
International Technical Support Organization

Learning Practical TCP/IP for AIX V3.2/V4.1 Users:
Hints and Tips for Debugging and Tuning

May 1996

SG24-4381-00

International Technical Support Organization

Learning Practical TCP/IP for AIX V3.2/V4.1 Users:
Hints and Tips for Debugging and Tuning

May 1996

SG24-4381-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (May 1996)

This edition applies to the RISC System/6000 for use with the AIX Operating System Version 3.2 and 4.1.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This redbook is intended to provide practical knowledge and useful information
on the AIX V3.2 and V4.1 System TCP/IP networking function.

In a UNIX environment, Transmission Control Protocol/Internet Protocol (TCP/IP)
networking is almost a mandatory feature. Many functions and operations are
common between UNIX environments, but still there are unique,
machine-dependent considerations. This document helps the reader to
recognize and understand AIX- and RISC System/6000-unique features and
pitfalls.

This book was written for customers, IBM technical professionals, and third-party
professionals concerned with TCP/IP operation of a RISC System/6000. Some
knowledge of TCP/IP, AIX, and RISC System/6000 is assumed.

(363 pages)

 Copyright IBM Corp. 1996 iii

iv Practical TCP/IP for AIX V3.2/V4.1

Contents

Abstract . i i i

Special Notices . xv

Preface . xvii
Purpose of This Book . xvii
How This Document Is Organized . xvii
Related Publications . xviii
International Technical Support Organization Publications xix
How Customers Can Get Redbooks and Other ITSO Deliverables xix
How IBM Employees Can Get Redbooks and Other ITSO Deliverables xx

Acknowledgments . xxi

Chapter 1. TCP/IP Configuration for AIX V4.1 1
1.1 Configuration Overview . 1
1.2 SMIT and High-Level Command with ODM 2

1.2.1 Minimum Configuration . 3
1.2.2 Where the Configuration Information Is Stored 6
1.2.3 The Startup Script /etc/rc.net . 9
1.2.4 Network Device Configuration . 12
1.2.5 Network Interface Device Configuration 15
1.2.6 Adapter Device Configuration . 18

1.3 Standard UNIX Commands with ASCII Configuration Files 27
1.3.1 BSD Style Startup Configuration . 27
1.3.2 Customizing the Startup Script /etc/rc.bsdnet 28
1.3.3 Interface Configuration with ifconfig Command 29
1.3.4 Routing Configuration with Route Command 31

1.4 AIX Network-Related Boot Process . 32
1.4.1 Boot Process Overview . 33
1.4.2 How Is the Script /etc/rc.net Executed? 35

1.5 Configuration Hints and Tips . 36
1.5.1 Do Not Run mktcpip or smitty mktcpip Twice 36
1.5.2 IP Address Retrieval Priority . 37
1.5.3 Host Name for Multi-Homed Host . 38
1.5.4 If You Mess Up the ODM . 40
1.5.5 Two Tips for netstat . 44
1.5.6 SMIT Hints . 46
1.5.7 Ethernet Configuration . 46
1.5.8 Ethernet Transceiver Configuration . 51
1.5.9 ISA Bus Adapter Consideration . 52

1.6 Network Application Configuration . 53
1.6.1 The Internet Super Server inetd . 53
1.6.2 The inetd Subservers . 58
1.6.3 Other Network Subsystems (Servers) 63

1.7 The ODM . 65
1.7.1 The ODM Database . 65
1.7.2 Object Class, Object and Object Descriptor 66
1.7.3 Device and the ODM . 67
1.7.4 Predefined Device Information . 68
1.7.5 Customized Device Information . 70

 Copyright IBM Corp. 1996 v

1.7.6 Updating the ODM Information . 73

Chapter 2. Debugging TCP/IP Troubles . 77
2.1 When Something Is Wrong with the Network 77

2.1.1 Keep In Mind . 77
2.1.2 Bottom-Up Approach . 79

2.2 Debugging the Physical Layer . 81
2.2.1 How to Recognize a Physical Layer Problem 81
2.2.2 How to Identify a Failed Unit . 82
2.2.3 Check the Error Log with errpt Command 82
2.2.4 Ethernet Adapter Problem (EC Level) 83

2.3 Debugging Data Link Layer with ARP . 85
2.3.1 ARP Mechanism Basics . 85
2.3.2 ARP Cache Operation . 88
2.3.3 ARP Successful Examples . 91
2.3.4 ARP Failed Example . 92
2.3.5 Proxy ARP and RARP . 92
2.3.6 Duplicated IP Address . 94
2.3.7 ARP Pitfalls . 96
2.3.8 MAC Address Basics . 98
2.3.9 A MAC Address Pitfall . 101

2.4 Debugging IP Layer with ICMP (ping) . 102
2.4.1 ping Basics . 103
2.4.2 When ping Doesn′ t Work . 107
2.4.3 Error Message: host name NOT FOUND 108
2.4.4 Error Message: A Route to the Remote Host Is Not Available . . . 109
2.4.5 No Response, But ping with the IP Address Is OK 110
2.4.6 No Response, and ping Fails Even with the IP Address 111
2.4.7 ping for a While . 115
2.4.8 ping to the Broadcast Address . 117
2.4.9 ping to the Multicast Address . 118

2.5 Debugging IP Routing with traceroute . 119
2.5.1 traceroute Basics . 120
2.5.2 Successful Example . 125
2.5.3 Failed Examples . 125

2.6 Debugging TCP/IP Applications . 126
2.6.1 Checking the TCP Connection with TELNET 126
2.6.2 Watching ICMP for UDP Application 131
2.6.3 Monitoring TCP and UDP Connection with netstat -a 132
2.6.4 Socket Port Number Basics . 137

2.7 Getting TCP Socket-Level Trace . 139
2.7.1 Enabling TCP Socket Trace Function 139
2.7.2 Trace Result Example (TCP Closing Operation) 140

2.8 Debugging ONC/RPC Applications . 141
2.8.1 ONC/RPC Basics . 142
2.8.2 Checking Server Port Registration Status with rpcinfo 143
2.8.3 Finding an RPC Server with rpcinfo 144
2.8.4 Checking Server Status with rpcinfo 146
2.8.5 RPC Mechanism and Pitfalls . 147

2.9 Using syslog . 152
2.9.1 Configuration File /etc/syslog.conf . 152
2.9.2 Configuration Procedure . 154
2.9.3 inetd Example . 155
2.9.4 ftpd Example . 157

2.10 The SRC Basics . 160

vi Practical TCP/IP for AIX V3.2/V4.1

2.10.1 The SRC Overview . 160
2.10.2 The SRC Subsystems . 161
2.10.3 The SRC Subservers . 163
2.10.4 The SRC-Related Object Class in the ODM 165
2.10.5 The inetd-Related Object Class InetServ 170
2.10.6 Debugging inetd Example . 172
2.10.7 Other SRC Pitfalls . 175

2.11 IP Trace . 180
2.11.1 IP Trace Basics . 181
2.11.2 Getting the IP Trace with the iptrace and ipreport Command . . . 182
2.11.3 Some Hints and Tips . 183

Chapter 3. Getting Information for Performance Tuning 185
3.1 When Something Is Wrong... 185

3.1.1 How to Approach the Performance Problem 185
3.1.2 Check Packet Statistics . 187

3.2 Data Link Layer . 190
3.2.1 Token-Ring . 190
3.2.2 Ethernet . 193

3.3 Network Layer (IP) . 195
3.3.1 IP Packet Statistics . 195
3.3.2 no Command Options for Router Configuration and ICMP 199
3.3.3 Network Interface Statistics . 201
3.3.4 IP Packet Statistics by Route . 203

3.4 Network Layer (ICMP) . 205
3.4.1 Internet Control Message Protocol (ICMP) Basics 205
3.4.2 no Command Option for ICMP (Address Mask) 206
3.4.3 ICMP Message Statistics . 207
3.4.4 Modified Route by ICMP . 209

3.5 Transport Layer . 214
3.5.1 TCP Segment Statistics . 214
3.5.2 UDP Datagram Statistics . 219

3.6 Application (nfsstat Command for NFS) . 221
3.6.1 Client Statistics Example . 221
3.6.2 Server Statistics Example . 221

3.7 Error Log . 222
3.7.1 Error Log Example . 222
3.7.2 Some Hints and Tips . 224

Chapter 4. System Parameter Tuning . 227
4.1 mbuf Tuning . 227

4.1.1 mbuf Basics . 228
4.1.2 Getting the Current Status (V3.2 Only) 229
4.1.3 Getting the Current Status (V4.1) . 230
4.1.4 Problem Symptom (V3.2 Only) . 231
4.1.5 Configure mbuf with the no Command 232
4.1.6 Making the Update Permanent . 234

4.2 RDTO and Trailer Protocol (V3.2 Only) . 235
4.2.1 Receive Data Transfer Offset (RDTO) Basics 235
4.2.2 RDTO Configuration . 236
4.2.3 Trailer Encapsulation Protocol Basics 238
4.2.4 Trailer Protocol Configuration . 239

4.3 Transmit/Receive Queue . 239
4.3.1 Queue Basics . 239
4.3.2 Getting the Current Status . 240

Contents vii

4.3.3 Queue Size Configuration . 242

Chapter 5. TCP/IP Related Parameter Tuning 245
5.1 MTU and Fragmentation . 245

5.1.1 MTU Basics . 245
5.1.2 Fragmentation Mechanism . 246
5.1.3 MTU Configuration . 249
5.1.4 MTU Pitfalls . 252

5.2 TCP Maximum Segment Size . 256
5.2.1 MSS Basics . 256
5.2.2 The Route -mtu Command . 258
5.2.3 The no -o tcp_mssdflt Command . 260

5.3 IP Queue . 263
5.3.1 Getting IP Queue Status . 264
5.3.2 IP Queue Configuration . 264
5.3.3 IP Queue Pitfall . 265

5.4 TTL (Time-To-Live) . 265
5.4.1 IP Datagram TTL Basics . 265
5.4.2 TTL Configuration . 267

5.5 Checksum . 268
5.5.1 TCP Checksum . 268
5.5.2 UDP Checksum . 269
5.5.3 UDP Checksum for NFS . 270
5.5.4 IP Checksum . 271
5.5.5 Optional Address Check by RFC 1122 271

5.6 Socket Buffer . 272
5.6.1 Buffer Basics . 272
5.6.2 Socket Buffer Pitfalls for TCP . 273
5.6.3 Buffer Size Configuration . 274
5.6.4 Configuration Pitfalls . 278

5.7 TCP Window Size . 279
5.7.1 TCP Window Basics . 279
5.7.2 Window in Action (IP Trace Example) 280
5.7.3 Actual Implementation Complexity . 283
5.7.4 Getting Window Status . 286

5.8 TCP/IP and Timeout . 287
5.8.1 Timeout Basics . 287
5.8.2 TCP Timeout at Connection Establishment 289
5.8.3 TCP Retransmission Timeout (RTO) 293
5.8.4 TCP Keep-Alive Timeout . 301
5.8.5 TCP Persist Timeout . 309

5.9 New Option rfc1323 to Implement RFC1323 315
5.9.1 New Options Defined by RFC1323 . 315
5.9.2 Option Negotiation Examples . 316

Chapter 6. Performance Tuning Tools . 321
6.1 ping . 321

6.1.1 Convenient Options . 321
6.1.2 Considerations . 322

6.2 spray . 322
6.2.1 Configuration . 322
6.2.2 Convenient Options . 323
6.2.3 Considerations . 324

6.3 netpmon . 324
6.3.1 Operation . 325

viii Practical TCP/IP for AIX V3.2/V4.1

6.3.2 Report Example . 326
6.4 no and nfso . 333

6.4.1 no Command of V3.2 . 333
6.4.2 no Command of V4.1 . 334
6.4.3 nfso Command of V3.2 . 334
6.4.4 nfso Command of V4.1 . 335

Appendix A. Network Configuration Startup Scripts 337
A.1 /etc/rc.net . 337
A.2 Startup Script /etc/rc.bsdnet . 339
A.3 Startup Script /etc/rc.tcpip . 341
A.4 Startup Script /etc/rc.nfs . 343
A.5 Startup Script /etc/inittab . 346
A.6 Configuration File /etc/inetd.conf . 347

Appendix B. Well-Known Numbers . 349
B.1 Well-Known Protocols in /etc/protocols 349
B.2 Well-Known Ports in /etc/services . 350
B.3 ONC/RPC Program Numbers in /etc/rpc 362

Appendix C. Important Header Files . 365
C.1 /usr/include/netinet/tcp.h . 365
C.2 /usr/include/netinet/tcp_timer.h . 367
C.3 /usr/include/netinet/tcp_var.h . 369
C.4 /usr/include/sys/protosw.h . 374

Index . 381

Contents ix

x Practical TCP/IP for AIX V3.2/V4.1

Figures

 1. SMIT Available Network Interface Selection Panel 3
 2. SMIT TCP/IP Minimum Configuration Startup Panel (Token-Ring) 4
 3. SMIT Add Static Route Panel . 12
 4. SMIT Remove Static Route Panel . 13
 5. SMIT Available Network Interfaces Selection Panel 16
 6. SMIT Network Interface Configuration Panel (Token-Ring) 17
 7. Configuration Error Message Example (Micro Channel Bus) 19
 8. Configuration Error Message Example (ISA Bus) 19
 9. SMIT Available Network Interface Selection Panel 20
10. SMIT Network Interface Configuration Panel (Token-Ring) 20
11. SMIT Network Adapter Selection Panel . 24
12. SMIT Network Adapter Configuration Panel 24
13. BSD Style Startup Configuration Panel . 28
14. SMIT TCP/IP Configuration Panel (Ethernet) 47
15. SMIT Network Interface Configuration Panel (Ethernet) 49
16. SMIT Ethernet Adapter Configuration Panel 50
17. SMIT inetd Subsystem Configuration Menu Panel 55
18. SMIT inetd Subsystem Configuration Panel 56
19. SMIT inetd Subserver Configuration Menu Panel 62
20. SMIT inetd Subserver Selection Panel . 62
21. SMIT inetd Subserver Configuration Panel 63
22. SMIT TCP/IP Subsystem (Application) Selection Menu 64
23. SMIT TCP/IP Subsystem Menu (Routed) 64
24. SMIT TCP/IP Subsystem (Routed) Configuration Panel 65
25. SMIT Processes & Subsystems Selection Screen 180
26. SMIT Subsystems Menu Screen . 180
27. SMIT Trace Subsystem Screen . 180
28. SMIT Network Adapter Configuration Screen (Token-Ring) 238
29. SMIT Network Adapter Configuration Screen (Token-Ring) 244
30. SMIT MTU Configuration Screen (Token-Ring) 250

 Copyright IBM Corp. 1996 xi

xii Practical TCP/IP for AIX V3.2/V4.1

Tables

 1. Valid Selection for Your CABLE Type Field 48
 2. Available MTU Values (Bytes) . 252
 3. Current Available TCP Options . 317

 Copyright IBM Corp. 1996 xiii

xiv Practical TCP/IP for AIX V3.2/V4.1

Special Notices

This publication is intended to help customers, IBM systems engineers, and
third-party professionals to give hints and tips for TCP/IP troubleshooting and
performance tuning of RISC System/6000 and AIX Version 3.2.x/4.1.x.

The information in this publication is not intended as the specification of any
programming interfaces that are provided by AIX Version 3.2/4.1 on the RISC
System/6000. See the PUBLICATIONS section of the IBM Programming
Announcement for RISC System/6000 and AIX for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Microsoft, Windows, and the Windows 95 log are trademarks or
registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

AIX graPHIGS
HACMP/6000 IBM
InfoExplorer Micro Channel
NetView OS/2
RISC System/6000 RS/6000
XT 400

 Copyright IBM Corp. 1996 xv

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other trademarks are trademarks of their respective companies.

ADD Applications Design and Development,
Incorporated

Apollo Apollo Computer, Incorporated
BSD UNIX AT&T Bell Laboratories Incorporated
Cisco Cisco Systems, Incorporated
DCE The Open Software Foundation
DEC Digital Equipment Corporation
HP Hewlett-Packard Company
NCS Apollo Computer, Incorporated
Network Computing System Apollo Computer, Incorporated
Network File System Sun Microsystems, Incorporated
NFS Sun Microsystems Incorporated
ODM Optical Disk Mastering, Incorporated
ONC Sun Microsystems, Incorporated
OSF Open Software Foundation, Incorporated
Portmapper Sun Microsystems, Incorporated
POSIX Institute of Electrical and Electronic

Engineers
SCSI Security Control Systems, Incorporated
Sun Sun Microsystems, Incorporated
Sun Microsystems Sun Microsystems, Incorporated
X-Windows Massachusetts Institute of Technology
Xerox Xerox Corporation
3Com 3Com Corporation
486 Intel Corporation

xvi Practical TCP/IP for AIX V3.2/V4.1

Preface

This redbook is intended to provide hints and tips for TCP/IP troubleshooting and
performance tuning of the AIX Version 3.2/4.1 and RISC System/6000. This book
outlines our experiences of working with the AIX TCP/IP. This book covers
various subjects regarding TCP/IP and AIX and supplemental information which
may not be covered by AIX manuals. Current commercial books are available
for the same purpose, but they are written about UNIX and TCP/IP, and of
course, are also useful for AIX users. This book is more focused on AIX and
RISC System/6000 implementation and doesn′ t cover UNIX and TCP/IP basics.

This book is intended for system/network administrators, or planners, who use
TCP/IP, which helps AIX run successfully.

Versions of AIX in this book

Although this book is written mainly for AIX V4.1, many portions of this book
are valid for AIX V3.2. We added remarks where the difference between V3.2
and V4.1 is important.

Purpose of This Book
This book is for “bare hands” debugging and tuning. Today many sophisticated
devices are commercially available; not only hardware but also software have
been developed to contribute to solving network problems. We can troubleshoot
and debug many problems more easily and efficiently with these devices, but our
concern is that not all people or all sites have such tools or environments.

In this book, we intentionally avoid describing any tools or utilities not available
on the regular AIX operating system. We only refer to the AIX commands and
tools available on AIX V4.1, and you will soon learn what we can do with those
basic facilities. In order to use those tools efficiently, we explain not only “how”
but also “why.” We show you how you can do troubleshooting and performance
tuning with “bare hands.”

How This Document Is Organized
The document is organized as follows:

• Chapter 1, “TCP/IP Configuration for AIX V4.1”

This chapter provides TCP/IP configuration procedure and configuration hints
and tips. Where and how the configuration parameters are stored and their
relation to boot process are also explained. The objective of this chapter is
to give the readers knowledge and understanding in order to debug
configuration problems. ODM, an AIX-unique feature, is also explained.
After reading this chapter, readers will be able to fix configuration problems.

• Chapter 2, “Debugging TCP/IP Troubles”

This chapter provides practical procedures to debug TCP/IP connectivity
problems. Debugging procedures are described for each network layer,
which is based on the OSI seven-layer network model. The objective of this
chapter is to give you the knowledge and understanding on how to isolate a

 Copyright IBM Corp. 1996 xvii

problem. Some tools (commands) useful for debugging are explained in
detail, using trace examples. AIX′s unique feature, the System Resource
Controller (SRC), is also explained. After reading this chapter, you will be
able to identify what layer has a problem.

• Chapter 3, “Getting Information for Performance Tuning”

This chapter describes how to get necessary data for performance tuning.
When your system has a performance problem, the first step you should take
is to gather data and figure out the bottleneck or cause. Here we explain a
netstat command. This command has flags for each protocol and gives you
many statistic counters. We show you which counters are important and
what symptoms you have to check. Also, some original commands are
introduced. They provide supplemental statistic data that the netstat
command cannot give you. After reading this chapter, you will be able to
gather data and analyze it.

• Chapter 4, “System Parameter Tuning”

This chapter describes how to tune system parameters. In this chapter we
treat AIX system parameters that impact TCP/IP network performance. After
reading this chapter, you will be able to adjust some system parameters and
improve TCP/IP performance.

• Chapter 5, “TCP/IP Related Parameter Tuning”

This chapter explains how to tune TCP/IP parameters. In this chapter we
describe TCP/IP parameters in detail. Many IP trace examples are used.
One of the crucial TCP mechanisms, timeouts, are explained using IP trace
and socket-level trace examples. You will learn which parameters are for
which mechanism. After reading this chapter, you will be able to adjust
almost any TCP/IP parameter and improve TCP/IP performance.

• Chapter 6, “Performance Tuning Tools”

This chapter briefly describes some tools (commands) useful for
performance tuning.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• AIX Version 4.1 System Management Guide: Communications and Networks,
SC23-2526

• AIX Version 4.1 System Management Guide: Operating System and Devices,
SC23-2525

• AIX Version 4.1 System User′s Guide: Communications and Networks,
SC23-2545

• AIX Version 4.1 Communications Programming Concepts, SC23-2610

• AIX Version 3.2 and 4.1 Performance Tuning Guide, SC23-2365

• AIX Version 4.1 Files Reference, SC23-2512

• Token-Ring Network Architecture Reference, SC30-3374

xviii Practical TCP/IP for AIX V3.2/V4.1

International Technical Support Organization Publications
• TCP/IP Tutorial and Technical Overview, GG24-3376

A complete list of International Technical Support Organization publications
known as redbooks, with a brief description of each, may be found in
International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

How Customers Can Get Redbooks and Other ITSO Deliverables
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the
following ways:

• IBMLINK

Registered customers have access to PUBORDER to order hardcopy, to
REDPRINT to obtain BookManager BOOKs

• IBM Bookshop — send orders to:

usib6fpl@ibmmail.com (United States)
bookshop@dk.ibm.com (Outside United States)

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States only) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services

Send note to softwareshop@vnet.ibm.com

• Redbooks Home Page on the World Wide Web

http://www.redbooks.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

1-800-879-2755 Toll free, United States only
(45) 4810-1500 Long-distance charge to Denmark, answered in English
(45) 4810-1200 Long-distance charge to Denmark, answered in French
(45) 4810-1000 Long-distance charge to Denmark, answered in German
(45) 4810-1600 Long-distance charge to Denmark, answered in Italian
(45) 4810-1100 Long-distance charge to Denmark, answered in Spanish

IBM Publications
P.O. Box 9046
Boulder, CO 80301-9191
USA

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

1-800-445-9269 Toll-free, United States only
45-4814-2207 Long distance to Denmark

Preface xix

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

How IBM Employees Can Get Redbooks and Other ITSO Deliverables
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the
following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet

Type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET GG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET GG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks/redbooks.html

IBM employees may obtain LIST3820s of redbooks from this page.

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

• ITSO4USA category on INEWS

• IBM Bookshop — send orders to:

USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

xx Practical TCP/IP for AIX V3.2/V4.1

Acknowledgments

The author of this document is:

Akihisa Matoba
IBM Japan

Thanks to the following people for their invaluable advice and guidance provided
in the production of this document:

Ichiroh Takiguchi
IBM Japan

Masahiro Furutera
IBM Japan

Special thanks to the following people who continuously encouraged me to
complete this book.

Yoshimichi Kosuge
IBM Japan

Hisashi Shirai
IBM Japan

Hitoshi Denda
IBM Japan

 Copyright IBM Corp. 1996 xxi

xxii Practical TCP/IP for AIX V3.2/V4.1

Chapter 1. TCP/IP Configuration for AIX V4.1

This chapter provides TCP/IP configuration procedures for AIX V4.1 and presents
basic configuration methods and related knowledge. The purpose of this chapter
is not only to provide the basic configuration procedure knowledge ,but also the
necessary knowledge and understanding to debug or correct any configuration
anomalies.

It is assumed that you already have a basic knowledge and understanding of the
TCP/IP protocol suite and LAN (Ethernet and token-ring). You can refer to
System Management Guide: Communications and Networks, SC23-2526 to get
detailed information. If you know the usual UNIX network configuration
procedures, they will help you in understanding this chapter more thoroughly.

Differences Between AIX Version and Level

We have prepared this book using AIX Version 4.1.2. All the panel examples,
command outputs, and configuration files are taken using this version and
level. You may see different results on your system, but we believe there are
no serious differences and that almost all portions of this book are valid.

1.1 Configuration Overview
Basically, the following three configuration methods are provided with AIX V4.1:

• System Management Interface Tool (SMIT)

• High-level commands

• Standard UNIX commands

Remember, SMIT uses high-level commands internally, so they both have the
same effect (or just consider that SMIT provides an ease-of-use front end to the
high-level commands). Both SMIT and high-level command interact with the
object data manager (ODM). The ODM is a system configuration database that
keeps the configuration data in binary form; you cannot read or modify it without
SMIT or high-level commands. The SMIT, high-level commands, and ODM are
unique AIX features and advantages.

Note: From the end users′ point of view, there are three methods (as listed
above). In this book we treat both SMIT and high-level commands as
equivalents.

The other method is to use standard UNIX commands and ASCII configuration
files. This configuration option provides a compatible configuration procedure
with other UNIX systems and may help ease your administration tasks in
multi-vendor environments.

Traditional UNIX uses ASCII configuration files and startup scripts (usually called
rc files). The configuration parameters stored in these ASCII files are easy to
review, modify or update.

From the users′ point of view, both ODM and ASCII files have the same effects
and can run TCP/IP successfully without any noticeable differences. However,
from the network or system administrator′s point of view, they are not the same;

 Copyright IBM Corp. 1996 1

this is especially true when you have to debug configuration parameters. If you
don ′ t understand both procedures well enough, you may not be able to isolate
the cause of trouble.

A brief comparison of both of the methods for the minimum configuration is
listed below:

SMIT and High-Level Command with ODM

• The following configuration parameters are stored in ODM:

Network device inet0, and its attributes

Interface devices such as tr0 and en0, and their attributes

Adapter devices such as tok0 and ent0, and their attributes

• The following parameters are stored in ASCII files:

IP address and interface name in /etc/hosts

Domain Name System (DNS) server and domain name in
/etc/resolv.conf

Note: The use of DNS and this file are optional.

• The parameters are loaded from ODM when /etc/rc.net is executed.

Note: This file is usually executed during the boot procedure.

Standard UNIX Command with ASCII Files

• The following configuration parameters are written in the startup script
/etc/rc.bsdnet:

Network interface configuration with ifconfig command

Routing information with route command

Host name with hostname command

• The following parameters are stored in ASCII files:

IP address and interface name in /etc/hosts

DNS server and domain name in /etc/resolv.conf

Note: The use of DNS and this file are optional.

• The parameters are set when /etc/rc.bsdnet is executed.

Note: This file is usually executed during the boot procedure.

It is highly recommended that you do not mix both methods. Using both
methods concurrently may introduce confusion into your system.

1.2 SMIT and High-Level Command with ODM
Usually the configuration procedures are explained for each network function,
such as the interface configuration or static route configuration. This is what
commercial books usually do, but we have organized this chapter based on the
logical device structure in ODM. We believe that this organization helps you to
get a better understanding of the relationship between each parameter and the

2 Practical TCP/IP for AIX V3.2/V4.1

corresponding data in the ODM. For the TCP/IP configuration there are three
logical devices involved. They are as follows:

• Network device for internet protocol (TCP/IP)
• Network interface device
• Adapter device

We explain the configuration procedures of each logical device in this order.

Although you can configure TCP/IP by configuring each logical device one by
one, AIX offers a more convenient approach called minimum configuration. With
this option you need to run only one SMIT panel or only one high-level
command. We recommend that you use this option if you are going to configure
TCP/IP for the first time on your system. Then, if you get additional
requirements to update or expand the minimum configuration, customize each
logical device as you see fit. We explain the minimum configuration procedure
first.

1.2.1 Minimum Configuration
If your system has more than two network adapter cards and you need to
configure interfaces for all adapter cards, you have to repeat this procedure for
every interface you need to configure.

In this procedure, you are allowed to configure minimum parameters to run
TCP/IP. When you need to configure parameters that are not covered in this
procedure, you have to go to the corresponding logical device configuration
procedure later.

1.2.1.1 Using SMIT
 1. Issue the following command to invoke SMIT:

smitty mktcpip

 2. Select the appropriate interface that you need to configure, as shown in the
following figure:

� �
Available Network Interfaces

 Move cursor to desired item and press Enter.

en0 Standard Ethernet Network Interface
et0 IEEE 802.3 Ethernet Network Interface
tr0 Token Ring Network Interface

 F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do
/=Find n=Find Next� �

Figure 1. SMIT Available Network Interface Selection Panel

You should see the appropriate interfaces for each adapter card installed.
You have two options for an Ethernet adapter card: en0 and et0.

Note: It is possible to configure both en0 to et0 on the same Ethernet
adapter. In that configuration you have two distinct Ethernets (Version
2 and IEEE802.3) running on the same physical network (cable). You
may have to configure your system as a router or gateway to make it
possible to communicate between each interface.

Chapter 1. TCP/IP Configuration for AIX V4.1 3

If you don′ t see the necessary interface for the adapter card you installed,
reboot the system or issue the following command:

cfgmgr

If the command doesn′ t fix the problem, you have a system configuration
problem not a TCP/IP or networking problem. The configuration manager
cannot recognize the adapter. You may need to call an IBM CE to fix this
problem.

Important Notice for ISA Bus Adapter Users

If you are using an ISA bus adapter card, the cfgmgr cannot recognize
your card. You need to follow an explicit card configuration procedure
through SMIT or a high-level command after the card installation. Refer
to 1.5.9, “ISA Bus Adapter Consideration” on page 52.

 3. Enter the appropriate parameters in the following panel. Some sample
parameters have been placed in the fields in this example.

� �
Minimum Configuration & Startup

 To Delete existing configuration data, please use Further Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* HOSTNAME [zero.hakozaki.ibm.com]
* Internet ADDRESS (dotted decimal) [9.68.214.84]
Network MASK (dotted decimal) [255.255.255.128]

* Network INTERFACE tr0
NAMESERVER

Internet ADDRESS (dotted decimal) [9.68.192.11]
DOMAIN Name [hakozaki.ibm.com]

Default GATEWAY Address [9.68.214.1]
(dotted decimal or symbolic name)
RING Speed [4] +
START TCP/IP daemons Now no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 2. SMIT TCP/IP Min imum Configuration Startup Panel (Token-Ring)

HOSTNAME
Fill this entry with the interface name that you configure. If you are
using ONS name resolution, this should be the fully qualified host
name.

Internet ADDRESS
Fill this entry with the IP address of this interface.

Network MASK 50
If your network is using subnet mask, you have to fill this entry with
the mask value or you cannot communicate with other systems.

4 Practical TCP/IP for AIX V3.2/V4.1

NAMESERVER
If you are using DNS in your network, you may need to fill in these
entries. These are completely optional and you can configure DNS
later.

Default GATEWAY Address
If your network has a default gateway machine, you may want to
specify the default gateway. If you specify it, the static route is
created for the default gateway.

Note: This example shows the use of an IP address. An IP address
should be used. Using a host name may cause problems if
name resolution is incorrect or not functioning. But if you
have not written this host name in the /etc/hosts file, you
have to specify the IP address.

RING Speed
You can choose the token-ring speed. Of course, this value must
match the speed of the other stations.

START TCP/IP daemons Now
If you specify Yes, the startup script /etc/rc.tcpip is executed after
the interface configuration. This script starts several TCP/IP
application daemons.

Note: AIX V3.2 and V4.1 display only a START Now message here.

During this procedure, necessary information (devices and their attributes) is
stored in the ODM. Although this is only one SMIT panel, the adapter card
device, the network interface device, and the network device are configured at
once. Be aware that this configuration procedure only sets minimum attributes.
For other attributes of each device in the ODM, default attribute values are
applied automatically. You can check all the attributes stored in the ODM with
the high-level command.

In this method, not only the ODM but also some ASCII files are updated or
created.

1.2.1.2 Using High-Level Command
The following high-level commands provide the same functionality as does the
SMIT minimum configuration procedure.

 1. If you want to review the available interface devices on your system, you can
use the lsdev command, as follows:

lsdev -C -c if
lo0 Available Loopback Network Interface
et0 Defined IEEE 802.3 Ethernet Network Interface
tr0 Available Token Ring Network Interface
en0 Defined Standard Ethernet Network Interface
#

With this command, you can also see the device status. The following is a
brief explanation:

Available The device (interface) is recognized and defined in the ODM.
Also, it has already been configured.

Defined The device (interface) is recognized and defined in the ODM. In
other words, the customized object for this device was created in
the ODM, but the device (interface) has not yet been configured.

Chapter 1. TCP/IP Configuration for AIX V4.1 5

This means that the corresponding device driver has not yet been
loaded.

Stopped The device (interface) is recognized and defined in the ODM. It
has already been configured but has currently stopped running.

 2. Issue the following command to configure an interface. This example does
the same thing as the SMIT example, and you can easily understand which
flag means what. Of course, you should refer to the InfoExplorer or a
manual.

mktcpip -h zero.hakozaki.ibm.com -a 9.68.214.84 -m 255.255.255.128
-i tr0 \ >n 9.68.192.11 -d hakozaki.ibm.com -g 9.68.214.1 -r 4

 3. Now the command is completed as shown below:

mktcpip -h zero.hakozaki.ibm.com
-a 9.68.214.84 -m 255.255.255.128 -i tr0 \
> -n 9.68.192.11 -d hakozaki.ibm.com -g 9.68.214.1 -r 4
tr0
zero
inet0 changed
tok0 changed
Warning: Token Ring device busy. The ring speed change

(if any) will take effect on the next reboot.
tr0 changed
inet0 changed
#

During the SMIT configuration procedure, if you press the PF6 key for
F6=Command, you can see the corresponding high-level command. After the
SMIT procedure is complete, you can also check the smit.script file and see the
same command.

One advantage of using the high-level command may be that you can execute
the configuration from a shell script and make the process automatic.

1.2.2 Where the Configuration Information Is Stored
During the minimum configuration procedure, the configuration information is
stored in several places in the system. Some information is stored in the ODM
and some is stored in the ASCII files.

1.2.2.1 Network Interface Device Information in ODM
In the following, you can see what attributes have been configured for your
network interface. This is the case for the token-ring interface.

6 Practical TCP/IP for AIX V3.2/V4.1

lsattr -E -l tr0
mtu 1492 Maximum IP Packet Size for This Device True
mtu_4 1492 Maximum IP Packet Size for This Device True
mtu_16 1492 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr 9.68.214.84 Internet Address True
state up Current Interface Status True
arp on Address Resolution Protocol (ARP) True
allcast on Confine Broadcast to Local Token-Ring True
hwloop off Enable Hardware Loopback Mode True
netmask 255.255.255.128 Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
#

During minimum configuration, only the following attributes are set and stored.
Other attributes are set with the predefined template that provides default
attributes.

netaddr This is the network address (IP Address) for this interface.

netmask This is the subnet mask used for this interface.

state This is the status of the interface.

The right-most column shows whether or not the attribute is being used. The
term True means that the attribute is effective and applied. But for the
token-ring, the following attributes are not used in the current release although
they are displayed as true:

• mtu_4
• security
• authority
• mtu_16

1.2.2.2 Adapter Device Information in ODM
You can see (below) what attributes have been configured for your adapter card.
This is the case for the token-ring adapter.

lsattr -E -l tok0
intr_level 9 Bus interrupt level True
intr_priority 3 Interrupt priority False
bios_addr 0xcc000 Address of bus memory used for BIOS True
xmt_que_size 96 TRANSMIT queue size True
bus_io_addr 0xa20 Bus I/O address True
shared_mem_addr 0xd0000 Bus memory address True
shared_mem_leng 0x4000 Width of shared bus memory True
ring_speed 4 RING speed True
attn_mac no Receive ATTENTION MAC frame True
beacon_mac no Receive BEACON MAC frame True
use_alt_addr no Enable ALTERNATE TOKEN RING address True
alt_addr 0x40007e086670 ALTERNATE TOKEN RING address True
#

Note: This example was taken with the ISA bus token-ring adapter.

During minimum configuration, only the following attribute is set and stored.
Other attributes are set with the predefined template that provides the default
attributes.

Chapter 1. TCP/IP Configuration for AIX V4.1 7

ring_speed This is the token-ring′s speed.

1.2.2.3 Network Device Information in ODM
You can see (below) what attributes have been configured for your network.
Other devices, such as the interface or the adapter, can have multiple instances.
For example, if you configure the two Ethernet interfaces, en0 and en1, you will
get both en0 and en1 in ODM. You can configure only one network device called
inet0. There are no network devices called inet1.

lsattr -E -l inet0
hostname zero.hakozaki.ibm.com Host Name True
gateway Gateway True
route net,,0,9.68.214.1 Route True
bootup_option no Serial Optical Network Interface True
#

During minimum configuration, only the following attributes are set and stored.
Other attributes are set with the predefined template that provides the default
attributes.

hostname The host name (system name) should be stored in this attribute. But
if you run smitty mktcpip, you will see that the interface name is
stored here. If you run smitty mktcpip more than once, only the latest
interface name is stored. This may be a problem for a multi-homed
host.

route This is the default route for this system.

Note: The attribute route is used to store routing information, and it
is not restricted to store only the default route. In this
minimum configuration procedure, only the default route
(gateway) can be entered. Later, if you add other routing
information, you will see that the route has multiple entries in
inet0.

1.2.2.4 The Host Table /etc/hosts
This file must exist before the configuration procedure begins. AIX provides a
default template file for /etc/hosts. After the procedure described in the previous
section, the file should contain the following lines:

cat /etc/hosts
127.0.0.1 loopback localhost # loopback (lo0) name/address
9.68.214.84 zero.hakozaki.ibm.com
#

Note: The default file provided for the system contains many comments and
sample entries. In this example, we omitted those lines.

1.2.2.5 The DNS Resolver Configuration File /etc/resolv.conf
This file is only created if you specify the following entry fields of the SMIT panel:

NAMESERVER
Internet ADDRESS (dotted decimal) [9.68.214.84]
DOMAIN Name [hakozaki.ibm.com]

The existence of this file automatically invokes the DNS resolver routine when an
IP address of a host is needed. DNS configuration is completely optional, so
don ′ t specify NAMESERVER if you don′ t use DNS. This file should look as
follows:

8 Practical TCP/IP for AIX V3.2/V4.1

cat /etc/resolv.conf
nameserver 9.68.192.11
domain hakozaki.ibm.com
#

Note: When you don′ t need DNS, do not create /etc/resolv.conf even if the file is
left blank. If this file exists, the DNS resolver is automatically used and
tries to access the DNS server. If the file is blank, the resolver considers
that the server (named) is running on the same machine and tries to
access it.

1.2.3 The Startup Script /etc/rc.net
The configuration you made with the smitty mktcpip or mktcpip commands are
immediately available and are saved for the system reboot. When the system
boots, during the second boot phase, the configuration manager calls the startup
script /etc/rc.net. In this script, several high-level commands are executed and
network-related configuration parameters are loaded from the ODM to the AIX
kernel (memory). Then, the AIX kernel is set with those parameters and they
become effective. Refer to A.1, “/etc/rc.net” on page 337 for the complete list of
this script.

1.2.3.1 Where Network Interfaces Are Set at Boot
In this section, network interfaces are defined and configured in the script
/etc/rc.net as follows:

##
Part I - Configuration using the data in the ODM database:
Enable network interface(s):
##
This should be done before routes are defined.
For each network adapter that has already been configured, the
following commands will define, load and configure a corresponding
interface.
NOTE: If you are using a diskless/dataless machine, you may want to
disable the logging of messages to the LOGFILE by the cfgif
routine. On some diskless/dataless machines, the message
logging causes the client to hang on LED 581 when booting.

/usr/lib/methods/defif >>$LOGFILE 2>&1
/usr/lib/methods/cfgif $* >>$LOGFILE 2>&1
If a diskless or dataless machine uses this configuration method, you
may want to replace the previous line with the following.
#
/usr/lib/methods/cfgif $*

Notice that the configuration methods defif and cfgif are used. A brief
explanation of these commands is shown as follows:

defif This command creates the interface devices in the ODM for all the
recognized adapter devices and sets the default attributes for each
interface device with predefined attributes. Finally, it sets the status
flag to Defined.

cfgif This command retrieves the customized attributes from the ODM, sets
them for the created interface devices, invokes the ifconfig command
internally, and loads the interface instances in the kernel. Finally, it
sets the status flag to Available.

Chapter 1. TCP/IP Configuration for AIX V4.1 9

1.2.3.2 Where Static Routes Are Set at Boot
In this section, static routes are defined and configured in the script /etc/rc.net.

##
Configure the Internet protocol kernel extension (netinet):
##
The following commands will also set hostname, default gateway,
and static routes as found in the ODM database for the network.
/usr/lib/methods/definet >>$LOGFILE 2>&1
/usr/lib/methods/cfginet >>$LOGFILE 2>&1

Notice that the configuration methods definet and cfginet are used. A brief
explanation of these commands is shown below:

definet This command creates the network device inet0 in ODM and sets the
customized attributes for the network device with the attributes in the
ODM. Finally, it sets the status flag to Defined.

cfginet This command loads the necessary protocol module for inet0 (TCP/IP
module) and initializes it. Then, it sets the status flag to Available.
Next, it invokes the hostname command internally, sets the host name
from the attribute host name of inet0, invokes the route command
internally, and configures static routes from the attribute route of inet0.

These configuration methods are intended to run through the use of high-level
commands such as mkdev. It is not recommended that you execute these
commands from the command line.

If you have done the minimum configuration via the smitty mktcpip or mktcpip
command, the interface name is stored as an attribute host name of the device
inet0. Then, that attribute is loaded by the cfginet method.

What is the Configuration Method?

A method is a procedure to access a logical device. The logical device is a
system component which is recognized by the configuration manager; its
configuration information is stored in the ODM.

Methods need not be a command. Rather, they are intended to be used
internally by the configuration manager or other system functions. High-level
commands such as chdev and mkdev provide the front end to the methods.
It is highly recommended that you use a high-level command instead of
invoking a method directly at the command line.

1.2.3.3 Where hostid and uname Are Set at Boot
Also, there are the following commands in this script to set the hostid and
uname based on the host name loaded by cfginet:

##
Part III - Miscellaneous Commands.
##
Set the hostid and uname to hostname, where hostname has been
set via ODM in Part I, or directly in Part II.
(Note it is not required that hostname, hostid and uname all be
the same).
/usr/sbin/hostid hostname >>$LOGFILE 2>&1
/bin/uname -S hostname|sed ′ s/\..*$//′ >>$LOGFILE 2>&1

10 Practical TCP/IP for AIX V3.2/V4.1

If you have any shell scripts or programs which use the hostid or uname
command or gethostid(), there may be a problem. They may get an interface
name instead of a hostname if your system has more than one interface.

1.2.3.4 Where Standard UNIX Commands Should Be Written
In this script, standard UNIX configuration commands ifconfig and route can be
executed, although they are totally commented out. If you prefer to use standard
UNIX configuration procedures during boot up and don′ t want to use the ODM,
you can comment out AIX high-level commands and make these UNIX
commands effective.

##
Part II - Traditional Configuration.
##
An alternative method for bringing up all the default interfaces
is to specify explicitly which interfaces to configure using the
ifconfig command. Ifconfig requires the configuration information
be specified on the command line. Ifconfig will not update the
information kept in the ODM configuration database.
#
Valid network interfaces are:
lo=local loopback, en=standard ethernet, et=802.3 ethernet
sl=serial line IP, tr=802.5 token ring, xs=X.25
#
For example, en0 denotes standard Ethernet network interface, unit zero.
#
Below are examples of how you could bring up each interface using
ifconfig. Since you can specify either a host name or a dotted
decimal address to set the interface address, it is convenient to
set the host name at this point and use it for the address of
an interface, as shown below:
#
#/bin/hostname robo.austin.ibm.com >>$LOGFILE 2>&1
#
(Remember that if you have more than one interface,
you′ ll want to have a different IP address for each one.
Below, xx.xx.xx.xx stands for the internet address for the
given interface).
#
#/usr/sbin/ifconfig lo0 inet loopback up >>$LOGFILE 2>&1
#/usr/sbin/ifconfig en0 inet hostname up >>$LOGFILE 2>&1
#/usr/sbin/ifconfig et0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1
#/usr/sbin/ifconfig tr0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1
#/usr/sbin/ifconfig sl0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1
#/usr/sbin/ifconfig xs0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1
#
#
Now we set any static routes.
#
/usr/sbin/route add 0 gateway >>$LOGFILE 2>&1
/usr/sbin/route add 192.9.201.0 gateway >>$LOGFILE 2>&1

Chapter 1. TCP/IP Configuration for AIX V4.1 11

1.2.4 Network Device Configuration
Whenever you want to update or modify the minimum configuration, you can use
the procedure described here. You can choose an appropriate SMIT panel for
the device′s attributes that you need to change. Also, the AIX high-level
command is available.

You have a few things to do with the network device inet0; it may be that the
only attribute you need to add or delete is a static route. So, we only explain
how to add and delete a static route.

1.2.4.1 Using SMIT to Add a Static Route
 1. Issue the following command to invoke SMIT:

smitty mkroute

 2. Enter the appropriate parameters in the panel shown in Figure 3.

� �
Add a Static Route

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Destination TYPE net +

* DESTINATION Address []
(dotted decimal or symbolic name)

* GATEWAY Address []
(dotted decimal or symbolic name)

* METRIC (number of hops to destination gateway) [1] #
Network MASK (hexadecimal or dotted decimal) []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 3. SMIT Add Static Route Panel

Destination TYPE
This specifies whether the destination of the static route is a host
machine or an IP network.

DESTINATION Address
This specifies the IP address of the destination. If the destination is
a network, only the network portion of the IP address is needed.
Although you can use a symbolic name if it is defined in /etc/hosts
for a host system and in /etc/networks for a network, it is not
recommended.

GATEWAY Address
This specifies the gateway machine′s IP address. As previously
described, you can use a symbolic name if it is defined in
/etc/hosts, but it is not recommended.

METRIC
Metric is a unit of distance from your machine to the destination. It
usually means the number of gateways you have to go through.
But, for a static route, the metric doesn′ t have much meaning. The
only thing you should care about is that the metric is greater than or
equal to 0 or 1.

12 Practical TCP/IP for AIX V3.2/V4.1

Network MASK
From AIX V4.1, you can specify the subnet mask for each route. But
with the current routing scheme, all routes attached to the same
network interface must share the same network mask. The only
exception is the default route, which doesn′ t have a network mask.
You don′ t need to specify anything here.

Note: Metric is also referred to as the hop count. We use both terms in this
book.

METRIC Field Mystery

Actually, some AIX Versions don′ t have the metric field at this panel, but this
should not be a problem. AIX Version 3.1 had an entry field for METRIC in
the SMIT panel. When AIX Version 3.2 was introduced, this entry field for
METRIC had been removed. AIX Version 3.2.5 contains the entry field used
for METRIC. It must have been reinstalled in a release between Version 3.2.0
and 3.2.5. We are not sure of the reason for this stray METRIC field, but
again, this has never been a problem.

1.2.4.2 Using SMIT to Remove a Static Route
 1. Issue the following command to invoke SMIT:

smitty rmroute

 2. Enter the appropriate parameters in the following panel:

� �
Remove Static Route

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Destination TYPE net +

* DESTINATION Address []
(dotted decimal or symbolic name)

* GATEWAY Address []
(dotted decimal or symbolic name)
Network MASK (dotted decimal) []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 4. SMIT Remove Static Route Panel

1.2.4.3 Using High-Level Command to Add a Static Route
You can do the same thing with a high-level command as you do with SMIT. You
can change any device attribute with the chdev command. This command, as
well as SMIT, updates the parameter in both the kernel (memory) and the ODM.

If you want to add or remove a static route, you have to work with the attribute
route of the interface device inet0.

In this example, the destination is the network and the parameters are assumed
to be as shown below:

Destination is the network with the IP address 9.170.7.

Chapter 1. TCP/IP Configuration for AIX V4.1 13

Gateway′s IP address is 9.68.214.82.
The hop count is 2.

Note: There are no differences for the metric greater than or equal to 1.
Although we use 2, 1 is enough.

Execute the chdev command with the previous attribute. See the following
example:

chdev -l inet0 -a route=net,-hopcount,2,9.170.7,9.68.214.82
inet0 changed
#

You can see the ODM with the following command. Although the chdev
command updates both the ODM and the routing table in the kernel (memory),
the lsattr command shows only the data in the ODM. You may want to view the
kernel routing table using the netstat -r command.

lsattr -E -l inet0
hostname zero Host Name True
gateway Gateway True
route net,,0,9.68.214.1 Route True
route net,-hopcount,2,9.170.7,9.68.214.82
bootup_option no Serial Optical Network Interface True
#

In this example, the route net,,0,9.170.2.45 is the default route configured when
smitty mktcpip was executed. Notice the hop count is 0 and -hopcount is not
stored with the default route.

An interesting pitfall is that route is a multivalued attribute and you cannot
display routing information only. If you try to do this, you get the following error
message:

lsattr -E -l inet0 -a route
lsattr: 0514-530 Cannot display information about ″route″ because

this type of attribute cannot be displayed.
#

1.2.4.4 Using High-Level Command to Remove a Static Route
Enter the following command to remove a static route:

#chdev -l inet0 -a delroute=net,-hopcount,2,9.170.7,9.68.214.82
inet0 changed
#

You can see the ODM with the following command. Of course, the kernel routing
table should have been updated, although the lsattr command doesn′ t confirm
this.

lsattr -E -l inet0
hostname zero Host Name True
gateway Gateway True
route net,,0,9.68.214.1 Route True
bootup_option no Serial Optical Network Interface True
#

14 Practical TCP/IP for AIX V3.2/V4.1

1.2.4.5 How to Know Whether or Not Routes Are Effective
As you already know, the lsattr command involves only the parameters in the
ODM. You can also update parameters in the kernel with the chdev command.
You should use the netstat -r command to check the kernel routing table.

You can see current routings in the kernel as shown in the following example. In
this example, the default route is set. Pay attention to the flags for a real
gateway host and network interface. The gateway 9.68.214.1 newton has the flag
UG which means that the static route through 9.68.214.1 is currently active and
9.68.214.1 is really a remote host. The gateway zero.haozaki.ibm.com is the
name of the network interface and has the flag U. This means that the
destination 9.68.214 is the local network to which this interface is directly
attached.

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
default 9.68.214.1 UG 0 256 tr0
9.68.214 zero.hakozaki.ibm. U 2 327 tr0
localhost localhost UH 1 0 lo0
#

If you add a static route with the following command:

chdev -l inet0 -a route=net,-hopcount,2,9.170.7,9.68.214.82
inet0 changed
#

then you will see the following with the netstat -r command. In this example, the
gateway host 9.68.214.82 is stored in /etc/hosts, and the IP address is
automatically translated to the host name mat.

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
default 9.68.214.1 UG 1 281 tr0
9.68.214 zero.hakozaki.ibm. U 2 327 tr0
9.170.7 mat.hakozaki.ibm.c UG 0 0 tr0
localhost localhost UH 1 0 lo0
#

1.2.5 Network Interface Device Configuration
Whenever you want to update or modify the minimum configuration, you can use
the procedure described here. You can choose an appropriate SMIT panel for
the device′s attributes that you need to change. Also, the AIX high-level
command is available.

1.2.5.1 Using SMIT
Although several parameters or attributes of an interface device can be
changed, once you get TCP/IP running successfully, you may not need to change
any of it. In our experience, the interface′s status is the only parameter that
needed to be changed from up to down or vice versa. This is necessary when
you change an adapter configuration.

 1. Issue the following command to invoke SMIT:

smitty chinet

 2. Select a necessary interface that you want to change in the following panel:

Chapter 1. TCP/IP Configuration for AIX V4.1 15

� �
Available Network Interfaces

 Move cursor to desired item and press Enter.

en0 Standard Ethernet Network Interface
et0 IEEE 802.3 Ethernet Network Interface
tr0 Token Ring Network Interface

 F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do
/=Find n=Find Next� �

Figure 5. SMIT Available Network Interfaces Selection Panel

You should see the appropriate interfaces for each adapter card installed.
You have two options for an Ethernet adapter card (en0 and et0).

Note: It is possible to configure both en0 and et0 on the same Ethernet
adapter. In that configuration, you have two distinct Ethernets
(Version 2 and IEEE802.3) running on the same physical network
(cable). You may have to configure your system as a router or
gateway to make it possible to communicate between each interface.

If you don′ t see the necessary interface for the adapter card you installed,
issue the following command or reboot the system:

cfgmgr

If the command doesn′ t fix the problem, you have a system configuration
problem (not a TCP/IP or networking problem). The configuration manager
cannot recognize the adapter. You may need to call an IBM CE to fix this
problem.

Important Notice for ISA Bus Adapter Users

If you are using an ISA bus adapter card, cfgmgr cannot recognize your
card. You need to follow an explicit card configuration procedure through
SMIT or high-level command after the card installation. Refer to 1.5.9,
“ISA Bus Adapter Consideration” on page 52.

 3. Enter the necessary attributes in the following panel:

16 Practical TCP/IP for AIX V3.2/V4.1

� �
Change / Show a Token-Ring Network Interface

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Network Interface Name tr0
INTERNET ADDRESS (dotted decimal) [9.68.214.84]
Network MASK (hexadecimal or dotted decimal) [255.255.255.128]
Current STATE up
Use Address Resolution Protocol (ARP)? yes
Enable Hardware LOOPBACK Mode? no
BROADCAST ADDRESS (dotted decimal) []
Confine BROADCAST to LOCAL Token-Ring? no

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 6. SMIT Network Interface Configuration Panel (Token-Ring)

This panel completely corresponds to the data in the ODM, which is
displayed with the following command:

lsattr -E -l tr0

The following are brief explanations for each field given:

INTERNET ADDRESS
Specify whether you want to change the IP address of this interface.

Note: This panel only updates the IP address in the ODM and in the
kernel. The host table /etc/hosts is not updated. You should
change the host table manually to maintain the consistency.

Network MASK
Specify this if you want to change the subnet mask of this interface.

Current STATE
This is the interface′s current state that is retrieved from the ODM.
There are three states: up, down and detach. Although it is
displayed as current STATE, it may not be accurate because the
state can be changed with the ifconfig command without changing
the ODM. This should be the STATE just after the system boot.

Note: AIX Version 3.1 doesn′ t have an option to make it to the
detach state.

Use Address Resolution Protocol (ARP)
Today, almost all systems use Address Resolution Protocol (ARP) to
get the destination system′s Media Access Control (MAC) address.
If you set this field to no, you must manually provide the IP address
to MAC address mapping information to the kernel. Usually it is
done with the arp command. We don′ t see any reasons to set this
field to no except for debug or test purposes.

Enable Hardware LOOPBACK Mode
This parameter is used to enable or disable the hardware loopback
mode. It is usually set to no (the default).

BROADCAST ADDRESS
The default sets all bits of the host portion of the destination IP
address to 1s. The 4.2 BSD has the broadcast address of all 0s. To

Chapter 1. TCP/IP Configuration for AIX V4.1 17

communicate with 4.2 BSD or an equivalent system, you may need
to set this field. Changing the broadcast address is a very bad
practice. All systems must agree with the broadcast address, and
the best way is to abandon such an old system.

Confine BROADCAST to LOCAL Token-Ring
If you set this parameter to Yes, no broadcast packets can get out
from the local ring through a bridge. This will reduce the entire
network traffic but also limit your communication capability. Notice
that this limitation is applied to a data link layer (MAC Layer)
broadcast (and indirectly limits IP broadcast). If you set this to Yes,
the first 3 bits (called broadcast bits) of the token-ring routing
control field of a packet header are set to 0. Possibly the most
affected function is ARP, and as a result, the IP function may also be
limited.

1.2.5.2 Using High-Level Command
If you want to change the IP address of the interface, use the following steps:

 1. If you want to review the list of interfaces on your system, enter the following
command:

lsdev -C -c if
lo0 Available Loopback Network Interface
et0 Defined IEEE 802.3 Ethernet Network Interface
tr0 Available Token Ring Network Interface
en0 Defined Standard Ethernet Network Interface
#

With this command you can also see the device status.

 2. Issue the chdev command to change an attribute, as follows:

chdev -l tr0 -a netaddr=9.170.10.21
tr0 changed
#

Note: This option only updates the kernel parameter and ODM. If you
change the IP address as previously shown, you have to update the
host table /etc/hosts manually.

 3. You can use the lsattr command to review the updated value. Do not forget
that you are looking for the data in the ODM. The kernel may be currently
recognizing other values. Use ifconfig to review the values in the kernel.

lsattr -E -l tr0 -a netaddr
netaddr 9.170.10.21 Internet Address True
#

It′s quicker than SMIT, but you have to know the exact name of the device and
the attribute that you want to change.

1.2.6 Adapter Device Configuration
Some adapter device attributes have influences on the network performance.
Occasionally you may have to change some of them. There is one thing you
should know before you change the adapter configuration: first detach the
interface or reboot the system.

18 Practical TCP/IP for AIX V3.2/V4.1

1.2.6.1 Detaching the Interface or Rebooting the System
Sometimes you may end up with the following error messages when you try to
change an adapter configuration. This is the result of a smitty chgtok execution.

� �
COMMAND STATUS

Command: failed stdout: no stderr: yes

Before command completion, additional instructions may appear below.

Method error (/usr/lib/methods/chgtok):
0514-062 Cannot perform the requested function because the

specified device is busy.

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

Figure 7. Configuration Error Message Example (Micro Channel Bus)

� �
COMMAND STATUS

Command: failed stdout: no stderr: yes

Before command completion, additional instructions may appear below.

Method error (/usr/lib/methods/chgisatok):
0514-018 The values specified for the following attributes

are not valid:
 xmt_que_size TRANSMIT queue size

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit� �

Figure 8. Configuration Error Message Example (ISA Bus)

Because a network interface device is built on the top of the adapter device,
whenever the network interface is active, you cannot change or update any
attribute of the adapter device. In this case, first you have to detach the
interface, and after updating the adapter configuration, you have to up the
interface again. An alternative is to update the adapter configuration in the ODM
only and reboot the system. This is the easiest procedure to do to avoid the
error. You should understand that there are three statuses for an interface
device, as follows:

up The network interface is currently active. The interface can receive and
send packets, and you cannot change the attribute.

down The network interface is currently stopped. The interface cannot
receive and send packets. In this status, the device driver is
recognizing this interface and keeping attribute values. In order to
prevent inconsistency, you cannot change the attribute.

detach The network interface is currently stopped. The interface cannot
receive and send packets. In this status, the device driver no longer
recognizes this interface, and you can change the attribute.

Chapter 1. TCP/IP Configuration for AIX V4.1 19

We show three ways to detach and up a network interface. These procedures
aren ′ t substantially different from each other. But it′s a good idea to know more
than one alternative so that you have a better understanding of adapter
configuration.

1.2.6.2 Using SMIT to Detach and Up an Interface
 1. Issue the following command to get the SMIT panel:

smitty chinet

 2. Choose the appropriate interface in the following panel:

� �
Available Network Interfaces

 Move cursor to desired item and press Enter.

en0 Standard Ethernet Network Interface
et0 IEEE 802.3 Ethernet Network Interface
tr0 Token Ring Network Interface

 F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do
/=Find n=Find Next� �

Figure 9. SMIT Available Network Interface Selection Panel

 3. You wil l get the following panel.

� �
Change / Show a Token-Ring Network Interface

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Network Interface Name tr0
INTERNET ADDRESS (dotted decimal) [9.170.3.21]
Network MASK (hexadecimal or dotted decimal) [255.255.255.0]
Current STATE up
Use Address Resolution Protocol (ARP)? yes
Enable Hardware LOOPBACK Mode? no
BROADCAST ADDRESS (dotted decimal) []
Confine BROADCAST to LOCAL Token-Ring? no

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 10. SMIT Network Interface Configuration Panel (Token-Ring)

 4. Specify the following and press Enter:

Current STATE detach

Note: AIX V3.1 doesn′ t have the selection option detach in this panel, and so
you have to use the ifconfig or chdev command.

 5. Then, you can change the adapter device′s attribute. Refer to 1.2.6.7, “Using
SMIT to Change the Adapter Device” on page 24 or 1.2.6.8, “Using
High-Level Command to Change Adapter Device” on page 26 for details.

 6. After you change the adapter device, you have to come back to the previous
panel and activate the interface by specifying the following:

20 Practical TCP/IP for AIX V3.2/V4.1

Current STATE up

 7. Then, you have to reconfigure all routing information that was attached to the
detached interface. Refer to 1.2.6.6, “A Big Pitfall: Routes Were Lost” on
page 23 for details.

During this procedure the configuration data in the ODM and kernel are always
consistent with each other because SMIT changes both of them.

1.2.6.3 Using High-Level Command to Detach and Up an Interface
 1. If you want to review the list of interfaces on your system, do the following:

lsdev -C -c if
lo0 Available Loopback Network Interface
et0 Defined IEEE 802.3 Ethernet Network Interface
tr0 Available Token-Ring Network Interface
en0 Defined Standard Ethernet Network Interface
#

With this command you can also see the device status. You already know
the meanings of available and defined.

 2. Change the interface state to detach with the chdev command.

chdev -l tr0 -a state=detach
tr0 changed
#

 3. You can review it to see whether the change was made to the ODM. If you
want to confirm the interface state in the kernel, use the ifconfig or netstat
command.

lsattr -E -l tr0 -a state
state detach Current Interface Status True
#

 4. You can change the adapter device′s attribute if needed. Refer to 1.2.6.7,
“Using SMIT to Change the Adapter Device” on page 24 or 1.2.6.8, “Using
High-Level Command to Change Adapter Device” on page 26 for details.

 5. After you change the adapter device, you have to issue the chdev command
again to activate the interface.

chdev -l tr0 -a state=up
tr0 changed
#

 6. You can review it to see if the change was made to the ODM. If you want to
confirm the interface state in the kernel, use the ifconfig or netstat command.

lsattr -E -l tr0 -a state
state up Current Interface Status True
#

 7. Then, you have to reconfigure all routing information that was attached to the
detached interface. Refer to 1.2.6.6, “A Big Pitfall: Routes Were Lost” on
page 23 for details.

Chapter 1. TCP/IP Configuration for AIX V4.1 21

1.2.6.4 Using the ifconfig Command to Detach and Up an Interface
The ifconfig is a standard UNIX command. In this procedure, you will use both
the standard UNIX command and the AIX high-level command simultaneously.
We don′ t generally recommend this way, but you can avoid problems by careful
operation.

 1. Issue the following ifconfig command to detach the interface:

ifconfig tr0 detach

With this method, be aware that you are causing an inconsistency between
the data in the ODM and the kernel. After you complete the previous
command, the interface is actually in the detach status. But if you check to
see the same information in the ODM with the lsattr command, you will get a
different answer.

lsattr -E -l tr0 -a state
state up Current Interface Status True
#

If you want to confirm the interface state in the kernel, use either the ifconfig
or netstat command. You don′ t need to worry about the inconsistency that
exists during the updating procedure. Also, if you reboot the system, the
configuration manager will see the data in the ODM and automatically up the
interface.

 2. You can change the adapter device′s attribute if needed. Refer to 1.2.6.7,
“Using SMIT to Change the Adapter Device” on page 24 or 1.2.6.8, “Using
High-Level Command to Change Adapter Device” on page 26 for details.

 3. After you change the adapter device, you have to activate the interface with
the following command:

ifconfig tr0 up

 4. Then, you have to reconfigure all the routing information that was attached to
the detached interface. Refer to 1.2.6.6, “A Big Pitfall: Routes Were Lost” on
page 23 for details.

1.2.6.5 How to Know Whether an Interface Is Really Up
You can change or see the status in the ODM with chdev and SMIT. The lsattr
command only shows the data in the ODM, and you cannot see the status kept in
the kernel (memory). Be aware that the value in the kernel is currently effective.

An alternative is the ifconfig command. For the interface in the up state, it is
displayed as follows:

ifconfig tr0
tr0: flags=80a0043<UP,BROADCAST,RUNNING,ALLCAST,MULTICAST>

inet 9.68.214.84 netmask 0xffffff80 broadcast 9.68.214.127
#

If the interface is in the down state, it is not explicitly displayed as in the
following example. Of course, the flag UP is not shown. The flag RUNNING
means that the resource, such as a buffer, is assigned to the interface, but it
doesn′ t mean it is usable.

ifconfig tr0
tr0: flags=80a0042<BROADCAST,RUNNING,ALLCAST,MULTICAST>

inet 9.68.214.84 netmask 0xffffff80 broadcast 9.68.214.127
#

22 Practical TCP/IP for AIX V3.2/V4.1

Use the following UNIX commands to see the kernel value. With the netstat
command, an interface that is in the down state is shown with an *. If an
interface is in the detach state, it is not displayed.

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 186 0 186 0 0
lo0 16896 127 loopback 186 0 186 0 0
tr0* 1492 <Link>40.0.7e.8.66.70 0 0 0 0 0
tr0* 1492 9.68.214 zero 0 0 0 0 0
#

If the interface is in the detach state, it is displayed as follows. The flag UP and
RUNNING are not shown.

ifconfig tr0
tr0: flags=80a0002<BROADCAST,ALLCAST,MULTICAST>

inet 9.68.214.84 netmask 0xffffff80 broadcast 9.68.214.127
#

Also, the detached interface cannot be displayed with the netstat -i command:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 186 0 186 0 0
lo0 16896 127 loopback 186 0 186 0 0
#

1.2.6.6 A Big Pitfall: Routes Were Lost
Be careful about playing with interfaces. If you detach an interface, all the
routes attached to the interface will be lost. Even if you up the interface again,
the lost routes are not recovered. If you have a problem such as lost
communication capability, check the routing information as follows:

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
loopback loopback UH 1 0 lo0
#

If you lost routing information, one of the easiest recovery procedures is to issue
the following:

/usr/lib/methods/cfgif
/usr/lib/methods/cfginet
zero
9.68.214.1 net 0: gateway 9.68.214.1
9.68.214.82 net 9.170.7: gateway 9.68.214.82
#

Of course, running SMIT or a high-level command (chdev) is a better alternative
to adding routes. You can confirm that the routes are added safely.

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
default 9.68.214.1 UG 0 0 tr0
9.68.214 zero.hakozaki.ibm. U 1 0 tr0
9.170.7 mat.hakozaki.ibm.c UG 0 0 tr0
localhost localhost UH 1 0 lo0
#

Chapter 1. TCP/IP Configuration for AIX V4.1 23

1.2.6.7 Using SMIT to Change the Adapter Device
 1. Get the interface detach state. Use any of the procedures already explained.

 2. Issue the following command to invoke SMIT. This is for the token-ring
adapter.

smitty chgtok

In the case of an Ethernet adapter, issue the following command:

smitty chgenet

If you don′ t know the SMIT fast path name, issue the following command and
choose your adapter type from the selection menu:

smitty commodev

Then, choose the appropriate adapter.

� �
Token Ring Adapter

 Move cursor to desired item and press Enter.

tok0 Available 00-01 Token-Ring High-Performance Adapter (8fc8)

 F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do
/=Find n=Find Next� �

Figure 11. SMIT Network Adapter Selection Panel

 3. Enter the necessary parameters that you want to change.

� �
Change / Show Characteristics of a Token Ring Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Token Ring Adapter tok0
Description Token-Ring High-Perfor>
Status Available
Location 00-01
TRANSMIT queue size [30] +#
RING speed 4 +
Receive ATTENTION MAC frame no +
Receive BEACON MAC frame no +
Enable ALTERNATE TOKEN RING address no +
ALTERNATE TOKEN RING address [0x] +
RECEIVE queue size [30] +#
STATUS queue size [10] +#
Apply change to DATABASE only no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 12. SMIT Network Adapter Configuration Panel

This panel corresponds to the data in the ODM, which is displayed with the
following command:

lsattr -E -l tok0

24 Practical TCP/IP for AIX V3.2/V4.1

The following are brief explanations for each field:

TRANSMIT queue size
This parameter affects network performance. This parameter
defines the queue size between the adapter card and the network
layer. This queue is used for transmitting data.

RECEIVE queue size
This parameter affects network performance. This parameter
defines the queue size between the adapter card and the network
layer. This queue is used for receiving data.

STATUS queue size
This parameter may affect network performance. This parameter
defines the queue size to store the status of the network protocol
and adapter.

RING speed
You can choose 4 Mbps or 16 Mbps. If you set incorrect values, the
ring will be filled with beacon frames and it will impact all the other
stations. You will also see terrible performance degradation.

Receive ATTENTION MAC frame
Setting this attribute to the yes value places the attention MAC
frames, received by the adapter, in the receive ring queue for the
application to read. If you specify the no value, the attention MAC
frames are ignored. The default value is no.

Receive BEACON MAC frame
Setting this attribute to the yes value places the beacon MAC
frames, received by the adapter, in the receive ring queue for the
application to read. If you specify the no value, the beacon MAC
frames are ignored. The default value is no.

Enable ALTERNATE TOKEN-RING address
You must specify this if you use the alternate MAC address for this
adapter. If yes, the hard-coded, burned-in MAC address is not used.

ALTERNATE TOKEN-RING address
You must specify the alternate MAC address. This MAC address
must be managed locally, and you must confirm that there are no
duplicated addresses. If you are running SNA on the same adapter,
you may need to use this function.

Apply change to DATABASE only
Specify whether the input parameters on this panel should be
applied to only the ODM.

If you press the Enter key and get the following error, the corresponding
interface is not really in the detach state:

� �
Method error (/etc/methods/chgtok):

0514-062 Cannot perform the requested function because the
specified device is busy.� �

� �
Method error (/usr/lib/methods/chgisatok):

0514-018 The values specified for the following attributes
are not valid:

 xmt_que_size TRANSMIT queue size� �

Chapter 1. TCP/IP Configuration for AIX V4.1 25

The easiest way to avoid this error is to set the needed attribute values in
the previous panel and to set the following attribute:

Apply change to DATABASE only yes +

This procedure updates the data in the ODM and doesn′ t touch any
parameter in the kernel. Therefore, the change cannot be effective
immediately, and you need to reboot the system to apply the update. During
the shutdown and reboot process, once the interface is put in the detach
status, the updated attributes are loaded from the ODM before the interface
activates again. In this procedure, by using reboot, you don′ t need to detach
the interface first.

 4. Get the interface up again. Now the changes are effective and the network
function can be used.

1.2.6.8 Using High-Level Command to Change Adapter Device
The commands that you have to use may be the following if you change the
token-ring speed from 4 MB to 16 MB. With this procedure, you don′ t have to
reboot the system.

 1. If you need to review the available adapters on your system, issue the
following command. This example is for token-ring adapters.

lsdev -C -c adapter -t tokenring
tok0 Available 00-03 Token-Ring High-Performance Adapter
tok1 Available 00-04 Token-Ring High-Performance Adapter
#

For Ethernet adapters, specify -t ethernet. If you are using an integrated
Ethernet adapter, you need to use the following lsparent command to list all
the Ethernet adapters.

lsparent -C -k ent
ent0 Available 00-00-0E Integrated Ethernet Adapter
#

 2. Change the interface state to detach. Use any of the procedures already
explained.

 3. Change the adapter attribute value ring_speed as follows:

chdev -l tok0 -a ring_speed=16
tok0 changed
#

You can review to see whether the change was made to the ODM by issuing
the following:

lsattr -E -l tok0 -a ring_speed
ring_speed 16 RING speed True
#

 4. Change the interface state to be up again. Use any of the procedures
already explained.

In the above example, although the chdev command can change both the ODM
and the kernel, the lsattr command only shows the data in the ODM. If you want
to confirm the interface state in the kernel, use the ifconfig command.

Here is an alternative procedure which needs system reboot. The prior
procedure doesn′ t need to reboot, but it needs the interface detached; this
causes communication disruptions during the procedure. Some applications

26 Practical TCP/IP for AIX V3.2/V4.1

may become a failure state. A reboot confirms that all the applications restart
gracefully and you can avoid potential problems.

 1. Change the adapter attribute as follows. With the -P flag, this command only
updates the data in the ODM and leaves the data in the kernel intact.

chdev -l tok0 -a xmt_que_size=40 -P
tok0 changed
#

 2. Shut down the system and reboot it, as follows. After the reboot, the
previous change is effective:

shutdown -Fr

1.3 Standard UNIX Commands with ASCII Configuration Files
With AIX you can configure and run TCP/IP with standard UNIX configuration
commands only. You can live in the TCP/IP world without SMIT, the high-level
command, or the ODM.

Although this is possible, we don′ t see any need to do so except where you need
to share the configuration information or procedure with other vendors′ systems.
Even in this case, you need to customize the script for each system. This may
not be an easy task.

Whenever you need to change the configuration, you need to run the UNIX
configuration command to change the kernel parameter. If you need to have a
permanent change, you also have to edit the startup script manually. SMIT or a
high-level command does this for you.

Note: You cannot update or change an adapter card configuration with a UNIX
command. You have to use SMIT or the high-level commands.

1.3.1 BSD Style Startup Configuration
Since the default boot and configuration procedure use the high-level command
and the ODM, you have to tell the system you will not use them. We believe that
this option is really for the BSD users.

 1. To set the parameter in the ODM that you wil l use UNIX commands to
configure the host name, network interfaces, and routings during the boot
process, issue the following command:

smitty setbootup_option

 2. Specify yes in the following panel.

Chapter 1. TCP/IP Configuration for AIX V4.1 27

� �
Select BSD style rc Configuration

Please answer yes if you want BSD style rc configuration.
The default is no.

AIX configuration uses the data in the ODM database and
uses the file /etc/rc.net to define,

load and configure a corresponding interface.

BSD style configuration uses the traditional ifconfig command and it uses
the file /etc/rc.bsdnet to configure the corresponding interface.

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Use BSD Style rc Configuration yes

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 13. BSD Style Startup Configuration Panel

 3. You can confirm that the change is stored in the ODM by issuing the
following command:

lsattr -E -l inet0 -a bootup_option
bootup_option yes Serial Optical Network Interface True
#

Although the description seems erroneous (Serial Optical Network Interface
is not correct), bootup_option shows yes for the next boot, and the
configuration manager executes /etc/rc.bsdnet instead of /etc/rc.net script.

 4. Edit the script /etc/rc.bsdnet and add the necessary commands to configure
your TCP/IP.

In this case, the configuration manager only recognizes /etc/rc.bsdnet, and the
data in the ODM is not loaded at the boot time. This doesn′ t necessarily mean
that the ODM is never used. If you happen to use the chdev and lsattr
commands (or SMIT) after the boot, the parameters in the kernel are updated as
well as the data in the ODM.

1.3.2 Customizing the Startup Script /etc/rc.bsdnet
You can edit the startup script /etc/rc.bsdnet with your favorite editor. You can
write the host name, ifconfig, route and any other command that you want in the
script. Refer to A.2, “Startup Script /etc/rc.bsdnet” on page 339 for the complete
list of this script.

This script is the only place where the network interfaces and routing information
are kept. During the boot process, the configuration is loaded into the kernel.

28 Practical TCP/IP for AIX V3.2/V4.1

1.3.2.1 Where the Host Name Is Set
The following section of the script /etc/rc.bsdnet is where the host name is set
with the hostname command:

#
LOGFILE=/tmp/rc.net.out # LOGFILE is where all stdout goes.
>$LOGFILE # truncate LOGFILE.

no -d lowclust # set buffer low water mark

/bin/hostname aoot.austin.ibm.com >>$LOGFILE 2>&1

1.3.2.2 Where Interfaces and Static Routes Are Set
The following section of the script /etc/rc.bsdnet is where the interfaces and
routings are set with ifconfig and route commands.

##
Valid network interfaces are:
lo=local loopback, en=standard ethernet, et=802.3 ethernet
sl=serial line IP, tr=802.5 token-ring, xt=X.25
##

/usr/sbin/ifconfig lo0 inet 127.0.0.1 up >>$LOGFILE 2>&1
/usr/sbin/ifconfig en0 inet hostname up >>$LOGFILE 2>&1

#/usr/sbin/route add 0 gateway >>$LOGFILE 2>&1
#/usr/sbin/route add 192.9.201.0 gateway >>$LOGFILE 2>&1

1.3.2.3 Where Other Parameters Are Set
The following section of the script /etc/rc.bsdnet is where the hostid and uname
are set. Notice that these parameters are taken from the result of the hostname
command:

/usr/sbin/hostid hostname >>$LOGFILE 2>&1
/bin/uname -Shostname|sed ′ s/\..*$//′ >>$LOGFILE 2>&1

1.3.3 Interface Configuration with ifconfig Command
You can interactively configure or change an interface configuration with the
ifconfig command; although, the configuration or change is lost with the system
reboot.

1.3.3.1 Adding an Interface
An interface configuration process (following) is shown step by step. The
interface tr0 is not configured yet.

 1. The command ifconfig shows only some flags.

ifconfig tr0
tr0: flags=80a0002<BROADCAST,ALLCAST,MULTICAST>
#

Also, with netstat -i the interface does not exist.

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 209 0 209 0 0
lo0 16896 127 loopback 209 0 209 0 0
#

Chapter 1. TCP/IP Configuration for AIX V4.1 29

 2. Issue the ifconfig command. In the following example, the interface address
is given as the interface name zero because this name was already written
in the host table /etc/hosts with the corresponding IP address:

ifconfig tr0 inet zero netmask 255.255.255.128up
#

 3. Check to see whether the interface was successfully configured. The flag UP
and RUNNING should be shown, as in the following example:

ifconfig tr0
tr0: flags=80a0043<UP,BROADCAST,RUNNING,ALLCAST,MULTICAST>

inet 9.68.214.84 netmask 0xffffff80 broadcast 9.68.214.127
#

You can confirm the result with the netstat command. The interface en0 now
exists in the following example:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 209 0 209 0 0
lo0 16896 127 loopback 209 0 209 0 0
tr0 1492 <Link>8.0.5a.ab.23.19 10 0 0 0 0
tr0 1492 9.68.214 zero 10 0 0 0 0
#

1.3.3.2 Removing an Interface
You can use the ifconfig command to remove the interfaces, as follows:

 1. At first, the interface is set to the down state with the ifconfig command.

ifconfig tr0 down
#

 2. Check to see whether the interface tr0 is in the down state. The flag UP
should not be shown (as in the following example). Notice that the flag
RUNNING doesn′ t mean the interface is usable. Remember that the
interface is not usable, but the resources such as buffer are still allocated.

ifconfig tr0
tr0: flags=80a0042<BROADCAST,RUNNING,ALLCAST,MULTICAST>

inet 9.68.214.84 netmask 0xffffff80 broadcast 9.68.214.127
#

 3. Then, the interface is set to the detach state with the ifconfig command, as
follows:

ifconfig tr0 detach
#

Check to see whether the interface is in the detach state. The flag UP and
RUNNING should not be shown as in the following example:

ifconfig tr0
tr0: flags=80a0002<BROADCAST,ALLCAST,MULTICAST>

inet 9.68.214.84 netmask 0xffffff80 broadcast 9.68.214.127
#

Note: Do not forget that any routes attached to the detached interface were
lost already. You need explicit route configuration for recovery.

You can also confirm the result with the netstat command, because the detached
interface was not shown with this command, as follows:

30 Practical TCP/IP for AIX V3.2/V4.1

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 209 0 209 0 0
lo0 16896 127 loopback 209 0 209 0 0
#

1.3.4 Routing Configuration with Route Command
You can interactively configure or change the static route with the route
command, although the configuration or change is lost with a system boot.

1.3.4.1 Adding a Static Route
Before adding a route, we show what routes are currently configured in this
example. Just after the configuration of an interface, no routes are configured
except for a route for loopback, as follows:

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
loopback loopback UH 6 209 lo0
#

Then, issue the route command with the necessary parameters. First we have to
configure the route to the local network to which the interface is attached. In
this example, verbose option (-v) is specified.

Note: We specify the hop count of 0 this time. This is an exceptional operation
for the route to the local network.

route -v add -net 9.68.214.0 zero 0
old usage of trailing 0, assuming route to if
so_dst: inet 9.68.214.0; so_gate: inet 9.68.214.84; RTM_ADD: Add Route
pid: 0, len 112, seq 1, errno 0, flags:<UP>
locks: inits:
sockaddrs: <DST,GATEWAY,NETMASK>
 9.68.214.0 zero (0) 0 ffff ff00 0
0 net 9.68.214.0: gateway zero
#

You can confirm that the route was configure successfully, as follows:

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
9.68.214 zero U 0 0 tr0
loopback loopback UH 6 209 lo0
#

Basically with the AIX V4.1.2 route command syntax we don′ t need to specify hop
count or metric. As you already know for the static route, the difference between
zero and one is important. Because hop count 0 is reserved for local network
interfaces, all the network interfaces are configured with ifconfig or smitty
mkinet.

Note: Although the above is true, AIX V3.1 had the metric option with the route
command.

Any static route through the gateway has a one or greater hop count and their
difference does not matter. Therefore, you don′ t need a metric specification with
the route command. This is what we are doing now. See the following example
for configuring a default route. The flag -v stands for the verbose mode.

Chapter 1. TCP/IP Configuration for AIX V4.1 31

route -v add default 9.68.214.1
so_dst: inet 0.0.0.0; so_gate: inet 9.68.214.1; RTM_ADD: Add Route
pid: 0, len 108, seq 1, errno 0, flags:<UP,GATEWAY>
locks: inits:
sockaddrs: <DST,GATEWAY,NETMASK>
 default 9.68.214.1 (0)
9.68.214.1 net default: gateway 9.68.214.1
#

Now the route command is successfully completed and you can check to see
whether the route was really added.

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
default 9.68.214.1 UG 0 1 tr0
9.68.214 zero.hakozaki.ibm. U 0 0 tr0
localhost localhost UH 6 209 lo0
#

As shown above, netstat -r confirms that the route is really created and set in
the kernel routing table. If you need this change to remain permanent, write the
route command sequence in the script /etc/rc.bsdnet.

1.3.4.2 Removing a Static Route
You can use the route command to remove static routes. See the following
example:

route -v delete default
so_dst: inet 0.0.0.0; RTM_DELETE: Delete Route
pid: 0, len 92, seq 1, errno 0, flags:<UP,GATEWAY>
locks: inits:
sockaddrs: <DST,NETMASK>
 default (0)
default net default: gateway
#

Now that the route command is successfully completed. You can check to see
whether the route was really deleted.

netstat -r |grep U
Destination Gateway Flags Refcnt Use Interface
9.170.3 newton U 4 15823 tr0
127 loopback U 1 0 lo0
#

As shown, netstat -r confirms that the route is really deleted and doesn′ t exist in
the kernel routing table.

1.4 AIX Network-Related Boot Process
The AIX and RISC System/6000 boot processes are briefly summarized in this
section. You can refer to the manual System Management Guide: Operating
System and Devices, SC23-2525 for details.

32 Practical TCP/IP for AIX V3.2/V4.1

1.4.1 Boot Process Overview
 1. Read-only storage (ROS) Kernel Init Phase

a. The on-chip sequencer (OCS) checks to see whether there are any
problems with the system motherboard. Control is passed to ROS, which
performs a power-on self-test (POST).

b. ROS checks the user boot list. The first valid boot device found in the
boot list is used for the system startup.

 c. When a valid boot device is found, the first record or program sector
number (PSN) is checked.

d. The boot image is read from the boot device into memory. The boot
image consists of the kernel, a RAM file system, and the base
customized device information.

e. Control is passed to the kernel, which begins system initialization.

f. Process 1 executes init, which executes phase 1 of the rc.boot script.
This script is in the RAM file system now.

Note: The init process invoked here is not the same one on which you
can see your login session after the boot. This init is called a
simple shell boot init and is only used during the boot process.

 2. Base Device Configuration Phase (Phase 1)

a. The boot script rc.boot calls the restbase program to build the base
customized ODM database in the RAM file system from the compressed
base customized data.

b. The boot script starts the configuration manager, which accesses phase
1 configuration rules to configure the base devices.

 c. The configuration manager invokes the sys, bus, disk, small computer
system interface (SCSI) and the logical volume manager (LVM) and root
volume group (VG) configuration methods.

Adapter Cards are Defined and Configured Here

Here is the place where any adapter cards attached to the system
bus are recognized by the configuration manager. If you have
network adapters, such as tok0 and ent0, they are detected at this
stage of the boot process.

d. The configuration methods load the device drivers, create special files,
and update the customized data in the ODM.

 3. System Boot Phase (Phase 2 and 3)

a. The init process starts the phase 2 execution of the rc.boot script.

1) Call the ipl_varyon program to vary on the root VG.

2) Run swapon to start paging.

3) Mount the hard disk file systems onto the RAM file system.

4) Merge the ODM database in the RAM file system with the ODM
database in the hard disk file system by calling the mergebase
program.

5) Unmount hard disk file systems.

Chapter 1. TCP/IP Configuration for AIX V4.1 33

6) Exit the rc.boot script. At this moment, RAM init exits and the kernel
is accessed.

b. After phase 2 of rc.boot, the newroot program switches from the RAM file
system to the hard disk root file system. At this moment, the kernel
forks the process 1 init.

Note: This init is what you see in your login session.

 c. Then, the init process executes the process defined by records in the
/etc/inittab file. One of the instructions in the /etc/inittab file executes
phase 3 of the rc.boot script as follows:

brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot

This includes the following steps:

1) Mount hard disk file system.

2) Invoke the configuration manager phase 2 to configure all the
remaining devices.

/etc/rc.net Is Executed Here

Here is the place where the network interface devices, such as
tok0 and ent0, are configured with a configuration script.

The script /etc/rc.net or /etc/rc.bsdnet is invoked. The script
invoked is defined in the configuration rules stored in the ODM.

3) Use the savebase command to save the base customized data to the
boot logical volume.

4) Run the diagnostics if the key switch is set to the service position.

5) Exit the rc.boot.

d. init executes other instructions in the /etc/inittab.

SRC (/usr/sbin/srcmstr) Is Started Here

The system resource controller (SRC) is started. This daemon
controls subsystems defined in the ODM. For example, inetd, routed,
and portmap are the subsystems or the SRC. Almost all daemons
started in the script /etc/rc.tcpip and /etc/rc.nfs are subsystems of the
SRC.

/etc/rc.tcpip Is Executed Here

Here is the place where the TCP/IP application servers (daemons),
such as inetd, sendmail, and portmap, are started. If you are using
DNS and your system is the name server, named is also started.

/etc/rc.nfs Is Executed Here

Here is the place where NFS and NIS daemons are started. They are
ypsrv, ypbind, biod, nfsd, and rpc.mountd. Be aware that they need
the SUN/RPC portmap, but it′s not started here.

e. Now the system is up and ready for use.

34 Practical TCP/IP for AIX V3.2/V4.1

1.4.2 How Is the Script /etc/rc.net Executed?
The previous section explained that the startup script /etc/rc.net or /etc/rc.bsdnet
is executed (phase 3 of the boot script /sbin/rc.boot). But if you check through
the script /sbin/rc.boot, you can never find the /etc/rc.net or /etc/rc.bsdnet
scripts.

Then how can AIX know what script (/etc/rc.net or /etc/rc.bsdnet) to execute, and
who invokes the script. The answer is the configuration manager. In the script
/sbin/rc.boot, the configuration manager cfgmgr is executed. It reads the
configuration parameters from the ODM, and in the objectinet0, the value of
bootup_option is examined. If it is YES, /etc/rc.bsdnet is run. If it is NO,
/etc/rc.net is run.

1.4.2.1 The Configuration Manager
The cfgmgr configures devices into the system. The devices to be configured
are specified in the configuration rules object class, which is part of the device
configuration database, ODM.

During system boot, the cfgmgr configures all the devices that are necessary in
order to use the system. From the configuration manager′s point of view, the
system boot is a two-step process. The first step is called phase 1, and it begins
when the kernel is brought into the system, and the boot file system is initialized.
During this phase, the cfgmgr command is invoked, specifying this is phase 1 by
using the -f flag. The cfgmgr command executes all of the phase 1 configuration
rules; this results in the base devices being configured. After this, the phase 2
execution begins, and the cfgmgr command is called with the -s flag.

The following are the three phases of configuration rules recognized by the
cfgmgr command:

Phase 1 (phase = 1)
This is the phase to configure the basic devices. In this phase, any adapter
cards attached to the system bus, such as tok0 and ent0, are recognized
and the corresponding entries are created in the ODM.

Phase 2 (phase = 2)
This is the phase to configure the remaining devices, which may be children
of the devices configured at phase 1. For example, tr0 is a child device of
the device tok0.

Phase 2 Service (phase = 3)
This is the service mode, and if the key position on the system unit is
service, this phase is used.

Note: The above phases are the configuration manager′s configuration phases
and are not to be confused with the boot phases.

The script /etc/rc.net or /etc/rc.bsdnet is executed during phase 2. As a result,
the network interfaces are configured during phase 2.

1.4.2.2 Looking at the Config_Rules in the ODM
We can review the config_rules that the configuration manager uses for the
configuration tasks. The following is the example of the rule where the interface
configuration script is selected:

Chapter 1. TCP/IP Configuration for AIX V4.1 35

odmget -q ″phase=′2 ′ AND seq=′18′″ Config_Rules

Config_Rules:
phase = 2
seq = 18
boot_mask = 0
rule = ″ /usr/lib/methods/definet > \

/dev/null 2>&1;opt=lsattr -E -l inet0 \
-a bootup_option -F value\n\

if [$opt = \″no\″] ;then\n\
nf=/etc/rc.net\n\

else \n\
nf=/etc/rc.bsdnet\n\

fi;$nf -2;x=$?;test $x -ne 0&&echo $nf failed. \
Check for invalid commands;exit $x″

#

If you want to review the entire config_rules, issue the following command:

odmget Config_Rules

Config_Rules:
phase = 2
seq = 15
boot_mask = 0
rule = ″ /etc/methods/ptynode″

Config_Rules:
phase = 3
seq = 15
boot_mask = 0
rule = ″ /etc/methods/ptynode″

Config_Rules:
phase = 1
seq = 2
boot_mask = 0
rule = ″ /usr/lib/methods/deflvm″

...
#

1.5 Configuration Hints and Tips
In this section, some configuration hints and tips are explained.

1.5.1 Do Not Run mktcpip or smitty mktcpip Twice
You can use the high-level command, mktcpip or the SMIT fast path smitty
mktcpip command to configure a network interface. These are very easy
procedures and they are advantages of the AIX, but there is a trick to using
them.

Do not use them to change the IP address of an interface using the mktcpip
command or the SMIT fast path smitty mktcpip. They are designed for the initial
configuration. One pitfall is that they simply add an entry in the /etc/hosts file
when they are executed. They do not replace the existing entry with a new
entry. We changed the IP address of the host guru using the SMIT fast path,

36 Practical TCP/IP for AIX V3.2/V4.1

smitty mktcpip. As a result, we received duplicated entries for the guru, as
follows:

grep guru /etc/hosts
9.68.192.142 guru
9.68.214.75 guru
#

On the contrary, changing the hostname is done by adding an alias. In the
following example, we changed the hostname from zero to zero_new using the
SMIT fast path, smitty mktcpip:

grep zero /etc/hosts
9.68.214.84 zero zero_new
#

From the ODM point of view, the previous procedure works fine. In other words,
the entry in the ODM is replaced as intended. There is only enough room for
each attribute, as follows:

lsattr -E -l inet0 -a hostname
hostname zero_new Host Name True
lsattr -E -l tr0 -a netaddr
netaddr 9.68.214.84 Internet Address True
#

The correct procedure to change an IP address is to use the chdev command or
the SMIT fast path smitty chinet command. This can also be done by running the
mktcpip, which manually updates the /etc/hosts file.

Our Experience

Sometimes this pitfall is difficult to notice. If you are using DNS, all IP
address retrievals go to the DNS name server and /etc/hosts is not referred
to. When you change your system′s IP address, you ask the zone file update
to your DNS administrator. Thus far, the DNS is running correctly, and
everything seems fine.

In our environment, everything seemed fine except for one application
program (sendmail). After the IP address was updated, our sendmail had a
malfunction. It didn′ t forward the incoming mail correctly and updated mail
header address incorrectly. Only applications that refer to /etc/hosts are
impacted.

1.5.2 IP Address Retrieval Priority
In the TCP/IP environment, users use host names instead of IP addresses for
convenience. So, there must be a mechanism to convert a host name to the IP
address. The simplest one is the conversion file called /etc/hosts. DNS and NIS
are more sophisticated alternatives.

1.5.2.1 For V3.2 Environment
When you are using DNS and/or NIS, a host name to the IP address translation
follows certain orders, depending on the system configuration, as follows:

NIS Client Without DNS Resolver
If the system running NIS client, ypbind, doesn′ t have the /etc/resolv.conf
file, the system always refers to the NIS map in the NIS server.

Chapter 1. TCP/IP Configuration for AIX V4.1 37

Note: If the NIS server has the /etc/resolv.conf file and the translation using
the NIS map fails, the NIS server can refer to the DNS server next.
You need to modify the /var/yp/Makefile of the NIS server in order to
have the NIS server machine look up the DNS servers.

NIS Client With DNS Resolver
If the system running NIS client, ypbind, has the /etc/resolv.conf file, the
system first refers to the DNS server. If the look up fails, then the system
refers to the NIS server.

Note: If the NIS server has the /etc/resolv.conf file and the translation using
the NIS map fails, again the DNS server is looked up by the NIS
server. You need to modify the /var/yp/Makefile of the NIS server in
order to have the NIS server machine look up the DNS servers.

NIS Server Without DNS Resolver
If the system, running both the NIS client and server and ypbind and ypserv,
doesn ′ t have the /etc/resolv.conf file, the NIS map is always referred to. No
other source (the DNS server and /etc/hosts) is referred to.

NIS Server With DNS Resolver
If the system, running both the NIS client and server and ypbind and ypserv,
has the /etc/resolv.conf file, the DNS server is referred to first. If the DNS
look up fails, then the NIS map is referred to.

With AIX V3.2, the DNS look up has higher priority than the NIS look up. If your
system is only running the DNS resolver without the NIS client, the DNS server is
always referred to. If the DNS look up fails, the /etc/hosts file is finally referred
to. For the DNS, /etc/hosts is the final resort.

On the contrary, NIS doesn′ t usually consult /etc/hosts even when the NIS map
cannot satisfy the query. Therefore, a correctly configured NIS map is crucial.
As mentioned above, if you need to forward the query to the DNS server after
the NIS map failure, you have to modify the Makefile for the NIS maps. Add -b
flags after $(MAKEDBM) in the hosts.time stanza in the /var/yp/Makefile. Refer
to AIX Version 3.2 System Management Guide: Communications and Networks,
GC23-2487 for details.

1.5.2.2 For V4.1 Environment
With AIX V4.1, you can specify the priority of look up. A new environmental
variable NSORDER and a new configuration file /etc/netsvc.conf are introduced.
You can use NSORDER or /etc/netsvc.conf to put the following sources in an
arbitrary order:

• DNS

• NIS

• /etc/hosts

Refer to the manuals or InfoExplorer for details.

1.5.3 Host Name for Multi-Homed Host
One mysterious thing to understand is the host name for a multi-homed host.
The term multi-homed host means that the system has more than one network
interface. For example, any gateway (router) system is a multi-homed host. We
also have to define the term host name clearly. Usually the term host name
means processor name or system name, and there should be only one host
name for each system. But in the TCP/IP world, the term host name means

38 Practical TCP/IP for AIX V3.2/V4.1

interface name. This is a very bad convention. The system name and interface
name should be clearly distinguished from each other, but unfortunately both of
them are referred to as the host name. But it′s not important because the
system has only one interface. In this case, we can assign the same name for
both the system name and the network interface name, and there are no
potential problems or confusion.

