlays 17
protection 17
stack overflow protection 19
STORE_PROTECT macro 18

kernel extension, 64-bit 38
kernel heap 23
kernel protection 17
kernel scaling 21

IPC identifiers 24
larger kernel heap 23
mbuf pool 21
pipe buffer pool 24

key management in IP security 154
keyed-md5 transform 154
Korean TrueType Font 282

OTF 283
TTC 283
TTF 283

L
large address spaces 29
large data programs 37
large data sets 29
late paging allocation 138
layout services, unicode 249
LDAP (Lightweight directory Access Protocol) 295
ldapadd command 297, 301
ldapcompare command 301
ldapdelete command 297, 301
ldapmoddn command 301
ldapmodify command 297, 301
ldapmodrdn command 297
ldapsearch command 297, 301
Lexmark printers 130
libld.a 82
library routines, 64-bit 38
libsrc

threadsafe routines 133
Lightweight Directory Access Protocol 295
limitations 177
linker 62
link-local IPv6 addresses 149
LLP64 33
local variable allocation 36
locale methods 245
localedef command 247, 253
login process 118

/etc/passwd file 119
/etc/security/lastlog file 119
/etc/security/passwd file 119
AIX V4.3 improvements 118
design deficiencies 118
mkpasswd command 120

previous improvements 118
long integers 29
long-pointer 64 33
LP64 33
lpd command 130
lprm command 131
lpstat command 131
lresyncvg command 83
lsattr command 135
lsfilt command 156
lsipsec command 156
lsps command 139
lspv command 90, 128
lssrc command 132
lstun command 156
LVM (Logical Volume Manager)

command changes 83
importvg command 83

lvmrec.h header file 91

M
master directory server 296
master key for IP security 154
maxdata field 37
mblen() function 245
mbstopcs() function 246
mbstowcs() function 246
mbtopc() function 246
mbtowc() function 246
mbuf pool 80

allocation algorithm 22
size increase 21
statistics collection 22

memory checker 143
memory, 32 GB real memory support 16
message catalog 140
microcode packaging 120
MIT-MAGIC-COOKIE 193
mkfilt command 156
mklv command 91
mkpasswd command 119, 120
mksysb command 142
mktun command 156
mkvg command 86, 89
mmap function 54
mmap segments 36
Motif Version 2.1 213

combo box 217
compatibility 225
container widget 214
drag and drop enhancements 223
extensibility framework 218
file selection box 221
menu system improvements 220
new widgets 214
note book 215
performance 224
printing 221
spin box 217
string manipulation 221
324 AIX Version 4.3 Differences Guide

threadsafe libraries 221
toggle buttons 221
traits 218
UTM (Uniform Transfer Model) 219
XmScreen enhancements 222

mouse buttons 111
multicast IPv6 addresses 149
mvfilt command 156
mwm window manager 226

N
national language support 241
nbc_limit 81
nbc_max_cache 81
nbc_min_cache 81
ndp command 161
ndpd-host command 157, 162
ndpd-router command 170
neighbor discovery 150
netinet kernel extension 150
Netscape Fasttrack server 300
netstat command 22, 157
Network Buffer Cache 80
networking enhancements 147
NFS/NIS 157
nice command 24, 26
nice value 25
NIM

enhancements 135
group operations 135
lock granularity 136
SPOT 136

NLS 241
NLS messages 140
no command

extendednetstats 22
nbc_limit option 81
nbc_max_cache option 81
nbc_min_cache option 81
send_file_duration option 81

no route to destination message 152
non-prompted install 142
not a neighbor message 152
note book 215, 217

O
O_DEFER flag 77
O_DIRECT flag 78, 81
OBJECT_MODE variable 57
object-oriented user interface 99
objects 101
ODBC 299
ODM 24
Online Assistance 233

internationalization 239
man pages 239
smit documentation 240

online HTML documents 233
OOUI 100

OOUI (Object Oriented User Interface) 99
open database connectivity 299
Open Group 67
OpenGL enhancements 228