1.5.3.1 Host Name
Any AIX system has its own host name. This is a system name or processor
name, and not an interface name. This name is kept in the AIX kernel and also
in the ODM. You can see the current host name by issuing the hostname
command, as follows:

hostname
grover
#

Also, you can use the following command to see the ODM. An odd thing is that
the host name is stored as an attribute of the network device inet0.

lsattr -E -l inet0 -a hostname
hostname grover Host Name True
#

You can change the host name with the hostname command. This command
only changes the kernel and leaves the ODM unchanged, but the chdev
command changes both the kernel and the ODM.

hostname newton
newton
lsattr -E -l inet0 -a hostname
hostname grover Host Name True
#

1.5.3.2 Interface Name
In the TCP/IP world, each network interface usually has its own IP address and
interface name. The interface name is mainly for the user′s convenience.

Note: Of course there are some applications which need to refer to the host
table /etc/hosts and must get an interface name. NFS is a good example
along with the .rhosts authentication.

Although it′s not good convention, this interface name is usually called the host
name. This name is kept both in the AIX kernel and non-volatile storage (ODM
and ASCII file). You can see the interface name in the ASCII file /etc/hosts, as
follows:

cat /etc/hosts
127.0.0.1 loopback localhost
9.170.3.21 grover
#

Unfortunately, if you use the smitty mktcpip or mktcpip command for a minimum
configuration, the interface name is stored in the ODM as the attribute host
name of inet0. You can check the interface name in the ODM. Although a
system can have more than two interfaces, ODM can only store one interface
name. When you have configured more than two interfaces, the latest interface
name is stored as follows:

Chapter 1. TCP/IP Configuration for AIX V4.1 39

lsattr -E -l inet0 -a hostname
hostname grover Host Name True
#

Interface names, however, are not kept in the AIX kernel (remember the host
name is kept in the AIX kernel). Instead, IP addresses are kept in the kernel and
if they are referred, the kernel refers to /etc/hosts or equivalent (DNS or NIS
server) and translates them to the corresponding interface names. Here is an
example:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 1536 <Link> 0 0 0 0 0
lo0 1536 127 loopback 0 0 0 0 0
tr0 1492 <Link> 31200 0 1570 0 0
tr0 1492 9.170.3 grover 31200 0 1570 0 0
#

In this example, we can see the host name grover, but actually the kernel kept
the IP address 9.170.3.45. Use netstat -in in order to refer to the IP address.

1.5.3.3 What Happens During the Boot
During the boot process, the host name is set automatically. In the default
setting, the host name is loaded into the kernel from the ODM. The host name,
which is really an interface name and an attribute of the device inet0, is loaded
as the system name. This is done with the cfginet command in the /etc/rc.net
script. After this command is executed, you can see the system name using the
hostname command, and this name is really an interface name. If the system is
a multi-homed host, you will see the latest configured interface name.

If you have some shell scripts that use the hostname command to get the system
name, you may have a problem.

One way to work around it is not to use smitty mktcpip or mktcpip. Instead, you
can use smitty commodev to set an adapter card parameter. Internally, the
chdev command is used. Then, use smitty mkinet to configure a network
interface. Internally, the mkdev command is used. Although we don′ t go into
details, you can review the correct command arguments if you press
F6=Command at the appropriate SMIT panel.

1.5.4 If You Mess Up the ODM
Up to now some of the high-level commands have been explained. Three more
important commands, cfgmgr, mkdev and rmdev, are explained here. These
commands also have the capability to update the kernel and the ODM.

When you messed up the configuration in the ODM and the kernel, in certain
situations it is easier to delete all related configuration and start again from the
beginning. The three new commands are useful for such a task. Be careful and
consider these methods as the last resort when you get into difficult situations.

40 Practical TCP/IP for AIX V3.2/V4.1

1.5.4.1 Removing a Logical Device Using the rmdev Command
Removing a logical device using the rmdev command shows how to remove the
network device inet0 with the rmdev command. You can see that it really has
been removed by issuing the lsattr command.

Note: If you run rmdev, your network function gets hung up immediately and will
not recover until the device is created again. Be careful when you run
this command and consider the risk that the applications may not be
recovered.

Issue the rmdev command with the -d flag and the customized device
information (more accurately, the object instance in the CuDv and CuAt object
classes) is deleted from the ODM, as follows:

rmdev -l inet0 -d
inet0 deleted

#lsattr -E -l inet0
lsattr: 0514-519 The following device was not found in the customized

device configuration database:
inet0

#

You can also remove the network interfaces (such as tr0) and adapter cards
(such as tok0) in this order. Be aware that you cannot remove the adapter card
first.

rmdev -l tr0 -d
tr0 deleted

rmdev -l tok0 -d
tok0 deleted

#

If you don′ t use the -d flag, this command will put the specified logical device in
the defined status as shown below. In the defined status, the logical device is
still in the ODM, but the corresponding device driver is unloaded. Therefore, the
device cannot be used until the device driver is loaded again (in other words,
until it gets in the available state).

rmdev -l tok0
tr0 Defined

#

1.5.4.2 Creating a Logical Device Using cfgmgr
The easiest way to create a logical device is to use the cfgmgr. It creates the
device inet0 with all the default values. After that, you can change the device
attributes again with either the SMIT or high-level command. Run the
configuration manager as follows:

cfgmgr -s
#

You can enjoy the three LEDs on the front panel flicks displaying numbers which
you see during the system boot.

Chapter 1. TCP/IP Configuration for AIX V4.1 41

Note: The previous command needs a few minutes or so to complete. Do not
try to interrupt this command because this command updates the ODM;
an interruption may leave the ODM in an inconsistent state.

You can check whether the device was created successfully by issuing the lsattr
command as follows:

lsattr -E -l inet0
hostname Host Name True
gateway Gateway True
route Route True
bootup_option no Serial Optical Network Interface True
#

You can invoke the configuration manager via SMIT with the first path smitty dev
and choose the Install/Configure Devices Added After IPL menu.

During this procedure, the configuration manager does a lot of configuration
tasks. If you specify -v, you see that events are executed as follows:

cfgmgr -s -v
phase = 2

invoking top level program -- ″ /etc/methods/defsys″
return code = 0
****************** stdout ***********
sys0

****************** no stderr ***********

attempting to configure device ′ sys0′
invoking /usr/lib/methods/cfgsys -2 -l sys0
return code = 0
****************** stdout ***********
bus0 bbl0
****************** no stderr ***********

attempting to configure device ′ bus0′
invoking /usr/lib/methods/cfgbus -2 -l bus0
return code = 0
****************** stdout ***********
fda0,sioka0,sa0,sa1,scsi0,siota0,sioma0,ppa0,ent0,tok0,rby0

****************** no stderr ***********
...
#

Important Notice for ISA Bus Adapter Users

If you are using an ISA bus adapter card, cfgmgr cannot recognize your card.
You need to follow the explicit card configuration procedure through SMIT or
high-level command after the card installation. Refer to 1.5.9, “ISA Bus
Adapter Consideration” on page 52.

42 Practical TCP/IP for AIX V3.2/V4.1

1.5.4.3 Creating a Logical Device Using the mkdev Command
Invoking the configuration manager is more than enough to create one logical
device. The other alternative is to issue the mkdev command. If the device is
only put in the defined state, the -l flag is enough.

mkdev -l inet
ient0 Available
#

If the device is deleted from the ODM, you need to specify the -t flag showing
which type of device you want to make. See the following example:

rmdev -l inet0 -d
inet0 deleted

mkdev -l inet0
mkdev: 0514-519 The following device was not found in the customized

device configuration database:
name = ′ inet0′

mkdev -t inet -l inet0
inet0 Available
#

You can do the same thing to other devices like tr0 and en0. In the previous
example, the created device has all the default attributes. You may need to
customize it with the SMIT or chdev command. You can do those customizations
using the mkdev command. Refer to the manual or InfoExplorer for details. Of
course, after the device removal, you can shut down and reboot the system
because cfgmgr is executed during reboot.

1.5.4.4 How to Find the Valid Range and Default Values
When you set or configure the logical device attribute with the chdev command,
you may need to review which value is in the valid range. In this case, use the
lsattr -R command, as follows:

lsattr -R -l tok0 -a ring_speed
4
16
lsattr -R -l tok0 -a rec_que_size
20...150 (+1)
#

The first example shows that the token-ring adapter′s ring speed can be either 4
or 16. The second example shows that the token-ring adapter′s RECEIVE queue
size can be 20 to 150, with an increment of 1.

If you need to know the default values, use the lsattr -D command. The following
are the default values for the token-ring interface tr0:

Chapter 1. TCP/IP Configuration for AIX V4.1 43

lsattr -D -l tr0
mtu 1492 Maximum IP Packet Size for This Device True
mtu_4 1492 Maximum IP Packet Size for This Device True
mtu_16 1492 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr Internet Address True
state down Current Interface Status True
arp on Address Resolution Protocol (ARP) True
allcast on Confine Broadcast to Local Token-Ring True
hwloop off Enable Hardware Loopback Mode True
netmask Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
#

1.5.5 Two Tips for netstat
Two tips for the netstat command are given in this section.

1.5.5.1 Getting Consistent Output with Other UNIX
Since AIX Version 3.2 has been issued, we got an enhanced version of that
netstat command. When you issue it with the -r flag, you will get more than
enough information, as follows:

netstat -r
Routing tables
Destination Gateway Flags Refs Use Interface
Netmasks:
255.255.255.128

Route Tree for Protocol Family 2:
default 9.68.214.1 UG 0 85 tr0
9.68.214 zero.hakozaki.ibm. U 2 307 tr0
localhost localhost UH 1 0 lo0
#

Run this command with grep -U and you will a get consistent output with the
other UNIX system, as follows:

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
default 9.68.214.1 UG 0 107 tr0
9.68.214 zero.hakozaki.ibm. U 2 307 tr0
localhost localhost UH 1 0 lo0

44 Practical TCP/IP for AIX V3.2/V4.1

Difference between V4.1 and V3.2

With V3.2, you got more than enough information. If you are not working with
the Xerox Network System (XNS), you may want to cut off the output.

netstat -r
Routing tables
Destination Gateway Flags Refcnt Use Interface
Netmasks:
(root node)
(0)0 ff00 0
(0)0 ffff ff00 0
(root node)

Route Tree for Protocol Family 2:
(root node)
default grover UG 1 46349 tr0
9.170.3 newton U 6 2608 tr0
127 loopback U 0 1870 lo0
(root node)

Route Tree for Protocol Family 6:
(root node)
(root node)
#

Run this command with grep -U and you will get the following:

netstat -r | grep U
Destination Gateway Flags Refcnt Use Interface
default grover UG 1 46733 tr0
9.170.3 newton U 28 7405 tr0
127 loopback U 1 1937 lo0
#

1.5.5.2 Suppressing IP Address and Name Translation
One more tip is to use this command with the -n flag. This is valuable especially
if you are working with the name service (DNS or NIS) debugging. If you have
problems with name service and, as a result, the translation from a host name to
the IP address doesn′ t work, this netstat command will never return. As you see
in the following, this flag suppresses the IP address to the host name mapping
function and shows the result in numerical form. It doesn′ t rely on the name
service.

netstat -rn | grep U
Destination Gateway Flags Refs Use Interface
default 9.68.214.1 UG 0 121 tr0
9.68.214 9.68.214.84 U 2 307 tr0
127.0.0.1 127.0.0.1 UH 1 0 lo0
#

Of course, the -n flag can be used with any other flags.

netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 209 0 209 0 0
lo0 16896 127 127.0.0.1 209 0 209 0 0
tr0 1492 <Link>8.0.5a.ab.23.19 1249 0 610 0 0
tr0 1492 9.68.214 9.68.214.84 1249 0 610 0 0
#

Chapter 1. TCP/IP Configuration for AIX V4.1 45

1.5.6 SMIT Hints
These are small pieces of knowledge, but they may improve your working ability
with AIX and TCP/IP.

1.5.6.1 How to Find the SMIT Fast Path
First, invoke SMIT and go through the menus until you get to the destination
panel. This is completely a trial-and-error approach. At the SMIT destination
panel, press the F8=Image key. Then, a small subpanel will open and you will
find the fast path name.

� �
PRINT SCREEN

 Press Enter to save the panel image
in the log file.

 Press Cancel to return to the application.

Current fast path:
″chinet″

 F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do� �

Basically the option F8=Image is for the people who need the SMIT panel
hardcopy image for material such as this book.

1.5.7 Ethernet Configuration
Up to now we explained the TCP/IP configuration procedure with the token-ring
because token-ring has many more parameters than Ethernet, but there are also
some unique Ethernet parameters.

1.5.7.1 Minimum Configuration
Figure 14 on page 47 is the panel that you see when you run smitty mktcpip.
The entry fields are almost identical to the token-ring panel. The only difference
is that there is a Your CABLE Type field in place of the ring speed field.

46 Practical TCP/IP for AIX V3.2/V4.1

� �
Minimum Configuration & Startup

 To Delete existing configuration data, please use Further Configuration menus

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* HOSTNAME [inoki]
* Internet ADDRESS (dotted decimal) []
Network MASK (dotted decimal) []

* Network INTERFACE en0
NAMESERVER

Internet ADDRESS (dotted decimal) [9.170.1.9]
DOMAIN Name [fscjapan.ibm.com]

Default GATEWAY Address []
(dotted decimal or symbolic name)

Your CABLE Type N/A +
START TCP/IP daemons Now no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Undo F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 14. SMIT TCP/IP Configuration Panel (Ethernet)

Your CABLE Type
There are four choices for this field: dix, tp bnc and N/A. If your
Ethernet adapter has more than one port (for example, nine pin D-shell
and bnc connectors), your adapter has an internal software switch that
makes the specified port available. (In other words, only one port is
usable at any moment.) In this case, you have to choose an
appropriate cable (port) type to use. The bnc cable type configures a
coax port for 10Base2. The dix cable type configures a nine pin D-shell
connector port (to attach an external transceiver) for 10base5. The tp
cable type configures a twisted-pair port for 10BaseT.

Note: More accurately, dix is attached to an external transceiver via
nine pin D-shell connector. It doesn′ t necessarily mean that you
have to use 10Base5. With an appropriate external transceiver,
you can also use 10BaseT or 10Base2.

If your Ethernet adapter doesn′ t have a software switch, that is, your
adapter is an integrated Ethernet adapter that has only one port (for
example, nine pin D-shell connector port), N/A must be chosen. The
external transceiver defines the actual cable type.

Note: If the adapter is an integrated adapter, but has two ports (bnc
and nine pin D-shell connectors), it has a hardware switch
(jumper switch) on the card. You should choose dix or bnc and
also change the jumper to an appropriate position.

All of the configuration files updated during the configuration are the same as
the token-ring. If you fill the NAMESERVER fields, then the file /etc/resolv.conf is
created.

Chapter 1. TCP/IP Configuration for AIX V4.1 47

1.5.7.2 Your CABLE Type Pitfalls
Traditionally, Ethernet uses an external transceiver. In the early stages of the
RS/6000, this was only true for 10Base5 Ethernet. At that time, we had only the
F/C 2980 Ethernet High-Performance LAN Adapter and configuration was simple
because it had two ports (one for 10Base5 and the other for 10Base2). You can
directly attach a T-connecter to the 10Base2 port without a transceiver.

A lot of CPU models have been introduced since that time and some of them use
integrated adapters. They support 10Base5, 10Base2 and 10BaseT. Since their
integrated adapter has only one 10Base5 port, you need an appropriate external
transceiver for any cable type. (You need a transceiver to convert 10Base5 port
to 10Base2 or 10BaseT.) Please refer to the manual RISC/System 6000 System
Overview, GC24-2406 for details.

Now RS/6000 supports the following cable types, and some configuration
procedures need adapter- and cable type-specific operation:

• 10Base5 (thick)
• 10Base2 (thin)
• 10BaseT (twisted-pair)

When you configure the Your CABLE Type field via smitty mktcpip, you can
choose bnc or dix for only the F/C 2980 Ethernet High-Performance LAN Adapter.
You must always choose N/A for any integrated Ethernet adapter. See the
following table:

*1 An appropriate external transceiver is needed.

*2 An appropriate external or 10baseT connector (shipped with the system) is
needed.

Table 1. Valid Selection for Your CABLE Type Field

Adapter 10Base5 10Base2 10BaseT Jumper
Switch

Integrated Ethernet
Adapter for Model
M20/M2A/220/230

N/A *1 N/A *1 N/A *1 No jumper

Integrated Ethernet
Adapter for Model
250/41T/41W

N/A *1 N/A *1 N/A *2 No jumper

Integrated Ethernet
Adapter for Model
3AT/3BT/350/360/370 (FC
4221)

dix *1 bnc dix *1 N/ARequired
(the
default is
bnc)

Integrated Ethernet
Adapter for Model
3AT/3BT/350/360/370 (FC
4222)

Not
Supported

Not
Supported

N/A No jumper

Ethernet
High-Performance LAN
Adapter (FC 2980)

dix *1 bnc dix *1 No jumper

Ethernet/FDX AUI MC
Adapter (FC 2992)

dix *1 dix *1 tp No jumper

48 Practical TCP/IP for AIX V3.2/V4.1

Another pitfall with the Ethernet cable type is the jumper switch on the Ethernet
board (adapter). Any integrated Ethernet adapter for model 3XX (except 32X)
has a jumper switch to specify the cable type. You should choose N/A at the
SMIT panel, and you also have to set the jumper switch to the appropriate
position. When the machine is shipped, the jumper is configured to the bnc.
You have to call an IBM CE. If you try to change the cable type via SMIT only,
you will get an error message.

1.5.7.3 Network Interface Device Configuration
The following is an Ethernet interface configuration panel. We don′ t have much
to explain since all the entry fields have already been covered by the token-ring
interface explanation. This is only for your information.

� �
Change / Show a Standard Ethernet Interface

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Network Interface Name en0
INTERNET ADDRESS (dotted decimal) [9.170.2.9]
Network MASK (hexadecimal or dotted decimal) [255.255.255.0]
Current STATE up +
Use Address Resolution Protocol (ARP)? yes +
BROADCAST ADDRESS (dotted decimal) []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 15. SMIT Network Interface Configuration Panel (Ethernet)

The ODM information about an Ethernet interface also has nothing special. You
can change any of them by issuing the high-level command chdev as we have
already explained.

lsattr -E -l en0
mtu 1500 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr 192.168.1.16 Internet Address True
state down Current Interface Status True
arp on Address Resolution Protocol (ARP) True
netmask 255.255.255.128 Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
#

1.5.7.4 Adapter Device Configuration
The Ethernet adapter configuration panel may need some explanation. It has a
few new entry fields that are Ethernet-unique.

Chapter 1. TCP/IP Configuration for AIX V4.1 49

� �
Change / Show Characteristics of an Ethernet Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Ethernet Adapter ent1
Description Ethernet High-Performa>
Status Available
Location 00-02
TRANSMIT queue size [64] +#
Adapter CONNECTOR dix +
RECEIVE buffer pool size [37] +#
Enable ALTERNATE ETHERNET address no +
ALTERNATE ETHERNET address [0x] +
RECEIVE queue Size [30] +#
STATUS queue Size [5] +#
Offset to ETHERTYPE field [12] +#
Offset to 802.3 ETHERTYPE [14] +#
Apply change to DATABASE only no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 16. SMIT Ethernet Adapter Configuration Panel

We will only explain those fields that are unique.

Adapter CONNECTOR
This indicates which one of the external connectors on the adapter is
being used. There are two connectors: a 15-pin DIX connector selected
with the value of dix and a BNC connector selected with the value of
bnc. The default value is bnc.

Note: If you are configuring an integrated Ethernet adapter, you don′ t
see this field.

Enable ALTERNATE ETHERNET address
This specifies whether you use the alternate MAC address for this
adapter. If yes, the hard-coded, burned-in MAC address is not used.

ALTERNATE ETHERNET address
This specifies the alternate MAC address. This MAC address must be
managed locally, and you must confirm that there are no duplicated
addresses. If you are running SNA on the same adapter, you may need
to use this function.

Offset to ETHERTYPE field
For Ethernet Version 2, the data link frame header format has 6 bytes of
destination address, 6 bytes of source address, and 2 bytes of type field
from the beginning of the header. Therefore, the ETHERTYPE should be
located at the 12th byte. Do not change this field.

Offset to 802.3 ETHERTYPE
For the IEEE 802.3 Ethernet, the MAC frame header format has 6 bytes
of destination address, 6 bytes of source address, and 2 bytes of length
field from the beginning of the header. Then the LLC header follows.
Therefore, the LLC header (not exactly the ETHERTYPE field) should be
located at the 14th byte. Do not change this field.

50 Practical TCP/IP for AIX V3.2/V4.1

Note: The IEEE has another MAC address format specification that had
destination and source addresses of 2 bytes in length. This
2-byte length version is almost obsolete now.

The ODM information about an Ethernet adapter can be seen (following) with the
lsattr command. You can change any of them by issuing the high-level
command chdev as we have already explained.

lsattr -E -l ent1
bus_intr_lvl 12 Bus interrupt level False
intr_priority 3 Interrupt priority False
xmt_que_size 64 TRANSMIT queue size True
bus_mem_addr 0xd0000 Bus memory address False
dma_bus_mem 0x544000 Address of bus memory used for DMA False
bus_io_addr 0x7280 Bus I/O address False
dma_lvl 5 DMA arbitration level False
bnc_select dix Adapter CONNECTOR True
use_alt_addr no Enable ALTERNATE ETHERNET address True
alt_addr 0x ALTERNATE ETHERNET address True
rec_pool_size 37 RECEIVE buffer pool size True
rec_que_size 30 RECEIVE queue size True
sta_que_size 5 STATUS BLOCK queue size True
type_field_off 12 Offset to ETHERTYPE field True
net_id_offset 14 Offset to 802.3 ETHERTYPE True
#

1.5.8 Ethernet Transceiver Configuration
When you attach the cables and the transceiver, there are some pitfalls. You
should read the instructions (shipped with the transceiver) carefully.

1.5.8.1 Heart Beat (SQE)
This is for both 10Base5 and 10Base2. Our transceiver (P/N 02G7435) has a
switch called SQE test on the side of the box. This switch is sometimes called
the heart beat, and you can choose on or off.

This switch enables the testing function of the collision detection circuit on the
adapter card. If you set this switch to the on position, the circuit is tested every
time a packet is sent out. This function never affects the connectivity. You can
use the adapter with the switch setting to any position. It doesn′ t need to match
the destination station.

Note: Our 10BaseT Transceiver (P/N 02G7429) has an SQE switch, but it is not
located on the surface. Open the cover and you can see the jumper
switch for the SQE. Refer to the user′s manual, which is shipped with the
transceiver, for details.

1.5.8.2 Link Test
This is for 10BaseT. The transceiver has a switch called Link Test on the side of
the box. This switch provides 10BaseT-unique functions and confirms the
electrical connectivity between the transceiver and HUB. You can choose on or
off. The HUB must also have this switch, and both switch positions must match
each other. If you set the transceiver to on, you must also set the HUB to on. If
there is a mismatch, you cannot communicate.

In the case of an integrated Ethernet adapter card for 10BaseT, you don′ t have
the transceiver (you can connect a twisted-pair cable directly to the adapter).

Chapter 1. TCP/IP Configuration for AIX V4.1 51

The link test switch is located on the adapter card as a jumper switch. When the
machine is shipped, the jumper is configured to the on position.

Note: Now the Link Test function is a new part of the formal 10BaseT
specification. This function was introduced into the specification later;
some 10BaseT HUBs designed and manufactured by early specification
may not have this function. In this case, you should choose the off
position on your transceiver.

Our Experience

We received a question from a customer about the position to which the Link
Test should be set. This customer had a 10BaseT HUB with two ports. There
was a connectivity problem, and the customer had to set the RS/6000′s
transceiver to on for one port and off for the other port.

The HUB had a Link Test switch inside, and all that was needed was to open
the cover to fix that situation. We see this kind of problem often.

1.5.9 ISA Bus Adapter Consideration
We now have the new RS/6000 models that have ISA bus. The model 40P is an
example. In this book, we are mainly concerned with the Micro Channel bus
machine. There are some pitfalls for ISA bus. Maybe the biggest one is that the
ISA bus adapter cards are not automatically configured.

The configuration manager recognizes the adapter cards installed in the Micro
Channel slot because the Micro Channel hardware provides card detection
capability by hardware. This is clearly an AIX and RS/6000 advantage provided
by the configuration manager and the ODM. The ISA bus does not have this
feature. Therefore, you have to explicitly configure any ISA bus adapter card
when it is installed through SMIT or the high-level command. Rebooting your
system doesn′ t help.

Read the Instruction Pamphlet Shipped with the System

An instruction pamphlet, Configuring ISA Ethernet and Token-Ring Adapters,
is shipped with the system. You must read these instructions in order to
configure your adapter correctly.

Although we don′ t describe the detailed configuration procedure in this book, the
following is a list of hints and tips:

You Have to Run the System Management Service
In order to install your card, you have to run the system management
service first and set the parameters on the card. You need the diskette
and system reboot to invoke the system management service.

You Have to Run SMIT or High-Level Command Also
The system management service doesn′ t update the ODM. Whenever
you update or set the parameters on the card, you have to reflect the
updated parameters into the ODM manually. You can use SMIT or the
high-level command.

Note: For Micro Channel adapters, the configuration manager
automatically takes care of consistency with the ODM.

52 Practical TCP/IP for AIX V3.2/V4.1

You May Need to Set a Jumper on the Card
For the ISA token-ring adapter, you have to set a jumper switch on the
card to change the ring speed (4 or 16 MB).

When You Install more than Two Adapters
You have to choose the parameters correctly to avoid any conflict
among the cards. For example, if you install both ISA Ethernet and the
token-ring adapter, you have to configure the following parameters
explicitly to avoid any conflicts:

• Bus interrupt level

• Address of bus memory used for BIOS

• Bus I/O address

• Bus memory address

• Width of shared bus memory

We encourage you to consult the instructions Configuring ISA Ethernet and
Token-Ring Adapters if you have a question or problem.

1.6 Network Application Configuration
We briefly explain the TCP/IP network application configuration procedures in
this section. As you know, many application servers are started or stopped by
the daemon inetd. Sometimes, this inetd is called the super server because it
controls other TCP/IP daemons. In this book we call the daemons controlled by
the inetd, the inetd subserver. The major reason to put other daemons under the
inetd is to reduce overhead. They are started by the inetd as required and
stopped by the inetd when no longer needed. They do not always need to be
kept activated and we can avoid any system resource consumed by idle
subservers.

You should know that not all applications are suitable for this scheme. Some
applications don′ t fit the inetd approach. An application that has a very heavy
startup procedure, such as loading initial configuration from a file, may not be a
good candidate.

AIX provides a unique process control mechanism: a system resource controller
or srcmstr. The srcmstr is designed to control all background application
processes running on an AIX operating system. Of course, you can choose not
to use the srcmstr. With the default system configuration, the inetd is controlled
by the srcmstr. Therefore any inetd subserver is indirectly under the control of
srcmstr.

1.6.1 The Internet Super Server inetd
With the default system configuration, the inetd is invoked automatically during
the boot process. It is started by the script /etc/rc.tcpip. Read the script
carefully and you will find that the inetd is invoked by the high-level command
startsrc if the srcmstr is running. With the default configuration, all the inetd
configuration information is stored in the /etc/rc.tcpip, and the ODM is not used.
We are not talking about the subserver configuration file /etc/inetd.conf.

Note: The script /etc/rc.tcpip uses a start function and the command startsrc is
used in this function.

Chapter 1. TCP/IP Configuration for AIX V4.1 53

When the srcmstr is not available, the inetd is invoked in the same way that it is
invoked at the command line.

There are four ways to configure the inetd, as summarized in the following:

Editing the Startup Script /etc/rc.tcpip
This is the default. Inside this script, the high-level command startsrc is
used, but the ODM is not involved. All information to start the inetd
itself (and not the subservers) comes from this script.

Using SMIT and the Startup Script /etc/rc.tcpip
Usually SMIT updates the ODM, but this is the exception. Any
configuration update made by SMIT is written in this script.

Using High-Level Commands and the ODM
You have to use the chssys command. This is a possible alternative,
but we don′ t recommend it.

Using Command Line Execution
Exactly speaking, this is not a configuration. It only gives parameters at
the run time. The parameters don′ t persist during a system reboot.

We explain the previous four procedures, one by one, in this section.

1.6.1.1 Using the Startup Script /etc/rc.tcpip
Refer to A.3, “Startup Script /etc/rc.tcpip” on page 341 for the complete list of
this script. This is where the inetd is invoked. If the following lines are
commented out, your inetd cannot start during the system boot:

Start up socket-based daemons
start /usr/sbin/inetd ″$src_running″

As you see in the previous, the start is a function of ksh. If you could see the
beginning of this script, you would also find the definition of this function as
follows:

start -
starts daemons using either src or command-line method
args:
$1: pathname of daemon
$2: non-null if we should use src to start the daemon
$3: any arguments to pass it
#
start()
{

....
}

This script first checks to see whether the srcmstr is running. If it is running, set
the variable src_running to 1. Again it checks to see if the srcmstr can accept
the high-level command, lssrc -s inetd, to ensure the functionality of the srcmstr.
Notice that it does not matter if the inetd is running at this moment. The script
checks the exit status of the lssrc command. If the check fails, the script
/etc/rc.tcpip exits. In such a case, no daemons are invoked. If the srcmstr
passed the above check, the daemons are started by the function start(). Since
start() finds that the variable src_running is set, it uses the startsrc command
internally.

Note: Although the startsrc command is used, all the customized information is
stored in this script unless you update the ODM intentionally. You need
to use the chssys or odmchange command to update the ODM for inetd.

54 Practical TCP/IP for AIX V3.2/V4.1

If the srcmstr is not running, the variable src_running is not set. Therefore, the
start just starts all the daemons as they are invoked at the command line and
doesn ′ t use the startsrc command.

If you need to add some option flags to the inetd, update the corresponding lines
as follows. This puts the inetd in the debug mode and the inetd sends debug
messages to syslogd. Refer to the manual or InfoExplorer for the available flags.

Start up socket-based daemons
start /usr/sbin/inetd ″$src_running″ ″ -d ″

We recommend this approach if you need to do something with the inetd. This is
because it is easy to do and easy to check or fix.

1.6.1.2 Using SMIT and the Startup Script /etc/rc.tcpip
You can configure the inetd via SMIT. Please note that this procedure provides
the SMIT front end panels to the previous procedure using the startup script
/etc/rc.tcpip. In other words, you will use SMIT instead of another editor. This is
the only advantage of this procedure.

Again, with SMIT, nothing is updated in the ODM. Since the inetd is controlled
by the srcmstr and the srcmstr uses the ODM, the inetd has the corresponding
entry in the ODM. Changes are not written in the ODM. Any operations
described in this section are reflected in the startup script /etc/rc.tcpip instead of
the ODM. Therefore, the changes are made permanent.

Follow the steps below:

 1. Issue the following command:

smitty inetdsubsys

You will get Figure 17. Each submenu provides very simple and obvious
instructions.

� �
inetd Subsystem

Move cursor to desired item and press Enter.

Start Using the inetd Subsystem
Change / Show Restart Characteristics of inetd Subsystem
Stop Using the inetd Subsystem

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 17. SMIT inetd Subsystem Configuration Menu Panel

 2. If you choose the option Change / Show Restart Characteristics from the
inetd Subsystem panel, you will see the following:

Chapter 1. TCP/IP Configuration for AIX V4.1 55

� �
Change / Show Restart Characteristics of inetd Subsystem

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Start the inetd subsystem with DEBUGGING on? no +
Full path name of CONFIGURATION FILE to use []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 18. SMIT inetd Subsystem Configuration Panel

The changes made in this panel will be available immediately. If you press
the Enter key, inetd is stopped and restarted.

Start the inetd subsystem with DEBUGGING on
If you set this field to yes, the inetd generates debugging messages
for syslog. Therefore, you have to configure syslogd before
enabling this option.

Full path name of CONFIGURATION FILE to use
With the default, the inetd refers to and loads the configuration
information from the file /etc/inetd.conf. You can specify an
alternative configuration file here.

If you specify yes and /etc/new_inetd.conf for the above fields, the script
/etc/rc.tcpip is updated as follows:

Start up socket-based daemons
start /usr/sbin/inetd ″$src_running″ ″-d /etc/new_inetd.conf″

1.6.1.3 Using High-level Commands and the ODM
You need high-level commands when the inetd is controlled by the srcmstr. Use
the following startsrc command to start:

startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 18392.
#

Use the stopsrc command to stop it as follows:

stopsrc -s inetd
0513-044 The stop of the /usr/sbin/inetd Subsystem was completed successfully.
#

Even when you use SMIT or the editor to update /etc/rc.tcpip, you should use the
startsrc and stopsrc commands for interactive operation. You can check the
current status with the lssrc command. If you need detailed information, such as
what subservers are available, use -ls instead of the -s flag:

lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 18392 active
#

The most important difference is to update the configuration. You can use the
chssys command for this purpose. If you need the debug mode for the inetd and

56 Practical TCP/IP for AIX V3.2/V4.1

new subserver configuration file /etc/new_inetd.conf, you can issue the following
command:

chssys -s inetd -a ″-d /etc/new_inetd.conf″
0513-077 Subsystem has been changed.
#

With this command, the change is written in the ODM only. Unfortunately there
are no simple ways to review the ODM contents. To see if the change was
successful, use the odmget command. You should get something similar to the
following:

odmget -q ′ subsysname=inetd′ SRCsubsys | grep cmdargs
cmdargs = ″-d /etc/new_inetd.conf″

#

One pitfall that you should expect is that the customized ODM data has a higher
priority than that of the /etc/rc.tcpip and the command line arguments. Also, If
you make a change to the /etc/rc.tcpip as follows, what happens?

Start up socket-based daemons
start /usr/sbin/inetd ″$src_running″ ″/etc/another_new_inetd.conf″

The srcmstr first loads the configuration from the ODM and then, if it finds more
configuration information in the /etc/rc.tcpip, it just appends the new information
to the ODM information. As a result, the inetd is invoked as follows:

inetd -d /etc/new_inetd.conf /etc/another_new_inetd.conf

Since the inetd gets incorrect arguments, the inetd may be put in an inconsistent
state and your system may have problems. Thus, we don′ t recommend this
approach because it is difficult to debug.

1.6.1.4 Using Command-Line Execution
If you are not using the srcmstr, you don′ t need to use any high-level commands.
Just use the command-line interface to start and stop. Start the inetd with the
necessary arguments:

inetd -d /etc/new_inetd.conf
#

For example, you can check the status with the ps command, as follows:

inetd
ps -ef | grep inetd | grep -v grep

root 15302 1 0 17:16:57 - 0:00 inetd -d /etc/new_inetd.conf
#

To stop the inetd, use the kill command:

kill 18398
#

It is not recommended that you use high-level commands and the command line
interface simultaneously. The srcmstr has some control mechanisms on its
subsystems. For example, some subsystems (including the inetd) cannot be
started twice. It is defined in the ODM that many instances are invoked
simultaneously. See the following example:

Chapter 1. TCP/IP Configuration for AIX V4.1 57

startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 15310.
startsrc -s inetd
0513-029 The inetd Subsystem is already active.
Multiple instances are not supported.
#

For the command line invocation, there are no such restrictions (protections).
Refer to the following example:

inetd
inetd
inetd
ps -ef | grep inetd | grep -v grep

root 5585 1 0 17:21:23 - 0:00 inetd
root 15310 2684 0 17:21:03 - 0:00 /usr/sbin/inetd /etc/new_inetd.conf
root 15571 1 0 17:21:25 - 0:00 inetd
root 16341 1 0 17:21:27 - 0:00 inetd

#

This can be used as a debug method. If your daemon, such as inetd, doesn′ t
start, invoke it from command line. If it successful, the problem is due to the
srcmstr. If it doesn′ t start, the problem is not the srcmstr.

1.6.2 The inetd Subservers
In this section the inetd subservers are explained. The inetd subservers are
daemons controlled by the inetd. These subservers are designed to be invoked
and stopped by the inetd, and the inetd needs subserver configuration
information to start them. There are two places where the subserver
configuration is stored: one is the ASCII file /etc/inetd.conf. and the other is the
ODM. Thus, the configuration or customization task of inetd subservers is to
update these files.

Difference between V4.1 and V3.2

With AIX V4.1, the inetd no longer uses the ODM. Some inetd- and
ODM-related commands, such as inetimp and inetserv, are obsolete. Only
the ASCII file /etc/inetd.conf is necessary. For compatibility purposes, you
can configure V4.1 inetd as well as the V3.2 inetd. For such a case, you must
install the fileset bos.compat.net. This section is written for V3.2 and V4.1 in
which this fileset is installed.

Usually the srcmstr starts the inetd. Therefore, the inetd is given the necessary
information for its subservers (by the srcmstr). This is why the ODM is involved.
The srcmstr retrieves the inetd subserver information from the ODM and passes
it to the inetd. In other words, if you don′ t use the srcmstr, the ODM is not
referred to (although this is unusual for AIX). If the inetd is invoked at the
command line, it reads the ASCII file.

It is a good practice to update the ASCII file first, and then reflect the update to
the ODM. This is because the ASCII file /etc/inetd.conf is easy to review and
update. There is an excellent explanation (comment) in the following file
/etc/inetd.conf:

58 Practical TCP/IP for AIX V3.2/V4.1

###
##
Internet server configuration database
##
Services can be added and deleted by deleting or inserting a
comment character (ie. #) at the beginning of a line If inetd
is running under SRC control then the ″refresh -s inetd″ command
needs to be executed for inetd to re-read the inetd.conf file.
##
NOTE: The TCP/IP servers do not require SRC and may be started
by invoking the service directly (i.e. /etc/inetd). If inetd
has been invoked directly, after modifying this file, send a
hangup signal, SIGHUP to inetd (ie. kill -1 ″pid_of_inetd″) .
##
NOTE: The services with socket type of ″sunrpc_tcp″ and ″sunrpc_udp″
require that the portmap daemon be running.
Also please use ## to designate comments in this file so that
the smit commands can edit this file correctly.
##

For the complete list of the /etc/inetd.conf, refer to A.6, “Configuration File
/etc/inetd.conf” on page 347.

Of course, if you are sure that the srcmstr is always available (active), you can
update or just maintain the ODM. You can update the ODM using the inetserv
command without changing the ASCII file. However, we don ′ t recommend this
approach. Again we emphasize that the ODM is difficult to fix if it is corrupted.
Refer to the manual or InfoExplorer for details about this command. This
inetserv command is a low-level command. A low-level command is intended to
be used internally by a high-level command.

Note: The inetd subserver information is stored at InetServ Object Class in the
ODM.

Also, it is possible to update the ODM first and then propagate the change to the
ASCII file using the inetserv command. However, we never recommend these
approaches because there are no reasons to do so.

1.6.2.1 Integrated inetd Subservers
Basically, each inetd subserver is a daemon or a program. Some inetd
subservers are not completely independent daemons or programs, and they are
integrated with the inetd. The purpose of the inetd is to save the system
resource when the inetd subservers are not used. If an inetd subserver is small
enough, the forking and executing costs of the subserver are not negligible. To
avoid the overhead, those subservers are contained within the inetd. When you
see the /etc/inetd.conf, those subservers have the term internal in the path name
field.

Chapter 1. TCP/IP Configuration for AIX V4.1 59

...
echo stream tcp nowait root internal
discard stream tcp nowait root internal
chargen stream tcp nowait root internal
daytime stream tcp nowait root internal
time stream tcp nowait root internal
echo dgram udp wait root internal
discard dgram udp wait root internal
chargen dgram udp wait root internal
daytime dgram udp wait root internal
...

The configuration procedure of those integrated subservers is the same as the
other subservers.

1.6.2.2 Using ASCII File /etc/inetd and /etc/services
You can update the ASCII file /etc/inetd.conf first and then propagate the update
to the ODM with this procedure.

 1. Edit the file /etc/inetd.conf with your favorite editor. To enable a subserver
(daemon), remove the comment mark (#). If necessary, specify the flag(s) in
the right most column. The following is an example:

...
ftp stream tcp nowait root /usr/sbin/ftpd ftpd
telnet stream tcp nowait root /usr/sbin/telnetd telnetd -s
shell stream tcp nowait root /usr/sbin/rshd rshd
...

 2. Next, reflect the /etc/inetd.conf into the ODM. This can be done by issuing
the inetimp command as follows:

inetimp
#

Note: At this moment, both /etc/inetd.conf and /etc/services are imported to
the InetServ object class.

 3. Finally, you need to restart or refresh the inetd in order to have it read the
updated information. The srcmstr supports the refresh command.

refresh -s inetd
0513-095 The request for subsystem refresh was completed successfully.
#

If your inetd is managed by the command line execution, you need the
following operation to refresh the inetd:

ps -ef | grep inetd | grep -v grep
root 5585 1 0 17:21:23 - 0:02 inetd

kill -1 5585
#

If you are doubtful that the ODM is correctly updated, you can use the inetserv
command as below. The following flags make this command display the ODM
information with the compatible format of /etc/inetd.conf:

60 Practical TCP/IP for AIX V3.2/V4.1

inetserv -s -I -X
Service Socket Protocol Wait/ User Server Program Server Program
Name Type Nowait Arguments

echo stream tcp nowait root internal
echo dgram udp wait root internal
discard stream tcp nowait root internal
discard dgram udp wait root internal
daytime stream tcp nowait root internal
daytime dgram udp wait root internal
chargen stream tcp nowait root internal
chargen dgram udp wait root internal
ftp stream tcp nowait root /usr/sbin/ftpd ftpd
telnet stream tcp nowait root /usr/sbin/telnetd telnetd -s
time stream tcp nowait root internal
time dgram udp wait root internal
ttdbserverd sunrpc_tcp tcp wait root /usr/dt/bin/rpc.ttdbserverd rpc.ttdbserverd 100083 1
rstatd sunrpc_udp udp wait root /usr/sbin/rpc.rstatd rstatd 100001 1-3
rusersd sunrpc_udp udp wait root /usr/lib/netsvc/rusers/rpc.rusersd rusersd 100002 1-2
rwalld sunrpc_udp udp wait root /usr/lib/netsvc/rwall/rpc.rwalld rwalld 100008 1
sprayd sunrpc_udp udp wait root /usr/lib/netsvc/spray/rpc.sprayd sprayd 100012 1
pcnfsd sunrpc_udp udp wait root /usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2
cmsd sunrpc_udp udp wait root /usr/dt/bin/rpc.cmsd cmsd 100068 2-4
exec stream tcp nowait root /usr/sbin/rexecd rexecd
login stream tcp nowait root /usr/sbin/rlogind rlogind
shell stream tcp nowait root /usr/sbin/rshd rshd
ntalk dgram udp wait root /usr/sbin/talkd talkd
dtspc stream tcp nowait root /usr/dt/bin/dtspcd /usr/dt/bin/dtspcd
#

In the previous procedure, you don′ t need to update the /etc/services file. But,
this doesn′ t mean that /etc/services is not referred to. The /etc/inetd.conf file
doesn ′ t include the port number information. When the inetd opens the ports for
its subservers, it has to map the subservers to the appropriate socket ports.
Then, when you issue the inetimp command, /etc/services is also referred to,
and the port number information is stored in the InetServ object class. You can
retrieve the equivalent information with the /etc/services file from the ODM using
the inetserv command, as follows:

inetserv -s -S -X
Service Port/Protocol Aliases

tcpmux 1/tcp # TCP Port Service Multiplexer
tcpmux 1/udp # TCP Port Service Multiplexer
compressnet 2/tcp # Management Utility
compressnet 2/udp # Management Utility
compressnet 3/tcp # Compression Process
compressnet 3/udp # Compression Process
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
...
afs3-rmtsys 7009/udp # Remote Cache Manager Service
graPHIGS 8000/tcp # graPHIGS Remote Nucleus
x_st_mgrd 9000/tcp # IBM X Terminal
man 9535/tcp
man 9535/udp
isode-dua 17007/tcp
isode-dua 17007/udp
dtspc 6112/tcp
cppbrowse 4242/tcp
#

Chapter 1. TCP/IP Configuration for AIX V4.1 61

1.6.2.3 Using SMIT
You can use SMIT for the inetd subserver configuration. Again, SMIT only
provides front end panels from the previous procedure.

 1. Issue the following command:

smitty inetdconf

Then, you will see the following panel. Each submenu provides very simple
and obvious instructions. Then, we only need to explain the Add an inetd
Subserver option.

� �
inetd Subservers

Move cursor to desired item and press Enter.

List All inetd Subservers
Add an inetd Subserver
Change / Show Characteristics of an inetd Subserver
Remove an inetd Subserver

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 19. SMIT inetd Subserver Configuration Menu Panel

 2. You wil l see the following panel. With this option you can make a subserver
available for use. You can specify any subserver, currently commented out,
that is already written in the configuration file /etc/inetd.conf.

� �
Add an inetd Subserver

Please refer to help for information concerning subserver dependencies

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Available Subservers []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 20. SMIT inetd Subserver Selection Panel

 3. Then, you wil l see the following panel.

If you compare this panel with the /etc/inetd.conf file, the meaning of each
entry field is obvious. You can change it if you need to change some of the
fields.

62 Practical TCP/IP for AIX V3.2/V4.1

� �
Add an inetd Subserver

Please refer to help for information concerning subserver dependencies

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Internet SERVICE Name [finger]
* Transport PROTOCOL tcp +
* SOCKET Type stream +
* WAIT for Server to Release Socket nowait +
* USER Name [nobody]
* Service Program PATH Name [/etc/fingerd]
Service Program Command Line ARGUMENTS [fingerd]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 21. SMIT inetd Subserver Configuration Panel

If you press the Enter key on the previous panel, the comment mark (#) is
removed from the corresponding line of the /etc/inetd.conf file and the other
fields are updated as you enter information. Then the changes are propagated
to the ODM, and the inetd is refreshed.

Note: If the inetd is not invoked by the srcmstr, this panel will fail.

An inetd subserver is invoked by the inetd when a request comes in. This panel
doesn ′ t start the subservers, but it makes it possible for the inetd to start it.

1.6.3 Other Network Subsystems (Servers)
As we mentioned, some servers (daemons) are not controlled by the inetd.
Their configuration or customization procedures and starting or stopping
procedures are completely identical to the inetd. For your convenience, the
summary is shown as follows. For details, refer to 1.6.1, “The Internet Super
Server inetd” on page 53.

Editing the Startup Script /etc/rc.tcpip
This is the default. Inside this script, the high-level command startsrc is
used. The ODM is not involved. All the information to start the
subsystem (server daemon) comes from this script.

Using SMIT and the Startup Script /etc/rc.tcpip
Usually SMIT updates the ODM, but this is an exception. Any
configuration updates made by SMIT are written in this script.

Using High-level Commands and the ODM
You have to use the chssys command. This is a possible alternative,
but we don ′ t recommend it.

Using Command Line Execution
Exactly speaking, this is not a configuration. It only gives parameters at
the run time. The parameters don′ t persist during a system reboot.

In this section, we only describe the procedure using SMIT and the /etc/rc.tcpip
file.

Chapter 1. TCP/IP Configuration for AIX V4.1 63

1.6.3.1 Using SMIT and the Startup Script /etc/rc.tcpip
Do not forget that nothing is updated in the ODM with SMIT. Any operations
described in this section are reflected in the startup script /etc/rc.tcpip. The
following are used to make permanent changes:

 1. Issue the following command and invoke SMIT:

smitty otherserv

Then, you will see the following panel. Other subsystems are available
through this selection menu.

� �
Other Available Services

Move cursor to desired item and press Enter.

Super Daemon (inetd)
syslogd Subsystem
routed Subsystem
gated Subsystem
named Subsystem
rwhod Subsystem
timed Subsystem
portmap Subsystem (information only)

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 22. SMIT TCP/IP Subsystem (Application) Selection Menu

 2. After you select a subsystem (daemon), you wil l see the following panel. In
this example we selected routed (each subsystem has this same submenu).

� �
routed Subsystem

Move cursor to desired item and press Enter.

Start Using the routed Subsystem
Change / Show Restart Characteristics of routed Subsystem
Stop Using the routed Subsystem

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 23. SMIT TCP/IP Subsystem Menu (Routed)

 3. Select Change / Show Restart Characteristics of routed Subsystem , and you
will see the following panel. Each entry field corresponds to the option or
flag that is given at the startup time. These entry fields correspond to the
command line arguments when you invoke the daemons from the command
line. Of course, you can directly edit the /etc/rc.tcpip file.

64 Practical TCP/IP for AIX V3.2/V4.1

� �
Change / Show Restart Characteristics of routed Subsystem

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOG DEBUGGING information no +
* This host is acting as a GATEWAY no +
* SUPPRESS sending routing information yes +
* DO supply routing information no +
* Write all packets sent and received to STDOUT no +
Write all PACKETS to LOGFILE []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 24. SMIT TCP/IP Subsystem (Routed) Configuration Panel

Remember that the change or configuration made from the SMIT panel is only
reflected in the script /etc/rc.tcpip and is not introduced in the ODM (the object
class SRCsubsys). Before you update the configuration, /etc/rc.tcpip has the
following description for the routed Subsystem:

Start up routing daemon (only start ONE)
#start /usr/sbin/routed ″$src_running″ -q
#start /usr/sbin/gated ″$src_running″

The flag -q corresponds to the SUPPRESS sending routing information entry field.

1.7 The ODM
The object data manager (ODM) stores the data in the ODM database. It
maintains system configuration, devices and vital product data. It also provides
a reliable database facility for system management, which includes commands,
C-language subroutines, and an editor (odme) to create and manipulate the ODM
database. The system data that is managed by the ODM includes the following:

• Device Configuration Information
• Display Information for SMIT
• Vital Product Data for Install/Update of LPPs
• Communications Configuration Data
• System Resource Information

The previous data is organized in a structure called the object class.

1.7.1 The ODM Database
The ODM database is built on the AIX JFS. It is a collection of files located
under the /etc/objrepos directory. This directory is set to the shell variable
ODMDIR. You can confirm it as follows:

echo $ODMDIR
/etc/objrepos
#

See the following ODM example:

Chapter 1. TCP/IP Configuration for AIX V4.1 65

cd /etc/objrepos
ls
CDiagDev DSMenu PdCn errnotify sm_cmd_hdr.vc
Config_Rules FRUB PdDv history sm_cmd_opt
CuAt FRUs PdDv.vc history.vc sm_cmd_opt.vc
CuAt.vc InetServ SRCnotify inventory sm_menu_opt
CuDep MenuGoal SRCodmlock inventory.vc sm_menu_opt.vc
CuDv PDiagAtt SRCsubsvr lpp sm_name_hdr
CuDvDr PDiagAtt.vc SRCsubsys lpp.vc sm_name_hdr.vc
CuVPD PDiagDev SWservAt lvm_lock sna
DAVars PDiagDev.vc SWservAt.vc product
DSMOptions PdAt TMInput product.vc
DSMOptions.vc PdAt.vc config_lock sm_cmd_hdr
#

Each file stands for an object class and includes all the objects that belong to the
object class. For example, the object class Config_Rules is the collection of the
object′s configuration rules.

/etc/objrepos
Customized object classes and software VPD (LPP root part) are located
here. Also, the symbolic links to predefined object classes and SMIT
object classes are placed here.

/etc/lib/objrepos
Predefined object classes and software VPD (LPP /usr part) are located
here. Also, the SMIT menus and controls are located here.

/usr/share/lib/objrepos
Software VPD (LPP /usr/share part) is located here.

1.7.2 Object Class, Object and Object Descriptor
The object class is a collection of objects with the same semantic definition. You
can review the object class definition as follows:

odmshow Config_Rules
class Config_Rules {

short phase; /* offset: 0xc (12) */
short seq; /* offset: 0xe (14) */
long boot_mask; /* offset: 0x10 (16) */
char rule[256]; /* offset: 0x14 (20) */
};

/*
 columns: 4

structsize: 0x114 (276) bytes
data offset: 0x210
population: 19 objects (19 active, 0 deleted)

*/

#

As you can see, the definition is written by the object descriptor. The object
descriptor is made up of elements of the object that describe the object. In this
example, phase, seq, boot_mask, and rule are the object descriptors (short, long,
and char are descriptor types). The following are the seven descriptor types:

short
long

66 Practical TCP/IP for AIX V3.2/V4.1

char
vchar
binary
link
method

Using these descriptor types mean that any object that belongs to the
Config_Rules object class must have the above data structure. You can see that
the object conforms to the object descriptors of this object class. See the
following example of the object in this object class:

odmget -q ″seq=1″ Config_Rules

Config_Rules:
phase = 1
seq = 1
boot_mask = 0
rule = ″ /etc/methods/defsys″

#

This ODM data scheme is quite flexible and provides a reliable, object-oriented
database facility. This provides a means for users to create their own database.
The configuration manager (cfgmgr) uses the ODM as the database to store
configuration rules that the cfgmgr must execute. The object class Config_Rules
is designed for this purpose. Therefore, the meaning of each object descriptor
such as phase or sequence are user (cfgmgr) dependent.

1.7.3 Device and the ODM
The ODM is used to store the device configuration information. The device
configuration information is divided and stored in several object classes. The
following acronyms are defined:

PdDv Predefined device object class

PdAt Predefined device attribute object class

PdCn Predefined connection object class

CuDv Customized device object class

CuAt Customized device attribute object class

CuDep Customized device dependency object class

CuVPD Customized vital product data object class

CuDvDr Customized device driver object class

Note: Any device that will be configured must be defined in the object class
PdDv, PdAt and PdCn. In other words, you cannot configure any device
that is not defined in the predefined object class.

In this section, we explain these object classes using a network interface device
tr0. Up to now we referred to the command lsattr as the tool to review the ODM.
We show this command usage below, and you will see how this data is stored in
the ODM:

Chapter 1. TCP/IP Configuration for AIX V4.1 67

lsattr -E -l tr0
mtu 1492 Maximum IP Packet Size for This Device True
mtu_4 1492 Maximum IP Packet Size for This Device True
mtu_16 1492 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr 9.68.214.82 Internet Address True
state up Current Interface Status True
arp on Address Resolution Protocol (ARP) True
allcast on Confine Broadcast to Local Token-Ring True
hwloop off Enable Hardware Loopback Mode True
netmask 255.255.255.128 Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
#

If you need to know the details and exact definition of each object class and
descriptor, refer to the manual or InfoExplorer. You can find a complete
explanation, but it may not be easy to read.

1.7.4 Predefined Device Information
Any device that is configured must have been in predefined device object
classes in the ODM. You cannot configure a device that is not predefined in the
ODM. If your predefined device object class information is corrupted, you will
have serious problems. These object classes are supplied with AIX, and you
may need to restore or reinstall AIX to fix the corrupted data. You can review all
the predefined devices with the high-level command lsdev -P, as follows:

class type subclass description

logical_volume vgtype vgsubclass N/A
logical_volume lvtype lvsubclass N/A
lvm lvdd lvm LVM Device Driver
aio aio node Asynchronous I/O
pty pty pty Asynchronous Pseudo-Terminal
adapter ppa sio Standard I/O Parallel Port Adapter
adapter ppa_iod sio Standard I/O Parallel Port Adapter
printer opp parallel Other parallel printer
...

Refer to the manual or InfoExplorer for details.

1.7.4.1 Predefined Device PdDv
The predefined device is a kind of template. It defines all the supported devices.
In other words, any devices that will be configured must be defined in this object
class. See the following example. This is the example of a token-ring interface
device, which we continuously refer to through this section. Sometimes we refer
to token-ring adapter instead.

odmget -q ″type=′ tr′ ″ PdDv

PdDv:
type = ″tr″
class = ″if″
subclass = ″TR″
prefix = ″tr″
devid = ″″
base = 0

68 Practical TCP/IP for AIX V3.2/V4.1

has_vpd = 0
detectable = 0
chgstatus = 1
bus_ext = 0
fru = 0
led = 1409
setno = 110
msgno = 21
catalog = ″devices.cat″
DvDr = ″if_tr″
Define = ″ /usr/lib/methods/defif″
Configure = ″ /usr/lib/methods/cfgif″
Change = ″ /usr/lib/methods/chgif″
Unconfigure = ″ /usr/lib/methods/ucfgif″
Undefine = ″ /usr/lib/methods/udefif″
Start = ″″
Stop = ″″
inventory_only = 0
uniquetype = ″if/TR/tr″

#

As you know, each token-ring interface device has a number in this name (for
example tr0 or tr1). Notice that this object class PdDv only defines the common
object descriptors among any token-ring interface device and doesn′ t hold each
interface-specific (customized) information. Therefore, in this example, the
object is identified by the object descriptor type (tr).

Of course all the devices we explained, such as network device, network
interface device and adapter device, have corresponding templates in this object
class.

1.7.4.2 Predefined Device Attribute PdA
The device may have attributes that can be configured. This object class defines
such customizable device attributes. Default parameters are provided in this
object class (remember as an output of the command lsattr). Now you are
seeing where those attributes, listed by the lsattr command, come from. You
can see how many attributes are in the predefined, as follows. Notice that the
devices are identified by the descriptor uniquetype:

odmget -q ″uniquetype=′ if/TR/tr′ ″ PdAt | grep attribute
attribute = ″mtu″
attribute = ″mtu_4″
attribute = ″mtu_16″
attribute = ″remmtu″
attribute = ″netaddr″
attribute = ″state″
attribute = ″arp″
attribute = ″allcast″
attribute = ″hwloop″
attribute = ″netmask″
attribute = ″if_keyword″
attribute = ″security″
attribute = ″authority″
attribute = ″broadcast″

#

The above list matches the output of the lsattr command. You can see the
details of each attribute, as follows:

Chapter 1. TCP/IP Configuration for AIX V4.1 69

odmget -q ″uniquetype=′ if/TR/tr′ AND attribute=′ mtu′ ″ PdAt

PdAt:
uniquetype = ″if/TR/tr″
attribute = ″mtu″
deflt = ″1492″
values = ″60-8500,1″
width = ″″
type = ″R″
generic = ″DU″
rep = ″nr″
nls_index = 2

#

Now you know where the mtu default value (1492) is stored and where the range
60 - 17792 is defined. This is what you can refer to with the lsattr command, as
follows:

lsattr -R -l tr0 -a mtu
60...8500 (+1)
#

1.7.4.3 Predefined Connection PdCn
This object class contains information that is necessary in order to connect
terminal devices to their intermediate devices. A terminal device is a device
that doesn′ t have a child. Examples are disks, printers, display terminals and
keyboards. An intermediate device is a device that has both a parent and a
child. An example is adapter cards. A pseudo device can be an intermediate or
a terminal device. Only intermediate devices can have instances in this object
class. Network interface is both a pseudo device and an intermediate device
because the TCP/IP network is connected to it. The descriptor connkey
represents a subclass of devices to which it can be connected. Since the
network interface doesn′ t have any physical port or some place where the
TCP/IP network is connected, the descriptor connwhere is blank, as follows:

odmget -q ″uniquetype=′ if/TR/tr′ ″ PdCn

PdCn:
uniquetype = ″if/TR/tr″
connkey = ″TCPIP″
connwhere = ″″

#

1.7.5 Customized Device Information
If any specific device is configured, that device gets an instance in the
customized device object classes in the ODM. Although predefined device
object classes provide templates to hold common attributes between each
device instance, customized device object classes hold device instance-unique
information.

When the configuration manager (cfgmgr) runs during system boot, the cfgmgr
reads the config_rules object class and invokes a series of configuration
procedures defined in the object class. Based on the config_rules, the cfgmgr
detects a device. Then, the the cfgmgr reads predefined device object classes
(PdDv, PdAt and PdCn) and creates customized instances in the customized
device object classes (CuDv, CuAt, CuDep, CuDvDr and CuVPD) for detected
devices.

70 Practical TCP/IP for AIX V3.2/V4.1

The cfgmgr uses the method defined in the descriptor definition in the PdDv
object class in order to place the device in the defined state (in order to create
information in the customized device object classes). Also, the cfgmgr uses the
method defined in the descriptor configured in the PdDv object class in order to
place the device in the available state (in order to load the device driver). As in
the following example, the token-ring interface device has the following methods:

odmget -q ″type=′ tr′ ″ PdDv | grep Define
Define = ″ /usr/lib/methods/defif″

odmget -q ″type=′ tr′ ″ PdDv | grep Configure
Configure = ″ /usr/lib/methods/cfgif″

#

1.7.5.1 Customized Device CuDv
Whenever you configure a device, the corresponding object instance is created
in the object class CuDv. Remember that the predefined object class PdDv only
stores common object descriptors in the same type. Configuring a specific
device means building each device instance, such as tr0. Notice that any device
that has the status of defined has the instance in this object class. See the
following example:

odmget -q ″name=′ tr0′ ″ CuDv

CuDv:
name = ″tr0″
status = 1
chgstatus = 1
ddins = ″if_tr″
location = ″″
parent = ″inet0″
connwhere = ″″
PdDvLn = ″if/TR/tr″

#

1.7.5.2 Customized Attribute CuAt
As you know, any attribute defined in the object class PdAt can be changed if
you set your preferred value (in other words, updated the default value). The
customized attribute is created in the object class CuAt. See the following
example for the details. We configured the interface tr0 and set the IP address
and the subnet mask. As a result, the interface got the up state. Then, three
attributes have been stored in the CuAt. For any other attributes, PdAt is
referred to for getting the default values:

odmget -q ″name=′ tr0′ ″ CuAt

CuAt:
name = ″tr0″
attribute = ″netaddr″
value = ″9.68.214.82″
type = ″R″
generic = ″DU″
rep = ″s″
nls_index = 4

CuAt:
name = ″tr0″
attribute = ″netmask″
value = ″255.255.255.128″
type = ″R″

Chapter 1. TCP/IP Configuration for AIX V4.1 71

generic = ″DU″
rep = ″s″
nls_index = 8

CuAt:
name = ″tr0″
attribute = ″state″
value = ″up″
type = ″R″
generic = ″DU″
rep = ″sl″
nls_index = 5

#

1.7.5.3 Customized Dependency CuDep
The customized dependency (CuDep) object class describes device instances
that depend on other device instances. Dependency does not imply a physical
connection. This object class describes the dependence links between logical
devices and physical devices as well as dependence links between logical
devices, exclusively. Physical dependencies of one device on another device
are recorded in the customized device (CuDv) object class. This example shows
that the logical device inet0 has a dependency to another logical device tr0. This
dependency is obvious because the TCP/IP network instance inet0 requires the
network interface or it cannot be configured, as follows:

odmget -q ″name=′ tr0′ ″ CuDep

CuDep:
name = ″tr0″
dependency = ″inet0″

#

1.7.5.4 Customized Vital Product Data CuVPD
The customized vital product data (CuVPD) object class contains the vital
product data (VPD) for the customized devices. The following example shows
that the device tok0 doesn′ t have VPD in the ODM:

odmget -q ″name=′ tok0′ ″ CuVPD

CuVPD:
name = ″tok0″
vpd_type = 0
vpd = ″*NA″

#

1.7.5.5 Customized Device Driver CuDvDr
The customized device driver (CuDvDr) object class stores information about
critical resources that need concurrency management through the use of the
device configuration library routines. These routines are used by the cfgmgr and
high-level commands. When the descriptor resource is devno, the descriptors
value1 and value2 represent the device major number and minor number,
respectively. Concurrency control to a specific device can be made using the
following values:

72 Practical TCP/IP for AIX V3.2/V4.1

odmget -q ″value3=′ tok0′ ″ CuDvDr

CuDvDr:
resource = ″inst″
value1 = ″tokdd″
value2 = ″0″
value3 = ″tok0″

CuDvDr:
resource = ″devno″
value1 = ″36″
value2 = ″0″
value3 = ″tok0″

#

This is true if we compare the previous information with the major and minor
number:

ls -al /dev/tok0
c--------- 1 root system 36, 0 Aug 1 18:12 /dev/tok0
#

1.7.6 Updating the ODM Information
The ODM information is kept in a consistent state if everything is working well.
Since you are using only SMIT and high-level commands, logically you should
not get any inconsistency in the ODM. However, the real world is filled with
exceptions. For example, serious damage can occur in the ODM data, which
cannot be fixed by SMIT (high-level commands and configuration manager).
However, you would still have two final resorts. They are the odmchange
command and the ODM editor.

We recommend that you never use these tools for daily maintenance because
they don′ t take into consideration the relation or dependency between objects or
instances in the object classes. This is why these tools are powerful and can
achieve more than SMIT and high-level commands. Careless operation of these
tools can easily create major problems.

1.7.6.1 Create Your Working Directory
Because the ODM has very critical data for the system, when you update the
ODM by hand, the first step is to get the backup. One convenient alternative is
to create a working directory for the ODM using the following steps:

 1. Create a working directory for the ODM update, as follows:

mkdir /home/objrepos
#

 2. Copy the entire ODM to the working directory, as follows:

cp -R /etc/objrepos/* /home/objrepos
#

 3. Set the environment variable ODMDIR to the working directory. After doing
this, the ODM-related commands and tools will refer to the ODM in the
working directory. The original version will be intact.

export ODMDIR=/home/objrepos
#

 4. If you issue the odmget command as follows, it reads the data in the working
directory:

Chapter 1. TCP/IP Configuration for AIX V4.1 73

odmget -q ″seq=1″ Config_Rules

Config_Rules:
phase = 1
seq = 1
boot_mask = 0
rule = ″ /etc/methods/defsys″

#

After you complete the update task, check to see whether there are any
problems. Then, copy the modified ODM onto the original version.

1.7.6.2 The odmchange and odmdelete Commands
Typical usage of the odmchange and odmdelete commands is shown with an
example. It is strongly recommended that you read the manual or InfoExplorer
before you continue. Although we don′ t explain it, there is another command,
odmadd.

 1. The interface device tr0 is customized to have the updated mtu. We used
the chdev command:

chdev -l tr0 -a mtu=800
tr0 changed
#

 2. Next, retrieve the customized information about the attribute mtu using the
odmget command. For those ODM-related commands, the usage of the
qualifier is important. Character string constants must be enclosed in single
quotation marks. In this example, the output is sent to a file for edit:

odmget -q ″name=′ tr0′ AND attribute=′ mtu′ ″ CuAt > tr0_CuAt_mtu
cat tr0_CuAt_mtu

CuAt:
name = ″tr0″
attribute = ″mtu″
value = ″800″
type = ″R″
generic = ″DU″
rep = ″nr″
nls_index = 2

#

 3. Use your preferred editor and edit the file. To disable the trailer protocol,
you should change the file, as follows:

cat tr0_CuAt_mtu

CuAt:
name = ″tr0″
attribute = ″mtu″
value = ″1200″
type = ″R″
generic = ″DU″
rep = ″nr″
nls_index = 2

#

 4. In this step, the contents of the updated file are introduced into the ODM.
Again, pay attention to how the qualifier is written. If you are using the
wrong qualifier, you will destroy the data in the ODM.

74 Practical TCP/IP for AIX V3.2/V4.1

odmchange -o CuAt -q ″name=′ tr0′ AND attribute=′ mtu′ ″ \
> tr0_CuAt_mtu
#

 5. Check the ODM with the odmget command to see whether the update was
made successfully.

odmget -q ″name=′ tr0′ AND attribute=′ mtu′ ″ CuAt

CuAt:
name = ″tr0″
attribute = ″mtu″
value = ″1200″
type = ″R″
generic = ″DU″
rep = ″nr″
nls_index = 2

#

Note: These ODM commands update the ODM and do not touch the
corresponding information in the kernel. Therefore, changes are usually
effective after the next reboot. Notice that if you made a mistake during
the previous procedure, it may not be found until you reboot the system.

If you need to delete the attribute (to make it as if it had not been customized),
use the odmdelete command.

 1. Again, care must be taken to specify the qualifier. The wrong qualifier may
destroy the object instance completely. However, it can still be recovered if
the destroyed data belonged to the customized object class.

odmdelete -o CuAt -q ″name=′ tr0′ AND attribute=′ mtu′ ″
1 objects deleted
#

 2. Now, you can no longer see the attribute in the CuAt. It was successfully
deleted.

odmget -q ″name=′ tr0′ AND attribute=′ ′ mtu′ ″ CuAt
odmget: Could not retrieve object for CuAt, odm errno 5904
#

 3. Although the customized attribute was deleted, it doesn ′ t mean that the
attribute mtu of tr0 no longer exists. Remember that this attribute is also in
the PdAt object class. If it is not in the CuAt, the PdAt is referred to instead.
Then, you can see the current value (default), as follows:

lsattr -E -l tr0 -a mtu
mtu 1492 Maximum IP Packet Size for This Device True
#

Chapter 1. TCP/IP Configuration for AIX V4.1 75

Difference between V4.1 and V3.2

With V3.2 you have the ODM editor tool. The ODM editor provides the
interactive editing capability of the ODM. This tool provides interactive
front-end panels to those ODM commands explained in the previous section.
Explaining the details of the ODM editor is out of the scope of this book. You
can refer to the manual and InfoExplorer for details. You can invoke the
ODM editor with the odme command, specifying the object class being
edited, as follows:

odme CuAt

The odme command or the ODM editor is removed for V4.1. Only the
odmdelete, odmchange and odmadd commands are available to update the
ODM contents directly.

76 Practical TCP/IP for AIX V3.2/V4.1

Chapter 2. Debugging TCP/IP Troubles

In this chapter we explain troubleshooting procedures for TCP/IP problems.
Generally, there is no established, well-organized debugging method. Thus, this
book is an experiment. We believe that detailed knowledge and understanding
has greatly helped us in debugging problems. Therefore, we don′ t simply
provide procedures. To facilitate this understanding, the backgrounds and
mechanisms are described as well.

2.1 When Something Is Wrong with the Network
If you have trouble connecting your system to a network, many steps may be
required to fix this. In this chapter, we discuss cases where we have a
connectivity problem and not a performance problem. In such cases, you may
have a lot of options to change. We show the approaches that worked well for
us.

2.1.1 Keep In Mind
Here are some precepts we utilized to make debugging easier. You may want to
build your own list of precepts.

2.1.1.1 Knowledge and Understanding of TCP/IP
There are a lot of excellent books on TCP/IP and they are available at
bookstores. Magazine articles also help. TCP/IP is a protocol for an open,
multi-vendor environment. Thus, we can learn a lot from public sources.

Of course, manuals or InfoExplorer is also a crucial source for mandatory
information. Regardless of whether your concern is an AIX unique function or
not, you should refer to InfoExplorer first because AIX may have a different
approach or implementation from another UNIX system.

You can find a few explanations in the InfoExplorer about TCP/IP or Ethernet, or
you can buy commercial books at bookstores.

Our Experience

If you are running or planning to run DNS or sendmail, do not hesitate to buy
books from O′Reilly, DNS and BIND in a Nutshell or sendmail. If you are
planning to change some kernel configuration parameters, you should
carefully read the articles related to the no command in the InfoExplorer.

2.1.1.2 You Have to Know Your Environment
Many customers do not understand their systems or networks in detail. A few
sites are managed and administrated very well, and a lot of remaining sites run
with very little organized administrative effort. Thus, you have to know your
network environment and system environment very well when you debug them.
This is easy to say but difficult to do.

 Copyright IBM Corp. 1996 77

Our Experience

We know a person who happened to run secure TCP/IP for a test and left the
system without reconfiguring it. Several months later this person could not
configure the .rhosts authentication. It was a long time before it was
remembered what had been done on the system.

2.1.1.3 Any Information Would Be a Clue
Any symptom can be a clue. Error messages and the system′s behavior are
important information necessary to find the root of the problem. Of course, the
event or operation history is crucial information, especially when a working
system is not working well. We do not overlook anything unusual. (We know it
is difficult to figure out what is unusual.) The problem is that it is almost
impossible to know exactly who did what on the system before the problem
arose.

Our Experience

On a sophisticated, distributed software product, problems arose in AIX/DCE,
which the security server could not start. We were lucky enough because
someone happened to type the date command and noticed that the clock had
been reset to 1970. We adjusted the system clock and the DCE began
running. Later, we were informed that another person had reset the NVRAM
by removing the battery to resolve another problem.

2.1.1.4 Do Not Believe What People Say
We are not saying that you should not believe people. We are saying that you
should not believe what people say without verifying what they say.

Some people say that they didn′ t do anything but the system went bad, or that
they did what the manual said, but the system still went bad. But consider
whether or not they are correct and if they did and what they said. No matter
what people say they have done, it is not the same as what they have really
done. This philosophy helps you to determine problems. You may have to start
from a very basic point in the system to solve the problem.

Our Experience

A customer asked our help via telephone. His problem was that he could not
unmount his NFS-mounted file system. We asked him if somebody was
working in that directory or if some program was running in that directory.
We asked this question a hundred times and his answer was always the
same: “No, I′m quite sure nobody or nothing is there!” Finally we said to
him, “Would you please issue the command, fuser -u on that directory?”
Then his answer was, “Someone is there!”

2.1.1.5 Your Skill Is Limited by the Level of Who Is Now On-Site
This is absolutely true, especially when you are providing problem determination
support via telephone. Even if you are a top-class technical specialist, whenever
you support people through a telephone line, it is difficult to use your skills and
abilities due to the other person′s limited skills and abilities.

78 Practical TCP/IP for AIX V3.2/V4.1

If possible, you should visit the site where the problem is and check on the
problem yourself. Of course, this may not be easy.

Our Experience

A customer asked us to resolve his problem through a phone call. He
claimed that ping worked successfully but he could not use Telnet or any
other network applications while using ping. We asked him a lot of questions
to isolate the problem and noticed something was very strange. Finally, we
found the problem was as he explained to us, which was that the ping
worked successfully and that Telnet and other applications could not be run
with ping. See the following example:

ping gozira
PING 9.170.4.8: (9.170.4.8): 56 data bytes
0821-069 ping: sendto: A route to the remote host is not available.
ping: wrote 9.170.4.8 64 chars, ret=-1
0821-069 ping: sendto: A route to the remote host is not available.
ping: wrote 9.170.4.8 64 chars, ret=-1
0821-069 ping: sendto: A route to the remote host is not available.
ping: wrote 9.170.4.8 64 chars, ret=-1
^C
----9.170.4.8 PING Statistics----
3 packets transmitted, 0 packets received, 100% packet loss
#

2.1.2 Bottom-Up Approach
In our experience, the bottom-up approach seems to work best. This approach
checks and confirms the connectivity of each protocol layer from the bottom
(layer 1, physical layer) to the top (layer 7, application layer). Since any layer′s
connectivity is dependent upon the layer just beneath it, it′s quite reasonable to
check from the bottom to the top.

Although TCP/IP doesn′ t conform to the OSI seven-layered network model
completely, we use this model for our convenience. In this book, we define and
use the following definitions. Each layer is explained from the bottom to the top.

Physical Layer (Layer 1)
This layer represents physical media such as coax cable and fiber optic
cable. This layer is only responsible for the transmission of a bit stream
across a physical circuit. WANs, such as the public telephone network,
provide this layer.

At first, it seems that this layer is simple and straightforward, but if you look
at the FDDI physical layer, you will change your mind. It is full of strange
words such as 4B/5B Code, Symbol Encoding, and PMD Sublayer.

Sometimes, a device called a repeater is used to expand a cable length.

Data Link Layer (Layer 2)
This layer represents a communication link between two nodes (systems).
The unit of data processed in this layer is often called the frame. LAN
(Ethernet, token-ring, FDDI, etc.) is the technology that covers up until this
layer. If you plan to use WAN other than as a packet-switched network, you
have to prepare this layer by yourself.

Chapter 2. Debugging TCP/IP Troubles 79

Note: For the TCP/IP protocol stack, PPP is getting popular for WAN, but
our RS/6000 doesn′ t provide this protocol. You can use SLIP,
although it only runs on the async port.

In LAN, the 48-bit MAC address is the key to identify a node (or adapter). In
the TCP/IP protocol suite, ARP and RARP are data link layer protocols.

Sometimes, a device called a bridge is used to expand a communication
link. A lot of bridges nowadays have learning and filtering functions and
most can filter packets except for broadcast packets. Notice that this
filtering is based on the MAC address. A portion of a network separated by
a bridge is called a segment. In other words, a bridge connects two
segments, and a network can be built with more than one segment. Even
when more than one bridge is involved on the route to the destination node,
it is still one communication link.

Network Layer (Layer 3)
This network layer consists of multiple nodes. The unit of data processed in
this layer is often called a packet.

Note: The IP packet is also often called an IP datagram.

The IP is the protocol used to provide this layer. In IP, a 32-bit IP address is
the key in identifying a node and in routing packets to a destination. In the
TCP/IP protocol suite, IP and ICMP are network layer protocols. IP is the
only protocol that can carry user data.

This layer allows a connection between any two nodes, and the connection
can pass through other nodes. This function is called routing. Complex path
controls, which involve more than one communication link (or data link
layer), can be made in this layer. Any host system or delegated device that
can route an IP datagram is called a router. In the TCP/IP tradition, the
router is also called a gateway, although in the OSI world, the term gateway
has a different definition.

Note: In this book we use the terms router and gateway interchangeably.

Transport Layer (Layer 4)
This layer represents a connection between two processes. Each node
(system) can have multiple processes on it. The TCP and UDP are the
protocols used to achieve this layer. The unit of data processed by TCP is
often called a segment (and is often called a datagram by UDP). In TCP and
UDP, a 16-bit port number is the key to identifying a process. This is
because any process that uses TCP or UDP has the delegated port.

This layer also provides miscellaneous functions such as flow control and
reliable data communications including retransmission. TCP provides this
functionality, but UDP doesn′ t.

Session Layer (Layer 5)
This layer provides dialog sessions, such as half-duplex and full-duplex and
also synchronization points in the dialog. In the TCP/IP protocol stack, there
are no clear definitions for the session layer. Some functionality of this
layer is included in TCP.

Presentation (Layer 6)
This layer provides common data presentation between applications. In the
TCP/IP protocol stack, there are no clear definitions for the presentation
layer, and some applications include this function by itself. For example,
Sun Microsystem′s ONC/RPC provides External Data Representation (XDR).

80 Practical TCP/IP for AIX V3.2/V4.1

Application (Layer 7)
This layer represents the application entity. Usually, an application program
or user is an application entity.

Of course, you don′ t need to check through all the layers when something is
wrong. You can start with the layer where you are sure about connectivity.

2.2 Debugging the Physical Layer
This section may be the most difficult section to explain since we have few
relative topics to discuss.

2.2.1 How to Recognize a Physical Layer Problem
It would be almost impossible to define the symptoms or conditions that indicate
hardware trouble. The following list may help you if you are concerned with
your hardware ′s performance, but do not consider it to be complete:

• See whether the problem is intermittent and whether there seems to be no
clear indication of what triggers the problem. Of course, some subtle
problems could exist (for example, a traffic pattern or load).

• See whether the problem seems to depend on a geographical condition (for
example, you may see that the problem is related to a specific workstation,
although all conditions are the same with other workstations).

• See whether the problem is caused by a condition that is not directly related
to the problem. For example, if someone is using workstation A and
workstation B experiences problems, then there is no relation between the
two workstations. In other words, there are no TCP/IP communications
between A and B.

Unfortunately, there are no clear rules of thumb. If you cannot explain your
problem from a software or configuration point of view, the problem may be your
hardware, although this is not easy determine.

Our Experience

We had a problem when we loaded Ethernet and all communications (NFS,
Telnet etc.) of the destination system were hung. All symptoms implied that
there was some faulty hardware (a terminator). We checked all the coax
cables and found a terrible misconfiguration where someone had inserted a
small cable between the Ethernet adapter port and the T-connector. We saw
that there was very little room around an Ethernet adapter card to attach a
T-connector directly.

We found that the cable misconfiguration was not the cause. The real cause
was the low EC level of the Ethernet adapter. This time the misconfigured
hardware was not the problem, but it might have become a problem at any
moment.

You may be able to find something in the error log. If your system has some
hardware trouble and you are lucky enough, you may be able to see error
messages by issuing the errpt command.

Chapter 2. Debugging TCP/IP Troubles 81

2.2.2 How to Identify a Failed Unit
If you want to be certain of the functionality of a physical layer component, you
may need an appropriate device. For example, you may need a tester to check
to see whether a cable has not disconnected internally. In this section, we
explain some inexpensive alternatives. These alternatives are for small
environments. If you have more than 100 workstations and PCs connected
together, these procedures may not be directly applicable.

2.2.2.1 Replacing the Failed (or Problem) Unit
One inexpensive alternative to using sophisticated devices is the replacement of
parts. If you have spare parts stocked, you can just replace the problem cable
or terminator with the stocked one and see whether this fixes the problem. Even
when you don′ t have any stocked parts, you can borrow a well-proven part from
somewhere else in your network and test it.

2.2.2.2 Splitting and Building the Network
If you have failed parts, but still are not sure of the location of the failed part, you
can split the network into two smaller networks. You may need additional
hardware, such as terminators, to split your network. Check to see what
network still has the problem. Repeat this procedure until you end up with only
one machine. Eventually this method leads you to the failed unit. Some people
call this procedure a binary search.

Another approach is to build your network from the beginning. Start from a
system that you are absolutely certain is working. Then, connect cables and
other systems one by one, and see when the problem arises.

You may not be able to perform these procedures in a production environment.
Also, this requires a lot of physical work.

2.2.3 Check the Error Log with errpt Command
If you are lucky enough, you can find something in the system error log. It′s
worth checking. Be aware that not all hardware problems are recorded in the
error log. The following is an example of a connectivity problem. The symptom
was clearly that the ARP had failed. Many adapter (tok0) errors appeared on the
panel.

errpt
IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
C14C511C 0816110095 T H scsi0 ADAPTER ERROR
2BFA76F6 0815221095 T S SYSPROC SYSTEM SHUTDOWN BY USER
9DBCFDEE 0816103695 T O errdemon ERROR LOGGING TURNED ON
...
C14C511C 0712142995 T H scsi0 ADAPTER ERROR
018DF788 0710155395 N U tok0
0734DA1D 0706163595 P H fd0 DISKETTE MEDIA ERROR
0734DA1D 0706163595 P H fd0 DISKETTE MEDIA ERROR
00000020 0508104195 N U tok0
00000020 0508104195 N U tok0
00000020 0508104195 N U tok0
00000020 0508104195 N U tok0
00000020 0508104195 N U tok0
00000020 0508104095 N U tok0
00000020 0508104095 N U tok0
00000020 0508104095 N U tok0
00000020 0508103995 N U tok0

82 Practical TCP/IP for AIX V3.2/V4.1

00000020 0508103995 N U tok0
00000020 0508103995 N U tok0
00000020 0508103895 N U tok0
#

You can refer to the details of each error with an -a flag, as shown below:

errpr -a
...

LABEL: NONE
IDENTIFIER: 00000020

Date/Time: Fri Mar 17 12:24:59
Sequence Number: 4
Machine Id: 00FFFFFF4D00
Node Id: zero
Class: U
Type: NONE
Resource Name: tok0
Resource Class: adapter
Resource Type: tokenring
Location: 00-1X
VPD:

Displayable Message.........ISA Token Ring

Detail Data

0000 AAAA 0000 0000 0000 0000 0000 0A20 0800 5AAB 2319 0800 5AAB 2319 0000 0000

0000 0000 0000 0000 0000 0000

The solution was fairly easy. We pulled and pushed the token-ring data
connector and the problem was fixed.

Our Experience

For hands-on troubleshooting, it′s quite useful to have the following two
items:

VICTORINOX Swiss Army knife
MINI-MAGLITE flashlight

We had lots of opportunities to crawl under desks and pry panels open. The
above items are available at fairly reasonable prices if you compare their
price to that of a protocol analyzer.

2.2.4 Ethernet Adapter Problem (EC Level)
There is a problem with the Ethernet High-Performance LAN Adapter, F/C 2980.
This problem is clearly documented in the AIX release note which is shipped
with AIX, so this should not be a problem.

When you upgrade from an existing AIX 3.1 system with a separate Ethernet
adapter, you may need to apply a hardware fix to upgrade your Ethernet adapter.
Check your Ethernet adapter card EC Level with the lscfg -v -l command as
follows:

Chapter 2. Debugging TCP/IP Troubles 83

lscfg -v -l ent1
DEVICE LOCATION DESCRIPTION

ent1 00-02 Ethernet High-Performance LAN
Adapter (8ef5)

Network Address.............02608C2ED435
ROS Level and ID............0009
Displayable Message.........802.3/ETHERNET
Part Number.................071F1182
EC Level....................C26428
Device Driver Level.........00
Diagnostic Level............00
FRU Number..................081F7913
Serial Number...............00026236
Manufacturer................204491

#

Note: If you are using an integrated Ethernet adapter, you have to use sio0
instead of ent0. If you don′ t, you cannot get the ROS Level and ID
information.

If the level (ROS Level and ID) is 008, 009 or 0010, then your Ethernet adapter
needs to be upgraded. Call your hardware service representative and request
the ECA 015 fix. Do not use your system on the network until the ECA 015 fix has
been applied. If you run on the network without the ECA 015 fix, you may
experience Ethernet network problems, or the adapter may hang in your system.

2.2.4.1 The Symptom
The symptom arising from using a low-EC level Ethernet adapter is quite difficult
to isolate. The following are the typical symptoms:

• When you put a heavy load on the adapter, the adapter hangs.

• When the adapter hangs, ARP fails.

The following errors are logged in the system error log:

ENT_ERR2 COMMUNICATION PROTOCOL ERROR
ENT_ERR6 CSMA/CD LAN COMMUNICATION LOST

Rebooting the system fixes this problem.

Pay attention to these symptoms. The important thing is that these symptoms
are almost the same as hardware troubles (such as a faulty cable). The only
difference is that the problem can be fixed by rebooting the system. Thus the
symptoms can be quite confusing. The failed ARP and the error log suggest that
the problem is hardware-related. But, the rebooting fix suggests that the
problem is software-related. If you haven′ t experienced this problem, which is
that a low-EC level adapter hangs the system, you cannot make the problem
determination. If someone complains about Ethernet connectivity problems fixed
by reboot, consider the possibility of a low-EC level.

84 Practical TCP/IP for AIX V3.2/V4.1

2.2.4.2 Why Is this a Problem
A low-EC level Ethernet adapter works fine if the AIX is V3.1. When the AIX V3.2
was introduced, the TCP/IP networking module was updated and the
performance was substantially improved. This is why the low-EC level adapter
hangs the system.

Even now, we sometimes find that AIX V3.2/V4.1 is running with the low-EC level
Ethernet adapter during troubleshooting. Even with AIX V3.2/V4.1, the low-EC
level Ethernet adapter can work fine until a user puts a heavy load on the
adapter. When they upgraded from AIX V3.1 to V3.2/V4.1, they introduced a
potential problem. Later, when the traffic pattern or network usage is changed,
the problem arises and the card hangs.

When the upgrade is made, people can read the release notes and find the
description of this problem. Eventually they notice that their system still works
without the EC upgrade. Then, it becomes easy to forget this potential problem.

2.3 Debugging Data Link Layer with ARP
In this section, we discuss Address Resolution Protocol (ARP) and related topics.
ARP provides a dynamic address translation function from the IP address to the
MAC address. Now, almost all workstations and other systems that run TCP/IP
depend upon this protocol. Although an end user need not to be conscious
about the ARP, it is useful and even crucial in debugging a network problem.

Why ARP is Important

We do emphasize the importance of ARP in the following ways:

• When the ARP fails, you can not communicate by any means.

• When the ARP succeeds, you don′ t have any hardware problems.

• When the ARP succeeds and still you fail to communicate, there is a
software problem, including misconfiguration.

The ARP is a data link layer protocol, and this cannot be used to check higher
layers. You cannot check IP routing functions. You can check to see whether or
not your system can send and receive a frame to and from the system in the
same IP network.

2.3.1 ARP Mechanism Basics
In this section, we explain the ARP mechanism and operation briefly. This will
give you the knowledge needed to use ARP as a debugging tool.

2.3.1.1 Why ARP Is Necessary
As you know, the data link layer uses a 48-bit MAC address, and the network
layer (IP layer) uses a 32-bit IP address. In the TCP/IP world, any network
interface must have an IP address. Also, if LAN is used for the data link layer,
the adapter card must have a MAC address.

Whenever you send a packet, you must know the destination system′s IP
address and MAC address before you send the packet. You can get the IP
address by looking at /etc/hosts or from a name service database such as DNS
or NIS. Usually UNIX doesn′ t have such a table or database for MAC addresses.

Chapter 2. Debugging TCP/IP Troubles 85

The major reason for this is to reduce administrative nuisance. The IP address
is assigned by the network administrator of each site. By contrast, the MAC
address is assigned by the adapter card manufacturer and the address is usually
burned into the chip so that the user cannot change it.

Note: Our RS/6000 can have an alternate, user-defined address. For SNA, a
user-defined address is often assigned to an adapter.

Building a translation table between an IP and a MAC address is tough work.
This is because when a system is connected to or disconnected from your
network, you should know the MAC address and should update the translation
table. Even when an adapter card is exchanged, you need to update the table.
Remember that each system has the translation table, and if you have 100
workstations, you need to update 100 tables. If your network is very large, it is
almost impossible.

The ARP provides dynamic translation, so you need not gather or control MAC
addresses. The destination MAC address is received just before you send a
packet. This mechanism allows you to exchange an adapter at any moment
without any administrative tasks.

2.3.1.2 ARP Mechanism Brief Review
One solution is to ask the destination machine directly about its MAC address.
This is the basic concept of ARP. Of course, the destination MAC address is
unknown, and ARP has to use a broadcast. The overview of the ARP procedure
is as follows:

 1. Have your system search the ARP cache for the destination MAC address.
The search key gives you the IP address. If the MAC address is found, use
it. If the destination IP address is not in the same IP network, your system
searches the routing table and finds the appropriate gateway. Then, search
the ARP cache for the gateway MAC address since the packet should be
sent to the gateway.

Note: Many implementations actually use ARP back pocket (for example, a
cache of ARP cache is used for performance improvement). This will
be explained later.

 2. If the search fails, the system sends an ARP request message. This is called
a broadcast packet.

The following is a sample ARP request packet on token-ring by iptrace. In
this example, the system mat is asking what the MAC address is of a system
kashima.

86 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 42
TOK: ====(52 bytes transmitted on interface tr0)==== 13:51:27.606365696
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 90:00:5a:a8:b5:c1, dst = ff:ff:ff:ff:ff:ff]
TOK: routing control field = 8240, 0 routing segments
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 806 (ARP)
ARP: hardware address format = 6 (802.3, 802.5)
ARP: protocol address format = 800 (IP)
ARP: address lengths ; hardware = 6, protocol = 4
ARP: arp operation = 1 (request)
ARP: source addresses: hw [10:00:5a:a8:b5:c1]
ARP: protocol [9.68.214.82] (mat.hakozaki.ibm.com)
ARP: target addresses: hw [00:00:00:00:00:00]
ARP: protocol [9.68.214.76] (kashima.hakozaki.ibm.com)

Note: Notice that the source MAC address in the token-ring header is
90:00:5a:a8:b5:c1 and that it doesn′ t match the source MAC address
in the ARP information field. Due to the token-ring architecture, the
first bit of the source address has to be used as a routing information
indicator. This rule changed the first byte from 10: to 90:.

The Content of the ARP Request Packet

This packet has the target IP/MAC address fields, and the MAC field is
filled with all 0s. The source IP/MAC address fields, are filled with the
target field′s addresses. Note that these fields are in the information field
and not in the packet header.

 3. All systems in the same network (LAN) receive the ARP request packet.

ARP Cache Update

Even if the system is not the destination and the system has the entry of
the requesting system in its ARP cache, the system updates the entry
with the packet′s source IP/MAC address fields. But, if the system
doesn ′ t have the entry, nothing happens.

 4. Only the destination system responds to an ARP request with an ARP reply.
The destination system swaps the target and the source IP/MAC address
fields. Then, it fills the source IP/MAC address fields with its addresses. It
was originally filled with all 0s.

ARP Cache Update or Creation

If the destination system doesn′ t have the entry for the requesting system
in the ARP cache, then it creates this entry. If it already has the entry,
then it updates it. For this creation/update, the source IP/MAC address
fields of the ARP request packet are used.

 5. The requesting system receives the ARP reply and gets the destination′s
MAC address. Then, it stores the IP/MAC address in the ARP cache.

The following is a sample ARP response packet on token-ring by iptrace. In
this example a system kashima is answering by sending its MAC address to
the system mat.

Chapter 2. Debugging TCP/IP Troubles 87

Packet Number 44
TOK: ====(52 bytes received on interface tr0)==== 13:51:27.608872704
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = c0:00:7e:06:44:40, dst = 10:00:5a:a8:b5:c1]
TOK: routing control field = 02c0, 0 routing segments
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 806 (ARP)
ARP: hardware address format = 6 (802.3, 802.5)
ARP: protocol address format = 800 (IP)
ARP: address lengths ; hardware = 6, protocol = 4
ARP: arp operation = 2 (reply)
ARP: source addresses: hw [40:00:7e:06:44:40]
ARP: protocol [9.68.214.76] (kashima.hakozaki.ibm.com)
ARP: target addresses: hw [10:00:5a:a8:b5:c1]
ARP: protocol [9.68.214.82] (mat.hakozaki.ibm.com)

The destination system′s MAC address is kept in the ARP cache (memory). This
reduces the future ARP traffic. An ARP cache entry expires after 20 minutes.
Thus, even for the same destination machine, the ARP broadcast may be needed
once every 20 minutes. If you reboot the system, all entries in the cache will be
lost.

Note: Twenty minutes is the default value and you can change it with the no
command option arpt_killc. We don′ t see any reason to change it. To
review the current value, issue the no command as follows:

no -o arpt_killc
arpt_killc = 20
#

2.3.2 ARP Cache Operation
Now we will explain some concrete procedures on how to use ARP for TCP/IP
troubleshooting. We can use the arp command to work with the ARP cache. The
arp command has the following options:

arp -h
Usage: arp hostname

arp -a[n] [/dev/kmem]
arp -d hostname
arp -s ether hostname ether_addr [temp] [pub]
arp -s 802.3 hostname ether_addr [temp] [pub]
arp -s fddi hostname fddi_addr [fddi_route] [temp] [pub]
arp -s 802.5 hostname token_addr [token_route] [temp] [pub]
arp -f filename [type]

#

Difference between V4.1 and V3.2

With AIX V4.1, the -n flag is newly added. You can see arp table with
suppressing IP address and host name resolution. This flag is valuable for
troubleshooting.

88 Practical TCP/IP for AIX V3.2/V4.1

2.3.2.1 Looking at ARP Cache
If you want to review the current ARP cache content, issue the arp -a option.
This is the translation table to convert an IP address to the MAC address.

arp -a
? (9.170.3.71) at 40:0:70:9b:1d:c0 [token ring]
? (9.170.3.75) at 40:0:70:9b:1d:bb [token ring]
os2sat.fscjapan.ibm.com (9.170.3.180) at 40:0:70:9b:1f:55 [token ring] rt=ca0:a961:1a01:1001:1b01:b960
? (9.170.3.93) at 10:0:5a:a9:26:9d [token ring]
? (9.170.3.94) at 10:0:5a:25:6b:a4 [token ring]
cedar.fscjapan.ibm.com (9.170.1.11) at 10:0:5a:4f:18:7 [token ring]
osi6000.fscjapan.ibm.com (9.170.3.100) at 40:0:12:17:61:55 [token ring] rt=cc0:a961:1a01:1001:1b01:b960
ishii.fscjapan.ibm.com (9.170.1.13) at 10:0:5a:4f:50:2b [token ring]
noname02.fscjapan.ibm.com (9.170.3.102) at 10:0:5a:a8:1f:f6 [token ring]
sugahara.fscjapan.ibm.com (9.170.3.3) at 10:0:5a:c9:17:fa [token ring]
coral.fscjapan.ibm.com (9.170.3.5) at 10:0:5a:c9:0:64 [token ring]
baba.fscjapan.ibm.com (9.170.3.107) at 10:0:5a:a8:8f:76 [token ring]
aries.fscjapan.ibm.com (9.170.3.9) at 10:0:5a:a8:4e:75 [token ring]
noname04.fscjapan.ibm.com (9.170.3.109) at 40:0:70:9b:1c:dd [token ring] rt=c40:b961:1b01:1001:1a01:a960

#

You may see host names that you have never tried to access. When a system
accesses your system, even by sending a ping packet, that system appears in
the ARP cache automatically. This mechanism has the effect of reducing future
ARP traffic. The ARP implies that someone is trying to send something to your
system and that there must be a very high possibility that your system will
receive the response. Therefore, it′s quite reasonable to create the entry of the
accessing machine by just looking at the ARP request packet information field.

Note: If the access is broadcast, the entry is not created in the ARP cache. The
broadcast includes both the MAC layer broadcast and the IP broadcast.

Some products, such as NetView, keep sending a ping packet periodically for
monitoring purposes. You may see the never disappearing entries in your ARP
cache.

In LAN, every system can hear all the ARP request packets. This is because
ARP request packets are broadcasted. It′s possible to collect all the IP and MAC
address pairs from those ARP request packets and to build the ARP cache, but
this is not good approach. Whenever a system sends a packet, the ARP cache
should be looked up. A bigger ARP cache reduces system performance, and the
above approach may build an unnecessarily big ARP cache. For this reason,
consider why the cache entry has an expiration mechanism.

AIX V4.1 provides options to configure the ARP cache (table) size with the no
command as follows:

no -a | grep arptab
arptab_bsiz = 7
arptab_nb = 25

#

For the V4.1, the default cache size for a router configured system is 25 and for a
non-router configured system it is 20.

Difference between V4.1 and V3.2

V3.2 can have up to 20 entries in the ARP cache. If the RS/6000 is a router, it
can have up to 100 entries in the ARP cache. These maximums should be
enough. You can refer to the header file /usr/include/net/if_arp.h for details.

Chapter 2. Debugging TCP/IP Troubles 89

2.3.2.2 ARP Connectivity Test Procedure
In order to make matters clear, you can do the following ARP operation. This
procedure checks the connectivity.

 1. First, review the ARP cache as follows:

arp -a
? (9.170.3.107) at 10:0:5a:a8:8f:76 [token ring]
inoki (9.170.3.240) at 40:0:70:9b:1d:e4 [token ring]
newton (9.170.3.45) at 10:0:5a:a8:46:2d [token ring]

#

 2. Then you can delete any entry in the cache as follows:

arp -d newton
Entry newton (9.170.3.45) was deleted from local arp table.
#

 3. Confirm the entry has been removed as follows:

arp -a
? (9.170.3.107) at 10:0:5a:a8:8f:76 [token ring]
inoki (9.170.3.240) at 40:0:70:9b:1d:e4 [token ring]

#

 4. Then you can try the connectivity test. Try to access the destination system
in your favorite way. Ping may be the appropriate command. Of course, you
can use Telnet instead. In the following example, we sent only one ping
packet:

ping newton -c 1
PING newton: (9.170.3.45): 0 data bytes
8 bytes from 9.170.3.45: icmp_seq=0 ttl=255

----newton PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
#

 5. Then, check the ARP cache again, as follows, and you can find the
appropriate entry if the command succeeded:

arp -a
? (9.170.3.107) at 10:0:5a:a8:8f:76 [token ring]
inoki (9.170.3.240) at 40:0:70:9b:1d:e4 [token ring]
newton (9.170.3.45) at 10:0:5a:a8:46:2d [token ring]

#

2.3.2.3 How to Enable/Disable the ARP Function
You can disable the ARP functionality and see what happens. If you disable
ARP, you have to load the IP and MAC addresses to your ARP cache manually
or you will not be able to communicate after the current ARP cache entries are
expired. You can load an entry with the arp -s command. The ARP disable
procedure is as follows:

chdev -l tr0 -a arp=off
tr0 changed
#

You can enable ARP as follows:

chdev -l tr0 -a arp=on
tr0 changed
#

90 Practical TCP/IP for AIX V3.2/V4.1

2.3.3 ARP Successful Examples
After the connectivity test, you will see the following entries in your ARP cache:

2.3.3.1 Ethernet
This is a self-explanatory process.

miami (9.116.158.5) at 2:60:8c:2f:6:d6 [ethernet]

2.3.3.2 Token-Ring
The following is the case when the destination system is in the same physical
ring:

admi (9.116.128.38) at 10:0:5a:4f:35:b8 [token ring]

2.3.3.3 Token-Ring with Bridge
We can connect more than one ring with bridges and in that case, the result will
be as follows:

paris (9.116.158.249) at 10:0:5a:a8:b5:c1 [token ring] rt=8a8:241:ffe1:90

If the destination system is located on a different physical ring, the ARP
request/response packet has to go through a bridge or bridges. In token-ring,
the source routing is usually used, and the routing information is set in the
packet header (MAC header). In the previous example, the routing information
is also displayed.

Note: Be aware that this is not IP routing. This is only for data link-level
routing, and from the IP layer′s point of view, there is still only one IP
network. Bridges can pass broadcast packets which is important. This is
a prerequisite for the ARP function to work.

The following lists each field of the routing information. Unfortunately, each field
doesn ′ t fit into the 8-bit boundary, and it makes the reading and understanding of
these fields difficult.

rt=8a8:241:ffe1:90

• The first two bytes, 8a8, are for the routing control field. This field includes
the following information:

Broadcast indicator (3 bits)
Length bit (5 bits)
Direction bit (1 bit)
Largest frame bits (3 bits)
Reserved bit (4 bits)

• The second and the following two byte fields are separated by a colon. 241,
ffe1, and 90 all make up a route designator field. This field consists of a
12-bit ring number and a 4-bit bridge number.

You can refer to Token-Ring Network Architecture Reference, SC30-3374 for a
more complete explanation.

Chapter 2. Debugging TCP/IP Troubles 91

2.3.3.4 X-Station
If your system is serving an X-Station, in other words, if your system is running
an X-Station Manager program, you may find an entry with the term permanent
as follows:

hal (9.116.158.5) at 8:0:5a:3a:1:4c [ethernet] permanent

This entry is not the subject to be expired or deleted. It remains until the system
reboot or until you can remove it with the explicit command arp -d.

During the X-Station boot process, the server system has to send packets to the
X-Station, but the X-Station cannot respond to the ARP request. This is why it
needs a permanent entry.

2.3.3.5 The Destination Host Is Not in Your /etc/hosts File
If your system cannot map the IP address to the host name, the host name
portion is as follows:

? (9.110.158.212) at 2:60:8c:2f:6:d9 [ethernet]

If the destination system is not registered in /etc/hosts or the name service
database that you are using (usually DNS or NIS), then your system uses a
question mark (?) for the host name. This is never a connectivity problem of the
data link layer. Your system will not have a problem with hardware such as the
cable, adapter, and terminator.

This may be a problem because some applications need the IP address to
perform host name mapping. One example is NFS which will not work if it
doesn ′ t have the host name. We recommend that you check your name service
or /etc/hosts file.

2.3.4 ARP Failed Example
If your system failed with the ARP request/response operation, you get the
following result:

rio (9.110.181.3) at (incomplete)

A failed entry is removed from the ARP cache after three minutes. In this case,
you have a connectivity problem at the data link layer or physical layer. In our
experience, in almost all cases the causes were faulty cables, terminators or
adapter cards.

In this situation, you can not communicate. No communication applications are
available.

2.3.5 Proxy ARP and RARP
In this section, we explain two special situations where the ARP mechanism
doesn ′ t work or is not applicable. In this case, Proxy ARP and RARP have been
devised.

92 Practical TCP/IP for AIX V3.2/V4.1

2.3.5.1 Proxy ARP
The usual ARP procedure stores a set of MAC addresses and an IP address
after an ARP broadcast request or response is received. There are some
devices that cannot support ARP or respond to the ARP request For example,
machines attached through SLIP or PPP lines can not support ARP because
these serial lines can not provide broadcast capability. For such a case,
terminal servers such as the 7318-s20, provides Proxy ARP). In this case, there
must be someone in the same network who can respond to the ARP request as
the proxy.

Another situation is when you have to use a device that cannot understand
subnet or subnet mask. This situation is quite rare nowadays. A router between
subnets responds to the ARP request, which is searching for a MAC address in
the other subnet, as the proxy ARP server. In this case, the router informs the
ARP of its MAC address instead of informing the destination system.

It′s rare for you to face the previous situations. You have an option to add an
entry in the ARP cache manually. For this purpose, use the -s and pub flags as
follows:

arp -s ether newton 10:0:5a:a8:46:2d pub
arp -a
? (9.170.3.107) at 10:0:5a:a8:8f:76 [token ring]
newton (9.170.3.45) at 10:0:5a:a8:46:2d [token ring] permanent published

#

A manually added entry is a permanent entry if you don′ t specify the temp
option. In this example, the system will respond if it gets an ARP request asking
for the MAC address of the system newton (9.170.3.45).

2.3.5.2 RARP
The Reverse ARP (RARP) is for the system that knows its MAC address but
doesn ′ t know its IP address. RARP is a protocol that allows a system to get its
IP address from the RARP server. A diskless/dataless machine and X-Station
are good candidates for the RARP. They don′ t know their IP addresses when
they boot and RARP may be used. There must be more than one RARP server
in the same network if you use RARP.

Our RS/6000 and X-Station don′ t use RARP. They use BOOTP instead. BOOTP
has the following advantages over RARP:

• RARP as well as ARP cannot pass through a router. BOOTP can pass
through a router since BOOTP is built on top of the UDP and IP. It can use
the IP routing function to do this.

• If you need RARP, your operating system must support and provide RARP
functionality. On the other hand, BOOTP is usually implemented as an
application module. You can add the BOOTP capability to your system.

• BOOTP can carry more information than RARP.

An interesting point is that we can make our RS/6000 an RARP server. Although
it never uses RARP by itself, your system will respond to the system that sends
the RARP broadcast request. Of course, we have to set the IP and MAC address
in the ARP cache manually.

Add the entry in the cache with the -s flag as follows:

Chapter 2. Debugging TCP/IP Troubles 93

arp -s ether newton 10:0:5a:a8:46:2d
arp -a
? (9.170.3.107) at 10:0:5a:a8:8f:76 [token ring]
newton (9.170.3.45) at 10:0:5a:a8:46:2d [token ring] permanent

#

Note: You cannot disable the RARP functionality if the entry is in the ARP
cache. Other vendor′s implementations, such as Sun Microsystems, need
the daemon rarpd running. RS/6000 doesn′ t use rarpd.

2.3.6 Duplicated IP Address
One problem that occurs is a duplicated IP address. This is due to a careless IP
address assignment or administrative confusion.

Note: We name the system, which has the identical IP address with your
intended destination system, a false system or false destination.

2.3.6.1 The Mechanism of Trouble
Consider the situation when there are two systems that have an identical IP
address. If they are located in the same IP network, when your system sends an
ARP request with that IP address, your system will get two ARP responses
including different destinations for the MAC addresses. The ARP is a very
simple protocol and doesn′ t have any duplication detection or avoidance
mechanism. As a result, the latest ARP response overwrites the prior ARP
response. Then, the slow-responding system will get its entry put into your
system ′s ARP cache.

An important point is that it′s impossible to know which system will be the
slow-responding and have its entry put into your ARP cache. Once a system
wins, its MAC address remains for the next 20 minutes in your ARP cache.
Then, this process begins again, which invites a very unstable situation.
Sometimes you can communicate successfully and sometimes you cannot. If
one system is located beyond a bridge and the other is located in the same LAN
segment, usually the farthest one wins. When the nearest one is heavily loaded,
the nearest one wins. You can figure out a lot of scenarios, but almost all cases
should have intermittent characteristics.

If you check the ARP cache, you find the cause much easier. It′s not a bad idea
to list all of your destination′s MAC addresses and compare them with the ARP
cache.

Note: Although the MAC addresses are subject to being updated by chance and
ARP is designed to compensate this concern, it would still be worth
writing down the MAC address list.

For example, when everything is fine, you see the following:

arp -a
grover.fscjapan.ibm.com (9.170.5.21) at 10:0:5a:b1:5b:23 [token ring]

#

When you lose the communication to grover, as follows, you are almost sure to
have found the reason:

arp -a
grover.fscjapan.ibm.com (9.170.5.21) at10:0:5a:b1:6e:fd [token ring]

#

94 Practical TCP/IP for AIX V3.2/V4.1

One problem is how to find the system that has the MAC address of
10:0:5a:b1:6e:fd. It′s not so easy if you don′ t have a complete list of the MAC
addresses in your site. If your site uses several vendors, you have to learn the
appropriate commands to display the MAC address to all the vendor products.

Our Experience

We had a situation where we could not communicate with a certain system at
all. The problem was that we telneted to another system first and then
issued telnet again to the destination from that system and it worked. Finally,
we found that there was a system that belonged to another department that
had the duplicate IP address. The theory is that the slow-responding system
wins or that the farthest one wins. This explains the symptoms clearly.
When we logged on to the other system, which was located electrically closer
to the false system, the correct destination system has its entry put into your
ARP cache.

Nowadays, restructuring (not the network but the whole company) is a trend,
and this kind of administrative confusion happens easily.

If you have a protocol analyzer, this kind of problem should be discovered
immediately. A protocol analyzer triggers the alarm to inform us that there is a
duplicated IP address system when it finds a duplicated IP address packet. In
our experience, it took only 10 or 20 seconds to reveal the existence of an IP
address duplication. This is the value of the protocol analyzer.

2.3.6.2 What Happens on the Destination System
This depends on the method (application) you are using. When your packets are
sent to a false destination system, they are received as follows:

 1. The data link module checks the destination MAC address in the data link
header, and the packets pass the check.

 2. The IP module checks the destination IP address in the IP header, and the
packets pass the check.

 3. The transport module (TCP or UDP) checks the port number in the TCP/UDP
header. This is the place where the problem may be detected.

• If your packets are for the port of the application that is not available or
not running on the false system, the transport module cannot deliver
your packets. In the case of UDP, the communication ends up with the
ICMP error, Destination unreachable - Port unreachable. In the TCP
case, the TCP module sends the ACK packet with the RST flag on and
forces the TCP session to terminate.

• If the false system happens to have the destination port in your packet,
the transport module delivers your packets to that port. Then, the result
is totally application dependent. For example, the TELNET server
daemon telnetd accepts your packets without any problems and shows
you the login prompt.

Since most workstations have telnetd running on them, as mentioned above, you
may be able to log in to the false system, because the telnetd is always listening
to the fixed number port 20. If the system has a customized login prompt or a
different login screen, you can recognize the problem.

Chapter 2. Debugging TCP/IP Troubles 95

If the false system is a PC or is some system which is not running telnetd, your
TELNET session request is terminated and you will see the following message:

tn joker
Trying...
telnet: connect: Connection refused
#

This symptom is exactly the same as if the telnetd is not started on the correct
destination system. Then you may not notice that you are connecting to the
false destination.

2.3.6.3 When Your Communication Suddenly Hangs
Consider the situation that someone in your company happens to have assigned
the identical IP address as your system to someone′s PC. When someone, who
we call Mr. X, turns his PC on, then that PC responds to your destination
system ′s ARP request. Based on the theory that the farthest system wins, Mr.
X′s PC updates the ARP cache of your destination system. We assume that Mr.
X′s desk is far from your office, and that he is working in another division of your
company. It′s a reasonable assumption because IP address duplication usually
happens with more than two administration entities.

Then, your communication suddenly hangs. This is the moment when Mr.X′s PC
updates the ARP cache of your destination system. Now, your destination
system no longer recognizes your system because your system′s MAC address
was replaced with the MAC address of Mr. X′s PC. Since all responses of the
destination system are sent to Mr.X′s PC, there must be many Destination
unreachable error counts on the destination system.

When Mr.X turn his PC off, you will gain the access again. From your point of
view, the problem is intermittent and can not find a clear condition or criteria.

2.3.7 ARP Pitfalls
In this section we address some ARP-related hints and tips. You should know
these in order to be able to complete a debug.

2.3.7.1 When You Have a Router
Be aware that ARP is a data link layer protocol. If your destination system is
located in another IP network, The IP routing mechanism is invoked first. This is
because all packets going to their destination have to pass through a gateway
(also called a router). The IP routing finds the appropriate gateway by searching
the routing table. Your system sends an ARP request packet that asks for the
MAC address of the gateway system. As a result, you get the entry of the
gateway system in your ARP cache. See the following example:

 1. Check the ARP cache where you now have only one entry, as follows:

arp -a
grover.fscjapan.ibm.com (9.170.5.21) at 10:0:5a:b1:5b:23 [token ring]

#

 2. Issue ping as follows to the system lazy in the IP network 9.170.1:

96 Practical TCP/IP for AIX V3.2/V4.1

ping lazy -c 1
PING lazy.fscjapan.ibm.com: (9.170.1.9): 0 data bytes
8 bytes from 9.170.1.9: icmp_seq=0 ttl=254

----lazy.fscjapan.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
#

Note: Pay attention to ttl=254. The ping request and reply initially have the
time-to-live (TTL) of 255 in the IP header. This ping reply passed
through a router, and the TTL in the IP header was decremented by
one.

 3. Check the ARP cache again and see what happened. The entry of the
gateway host inoki5 is as follows:

arp -a
grover.fscjapan.ibm.com (9.170.5.21) at 10:0:5a:b1:5b:23 [token ring]
inoki5.fscjapan.ibm.com (9.170.5.240) at 40:0:70:9b:1d:e4 [token ring]

#

Notice that the gateway or router system inoki5.fscjapan.ibm.com appeared in
the ARP ache. Refer to the following routing table. The destination lazy is
beyond inoki5, which is the default gateway. Any packet that has the destination
address other than 9.170.5 is sent to inoki5.

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
default inoki5.fscjapan.ib UG 0 988 tr0
9.170.5 newton.fscjapan.ib U 7 45628 tr0
127 loopback U 1 4 lo0
#

2.3.7.2 ARP Cache Back Pocket (V3.2 Only)
Many ARP implementations, including RS/6000, have a mechanism to improve
ARP cache look-up performance. In this book we call it back pocket. You will
see a mysterious situation that you cannot understand or explain without the
knowledge of the back pocket. We explain this with the following example:

 1. Check the ARP cache and you wil l see that nothing is there, as follows:

arp -a
#

 2. Then ping to a system and see the ARP cache. Of course, the entry is
created, and the following is what we expected:

ping jodie -c 1
PING jodie: (9.170.5.44): 0 data bytes
8 bytes from 9.170.5.44: icmp_seq=0 ttl=255

----jodie PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
arp -a
jodie (9.170.5.44) at 10:0:5a:b1:6e:ca [token ring]

#

 3. Delete the entry and confirm that the entry is really removed, as follows:

Chapter 2. Debugging TCP/IP Troubles 97

arp -d jodie
Entry jodie (9.170.5.44) was deleted from local arp table.
arp -a
#

 4. Then, ping again to the same system as follows, and see the ARP cache
again:

ping jodie -c 1
PING jodie: (9.170.5.44): 0 data bytes
8 bytes from 9.170.5.44: icmp_seq=0 ttl=255

----jodie PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
arp -a
#

Nothing is in the ARP cache, but you can ping to the system. This is the
effect of ARP cache back pocket.

This mechanism is a part of the network interface. A network interface holds
only one destination MAC and IP address pair. This is for the latest system that
you accessed. If the destination IP address is the same as the address in back
pocket, the ARP cache is never used. The network interface just refers to the
back pocket. This means that if the destination system exchanged its adapter
card and the MAC address was updated, it could not be known to your system.

Note: If the destination system sends a packet (for example, ping) to your
system, it will update your ARP cache automatically. Even the ARP reply
broadcast of the destination system updates your ARP cache. But since
the ARP cache is not referred to, there is no way to know about it.

If your system communicates with only one destination system, the ARP cache is
never looked up. It is possible to use only the information in the back pocket
while the ARP cache was updated one hundred times. The only way to force the
system to look up the ARP cache is to access any other system with your
favorite methods (ping is enough). This will update the content of back pocket
and force the network interface to search for the ARP cache the next time.

Although a lot of vendor implementations have this feature, this is not a part of
RFC or any standard. As you have seen previously, this may invite unexpected
situations. It is good to know that if you use some software-dependent products
on correct ARP behavior, it may be impacted. HACMP/6000 is one candidate.

Difference between V4.1 and V3.2

V4.1 doesn′ t have this sophisticated functionality.

2.3.8 MAC Address Basics
We briefly explain the MAC address. As we have seen in the ARP explanation,
the MAC address has a crucial role in any communication.

As in the convention, we call a 48-bit data link layer address a MAC address.
Exactly speaking, the Ethernet Version 2 uses the term hardware address. IEEE
802.3 Ethernet and other IEEE LAN, such as IEEE 802.5 token-ring uses the term
MAC address. The hardware address and the MAC address are almost the
same but not completely identical by definition.

98 Practical TCP/IP for AIX V3.2/V4.1

2.3.8.1 MAC Address Assignment
The MAC address is a 48-bit address for a data link layer. It has some rules for
address assignment. As in the convention, we write this address as a sequence
of hexadecimal characters separated by a colon.

• The first bit is used as an individual/group identifier.

If this bit is 1, then this address is considered to be a group address. This
means that this frame should be received by a group of stations. If this bit is
0, then this address is considered to be an individual address. This means
that this frame should be received by only one station.

Note: This definition is effective when the address is a destination address.

• The second bit is used as a universally/locally administered identifier.

If this bit is 1, then this address is considered to be a locally administered
address. This means that this address was assigned and controlled by your
site′s network administrator. It′s your network administrator′s responsibility
to guarantee the uniqueness of the address. If this bit is 0, then this address
is considered to be a universally administered address. This means that this
address was assigned and controlled by the IEEE and the adapter card
manufacturer. The first 24 bits are assigned by the IEEE to each
manufacturer. The last 24 bits are assigned by the adapter card
manufacturer.

Note: In the Ethernet Version 2 specification, there is no definition about a
universally/locally administered identifier.

Now we examine the following example:

10:0:5a:b1:5b:23

1 0 0 0 5 a b 1 5 b 2 3
|----+----|----+----|----+----|----+----|----+----|----+----|
 0001 0000 0000 0000 0101 1010 1011 0001 0101 1011 0010 0011

The first byte - second bit means that the least significant bit (LSB) and the
second least significant bit of the first byte, respectively in this example, the LSB
is the farthest right bit of each byte. When a frame is transmitted in the header
address fields, each byte must be transmitted in the order of the LSB first. This
is called canonical order. In the previous example, bits are transmitted in the
following order on a cable (from left to right). Notice that the order of the bytes
is not changed.

10:0:5a:b1:5b:23

0 8 0 0 5 a 8 d d a c 4
|----+----|----+----|----+----|----+----|----+----|----+----|
0000 1000 0000 0000 0101 1010 1000 1101 1101 1010 1100 0100

Note: Unfortunately, token-ring doesn′ t follow the canonical order. When you
connect an Ethernet and a token-ring, the bridge must convert the bit
ordering in the header address fields of each frame (usually bridges do
this).

Since the first bit and the second bit are both 0, this is an individual and
universally administered address. In this example, the first 24 bits 10:0:5a were
assigned by the IEEE to IBM Corp. When you are looking for a duplicated IP
address system and if you know the MAC address of a system from ARP cache,
it may help you identify the system. Of course, this could tell you who the

Chapter 2. Debugging TCP/IP Troubles 99

adapter card manufacturer is but not who the workstation manufacturer is. If you
get the universally administered address of 3Com Corp., it could be anything.

Note: Recently 3Com used up one block of 24-bit addresses, 02:60:8c, and they
got another new block, 00:60:8c, from the IEEE.

Our Experience

We heard an interesting story. When 3Com changed their MAC address
block, they got a lot of problem reports from their customers. As in the
definition, we can assign the MAC address locally. But many network
management tools or software assume that the MAC address will never be
changed. Also they used the first 24 bits as a fixed manufacturer identifier.
In almost all situations, this approach worked. This could happen at any
moment.

If you need to know the list of universally administered MAC addresses, refer to
the RFC 1700 ASSIGNED NUMBERS.

2.3.8.2 How to Know Your MAC Address
For debugging, you may need to know your system′s MAC address. Log on to a
system to which you sent a packet and check the system′s ARP cache. This
gives you the correct answer, but is not a smart solution. Use the netstat -v
command on your system. You can see the line named Hardware Address
which is the MAC address as follows:

netstat -v

TOKEN-RING STATISTICS (tok0) :
Device Type: Token-Ring IBM ISA Adapter
Hardware Address: 08:00:5a:ab:23:19
Elapsed Time: 0 days 4 hours 23 minutes 14 seconds
...

Another alternative is to use the netstat -i command. Before issuing this
command, you have to configure the network interface. You will see the
following MAC address:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 209 0 209 0 0
lo0 16896 127 localhost 209 0 209 0 0
tr0 1492 <Link>8.0.5a.ab.23.19 129 0 53 0 0
tr0 1492 9.68.214 zero.hakozaki.i 129 0 53 0 0
#

A MAC address is burned into a chip on the adapter card and you cannot
change it. RS/6000 allows you to assign an alternative MAC address. The
netstat -v command always tells you the original burned-in address. On the
contrary, the netstat -i command tells you the current effective MAC address. If
you configured an alternative one, it is shown as follows:

100 Practical TCP/IP for AIX V3.2/V4.1

netstat -v | grep Hardware
Hardware Address: 08:00:5a:ab:23:19
netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 176 0 176 0 0
lo0 16896 127 localhost 176 0 176 0 0
tr0 1492 <Link>40.0.7e.8.66.70 204 0 58 0 0
tr0 1492 9.68.214 zero.hakozaki.i 204 0 58 0 0
#

Another way to get your MAC address is to issue the lscfg -v -l command. This
command always shows you the original burned-in address. Issue this
command as follows:

lscfg -v -l tok0
DEVICE LOCATION DESCRIPTION

tok0 00-1X IBM 16/4 PowerPC Token-Ring Adapter
(isa)

Network Address.............08005AAB2319
Displayable Message.........ISA Token Ring

#

Difference between V4.1 and V3.2

With V3.2, the following is one tip for using the lscfg command: if you are
looking for an integrated Ethernet adapter′s MAC address, you cannot refer
to it with a usual convention, such as ent0. Nothing is displayed if you
search adapters. Instead, you have to look at the standard I/O planner as
follows:

lscfg -v -l sio0
DEVICE LOCATION DESCRIPTION

sio0 00-00 Standard I/O Planar

Machine Type and Model......70110230
Part Number.................051G8271
EC Level....................D18224
Processor Identification....000281

...
Displayable Message.........ETHERNET
Network Address.............08005AC7AF8C
Device Driver Level.........00

...

2.3.9 A MAC Address Pitfall
Although the MAC addresses are now strictly administered (this is especially
true for universally administered addresses), there are still some pitfalls. We
introduce only one example in this section. Of course, there may be other
possibilities, and this section gives you an understanding that anything can
happen at any moment.

Chapter 2. Debugging TCP/IP Troubles 101

2.3.9.1 Universally Administered Address Violation
As you already know, any universally administered address must require the
second bit to be 0. This is a strict rule, but there are exceptions to every rule.
Due to the historical background, there are some MAC address blocks that were
assigned before the rule was fixed. In RFC 1700 ASSIGNED NUMBERS, there are
some remarks on this issue.

RFC 1700 ASSIGNED NUMBERS

...If there is a global algorithm for which addresses are designated to be
physical (in a chipset) versus logical (assigned in software), or
globally-assigned versus locally-assigned addresses, some of the known
addresses do not follow the scheme (for example, AA0003; 02xxxx).

In this RFC, you find that the following 24-bit MAC address blocks are violating
the rule. They were formally assigned universal addresses by the IEEE (or
formerly by Xerox Corp.), but their second bits are 1.

02:07:01 Racal InterLan
02:04:06 BBN BBN internal usage (not registered)
02:60:86 Satelcom MegaPac (UK)
02:60:8C 3Com IBM PC; Imagen; Valid; Cisco
02:CF:1F CMC Masscomp; Silicon Graphics; Prime EXL
AA:00:00 DEC obsolete
AA:00:01 DEC obsolete
AA:00:02 DEC obsolete
AA:00:03 DEC Global physical address for some DEC machines
AA:00:04 DEC Local logical address for system running DECNET

Notice that the standards IEEE 802.3 and IEEE 802.5 define what bit is what. But
they don′ t define what we should do for one or the other. If the second bit is 1, it
is a universal address. But it′s not clearly defined how the packets that have
this address should be treated. This ambiguous situation can allow
vendor-dependent hardware and software behaviors.

Our Experience

One of our customers had the following problem. They had an FDDI
backbone network and several Ethernet branch networks. Our RS/6000s
were attached to one of these Ethernets. The problem was that these
RS/6000s could not communicate with PCs in the other Ethernet. An
engineer of the FDDI vendor got a trace and told us that their Ethernet-FDDI
connecting module (a kind of bridge) could not pass packets that had a
locally administered address. Our RS/6000s had a MAC address of 02:60:8c
from 3Com. Finally, the FDDI vendor agreed to modify their firmware.

2.4 Debugging IP Layer with ICMP (ping)
The ping command may be the best command and the first command users
issue when they finish the network configuration. Many of them use this
command only to find out whether or not the connectivity is fine. By just reading
the result, the user can get a lot of information from this command when trying
to isolate the problem even when ping fails.

102 Practical TCP/IP for AIX V3.2/V4.1

Why PING is Important

Ping can reveal the following options which may help in the problem
determination:

• When ping fails, you can not communicate by using the IP protocol.

Note: Even when ping fails, the ARP may work. You have to check the
ARP when ping fails.

• When ping succeeds, you don′ t have any hardware and network
configuration problems under the IP layer.

• When ping succeeds and you still fail to communicate, there is an
application problem (including misconfiguration).

The ping command uses the network layer protocol ICMP. You can confirm the
IP layer functionality with other tools too, but ping has the following advantages:

• You don′ t need any additional configuration or setup. When you have
finished network configuration with smitty mktcpip, you can use ping.

• Almost all systems that support TCP/IP support this command.

• All TCP/IP systems must support ICMP echo. This is documented in RFC
1122 Requirements for Internet Hosts. Then, any host that supports TCP/IP
must respond to your ping command. You don′ t need any additional
requirements to be able to communicate with the destination system.

2.4.1 ping Basics
It′s good to know the details about the ping command operation. If you know
these details, it will help you to isolate a problem.

2.4.1.1 ping Uses ICMP ECHO/REPLY
The ping command uses the ICMP protocol. This protocol is for IP layer
management and control. It is a supplemental protocol for IP operation and
doesn ′ t carry user data. Technically, an ICMP packet is encapsulated in an IP
packet. Therefore, ICMP packets, used by the ping command, can confirm the IP
layer ′s functionality.

The ICMP has several functions and each function has its own type code as in
the following list. This is not the complete list. Refer to RFC 1700 ASSIGN
NUMBERS for the complete list of ICMP types and codes:

ICMP Type Message
0 Echo Reply
3 Destination Unreachable

Code Meaning
0 Network Unreachable
1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation needed and do not fragment the bit set
5 Source Route Failed
6 Destination Network Unknown
7 Destination Host Unknown
8 Source Host Isolated (Obsolete)
9 Destination Network Administratively Prohibited

Chapter 2. Debugging TCP/IP Troubles 103

10 Destination Host Administratively Prohibited
11 Network Unreachable for TOS
12 Host Unreachable for TOS
13 Communication Administratively Prohibited by Filtering
14 Host Precedence Violation
15 Precedence Cutoff in Effect

4 Source Quench
5 Route Change Request

Code Meaning
0 Redirect datagrams to go to that network
1 Redirect datagrams to reach that host
2 Redirect datagrams for that network with that TOS.
3 Redirect datagrams for that host with that TOS.

8 Echo Request
11 Time Exceeded for Datagram

Code Meaning
0 Time-to-live Equals 0 During Transit
1 Time-to-live Equals 0 During Reassembly

12 Parameter Problem Message
Code Meaning
0 IP Header Bad
1 Required Option Missing

13 Time Stamp Request
14 Time Stamp Reply
15 Information Request
16 Information Reply
17 Address Mask Request
18 Address Mask Reply

The ping command is built on the ICMP Echo Request (type 8) and ICMP Echo
Reply (type 0). Refer to RFC 1122 Requirements for Internet Hosts and RFC 792
INTERNET CONTROL MESSAGE PROTOCOL for ICMP implementation details.

2.4.1.2 ping Mechanism Overview
The mechanism of ping is described as follows:

 1. First, you issue the ping command, as follows. In this example, only one
packet is sent to the destination system zero.

ping -c 1 zero

 2. If you are using a name service such as DNS or NIS, the first step is to
translate the destination host name to the IP address. In the case of DNS,
the following packets may be sent and received. In this example, ping is
issued on the system mat, and the destination is the system zero. The DNS
server is the system hzname1.

a. The mat asks the IP address for the DNS server hzname1. If your system
doesn ′ t have the MAC address of hzname1, the ARP is invoked before
the name service look-up. If you have hardware connectivity problems
with the name server, the ARP fails and the ping hangs here.

Note: In this case, the hzname1 is located in a different IP network
(subnet 9.68.192). Then a router is involved in this DNS look-up
and the MAC address 00:00:fa:37:91:64 is the router′s MAC
address.

104 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 10
TOK: ====(89 bytes transmitted on interface tr0)==== 11:10:19.238628608
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 00:00:fa:37:91:64]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.192.11 > (hzname1.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=67, ip_id=338, ip_off=0
IP: ip_ttl=30, ip_sum=f272, ip_p = 17 (UDP)
UDP: <source port=1052, <destination port=53(domain) >
UDP: [udp length = 47 | udp checksum = e41f]
DNS Packet breakdown:

QUESTIONS:
zero.hakozaki.ibm.com, type = A, class = IN

b. The DNS server hzname1 responded with the IP address of zero.

Packet Number 11
TOK: ====(105 bytes received on interface tr0)==== 11:10:19.244147200
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:00:fa:37:91:64, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.192.11 > (hzname1.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=83, ip_id=11023, ip_off=0
IP: ip_ttl=28, ip_sum=caa5, ip_p = 17 (UDP)
UDP: <source port=53(domain), <destination port=1052 >
UDP: [udp length = 63 | udp checksum = 328d]
DNS Packet breakdown:

QUESTIONS:
zero.hakozaki.ibm.com, type = A, class = IN

ANSWERS:
-> zero.hakozaki.ibm.com internet address = 9.68.214.84

Note: If you specify the IP address instead of the host name, you can
bypass this name service look-up process. Then you can isolate
the name service-related problem.

You May Have a Problem Here

If the name service has a problem, the ping command hangs. In the DNS
case, you get timeout and the look-up fails in the local /etc/hosts file. It
takes 75 seconds if you have one DNS name server. If you are using NIS,
no timeout exists and you have to wait a long time.

If you are not using any name service, your system refers to /etc/hosts.
If there are no corresponding entries, you will see the error message
host name NOT FOUND.

 3. IP routing function is invoked based on the destination system ′s IP address.
Your system refers to the routing table to find the appropriate route.

If it is in the same IP network, then your system looks up the ARP cache to
get the destination′s MAC address. If it cannot be found in the cache, the
system uses ARP to get it.

If it is in the different IP network, then your system looks up the routing table
and finds the appropriate gateway system. Then your system looks up the
ARP cache to get the gateway′s MAC address. If it cannot be found in the
cache, the system uses ARP to get it.

Chapter 2. Debugging TCP/IP Troubles 105

You May Have a Problem Here

If you don′ t have the route to the destination IP address, your system
cannot send a packet. You will see the error message A route to the
remote host is not available.

 4. Send an ICMP echo request packet. The ping sets the IP header time to live
(TTL) field to 255. The value 255 is the maximum. Usually a TTL of 30 is
used for UDP datagram and 60 for TCP segment. This TTL value is
decremented at least by one when the packet passes a router, and when it
reaches 0, the packet is discarded by the router.

Packet Number 15
TOK: ====(106 bytes transmitted on interface tr0)==== 11:10:19.254320128
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=339, ip_off=0
IP: ip_ttl=255, ip_sum=fb26, ip_p = 1 (ICMP)
ICMP: icmp_type=8 (ECHO_REQUEST) icmp_id=10278 icmp_seq=0

 5. The destination system receives the ICMP echo request packet. Then it
sends back the corresponding ICMP echo reply packet. The destination
system also has to have a routing to the source system or the reply packet
cannot be sent. The echo reply packet also has the TTL field of 255.

Packet Number 16
TOK: ====(106 bytes received on interface tr0)==== 11:10:19.256564992
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=496, ip_off=0
IP: ip_ttl=255, ip_sum=fa89, ip_p = 1 (ICMP)
ICMP: icmp_type=0 (ECHO_REPLY) icmp_id=10278 icmp_seq=0

Each ICMP packet has an ICMP ID (icmp_id). Corresponding requests and
replies have the same ICMP ID.

You May Have a Problem Here

In the destination system, a route to return the ICMP packet must be set.
Of course, the subnet masks must match each other. If the route
includes more than one gateway, these conditions must be satisfied by
all the gateways. Do not forget to configure the return route. You may
have to add a route at the destination system and gateways.

 6. The ICMP echo reply packet is received by the source system. Then the
ping command displays statistics as follows:

106 Practical TCP/IP for AIX V3.2/V4.1

ping -c 1 zero
PING zero.hakozaki.ibm.com: (9.68.214.84): 56 data bytes
64 bytes from 9.68.214.84: icmp_seq=0 ttl=255 time=2 ms

----zero.hakozaki.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 2/2/2 ms
#

2.4.1.3 ping with Route Information
The ping command has a lot of options. One of the useful options for debugging
is the -R option. With this option, this command shows you the path through
which the echo request and reply packets have passed. Although you can also
check the destination route with the traceroute command, ping -R also tells you
the returning route. If there is more than one available route, you will know
which route is actually used. See the example below. In this example, we
issued the ping command on the newton system. There is the inoki gateway on
the way to the destination lazy.

ping -R -c 1 lazy
PING lazy.fscjapan.ibm.com: (9.170.1.9): 56 data bytes
64 bytes from 9.170.1.9: icmp_seq=0 ttl=254 time=6 ms
RR: inoki.fscjapan.ibm.com (9.170.1.240)

lazy.fscjapan.ibm.com (9.170.1.9)
inoki5.fscjapan.ibm.com (9.170.5.240)
newton.fscjapan.ibm.com (9.170.5.45)

----lazy.fscjapan.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 6/6/6 ms
#

In this output, the displayed addresses are for all the interfaces where the packet
was going out (and not where the packet was coming in) except the last line. In
the previous example, the packet was sent from newton (9.170.5.45) and through
one gateway, which has two interfaces: inoki (9.170.1.240) and inoki5
(9.170.5.240).

Note: This function uses the record route option of IP (not ICMP). In this option,
up to nine hosts (IP addresses) can be recorded in the IP header option
field. This may not be enough for a long path. Also, all the routers on the
way must support the record route option. This may not work perfectly or
correctly in some environments.

2.4.2 When ping Doesn ′t Work
For your reference, a successful example is shown below:

Chapter 2. Debugging TCP/IP Troubles 107

ping jodie
PING jodie.fscjapan.ibm.com: (9.170.3.44): 56 data bytes
64 bytes from 9.170.3.44: icmp_seq=0 ttl=255 time=2 ms
64 bytes from 9.170.3.44: icmp_seq=1 ttl=255 time=2 ms
64 bytes from 9.170.3.44: icmp_seq=2 ttl=255 time=2 ms
64 bytes from 9.170.3.44: icmp_seq=3 ttl=255 time=2 ms
64 bytes from 9.170.3.44: icmp_seq=4 ttl=255 time=2 ms
^C
----jodie.fscjapan.ibm.com PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 2/2/2 ms
#

In the above example, we are using DNS and the host name (exactly the
interface name) jodie is translated to jodie.fscjapan.ibm.com automatically. Even
for a ping, a rather complicated mechanism is involved. In this case, before
sending the first ping packet, a look-up packet to the DNS server was sent and
the response packet was received. There are a thousand reasons for the ping
command to fail. The reason of a failure is invisible to end users.

2.4.2.1 Try with the IP Address
If the ping doesn′ t work, it′s a good practice to try with the IP address, not with
the host name. Ping should work find with the IP address if there are no
problems. Ping can accept both the IP address and host name as the argument.
If the cause is because of the name service you are using, this alternative
bypasses the faulty name service. Even when you are referring to /etc/hosts,
you can avoid the corrupted entry in the file. If the situation is changed by using
the IP address, you will get closer to the cause.

This approach is so powerful that you can use it for other network tools
applications. A lot of tools and applications allow you to use both the IP address
and host name as their arguments, but this is not always true. Some network
application servers need to map.the IP address in a packet header to the host
name (this is sometimes called reverse mapping) for verification. For such an
application, even when you use an IP address, you cannot bypass name
service-related problems.

2.4.2.2 Check to See Whether the ARP Is Working
This is also important. If the ARP doesn′ t work, the ping will also not work. If
the ARP fails, you have a problem under the data link layer (most likely it′s
related to the hardware). You have to fix the ARP first or you cannot check and
validate the network layer (IP) configuration.

After you have fixed the ARP problem, if you still have the ping problem, the
reason must be in the IP layer configuration.

2.4.3 Error Message: host name NOT FOUND
You may get the following error:

ping gozira
0821-062 ping: host name gozira NOT FOUND
#

108 Practical TCP/IP for AIX V3.2/V4.1

2.4.3.1 Name Service Problems
In this case, the host name to the IP address translation failed. If you are using
a name service such as DNS or NIS, the name service is working correctly. If
the name server could not find the corresponding IP address. This implies a
registration problem or that the host name is wrong. When you ping with the IP
address and get good results, it is a name-to-IP address translation problem.
Check your name server database or /etc/hosts.

Note: You may have to wait until you get the previous error. DNS needs at
least 75 seconds to get timeout and returns from a name server search.

Our Experience

A customer complained that an update to /etc/hosts was not referred to. As
a result, a ping to newly added host system ended up with the error host
name NOT FOUND. According to the information, /etc/hosts seemed perfect.
We asked whether NIS was running. The answer was yes. The customer
didn ′ t know that the NIS maps need to be rebuilt whenever the ASCII files are
changed.

2.4.3.2 Deleted Routing Information
Another possibility of this error is, lost routing information. If the route to the
local network for the interface is removed, the system cannot send any packets
and so gives you an error message. Checking routing information is very
worthwhile. When you get following error, check the routing information:

ping mat
0821-062 ping: host name mat NOT FOUND
#

If you get following result, the problem is in the routing information:

netstat -r
Routing tables
Destination Gateway Flags Refs Use Interface
Netmasks:
255.255.255.128

Route Tree for Protocol Family 2:
loopback loopback UH 4 172 lo0
#

Configure the necessary route. Usually this (lost route) should not happen. But
if you detach and up an interface manually with the ifconfig command, the route
is lost.

2.4.4 Error Message: A Route to the Remote Host Is Not Available
You may get the following error:

Chapter 2. Debugging TCP/IP Troubles 109

ping king
PING king: (9.170.8.25): 56 data bytes
0821-069 ping: sendto: A route to the remote host is not available.
ping: wrote king 64 chars, ret=-1
0821-069 ping: sendto: A route to the remote host is not available.
ping: wrote king 64 chars, ret=-1
0821-069 ping: sendto: A route to the remote host is not available.
ping: wrote king 64 chars, ret=-1
0821-069 ping: sendto: A route to the remote host is not available.
ping: wrote king 64 chars, ret=-1
^C
----king PING Statistics----
4 packets transmitted, 0 packets received, 100% packet loss
#

In this case, no packets are sent out. In addition, this ARP procedure is not
proceeded and no ARP packets are sent out. The problem is in your system
routing table. Your system is saying that it can not find a route to the specified
destination and can not send any packets. The possible causes are explained
below.

2.4.4.1 No Routes Are Set
In this case, there are no routes to the destination. This may be the easiest
case for a ping-related problem if you check to see the routing table and cannot
find the route to the destination. In this example below, there are no routes to
the IP network 9.170.8:

netstat -r |grep U
Destination Gateway Flags Refcnt Use Interface
9.170.1 inoki5 UG 0 227 tr0
9.170.5 newton U 7 41261 tr0
127 loopback U 0 9 lo0
#

Note: If you have a default route, the symptom will be completely different (the
ping hangs). In such a case, any packet that has an invalid network
address will be sent to the default gateway. Then, you also have to check
the routing table of the gateway. Actually, your system gets many ICMP
error notification packets (carrying the code for Destination unreachable)
from the gateway. This notification does not appear on your display. You
should use the netstat command to see the appropriate counter.

2.4.4.2 Corrupted Kernel Routing Table
If you often add and delete routes in your routing table, an inconsistency might
be caused in the kernel. As a rule of thumb, if you cannot fix the routing
problem, rebooting the system or running cfgmgr may resolve the issue.
Remember that routing information is stored in the ODM with the logical device
inet0. The reboot procedure loads the ODM information.

2.4.5 No Response, But ping with the IP Address Is OK
This is also one of the easiest cases. The symptom is as follows:

ping gozira
^C#

Try ping again with the IP address in order to bypass the host name to the IP
address translation function. This time ping should work, as follows:

110 Practical TCP/IP for AIX V3.2/V4.1

ping 9.68.210.140
PING 9.68.210.140: (9.68.210.140): 56 data bytes
64 bytes from 9.68.210.140: icmp_seq=0 ttl=255 time=18 ms
64 bytes from 9.68.210.140: icmp_seq=1 ttl=255 time=2 ms
64 bytes from 9.68.210.140: icmp_seq=2 ttl=255 time=2 ms
64 bytes from 9.68.210.140: icmp_seq=3 ttl=255 time=2 ms
^C
----9.68.210.140 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 2/6/18 ms
#

The possible causes are explained below.

2.4.5.1 Name to IP Address Translation Problem
You will notice that no messages are displayed. This is important. This means
that the host name to the IP address translation was not working, and this
suspends the ping command. The possible causes are given below:

• The name server is not working (NIS or DNS). In the case of the DNS, if the
server is not running, the resolver searches the /etc/hosts file after the
timeout (75 seconds if you have one DNS server). In the case of the NIS, the
ping hangs until you interrupt.

• It is searching through several name servers (DNSs). In this case, your ping
will work after the search is completed.

2.4.6 No Response, and ping Fails Even with the IP Address
This case is the toughest for several reasons. The symptom is as follows. In
this case, ping hangs until you interrupt by pressing Ctrl-C:

ping grover
PING grover.fscjapan.ibm.com: (9.170.3.21): 56 data bytes
^C
----grover.fscjapan.ibm.com PING Statistics----
23 packets transmitted, 0 packets received, 100% packet loss
#

The important symptom is that the ping hangs without responses, but you can
see the following line:

PING grover.fscjapan.ibm.com: (9.170.3.21): 56 data bytes

In this example, the host name grover is replaced with grover.fscjapan.ibm.com
and also the corresponding IP address 9.170.3.21 is displayed. These imply that
the name service DNS is working correctly and the problem is somewhere else.

2.4.6.1 A Route Is Not Set at the Destination System/Gateway
If the destination system doesn′ t have the route to your system, even when the
packet can reach the destination, it cannot respond. Routes must be set on both
side; the source and the destination. If there is more than one gateway or router
between your system and destination, try TELNET to the gateway first. If it
works, then try TELNET from the gateway to the destination system. If this works
again, there must be the lack of routing at the destination system.

The other possibility is that the gateway system doesn′ t know the route to the
destination. This could happen easily when you set the default route and default
gateway on your routing table. Even if the destination network address is

Chapter 2. Debugging TCP/IP Troubles 111

terribly wrong, your system forwards the packet to the default gateway. Then
the gateway cannot deliver the packet, and as the result, the ping suspends.

Note: If the gateway also has a default route, again it fowards the packet. This
can be repeated forever and the packet will be lost somewhere in the
Internet.

In this case, although you may not notice it, the gateway system sends back the
ICMP packet with the type code 3, Destination Unreachable. The following is an
example received by IP trace:

 1. A ping packet is sent to the system king from the system newton. This
packet is sent to the default gateway inoki5 first. Notice that the destination
MAC address 40:00:70:9b:1d:e4 is the gateway′s MAC address.

Packet Number 1
TOK: =====(packet transmitted on interface tr0)=====Mon Jul 11 20:14:38 1994
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:46:2d, dst = 40:00:70:9b:1d:e4]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.170.5.45 > (newton)
IP: < DST = 9.170.8.25 > (king)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=60758, ip_off=0
IP: ip_ttl=255, ip_sum=adb8, ip_p = 1 (ICMP)
ICMP: icmp_type=8 (ECHO_REQUEST) icmp_id=13216 icmp_seq=0
ICMP: 00000000 2e21299e 00077e13 08090a0b 0c0d0e0f |.!)............|
ICMP: 00000010 10111213 14151617 18191a1b 1c1d1e1f |................|
ICMP: 00000020 20212223 24252627 28292a2b 2c2d2e2f | !″#$%&′ () *+,-./|
ICMP: 00000030 30313233 34353637 |01234567 |

 2. The gateway inoki5 could not find the route to the king, discarded the ping
packet, and then sent the ICMP DEST UNREACH packet back to the source
system newton.

Packet Number 2
TOK: =====(packet received on interface tr0)=====Mon Jul 11 20:14:38 1994
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 40:00:70:9b:1d:e4, dst = 10:00:5a:a8:46:2d]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.170.5.240 > (inoki5)
IP: < DST = 9.170.5.45 > (newton)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=59076, ip_off=0
IP: ip_ttl=255, ip_sum=b68f, ip_p = 1 (ICMP)
ICMP: icmp_type=3 (DEST UNREACH) icmp_code=1(BAD_HOST)

Note: You can check the count of ICMP packets with the netstat -p icmp
command.

If you check the routing table on the gateway system inoki5, you will find the
following routes. The inoki5 doesn′ t have a route to the destination network
9.170.8 where the destination system king (9.170.8.25) should be located.

112 Practical TCP/IP for AIX V3.2/V4.1

inoki# netstat -r | grep U
Destination Gateway Flags Refcnt Use Interface
9.170.1 inoki.fscjapan.ibm U 7 150878 tr1
9.170.2 lazy.fscjapan.ibm. UG 0 206 tr1
9.170.5 inoki5.fscjapan.ib U 6 176794 tr0
127 localhost U 7 7678 lo0
inoki#

Note: If the gateway inoki5 had a default route, the ping echo request would be
forwarded automatically to the default gateway. Then the default route
may hide this problem. Setting the default route makes administration
easier, but it makes the debug more difficult.

If you check the ICMP counter in the kernel of the gateway inoki5, you find that
the counter destination unreachable of Output histogram has been incremented
by one. In a router or gateway system, the sending of many ICMP destination
unreachable packets is not a good sign. This suggests that there may be bad
routes on some systems.

inoki# netstat -p icmp
icmp:

210 calls to icmp_error
0 errors not generated ′ cuz old message was icmp
Output histogram:

echo reply: 828
destination unreachable: 207

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo: 828
828 message responses generated

inoki#

On the source system newton, the destination unreachable of Input histogram
has been incremented by one. On a system, receiving a lot of ICMP destination
unreachable packets is also a bad sign. Check the routes on that system.

newton# netstat -p icmp
icmp:

440 calls to icmp_error
0 errors not generated ′ cuz old message was icmp
Output histogram:

echo reply: 15635
destination unreachable: 440

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 654
destination unreachable: 150
routing redirect: 2
echo: 15647
time exceeded: 63
address mask request: 26

15635 message responses generated
newton#

Chapter 2. Debugging TCP/IP Troubles 113

2.4.6.2 Incorrect Subnet Mask
If there is an IP subnet mask mismatch between your system and the destination
system, a ping (ICMP) packet will not reach the destination. Of course, any
gateway or router involved also must have a consistent subnet mask. If the
mask doesn′ t match, a system cannot find the correct route or cannot identify
the correct network address.

Currently, a system can have a subnet mask for each network interface and
cannot have a subnet mask for each route.

Note: Some of the latest routing techniques, such as OSPF, allow us to have a
subnet mask for each route.

If a system has an interface tr0, any route attached to that interface should have
the same subnet mask. See the following example. This system has two routes
for networks attached to the interface tr0 and both have the same subnet mask.
Please note that the Destination field shows network addresses after having the
subnet mask applied.

netstat -r | grep U
Destination Gateway Flags Refcnt Use Interface
9.170.1 lazy.fscjapan.ibm. U 4 236646 tr1
9.170.2 leo.fscjapan.ibm.c U 3 167 en0
9.170.3 aries.fscjapan.ibm U 2 24998 tr0
9.170.5 inoki.fscjapan.ibm UG 2 94447 tr1
9.170.10 jbridge.fscjapan.i UG 0 10553 tr0
127 127.0.0.1 U 2 496 lo0
#

The following is an example of a bad configuration. Due to some unknown
reason, there is an inconsistency. The mask is 255.255.0.0 for the network 9.170
and 255.255.255.0 for the network 9.170.3. Both networks (routes) are attached to
the same interface tr0 and therefore we can say that this is the problem.

netstat -r | grep U
Destination Gateway Flags Refcnt Use Interface
9.170.3 aries.fscjapan.ibm U 2 24998 tr0
9.170 jbridge.fscjapan.i UG 0 10553 tr0
127 127.0.0.1 U 2 496 lo0
#

2.4.6.3 Hardware Problem
In this situation, it is clear that ARP doesn′ t work. In such a case, you literally
could have hundreds of potential reasons. Our recommended procedures are as
follows:

• Confirm that the ARP fails.

• Check the hardware (cables, terminators, transceiver and adapter card).
Somebody might have changed something.

• Look at the system error log. You may find some error records regarding
the problem.

• Compare the connectivity with another system. Determine whether your
system has lost total communication capability or only lost the
communication to the specific destination. In such a case, the destination
system may have a hardware problem. There is even a possibility that the
destination is not powered on.

114 Practical TCP/IP for AIX V3.2/V4.1

2.4.6.4 Corrupted Kernel Data
We can not explain clearly which situation would be the case. Just remember
that if you cannot isolate a problem and there are no clear symptoms suggesting
other causes, rebooting your system may fix the problem.

2.4.7 ping for a While
Although ping doesn′ t show any trouble symptoms, you may still be certain that
a problem exists. If the problem is an intermittent characteristic or if it happens
only a few times in a day, the ping may not catch the symptom. Sometimes in
such case (for example, when the response time degrades dramatically or the
application hangs for a while) run the ping command until you find something.
This may take quite some time. See the following example:

ping inoki5
PING inoki5: (9.170.5.240): 56 data bytes
64 bytes from 9.170.5.240: icmp_seq=0 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=1 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=2 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=3 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=4 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=5 ttl=255 time=2 ms
64 bytes from 9.170.5.240: icmp_seq=6 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=7 ttl=255 time=2 ms
64 bytes from 9.170.5.240: icmp_seq=8 ttl=255 time=2 ms
64 bytes from 9.170.5.240: icmp_seq=9 ttl=255 time=16396 ms
64 bytes from 9.170.5.240: icmp_seq=10 ttl=255 time=15403 ms
64 bytes from 9.170.5.240: icmp_seq=11 ttl=255 time=14404 ms
64 bytes from 9.170.5.240: icmp_seq=12 ttl=255 time=13404 ms
64 bytes from 9.170.5.240: icmp_seq=13 ttl=255 time=12405 ms
64 bytes from 9.170.5.240: icmp_seq=14 ttl=255 time=11405 ms
64 bytes from 9.170.5.240: icmp_seq=15 ttl=255 time=10405 ms
64 bytes from 9.170.5.240: icmp_seq=16 ttl=255 time=9406 ms
64 bytes from 9.170.5.240: icmp_seq=17 ttl=255 time=8406 ms
64 bytes from 9.170.5.240: icmp_seq=18 ttl=255 time=7407 ms
64 bytes from 9.170.5.240: icmp_seq=19 ttl=255 time=6408 ms
64 bytes from 9.170.5.240: icmp_seq=20 ttl=255 time=6007 ms
64 bytes from 9.170.5.240: icmp_seq=21 ttl=255 time=7198 ms
64 bytes from 9.170.5.240: icmp_seq=22 ttl=255 time=6199 ms
64 bytes from 9.170.5.240: icmp_seq=23 ttl=255 time=5200 ms
64 bytes from 9.170.5.240: icmp_seq=24 ttl=255 time=4200 ms
64 bytes from 9.170.5.240: icmp_seq=25 ttl=255 time=3200 ms
64 bytes from 9.170.5.240: icmp_seq=26 ttl=255 time=2201 ms
64 bytes from 9.170.5.240: icmp_seq=27 ttl=255 time=1201 ms
64 bytes from 9.170.5.240: icmp_seq=28 ttl=255 time=201 ms
64 bytes from 9.170.5.240: icmp_seq=29 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=30 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=31 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=32 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=33 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=34 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=35 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=36 ttl=255 time=2 ms
64 bytes from 9.170.5.240: icmp_seq=37 ttl=255 time=16243 ms
64 bytes from 9.170.5.240: icmp_seq=38 ttl=255 time=15251 ms
64 bytes from 9.170.5.240: icmp_seq=39 ttl=255 time=14258 ms
64 bytes from 9.170.5.240: icmp_seq=40 ttl=255 time=13258 ms
64 bytes from 9.170.5.240: icmp_seq=41 ttl=255 time=12259 ms
64 bytes from 9.170.5.240: icmp_seq=42 ttl=255 time=11259 ms

Chapter 2. Debugging TCP/IP Troubles 115

64 bytes from 9.170.5.240: icmp_seq=43 ttl=255 time=10259 ms
64 bytes from 9.170.5.240: icmp_seq=44 ttl=255 time=9260 ms
64 bytes from 9.170.5.240: icmp_seq=45 ttl=255 time=8260 ms
64 bytes from 9.170.5.240: icmp_seq=46 ttl=255 time=7260 ms
64 bytes from 9.170.5.240: icmp_seq=47 ttl=255 time=6261 ms
64 bytes from 9.170.5.240: icmp_seq=48 ttl=255 time=5261 ms
64 bytes from 9.170.5.240: icmp_seq=49 ttl=255 time=4262 ms
64 bytes from 9.170.5.240: icmp_seq=50 ttl=255 time=3292 ms
64 bytes from 9.170.5.240: icmp_seq=51 ttl=255 time=2293 ms
64 bytes from 9.170.5.240: icmp_seq=52 ttl=255 time=1293 ms
64 bytes from 9.170.5.240: icmp_seq=53 ttl=255 time=293 ms
64 bytes from 9.170.5.240: icmp_seq=54 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=55 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=56 ttl=255 time=2 ms
64 bytes from 9.170.5.240: icmp_seq=57 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=58 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=59 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=60 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=61 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=62 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=63 ttl=255 time=15724 ms
64 bytes from 9.170.5.240: icmp_seq=64 ttl=255 time=14725 ms
64 bytes from 9.170.5.240: icmp_seq=65 ttl=255 time=13727 ms
64 bytes from 9.170.5.240: icmp_seq=66 ttl=255 time=12731 ms
64 bytes from 9.170.5.240: icmp_seq=67 ttl=255 time=11742 ms
64 bytes from 9.170.5.240: icmp_seq=68 ttl=255 time=10746 ms
64 bytes from 9.170.5.240: icmp_seq=69 ttl=255 time=9746 ms
64 bytes from 9.170.5.240: icmp_seq=70 ttl=255 time=8746 ms
64 bytes from 9.170.5.240: icmp_seq=71 ttl=255 time=7747 ms
64 bytes from 9.170.5.240: icmp_seq=72 ttl=255 time=6747 ms
64 bytes from 9.170.5.240: icmp_seq=73 ttl=255 time=5747 ms
64 bytes from 9.170.5.240: icmp_seq=74 ttl=255 time=4747 ms
64 bytes from 9.170.5.240: icmp_seq=75 ttl=255 time=3748 ms
64 bytes from 9.170.5.240: icmp_seq=76 ttl=255 time=2748 ms
64 bytes from 9.170.5.240: icmp_seq=77 ttl=255 time=1749 ms
64 bytes from 9.170.5.240: icmp_seq=78 ttl=255 time=749 ms
64 bytes from 9.170.5.240: icmp_seq=79 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=80 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=81 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=82 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=83 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=84 ttl=255 time=2 ms
64 bytes from 9.170.5.240: icmp_seq=85 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=86 ttl=255 time=3 ms
64 bytes from 9.170.5.240: icmp_seq=87 ttl=255 time=2 ms
^C
----inoki5 PING Statistics----
88 packets transmitted, 88 packets received, 0% packet loss
round-trip min/avg/max = 2/4926/16396 ms
#

The above data was obtained from a token-ring network. Someone set the ring
speed of the system to the wrong speed. As a result, the network was filled with
beacon frames and all the systems attached to the network suffered slow
response times. An interesting attribute in this example is that no packets were
lost. The longest delay reached 16 seconds, but the source system received all
the ICMP echo replies.

116 Practical TCP/IP for AIX V3.2/V4.1

2.4.8 ping to the Broadcast Address
An interesting experiment is to ping to the broadcast address. We made this
experiment to give you an example of an implementation-dependent issue and to
show that standards don′ t cover everything. It is not a good practice to ping to
the broadcast address because it gives unnecessary traffic to your network. In
this example, we are using the subnet mask 255.255.255.128, and therefore, the
broadcast address is 9.68.214.127.

ping -c 2 9.68.214.127
PING 9.68.214.127: (9.68.214.127): 56 data bytes
64 bytes from 9.68.214.1: icmp_seq=0 ttl=60 time=6 ms
64 bytes from 9.68.214.69: icmp_seq=0 ttl=255 time=10 ms (DUP!)
64 bytes from 9.68.214.20: icmp_seq=0 ttl=255 time=15 ms (DUP!)
64 bytes from 9.68.214.74: icmp_seq=0 ttl=255 time=29 ms (DUP!)
64 bytes from 9.68.214.70: icmp_seq=0 ttl=255 time=30 ms (DUP!)
64 bytes from 9.68.214.19: icmp_seq=0 ttl=255 time=32 ms (DUP!)
64 bytes from 9.68.214.61: icmp_seq=0 ttl=255 time=33 ms (DUP!)
64 bytes from 9.68.214.29: icmp_seq=0 ttl=255 time=35 ms (DUP!)
64 bytes from 9.68.214.21: icmp_seq=0 ttl=32 time=36 ms (DUP!)
64 bytes from 9.68.214.76: icmp_seq=0 ttl=255 time=38 ms (DUP!)
64 bytes from 9.68.214.17: icmp_seq=0 ttl=255 time=43 ms (DUP!)
64 bytes from 9.68.214.15: icmp_seq=0 ttl=255 time=44 ms (DUP!)
64 bytes from 9.68.214.69: icmp_seq=1 ttl=255 time=2 ms

----9.68.214.127 PING Statistics----
2 packets transmitted, 2 packets received, +11 duplicates, 0% packet loss
round-trip min/avg/max = 2/27/44 ms
#

Note: Notice that we are sending two echo request packets with the -c 2 flag. If
we only send one echo request, the first echo reply terminates the ping
command and we cannot watch what happens.

The message (DUP!) means that we got a duplicated echo reply for the same
Echo request. We have numerous RS/6000s and PCs on the network 9.68.214
and some systems have responded. Which should be better, to respond or not
to respond? It′s a very difficult argument and we don′ t have an answer. This
question has been left for each vendor′s implementation. Refer to RFC 1122
Requirements for Internet Hosts -- Communication Layers for details.

RFC 1122 Requirements for Internet Hosts, page 42-43

...An ICMP Echo Request destined to an IP broadcast or IP multicast address
MAY be silently discarded.

DISCUSSION:

This neutral provision results from a passionate debate between those who
feel that ICMP Echo to a broadcast address provides a valuable diagnostic
capability and those who feel that misuse of this feature can too easily create
packet storms.

See the previous example again. For example, the system of 9.68.214.70 was
OS/2 Warp running TCP/IP software and it responded. Almost all other systems
are OS/2 machines. We had a bunch of RS/6000s and these kept silent. The
behavior is not only vendor or product-dependent, but even version or
release-dependent. Even you can find the wrong implementation.

Chapter 2. Debugging TCP/IP Troubles 117

You can configure your RS/6000 running AIX V4.1 whether it responds to a
broadcast ping or not. V4.1 has a new option for the no command, bcastping.
With this option, you can adjust the behavior of your V4.1 for broadcast ping.

no -o bcastping
bcastping = 0
#

If this option is set to 1, V4.1 will respond to a broadcast ping. The default is 0.
Issue the following commands and your system will be updated:

no -o bcastping=1
no -o bcastping
bcastping = 1
#

Difference between V4.1 and V3.2

The AIX V3.2.4 and any prior version/release respond to a broadcast ping
automatically. AIX V3.2.5 never responds to a broadcast ping. There are no
configuration options with V3.2.

2.4.9 ping to the Multicast Address
With AIX V4.1, a new capability, multicast is supported. A group of interfaces
shares a multicast address in addition to its own interface address. A packet
sent to a multicast address, is received all the interfaces (systems) that have the
multicast address. This scheme is suitable for 1 to N relation, such as TV
conference application. You can refer to the multicast address of your interface
with netstat -i -a command, as follows:

netstat -i -a
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 1019 0 1019 0 0
lo0 16896 127 localhost 1019 0 1019 0 0

224.0.0.1
tr0 1492 <Link>10.0.5a.a8.b5.c1 23820 0 9811 0 0
tr0 1492 9.68.214 mat.hakozaki.ib 23820 0 9811 0 0

224.0.0.1
c0:00:00:04:00:00

#

In this example, interface tr0 has a multicast of 224.0.0.1, in addition to its
interface address mat.hakozaki.ibm.com (9.68.214.82). Also, you should notice
that a multicast address can have a corresponding MAC address. For
token-ring, 224.0.0.1 can be mapped to c0:00:00:04:00:00. In the case of Ethernet,
224.0.0.1 can be mapped to 01:00:5e:00:00:01.

The multicast address 224.0.0.1 has special meaning where all interfaces that
support multicast must share this address. If you need to assign other multicast
addresses, you have to write a program to do so. You can see a list of current
available multicast addresses in RFC 1700 ASSIGNED NUMERS. If you need to
join the SGI-Dogfight game, you have to assign 244.0.1.2 to your interface.

The following is an experiment to ping the multicast address 224.0.0.1. 224.0.0.1
is to all systems on this subnet; all systems that support multicast in the same
subnet should respond. In this example, four systems, including the 224.0.0.1
system responded:

118 Practical TCP/IP for AIX V3.2/V4.1

ping -c 2 224.0.0.1
PING 224.0.0.1 (224.0.0.1): 56 data bytes
64 bytes from 9.68.214.82: icmp_seq=0 ttl=255 time=0 ms
64 bytes from 9.68.214.82: icmp_seq=0 ttl=255 time=2 ms (DUP!)
64 bytes from 9.68.214.84: icmp_seq=0 ttl=255 time=3 ms (DUP!)
64 bytes from 9.68.214.77: icmp_seq=0 ttl=255 time=5 ms (DUP!)
64 bytes from 9.68.214.14: icmp_seq=0 ttl=255 time=6 ms (DUP!)
64 bytes from 9.68.214.82: icmp_seq=1 ttl=255 time=0 ms

--- 224.0.0.1 ping statistics ---
2 packets transmitted, 2 packets received, +4 duplicates, 0% packet loss
round-trip min/avg/max = 0/2/6 ms
#

 1. This is a ping echo request packet. Notice that the destination MAC address
is c0:00:00:20:00:00 and the destination IP address is 224.0.0.1.

Packet Number 65
TOK: ====(108 bytes transmitted on interface tr0)==== 19:00:45.651938304
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 90:00:5a:a8:b5:c1, dst = c0:00:00:20:00:00]
TOK: routing control field = 8220, 0 routing segments
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 224.0.0.1 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=6060, ip_off=0
IP: ip_ttl=1, ip_sum=e265, ip_p = 1 (ICMP)
ICMP: icmp_type=8 (ECHO_REQUEST) icmp_id=14018 icmp_seq=0

 2. This is one of the response echo reply packets.

Packet Number 77
TOK: ====(106 bytes received on interface tr0)==== 19:00:45.655625728
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=12415, ip_off=0
IP: ip_ttl=255, ip_sum=cbfa, ip_p = 1 (ICMP)
ICMP: icmp_type=0 (ECHO_REPLY) icmp_id=14018 icmp_seq=0

2.5 Debugging IP Routing with traceroute
We only briefly discuss the traceroute command. This command has been
introduced into AIX since Version 3.2.5 was released. A lot of vendors also
provide this command, and the source code of this command is available
through public archives. On the contrary, to the ping command, some systems
that have limited resources, such as PCs, and may not have this useful feature.

This command uses UDP as the communication vehicle, and it also uses the
ICMP mechanism to identify reachability. For details, refer to the InfoExplorer or
the Command Reference manual.

Chapter 2. Debugging TCP/IP Troubles 119

2.5.1 traceroute Basics
Knowing the internal traceroute gives you a good understanding about the
TCP/IP protocol mechanism. This command is an excellent example of ICMP
usage, and you can learn how the ICMP works.

2.5.1.1 When traceroute Is Needed
We already have ping for the IP network reachability confirmation. Why do we
need traceroute? Although ping is a very convenient tool, we cannot improve
some isolated problems effectively. Consider the following situation:

• When you have a lot of hops, say gateways or routes between your system
and the destination, there seems to be a problem somewhere on the way.
Of course, the destination system may have a problem. You need to know
where a packet is lost.

• As we have seen in the previous section, the ping command hangs up and
doesn ′ t tell you the reasons for a lost packet. You need to know why a
packet is lost.

The traceroute command can tell you where and why the route is lost. If your
packets must pass through routers and links, which belong to and are managed
by other organizations or companies, it would be difficult to check the related
routers via TELNET. The traceroute command provides a supplemental role to
the ping command.

2.5.1.2 traceroute Mechanism Overview
The mechanism of traceroute is described below. In this example, we address
the destination ts and, router 9.68.214.1 and s4 are on the way to the ts. The
system where we run traceroute is mat:

 1. Issue following command on the system mat:

traceroute ts

Of course, if you are using some name service, before sending a traceroute
packet, the host name to the IP address translation is invoked. If the name
server ′s MAC address is not in the ARP cache, the ARP is also involved.

 2. The traceroute sends a UDP packet to the destination and in this case it is
sent to the first router 9.68.214.1. Notice the IP header has the final
destination ts, but the token-ring header has MAC address of the router
9.68.214.1, 00:00:fa:37:91:64.

The most important thing to know is that the time-to-live (ttl) in the IP header
is set to 1.

Note: This packet is sent three times (as default) although we only show
one packet. You can change the number of query packets by using
the -q option.

120 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 6
TOK: ====(62 bytes transmitted on interface tr0)==== 13:37:43.733352960
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 00:00:fa:37:91:64]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=43597, ip_off=0
IP: ip_ttl=1, ip_sum=5411, ip_p = 17 (UDP)
UDP: <source port=43596, <destination port=33435 >
UDP: [udp length = 20 | udp checksum = 0]
UDP: 00000000 01010000 3032c797 000b2f56 |....02..../V |

 3. The router system 9.68.214.1 sends back an ICMP error packet to the source
mat. This is ICMP Type 11 Time Exceeded for Datagram. The TTL value
must be decremented by one when it passes a router. When the TTL
reaches 0, the packet must be discarded and the ICMP error is sent back to
the source system. In this case, the 9.68.214.1 received the TTL of 1, it is
decremented to 0 before the 9.68.214.1 forwards the packet. Then the UDP
packet that caused this error is discarded by the 9.68.214.1.

Note: Since the packet is sent three times, the ICMP response packet (as
follows) is sent back three times.

Packet Number 7
TOK: ====(78 bytes received on interface tr0)==== 13:37:43.735151488
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:00:fa:37:91:64, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.1 >
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=36325, ip_off=0
IP: ip_ttl=60, ip_sum=3204, ip_p = 1 (ICMP)
ICMP: icmp_type=11 (TIME_EXCEEDED) icmp_code=0(IN_TRANSIT)
ICMP: Referenced IP header:
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=43597, ip_off=0
IP: ip_ttl=1, ip_sum=5411, ip_p = 17 (UDP)
IP: 00000000 aa4c829b 00140000 |.L...... |

This packet seems to have two IP headers. ICMP error message packets
carry a part of the original error-causing packet to help later analyze at the
source system. The first 64 bytes are sent back on the ICMP error message
packet. In this example, lines after “Referenced IP header” are the returned
64 bytes (the IP header is, of course, included in the first 64 bytes).

 4. At this moment, the following intermediate result is displayed:

traceroute ts
traceroute to ts.hakozaki.ibm.com (9.68.210.140), 30 hops max, 40 byte packets
 1 9.68.214.1 (9.68.214.1) 2 ms 2 ms 2 ms

 5. traceroute sends a UDP packet again, but this time, it increments the TTL in
the IP header by one and it becomes 2. Now this packet can pass the router

Chapter 2. Debugging TCP/IP Troubles 121

9.68.214.1 and get one hop ahead. This procedure is repeated until a packet
reaches the destination system; Here, the next router s4 is challenged.

Note: This packet is also sent three times, but we only show one.

Packet Number 14
TOK: ====(62 bytes transmitted on interface tr0)==== 13:37:43.766337152
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 00:00:fa:37:91:64]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=43600, ip_off=0
IP: ip_ttl=2, ip_sum=530e, ip_p = 17 (UDP)
UDP: <source port=43596, <destination port=33438 >
UDP: [udp length = 20 | udp checksum = 0]
UDP: 00000000 04020000 3032c797 000bb048 |....02.....H |

 6. This time the UDP packet arrived at the next router s4. When the packet
arrived at s4, the TTL decremented to 1 because it passed through the fisrt
router 9.68.214.1. Therefore, the s4 cannot forward this packet for the same
reason as the 9.68.214.1 did. The same error, ICMP Type 11 Time Exceeded
for Datagram is returned to the mat.

Packet Number 15
TOK: ====(78 bytes received on interface tr0)==== 13:37:43.768731008
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:00:fa:37:91:64, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.226.123 > (s4.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=14500, ip_off=0
IP: ip_ttl=59, ip_sum=7bcb, ip_p = 1 (ICMP)
ICMP: icmp_type=11 (TIME_EXCEEDED) icmp_code=0(IN_TRANSIT)
ICMP: Referenced IP header:
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=43600, ip_off=0
IP: ip_ttl=1, ip_sum=540e, ip_p = 17 (UDP)
IP: 00000000 aa4c829e 00140000 |.L...... |

 7. Then, the following result is displayed:

traceroute ts
traceroute to ts.hakozaki.ibm.com (9.68.210.140), 30 hops max, 40 byte packets
 1 9.68.214.1 (9.68.214.1) 2 ms 2 ms 2 ms
 2 s4.hakozaki.ibm.com (9.68.226.123) 3 ms 3 ms 3 ms

 8. The traceroute sends a UDP packet again, but this time, it increments the
TTL in the IP header by one and it becomes 3. This time this packet can
pass the router 9.68.214.1 and s4 and get one more hop ahead. This
procedure is repeated until a packet reaches the destination system; here, it
reaches the final destination ts.

Note: This packet is also sent three times, but we only show one.

122 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 22
TOK: ====(62 bytes transmitted on interface tr0)==== 13:37:43.795548544
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 00:00:fa:37:91:64]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=43603, ip_off=0
IP: ip_ttl=3, ip_sum=520b, ip_p = 17 (UDP)
UDP: <source port=43596, <destination port=33441 >
UDP: [udp length = 20 | udp checksum = 0]
UDP: 00000000 07030000 3032c797 000c2287 |....02....″ .

 9. This time the UDP packet arrived at the ts destination system safely, but it
could not be delivered to the port 33441; this is because no applications
(server daemon, etc) are listening to this port on the ts. Therefore, the ts
sent back the ICMP error Destination Unreachable - port unreachable.

Packet Number 23
TOK: ====(78 bytes received on interface tr0)==== 13:37:43.799451520
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:00:fa:37:91:64, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=7288, ip_off=0
IP: ip_ttl=253, ip_sum=e5e5, ip_p = 1 (ICMP)
ICMP: icmp_type=3 (DEST UNREACH)
ICMP: icmp_code=3 (9.68.210.140: UDP PORT 33441 unreachable, src=43596)

Note: Of course, three responses are sent back.

10. Then, the following result is displayed:

traceroute ts
traceroute to ts.hakozaki.ibm.com (9.68.210.140), 30 hops max, 40 byte packets
 1 9.68.214.1 (9.68.214.1) 2 ms 2 ms 2 ms
 2 s4.hakozaki.ibm.com (9.68.226.123) 3 ms 3 ms 3 ms
 3 ts.hakozaki.ibm.com (9.68.210.140) 4 ms 4 ms 4 ms
#

Since traceroute uses ICMP, its activity is recorded by the kernel and you can
review it with the command netstat -p icmp. Commonly, the counter destination
is unreachable and time is exceeded messages mean that some problems have
occurred. You should not forget that debugging tools, such as traceroute, impact
system statistics. This is one example of the Heisenberg principle.

Chapter 2. Debugging TCP/IP Troubles 123

netstat -p icmp
icmp:

28 calls to icmp_error
0 errors not generated ′ cuz old message was icmp
Output histogram:

echo reply: 133
destination unreachable: 28

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 5
destination unreachable: 24
echo: 137
time exceeded: 36
address mask request: 3

133 message responses generated
#

The previous example was taken at the system mat. After this experiment, the
counters were incremented by 3 (destination unreachable) and 6 (time
exceeded), respectively.

2.5.1.3 The Destination Port 33434
With the default setting, it is said that traceroute uses the port 33434. This port
is usually not used. Since this command ultimately ends with the Port
Unreachable message, the destination port should not be used by any
application.

If the port is used by someone, what happens? The UDP module on the
destination system can deliver the packet from the traceroute, and the result is
unpredictable. The application on the port may silently discard the packet, or
the application may print an error message on the console. But we are sure that
the ICMP Port Unreachable is not returned. Then, the traceroute cannot know
what happened at the destination system. From this command′s point of view,
it′s only a no response and it is possible that the destination system is not even
turned on.

In order to avoid the previous problem, traceroute slightly changes the
destination port number of each packet. Although this is not clearly
documented, our experiment revealed that traceroute increments the destination
port number by one whenever it sends a packet. The number 33434 is used to
provide the base, and the first packet has the destination port 33435. If your
destination can be reached through one router, the router is queried by the ports
3345, 3346, and 3347. Then, the destination system is queried by port 3348, 3349
and 3350.

You can specify an arbitrary base port with the -p flag. Notice that this is the
base port and base +1 is used first. See the following example. In this case,
the destination hitoh route is in the same IP network and we didn′ t need a
router. The hitoh is queried by ports 111, 112 and 113.

traceroute -p 110 hitoh
traceroute to hitoh.fscjapan.ibm.com (9.170.5.32), 30 hops max, 40 byte packets
 1 * hitoh.fscjapan.ibm.com (9.170.5.32) 5 ms 3 ms
#

124 Practical TCP/IP for AIX V3.2/V4.1

The port 111 is used by the ONC/RPC portmapper daemon. The portmapper
ignored the packet from traceroute and we got the first timed out packet. It was
displayed with an asterisk (*).

2.5.2 Successful Example
traceroute uses UDP packets and utilizes the ICMP error reporting function. It
sends a UDP packet three times to each gateway or router on the way. It starts
with the nearest gateway and expands the search by one hop. Finally, the
search gets to the destination system.

In the output, you see the gateway name, the gateway′s IP address and the three
round trip times for the gateway. See the following example:

traceroute lazy
traceroute to lazy.fscjapan.ibm.com (9.170.1.9), 30 hops max, 40 byte packets
 1 inoki5.fscjapan.ibm.com (9.170.5.240) 5 ms 4 ms 4 ms
 2 lazy.fscjapan.ibm.com (9.170.1.9) 11 ms 6 ms 6 ms
#

Here is another example. We repeated the same command after a while in
order to have the ARP entry expired. You should note that the first packet to
each gateway or destination took a longer round trip time. This is due to the
overhead caused by the ARP. If the public switched network (WAN) is involved
in the route, the first packet uses up a lot of memory due to a connection
establishment and may cause a timeout. The default timeout for each packet is
3 seconds. You can change it with the -w option:

traceroute lazy
traceroute to lazy.fscjapan.ibm.com (9.170.1.9), 30 hops max, 40 byte packets
 1 inoki5.fscjapan.ibm.com (9.170.5.240) 17 ms 8 ms 4 ms
 2 lazy.fscjapan.ibm.com (9.170.1.9) 20 ms 6 ms 6 ms
#

The first 17 ms is due to the ARP between the source system (newton) and the
gateway inoki5. The second 20 ms is due to the ARP between the inoki5 and the
final destination (lazy). In this case, we are using DNS and we should not forget
the DNS lookup overhead. Every time before traceroute sends a packet, the DNS
server is searched.

2.5.3 Failed Examples
Now we briefly explain typically failed cases. For a long path to your destination
or complex network routes, you may see a lot of troublesome results with the
traceroute command. As you already know, there are many things that are left
implementation-dependent. Also, we cannot avoid bugs. Thus, searching for the
problem may only waste your time. If all routers or systems involved are under
your control, you may be be able to investigate the problem completely, but it′s
rare.

2.5.3.1 Gateway (Router) Problem
In this example, packets were sent from the system newton (9.170.5.45), and
there are two router systems on the way to the bridge. We intentionally
removed the routing capability from the second router system (RS/6000) by
setting the option ipforwarding of the no command to 0. See the following
example:

Chapter 2. Debugging TCP/IP Troubles 125

traceroute jbridge
traceroute to jbridge.fscjapan.ibm.com (9.170.3.253), 30 hops max, 40 byte packets
 1 inoki5.fscjapan.ibm.com (9.170.5.240) 4 ms 4 ms 3 ms
 2 inoki5.fscjapan.ibm.com (9.170.5.240) 3 ms !H 3 ms !H 3 ms !H
#

If an ICMP error message, excluding Time Exceeded and Port Unreachable, is
received, it is displayed as follows:

!H Host Unreachable

!N Network Unreachable

!P Protocol Unreachable

!S Source route failed

!F Fragmentation needed.

Due to product-dependent implementations and bugs, you may see some odd
results. Please refer to the sections on traceroute in the Command Reference or
InfoExplorer for the odd results.

2.5.3.2 Destination System Problem
When the destination system doesn′ t respond, all queries are timed out and the
results are displayed with an asterisk. Refer to the following example:

traceroute grover
traceroute to grover.fscjapan.ibm.com (9.170.5.21), 30 hops max, 40 byte packets
 1 inoki.fscjapan.ibm.com (9.170.1.240) 3 ms 3 ms 3 ms
 2 * * *
 3 * * *
^C#
#

The most simple reason is that the system is turned off. If you doubt a
communication link, you can try with a longer timeout period using the -w flag.
Although rare, all the ports queried might have been used. Of course, you can
change the ports and try again.

2.6 Debugging TCP/IP Applications
In this section we discuss concrete debugging procedures for the TCP/IP
application. There are many applications and you have to choose the
appropriate debugging method for each application.

2.6.1 Checking the TCP Connection with TELNET
People use TELNET to log in to other systems via the TCP/IP network. Of
course, this is the primary objective of TELNET. We can use TELNET as a
common TCP debug tool because you can specify any TCP port number when
you invoke the telnet or tn command. You can force it to connect the TELNET
client (telnet command) to any TCP application port and can watch the reaction
of the application.

126 Practical TCP/IP for AIX V3.2/V4.1

2.6.1.1 Successful Example
The following is an example of invoking the TELNET client to the daytime server
on the system zero. The default server is the telnetd daemon listening to the
well-known port 23.

tn zero daytime
Trying...
Connected to zero.hakozaki.ibm.com.
Escape character is ′ [T′ .
Thu Aug 17 14:58:03 1995
Connection closed.
#

The application daytime server is listening to the well-known port 13. In the
previous example, we use the server name daytime to specify the destination
port. This is possible because the port is registered in the /etc/services file as
follows. Of course, you could use the port number 13 instead.

grep daytime /etc/services
daytime 13/tcp
daytime 13/udp
#

Note: Although the daytime server listens to both TCP port 13 and UDP port 13,
you can only check the TCP connectivity with the telnet command.

The function of the daytime is fairly simple. It displays the current time and date,
then exits. In the previous example, you may notice that the connection was
closed by the daytime server. Since the daytime server is invoked by the inetd,
the previous procedure checked both the inetd and daytime server.

Note: Precisely speaking, there is no entity of the daytime server daemon. The
daytime server is completely integrated with the inetd. So, the previous
procedure was used to check a part of the inetd functionality. Some other
daemons are also integrated with the inetd. Refer to the 1.6.2, “The inetd
Subservers” on page 58 for details.

The following is another example. We plugged in the TELNET client to the FTP
server daemon ftpd. Notice that the TELNET client doesn′ t have the FTP client
functionality; we had to use the USER subcommand to enter a user name, and
type the PASS subcommand to enter a password. These subcommands are
usually issued by the ftp client program and are not issued by a human user. If
you transfer a file, you issue the get or put command to the ftp client. Then the
ftp client internally uses the RETR or STOR subcommand. Although we don′ t
explain in detail, compare this operation sequence with the usual FTP session;
this could provide you with the knowledge of the inside of the FTP server.

tn zero ftp
Trying...
Connected to zero.hakozaki.ibm.com.
Escape character is ′ [T′ .
220 zero FTP server (Version 4.1 Sat Aug 27 17:18:21 CDT 1994) ready.
user matoba
331 Password required for matoba.
pass bmw320i
230 User matoba logged in.
help
214- The following commands are recognized (* =>′ s unimplemented).

USER PORT STOR MSAM* RNTO NLST MKD CDUP
PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP

Chapter 2. Debugging TCP/IP Troubles 127

 ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU
 SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE

REIN MODE MSND* REST XCWD HELP PWD MDTM
QUIT RETR MSOM* RNFR LIST NOOP XPWD

214 Direct comments to ftp-bugs@zero.
pwd
257 ″ /home/matoba″ is current directory.
stat
211- zero FTP server status:

Version 4.1 Sat Aug 27 17:18:21 CDT 1994
Connected to mat.hakozaki.ibm.com
Logged in as matoba
No data connection

211 End of status
quit
221 Goodbye.
Connection closed.
#

2.6.1.2 Failed Example: System Is Not Up
When the destination system is not turned on, the TELNET looks hung as follows
(remember that the port 13 is the daytime server):

tn mat 13
Trying...

If you are patient enough and don′ t interrupt the telnet command, you will
eventually see the error message, as follows:

tn mat 13
Trying...
telnet: connect: Connection timed out
#

You have to wait only 75 seconds to get this error. This is because the TCP
session initiation timeout is 75 seconds. Up to now these timeout values had
been hard-coded and you could not change them. Now the new option
tcp_keepinit of the no command has been introduced and you can set your
favorite value. Until you get this message, the telnet command looks hung. Of
course, the ARP also fails and the ARP cache must be as follows:

arp -a
? (9.68.214.1) at 0:0:fa:37:91:64 [token ring]
mat.hakozaki.ibm.com (9.68.214.82) at (incomplete)

#

Until we got the final timeout, a total of six SYN segments were retransmitted.
This is due to the implementation of RS/6000, and this behavior complies with
the RFC. Notice that finally the error was returned from the TCP module to the
application (TELNET client) and this is why the error message was displayed by
the telnet command.

RFC 1122 Requirement for Internet Hosts, Page 101

An attempt to open a TCP connection could fail with excessive
retransmissions of the SYN segment or by receipt of an RST segment or an
ICMP Port Unreachable. SYN retransmissions must be handled in the
general way described for data retransmissions, including notification of the
application layer.

128 Practical TCP/IP for AIX V3.2/V4.1

2.6.1.3 Failed Example: Server Is Not Running
One problem may be that an application server cannot start or cannot work
correctly. In the case of TELNET, the typical symptom is that the TELNET client
ends with the following error message:

tn zero
Trying...
telnet: connect: Connection refused
tn> q
#

Note: This message is returned immediately.

The previous message indicates that your system has just received the TCP ACK
segment with the RST (Reset) flag. The reset means that the destination system
TCP module was forced to have the session initiation request of your system
terminated. We show the IP trace example in the following. We prepared this
trace by killing the inetd:

 1. When you invoke

tn zero

the following TCP segment is sent. This is the TCP session initiation request
from the system mat. Notice that the destination TCP port is 23 (telnet) and
the SYN flag is set.

Packet Number 16
TOK: ====(66 bytes transmitted on interface tr0)==== 16:44:23.596971648
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=3225, ip_off=0
IP: ip_ttl=60, ip_sum=b304, ip_p = 6 (TCP)
TCP: <source port=1054, destination port=23(telnet) >
TCP: th_seq=b10d3201, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=b1bb, th_urp=0
TCP: 00000000 020405ac |.... |

 2. This is the response from the system zero. Notice that the flag is set to both
RST and ACK. The ACK number is set to b10d3202 and this was determined
by the SEQ number of the request segment, b10d3201. (ACK number is the
SEQ number of the next incoming segment. If the connection request
segment doesn′ t have user data, then SEQ +1 is set to ACK. This
mechanism shows that the TCP module is working correctly.) This segment
is immediately returned and will close the TCP port at the system mat.

Chapter 2. Debugging TCP/IP Troubles 129

Packet Number 17
TOK: ====(62 bytes received on interface tr0)==== 16:44:23.598930048
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=8499, ip_off=0
IP: ip_ttl=60, ip_sum=9e6e, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1054 >
TCP: th_seq=0, th_ack=b10d3202
TCP: th_off=5, flags<RST | ACK>
TCP: th_win=0, th_sum=95d, th_urp=0

Note: Although the destination system knows that the application server is not
available and cannot deliver TCP segments, no ICMP messages are
generated. In case of UDP, you get the ICMP message Destination
Unreachable - Port Unreachable.

Do not forget that we are discussing the implementation of the RS/6000 and AIX
V4.1.2 as an example. The previous behavior of our RS/6000s (both mat and
zero) comply with the RFC 973 TRANSMISSION CONTROL PROTOCOL,
PROTOCOL SPECIFIATION completely. That is, the SYN segment sent to an
application that is not running is rejected by RST segment.

RFC 793 TRANSMISSION CONTROL PROTOCOL, Page 36

...If the connection does not exist (CLOSED) then a reset is sent in response
to any incoming segment except another reset. In particular, SYNs addressed
to a non-existent connection are rejected by this means.

If the incoming segment has ACK field, the reset takes its sequence number
from the ACK field of the segment, otherwise the reset has sequence number
zero and the ACK field is set to the sum of the sequence number and segment
length of the incoming segment. The connection remains in the CLOSED
state.

When the RST segment was sent back and the connection was forced to be
closed, the following counters shown with the netstat -p tcp command were
incremented. These counters are of the system mat. All are incremented by
one, as follows:

130 Practical TCP/IP for AIX V3.2/V4.1

netstat -p tcp
tcp:

34166 packets sent
18782 data packets (309217 bytes)

...
21 connection requests
25 connection accepts
43 connections established (including accepts)
67 connection closed (including 1 drops)
1 embryonic connection dropped
18761 segments updated rtt (of 18765 attempts)
6 retransmit timeouts

0 connections dropped by rexmit timeout
0 persist timeouts
3 keepalive timeouts

0 keepalive probes sent
1 connection dropped by keepalive

#

2.6.2 Watching ICMP for UDP Application
If the application uses UDP, the behavior is totally different. Unfortunately, there
are no simple tools to directly test a UDP application status. (As you know,
traceroute can be used to send a UDP packet.) In the example below, we update
the DNS resolver configuration file /etc/resolv.conf and make a DNS query
packet to the non-DNS server system. Notice that the DNS query and reply use
UDP.

 1. A DNS lookup request is sent to the ayano system, which is not the DNS
server system. The packet has the destination port of 53 for the named.

Packet Number 375
TOK: ====(87 bytes transmitted on interface tr0)==== 17:00:55.469524096
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 08:00:5a:ab:2a:e6]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.83 > (ayano.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=65, ip_id=3706, ip_off=0
IP: ip_ttl=30, ip_sum=cf04, ip_p = 17 (UDP)
UDP: <source port=1197, <destination port=53(domain) >
UDP: udp length = 45 | udp checksum = 30c3
DNS Packet breakdown:

QUESTIONS:
ts.hakozaki.ibm.com, type = A, class = IN

 2. Since the named is not running and the UDP module could not deliver the
query packet, it sent back the ICMP message Destination Unreachable - Port
Unreachable.

Chapter 2. Debugging TCP/IP Troubles 131

Packet Number 376
TOK: ====(78 bytes received on interface tr0)==== 17:00:55.471707136
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 08:00:5a:ab:2a:e6, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.83 > (ayano.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=6778, ip_off=0
IP: ip_ttl=255, ip_sum=e21c, ip_p = 1 (ICMP)
ICMP: icmp_type=3 (DEST UNREACH)
ICMP: icmp_code=3 (9.68.214.83: UDP PORT 53 unreachable, src=1197)

As you can see, the result is the same with the traceroute command. Be aware
that the previous ICMP is received by the IP module and recorded in the kernel
statistics counter. The application (the DNS resolver in the previous example)
never gets a response. Therefore, any UDP application that needs a response
must have timeout and retransmission or some other mechanism to detect (and
recover if necessary) from the problem.

The previous ICMP packet is recorded as follows. You can briefly review the
UDP status with netstat -p icmp. Unfortunately, it′s only the sum of destination
unreachable counts and doesn′ t tell you the details. Although each destination
unreachable has the code, it is not recorded.

netstat -p icmp
icmp:

28 calls to icmp_error
0 errors not generated ′ cuz old message was icmp
Output histogram:

echo reply: 1186
destination unreachable: 27

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 59
destination unreachable: 75
echo: 1186
time exceeded: 21
address mask request: 3

1186 message responses generated
#

2.6.3 Monitoring TCP and UDP Connection with netstat -a
You can check the current communication status via the netstat command. This
command can show the status of each socket port. This is useful when you
connect to the destination application, but you still find something wrong. For
example, the connection suddenly hangs or the connection is abruptly closed.
The flag -a is used to display all the active TCP connections and all the TCP/UDP
server daemons listening on their ports. The flag -f inet is used to display the
ports used for networking. If you don′ t use this flag, you will also see the UNIX
domain socket status.