64-bit indirect rendering 228
new extensions 230

color blend extension 230
MultiDrawArray extension 230
texture mirrored repeat extension 230

OpenGL Version 1.2 228
performance enhancements 228
ZAPdb 228

Oracle 297
organization-local IPv6 addresses 149
oslevel command 129
ospf_monitor command 169

P
packet too big message 152
paging space enhancements 137

commands affected 139
late and early paging space allocation 137

parameter problem message 152
pcstombs() function 246
pctomb() function 246
performance

login 118
Performance Toolbox 145
performance toolbox 144
per-thread data 19
physical partition support 87
pop-up menus, (Web-Based System Manager) 107
port unreachable message 152
POSIX 67
PowerPC registers 30
PPs per physical volume 85
prefixlen option 160
print extension to X11 200
printer queue 131
printer support 129

new Lexmark printer support 130
remote print job count 130

priority
calculation 25

problem starting, Documentation Search Service 238
process private data 35
property notebooks 101
prs command 71
PSALLOC environment variable 137
ptrace() subroutine 76
PTX 144
public-key certificates 300

Q
qchk command 131

R
raw LV online mirror backup 85
 325

r-command security 166
RDB glue 299
rdb glue 299
RDISC (Router Discovery) 150
rdist command 141
realtime options 67
reboot command 128
reboot_enable 134
reboot_string 134
registers, PowerPC 30
remap data structures 41
remap2_64 44
remote applications

registering 116
remote file distribution 141
remote reboot

configuration 134
purpose 134
security 135
service processor 135
setup 134

removal of 1016 PPs per physical volume limit 85
renice command 25
replica directory server 296
request for comments 302
resolver support 156
resource sharing in ICCCM 194
restore command 78
return codes 39
returned pointers 40
RFC (Request For Comments) 302
RFC 1179 130
RFC 1777 296
ripquery command 169
rmfilt command 156
rmtun command 156
route command 160
Route lock 175
RS/6000 43P 7043 Model 150 3
RS/6000 43P 7043 Model 260 4
RS/6000 43P Model 260 4
RS/6000 Enterprise Server Model S70 Advanced 1
rstart command 195

S
savevg command 142
sbrk() function 55
scalar parameters 39
sched_D 25
sched_R 25
schedtune command 25
scheduler 24
SDLC/BSC support for 4-port PCI adapter 181
se_ctrladdr_size 163
se_family 163
search engine, online documentation 235
search results page, online Documentation 233
Secure Socket Layer 112
secure sockets layer 299
secured network gateway 155

security, IP 153
security, r-commands 166
segment lookaside buffer 34
segment numbers 34
segment register mapping 33
segment registers 33
segment table 33
send_file() system call 80
send_file_duration 81
server replication 299
service aid 143
service processor 135
servtab structure 163
session key refresh 154
Session Management 195
shared library data segments 36
shared library text segments 36
shared memory IDs 79
shmat segments 36
shmat() function 55
shmctl() function 55
shmdt() function 55
shmget() function 55
simple Internet transition 151
simple key management for IP 154
simplified Chinese search 290
SIT (Simple Internet Transition) 151
site-local IPv6 addresses 149
SKIP (Simple Key Management for IP) 154
SLAPD 299
slapd 299
SLB (Segment Lookaside Buffer) 34
SM (Session Management) 195
smit command 95
smit, documentation 240
SMlib (Session Management Library) 195
SMP performance 16
SNG (Secured Network Gateway) 155
socket library support 163
Solaris 97
sort option 106
spin box 217
splitlvcopy command 94
SRC 132
srcd daemon 132
srcmstr daemon 132
SSA compared to FC-AL 11
SSL 112
SSL (Secure Sockets Layer) 299
SSL protocol 112
stack overflow 19
stand-alone lightweight directory access protocol 295
Standards 67

IEEE POSIX and UNIX98 67
realtime options 67
sbrk() function 55

startsrc command 132
stateless address autoconfiguration 150
static key for IP security 154
StaticGravity 194
326 AIX Version 4.3 Differences Guide