132 Practical TCP/IP for AIX V3.2/V4.1

netstat -a -f inet
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 zero.hakozaki.ib.1094 hzname1.hakozaki.domai TIME_WAIT
tcp 0 0 zero.hakozaki.ib.1093 hzname1.hakozaki.domai TIME_WAIT
tcp 0 0 zero.hakozaki.ib.1092 hzname1.hakozaki.domai TIME_WAIT
tcp 0 0 zero.hakozaki.ib.ftp mat.hakozaki.ibm.1061 ESTABLISHED
tcp 0 0 zero.hakozaki.ib.1034 mat.hakozaki.ibm.telne ESTABLISHED
tcp 0 0 *.25941 *.* LISTEN
tcp 0 0 *.blackjac *.* LISTEN
tcp 0 0 *.writesrv *.* LISTEN
tcp 0 0 *.www *.* LISTEN
tcp 0 0 *.971 *.* LISTEN
tcp 0 0 *.968 *.* LISTEN
tcp 0 0 *.* *.* CLOSED
tcp 0 0 *.961 *.* LISTEN
tcp 0 0 *.956 *.* LISTEN
tcp 0 0 *.929 *.* LISTEN
tcp 0 0 *.901 *.* LISTEN
tcp 0 0 *.dtspc *.* LISTEN
tcp 0 0 *.time *.* LISTEN
tcp 0 0 *.daytime *.* LISTEN
tcp 0 0 *.chargen *.* LISTEN
tcp 0 0 *.discard *.* LISTEN
tcp 0 0 *.echo *.* LISTEN
tcp 0 0 *.exec *.* LISTEN
tcp 0 0 *.shell *.* LISTEN
tcp 0 0 *.ftp *.* LISTEN
tcp 0 0 *.sunrpc *.* LISTEN
tcp 0 0 *.smtp *.* LISTEN
tcp 0 0 *.6000 *.* LISTEN
udp 0 0 *.1204 *.*
udp 0 0 *.1203 *.*
udp 0 0 *.1202 *.*
udp 0 0 *.1201 *.*
udp 0 0 *.1200 *.*
udp 0 0 *.1199 *.*
udp 0 0 *.1198 *.*
udp 0 0 *.1197 *.*
udp 0 0 *.1196 *.*
udp 0 0 *.1195 *.*
udp 0 0 *.1194 *.*
udp 0 0 *.1193 *.*
udp 0 0 *.1191 *.*
udp 0 0 *.1189 *.*
udp 0 0 *.1187 *.*
udp 0 0 *.1185 *.*
udp 0 0 *.1183 *.*
udp 0 0 *.1181 *.*
udp 0 0 *.1018 *.*
udp 0 0 *.1019 *.*
udp 0 0 *.1021 *.*
udp 0 0 *.1022 *.*
udp 0 0 *.* *.*
udp 0 0 *.* *.*
udp 0 0 *.973 *.*
udp 0 0 *.1023 *.*
udp 0 0 *.1012 *.*
udp 0 0 *.966 *.*

Chapter 2. Debugging TCP/IP Troubles 133

udp 0 0 *.963 *.*
udp 0 0 *.958 *.*
udp 0 0 *.927 *.*
udp 0 0 *.899 *.*
udp 0 0 *.shilp *.*
udp 0 0 *.1046 *.*
udp 0 0 *.time *.*
udp 0 0 *.daytime *.*
udp 0 0 *.chargen *.*
udp 0 0 *.discard *.*
udp 0 0 *.echo *.*
udp 0 0 *.1044 *.*
udp 0 0 *.1042 *.*
udp 0 0 *.1040 *.*
udp 0 0 *.1038 *.*
udp 0 0 *.* *.*
udp 0 0 *.1036 *.*
udp 0 0 *.ntalk *.*
udp 0 0 *.sunrpc *.*
udp 0 0 *.1035 *.*
udp 0 0 *.syslog *.*
udp 0 0 *.src *.*
udp 0 0 *.xdmcp *.*
#

The columns Local Address and Foreign Address show the server or client
running on your system and the destination system. It is displayed as <host
n a m e > * < p o r t n u m b e r > . If the port number is registered in /etc/services, then
the application name is displayed instead of the port number. The asterisk (*) is
used to represent a wildcard. This means that any number is acceptable to
make a connection. See the following example:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
...
tcp 0 0 *.700 *.* LISTEN
...

The TCP server listening to the port 700 can accept a connection from any
system (IP address) and any port because Foreign Address is *.*. If your system
has more than one network interface (IP addresses), the server can accept a
connection from any interface because Local Address is *.700.

A concrete example to explain an established TCP connection is as follows:

netstat -f inet
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 zero.hakozaki.ib.ftp mat.hakozaki.ibm.1061 ESTABLISHED
tcp 0 0 zero.hakozaki.ib.1034 mat.hakozaki.ibm.telne ESTABLISHE

#

In this example, we have two TELNET sessions. The first session is from the mat
to the zero. (The zero is the FTP server.) The second session is from the zero
to the mat. (The mat is the TELNET server.) This is because ftpd and telnetd
use fixed, well-known ports in /etc/services, and the name ftp and telnet are
displayed instead of the port number 21 and 23, respectively. For the
FTP/TELNET client, the operating system dynamically assigns an available port
when they request to open the sockets, and the port numbers 1061 and 1034 are

134 Practical TCP/IP for AIX V3.2/V4.1

displayed. Usually the lowest available port number of a socket is assigned. If
the applications are not registered in /etc/services (this is common if the
application is a client program), there is no easy way to know what port the
application received (if the application cannot tell you the port explicitly).

Note: Even for a server there are some schemes to assign a port dynamically
when the server starts. All the RPC-based applications use port mapper
or a similar mechanism for dynamic port assignment.

For UDP ports, state is not displayed. Since the UDP is a connectionless
protocol, there are no concepts of state.

Note: Since a UDP application doesn′ t have a connection, it would be extremely
difficult to know the owner of a port.

The columns Recv-Q and Send-Q are used to show the socket buffer status. If
there is some data queued in the socket buffer, the number of bytes are
displayed. Usually these columns are 0 because the queues are flushed quicker
than you expect. If you want to know when the value is displayed, establish a
TELNET session and pull out the Ethernet or token-ring cable or shut the
interface down. Then when you type some characters, you can see that the
Send-Q gets some number. Of course, during this experiment, the TELNET
session screen hangs, but the typed characters are queued.

The most important point for TCP is the right-most column state. See the
following for the definitions:

CLOSED Connection is closed.

LISTEN Listening for a connection. The port is passively opened and
waiting for a connect request.

SYN_SENT The port is actively opened and has already sent a connection
request (a TCP segment with SYN flag). This represents
waiting for a matching connection request (a TCP segment with
SYN and ACK flags).

SYN_RCVD Represents waiting for a confirming connection request
acknowledgement (a TCP segment with ACK flag). It has
received the connection request (a TCP segment with SYN flag)
and has also sent a connection request (a TCP segment with
SYN and ACK flags). Now it is waiting to receive ACK.

ESTABLISHED Connection established.

CLOSE_WAIT It has received a close request (a TCP segment with FIN flag)
and has sent back the acknowledgment (a TCP segment with
ACK flag). Notice that it can send data, but it can no longer
receive data.

FIN_WAIT_1 It has already sent a close request (a TCP segment with FIN
flag) and is waiting for an acknowledgment (a TCP segment
with ACK flag) or a close request (a TCP segment with FIN
flag). Notice that it cannot send data, but it can receive data.

CLOSING It has sent a close request (a TCP segment with FIN flag).
Also, it has received a close request (a TCP segment with FIN
flag) and sent back the acknowledgment (a TCP segment with
ACK flag).

Chapter 2. Debugging TCP/IP Troubles 135

LAST_ACK It has received a close request (a TCP segment with FIN flag)
and has sent back the acknowledgment (a TCP segment with
ACK flag). It has also sent a close request (a TCP segment
with FIN flag). If the FIN is sent out from CLOSE_WAIT, it
becomes LAST_ACK. It is now waiting for FIN ACK.

FIN_WAIT_2 It has already sent a close request (a TCP segment with FIN
flag) and has also received the acknowledgment (a TCP
segment with ACK flag). It is waiting for a close request (a
TCP segment with FIN flag) from the destination. Since TCP is
bidirectional, close (FIN) should be issued at both sides. If
FIN_WAIT_1 receives ACK, it becomes FIN_WAIT_2.

TIME_WAIT The connection was closed completely. For 2MSL (twice the
maximum segment lifetime) quiet wait period is needed after
close.

Although there are many TCP states, almost all states are only transit states,
and it′s very rare to see them whenever you issue the netstat command. Only
the following states are stable states:

LISTEN
ESTABLISHED
CLOSED

If any state, except those listed above, remains for a long period of time, this
implies that a some problem has occurred. Maybe the most observed state is
TIME_WAIT. Due to the internet protocol specification described in the RFC 1122
Requirements for Internet Hosts, any closed socket port should not be available
or reused immediately. If you can reuse the port just after the close completion,
your new connection may receive a stray segment belonging to the prior
connection. Then your new connection may be abnormally closed or may get in
trouble. To prevent this situation, it is recommended that you wait for a period
of twice the maximum segment lifetime (MSL). With our RS/6000, the MSL is 30
seconds. Then you cannot reuse the same port within 60 seconds. It′s not a
problem for the TIME_WAIT to be 60 seconds. This value is hard coded and
cannot be changed. You can see that this value is defined in the header file
/usr/include/netinet/tcp_timer.h. For details, refer to the RFC 1122.

Note: If you are absolutely sure that the destination system will open and use a
brand new port, you can override the TIME_WAIT restriction using
SO_REUSEADDR option of setsockopt().

If you have a program that opens and closes a lot of sockets in a very short
period, it would dramatically consume the system resources. If the system is a
PC or some resource limited system, it may easily use up all of the memory. Of
course, in an extremely rare situation, UNIX is not an exception. In such a case,
you would get an error when the application tries to open a socket port.

There is some software that uses a very direct method called hard close. In
order to avoid the TIME_WAIT state, those programs use the RST (Rest) flag to
close a connection. They don′ t follow a normal, graceful closing procedure and
only send a TCP segment with the RST flag. This is the same way in which we
explained the failed TCP connection establishment. You may find this procedure
when you monitor software for PCs.

136 Practical TCP/IP for AIX V3.2/V4.1

Our Experience

A customer migrated a TCP application program from a PC to a UNIX
workstation. That program didn′ t work well in the UNIX environment. The
program abnormally terminated with the error message Can′ t create socket,
address already in use. We helped debug the problem. We found that the
PC′s TCP/IP module didn′ t have a 2MSL quiet period. It followed the TCP
graceful closing procedure but did allow the use of the same port
immediately (and the program did so). The program had been built on this
inappropriate implementation nature. We spent a long time explaining why a
non-workable TCP implementation was correct and a workable TCP
implementation was bad.

2.6.4 Socket Port Number Basics
In the TCP/IP world, the IP address is used to identify a system (host) and the
port number is used to identify a process (application) running on the system.
Both transport protocols, TCP and UDP, have their own port. They use
independent port numbers. The port 1000 in TCP is nothing to do with the port
1000 in UDP. The port number is represented in 16 bits, so we can have only
65535 ports. The port number is considered to be a limited system resource.

Usually, a server program uses its own fixed port number. Any server must
listen to incoming requests from the clients. Why can the clients send their
requests to the correct server port? Because the server is always sitting on the
fixed port, the clients can have knowledge about it beforehand. (If the server
changes its listening port, we need some mechanism to inform the clients of the
new server port.) A server port may be hard-coded in the client program;
usually it is described in the file /etc/services. Then the client refers to this file
to get the server port number. This means that the server system and the client
systems must share the same /etc/services file. Refer to B.2, “Well-Known Ports
in /etc/services” on page 350 for a complete example of this file. You can use
NIS for this purpose.

Note: For a server program, there are some dynamic port assignment schemes.
RPC is one of them.

On the contrary, a client can get its port number at the run time. Usually the
operating system assigns the port when the client opens the socket. This is
because a client can imbed its port number in a request packet to the server and
the server is informed of the client port automatically. Therefore, a client port is
dynamically mapped as required.

Note: It is described in many documents that an operating system assigns a
random port number to a client program. Accurately speaking, this is not
correct. It is not random but non-predictable. For AIX, the kernel assigns
a free port. The kernel searches ports from 1024 through 5000 for an
unused port, and the first unused port is allocated. If the search reaches
the port 5000, then the search starts again from port 1024. So the logic
search is not random, but we cannot say which port is assigned
beforehand.

We are not saying that a client program cannot choose a specific port explicitly.
If you need, you can allocate a specific port using bind(). Of course, if the port
you specified has been used by someone, you cannot get it.

Chapter 2. Debugging TCP/IP Troubles 137

2.6.4.1 Well-Known Ports (0-1023)
The ports between 0 and 1023 are controlled by the Internet Assign Number
Authority (IANA). These ports are registered in the RFC 1700 ASSIGN
NUMBERS. On most systems they can only be used by system processes or by
programs executed by privileged users (root user or equivalent). These ports
are called well-known ports.

This port can be coded in a program, but it is usually written in the /etc/services
file. Refer to B.2, “Well-Known Ports in /etc/services” on page 350 for a
complete example of this file.

2.6.4.2 Registered Ports (1024-65535)
The Registered Ports are not controlled by the IANA and on most systems can
be used by ordinary user processes or programs executed by ordinary users.
Although they are not formally controlled, for your reference they are listed in
the RFC 1700 ASSIGN NUMBERS.

This port can be coded in a program, but it is usually written in the /etc/services
file. Refer to B.2, “Well-Known Ports in /etc/services” on page 350 for a
complete example of this file.

2.6.4.3 Port Conflict
One potential problem is port conflict. As described above, the registered ports
are not controlled formally. If a server program and another server program
happen to use the same port, a problem occurs. The problem symptom depends
on how the servers are programmed. The most usual symptom may be that the
server invoked later terminates or exits with an error message. Then, a user (or
a server program) must guarantee the unique port usage among servers. The
most common way is to share the /etc/services file to register port numbers. If
you have a duplicated port program, you should notice it when you install your
program. Of course, it is only possible when all systems and applications are
under your control. Whenever you decide to use or introduce some vendor
packages, there is some possibility of having a port conflict problem.

You can follow the procedure below to check the unique port usage when you
introduce or develop a server program. Keep in mind that there are no
procedures to absolutely guarantee the uniqueness.

 1. Check the RFC 1700 ASSIGN NUMBERS. Do not forget that this document
provides only reference information and we may have millions of package
software that are not registered.

 2. Check the /etc/services file on your system. Do not forget that not all server
programs use this file. The most famous example may be X Server of
AIXwindow (port 6000). X-Windows, including AIXwindow, don′ t use
/etc/services.

 3. Check the header files and other potential places, such as configuration file
or startup script where a port number may be written. For AIXwindow, you
can find that the port number is hard-coded in the header file, as follows:

cat -n /usr/include/X11/Xproto.h | grep 6000
249 #define X_TCP_PORT 6000 /* add display number */

#

 4. Still, you have a program which has an unknown port; you have to ask the
vendor who provided the program for the port.

138 Practical TCP/IP for AIX V3.2/V4.1

2.6.4.4 Dynamic Port Assignment (RPC)
Since the socket ports are a limited resource, we have a potential risk of using a
conflicting port. Now some dynamic server port assignment mechanisms are
commercially available. They are called Remote Procedure Calls (RPCs). With
the programs written with RPC, you don′ t have port conflict problems and you
don ′ t need to worry about the port assignment administration.

Note: The RPC provides a programming paradigm, and its primary value or
purpose is not dynamic server port assignment.

The RPC uses the port mapping service or daemon. When an application server
starts, the port mapping service dynamically assigns an available port. The
client has to contact the port mapping service first, and after getting the server
port it can communicate to the server. In an RPC environment, the only server
that uses the fixed port is the port mapping service. Now we have the following
RPCs on RS/6000 and AIX:

ONC/RPC Open Network Computing (ONC) developed by Sun Microsystems.
It uses the port mapper or portmap daemon for the dynamic server
port assignment. The portmap uses the port 111.

NCS/RPC Network Computing System (NCS) developed by HP/Apollo. It uses
the local location broker or llbd daemon for the dynamic server port
assignment. The llbd uses the port 135.

DCE/RPC Distributed Computing Environment (DCE) developed by OSF. It
uses endpoint mapper or rpcd daemon for dynamic server port
assignment. The rpcd uses the port 135. If you run both NCS and
DCE on the same system, llb and rpcd have a port conflict problem.
You cannot run both or only the rpcd because the rpcd includes the
functionality of the llb (this is the solution developed by the OSF).

They are different products and basically aren′ t compatible with each other.

2.7 Getting TCP Socket-Level Trace
If you know the TCP mechanism very well, you can use the socket-level debug
function. This is a trace function provided by the kernel. We can expect most of
the UNIX workstations to provide this capability. Although it is not easy to read
and understand the trace log, it shows you the contents of Protocol Control Block
(PCB), which is quite difficult to review by other methods.

2.7.1 Enabling TCP Socket Trace Function
In order to use the socket-level trace function, the application for which you want
to get the trace must have debug mode. The debug mode can be set with the
system call setsockopt() specifying SO_DEBUG option. A well-designed
application should have a command line option to enable the debug mode. For
example, both the TELNET client /usr/bin/telnet and the TELNET server
/usr/sbin/telnetd have this option flag. The client uses a -d flag and the server
uses an -s flag. Check the manual or InfoExplorer for the applications provided
with the system.

Chapter 2. Debugging TCP/IP Troubles 139

2.7.1.1 telnetd Enabling Example
For the TELNET client trace, invoke the client as shown below. This is only one
thing you must do:

tn -d inoki5

For the TELNET server trace, there are some alternatives to enable the debug
mode. The easiest way is to edit the /etc/inetd.conf file and add the flag as
follows. Be aware that the telnetd is a subserver of the inetd.

##
service socket protocol wait/ user server server program
name type nowait program arguments
##
ftp stream tcp nowait root /usr/sbin/ftpd ftpd
telnet stream tcp nowait root /usr/sbin/telnetd telnetd -s
shell stream tcp nowait root /usr/sbin/rshd rshd
...

With the previous procedure, the debug log is written in the ring buffer.

2.7.2 Trace Result Example (TCP Closing Operation)
Now we explain how to get the trace log. You have to use the trpt command to
dump the ring buffer. In the ring buffer, the socket debug logs of all the active
PCBs are logged together. Without specifying the PCB, you will get all the logs
of sockets opened on the system together, and you may not want this. So, first
you have to find the address of the necessary PCB. Use netstat -A for this
purpose. See the following example:

netstat -f inet -A
Active Internet connections
PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)
 5a4bb00 tcp 0 0 mat.hakozaki.telne zero.hakozak.1099 ESTABLISHED
 5a57300 tcp 0 187 mat.hakozaki.telne zero.hakozak.1098 ESTABLISHED
 5a4b800 tcp 0 0 mat.hakozaki.cppbr mat.hakozaki.1026 ESTABLISHED
 5a4bd00 tcp 0 0 mat.hakozaki.1026 mat.hakozaki.cppbr ESTABLISHED
 5a48900 tcp 0 0 mat.hakozaki.cppbr *.* LISTEN

#

Notice that netstat -A is executed on the system mat and the TELNET server
telnetd is running on this system. Now you can get the TELNET server′s debug
log. If you need the TELNET client′s debug log, you have to do this procedure on
the system zero.

Since you got the PCB address, 554af14, issue the trpt command with this
address and necessary options. The following example shows the TELNET
connection closing procedure. For the meanings of output, you should refer to
the manual, InfoExplorer or the following header files:

/usr/include/sys/protosw.h
This header file defines what activities (routines) are logged by a
socket-level trace. For example, in this trace, pr_input() is shown as an
input. An argument of pr_usrreq(), PRU_SEND, is shown as SEND. For
the complete list of this header file, refer to C.4,
“/usr/ include/sys/protosw.h” on page 374.

140 Practical TCP/IP for AIX V3.2/V4.1

/usr/include/netinet/tcp_var.h
In this header file, the window-related parameters, such as snd_una and
snd_nxt, are defined. For the complete list of this header file, refer to C.3,
“/usr/include/netinet/tcp_var.h” on page 369.

/usr/include/netinet/tcp_timer.h
In this header file, timer-related parameters are defined. In the trace,
TCPT_REXMT is shown as REXMT. You can find explanations about each
timer in this header file. For the complete list of this header file, refer to
C.2, “/usr/include/netinet/tcp_timer.h” on page 367.

The numbers printed in the left-most column are the elapsed time in
mill iseconds.

trpt -p 5a4bb00 -a

5a4bb00:
936 ESTABLISHED:user RCVD -> ESTABLISHED
937 ESTABLISHED:output (src=9.68.214.82,23, dst=9.68.214.84,1099)

[c936c2fa..c936c2fb)@c1f93a3b(win=3e64)<ACK,PUSH> -> ESTABLISHED
937 ESTABLISHED:user SEND -> ESTABLISHE
....
104 ESTABLISHED:user RCVD -> ESTABLISHED
104 ESTABLISHED:output (src=9.68.214.82,23, dst=9.68.214.84,1099)

[c936c2fe..c936c300)@c1f93a40(win=3e64)<ACK,PUSH> -> ESTABLISHED
104 ESTABLISHED:user SEND -> ESTABLISHED
105 FIN_WAIT_1:output (src=9.68.214.82,23, dst=9.68.214.84,1099)

c936c300@c1f93a40(win=3e64)<ACK,FIN> -> FIN_WAIT_1
105 ESTABLISHED:user DISCONNECT -> FIN_WAIT_1
105 FIN_WAIT_1:user DETACH -> FIN_WAIT_1
105 FIN_WAIT_1:input (src=9.68.214.84,1099, dst=9.68.214.82,23)

c1f93a40@c936c301(win=3e64)<ACK> -> FIN_WAIT_2
105 FIN_WAIT_2:input (src=9.68.214.84,1099, dst=9.68.214.82,23)

c1f93a40@c936c301(win=3e64)<ACK,FIN> -> TIME_WAIT
105 TIME_WAIT:output (src=9.68.214.82,23, dst=9.68.214.84,1099)

c936c301@c1f93a41(win=3e64)<ACK> -> TIME_WAIT

The previous example is of a TELNET server (telnetd) when the client terminated
the connection by pressing Ctrl+D. You can clearly understand the status
transition from ESTABLISHED to FIN_WAIT_1 by the user level DISCONNECT
operation. FIN_WAIT_1 was changed to FIN_WAIT_2 by receiving ACK, and
FIN_WAIT_2 was changed to TIME_WAIT by receiving ACK/FIN.

2.8 Debugging ONC/RPC Applications
Open Network Computing (ONC) RPC may currently be the most widely used
RPC scheme. It provides a programming paradigm for the distributed
environment, and you can write your client-server application using RPC. RPC
expands the concept of system call or subroutine call onto the network. It hides
the underlying complexity of network protocol from the programmers. Many
UNIX workstations, including AIX, are shipped with some PRC applications. The
most famous and widely used ONC/RPC applications are Network File System
(NFS) and Network Information System (NIS).

If you don′ t have the intention of writing the ONC/RPC application, just knowing
about the RPC mechanism helps you a great deal when you debug the NFS or

Chapter 2. Debugging TCP/IP Troubles 141

NIS problems. You cannot completely understand NFS and NIS without the
knowledge of ONC/RPC.

2.8.1 ONC/RPC Basics
A well-designed application would have its own test or debug facility. The
ONC/RPC has a common utility rpcinfo. This command can be used to see the
status on any ONC/RPC application server. Also, it can test the functionality of
the RPC portmap daemon and application servers. Our AIX trace tool iptrace
can understand and interpret the RPC packet. Explaining the whole RPC picture
is out of the scope of this book. We only cover the minimum knowledge needed.

2.8.1.1 RPC Mechanism Over view
The RPC server and client communicate using the following procedure. This
may be the simplest explanation. Since RPC is a way of programming, there
can be many variations.

 1. When the server starts, it registers the port to the portmap daemon running
on the same system. This is made by the RPC library routine registerrpc()
or svc_register(). The portmap is usually started at the system boot. Any
application server must be started after the portmap or it cannot register the
port.

Note: In AIX, the portmap is invoked from the startup script /etc/rc.tcpip.

 2. The client contacts the portmap on the destination system and looks up the
server port number. This is made by the RPC library routine clnt_create().
The client gets the client handle, which is necessary in order to make
contact with the application server. The server port number is imbedded in
the client handle.

 3. The client sends a request to the application server. This is made by the
RPC library routine clnt_call() using the client handle.

 4. The server processes the client request and returns the result.

 5. The client receives the response.

The client can use the RPC library routine callrpc() instead of both clnt_create()
and clnt_call(). This makes the client program simpler but it may introduce
excessive operations. Consider the situation where a client needs to send more
than one RPC to the server. If a client uses clnt_create(), it can reuse the client
handle for each clnt_call(), and it only needs to contact the portmap once. But if
the client uses callrpc(), whenever the client sends an RPC request to the server,
the portmap is looked up. For performance reasons this is not a good practice.
RPC hides the complexity of the network from the programmers. It is an
advantage because programmers can concentrate on application logics and do
not need to touch the network function directly. But it is very easy to write
non-optimized code from a performance point of view.

Note: The callrpc() is currently only available for UDP.

A good example is the RPC tool SPRAY. The spray command looks up the
portmap every time before it contacts the sprayd server. It′s a totally
unnecessary operation. But if you know the concrete programming methods (as
we mentioned above), you can guess that the design objective of the spray
command (client) had higher priority on the simplicity.

142 Practical TCP/IP for AIX V3.2/V4.1

2.8.1.2 RPC Considerations
With our experience, an RPC program, such as NFS, has a lot of exceptional
behaviors that are not clearly documented. For example, NFS read and write
operations use UDP as the transport protocol. A lot of commercial books
mention that NFS uses UDP; therefore, NFS is not good for unreliable networks
such as a WAN. But RPC itself has no limitations to the transport layer
protocols. You can use TCP and UDP, and if a program only uses TCP or UDP,
it′s totally implementation matter. Unfortunately our AIX and almost all other
NFS implementations currently use only UDP for read and write. In AIX, for
some operations of NFS, such as querying an export list from the server, TCP is
used.

Note: If you get an IP trace of showmount -e command, this command (client)
contacts the mountd on the server system. During this query operation,
TCP is used.

If you get traces of several implementations, they may show you different
behaviors. Current ONC/RPC specification is documented in the RFC 1050 RPC:
Remote Procedure Call Protocol Specification Version 2, but it allows some
implementation flexibilities.

2.8.2 Checking Server Port Registration Status with rpcinfo
See the following example. In this example, the port status of the system mat is
displayed. The system rpcinfo just contacted the portmap daemon running on
the mat and got the dump list of all available RPC server ports with other crucial
information.

rpcinfo -p mat
program vers proto port

 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100003 2 udp 2049 nfs
 100005 1 udp 768 mountd
 100005 1 tcp 778 mountd
 100024 1 udp 789 status
 100024 1 tcp 791 status
 100021 1 tcp 814 nlockmgr
 100021 1 udp 816 nlockmgr
 100021 3 tcp 819 nlockmgr
 100021 3 udp 821 nlockmgr
 100020 1 udp 824 llockmgr
 100020 1 tcp 826 llockmgr
 100021 2 tcp 829 nlockmgr
 100001 1 udp 1172 rstatd
 100001 2 udp 1172 rstatd
 100001 3 udp 1172 rstatd
 100002 1 udp 1174 rusersd
 100002 2 udp 1174 rusersd
 100008 1 udp 1176 walld
 100012 1 udp 1178 sprayd
 150001 1 udp 1180 pcnfsd
 150001 2 udp 1180 pcnfsd
 100083 1 tcp 1052 ttdbserverd
 100068 2 udp 1182 cmsd
 100068 3 udp 1182 cmsd
 100068 4 udp 1182 cmsd
#

Chapter 2. Debugging TCP/IP Troubles 143

As you can see above, an RPC client needs the following information to access a
server program.

Server Program Number
Server Program Version Number
Transport Protocol supported by Server Program
Port Number

Among the information listed above, the port number is the most important. In
the RPC scheme, any server port is registered dynamically by the portmap at the
server start time; you would see a different port for the same server in other
systems or after reboot. The only way to get the server port number is to send a
request to the portmap.

Note: Other information, such as the program number and version number, are
given to the client beforehand; these may be hard-coded. They are
displayed only for confirmation. Information that is available only by
rpcinfo is the server port number.

The program names listed in the right-most column are quoted from the /etc/rpc
file using the program number as the key.

The program number must follow this rule:

0x00000000 - 0x1FFFFFFF Defined by Sun.

0x20000000 - 0x3FFFFFFF User-Defined.

0x40000000 - 0x5FFFFFFF Transient.

0x60000000 - 0xFFFFFFFF Reserved.

2.8.3 Finding an RPC Server with rpcinfo
The system rpcinfo can send an RPC broadcast packet. With this function you
can search the system running the service (the RPC server) that you are
interested in. In the example below, we are sending RPC broadcast packets to
ask the sprayd Version 1. All systems that are running sprayd Version 1
respond and display.

Note: This RPC broadcast is mapped to the IP broadcast to the local network.
Then the RPC broadcast is limited within the same LAN and it cannot
pass through a router.

rpcinfo -b spray 1
9.68.214.82 mat.hakozaki.ibm.com
9.68.214.75 guru.hakozaki.ibm.com
9.68.214.88 takesue.hakozaki.ibm.com
9.68.214.81 kishi.hakozaki.ibm.com
9.68.214.37 saka.hakozaki.ibm.com
9.68.214.83 ayano.hakozaki.ibm.com
9.68.214.77 kashima1.hakozaki.ibm.com
9.68.214.84 zero.hakozaki.ibm.com
9.68.214.14 kewpie.hakozaki.ibm.com
^C#
#

The system rpcinfo displays the responses in the order of receipt. The order of
the display shows the electronical distance. The broadcast packets are sent
periodically until you interrupt.

144 Practical TCP/IP for AIX V3.2/V4.1

2.8.3.1 RPC Broadcast Mechanism (rpcinfo)
We briefly explain above RPC broadcast using IP trace.

 1. This is the RPC Request (CALL) packet. In order to check the server sprayd
availability, rpcinfo sends a broadcast to the address 9.68.214.127 (notice we
are using subnet mask 255.255.255.128) and the port 111 for the portmap
daemon. This procedure only talks to the portmap and doesn′ t talk to the
server itself. The parameters passed to the portmap are the program
number of the sprayd 100012 and Version 1.

Packet Number 12
TOK: ====(156 bytes transmitted on interface tr0)==== 18:35:38.095935488
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 90:00:5a:a8:b5:c1, dst = ff:ff:ff:ff:ff:ff]
TOK: routing control field = 8220, 0 routing segments
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.127 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=132, ip_id=5480, ip_off=0
IP: ip_ttl=30, ip_sum=c7a7, ip_p = 17 (UDP)
UDP: <source port=1216, <destination port=111(sunrpc) >
UDP: [udp length = 112 | udp checksum = 9122]
RPC: **CALL** XID=808602752
RPC: Program=100000 (PMAPPROG) Version=2 Procedure=5 (PMAPPROC_CALLIT)
RPC: AUTH_UNIX
RPC: Cred:
RPC: Time=0x30330d6a (Thu Aug 17 18:35:38 1995)
RPC: Machine=mat Uid=0 Gid=0 Group List Length=6
RPC: Groups= (0 2 3 7 8 10)
PMP: Prog=100012 Vers=1 Proc=0
PMP: Parms:

 2. This is the corresponding RPC Response (REPLY) packet. This is a reply
from the takesue system and usually you may receive more than one RPC
reply. Please note that the corresponding REPLY must have the same
transaction ID (XID) with the CALL. The portmap on the hitoh also
responded with the port number of sprayd, 1038.

Note: Before sending the REPLY, the system may have to invoke the ARP
procedure. Just after the RPC broadcast CALL, your network may be
filled with ARP broadcasts. Then it is not a good practice to run the
rpcinfo broadcast function so often.

Packet Number 29
TOK: ====(82 bytes received on interface tr0)==== 18:35:38.139991680
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 10:00:5a:b1:87:58, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.88 > (takesue.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=38381, ip_off=0
IP: ip_ttl=30, ip_sum=4791, ip_p = 17 (UDP)
UDP: <source port=111(sunrpc), <destination port=1216 >
UDP: [udp length = 40 | udp checksum = ba7a]

Chapter 2. Debugging TCP/IP Troubles 145

RPC: **REPLY** XID=808602752
RPC: 100000(PMAPPROG) 5(PMAPPROC_CALLIT)
RPC: Reply Stat: MSG_ACCEPTED
RPC: Accepted Reply Stat: SUCCESS
PMP: Port=1038
PMP: Parms:

As you can see, this procedure, rpcinfo -b, only contacts the portmap. If you see
the application server status displayed, it doesn′ t really mean the server is
currently up and running. Well-designed RPC servers unregister their port and
other information from the portmap using the RPC library call svc_unregister().
But this doesn′ t cover abnormal server termination.

2.8.4 Checking Server Status with rpcinfo
You can check an RPC server status directly. With this procedure, the rpcinfo
directly contacts the RPC server daemon and you can find out if the server is
really working. The following example shows that the NFS server daemon nfsd
is working on the inoki5 system. The option -u means that UDP is asked.
Currently for the NFS, only Version 2 is available and this response is fine.

rpcinfo -u mat nfs
program 100003 version 2 ready and waiting
#

This is another example. The RPC server status monitor (or rpc.statd) has three
versions and all of them are available, as follows:

rpcinfo -u ayano rstat
program 100001 version 1 ready and waiting
program 100001 version 2 ready and waiting
program 100001 version 3 ready and waiting
#

Be aware that these operations follows a complete RPC operation. This means
that the rpcinfo first contacts the portmap and gets the port number, then
accesses the target server. Another interesting example is mount daemon or
rpc.mountd. As we already mentioned, this daemon supports both TCP and
UDP; it responds to both -u and -t, as follows:

rpcinfo -t mat mount
program 100005 version 1 ready and waiting
rpcinfo -u mat mount
program 100005 version 1 ready and waiting
#

On the contrary, NFS daemon or nfsd supports only UDP. It returns an error
when you specify -t. This result shows that our current NFS implementation can
not use TCP for a read and write operation.

rpcinfo -u mat nfs
program 100003 version 2 ready and waiting
rpcinfo -t mat nfs
rpcinfo: RPC: Program not registered
program 100003 is not available
#

Notice that this error was returned by the portmap and not by the nfsd. Because
the nfsd doesn′ t register any port for TCP, the portmap cannot return the port
number for TCP to the rpcinfo.

146 Practical TCP/IP for AIX V3.2/V4.1

2.8.5 RPC Mechanism and Pitfalls
We explain the mechanism involved by using the following procedure:

rpcinfo -u mat nfs
program 100003 version 2 ready and waiting
#

Although the operation and response are fairly simple, the activity invoked in the
background could be more than you expected.

 1. rpcinfo sends the port lookup request (PMAPPROC_GETPORT) to the
portmap (PMAPPROG). The search parameters are Prog=100003, Vers=0,
Prot=17 and Port=0. Notice that this time the Version 0 is specified. There
are five procedures defined to the portmap, as follows (any RPC server has a
set of its unique procedures):

PMAPPROC_NULL(0)
Takes nothing, returns nothing.

PMAPPROC_SET(1)
Registers the tuple [prog, vers, prot, port].

PMAPPROC_UNSET(2)
Un-registers pair [prog, vers]. prot and port are ignored.

PMAPPROC_GETPORT(3)
0 is failure. Otherwise it returns the port number where the pair
[prog, vers] is registered. It may be incorrect.

PMAPPROC_DUMP(4)

PMAPPROC_CALLIT(5)
Calls the procedure on the local machine. If it is not registered, this
procedure is quiet; in other words, it does not return error information.
This procedure is only supported on RPC/UDP and calls via RPC/UDP.
This routine only passes the null authentication parameters.

You can refer to the header file /usr/include/rpc/pmap_prot.h.

Packet Number 52
TOK: ====(106 bytes received on interface tr0)==== 19:20:27.892176384
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=14109, ip_off=0
IP: ip_ttl=30, ip_sum=a64d, ip_p = 17 (UDP)
UDP: <source port=1285, <destination port=111(sunrpc) >
UDP: [udp length = 64 | udp checksum = 5b5]
RPC: **CALL** XID=809236348
RPC: Program=100000 (PMAPPROG) Version=2 Procedure=3 (PMAPPROC_GETPORT)
RPC: AUTH_NULL Opaque Authorization Base 0 Opaque Authorization Length 0
PMP: Prog=100003 Vers=0 Prot=17 Port=0

 2. The portmap responds the port number of NFS daemon (Prog=100003), 2049.
There are two reply statuses defined in ONC/RPC. They are as follows:

MSG_ACCEPTED(0)
RPC was accepted by server.

Chapter 2. Debugging TCP/IP Troubles 147

SUCCESS(0)
RPC executed successfully.

PROG_UNAVAIL(1)
Remote hasn′ t exported the program.

PROG_MISMATCH(2)
Remote hasn′ t supported a version number.

PROC_UNAVAIL(3)
Remote hasn′ t supported procedure.

GARBAGE_ARGS(4)
Procedure can′ t decode parameters.

SYSTEM_ERR(5)
???

MSG_DENIED(1)
RPC was not accepted by server.

RPC_MISMATCH(0)
RP version number is not 2.

AUTH_ERROR(1)
Remote can′ t authenticate caller.

You can refer to the header file /usr/include/rpc/rpc_msg.h.:

Packet Number 53
TOK: ====(78 bytes transmitted on interface tr0)==== 19:20:27.892853376
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=7195, ip_off=0
IP: ip_ttl=30, ip_sum=c16b, ip_p = 17 (UDP)
UDP: <source port=111(sunrpc), <destination port=1285 >
UDP: [udp length = 36 | udp checksum = b49]
RPC: **REPLY** XID=809236348
RPC: 100000(PMAPPROG) 3(PMAPPROC_GETPORT)
RPC: Reply Stat: MSG_ACCEPTED
RPC: Accepted Reply Stat: SUCCESS
PMP: Returning 2049

 3. rpcinfo sends the RPC call (RFS_NULL) to the NFS daemon (port 2049) in
order to check the server status. This time, the Version 0 is specified and
asked. In ONC/RPC convention, the procedure=0 means NULL procedure
for any server and the servers should respond NULL REPLY (XDR_VOID).
This procedure is for testing or debugging purposes.

Packet Number 54
TOK: ====(90 bytes received on interface tr0)==== 19:20:27.896235136
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)

148 Practical TCP/IP for AIX V3.2/V4.1

IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=68, ip_id=14110, ip_off=0
IP: ip_ttl=30, ip_sum=a65c, ip_p = 17 (UDP)
UDP: <source port=1286, <destination port=2049(shilp) >
UDP: [udp length = 48 | udp checksum = 86d3]
RPC: **CALL** XID=809235874
RPC: Program=100003 (NFS_PROGRAM) Version=0 Procedure=0 (RFS_NULL)
RPC: AUTH_NULL Opaque Authorization Base 0 Opaque Authorization Length 0
RPC: NULL PROC

 4. The server NFS daemon returns PROG_MISMATCH since nfsd doesn ′ t
support Version 0. Although the version number is also registered in the
portmap, the version number mismatch never causes an error at the
portmap lookup. (Remember the protocol mismatch causes an error at the
portmap lookup.) This is the ONC/RPC specification.

Packet Number 55
TOK: ====(82 bytes transmitted on interface tr0)==== 19:20:27.896596864
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=7196, ip_off=0
IP: ip_ttl=255, ip_sum=e065, ip_p = 17 (UDP)
UDP: <source port=2049(shilp), <destination port=1286 >
UDP: [udp length = 40 | udp checksum = d83]
RPC: **REPLY** XID=809235874
RPC: 100003(NFS_PROGRAM) 0(RFS_NULL)
RPC: Reply Stat: MSG_ACCEPTED
RPC: Accepted Reply Stat: PROG_MISMATCH
RPC: XDR_VOID

 5. Again, this t ime the rpcinfo sends the port lookup request
(PMAPPROC_GETPORT) to the portmap (PMAPPROG). Notice that this time
the Version 2 is specified. We don′ t know why 2 is specified after 0, skipping
the Version 1.

Packet Number 56
TOK: ====(106 bytes received on interface tr0)==== 19:20:27.899750144
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=14111, ip_off=0
IP: ip_ttl=30, ip_sum=a64b, ip_p = 17 (UDP)
UDP: <source port=1287, <destination port=111(sunrpc) >
UDP: [udp length = 64 | udp checksum = 6d11]
RPC: **CALL** XID=809209884
RPC: Program=100000 (PMAPPROG) Version=2 Procedure=3 (PMAPPROC_GETPORT)
RPC: AUTH_NULL Opaque Authorization Base 0 Opaque Authorization Length 0
PMP: Prog=100003 Vers=2 Prot=17 Port=0

Chapter 2. Debugging TCP/IP Troubles 149

 6. The portmap responds to the port number of the NFS daemon
(Prog=100003), 2049. Remember that the portmap doesn′ t check the version
number, and if the rpcinfo (client) caches the port number, this procedure is
completely useless. We don′ t know the coding of the rpcinfo; it is not
optimized for performance.

Packet Number 57
TOK: ====(78 bytes transmitted on interface tr0)==== 19:20:27.900630144
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=7197, ip_off=0
IP: ip_ttl=30, ip_sum=c169, ip_p = 17 (UDP)
UDP: <source port=111(sunrpc), <destination port=1287 >
UDP: [udp length = 36 | udp checksum = 72a7]
RPC: **REPLY** XID=809209884
RPC: 100000(PMAPPROG) 3(PMAPPROC_GETPORT)
RPC: Reply Stat: MSG_ACCEPTED
RPC: Accepted Reply Stat: SUCCESS
PMP: Returning 2049

 7. rpcinfo sends the RPC call (RFS_NULL) to the NFS daemon (port 2049) in
order to check the server status. This time, the Version 2 is specified and
asked. In the ONC/RPC convention, the procedure=0 means that the NULL
procedure and servers should respond NULL REPLY (XDR_VOID) as we
already explained.

Packet Number 58
TOK: ====(90 bytes received on interface tr0)==== 19:20:27.903449344
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=68, ip_id=14112, ip_off=0
IP: ip_ttl=30, ip_sum=a65a, ip_p = 17 (UDP)
UDP: <source port=1286, <destination port=2049(shilp) >
UDP: [udp length = 48 | udp checksum = ec52]
RPC: **CALL** XID=809209889
RPC: Program=100003 (NFS_PROGRAM) Version=2 Procedure=0 (RFS_NULL)
RPC: AUTH_NULL Opaque Authorization Base 0 Opaque Authorization Length 0
RPC: NULL PROC

 8. This time the reply status is SUCCESS and the rpcinfo knows that
NFS_PROGRAM Version 2 is up and running.

Packet Number 59
TOK: ====(74 bytes transmitted on interface tr0)==== 19:20:27.903854720
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:

150 Practical TCP/IP for AIX V3.2/V4.1

TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=52, ip_id=7198, ip_off=0
IP: ip_ttl=255, ip_sum=e06b, ip_p = 17 (UDP)
UDP: <source port=2049(shilp), <destination port=1286 >
UDP: [udp length = 32 | udp checksum = 731a]
RPC: **REPLY** XID=809209889
RPC: 100003(NFS_PROGRAM) 0(RFS_NULL)
RPC: Reply Stat: MSG_ACCEPTED
RPC: Accepted Reply Stat: SUCCESS
RPC: XDR_VOID

As you know, RPC is quite a heavy mechanism. Just checking a server status
took four RPCs (and they were mapped to eight IP datagrams). Of course, this
doesn ′ t include ARP and DNS lookup packets. Get the IP trace log by yourself
and read it. You will realize how many activities are involved behind a simple
(from a user′s point of view) operation.

We saw that an anomaly, which was the port search of the Version 1, was
skipped. We show you another example. We tried the following command and
got the IP trace log. The trace revealed that the port search began from the
Version 0 through the Version 3, and no versions were skipped. Since Version 2
is not a supported version, the following error displayed is obvious. (You can
confirm that Version 2 is not registered on the portmap by issuing rpcinfo.)

rpcinfo -u mat nlockmgr
program 100021 version 1 ready and waiting
rpcinfo: RPC: Procedure unavailable
program 100021 version 2 is not available
program 100021 version 3 ready and waiting
#

We cannot explain the anomaly we found at the NFS daemon. Although we don′ t
mention more now, we found some other similar behaviors.

Our Experience

When we got an IP trace log of the mount command during the NFS mount
operation, we found the mount command didn′ t use the portmap to get the
port of NFS daemon nfsd 2049. It is directly sent RPC to the nfsd and we had
to conclude that the port number 2049 was hard-coded in the mount
command.

This exception was due to the development history of NFS and RPC. Sun
Microsystems developed both NFS and RPC simultaneously. NFS is built on
top of the RPC, but NFS had to be coded before the RPC specification was
fixed. As a result, nfsd got the fixed port of 2049. This is the only server that
has a xed port (except the portmap), and this may be the most known
anomaly of NFS. Of course (the nfsd registers the port to the portmap), you
can still use the portmap for consistency.

Chapter 2. Debugging TCP/IP Troubles 151

2.9 Using syslog
Usually any well-designed application should have its own debug mode or trace
function. In the UNIX world, the daemon syslogd provides general logger
function if an application is coded to use it. You can configure a syslog server in
your network and gather all the other system′s log information in one place
through the network.

If you would like to get a log of an application, you have to turn the application
debug mode on. Of course, the application must be coded with syslog API such
as syslog(), openlog(), closelog(), or setlogmask(). The concrete procedure to
turn the mode on should be the specific application, and you should refer to the
application′s document or manual. If the application is implemented as a
daemon, the daemon may have a -d or -D flag. Since it is impossible to explain
all the cases, we only introduce the procedures for inetd, telnetd and ftpd in this
section. They are the most used applications and have crucial roles for daily
operation.

Due to the unique features of AIX, you need some knowledge about the ODM
and the System Resource Controller (SRC) when you configure syslogd. You
can refer to AIX Version 4.1 System Management Guide: Operating System and
Devices, SC23-2525 and AIX Version 4.1 General Programming Concepts,
SC23-2205.

2.9.1 Configuration File /etc/syslog.conf
The syslogd uses the configuration file /etc/syslog.conf. You have to write your
logging requests with the format that the syslogd can understand. You have to
specify both the facility and level for logging. The facility represents an instance
which generates a log message. The level represents how the log message
should be processed or treated.

2.9.1.1 Facility
The facility is a group to which the programs belong. It allows you to manage a
group of messages by specifying the facility name. When you write a program,
you can use the call openlog() to specify the facility for your program. The
supported facilities are shown below. Refer to the header file
/usr/include/sys/syslog.h for details.

Facility Description

kern Kernel-generated messages are grouped in this facility.

user User Process-generated messages are grouped in this facility.
When an end user needs to use the syslogd, this facility is
usually used.

mail Mail subsystem-generated messages are grouped in this facility.

daemon System daemons such as ftpd- and routed-generated messages
are grouped in this facility.

auth Security- or authorization-related messages are grouped in this
facility. For example, messages generated by login and su
belong to this facility.

syslog syslogd daemon-generated messages are grouped in this facility.

152 Practical TCP/IP for AIX V3.2/V4.1

lpr Line-printer subsystem-generated messages are grouped in this
facility. For example, messages generated by lpd and lpr belong
to this facility.

news News subsystem-generated messages are grouped in this facility.

uucp uucp subsystem-generated messages are grouped in this facility.

local0 - local7 Locally used facility by each system. Some applications use this
facility. For example, AIX/DCE security server daemon secd uses
the facility local6 to log the audit messages.

* All facilities (wildcard)

2.9.1.2 Level
The level represents the priority of the log message and you can define how the
message is treated. When you write a program, you can use the call syslog() to
generate a message, and at the moment you also have to specify the level.
Refer to the header /usr/include/sys/syslog.h. file. The supported levels are
shown below. They are listed in order of highest priority. When you specify a
level, all the higher levels are considered to be specified and they will be treated
as you defined them.

Level Description

emerg Specifies emergency messages (LOG_EMERG), such as fixed-disk
errors. LOG_EMERG priority messages can be logged into a separate
file for reviewing.

alert Specifies important messages (LOG_ALERT), such as a serious
hardware error.

crit Specifies critical messages not classified as errors (LOG_CRIT), such
as improper login attempts. LOG_CRIT and higher-priority messages
can be sent to the system console.

err Specifies messages that represent error conditions (LOG_ERR), such
as an unsuccessful disk write. Warning specifies messages for
abnormal, but recoverable conditions (LOG_WARNING).

notice Specifies important informational messages (LOG_NOTICE).
Messages without a priority designation should be mapped into this
priority message.

info Specifies informational messages (LOG_INFO). These messages can
be discarded, but are useful in analyzing the system.

debug Specifies debugging messages (LOG_DEBUG). These messages may
be discarded.

none Excludes the selected facility. This priority level is useful only if
preceded by an entry with an asterisk (*) in the same selector field.

2.9.1.3 /etc/syslog.conf Format
You have to specify the selector and action in this file. The selector is a
combination of facility and level separated with a colon. For example, user.err is
a selector. The action is to define where the messages specified by the selector
are to be sent. Usually a file such as /var/adm/syslog/user_err.log is used for
action. See the following example:

Chapter 2. Debugging TCP/IP Troubles 153

mail.debug /usr/spool/mqueue/syslog
*.debug /dev/console
*.crit *
user.notice @inoki5

Mail messages, at debug or higher, go to the log file /usrspool/mqueue/syslog.
The file must exist before the syslogd starts. All facilities at debug and higher
go to console. All facilities at crit or higher go to all user′s terminals. User
messages at notice or higher go to the host inoki5. The syslogd at the system
inoki5 treats the forwarded messages based on its configuration file.

There is no default treatment for a selector. If you specify a selector without the
action as follows, it is ignored.

auth.debug

If you write a selector more than once, they are all granted and executed. If you
specified it as follows, the messages are displayed at the console and also
logged in the file.

auth.err; /dev/console
auth.err; /var/adm/syslog/auth.error.log

2.9.2 Configuration Procedure
A detailed configuration procedure is described here. In the RS/6000, the
syslogd is under the control of the SRC. The configuration procedure looks
different from the other vendor′s syslogd. Although you can run the syslogd
without the SRC, it′s not a common AIX method.

 1. Edit the syslogd configuration file /etc/syslog.conf. You could use other files,
and in such a case, you have to specify the configuration file with -f when
you start the syslogd. You have to specify facility, level, and action.

If you don′ t know what facility and level you should choose, use the asterisk
(*) for facility. Use debug or the asterisk (*) for level. You may get a lot of
messages in the file, but we believe that it is still a manageable amount.

Note: We don′ t recommend this approach for system trace or other trace
facilities. They usually build up so quickly that it is like looking for a
particular pebble on the beach.

You can specify arbitrary file in the action field as follows:

*.debug /var/adm/syslog/all_debug.log

 2. Create the file explicitly for logging. This is important because the syslogd
doesn ′ t create a new file automatically.

touch /var/adm/syslog/all_debug.log

 3. Restart the syslogd daemon. In AIX the syslogd is under the control of the
System Resource Controller srcmstr; it is recommended that you use the
commands stopsrc and startsrc, or refresh. If the syslogd has it already
running, just refresh it as follows:

refresh -s syslogd
0513-095 The request for subsystem refresh was completed successfully.
#

If the syslogd is not running, just start it as follows:

154 Practical TCP/IP for AIX V3.2/V4.1

startsrc -s syslogd
0513-059 The syslogd Subsystem has been started. Subsystem PID is 5219.
#

Note: You can start the syslogd from the startup script /etc/rc.tcpip when
the system boots if you need to start the syslogd automatic. Refer to
1.6.3, “Other Network Subsystems (Servers)” on page 63 for details.

 4. Confirm whether the syslogd has read the configuration file as follows:

lssrc -ls syslogd
Subsystem Group PID Status
 syslogd ras 5219 active

Syslogd Config *.debug /var/adm/syslog/all_debug.log

#

 5. Check to see whether the logging function is working. At this stage, at least
the restart of the syslogd should be recorded if you have specified it to do
so. Notice in this example we used *.debug and this covered the facility
syslog.

cat /var/adm/syslog/all_debug.log
Jul 12 16:44:14 newton syslogd: restart
#

2.9.2.1 Interactive Logging with logger Command
The syslogd daemon provides a command line interface to make a log. You can
use the command logger to add an arbitrary character string in the file specified
in /etc/syslogd.conf. See the following example:

logger -p debug ′ I will debug inetd!′
#

Then the message was logged as follows:

tail all_debug.log
...
Aug 17 20:21:12 mat inetd[5446]: ADD : time proto=udp, wait=0, user=root builtin=20000d20 server=internal
Aug 17 20:21:12 mat inetd[5446]: ADD : ttdbserverd proto=tcp, wait=1,
user=root builtin=0 server=/usr/dt/bin/rpc.ttdbserverd
Aug 17 20:21:12 mat inetd[5446]: ADD : dtspc proto=tcp, wait=0, user=root builtin=0 server=/usr/dt/bin/dtspcd
Aug 17 20:21:12 mat inetd[5446]: ADD : cmsd proto=udp, wait=1, user=root builtin=0 server=/usr/dt/bin/rpc.cmsd
Aug 17 20:22:41 mat root: I will debug inetd!
#

2.9.3 inetd Example
The daemon inetd is the most used application and has crucial roles for TCP/IP
communication. Many TCP/IP server daemons, such as ftpd and telnetd, are
invoked by the inetd. This inetd daemon is controlled by the SRC and uses the
ODM when necessary.

2.9.3.1 Invoking the inetd in Debug Mode
Since the inetd is controlled by srcmstr, it is recommended that you use the
commands stopsrc and startsrc. This procedure makes the debug mode
effective until you reboot the system or stop the inetd daemon.

 1. Stop the inetd.

stopsrc -s inetd
0513-044 The stop of the /usr/sbin/inetd Subsystem was completed successfully.
#

Chapter 2. Debugging TCP/IP Troubles 155

 2. Start the inetd with the -d flag.

startsrc -s inetd -a ″-d″
0513-059 The inetd Subsystem has been started. Subsystem PID is 5446.
#

 3. Confirm whether the debug mode was really set.

ps -ef | grep inetd | grep -v grep
root 5446 2748 0 20:21:12 - 0:00 /usr/sbin/inetd -d

#

An alternative is shown below:

lssrc -ls inetd | grep Debug
Debug Active
#

Note: You can do the same thing with the SMIT. Invoke the SMIT with the fast
path smitty tracessyson and choose the inetd by pressing the PF4 key.
The high-level command traceson is issued internally.

If you want to permanently set the debug mode (in other words, whenever you
start the inetd you want to have the debug mode turn on) you have two options.
One is to update the ODM. The other is to update the startup script /etc/rc.tcpip.
The procedure is as follows.

2.9.3.2 Updating the ODM
Notice that this procedure only updates the ODM data and doesn′ t affect the
currently running inetd. Also, if you need the debug mode immediately, you
have to restart the inetd as previously described.

 1. Use the chssys command to update the ODM data:

chssys -s inetd -a ″-d″
0513-077 Subsystem has been changed.
#

 2. Confirm that the ODM was correctly updated. The object descriptor cmdargs
is the command argument passed to the inetd whenever the inetd is invoked:

odmget -q ′ subsysname=inetd′ SRCsubsys | grep cmdargs
cmdargs = ″-d″

#

 3. If you would check the currently running inetd, you would find that the debug
mode is not set. You need to restart the inetd if you want to reflect the ODM
update:

lssrc -ls inetd | grep Debug
Debug Not active
#

Note: You feel this is the way the SRC and the ODM are designed. There is a
drawback: when the SRC (srcmstr) cannot start for some reason, the
debug mode is not activated.

2.9.3.3 Updating the Script /etc/rc.tcpip
This is the alternative procedure and may be the easiest way. You only need to
update a startup script and the debug mode is automatically set when the
system boots. Update the startup script /etc/rc.tcpip as follows:

156 Practical TCP/IP for AIX V3.2/V4.1

...
Start up socket-based daemons
start /usr/sbin/inetd ″$src_running″ ″ -d ″
...

This is what happens when you invoke the SMIT byissuing smitty chinetd and
specify Yes to the entry Start the inetd subsystem with DEBUGGING on? field.
Notice that the SMIT updates the ASCII file and doesn′ t update the ODM.

Note: Updating the script /etc/rc.tcpip doesn′ t activate the debug mode
immediately. You have to restart the inetd using /etc/rc.tcpip. On the
contrary, smitty chinetd does both, updating the /etc/rc.tcpip file and
setting the debug mode immediately.

2.9.3.4 Log Example
The following is the example of the inetd syslog output. As you can see, even
with the level debug, you will get little information. In this example, we telneted
to the system mat and issued ls commands, then exited from the newton by
pressing Ctr l+D.

...
Aug 17 20:22:41 mat root: I will debug inetd!
Aug 17 20:29:59 mat inetd[5446]: someone wants telnet
Aug 17 20:29:59 mat inetd[5446]: accept, ctrl 37
Aug 17 20:31:26 mat inetd[5446]: 10092 reaped

Difference between V4.1 and V3.2

With V3.2, you could see a different message. In the example below, we did
the same thing:

Jul 13 18:56:09 newton inetd[5379]: A connection requires telnet service.
Jul 13 18:56:09 newton inetd[5379]: The accept system call returned file descriptor 31.
Jul 13 18:56:09 newton inetd[16402]: Process number 16402. Server /etc/telnetd.
Jul 13 18:57:20 newton inetd[5379]: Child process 16402 has ended.

You can determine whether the inetd successfully forked the subserver
daemon telnetd. Again, you cannot know what the user did after the login.

2.9.4 ftpd Example
The daemon ftpd provides the server function of the File Transfer Protocol (FTP).
This daemon is started and terminated by the Internet super server daemon,
inetd. As a result, it is controlled by the srcmstr indirectly. This daemon is
invoked when it is needed (accessed); this mechanism reduces the system
overhead.

2.9.4.1 Configuration Procedure
The FTP daemon ftpd has two options to use syslog. One is debug and the other
is log. The setup procedure is as follows:

 1. Edit the inetd configuration file /etc/inetd.conf and add the necessary flag (-d
for debug and -l for log). Of course, you can specify both simultaneously.
See the following example:

ftp stream tcp nowait root /usr/sbin/ftpd ftpd -d

 2. Since the ftpd is invoked by the inetd, you have to refresh the inetd in order
to load the updated /etc/inetd.conf file. The interesting thing to remember is
that the inetd doesn′ t read the /etc/inetd.conf file directly when it is invoked

Chapter 2. Debugging TCP/IP Troubles 157

by the SRC. The ODM keeps the copy of the /etc/inetd.conf file and the SRC
refers to the ODM data and passes it to the inetd. Then you have to update
the ODM. There is the inetimp command which imports the /etc/inetd.conf
into the ODM. Issue this command without any arguments, as follows:

inetimp
#

You can confirm whether the update was really imported to the ODM. In the
ODM, the information in the /etc/inetd.conf file is stored in the InetServ
object class. Each column of the /etc/inetd.conf file has the corresponding
object descriptor and you can easily understand which object descriptor
means what. You can review the ODM using the odmget command, as
follows:

odmget -q ′ servname = ftp′ InetServ

InetServ:
state = 3
servname = ″ftp″
socktype = ″stream″
protocol = ″tcp″
waitstate = ″nowait″
user = ″root″
path = ″ /usr/sbin/ftpd″
command = ″ftpd -d″
portnum = 21
alias = ″″
description = ″″
statusmethod = ″stinet″

#

Difference between V4.1 and V3.2

With AIX V4.1, the inetd no longer uses the ODM. Some inetd- and
ODM-related commands, such as inetimp and inetserv, are obsolete.
Only the ASCII file /etc/inetd.conf is necessary. The object class InetServ
was deleted from V4.1. For compatibility purposes, you can configure
V4.1 inetd as well as the V3.2 inetd. For such a case, you must install the
fileset bos.compat.net. This fileset provides the InteServ object class.
This section is written for V3.2 and V4.1, in which this fileset is installed.

 3. Now you have to refresh the inetd to load the ODM data as follows:

refresh -s inetd
0513-095 The request for subsystem refresh was completed successfully.
#

 4. You can see whether the debug mode is really effective by issuing the
following:

158 Practical TCP/IP for AIX V3.2/V4.1

lssrc -t ftp
Service Command Arguments Status

 ftp /usr/sbin/ftpd ftpd -d active

#

Note: The previous example may be the wrong example and could be fixed
in the future. With V3.2, we could get following output with the same
command:

lssrc -t ftp
Service Command Description Status
 ftp ftpd -d active

Debug active
Logging inactive
Tracing inactive
#

Remember that the configuration information of the daemon ftpd is stored in both
the ODM and the ASCII file. Since the ftpd is a SRC subserver, in order to give
the information to the SRC, the ODM is needed. Also, the ftpd is an inetd
subserver, and in the case of an SRC failure, the inetd has to read the
/etc/inetd.conf file directly. Keep both databases consistent to prevent
unnecessary confusion.

2.9.4.2 Log Example: Log Mode
We run ftp from the system zero to the system mat. This log was received from
mat. After establishing the FTP session, a small file .profile was transferred.
The information you can get with the log mode is as follows:

Aug 17 20:54:29 mat inetd[5446]: someone wants ftp
Aug 17 20:54:29 mat inetd[5446]: accept, ctrl 37
Aug 17 20:54:29 mat ftpd[6090]: connection from zero.hakozaki.ibm.com at Thu Aug 17 20:54:29 1995
Aug 17 20:54:35 mat ftpd[6090]: FTP LOGIN FROM zero.hakozaki.ibm.com, matoba
Aug 17 20:54:48 mat ftpd[6090]: FTPD: EXPORT file local , remote .profile
Aug 17 20:54:50 mat inetd[5446]: 6090 reaped

2.9.4.3 Log Example: Debug Mode
We run ftp from the system zero to the system mat. This log was received from
mat. After establishing the FTP session, a small file .profile was transferred.
The information you can get with the debug mode is as follows:

Aug 17 20:45:31 mat inetd[5446]: someone wants ftp
Aug 17 20:45:31 mat inetd[5446]: accept, ctrl 37
Aug 17 20:45:31 mat ftpd[10914]: <--- 220
Aug 17 20:45:31 mat ftpd[10914]: mat FTP server (Version 4.1 Sat Aug 27 17:18:21 CDT 1994) ready.
Aug 17 20:45:33 mat ftpd[10914]: command: USER matoba[M
Aug 17 20:45:33 mat ftpd[10914]: <--- 331
Aug 17 20:45:33 mat ftpd[10914]: Password required for matoba.
Aug 17 20:45:36 mat ftpd[10914]: command: PASS takotako[M
Aug 17 20:45:36 mat ftpd[10914]: <--- 230
Aug 17 20:45:36 mat ftpd[10914]: User matoba logged in.
Aug 17 20:45:38 mat ftpd[10914]: command: TYPE I[M
Aug 17 20:45:38 mat ftpd[10914]: <--- 200
Aug 17 20:45:38 mat ftpd[10914]: Type set to I.

Chapter 2. Debugging TCP/IP Troubles 159

Aug 17 20:45:45 mat ftpd[10914]: command: PORT 9,68,214,84,4,94[M
Aug 17 20:45:45 mat ftpd[10914]: <--- 200
Aug 17 20:45:45 mat ftpd[10914]: PORT command successful.
Aug 17 20:45:45 mat ftpd[10914]: command: RETR .profile[M
Aug 17 20:45:45 mat ftpd[10914]: <--- 150
Aug 17 20:45:45 mat ftpd[10914]: Opening data connection for .profile (254 bytes).
Aug 17 20:45:45 mat ftpd[10914]: <--- 226
Aug 17 20:45:45 mat ftpd[10914]: Transfer complete.
Aug 17 20:45:46 mat ftpd[10914]: command: QUIT[M
Aug 17 20:45:46 mat ftpd[10914]: <--- 221
Aug 17 20:45:46 mat ftpd[10914]: Goodbye.
Aug 17 20:45:46 mat inetd[5446]: 10914 reaped

2.10 The SRC Basics
Both the system resource controller (SRC) and the object data manager (ODM)
are unique AIX features. It is a bit difficult and tough when a problem is related
to the SRC or the ODM (or both). If you don′ t have enough knowledge about
them, the problem remains a mystery even when it happens to be resolved. In
this section we reveal a part of the mystery. ODM is briefly explained in 1.7,
“The ODM” on page 65.

2.10.1 The SRC Overview
The SRC provides a set of common commands and subroutines to make it easier
for the system manager and programmer to create and control subsystems
(daemons). The SRC is useful if you want a common way to start, stop, and
collect status information on processes. For example, you can use following set
of commands on any subsystem:

startsrc
stopsrc
lssrc
chssys
refresh
traceson
tracesoff

The concept of the SRC may be an expansion of the concept of the inetd. The
Internet super server inetd only controls the TCP/IP daemons. The SRC adds
one more hierarchy on the top of the inetd and supporting other subsystems
(daemons) as well as the inetd. The SRC has a hierarchical structure. The top
of the hierarchy begins with the SRC; the srcmstr process is followed by a
subsystem group (such as tcpip). A subsystem group may contain more than
one subsystem (such as the inetd daemon). Each subsystem can have several
subservers (such as the ftp daemon and the finger command).

A subsystem group is a group of any specified subsystems. Grouping
subsystems together allows control of several subsystems at one time. A few
subsystem group examples are TCP/IP (tcpip), NIS (yp) and NFS (nfs). As you
see below, groups provide convenient mechanisms to manage all the related
subsystems. You can start, stop and review the status of all subsystems at the
same time.

startsrc -g nfs
0513-059 The biod Subsystem has been started. Subsystem PID is 7837.
0513-059 The nfsd Subsystem has been started. Subsystem PID is 8606.
0513-059 The rpc.statd Subsystem has been started. Subsystem PID is 9375.
0513-059 The rpc.lockd Subsystem has been started. Subsystem PID is 8096.
0513-059 The rpc.mountd Subsystem has been started. Subsystem PID is 8353.
#

160 Practical TCP/IP for AIX V3.2/V4.1

This hierarchy is stored in the ODM with following object classes. In other
words, the SRC recognizes and controls each subsystem and subservers based
on the ODM information.

SRCsubsys
SRCsubsvr
SRCnotify

The SRC is invoked in /etc/inittab during system boot. You can see the line
where /etc/srcmstr is invoked, as follows:

...
srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
...

2.10.2 The SRC Subsystems
A subsystem is any program or process or set of programs or processes that is
usually capable of operating independently. A subsystem is designed as a unit
to provide a designated function.

2.10.2.1 TCP/IP Subsystems
TCP/IP daemons (Subsystems) controlled by the SRC are listed below. These
daemons belong to mainly TCP/IP groups, but some belong to their own groups,
such as mail.

/etc/syslogd (ras)
/usr/lpd/lpd (spooler)
/etc/routed (tcpip)
/etc/gated (tcpip)
/usr/l ib/sendmail (mail)
/usr/etc/portmap (portmap)
/etc/inetd (tcpip)
/etc/named (tcpip)
/etc/timed (tcpip)
/etc/rwhod (tcpip)
/usr/sbin/snmpd (tcpip)

These daemons are started from the startup script /etc/rc.tcpip. Remember this
script is executed from the /etc/inittab. If the SRC or srcmstr is not running
when the script is executed, they were invoked without the srcmstr just as if they
are invoked directly at the command line.

Note: Of course, it depends on the configuration as to whether a subsystem is
started. Check the script /etc/rc.tcpip and confirm the comment mark (#)
has been removed.

2.10.2.2 NFS and NIS Subsystems
These daemons belong to mainly yp and nfs groups, but some belong to their
own group, such as keyserv. NFS and NIS daemons (subsystems) controlled by
the SRC are listed as follows:

/usr/etc/ypserv (yp)
/usr/etc/ypbind (yp)
/usr/etc/keyserv (keyserv)
/usr/etc/rpc.ypupdated (yp)
/usr/etc/biod (nfs)
/usr/etc/nfsd (nfs)

Chapter 2. Debugging TCP/IP Troubles 161

/usr/etc/rpc.mountd (nfs)
/usr/etc/rpc.statd (nfs)
/usr/etc/rpc.lockd (nfs)
/usr/etc/rpc.yppasswdd (yp)

These daemons are started from the startup script /etc/rc.nfs. Remember this
script is executed from the /etc/inittab. This script doesn′ t provide an alternative
when the SRC is not running.

Note: Of course it depends on the configuration as to whether a subsystem is
started. Check the script /etc/rc.nfs and confirm that the comment mark
(#) has been removed.

2.10.2.3 Other Subsystems
You can review all the subsystems supporting the SRC on your system. With the
command lssrc -a, you will see following list:

lssrc -a
Subsystem Group PID Status
sna sna 4720 active
gpenamesvc sna 5498 active
syslogd ras 7326 active
sendmail mail 12740 active
portmap portmap 13526 active
inetd tcpip 13792 active
httpd tcpip 14732 active
qdaemon spooler 13258 active
writesrv spooler 14548 active
infod infod 10496 active
hcon system 15108 active
biod nfs 20326 active
nfsd nfs 19816 active
rpc.statd nfs 19562 active
rpc.lockd nfs 20844 active
rpc.mountd nfs 23668 active
lpd spooler inoperative
gated tcpip inoperative
named tcpip inoperative
routed tcpip inoperative
rwhod tcpip inoperative
iptrace tcpip inoperative
timed tcpip inoperative
snmpd tcpip inoperative
dtsrc inoperative
keyserv keyserv inoperative
ypbind yp inoperative
ypserv yp inoperative
ypupdated yp inoperative
yppasswdd yp inoperative
llbd ncs inoperative
glbd ncs inoperative
nrglbd ncs inoperative
APPNss_cp_cap sna inoperative
APPNds_rsc_reg sna inoperative
APPNds_search sna inoperative
APPNtrs_db_upd sna inoperative
APPNcnos_rcv sna inoperative
MSmsu_handler sna inoperative
MSsend_tp sna inoperative

162 Practical TCP/IP for AIX V3.2/V4.1

MSreceive_tp sna inoperative
MSsess_outage sna inoperative
cycle1 sna inoperative
cycled sna inoperative
RMTMAND sna inoperative
APINGD sna inoperative
AREXECD sna inoperative
ATELLD sna inoperative
ANAMED sna inoperative
AFTPD sna inoperative
netlsd netlsd inoperative
#

Some of them are directly invoked from /etc/inittab. The subsystem qdaemon
and writesrv are from this example. Some of them are invoked from the startup
script which is executed from /etc/inittab.

2.10.3 The SRC Subservers
A subsystem is a daemon, or server, that is controlled by the SRC. A subserver
is a daemon that is controlled by a subsystem. The only TCP/IP subsystem that
controls other daemons (subservers) is the inetd daemon. Thus, all TCP/IP
subservers are also inetd subservers. See the file /etc/inetd.conf for all the
TCP/IP subservers. The categories of subsystem and subserver are mutually
exclusive. That is, daemons are not listed as both a subsystem and a subserver.
The TCP/IP daemons controlled by the inetd subsystem are as follows:

/etc/uucpd
/etc/ftpd
/etc/telnetd
/etc/rshd
/etc/rlogind
/etc/rexecd
/etc/bootpd
/etc/fingerd
/etc/tftpd
/etc/comsat
/etc/talkd
/usr/etc/rpc.rexd
/usr/etc/rpc.rstatd
/usr/etc/rpc.rusersd
/usr/etc/rpc.rwalld
/usr/etc/rpc.sprayd
/etc/rpc.pcnfsd
/u/netinst/bin/instsrv
echo (internal)
discard (internal)
chargen (internal)
daytime (internal)
time (internal)

Note: The daemons marked internal don′ t have a separate entity (program).
They are integrated in the inetd in order to avoid the overhead of forking
and executing them. Since their tasks are so tiny that we cannot ignore
the startup cost.

Chapter 2. Debugging TCP/IP Troubles 163

You can review all the subservers supported on your system with the command
lssrc -T, and you can see subservers other than the inetd subserver:

lssrc -T
#sub_type:subsysname:sub_code:
ftp:inetd:21:
uucp:inetd:540:
telnet:inetd:23:
shell:inetd:514:
login:inetd:513:
exec:inetd:512:
finger:inetd:79:
tftp:inetd:69:
ntalk:inetd:517:
echo:inetd:7:
discard:inetd:9:
chargen:inetd:19:
daytime:inetd:13:
time:inetd:37:
comsat:inetd:1512:
bootps:inetd:67:
systat:inetd:11:
netstat:inetd:15:
link_station:sna:2:
gateway:sna:40:
#

Notice one daemon is not the inetd subserver, butis the SNA subserver. See the
second column of the previous list, separated by a colon. Also, ONC/RPC
daemons are not the subservers. /usr/etc/rpc.rexd and other RPC daemons are
not listed.

The previous list is only a dump list of the SRCsubsvr object class as follows:

odmget SRCsubsvr | grep type
sub_type = ″ftp″
sub_type = ″uucp″
sub_type = ″telnet″
sub_type = ″shell″
sub_type = ″login″
sub_type = ″exec″
sub_type = ″finger″
sub_type = ″tftp″
sub_type = ″ntalk″
sub_type = ″echo″
sub_type = ″discard″
sub_type = ″chargen″
sub_type = ″daytime″
sub_type = ″time″
sub_type = ″comsat″
sub_type = ″bootps″
sub_type = ″systat″
sub_type = ″netstat″
sub_type = ″link_station″
sub_type = ″gateway

#

You can retrieve the status of each subserver such as telnetd with the lssrc
command, as follows:

164 Practical TCP/IP for AIX V3.2/V4.1

lssrc -t telnet
Service Command Arguments Status

 telnet /usr/sbin/telnetd telnetd -s active

#

Note: The above result may be wrong and would be fixed in the future. With
AIX V3.2, we could get the following result:

lssrc -t telnet
Service Command Description Status
 telnet telnetd -s active

Pid Inet Address Hostname
 12561 9.170.5.45 newton
 terminal type = TERM=aixterm
#

2.10.4 The SRC-Related Object Class in the ODM
The SRC defines and manages three object classes: SRC subsystem object
class, SRC subserver type object class and SRC notify object class. Together,
these object classes represent the domain in which the SRC performs its
functions. A predefined set of object-class descriptors comprise the possible set
of subsystem configurations supported by the SRC.

Note: Only the SRC subsystem object class is mandatory. Use of the subserver
type and notify object classes is subsystem-dependent.

The SRC uses or relates to the following object classes:

SRCsubsys The subsystem object class contains the descriptors for all SRC
subsystems. A subsystem must be configured in this class before it
can be recognized by the SRC.

SRCsubsvr An object must be configured in this class if a subsystem has
subservers and the subsystem expects to receive subserver-related
commands from the srcmstr daemon.

SRCnotify This class provides a mechanism for the srcmstr daemon to invoke
subsystem-provided routines when the failure of a subsystem is
detected. When the SRC daemon receives a SIGCHLD signal
indicating the termination of a subsystem process, it checks the
status of the subsystem (maintained by the srcmstr daemon) to
determine whether the termination was caused by a stopsrc
command. If no stopsrc command was issued, the termination is
interpreted as an abnormal termination. If the restart action in the
definition does not specify respawn (or if respawn attempts fail), the
srcmstr daemon attempts to read an object associated with the
subsystem name from the notify object class. If such an object is
found, the method associated with the subsystem is run. If no
subsystem object is found in the notify object class, the srcmstr

Chapter 2. Debugging TCP/IP Troubles 165

daemon determines whether the subsystem belongs to a group. If
so, the srcmstr daemon attempts to read an object of that group
name from the notify object class. If such an object is found, the
method associated with it is invoked. In this way, groups of
subsystems can share a common method.

2.10.4.1 SRCsubsys Object Class Example
We show an example of the SRCsubsys object class. When the SRC, srcmstr,
invokes a subsystem (daemon), it refers to the information stored in this object
class. Be aware that you still can specify some of the parameters at the time of
a subsystem invocation and can override the parameters in the ODM. The
following is the example of the syslogd subsystem (daemon) data stored in the
ODM SRCsubsys object class:

odmget -q ″subsysname=′ syslogd′ ″ SRCsubsys

SRCsubsys:
subsysname = ″syslogd″
synonym = ″″
cmdargs = ″″
path = ″ /usr/sbin/syslogd″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″ras″

#

For example, if the option flag -d is not specified in the object descriptor
cmdargs, you can add this flag when the startsrc command is executed, as
follows:

startsrc -s syslogd -a ″-d″
0513-059 The syslogd Subsystem has been started. Subsystem PID is 10412
#

We briefly explain each object descriptor. You can get the information about
data type and maximum length (including the null terminator) of each object
descriptor by issuing the odmshow command, as follows:

166 Practical TCP/IP for AIX V3.2/V4.1

odmshow SRCsubsys
class SRCsubsys {

char subsysname[30]; /* offset: 0xc (12) */
char synonym[30]; /* offset: 0x2a (42) */
char cmdargs[200]; /* offset: 0x48 (72) */
char path[200]; /* offset: 0x110 (272) */
long uid; /* offset: 0x1d8 (472) */
long auditid; /* offset: 0x1dc (476) */
char standin[200]; /* offset: 0x1e0 (480) */
char standout[200]; /* offset: 0x2a8 (680) */
char standerr[200]; /* offset: 0x370 (880) */
short action; /* offset: 0x438 (1080) */
short multi; /* offset: 0x43a (1082) */
short contact; /* offset: 0x43c (1084) */
long svrkey; /* offset: 0x440 (1088) */
long svrmtype; /* offset: 0x444 (1092) */
short priority; /* offset: 0x448 (1096) */
short signorm; /* offset: 0x44a (1098) */
short sigforce; /* offset: 0x44c (1100) */
short display; /* offset: 0x44e (1102) */
short waittime; /* offset: 0x450 (1104) */
char grpname[30]; /* offset: 0x452 (1106) */
};

/*
 columns: 20

structsize: 0x470 (1136) bytes
data offset: 0x514
population: 51 objects (51 active, 0 deleted)

*/

#

You can also refer to the header file /usr/include/spc.h for the symbolic constant
such as SRCYES.

subsysname Specifies the name of the subsystem object. This descriptor must
be POSIX-compliant. This field is required.

synonym Specifies a character string to be used as an alternate name for the
subsystem. This field is optional.

cmdargs Specifies any arguments that must be passed to the command that
starts the subsystem. The arguments are parsed by the srcmstr
daemon according to the same rules used by shells. For example,
quoted strings are passed as a single argument and blanks outside
quoted strings delimit arguments.

path Specifies the full path name for the program executed by the
subsystem start command. The path name must be
POSIX-compliant. This field is required.

uid Specifies the user ID (numeric) under which the subsystem is run.
A value of 0 indicates the root user.

auditid Specifies the subsystem audit id. Created automatically by the
srcmstr daemon when a subsystem is defined, this field is used by
the security system, if configured. This field cannot be set or
changed by a program.

Chapter 2. Debugging TCP/IP Troubles 167

standin Specifies the file or device from which the subsystem receives its
input. The default is /dev/console. This field is ignored if the
communication type is sockets.

standout Specifies the file or device to which the subsystem sends its output.
The default is /dev/console.

standerr Specifies the file or device to which the subsystem writes its error
messages. Failures are handled as part of the notify method. The
default is /dev/console.

Note: Catastrophic errors are sent to the error log.

action Specifies whether the srcmstr daemon should restart the
subsystem after an abnormal end. A value of RESPAWN(1)
specifies that the srcmstr daemon should restart the subsystem. A
value of ONCE(2) specifies the srcmstr daemon should not attempt
to restart the failed system. There is a respawn limit of two
restarts within a specified wait time. If the failed subsystem cannot
be successfully restarted, the notification method option is
consulted. The default value is ONCE.

multi Specifies the number of instances of a subsystem that can run at
one time. A value of SRCNO(0) specifies that only one instance of
the subsystem can run at one time. Attempts to start this
subsystem if it is already running will fail (as will attempts to start a
subsystem on the same IPC message queue key). A value of
SRCYES(1) specifies that multiple subsystems may use the same
IPC message queue and that there can be multiple instances of the
same subsystem. The default value is SRCNO.

contact Contact type. The value of this field indicates either a signal
SRCSIGNAL(2), a message queue SRCIPC(1), or a socket
SRCSOCKET(3).

srvkey Specifies a decimal value that corresponds to the IPC message
queue key that the srcmstr daemon uses to communicate to the
subsystem. This field is required for subsystems that communicate
using IPC message queues. Use the ftok. subroutine with a fully
qualified path name and an ID parameter to ensure that this key is
unique. The srcmstr daemon creates the message queue prior to
starting the subsystem.

svrmtype Specifies the mtype of the message that is placed on the
subsystem ′s message queue. The subsystem uses this value to
retrieve messages by using the msgrcv or msgxrcv subroutine.
This field is required if you are using message queues.

priority Nice value, a number from 1 to 40. Specifies the process priority of
the subsystem to be run. Subsystems started by the srcmstr
daemon run with this priority. The default value is 20.

signorm Specifies the value to be sent to the subsystem when a stop normal
request is sent. This field is required of subsystems using the
signals communication type (contact).

sigforce Specifies the value to be sent to the subsystem when a stop force
request is sent. This field is required of subsystems using the
signals communication type (contact).

168 Practical TCP/IP for AIX V3.2/V4.1

display Indicates whether the status of an inoperative subsystem can be
displayed on lssrc -a or lssrc -g output. The default is to display.
The value of this field can be either SRCYES(1) or SRCNO(0).

waittime Specifies the time in seconds that a subsystem has to complete a
restart or stop request before alternate action is taken. The default
is 20 seconds. Stop cancel time to wait before sending a SIGKILL
signal to the subsystem restart time period. (A subsystem can be
restarted only twice in this time period if it does not terminate
normally.)

grpname Designates the subsystem as a member of a group. This field is
optional.

Although we don′ t explain in this book, you can add your own subsystem in this
object class using the mkssys command, and you can delete a subsystem using
the rmssys command.

2.10.4.2 SRCsubsvr Object Class Example
We explain the SRCsubsvr object class shortly. See the following example.
Since this SRC subserver telnetd is the inetd subserver, it is also registered in
the InetServ object class.

odmget -q ″sub_type=′ telnet′ ″ SRCsubsvr

SRCsubsvr:
sub_type = ″telnet″
subsysname = ″inetd″
sub_code = 23

#

The definitions of each object descriptor, data type and maximum length
(including the null terminator), are listed with the odmshow command as follows:

odmshow SRCsubsvr
class SRCsubsvr {

char sub_type[30]; /* offset: 0xc (12) */
char subsysname[30]; /* offset: 0x2a (42) */
short sub_code; /* offset: 0x48 (72) */
};

/*
 columns: 3

structsize: 0x4c (76) bytes
data offset: 0x1e8
population: 20 objects (20 active, 0 deleted)

*/

#

Each object descriptor is explained as follows:

sub_type Specifies the name of the subserver type object identifier. The set
of subserver type names defines the allowable values for the -t flag
of the subserver commands.

subsysname Specifies the name of the subsystem that owns the subserver
object. This field is defined as a link to the SRC subsystem object
class.

Chapter 2. Debugging TCP/IP Troubles 169

sub_code Specifies a decimal number that identifies the subserver. The code
point is passed to the subsystem controlling the subserver in the
object field of the subreq structure of the SRC request structure. If
a subserver object name is also provided in the command, the
srcmstr daemon forwards the code point to the subsystem in the
objname field of the subreq structure.

2.10.4.3 SRCnotify Object Class Example
We explain the SRCnotify object class shortly. Currently the httpd is the only
one object in this class (if it is installed).

Note: With AIX V3.2, inetd was the only object in this class.

The following is the only example of this object class:

odmget SRCnotify

SRCnotify:
notifyname = ″httpd″
notifymethod = ″ /etc/rc.httpd″

#

The definitions of each object descriptor, data type and maximum length
(including the null terminator), are listed with the odmshow command as follows:

odmshow SRCnotify
class SRCnotify {

char notifyname[30]; /* offset: 0xc (12) */
method notifymethod[256]; /* offset: 0x2a (42) */
};

/*
 columns: 2

structsize: 0x12c (300) bytes
data offset: 0x1bc
population: 1 objects (1 active, 0 deleted)

*/

#

Each object descriptor is explained below:

notifyname This specifies the name of the subsystem or group for which a
notify method is defined.

notifymethod This specifies the full path name to the routine that is executed
when the srcmstr daemon detects abnormal termination of the
subsystem or group.

2.10.5 The inetd-Related Object Class InetServ
As we mentioned, the inetd uses its own object class InetServ. When the inetd
is invoked by the SRC srcmstr, this object class is referred to. When the inetd is
invoked by the command line or in the case of SRC failure, the configuration file
/etc/inetd.conf is is referred to instead. In order to avoid any problem caused by
an inconsistency between the ODM and the configuration file, you should issue
the inetimp command whenever you update /etc/inetd.conf. This command
updates the InetServ object class using the /etc/inetd.conf file.

Note: There is a command inetserv and it allows you to update or modify the
InetServ object class directly. With this command, you can export the

170 Practical TCP/IP for AIX V3.2/V4.1

content of the InetServ object class into the /etc/inetd.conf file. We know
few people actually do this.

With AIX V4.1, the inetd no longer use the ODM.

Some inetd- and ODM-related commands, such as inetimp and
inetserv, are obsolete. Only the ASCII file /etc/inetd.conf is necessary.
The object class InetServ was deleted from V4.1. For compatibility
purposes, you can configure V4.1 inetd as well as the V3.2 inetd. For
such a case, you must install the fileset bos.compat.net. This fileset
provides the InteServ object class. This section is written for V3.2 and
V4.1, in which this fileset is installed.

odmget -q ″servname=′ telnet′ ″ InetServ

InetServ:
state = 1
servname = ″telnet″
socktype = ″stream″
protocol = ″tcp″
waitstate = ″nowait″
user = ″root″
path = ″ /usr/sbin/telnetd″
command = ″telnetd″
portnum = 23
alias = ″″
description = ″″
statusmethod = ″stinet″

#

Although we don′ t explain each object descriptor, if you compare it with
/etc/inetd.conf, you can understand their meanings easily.

grep telnet /etc/inetd.conf
#telnet stream tcp nowait root /usr/sbin/telnetd telnetd
#

The definitions of each object descriptor, data type and maximum length
(including the null terminator), are listed with the odmshow command as follows:

odmshow InetServ
class InetServ {

long state; /* offset: 0xc (12) */
char servname[20]; /* offset: 0x10 (16) */
char socktype[20]; /* offset: 0x24 (36) */
char protocol[10]; /* offset: 0x38 (56) */
char waitstate[10]; /* offset: 0x42 (66) */
char user[20]; /* offset: 0x4c (76) */
char path[50]; /* offset: 0x60 (96) */
char command[50]; /* offset: 0x92 (146) */
long portnum; /* offset: 0xc4 (196) */
char alias[50]; /* offset: 0xc8 (200) */
char description[40]; /* offset: 0xfa (250) */
method statusmethod[256]; /* offset: 0x122 (290) */
};

/*
 columns: 12

structsize: 0x224 (548) bytes

Chapter 2. Debugging TCP/IP Troubles 171

data offset: 0x398
population: 664 objects (664 active, 0 deleted)

*/

#

2.10.6 Debugging inetd Example
In the case that you have made a mistake during the inetd customization, you
might have left an inconsistency in the ODM and you will have a tough problem.
If the inconsistency is in the kernel (memory), rebooting the system will fix it.
But the inconsistency in the ODM remains until you correct the ODM. The ODM
is not a flat ASCII file and it has its unique interfaces (commands). It stores data
in binary form and has its own data structure. Therefore, those who only know
about standard UNIX tools or commands cannot fix the problem. We explain a
problem which we actually faced during the development of this book.

2.10.6.1 The Symptom
One day, you find that nobody could log in to the system zero via the TCP/IP
network.

tn zero
Trying...
telnet: connect: Connection refused
#

2.10.6.2 The Problem Determination Procedure
The problem was not only the TELNET but also FTP and other network services.
Even the daytime server was not available. As you already know, this error
message is caused by the TCP ACK segment with RST flag, and means that the
application is not started. Refer to the following result (remember port 13 is
daytime server):

ftp zero
ftp: connect: Connection refused
ftp> quit
tn zero 13
Trying...
telnet: connect: Connection refused
#

 1. Since all of these applications are invoked by the inetd, these symptoms
suggest that the inetd has a problem. Then you check the status on the
system zero. When you check the status with lssrc -s, it seems to be
working:

lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 27118 active
#

 2. Then you try to see the status of each daemons (subservers) controlled by
the inetd, with lssrc -ls. You have a problem, as follows:

lssrc -ls inetd
0513-056 Timeout waiting for command response.
#

172 Practical TCP/IP for AIX V3.2/V4.1

Note: The srcmstr responds to the command lssrc -s. But for the command
lssrc -ls, the query request is passed to the subservers (daemon).
Then successful -s and failed -ls implies that the inetd couldn′ t
communicate to the subservers.

 3. Next you try to restart the inetd. The first step was to stop the inetd, but the
stopsrc command didn′ t work:

stopsrc -s inetd
0513-056 Timeout waiting for command response.
#

Then you use the ps command to get the process id (PID) and kill command
to stop the inetd. This time it works. You find it curious that an option (?), d
was displayed with /etc/inetd.

ps -ef |grep inet |grep -v grep
root 27118 3684 0 11:13:38 - 0:00 /usr/sbin/inetd d

kill 27118
ps -ef |grep inet |grep -v grep
#

 4. You start the inetd at the command line. In this procedure, you can invoke
the inetd without the SRC. Again, it works and you see that all the services
controlled by the inetd also work this time.

Note: Do not forget that this time the inetd read /etc/inetd.conf and doesn′ t
use the InetServ object class in the ODM.

/etc/inetd
ps -ef |grep inet |grep -v grep

root 26886 1 7 11:20:52 - 0:00 /etc/inetd
#

 5. The successful result of this procedure implies that the problem was
SRC-related. After rebooting the system, the inetd got into the completely
same situation. This time, again, the mysterious option d was also back.
Since the problem came back after a reboot, this suggests the cause is
stored in non-volatile storage such as the ODM. Now you know that the
command argument passed to the daemon can be written in the cmdargs
object descriptor. Then you check it with the odmget command:

odmget -q ″subsysname=′ inetd′ ″ SRCsubsys | grep cmdargs
cmdargs = ″d″

#

Now you reveal the cause that the data in the ODM is wrong.

2.10.6.3 The Repairing Procedure
Now you find that incorrect argument d is stored instead of -d.

 1. This can be corrected with the chssys command:

chssys -s inetd -a ″-d″
0513-077 Subsystem has been changed.
#

Note: In this example, we were lucky because the chssys command worked
well. We cannot always expect this. In the case that the chssys fails,
you need to use the odmchange command or the ODM Editor.

 2. You should check to see whether the change was correctly made to the
ODM:

Chapter 2. Debugging TCP/IP Troubles 173

odmget -q ″subsysname=′ inetd′ ″ SRCsubsys | grep cmdargs
cmdargs = ″-d″

#

 3. Be aware that the chssys command only updates the ODM and the current
running daemon doesn′ t know the update. You have to stop and restart the
daemon. In this case, the inetd was started with the wrong argument and we
couldn ′ t stop it with the stopsrc (as you saw). Then, we used the kill
command:

ps -ef |grep inetd |grep -v inetd
root 5412 2684 0 21:59:15 - 0:00 /etc/inetd d

kill 5412
startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 26924.
#

 4. Now you can get detailed information about the inetd with the lssrc -ls
command. This time the inetd responded to the command, as follows:

lssrc -ls inetd
Subsystem Group PID Status
inetd tcpip 26924 active

Debug Active

Signal Purpose
 SIGALRM Establishes socket connections for failed services
 SIGHUP Rereads configuration database and reconfigures services

 SIGCHLD Restarts service in case the service dies abnormally

Service Command Arguments Status
login /usr/sbin/rlogind rlogind active
telnet /usr/sbin/telnetd telnetd active
 cmsd /usr/dt/bin/rpc.cmsd cmsd 100068 2-4 active
dtspc /usr/dt/bin/dtspcd /usr/dt/bin/dtspcd active
time internal active
daytime internal active
discard internal active
echo internal active
time internal active
daytime internal active
chargen internal active
discard internal active
 pcnfsd /usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2 active
 sprayd /usr/lib/netsvc/spray/rpc.sprayd sprayd 100012 1 active
 rwalld /usr/lib/netsvc/rwall/rpc.rwalld rwalld 100008 1 active
 rusersd /usr/lib/netsvc/rusers/rpc.rusersd rusersd 100002 1-2 active
 rstatd /usr/sbin/rpc.rstatd rstatd 100001 1-3 active
 ntalk /usr/sbin/talkd talkd active
 shell /usr/sbin/rshd rshd active
 ftp /usr/sbin/ftpd ftpd active
#

Notice that the previous example is due to the srcmstr capability. If you invoked
the inetd from the command line without using the srcmstr, the lssrc command
responds with the wrong answer. This does not necessarily mean something is
wrong. For example, you can confirm whether the inetd invoked at the command
line is running with the ps command:

174 Practical TCP/IP for AIX V3.2/V4.1

inetd
ps -ef | grep inetd | grep -v grep

root 25158 1 0 11:30:08 - 0:00 inetd
#

The lssrc command gives you a totally different result. Although the inetd and
its subservers are running perfectly, you wouldn′ t know it with the lssrc
command:

lssrc -s inetd
Subsystem Group PID Status
 inetd tcpip inoperative
lssrc -ls inetd
0513-036 The request could not be passed to the inetd subsystem.
Start the subsystem and try your command again.
#

2.10.7 Other SRC Pitfalls
The SRC (srcmstr) adds some administrative benefits. For example, you can
manage the related subsystems (daemons) as a group, and the srcmstr can
prevent a daemon carelessly invoked twice. On the contrary, the SRC adds
some complexity to the system. The SRC-related problems may be difficult to
debug because this is totally an AIX unique feature.