STORE_PROTECT macro 18
strfmon() function 257
strptime() function 70
SunOS 97
switch administrator, (Web-Based System Manager) 103
symbol table

XCOFF 46
sync command 128
SYNC extension 195
syncvg command 83
system backup 142
system calls 37
system exerciser 143
system libraries 61
system resource controller 132

T
tabbed dialogues 101
tape block size 142
tar command 78
target words, online documentation 233
taskguides 102
TCP checksum offload 176, 177

commands changes 177
TCP/IP security 166
tcpdump command 161
TFTP block size option 167
Thai language support 279
The Developers Connection 14
threads

priority calculation 25
Thundering problem 177
time exceeded message 152
timezone 118
traceroute command 161
transforms, IPSec 154
tree details option 106
tty remote reboot 134
tty, handling on SMP systems 19
tunneling 151
tunneling for IPv6 152
twm window manager 212
TZ environment variable 118

U
UCS (Universal Coded Character Set) 242
UCS-2 242
UCS-4 242
uid files 225
uint16_t data type 59
uint32_t data type 59
uint64_t data type 59
uint8_t data type 59
Ukranian localization 278
ULS (Universal Language Support) 241, 243
unbound sockets 159
unicast addresses 149
unicode 242

fonts and X11 locales 248

input methods 248
installation of unicode locales 249
layout services 249
locale methods 245

mblen() 245
mbstopcs() 246
mbstowcs() 246
mbtopc() 246
mbtowc() 246
pcstombs() 246
pctomb() 246
wcstombs() 246
wcswidth() 247
wctomb() 247
wcwidth() 247

localedef command 247
supported unicode locales 249

universal language support 241, 243
universal locale 244
UNIX98 67
Unknown RefID_64

dbx debugger 65
Unknown RefID_bicomp

PowerPC processor 31
unrecognized IPv6 option message 152
unrecognized next header message 152
user address space 33
user interface elements, (Web-Based System Manager)
103
user stack 36
UTF-8 243, 252
UTM (Uniform Transfer Model) 219

V
varyonvg command 84
VGDA/VGSA changes for big VG 88
Vietnamese language support 280
virtual address space 31
vm_makeme32 52
VMM (Virtual Memory Manager) 52

address space management 53
address space programming interfaces 53
determining the address space size 54
executing a 64-bit program 52
shared memory management 54
shared memory programming interfaces 55
user data and stack management 55

vmstat command 139
volume group

big 92
VSM 95
vsm command 97

W
wait process 25
wcstombs() function 246
wcswidth() function 247
wctomb() function 247
wcwidth() function 247
 327

web based systems management 95
architecture 98
command buttons 107
components 99
container objects 101
container views 108

details view 108
icon view 108
tree view 109

dsmit overview 97
help 110
interface objects 101
launch interfaces 100
message boxes 110
navigation 111

keyboard navigation 111
menu shortcuts 111
mouse model 111

online books 111
options menu 106
pop-up menus 107
property notebooks 101
security and SSL 112
selected menu 104
selecting objects 111
smit overview 95
status icon 107
status line 108
taskguides 102
tool bar 107
user assistance 110
user interface 99
user menu 103
view menu 105
vsm overview 97

web based systems manager
diagnostics 114
registered applications 116

Web browser, online documentation 233, 234, 235, 238
web server performance 173

commands affected 174
reducing TCP packages 174
reducing the contention of INIFADDR and Route lock
175

Web server, online documentation 233, 235, 236, 239
widgets 214
window management 194
wizards 102
WM_NORMAL_HINTS 194
WM_STATE 194
wsm command 236

X
X Keyboard Extension 196
X.509v3 300
X11

access control 193
architecture review 191
AsciiText resource 203
BIG-REQUESTS Extension 195

client 191
client types 198
command line interfaces 212
DBE (Double Buffer Extension) 195
fonts 204

font library 204
font server 205

HasPoll configuration option 202
header files 204
ICCM (Inter-Client Communications Conventions Man-
ual) 193
ICE (Inter-Client Exchange) 194
keyboard mapping 196
Motif Version 2.1 213
NLS database 210
print extension 200
protocol 191
security 193
server 192
SYNC Extension 195
toolkits 191
window management 194
X Record Extension 200
X11R6 192
Xaw toolkit 203
XC-MISC Extension 195
xdpyinfo command 192
XIE (X Image Extension) 193
XIM (X Input Method) 205
XKB client applications 199
Xlib library 201
XOM (X Output Method) 209
Xt toolkit 202
XtNinternational resource 203

XaddConnectionWatch function 202
XAllocIDs() function 202
xaw toolkit 191, 203
XCloseOM() function 202
XC-MISC extension 195
XCOFF (eXtended Common Object File Format) 46

design 46
magic number 48
non-executable xcoff files 48
using the different formats 47

XCOFF object files 82
XContextualDrawing() function 202
XConvertCase() function 202
XCreateOC() function 202
XDestroyOC() function 202
XDirectionalDependentDrawing() function 202
XDisplayOfOM() function 202
xdm display manager 212
xdpyinfo command 192
XESetBeforeFlush() function 202
xext toolkit 191
XExtendedMaxRequestSize() function 202
xfs font server 205
XGetAtomNames() function 202
XGetOCValues() function 202
XGetOMValues() function 202
328 AIX Version 4.3 Differences Guide

xhost command 212
xi toolkit 191
XIE (X Image Extension) 193
XIM (X Input Method) 205
XInitImage() function 202
XInitThreads() function 202
XInternalConnectionNumbers() function 202
XInternAtoms() function 202
xkbcomp command 199
xkbevd daemon 199
xkbprint command 199
XL Fortran Version 5.1 61
Xlib and new functions 201
XLocaleOfOM() function 202
XLockDisplay() function 202
xm toolkit 191
xmattach64 51
XmComboBox resource 226
XmCSText widget 225
XmDRAG_PREFER_DYNAMIC 226
XmDRAG_PREFER_PREREGISTER 226
xmh command 213
XmMERGE_REPLACE constant 226
XmMergeMode constant 226
XmNdragReceiverProtocolStyle value 226
XmNenableEtchedInMenu resource 226
XmNenableThinThickness resource 226
XmNenableToggleVisual resource 226
XmNindicatorOn value 226
XmNindicatorType value 226
XmNpositionMode resource 226
XmNpositionType resource 226
XmREPLACE constant 226
XmScrolledList color 226
XmScrolledtext color 226
XmSpinBox resource 226
XmString 224, 225
XmStringCreateLocalized() function 226
xmu toolkit 191
XNDestroyCallback 208
XNQueryICValuesList 208
XNQueryIMValuesList 208
XNQueryInputStyle 208
XNR6PreeditCallbackBehavior 208
XNResourceClass 208
XNResourceName 208
XNVisiblePosition 208
XOM (X Output Method) 209
XOMOfOC() function 202
XOpenOM() function 202
XProcessInternalConnection() function 202
xprt command 200
xrdb command 212
XReadBitmapFileData() function 202
XregisterIMInstantiateCallback() function 202
XRemove ConnectionWatch() function 202
xset command 213
XSetIMValues() function 202
XSetOCValues() function 202
XSetOMValues() function 202

xsm session manager 195, 213
XSMP (X Session Management Protocol) 195
xt toolkit 191, 202
xterm command 213
XtSetValues() function 226
XUnlockDisplay() function 202
XUnregisterIMInstantiateCallback() function 202

Y
Y2K 67
Year 2000 67, 70

API and command changes 70
date command 71
getdate() function 70
prs command 71
strptime() function 70

Z
ZAPdb 228
 329

330 AIX Version 4.3 Differences Guide

© Copyright IBM Corp. 1998 331

ITSO Redbook Evaluation

AIX Version 4.3 Differences Guide
SG24-2014-01

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

S
G

24
-2

01
4-

01

P
ri

n
te

d
 in

 t
h

e
U

.S
.A

.