2.10.7.1 When the SRC (srcmstr) Is Killed
The srcmstr is invoked from the /etc/inittab, as follows:

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller

It is specified as respawn and this means when the /usr/sbin/srcmstr is killed for
some reason, the init automatically restarts the srcmstr. This is quite a
convenient and reasonable function, but it has a pitfall. Due to the restart, the
srcmstr loses consistency about the subserver′s status. See the following
example:

 1. Check the status of the srcmstr subservers. They are working correctly.

lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 13800 active
lssrc -s portmap
Subsystem Group PID Status
portmap portmap 13534 active
lssrc -s sendmail
Subsystem Group PID Status
 sendmail mail 12748 active
#

 2. Kill /usr/sbin/srcmstr with kill -9, as follows. Then the /usr/sbin/srcmstr file
will be immediately respawned by the init. Then you can know that the PID
was updated.

ps -ef | grep srcmstr | grep -v grep
root 3690 1 0 12:03:19 - 0:00 /usr/sbin/srcmstr

kill -9 3690
ps -ef | grep srcmstr | grep -v grep

root 3736 1 1 12:08:54 - 0:00 /usr/sbin/srcmstr
#

Chapter 2. Debugging TCP/IP Troubles 175

 3. Check the status of the srcmstr subservers again. The lssrc -s commnd says
that they are not working.

lssrc -s inetd
Subsystem Group PID Status
 inetd tcpip inoperative
lssrc -s portmap
Subsystem Group PID Status
 portmap portmap inoperative
lssrc -s sendmail
Subsystem Group PID Status
 sendmail mail inoperative
#

 4. Check the status of the srcmstr subservers once more with the ps -ef
command. This time those subserver daemons are working. Notice the PIDs
are the same as the previous PIDs before the srcmstr was killed (and
restarted). This implies that those subserver daemons are intact and have
not been stopped.

ps -ef |grep inetd | grep -v grep
root 13800 1 0 12:03:36 - 0:00 /usr/sbin/inetd -d

ps -ef |grep portmap | grep -v grep
root 13534 1 0 12:03:33 - 0:00 /usr/sbin/portmap

ps -ef |grep sendmail | grep -v grep
root 12748 1 0 12:03:29 - 0:00 /usr/lib/sendmail -bd -q30m

#

 5. If you are confused with the lssrc -s command output, you may invoke the
subserver daemons with the startsrc command, as follows:

startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 22722.
#

It works fine, but now you have two instances of the daemon running. The
ps -ef command tells the truth.

ps -ef |grep inetd | grep -v grep
root 13800 1 0 12:03:36 - 0:00 /usr/sbin/inetd -d
root 22722 3736 0 12:10:56 - 0:00 /usr/sbin/inetd -d

#

In our experience, the easiest and most certain recovery procedure of the
srcmstr inconsistency is to reboot the system. Since the subservers are
running well, you can use the communication functions without any
problems.

Another visible symptom may be the system error log. If you noticed
something wrong about the srcmstr, reviewing the system error log
(following) is a good idea:

176 Practical TCP/IP for AIX V3.2/V4.1

errpt
IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
E18E984F 0818121295 P S SRC SOFTWARE PROGRAM ERROR
2BFA76F6 0818120095 T S SYSPROC SYSTEM SHUTDOWN BY USER
9DBCFDEE 0818120395 T O errdemon ERROR LOGGING TURNED ON
192AC071 0818115895 T O errdemon ERROR LOGGING TURNED OFF
E18E984F 0818115895 P S SRC SOFTWARE PROGRAM ERROR
E18E984F 0818115895 P S SRC SOFTWARE PROGRAM ERROR
E18E984F 0818115895 P S SRC SOFTWARE PROGRAM ERROR
E18E984F 0818115895 P S SRC SOFTWARE PROGRAM ERROR
E18E984F 0818115895 P S SRC SOFTWARE PROGRAM ERROR
E18E984F 0818115895 P S SRC SOFTWARE PROGRAM ERROR
...

Difference between V4.1 and V3.2

With V3.2 there was a severe pitfall. The srcmstr restarts automatically
when it gets killed, but all the subservers (daemons) controlled by the
srcmstr are also killed and they aren′ t restarted automatically. They die
when the srcmstr dies. As a result, you would get the following
problems:

tn newton
Trying...
telnet: connect: A remote host refused an attempted connect operation.
tn> quit
#

We performed several experiments and can conclude that the most
certain recovery procedure is to reboot the system. So far, even when
the srcmstr looks fine, if it has been killed once, you will have some
tough problems.

As you can see, there must be some inconsistencies in the system. We made
several experiments and can conclude that the most certain recovery procedure
is to reboot the system. So far, even if the srcmstr looks fine, if it has been
killed once, you will have some tough problems.

2.10.7.2 SRC Uses UNIX Domain Socket
As you can see in the following example, the srcmstr uses some UNIX domain
sockets. Those sockets are placed in the /dev directory. Anything bad for a
socket impacts the srcmstr functionality. Filling up the root directory or
removing these domain sockets damages the srcmstr. Of course, such problems
should not happen on a well-administered system.

netstat -a -f unix
Active UNIX domain sockets
SADR/PCB Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
 5a20100 dgram 0 0 7a0de34 0 0 0 /dev/SRC
 5a41a80
 5a20900 stream 0 0 7a00c5c 0 0 0 /tmp/.X11-unix/X0
 5a41b00
 5a14c00 dgram 0 0 7a12d34 0 0 0 /dev/.SRC-unix/SRCaSdCEa
 5a41a00
 5a14d00 dgram 0 0 7a13224 0 5a41400 0 /dev/log
 5a41a40
 5a14a00 dgram 0 0 7a14fc4 0 0 0 /dev/.SRC-unix/SRCgtdCEb
 5a41980
 5a14500 dgram 0 0 0 5a41a40 0 0
 5a418c0
 5a11e00 dgram 0 0 7a16384 0 0 0 /dev/.SRC-unix/SRCrwdCEc
 5a41840
 5a14300 dgram 0 0 0 5a41a40 0 5a418c0
 5a41880
 5a4fe00 dgram 0 0 7a18b04 0 0 0 /dev/.SRC-unix/SRCRAdCEd

Chapter 2. Debugging TCP/IP Troubles 177

5a417c0
 5a4fc00 stream 0 0 7a1f52c 0 0 0 /tmp/.info-help
 5a41800
 5a20300 dgram 0 0 0 5a41a40 0 5a41880
 5a41ac0
 5a4f600 stream 0 0 7a2b970 0 0 0 /tmp/.X11-unix/XIM
 5a41780
 5a56200 dgram 0 0 7a48854 0 0 0 /dev/.SRC-unix/SRCbudF7a
 5a413c0
 5a56000 dgram 0 0 0 5a41a40 0 5a41ac0
 5a41400
#

2.10.7.3 SRC-Related System Error Log
As you know, the SRC-related errors may be logged by the system.
Unfortunately, there are no detailed documentations that describe the meanings
of each field in the error log report. An example of an error log is as follows:

errpt -a -j E18E984F

LABEL: SRC
IDENTIFIER: E18E984F

Date/Time: Fri Aug 18 11:58:15
Sequence Number: 1712
Machine Id: 000970044D00
Node Id: zero
Class: S
Type: PERM
Resource Name: SRC

Description
SOFTWARE PROGRAM ERROR

Probable Causes
APPLICATION PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
PERFORM PROBLEM RECOVERY PROCEDURES

Detail Data
SYMPTOM CODE

0
SOFTWARE ERROR CODE

-9020
ERROR CODE

256
DETECTING MODULE
′ srchevn.c′ @line:′265′
FAILING MODULE
writesrv

The only thing you can refer to is the header file /usr/include/srcerrno.h. In this
file you can find a short explanation about SOFTWARE ERROR CODE.

178 Practical TCP/IP for AIX V3.2/V4.1

cat /usr/include/srcerrno.h
...
#define SRC_SVKO -9017 /* Subsystem ended */
#define SRC_INVALID_USER_ROOT -9018 /* not root */
#define SRC_INVALID_USER -9019 /* not root or system */
#define SRC_TRYX -9020 /* Retry limit exceeded restarting subsystem */
#define SRC_RES -9021 /* Resource not found */
#define SRC_CURR -9022 /* Resource currently under command processing */
#define SRC_PROC -9023 /* Command already processed */
...

In conclusion, the error log example can be understood that a SRC subsystem
portmap has a problem. The portmap subsystem was restarted twice, but since
multiple instances of the portmap is not allowed, the system got the error. You
can confirm how many instances are allowed for the portmap as below, looking
at the configuration in the ODM.

odmget -q ″subsysname=′ writesrv′ ″ SRCsubsys | grep multi
multi = 0

#

The “0” means only one instance is allowed, but we still don′ t know why the
portmap was started twice.

2.10.7.4 Meaning of Debug Mode (traceson, tracesoff)
One advantage of using the SRC is that you can use the common commands to
manage the subsystems (daemons). Examples are the lssrc, startsrc, stopsrc,
refresh and chssys commands. About these commands, you can expect that
they have the same effects to any of their subsystems. But when you use
traceson and tracesoff commands, you have to pay attention. For some
daemons, these commands enable and disable socket-level trace. For other
daemons, these commands enable and disable the SYSLOG trace. It′s totally
subsystem-dependent. When you use these commands, you have to refer to the
manual or InfoExplorer first and understand which trace is invoked. The
following is a summary of some daemons:

inetd SYSLOG trace

telnet Socketr-level trace

telnetd Socket-level trace

ftp SYSLOG trace

ftpd SYSLOG trace

You can invoke this trace function with SMIT. It′s not only the trace function, but
other SRC functions also have SMIT support. If you use the trace function via
SMIT, follow these steps:

 1. Invoke the SMIT with the following fast path:

smitty src

 2. You wil l see the following menu:

Chapter 2. Debugging TCP/IP Troubles 179

� �
Processes & Subsystems

Move cursor to desired item and press Enter.

Processes
Subsystems
Subservers

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 25. SMIT Processes & Subsystems Selection Screen

 3. If you choose Subsystems at the previous screen, you wil l see the following
menu for the subsystems:

� �
Subsystems

Move cursor to desired item and press Enter.

List All Subsystems
Query a Subsystem
Start a Subsystem
Stop Subsystem
Refresh a Subsystem
Trace Subsystem

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 26. SMIT Subsystems Menu Screen

 4. If you use the trace function, choose Trace Subsystem at the previous menu.
You can start or stop the trace function in this screen.

� �
Trace Subsystem

Move cursor to desired item and press Enter.

Start Trace
Stop Trace

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 27. SMIT Trace Subsystem Screen

2.11 IP Trace
Now it′s a good time to explain the iptrace and ipreport functions. In this book,
we included many IP trace sample outputs. It′s a very powerful and convenient
tool to analyze what packets are actually sent and received. In order to
understand (interpret) a trace result, you must have complete knowledge of
TCP/IP. Explaining TCP/IP in detail is out of the scope of this book. It would
take several volumes of books and there are a lot of good books available at
book stores. Of course, RFCs are very good references. So far in this section,
we mainly focus on how to get IP traces.

180 Practical TCP/IP for AIX V3.2/V4.1

Difference between V4.1 and V3.2

With AIX V4.1, you need explicit installation of the fileset bos.net.tcp.server to
use IP trace. Not only is the IP trace included, but also some other useful
commands are included in this fileset. trpt and tcdump are the examples.

2.11.1 IP Trace Basics
The following contains some points you should know about the IP trace.

The most difficult part is interpretation of the result.
Honestly speaking, getting a trace (not only regarding IP trace) is not the
goal. Usually a trace gives you almost everything and you have to pick
clues from a huge trace log. Of course, you must have a good knowledge of
TCP/IP or you will not be able to detect what is wrong. The IP trace only
shows you a dump list of data and protocol headers. The investigation task
is left for you. If you don′ t know the meaning of each field in a protocol
header, the IP trace is useless.

You will get a huge data file quickly.
Since the IP trace captures entire packets and stores it on your disk, if you
monitor a file transfer session of 10 MB, 10 MB of data and protocol headers
are stored on your disk. The IP trace provides some options to hook only
necessary data (packets). You must know what packets are necessary to
your problem determination. In our experience, whenever we had to get the
IP trace, the situation was pretty tough and we hardly had any idea of the
hook condition. If you are sure what packets you are looking for, it means
you already know the cause of your problem.

It ′s very easy to use IP trace.
Getting an IP trace log or capturing packets is very simple. It is only a
matter of issuing a few commands.

It cannot capture packets which are not sent to your system.(V3.2 and some
V4.1).

The IP trace doesn′ t provide network monitoring capability, which is
supported by a protocol analyzer. You can capture all the packets sent from
your system, and received by your system. You cannot capture any packets
that are sent and received between other systems. (Broadcast packets are
received by your AIX.) So far, you cannot monitor the entire network traffic
with an IP trace.

It can resolve ARP, IP, ICMP, UDP TCP and more.
The IP trace log can be formatted to a human readable style. Each protocol
header is clearly formatted and you can easily read the value of each field,
but it doesn′ t resolve the application layer information. Then, if you are
reading an IP trace report of TELNET, you must read the raw data dumped in
hex to understand the TELNET protocol. It′s not easy. Currently only
ONC/RPC, NFS, DNS and RIP are exceptions. Giving the appropriate flag -r
to the ipreport command, these application headers are formatted.

ISA Adapter
If your system has an ISA adapter, the IP trace captures packets that are
received. Any packets that are sent out from your system are not captured
in the IP trace.

Chapter 2. Debugging TCP/IP Troubles 181

As mentioned previously, the IP trace is not a perfect tool. But it is still
extremely useful and this entire book is the real evidence to prove the capability
of the IP trace.

Difference between V4.1 and V3.2

With AIX V4.1, a new capability, promiscuous mode, is supported. With the
the new flag, -e, you can capture any packets run through the cable. Those
packets need not be destined for your system. The promiscuous mode also
depends on the adapter card you use. You can not use the promiscuous
mode with the old token-ring adapter (even in V4.1).

2.11.2 Getting the IP Trace with the iptrace and ipreport Command
The basic procedure of getting IP trace is shown below. In this example, log
files are stored in the /tmp directory. If you need to trace heavy traffic, log can
be bigger than several megabytes. The formatted report file is usually several
times greater than the log. It is recommended to prepare an appropriate
directory or file system.

 1. Invoke the iptrace command (daemon). The command in this example has
option -b and -d lazy. This means that only the packets between this system
and the lazy are captured. The flag -a means that no ARP packets are
captured:

iptrace -a -b -d kashima /tmp/test_iptrace.log
#

 2. Do the operation which you need to analyze. In the following example, it
only involves sending one ping packet to the destination:

ping -c 1 kashima
PING kashima.hakozaki.ibm.com: (9.68.214.76): 56 data bytes
64 bytes from 9.68.214.76: icmp_seq=0 ttl=255 time=3 ms

----kashima.hakozaki.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 3/3/3 ms
#

 3. If you complete the operation, kil l the iptrace daemon. You can use the kill
command as follows:

ps -e | grep iptrace | grep -v grep
 13346 - 0:00 iptrace
kill 13346
#

If you need to automate this procedure using the shell script, you may prefer
to write the previous commands as follows:

kill $(ps -e | grep iptrace | grep -v grep | awk ′ {print $1}′)

Now you have an IP trace log file. All the data in this file is binary and you
cannot read it.

ls -la /tmp/test_iptrace.log
-rw-r--r-- 1 root system 305 Aug 18 14:56 /tmp/test_iptrace.log
#

 4. You have to format the log file to a report file in order to translate it to
readable form. Do not forget the redirection mark >, or you just see the
formatted report on your display. You can use the ipreport command. The

182 Practical TCP/IP for AIX V3.2/V4.1

flag -r means that the ONC/RPC and NFS headers are also formatted. The
flag -n means that the sequential packet number is included in the formatted
report. The flag -s means to append the protocol name to every line in a
packet. The following is an example of the ipreport command usage:

ipreport -rns /tmp/test_iptrace.log > /tmp/test_iptrace.rpt

Now you have an IP report file as follows:

ls -la /tmp/test_iptrace.rpt
-rw-r--r-- 1 root system 1386 Aug 18 14:57 /tmp/test_iptrace.rpt
#

 5. You can read the IP report file with your favorite editor.

cat /tmp/test_iptrace.rpt
cat /tmp/test_iptrace.rpt |pg
IPTRACE version: 2.0

Packet Number 1
TOK: ====(106 bytes transmitted on interface tr0)==== 14:56:03.033315072
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:06:44:40]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.76 > (kashima.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=978, ip_off=0
IP: ip_ttl=255, ip_sum=f8af, ip_p = 1 (ICMP)
ICMP: icmp_type=8 (ECHO_REQUEST) icmp_id=10532 icmp_seq=0
...

2.11.3 Some Hints and Tips
As usual, experience is the best teacher. You should get accustomed to using
the IP trace and report. Sometimes you may fail to get the necessary IP trace
data by specifying the inappropriate flags.

2.11.3.1 How to Choose iptrace Hooks (Flags)
It is extremely difficult to resist the fascination of using flags to narrow down the
packets to be captured. Without any flags, you will see everything. If your
system is a heavily used server machine, you have to pick a few packets up
from hundreds of others. The following flags are now supported. Refer to the
manual or InfoExplorer for details.

-a Suppresses ARP packets. If you don′ t use this flag, a lot of
ARP packets may cause you concern. Because the ARP
request is broadcast, all the ARP requests in the same network
are captured.

-b Changes the -d or -s flags to the bidirectional mode.

-d <Hos t> Records packets headed for the specified destination host. If
used with the -b flag, the -d flag records packets both going to
and coming from the specified host.

- i <Inter face> Records packets received on the interface specified by the
Interface variable.

-P <Protocol> Records packets that use the specified protocol.

Chapter 2. Debugging TCP/IP Troubles 183

-p <Port No> Records packets that use the specified port number.

-s Host Records packets coming from the specified source host.
If used with the -b flag, the -s flag records packets both going
to and coming from the host specified by the Host variable.

In our experience, the combination of -a, -b and -d works fine in many situations.
You should always keep in mind that you are not looking at everything as long
as you use flag(s). There is a risk of eliminating clues. For example, if you are
using DNS and you use a -d flag, any DNS lookup activity is not traced. If your
problem is in the DNS lookup procedure, you cannot find anything.

Our Experience

We tried to capture an IP trace to analyze the TCP timeout mechanism. In
order to observe retransmission due to no response, we sent the TCP
segment to a system that was not turned on. We used the -a, -b, and -d
flags. The result was unbelievable because no packets were captured. We
repeated the experiment dropping each flag one by one, and we realized
what happened when we dropped the -a flag.

Since the destination system was turned off, it could not respond to the ARP
request. Due to the ARP failure, no TCP segments (packets) were sent. If we
had not eliminated the ARP packets, it would have been very obvious.

2.11.3.2 Pseudo Real-Time IP Trace
The IP trace and report are rather a batch procedure. They don′ t provide
real-time log analyzing capability. After everything is finished, it is easy to know
if the IP trace is successful. If you really need strict real-time capability, use a
protocol analyzer. We only explain a pseudo-alternative procedure.

 1. Issue the following command to create a pipe:

mknod /tmp/iptrace p
#

Difference between V4.1 and V3.2

With AIX V4.1, you have a new tool, tcpdump. This command provides
real-time packet capturing and displaying capability. If you need
real-time packet analysis, we recommend that you use tcpdump, although
the output looks tough to read.

 2. Invoke the ipreport command at background:

ipreport -rns /tmp/iptrace > /tmp/iptrace_realtime.rpt &
[1] 13384
#

 3. Invoke the iptrace. Immediately after this command, the formatted report is
continuously generated in the specified file, /tmp/iptrace_realtime.rpt:

iptrace -i tr0 /tmp/iptrace
#

 4. You can review the content of the report file dynamically with the following
command:

tail -f /tmp/iptrace_realtime.rpt

184 Practical TCP/IP for AIX V3.2/V4.1

Chapter 3. Getting Information for Performance Tuning

In the previous chapter we mainly discussed connectivity problems. In this
chapter we mainly treat performance problems. When you make connections to
your destination, and you find that your network application is slower than usual,
there may be a performance problem.

Consider that a problem can have two aspects: connectivity and performance.
The same problem can have different symptoms in different environments. So
be flexible when you make decisions based on a preconceived notion. Always
keep in mind that the slow response is an aspect of the problem and not the
whole problem.

3.1 When Something Is Wrong...
Generally speaking, it is more difficult to resolve a performance problem than a
connectivity problem. Even when we have a performance problem, we can
assume that almost all components are working properly (or you would have lost
the connectivity), and this makes the problem more complicated.

3.1.1 How to Approach the Performance Problem
Since there is no methodology to performance tuning and problem
determination, you can start at any point that you like. In this section we
described our approach. We don′ t insist that this is the only way or the best
way. We believe you can develop your own methodology, and it must be the
best way for you.

3.1.1.1 Gather Information
First we have to gather as much information as possible. This is a very
important step to reduce possible causes or reasons for the problem. The
information you should gather is listed below:

• Are all functions (applications) suffering slow performance, or do only some
functions or applications have the performance problem?

• Are all operations suffering slow performance, or do only some operations
have the performance problem? For example, when an end user complains
about slow response of TELNET, it is important to know if all operations
(commands) during the TELNET session are slow or if only the login
procedure is slow.

• Are all systems in the network suffering slow performance, or do only some
of the systems have the performance problem?

• When did the problem begin? Has the problem existed since the network
configuration or an application installation, or has the system developed this
problem since then? (It′s not easy to remember the operation log or history
to find what event or activity caused the performance problem.)

• Is the problem intermittent or permanent? If it is intermittent, the debugging
procedure is usually difficult. (It depends on the frequency of occurrence.) If
it happens once a day, it′s not so bad because it is possible to stay on the
site and wait until it happens again. However, if it happens once a week or
once a month, you need some automated procedures to gather data.

• Are there any error messages on the console or error log?

 Copyright IBM Corp. 1996 185

Answering the above questions may not be so easy. In our experience, 50% or
more of the people who asked for our help were not be able to answer all of the
questions. If we get less information, we have to use more hunches and
guesses.

3.1.1.2 Understand the Specification
You have to know the network environment with which you are dealing. If your
environment includes multi-vendor products, you have to know about each
product. Although we presently have many standards, the standards don′ t
define everything.

One important checkpoint is that all products are used within their specifications.
Many products can work even if they are outside of their specifications, but they
may get into an unstable state. The following are ad hoc examples and are not
a complete check list. There are many items that could be checked, as follows:

• Ethernet 10Base2 specification allows up to 30 stations within one segment.
The cable cannot exceed 185 meters. In 10Base2 network, adding a station
means increasing cable length. It might be longer than 185 meters.

• Supported maximum packet/frame size of your bridges. If one of your
bridges has a smaller maximum packet size than the others, almost all
packets can be passed or routed. But some extremely large packets will
meet a problem inviting retransmission or some recovery action.

• Some PC′s TCP/IP software don′ t comply to the full TCP/IP specification.
They may not be able to follow TCP flow control completely. Also they may
not have enough memory space or buffer area. For such resource restricted
systems, communicating with RS/6000 easily invites packets to drop and the
need for successive retransmission.

3.1.1.3 Is That Really a Problem?
Sometimes you have to ask this question. Recent innovations have given us
many convenient features or functions and we take them for granted. We should
not forget that nothing can be designed for all purposes. We can easily get out
from the original design scope. It may be a problem of product usage and may
not be a problem of the product itself.

For example, NFS provides very useful functions, such as the transparent access
to remote files. This is the original NFS design goal, and it has not been
designed for file transfer. But we see so often that people easily move a file of
hundreds of megabytes through NFS by issuing the cp or mv command. Of
course, they don′ t care if there is a router (or routers) on the way and they
complain of the system being too slow. For a large file transfer, especially in an
unreliable network environment, you should use FTP and should not use NFS.
Current NFS in AIX only uses UDP, and retransmission is made at application
(NFS) level. Once we get a timeout, it impacts the performance dramatically. If
you expect any possibility of retransmission, you should use a TCP-based file
transfer program, such as FTP.

You should compare the actual result with an estimated value in an ideal
environment. You may be struggling to make the “impossible” possible. If you
get 300 to 400 KBps with FTP, it equals 2.4 to 3.2 Mbps. If the network media is
Ethernet, because the maximum speed in the specification is 10 Mbps, it would
be difficult to double the current speed even if you did have an ideal condition.
It′s almost impossible to triple if we consider protocol overhead.

186 Practical TCP/IP for AIX V3.2/V4.1

Our Experience

A customer asked us to improve the performance of diskless stations. We
gave some advice and recommendations and the performance increased
greatly (three to ten times). But they requested more improvement. We got
data from a stand-alone system and compared it with the data. The
customer ′s diskless stations were only 1.3 times slower than the stand-alone
system.

Of course, we can make more progress, but we should consider the trade off
between the effort/cost and the effect/return.

3.1.1.4 Is that Really a Network Function?
Network function is not the only component to affect performance. Usually an
application needs I/O activity. Some applications require a huge amount of
memory. Before you dig into the network function deeply, you should confirm
that the other system resources, such as memory, I/O and CPU, are not the
constraints.

You can use iostat, vmstat and ps commands to review those resources quickly.
Also our AIX and RS/6000 provide more sophisticated tools such as svmon.

3.1.2 Check Packet Statistics
First you have to start from facts. For a performance problem, we can get
objective information by getting statistic data. This is where we usually start.

If you don′ t have any ideas, analyzing statistic data would give you valuable
information. If the low performance is coming from an error or retransmission,
these events should be logged or counted on the counter somewhere in the
kernel. An application may have similar capability. After reading this chapter
you will know where and how to read those counters. In our experience, almost
all performance problems leave some clues in your statistic data.

It′s not easy to figure out a subtle deviation from the usual state. What is usual
is another issue. It must depend on each environment. You need to have a
good working knowledge of TCP/IP and the network application or you may not
be able to find what you are looking for.

3.1.2.1 Use netstat Command for TCP/IP
Usually, UNIX has a common convenient tool called netstat. This is a very
important point. In a multi-vendor environment, you may have to get data from
other vendor′s platforms. If it is a UNIX workstation, most likely it has the netstat
command and this is why we explain it in this book.

This tool has many functions and some of them have already been explained in
this book. It is out of the scope of this book to explain all of them. You can
issue this command with various flags, and you can pull necessary information
out of the AIX kernel. The following flags are available for obtaining packet
statistics:

-v Data link (adapter) level packet statistics

-i Network (interface) level datagram statistics and status

-r Network routing (IP) related datagram statistics and status

Chapter 3. Getting Information for Performance Tuning 187

-rs Network routing (IP) statistics

-p ip Network (IP) level datagram statistics

-p icmp Network (ICMP) level datagram statistics

-p tcp Transport (TCP) level segment statistics

-p udp Transport (UDP) level datagram statistics

It′s beneficial to have statistical data from both the source and the destination
systems. Comparing information from both sides of communication links helps
you greatly. (Sometimes it is impossible to grasp the situation well enough by
only seeing one side.) Unfortunately, if your destination is a PC, you may not
expect to get detailed statistical data.

For V4.1, a new flag D is introduced to the netstat command. With this flag, you
can get summary statistics of all network layers from device driver to application
(NFS). See the example below:

netstat -D

Source Ipkts Opkts Idrops Odrops

ent_dev0 493 254 0 0
ent_dev1 189 12 0 0

Devices Total 682 266 0 0

ent_dd0 493 254 0 0
ent_dd1 189 12 0 0

Drivers Total 682 266 0 0

ent_dmx0 493 N/A 0 N/A
ent_dmx1 189 N/A 0 N/A

Demuxer Total 682 N/A 0 N/A

IP 1003 999 0 0
TCP 228 174 0 0
UDP 767 353 0 4

Protocols Total 1998 1526 0 4

lo_if0 330 335 5 0
en_if0 493 254 0 0
en_if1 189 12 0 0

Net IF Total 1012 601 5 0

NFS/RPC Client 48 N/A 0 N/A
NFS/RPC Server 0 N/A 0 N/A
NFS Client 48 N/A 0 N/A
NFS Server 0 N/A 0 N/A

NFS/RPC Total N/A 48 0 0

(Note: N/A -> Not Applicable)
#

188 Practical TCP/IP for AIX V3.2/V4.1

3.1.2.2 Use Application Unique Tool If Possible
If your application has its own tool or utility to get statistics or trace, use it.
Well-developed products should provide such capabilities. For example, NFS
provides the nfsstat tool, and you can review the RPC and NFS procedure
statistics.

When you have doubtful software and it doesn′ t have a handy tool, you may
have to run an AIX system trace; this is not a nice alternative to read system
trace because the trace is difficult to read and understand. You also have to
choose some trace hooks, and it is difficult to find the appropriate trace hooks.
Without any trace hooks, you would get a huge trace log file within a few
seconds.

3.1.2.3 Use Error Log and Other Utilities
For AIX, the system error logging function has a substantial role in finding a
faulty unit or extraordinary situations. Even when a problem is not counted in
the kernel counters, it may be logged in the system error log. An example is a
collision of the Ethernet. Of course, reading and understanding an error log is a
bit tough, but you may find something.

AIX has some advanced utilities. For example, netpmon can provide very useful
statistical data that is not available from any other UNIX tools. The netpmon tells
you network I/O statistics for each process. If you are interested in each
process ′s network activity, this tool is for you.

One convenient tool is iptrace, and we used it a lot during development of this
book. As you already know, iptrace captures packets that are addressed to and
from your RS/6000. (Broadcast packets are the only exception.) You cannot
monitor the entire network traffic with iptrace. Also it can interpret and display a
packet up to transport layer, UDP and TCP. For any application activity, you
should read hex dump yourself (ONC/RPC is the only exception). On some
occasions, you should use a protocol analyzer, if possible.

3.1.2.4 You Have to Interpret the Statistics
After you successfully gather the data or statistics, you have to interpret them
and figure out what is the cause of your problem. This may be the most difficult
step in problem determination.

An inhibitor may be too much information. Usually you have to get considerable
amount of data especially if you don′ t have a specific unit or component to focus
on. Even an iptrace report for a few minutes can be thousands of lines. It′s not
difficult to run trace or monitor tools, once you get to know the necessary flags
or options. But if you cannot read and understand an output or the resultant
data efficiently, then any sophisticated tool has no use.

In this case it′s better to have a few tools with which you have experience than
many tools with which you are a novice user. Learn a few favorite tools
completely. This is our recommendation. If you are planning to live in a UNIX
world for a while, knowledge of the netstat command is mandatory. Of course,
you can exploit netpmon and you would be very comfortable with it until you get
another vendor′s system.

Chapter 3. Getting Information for Performance Tuning 189

3.2 Data Link Layer
The data link layer of TCP/IP usually means LAN, such as Ethernet, token-ring,
and FDDI. You can review statistics of this layer with the command netstat -v. In
this section, we only show Ethernet and token-ring examples. Some of our
encounters are common between adapters, and we believe this section will
provide useful hints and tips for all adapters. Unfortunately manuals, (or
InfoExplorer) don′ t tell much about the output of netstat -v. Instead it is
recommended that you refer to the header files located in /usr/include/sys.
Since this option shows statistics data recorded by an adapter device driver, the
output is quite implementation-dependent.

Note: Be aware that the -v flag is RS/6000-unique. Other vendors′ UNIX don′ t
have this flag.

Although this book only treats TCP/IP, the command netstat -v shows all data
transmitted and received on all the available adapters. Therefore, the counted
values may include SNA or other protocol packets or frames. If someone uses
HCON or SNA Server/6000 on your system, the counters have been affected by
the SNA traffic.

Difference between V4.1 and V3.2

In addition to the netstat -v command, V4.1 provides the following adapter
device-specific commands:

• tokstat

• entstat

• fddistat

Accurately speaking, the netstat -v command invokes these commands
internally. With these commands, you can reset all counters without
rebooting a system. This was not possible with V3.2.

3.2.1 Token-Ring
The following is an example of a token-ring adapter statistic. All counters are
not crucial.

190 Practical TCP/IP for AIX V3.2/V4.1

netstat -v

TOKEN-RING STATISTICS (tok0) :
Device Type: Token-Ring IBM ISA Adapter
Hardware Address: 08:00:5a:ab:23:19
Elapsed Time: 0 days 1 hours 7 minutes 15 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 1849 Packets: 9613
Bytes: 118211 Bytes: 2510209
Interrupts: 1849 Interrupts: 9621
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 2 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 1

Broadcast Packets: 8 Broadcast Packets: 7885
Multicast Packets: 0 Multicast Packets: 0
Timeout Errors: 0 Receive Congestion Errors: 0
Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 1

General Statistics:

No mbuf Errors: 0 Lobe Wire Faults: 0
Abort Errors: 0 AC Errors: 0
Burst Errors: 0 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 0
Lost Frame Errors: 0 Only Station: 0
Token Errors: 0 Remove Received: 0
Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 0 Transmit Beacon Errors: 0
Driver Flags: Up Broadcast Running

AlternateAddress ReceiveFunctionalAddr 4 Mbps
#

Another alternative is the tokstat command. Both commands provide almost
equivalent capability. You can refer to the manual or InfoExplorer for a detailed
explanation of each counter. See the InfoExplorer or manual pages on tokstat,
not netstat, to find a detailed explanation.

tokstat tr0
--
TOKEN-RING STATISTICS (tr0) :
Device Type: Token-Ring High-Performance Adapter (8fc8)
Hardware Address: 10:00:5a:a8:b5:c1
Elapsed Time: 0 days 4 hours 47 minutes 59 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 1167 Packets: 39381
Bytes: 295540 Bytes: 6985319
Interrupts: 1167 Interrupts: 39381
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 2 Bad Packets: 0
S/W Transmit Queue Overflow: 0

Chapter 3. Getting Information for Performance Tuning 191

Current S/W+H/W Transmit Queue Length: 0
...

One big advantage of the tokstat command is the -r option. With this option you
can reset all counters.

tokstat -r tr0

TOKEN-RING STATISTICS (tr0) :
Device Type: Token-Ring High-Performance Adapter (8fc8)
Hardware Address: 10:00:5a:a8:b5:c1
Elapsed Time: 0 days 0 hours 0 minutes 5 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 4 Packets: 15
Bytes: 759 Bytes: 1537
Interrupts: 4 Interrupts: 15
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 1 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0
...
#

Difference between V4.1 and V3.2

With V3.2 you got a different output as follows:

netstat -v

TOKEN STATISTICS (tr0) :

Hardware Address: 10:00:5a:a8:46:2d
Transmit Byte Count: 35160141.0 Receive Byte Count: 130336208.0
Transmit Frame Count: 529837.0 Receive Frame Count: 1247858.0
Transmit Error Count: 1 Receive Error Count: 0
Max Netid′ s in use: 1 Max Transmits queued: 0
Max Receives queued: 0 Max Stat Blks queued: 0
Interrupts lost: 0 WDT Interrupts lost: 0
Timeout Ints lost: 0 Status lost: 0
Receive Packets Lost: 0 No Mbuf Errors: 0
No Mbuf Extension Errors: 0 Receive Int Count: 1356634
Transmit Int Count: 529831 Packets Rejected No NetID: 108768
Packets Accepted Valid NetID: 1247858 Overflow Packets Received: 0
Packets Transmitted and Adapter Errors Detected: 1

#

V3.2 didn′ t have the tokstat command. Also, there was no way to reset the
counters except on rebooting. Even with reboot, the counter Transmit Byte
Count and Receive Byte Count could not be reset.

192 Practical TCP/IP for AIX V3.2/V4.1

3.2.2 Ethernet
The following is an example of an Ethernet adapter statistic:

ETHERNET STATISTICS (ent0) :
Device Type: Integrated Ethernet Adapter
Hardware Address: 08:00:5a:cd:03:21
Elapsed Time: 0 days 12 hours 33 minutes 29 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 717 Packets: 3790
Bytes: 99510 Bytes: 360392
Interrupts: 717 Interrupts: 3790
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 0 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 14 Broadcast Packets: 2754
Multicast Packets: 8 Multicast Packets: 0
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 0 Receive Collision Errors: 0
Deferred: 1 Packet Too Short Errors: 0
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 0 Receiver Start Count: 1
Multiple Collision Count: 0
Current HW Transmit Queue Length: 8

General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 0
Driver Flags: Up Broadcast Running

Simplex AlternateAddress

We believe these counters are easier to understand. Another alternative is the
entstat command. Both commands provide almost equivalent capability. You
can refer to the manual or InfoExplorer for a detailed explanation of each
counter. (See the InfoExplorer or manual pages on entstat, not netstat, to find a
detailed explanation.)

$ entstat en0

ETHERNET STATISTICS (en0) :
Device Type: Integrated Ethernet Adapter
Hardware Address: 08:00:5a:cd:03:21
Elapsed Time: 0 days 12 hours 49 minutes 57 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 1084 Packets: 4294
Bytes: 202677 Bytes: 406368
Interrupts: 1084 Interrupts: 4294

Chapter 3. Getting Information for Performance Tuning 193

Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 0 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0
...
#

One advantage of the tokstat command is the -r option. With this option you can
reset all counters. You can refer to the manual or InfoExplorer for a detailed
explanation of each counter.

entstat -r en0

ETHERNET STATISTICS (en0) :
Device Type: Integrated Ethernet Adapter
Hardware Address: 08:00:5a:8a:c5:92
Elapsed Time: 0 days 0 hours 0 minutes 0 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 0 Packets: 0
Bytes: 0 Bytes: 0
Interrupts: 0 Interrupts: 0
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 0 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0
...
#

194 Practical TCP/IP for AIX V3.2/V4.1

Difference between V4.1 and V3.2

With V3.2 you got different output as shown below:

netstat -v

ETHERNET STATISTICS (en0) :

Hardware Address: 08:00:5a:19:00:25
Transmit Byte Count: 516032.0 Receive Byte Count: 19676628.0
Transmit Frame Count: 8495.0 Receive Frame Count: 181469.0
Transmit Error Count: 0 Receive Error Count: 0
Max Netids in use: 7 Max Transmits queued: 0
Max Receives queued: 0 Max Stat Blks queued: 0
Interrupts lost: 0 WDT Interrupts lost: 0
Timeout Ints lost: 0 Status lost: 0
Receive Packets Lost: 0 No Mbuf Errors: 0
No Mbuf Extension Errors: 0 Receive Int Count: 181388
Transmit Int Count: 8514 CRC Error Count: 0
Align Error Count: 0 Recv Overrun Count: 0
Packets Too Short: 0 Packets Too Long: 0
No Resources Count: 0 Recv Pkts Discarded: 0
Xmit Max Collisions: 0 Xmit Carrier Lost: 0
Xmit Underrun Count: 0 Xmit CTS Lost Count: 0
Xmit Timeouts: 0 Parity Errors: 0
Diag Overflow Count: 0 Execute Q Overflows: 0
Execute Cmd Errors: 0 Host side End of List Bit: 0
Adpt side End of List Bit: 0 Adapter pkts to be uploaded: 0
Adapter pkts uploaded: 0 Start receptions to adpt: 1
Receive DMA timeouts(lock up): 0

#

V3.2 didn′ t have the tokstat command. Also there was no way to reset the
counters except to reboot. Even with reboot, the counter Transmit Byte
Count and Receive Byte Count could not be reset.

3.3 Network Layer (IP)
The IP Layer is crucial for both TCP and UDP. Since IP is a connectionless
protocol, it doesn′ t have too many counters.

3.3.1 IP Packet Statistics
The following is an example of the IP datagram statistics. You can use netstat -p
ip to review it.

Chapter 3. Getting Information for Performance Tuning 195

netstat -p ip
ip:

6087 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
0 with bad options
0 with incorrect version number
1560 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
427 packets reassembled ok
3704 packets for this host
0 packets for unknown/unsupported protocol
0 packets forwarded
4 packets not forwardable
0 redirects sent
2797 packets sent from this host
0 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
0 output datagrams fragmented
0 fragments created
0 datagrams that can′ t be fragmented
1250 IP Multicast packets dropped due to no receiver
0 ipintrq overflows

#

Total packets received
Number of total IP datagrams received.

Bad header checksums
Number of IP datagrams that failed the header checksum calculation.
Notice that the IP checksum covers only the IP header and data field is
left higher layer′s validation. This is usually 0 because almost all of the
broken frames could be detected and discarded by the CRC of the data
link module.

With size smaller than minimum
Number of IP datagrams that had a longer size in the IP header length
field than the actual number of bytes received. This implies that these
datagrams were broken for some reason. This is usually 0 because
almost all broken frames can be detected and discarded by the CRC of
the data link module.

With data size < data length
Number of IP datagrams that were shorter than the minimum IP header
length (20 bytes). This implies that these datagrams were broken for
some reason. This is usually 0 because almost all broken frames can
be detected and discarded by the CRC of the data link module.

With header length < data size
Number of IP datagrams that had shorter size in the IP header length
field, than the minimum IP header length (20 bytes). This implies that
the sender′s IP module was implemented incorrectly (or receiver′s
checking function of IP module was implemented incorrectly, if you
believe the sender).

196 Practical TCP/IP for AIX V3.2/V4.1

With data length < header length
Number of IP datagrams that were shorter than the size in the IP
header length field. This implies that these datagrams were broken for
some reason (or the length field was incorrectly written, if you believe
the network is reliable). This is usually 0 because almost all of the
broken frames could be detected and discarded by the CRC of the data
link module.

Number of IP datagrams that actual length of was shorter than the
header length field. This is usually 0 because almost all of the broken
frames could be detected and discarded by the CRC of the data link
module.

With bad options
Number of IP datagrams that had a bad option field. The term bad
means incorrect or not support options. The wrong implementation (of
destination system) may have this counter incremented.

With incorrect version number
Number of IP datagrams that had incorrect version number. Currently,
only the available and valid version number of IP protocol is 4. This
counter should not be incremented. Now a new version (maybe version
6) is under development.

Fragments received
Number of total fragments received.

Fragments dropped (dup or out of space)
Number of fragments discarded because a duplicated fragment was
detected or the system used up the buffer space.

Fragments dropped after timeout
Number of fragments discarded because all of fragments needed to
reassemble the original IP datagram were not received within the
timeout period. The default timeout period is 60 seconds for RS/6000.

Packets reassembled ok
Number of IP datagrams that were reassembled here without any
problems.

Packets for this host
Number of IP datagrams that the final destination of was this system.

Packets for unknown/unsupported protocol
Number of IP datagrams that were addressed to the unsupported
protocols.

Packets forwarded
Number of IP datagrams forwarded by the system. This shows the
routing activity of this system and only the router system should get this
counter incremented.

Packets not forwardable
Number of IP datagrams that cannot be forwarded. A router system
that doesn′ t have a necessary route to forward IP datagrams gets this
counter incremented. A system that doesn′ t have routing capability
(non-router system) and receives an IP datagram destined for another
system, also gets this counter incremented. This means there is a
system (or systems) that has the wrong routing information.

Chapter 3. Getting Information for Performance Tuning 197

Redirects sent
Number of the ICMP route redirect packets sent out. Only a router
system should send this ICMP packet. This counter shows that there
was a misconfigured system that didn′ t know the correct router. By the
ICMP message, the routing table of that system might be dynamically
updated.

Packets sent from this host
Number of IP datagrams that were created and sent out from this
system. This counter doesn′ t include the forwarded datagrams
(passthrough traffic).

Packets sent with fabricated IP header
Number of IP datagrams that had a fabricated IP header.

Output packets dropped due to no bufs, etc.
Number of IP datagrams that were lost due to mbuf or mbuf-cluster
shortage.

Output packets discarded due to no route
Number of IP datagrams that were discarded because there was no
routing information to the destinations.

Output datagrams fragmented
Number of IP datagrams that were fragmented here when they were
sent out, without any problems.

Fragments created
Number of fragments created in this system when IP datagrams were
sent out.

Datagrams that can ′ t be fragmented
Number of IP datagrams that had a don′ t fragment bit set. The don′ t
fragment (DF) flag means that this IP datagram cannot be fragmented
by a router. If the router has a smaller MTU than the IP datagram to
forward, the router has to discard the IP datagram. In this case, the
ICMP destination unreachable message (fragmentation needed and the
do not fragment bit set) is sent back. Usually the don′ t fragment bit in
the IP header is set by a boot server of a diskless/dataless machine or
X-Station to boot them.

IP Multicast packets dropped due to no receiver
Number of IP multicast datagrams that were received but discarded
because no corresponding IP multicast application programs are
running. It′s not strange to see a big number in this counter.
Somebody (or program) may be sending IP multicast datagrams
destined for all-host group (244.0.0.1).

ipintrq overflows
Number of IP receive queue overflowed. If your system received a lot of
IP datagrams in a very short period, or the CPU is heavily loaded, IP
datagrams can not be processed timely and accumulate in the IP
receive queue. This counter shows the number of IP datagrams lost.

Some counters should always remain 0 because we have the CRC mechanism in
the most data link layer. But SLIP, for example, doesn′ t have the CRC.

Pay attention to the ratio of divided by the fragments received divided by the
total packets received. A high fragment ratio implies both sending and receiving
systems are heavily loaded by fragmentation and reassembly. If possible, you

198 Practical TCP/IP for AIX V3.2/V4.1

should adjust the maximum transfer unit (MTU) in order to reduce the
fragmentation.

The counts of fragments dropped (dup or out of space) is very symptomatic.
Dropping one fragment invites an entire IP datagram retransmission and the cost
is significant.

If your system is a router, check the ratio of packets forwarded divided by the
total packets received. This shows how much the routing function is used and
you can evaluate the usage of routes defined on your system. The counter
packets not forwardable and the redirects sent, imply that there is a
misconfigured system in your network.

Difference between V4.1 and V3.2

Although AIX V3.2 provided the same command, the output had fewer
counters, as shown below:

netstat -p ip
ip:

319933 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
0 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
18 packets forwarded
136944 packets not forwardable
0 redirects sent

#

3.3.2 no Command Options for Router Configuration and ICMP
Our RS/6000 behaves as a router by default (even if it doesn′ t have two or more
interfaces). You can change this by using the ipforwarding option of the no
command. Also, the no command provides an option to suppress the ICMP
route redirect messages. The following is an example on how to check both
configurations:

no -a
...

ipfragttl = 60
ipsendredirects = 1

ipforwarding = 0
udp_ttl = 30

...
rfc1122addrchk = 0
nonlocsrcroute = 0
tcp_keepintvl = 150

...
ipqmaxlen = 100

directed_broadcast = 1
#

Chapter 3. Getting Information for Performance Tuning 199

ipsendredirects
If you set this option to 0, the system no longer generates the ICMP
route redirect messages. If your system is not a router, this option
should be set to 0 and you can avoid unnecessary routing table updates
on other systems. The default is 1.

ipforwarding
If you set this option to 0, the system no longer forwards IP datagrams
that are destined for other systems. In other words, you can disable the
route or gateway capability. The default is 0.

nonlocsrcroute
IP has the option source route. With this option, a source system can
explicitly specify the route to the destination. A list of routers, which the
IP datagram must pass through, is written in the option field of the IP
header. If this system is a router, setting this option to 1 enables a
non-local source-routing, which passes IP datagrams (using the source
route option) through the router (if the next hop will be through the
same physical interface through which the IP datagrams arrived). This
is non-local source-routing. This option is due to RFC 1122 (it must be
configurable) and the default is 0.

directed_broadcast
If you set this option to 1, your system forwards broadcast datagrams
when the network number of the destination address is for other
network. If you set 0, your system cannot forward any broadcast
datagram. The default is 1. This option is only effective when you set
ipforwarding=1. (This capability is only for router.)

If your system is not a router, our recommendation is to set both the parameters,
ipforwarding and ipsendredirects, to 0. If a system (not intended to be a router)
behaves as a router, what happens? If the system has the default route, the
wrong IP datagrams assuming the system to be a router, will be forwarded to
the default gateway (another router). As a result, it hides the configuration
problems and make the debug difficult.

Difference between V4.1 and V3.2

With AIX V3.2, the default value of the ipforwarding is 1. As you can see, the
default of ipforwarding=1 violates the RFC 1122. On the contrary, as you
have experienced with V3.2, these default values make the TCP/IP
configuration task easier for a router system because you don′ t need any
further configuration procedures other than a non-router system.

RFC 1122 Requirements for Internet Hosts, page 28-29

Any host that forwards datagrams generated by another host is acting as a
gateway and MUST also meet the specifications laid out in the gateway
requirements RFC [INTRO:2]. An Internet host that includes embedded
gateway code MUST have a configuration switch to disable the gateway
function, and this switch MUST default to non-gateway mode. In this mode, a
datagram arriving through one interface will not be forwarded to another host
or gateway (unless it is source-routed), regardless of whether the host is
single-homed or multi-homed. ...

200 Practical TCP/IP for AIX V3.2/V4.1

If you need to change any parameter, issue the no command as follows. This
example changes the current value of ipforwarding from 0 to 1:

 1. Checking current value.

no -o ipforwarding
ipforwarding = 0
#

 2. The change is to 1.

no -o ipforwarding=0
#

 3. Confirm if the change was made.

no -o ipforwarding
ipforwarding = 1
#

Since the no command updates the parameters in the kernel, rebooting the
system clears the update and returns it to the default value. If you want to make
the updated configuration permanent, you should write the no command in the
startup script /etc/rc.net. The best place for this is at the end of the script as
follows:

###
The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for Ethernet and token-ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
###
if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o tcp_recvspace=16384
/usr/sbin/no -o ipforwarding=1
/usr/sbin/no -o ipsendredirects=0

fi

Important Notice For AIX V4.1 Users

The new version of our AIX, V4.1 has the default value 0 for the ipforwarding.
The V4.1 complies with RFC 1122. This also means that you have to
specifically set this option to 1, if your AIX should be a router.

People who are very familiar with the AIX V3.2, may overlook this difference.
With the V3.2, if you have configured the two network interfaces, it
automatically becomes a router. But, with V4.1, configuring the two
interfaces doesn′ t make your system a router.

3.3.3 Network Interface Statistics
You can get statistics for each network interface with netstat -i. This command
can also be used to confirm if an interface is really in an up state.

Chapter 3. Getting Information for Performance Tuning 201

netstat -i
lo0 16896 <Link> 575 0 575 0 0
lo0 16896 127 localhost 575 0 575 0 0
tr0 1492 <Link>40.0.7e.8.66.70 7803 0 3163 0 0
tr0 1492 9.68.214 zero.hakozaki.i 7803 0 3163 0 0
#

Name Name of each interface.

MTU Maximum Transfer Unit (MTU) of each interface.

Network Network address to which the interface is directly attached. If the
network address is registered in the /etc/networks file, the network
name in this file is displayed.

Address The host name of each interface. Usually the IP address is internally
used and translated to the host name by using /etc/hosts or DNS/NIS.
Use netstat -in to show the IP address. This alternative is useful
when you get a problem at the name server.

Ipkts Number of IP datagrams received by this interface.

Ierrs Number of errors detected by this interface, for received IP
datagrams. The IP datagram was discarded. For a data link that has
CRC, this field should be almost 0. Notice that not only the damaged
datagrams but also the datagrams which have an unsupported format
or option are counted.

Opkts Number of IP datagrams sent out from this interface.

Oerrs Number of errors for IP datagrams sent out from this interface. It is
those IP datagrams that were discarded or not sent out. A reason
may be that the adapter card can not catch up with the sending speed
of the IP module. Use the spray command and place a heavy load on
the interface. Then you can get this error.

Coll Collisions detected by this interface. Be aware that currently this
counter is only supported by SLIP. Ethernet doesn′ t support this
counter and it is always 0.

All of these counters are cleared by a system reboot. Maybe the biggest pitfall
is that the coll field is not supported by Ethernet. Use netstat -v and errpt as
alternatives.

Note: When you ping or send the IP datagram to your system, even with the
host name (not with the name, localhost), all those IP datagrams are
counted at the interface lo0.

With the specified interface name and time interval, you can get an IP packet
traffic log as shown below. The first line shows the total count from the boot,
and each line represents a statistic for the specified interval (10 seconds in this
case).

202 Practical TCP/IP for AIX V3.2/V4.1

netstat -I tr0 10
 input (tr0) output input (Total) output
packets errs packets errs colls packets errs packets errs colls

7816 0 3167 0 0 8391 0 3742 0 0
4 0 0 0 0 4 0 0 0 0
3 0 0 0 0 3 0 0 0 0
3 0 0 0 0 3 0 0 0 0
2 0 1 0 0 18 0 17 0 0

...

3.3.4 IP Packet Statistics by Route
You can evaluate the usage of each route configured on your system by using
netstat -r. This option is the most used option when you use the routing table.

netstat -r
Routing tables
Destination Gateway Flags Refs Use Interface
Netmasks:
255.255.255.128

Route Tree for Protocol Family 2:
default 9.68.214.1 UG 3 1529 tr0
9.68.214 zero.hakozaki.ibm. U 8 2020 tr0
localhost localhost UH 2 240 lo0
#

Destination Destination IP network address or host address where each route is
configured. The address 0.0.0.0 is reserved for the default route.

Gateway The next router, an IP datagram, is sent to between this interface
and the destination. Check to see whether the flags are U (and not
UG). Gateway doesn′ t mean the next router but the network
interface itself, and the destination should be in the same local IP
network.

Flags Status of each route.

U This route is currently up and available.

G This route is addressed to gateway (router) in the Gateway
field. Any route without the G flag is addressed to the local
interface on the system.

H The destination of this route is a specific host.

D This route was dynamically added by the ICMP redirect
function.

M This was modified by the ICMP redirect function. Modify
means that the destination address was updated.

Refcnt Number of current active TCP connections using this route. Since
TCP first refers to the routing table to find a route to the
destination, this counter is called a reference count. This counter is
not cumulative and only shows the current status.

Use Total number of IP datagrams that were sent out from this route.
This is not a byte count. Routed (passthrough) IP datagrams are
also counted.

Interface Name of the interface where each route is attached.

Chapter 3. Getting Information for Performance Tuning 203

Note: If you ping to your system by the host name, it is counted to the
corresponding route. Counter to the 127 loopback is only incremented
when you explicitly use localhost or loopback. Make sure that you
compare this with netstat -i.

An interesting thing is we now know the number of current active TCP
connections. As you know, UDP is a connectionless protocol and has no
concepts of connection. This means that each UDP datagram (which is mapped
to an IP datagram) completes by itself and the UDP module doesn′ t keep relation
among each UDP datagram. The IP is also a connectionless protocol and the
matter is the same. So there is no way for us to know if a route is continuously
used by any UDP application. Of course, the UDP application should know it.
This invites an interesting administrative issue. If your system is a router and
you need to shut down the system, you know about TCP if someone is using
your system as a router (in other words, if you have passthrough traffic).
However, you cannot grasp anything about UDP. As a result, someone′s NFS
operation through your system may hang.

You can review the statistic of the routing activity by the ICMP function. Use
netstat -rs as shown below:

netstat -rs
routing:

508 bad routing redirects
0 dynamically created routes
0 new gateways due to redirects
2466 destinations found unreachable
0 uses of a wildcard route

#

bad routing redirects
Number of received ICMP route redirect messages that had invalid
information. For example, the informed gateway was not in the same
local IP network.

dynamically created routes
Number of the routes dynamically created by ICMP route redirect. You
should have route with D flag, if this counter got incremented.

new gateways due to redirects
Number of the routes dynamically created by ICMP route redirect. You
should have route with M flag, if this counter got incremented.

destinations found unreachable
Number of failed routing table lookups due to no routes to the
destination. This should have made your system send an ICMP
destination unreachable, if this counter got incremented. Your system
should be a router when you see this counter is not 0.

uses of a Wildcard route
Number that default route used.

204 Practical TCP/IP for AIX V3.2/V4.1

3.4 Network Layer (ICMP)
The ICMP is the supplemental protocol to manage and control the IP. As we
already know, it supports many ICMP types and some types have several codes.
The ICMP provides maintenance functions such as adding a new route
dynamically or carrying error messages. Watching the ICMP messages tells you
very valuable information. These messages tell you whether your network
configuration needs adjustment. Also, you may find that your network
configuration is not optimized or perfectly correct (but it works without explicit
problem symptoms).

If you need to understand the ICMP statistics completely, you have to know the
mechanism of ICMP.

3.4.1 Internet Control Message Protocol (ICMP) Basics
Again we show you Type and Code used by ICMP. Although there are many
types and codes, not all of them are mandatory. We have many different
implementations about ICMP. For example, destination unreachable, port
unreachable are defined as should in the RFC. Source quench is defined as may
in the RFC. For details, refer to the RFC 1122 Requirements for Internet Hosts.

The ICMP message types are grouped into two classes. One is error and the
other is query.

3.4.1.1 ICMP Error Messages
The first group of ICMP message types are for error notification. For a complete
list, refer to the RFC 1700 ASSIGN NUMBERS. The following types and codes
are currently defined:

Type Message
3 Destination Unreachable

Code Meaning
0 Network Unreachable
1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation needed and the do not fragment bit set.
5 Source Route Failed
6 Destination Network Unknown
7 Destination Host Unknown
8 Source Host Isolated (Obsolete)
9 Destination Network Administratively Prohibited
10 Destination Host Administratively Prohibited
11 Network Unreachable for TOS
12 Host Unreachable for TOS
13 Communication Administratively Prohibited by Filtering
14 Host Precedence Violation
15 Precedence Cutoff in Effect

5 Route Change Request
Code Meaning
0 Redirect datagrams to go to that network.
1 Redirect datagrams to reach that host.
2 Redirect datagrams for that network with that TOS.
3 Redirect datagrams for that host with that TOS.

Chapter 3. Getting Information for Performance Tuning 205

4 Source Quench
Time Exceeded for Datagram
Code Meaning
0 Time-To-Live Equals 0 During Transit
1 Time-To-Live Equals 0 During Reassembly
Parameter Problem Message
Code Meaning
0 IP Header Bad
1 Required Option Missing

3.4.1.2 ICMP Query Messages
The second group of ICMP message types are for information query and
response. For a complete list, refer to the RFC 1700 ASSIGN NUMBERS. The
following types are currently defined:

Type Message
0 Echo Reply
8 Echo Request
13 Time Stamp Request
14 Time Stamp Reply
15 Information Request
16 Information Reply
17 Address Mask Request
18 Address Mask Reply

The most used types are echo request and echo reply using the ping command.
These types are for diagnostic purposes. Any data in echo request message
must be returned by echo reply message. By the RFC 1122, any system must
implement echo server function. This means that any system must be able to
receive the ICMP echo request message and return the ICMP echo reply
message correctly. But the echo client function should be implemented for all
systems. Then any system, even if it doesn′ t have a ping command or
equivalent, would respond to your ping command. This is why everyone uses
ping.

Information request and information reply are now considered to be obsolete.
The RFC defines that they should not be implemented. Up to now we have never
seen these message types that were counted and displayed with the command
netstat -p icmp. This message type was designed to load configuration
information for diskless or X-station. But as you know, we currently use RARP
or BOOTP.

3.4.2 no Command Option for ICMP (Address Mask)
We have a little complicated story about the address mask request and address
mask reply. We use the SMIT or ifconfig command to set a subnet mask for an
interface. Due to the RFC 1122, any system must provide this or a similar
procedure. Also, the address mask may be configured by sending the ICMP
address mask request(s) and the receiving ICMP address mask reply(s). This
means that a system can send address mask requests as a broadcast during the
boot and configure its subnet mask based on the address mask reply. In order
to make this scheme work, there must be at least one system that responds to
the address mask requests in the same IP network. That system is called an
authoritative agent. By the RFC 1122, any system that is not an authoritative
agent must not send an address mask reply and there should be a flag to
configure a system to be an authoritative agent.

206 Practical TCP/IP for AIX V3.2/V4.1

RFC 1122 Requirements for Internet Hosts, Page 46

A system MUST NOT send an address mask reply unless it is an authoritative
agent for address masks. An authoritative agent may be a host or gateway,
but it MUST be explicitly configured as a address mask agent.

With a statically configured address mask, there should be an additional
configuration flag that determines whether the host is to act as an
authoritative agent for this mask, i.e., whether it will answer Address Mask
Request messages using this mask.

Unfortunately, our AIX, until V3.2.4, had violated this rule. Those AIXs
automatically responded to address mask requests. After V3.2.5, we have a new
option icmpaddressmask for the no command and we can suppress responding
(of course, the default is not to respond).

no -a
...

tcp_keepidle = 14400
icmpaddressmask = 0

rfc1323 = 0
tcp_mssdflt = 512
ipqmaxlen = 50

#

icmpaddressmask
If you set this option to 1, your system automatically responds to
address mask requests. The default value is 0.

3.4.3 ICMP Message Statistics
We can monitor the ICMP statistic with the netstat -p icmp command.
Remember in these statistics, some counters are not shown if the value is 0.
This is a slight implementation deviation from other options. You don′ t need to
worry about it if your output is not the same as the following example:

netstat -p icmp
icmp:

1555 calls to icmp_error
0 errors not generated because old message was icmp
Output histogram:

echo reply: 5028
destination unreachable: 1412
routing redirect: 23648
time exceeded: 143

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 110
destination unreachable: 22
routing redirect: 7782
echo: 5028
time exceeded: 48

5028 message responses generated
#

Chapter 3. Getting Information for Performance Tuning 207

Calls to icmp_error
Total number of error ICMP message sent out from this system. Errors
such as destination unreachable and control message such as echo or
routing redirect are not counted.

Errors not generated because old message was icmp
ICMP error message couldn′ t be sent because the incoming IP
datagram was carrying the ICMP error message. No ICMP error
messages are generated to the incoming ICMP error message. If this is
allowed, the network can be filled as the storm of ICMP error messages.

Output histogram:
Statistics of ICMP outgoing messages by ICMP type. Although each
ICMP error type has the code to identify detailed reasons, those codes
are not shown.

Echo reply
Number of echo replies sent out. This means someone pinged
to your system and your system responded.

Destination unreachable
Number of ICMP destination unreachable messages sent out.
If you got this counter displayed, there is most certainly a
misconfigured system that has the wrong routing table. In this
case, your system (should be a router) couldn′ t find a route to
forward the IP datagram(s).

Routing redirect
Number of ICMP route redirect messages sent out. If you have
this counter displayed, there seems to be a misconfigured
system that has the wrong routing table. In this case, your
system (should be a router) was able to find a route (the
correct router) to forward IP datagram(s), and informed the
correct router to the source system.

Time exceeded
Number of ICMP time exceeded sent out. When an incoming IP
datagram should have been forwarded, but it had a TTL of 1 or
less (0), then the datagram was discard and this message was
sent out. TTL should be decremented by one or more at any
router when the datagram passes it, and if the TTL reaches to
0, it must be discarded.

Messages with bad code fields
Number of ICMP messages that had incorrect type.

Messages < minimum length
Number of ICMP messages that had shorter length than the minimum
ICMP message (packet). The length of the ICMP message depends on
each type. This is usually zero because almost all of the broken frames
could be detected and discarded by the CRC of the data link module.

Bad checksums
Number of ICMP messages that had failed to the checksum validation.
These ICMP messages were damaged during transmission. This is
usually zero because almost all of the broken frames could be detected
and discarded by the CRC of the data link module.

208 Practical TCP/IP for AIX V3.2/V4.1

Messages with bad length
Number of ICMP messages which had incorrect length. This is usually
0 because almost all of the broken frames could be detected and
discarded by the CRC of the data link module.

Input histogram:
Statistics of ICMP incoming messages by ICMP type. Although each
ICMP error type has code to identify detailed reason, those codes are
not shown.

Echo reply
Number of echo reply received. You pinged some system and
the system responded.

Destination unreachable
Number of destination unreachable received. This means that
the IP datagram you sent couldn′ t be forwarded by a router
due to the missing route, or the destination system couldn′ t
deliver the datagram to the destination ports, because the port
was not opened. Of course, we have many other potential
reasons and consider that many codes are defined for this
type.

Routing redirect
Number of ICMP route redirect message received. This means
your system sent an IP datagram to the wrong router. This
counter doesn′ t necessarily mean that some routes were
added or updated dynamically because the ICMP route redirect
message might have the wrong information.

Echo
Number of echo request received. This means someone
pinged to your system. If there are no problems, this counter
should have the same value with the counter echo reply of the
Output histogram.

Time exceeded
Number of time exceeded received. This means a packet sent
out from your system was discarded due to 0 TTL, after it got
decremented.

Message responses generated
Number of ICMP response messages sent out. ICMP response
messages were the response to the incoming ICMP messages. This
may be the sum of the echo reply, time stamp reply, address mask
reply, etc. The ICMP error due to the incoming regular IP datagram
was not included.

3.4.4 Modified Route by ICMP
In this section, we show an actual example of the IP routing activity and give you
a clear view to each counter. The system mat has the following routing table:

Chapter 3. Getting Information for Performance Tuning 209

mat # netstat -r
Routing tables
Destination Gateway Flags Refs Use Interface
Netmasks:
(0) 0 ffff ff00
255.255.255.128

Route Tree for Protocol Family 2:
default 9.68.214.1 UG 2 421 tr0
9.68.214 mat.hakozaki.ibm.c U 10 2019 tr0
9.170.4 zero.hakozaki.ibm. UG 0 0 tr0
localhost localhost UH 1 0 lo0
mat #

When the mat sends a packet to the network 9.170.4, it should be forwarded to
the router system zero. On the system zero, we have the following routing table.
You could notice that a packet to the network 9.170.4 is again forwarded to
another router system, kashima:

zero # netstat -r
Routing tables
Destination Gateway Flags Refs Use Interface
Netmasks:
(0) 0 ffff ff00
255.255.255.128
(0) 0 ffff ff00 0 0 0 0
(0) 0 ffff ff80 0 0 0 0

Route Tree for Protocol Family 2:
default 9.68.214.1 UG 3 1704 tr0
9.68.214 zero.hakozaki.ibm. U 8 2702 tr0
9.170.4 kashima.hakozaki.i UG 0 0 tr0
localhost localhost UH 2 240 lo0
zero #

This is a Bad Practice

As you can see in the previous, the zero doesn′ t have two network interfaces
and should not be configured as a router. Since ipforwarding=1 is set, you
can make an RS/6000 a router just by configuring an additional route. From
this perspective,it is a bad example.

In our environment, the IP network 9.170.4 is completely imaginary and the
system kashima doesn′ t have the corresponding route (this may cause an error
intentionally at kashima). Now we initiate TELNET from the mat to the imaginary
destination system 9.170.4.20 and watch what will happen. This IP trace was
obtained at the system mat:

 1. We did this on the mat:

mat # tn 9.170.4.20
Trying...

 2. The system mat sends a telnet connection request to the system 9.170.4.20.
This packet is sent to the router zero. The destination MAC address
40:00:7e:08:66:70 is of the zero.

Note: Although we omitted it, an ARP and DNS look up might be involved
before sending this packet.

210 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 66
TOK: ====(66 bytes transmitted on interface tr0)==== 17:05:22.652454784
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.170.4.20 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=2558, ip_off=0
IP: ip_ttl=60, ip_sum=877a, ip_p = 6 (TCP)
TCP: <source port=1039, destination port=23(telnet) >
TCP: th_seq=b7190c01, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=a399, th_urp=0
TCP: 00000000 020405ac |.... |

 3. The route zero notices that the above TCP segment should have been sent
to the router kashima, because the zero knows the kashima is the right
router to the 9.170.4 network and the kashima is in the same IP network by
looking at its routing table. Therefore, it sends back the ICMP route redirect
message to the source mat telling it that any packet sent to the 9.170.4.20
should be directly sent to the kashima from now. Back on this ICMP
message, the zero forwards the TCP segment to the kashima.

Packet Number 67
TOK: ====(78 bytes received on interface tr0)==== 17:05:22.655365248
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=4807, ip_off=0
IP: ip_ttl=255, ip_sum=e9ce, ip_p = 1 (ICMP)
ICMP: icmp_type=5 (REDIRECT)
ICMP: icmp_code=1 (redirect 9.170.4.20 to HOST 9.68.214.76)

 4. The TCP segment was forwarded to another router kashima and the kashima
doesn ′ t have a route to the final destination 9.170.4.20. In this experiment,
the kashima has a default route, and the packet was further forwarded to
somewhere. We don′ t know where it ended up finally. No responses are
returned to the mat. If the kashima doesn′ t have a default route, it sends
back the ICMP destination unreachable (host unreachable) message to the
souce system mat.

 5. Then the mat resends the TCP connection request segment (SYN segment)
again. This time the request is directly sent to the kashima, because it
received the ICMP route redirect message (and routing table has been
updated already). Notice that the destination MAC address 40:00:7e:06:44:40
is of the kashima. The mat continues to send TCP SYN segments until the
timer expires (75 seconds). In our experiment, six SYN segments were sent
(retransmission).

Chapter 3. Getting Information for Performance Tuning 211

Packet Number 70
TOK: ====(66 bytes transmitted on interface tr0)==== 17:05:28.261340160
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:06:44:40]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.170.4.20 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=2559, ip_off=0
IP: ip_ttl=60, ip_sum=8779, ip_p = 6 (TCP)
TCP: <source port=1039, destination port=23(telnet) >
TCP: th_seq=b7190c01, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=a399, th_urp=0
TCP: 00000000 020405ac |.... |

Finally, the TELNET ended up with the timeout error, as below because only the
final SYN segment retransmission timeout was notified as an error to the
application, TELNET client. This is a valid implementation as in the RFC 1122.

mat # tn 9.170.4.20
Trying...
telnet: connect: Connection timed out
tn> q
mat #

RFC 1122 Requirements for Internet Hosts, Pages 103-104

4.2.3.9 ICMP messages

TCP MUST act on an ICMP error message passed up from the IP layer,
directing it to the connection that created the error.

• Destination Unreachable -- codes 0, 1, 5

Since these Unreachable messages indicate soft error conditions TCP
MUST NOT abort the connection, and it SHOULD make the information
available to the application.

DISCUSSION:

TCP could report the soft error condition directly to the application layer
with an upcall to the ERROR_REPORT routine, or it could merely note the
message and report it to the application only when if the TCP connection
times out.

During the above operation, the routing table of the mat was updated as follows.
A route to the 9.170.4.20 was dynamically added by the ICMP message. The flag
is UGHD and you already know the meaning.

212 Practical TCP/IP for AIX V3.2/V4.1

mat # netstat -r
Routing tables
Destination Gateway Flags Refs Use Interface
Netmasks:
(0) 0 ffff ff00
255.255.255.128

Route Tree for Protocol Family 2:
default 9.68.214.1 UG 1 436 tr0
9.68.214 mat.hakozaki.ibm.c U 10 2230 tr0
9.170.4 zero.hakozaki.ibm. UG 0 1 tr0
9.170.4.20 kashima.hakozaki.i UGHD 0 1 tr0
localhost localhost UH 1 0 lo0
mat #

If we see the ICMP statistics on the source system mat, we could find that the
following counter was incremented by one. This means that the system received
an ICMP route redirect message:

mat # netstat -p icmp
icmp:

29 calls to icmp_error
0 errors not generated because old message was icmp
Output histogram:

echo reply: 143
destination unreachable: 29
routing redirect: 1

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 3
routing redirect: 1
echo: 145

143 message responses generated
mat #

You can also find out this with the following counter. That counter was
incremented by one. This shows that an update was made to the routing table
and a route was added.

mat # netstat -rs
routing:

0 bad routing redirects
1 dynamically created routes
0 new gateways due to redirects
8 destinations found unreachable
0 uses of a wildcard route

mat #

If we could see the same counter on the wrong router, zero, we would find that
the following counter was incremented by one. You would know that this system
sent out an ICMP route redirect message.

Chapter 3. Getting Information for Performance Tuning 213

zero # netstat -p icmp
icmp:

6 calls to icmp_error
0 errors not generated because old message was icmp
Output histogram:

echo reply: 134
destination unreachable: 6
routing redirect: 2

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 9
routing redirect: 1
echo: 134

134 message responses generated
zero #

3.5 Transport Layer
Now we briefly examine transport layer statistics. There are two protocols for
this layer, TCP and UDP. These two protocols have completely different
mechanisms for each other. Since TCP is a connection oriented protocol, it
keeps much information (counters). UDP is a connectionless protocol, and there
is little information about it.

3.5.1 TCP Segment Statistics
Since TCP is fairly complicated protocol, there are many counters we should
read. If you want to understand the meaning of all the counters, you have to
understand TCP completely. We briefly review all of them, as follows:

LANG=C netstat -p tcp
tcp:

871870 packets sent
546355 data packets (2336335 bytes)
44 data packets (2218 bytes) retransmitted
318230 ack-only packets (317007 delayed)
0 URG only packets
0 window probe packets
6425 window update packets
836 control packets

641380 packets received
546454 acks (for 2337972 bytes)
409 duplicate acks
0 acks for unsent data
597988 packets (47642225 bytes) received in-sequence
375 completely duplicate packets (160 bytes)
0 packets with some dup. data (0 bytes duped)
193 out-of-order packets (5 bytes)
19 packets (19 bytes) of data after window
19 window probes
33 window update packets
28 packets received after close
0 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short

214 Practical TCP/IP for AIX V3.2/V4.1

368 connection requests
134 connection accepts
463 connections established (including accepts)
897 connections closed (including 9 drops)
17 embryonic connections dropped
546751 segments updated rtt (of 546839 attempts)
67 retransmit timeouts

1 connection dropped by rexmit timeout
0 persist timeouts
27301 keepalive timeouts

88 keepalive probes sent
2 connections dropped by keepalive

#

Note: In this output, the term packet is used. Accurately speaking, the TCP
packet is called a segment.

packets sent
Number of segments sent out. They are subdivided into the following
counters:

data packets (2336335 bytes)
Number of segments which carried data. The bytes means
total bytes carried by these segments.

data packets (2218 bytes) retransmitted
Number of data segments retransmitted due to the ACK
timeout of some reasons. The bytes means total bytes carried
by these segments.

ack-only packets (317007 delayed)
Number of segments carried by the ACK flag only. TCP is a
bidirectional connection. If a system has both data and an
ACK to be sent, it can send both in the same segment. If the
system doesn′ t have data to be sent, just the ACK only
segment is sent out. The delayed means that TCP has some
built-in sophisticated mechanism that optimizes transmission.
In order to reduce traffic, the ACK only segment is not sent out
immediately. During the waiting period, some data may be
generated and the ACK can be sent with the data.
Unfortunately, if the data is not generated within the waiting
period, the ACK only segment is sent. This is a delayed ACK
only segment.

URG only packets
Number of segments that carried the URG flag only. The URG
means urgent and if a sender has some urgent data, this
segment is sent.

window probe packets
TCP uses window to control the data flow. A sender that can
send data up to the size that the receiver says is an acceptable
amount of data, is called window. The receiver system
advertises its receiving window size by using the window field
of the TCP header. When the receiver′s window is 0, the
sender cannot send. If the sender has not received a segment
for a certain period telling that the receiver′s window was
updated (has some room), the sender sends a probe segment
to the receiver to ask for the current window size.

Chapter 3. Getting Information for Performance Tuning 215

window update packets
Number of segments sent out, which were carrying only
window update information.

control packets
Number of segments sent out, which were carrying only a flag,
SYN, FIN or RST. SYN is used to establish a connection. FIN is
used to close a connection. RST is used to abort a connection.

packets received
Number of segments received. They are subdivided into the following
counters:

acks (for 2337972 bytes)
Number of received segments carried ACK only. The bytes are
total bytes sent out and confirmed by the receiver by these
ACK segments only.

duplicate acks
Number of received segments that had duplicated ACK (the
ACK sequence number contains the sequence number which
were already acknowledged.) This may be due to
retransmission. This doesn′ t mean a completely identical
segment is retransmitted. TCP always tries to optimize the
transmission and more data may be included in the
retransmitted segment.

acks for unsent data
Number of received segments that has the ACK sequence
number for unsent data. This could happen.

packets (47642225 bytes) received in-sequence
Number of received segments in correct order. Since TCP
uses SEQ (sequence) number and ACK (acknowledge) number
to control segments, the segments should be sent and received
in the correct order (based on SEQ and ACK number), and
counted here. The bytes means total bytes received with these
segments. With certain network conditions, it is possible to
receive segments out of order due to a delay at the routers.

completely duplicate packets (160 bytes)
Number of received segments that were completely duplicated.
These segments should be due to the retransmission. This
counter implies that there is a flow control problem.

packets with some dup. data (0 bytes duped)
Number of received segments that had some duplicated data.
In TCP, duplication doesn′ t necessarily mean that the entire
segment is duplicated. These segments should be due to the
retransmission. This counter implies that there is a flow
control problem.

out-of-order packets (5 bytes)
Number of received segments that were arrived at out of order.
This is possible but should be rare. Unreliable network media
can drop some of segments and invites some retransmissions.
This can be the reason.

216 Practical TCP/IP for AIX V3.2/V4.1

packets (19 bytes) of data after window
Number of received segments that was a bigger sequence
number than the upper limit of a received window. If the TCP
window mechanism worked perfectly, this should not happen.
This can be caused by a segment on the way when the receive
window size was updated to a small size.

window probes
Number of window probe segments received. These segments
are to ask if the system window size got bigger than zero. This
means this system had zero receive window sometimes. This
implies that the system was heavily loaded by TCP data
segments, or the receive buffer was too small.

window update packets
Number of window update segments received. These
segments are to only inform that the destination system got a
new (updated) window size. The typical scenario is that the
destination system ran out the receive window and later
informs that it is updated.

packets received after close
Number of received segment came from closed connection.
Due to network transmission characteristics, IP datagrams are
not guaranteed to arrive in sequence. Therefore, we have the
possibility of getting segments coming from a closed
connection. It should be rare to have this counter. If the port
is reused immediately after close, these stray segments may
give damage to the new connection on the same port. This is
why we have TIME_WAIT for 2MSL after close.

discarded for bad checksums
Number of received segments that were discarded due to
checksum error. If the data link layer has some error detection
mechanism,such as CRC, you would almost always see a 0
here.

discarded for bad header offset fields
Number of received segments that were discarded due to
incorrect offset field in the TCP header. Since the TCP header
can have a variable length option field, it is required to have an
offset to show the beginning of the user data.

discarded because packet too short
Number of received segments that were discarded due to short
length. If a segment has a shorter length than TCP header, it
is counted here.

connection requests
Number of SYN segment (connection request segment) sent out to other
system. In this case, your system initiates a TCP connection, and this is
called active open.

connection accepts
Number of SYN segment received from other system. It also means
that your system sent the SYN-ACK segment to the system. In this
case, other system that will be a destination, initiates a TCP connection
and your system waits it. This is called passive open.

Chapter 3. Getting Information for Performance Tuning 217

connections established (including accepts)
Number of established connection as the result of sending or receiving
SYN segment. In other words, both the active open and passive open
are counted here.

connections closed (including 9 drops)
Number of closed connection.

embryonic connections dropped
Number of failure to establish a connection. TCP needs three
handshake procedures (SYN, SYN-ACK and ACK) to establish a
connection. Any failure during the handshake is counted here.

segments updated rtt (of 546839 attempts)
Number of received segments which updated estimated Round Trip
Time (RTT). TCP always estimates RTT for a sending segment and
compares it with actual RTT, that is measured by the arrival of
corresponding ACK segment. Based on the comparison, TCP module
updates estimated RTT. Usually you should see the comparable value
here with the packets received.

retransmit timeouts
Number of retransmission timeout. TCP keeps several timers and this
is one of them. When TCP sends a data segment, it starts this timer. If
it would have not received the ACK when the timer expires, this counter
gets incremented. (Then TCP retransmits the unacknowledged data
segment and restarts the timer with longer timeout period.) It′s not
good symptom to see large counted value here.

connections dropped by rexmit timeout
Number of dropped connection due to retransmission timeout.
TCP retransmits the unacknowledged data segment. If it still
cannot receive the ACK, TCP repeats retransmission procedure
up to 12 times. If all retransmissions fail due to no ACK, TCP
module closes the connection. It′s not good symptom to see
large counted value here.

persist timeouts
Number of persist timeouts. When the destination system informs 0
receive window, the system suspends sending data segment and starts
persist timer. If it cannot receive window update segment until the
timer expires (persist timeout), it sends window probe segment. This
procedure is repeated if the destination still has 0 receive window.

keepalive timeout
Number of keepalive timeouts. The keepalive timer is reset and is
started whenever the system receives data or ACK segment. If
keepalive function is enabled, the system sends keepalive probe
segment when keepalive timer expires (keepalive timeout). If the
system has long period without any traffic, a probe is sent. This
mechanism is to confirm if the connection is still established.

keepalive probes sent
Number of keepalive probes sent out.

connection dropped by keepalive
Number of dropped connection due to keepalive. The
keepalive probe are retransmitted up to eight times if the
system gets no responses. When all probes fail, the system
closes the connection.

218 Practical TCP/IP for AIX V3.2/V4.1

There is a bug in this option. Sometime you may see the following incorrect
output. That should be ack-only packets, not URG only packets as show below:

netstat -p tcp
tcp:

871870 packets sent
546355 data packets (2336335 bytes)
44 data packets (2218 bytes) retransmitted
318230 URG only packets
0 URG only packets

...

This problem is due to a bug in the message catalogs and appears if the locale
is anything other than C. The work around is simple. Issue the command with
LANG=C as fol lows:

LANG=C netstat -p tcp
tcp:

871870 packets sent
546355 data packets (2336335 bytes)
44 data packets (2218 bytes) retransmitted
318230 ack-only packets (317007 delayed)
0 URG only packets

...

3.5.2 UDP Datagram Statistics
At the TCP explanation we thought it would be too much, but for UDP, the
statistics we can get seem too simple. It means almost nothing, because many
data link layers already have CRC and as a result you see 0 in almost all
occasions.

Note: It may be too risky to completely rely on the lower layer′s reliability and
some data link layers don′ t have error detection.

netstat -p udp
udp:

24107 datagrams received
:

0 incomplete headers
0 bad data length fields
0 bad checksums
10 dropped due to no socket
3442 broadcast/multicast datagrams dropped due to no socket
0 socket buffer overflows
20655 delivered
671 datagrams output

#

As you see above, even you can not know how many UDP datagrams were sent
and received.

datagrams received
Number of UDP datagrams received.

incomplete headers
Number of received datagram that was damaged.

bad data length fields
Number of received datagram that had length mismatch between actual
datagram and length field in the UDP header.

Chapter 3. Getting Information for Performance Tuning 219

bad checksums
Number of received datagram that had incorrect checksum. If sending
system had incorrect checksum (BSD 4.2 had incorrect checksum
algorithm), you would see this counter incremented and the datagram is
discarded. Some UNIX implementations have option to disable UDP.
(AIX V3.2 didn′ t provide such capability.) Disabling the checksum may
also improve performance.

Note: For UDP datagrams used for NFS, you can disable UDP
checksum. Use the nfso command.

dropped due to no socket
Number of received UDP datagrams of that destination socket ports
were not opened. As a result, the ICMP Destination Unreachable - Port
Unreachable message must have been sent out. But if the received
UDP datagrams were broadcast datagrams, ICMP errors are not
generated. See the next counter.

broadcast/multicast datagrams dropped due to no socket
Number of received broadcast/multicast UDP datagrams that didn′ t
have application daemons listening to the destination port (and they
were discarded). In other words, the ports were not opened. Since
broadcast have to be received by all systems, usually you see a large
countered number here.

socket buffer overflows
Number of socket receive buffer overflows. Since UDP doesn′ t have
flow control mechanism, this could happen especially if the system is
under heavy load.

delivered
Number of received UDP datagrams which had destination application
daemon on their ports, and delivered to the applications successfully.

datagrams output
Number of UDP datagrams sent out.

The UDP doesn′ t have a concept of connection or acknowledgement, there are
no ways to know if datagrams are lost during transmission (this is same with the
IP). UDP applications should provide acknowledgement and retransmission. For
example, NFS does these.

Difference between V4.1 and V3.2

The netstat -p udp command of V3.2 gave us the following information:

netstat -p udp
udp:

0 incomplete headers
0 bad data length fields
0 bad checksums
0 socket buffer overflows

#

220 Practical TCP/IP for AIX V3.2/V4.1

3.6 Application (nfsstat Command for NFS)
Some applications have their own statistics counters. It would be a good
practice to implement such counters when you write a program. In this section,
we briefly describe the NFS as an example. Of course, you have to know the
internal design of the application that you watch if you are to interpret the
counters completely.

NFS has a tool, nfsstat, that shows you the counters that are managed by NFS.
This command has some flags as listed below:

-c Only NFS client function statistics are displayed.

-s Only NFS server function statistics are displayed.

-r Only RPC statistics are displayed. This option only covers NFS related
RPCs. Any other ONC/RPC activities, such as NIS, are not included.

-n Only NFS procedure statistics are displayed.

-z Clear all counters. Only used by the privileged user (root).

If you omit all flags, all flags (they are not exclusive) are assumed (-c, -s, -r and
-n). Reboot clears all counters. Refer to the manual or InfoExplorer for details.
With this command outputs, you can know the statistics of RPC and each NFS
procedure. In order to understand these counters, you must have fine working
knowledge of ONC/RPC and NFS.

3.6.1 Client Statistics Example
Here is an example of NFS client statistics:

nfsstat -c

Client rpc:
calls badcalls retrans badxid timeout wait newcred
669652 3 11 0 14 0 0

Client nfs:
calls badcalls nclget nclsleep
523296 3 523296 0
null getattr setattr root lookup readlink read
0 0% 72428 13% 0 0% 0 0% 222136 42% 0 0% 10518 2%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir fsstat
0 0% 0 0% 149028 28% 69186 13%
#

3.6.2 Server Statistics Example
Here is an example of NFS server statistics:

Chapter 3. Getting Information for Performance Tuning 221

nfsstat -s

Server rpc:
calls badcalls nullrecv badlen xdrcall
633 0 0 0 0

Server nfs:
calls badcalls
457 0
null getattr setattr root lookup readlink read
0 0% 113 24% 30 6% 0 0% 200 43% 0 0% 50 10%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir fsstat
0 0% 0 0% 43 9% 21 4%
#

3.7 Error Log
For RS/6000, you should use the system error log as a substantial source of
information. Some problems may leave their signs only in the error log. If you
can not figure out the possible causes of your problem, looking at the system
error log is not a bad idea.

3.7.1 Error Log Example
You can review the error log summary list with the errpt command as shown
below. Refer to the manual or InfoExplorer for details of each column.

errpt
ERROR_ID TIMESTAMP T CL RESOURCE_NAME ERROR_DESCRIPTION
A386E435 0701214094 P H ent0 ADAPTER ERROR
ABB81CD5 0701214094 T H ent0 COMMUNICATION PROTOCOL ERROR
ABB81CD5 0701214094 T H ent0 COMMUNICATION PROTOCOL ERROR
ABB81CD5 0701214094 T H ent0 COMMUNICATION PROTOCOL ERROR
A386E435 0701214094 P H ent0 ADAPTER ERROR
ABB81CD5 0701214094 T H ent0 COMMUNICATION PROTOCOL ERROR
ABB81CD5 0701214094 T H ent0 COMMUNICATION PROTOCOL ERROR
ABB81CD5 0701214094 T H ent0 COMMUNICATION PROTOCOL ERROR
A386E435 0701214094 P H ent0 ADAPTER ERROR
ABB81CD5 0701214094 T H ent0 COMMUNICATION PROTOCOL ERROR
...

In the above example, you are now sure that your Ethernet adapter (device
name is ent0) got a lot of problem. All of the timestamps are concentrated on
the same time. For each error details, you can use the errpt -a command as
below. Refer to the manual or InfoExplorer for the explanation of each field:

222 Practical TCP/IP for AIX V3.2/V4.1

errpt -a -j ABB81CD5

ERROR LABEL: ENT_ERR2
ERROR ID: ABB81CD5

Date/Time: Tue Aug 2 18:09:11
Sequence Number: 207483
Machine Id: 000000233400
Node Id: inoki
Error Class: H
Error Type: TEMP
Resource Name: ent0
Resource Class: adapter
Resource Type: ethernet
Location: 00-06
VPD:

Error Description
COMMUNICATION PROTOCOL ERROR

Probable Causes
CSMA/CD ADAPTER
CSMA/CD LAN CABLES
LOCAL CSMA/CD ADAPTER CABLE
CABLE TERMINATOR

Failure Causes
LOCAL CSMA/CD ADAPTER
REMOTE CSMA/CD ADAPTER
CSMA/CD LAN CABLES
LOCAL CSMA/CD ADAPTER CABLE

Recommended Actions
PERFORM PROBLEM DETERMINATION PROCEDURES
CHECK CABLE AND ITS CONNECTIONS

Detail Data
SENSE DATA
0000 0087 0000 0000 0000 0000 0000 0260 8C2C 83BC 0260 8C2C 83BC 3030 3134 0004
0000 0000 0000 0000 0000 0000 0000 0005 000C 000E
...

It is obvious that a hardware problem happened on the Ethernet adapter ent0
with this report. This is a hardware error because of the Error Class: H. The
error is temporary because of the Error Type: TEMP. The SENSE DATA is
usually used by diagnostic program.

Chapter 3. Getting Information for Performance Tuning 223

Our Experience

The InfoExplorer is a very powerful tool to refer to a meaning of each ERROR
LABEL. If you need to retrieve the InfoExplorer, care must be taken for a
search word. If you want to specify ENT_ERR2, do not use underscore _. For
example, the following search words are fine:

″ENT ERR2″
″ENT″ and ″ERR2″ in Compound Search

But never use ENT_ERR2 or you will get error No matches found.
Underscore is not written in the InfoExplorer.

3.7.2 Some Hints and Tips
For almost all occasions the error log just tells the possibility and you needs
further problem determination procedure. If the error was due to software,
further investigation would be software dependent. If the error was due to
hardware, you can proceed with a more direct method.

3.7.2.1 Replace Doubtful Hardware
If the content of the error log suggests that there could be faulty hardware, it is a
good approach to replace the suspected units one by one. We believe you can
isolate the problem very easily. The following is the error log message of a
typical Ethernet error, ENT_ERR2:

Failure Causes
LOCAL CSMA/CD ADAPTER
REMOTE CSMA/CD ADAPTER
CSMA/CD LAN CABLES
LOCAL CSMA/CD ADAPTER CABLE

Recommended Actions
PERFORM PROBLEM DETERMINATION PROCEDURES
CHECK CABLE AND ITS CONNECTIONS

This message is just saying that all hardware units involved in the
communication are potential suspects. Unfortunately the message doesn′ t tell
the exact cause. (But, it is far better than no information at all.)

Note: Notice a collision of Ethernet can also cause this error. If it is the case,
replacement will not resolve the problem. If you doubt the possibility of
collision, make a cross check using the netstat -v command.

3.7.2.2 Adding Your Message in Error Log
You can write an arbitrary message in the system error log. It is convenient
when you try to recreate a problem, because your own message can be used as
a separator of log events. It′s totally up to you how to use this feature. Use the
errlogger command as below.

errlogger ″I′ ll debug the SRC!″
#

Note: Remember that the syslogd has the similar command logger to write your
arbitrary message in the syslog′s log.

In the error log summary list, it looks as below:

224 Practical TCP/IP for AIX V3.2/V4.1

errpt
IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
AA8AB241 0818181995 T O OPERATOR OPERATOR NOTIFICATION
0873CF9F 0818152295 T S pts/0 TTYHOG OVER-RUN
0873CF9F 0818152295 T S pts/0 TTYHOG OVER-RUN
...

The message is logged as below:

errpt -a -j AA8AB241

LABEL: OPMSG
IDENTIFIER: AA8AB241

Date/Time: Fri Aug 18 18:19:26
Sequence Number: 1724
Machine Id: 000970044D00
Node Id: zero
Class: O
Type: TEMP
Resource Name: OPERATOR

Description
OPERATOR NOTIFICATION

User Causes
ERRLOGGER COMMAND

Recommended Actions
REVIEW DETAILED DATA

Detail Data
MESSAGE FROM ERRLOGGER COMMAND
I′ ll debug the SRC!
#

Chapter 3. Getting Information for Performance Tuning 225

226 Practical TCP/IP for AIX V3.2/V4.1

Chapter 4. System Parameter Tuning

In this chapter, we describe some AIX system features that have a crucial role in
network performance. Some features are very AIX-unique and some are
common among UNIX-unique. The parameters explained here are deeply
related to TCP/IP, but they are not a part of TCP/IP. Their adjustment
procedures depend on each product and implementation, so you may not find
the equivalent parameters on other vendor systems.

For details about topics in this chapter, we strongly recommend that you refer to
the manual Performance Monitoring and Tuning Guide, SC23-2365.

Difference between V4.1 and V3.2

Substantial enhancements and improvements have been made to V4.1.
Some features described in this chapter were removed from V4.1 and they
reduce the system administrator′s daily effort. The following features are
V3.2 only:

• RDTO (Receive Data Transfer Offset)

• Trailer Protocol

4.1 mbuf Tuning
Currently we have two predominate memory allocation mechanisms for the UNIX
networking function. One is the mbuf that has been introduced with 4.2/4.3 BSD.
The other is STREAMS that has been introduced with System V R3. AIX V3.2
was completely BSD compliant and followed the mbuf scheme (this is only about
TCP/IP). AIX V4.1 uses a STREAMS based memory allocation mechanism, but it
also uses the mbuf scheme which is built on the STREAMS. Any commercial
books written about the BSD networking function would help you to understand
the mbuf of V3.2. We recommend that you read the following book:

The Design and Implementation of the 4.3BSD UNIX Operating System

Written by Samuel J. Leffer, Marshall Kirk McKusiick, Michael J. Karels
and John S. Quarterman.
Published by Addison-Wesley Publishing Company, Inc.

The feature mbuf is common among BSD-based UNIXs, and some routers that
have BSD based or derivative networking implementation. The mbuf is the
memory allocated to the networking function. Although the basic schemes are
widely used, the actual adjustment procedures and monitoring commands
depend on each implementation. We can use the no command to configure
mbuf dynamically (without rebooting). This is one of the AIX advantages.

Difference between V4.1 and V3.2

The AIX V4.1 and V3.2 both support STREAMS. But, the underlaying
mechanisms are different between V4.1 and V3.2. V3.2 supports the
STREAMS at the API level and it is built on the top of the mbuf structure. On
V4.1, STREAMS is implemented natively on the top of the Common Data Link
Interface (CDLI). CDLI supports both STREAMS and socket-based protocols.

 Copyright IBM Corp. 1996 227

4.1.1 mbuf Basics
The mbuf or memory buffer is a data structure that holds actual data or offsets it
to the memory page, which holds actual data. In the original BSD
implementation, the size of a mbuf was 128 bytes and the size of a memory page
was 1024 bytes. Thus, one mbuf could represent up to 1024 bytes of data, since
more than one mbuf is linked to constructing a chain and the chain can hold an
arbitrary length of data. In our AIX V3.2 implementation, the mbuf is 256 bytes
and the memory page is 4096 bytes; our one mbuf can represent up to 4096
bytes. (Due to the control information, a mbuf can hold up to 236 bytes of user
data.) The mbuf and the memory page referred to by the mbuf are, together,
called an mbuf-cluster.

Note: In AIX V3.1, the mbuf was 128 bytes.

If user data is less than 433 bytes, AIX allocates two mbufs to hold the data
directly in mbufs. If the data is equal to or greater than 433 bytes, AIX allocates
one memory page for the data and puts the offset in a mbuf (in other words
allocates a mbuf-cluster). Although we don′ t get into the detailed mechanism,
mbuf ′s flexible memory allocation scheme is used to not only store the data but
also to store some control information needed by AIX (UNIX). For example, the
socket structure, routing table, PCB (Protocol Control Block) and other important
information are stored in mbufs. The mbufs are used to hold and pass data from
socket to device driver queue and vice versa. Actually, data is not copied at
each layer. In order to avoid overhead, just the pointer of the mbuf chain is
passed from one layer to another, and if necessary, protocol header is added by
chaining a new mbuf containing the header information.