AIX Version 4.3 Differences Guide SG24-2014-01

	Contents
	Figures
	Tables
	Preface
	How this Redbook is Organized
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Hardware Announcements
	1.1 RS/6000 7017 Enterprise Server Model S70 Advanced
	1.1.1 System Highlights
	1.1.2 I/O Drawer Specification

	1.2 RS/6000 43P 7043 Model 150
	1.3 RS/6000 43P 7043 Model 260
	1.4 GXT3000P PCI Graphics Accelerator
	1.5 Gigabit Ethernet-SX PCI Adapter
	1.5.1 Adapter Parameters
	1.5.2 Error Logging

	1.6 Gigabit Fibre Channel Adapter

	Chapter 2. AIX Kernel Enhancements
	2.1 Binary Compatibility
	2.1.1 Compatibility between AIX Version 4 Releases
	2.1.2 X11 Compatibility
	2.1.3 AIX Version 3 Application Compatibility
	2.1.4 Client/Server Application Compatibility
	2.1.5 IBM Licensed Program Products Compatibility

	2.2 AIX 4.3 for 12-Way SMP Performance (4.3.1)
	2.3 32 GB Real Memory Support (4.3.2)
	2.4 Lock-Based Dumping
	2.4.1 Dump Support
	2.4.2 Programming Interface

	2.5 Bad Block Relocation during System Dump (4.3.1)
	2.6 Kernel Protection
	2.6.1 Storage Protection Macro
	2.6.2 Debug Modifications
	2.6.3 Stack Overflow Protection

	2.7 SMP TTY Handling
	2.8 Faster Per-Thread Data
	2.9 Expanded Limits on Open Files (4.3.1)
	2.10 Multiple Concurrent JFS Reads (4.3.1)
	2.11 Increase in the Upper Limit of Trace Buffer (4.3.1)
	2.12 Kernel Scaling Enhancements (4.3.2)
	2.12.1 Network Memory Buffer Pool
	2.12.2 Expanded Kernel Heap
	2.12.3 Larger Pipe Buffer Pool
	2.12.4 Inter-Process Communication Identifier Enhancement
	2.12.5 Boot Logical Volume Scaling

	2.13 Scheduler Enhancements (4.3.2)
	2.13.1 Thread Priority Calculation Changes
	2.13.2 Sample Results of Altering Nice Value

	Chapter 3. 64-Bit Enablement
	3.1 Introduction to 64-Bit Computing
	3.1.1 64-Bit Architecture and Benefits
	3.1.2 64-Bit Challenges
	3.1.3 64-Bit PowerPC Design
	3.1.4 AIX 64-Bit Design Criteria

	3.2 64-Bit Core Design
	3.2.1 Segment Register Mapping
	3.2.2 System Calls
	3.2.3 64-Bit XCOFF Format
	3.2.4 Device Drivers
	3.2.5 Loader
	3.2.6 Virtual Memory Manager

	3.3 Application Development
	3.3.1 C Compiler
	3.3.2 XL Fortran Version 5
	3.3.3 System Libraries
	3.3.4 Linker
	3.3.5 Archiver
	3.3.6 The dbx Debugger
	3.3.7 Commands and Utilities

	Chapter 4. Application Development and Pthreads
	4.1 C Language Standards
	4.2 IEEE POSIX and UNIX98 Conformance
	4.2.1 Realtime Options
	4.2.2 Unsupported Threads Options
	4.2.3 Dynamic Linking Extension
	4.2.4 Year 2000

	4.3 M:N Pthreads (4.3.1)
	4.3.1 Porting Application from Draft 7 Pthreads
	4.3.2 The M:N Model
	4.3.3 User Scheduler
	4.3.4 Mutex Locks
	4.3.5 Tuning
	4.3.6 Maximum Number of Threads
	4.3.7 Combined Thread-Safe Libraries