Mbuf and memory page are dynamically allocated from the mbuf pool as
needed. The system holds a memory region called a mbuf pool. Both mbuf and
memory pages pointed by mbuf-cluster are allocated from this pool. Allocation
is done by the kernel process, the netm, and it runs at a very high priority (37,
fixed). Therefore the pool is dynamically expanded or resized from time to time.
Unnecessary memory pages used for mbuf-clusers will be released, in order to
allow some activities, other than the networking functions, to use them. But
mbufs are not released after they are allocated in the pool. The only way to
reduce the allocated mbufs is to reboot the system. Because a mbuf is 256
bytes, this should not be a problem.

The summary of the AIX mbuf features are:

• The mbuf and mbuf-cluster are used to pass packets from the adapter device
drivers to a network application and vice versa.

• The mbuf and mbuf-cluster are not only used by TCP/IP but also by SNA and
other network protocols.

• The mbuf and the mbuf-cluster are allocated in the dedicated memory region
called a mbuf pool. This pool is only used for the networking functions and
the default size is 2 MB.

• The mbuf pool is not a subject of paging. They are pinned in the memory.

228 Practical TCP/IP for AIX V3.2/V4.1

4.1.2 Getting the Current Status (V3.2 Only)
This section is mainly for V3.2 and other BSD derived systems.

You can review the current mbuf usage with the nestat -m command. This
output may be common between UNIX which has a mbuf based implementation.
If a system is STREAMS based UNIX, although it supports netstat -m, the output
is totally different. See the following example:

netstat -m
308 mbufs in use:

59 mbufs allocated to data
11 mbufs allocated to packet headers
90 mbufs allocated to socket structures
126 mbufs allocated to protocol control blocks
9 mbufs allocated to routing table entries
10 mbufs allocated to socket names and addresses
3 mbufs allocated to interface addresses

55/139 mapped pages in use
633 Kbytes allocated to network (46% in use)
0 requests for memory denied
0 requests for memory delayed
0 calls to protocol drain routines
#

mbufs in use
Number of mbufs which hold actual data. Notice mbuf is used for many
purposes. In this example, only 59 of 308 mubfs are used to store data.

Mapped pages in use
Number of memory pages allocated for mbuf-clusters. This shows both
allocated (but not used) and currently used memory pages.

KB allocated to network (46% in use)
Amount of total memory size allocated for networking function (mbuf
pool). Also, the ratio of currently used memory is shown.

Requests for memory denied
Number of denied requests to allocate mbuf or memory page
(mbuf-cluster) due to resource shortage. For a receiving operation, the
device driver of the adapter can not wait for the memory allocation if
there are no available mbufs or memory pages. Then, the memory
allocation returns immediately with an error. As a result, the receiving
data (packet) is lost and it is counted here.

Requests for memory delayed
Number of delayed mbuf or memory page allocation. For a sending
operation, the device driver of the adapter waits for the memory
allocation if there are no available mbufs or memory pages. Notice that
mbuf allocation is a subject to be scheduled with certain priority. In this
case, if the sending operation is suspended for a while, it is counted
here.

Calls to protocol drain routines
Number of protocol drain routines called. When there are no available
mbufs or memory pages to allocate, some mbufs or memory pages
must be released (drained). The system calls the protocol drain routine
ip_drain(), discarding data of a lesser priority (the IP datagram
fragments) in the IP reassembly queue. Notice that the drain activity is
caused only by the sending operation.

Chapter 4. System Parameter Tuning 229

You can confirm the contents of the previous information. In this example, 308
mbufs and 139 mbuf-clusters (memory pages) are allocated.

Total allocated memory size is:

308 × 256 + 4096 × 139 = 648,192 bytes
648,192 ÷ 1024 = 633 KB

The actually used memory region is:

308 × 256 + 4096 × 55 = 304,128 bytes

Therefore,

304,128 ÷ 648,192 = 0.469 ≈ 46 %

Note: We used 236 bytes for mbuf instead of 256 bytes because 20 bytes are
always used for control information.

It gives you a consistent result with the output of 633 KB allocated to the network
(46% in use). Notice for mbufs, 59 of 308 are used for user data and other mbufs
are for control information. Also, notice that the mbuf pool can be expanded to
2048 KB as necessary (this is default configuration), and we have enough margin
from 633 KB.

4.1.3 Getting the Current Status (V4.1)
With AIX V4.1, you will see a quite different output for the netstat -m command.
This change reflects the difference of the internal memory allocation scheme
between V3.2 and V4.1.

netstat -m
34 mbufs in use:
21 mbuf cluster pages in use
92 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines

Kernel malloc statistics:

By size inuse calls failed free hiwat freed
32 677 4239 0 91 640 0
64 51 147 0 13 320 0
128 160 15498 0 32 160 0
256 157 53774 0 19 384 0
512 64 12948 0 24 40 0
1024 2 1386 0 2 20 0
2048 0 10286 0 6 10 0
4096 23 611 0 5 120 0
8192 0 51 0 1 10 0
16384 1 33 0 24 24 7

By type inuse calls failed memuse memmax mapb
mbuf 34 49892 0 8704 11520 0
mcluster 21 13578 0 86016 99840 0
socket 169 936 0 22208 22784 0
pcb 101 502 0 15488 16000 0
routetbl 9 35 0 1568 1952 0
fragtbl 0 2821 0 0 32 0
ifaddr 6 13 0 704 704 0
mblk 48 14997 0 7936 9344 0
mblkdata 10 14959 0 5120 17408 0
strhead 18 28 0 4896 4896 0

230 Practical TCP/IP for AIX V3.2/V4.1

strqueue 41 68 0 20992 20992 0
strmodsw 17 17 0 1088 1088 0
strsyncq 46 127 0 5408 5408 0
streams 606 979 0 30144 30144 0
kernel table 2 2 0 40960 40960 0
temp 12 48 0 5632 524288 0
#

The meanings of the mbuf statistics are the same with the V3.2 output. The
kernel malloc statistics are new for you. With V4.1, the memory allocation
scheme uses STREAMS, and it uses data block (mblk). Data block has many
sizes ranging from 32 bytes to 16384 bytes. A 256 byte data block is used for
mbuf and a 4096 data block is used for mbuf-cluster. The most crucial counter
has failed and this means that the allocation of the data block was rejected due
to no available data block.

4.1.4 Problem Symptom (V3.2 Only)
As we know, mbufs and mbuf-clusters play a very crucial role in communication.
Their shortage impacts network performance dramatically. Some typical
symptoms are explained following. It doesn′ t necessary mean that all the
symptoms are always observed.

Very Slow Network Response
Users suffer very slow network response. It almost looks like a hang state
in an extreme situation.

No Mbuf Errors/No Mbuf Extension Errors
You see some values are counted at the counter No Mbuf Errors and/or No
Mbuf Extension Errors of the netstat -v command:

netstat -v

TOKEN STATISTICS (tr0) :

Hardware Address: 10:00:5a:a8:46:2d
Transmit Byte Count: 1091048648 Receive Byte Count: 1096451367
Transmit Frame Count: 1084670976 Receive Frame Count: 1089135552
...
Receive Packets Lost: 0 No Mbuf Errors: 0
No Mbuf Extension Errors: 54 Receive Int Count: 56858
Transmit Int Count: 2914 Packets Rejected No NetID: 1790
Packets Accepted Valid NetID: 55070 Overflow Packets Received: 0
Packets Transmitted and Adapter Errors Detected: 0

#

No Mbuf Errors mean that the allocation of mbuf has failed. No Mbuf
Extension Errors mean that allocation of mbuf-cluster has failed.

Requests for Memory Denied Error
You see some value is counted at the counter, which is the number of
requests for memory denied by the netstat -m command.

Chapter 4. System Parameter Tuning 231

netstat -m
1126 mbufs in use:

846 mbufs allocated to data
...

2 mbufs allocated to interface addresses
426/438 mapped pages in use
2033 KB allocated to network (97% in use)
108 requests for memory denied
0 requests for memory delayed
0 calls to protocol drain routines
#

RESOURCE UNAVAILABLE Error
You see the RESOURCE UNAVAILABLE error in the system error log. Issue
the errpt command to review the error log.

4.1.5 Configure mbuf with the no Command
In order to avoid mbuf shortage, you can adjust some parameters by the no
command. Be careful about mbuf tuning. Because mbuf pools are dedicated
memory region and if considerable amount of memory is used for mbuf, any
other system activities may be impacted. Also, the mbuf is managed by the
kernel process netm, and the improperly configured mbuf pool can cause
thrashing due to conflicting network traffic and mbuf pool thresholds. You should
not change any mbuf parameters until you understand what you are trying to do.

no -a
dog_ticks = 60
lowclust = 21
lowmbuf = 188
thewall = 2048

mb_cl_hiwat = 42
compat_43 = 1

sb_max = 65536
detach_route = 1

...
#

lowclust
This defines the lower limit of unused memory pages. If the number of
unused memory pages gets lower than this value, the netm is
scheduled to allocate more memory pages. Since the mbufs and
memory pages are not increased immediately, you may need some
margin.

lowmbuf
This defines the lower limit of unused mbufs. If a number of unused
mbufs gets lower than this value, the netm is scheduled to allocate
more mbufs. Since mbufs are not increased immediately, you may
need some margin. The arriving packet number per second, or twice
that number (especially for UDP) may be a reasonable value. Since a
mbuf-cluster must use one mbuf to store pointer information whenever
the lowclust is increased, at least the same amount of the lowmbuf
should be increased.

thewall
This defines the upper limit of the mbuf pool. Consider the output of
netstat -m (KB allocated to network) when you want to expand. If 80 %

232 Practical TCP/IP for AIX V3.2/V4.1

of the current thewall value has been used constantly, it is reasonable
to expand. The default is 2048 KB.

mb_cl_hiwat
This defines the upper limit of used memory pages. If the number of
used memory pages gets higher than this value, the netm is scheduled
to release unused memory pages. If you choose a value close to the
lowclust, the netm is busily occupied by increasing and decreasing
memory pages. As a result, the system suffers performance. It always
should be larger than twice the lowclust.

Difference between V4.1 and V3.2

The mbuf adjustment work is made automatically at the AIX V4.1. You have
few things to do with V4.1. All mbuf related parameters of the no command,
except thewall, are obsolete. In other words, thewall is the only tuneable
parameter for mbuf.

If you need to change any parameter, issue the no command as follows. This
example changes the current value of mb_cl_hiwat from 98 to 60.

 1. Checking the current value:

no -o mb_cl_hiwat
mb_cl_hiwat = 98
#

 2. Changing it to 60:

no -o mb_cl_hiwat=60
#

 3. Confirming if the change was made:

no -o mb_cl_hiwat
mb_cl_hiwat = 60
#

If you need to resume the default value, use the -d flag:

no -d mb_cl_hiwat
#

If your system is a router, you should monitor the mbuf usage constantly by
using netstat -m, because mbuf is used in the IP datagram routing. Even when
you are not using any network applications, passthrough traffic consumes your
mbuf pool.

When you configure to expand the mbuf pool, the memory other than the mbuf
pool may already be used by other applications or the system. Although the
parameters are updated instantaneously, it is not guaranteed that the mbuf pool
gets expanded immediately. You may need to reboot the system in order to
make room for the mbuf pool, or the mbuf pool expansion should be made just
after system boot.

Chapter 4. System Parameter Tuning 233

4.1.6 Making the Update Permanent
Since the no command updates parameters in the kernel, rebooting the system
clears all your updates, and they return to the default values. If you want to
make the updated configuration permanent, you should write the no command in
the startup script /etc/rc.net. The best place is the end of the script as follows:

###
The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for Ethernet and token-ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
###
if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o tcp_recvspace=16384
/usr/sbin/no -o thewall=3072
/usr/sbin/no -o mb_cl_hiwat=60

fi

Although the parameters updated by the no command, are not saved for reboot,
there is one exception. The thewall is also stored in the ODM as the attribute
maxmbuf of the device sys0. You can see the current value with the command
lsattr -E -l sys0 as follows:

lsattr -E -l sys0
keylock normal State of system keylock at boot time False
maxbuf 20 Maximum number of pages in block I/O BUFFER CACHE True
maxmbuf 2048 Maximum KB of real memory allowed for MBUFS True
maxuproc 100 Maximum number of PROCESSES allowed per user True
autorestart false Automatically REBOOT system after a crash True
iostat true Continuously maintain DISK I/O history True
realmem 65536 Amount of usable physical memory in KB False
conslogin enable System Console Login False
maxpout 0 HIGH water mark for pending write I/Os per file True
minpout 0 LOW water mark for pending write I/Os per file True
fullcore false Enable full CORE dump True
#

You can update the ODM with the chdev command as follows. This example
expands the default from 2048 KB to 3072 KB:

 1. Check from the current value:

lsattr -E -l sys0 -a maxmbuf
maxmbuf 2048 Maximum KB of real memory allowed for MBUFS True
#

 2. Change the value using the chdev command:

chdev -l sys0 -a maxmbuf=3072
sys0 changed
#

 3. Check that the value was updated correctly:

lsattr -E -l sys0 -a maxmbuf
maxmbuf 3072 Maximum KB of real memory allowed for MBUFS True
#

234 Practical TCP/IP for AIX V3.2/V4.1

Note: What happens if you used both the ODM and the srcipt /etc/rc.net to
configure thewall? During the boot process, first the data in the ODM is
loaded, then the script is executed. Therefore, /etc/rc.net overrides the
ODM.

4.2 RDTO and Trailer Protocol (V3.2 Only)
This section only applies to V3.2. Both RDTO and trailer protocol were removed
at V4.1 due to the improved self-tuning capability.

In this section, we mention mechanisms to optimize the packet treatment in the
memory. As we have already seen, our AIX V3.2 uses the mbuf to store the data
(packet). When we send data, the application program writes the data into a
socket send buffer that is built by mbufs and/or mbuf-clusters (it is also called
the mbuf chain). Although the data should be passed from the socket layer to
the device driver through TCP/UDP and IP layers, the data does not need to be
copied among the layers. Just the pointer to the mbuf chain is passed. At each
layer, a mbuf that has the corresponding protocol header is linked at the head of
the mbuf chain. With this mechanism, we can avoid the overhead caused by
copying the entire data or packet.

For the receiving operation, the matter is more complicated than the sending
operation. There is more than one data link protocol (for example, Ethernet,
token-ring). Also, transport protocol has more than one (for example, UDP and
TCP). The length of each protocol header is different. If we place a received
frame in memory, we cannot expect that user data will always begins at a fixed
location in memory (frame). Usually searching a memory page to locate user
data is not acceptable due to performance reason. If we can assume that user
data is always located at the beginning (or at fixed place) of memory page, we
can avoid this problem. When a frame is passed from the lower layer to upper
layer, the protocol header of the lower layer must be removed. At that moment,
if the system tries to keep the packet aligned with the boundary of a memory
page (or mbuf), the entire packet should be copied from a memory page to
another, in order to compensate for the blank space to the removal of the
protocol header. This mechanism adds a certain performance penalty.

There are two mechanisms to avoid the above overhead. One is Trailer Protocol
and the other is Receive Data Transfer Offset (RDTO). Their purposes are
slightly different from each other.

4.2.1 Receive Data Transfer Offset (RDTO) Basics
The RDTO is a quite unique AIX feature to improve the performance regarding
the memory operation. When a received packet is copied from an adapter card
to mbuf (or memory page), the additional blank space is allocated at the
beginning of mbuf, and then the packet (frame) is placed. This blank space is a
variable length and the length depends on the data link protocol used by the
packet (frame). The length is chosen to make the total of the blank space and
the data link header length a fixed length (40 bytes). This blank space is called
the Receive Data Transfer Offset (RDTO). The size of RDTO for each data link
protocol is listed here:

Ethernet 26
IEEE802.3 18

Chapter 4. System Parameter Tuning 235

Token-ring 0
X.25 12

Note: These values are related to TCP/IP. For SNA, 92 is the optimum value for
all data links.

The advantage of RDTO is obvious. The first is that the system can always
expect that the beginning of the user data (notice it includes the IP header, but
excludes data link header) is always the 40th byte in mbuf or memory page.

The second advantage is to improve the routing function of the network protocol
(IP). If an incoming frame should be routed to another destination, and if the
data link protocols are different between the receiving network and the sending
network, the data link header must be replaced. If the receiving network is
Ethernet and the sending network is token-ring, there can only be 14 bytes of
blank space after removing the Ethernet header. But, the token-ring header
needs 40 bytes. Without RDTO, an entire frame must be copied to another mbuf
(or memory page) to make room for the token-ring header, and this causes
performance penalty. The longest supported data link protocol header is
token-ring. This is why RDTO is chosen to make the total length of RDTO and
data link header 40 bytes.

There are more points you should know. If you don′ t set the RDTO as previously
listed, you may suffer some slower performance, but it would never affect the
connectivity. Inappropriate RDTO (default is 92 bytes) causes additional copy
activity of frames when the system fails to locate the beginning of the IP
datagrams. But that′s all you suffer. You should not have any other problems.
Also, RDTO doesn′ t need to match between source and destination systems
(notice that RDTO is a RS/6000 unique feature).

For AIX V4.1 users

The RDTO was removed from V4.1. All the device drivers that run on the
V4.1 don′ t need or use the RDTO (they are smarter than the prior version).

4.2.2 RDTO Configuration
You can review the current RDTO value with the lsattr command as follows.
Since RDTO is not a UNIX feature, only the high-level commands and SMIT are
available to review and update:

lsattr -E -l tok0
intr_priority 3 Interrupt priority False
xmt_que_size 30 TRANSMIT queue size True
rec_que_size 30 RECEIVE queue size True
sta_que_size 10 STATUS BLOCK queue size True
rdto 92 Receive data transfer OFFSET True
bus_io_addr 0x86a0 Bus I/O address False
dma_lvl 0x5 DMA arbitration level False
...

236 Practical TCP/IP for AIX V3.2/V4.1

4.2.2.1 Using High-level Command
You can use the chdev command to update the RDTO as follows:

 1. First detach the interface. Since the RDTO is an attribute of the adapter
device, the interface must be detached before you configure it:

ifconfig tr0 detach
#

 2. Use the chdev command as follows. You can confirm that the change was
correctly made with the lsattr command:

chdev -l tok0 -a rdto=0
tok0 changed
lsattr -E -l tok0 -a rdto
rdto 0 Receive data transfer OFFSET True
#

 3. Make the interface up again with the ifconfig command:

ifconfig tr0 up
#

If you forget to detach the interface, you will get following error when you issue
the chdev command:

chdev -l tok0 -a rdto=0
Method error (/etc/methods/chgtok):

0514-062 Cannot perform the requested function because the
specified device is busy.

#

4.2.2.2 Using SMIT
A SMIT screen is also available to configure the RDTO. The RDTO is an attribute
of the adapter device, so you can see the RDTO at an adapter configuration
screen.

 1. First, detach the interface. Since the RDTO is an attribute of an adapter
device, the interface must be detached before you configure it. The following
is one example. You can use the chdev command instead.

ifconfig tr0 detach
#

 2. Invoke SMIT. If the adapter is token-ring, the following fast path is available:

smitty chgtok

 3. Through the submenu, you should get the following screen. Then, update
the entry field named Receive data transfer OFFSE:

Chapter 4. System Parameter Tuning 237

� �
Change / Show Characteristics of a Token Ring Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Token Ring Adapter tok0
Description Token-Ring High-Perfor>
Status Available
Location 00-01
Receive data transfer OFFSET [92] +#
TRANSMIT queue size [40] +#
RECEIVE queue size [30] +#
STATUS BLOCK queue size [10] +#
RING speed 16 +
Receive ATTENTION MAC frame no +
Receive BEACON MAC frame no +
Enable ALTERNATE TOKEN RING address no +
ALTERNATE TOKEN RING address [0x] +
Apply change to DATABASE only no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 28. SMIT Network Adapter Configuration Screen (Token-Ring)

 4. Bring the interface up again with the ifconfig command. The following is one
example. You can use the chdev command instead.

ifconfig tr0 up
#

4.2.3 Trailer Encapsulation Protocol Basics
The Trailer Protocol was developed and introduced at 4.2BSD. Although this is a
very interesting mechanism, it is now considered to have become almost an
obsolete function.

In this scheme, the IP header and higher layer header (TCP or UDP) are placed
at the end of the packet (frame). With this technique, the user data is located
immediately after the data link header. When a packet is received, the system
can place user data at the boundary of the memory page or mbuf (the data link
header is placed in a separate mbuf and linked). After that, the system just
passes the pointer among layers avoiding copying an entire packet from memory
to memory because the higher layers protocol headers are located at the end of
user data. Removal of a protocol header never impacts the location of the IP
datagram.

All systems must support the trailer protocol because it uses a special format of
packet; IP and TCP/UDP headers must be at the end of packet. Also, this
scheme is only good to those systems that have the same memory management
mechanism (such as mbuf). Systems that don′ t have virtual memory do not get
the benefit from the trailer protocol because they don′ t have pages to align user
data. Due to these reasons, this method has not been widely used and few
people intend to use it now.

238 Practical TCP/IP for AIX V3.2/V4.1

4.2.4 Trailer Protocol Configuration
To use the trailer protocol, first both systems (destination and source) must
agree to enable this protocol. You can review the current configuration status
with the lsattr command. As you know, you are reviewing the ODM.

lsattr -E -l tr0
mtu 1492 Maximum IP Packet Size for This Device True
mtu_4 1492 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr 9.170.5.45 Internet Address True
state up Current Interface Status True
trailers off TRAILER Link-Level Encapsulation True
arp on Address Resolution Protocol (ARP) True
allcast on Confine Broadcast to Local Token-Ring True
...

To see the current configuration in the kernel, you should use the ifconfig
command, as follows:

ifconfig tr0
tr0: flags=8063<UP,BROADCAST,NOTRAILERS,RUNNING,ALLCAST>

inet 9.170.5.45 netmask 0xffffff00 broadcast 9.170.5.255
#

For the configuration, you can only use the chdev command at AIX V3.2.5. Of
course, the chdev command updates both the kernel and the ODM, and the
updates are saved for the reboot.

Note: In prior versions the ifconfig command supported the parameter trailers.
Now these parameters are obsolete.

chdev -l tr0 -a trailers=on
tr0 changed
#

When you make the trailer protocol effective, your system negotiates trailer
protocol when the system exchanges the ARP packets by using an extra trailer
ARP reply packet. Refer to the RFC 1122 Requirements for Internet Hosts for
details. If the destination doesn′ t respond positively, the trailer protocol doesn′ t
become effective. By this RFC, the default configuration must disable the
protocol.

4.3 Transmit/Receive Queue
There are queues between the device driver (adapter card) and memory (mbuf).
These queues hold mbuf chains for send and receive. If the queue cannot hold
all the incoming or outgoing data, some data is lost. As a result, you may get
retransmissions and it impacts the system′s performance. These queues are
used by all the communication protocols (not only by TCP/IP but also by SNA).

4.3.1 Queue Basics
There is a transmit queue and a receive queue. The transmit queue is used to
store mbuf chains which contain data to be sent. This queue defines the number
of frames queued between the interface code (adapter) and the network layer
module (IP, SNA). There is one transmit queue for each adapter.

Chapter 4. System Parameter Tuning 239

The receive queue is used to store mbuf chains which contain data received by
the adapter (and has not been passed to the IP module yet). This queue defines
the number of frames queued between the interface code (adapter) and the
network layer module (IP, SNA). There is one receive queue for each protocol
and adapter.

If a queue length is not long enough, the queue gets overrun and the data is lost.
It may invite retransmission. Thus, transmit/receive queue tuning is very
important. If your system is heavily loaded with file transfers or some network
activities, it is easy to get queues that overrun. NFS server and network
installation servers are good candidates for tuning.

For ISA Bus Adapter users

ISA Bus Adapters only have a transmit queue. They don′ t have receive
queue.

4.3.2 Getting the Current Status
A shortage of queues causes a loss of packets and finally invites the packets′
retransmission by the TCP module or applications (UDP). If this happens, you
should have several symptoms. Some typical symptoms are described here.

4.3.2.1 Queue Usage Statistics
Here we show you an example which is suffering transmission queue overrun.
At first, you can review the current queues status with the netstat -v command.

netstat -v

TOKEN-RING STATISTICS (tok0) :
Device Type: Token-Ring High-Performance Adapter (8fc8)
Hardware Address: 10:00:050:aa0:8b0:5c1
Elapsed Time: 0 days 4 hours 20 minutes 33 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 3169 Packets: 26795
Bytes: 562812 Bytes: 3024785
Interrupts: 3126 Interrupts: 26764
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 60 Bad Packets: 0
S/W Transmit Queue Overflow: 84
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 9 Broadcast Packets: 21558
Multicast Packets: 264 Multicast Packets: 264
Timeout Errors: 0 Receive Congestion Errors: 0
Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 0
...

The counter, Max Packets on S/W Transmit Queue, shows the maximum usage
of the queue at the busiest moment since the system boot. Since the queue
usage is checked at certain intervals, these counters may not give you the exact
maximum values (they can be smaller than the real maximum). The counter,

240 Practical TCP/IP for AIX V3.2/V4.1

S/W Transmit Queue Overflow tells you about the queue shortage. The previous
example is a bad symptom.

Difference between V4.1 and V3.2

netstat -v

ETHERNET STATISTICS (en0) :

Hardware Address: 08:00:5a:0d:0d:a7
Transmit Byte Count: 187446874.0 Receive Byte Count: 42396168.0
Transmit Frame Count: 220279.0 Receive Frame Count: 255640.0
Transmit Error Count: 0 Receive Error Count: 0
Max Netids in use: 7 Max Transmits queued: 33
Max Receives queued: 0 Max Stat Blks queued: 0
Interrupts lost: 0 WDT Interrupts lost: 0
Timeout Ints lost: 0 Status lost: 0
...

In the above example, it is clearly understood that the transmit queue has
been heavily loaded. If the queue length had the default of 30, we could get
tremendous packet losses and retransmissions (it was expanded to 64 in this
example, so we were able to avoid the worst situation). In our experience, if
the counter reaches 60 % of the queue length, it is reasonable to assume
packet drops (losses). Since the administrator of the system has expanded
the queue size to 64, the worst situation was prevented.

Our Experience

If you check the counters, Max Transmits queued and Max Receives queued,
of each RS/6000 at your site, you will find a fact that a transmit queue is
easier to overflow than a receive queue. Usually the counted value of Max
Transmits queued is bigger than that of Max Receives queued in the same
system. It′s not rare to see a big value at Max Transmits queued while Max
Receives queued stays 0.

In our experience when we sent many packets to the NFS server (we made
many write operations), curiously the server got the Max Transmits queued
counter incremented, but the Max Receives queued counter didn′ t get
incremented. If an adapter gets many send and receive operations at the
same time (since receive operations has higher priority than send
operations) the send operations are queued more. As a result, Max
Transmits queued gets incremented. In a heavily loaded system, it has a
tendency to be a problem for the sending operation even when the receiving
operation is busier.

4.3.2.2 Output Error at Network Interface
You can confirm the packet loss with the netstat -i command. This command
gives you supplemental information. The counter, Oerrs, only counts errors
detected when the device driver was called to send out packets. Be aware that
this doesn′ t mean transmit queue overflow. But in our experience, the situations
that invites transmit queue overflow also tend to cause this error.

Chapter 4. System Parameter Tuning 241

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 1536 <Link> 3935 0 3935 0 0
lo0 1536 127 localhost 3935 0 3935 0 0
tr0 1492 <Link> 112881 0 208813 36722 0
tr0 1492 9.170.5 inoki5.fscjapan 112881 0 208813 36722 0
tr1 1492 <Link> 36791 0 54701 3648 0
tr1 1492 9.170.1 inoki.fscjapan. 36791 0 54701 3648 0
#

4.3.2.3 Application Error
One more bit of information you may be interested in. If the system is
configured as an NFS client or a server, than you should check the following NFS
related RPC statistics:

nfsstat -r

Server rpc:
calls badcalls nullrecv badlen xdrcall
6794 0 0 0 0

Client rpc:
calls badcalls retrans badxid timeout wait newcred
4446 37 149 0 183 0 0
#

If packets (RPC) are lost somewhere (at interface or transmit/receive queue), it
should be detected by NFS, because NFS client doesn′ t get the response. Since
UDP is connectionless, only NFS knows the transmission status. In this example,
this system has 149 retransmission due to 183 detected timeouts. Again, be
aware that this doesn′ t mean only transmit queue overflow. It could be any
other reason, but queue overflow impacts these counters.

4.3.3 Queue Size Configuration
As you already know, the lsattr command and the chdev command are available
for review and update. Of course, they are stored in the ODM, as follows:

lsattr -E -l tok0
intr_priority 3 Interrupt priority False
xmt_que_size 40 TRANSMIT queue size True
rec_que_size 30 RECEIVE queue size True
sta_que_size 10 STATUS BLOCK queue size True
...
#

4.3.3.1 Using High-Level Command
You can use the chdev command to update the queue sizes.

 1. First detach the interface. Since the queue sizes are attributes of the
adapter device, the interface must be detached before you configure it:

ifconfig tr0 detach
#

 2. Use the chdev command as follows:

chdev -l tok0 -a rec_que_size=90
tok0 changed
#

242 Practical TCP/IP for AIX V3.2/V4.1

 3. You can confirm that the change was made correctly usibg the lsattr
command:

lsattr -E -l tok0 -a rec_que_size
rec_que_size 90 RECEIVE queue size True
#

 4. Make the interface up again with the ifconfig command:

ifconfig tr0 up
#

 5. Do not forget to configure (load) the routing information:

/usr/lib/methods/cfginet
zero
9.68.214.1 net 0: gateway 9.68.214.1
9.68.214.82 net 9.170.5: gateway 9.68.214.82

If you forget to detach the interface, you will get the following error when you
issue the chdev command:

chdev -l tok0 -a rdto=0
Method error (/etc/methods/chgtok):

0514-062 Cannot perform the requested function because the
specified device is busy.

#

4.3.3.2 Using SMIT
SMIT screen is also available to configure the queue sizes. The queue sizes are
attributes of the adapter device, so you can see the queue sizes at the adapter
configuration screen.

 1. First, detach the interface. Since the queue sizes are attributes of the
adapter device, the interface must be detached before you configure it. The
following is one example. You can use the chdev command instead.

ifconfig tr0 detach
#

 2. Invoke SMIT. If the adapter is token-ring, the following fast path is available.

smitty chgtok

 3. Through submenu, you should get to the following screen. Then, update the
entry field named TRANSMIT queue size, and/or RECEIVE queue size.

Chapter 4. System Parameter Tuning 243

� �
Change / Show Characteristics of a Token Ring Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Token Ring Adapter tok0
Description Token-Ring High-Perfor>
Status Available
Location 00-01
Receive data transfer OFFSET [92] +#
TRANSMIT queue size [40] +#
RECEIVE queue size [30] +#
STATUS BLOCK queue size [10] +#
RING speed 16 +
Receive ATTENTION MAC frame no +
Receive BEACON MAC frame no +
Enable ALTERNATE TOKEN RING address no +
ALTERNATE TOKEN RING address [0x] +
Apply change to DATABASE only no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 29. SMIT Network Adapter Configuration Screen (Token-Ring)

 4. Bring the interface up again with the ifconfig command. The following is one
example. You can use the chdev command instead.

ifconfig tr0 up
#

 5. Do not forget to configure (load) the routing information:

/usr/lib/methods/cfginet
zero
9.68.214.1 net 0: gateway 9.68.214.1
9.68.214.82 net 9.170.5: gateway 9.68.214.82

4.3.3.3 Queue Size Consideration
Remember that the default queue size 30, for both receive and transmission, is
usually too small. The queue can be expanded up to 150. You should not have
any problems expanding it, as shown:

lsattr -R -l ent0 -a rec_que_size
20...150 (+1)
#

One drawback to having a longer queue length may be that a larger portion of
memory is needed. But, the queue consists of pointers of mbufs and
mbuf-clusters which hold packets. So, the memory occupied by the queue can
be negligible small. Queues should have enough capacity to accommodate
burst traffic.

244 Practical TCP/IP for AIX V3.2/V4.1

Chapter 5. TCP/IP Related Parameter Tuning

In this chapter, we describe the TCP/IP parameter tuning techniques. For TCP/IP
tuning, almost all the parameters are hard-coded or automatically adjusted by
the TCP/IP modules, and there are a few parameters left for our adjustment. We
could have a lengthy discussion to consider if this is advantageous or not. It′s
really true that we can configure TCP/IP and have it up and running with only
one SMIT panel, smitty mktcpip. Compare this with SNA Service configuration
procedure. General flexibility and ease-of-use are in trade-off positions. It′s
quite a challenge to achieve both virtues simultaneously.

The TCP/IP mechanism was designed based on the technologies available at the
time of the first TCP/IP implementation, during late 1970s through early 1980s.
Since then, many things have been changed dramatically. Today, emerging
development enables the use of very fast network media such as FDDI. Also
TCP/IP usages are expanding from LAN to WAN. Some TCP/IP extension have
been introduced to support those requirements. With AIX Version 3.2.5 and later
versions/releases, we have functional enhancement described in the RFC 1323
TCP Extensions for High Performance.

5.1 MTU and Fragmentation
The Maximum Transfer Unit (MTU) is a very important parameter. Since TCP/IP
works completely with the default MTU configuration in almost all situations, few
people notice the importance and carefully adjust this parameter before
something happens. The fragmentation also impacts the TCP/IP performance. It
is deeply related to the MTU. You can minimize the fragmentation and avoid the
overhead by adjusting the MTU value. In this section, we mention the
mechanism and concrete procedure to adjust the MTU.

5.1.1 MTU Basics
The MTU is a software parameter and it defines the maximum IP datagram
length that can be sent out from an interface. Any IP datagram longer than the
MTU should be split into several smaller IP datagrams before transmission. This
splitting procedure is called fragmentation, and each split IP datagram is
referred to as a fragment. All fragments of an IP datagram must be gathered
and assembled to build the original IP datagram at the destination system. This
is called reassembly. The fragmentation and reassembly procedures both
impact TCP/IP performance.

Although the MTU is purely software (network interface) matter, it is deeply
related to the underlying network media. For example, Ethernet Version 2 can
treat up to 1500 bytes of IP datagram. Therefore, setting the MTU to larger than
1500 bytes for an Ethernet interface is meaningless. It′s more than meaningless
because you can not send out any IP datagrams larger than 1500 bytes.

Note: The Ethernet Version 2 frame size can be up to 1514 bytes because the
Ethernet has 14 bytes frame header.

Since the MTU is a configuration parameter of interfaces, the supported or
available value may be different between systems (products). You or your
network administrator has to find the most appropriate MTU value for all the

 Copyright IBM Corp. 1996 245

systems connected to your network. All systems attached to the same IP
network must share the same MTU value.

5.1.2 Fragmentation Mechanism
Now we explain the mechanism of fragmentation using a concrete example. For
this experiment, we set MTU of token-ring network interface tr0 to 100 bytes. In
actual environment, this configuration may be idiot example (too small). You can
confirm current effective MTU values with the command netstat -i, as below:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 219 0 219 0 0
lo0 16896 127 localhost 219 0 219 0 0
tr0 100 <Link>10.0.5a.a8.b5.c1 33074 0 4842 0 0
tr0 100 9.68.214 mat.hakozaki.ib 33074 0 4842 0 0
#

Since a ping packet is encapsulated in an IP datagram, we used a ping packet
(ICMP echo/reply) to see fragmentation.

 1. Send a ping packet. Notice we specified 300 bytes length which exceed the
MTU of 100 bytes. This forces the interface to divide the out going packet
into four small fragments (do not forget ICMP header, and total data from IP
point of view, is more than 300 bytes).

ping -c 1 -s 300 zero
PING zero.hakozaki.ibm.com: (9.68.214.84): 300 data bytes
308 bytes from 9.68.214.84: icmp_seq=0 ttl=255 time=5 ms

----zero.hakozaki.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 5/5/5 ms
#

Note: The ping command reported that one packet was sent and received.
Because fragmentation/reassembly is transparent to higher protocol
than IP.

 2. This is the ping packet (ICMP echo message) captured with the IP trace. In
order to show that this IP datagram (fragment) has been fragmented and has
successive fragments. The More Fragment (MF) bit is set in the IP header.
This is the first fragment, the fragment offset is set to 0 as ip_off=0+. The
plus (+) sign means a more fragment bit is set in the IP header. Due to the
MTU of 100 bytes, the length of this IP datagram is just 100 bytes as
ip_len=100.

Packet Number 1
TOK: ====(122 bytes transmitted on interface tr0)==== 16:15:14.629324160
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK:] src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70[
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=100, ip_id=4828, ip_off=0+
IP: ip_ttl=255, ip_sum=c98d, ip_p = 1 (ICMP)
ICMP: icmp_type=8 (ECHO_REQUEST) icmp_id=4118 icmp_seq=0

246 Practical TCP/IP for AIX V3.2/V4.1

 3. This is the second fragment. Since this fragment is not the final fragment, an
important point is that all fragments, derived from the same IP datagram.
must share the same Identification Number. In this example, it is
ip_id=4828. It still has the more fragments bit (+). The offset 80 means
80th bytes of the original user data is located at the beginning of this
fragment (do not forget that the IP header has 20 byte length). Be aware that
no transport header (in this case, it would be ICMP header) follows the IP
header. During the fragmentation only the IP header is duplicated to each
fragment, but it doesn′ t care about any encapsulated data (transport layer
header and data).

Packet Number 2
TOK: ====(122 bytes transmitted on interface tr0)==== 16:15:14.629382272
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK:] src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70[
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=100, ip_id=4828, ip_off=80+
IP: ip_ttl=255, ip_sum=c983, ip_p = 1 (ICMP)

 4. This is the third fragment. Everything is the same as the second fragment
except ip_o f f=160+.

scale=auto width=75 keep=8.
Packet Number 3
TOK: ====(122 bytes transmitted on interface tr0)==== 16:15:14.629395840
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK:] src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70[
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=100, ip_id=4828, ip_off=160+
IP: ip_ttl=255, ip_sum=c979, ip_p = 1 (ICMP)

 5. This is the fourth and final fragment. Then it has fragment offset ip_off=240,
but no longer has MF bit or (more fragments). Also, the length is ip_len=88
and this is the only fragment shorter than the MTU.

Packet Number 4
TOK: ====(110 bytes transmitted on interface tr0)==== 16:15:14.629409536
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=88, ip_id=4828, ip_off=240
IP: ip_ttl=255, ip_sum=e97b, ip_p = 1 (ICMP)

 6. This is ICMP echo reply message returned from the destination system zero.
Notice that the system zero has the default MTU of 1492 bytes; it returns the
IP datagram that is not fragmented. Another important point you should
know is, although our system mat has MTU of 100 bytes, it can receive an IP
datagram of 328 bytes. In our RS/6000′s implementation, MTU is applied to

Chapter 5. TCP/IP Related Parameter Tuning 247

an outgoing datagram, but it may not be applied to an incoming datagram.
You can not always take this for granted.

Packet Number 5
TOK: ====(350 bytes received on interface tr0)==== 16:15:14.633146240
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=328, ip_id=309, ip_off=0
IP: ip_ttl=255, ip_sum=fa50, ip_p = 1 (ICMP)
ICMP: icmp_type=0 (ECHO_REPLY) icmp_id=4118 icmp_seq=0

Pay attention to the IP datagram (fragment) length. The first to third fragments
have ip_len=100 bytes and the fourth fragment has ip_len=88. The sum is 388
bytes, although we sent 300 byte data, because each fragment is an IP datagram
and has an IP header of 20 bytes. Therefore, 80 bytes are used by four IP
headers. Notice only the first fragment has an ICMP header of 8 bytes.

Our Experience

We also tried the same experiment with an MTU of 2000 bytes sending 2100
data. The first fragment had ip_len=1996 and the second fragment had
ip_len=152. The total length of 2148 bytes, can be explained with two 20
byte IP headers and one 8 byte ICMP header. The curious point was why the
first fragment was 1996 bytes although the MTU was 2000 bytes.

In the fragmentation scheme, each fragment must have the offset in the offset
field of the IP header. Offset can be specified only by a multiple of 8 bytes or
64 bits. Therefore in this case, a fragment can carry up to 1976 bytes of user
data taking 20 bytes of the IP header into account.

In this example, at the destination system, the following counter was
incremented by four because it received four fragments:

zero # netstat -p ip
ip:
:

412 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
0 with bad options
0 with incorrect version number
24 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
3 packets reassembled ok
306 packets for this host
0 packets for unknown/unsupported protocol
0 packets forwarded
4 packets not forwardable
0 redirects sent

248 Practical TCP/IP for AIX V3.2/V4.1

337 packets sent from this host
0 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
0 output datagrams fragmented
0 fragments created
0 datagrams that can′ t be fragmented
85 IP Multicast packets dropped due to no receiver
0 ipintrq overflows

zero #

At the source system, the counter (output datagram fragmented) was
incremented by one, and the fragments created were incremented by four (the IP
datagram was fragmented to four parts).

mat # netstat -p ip |pg
ip:
:

19476 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
0 with bad options
0 with incorrect version number
0 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
0 packets reassembled ok
8714 packets for this host
0 packets for unknown/unsupported protocol
4 packets forwarded
4 packets not forwardable
1 redirect sent
4828 packets sent from this host
0 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
1 output datagram fragmented
4 fragments created
0 datagrams that can′ t be fragmented
10758 IP Multicast packets dropped due to no receiver
0 ipintrq overflows

mat #

Note: The AIX V3.2 doesn′ t provide these counters with the netstat -p ip
command.

5.1.3 MTU Configuration
You can configure the MTU for each interface. As usual, SMIT (or high-level
command) and a standard UNIX command, ifconfig, are available.

Chapter 5. TCP/IP Related Parameter Tuning 249

5.1.3.1 Using SMIT
Although MTU is an attribute of a network interface device, the MTU
configuration screen has the titled Network Interface Drivers. This is the only
attribute of the network interface drivers.

 1. Invoke the SMIT with the fast path, as follows:

smitty chif

Then, you will be asked to choose the network interface from all the
available network interfaces. After the selection, a configuration panel is
displayed.

 2. There is only one entry field in the configuration panel. This is for the MTU
configuration. This operation updates the MTU values both in the ODM and
the kernel.

� �
Network Interface Drivers

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Network Interface tr0
Maximum IP PACKET SIZE for THIS DEVICE [1492] +#

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 30. SMIT MTU Configuration Screen (Token-Ring)

5.1.3.2 Using High-Level Command
The high-level command, which has the equivalent effect to SMIT, is the chdev.

 1. Issue this command, as follows:

chdev -l tr0 -a mtu=2000
tr0 changed
#

Note: Token-ring interface device has four MTU related attributes (mtu,
remmtu, mtu_4 and mtu_16). Other interfaces devices have two MTU
related attribute (mtu and remmtu). They are not used now. The only
valid attribute is mtu.

You can confirm the update in the ODM with the lsattr command as follows:

lsattr -E -l tr0 -a mtu
mtu 2000 Maximum IP Packet Size for This Device True
#

Since SMIT and lsattr confirm only the content of the ODM, use the netstat -i
command to confirm if the kernel is really recognizing the updated MTU, as
follows:

250 Practical TCP/IP for AIX V3.2/V4.1

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 214 0 214 0 0
lo0 16896 127 localhost 214 0 214 0 0
tr0 2000 <Link>40.0.7e.8.66.70 1523 0 674 0 0
tr0 2000 9.68.214 zero.hakozaki.i 1523 0 674 0 0
#

5.1.3.3 Using Standard UNIX Command ifconfig
AIX V3.2 and V4.1 also supports the MTU configuration with the standard UNIX
command ifconfig.

 1. Issue the ifconfig command, as follows:

ifconfig tr0 mtu 2000
#

 2. You can confirm if the change was made successfully with the netstat -i
command. Notice the that ifconfig only updates the kernel parameter.

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 214 0 214 0 0
lo0 16896 127 localhost 214 0 214 0 0
tr0 2000 <Link>40.0.7e.8.66.70 1448 0 659 0 0
tr0 2000 9.68.214 zero.hakozaki.i 1448 0 659 0 0
#

 3. As mentioned previously, the ODM is not updated, as follows:

lsattr -E -l tr0 -a mtu
mtu 1492 Maximum IP Packet Size for This Device True
#

It stores the default value in this example. The update can not be reserved
for the system reboot. When you boot the system next time, the MTU stored
in the ODM will be loaded unless you explicitly describe this command in a
startup script such as the /etc/rc.net.

The ifconfig command doesn′ t check the validity of the specified parameter. For
example, if the interface is Ethernet Version 2 or en0, the MTU must be between
60 - 1500. But, you can configure the value bigger than 1500 (such as 2000). As
a result, any IP datagram bigger than 1500 bytes cannot be sent out. If you do
this, any application or operation that sends data bigger than 1500 bytes just
hangs.

Note: If it would be SMIT or high-level command, you would get an error
message if you tried to configure an invalid MTU.

5.1.3.4 MTU Default and Valid Values
Our AIX V4.1 and RS/6000 have the following default MTU values.

Chapter 5. TCP/IP Related Parameter Tuning 251

Note: Be aware that the default MTU of token-ring is not the maximum MTU.
This is due to a specific reason (that will be mentioned later), but you had
better change the default for many occasions in order to optimize
performance.

You can ask your system for the default and possible range of the MTU, by using
the high-level lsattr command. This is the case of a token-ring network interface.
Use the -R flag to review the supported parameter range as follows:

lsattr -R -l tr0 -a mtu
60...17792 (+1)

You can use the -D flag to review the default value, as follows:

lsattr -D -l tr0 -a mtu
mtu 1492 Maximum IP Packet Size for This Device True
#

Table 2. Available MTU Values (Bytes)

Interface Type Default Minimum Maximum

Ethernet Version 2 en0 1500 60 1500

IEEE802.3 Ethernet et0 1492 60 1492

Token Ring 4M tr0 1492 60 4096

Token Ring 16M tr0 1492 60 17960

X.25 xt0 576 60 1024

SLIP sl0 1006 60 4096

FDDI fi0 4352 1 4352

Block MPX Channel ca0 4096 1024 4096

SOCC so0 61428 1 61428

5.1.4 MTU Pitfalls
There are some known pitfalls about MTU. Some are performance issues and
some are connectivity issues.

5.1.4.1 A Bigger MTU Is Better to a Point
As we have already seen, MTU optimization is important for performance tuning.
Both fragmentation at a sending system and reassembly at a receiving system
are considerable overhead. Generally speaking, it would be better to avoid
fragmentation. The basic principle for MTU tuning is to make it as large as
possible. Of course, the MTU must be smaller than the maximum frame size of
the data link.

Note: As you have already seen in AIX V3.2 and V4.1, the default MTU is usually
the maximum frame size (maximum MTU). But, token-ring is an
exception. It has a considerably smaller default MTU than the maximum
MTU.

But, MTU should not be determined by your convenience only because there
may be a system that cannot receive frames appropriate for you. RS/6000 can
receive frames up to the maximum frame size of the involved data link even if
the interface is configured to smaller MTU. This is not true for all products. As
in the RFC 1122, there may be a system which can only receive up to 576 bytes

252 Practical TCP/IP for AIX V3.2/V4.1

of the IP datagram. Nowadays such systems seem exceptional. Therefore, MTU
should be agreed by all systems in the same IP network.

Note: A mismatch of MTUs are difficult to notice, because only a large IP
datagram that exceeds the destination system′s MTU causes a problem.
If TCP is used, it can not be detected because TCP has a mechanism
called MSS and it automatically adjusts all the segment sizes to smaller
than the effective MTU. Then, only UDP datagrams meet a problem.

RFC 1122 Requirements for Internet Hosts, Page 56

The IP layer MUST implement reassembly of IP datagram.

We designated the largest datagram size that can be reassembled by EMTU_R
(″Effective MTU to receive″); this is sometimes called the ″reassembly buffer
size″. EMTU_R MUST be greater than or equal to 576, SHOULD be either
configurable or indefinite, and SHOULD be greater than or equal to the MTU
of the connected network(s).

Another issue is that bigger is not always better. A UDP datagram is mapped to
an IP datagram. If you try to avoid fragmentation, UDP datagrams should be
smaller than MTU and this means that your UDP application has to issue a
system call, sendto() or similar call with data sizes smaller than the MTU
(exactly smaller than the MTU minus IP and UDP header). If the MTU is small
and you have to send a large amount of data, your application must issue many
system calls with small chunks of data. Which is better for performance, having
many system calls by an application and suppressing fragmentation, or having a
few system calls by an application and accepting fragmentation? We expect that
suppressing fragmentation is better in most situations, but if you need the exact
answer, you should make a benchmark.

Our Experience

A customer had an FDDI backbone network and some Ethernet branch
networks. They used NFS through those networks. NFS uses UDP and UDP
datagram size (more accurately the size of RPC) can be configured by the
NFS send buffer size. Since Ethernet′s maximum frame size is 1500 bytes
and FDDI′s is 4352 bytes, in order to avoid fragmentation at routers between
FDDI and Ethernet, the MTU for both FDDI and Ethernet should be 1500 bytes.
This rules that each RPC should be smaller than 1500 bytes. As a result,
many RPCs are needed.

The customer made several benchmark tests and the results due interesting.
In that customer′s environment, accepting fragmentation and reducing the
number of RPC enhanced performance. Of course, in this case, the routers
performance characteristics were one of the key factors.

5.1.4.2 Fragmentation at Routers
The fragmentation and assembly are completely transparent from any higher
layer (than IP), except for performance degradation. It can be overhead for a
sender, a receiver and network, including interconnect devices such as a router.

The fragmentation may be done at any router on the way to the destination
system. Also, a fragment can be fragmented again into some smaller fragments.

Chapter 5. TCP/IP Related Parameter Tuning 253

But, the reassembly is done only by the final destination system. All fragments
must arrive at the destination system within the timeout period or they are
discarded. This invites retransmission of all fragments (entire IP datagram) and
not just retransmission of a lost fragment. Then the impact of a lost fragment is
not trivial.

Since a source or sending system never knows if the frames (IP datagrams) are
fragmented at any router, this means that the sending system cannot control
fragmentation if the destination is not located in the same local IP network (or
subnet). If an IP datagram must pass through several networks, the network
which has the smallest MTU decides the final result. If we could know the
smallest MTU on the way before sending an IP datagram, we could optimize the
performance.

Note: If you have some token-ring networks connected by routers or bridges,
running those networks with the default MTU of 1492 bytes doesn′ t give
you the best result.

Although it is not widely implemented, an interesting mechanism has been
proposed. It is described in the RFC 1191 Path MTU Discovery. It is a draft
standard protocol and the state is elective. This mechanism provides us with a
way to determine the smallest MTU value of the path, and allows us to avoid
fragmentation on routers. Currently our RS/6000 doesn′ t support this protocol.

As for now, the safest way is to choose your MTU for the minimum requirement.
It is recommended that you use 576 bytes of MTU if a destination system is
located in a remote IP network.

RFC 1122 Requirements for Internet Hosts, Page 58

It is generally desirable to avoid local fragmentation and to choose EMTU_S
low enough to avoid fragmentation in any gateway along the path. In the
absence of actual knowledge of the minimum MTU along the path, the IP layer
SHOULD use EMTU_S <= 576 whenever the destination address is not on a
connected network, and otherwise use the connected network′s MTU. ...

DISCUSSION

Picking the correct datagram size to use when sending data is a complex
topic ...

Since nearly all networks in the Internet currently support an MTU of 576 or
greater, we strongly recommend to use of 576 for datagrams sent to non-local
network.

5.1.4.3 Remote MTU (rmmtu) Is Obsolete
The old version of AIX, V3.1, had the option to configure the MTU value for the
remote network. This means that AIX V3.1 could have two MTUs for one
interface. One is for the locally attached IP network and the other is for the
remote IP networks through router(s). This feature is now obsolete and we don′ t
have this capability with AIX V3.2 and V4.1. There remains some attributes or
parameters in AIX V3.2 and V4.1, which look as if they are available and
effective, but they are totally obsolete now.

Note: Also, for a token-ring interface, mtu_4 and mtu_16 are not used. Although
the lsattr commands show you some MTU related attributes, the only

254 Practical TCP/IP for AIX V3.2/V4.1

valid attribute is mtu. In the example below, the attributes, remmtu,
mtu_4 and mtu_16 are not used:

lsattr -E -l tr0
mtu 1492 Maximum IP Packet Size for This Device True
mtu_4 1492 Maximum IP Packet Size for This Device True
mtu_16 1492 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr 9.68.214.82 Internet Address True
state up Current Interface Status True
arp on Address Resolution Protocol (ARP) True
allcast on Confine Broadcast to Local Token-Ring True
hwloop off Enable Hardware Loopback Mode True
netmask 255.255.255.128 Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
#

Although we don′ t have a separate MTU configuration procedure for remote IP
networks, we can configure separate TCP MSS for remote IP networks. This can
be made by the route -mtu command or no -o tcp_mssdflt. Unfortunately this is
TCP only.

5.1.4.4 When You Have a Bridge
Care must be taken if you use a bridge to connect two network segments. If you
connect an Ethernet Version 2 segment to a token-ring segment, you should not
configure the same MTU for both networks. The MTU of token-ring must be eight
bytes less than that of Ethernet Version 2.

Note: Since token-ring and Ethernet headers are data link layer′s headers, they
are not included when MTU is evaluated. Be aware that MTU is a
parameter for IP datagram length.

Because the token-ring frame has an eight byte LLC header and Ethernet
Version 2 doesn′ t have this header, when a token-ring frame passes through a
bridge, the bridge must convert the token-ring header to an Ethernet Version 2
header. Almost all token-ring header fields can be mapped to corresponding
Ethernet header fields, but Ethernet Version 2 doesn′ t have an eight bytes LLC
field. Therefore, the bridge merges the LLC field into a data field during the
conversion. As a result, a converted frame has additional eight bytes in a data
field. If you configure both segments to the same MTU (for instance 1500 bytes)
then, when a token-ring frame carrying 1500 bytes of data becomes an Ethernet
frame carrying 1508 bytes of data, this frame can not pass through the bridge to
the Ethernet segment.

Note: This is why the default MTU of token-ring is 1492 bytes.

It′s not so easy to notice a misconfigured MTU, because as with the previous
example, only frames carrying more than 1492 bytes of data in token-ring have
this problem. Other frames are safely transmitted.

Chapter 5. TCP/IP Related Parameter Tuning 255

5.2 TCP Maximum Segment Size
A unit of transmission in a TCP layer is called a segment. A UDP datagram has
the maximum length of 65,536 bytes. An IP datagram also has the maximum
length of 65,536 bytes. How about a TCP segment? A TCP segment also has a
maximum length, but it is determined at the moment of connection
establishment. The Maximum Segment Size (MSS) is negotiated by both
systems and this guarantees connectivity because both systems can avoid
sending a segment which the other cannot receive.

Notice that the IP layer has an MTU and any IP datagram larger than the MTU is
fragmented. Fragmentation impacts performance and it is recommended that
you avoid the fragmentation. The TCP MSS is determined taking the MTU into
consideration.

5.2.1 MSS Basics
The MSS negotiation is made by using the TCP option field. The negotiation is
as follows:

 1. MSS is calculated using the MTU.

Note: There is a bit of a complex procedure involved in this MSS
determination process. Actually, values of route -mtu, no -o
tcp_mssdflt and no -o subnetsarelocal are evaluated and used if
necessary.

a. Calculate the following variables A and B. Notice that the IP and TCP
headers are 20 bytes each.

A = MTU value - (TCP header size + IP header size)

B = Socket Receive Buffer size ÷ 2

b. Compare A and B; the smaller one is used as the effective MSS.

 2. The MSS decided above is advertised with the connection establishment
segment (SYN or SYN/ACK segment).

Note: If the destination system doesn′ t support an MSS negotiation option,
536 bytes is used as the destination system′s MSS. This is due to
RFC 1122 Requirements for Internet Hosts; any system must support
at least 576 bytes length of the IP datagram.

 3. Get the destination system ′s MSS from ACK or SYN/ACK segment received.

 4. Compare its MSS and destination′s MSS; the smaller one is decided to be
the effective MSS.

Here, we show you a concrete example through a TELNET connection. In this
case, both a source system, mat, and a destination system, zero, are AIX V4.1.2.

 1. In this example, the mat initiates connection (active open). In this segment,
the data 020405ac is for the TCP option. Why can we say it is not application
data? This is because the offset field of the TCP header, th_off=6, shows
that this segment has one 4 bytes option field. If there are no options, this
field should be 5. The format of the TCP option field is as follows.

1st byte Type of TCP option (MSS is 2.)

2nd byte Option field length in byte (MSS is 4.)

After 3rd byte Option data (MSS value if MSS)

256 Practical TCP/IP for AIX V3.2/V4.1

In this case, the mat is advertising the MSS value of 05ac in hex. This is
1452 bytes in decimal and if you add to the length of the TCP and IP headers
(40 bytes), it becomes 1492 bytes. This is the default MTU value of the
token-ring. Also, you can know that the receive buffer size of the mat is 16
KB by referring to the field, th_win=16384:

Packet Number 1
TOK: ====(66 bytes transmitted on interface tr0)==== 17:21:05.857892352
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=5370, ip_off=0
IP: ip_ttl=60, ip_sum=aaa3, ip_p = 6 (TCP)
TCP: <source port=1053, destination port=23(telnet) >
TCP: th_seq=5180a801, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=9b49, th_urp=0
TCP: 00000000 020405ac |.... |

 2. The destination system zero responds with the SYN/ACK segment (passive
open). As you saw with the prior segment, this TCP segment also has an
MSS option. The advertising MSS is 0fd8 and the reason is that the MSS of
zero was updated to 4056 bytes, which is the maximum MTU for 4 MB
token-ring. As a result, MSS is decided to be 1452 bytes because the
smaller one wins. Although the receive buffer size of the newton is also
16384 bytes, it has already received SYN segment from the mat, the window
size is slightly reduced to th_win=15972:

Packet Number 2
TOK: ====(66 bytes received on interface tr0)==== 17:21:05.860547328
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1],
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=1090, ip_off=0
IP: ip_ttl=60, ip_sum=bb5b, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1053 >
TCP: th_seq=22baa001, th_ack=5180a802
TCP: th_off=6, flags<SYN | ACK>
TCP: th_win=15972, th_sum=cfec, th_urp=0
TCP: 00000000 02040fd8 |.... |

 3. Now that the mat responds, the ACK segment and TCP three-way hand
shake is completed:

Packet Number 3
TOK: ====(62 bytes transmitted on interface tr0)==== 17:21:05.860603008
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:

Chapter 5. TCP/IP Related Parameter Tuning 257

TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=5371, ip_off=0
IP: ip_ttl=60, ip_sum=aaa6, ip_p = 6 (TCP)
TCP: <source port=1053, destination port=23(telnet) >
TCP: th_seq=5180a802, th_ack=22baa002
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=f1cd, th_urp=0

 4. This is a TELNET segment. Notice the offset field is th_off=5 and this
segment is not carrying any TCP option. The data fffd01ff... is TELNET
data and you need to know TELNET protocol if you want to interpret it.

Packet Number 4
TOK: ====(77 bytes transmitted on interface tr0)==== 17:21:05.883144448
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=55, ip_id=5372, ip_off=0
IP: ip_ttl=60, ip_sum=aa96, ip_p = 6 (TCP)
TCP: <source port=1053, destination port=23(telnet) >
TCP: th_seq=5180a802, th_ack=22baa002
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=bcf5, th_urp=0
TCP: 00000000 fffd01ff fd03fffb 18fffdc8 fffb1f |............... |

In this example, a 4 MB token-ring is used for the data link layer. Also, the
system, the mat and the zero are in the same physical ring. The previous MSS of
1452 bytes is a bad example. Since a 4 MB token-ring can support up to 4,096
bytes of MTU, the MTU should be configured to be 4,096 at both sides. Of
course, receive buffer sizes should be expanded to larger than 2,048 bytes.
Then, you can achieve the maximum efficiency.

5.2.1.1 MSS Customization
As explained before, the MSS is automatically defined by TCP. In most cases,
since an interface MTU is smaller than the half of the receive buffer, the
interface MTU defines the MSS. But, for some situations, you may need to
override this decision logic. Because MTU is defined for each interface, all the
TCP segments sent from the same interface share the same MTU. In certain
cases, this is not the best choice. Currently two procedures are provided with
the AIX V3.2.5 and a later release/version for this issue. One option is to use the
-mtu option of the route command. The other is to use the tcp_mssdflt option of
the no command.

5.2.2 The Route -mtu Command
Consider the following situation. You have a 16 MB token-ring network, and you
configured the MTU for your IP network to 17960 bytes. Later, you have to
connect an Ethernet network through a router. In order to avoid fragmentation at
the router, you should change the MTU to 1500 bytes. But, many of your
destination systems are still in your local token-ring network. Then, changing
the MTU to 1500 invites inefficiency within the token-ring.

258 Practical TCP/IP for AIX V3.2/V4.1

The -mtu option of the route command allows you to configure the MTU for each
route (not just for each interface). With this option, you can give a specific MTU
value to only that traffic through the router.

Note: This option is only valid to the TCP segment. In other words, this option
is only evaluated at the MSS decision procedure. Other protocols such as
UDP, can not have this advantage.

The following is an example of this option.

 1. Now our system, mat has a 4MB token-ring interface tr0 with the maximun
MTU 4096 bytes.

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 219 0 219 0 0
lo0 16896 127 localhost 219 0 219 0 0
tr0 4096 <Link>10.0.5a.a8.b5.c1 35419 0 5990 0 0
tr0 4096 9.68.214 mat.hakozaki.ib 35419 0 5990 0 0
#

 2. On the mat, the TCP receive buffer size is set to 16384 bytes (this is default):

no -a | grep space
tcp_sendspace = 16384
tcp_recvspace = 16384
udp_sendspace = 9216
udp_recvspace = 41600

#

With this configuration, the mat will advertise its MSS of 4096 bytes during a
TCP connection establishment because a half of the receive buffer is 8192
bytes. Still, the MTU is smaller.

 3. But this time, we explicitly configured a specific route to the destination
system, ts, using the route -mtu, as follows:

route add -host ts 9.68.214.1 -mtu 3072
3072 host ts: gateway 9.68.214.1
#

Check to see if the route has really been added, as follows:

netstat -r | grep U
Destination Gateway Flags Refs Use Interface
Route Tree for Protocol Family 2:
default 9.68.214.1 UG 2 982 tr0
ts.hakozaki.ibm. 9.68.214.1 UGH 0 0 tr0
9.68.214 mat.hakozaki.ibm.c U 9 4536 tr0
localhost localhost UH 1 2 lo0
#

Now all routes attached to the tr0 share the MTU of 4096 bytes except the
route to the system ts. This route has the MTU of 3072 bytes.

Note: As you can see, this route specific MTU can only be defined for a
remote network or a remote host. You can not specify an explicit
route to the host in the same local network.

There is no way to review if a route has a specific MTU configured. If you
are not sure what value was set to a route (or if you want to confirm if a
route has the specific MTU) delete and add the MTU again.

Chapter 5. TCP/IP Related Parameter Tuning 259

 4. Then, we invoked the TELNET from the mat to the ts and captured the packet
with an IP trace. As you can see, the mat is advertising its MSS as 0bd8 or
3032 bytes in spite of the interface MTU (4096 bytes).

Note: Do not forget to reduce the IP and TCP header size (40 bytes) from an
MTU to compare it with an MSS.

Packet Number 4
TOK: ====(66 bytes transmitted on interface tr0)==== 17:47:15.562801024
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: src = 10:00:5a:a8:b5:c1, dst = 00:00:fa:37:91:64
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=5550, ip_off=0
IP: ip_ttl=60, ip_sum=adb7, ip_p = 6 (TCP)
TCP: <source port=1059, destination port=23(telnet) >
TCP: th_seq=5d80ec01, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=48df, th_urp=0
TCP: 00000000 02040bd8 |.... |

 5. The following segment is from the ts destination. The ts is also advertising
its MSS as 05ac or 1452 bytes. The ts is also in a 4 MB token-ring network
and it is only using the default MTU. Therefore, in spite of our effort, the
MSS would be agreed to at 1452 bytes.

Note: You need to make adjustments on both sides.

Packet Number 5
TOK: ====(66 bytes received on interface tr0)==== 17:47:15.566755072
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:00:fa:37:91:64, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=13225, ip_off=0
IP: ip_ttl=58, ip_sum=91bc, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1059 >
TCP: th_seq=a42f6201, th_ack=5d80ec02
TCP: th_off=6, flags<SYN | ACK>
TCP: th_win=15972, th_sum=4a65, th_urp=0
TCP: 00000000 020405ac |.... |

5.2.3 The no -o tcp_mssdflt Command
In the prior section, it is explained how to override the interface wide MTU
configuration when you establish a connection to a remote network. If you don′ t
configure a MTU for the remote network, your system automatically chooses the
default MTU for all remote networks, that is 512 bytes. This default value can be
changed with the option of the no command, tcp_mssdflt.

Note: This option is only effective for TCP. More accurately, this option is only
used by TCP MSS determination process.

260 Practical TCP/IP for AIX V3.2/V4.1

The safest approach is to use the minimum MTU of 576 bytes for non-local
networks. The default value of tcp_mssdflt is 512 bytes and this is smaller than
the value recommended in the RFC 1122. The reason is written in the header
file /usr/include/netinet/tcp.h with the value itself as follows (refer to C.1,
“/usr/include/netinet/tcp.h” on page 365 for the complete list of the file):

/*
 * Default maximum segment size for TCP.
 * With an IP MSS of 576, this is 536,
 * but 512 is probably more convenient.
 * This should be defined as MIN(512, IP_MSS - sizeof (struct tcpiphdr)).
 */
#define TCP_MSS 512

Notice the option of the no command, subnetsarelocal, has a crucial role at this
stage if you are using the subnet mask in your environment. If this option is set
to 1, your system considers that any IP networks defined by the subnet mask are
all located in the same physical network media. As a result, your system
doesn ′ t apply the tcp_mssdflt to those systems which are located in different IP
subnet networks. If the subnetsarelocal is set to 0, your system recognizes each
IP subnet network and uses tcp_mssdflt. Be aware that the default of the
subnetsarelocal is 1. You must explicitly set this option if you need to use
anything other than 1.

no -o subnetsarelocal=0
no -o subnetsarelocal
subnetsarelocal = 0
#

Note: Maybe the tcp_mssdflt is the only parameter which is affected by the
subnetsarelocal. This is why a lot of people don′ t know about the
meaning of subnetsarelocal.

tcp_mssdflt
This defines MTU for remote networks. The MTU configured with this
option cannot exceed the interface wide MTU. The default is 512. This
is quite reasonable. To reach a remote network, any segment first goes
through the local network.

subnetsarelocal
This defines if subnets are really different networks (physically). The
default is 1; subnets are physically the local network.

The procedure of using this option is outlined below, using a real example.

 1. The system checks to see if the route specific MTU is defined to the
destination. If the route specific MTU is defined, tcp_mssdflt is never
evaluated or used. The value of the route specific MTU always has the
higher priority. In this example, our destination is the ts, as follows:

host ts
ts.hakozaki.ibm.com is 9.68.210.140
#

The source system is mat, and it has following routes. Although it has route
to the network, 9.68.210.128, no explicit MTU is defined for that route. As you
can see, we used the subnet mask of 255.255.255.128.

Chapter 5. TCP/IP Related Parameter Tuning 261

netstat -r |grep U
Destination Gateway Flags Refs Use Interface
default 9.68.214.1 UG 1 1084 tr0
9.68.210.128 9.68.214.1 UG 0 0 tr0
9.68.214 mat.hakozaki.ibm.c U 9 4653 tr0
localhost localhost UH 1 2 lo0
#

 2. The system checks to see if the destination is located in the same local
network or remote network. If the destination is in the local network (in
other words in the same IP network and it can be reached without routers),
this option is not evaluated. The system just uses the interface MTU for the
MSS deduction.

Note: Do not forget that subnetsarelocal has a meaning here.

Since we are using subnet mask and the ts is in the remote subnet (actually
this remote subnet is physically a different network), then we set
subnetsarelocal to 0.

no -o subnetsarelocal
subnetsarelocal = 1
no -o subnetsarelocal=0
no -o subnetsarelocal
subnetsarelocal = 0
#

 3. Next, the system checks to see if the value of the tcp_mssdflt is larger than
the interface MTU (exactly speaking, interface MTU minus IP and TCP
header, 40 bytes). If tcp_mssdflt is larger, the interface MTU is used for MSS
deduction. If the tcp_mssdflt is smaller, this value is used for the MSS
negotiation. The interface of the mat has an MTU of 1492 bytes.

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 219 0 219 0 0
lo0 16896 127 localhost 219 0 219 0 0
tr0 1492 <Link>10.0.5a.a8.b5.c1 36713 0 6289 0 0
tr0 1492 9.68.214 mat.hakozaki.ib 36713 0 6289 0 0
#

Our defined tcp_mssdflt is 1024 bytes. Then, this 1024 bytes should be used
for the MSS negotiation.

no -o tcp_mssdflt
tcp_mssdflt = 512
no -o tcp_mssdflt=1024
no -o tcp_mssdflt
tcp_mssdflt = 1024
#

 4. We invoked TELNET at the mat to the ts and captured the packets with the IP
trace. This is the SYN segment from the mat and the MSS of 0400 or 1024
bytes is advertised.

Packet Number 3
TOK: ====(66 bytes transmitted on interface tr0)==== 18:46:33.063450112
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK:] src = 10:00:5a:a8:b5:c1, dst = 00:00:fa:37:91:64[
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)

262 Practical TCP/IP for AIX V3.2/V4.1

IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=5799, ip_off=0
IP: ip_ttl=60, ip_sum=acbe, ip_p = 6 (TCP)
TCP: <source port=1070, destination port=23(telnet) >
TCP: th_seq=78aeee01, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=337e, th_urp=0
TCP: 00000000 02040400 |.... |

 5. This is the response from the ts and the MSS of 05ac or 1452 bytes is
advertised. Since ts had subnetsarelocal=1 and cannot distinguish any
subnets, then it used the interface MTU of 1492 bytes (it is the default for
token-ring). After the MSS negotiation, a smaller MSS, 1024, would be taken.

Packet Number 4
TOK: ====(66 bytes received on interface tr0)==== 18:46:33.067565824
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:00:fa:37:91:64, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=14885, ip_off=0
IP: ip_ttl=58, ip_sum=8b40, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1070 >
TCP: th_seq=bf549a01, th_ack=78aeee02
TCP: th_off=6, flags<SYN | ACK>
TCP: th_win=16384, th_sum=d86a, th_urp=0
TCP: 00000000 020405ac |.... |

In this example, our networks are all token-ring 4 MB. In such an environment,
just leaving everything as the default values is not a recommended approach.
Of course, choosing an unnecessarily small MSS, such as 1024, is not a good
example.

Note: If you are using all the default parameters and using subnet, just
changing the subnetsarelocal from 1 to 0 changes the MSS from 1492 to
512 for remote networks.

5.3 IP Queue
The IP module keeps a queue for incoming IP datagrams. The IP queue is only
for receiving datagrams, and outgoing datagrams are not queued at the IP layer.
The queue length is the only parameter you can do with the IP queue.

Since routing is a function of the IP layer, this parameter is important for the
router-configured system. Even if you are not running the TCP/IP applications on
your system, someone may be putting a heavy load on your system in order to
pass through his or her datagrams.

Chapter 5. TCP/IP Related Parameter Tuning 263

5.3.1 Getting IP Queue Status
Since the IP queue has a finite length, if a system gets a burst of IP datagrams,
the queue can overrun. In that case, some datagrams can be lost.

With V4.1, the netstat -p ip command is enhanced to support the counter for the
IP queue overflow. Watch the counter, ipintrq overflows, as follows:

netstat -p ip
...

0 output datagrams fragmented
0 fragments created
0 datagrams that can′ t be fragmented
2531 IP Multicast packets dropped due to no receiver
0 ipintrq overflows

#

Difference between V4.1 and V3.2

Unfortunately with V3.2 there are no commands or utilities which you can use
to check the IP queue status or datagram loss. You should use the crash
command, and read the overflow counter in the kernel directly. The following
is a sample procedure.

 1. First, invoke the crash and you wil l see the following prompt:

crash
>

 2. Type the subcommand knlist ipintrq. You wil l see the following
address:

> knlist ipintrq
ipintrq: 0x014a5540

>

 3. Next, use the od subcommand and specify the address 10 (hex) greater
than the address you got in the previous step.

> knlist ipintrq
ipintrq: 0x014a5540

> od 0x014a5550
014a5550: 00000000
> q
#

 4. Now you have the counter. In this example, the overflow counter is 0 and
we have not had an IP queue overflow problem. You can exit the crash
with the q subcommand.

5.3.2 IP Queue Configuration
The queue length can be configured with the no command. The default value is
50. You can review the current value with the -o flag.

 1. Issue the no command with the ipqmaxlen option and review the current
value:

no -o ipqmaxlen
ipqmaxlen = 100
#

 2. You can configure the queue length, as follows:

264 Practical TCP/IP for AIX V3.2/V4.1

no -o ipqmaxlen=200
#

 3. Confirm that the update was made correctly, as follows:

no -o ipqmaxlen
ipqmaxlen = 200
#

If you need this update to be permanent, write it in the startup script /etc/rc.net.
The best place is the end of the script, as shown:

###
The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for Ethernet and token-ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
###
if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o tcp_recvspace=16384
/usr/sbin/no -o ipqmaxlen=200

fi

5.3.3 IP Queue Pitfall
There is a pitfall for expanding the queue size. No additional memory is used by
increasing the queue length. However, it may result in more time spent in the
off-level interrupt handler since IP will have more packets to process on its input
queue. This could adversely affect the processes needing CPU time. The
trade-off is reduced packet dropping versus CPU availability for other
processing. It is best to increase the ipqmaxlen option by moderate increments
if the trade-off is a concern.

If your system is configured as a router, routing activity consumes IP queue and
CPU time. Even just receiving many IP broadcast packets may affect the system
performance.

5.4 TTL (Time-To-Live)
TTL or Time-To-Live is a rather trivial function from a performance improvement
point of view. In a few situations, they may not play a trivial part, but mainly this
section intends to give you some TCP/IP knowledge that may help you to
understand TCP/IP mechanism.

5.4.1 IP Datagram TTL Basics
The TTL is implemented in the IP layer only. You could see the field ip_ttl in a
report generated by the ipreport command, as follows:

IP: < SRC = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=58, ip_id=13232, ip_off=0
IP: ip_ttl=58, ip_sum=91a7, ip_p = 6 (TCP)

The IP datagram TTL has the following purposes:

Chapter 5. TCP/IP Related Parameter Tuning 265

• It defines the maximum segment life time for TCP.

• It discards any datagrams in an infinite loop due to misconfigured routing
table(s).

The unit of TTL is second. The maximum TTL is 255 seconds or 4 minutes and
15 seconds. The TTL is set by the source system. When the IP datagram is set
out, it will be decreased at a router by at least one. If the datagram needed
more than one second to pass the router, the actual time (second) should be
subtracted from the TTL field. Otherwise, one should be subtracted from the TTL
field. Up to now, we have not seen a router which decreases the TTL by more
than one second. Then, we can consider that the TTL equals the possible hop
count or the number of routers on the way to the destination.

When the TTL reaches 0 at a router, the datagram must be discarded by the
router. When a datagram is discarded, the ICMP time exceeded message (TTL
equals 0 during transit) will be sent back to the source system from the router.

RFC 1122 Requirement for Internet Hosts, Page 34

A host MUST NOT send a datagram with a Time-to-Live (TTL) value of zero.

A host MUST NOT discard a datagram just because it was received with TTL
less than 2.

The above description in the RFC 1122 means that any system (including a
router) can receive IP datagrams which have the TTL 0 or 1. But, the system
cannot forward these datagrams. If the system is a router, the ICMP time
exceeded message will be sent back.

Since TTL value defines the maximum hop count, the initial TTL value defines
the datagram reachability. A small TTL may not be enough if the destination is
located beyond many routers. Then, the current appropriate initial TTL value is
defined in the RFC 1700 ASSIGNED NUMBERS. This is the current
recommendation and is subject to change in the future.

RFC 1700 ASSIGNED NUMBERS, Page 64

The current recommended default time to live (TTL) for the Internet Protocol
(IP) [45,105] is 64.

Usually TTL is not a big concern when you consider performance improvement.
Of course, too small a TTL may cause retransmission, or even an IP datagram to
never reach the destination system. Mainly, we can use the TTL for debugging.
Also, some tools or commands are designed to use the TTL field. You know that
the ping command always sets the TTL to 255. Also, the traceroute command
sets the TTL to 1 for the first datagram and then increases it for each successive
datagram by one.

266 Practical TCP/IP for AIX V3.2/V4.1

5.4.2 TTL Configuration
Currently there is only one TTL (the TTL for IP datagrams). Since an IP
datagram can carry more than one transport protocol, our AIX V3.2 allows us to
configure the IP datagram TTL for each transport protocol.

TTL is configured with the no command. The no command has some options to
configure TTL, as follows:

no -a | grep ttl
maxttl = 255

ipfragttl = 60
udp_ttl = 30
tcp_ttl = 60

#

tcp_ttl
Our AIX allows us to configure the TTL value for the TCP segment. Do
not be confused that this is not exactly the TTL for the TCP segment.
This is the TTL of an IP datagram which carries a TCP segment. As a
result, the TTL of the TCP segment is indirectly defined. The default of
this TTL is 60 seconds.

udp_ttl
Our AIX allows us to configure the TTL value for the UDP datagram. Do
not confuse this is with the TTL for the UDP datagram. This is the TTL
of an IP datagram which carries the UDP datagram. As a result, the
TTL of the UDP datagram is indirectly defined. The default of this TTL is
30 seconds.

ipfragttl
Our AIX allows us to configure the TTL value for the IP datagram to
reassemble. All fragments derived from one IP datagram must arrive at
the destination within this period (TTL). If any of them is lost or
extremely delayed (and exceeds this TTL), other received fragments are
discarded and the entire set of fragments must be retransmitted. If this
happens, the amount of ICMP time exceeded (TTL equals 0 during
reassembly) is sent to the source system. The default of this TTL is 60
seconds.

maxttl
This is TTL for the Routing Information Protocol (RIP) packet. When you
use dynamic routing with RIP by using a gated or a routed, those
daemons periodically exchange RIP packets with each other. This is
usually done by broadcast. The default of this TTL is 255 seconds (the
maximum).

In usual and almost all environments, we don′ t see any motivation or reason to
change any of TTLs. Setting a shorter TTL than the default may give you
hazardous results because it limits the reachability of the IP datagram.
Currently no applications use TTL as a criteria of timeout or some other
purposes. At least we don′ t know of any such applications. Some debug tools
and commands set TTL as they need; they are not regular communication
applications. All TTLs can be configured with the no command as follows:

 1. Issue the no command with the option (TTL name) you need.

no -o tcp_ttl=30
#

Chapter 5. TCP/IP Related Parameter Tuning 267

 2. Confirm if the update was successfully made.

no -o tcp_ttl
tcp_ttl = 30
#

As usual (with the no command), if you need to reserve the update through
system reboot, write the command in the startup script /etc/rc.net, as follows:

###
The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for Ethernet and token-ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
###
if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o tcp_recvspace=16384
/usr/sbin/no -o tcp_ttl=30

fi

5.5 Checksum
Checksum confirms consistency and integrity of the data. Performance and
checksum are in trade-off positions because checksum generation and validation
add a certain load for both sending and receiving systems. If you could turn the
checksum function off, the system performance would be improved (sacrificing
data accuracy).

Difference between V4.1 and V3.2

An option to disable checksum when the destination is on the same system
was removed at V4.1. With V3.2, we had the following option,
loop_check_sum of the no command:

no no -o loop_check_sum
loop_check_sum = 1
#

5.5.1 TCP Checksum
Checksum is mandatory for TCP. Both the data and TCP header are included for
the checksum calculation. There are no options to turn off the checksum
calculation.

TCP: <source port=23(telnet), destination port=1059 >
TCP: th_seq=a42f623a, th_ack=5d80ec2d
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=414d, th_urp=0
TCP: 00000000 0d0a0d0a 0d0a0d0a 0d0a0d0a 0d0a0d0a |................|

268 Practical TCP/IP for AIX V3.2/V4.1

RFC 1122 Requirements for Internet Hosts, Page 86

4.2.2.7 TCP Checksum: RFC-793 Section 3.1

Unlike the UDP checksum (see Section 4.1.3.4), the TCP checksum is never
optional. The sender MUST generate it and the receiver MUST check it.

An interesting thing is the concept of the pseudo-header. During the checksum
calculation, the pseudo-header is added to the TCP header (this is done both at
the sending system and the receiving system). The pseudo-header includes both
as a source and a destination IP address. Why is this header added? It is
because the TCP header doesn′ t contain IP addresses and just includes source
and destination port numbers. This means if a TCP segment is delivered to the
wrong system (wrong destination IP address), the TCP module on that system
could not notice it by looking at the TCP header. Including the IP address
information in checksum using the pseudo-header prevents this problem.

If a problem is detected after the checksum calculation (validation) in a receiving
system, the TCP segment is silently discarded. Nothing informs the sending
system. Notice that ICMP is not used.

5.5.2 UDP Checksum
Checksum is optional for UDP. But, our old AIX V3.2 doesn′ t allow us to turn off
the checksum calculation. Some implementations allow it. Since the IP layer
doesn ′ t provide checksum for the data portion, you had better use the UDP
checksum even when you have a choice.

Note: If the data link is Ethernet or token-ring, they have checksum. But, if the
data link is SLIP, it doesn′ t have checksum and you have nothing to
confirm the accuracy of the data.

IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.192.11 > (hzname1.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=65, ip_id=5549, ip_off=0
IP: ip_ttl=30, ip_sum=de19, ip_p = 17 (UDP)
UDP: <source port=1128, <destination port=53(domain) >
UDP: [udp length = 45 | udp checksum = 4750]
DNS Packet breakdown:

QUESTIONS:
ts.hakozaki.ibm.com, type = A, class = IN

RFC 1122 Requirements for Internet Hosts, Page 78

4.1.3.4 UDP Checksums

A host MUST implement the facility to generate and validate UDP checksums.
An application MAY optionally be able to control whether a UDP checksum
will be generated, but it MUST default to checksumming on.

Since the UDP checksum is optional, receiving UDP datagrams which have 0 in
their checksum field just means that the sender doesn′ t use checksum. In the
case of TCP, they are discarded. In UDP they are not considered to be an error.

Note: Old BSD 4.2 had a bug in the UDP checksum algorithm and if the
destination system would have a corrected algorithm, it could not
communicate.

Chapter 5. TCP/IP Related Parameter Tuning 269

Both data and UDP header are included for the checksum calculation. Also in
TCP, the pseudo-header is used for the same purpose. If a problem is detected
after the checksum calculation (validation) in a receiving system, the UDP
datagram is silently discarded. Nothing is informed to the sending system.
Notice that ICMP is not used.

At the AIX V4.1, a new option, udpcksum, is introduced to the no command. This
option allows you to enable and disable the UDP checksum.

no -o udpcksum
udpcksum = 1
#

The default is 1 (checksum is enabled). The following is an example when this
option is set to 0. Compare this trace output with the previous one.

IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.192.11 > (hzname1.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=65, ip_id=6071, ip_off=0
IP: ip_ttl=30, ip_sum=dc0f, ip_p = 17 (UDP)
UDP: <source port=1144, <destination port=53(domain) >
UDP: [udp length = 45 | udp checksum = 0]
DNS Packet breakdown:

QUESTIONS:
ts.hakozaki.ibm.com, type = A, class = IN

Difference between V4.1 and V3.2

AIX V3.2 doesn′ t allow us to turn off the checksum calculation. But, for NFS
only, it has an option to disable the checksum.

5.5.3 UDP Checksum for NFS
NFS is one of the most used TCP/IP applications, and performance is a crucial
factor to run NFS successfully. AIX provides an option to turn off the UDP
checksum for NFS only. You can use the nfso command option, udpchecksum.
The nfso command is a NFS version of the no command. The default is 1
(checksum enabled). Use this command as follows:

nfso -o udpchecksum
udpchecksum= 1
nfso -o udpchecksum=0
nfso -o udpchecksum
udpchecksum= 0
#

Note: Set the option udpchecksum to 0, and you have to accept the risk of data
corruption gaining the performance.

The nfso command also doesn′ t store the current parameter in a file. You have
to write down the above command in a start up script if you need a permanent
configuration. Maybe the best place is at the end of the /etc/rc.nfs script.

270 Practical TCP/IP for AIX V3.2/V4.1

Difference between V4.1 and V3.2

Although AIX V3.2 doesn′ t have a capability to disable UDP checksum, it does
provide limited capability to disable UDP checksum for NFS operations. You
can use nfso command as well as V4.1. But, the option name is different
(nfsudpcksum), as below:

nfso -o nfsudpcksum
nfsudpcksum = 1
nfso -o nfsudpcksum=0
nfso -o nfsudpcksum
nfsudpcksum = 0
#

Note: You may need a PTF in order to get the nfso command for your V3.2.

5.5.4 IP Checksum
Checksum is mandatory for IP. The checksum calculation is only applied to the
IP header. Data portion (including TCP or UDP header) is left for the upper layer
validation function, because the IP layer would deliver various kinds of data and
the priority of data accuracy and speed depends on the data.

IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.210.140 > (ts.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=43, ip_id=5555, ip_off=0
IP: ip_ttl=60, ip_sum=adb3, ip_p = 6 (TCP)

Due to TTL field and option fields, IP header is modified when it passes through
a router (some options such as, timestamp and record route, add information in
the IP header option field). This means that the IP checksum must also be
updated. If you have a router which has an incorrect checksum algorithm, your
IP datagrams are never received by the destination.

If a problem is detected after the checksum calculation in a receiving system, the
IP datagram is silently discarded. Nothing is informed to the sending system.
Notice that ICMP is not used.

5.5.5 Optional Address Check by RFC 1122
The RFC 1122 Requirements for Internet Hosts defines additional IP layer
validation. This validation is optional. If you turn this on, the following
information in IP header is validated:

IP protocol version
The currently supported IP protocol version is 4 and any other value is
invalid. This check is made for receiving IP datagrams.

TCP and broadcast
If the transport protocol is TCP, the IP datagram carrying the TCP segment
should not have a broadcast address for the destination or source (or both).
This check is made for both the sending IP datagrams and the receiving IP
datagrams.

The source address must be a local interface for sending.
For an IP datagram to be sent, the source address must be one of the local
network interfaces of the sending system.

Chapter 5. TCP/IP Related Parameter Tuning 271

You can enable or disable this additional validation using the no command. The
default is 0 (disable). Of course, enabling this feature adds a performance
penalty.

 1. You can enable this with the following command:

no -o rfc1122addrchk=1
#

 2. You can confirm that the update was completed as follows:

no -o rfc1122addrchk
rfc1122addrchk = 1
#

As usual, you may need to write the command at the end of the startup script
/etc/rc.net.

5.6 Socket Buffer
Usually data communication involves some concept of buffer. In TCP/IP, the
most widely used API is socket, and the socket provides buffering capability.
Therefore, we call the buffer a socket buffer.

We recommend that you refer to Performance Monitoring and Tuning Guide,
SC23-2365. Detailed mechanism and considerations are explained in it.

5.6.1 Buffer Basics
The buffer is the place where data is stored temporarily between application and
device driver (adapter card) when data is sent or received. This buffer consists
of mbufs and mbuf-clusters (memory pages). The send buffer and receive buffer
are allocated for each socket. These buffers are placed in the mbuf region (mbuf
pool) and totally depend on the mbuf allocation mechanism.

An application can use system calls to put or get data from these buffers. For
example, read() and write() are used for TCP, and recvfrom() and sendto() are
used for UDP.

Do not confuse the difference between the buffer and TCP window. The window
is to control data flow between sender and receiver. The buffer is to make
system activity efficient. For our AIX V3.2 and V4.1, the available and not used
part of the socket buffer space is used as the window. The buffer is a system
mechanism, and you can configure the socket buffer as big as the system
resource (memory) allows. On the contrary, the window is the TCP mechanism,
and the maximum is defined by TCP as 64 KB.

5.6.1.1 TCP
For TCP, a number of bytes which is specified in read() or write() may not
coincide with the actual number of bytes successfully sent or received. In TCP,
the data is considered as a stream of bytes and the TCP module doesn′ t
recognize the boundary of chunks processed by read() or write(). Therefore, you
have to add certain logic to see how many bytes were already processed and
retry it if necessary.

During transmission, the data is divided into a unit of transmission called a
segment and the segment is passed to the IP module. You should not forget that

272 Practical TCP/IP for AIX V3.2/V4.1

each segment doesn′ t match each write() system call. Also, a read() call doesn′ t
read each segment. A segment is mapped to an IP datagram. If a segment is
large enough to exceed the MTU, the segment should be fragmented. Actually,
fragmentation can not happen because TCP has a Maximum Segment Size
(MSS) mechanism. This mechanism guarantees that the segment size never
exceeds the MTU.

TCP has flow-control mechanism called window and a sender can not send a
TCP segment faster than the receiver′s receiving speed. Thus, if you assign a
large send buffer, it doesn′ t harm the receiving system; but, it may waste your
system mbuf pool. If you assign a large receive buffer, your system can accept
many segments without suppressing the sending system by returning a small
window size. As a result, larger buffers for both send and receive can improve
performance.

5.6.1.2 UDP
UDP uses a more direct scheme than TCP. Each call, such as sendto() or
recvfrom() corresponds to an UDP datagram. A UDP datagram is passed to the
IP datagram. If the size of the UDP datagram is larger than the MTU, it is
fragmented into more than one IP datagram. The maximum size of a UDP
datagram is 65,536 bytes (including the UDP header).

UDP doesn′ t have any flow control mechanism. It is left to the application
program. If you assign a large send buffer, when the buffer is flushed a burst of
packets caused and may load the network and receiving system. In order to
take advantage of buffering, you should assign enough size to the receive buffer.
Since the sending system doesn′ t care about the receiving system, a small
receive buffer can not bear a burst of traffic. If a receive buffer runs out, the
UDP datagrams are lost. Since retransmission is made at the application layer,
the cost of retransmission can not be negligible.

5.6.2 Socket Buffer Pitfalls for TCP
As you already know, buffers are made by a chain of mbufs and mbuf-clusters
(memory pages). The criteria for using mbuf-cluster is if the data is bigger than
432 bytes. If you issue write() or sendto() with 433 bytes of data, a mbuf-cluster
(4096 bytes) is consumed. Assume you have a 16 KB send buffer and issue 433
bytes of write() four times. From the application point of view, only 1.7 KB are
put in the 16 KB buffer space. But, from the memory allocation point of view, 4
memory pages (16 KB) have already been used. If this would be UDP, a
successive sendto() operation causes the buffer to flush. But, TCP has a strict
window based flow-control and certain criteria should be satisfied before sending
the data. Therefore, the successive write() of the application just hangs until the
criteria is met.

Actually for TCP, a send buffer is flushed when stored data reaches to 1/2 of the
receiver ′s window size or the effective MSS (this is TCP specification). This
means, for all default token-ring environments, the buffer should be flushed when
the data reaches to 1.4 KB (the effective MTU is 1492 bytes and the 1/2 of the
window, that is the socket receive buffer, is 8 KB). For the small MTU networks,
such as Ethernet or token-ring, this problem may not be visible.

Chapter 5. TCP/IP Related Parameter Tuning 273

When to Send Data

According to RFC 1122 Requirements for Internet Hosts (4.2.3.4 When to Send
Data), TCP has following criteria to send data. These are the recommended
rules in this RFC.

 1. When more data than the MSS is buffered in send buffer.

 2. When there are no unacknowledged data (this means no data are on the
transmission), and if the PUSH flag is specified. In this case, sending
data must be smaller than the window size of the receiver.

 3. When there is no unacknowledged data (this means no data is on the
transmission), and if buffered data exceeds the maximum window size of
the receiver × Fs. It is recommend that you use 0.5 for the Fs and AIX
V3.2 uses 0.5 for this constant.

 4. When the PUSH flag is specified, and if the override timeout timer
expires, it is recommended that you use 0.1 - 1.0 seconds for the override
timeout period. AIX V3.2 uses 0.1 - 1.2 seconds (the timer sets the value
between this range).

You should refer to the original RFC.

This issue appears clearly if you are using a high-speed network. TCP sends
data when the data in the send buffer reaches half of the receiver′s window size
or the Maximum Segment Size (MSS). If the data link layer is FDDI or SOCC, the
default MTU is 4 KB to 61 KB, which defines the effective MSS. Also, the size of
the receiver′s window is usually the order of a receiving system′s receive buffer
size (default is 16 KB for RS/6000), and half of the window size would be 8 KB.
As a result, even the send buffer is used up and data is not flushed immediately
because 1.7 KB of the buffer data can not satisfy the sending criteria. The send
buffer is occupied and the application can not send the next data and has to wait
until the receiving system sends an ACK segment to force the sender to send
the data segment. It needs a delayed ACK timer expiration at the receiving
system.

Note: The delayed ACK timer needs 200 ms to expire.

Remember when the TCP module calculates a window size, it uses actual data
bytes that are specified in the read() and write() system calls. But, when the
system calculates the buffer size (usage), it uses actual allocated
mbuf/mbuf-cluster size. You may need to configure bigger buffer space than you
expected, in order to compensate for this implementation pitfall.

5.6.3 Buffer Size Configuration
There are two ways to configure the buffer size. One is to set the system with a
wide default buffer size, and the other is to set each (application specific) buffer
size.

5.6.3.1 Application Program Specific Configuration (NFS)
An application program can set its own buffer size by using setsockopt() and can
retrieve the current value by using getsockopt() system calls.

If possible, this approach is convenient because the optimum buffer size may be
different between each application. Also, if a system is multi-homed, the

274 Practical TCP/IP for AIX V3.2/V4.1

optimum buffer size may be different for each network interface. This approach
allows users to fine tune.

Some applications have options to configure the buffer sizes. For example, NFS
uses socket internally. NFS is built on the ONC/RPC and the RPC uses socket.
AIX V4.1 provides capability to adjust the socket buffer used for NFS operations.
You can use the nfso command for this purpose, as follows:

nfso -a
portcheck= 0
udpchecksum= 1
nfs_socketsize= 60000
nfs_setattr_error= 0
nfs_gather_threshold= 4096
nfs_repeat_messages= 0
nfs_duplicate_cache_size= 0
nfs_server_base_priority= 0
nfs_dynamic_retrans= 1
nfs_iopace_pages= 32
#

nfs_socketsiz
This option defines the size of the socket buffer used for NFS (in bytes).
Notice that the current AIX implementation only uses UDP for the NFS
data transfer (read and write operation); then, this option defines the
UDP socket buffer. This value must be 128 bytes smaller than the value
of the sb_max (the sb_max is an option of the no command).