	4.4 Pthreads Suspend and Resume (4.3.2)
	4.5 Preserve Modified Ptrace Data (4.3.2)
	4.6 Direct I/O
	4.6.1 Opening Files for Direct I/O
	4.6.2 JFS Function Calls for Direct I/O
	4.6.3 System Archive Utilities

	4.7 Shared Memory Enhancements
	4.7.1 Larger Shared Memory Regions (4.3.1)
	4.7.2 128 KB Shared Memory IDs (4.3.2)
	4.7.3 Shared Memory Debugging Enhancements (4.3.2)

	4.8 DMA Pre-Translation (4.3.2)
	4.9 Fast fork() Function (4.3.1)
	4.10 New Sockets System Call (4.3.2)
	4.11 Binder Library Enhancements (4.3.2)

	Chapter 5. Logical Volume Manager Enhancements
	5.1 Logical Volume Synchronization
	5.2 importvg Learning Mode
	5.3 importvg Fast Mode
	5.4 Raw LV Online Mirror Backup Support (4.3.1)
	5.4.1 Removal of 1016 PPs per Physical Volume Limit (4.3.1)

	5.5 Physical Partition Support (4.3.1)
	5.6 Big Volume Groups (4.3.2)
	5.6.1 Changes to LVCB
	5.6.2 General Enhancements for Big VG
	5.6.3 Small VG to Big VG Conversion
	5.6.4 Big VG Limitations

	5.7 Concurrent Online Mirror Backup and Special File Support (4.3.2)
	5.7.1 Limitations
	5.7.2 Commands Changed

	Chapter 6. System Management and Utilities
	6.1 Overview of Existing AIX Systems Management
	6.1.1 SMIT Overview
	6.1.2 DSMIT Overview
	6.1.3 VSM Overview

	6.2 Web-Based System Manager Architecture
	6.2.1 Web-Based System Manager Components
	6.2.2 Web-Based System Manager User Interface
	6.2.3 Web-System Manager Launch Interfaces
	6.2.4 Web-Based System Manager User Interface Objects
	6.2.5 User Interface Elements
	6.2.6 Message Boxes
	6.2.7 User Assistance
	6.2.8 Navigation
	6.2.9 Selection and Multiple Selection

	6.3 Web-Based System Manager Enhancements (4.3.1)
	6.4 Web-Based System Manager Enhancements (4.3.2)
	6.4.1 Security Enhancements
	6.4.2 Diagnostics Enhancements
	6.4.3 Registered Applications

	6.5 Daylight Savings Time
	6.6 Login Performance
	6.6.1 Indexing of the /etc/passwd File
	6.6.2 Indexing of the /etc/security/passwd File
	6.6.3 Indexing and Locking /etc/security/lastlog File
	6.6.4 mkpasswd Command

	6.7 Microcode Packaging
	6.8 On-line Alternate Disk Installation
	6.8.1 alt_disk_install Command Syntax
	6.8.2 Using alt_disk_install
	6.8.3 Alternate Disk Installation Enhancements (4.3.1)
	6.8.4 Alternate Disk Installation Enhancements (4.3.2)

	6.9 Printer Support
	6.9.1 Remote Printing Robustness
	6.9.2 Remote Print Job Count
	6.9.3 Additional Printer Support
	6.9.4 Print Job Administration Enhancements (4.3.2)

	6.10 System Resource Controller Subsystem Enhancements (4.3.2)
	6.10.1 Recoverable SRC Daemon
	6.10.2 Thread-Safe Routines in libsrc

	6.11 TTY Remote Reboot (4.3.2)
	6.12 Network Install Manager Enhancements (4.3.2)
	6.12.1 Restrict Concurrent Group Operations
	6.12.2 Resource Lock Contention
	6.12.3 Administration Enhancements

	6.13 Paging Space Enhancements (4.3.2)
	6.13.1 Late and Early Paging Space Allocation
	6.13.2 Commands Affected by Late Paging

	6.14 Error Message Templates (4.3.2)
	6.15 Remote File Distribution Enhancements (4.3.2)
	6.16 Editor Enhancements (4.3.2)
	6.17 System Backup Usability Enhancements (4.3.2)
	6.18 Operating System Install Enhancement (4.3.2)
	6.19 New Diagnostic Service Aid (4.3.2)
	6.20 Performance Toolbox Agent Repacking (4.3.2)

	Chapter 7. Networking Enhancements
	7.1 Internet Protocol Version 6
	7.1.1 IPv6 Introduction
	7.1.2 IPv6 128-Bit Addressing
	7.1.3 Neighbor Discovery/Stateless Address Autoconfiguration
	7.1.4 Internet Control Message Protocol (ICMPv6)
	7.1.5 Tunneling over IPv4
	7.1.6 IP Security (IPSec)
	7.1.7 Resolver Support for /etc/hosts
	7.1.8 Commands and Applications Enabled for IPv6
	7.1.9 IPv6 Socket Library Support
	7.1.10 System Management Changes and Additions
	7.1.11 IPv6 and IPSec-Related RFCs Implementation

	7.2 IP Security Enhancements (4.3.1)
	7.3 TCP/IP Command Security Enhancement (4.3.1)
	7.4 Dynamic Host Configuration Protocol Enhancements (4.3.1)
	7.5 TFTP Block Size Option (4.3.1)
	7.6 IPv6 Routing Support (4.3.2)
	7.6.1 Gated Version 6.0
	7.6.2 IPv6 Routing Functions
	7.6.3 Commands Changed

	7.7 Enhancement for ifconfig Command (4.3.2)
	7.8 Latest BIND DNS (NameD) Support (4.3.2)
	7.9 Web Server Performance Improved (4.3.2)
	7.9.1 Reducing the Number of TCP Packages
	7.9.2 Commands Affected
	7.9.3 Reducing the Contention of INIFADDR and Route Lock

	7.10 TCP Checksum Offload on ATM 155 Mbps PCI Adapter (4.3.2)
	7.10.1 Limitations
	7.10.2 Command Changes

	7.11 Thread-Based Application Connection Enhancement (4.3.2)
	7.12 IBM 10/100 Mbps PCI Ethernet Adapter Device Driver (4.3.2)
	7.12.1 Packaging
	7.12.2 Configuration Parameters
	7.12.3 Trace
	7.12.4 Error Logging

	7.13 SDLC/BSC Support for 4-Port PCI Adapter (4.3.2)
	7.13.1 Packaging
	7.13.2 Trace
	7.13.3 Error Logging

	7.14 Open Network Computing (ONC+)
	7.14.1 CacheFS
	7.14.2 AutoFS (4.3.1)
	7.14.3 NFS Server Performance Enhancement (4.3.2)

	Chapter 8. Graphical Environment Enhancements
	8.1 X-Windows Architecture Review
	8.1.1 Client
	8.1.2 Protocol
	8.1.3 Server

	8.2 X-Windows System Release 6
	8.2.1 X11 Security
	8.2.2 X Image Extension
	8.2.3 Inter-Client Communications Conventions Manual
	8.2.4 ICE (Inter-Client Exchange)
	8.2.5 SM (Session Management)
	8.2.6 X Logical Font Description
	8.2.7 SYNC Extension
	8.2.8 XC-MISC Extension
	8.2.9 BIG-REQUESTS Extension
	8.2.10 Double Buffer Extension (DBE)
	8.2.11 X Keyboard Extension
	8.2.12 X Record Extension
	8.2.13 ICE X Rendezvous
	8.2.14 Print Extension
	8.2.15 Xlib Vertical Writing and User-Defined Characters
	8.2.16 Xlib Library
	8.2.17 Xt Toolkit
	8.2.18 Xaw Toolkit
	8.2.19 Header Files
	8.2.20 Fonts
	8.2.21 X Input Method
	8.2.22 Input Method Protocol
	8.2.23 New Functions
	8.2.24 X Output Method
	8.2.25 X11R6 NLS Database
	8.2.26 Command Line Interfaces