To change the option nfs_socketsize, follow this procedure:

 1. Issue the nfso command to set the new value. Before issuing the nfso
command, make sure that the sb_max is also configured correctly, as
follows:

no -o sb_max=131072
nfso -o nfs_socketsize=100000
#

 2. Stop the NFS subservers (daemons), as follows:

stopsrc -g nfs
0513-044 The stop of the biod Subsystem was completed successfully.
0513-044 The stop of the nfsd Subsystem was completed successfully.
0513-044 The stop of the rpc.mountd Subsystem was completed successfully.
0513-044 The stop of the rpc.statd Subsystem was completed successfully.
0513-044 The stop of the rpc.lockd Subsystem was completed successfully.
#

 3. Restart the NFS subservers (daemons) in order to reflect the buffer size
update, as follows:

startsrc -g nfs
0513-059 The biod Subsystem has been started. Subsystem PID is 7918.
0513-059 The nfsd Subsystem has been started. Subsystem PID is 9967.
0513-059 The rpc.statd Subsystem has been started. Subsystem PID is 8176.
0513-059 The rpc.lockd Subsystem has been started. Subsystem PID is 8433.
0513-059 The rpc.mountd Subsystem has been started. Subsystem PID is 8690.
#

 4. Confirm if the update has been made correctly, if necessary.

Chapter 5. TCP/IP Related Parameter Tuning 275

nfso -o nfs_socketsize
nfs_socketsize= 100000
#

Difference between V4.1 and V3.2

With V3.2, the nfso command supports less options than V4.1, as shown:

nfso -a
nfs_portmon = 0
nfsudpcksum = 1
nfs_chars = 60000

nfs_setattr_error = 0
nfs_gather_threshold = 4096

#

Also names of options are different. The name of the option to configure NFS
socket buffer was nfs_chars.

You can use the rsize and wsize options of the mount command when you
mount a filesystem through NFS. Many documents refer these options to
configure the buffer sizes of NFS read and write. Accurately speaking, these
options define the maximum sizes of each RPC for read and write. Current AIX
NFS implementation allows up to 8 KB for an RPC. Thus, the rsize and wsize
can be configured up to 8192 (and this is default value). Reducing the rsize
and/or wsize may improve the NFS performance in a congested network.

5.6.3.2 System Wide Default Configuration
In this method, the configured values are applied to all applications which don′ t
explicitly configure the buffer sizes. You can use the no command. To review
the current configuration, use the following command:

no -a | grep space
tcp_sendspace = 16384
tcp_recvspace = 16384
udp_sendspace = 9216
udp_recvspace = 41600

no -a | grep sb
sb_max = 65536

#

tcp_sendspace
This parameter defines the TCP send buffer size. The hard-coded
default is 4096 bytes.

tcp_recvspace
This parameter defines the TCP receive buffer size. The hard-coded
default is 4096 bytes.

udp_sendspace
This parameter defines the UDP send buffer size. The hard-coded
default is 9216 bytes.

udp_recvspace
This parameter defines the UDP receive buffer size. The hard-coded
default is 41600 bytes.

276 Practical TCP/IP for AIX V3.2/V4.1

sb_max
This parameter defines the upper limit of each buffer size. The default
is 65536 or 64 KB. If you make any of the buffer bigger than 64 KB, you
have to expand this parameter first. Notice that TCP can support only
up to a 64 KB window size. You can override this limit after AIX V3.2.5
with the rfc1323 option. This is the rationale for the default.

If you need to change any of them, issue the no command, as follows:

no -o tcp_recvspace=32768
no -o tcp_recvspace
tcp_recvspace = 32768
#

If you need to the restore default value, you can use no -d, as follows:

no -d tcp_sendspace
no -o tcp_sendspace
tcp_sendspace = 4096
#

As usual, with the no command, this update is not saved for reboot. If you make
this permanent, write this command somewhere in a start up script. The best
place is the end of /etc/rc.net, and there are already two lines to expand the TCP
send and receive buffer as follows:

###
The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for Ethernet and token-ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
###
if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o tcp_recvspace=16384

fi

Although the receive window is not equal to the receive buffer size, when TCP
establishes a connection, the receive buffer size is advertised as the received
window to the destination system. Therefore, if you need to use the large
receive window, you should configure a large receive buffer. Also, read the
comments in the previous startup script. Large window (large buffer) is
especially crucial for long-delay network. Use the ping command to measure the
Round Trip Time (RTT). In the following example, the RTT is 33 ms.

ping -c 1 hal.yamato.ibm.com
PING hal.yamato.ibm.com: (9.68.1.14): 56 data bytes
64 bytes from 9.68.1.14: icmp_seq=0 ttl=251 time=33 ms

----hal.yamato.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 33/33/33 ms
#

Chapter 5. TCP/IP Related Parameter Tuning 277

5.6.4 Configuration Pitfalls
If you expand any of the buffer, you must confirm that it has not exceeded the
parameter sb_max or you will have problems. For example, if you set
tcp_sendspace or tcp_recvspac bigger than sb_max, you cannot initiate the new
TCP connection, such as TELNET, as follows:

no -o sb_max
sb_max = 65536
no -o tcp_sendspace=70000
no -o tcp_sendspace
tcp_sendspace = 70000
#

Then try TELNET to another system.

tn mat
Trying...
telnet: socket: Invalid argument
tn> q
#

This problem can be recovered by resetting the option parameter to the original
value.

If you happened to configure the sb_max smaller than a memory page size, 4096
bytes, your system will suffer serious problems. See the example below. Even
the no command is no longer usable and as a result, you cannot reset the
parameter.

no -o sb_max=4095
no -o sb_max
0821-055 no: Cannot create a socket. The error number is 74.
#

Any other newly initiated TCP/IP communication fails. The following is a case of
the ping command:

ping ts
ping: host name ts NOT FOUND
#

It appears as if you have a name server problem, or missing routing information,
but both are fine.

Difference between V4.1 and V3.2

V3.2 issues a more understandable message:

ping grover
0821-067 ping: The socket creation call failed.:
There is not enough buffer space for the requested socket operation.
#

Since AIX V4.1 uses the system resource controller or the srcmstr to control
daemons (subsystems). The srcmstr uses sockets to communicate to
subsystems, and this problem, of course, impacts the srcmstr functionality. For
example, the lssrc command doesn′ t work well any more:

278 Practical TCP/IP for AIX V3.2/V4.1

lssrc -s portmap
0513-053 The System Resource Controller is experiencing problems with its
socket communications.
If you specified a foreign host, try configuring Internet sockets and
try your command again, otherwise contact System Administration.
#

The only way to fix this situation may be to reboot the system.

5.7 TCP Window Size
Here we show the TCP Window mechanism briefly. TCP provides a sliding
window mechanism in order to control the data flow between sender and
receiver. Basically, the concept of a sliding window is not so difficult, but since
TCP was implemented, many modifications (enhancements) have been made to
TCP; now the TCP flow control mechanism is not simple. Almost all those
modifications are to improve performance or reduce network traffic.
Improvement efforts are still continuing and in the future we may even have a
more complicated implementation.

If you try to analyze the TCP trace data deeply, you will need a good knowledge
of this window mechanism.

5.7.1 TCP Window Basics
TCP provides reliable transmission. The term, reliable, means that TCP has the
responsibility to confirm that all data segments are delivered to the destination.
If any of the data segments is lost, TCP retransmits it until it succeeds or aborts
the connection. In order to achieve reliable transmission, TCP uses the ACK
(acknowledge) segment. A sender receives an ACK segment from the receiver
for all data it sent. This doesn′ t mean that an ACK segment is needed for each
data segment. An ACK segment can acknowledge more than one data
segments. Since the TCP connection is bidirectional, an ACK segment can carry
data if the receiver has some data to send to the sender. This is sometimes
called piggy-back.

Note: An ACK segment is returned for a data segment or segments. No ACK
segment is returned for an ACK only segment. This means an ACK
segment is not reliably transmitted.

The window is a amount of data which a sender can send without receiving any
ACK segment. This obviously contributes performance improvement. A receiver
always advertises its window size in the TCP header of the ACK segments.

Actually, this window size is an available portion of the TCP receive buffer.
Therefore, changing the receive buffer size is indirectly related to changing the
window size. A pitfall is that you can change the receive buffer size to larger
than 64 KB if you change the sb_max option of the no command, but the TCP
window size is never to be larger than 64 KB, because the TCP header has only
a 16 bit length for the window field. The unit of window is an octet or eight bits.
Nowadays we have alot of high-speed network media and memory for a
workstation. The maximum of 64 KB window may not be big enough for such an
advanced environment. TCP has been enhanced to support such situations by
the RFC 1323 TCP Extensions for High Performance. AIX V3.2.5 and later
releases do support this new enhancement.

Chapter 5. TCP/IP Related Parameter Tuning 279

There are two technical terms about windows that you may sometimes get
confused. Basically, a window is a receiver′s matter, telling how much data the
receiver can accept now. But, there is a term send window, which is a sender′s
matter. They are regarding the same thing, but one some occasions when the
congestion avoidance algorithm is working, they represent different values to
each other. For details and an exact definition, refer to the RFC 793
TRANSMISSION CONTROL PROTOCOL PROTOCOL SPECIFICATION. The
definitions in the RFC are as follows:

Receive Window
This represents the sequence number that the local TCP is expecting to
receive.

Send window
This represents the sequence number which the remote (receiving) TCP
is willing to receive. It is the value of the window field specified in the
segments from the remote (data receiving) TCP.

If you want to briefly review the window mechanism working, you can use the IP
trace. If you need to review the detailed window mechanism in action, you can
use the socket-level trace.

5.7.2 Window in Action (IP Trace Example)
The following is an example of a file transfer session by FTP. The system inoki5
is a server and newton is a client. A file was transferred from inoki5 to newton.
In this example, we set both send and receive buffer size of both inoki5 and
newton to 16384 bytes.

 1. This is an ACK segment from the newton to inoki5 advertising that the
newton currently has 14000 bytes of receive window. This implies that inoki5
can send up to 14000 bytes of data without receiving the next ACK segment
from the newton.

Packet Number 34
...
IP: < SRC = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: < DST = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=46162, ip_off=0
IP: ip_ttl=60, ip_sum=ac0d, ip_p = 6 (TCP)
TCP: <source port=1029, destination port=20(ftp-data) >
TCP: th_seq=212a3c02, th_ack=beb2b10e
TCP: th_off=5, flags<ACK |>
TCP: th_win=14000, th_sum=89ad, th_urp=0

 2. Now inoki5 sends the data segment. This segment has the sequence
number th_seq=beb2b10e and this coincides with the ACK number
th_ack=beb2b10e of the prior segment from the newton. Also the ACK
number th_ack=212a3c02 coincides with the sequence number
th_seq=212a3c02 of the prior segment from newton. All show that the
window mechanism (sequence and ACK numbers) is working correctly.

Be aware that the sender inoki5 is advertising its receive window size is
th_win=15972. If the newton has data to send, it can send up to 15K bytes
without ACK from the inoki5.

280 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 35
...
IP: < SRC = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: < DST = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1492, ip_id=5305, ip_off=0
IP: ip_ttl=60, ip_sum=5ac, ip_p = 6 (TCP)
TCP: <source port=20(ftp-data), destination port=1029 >
TCP: th_seq=beb2b10e, th_ack=212a3c02
TCP: th_off=5, flags<ACK |>
TCP: th_win=15972, th_sum=0, th_urp=0
TCP: 00000000 70726573 656e7461 74696f6e 20626574 |presentation bet|
TCP: 00000010 7765656e 0d0a6170 706c6963 6174696f |ween..applicatio|
...

 3. The inoki5 sends data segments continuously without receiving the ACK
segment from the newton. This is the advantage of the window mechanism.
Now the sequence number is incremented to th_seq=beb2b6ba. The
increment is 1452 bytes and this means 1452 bytes of data were transferred.
Notice that the prior packet (35) has ip_len=1492, and consider that the IP
header and TCP header have 20 bytes each. Although this segment has an
ACK flag, no data has come from the newton and the ACK field stays the
same th_ack=212a3c02 value.

Packet Number 36
...
IP: < SRC = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: < DST = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1492, ip_id=5306, ip_off=0
IP: ip_ttl=60, ip_sum=5ac, ip_p = 6 (TCP)
TCP: <source port=20(ftp-data), destination port=1029 >
TCP: th_seq=beb2b6ba, th_ack=212a3c02
TCP: th_off=5, flags<ACK |>
TCP: th_win=15972, th_sum=0, th_urp=0
TCP: 00000000 6e732061 72652073 616d6520 77697468 |ns are same with|
TCP: 00000010 206f7468 65722077 6f726b73 74617469 | other workstati|
...

 4. This TCP segment is the same as the previous:

Packet Number 37
...
IP: < SRC = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: < DST = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1492, ip_id=5307, ip_off=0
IP: ip_ttl=60, ip_sum=5ac, ip_p = 6 (TCP)
TCP: <source port=20(ftp-data), destination port=1029 >
TCP: th_seq=beb2bc66, th_ack=212a3c02
TCP: th_off=5, flags<ACK |>
TCP: th_win=15972, th_sum=0, th_urp=0
TCP: 00000000 696e6420 6f662062 6f6d622e 0d0a3a65 |ind of bomb...:e|
TCP: 00000010 6c626c62 6f782e0d 0a3a702e 0d0a596f |lblbox...:p...Yo|
...

 5. This TCP segment is the same as the previous:

Chapter 5. TCP/IP Related Parameter Tuning 281

Packet Number 38
...
IP: < SRC = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: < DST = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1492, ip_id=5308, ip_off=0
IP: ip_ttl=60, ip_sum=5ac, ip_p = 6 (TCP)
TCP: <source port=20(ftp-data), destination port=1029 >
TCP: th_seq=beb2c212, th_ack=212a3c02
TCP: th_off=5, flags<ACK |>
TCP: th_win=15972, th_sum=0, th_urp=0
TCP: 00000000 69740d0a 796f7572 206e6574 776f726b |it..your network|
TCP: 00000010 2e0d0a54 68656e20 63686563 6b207768 |...Then check wh|
...

 6. This TCP segment is the same as the previous:

Packet Number 39
...
IP: < SRC = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: < DST = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1492, ip_id=5309, ip_off=0
IP: ip_ttl=60, ip_sum=5ac, ip_p = 6 (TCP)
TCP: <source port=20(ftp-data), destination port=1029 >
TCP: th_seq=beb2c7be, th_ack=212a3c02
TCP: th_off=5, flags<ACK |>
TCP: th_win=15972, th_sum=0, th_urp=0
TCP: 00000000 20202020 20202053 4f465457 41524520 | SOFTWARE |
TCP: 00000010 50524f47 52414d20 4552524f 520d0a32 |PROGRAM ERROR..2|
...

 7. Now the receiver newton returns the ACK segment. Since the newton
received 1452 bytes of data five times, the window size is reduced to
th_win=6740. The receiver sent only one ACK segment for five data
segments. This is an advantage of the sliding window.

Notice the ACK field th_ack=beb2cd6a is 1452 bytes greater than the
sequence number of the prior segment (Packet Number 39) form the inoki5,
th_seq=beb2c7be. This means all of the data sent from the inoki5 was
acknowledged. Be aware that this does not always happen. Some data
segments might be on the way and not yet received by the newton. In such
a case the ACK field would show different values, but it would not be a
problem.

Packet Number 40
...
IP: < SRC = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: < DST = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=46163, ip_off=0
IP: ip_ttl=60, ip_sum=ac0c, ip_p = 6 (TCP)
TCP: <source port=1029, destination port=20(ftp-data) >
TCP: th_seq=212a3c02, th_ack=beb2cd6a
TCP: th_off=5, flags<ACK |>
TCP: th_win=6740, th_sum=89ad, th_urp=0

 8. This TCP segment is not of a control connection. Notice the that source port
is 1028 and the destination port is 21. In this case, just ignore this packet.

282 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 41
...
IP: < SRC = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: < DST = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=46164, ip_off=0
IP: ip_ttl=60, ip_sum=ac0b, ip_p = 6 (TCP)
TCP: <source port=1028, destination port=21(ftp) >
TCP: th_seq=210ee46a, th_ack=be972705
TCP: th_off=5, flags<ACK |>
TCP: th_win=15972, th_sum=63d1, th_urp=0

 9. The following is the inoki5 starting data transfer again.

Packet Number 42
...
IP: < SRC = 9.170.5.240 > (inoki5.fscjapan.ibm.com)
IP: < DST = 9.170.5.45 > (newton.fscjapan.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1492, ip_id=5310, ip_off=0
IP: ip_ttl=60, ip_sum=5ac, ip_p = 6 (TCP)
TCP: <source port=20(ftp-data), destination port=1029 >
TCP: th_seq=beb2cd6a, th_ack=212a3c02
TCP: th_off=5, flags<ACK |>
TCP: th_win=15972, th_sum=0, th_urp=0
TCP: 00000000 302c2074 68656e20 796f7572 0d0a4574 |0, then your..Et|
TCP: 00000010 6865726e 65742061 64617074 6572206e |hernet adapter n|
...

Note: In this example, some segments have the TCP checksum field of
th_sum=0:. Since TCP checksum is a mandatory feature, this could not
happen. So, we conclude that this is a bug of iptrace or ipreport
command, not a bug of the TCP module, because any segment, which has
the wrong TCP checksum, must be discarded; and, if a 0 was really
written in the TCP header, we would have a lot of connectivity problems.

5.7.3 Actual Implementation Complexity
From the previous explanation, you may have thought that the sliding window is
so simple. The previous explanation doesn′ t cover many irregular situations, for
example, if the second or third of five data segments was lost, how should the
receiver behave? In the previous example, the receiver responded to the ACK
after receiving five data segments. But, why was it after five data segments?
Describing these would exceed the scope of this book. Also, up to now, many
improvements have been made to the TCP sliding window mechanism. It is
much more complicated. Those are following:

Silly Window Syndrome Avoidance Algorithm
The Silly Window Syndrome (SWS) is caused, when a large amount of
data is transmitted. If the sender and receiver don′ t implement this
algorithm, the receiver advertises a small amount of the window each
time when the receiver buffer is read by an application. As a result, the
sender has to send a lot of small segments and they do not have the
advantage of bulk data transfer; that is the purpose of the window
mechanism. This algorithm is mandatory (a must) by the RFC 1122.

Delayed ACKs
TCP should not send back an ACK segment immediately because there
won ′ t be any data soon which can be sent with the ACK. As a result,
the network traffic and protocol module overhead will be reduced. With

Chapter 5. TCP/IP Related Parameter Tuning 283

this mechanism, an ACK segment is not returned immediately. This
mechanism is optional (strongly recommended) by the RFC 1122.

Nagle Algorithm
When an application issues many write() system calls with a single byte
of data or so, TCP should not send data segments just carrying a single
byte of data. In order to avoid this inefficiency, data should not be sent
until the ACK of the prior data segment is received. This mechanism
makes small segments accumulated into one big (reasonable amount)
segment before it is sent out. This mechanism is optional (strongly
recommended) by the RFC 1122.

Note: Certain applications, such as X-Windows, don′ t work fine with
this mechanism. Thus, there must be an option to disable this
feature. You can use the TCP_NODELAY option of setsockopt()
call.

Congestion Avoidance
When a segment is lost, the sender′s TCP module considers that this is
due to the congestion of the network and reduces the send window size
by a factor of 2. If the segment loss continues, the sender′s TCP
module keeps reducing the send window using the previous procedure
until it reaches 1. This mechanism is mandatory by the RFC 1122.

Slow Start
If a network congestion is resolved, the minimized send window should
be recovered. The recovery should not be the opposite of shrinking
(exponential backoff). This mechanism defines how to recover the send
window. This mechanism is mandatory by the RFC 1122.

Our AIX V3.2 and V4.1 support all of above mechanisms.

Our Experience

We received a question from a customer. They were using a RS/6000 as a
gateway between WAN (9.6 Kbps SNA) and LAN (Ethernet). The RS/6000 is a
protocol gateway. They got a network trace by a protocol analyzer to tune
their performance. They expected that the incoming WAN packets were
immediately sent out to the Ethernet. But, actually packets were stored in
the RS/6000 until the ACK of the prior segment was received. Their question
was why the RS/6000 behaves in such way.

We read their trace data and concluded that they were watching the Nagle
Algorithm in action. In this case, since each WAN packet arrives at the
RS/6000 with a bit of a long interval (around 0.2 second), they could not see
the accumulation effect of multiple packets. ACK was returned within 0.2
seconds from Ethernet before the second WAN packet arrived.

We believe that the commercial books and RFCs will help you. As we saw in the
example, we can only review window size (th_win), sequence number (th_seq)
and acknowledge number (th_ack) with the IP trace because the TCP header
only contains this information. But, the TCP module (kernel) keeps more
sophisticated information. It is defined in the header file
/usr/include/netinet/tcp_var.h. For the complete list of this header file, refer to
C.3, “/usr/include/netinet/tcp_var.h” on page 369.

284 Practical TCP/IP for AIX V3.2/V4.1

/*
 * The following fields are used as in the protocol specification.
 * See RFC783, Dec. 1981, page 21.
 */
/* send sequence variables */

tcp_seq snd_una; /* send unacknowledged */
tcp_seq snd_nxt; /* send next */
tcp_seq snd_up; /* send urgent pointer */
tcp_seq snd_wl1; /* window update seg seq number */
tcp_seq snd_wl2; /* window update seg ack number */
tcp_seq iss; /* initial send sequence number */
u_long snd_wnd; /* send window */

/* receive sequence variables */
u_long rcv_wnd; /* receive window */
tcp_seq rcv_nxt; /* receive next */
tcp_seq rcv_up; /* receive urgent pointer */
tcp_seq irs; /* initial receive sequence number */

...
/*
 * Additional variables for this implementation.
 */
/* receive variables */

tcp_seq rcv_adv; /* advertised window */
/* retransmit variables */

tcp_seq snd_max; /* highest sequence number sent;
* used to recognize retransmits
*/

/* congestion control (for slow start, source quench, retransmit after loss) */
u_long snd_cwnd; /* congestion-controlled window */
u_long snd_ssthresh; /* snd_cwnd size threshhold for

* slow start exponential to
* linear switch
*/

If you want to review these kernel parameters during a communication, the
socket-level trace function will help you. The following is a sample output:

488 ESTABLISHED:output (src=9.170.5.45,1336, dst=9.170.5.21,23)
[157ac830..157ac831)@601b54c8(win=3e64)<ACK,PUSH> -> ESTABLISHED
rcv_nxt 601b54c8 rcv_wnd 3e64 snd_una 157ac830
snd_nxt 157ac831 snd_max 157ac831
snd_wl1 601b54c7 snd_wl2 157ac830 snd_wnd 3e64
REXMT=3 (t_rxtshft=0), KEEP=14400

488 ESTABLISHED:user SEND -> ESTABLISHED
rcv_nxt 601b54c8 rcv_wnd 3e64 snd_una 157ac830
snd_nxt 157ac831 snd_max 157ac831
snd_wl1 601b54c7 snd_wl2 157ac830 snd_wnd 3e64
REXMT=3 (t_rxtshft=0), KEEP=14400

488 ESTABLISHED:input (src=9.170.5.21,23, dst=9.170.5.45,1336)
[601b54c8..601b54c9)@157ac831(win=3e64)<ACK,PUSH> -> ESTABLISHED
rcv_nxt 601b54c9 rcv_wnd 3e64 snd_una 157ac831
snd_nxt 157ac831 snd_max 157ac831
snd_wl1 601b54c8 snd_wl2 157ac831 snd_wnd 3e64
KEEP=14400

489 ESTABLISHED:user RCVD -> ESTABLISHED
rcv_nxt 601b54c9 rcv_wnd 3e64 snd_una 157ac831
snd_nxt 157ac831 snd_max 157ac831
snd_wl1 601b54c8 snd_wl2 157ac831 snd_wnd 3e64
KEEP=14400

Chapter 5. TCP/IP Related Parameter Tuning 285

If a sender is faster than the receiver, the receiver system sends back an ACK
segment with a 0 window size. When the sender receives this ACK segment, it
cannot send until the receiver system advertises more than a 0 window size by
sending another ACK segment. This ACK segment is called the window update.
Since the ACK segment is not reliably transmitted, the window update ACK
segment may be lost. If this happened, the sender would never know that it can
send the next data, and then the connection hangs indefinitely. In order to avoid
this problem, a sender periodically sends a probe. If a receiver doesn′ t respond
to a probe, the sender repeatedly sends a probe after the timeout period. This
timeout is called the persistent timeout. The sender system never gives up
sending probes. There is no final timeout or connection abortion due to window
probe activity.

5.7.4 Getting Window Status
Since the TCP sliding window is a dynamic mechanism and only trace (IP trace
or socket level trace) reveals the details. Some activities are also counted and
display the netstat -p tcp command. The following counters show the TCP
statistics:

LANG=C netstat -p tcp
tcp:

111905 packets sent
71310 data packets (235937 bytes)
0 data packets (0 bytes) retransmitted
40449 ack-only packets (40380 delayed)
0 URG only packets
0 window probe packets
51 window update packets
112 control packets

80042 packets received
71326 acks (for 235974 bytes)
8 duplicate acks
0 acks for unsent data
74479 packets (2885666 bytes) received in-sequence
2 completely duplicate packets (122 bytes)
1 packet with some dup. data (98 bytes duped)
1 out-of-order packet (0 bytes)
0 packets (0 bytes) of data after window
0 window probes
0 window update packets
2 packets received after close
0 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short

61 connection requests
0 connection accepts
39 connections established (including accepts)
70 connections closed (including 0 drops)
4 embryonic connections dropped
71351 segments updated rtt (of 71382 attempts)
14 retransmit timeouts

0 connections dropped by rexmit timeout
0 persist timeouts
1 keepalive timeout

0 keepalive probes sent
0 connections dropped by keepalive

#

286 Practical TCP/IP for AIX V3.2/V4.1

Refer to 3.5.1, “TCP Segment Statistics” on page 214 for details of each
counters.

5.8 TCP/IP and Timeout
There are several timeouts in the TCP/IP world. Usually the adjustments of
timeouts are crucial for performance tuning. Unfortunately, many TCP/IP
parameters (including the timeout period) are fixed and there is no way to tune.
This section deals mainly with TCP timeouts. The mechanisms and effects of
those timeouts are covered next.

5.8.1 Timeout Basics
When a destination system doesn′ t respond, the source system should take an
action (for example, a retransmission or abortion). There are many reasons for
no-responses. For example, a data packet could not reach to the destination, a
destination system just delayed to respond due to heavy load, and the ACK
packet was lost during the transmission, or the system really crashed. With the
current communication technology, a source system cannot know what was
happening. A timeout usually causes retransmission, but this may not be a
correct action. A retransmission is only effective when a data packet was lost
during the transmission. Be aware that retransmission after timeouts may not
be a good approach for all occasions (sometimes it makes the situation worse).

There should be criteria to decide if a source system takes some recovery
action. The timeout is for this purpose. If a response doesn′ t come in within the
timeout period, a source system decides that a problem has occurred and takes
some recovery action (usually retransmits the segment again).

The concept of a timeout can be applied to any layer of the network except the
physical layer. But, a timeout can only be implemented to connection oriented
protocols because the protocol module has to keep the state of every packet
transmission in order to detect the timeout. In the TCP/IP stack, IP and UDP are
connectionless protocols. Only TCP is a connection oriented protocol. Thus,
only TCP has a built in timeout mechanism. The TCP module is responsible for
detecting a timeout and retransmission. The application program using TCP is
free from implementing the timeout mechanism.

For an application using UDP, if the application requires reliable transmission,
the application should implement timeout and retransmission mechanism. Well
designed applications are actually doing this. NFS and DNS may be good
examples. If the application doesn′ t have a timeout mechanism, there are no
timeout tuning tasks.

The tuning of the timeout period has the following two aspects or objectives:

 1. If packets are lost during transmission, choosing a smaller timeout period
makes it easy to detect problems and the source system can take a recovery
action quickly. As a result, it improves performance.

 2. If packets are delayed due to the destination system problem (maybe a
heavy load), choosing a larger timeout period suppresses the unnecessary
recovery action (retransmissions). As a result, it reduces the network and
destination system loads.

Chapter 5. TCP/IP Related Parameter Tuning 287

You cannot satisfy both of the previous two objectives. For TCP, almost all the
parameters which affect the timeout period are fixed or automatically adjusted
by the TCP module. Currently, AIX V3.2 TCP has the following timeout
mechanisms.

Connection Establishment Timeout
This timeout is for a TCP connection establishment sequence.
Internally, the keep-alive timer is used. The final timeout (timer
expiration) invites the abortion of the connection establishment
sequence.

You can adjust the final timeout time with the no command.

Retransmission Timeout (RTO)
This timeout is for each TCP data segment before the sender receives
the ACK segment. Internally, the retransmission timer is used. The
final timeout (after 12 successive retransmission failures) invites the
abortion of the connection. Each retransmission timeout time is
dynamically adjusted, so the final timeout is not a fixed value (but it is
usually around 10 minutes).

You cannot adjust this timer with AIX V3.2, but you can adjust this timer
with AIX V4.1.

Keep-Alive Timeout
This timeout is used to start the keep-alive procedure. Internally, the
keep-alive timer is used. When this timer expires, the keep-alive
procedure is initiated. The final timeout (timer expiration) invites the
abortion of the connection.

You can adjust the final timeout time with the no command.

Persist Timeout
This timeout is used to send a window probe segment. Internally, the
persist timer is used. There is no final timeout or timer expiration.
Until the response is received, the window probe segments are sent
continuously at each timer expiration.

You can not adjust this timer.

FIN_STATE_2 Timeout
This timeout is to terminate a TCP connection which is suspended
during the termination procedure. When a system sends a FIN segment
and receives the ACK, the system gets in the FIN_STATE_2 state. Now
the system is waiting for a FIN segment from the other end. If the other
system will not send the FIN segment, the system will be in the
FIN_STATE_2 forever. To avoid this situation, this timer is implemented.
This timer expires after 10 minutes and 75 seconds (in the case of AIX
V3.2) and forces the connection to the closed state.

Note: Although many systems implement this timer, this timer is
violating the TCP protocol specification.

You cannot adjust this timer.

2MSL (TIME_WAIT) Timeout
After a TCP connection is closed, the port cannot be reused for a 2MSL
period. Internally, the 2MSL timer is used. This timer defines 2MSL (60
seconds for AIX V3.2), and after the expiration, the port can be reused.

You cannot adjust this timer, but you can override this timer to reuse
the port in certain occasions.

288 Practical TCP/IP for AIX V3.2/V4.1

Delayed ACK ′ Timeout
The ACK segments are delayed until this timer expires before it is sent
back. This mechanism reduces network traffic because an ACK
segment can be merged with a data segment going the same direction,
which is generated by the timeout.

You cannot adjust this timer, and it is fixed to 200 ms.

5.8.2 TCP Timeout at Connection Establishment
When a system tries to open a TCP connection to another system by sending a
SYN segment, a problem may occur. In the case of a daemon or an application
program on the destination system not running, the TCP connection request is
immediately reset because the TCP module of the destination system sends
back an RST segment. But, if the destination system is not turned on, nobody
can respond. For that case, a retransmission of the SYN segment is made six
times before the timer expires. This is the implementation example of our AIX
V3.2. As a result, in the case of TELNET, you would see the following error
message.

tn mat
Trying...
telnet: connect: Connection timed out
#

This behavior is to comply with the RFC 1122 although this is not mandatory
requirement.

RFC 1122 Requirements for Internet Hosts, Page 95

4.2.3.1 Retransmission Timeout Calculation

A host TCP MUST implement Karn′s algorithm and Jacobson′s algorithm for
computing the retransmission timeout (″RTO″)... This implementation also
MUST include ″exponential backoff″ for successive RTO values for the same
segment. Retransmission of SYN segments SHOULD use the same algorithm
as data segments.

During this period, the TCP module is retransmitting the SYN segment using the
exponential backoff algorithm. In this algorithm, the timeout period is doubled at
each retransmission. If the initial timeout period is 5 seconds, the timeout
period after the first retransmission would be 10 seconds. The successive
timeout periods would be 20, 40, 80... seconds. But, the total retransmission
period is fixed to 75 seconds. These retransmissions, based on the exponential
backoff, continue for 75 seconds. So you should see the previous TELNET
message 75 seconds after you have invoked the telnet command. Each
retransmission is governed by the retransmission timer. But, the 75 seconds is
governed by the keep-alive timer. In other words, the keep-alive timer defines
the final TCP connection establishment timeout for abortion.

The following table shows the actual measured timeout related parameters.
Notice that this is about the timeout of the first segment, and there are no
measured RTTs (Round Trip Time). Then the initial REXMIT is set to 2 (1
second).

Note: The actual measured first timeout was invokded at 0.58 seconds. This is
because all TCP timers are driven by the clock tick of 500 mseconds

Chapter 5. TCP/IP Related Parameter Tuning 289

called slow timeout and defined as PR_SLOWHZ in the header file
/usr/include/sys/protosw.h. Therefore, a deviation within 0.5 seconds is
not a problem. This is a common characteristic of the BSD derivative
system.

This is defined in the header file /usr/include/netinet/tcp_timer.h, as TCPTV_MIN.
After the first timeout, REXMIT was incremented to 6. Because there were no
calculated smoothed RTT or SRTT (this should be deduced from the measured
RTT), the default SRTT was used. This default is also defined in the same
header file as TCPTV_SRTTDFLT.

No = Packet Number in the IP trace report.
shift = Number of exponential backoff algorithm applied.
REXMIT = Retransmissions Timer Value (unit of 0.5 sec)
REXMIT(real) = Measured Retransmissions Time (unit of sec)
KEEP = Keep Alive Timer Value (unit of 0.5 sec)

While the TCP module tried to retransmit the SYN segment using the exponential
backoff (this was clearly logged), the keep-alive timer value (KEEP), shown on
the right most column, was being decremented. When it reaches 0, the
connection (not established yet) is aborted. Unfortunately, this abortion was not
logged by the IP trace or the socket-level trace (because it didn′ t send any
segments or cause socket level activity).

No Time Stamp shift REXMIT REXMIT(real) KEEP

1 22:14:32.709636224 0 2 0.579539456 150

2 22:14:33.289175680 1 6 3.000247168 149

3 22:14:36.289422848 2 12 6.000443248 143

4 22:14:42.289860096 3 24 12.000883200 131

5 22:14:54.290743296 4 48 23.001226240 107

6 22:15:18.291969536 5 96 N/A 59

5.8.2.1 Socket-Level/IP Trace Example
The following is an example of a socket-level trace log during the
retransmissions. The previous table is based on this trace log.

5a6aa00:
270 SYN_SENT:output (src=9.68.214.82,1096, dst=9.68.214.84,23)

[d7fe5801..d7fe5805)@0(win=4000)<SYN> -> SYN_SENT
REXMT=2 (t_rxtshft=0), KEEP=150

270 CLOSED:user CONNECT -> SYN_SENT
REXMT=2 (t_rxtshft=0), KEEP=150

328 SYN_SENT:output (src=9.68.214.82,1096, dst=9.68.214.84,23)
[d7fe5801..d7fe5805)@0(win=4000)<SYN> -> SYN_SENT
REXMT=6 (t_rxtshft=1), KEEP=149

328 SYN_SENT:user SLOWTIMO<REXMT> -> SYN_SENT
REXMT=6 (t_rxtshft=1), KEEP=149

628 SYN_SENT:output (src=9.68.214.82,1096, dst=9.68.214.84,23)
[d7fe5801..d7fe5805)@0(win=4000)<SYN> -> SYN_SENT
REXMT=12 (t_rxtshft=2), KEEP=143

628 SYN_SENT:user SLOWTIMO<REXMT> -> SYN_SENT
REXMT=12 (t_rxtshft=2), KEEP=143

228 SYN_SENT:output (src=9.68.214.82,1096, dst=9.68.214.84,23)
[d7fe5801..d7fe5805)@0(win=4000)<SYN> -> SYN_SENT
REXMT=24 (t_rxtshft=3), KEEP=131

228 SYN_SENT:user SLOWTIMO<REXMT> -> SYN_SENT

290 Practical TCP/IP for AIX V3.2/V4.1

REXMT=24 (t_rxtshft=3), KEEP=131
429 SYN_SENT:output (src=9.68.214.82,1096, dst=9.68.214.84,23)

[d7fe5801..d7fe5805)@0(win=4000)<SYN> -> SYN_SENT
REXMT=48 (t_rxtshft=4), KEEP=107

429 SYN_SENT:user SLOWTIMO<REXMT> -> SYN_SENT
REXMT=48 (t_rxtshft=4), KEEP=107

829 SYN_SENT:output (src=9.68.214.82,1096, dst=9.68.214.84,23)
[d7fe5801..d7fe5805)@0(win=4000)<SYN> -> SYN_SENT
REXMT=96 (t_rxtshft=5), KEEP=59

829 SYN_SENT:user SLOWTIMO<REXMT> -> SYN_SENT
REXMT=96 (t_rxtshft=5), KEEP=59

The following packet trace was used to build the table. If you compare the
timestamps of each packet, you can understand which packet you are looking at.
Although, totally, six packets (TCP SYN segments) were transmitted, all the
packets were completely identical to each other, so we just show you the first
two packets.

 1. This is the first packet.

Packet Number 1
TOK: ====(66 bytes transmitted on interface tr0)==== 22:14:32.709636224
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=7101, ip_off=0
IP: ip_ttl=60, ip_sum=a3e0, ip_p = 6 (TCP)
TCP: <source port=1096, destination port=23(telnet) >
TCP: th_seq=d7fe5801, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=64a0, th_urp=0
TCP: 00000000 020405ac |.... |

 2. This is the second packet and the first retransmitted packet. There are no
differences from the first packet except the timestamp. The first
retransmission was invoked after about 0.58 seconds.

Packet Number 2
TOK: ====(66 bytes transmitted on interface tr0)==== 22:14:33.289175680
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=7102, ip_off=0
IP: ip_ttl=60, ip_sum=a3df, ip_p = 6 (TCP)
TCP: <source port=1096, destination port=23(telnet) >
TCP: th_seq=d7fe5801, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=64a0, th_urp=0
TCP: 00000000 020405ac |.... |

Chapter 5. TCP/IP Related Parameter Tuning 291

Be aware that the socket trace log seems to be clear evidence of the
retransmission activity. Actually, in this example, the TCP module really sent out
SYN segments six times. But this doesn′ t mean that the corresponding packets
were transferred on the physical cable, even when retransmissions were
recorded in the socket-level trace log. If a destination system has not been
turned on, it can never respond to an ARP request. Then, your system cannot
get the destination MAC address, and as a result, an IP datagram (so TCP
segment) cannot be sent out. But, the TCP module doesn′ t notice that the data
link layer is struggling with the ARP retransmissions. If you try to capture
packets with an IP trace, you might not capture anything except for the ARP
request packets.

5.8.2.2 Statistics Example by the netstat Command
We can use the command, netstat -p tcp, to review these timeouts. The previous
activity is counted as follows:

netstat -p tcp
...

430 connection requests
139 connection accepts
516 connections established (including accepts)
971 connections closed (including 9 drops)
20 embryonic connections dropped
576696 segments updated rtt (of 576800 attempts)
84 retransmit timeouts

1 connection dropped by rexmit timeout
0 persist timeouts
27304 keepalive timeouts

88 keepalive probes sent
5 connections dropped by keepalive

#

This output was taken at the telnet client system, mat. As already mentioned,
this timeout was invoked by the keep-alive timer; the counters, keepalive
timeouts and connections, dropped by keepalive, were incremented by one.
Also notice that the other connection related counters are not affected.

Note: Remember, if a destination system is up, but a daemon (application) is
not running, the connection request is returned with the RST segment. In
such a case, it is counted at the counter and the connections are closed.

5.8.2.3 Parameter Configuration
Up to V3.2.5, we could do nothing with the final timeout of 75 seconds. Although
we mentioned that the keep-alive timer is used for this timeout, we could not
change this value with tcp_keepidle and tcp_keepintvl of the no command. Now
we have a new option, tcp_keepinit, to keep-alive mechanism as follows:

no -a | grep keep
tcp_keepintvl = 150
tcp_keepidle = 14400
tcp_keepinit = 150

#

tcp_keepinit
This option is to configure TCPTV_KEEP_INIT, which defines the timeout
period for the connection establishment.

You can specify this timeout value in units of 0.5 seconds. The default is 150 (75
seconds). If your destination system has a problem (for example, it is turned

292 Practical TCP/IP for AIX V3.2/V4.1

off), you have to waste more time to get a timeout with a longer timeout value.
But, networks can be suddenly congested. Remember, too short a timeout value
invites an unstable environment.

Note: You may need a PTF to get this new option with V3.2.5.

5.8.3 TCP Retransmission Timeout (RTO)
Here we explain the retransmission timeout or ACK timeout. Since TCP
guarantees reliable transmission, any data sent out should be acknowledged by
the destination. This doesn′ t mean each data segment must be acknowledged
individually. If a source system doesn′ t receive an ACK segment within the
retransmission timeout period, the source decides that the data segment was
lost and retransmits it again. Then, how long is the retransmission timeout? As
one of the sophisticated features of TCP, this timeout period is dynamically
adjusted and is not a fixed value.

The current retransmission timeout value is calculated based on both the
measured (actual) round-trip time and the estimated (smoothed) round-trip time
of the prior segment. So, the latest timeout value dynamically reflects the
current network status. When you use the slow network such as WAN, TCP
adjusts the timeout value to be long. If the network suddenly gets congested,
TCP also makes it longer. This mechanism was a mandatory requirement
defined by the RFC 1122.

RFC 1122 Requirements for Internet Hosts, Page 95

4.2.3.1 Retransmission Timeout Calculation

A host TCP MUST implement Karn′s algorithm and Jacobson′s algorithm for
computing the retransmission timeout (″RTO″).

• Jacobsen′s algorithm for computing the smoothed round-trip (″RTT″) t ime
incorporates a simple measure of the variance [TCP:6].

• Karn ′s algorithm for selecting RTT measurements ensures that ambiguous
round-trip times will not corrupt the calculation of the smoothed
round-trip time [TCP:6].

This implementation also MUST include ″exponential backoff″ for successive
RTO values for the same segment. ...

This calculation and adjustment algorithm is well described in a lot of
commercial books. Our recommendation is the following:

Internetworking With TCP/IP Vol I: Principles, Protocols, and Architecture

by Douglas E. Comer, Prentice Hall.

TCP/IP Illustrated, Volume 1 The Protocols

by W. Richard Stevens

Also, header files are good references. The following is quoted from the file
/usr/include/netinet/tcp_timer.h. Refer to C.2, “/usr/include/netinet/tcp_timer.h”
on page 367 for the complete list of this header file:

Chapter 5. TCP/IP Related Parameter Tuning 293

/*
 * The TCPT_REXMT timer is used to force retransmissions.
 * The TCP has the TCPT_REXMT timer set whenever segments
 * have been sent for which ACKs are expected but not yet
 * received. If an ACK is received which advances tp->snd_una,
 * then the retransmit timer is cleared (if there are no more
 * outstanding segments) or reset to the base value (if there
 * are more ACKs expected). Whenever the retransmit timer goes off,
 * we retransmit one unacknowledged segment, and do a backoff
 * on the retransmit timer.
 *

Another header file, /usr/include/netinet/tcp_var.h, helps you with the backoff
algorithm. Refer to C.3, “/usr/include/netinet/tcp_var.h” on page 369 for the
complete list of this header file. The key point is that an actual measured RTT
and deduced SRTT (is used as current RTO) are used to calculate the timeout
period (RTO) of the next segment.

/*
 * The smoothed round-trip time and estimated variance
 * are stored as fixed point numbers scaled by the values below.
 * For convenience, these scales are also used in smoothing the average
 * (smoothed = (1/scale)sample + ((scale-1)/scale)smoothed).
 * With these scales, srtt has 3 bits to the right of the binary point,
 * and thus an ″ALPHA″ of 0.875. rttvar has 2 bits to the right of the
 * binary point, and is smoothed with an ALPHA of 0.75.
 */
#define TCP_RTT_SCALE 8 /* multiplier for srtt; 3 bits frac. */
#define TCP_RTT_SHIFT 3 /* shift for srtt; 3 bits frac. */
#define TCP_RTTVAR_SCALE 4 /* multiplier for rttvar; 2 bits */
#define TCP_RTTVAR_SHIFT 2 /* multiplier for rttvar; 2 bits */

/*
 * The initial retransmission should happen at rtt + 4 * rttvar.
 * Because of the way we do the smoothing, srtt and rttvar
 * will each average +1/2 tick of bias. When we compute
 * the retransmit timer, we want 1/2 tick of rounding and
 * 1 extra tick because of +-1/2 tick uncertainty in the
 * firing of the timer. The bias will give us exactly the
 * 1.5 tick we need. But, because the bias is
 * statistical, we have to test that we don′ t drop below
 * the minimum feasible timer (which is 2 ticks).
 * This macro assumes that the value of TCP_RTTVAR_SCALE
 * is the same as the multiplier for rttvar.
 */
#define TCP_REXMTVAL(tp) \

(((tp)->t_srtt >> TCP_RTT_SHIFT) + (tp)->t_rttvar)

Some constants are also defined in the file, /usr/include/netinet/tcp_timer.h, as
follows:

...
/*
 * Time constants.
 */
#define TCPTV_MSL (30*PR_SLOWHZ) /* max seg lifetime (hah!) */
#define TCPTV_SRTTBASE 0 /* base roundtrip time;

if 0, no idea yet */
#define TCPTV_SRTTDFLT (3*PR_SLOWHZ) /* assumed RTT if no info */
...

294 Practical TCP/IP for AIX V3.2/V4.1

#define TCPTV_MIN (1*PR_SLOWHZ) /* minimum allowable value */
#define TCPTV_REXMTMAX (64*PR_SLOWHZ) /* max allowable REXMT value */
...
#define TCP_MAXRXTSHIFT 12 /* maximum retransmits */
...

This mechanism is also involved in the initial connection establishment (SYN
segment). For that moment there is no measured RTT, the minimum value
TCPTV_MIN of 2 (1 second) and the default TCPTV_SRTTDFLT of 6 (3 seconds)
are defined here. These defaults are due to the RFC 1122.

RFC 1122 Requirements for Internet Hosts, Page 96

The following values SHOULD be used to initialize the estimation parameters
for a new connection.

(a) RTT = 0 seconds.

(b) RTO = 3 seconds. (The smoothed variance is to be initialized to the
value that will result in this RTO).

The important constant, PR_SLOWHZ, is defined in the header file,
/usr/include/sys/protosw.h, as follows:

...
 * A protocol is called through the pr_init entry before any other.
 * Thereafter it is called every 200ms through the pr_fasttimo entry and
 * every 500ms through the pr_slowtimo for timer based actions.
 * The system will call the pr_drain entry if it is low on space and
 * this should throw away any non-critical data.
...
#define PR_SLOWHZ 2 /* 2 slow timeouts per second */
#define PR_FASTHZ 5 /* 5 fast timeouts per second */
...

The slow timeout happens every 500ms, then the PR_SLOWHZ is defined as 2.
Notice that all the time constants defined in the above header file are
represented by the unit of pr_slowtimo or 0.5 seconds. Therefore, the
retransmission timeout period must be between 1 and 64 seconds.

As we have seen, there are many parameters and the TCP module does a bit of
complicated work. Unfortunately, almost all parameters are hard coded and you
can not make any adjustments.

The following table is actually a measured retransmission timeout. We
established a TELNET session between two RS/6000′s and then let the interface
of one RS/6000 down. The result shows that the TCP module got timeouts 12
times and retransmits the same segment 12 times. Notice that the final segment
(No.27) is the reset (RST flag on) segment to abort the connection, and this
segment is not the subject of the retransmission timer. You could then know
that the timeout period had been expanded using the backoff algorithm and
finally reached 64 seconds, which was the upper limit of the retransmission
timer. Remember, all that was defined in the header files. The retransmission
timer value was saturated at 128 and this is what was defined by the
TCPTV_REXMTMAX. The retransmission was made 12 times and this is what is
defined by the TCP_MAXRXTSHIFT.

Chapter 5. TCP/IP Related Parameter Tuning 295

No = Packet Number in the IP trace report.
shift = Number of exponential backoff algorithm applied.
REXMIT = Retransmission Timer Value (unit of 0.5 sec)
REXMIT(real) = Measured Retransmission Time (unit of sec)
KEEP = Keep Alive Timer Value (unit of 0.5 sec)

No Time Stamp shift REXMIT REXMIT(real) KEEP

62 16:13:17.086509952 0 3 1.255081472 14165

63 16:13:18.341591424 1 6 3.000216832 14163

64 16:13:21.341808256 2 12 6.000395008 14157

65 16:13:27.342203264 3 24 12.004708096 14145

66 16:13:39.346911360 4 48 24.001780600 14121

67 16:14:03.348691968 5 96 48.002619648 14073

68 16:14:51.351311616 6 128 64.003326336 13977

69 16:15:55.354637952 7 128 64.003434112 13849

70 16:16:59.358072064 8 128 64.003592192 13721

71 16:18:03.361664256 9 128 64.003363968 13593

72 16:19:07.365028224 10 128 64.003641344 13465

73 16:20:11.368669568 11 128 64.003480704 13337

74 16:21:15.372150272 12 128 64.003491328 13209

75 16:22:19.375641600 12 128 N/A 13081

5.8.3.1 Socket-Level/IP Trace Example
Also, we show you how a socket-level trace looks during the retransmission.
The mat is the TELNET client and the zero is the TELNET server. We made the
zero ′s interface down and this trace was logged at the mat.

netstat -f inet -A
Active Internet connections
PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)
 5a5fe00 tcp 0 0 mat.hakozaki.1035 zero.hakozak.telne ESTABLISHED
 5a4b800 tcp 0 0 mat.hakozaki.cppbr mat.hakozaki.1026 ESTABLISHED
 5a4bd00 tcp 0 0 mat.hakozaki.1026 mat.hakozaki.cppbr ESTABLISHED
 5a48900 tcp 0 0 mat.hakozaki.cppbr *.* LISTEN

#

trpt -p 5a5fe00 -t -a -f

...
708 ESTABLISHED:output (src=9.68.214.82,1035, dst=9.68.214.84,23)

[2288d23f..2288d240)@228dbc8f(win=3e64)<ACK,PUSH> -> ESTABLISHED
REXMT=3 (t_rxtshft=0), KEEP=14165

708 ESTABLISHED:user SEND -> ESTABLISHED
REXMT=3 (t_rxtshft=0), KEEP=14165

767 ESTABLISHED:user SEND -> ESTABLISHED
REXMT=2 (t_rxtshft=0), KEEP=14164

789 ESTABLISHED:user SEND -> ESTABLISHED
REXMT=1 (t_rxtshft=0), KEEP=14163

834 ESTABLISHED:output (src=9.68.214.82,1035, dst=9.68.214.84,23)
[2288d23f..2288d242)@228dbc8f(win=3e64)<ACK,PUSH> -> ESTABLISHED
REXMT=6 (t_rxtshft=1), KEEP=14163

834 ESTABLISHED:user SLOWTIMO<REXMT> -> ESTABLISHED

296 Practical TCP/IP for AIX V3.2/V4.1

REXMT=6 (t_rxtshft=1), KEEP=14163
854 ESTABLISHED:user SEND -> ESTABLISHED

REXMT=6 (t_rxtshft=1), KEEP=14162
134 ESTABLISHED:output (src=9.68.214.82,1035, dst=9.68.214.84,23)

[2288d23f..2288d244)@228dbc8f(win=3e64)<ACK,PUSH> -> ESTABLISHED
REXMT=12 (t_rxtshft=2), KEEP=14157

134 ESTABLISHED:user SLOWTIMO<REXMT> -> ESTABLISHED
REXMT=12 (t_rxtshft=2), KEEP=14157

734 ESTABLISHED:output (src=9.68.214.82,1035, dst=9.68.214.84,23)
[2288d23f..2288d244)@228dbc8f(win=3e64)<ACK,PUSH> -> ESTABLISHED
REXMT=24 (t_rxtshft=3), KEEP=14145

734 ESTABLISHED:user SLOWTIMO<REXMT> -> ESTABLISHED
REXMT=24 (t_rxtshft=3), KEEP=14145

...
136 ESTABLISHED:output (src=9.68.214.82,1035, dst=9.68.214.84,23)

[2288d23f..2288d244)@228dbc8f(win=3e64)<ACK,PUSH> -> ESTABLISHED
REXMT=128 (t_rxtshft=11), KEEP=13337

136 ESTABLISHED:user SLOWTIMO<REXMT> -> ESTABLISHED
REXMT=128 (t_rxtshft=11), KEEP=13337

537 ESTABLISHED:output (src=9.68.214.82,1035, dst=9.68.214.84,23)
[2288d23f..2288d244)@228dbc8f(win=3e64)<ACK,PUSH> -> ESTABLISHED
REXMT=128 (t_rxtshft=12), KEEP=13209

537 ESTABLISHED:user SLOWTIMO<REXMT> -> ESTABLISHED
REXMT=128 (t_rxtshft=12), KEEP=13209

937 CLOSED:output (src=9.68.214.82,1035, dst=9.68.214.84,23)
2288d244@228dbc8f(win=3e64)<ACK,RST> -> CLOSED
REXMT=128 (t_rxtshft=12), KEEP=13081

Here we show you the corresponding IP trace log. After disabling the interface
of zero, a data segment was sent to the zero from the mat by just typing garbage
characters. This is only the first three and the last three segments including the
RST segment. You could know that the completely identical segments were sent
repeatedly. The IP trace log is as follows:

 1. We have already established a TELNET connection between mat and zero.
First, we detach the interface at the TELNET server zero, and then type a
pwd command at the TELNET client mat. This packet contains the first
character of the pwd, p; since the TELNET server (telnetd) echoes every
typed character one by one, this p should have been echoed by the zero.

Packet Number 62
TOK: ====(63 bytes transmitted on interface tr0)==== 16:13:17.086509952
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=41, ip_id=579, ip_off=0
IP: ip_ttl=60, ip_sum=bd5d, ip_p = 6 (TCP)
TCP: <source port=1035, destination port=23(telnet) >
TCP: th_seq=2288d23f, th_ack=228dbc8f
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=6a31, th_urp=0
TCP: 00000000 70 |p |

Chapter 5. TCP/IP Related Parameter Tuning 297

 2. Due to the no echo (no response) from the TELNET server zero, the mat
retransmitted the character. At this moment, subsequent characters were
already typed, and they were sent together as pwd.

Packet Number 63
TOK: ====(65 bytes transmitted on interface tr0)==== 16:13:18.341591424
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=43, ip_id=580, ip_off=0
IP: ip_ttl=60, ip_sum=bd5a, ip_p = 6 (TCP)
TCP: <source port=1035, destination port=23(telnet) >
TCP: th_seq=2288d23f, th_ack=228dbc8f
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=5b8, th_urp=0
TCP: 00000000 707764 |pwd |

 3. This is the second retransmission segment. This time, more characters (due
to pressing the enter key) were added.

Packet Number 64
TOK: ====(67 bytes transmitted on interface tr0)==== 16:13:21.341808256
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=45, ip_id=581, ip_off=0
IP: ip_ttl=60, ip_sum=bd57, ip_p = 6 (TCP)
TCP: <source port=1035, destination port=23(telnet) >
TCP: th_seq=2288d23f, th_ack=228dbc8f
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=5a9, th_urp=0
TCP: 00000000 7077640d 00 |pwd.. |

 4. This is the segment of the 11th retransmission. When you compare an IP
trace log with a socket level trace log, you can use the field of th_seq and
th_ack as a key to match the same segment.

Packet Number 73
TOK: ====(67 bytes transmitted on interface tr0)==== 16:20:11.368669568
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=45, ip_id=595, ip_off=0
IP: ip_ttl=60, ip_sum=bd49, ip_p = 6 (TCP)
TCP: <source port=1035, destination port=23(telnet) >
TCP: th_seq=2288d23f, th_ack=228dbc8f

298 Practical TCP/IP for AIX V3.2/V4.1

TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=5a9, th_urp=0
TCP: 00000000 7077640d 00 |pwd.. |

 5. This is the segment of the 12th retransmission. All the information in the
TCP header is completely identical for each retransmission.

Packet Number 74
TOK: ====(67 bytes transmitted on interface tr0)==== 16:21:15.372150272
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=45, ip_id=597, ip_off=0
IP: ip_ttl=60, ip_sum=bd47, ip_p = 6 (TCP)
TCP: <source port=1035, destination port=23(telnet) >
TCP: th_seq=2288d23f, th_ack=228dbc8f
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=5a9, th_urp=0
TCP: 00000000 7077640d 00 |pwd.. |

 6. This is the connection abort (reset) segment. Finally, the TCP module on the
mat gave up and sent a segment with the RST flag. Since this is abortion,
no TIME_WAIT period is set.

Packet Number 75
TOK: ====(62 bytes transmitted on interface tr0)==== 16:22:19.375641600
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=598, ip_off=0
IP: ip_ttl=60, ip_sum=bd4b, ip_p = 6 (TCP)
TCP: <source port=1035, destination port=23(telnet) >
TCP: th_seq=2288d244, th_ack=228dbc8f
TCP: th_off=5, flags<RST | ACK>
TCP: th_win=15972, th_sum=da31, th_urp=0

5.8.3.2 Statistics Example by netstat Command
We can review the previous activity with the netstat -p tcp command. After the
previous retransmission timeout sequence was completed, the following
counters were incremented. The retransmit timeouts were increased by 12.
Other counters were increased by one.

netstat -p tcp
tcp:
...

5 connection requests
1 connection accept
6 connections established (including accepts)
5 connection closed (including 1 drops)
0 embryonic connections dropped
46 segments updated rtt (of 49 attempts)

Chapter 5. TCP/IP Related Parameter Tuning 299

12 retransmit timeouts
1 connection dropped by rexmit timeout

0 persist timeouts
0 keepalive timeouts

0 keepalive probes sent
0 connections dropped by keepalive

#

5.8.3.3 Parameter Configuration
The important point you should not forget is, it takes almost 10 minutes to drop a
TCP connection after a problem occurs. In this example, it took 10 minutes and
3 seconds. At the very least, the application programs will know about it for
about 10 minutes if a cable was disconnected or the destination system suddenly
turned off. The AIX V4.1 provides the capability to adjust the retransmission
timeout parameters. The following new options are introduced to the no
command:

no -a | grep rto
rto_low = 1
rto_high = 64
rto_limit = 7
rto_length = 13

#

rto_low
Defines the minimum value of the retransmission timeout value (RTO) in
seconds.

rto_high
Defines the maximum value of the retransmission timeout value (RTO)
in seconds.

rto_limit
Defines the limit of numbers that the back-off algorithm is applied in the
timeout value calculation. In our example, the RTO value was
increased to 64 seconds and fixed there because the back-off algorithm
was applied 7 times.

rto_length
Defines the limit of the timeout number. The default value 13 means
that after 13 RTO timeouts (and 12 retransmission), the connection is
closed.

Refer to the header file, /usr/include/netinet/tcp_timer.h, and see how the
back-off calculation is defined for RTO.

300 Practical TCP/IP for AIX V3.2/V4.1

#ifdef _KERNEL
extern int tcp_keepidle; /* time before keepalive probes begin */
extern int tcp_keepintvl; /* time between keepalive probes */
extern int tcp_maxidle; /* time to drop after starting probes */
extern int tcp_ttl; /* time to live for TCP segs */
extern int tcp_rtolow; /* TCP RTO backoff low watermark */
extern int tcp_rtohigh; /* TCP RTO backoff high watermark */
extern int tcp_rtolimit; /* TCP RTO backoff exponential mark */
extern int tcp_rtolength; /* TCP RTO backoff total# elements */
extern int tcp_rtoshift; /* TCP RTO backoff delta shift; the */

/* number of bit shitfs from */
/* tcp_rtolow to tcp_rtohigh inclusive

*/
#define TCP_BACKOFF(x) \

((((x)+1) >= (tcp_rtolimit)) ? (tcp_rtohigh) : \
(tcp_rtolow) << (((tcp_rtoshift)*(x))/(tcp_rtolimit)))

#endif

Difference between V4.1 and V3.2

With V3.2, all the parameters which are involved in this mechanism are hard
coded in the kernel. You can not tune the retransmission timeout
mechanism with AIX V3.2.

If you need to close or drop the connection more rapidly, use the keep-alive
timer. Look at the socket level trace log again and you will notice that the
keep-alive timer is also working. Set the option tcp_keepidle and
tcp_keepintvl of the no command small enough. You can compensate for the
long retransmission timeout sequence.

5.8.4 TCP Keep-Alive Timeout
In this section, we describe a timeout mechanism called keep-alive. The
keep-alive is a mechanism which drops hang-up TCP connections. As you know,
the TCP module sends a data segment and waits for an ACK segment. But,
when you don′ t send any data, then the TCP module has nothing to do. A TCP
connection can stay idle forever if there is no traffic. TCP itself doesn′ t drop a
connection just because it is idle (not used). But why is this a problem? Usually
a server program accepts a connection from a client program. In the server
program, a certain amount of resource is assigned to the client. Also, the OS
(AIX) or TCP module consumes some system resource (for example, a socket
port is a limited system resource). When the client crashes or is just turned off
during the idle term, it is not aware of it and just keeps the connection in the
established state and stays indefinitely. So far, the resources allocated at the
server side, are no longer necessary, but they are never released by the native
TCP mechanism. The keep-alive is to compensate this nature.

With the keep-alive procedure, the TCP module can decide if the current no
traffic is due to just no data to be sent or due to some problems. If a problem is
detected, the TCP module aborts the connection. The procedure is as follows:

 1. Whenever a data segment is received, the TCP module starts the keep-alive
timer. Every time a new data or ACK segment is received, the keep-alive
timer is reset.

Chapter 5. TCP/IP Related Parameter Tuning 301

 2. When the keep-alive timer reaches 120 minutes (this is the default
configuration), the TCP module starts to send a probe segment. This means
for the last 120 minutes, no data or ACK segment has not been received.

 3. The probe segment is repeatedly retransmitted if there are no responses.
The interval of each probe segment is 75 seconds (this is the default
configuration). If a response is received for any of the probes, the keep-alive
timer is reset.

 4. If the probe segment is retransmitted eight times and finally there are no
responses, the TCP module aborts the connection. Be aware that the
retransmissions are sent eight times and probes are sent nine times (totally)
before the connection is aborted.

Although the keep-alive looks like a nice feature, it has certain drawbacks. Due
to these drawbacks, the keep-alive is purely an optional capability and not a part
of the formal TCP specification. They are describe in the RFC 1122.

RFC 1122 Requirements for Internet Hosts, Page 102

DISCUSSION:

A ″Keep-alive″ mechanism periodically probes the other end of a connection
when the connection is otherwise idle, even when there is no data to be sent.
The TCP specification does not include a keep-alive mechanism because it
could: (1) cause perfectly good connections to break during transient Internet
failures; (2) consume unnecessary bandwidth (″if no one is using the
connection, who cares if it is still good?″); and (3) cost money for an Internet
path that charges for packets.

With all the default parameters, if there is a problem, the TCP connection is
dropped 130 minutes after the last succeeded communication. These are
defined in the header file, /usr/include/netinet/tcp_timer.h. You can find an
excellent explanation in it as follows:

...
*
 * The TCPT_KEEP timer is used to keep connections alive. If an
 * connection is idle (no segments received) for TCPTV_KEEP_INIT amount of time,
 * but not yet established, then we drop the connection. Once the connection
 * is established, if the connection is idle for TCPTV_KEEP_IDLE time
 * (and keepalives have been enabled on the socket), we begin to probe
 * the connection. We force the peer to send us a segment by sending:
 * <SEQ=SND.UNA-1><ACK=RCV.NXT><CTL=ACK>
 * This segment is (deliberately) outside the window, and should elicit
 * an ack segment in response from the peer. If, despite the TCPT_KEEP
 * initiated segments we cannot elicit a response from a peer in TCPT_MAXIDLE
 * amount of time probing, then we drop the connection.
 */
...
/*
 * Time constants.
 */
...
#define TCPTV_KEEP_INIT (75*PR_SLOWHZ) /* initial connect keep alive */
#define TCPTV_KEEP_IDLE (120*60*PR_SLOWHZ) /* dflt time before probing */
#define TCPTV_KEEPINTVL (75*PR_SLOWHZ) /* default probe interval */
#define TCPTV_KEEPCNT 8 /* max probes before drop */
...

302 Practical TCP/IP for AIX V3.2/V4.1

Refer to C.2, “/usr/include/netinet/tcp_timer.h” on page 367 for the complete list
of this header file.

5.8.4.1 Parameter Configuration
Both TCPTV_KEEP_IDLE and TCPTV_KEEPINTVL are configurable by the no
command. Also, since AIX V3.2.5, TCPTV_KEEP_INIT is now configurable. They
correspond to each of the following options. The unit is 0.5 seconds.

no -a | grep keep
tcp_keepintvl = 150
tcp_keepidle = 14400
tcp_keepinit = 150

#

tcp_keepintvl
This option is to configure TCPTV_KEEPINTVL, which defines the interval
between each probe.

tcp_keepidle
This option is to configure TCPTV_KEEP_IDLE, which defines the timeout
period for the first probe.

If you need to change any of them, issue the no command as follows:

 1. To change this option, for example, to 60 (30 seconds), issue the following
command:

no -o tcp_keepidle=60
#

 2. Confirm if it was successfully made:

no -o tcp_keepidle
tcp_keepidle = 60
#

If you need to restore a default value, you can use the no -d command. As usual
with no, this update is not saved for reboot. If you make this permanent, write
this command somewhere in a start up script. The best place is at the end of
the /etc/rc.net, as follows:

###
The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for Ethernet and token-ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
###
if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o tcp_recvspace=16384
/usr/sbin/no -o tcp_keepidle=60
/usr/sbin/no -o tcp_keepintvl=10

fi

Chapter 5. TCP/IP Related Parameter Tuning 303

5.8.4.2 TCP Application Behavior
It is completely optional if you use keep-alive. Therefore, socket API has the
option to allow you this selection. Use the SO_KEEPALIVE option of setsockopt()
to enable this feature for your writing applications. If you use the system
provided application (such as TELNET or FTP) , read manual or InfoExplorer.
Some applications do have an option flag to enable the keep-alive. For example,
with TELNET, telnetd has the -n flag to disable the keep-alive (the default is ON).
Although the telnet client or telnet command doesn′ t have a similar option, this
is reasonable because the main purpose of the keep-alive is to release server
resource in the case of client crash. For FTP, the server ftpd has the -k flag to
enable the keep-alive (the default is OFF). The client or ftp command doesn′ t
have this option.

As quoted below, our telnetd implementation is violating the RFC.

RFC Requirements for Internet Hosts, Page 101

4.2.3.6 TCP Keep-Alives

Implementers MAY include ″Keep-Alives″ in their TCP implementations,
although this practice is not universally accepted. If keep-alives are
included, the application MUST be able to turn them on or off for each TCP
connection, and they MUST default to off.

5.8.4.3 Socket-Level/IP Trace Example
This time, we review an IP trace example. This is also the TELNET session
between the mat and zero. The mat is the TELNET server running telnetd, and
the zero is the TELNET client. For this experiment, we set the keep-alive related
parameters, as follows:

no -a
...

tcp_keepintvl = 10
tcp_keepidle = 60

...
#

The first probe would be sent 30 seconds after the last data segment. The
probes would be retransmitted every 5 seconds.

 1. This is a usual TCP data segment from the mat to the zero. We just logged
in to mat from zero, and this is the message and prompt displayed at the
zero ′s screen. In this segment, the PUSH flag is set. This means that the
data carried in this segment should be passed to the application (telnet
client) immediately without buffering. Since TELNET needs an interactive
nature, this flag is used. Also, the ACK flag is set and this implies that there
was data segment(s) from the zero to the mat (from TCP module any TELNET
activity is data segment). This segment is also acknowledging for this data.

Packet Number 46
TOK: ====(1128 bytes transmitted on interface tr0)==== 18:23:10.714830080
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)

304 Practical TCP/IP for AIX V3.2/V4.1

IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1106, ip_id=2181, ip_off=0
IP: ip_ttl=60, ip_sum=b2f2, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1030 >
TCP: th_seq=5eedc2d0, th_ack=5eedc23a
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=15972, th_sum=a9af, th_urp=0
TCP: 00000000 2a2a2a2a 2a2a2a2a 2a2a2a2a 2a2a2a2a |****************|
TCP: ********
TCP: 00000040 2a2a2a2a 2a2a2a2a 2a2a2a2a 2a2a2a0d |***************.|
...
TCP: 000003f0 3a31343a 35382031 39393520 6f6e202f |:14:58 1995 on /|
TCP: 00000400 6465762f 7074732f 36206672 6f6d207a |dev/pts/6 from z|
TCP: 00000410 65726f2e 68616b6f 7a616b69 2e69626d |ero.hakozaki.ibm|
TCP: 00000420 2e636f6d 0d0a0d0a 2320 |.com....# |

 2. This is the ACK segment from the zero to the mat. The th_seq=5eedc23a is
the same with the th_ack=5eedc23a of the prior segment. This is correct.
The th_ack=5eedc6fa means that this is the assumed sequence number of
the next segment. The prior segment has the th_seq=5eedc2d0 and
ip_len=1106. Since the IP header is 20 bytes (ip_hl=20) and the TCP
header is 20 bytes (th_off=5), the TCP data length is 1066 bytes. Adding
1066 to 5eedc2d0 equals to 5eedc6fa. Therefore, the next sequence number
would be 5eedc6fa and this coincide with the header (th_ack=5eedc6fa).
This means there is no pending data on the way. All data was safely
received and acknowledged by the zero.

Now all the sends and receives were completed and the connection was in a
quiet state.

Packet Number 47
TOK: ====(62 bytes received on interface tr0)==== 18:23:10.914401408
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=3326, ip_off=0
IP: ip_ttl=60, ip_sum=b2a3, ip_p = 6 (TCP)
TCP: <source port=1030, destination port=23(telnet) >
TCP: th_seq=5eedc23a, th_ack=5eedc6fa
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=6714, th_urp=0

 3. Refer to the time stamp of the first line and this segment was sent 30
seconds after the prior segment. This is the keep-alive probe sent from the
mat. An important feature of the probe segment is that it intentionally has
the wrong sequence number. Notice it is th_seq=5eedc6f9 and this is one
smaller than the th_ack=5eedc6fa of the prior segment. This is the most
elaborated part of the keep-alive. Notice that this probe carries one garbage
data byte “T.”

Chapter 5. TCP/IP Related Parameter Tuning 305

Packet Number 48
TOK: ====(63 bytes transmitted on interface tr0)==== 18:23:40.734537088
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=41, ip_id=2182, ip_off=0
IP: ip_ttl=60, ip_sum=b71a, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1030 >
TCP: th_seq=5eedc6f9, th_ack=5eedc239
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=1315, th_urp=0
TCP: 00000000 54 |T |

 4. The zero received the probe segment and acknowledged it with the
sequence number that the zero or the TELNET client was expecting. The
zero discarded the garbage byte (included in the probe) because the probe′s
data is corresponding to a part of the received data due to the sequence
number assigned to the probe.

Packet Number 49
TOK: ====(62 bytes received on interface tr0)==== 18:23:40.736268544
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=3327, ip_off=0
IP: ip_ttl=60, ip_sum=b2a2, ip_p = 6 (TCP)
TCP: <source port=1030, destination port=23(telnet) >
TCP: th_seq=5eedc23a, th_ack=5eedc6fa
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=6714, th_urp=0

From a probe receiver′s point of view, it already receives the received sequence
number again. In such case, the TCP module just discard the duplicated
segment and responds with an acknowledgement segment with the ACK number
which it wants to receive next. This is a regular TCP behavior. In other words,
the TCP module of the proved side never needed the special feature to support
the keep-alive. Any correct TCP implementation should respond to the
keep-alive probe segment.

Difference between V4.1 and V3.2

As you see, our V4.1 keep-alive probe segment carries one byte of
meaningless data. But, with V3.2, no data was carried. Some incorrect TCP
implementations don ′ t respond to a keep-alive probe if the probe doesn′ t
carry data. 4.2 BSD may be the most famous example. Thus, keep-alive
doesn ′ t work if we use V3.2 with 4.2 BSD. Our V4.1 is enhanced to support
this situation. This problem is describe in the RFC 1122.

306 Practical TCP/IP for AIX V3.2/V4.1

RFC 1122 Requirements for Internet Hosts, Page 102

Unfortunately, some misbehaved TCP implementations fail to respond to a
segment with SEG.SEQ = SND.NXT-1 unless the segment contains data.
Alternatively, an implementation could determine whether a peer responded
correctly to keep-alive packets with no garbage data octet.

The following is the corresponding socket-level trace log. This trace was
obtained at the mat because the telnetd was running there. Remember that
keep-alive is enabled by an application (mostly by a server side).

Note: The regular ACK segment was not logged with socket-level trace.
Therefore, Packet Number 47 of above IP trace log was not shown.

071 ESTABLISHED:output (src=9.68.214.82,23, dst=9.68.214.84,1030)
[5eedc2d0..5eedc6fa)@5eedc23a(win=3e64)<ACK,PUSH> -> ESTABLISHED
REXMT=4 (t_rxtshft=0), KEEP=60

073 ESTABLISHED:user SLOWTIMO<KEEP> -> ESTABLISHED
KEEP=10

073 ESTABLISHED:input (src=9.68.214.84,1030, dst=9.68.214.82,23)
5eedc23a@5eedc6fa(win=3e64)<ACK> -> ESTABLISHED
KEEP=60

When the data segment was sent, the keep-alive timer was KEEP=60. (This is
also defined by the unit of 0.5 seconds.) This timer value is what we set by
tcp_keepidle=60 of the no command. When this timer was expired, the probe
was sent and at this moment the keep-alive timer was set to KEEP=10. This is
what we set by tcp_keepintvl=10. If this timer would have expired, the second
probe would have been sent. In the previous experiment, the grover responded
to the ACK and the keep-alive timer was again refreshed to KEEP=60.

The following is an IP trace example for when the keep-alive failed. In AIX V4.1,
the probes are sent up to nine times. In this experiment, we made the interface
of the zero detach after the successful data and acknowledgement transmission.
We just show the last two probe′s segments and the RST segment. All the
keep-alive parameters are the same as the previous experiment.

 1. This is the 8th probe segment.

Packet Number 76
TOK: ====(63 bytes transmitted on interface tr0)==== 18:26:47.244921088
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=41, ip_id=2218, ip_off=0
IP: ip_ttl=60, ip_sum=b6f6, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1030 >
TCP: th_seq=5eedc862, th_ack=5eedc23d
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=23a8, th_urp=0
TCP: 00000000 42 |B |

 2. This is the 9th probe segment. The time stamp tells that this probe was sent
five seconds after the 8th probe. This is what we expected.

Chapter 5. TCP/IP Related Parameter Tuning 307

Packet Number 77
TOK: ====(63 bytes transmitted on interface tr0)==== 18:26:52.245235840
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=41, ip_id=2219, ip_off=0
IP: ip_ttl=60, ip_sum=b6f5, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1030 >
TCP: th_seq=5eedc862, th_ack=5eedc23d
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=21a8, th_urp=0
TCP: 00000000 44 |D |

 3. No responses were received by the mat for five seconds after the last (9th)
probe, the keep-alive timer, expired and the RST segment was sent. Be
aware that this is no longer a probe but actually just the RST segment.
Therefore, the sequence number is set to the correct number
th_seq=2bce1275 (one bigger than that of probes).

Packet Number 78
TOK: ====(62 bytes transmitted on interface tr0)==== 18:26:57.245547648
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=2220, ip_off=0
IP: ip_ttl=60, ip_sum=b6f5, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1030 >
TCP: th_seq=5eedc863, th_ack=5eedc23e
TCP: th_off=5, flags<RST | ACK>
TCP: th_win=15972, th_sum=65a3, th_urp=0

Again, this is the corresponding socket-level trace log. The keep-alive timer was
set to KEEP=10 each time a probe was sent. Notice that the final RST segment
was also kicked by the keep-alive timer.

724 ESTABLISHED:user SLOWTIMO<KEEP> -> ESTABLISHED
KEEP=10

224 ESTABLISHED:user SLOWTIMO<KEEP> -> ESTABLISHED
KEEP=10

724 CLOSED:output (src=9.68.214.82,23, dst=9.68.214.84,1030)
5eedc863@5eedc23e(win=3e64)<ACK,RST> -> CLOSED

5.8.4.4 Statistics Example by netstat Command
The keep-alive activity is counted by the kernel and you can review it by the
netstat -p tcp command. The following counters get incremented with the
keep-alive. These counters were taken at the mat (TELNET server). If a
connection is dropped by the keep-alive mechanism, the counter, connections
closed, and connections dropped by keepalive are all incremented by one.

308 Practical TCP/IP for AIX V3.2/V4.1

netstat -p tcp
tcp:
...

15 connection requests
4 connection accepts
19 connections established (including accepts)
18 connections closed (including 3 drops)
0 embryonic connections dropped
1499 segments updated rtt (of 1505 attempts)
24 retransmit timeouts

2 connections dropped by rexmit timeout
0 persist timeouts
17 keepalive timeouts

14 keepalive probes sent
1 connection dropped by keepalive

#

5.8.5 TCP Persist Timeout
The persist timeout is to ensure that the TCP window flow control works safely.
TCP guarantee reliable data transmission and any data must be acknowledged
by the receiver. But, TCP doesn′ t guarantees the reliable ACK segment
transmission. In other words, TCP only watches if the data has arrived safely at
the destination. This can be done by receiving the acknowledgement from the
destination. But, the destination system doesn′ t care if the acknowledgement
arrived at the source system safely. Then, if the acknowledgement is lost during
the transmission, what will happen? The source system concludes that the data
was not delivered to the destination, because no acknowledgements were
returned (but this is not correct). Then, the source system retransmits the data
again, and the destination system receives the same data twice. The destination
system just discards the duplicated data and sends the acknowledgement again.
As you already know, the sequence number and acknowledgement number in
each segment have a crucial role in this mechanism.

Note: Since the TCP connection is bidirectional, an acknowledgement segment
can carry data (more accurately, a data segment can carry
acknowledgement). In this case, due to this piggy-backed data, this
segment is subject to be reliable transmission.

In the TCP flow control mechanism, if a receiver system informed a 0 window
size, the sender must stop the data transmission until the receiver informs more
than a 0 window size. This window update from the receiver is made by an
acknowledgement segment. If an acknowledgement only segment (no data) is
used for this purpose, there are no reliable mechanisms to confirm if the window
update is delivered. What happens if it is lost? The sender just considers that
the receiver′s window remains 0 and cannot send any data. The receiver would
not receive any new data, but this is just considering that the sender no longer
has any data to send. As a result, the TCP connection hangs indefinitely. There
are no reasons to initiate a new transmission for both sides. The persist timeout
makes up for this problem.

The overview of the persist timeout is as follows:

 1. A receiver acknowledges with the window field 0, when the receiver window
is full.

 2. The sender stops to send the next data segment. At this moment, the
sender starts the persist timer.

Chapter 5. TCP/IP Related Parameter Tuning 309

 3. When the receive buffer gets some empty space, the receiver sends an
acknowledgement segment with the updated window size (more than 0).
This segment is called the window update. Otherwise, the receiver remains
silent.

Note: This window update can be lost during the transmission and there are
no ways to know if it is lost.

 4. When the persist t imer at the sender expires, the sender sends the next data
segment carrying one byte data. This is called the window probe. If the
sender receives the window update segment safely, the persist timer is reset
and no probes are sent.

 5. When the probe arrived at the receiver, the receiver responds with the same
acknowledgement segment advertising 0 window size if the receive buffer is
still full.

Note: In case the window has already been updated and the window update
segment was lost, the receiver responds a regular acknowledgement
telling that the one data byte was received and it informs the new
updated window size.

 6. If the sender receives the same 0 window acknowledgement, it resets the
persist timer and repeats the previous procedure. But this time, the persist
timer is set with a longer timeout value.

The persist timer value is incremented when it expires. The exponential backoff
algorithm is used here. As you can see following, the necessary constants are
defined in the /usr/include/netinet/tcp_timer.h header file. Refer to C.2,
“/usr/include/netinet/tcp_timer.h” on page 367 for the complete list of this
header file. The minimum persist timer value is 5 seconds and the maximum is
60 seconds. Between this minimum and maximum, the value is updated.
Although it is not a mandatory requirement, our AIX V3.2 implementation uses
the same algorithm with the retransmit timeout. With our experiment, the timer
PERSIST increased from 10 to 120 with the following order. 10, 10, 12, 24, 48, 96
and 120 (all are described by a unit of 0.5 seconds). Why did 10 (5 seconds)
repeat twice? This because the minimum is 10, so any retransmit timeouts
lower than 10 were round up to 10. There is no final timeout to drop or abort the
connection for the persist timeout. This is a big difference from other timeouts.

...
*
 * The TCPT_PERSIST timer is used to keep window size information
 * flowing even if the window goes shut. If all previous transmissions
 * have been acknowledged (so that there are no retransmissions in progress),
 * and the window is too small to bother sending anything, then we start
 * the TCPT_PERSIST timer. When it expires, if the window is nonzero,
 * we go to transmit state. Otherwise, at intervals send a single byte
 * into the peer′ s window to force him to update our window information.
 * We do this at most as often as TCPT_PERSMIN time intervals,
 * but no more frequently than the current estimate of round-trip
 * packet time. The TCPT_PERSIST timer is cleared whenever we receive
 * a window update from the peer.
 *
...
/*
 * Time constants.
 */
...
#define TCPTV_PERSMIN (5*PR_SLOWHZ) /* retransmit persistance */
#define TCPTV_PERSMAX (60*PR_SLOWHZ) /* maximum persist interval */
...

310 Practical TCP/IP for AIX V3.2/V4.1

5.8.5.1 Socket-Level/IP Trace Example
Here is an example of the persist timeout. Again, we used TELNET. The mat is
the TELNET server and the zero is the TELNET client. During this TELNET
session, the receive window of the client side was filled up.

 1. We issued the following command at the zero, just to make the TELNET
server mat to send data continuously:

cat smit.log

This segment is carrying data of a smit.log to be displayed at the TELNET
client window at the zero.

Packet Number 178
TOK: ====(1002 bytes transmitted on interface tr0)==== 20:02:10.533591552
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=980, ip_id=3762, ip_off=0
IP: ip_ttl=60, ip_sum=ad43, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1034 >
TCP: th_seq=8b2b7646, th_ack=8b29fa62
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=cebd, th_urp=0
TCP: 00000000 41342082 c582b781 428fda8d d782c982 |A4B.......|
TCP: 00000010 c282a282 c482cd81 4182b182 cc0d0a20 |........A...... |
TCP: 00000020 20834383 93835883 67815b83 8b82cc8f | .C...X.g.•.....|
...

 2. In the middle of continuous data transmission, we just enter the TELNET
escape sequence, Ctrl-T, at the client zero. With this operation, the TELNET
client displayed the TELNET command prompt (tn>) and stalled the
command input and stopped the scrolling of the file smit.log file. Inside the
TELNET client, the read operation from the socket receive buffer was
suspended and the receive buffer was easily filled up. As a result, the TCP
module on the zero was forced to advertise the 0 receive window. Therefore
th_win=0 is in this segment.

Now the mat knows the receive window of the zero got to 0 and starts the
persist timer.

Chapter 5. TCP/IP Related Parameter Tuning 311

Packet Number 179
TOK: ====(62 bytes received on interface tr0)==== 20:02:10.538320640
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=5263, ip_off=0
IP: ip_ttl=60, ip_sum=ab12, ip_p = 6 (TCP)
TCP: <source port=1034, destination port=23(telnet) >
TCP: th_seq=8b29fa62, th_ack=8b2b79f2
TCP: th_off=5, flags<ACK>
TCP: th_win=0, th_sum=61da, th_urp=0

 3. The persist t imer (5 seconds) at the mat expired, but still no window update
segments came in. Then the mat sends a window probe. This segment has
the th_seq=8b2b79f2 with only one byte of data. If this one byte is received
by the zero, the ACK number in the ACK segment from the zero should be
8b2b79f3.

Packet Number 180
TOK: ====(63 bytes transmitted on interface tr0)==== 20:02:15.533966208
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=41, ip_id=3763, ip_off=0
IP: ip_ttl=60, ip_sum=b0ed, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1034 >
TCP: th_seq=8b2b79f2, th_ack=8b29fa62
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=9874, th_urp=0
TCP: 00000000 8b |. |

 4. At the zero, the receive window was stil l fil led completely. So the zero
cannot receive even one byte on the data. It again advertised specifying
th_win=0 and doesn ′ t increase the ACK number. Notice it says
th_ack=8b2b79f2 and lets the mat know that the data was not received.

The mat restarts the persist timer again. Until the zero advertises the
receive window greater than 0, this procedure is repeated.

Packet Number 181
TOK: ====(62 bytes received on interface tr0)==== 20:02:15.535704704
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=5264, ip_off=0
IP: ip_ttl=60, ip_sum=ab11, ip_p = 6 (TCP)

312 Practical TCP/IP for AIX V3.2/V4.1

TCP: <source port=1034, destination port=23(telnet) >
TCP: th_seq=8b29fa62, th_ack=8b2b79f2
TCP: th_off=5, flags<ACK>
TCP: th_win=0, th_sum=61da, th_urp=0

This is the corresponding socket-level trace log at the mat. Before Packet
Number 178 (time stamp 053) was sent, several SEND requests were buffered. In
this example, only two are shown (time stamp 662). An interesting thing is that
the buffer flush was also invoked by the persist timer. The ACK Packet Number
179 was logged at the time stamp 053. The window probe Packet Number 180
was logged at the time stamp 553.

...
662 ESTABLISHED:user SEND -> ESTABLISHED

PERSIST=8, KEEP=14398
662 ESTABLISHED:user SEND -> ESTABLISHED

PERSIST=8, KEEP=14398
053 ESTABLISHED:output (src=9.68.214.82,23, dst=9.68.214.84,1034)

[8b2b7646..8b2b79f2)@8b29fa62(win=3e64)<ACK> -> ESTABLISHED
REXMT=4 (t_rxtshft=0), KEEP=14391

053 ESTABLISHED:user SLOWTIMO<PERSIST> -> ESTABLISHED
REXMT=4 (t_rxtshft=0), KEEP=14391

053 ESTABLISHED:input (src=9.68.214.84,1034, dst=9.68.214.82,23)
8b29fa62@8b2b79f2<ACK> -> ESTABLISHED
KEEP=14400

553 ESTABLISHED:output (src=9.68.214.82,23, dst=9.68.214.84,1034)
[8b2b79f2..8b2b79f3)@8b29fa62(win=3e64)<ACK> -> ESTABLISHED
PERSIST=10, KEEP=14391

553 ESTABLISHED:user SLOWTIMO<PERSIST> -> ESTABLISHED
PERSIST=10, KEEP=14391

553 ESTABLISHED:input (src=9.68.214.84,1034, dst=9.68.214.82,23)
8b29fa62@8b2b79f2<ACK> -> ESTABLISHED
PERSIST=10, KEEP=14400

5.8.5.2 Statistics Example by the netstat Command
We can review the above activity with the netstat -p tcp command. The activity
is counted, as described. For the receiving side, whose window gets filled, it
would get several counters incremented. On the sending side, which sends
window probes, it would get one counter incremented. It would not be a good
sign if you see these counters getting incremented because it implies that
someone (your system or your destination) got its receive window run out. You
may need to expand the receive buffer(s).

• Here are the counters in the window probe sender mat before the
experiment:

mat # LANG=C netstat -p tcp
tcp:

3048 packets sent
2663 data packets (561095 bytes)
24 data packets (116 bytes) retransmitted
327 ack-only packets (290 delayed)
0 URG only packets
0 window probe packets
0 window update packets
34 control packets

4069 packets received
...

• Here are the counters in the window probe sender mat after the experiment:

Chapter 5. TCP/IP Related Parameter Tuning 313

mat # LANG=C netstat -p tcp
tcp:

3233 packets sent
2800 data packets (633204 bytes)
24 data packets (116 bytes) retransmitted
359 ack-only packets (314 delayed)
0 URG only packets
12 window probe packets
0 window update packets
38 control packets

4266 packets received
...

• Here are the counters in the window probe receiver zero before the
experiment:

zero # netstat -p tcp
tcp:

3970 packets sent
2201 data packets (17034 bytes)
12 data packets (72 bytes) retransmitted
1740 URG only packets
0 URG only packets
0 window probe packets
1 window update packet
23 control packets

3162 packets received
2217 acks (for 17050 bytes)
11 duplicate acks
0 acks for unsent data
2634 packets (560523 bytes) received in-sequence
252 completely duplicate packets (250 bytes)
0 packets with some dup. data (0 bytes duped)
7 out-of-order packets (0 bytes)
0 packets (0 bytes) of data after window
0 window probes
0 window update packets
0 packets received after close

...

• Here are the counters in the window probe receiver zero after the
experiment:

zero # netstat -p tcp
tcp:

4135 packets sent
2279 data packets (17200 bytes)
12 data packets (72 bytes) retransmitted
1818 URG only packets
0 URG only packets
0 window probe packets
6 window update packets
27 control packets

3314 packets received
2297 acks (for 17218 bytes)
21 duplicate acks
0 acks for unsent data
2759 packets (632104 bytes) received in-sequence
252 completely duplicate packets (250 bytes)
0 packets with some dup. data (0 bytes duped)
7 out-of-order packets (0 bytes)

314 Practical TCP/IP for AIX V3.2/V4.1

10 packets (10 bytes) of data after window
10 window probes
0 window update packets
1 packet received after close

...

For the receiving side, whose window gets filled, several counters get
incremented. On the sending side, which sends window probes, one counter
gets incremented. It would not be a good sign if you see these counters get
incremented because it implies that someone (your system or your
destination) had their receive window run out. You may need to expand the
receiver buffer(s).

Since the window probe contains one data byte which is out of the receive
window if the window is still full, then, the counter (packets of data after
window) was incremented. Also the window probe has the ACK flag and all
the probes are the same. Then they were also counted as the counter
duplicate ACKs.

5.9 New Option rfc1323 to Implement RFC1323
Since TCP was designed, our network environment has been updated
dramatically. Still, TCP is one of the best choices for networking. But in certain
instances, enhancements are needed in order to maintain reasonable
performance. One example is a network called long, fat pipe or LFN,
(pronounced “elephan(t)”). The LFN has the big product of bandwidth × delay.
For example, a satellite link and a fiber cable between countries is considered to
be LFN. They could have a bandwidth of tens of megabits and delays of tens of
msec; the products would be the order of 10•. The RFC 1323 introduced new
options to enhance TCP to work well enough with the LFN environment.

5.9.1 New Options Defined by RFC1323
In order to achieve reasonable performance and enough reliability for LFN, the
following new TCP options have been defined by the RFC 1323 Extensions for
High Performance.

TCP Window Scale Option
The current TCP window has the limitation of 64 KB. This option
expands the limitation to 2 GB in order to exploit the advantage of the
window scheme for LFN.

TCP Timestamps Option
This option is designed for two purposes. One is Round-Trip Time
Measurement (RTTM) to provide accurate time measurement. The
other is Protect Against Wrapped Sequence Number (PAWS). With a
large window size, the sequence number and acknowledge number can
run out and can be reused within the same TCP connection. The
timestamp in each segment makes this possible.

For details of options and backgrounds, refer to the RFC. After AIX V3.2.5, we
have a new no command option, rfc1323. With this option you can enable the
previous two new TCP options for your system. These options do not impact
current connectivity. TCP negotiates options when it establishes a connection
(remember MSS option). Therefore, if the destination system doesn′ t support
RFC 1323, these options are not used even when you set the rfc1323. Only if
both systems agree to use these options are they used.

Chapter 5. TCP/IP Related Parameter Tuning 315

One drawback is that these options are designed for LFN. Enabling these
options for a usual environment, may give you performance degradation. You
should not have any connectivity problems, but options may need some
overhead.

rfc1323
Setting this option to 1 enables both the TCP window scale option and
the TCP timestamp option to be defined by the RFC 1323. The default is
0.

If you need to change any of them, issue the no command, as follows:

 1. Check the current configuration:

no -o rfc1323
rfc1323 = 0
#

 2. To change this option to effective, set it to 1, as follows:

no -o rfc1323=1
#

 3. Confirm if the change was successfully made:

no -o rfc1323
rfc1323 = 1
#

If you need to restore the default value, you can use no -d. As is usual of the no
command, this update is not saved for reboot. If you make this permanent, write
this command some where in a start up script. The best place is the end of
/etc/rc.net, as follows:

###
The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for Ethernet and token-ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
###
if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o tcp_recvspace=16384
/usr/sbin/no -o rfc1323=1

fi

5.9.2 Option Negotiation Examples
TCP has the option field formatted as follows. All the TCP options comply with
this format, and all the option fields consist of the following three parts:

Kind (1 byte)
The first byte represents what option this is.

Length (1 byte)
The second byte represents the length of this option field. The length
includes both the kind field and length field.

Option data (variable)
The third byte and following bytes represent data used by this option.

316 Practical TCP/IP for AIX V3.2/V4.1

Some options use the option field at connection establishment only, in order to
negotiate the option parameters. Other options need the option field in every
segment.

Table 3. Current Available TCP Options

Option Name Kind Length
(byte)

Option Field

N/A 0 N/A End of option list

N/A 1 N/A No-operation

MSS 2 4 Max segment size

Window scale 3 3 Shift count

Timestamp 8 10 Timestamp value (4 bytes) and
timestamp echo reply (4 bytes)

5.9.2.1 New Options Ignored
In this section, we show you the failed option negotiation procedure of the TCP
window scale option and the TCP timestamp option. We used TELNET. The mat
is the TELNET client and the zero is the TELNET server (telnetd). At the mat we
configured rfc1323=1 and at the zero we configured rfc1323=0. Therefore these
options should not be effective.

 1. The active open side, mat, sent the SYN segment with the options. Notice
that the th_off=10, and this means that this segment has 20 bytes of total
option fields.

0204079C MSS

01 No-Operation

030300 Window Scale

01 No-Operation

01 No-Operation

080A 303775EA 00000000 Timestamp

Packet Number 1
TOK: ====(82 bytes transmitted on interface tr0)==== 20:53:13.871623936
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=4557, ip_off=0
IP: ip_ttl=60, ip_sum=adc0, ip_p = 6 (TCP)
TCP: <source port=1043, destination port=23(telnet) >
TCP: th_seq=a3b14601, th_ack=0
TCP: th_off=10, flags<SYN>
TCP: th_win=16384, th_sum=b7e2, th_urp=0
TCP: 00000000 020405ac 01030300 0101080a 303775ea |............07u.|
TCP: 00000010 00000000 |.... |

 2. The passive open side, zero, sent the SYN/ACK segment with the only option
(MSS).

Chapter 5. TCP/IP Related Parameter Tuning 317

Packet Number 2
TOK: ====(66 bytes received on interface tr0)==== 20:53:13.874240640
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=6242, ip_off=0
IP: ip_ttl=60, ip_sum=a73b, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1043 >
TCP: th_seq=a3ae5801, th_ack=a3b14602
TCP: th_off=6, flags<SYN | ACK>
TCP: th_win=15972, th_sum=b0fd, th_urp=0
TCP: 00000000 020405ac |.... |

 3. This is the ACK from the mat and the completed TCP three way handshake.
As a result, only the MSS option was effectively used. All the other options
were just ignored. This segment and all the following segments don′ t have
an option field.