	8.3 Motif Version 2.1
	8.3.1 New Widgets
	8.3.2 Motif Changes in Behavior
	8.3.3 The Motif Extensibility Framework
	8.3.4 Miscellaneous Enhancements
	8.3.5 Compatibility with Motif 1.2 and 2.0

	8.4 X Virtual Frame Buffer (4.3.2)
	8.4.1 Direct Soft OpenGL
	8.4.2 CATweb Navigator and XVFB/DSO

	8.5 OpenGL Enhancements
	8.5.1 OpenGL 64-bit Indirect Rendering (4.3.1)
	8.5.2 OpenGL Performance Enhancements (4.3.2)
	8.5.3 OpenGL Version 1.2 and ZAPdb (4.3.2)
	8.5.4 New OpenGL Extensions (4.3.2)

	8.6 graPHIGS Enhancements (4.3.2)
	8.6.1 Performance Enhancements
	8.6.2 Euro Symbol Support

	Chapter 9. Online Documentation
	9.1 Documentation Search Service
	9.1.1 Installation of Documentation Search Service
	9.1.2 Configuring Documentation Search Service

	9.2 Installing Online Manuals
	9.3 Invoking Documentation Search Service
	9.4 Internationalization
	9.5 Man Page Changes
	9.6 SMIT Documentation

	Chapter 10. National Language Support
	10.1 National Language Character Handling
	10.2 Levels of NLS Enablement
	10.3 Unicode
	10.3.1 UTF-8
	10.3.2 ULS
	10.3.3 Universal Locale
	10.3.4 Installation and Packaging
	10.3.5 List of Supported Unicode Locales

	10.4 Java NLS Support
	10.5 Euro Symbol Support for AIX (4.3.2)
	10.5.1 Overview
	10.5.2 Local Definitions for the UTF-8 Code Set
	10.5.3 Keyboard Definitions
	10.5.4 Input Methods for the Euro Symbol
	10.5.5 Codeset Conversion Tables
	10.5.6 Euro SBCS Migration Option - IBM-1252 Locale
	10.5.7 Packaging
	10.5.8 Installation of Euro Symbol Support

	10.6 National Language Enhancements
	10.6.1 Byelorussian and Ukrainian Localization
	10.6.2 Thai Language Support
	10.6.3 Vietnamese Language Support
	10.6.4 Japanese Code Page 943 (AIX 4.3.2)
	10.6.5 Korean TrueType Font (AIX 4.3.2)

	10.7 Documentation Search Service: DBCS HTML Search Engine (4.3.2)
	10.7.1 Documentation Libraries
	10.7.2 Limitations
	10.7.3 Invoking Documentation Search Service
	10.7.4 Binary Compatibility

	Chapter 11. AIX Stand-Alone LDAP Directory Product
	11.1 Typical Configurations
	11.2 LDAP Protocol Support
	11.3 LDAP Client Toolkit
	11.4 Stand-Alone LDAP Directory Server
	11.4.1 DB2 Back End
	11.4.2 ODBC
	11.4.3 RDB Glue
	11.4.4 SLAPD
	11.4.5 Server Replication
	11.4.6 HTTP Access to Directory

	11.5 Security
	11.5.1 Authentication

	11.6 Installation
	11.6.1 Software Prerequisites

	11.7 Administrative Interface
	11.7.1 Web-Based Graphical User Interface
	11.7.2 Command Line Utilities
	11.7.3 Other Administrative Procedures

	11.8 LDAP-Related RFCs and Internet Drafts Implemented
	11.8.1 Internet Drafts
	11.8.2 LDAP-Related RFCs
	11.8.3 X.500-Related RFCs

	Appendix A. Special Notices
	Appendix B. Related Publications
	B.1 International Technical Support Organization Publications
	B.2 Redbooks on CD-ROMs
	B.3 Other Publications
	B.4 Internet Sites

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