Packet Number 3
TOK: ====(62 bytes transmitted on interface tr0)==== 20:53:13.874291840
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=4558, ip_off=0
IP: ip_ttl=60, ip_sum=add3, ip_p = 6 (TCP)
TCP: <source port=1043, destination port=23(telnet) >
TCP: th_seq=a3b14602, th_ack=a3ae5802
TCP: th_off=5, flags<ACK>
TCP: th_win=15972, th_sum=c8b2, th_urp=0

5.9.2.2 New Options Effective
In this section, we show you the successful option negotiation procedure of the
TCP Window Scale option and the TCP Timestamp option. We used TELNET.
The mat is the TELNET client and the zero is the TELNET server (telnetd). At the
mat we configured rfc1323=1 and at the zero we configured rfc1323=1.
Therefore these options should be effective.

 1. The active open side, mat, sent SYN segment with the options. Notice that
the th_off=10 and this means this segment has 20 bytes of total option fields.

0204079C MSS

01 No-Operation

030300 Window Scale

01 No-Operation

01 No-Operation

080A 2E82BC24 00000000 Timestamp

318 Practical TCP/IP for AIX V3.2/V4.1

Packet Number 1
TOK: ====(82 bytes transmitted on interface tr0)==== 20:56:28.147303936
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=4852, ip_off=0
IP: ip_ttl=60, ip_sum=ac99, ip_p = 6 (TCP)
TCP: <source port=1044, destination port=23(telnet) >
TCP: th_seq=a52d2801, th_ack=0
TCP: th_off=10, flags<SYN>
TCP: th_win=16384, th_sum=d2e1, th_urp=0
TCP: 00000000 020405ac 01030300 0101080a 3037776e |............07wn|
TCP: 00000010 00000000 |.... |

 2. The passive open side, zero, sent SYN/ACK segment with the options.
Notice that the th_off=10, and this means that this segment has 20 bytes of
total option fields.

020405AC MSS

01 No-Operation

030300 Window Scale

01 No-Operation

01 No-Operation

080A 30377675 3037776E Timestamp

Now both systems can agree to use all the options. Be aware that the
Timestamp option field is carrying the timestamp at this system with the
original timestamp.

Packet Number 2
TOK: ====(82 bytes received on interface tr0)==== 20:56:28.149961984
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 40:00:7e:08:66:70, dst = 10:00:5a:a8:b5:c1]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: < DST = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=6448, ip_off=0
IP: ip_ttl=60, ip_sum=a65d, ip_p = 6 (TCP)
TCP: <source port=23(telnet), destination port=1044 >
TCP: th_seq=a52b3401, th_ack=a52d2802
TCP: th_off=10, flags<SYN | ACK>
TCP: th_win=15840, th_sum=5517, th_urp=0
TCP: 00000000 020405ac 01030300 0101080a 30377675 |............07vu|
TCP: 00000010 3037776e |07wn |

 3. This is the ACK from newton and the complete TCP three way handshake.
As a result all options are used effectively. MSS and Window Scale
negotiation were already finished, this segment and all the following
segments have only the timestamp option field.

Chapter 5. TCP/IP Related Parameter Tuning 319

Packet Number 3
TOK: ====(74 bytes transmitted on interface tr0)==== 20:56:28.150108416
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 10:00:5a:a8:b5:c1, dst = 40:00:7e:08:66:70]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.68.214.82 > (mat.hakozaki.ibm.com)
IP: < DST = 9.68.214.84 > (zero.hakozaki.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=52, ip_id=4853, ip_off=0
IP: ip_ttl=60, ip_sum=aca0, ip_p = 6 (TCP)
TCP: <source port=1044, destination port=23(telnet) >
TCP: th_seq=a52d2802, th_ack=a52b3402
TCP: th_off=8, flags<ACK>
TCP: th_win=15840, th_sum=80d3, th_urp=0
TCP: 00000000 0101080a 3037776e 30377675 |....07wn07vu |

5.9.2.3 Option Field Padding Consideration
As you see in the previous sections, the implementation of our AIX V4.1 uses the
dummy option, No-operation, in order to align the ends of other option fields to a
multiple of 4 bytes. Be aware that this is a possible implementation but not a
mandatory requirement. Other implementations may use the End of Option List.
Refer to the RFC 793 TRANSMISSION CONTROL PROTOCOL SPECIFICATION.

RFC 793 TRANSMISSION CONTROL PROTOCOL, Page 18

No-Operation... This option code may be used between options, for example,
to align the beginning of a subsequent option on a word boundary. There is
no guarantee that senders will use this option, so receivers must be prepared
to process options even if they do not begin on a word boundary.

320 Practical TCP/IP for AIX V3.2/V4.1

Chapter 6. Performance Tuning Tools

We have several useful tools for performance tuning on the RS/6000. In this
chapter, three of them are explained briefly. They are ping, spray and netpmon.
The ping and spray are active tools. Active means that they send packets to
their destination system and monitor what happens. On the contrary, the
netpmon is a passive tool because it just gathers a lot of data from various
counters in the kernel and generates a summary report.

It is recommended that you practice using these tools, because the most difficult
part of using the tools is understanding or interpreting their responses and data.

6.1 ping
We have already explained some functions of this command in a previous
chapter. The ping has a lot of options. In this section we just mention some
convenient options relevant to performance tuning.

6.1.1 Convenient Options
The following are typical options to be used in performance tuning. We already
used -c and -s in another part of this book. Notice that this is not the complete
list of options. Refer to the manual or InfoExplorer for details.

-c Specify the number of packets. This option is useful when you get an IP
trace log. You can capture a minimum of ping packets.

-s Specify the length of packets. You can use this option to check
fragmentation and reassembly.

-f Send the packets at 10 ms intervals or immediately after each response.
Only the root user can use this option.

If you need to load your network or systems, the -f option is convenient. For
example, if you suspect that your problem is caused by a heavy load, you want
to load your environment intentionally in order to confirm your thought. Open
several aixterms and run the ping -f command in each aixterm. Your Ethernet
utilization quickly gets to around 100 % (you could see this if you have a
protocol analyzer). See the following example:

date ; ping -c 1000 -f mat ; date
Sun Aug 20 21:09:01 1995
PING mat.hakozaki.ibm.com: (9.68.214.82): 56 data bytes
.
----mat.hakozaki.ibm.com PING Statistics----
1000 packets transmitted, 1000 packets received, 0% packet loss
round-trip min/avg/max = 2/3/22 ms
Sun Aug 20 21:09:06 1995
#

In this example, 1000 packets were sent for 5 seconds. Be aware that this
command uses IP and ICMP protocol. No transport protocol (UDP/TCP) and
application activities are involved. Do not forget that the measured data such as
round-trip time, doesn′ t reflect the total performance characteristics.

 Copyright IBM Corp. 1996 321

6.1.2 Considerations
When you try to send a flood of packets to your destination, you should consider
some points. Sending packets also puts a load on your system. You have to
monitor the status of your network interface during the experiment. The netstat
-i command is convenient for this purpose. You may find the system of dropping
packets during a send, as follows:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 1536 <Link> 616 0 616 0 0
lo0 1536 127 loopback 616 0 616 0 0
tr0 1492 <Link> 1135982 0 435773 104 0
tr0 1492 9.170.5 newton 1135982 0 435773 104 0
#

You should watch other resources such as mbuf and send/receive queue. If the
previous happens, the destination system just receives filtered packets. It can
be difficult to place a heavy load to the destination system. Your system may
give up first.

Pay attention to relativity of the results. If you want to monitor or test just one
destination system, do the same experiment to some other systems for
comparison, because your network or router may have a problem.

6.2 spray
The spray command is a client-server style application. You need the spray
command on your system and the sprayd server daemon running on the
destination system. This tool is an application of Sun ONC/RPC. Your
environment must support ONC/RPC or you can′ t use this tool.

6.2.1 Configuration
If you invoke the spray command without preparation at the destination system,
you will get the following error message:

spray grover
sending 1162 packets of length 86 to

grover ...
SPRAYPROC_CLEAR RPC: 1832-019 Program not registered
#

This tool needs to be configured at the server side before its use. The daemon
sprayd is a subserver of the inetd. The configuration procedure is below, if the
destination (sprayd) system is an RS/6000. With the default configuration, sprayd
should have been configured if it is RS/6000. The following procedure explains
this further.

 1. First, you have to make sure that the portmap daemon is running on the
system where the sprayd is invoked. In the RPC scheme, the portmap
daemon has a crucial role. You can check the status with the lssrc
command as follows:

lssrc -s portmap
Subsystem Group PID Status
portmap portmap 5654 active
#

322 Practical TCP/IP for AIX V3.2/V4.1

With default configuration, the portmap is invoked from the script /etc/rc.tcpip
at system boot and you should not worry about it. You can find the following
lines in the script.

...
Start up Portmapper
USR_NFS=mount | awk ′ {if($3==″ / usr″) print $4}′
if [″$USR_NFS″ != ″nfs″]
then
REMOTE_USR=″N″
start /usr/sbin/portmap ″$src_running″
fi
...

Note: The portmap daemon is necessary if you run more than one
ONC/RPC application on your system. NIS and NFS are good
examples

 2. Edit the /etc/inetd.conf file and remove the comment mark (#) from the line,
as follows:

...
#rexd sunrpc_tcp tcp wait root /usr/sbin/rpc.rexd rexd 100017 1
rstatd sunrpc_udp udp wait root /usr/sbin/rpc.rstatd rstatd 100001 1-3
rusersd sunrpc_udp udp wait root /usr/lib/netsvc/rusers/rpc.rusersd rusersd 100002 1-2
rwalld sunrpc_udp udp wait root /usr/lib/netsvc/rwall/rpc.rwalld rwalld 100008 1
sprayd sunrpc_udp udp wait root /usr/lib/netsvc/spray/rpc.sprayd sprayd 100012 1
pcnfsd sunrpc_udp udp wait root /usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2
...

 3. Import the update into the ODM InetServ object class:

inetimp
#

 4. Refresh the inetd to load the updated information from the ODM:

refresh -s inetd
0513-095 The request for subsystem refresh was completed successfully.
#

You can confirm if the sprayd daemon has successfully configured, as follows.
This command can get information from a remote system:

rpcinfo -u mat spray
program 100012 version 1 ready and waiting
#

The spray is a simple RPC application. You can learn how ONC/RPC works with
this tool.

6.2.2 Convenient Options
The spray uses ONC/RPC. An RPC is mapped to an UDP datagram or
datagrams. Remember that the ping uses the ICMP echo and reply, and each
ping packet (ICMP echo) is returned by the destination system. On the contrary,
the destination (sprayd daemon) receives a flood of spray RPCs (UDP
datagrams) and responds to only one RPC to inform it of the result.

Notice this is not the complete list of options. Refer to the manual or
InfoExplorer for details.

-c Specify number of RPC. The default is the number of RPCs required to
make the total 100,000 bytes.

Chapter 6. Performance Tuning Tools 323

-l Specify length of RPC in byte. You can use this option to check
fragmentation and reassembly. The default is 86 bytes and this is the
minimum length. The maximum length is 8842 bytes (this is the limit of
current ONC/RPC).

-d Specify the time interval between each RPC in microseconds. The default
is 1.

See the following for a series of examples. The default interval of 1 microsecond
is usually too fast for many systems. Changing the interval shows you the
destination system′s performance characteristics.

spray inoki5
sending 1162 packets of length 86 to inoki5 ...

571 packets (49.139%) dropped by inoki5
53 packets/second, 4633 bytes/second

spray -d 2 inoki5
sending 1162 packets of length 86 to inoki5 ...

62 packets (5.336%) dropped by inoki5
794 packets/second, 68308 bytes/second

spray -d 10 inoki5
sending 1162 packets of length 86 to inoki5 ...

61 packets (5.250%) dropped by inoki5
796 packets/second, 68493 bytes/second

spray -d 20 inoki5
sending 1162 packets of length 86 to inoki5 ...

no packets dropped by inoki5
819 packets/second, 70473 bytes/second

#

To analyze a result, pay attention to relativity. Dropping packets can mean that
the network is congested and the destination system has no problem. The best
way is to try the spray command on several systems and compare the results.

6.2.3 Considerations
All considerations explained for the ping should also be applied to the
spray/sprayd.

In addition to the above considerations, the spray is an application and a lot of
system environments, such as the sprayd daemon process priority, affect the
spray operation and the result. Always keep in mind your are using ONC/RPC
on the top of UDP. You should use FTP or some other tools for the TCP
performance experiment.

6.3 netpmon
The netpmon is a very convenient tool. This tool uses a system trace function to
gather data, and summarizes the results in a very useful format. As you have
seen, the netstat command is another good tool. With the netstat you can gather
various data for each network interface, protocol, adapter, etc., but it can not
show you the relationship between those network activities and processes. The
netpmon generates a report which the netstat can not provide. For example, the
following information is provided by the netpmon:

324 Practical TCP/IP for AIX V3.2/V4.1

• Process CPU usage statistics

• First level interrupt handler CPU usage statistics

• Second level interrupt handler CPU usage statistics

• Network device-driver statistics (by device)

• Network device-driver transmit statistics (by destination Host)

• TCP socket call statistics (by process)

• UDP socket call statistics (by process)

• NFS server statistics (by client)

Difference between V4.1 and V3.2

With AIX V4.1, you need explicit installation of the fileset perfagent.tools, to
use netpmon. Not only the netpmon, but some other useful tools are
included in this fileset. rmss, svmon, filemon and stem for example.

6.3.1 Operation
The netpmon can be invoked in two ways. There are no substantial differences
between the following two methods. One method allows you to invoke the
netpmon more interactively. Here is the first method:

 1. Invoke the netpmon as follows. You can specify the output report file with
the -o flag. If you don′ t specify the output file, the standard output is used.

netpmon -o /tmp/netpmon.log

Enter the ″trcstop″ comand to complete netpmon processing

#

 2. Select something you want to monitor.

 3. Stop the netpmon with the trcstop command, as follows:

trcstop
[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 103.569 seconds in measured interval]
#

The report is automatically generated and placed in the specified file.

Difference between V4.1 and V3.2

With V3.2, you have to issue the kill command to stop the netpmon.

kill $(ps -e | grep netpmon | grep -v grep | awk ′ {print $1}′)
[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 43.891 seconds in measured interval]
#

 4. Use your prefered editor to review the output report file.

Chapter 6. Performance Tuning Tools 325

This is an alternative method:

 1. Invoke the netpmon as follows. You can specify the output report file with
the -o flag. If you don′ t specify the output file, the standard output is used.
With the -d flag, though, the netpmon starts, but it doesn′ t start the system
trace now.

netpmon -d -o /tmp/netpmon.log
#

 2. Issue the trcon command to start the system trace function, and how the
data is gathered.

trcon
Enter the ″trcstop″ comand to complete netpmon processing

#

 3. Select something when you want to monitor.

 4. Stop the netpmon with the trcstop command. The report is automatically
generated and placed in the specified file.

trcstop
[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 49.688 seconds in measured interval]
#

 5. Use your preferred editor to review the output report file.

6.3.2 Report Example
The following is a netpmon sample output report. This sample may not be a
good example because only a few network activities were reported. The
purpose of this example is to give you a concrete picture of the report format
and the content. If you run the netpmon on a busy server system, you may get a
huge report file.

Sun Aug 20 21:45:48 1995
System: AIX zero Node: 4 Machine: 000970044D00

2246.650 seconds in measured interval

==

Process CPU Usage Statistics:

Network
Process (top 20) PID CPU Time CPU % CPU %
--
info_gr 24470 2072.3083 92.240 0.001
X 9376 48.8685 2.175 0.000
aixterm 19268 15.5105 0.690 0.000
aixterm 2618 9.9855 0.444 0.000
vi 25872 9.8809 0.440 0.000
netpmon 25592 8.0261 0.357 0.000
gil 1032 6.0008 0.267 0.267
ksh 18246 4.1132 0.183 0.000
init 1 3.5578 0.158 0.000
swapper 0 2.4563 0.109 0.000

326 Practical TCP/IP for AIX V3.2/V4.1

dtwm 18484 2.1209 0.094 0.000
trace 25074 1.8302 0.081 0.000
dlci 12996 1.6701 0.074 0.000
vi 18976 1.5983 0.071 0.000
syncd 11258 0.8424 0.037 0.000
vi 18982 0.7915 0.035 0.000
aixterm 21506 0.6088 0.027 0.000
spray 11002 0.5875 0.026 0.005
vi 18984 0.4937 0.022 0.000
aixterm 25856 0.4537 0.020 0.000
--
Total (all processes) 2199.4901 97.901 0.278
Idle time 25.9099 1.153

==

First Level Interrupt Handler CPU Usage Statistics:

Network
FLIH CPU Time CPU % CPU %
--
PPC decrementer 14.5158 0.646 0.000
data page fault 1.6037 0.071 0.000
external device 1.1192 0.050 0.005
UNKNOWN 0.3680 0.016 0.001
floating point 0.0406 0.002 0.000
instruction page fault 0.0068 0.000 0.000
--
Total (all FLIHs) 17.6540 0.786 0.006

==

Second Level Interrupt Handler CPU Usage Statistics:
--

Network
SLIH CPU Time CPU % CPU %
--
itokdd 1.5741 0.070 0.062
mousedd 1.1444 0.051 0.000
kbddd 0.8536 0.038 0.000
ncr810dd 0.1816 0.008 0.000
--
Total (all SLIHs) 3.7538 0.167 0.062

==

Network Device-Driver Statistics (by Device):

----------- Xmit ----------- -------- Recv ---------
Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux
--
token ring 0 0.64 66 0.0%10.016 1.46 530 0.0001

==

Network Device-Driver Transmit Statistics (by Destination Host):
--

Chapter 6. Performance Tuning Tools 327

Host Pkts/s Bytes/s
--
mat.hakozaki.ibm.com 0.54 50
9.68.214.1 0.10 15
guru.hakozaki.ibm.com 0.00 0
ts.hakozaki.ibm.com 0.00 0

==

TCP Socket Call Statistics (by Process):
--

------ Read ----- ----- Write -----
Process (top 20) PID Calls/s Bytes/s Calls/s Bytes/s
--
tn 19056 0.02 195 0.02 0
msgchk 10758 0.00 9 0.00 0
netstat 25864 0.00 0 0.00 0
--
Total (all processes) 0.02 204 0.02 0

==

NFS Client Statistics for Server ts.hakozaki.ibm.com (by File):

------ Read ----- ----- Write -----
File (top 20) Calls/s Bytes/s Calls/s Bytes/s
--
<vnode=814aa0c> 0.00 9 0.00 0
<vnode=814620c> 0.00 7 0.00 0
<vnode=8149e0c> 0.00 7 0.00 0
<vnode=814fa0c> 0.00 7 0.00 0
<vnode=814680c> 0.00 5 0.00 0
<vnode=8146e0c> 0.00 5 0.00 0
<vnode=814740c> 0.00 5 0.00 0
<vnode=8147a0c> 0.00 5 0.00 0
<vnode=814700c> 0.00 5 0.00 0
<vnode=814860c> 0.00 5 0.00 0
<vnode=8148c0c> 0.00 5 0.00 0
<vnode=814920c> 0.00 5 0.00 0
<vnode=814980c> 0.00 5 0.00 0
<vnode=814a40c> 0.00 5 0.00 0
<vnode=814a00c> 0.00 5 0.00 0
<vnode=814b60c> 0.00 5 0.00 0
<vnode=814bc0c> 0.00 5 0.00 0
<vnode=814c20c> 0.00 5 0.00 0
<vnode=814c80c> 0.00 5 0.00 0
<vnode=814ce0c> 0.00 5 0.00 0
--
Total (all files) 0.04 157 0.00 0

==

NFS Client RPC Statistics (by Server):

Server Calls/s

ts.hakozaki.ibm.com 0.09

328 Practical TCP/IP for AIX V3.2/V4.1

--
Total (all servers) 0.09

==

NFS Client Statistics (by Process):

------ Read ----- ----- Write -----
Process (top 20) PID Calls/s Bytes/s Calls/s Bytes/s
--
info_gr 24470 0.04 164 0.00 0
--
Total (all processes) 0.04 164 0.00 0

==

Detailed Second Level Interrupt Handler CPU Usage Statistics:

SLIH: itokdd
count: 6270
cpu time (msec): avg 0.251 min 0.020 max 1.443 sdev 0.302

SLIH: mousedd
count: 22740
cpu time (msec): avg 0.050 min 0.009 max 0.254 sdev 0.036

SLIH: kbddd
count: 6910
cpu time (msec): avg 0.124 min 0.023 max 0.274 sdev 0.046

SLIH: ncr810dd
count: 1739
cpu time (msec): avg 0.104 min 0.026 max 0.291 sdev 0.071

COMBINED (All SLIHs)
count: 37659
cpu time (ms): avg 0.100 min 0.009 max 1.443 sdev 0.148

==

Detailed Network Device-Driver Statistics:
--

DEVICE: token ring 0
recv packets: 3290
recv sizes (bytes): avg 362.1 min 50 max 1516 sdev 517.7
recv times (ms): avg 0.268 min 0.046 max 1.074 sdev 0.334
demux times (ms): avg 0.074 min 0.012 max 0.547 sdev 0.075

xmit packets: 1448
xmit sizes (bytes): avg 102.4 min 50 max 166 sdev 24.9
xmit times (ms): avg 15540.184 min 0.666 max 1861567.078 sdev 132414.877

==

Detailed Network Device-Driver Transmit Statistics (by Host):

Chapter 6. Performance Tuning Tools 329

HOST: mat.hakozaki.ibm.com
xmit packets: 1213
xmit sizes (bytes): avg 93.3 min 52 max 106 sdev 4.0
xmit times (ms): avg 991.048 min 0.666 max 129372.221 sdev 10472.941

HOST: 9.68.214.1
xmit packets: 221
xmit sizes (bytes): avg 155.0 min 62 max 166 sdev 25.5
xmit times (ms): avg 73262.825 min 0.671 max 1574711.153 sdev 284046.818

HOST: guru.hakozaki.ibm.com
xmit packets: 8
xmit sizes (bytes): avg 66.8 min 62 max 75 sdev 5.4
xmit times (ms): avg 61757.527 min 7.334 max 122283.414 sdev 60487.592

==

Detailed TCP Socket Call Statistics (by Process):

PROCESS: tn PID: 19056
reads: 41
read sizes (bytes): avg 10692.0 min 10692 max 10692 sdev 0.0
read times (ms): avg 0.789 min 0.084 max 25.565 sdev 3.918

writes: 37
write sizes (bytes): avg 2.2 min 1 max 25 sdev 4.4
write times (ms): avg 0.555 min 0.219 max 1.867 sdev 0.263

PROCESS: msgchk PID: 10758
reads: 5
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 1018.040 min 2.285 max 5031.800 sdev 2006.968

writes: 4
write sizes (bytes): avg 9.5 min 6 max 13 sdev 3.5
write times (ms): avg 0.396 min 0.363 max 0.443 sdev 0.032

PROCESS: netstat PID: 25864
reads: 4
read sizes (bytes): avg 36.0 min 2 max 77 sdev 34.4
read times (ms): avg 74.399 min 5.457 max 189.261 sdev 76.188

writes: 2
write sizes (bytes): avg 2.0 min 2 max 2 sdev 0.0
write times (ms): avg 0.531 min 0.402 max 0.659 sdev 0.129

PROTOCOL: TCP (All Processes)
reads: 50
read sizes (bytes): avg 9179.9 min 2 max 10692 sdev 3338.9
read times (ms): avg 108.403 min 0.084 max 5031.800 sdev 703.990

writes: 43
write sizes (bytes): avg 2.9 min 1 max 25 sdev 4.8
write times (ms): avg 0.539 min 0.219 max 1.867 sdev 0.250

==

Detailed NFS Client Statistics for Server ts.hakozaki.ibm.com (by File):
--

FILE: <vnode=814aa0c>
reads: 5

330 Practical TCP/IP for AIX V3.2/V4.1

read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 28.620 min 0.410 max 42.746 sdev 14.916

FILE: <vnode=814620c>
reads: 4
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 46.573 min 26.194 max 56.575 sdev 12.079

FILE: <vnode=8149e0c>
reads: 4
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 53.276 min 27.325 max 87.470 sdev 23.098

FILE: <vnode=814fa0c>
reads: 4
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 46.538 min 26.950 max 76.927 sdev 18.496

FILE: <vnode=814680c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 49.508 min 27.076 max 78.983 sdev 21.769

FILE: <vnode=8146e0c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 41.686 min 27.334 max 54.589 sdev 11.174

FILE: <vnode=814740c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 35.768 min 21.148 max 59.982 sdev 17.244

FILE: <vnode=8147a0c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 29.672 min 21.223 max 46.558 sdev 11.940

FILE: <vnode=814700c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 46.353 min 42.461 max 48.428 sdev 2.754

FILE: <vnode=814860c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 54.286 min 48.084 max 58.688 sdev 4.512

FILE: <vnode=8148c0c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 26.882 min 21.183 max 38.242 sdev 8.033

FILE: <vnode=814920c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 31.956 min 26.568 max 42.197 sdev 7.245

Chapter 6. Performance Tuning Tools 331

FILE: <vnode=814980c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 30.227 min 21.209 max 42.477 sdev 8.978

FILE: <vnode=814a40c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 40.879 min 21.830 max 72.307 sdev 22.389

FILE: <vnode=814a00c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 37.235 min 27.673 max 49.330 sdev 9.021

FILE: <vnode=814b60c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 43.509 min 27.019 max 54.849 sdev 11.931

FILE: <vnode=814bc0c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 35.491 min 21.162 max 47.207 sdev 10.792

FILE: <vnode=814c20c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 27.025 min 21.372 max 37.383 sdev 7.334

FILE: <vnode=814c80c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 41.712 min 27.486 max 49.984 sdev 10.104

FILE: <vnode=814ce0c>
reads: 3
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 41.609 min 21.172 max 78.935 sdev 26.433

SERVER: ts.hakozaki.ibm.com (All Files)
reads: 86
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 38.059 min 0.410 max 87.470 sdev 16.704

==

Detailed NFS Client RPC Statistics (by Server):

SERVER: ts.hakozaki.ibm.com
calls: 193
call times (ms): avg 24.545 min 5.492 max 58.044 sdev 10.864

COMBINED (All Servers)
calls: 193
call times (ms): avg 24.545 min 5.492 max 58.044 sdev 10.864

==

332 Practical TCP/IP for AIX V3.2/V4.1

Detailed NFS Client Statistics (by Process):
--

PROCESS: info_gr PID: 24470
reads: 90
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 38.259 min 0.410 max 87.470 sdev 16.754

COMBINED (All Processes)
reads: 90
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (ms): avg 38.259 min 0.410 max 87.470 sdev 16.754

6.4 no and nfso
The no command may not be an accurate tuning or monitoring tool, but many
parameters are adjusted with this command. The advantages of the no
command are obvious. For example, a change is effective immediately without a
system reboot.

There is another command, the nfso, for NFS parameters. The nfso has the
same advantage as the no command. This section is for your reference. We
just list the options of these commands. Some of them have been explained in
this book. You can refer to manuals and InfoExplorer for the remaining options.

6.4.1 no Command of V3.2
no -a

dog_ticks = 60
lowclust = 29
lowmbuf = 88
thewall = 2048

mb_cl_hiwat = 58
compat_43 = 1

sb_max = 131072
detach_route = 1

subnetsarelocal = 1
maxttl = 255

ipfragttl = 60
ipsendredirects = 1

ipforwarding = 1
udp_ttl = 30
tcp_ttl = 60

arpt_killc = 20
tcp_sendspace = 16384
tcp_recvspace = 16384
udp_sendspace = 9216
udp_recvspace = 41600
loop_check_sum = 1
rfc1122addrchk = 0
nonlocsrcroute = 1
tcp_keepintvl = 150
tcp_keepidle = 14400
tcp_keepinit = 150

icmpaddressmask = 0
rfc1323 = 0

tcp_mssdflt = 512

Chapter 6. Performance Tuning Tools 333

directed_broadcast = 0
ipqmaxlen = 50

#

6.4.2 no Command of V4.1
no -a

thewall = 4092
sb_max = 131072

net_malloc_police = 0
rto_low = 1
rto_high = 64
rto_limit = 7
rto_length = 13
arptab_bsiz = 7
arptab_nb = 25
tcp_ndebug = 100

ifsize = 8
subnetsarelocal = 1

maxttl = 255
ipfragttl = 60

ipsendredirects = 1
ipforwarding = 0

udp_ttl = 30
tcp_ttl = 60

arpt_killc = 20
tcp_sendspace = 16384
tcp_recvspace = 16384
udp_sendspace = 9216
udp_recvspace = 41600
rfc1122addrchk = 0
nonlocsrcroute = 0
tcp_keepintvl = 150
tcp_keepidle = 14400

bcastping = 0
udpcksum = 1

tcp_mssdflt = 512
icmpaddressmask = 0

tcp_keepinit = 150
ie5_old_multicast_mapping = 0

rfc1323 = 0
ipqmaxlen = 100

directed_broadcast = 1
#

6.4.3 nfso Command of V3.2
nfso -a

nfs_portmon = 0
nfsudpcksum = 0
nfs_chars = 100000

nfs_setattr_error = 0
nfs_gather_threshold = 4096

#

Note: You need root privilege to run the nfso command at V3.2.

334 Practical TCP/IP for AIX V3.2/V4.1

6.4.4 nfso Command of V4.1
nfso -a
portcheck= 0
udpchecksum= 1
nfs_socketsize= 60000
nfs_setattr_error= 0
nfs_gather_threshold= 4096
nfs_repeat_messages= 0
nfs_duplicate_cache_size= 0
nfs_server_base_priority= 0
nfs_dynamic_retrans= 1
nfs_iopace_pages= 32
#

Chapter 6. Performance Tuning Tools 335

336 Practical TCP/IP for AIX V3.2/V4.1

Appendix A. Network Configuration Startup Scripts

A.1 /etc/rc.net
1;#!/bin/ksh
2;# @(#)90;1.22 src/bos/usr/sbin/netstart/rc.net, cmdnet, bos411, 9428A410j 4/19/94 09:17:52
3;#
4;# COMPONENT_NAME: CMDNET;(/etc/rc.net)
5;#
6;# ORIGINS: 27
7;#
8;# (C) COPYRIGHT International Business Machines Corp. 1985, 1989
9;# All Rights Reserved
10;# Licensed Materials - Property of IBM
11;#
12;# US Government Users Restricted Rights - Use, duplication or
13;# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
14;#
15;
16;##
17;# rc.net - called by cfgmgr during 2nd boot phase.
18;#
19;# Configures and starts TCP/IP interfaces.
20;# Sets hostname, default gateway and static routes.
21;# Note: all the stdout should be redirected to a file (e.g. /dev/null),
22;#;because stdout is used to pass logical name(s) back to the cfgmgr
23;#;to be configured. The LOGFILE variable specifies the output file.
24;# The first section of rc.net configures the network via the new
25;#;configuration methods. These configuration methods require that
26;#;the interface and protocol information be entered in the ODM
27;#;database (with either SMIT or the high level configuration commands
28;#;(mkdev, chdev).
29;# The second section (commented out) is an example of the equivalent
30;#;traditional commands used to perform the same function. You may
31;#;use the traditional commands instead of the configuration methods
32;#;if you prefer. These commands do NOT use the ODM database.
33;# The third section performs miscellaneous commands which are
34;#;compatible with either of the previous two sections.
35;##
36;#
37;# Close file descriptor 1 and 2 because the parent may be waiting
38;# for the file desc. 1 and 2 to be closed. The reason is that this shell
39;# script may spawn a child which inherit all the file descriptor from the parent
40;# and the child process may still be running after this process is terminated.
41;# The file desc. 1 and 2 are not closed and leave the parent hanging
42;# waiting for those desc. to be finished.
43;#LOGFILE=/dev/null;# LOGFILE is where all stdout goes.
44;LOGFILE=/tmp/rc.net.out;# LOGFILE is where all stdout goes.
45;>$LOGFILE;;# truncate LOGFILE.
46;exec 1<&-;;# close descriptor 1
47;exec 2<&-;;# close descriptor 2
48;exec 1< /dev/null;# open descriptor 1
49;exec 2<;/dev/null;# open descriptor 2
50;
51;
52;
53;##

 Copyright IBM Corp. 1996 337

54;# Part I - Configuration using the data in the ODM database:
55;# Enable network interface(s):
56;##
57;# This should be done before routes are defined.
58;# For each network adapter that has already been configured, the
59;# following commands will define, load and configure a corresponding
60;# interface.
61;# NOTE: If you are using a diskless/dataless machine, you may want to
62;# disable the logging of messages to the LOGFILE by the cfgif
63;# routine. On some diskless/dataless machines, the message
64;# logging causes the client to hang on LED 581 when booting.
65;
66;/usr/lib/methods/defif ;;;>>$LOGFILE 2>&1
67;/usr/lib/methods/cfgif $*;;;>>$LOGFILE 2>&1
68;# If a diskless or dataless machine uses this configuration method, you
69;# may want to replace the previous line with the following.
70;#
71;# /usr/lib/methods/cfgif $*
72;
73;##
74;# Configure the Internet protocol kernel extension (netinet):
75;##
76;# The following commands will also set hostname, default gateway,
77;# and static routes as found in the ODM database for the network.
78;/usr/lib/methods/definet ;;;>>$LOGFILE 2>&1
79;/usr/lib/methods/cfginet ;;;>>$LOGFILE 2>&1
80;
81;
82;##
83;# Part II - Traditional Configuration.
84;##
85;# An alternative method for bringing up all the default interfaces
86;# is to specify explicitly which interfaces to configure using the
87;# ifconfig command. Ifconfig requires the configuration information
88;# be specified on the command line. Ifconfig will not update the
89;# information kept in the ODM configuration database.
90;#
91;# Valid network interfaces are:
92;# lo=local loopback, en=standard ethernet, et=802.3 ethernet
93;# sl=serial line IP, tr=802.5 token ring, xs=X.25
94;#
95;# e.g., en0 denotes standard ethernet network interface, unit zero.
96;#
97;# Below are examples of how you could bring up each interface using
98;# ifconfig. Since you can specify either a hostname or a dotted
99;# decimal address to set the interface address, it is convenient to
100;# set the hostname at this point and use it for the address of
101;# an interface, as shown below:
102;#
103;#/bin/hostname robo.austin.ibm.com;>>$LOGFILE 2>&1
104;#
105;# (Remember that if you have more than one interface,
106;# you′ ll want to have a different IP address for each one.
107;# Below, xx.xx.xx.xx stands for the internet address for the
108;# given interface).
109;#
110;#/usr/sbin/ifconfig lo0 inet loopback up >>$LOGFILE 2>&1
111;#/usr/sbin/ifconfig en0 inet hostname up >>$LOGFILE 2>&1
112;#/usr/sbin/ifconfig et0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1

338 Practical TCP/IP for AIX V3.2/V4.1

113;#/usr/sbin/ifconfig tr0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1
114;#/usr/sbin/ifconfig sl0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1
115;#/usr/sbin/ifconfig xs0 inet xx.xx.xx.xx up >>$LOGFILE 2>&1
116;#
117;#
118;# Now we set any static routes.
119;#
120;# /usr/sbin/route add 0 gateway ;;>>$LOGFILE 2>&1
121;# /usr/sbin/route add 192.9.201.0 gateway ;>>$LOGFILE 2>&1
122;
123;
124;##
125;# Part III - Miscellaneous Commands.
126;##
127;# Set the hostid and uname to hostname, where hostname has been
128;# set via ODM in Part I, or directly in Part II.
129;# (Note it is not required that hostname, hostid and uname all be
130;# the same).
131;/usr/sbin/hostid hostname;;>>$LOGFILE 2>&1
132;/bin/uname -Shostname|sed ′ s/\..*$//′ ;>>$LOGFILE 2>&1
133;
134;##
135;# Special SLIP handling
136;##
137;if [-f /etc/rc.net.serial] ; then
138;;/etc/rc.net.serial
139;fi
140;
141;##
142;# Special X25 handling
143;##
144;if [-f /etc/rc.net.x25] ; then
145;;/etc/rc.net.x25
146;fi
147;
148;###
149;# The socket default buffer size (initial advertized TCP window) is being
150;# set to a default value of 16k (16384). This improves the performance
151;# for ethernet and token ring networks. Networks with lower bandwidth
152;# such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
153;# such as Serial Optical Link and FDDI would have a different optimum
154;# buffer size.
155;# (OPTIMUM WINDOW = Bandwidth * Round Trip Time)
156;###
157;if [-f /usr/sbin/no] ; then
158;;/usr/sbin/no -o tcp_sendspace=16384
159;;/usr/sbin/no -o tcp_recvspace=16384
160;fi

A.2 Startup Script /etc/rc.bsdnet

1;#!/bin/ksh
2;# @(#)36;1.6 src/bos/usr/sbin/netstart/rc.bsdnet, cmdnet, bos411, 9428A410j 4/19/94 09:16:37
3;#
4;# COMPONENT_NAME: CMDNET;(/etc/rc.bsdnet)
5;#
6;# ORIGINS: 27
7;#

Appendix A. Network Configuration Startup Scripts 339

8;# (C) COPYRIGHT International Business Machines Corp. 1985, 1991
9;# All Rights Reserved
10;# Licensed Materials - Property of IBM
11;#
12;# US Government Users Restricted Rights - Use, duplication or
13;# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
14;#

 15;LOGFILE=/tmp/rc.net.out; # LOGFILE is where all stdout goes.
 16;>$LOGFILE;; # truncate LOGFILE.
 17;
 18;

19;/bin/hostname aoot.austin.ibm.com ;;>>$LOGFILE 2>&1
20;
21;##
22;# Valid network interfaces are:
23;# lo=local loopback, en=standard ethernet, et=802.3 ethernet
24;# sl=serial line IP, tr=802.5 token ring, xs=X.25
25;##
26;
27;/usr/sbin/ifconfig lo0 inet 127.0.0.1 up ;>>$LOGFILE 2>&1
28;/usr/sbin/ifconfig en0 inet hostname up ;>>$LOGFILE 2>&1
29;
30;#/usr/sbin/route add 0 gateway ;;;>>$LOGFILE 2>&1
31;#/usr/sbin/route add 192.9.201.0 gateway ;>>$LOGFILE 2>&1
32;
33;/usr/sbin/hostid hostname;;;>>$LOGFILE 2>&1
34;/bin/uname -Shostname|sed ′ s/\..*$//′ ;;>>$LOGFILE 2>&1
35;
36;##
37;# Special SLIP handling
38;##
39;if [-f /etc/rc.net.serial] ; then
40;;/etc/rc.net.serial
41;fi
42;
43;##
44;# Special X25 handling
45;##
46;if [-f /etc/rc.net.x25] ; then
47;;/etc/rc.net.x25
48;fi
49;
50;###
51;# The socket default buffer size (initial advertized TCP window) is being
52;# set to a default value of 16k (16384). This improves the performance
53;# for ethernet and token ring networks. Networks with lower bandwidth
54;# such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
55;# such as Serial Optical Link and FDDI would have a different optimum
56;# buffer size.
57;# (OPTIMUM WINDOW = Bandwidth * Round Trip Time)
58;###
59;if [-f /usr/sbin/no] ; then
60;;/usr/sbin/no -o tcp_sendspace=16384
61;;/usr/sbin/no -o tcp_recvspace=16384
62;fi

340 Practical TCP/IP for AIX V3.2/V4.1

A.3 Startup Script /etc/rc.tcpip

1;#! /bin/bsh
2;# @(#)95 1.55 src/tcpip/etc/rc.tcpip, tcpip, tcpip411, GOLD410 6/24/94 11:19:36
3;#
4;# COMPONENT_NAME: TCPIP rc.tcpip
5;#
6;# FUNCTIONS:
7;#
8;# ORIGINS: 26 27
9;#
10;# (C) COPYRIGHT International Business Machines Corp. 1985, 1994
11;# All Rights Reserved
12;# Licensed Materials - Property of IBM
13;#
14;# US Government Users Restricted Rights - Use, duplication or
15;# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
16;#
17;##
18;# rc.tcpip -
19;#;assumes interfaces are brought up by /etc/rc.net
20;#;starts TCP/IP daemons (sendmail, inetd, etc.)
21;##
22;# start -
23;#;starts daemons using either src or command-line method
24;# args:
25;#;$1: pathname of daemon
26;#;$2: non-null if we should use src to start the daemon
27;#;$3: any arguments to pass it
28;#
29;start()
30;{
31;;# just return if the daemon doesn′ t exist
32;;#
33;;[-x $1] || return 0
34;
35;;# start the daemon using either src or command-line method
36;;#
37;;cmd=basename $1
38;;if [-n ″$2″] ; then
39;;;startsrc -s $cmd -a ″$3″
40;;else
41;;;if [$cmd = ″portmap″] ; then
42;;;;$1 $3 &; # portmap must start in background
43;;;else
44;;;;$1 $3
45;;;fi
46;;;echo ″\t$cmd″
47;;fi
48;}
49;
50;# check the bootup_option flag in the configuration database
51;option=lsattr -E -l inet0 -a bootup_option -F value
52;if [″$option″ = ″no″]
53;then
54;##
55;#
56;# Check to see if srcmstr is running; if so, we try to use it;

Appendix A. Network Configuration Startup Scripts 341

57;# otherwise, we start the daemons without src
58;#
59;i=3 # make sure init has time to start it
60;while [$i != 0] ; do
61;;if [-n ″ps -e | awk ′ $NF == ″srcmstr″ { print $1; exit }′ ″] ; then
62;;;src_running=1 # set flag
63;;;break
64;;fi
65;;i=expr $i - 1 # decrement count
66;done
67;
68;# If srcmstr is running, ensure that it is active before issuing the
69;# startsrc commands
70;#
71;if [-n ″$src_running″] ; then
72;;echo ″Checking for srcmstr active...\c″
73;;i=10 # try ten times to contact it
74;;while [$i != 0] ; do
75;;;lssrc -s inetd >/dev/null 2>&1 && break # break out on success
76;;;sleep 1 # otherwise wait a second and try again
77;;;echo ″ .\c″
78;;;i=expr $i - 1 # decrement count
79;;done
80;;if [$i = 0] ; then
81;;;echo ″\n\nERROR: srcmstr is not accepting connections.\n″
82;;;exit 1
83;;fi
84;;echo ″complete″
85;fi
86;
87;else
88;;src_running=″″
89;fi
90;# Start up the daemons
91;#
92;echo ″Starting tcpip daemons:″
93;
94;# Start up syslog daemon (for error and event logging)
95;start /usr/sbin/syslogd ″$src_running″
96;
97;# Start up print daemon
98;#start /usr/sbin/lpd ″$src_running″
99;
100;# Start up routing daemon (only start ONE)
101;#start /usr/sbin/routed ″$src_running″ -q
102;#start /usr/sbin/gated ″$src_running″
103;
104;# Start up the sendmail daemon.
105;#
106;# Sendmail will automatically build the configuration and alias
107;# data bases the first time it is invoked. You may wish to update
108;# the alias source file /usr/lib/aliases with local information,
109;# and then rebuild the alias data base by issuing the command
110;# ″ /usr/lib/sendmail -bi″ or ″ /usr/ucb/newaliases″ .
111;#
112;# When the configuration or alias data bases are changed, the
113;# sendmail daemon can be made to rebuild and re-read them by
114;# issuing the command ″kill -1 cat /etc/sendmail.pid″ or, if
115;# SRC was used to start the daemon, ″refresh -s sendmail″ .

342 Practical TCP/IP for AIX V3.2/V4.1

116;#
117;# The ″qpi″ , or queue processing interval, determines how
118;# frequently the daemon processes the message queue.
119;#
120;qpi=30m # 30 minute interval
121;#
122;start /usr/lib/sendmail ″$src_running″ ″-bd -q${qpi}″
123;
124;# Start up Portmapper
125;USR_NFS=mount | awk ′ {if($3==″ /usr″) print $4}′
126;if [″$USR_NFS″ != ″nfs″]
127;then
128;REMOTE_USR=″N″
129;start /usr/sbin/portmap ″$src_running″
130;fi
131;
132;# Start up socket-based daemons
133;start /usr/sbin/inetd ″$src_running″
134;
135;# Start up Domain Name daemon
136;#start /usr/sbin/named ″$src_running″
137;
138;# Start up time daemon
139;#start /usr/sbin/timed ″$src_running″
140;
141;# Start up rwhod daemon (a time waster)
142;#start /usr/sbin/rwhod ″$src_running″
143;
144;# Start up the Simple Network Management Protocol (SNMP) daemon
145;#start /usr/sbin/snmpd ″$src_running″
146;

A.4 Startup Script /etc/rc.nfs

1;#!/bin/bsh
2;# @(#)47;1.34 src/nfs/etc/rc.nfs.sh, cmdnfs, nfs411, GOLD410 5/31/94 08:05:21
3;# COMPONENT_NAME: (CMDNFS) Network File System Commands
4;#
5;# FUNCTIONS:
6;#
7;# ORIGINS: 27
8;#
9;# (C) COPYRIGHT International Business Machines Corp. 1988, 1993
10;# All Rights Reserved
11;# Licensed Materials - Property of IBM
12;#
13;# US Government Users Restricted Rights - Use, duplication or
14;# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
15;#
16;
17;#
18;# start() has the following logic
19;# 1) if srcmstr is running, use it to start the daemon
20;# 2) if srcmstr is NOT running, lookup the daemon path and arguments from
21;# srcmstr′ s config database in odm (SRCsubsys).
22;# 3) if the config info can not be found, attempt to start the daemon
23;# from the default parameters passed into start().
24;#

Appendix A. Network Configuration Startup Scripts 343

25;start()
26;{
27;
28;daemon=$1 ;;;;; # Subsystem name

 29;default_path=$2;;;;; # full path w/ cmdname
 30;shift;shift
 31;default_arg=$*;;;;; # default arguments
 32;
 33;#

34;# get the path to the daemon from the SRC ODM config info
35;#
36;daemon_path=odmget -q subsysname=$daemon SRCsubsys 2>/dev/null | \
37; awk ′ $1 == ″path″ { print $NF }′ 2>/dev/null | sed ′ s/″ / /g′
38;
39;#
40;# if daemon_path not set (length zero) then try synonymname
41;#
42;if [-z ″$daemon_path″] ; then ;
43;;daemon_path=odmget -q synonym=$daemon SRCsubsys 2>/dev/null | \
44; ;;awk ′ $1 == ″path″ { print $NF }′ 2>/dev/null | sed ′ s/″ / /g′
45;fi
46;
47;#
48;# get the arguments to the daemon from the SRC ODM config info
49;#
50;cmdargs=odmget -q subsysname=$daemon SRCsubsys 2>/dev/null | \
51; awk ′ $1 == ″cmdargs″ { print $NF }′ 2>/dev/null | sed ′ s/″ / /g′
52;
53;
54;if [-n ″$src_running″ -a -n ″$daemon_path″] ; then ;
55;;#
56;;#if srcmstr is running and there is an entry in SRCsubsys - use src
57;;#
58;;startsrc -s $daemon
59;else;;;;;#if srcmstr not running, start manually
60;;if [-n ″$daemon_path″] ; then
61;;;if [-n ″$cmdargs″] ; then
62;;;;$daemon_path $cmdargs &;;# issue cmd
63;;;else
64;;;;$daemon_path $default_arg & ;# issue cmd
65;;;fi
66;;else
67;;;$default_path $default_arg & ;;#issue cmd
68;;fi
69;;
70;fi
71;
72;} ;# end start()
73;
74;#
75;# determine of srcmstr is running
76;#
77;if [-n ″ps -e | awk ′ $NF == ″srcmstr″ {print $1} ′ ″] ; then
78; src_running=1
79;else
80; src_running=″″
81;fi
82;
83;

344 Practical TCP/IP for AIX V3.2/V4.1

84;# Check the mount of /. If it is remote, do not start statd,lockd.
85;REMOTE_ROOT=″N″
86;/usr/sbin/mount | /usr/bin/grep ′ / *jfs ′ 2>&1 > /dev/null
87;if [″$?″ != 0]
88;then
89;;REMOTE_ROOT=″Y″
90;fi
91;
92;# Check the mount of /usr. If it is remote, do not start statd.
93;REMOTE_USR=″N″
94;/usr/sbin/mount | /usr/bin/grep ′ /usr *jfs ′ 2>&1 > /dev/null
95;if [″$?″ != 0]
96;then
97;;REMOTE_USR=″Y″
98;fi
99;
100;# Uncomment the following lines and change the domain
101;# name to define your domain (domain must be defined
102;# before starting NIS).
103;#if [-x /usr/bin/domainname]; then
104;#;/usr/bin/domainname ibm
105;#fi
106;
107;#
108;# Clear all servers′ rmtab files in case we went down abnormally.
109;#
110;if [-s /sbin/helpers/nfsmnthelp]; then
111;;/sbin/helpers/nfsmnthelp B 0
112;fi
113;
114;#dspmsg cmdnfs.cat -s 8 2 ″starting NIS services:\n″
115;#if [-x /usr/lib/netsvc/yp/ypserv -a -d /var/yp/domainname]; then
116;#;start ypserv /usr/lib/netsvc/yp/ypserv
117;#fi
118;
119;#if [-x /usr/lib/netsvc/yp/ypbind]; then
120;#;start ypbind /usr/lib/netsvc/yp/ypbind
121;#fi
122;
123;#if [-x /usr/sbin/keyserv]; then
124;#;start keyserv /usr/sbin/keyserv
125;#fi
126;
127;#if [-x /usr/lib/netsvc/yp/rpc.ypupdated -a -d /var/yp/domainname]; then
128;#;start ypupdated /usr/lib/netsvc/yp/rpc.ypupdated
129;#fi
130;
131;dspmsg cmdnfs.cat -s 8 1 ″starting nfs services:\n″
132;if [-x /usr/sbin/biod]; then
133;;start biod /usr/sbin/biod 8
134;fi
135;
136;#
137;# If nfs daemon is executable and /etc/exports, become nfs server.
138;#
139;if [-x /usr/sbin/nfsd -a -f /etc/exports]; then
140;;> /etc/xtab
141;;/usr/sbin/exportfs -a
142;;start nfsd /usr/sbin/nfsd 8

Appendix A. Network Configuration Startup Scripts 345

143;;start rpc.mountd /usr/sbin/rpc.mountd
144;fi
145;
146;#
147;# start up status monitor and locking daemon if present
148;#
149;if [-x /usr/sbin/rpc.statd -a $REMOTE_ROOT = ″N″ -a $REMOTE_USR = ″N″]; then
150;;start rpc.statd /usr/sbin/rpc.statd
151;fi
152;
153;if [-x /usr/sbin/rpc.lockd -a $REMOTE_ROOT = ″N″]; then
154;;start rpc.lockd /usr/sbin/rpc.lockd
155;fi
156;
157;#
158;#Uncomment the following lines to start up the NIS
159;#yppasswd daemon.
160;#DIR=/etc
161;#if [-x /usr/lib/netsvc/yp/rpc.yppasswdd -a -f $DIR/passwd]; then
162;#;start rpc.yppasswdd /usr/lib/netsvc/yp/rpc.yppasswdd /etc/passwd -m
163;#fi
164;

A.5 Startup Script /etc/inittab

1;: @(#)49 1.28.2.7 src/bos/etc/inittab/inittab, cmdoper, bos411, 9430C411a 7/26/94 16:27:45
2;:
3;: COMPONENT_NAME: CMDOPER
4;:
5;: ORIGINS: 3, 27
6;:
7;: (C) COPYRIGHT International Business Machines Corp. 1989, 1993
8;: All Rights Reserved
9;: Licensed Materials - Property of IBM
10;:
11;: US Government Users Restricted Rights - Use, duplication or
12;: disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
13;:
14;: Note - initdefault and sysinit should be the first and second entry.
15;:
16;init:2:initdefault:
17;brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
18;powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console # Power Failure Detection
19;rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console # Multi-User checks
20;fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/firstboot
21;srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
22;rcsna:2:wait:/etc/rc.sna > /dev/console 2>&1 # Start sna daemons
23;rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
24;rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
25;rchttpd:2:wait:/etc/rc.httpd > /dev/console 2>&1 # Start HTTP daemon
26;:lafs:2:once:/usr/vice/etc/lafs
27;rcx25:2:wait:/etc/rc.net.x25 > /dev/console 2>&1 # Load X.25 translation table
28;cron:2:respawn:/usr/sbin/cron
29;piobe:2:wait:/usr/lib/lpd/pio/etc/pioinit >/dev/null 2>&1 # pb cleanup
30;qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
31;writesrv:2:wait:/usr/bin/startsrc -swritesrv
32;uprintfd:2:respawn:/usr/sbin/uprintfd
33;infod:2:once:startsrc -s infod

346 Practical TCP/IP for AIX V3.2/V4.1

34;dt:2:wait:/etc/rc.dt
35;cons:0123456789:respawn:/usr/sbin/getty /dev/console
36;diagd:2:once:/usr/lpp/diagnostics/bin/diagd >/dev/console 2>&1
37;tty0:2:off:/usr/sbin/getty /dev/tty0
38;hcon:2:once:/etc/rc.hcon

A.6 Configuration File /etc/inetd.conf

1;## @(#)62;1.17.1.6 src/tcpip/etc/inetd.conf, tcpip, tcpip411, GOLD410 7/13/94 10:53:12
2;##
3;## COMPONENT_NAME: TCPIP inetd.conf
4;##
5;## FUNCTIONS:
6;##
7;## ORIGINS: 26 27
8;##
9;## (C) COPYRIGHT International Business Machines Corp. 1993
10;## All Rights Reserved
11;## Licensed Materials - Property of IBM
12;##
13;## US Government Users Restricted Rights - Use, duplication or
14;## disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
15;##
16;###
17;##
18;## Internet server configuration database
19;##
20;##;Services can be added and deleted by deleting or inserting a
21;##;comment character (ie. #) at the beginning of a line If inetd
22;##;is running under SRC control then the ″refresh -s inetd″ command
23;##;needs to be executed for inetd to re-read the inetd.conf file.
24;##
25;##;NOTE: The TCP/IP servers do not require SRC and may be started
26;##;by invoking the service directly (i.e. /etc/inetd). If inetd
27;##;has been invoked directly, after modifying this file, send a
28;##;hangup signal, SIGHUP to inetd (ie. kill -1 ″pid_of_inetd″) .
29;##
30;##;NOTE: The services with socket type of ″sunrpc_tcp″ and ″sunrpc_udp″
31;##;require that the portmap daemon be running.
32;##;Also please use ## to designate comments in this file so that
33;## ;the smit commands can edit this file correctly.
34;##
35;## service socket protocol wait/ user server server program
36;## name type nowait program arguments
37;##
38;ftp stream tcp nowait root /usr/sbin/ftpd ftpd
39;telnet stream tcp nowait root /usr/sbin/telnetd telnetd
40;shell stream tcp nowait root /usr/sbin/rshd rshd
41;login stream tcp nowait root /usr/sbin/rlogind rlogind

 42;exec stream tcp nowait root /usr/sbin/rexecd rexecd
 43;#comsat dgram udp wait root /usr/sbin/comsat comsat
 44;#uucp stream tcp nowait root /usr/sbin/uucpd uucpd
 45;#bootps;dgram udp wait root /usr/sbin/bootpd bootpd /etc/bootptab
 46;##

47;## Finger, systat and netstat give out user information which may be
48;## valuable to potential ″system crackers.″ Many sites choose to disable
49;## some or all of these services to improve security.
50;##

Appendix A. Network Configuration Startup Scripts 347

51;#finger stream tcp nowait nobody /usr/sbin/fingerd fingerd
52;#systat;stream;tcp;nowait;nobody;/usr/bin/ps ps -ef
53;#netstat stream;tcp;nowait;nobody;/usr/bin/netstat netstat -f inet
54;#
55;#tftp; dgram;udp;nowait;nobody;/usr/sbin/tftpd;;tftpd -n
56;#talk dgram udp wait root /usr/sbin/talkd talkd
57;ntalk dgram udp wait root /usr/sbin/talkd talkd
58;#
59;# rexd uses very minimal authentication and many sites choose to disable
60;# this service to improve security.
61;#
62;#rexd; sunrpc_tcp;tcp;wait;root;/usr/sbin/rpc.rexd rexd 100017 1
63;rstatd; sunrpc_udp;udp;wait;root;/usr/sbin/rpc.rstatd rstatd 100001 1-3
64;rusersd sunrpc_udp;udp;wait;root;/usr/lib/netsvc/rusers/rpc.rusersd rusersd 100002 1-2
65;rwalld; sunrpc_udp;udp;wait;root;/usr/lib/netsvc/rwall/rpc.rwalld rwalld 100008 1
66;sprayd; sunrpc_udp;udp;wait;root;/usr/lib/netsvc/spray/rpc.sprayd sprayd 100012 1
67;pcnfsd; sunrpc_udp;udp;wait ;root;/usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2
68;echo;stream;tcp;nowait;root;internal
69;discard;stream;tcp;nowait;root;internal
70;chargen;stream;tcp;nowait;root;internal
71;daytime;stream;tcp;nowait;root;internal
72;time;stream;tcp;nowait;root;internal
73;echo;dgram;udp;wait;root;internal
74;discard;dgram;udp;wait;root;internal
75;chargen;dgram;udp;wait;root;internal
76;daytime;dgram;udp;wait;root;internal
77;time;dgram;udp;wait;root;internal
78;## The following line is for installing over the network.
79;#instsrv stream;tcp;nowait;netinst;/u/netinst/bin/instsrv instsrv -r
/tmp/netinstalllog /u/netinst/scripts
80;dtspc;stream;tcp;nowait;root;/usr/dt/bin/dtspcd /usr/dt/bin/dtspcd
81;cmsd;sunrpc_udp;udp;wait;root;/usr/dt/bin/rpc.cmsd cmsd 100068 2-4

348 Practical TCP/IP for AIX V3.2/V4.1

Appendix B. Well-Known Numbers

B.1 Well-Known Protocols in /etc/protocols

1;# @(#)26;1.6 src/bos/etc/protocols/protocols, cmdnet, bos411, 9428A410j 5/6/94 13:38:13
2;#
3;# COMPONENT_NAME: (CMDNET) Network commands.
4;#
5;# FUNCTIONS:
6;#
7;# ORIGINS: 27
8;#
9;# (C) COPYRIGHT International Business Machines Corp. 1988, 1989
10;# All Rights Reserved
11;# Licensed Materials - Property of IBM
12;#
13;# US Government Users Restricted Rights - Use, duplication or
14;# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
15;#
16;# /etc/protocols file for AIX
17;#
18;# offical name, protocol number, aliases
19;
20;ip;;0;IP;;# dummy for the Internet Protocol
21;icmp;;1;ICMP;;# Internet control message protocol
22;igmp;;2;IGMP;;# internet group multicast protocol
23;# ggp;;3;GGP;;# gateway-gateway protocol
24;# ip;;4;IP;;# IP in IP (encapsulation)
25;# st;;5;ST;;# Stream
26;tcp;;6;TCP;;# transmission control protocol
27;# ucl;;7;UCL;;# UCL
28;# egp;;8;EGP;;# exterior gateway protocol
29;# igp;;9;IGP;;# any private interior gateway
30;# bbn-rcc-mon;10;BBN-RCC-MON;# BBN RCC Monitoring
31;# nvp-ii;11;NVP-II;;# Network Voice Protocol
32;# pup;;12;PUP;;# PARC universal packet protocol
33;# argus;;13;ARGUS;;# ARGUS
34;# emcon;;14;EMCON;;# EMCON
35;# xnet;;15;XNET;;# XNET
36;# chaos;;16;CHAOS;;# CHAOS
37;udp;;17;UDP;;# user datagram protocol
38;# mux;;18;MUX;;# Multiplexing
39;# dcn-meas;19;DCN-MEAS;# DCN Measurement Subsystems
40;# hmp;;20;HMP;;# Host Monitoring
41;# prm;;21;PRM;;# Packet Radio Measurement
42;# idp;;22;IDP;;# xns idp
43;# trunk-1;23;TRUNK-1;;# Trunk-1
44;# trunk-2;24;TRUNK-2;;# Trunk-2
45;# leaf-1;25;LEAF-1;;# Leaf-1
46;# leaf-2;26;LEAF-2;;# Leaf-2
47;# rdp;;27;RDP;;# Reliable Data Protocol
48;# irtp;;28;IRTP;;# Internet Reliable Transaction
49;# iso-tp4;29;ISO-TP4;;# ISO Transport Protocol Class 4
50;# netblt;30;NETBLT;;# Bulk Data Transfer Protocol
51;# mfe-nsp;31;MFE-NSP;;# MFE Network Services Protocol
52;# merit-inp;32;MERIT-INP;# Merit Internodal Protocol
53;# sep;;33;SEP;;# Sequential Exchange Protocol

 Copyright IBM Corp. 1996 349

54;# 3pc;;34;3PC;;# Third Party Connect Protocol
55;# idpr;;35;IDPR;;# Inter-Domain Policy Routing Protocol
56;# xtp;;36;XTP;;# XTP
57;# ddp;;37;DDP;;# Datagram Delivery Protocol
58;# idpr-cmtp;38;IDPR-CMTP;# IDPR Control Message Transport Proto
59;# tp++;;39;TP++;;# TP++ Transport Protocol
60;# il;;40;IL;;# IL Transport Protocol
61;#;;41-60;;;# Unassigned
62;# ;;61;;;# any host internal protocol
63;# cftp;;62;CFTP;;# CFTP
64;# ;;63;;;# any local network
65;# sat-expak;64;SAT-EXPAK;# SATNET and Backroom EXPAK
66;# kryptolan;65;KRYPTOLAN;# Kryptolan
67;# rvd;;66;RVD;;# MIT Remote Virtual Disk Protocol
68;# ippc;;67;IPPC;;# Internet Pluribus Packet Core
69;# ;;68;;;# any distributed file system
70;# sat-mon;69;SAT-MON;;# SATNET Monitoring
71;# visa;;70;VISA;;# VISA Protocol
72;# ipcv;;71;IPCV;;# Internet Packet Core Utility
73;# cpnx;;72;CPNX;;# Computer Protocol Network Executive
74;# cphb;;73;CPHB;;# Computer Protocol Heart Beat
75;# wsn;;74;WSN;;# Wang Span Network
76;# pvp;;75;PVP;;# Packet Video Protocol
77;# br-sat-mon;76;BR-SAT-MON;# Backroom SATNET Monitoring
78;# sun-nd;77;SUN-ND;;# SUN ND PROTOCOL-Temporary
79;# wb-mon;78;WB-MON;;# WIDEBAND Monitoring
80;# wb-expak;79;WB-EXPAK;# WIDEBAND EXPAK
81;# iso-ip;80;ISO-IP;;# ISO Internet Protocol
82;# vmtp;;81;VMTP;;# VMTP
83;# secure-vmtp;82;SECURE-VMTP;# SECURE-VMTP
84;# vines;;83;VINES;;# VINES
85;# ttp;;84;TTP;;# TTP
86;# nfsnet-igp;85;NSFNET-IGP;# NSFNET-IGP
87;# dgp;;86;DGP;;# Dissimilar Gateway Protocol
88;# tcf;;87;TCF;;# TCF
89;# igrp;;88;IGRP;;# IGRP
90;# ospfigp;89;OSPFIGP;;# OSPFIGP
91;# sprite-rpc;90;Sprite-RPC;# Sprite RPC Protocol
92;# larp;;91;LARP;;# Locus Address Resolution Protocol
93;# mtp;;92;MTP;;# Multicast Transport Protocol
94;# ax.25;;93;AX.25;;# AX.25 Frames
95;# ipip;;94;IPIP;;# IP-within-IP Encapsulation Protocol
96;# micp;;95;MICP;;# Mobile Internetworking Control Pro.
97;# aes-sp3-d;96;AES-SP3-D;# AES Security Protocol 3-D
98;# etherip;97;ETHERIP;;# Ethernet-within-IP Encapsulation
99;# encap;;98;ENCAP;;# Encapsulation Header
100;# ;;99-254;;;# Unassigned
101;# ;;255;;;# Reserved

B.2 Well-Known Ports in /etc/services

1;# @(#)27;1.17 src/bos/etc/services/services, cmdnet, bos411, 9428A410j 5/20/94 09:56:14
2;#
3;# COMPONENT_NAME: (CMDNET) Network commands.
4;#
5;# FUNCTIONS:
6;#
7;# ORIGINS: 26 27

350 Practical TCP/IP for AIX V3.2/V4.1

8;#
9;# (C) COPYRIGHT International Business Machines Corp. 1988, 1989
10;# All Rights Reserved
11;# Licensed Materials - Property of IBM
12;#
13;# US Government Users Restricted Rights - Use, duplication or
14;# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
15;#
16;#
17;# Network services, Internet style
18;#

 19;tcpmux;;1/tcp ;;;# TCP Port Service Multiplexer
 20;tcpmux;;1/udp ;;;# TCP Port Service Multiplexer
 21;compressnet;2/tcp ;;;# Management Utility
 22;compressnet;2/udp ;;;# Management Utility
 23;compressnet;3/tcp ;;;# Compression Process
 24;compressnet;3/udp ;;;# Compression Process
 25;echo;;7/tcp
 26;echo;;7/udp
 27;discard;;9/tcp;;sink null
 28;discard;;9/udp;;sink null
 29;systat;;11/tcp;;users
 30;daytime;;13/tcp
 31;daytime;;13/udp
 32;netstat;;15/tcp
 33;qotd;;17/tcp;;quote

34;msp;;18/tcp;;;;# Message Send Protocol
35;msp;;18/udp;;;;# Message Send Protocol
36;chargen;;19/tcp;;ttytst source
37;chargen;;19/udp;;ttytst source
38;ftp-data;20/tcp
39;ftp;;21/tcp
40;telnet;;23/tcp
41;smtp;;25/tcp;;mail
42;nsw-fe;;27/tcp;;;;# NSW User System FE
43;nsw-fe;;27/udp;;;;# NSW User System E
44;msg-icp;;29/tcp;;;;# MSG ICP
45;msg-icp;;29/udp;;;;# MSG ICP
46;msg-auth;31/tcp;;;;# MSG Authentication
47;msg-auth;31/udp;;;;# MSG Authentication
48;dsp;;33/tcp;;;;# Display Support Protocol
49;dsp;;33/udp;;;;# Display Support Protocol
50;time;;37/tcp;;timserver
51;time;;37/udp;;timserver
52;rlp;;39/udp;;resource;# resource location
53;graphics;41/tcp;;;;# Graphics
54;graphics;41/udp;;;;# Graphics
55;nameserver;42/udp;;name;;# IEN 116
56;whois;;43/tcp;;nicname
57;mpm-flags;44/tcp;;;;# MPM FLAGS Protocol
58;mpm-flags;44/udp;;;;# MPM FLAGS Protocol
59;mpm;;45/tcp;;;;# Message Processing Module
60;mpm;;45/udp;;;;# Message Processing Module
61;mpm-snd;;46/tcp;;;;# MPM •default send‘
62;mpm-snd;;46/udp;;;;# MPM •default send‘
63;ni-ftp;;47/tcp;;;;# NI FTP
64;ni-ftp;;47/udp;;;;# NI FTP
65;re-mail-ck;50/tcp;;;;# Remote Mail Checking Protocol
66;re-mail-ck;50/udp;;;;# Remote Mail Checking Protocol

Appendix B. Well-Known Numbers 351

67;la-maint;51/tcp;;;;# IMP Logical Address Maint
68;la-maint;51/udp;;;;# IMP Logical Address Maint
69;xns-time;52/tcp;;;;# XNS Time Protocol
70;xns-time;52/udp;;;;# XNS Time Protocol
71;domain;;53/tcp;;nameserver;# name-domain server
72;domain;;53/udp;;nameserver
73;xns-ch;;54/tcp;;;;# XNS Clearinghouse
74;xns-ch;;54/udp;;;;# XNS Clearinghouse
75;isi-gl;;55/tcp;;;;# ISI Graphics Language
76;isi-gl;;55/udp;;;;# ISI Graphics Language
77;xns-auth;56/tcp;;;;# XNS Authentication
78;xns-auth;56/udp;;;;# XNS Authentication
79;mtp;;57/tcp;;;;# deprecated
80;xns-mail;58/tcp;;;;# XNS Mail
81;xns-mail;58/udp;;;;# XNS Mail
82;ni-mail;;61/tcp;;;;# NI MAIL
83;ni-mail;;61/udp;;;;# NI MAIL
84;acas;;62/tcp;;;;# ACA Services
85;acas;;62/udp;;;;# ACA Services
86;via-ftp;;63/tcp;;;;# VIA Systems - FTP
87;via-ftp;;63/udp;;;;# VIA Systems - FTP
88;covia;;64/tcp;;;;# Communications Integrator
89;covia;;64/udp;;;;# Communications Integrator
90;tacacs-ds;65/tcp;;;;# TACACS-Database Service
91;tacacs-ds;65/udp;;;;# TACACS-Database Service
92;sql*net;;66/tcp;;;;# Oracle SQL*NET
93;sql*net;;66/udp;;;;# Oracle SQL*NET
94;bootps;;67/udp;;;;# bootp server port
95;bootpc;;68/udp;;;;# bootp client port
96;tftp;;69/udp
97;gopher;;70/tcp;;;;# Gopher
98;gopher;;70/udp;;;;# Gopher
99;rje;;77/tcp;;netrjs
100;vettcp;;78/tcp;;;;# vettcp
101;vettcp;;78/udp;;;;# vettcp
102;finger;;79/tcp
103;www;;80/tcp;;;;# World Wide Web HTTP
104;www;;80/udp;;;;# World Wide Web HTTP
105;hosts2-ns;81/tcp;;;;# HOSTS2 Name Server
106;hosts2-ns;81/udp;;;;# HOSTS2 Name Server
107;xfer;;82/tcp;;;;# XFER Utility
108;xfer;;82/udp;;;;# XFER Utility
109;mit-ml-dev;83/tcp;;;;# MIT ML Device
110;mit-ml-dev;83/udp;;;;# MIT ML Device
111;ctf;;84/tcp;;;;# Common Trace Facility
112;ctf;;84/udp;;;;# Common Trace Facility
113;mit-ml-dev;85/tcp;;;;# MIT ML Device
114;mit-ml-dev;85/udp;;;;# MIT ML Device
115;mfcobol;;86/tcp;;;;# Micro Focus Cobol
116;mfcobol;;86/udp;;;;# Micro Focus Cobol
117;link;;87/tcp;;ttylink
118;kerberos;88/tcp;;;;# Kerberos
119;kerberos;88/udp;;;;# Kerberos
120;su-mit-tg;89/tcp;;;;# SU/MIT Telnet Gateway
121;su-mit-tg;89/udp;;;;# SU/MIT Telnet Gateway
122;dnsix;;90/tcp;;;;# DNSIX Security Attr. Token Map
123;dnsix;;90/udp;;;;# DNSIX Security Attr. Token Map
124;mit-dov;;91/tcp;;;;# MIT Dover Spooler
125;mit-dov;;91/udp;;;;# MIT Dover Spooler;

352 Practical TCP/IP for AIX V3.2/V4.1

126;npp;;92/tcp;;;;# Network Printing Protocol
127;npp;;92/udp;;;;# Network Printing Protocol
128;dcp;;93/tcp;;;;# Device Control Protocol
129;dcp;;93/udp;;;;# Device Control Protocol
130;objcall;;94/tcp;;;;# Tivoli Object Dispatcher
131;objcall;;94/udp;;;;# Tivoli Object Dispatcher
132;supdup;;95/tcp
133;dixie;;96/tcp;;;;# DIXIE Protocol Specification
134;dixie;;96/udp;;;;# DIXIE Protocol Specification
135;swift-rvf;97/tcp;;;;# Swift Remote Vitural File Pro.
136;swift-rvf;97/udp;;;;# Swift Remote Vitural File Pro.
137;tacnews;;98/tcp;;;;# TAC News
138;tacnews;;98/udp;;;;# TAC News
139;metagram;99/tcp;;;;# Metagram Relay
140;metagram;99/udp;;;;# Metagram Relay
141;hostnames;101/tcp;;hostname;# usually from sri-nic
142;iso_tsap;102/tcp
143;x400;;103/tcp
144;x400-snd;104/tcp
145;csnet-ns;105/tcp
146;3com-tsmux;106/tcp;;;;# 3COM-TSMUX
147;3com-tsmux;106/udp;;;;# 3COM-TSMUX
148;rtelnet;;107/tcp;;;;# Remote Telnet Service
149;rtelnet;;107/udp;;;;# Remote Telnet Service
150;snagas;;108/tcp;;;;# SNA Gateway Access Server
151;snagas;;108/udp;;;;# SNA Gateway Access Server
152;pop;;109/tcp;;postoffice;# Post Office Protocol Ver. 2
153;pop3;;110/tcp;;postoffice3;# Post Office Protocol Ver. 3
154;sunrpc;;111/tcp
155;sunrpc;;111/udp
156;mcidas;;112/tcp;;;;# McIDAS Data Transmission Prot.
157;mcidas;;112/udp;;;;# McIDAS Data Transmission Prot.
158;auth;;113/tcp;;authentication
159;audionews;114/tcp;;;;# Audio News Multicast
160;audionews;114/udp;;;;# Audio News Multicast
161;sftp;;115/tcp
162;ansanotify;116/tcp;;;;# ANSA REX Notify
163;ansanotify;116/udp;;;;# ANSA REX Notify
164;uucp-path;117/tcp
165;sqlserv;;118/tcp;;;;# SQL Services
166;sqlserv;;118/udp;;;;# SQL Services
167;nntp;;119/tcp;;readnews untp;# USENET News Transfer Protocol
168;cfdptkt;;120/tcp;;;;# CFDPTKT
169;cfdptkt;;120/udp;;;;# CFDPTKT
170;erpc;;121/tcp;;;;# Encore Expedited Remote Pro.
171;erpc;;121/udp;;;;# Encore Expedited Remote Pro.
172;smakynet;122/tcp;;;;# SMAKYNET
173;smakynet;122/udp;;;;# SMAKYNET
174;ntp;;123/tcp
175;ansatrader;124/tcp;;;;# ANSA REX Trader
176;ansatrader;124/udp;;;;# ANSA REX Trader
177;locus-map;125/tcp;;;;# Locus PC-Interface Net Map Ser
178;locus-map;125/udp;;;;# Locus PC-Interface Net Map Ser
179;unitary;;126/tcp;;;;# Unisys Unitary Login
180;unitary;;126/udp;;;;# Unisys Unitary Login
181;locus-con;127/tcp;;;;# Locus PC-Interface Conn Server
182;locus-con;127/udp;;;;# Locus PC-Interface Conn Server
183;gss-xlicen;128/tcp;;;;# GSS X License Verification
184;gss-xlicen;128/udp;;;;# GSS X License Verification

Appendix B. Well-Known Numbers 353

185;pwdgen;;129/tcp;;;;# Password Generator Protocol
186;pwdgen;;129/udp;;;;# Password Generator Protocol
187;cisco-fna;130/tcp;;;;# cisco FNATIVE
188;cisco-fna;130/udp;;;;# cisco FNATIVE
189;cisco-tna;131/tcp;;;;# cisco TNATIVE
190;cisco-tna;131/udp;;;;# cisco TNATIVE
191;cisco-sys;132/tcp;;;;# cisco SYSMAINT
192;cisco-sys;132/udp;;;;# cisco SYSMAINT
193;statsrv;;133/tcp;;;;# Statistics Service
194;statsrv;;133/udp;;;;# Statistics Service
195;ingres-net;134/tcp;;;;# INGRES-NET Service
196;ingres-net;134/udp;;;;# INGRES-NET Service
197;loc-srv;;135/tcp;;;;# Location Service
198;loc-srv;;135/udp;;;;# Location Service
199;profile;;136/tcp;;;;# PROFILE Naming System
200;profile;;136/udp;;;;# PROFILE Naming System
201;netbios-ns;137/tcp;;;;# NETBIOS Name Service;
202;netbios-ns;137/udp;;;;# NETBIOS Name Service;
203;netbios-dgm;138/tcp;;;;# NETBIOS Datagram Service
204;netbios-dgm;138/udp;;;;# NETBIOS Datagram Service
205;netbios-ssn;139/tcp;;;;# NETBIOS Session Service
206;netbios-ssn;139/udp;;;;# NETBIOS Session Service
207;emfis-data;140/tcp;;;;# EMFIS Data Service
208;emfis-data;140/udp;;;;# EMFIS Data Service
209;emfis-cntl;141/tcp;;;;# EMFIS Control Service
210;emfis-cntl;141/udp;;;;# EMFIS Control Service
211;bl-idm;;142/tcp;;;;# Britton-Lee IDM
212;bl-idm;;142/udp;;;;# Britton-Lee IDM
213;imap2;;143/tcp;;;;# Interim Mail Access Pro. v2
214;imap2;;143/udp;;;;# Interim Mail Access Pro. v2
215;NeWS;;144/tcp
216;uaac;;145/tcp;;;;# UAAC Protocol
217;uaac;;145/udp;;;;# UAAC Protocol
218;iso-tp0;;146/tcp;;;;# ISO-IP0
219;iso-tp0;;146/udp;;;;# ISO-IP0
220;iso-ip;;147/tcp;;;;# ISO-IP
221;iso-ip;;147/udp;;;;# ISO-IP
222;cronus;;148/tcp;;;;# CRONUS-SUPPORT
223;cronus;;148/udp;;;;# CRONUS-SUPPORT
224;aed-512;;149/tcp;;;;# AED 512 Emulation Service
225;aed-512;;149/udp;;;;# AED 512 Emulation Service
226;sql-net;;150/tcp;;;;# SQL-NET
227;sql-net;;150/udp;;;;# SQL-NET
228;hems;;151/tcp;;;;# HEMS
229;hems;;151/udp;;;;# HEMS
230;bftp;;152/tcp;;;;# Background File Transfer Prg
231;bftp;;152/udp;;;;# Background File Transfer Prg
232;sgmp;;153/tcp;;;;# SGMP
233;sgmp;;153/udp;;;;# SGMP
234;netsc-prod;154/tcp;;;;# NETSC
235;netsc-prod;154/udp;;;;# NETSC
236;netsc-dev;155/tcp;;;;# NETSC
237;netsc-dev;155/udp;;;;# NETSC
238;sqlsrv;;156/tcp;;;;# SQL Service
239;sqlsrv;;156/udp;;;;# SQL Service
240;knet-cmp;157/tcp;;;;# KNET/VM Command/Message Pro.
241;knet-cmp;157/udp;;;;# KNET/VM Command/Message Pro.
242;pcmail-srv;158/tcp;;;;# PCMail Server
243;pcmail-srv;158/udp;;;;# PCMail Server

354 Practical TCP/IP for AIX V3.2/V4.1

244;nss-routing;159/tcp;;;;# NSS-Routing
245;nss-routing;159/udp;;;;# NSS-Routing
246;sgmp-traps;160/tcp;;;;# SGMP-TRAPS
247;sgmp-traps;160/udp;;;;# SGMP-TRAPS
248;snmp;;161/tcp;;;;# snmp request port
249;snmp;;161/udp;;;;# snmp request port
250;snmp-trap;162/tcp;;;;# snmp monitor trap port
251;snmp-trap;162/udp;;;;# snmp monitor trap port
252;cmip-man;163/tcp;;;;# CMIP/TCP Manager
253;cmip-man;163/udp;;;;# CMIP/TCP Manager
254;cmip-agent;164/tcp;;;;# CMIP/TCP Agent
255;smip-agent;164/udp;;;;# CMIP/TCP Agent
256;xns-courier;165/tcp;;;;# Xerox
257;xns-courier;165/udp;;;;# Xerox
258;s-net;;166/tcp;;;;# Sirius Systems
259;s-net;;166/udp;;;;# Sirius Systems
260;namp;;167/tcp;;;;# NAMP
261;namp;;167/udp;;;;# NAMP
262;rsvd;;168/tcp;;;;# RSVD
263;rsvd;;168/udp;;;;# RSVD
264;send;;169/tcp;;;;# SEND
265;send;;169/udp;;;;# SEND
266;print-srv;170/tcp;;;;# Network PostScript
267;print-srv;170/udp;;;;# Network PostScript
268;multiplex;171/tcp;;;;# Network Innovations Multiplex
269;multiplex;171/udp;;;;# Network Innovations Multiplex
270;xyplex-mux;173/tcp;;;;# Xyplex
271;xyplex-mux;173/udp;;;;# Xyplex
272;mailq;;174/tcp;;;;# MAILQ
273;mailq;;174/udp;;;;# MAILQ
274;vmnet;;175/tcp;;;;# VMNET
275;vmnet;;175/udp;;;;# VMNET
276;genrad-mux;176/tcp;;;;# GENRAD-MUX
277;genrad-mux;176/udp;;;;# GENRAD-MUX
278;xdmcp;;177/tcp;;;;# X Display Manager Control Pro.
279;xdmcp;;177/udp;;;;# X Display Manager Control Pro.
280;nextstep;178/tcp;;;;# NextStep Window Server
281;NextStep;178/udp;;;;# NextStep Window Server
282;bgp;;179/tcp;;;;# Border Gateway Protocol
283;bgp;;179/udp;;;;# Border Gateway Protocol
284;ris;;180/tcp;;;;# Intergraph
285;ris;;180/udp;;;;# Intergraph
286;unify;;181/tcp;;;;# Unify
287;unify;;181/udp;;;;# Unify
288;audit;;182/tcp;;;;# Unisys Audit SITP
289;audit;;182/udp;;;;# Unisys Audit SITP
290;ocbinder;183/tcp;;;;# OCBinder
291;ocbinder;183/udp;;;;# OCBinder
292;ocserver;184/tcp;;;;# OCServer
293;ocserver;184/udp;;;;# OCServer
294;remote-kis;185/tcp;;;;# Remote-KIS
295;remote-kis;185/udp;;;;# Remote-KIS
296;kis;;186/tcp;;;;# KIS Protocol
297;kis;;186/udp;;;;# KIS Protocol
298;aci;;187/tcp;;;;# Application Comm. Interface
299;aci;;187/udp;;;;# Application Comm. Interface
300;mumps;;188/tcp;;;;# Plus Five′ s MUMPS
301;mumps;;188/udp;;;;# Plus Five′ s MUMPS
302;qft;;189/tcp;;;;# Queued File Transport

Appendix B. Well-Known Numbers 355

303;qft;;189/udp;;;;# Queued File Transport
304;gacp;;190/tcp;;;;# Gateway Access Control Pro.
305;cacp;;190/udp;;;;# Gateway Access Control Pro.
306;prospero;191/tcp;;;;# Prospero
307;prospero;191/udp;;;;# Prospero
308;osu-nms;;192/tcp;;;;# OSU Network Monitoring System
309;osu-nms;;192/udp;;;;# OSU Network Monitoring System
310;srmp;;193/tcp;;;;# Spider Remote Monitoring Pro.
311;srmp;;193/udp;;;;# Spider Remote Monitoring Pro.
312;irc;;194/tcp;;;;# Internet Relay Chat Protocol
313;irc;;194/udp;;;;# Internet Relay Chat Protocol
314;dn6-nlm-aud;195/tcp;;;;# DNSIX Net. Level Module Audit
315;dn6-nlm-aud;195/udp;;;;# DNSIX Net. Level Module Audit
316;dn6-smm-red;196/tcp;;;;# DNSIX Sess. Mgt Mod. Audit
317;dn6-smm-red;196/udp;;;;# DNSIX Sess. Mgt Mod. Audit
318;dls;;197/tcp;;;;# Directory Location Service
319;dls;;197/udp;;;;# Directory Location Service
320;dls-mon;;198/tcp;;;;# Directory Location Serv. Mon.
321;dls-mon;;198/udp;;;;# Directory Location Serv. Mon.
322;smux;;199/tcp;;;;# snmpd smux port
323;src;;200/udp;;;;# IBM System Resource controller
324;at-rtmp;;201/tcp;;;;# AppleTalk Routing Maint.
325;at-rtmp;;201/udp;;;;# AppleTalk Routing Maint.
326;at-nbp;;202/tcp;;;;# AppleTalk Name Binding
327;at-nbp;;202/udp;;;;# AppleTalk Name Binding
328;at-3;;203/tcp;;;;# AppleTalk Unused
329;at-3;;203/udp;;;;# AppleTalk Unused
330;at-echo;;204/tcp;;;;# AppleTalk Echo
331;at-echo;;204/udp;;;;# AppleTalk Echo
332;at-5;;205/tcp;;;;# AppleTalk Unused
333;at-5;;205/udp;;;;# AppleTalk Unused
334;at-zis;;206/tcp;;;;# AppleTalk Zone Information
335;at-zis;;206/udp;;;;# AppleTalk Zone Information
336;at-7;;207/tcp;;;;# AppleTalk Unused
337;at-7;;207/udp;;;;# AppleTalk Unused
338;at-8;;208/tcp;;;;# AppleTalk Unused
339;at-8;;208/udp;;;;# AppleTalk Unused
340;tam;;209/tcp;;;;# Trivial Auth. Mail Protocol
341;tam;;209/udp;;;;# Trivial Auth. Mail Protocol
342;z39.50;;210/tcp;;;;# ANSI Z39.50
343;z39.50;;210/udp;;;;# ANSI Z39.50
344;anet;;212/tcp;;;;# ATEXSSTR
345;anet;;212/udp;;;;# ATEXSSTR
346;ipx;;213/tcp;;;;# IPX
347;ipx;;213/udp;;;;# IPX
348;vmpwscs;;214/tcp;;;;# VM PWSCS
349;vmpwscs;;214/udp;;;;# VM PWSCS
350;softpc;;215/tcp;;;;# Insignia Solutions
351;softpc;;215/udp;;;;# Insignia Solutions
352;atls;;216/tcp;;;;# Access Tech. License Server
353;atls;;216/udp;;;;# Access Tech. License Server
354;dbase;;217/tcp;;;;# dBASE Unix
355;dbase;;217/udp;;;;# dBASE Unix
356;mpp;;218/tcp;;;;# Netix Message Posting Protocol
357;mpp;;218/udp;;;;# Netix Message Posting Protocol
358;uarps;;219/tcp;;;;# Unisys ARPs
359;uarps;;219/udp;;;;# Unisys ARPs
360;imap3;;220/tcp;;;;# Interactive Mail Acces Pro. v3
361;imap3;;220/udp;;;;# Interactive Mail Acces Pro. v3

356 Practical TCP/IP for AIX V3.2/V4.1

362;fln-spx;;221/tcp;;;;# Berkeley rlogind w/ SPX Auth.
363;fln-spx;;221/udp;;;;# Berkeley rlogind w/ SPX Auth.
364;fsh-spx;;222/tcp;;;;# Berkeley rshd w/ SPX Auth.
365;fsh-spx;;222/udp;;;;# Berkeley rshd w/ SPX Auth.
366;cdc;;223/tcp;;;;# Certificate Dist. Center
367;cdc;;223/udp;;;;# Certificate Dist. Center
368;sur-meas;243/tcp;;;;# Survey Measurement
369;sur-meas;243/udp;;;;# Survey Measurement
370;dsp3270;;246/tcp;;;;# Display System Protocol
371;dsp3270;;246/udp;;;;# Display System Protocol
372;pawserv;;345/tcp;;;;# Perf Analysis Workbench
373;pawserv;;345/udp;;;;# Perf Analysis Workbench
374;zserv;;346/tcp;;;;# Zebra Server
375;zserv;;346/udp;;;;# Zebra Server
376;fatserv;;347/tcp;;;;# Fatmen Server
377;fatserv;;347/udp;;;;# Fatmen Server
378;clearcase;371/tcp;;;;# Clearcase
379;clearcase;371/udp;;;;# Clearcase
380;ulistserv;372/tcp;;;;# Unix Listserv
381;ulistserv;372/udp;;;;# Unix Listserv
382;legent-1;373/tcp;;;;# Legent Corporation
383;legent-1;373/udp;;;;# Legent Corporation
384;legent-2;374/tcp;;;;# Legent Corporation
385;legent-2;374/udp;;;;# Legent Corporation
386;#
387;# UNIX specific services
388;#
389;exec;;512/tcp
390;biff;;512/udp;;comsat
391;login;;513/tcp
392;who;;513/udp;;whod
393;shell;;514/tcp;;cmd;;# no passwords used
394;syslog;;514/udp
395;printer;;515/tcp;;spooler;;# line printer spooler
396;talk;;517/udp
397;ntalk;;518/udp
398;utime;;519/tcp;;;;# unixtime
399;utime;;519/udp;;;;# unixtime
400;efs;;520/tcp;;;;# for LucasFilm
401;route;;520/udp;;router routed
402;timed;;525/udp;;timeserver
403;tempo;;526/tcp;;newdate
404;courier;;530/tcp;;rpc
405;conference;531/tcp;;chat
406;netnews;;532/tcp;;readnews
407;netwall;;533/udp;;;;# -for emergency broadcasts
408;uucp;;540/tcp;;uucpd;;# uucp daemon
409;klogin;;543/tcp
410;kshell;;544/tcp;;krcmd
411;new-rwho;550/udp
412;dsf;;555/tcp
413;dsf;;555/udp
414;remotefs;556/tcp;;rfs_server rfs;# Brunhoff remote filesystem
415;rmonitor;560/udp
416;monitor;;561/udp
417;chshell;;562/tcp;;chcmd
418;chshell;;562/udp;;chcmd
419;9pfs;;564/tcp;;;;# plan 9 file service
420;9pfs;;564/udp;;;;# plan 9 file service

Appendix B. Well-Known Numbers 357

421;whoami;;565/tcp
422;whoami;;565/udp
423;meter;;570/tcp;;demon
424;meter;;570/udp;;demon
425;meter;;571/tcp;;udemon
426;meter;;571/udp;;udemon
427;ipcserver;600/tcp;;;;# Sun IPC Server
428;ipcserver;600/udp;;;;# Sun IPC Server
429;nqs;;607/tcp
430;nqs;;607/udp
431;mdqs;;666/tcp
432;mdqs;;666/udp
433;elcsd;;704/tcp;;;;# errlog copy/server daemon
434;elcsd;;704/udp;;;;# errlog copy/server daemon
435;netcp;;740/tcp;;;;# NETscout Control Protocol
436;netcp;;740/udp;;;;# NETscout Control Protocol
437;netgw;;741/tcp;;;;# netGW
438;netgw;;741/udp;;;;# netGW
439;netrcs;;742/tcp;;;;# Network Based Rev. Cont Sys.
440;netrcs;;742/udp;;;;# Network Based Rev. Cont Sys.
441;flexlm;;744/tcp;;;;# Flexible License Manager
442;flexlm;;744/udp;;;;# Flexible License Manager
443;fujitsu-dev;747/tcp;;;;# Fujitsu Device Control
444;fujitsu-dev;747/udp;;;;# Fujitsu Device Control
445;ris-cm;;748/tcp;;;;# Russell Info Sci Calendar Man.
446;ris-cm;;748/udp;;;;# Russell Info Sci Calendar Man.
447;kerberos-adm;749/tcp;;;;# kerberos administration
448;kerberos-adm;749/udp;;;;# kerberos administration
449;rfile;;750/tcp
450;loadav;;750/udp
451;pump;;751/tcp
452;pump;;751/udp
453;qrh;;752/tcp
454;qrh;;752/udp
455;rrh;;753/tcp
456;rrh;;753/udp
457;tell;;754/tcp
458;tell;;754/udp
459;nlogin;;758/tcp
460;nlogin;;758/udp
461;con;;759/tcp
462;con;;759/udp
463;ns;;760/tcp
464;ns;;760/udp
465;rxe;;761/tcp
466;rxe;;761/udp
467;quotad;;762/tcp
468;quotad;;762/udp
469;cycleserv;763/tcp
470;cycleserv;763/udp
471;omserv;;764/tcp
472;omserv;;764/udp
473;webster;;765/tcp
474;webster;;765/udp
475;phonebook;767/tcp;;phone
476;phonebook;767/udp;;phone
477;vid;;769/tcp
478;vid;;769/udp
479;cadlock;;770/tcp

358 Practical TCP/IP for AIX V3.2/V4.1

480;cadlock;;770/udp
481;rtip;;771/tcp
482;rtip;;771/udp
483;cycleserv2;772/tcp
484;cycleserv2;772/udp
485;submit;;773/tcp
486;notify;;773/udp
487;rpasswd;;774/tcp
488;acmaint_dbd;774/udp
489;entomb;;775/tcp
490;acmaint_transd;775/udp
491;wpages;;776/tcp
492;wpages;;776/udp
493;wpgs;;780/tcp
494;wpgs;;780/udp
495;hp-collector;781/tcp;;;;# HP Perf. Data Collector
496;hp-collector;781/udp;;;;# HP Perf. Data Collector
497;hp-managed-node;782/tcp;;;;# HP Perf. Data Managed Node
498;hp-managed-node;782/udp;;;;# HP Perf. Data Managed Node
499;hp-alarm-mgr;783/tcp;;;;# HP Perf. Data Alarm Manager
500;hp-alarm-mgr;783/udp;;;;# HP Perf. Data Alarm Manager
501;mdbs_daemon;800/tcp
502;mdbs_daemon;800/udp
503;device;;801/tcp
504;device;;801/udp
505;xtreelic;996/tcp;;;;# XTREE License Server
506;xtreelic;996/udp;;;;# XTREE License Server
507;maitrd;;997/tcp
508;maitrd;;997/udp
509;busboy;;998/tcp
510;puparp;;998/udp
511;garcon;;999/tcp
512;applix;;999/udp;;;;# Applix ac
513;puprouter;999/tcp
514;puprouter;999/udp;
515;ock;;1000/udp
516;#
517;blackjack;1025/tcp;;;# Network BlackJack
518;blackjack;1025/udp;;;# Network BlackJack
519;instsrv;;1234/tcp;;;# Network Install Service
520;hermes;;1248/tcp
521;hermes;;1248/udp
522;bbn-mmc;;1347/tcp;;;# multi Media Conferencing
523;bbn-mmc;;1347/udp;;;# multi Media Conferencing
524;bbn-mmx;;1348/tcp;;;# multi Media Conferencing
525;bbn-mmx;;1348/udp;;;# multi Media Conferencing
526;sbook;;1349/tcp;;;# Registration Network Protocol
527;sbook;;1349/udp;;;# Registration Network Protocol
528;editbench;1350/tcp;;;# Registration Network Protocol
529;editbench;1350/udp;;;# Registration Network Protocol
530;equationbuilder;1351/tcp;;;# Digital Tool Works (MIT)
531;equationbuilder;1351/udp;;;# Digital Tool Works (MIT)
532;lotusnote;1352/tcp;;;# Lotus Note
533;lotusnote;1352/udp;;;# Lotus Note
534;ingreslock;1524/tcp;;;# ingres
535;orasrv;;1525/tcp;;;# oracle
536;orasrv;;1525/udp;;;# oracle
537;prospero-np;1525/tcp;;;# prospero non-privileged
538;prospero-np;1525/udp;;;# prospero non-privileged

Appendix B. Well-Known Numbers 359

539;tlisrv;;1527/tcp;;;# oracle
540;tlisrv;;1527/udp;;;# oracle
541;coauthor;1529/tcp;;;# oracle
542;coauthor;1529/udp;;;# oracle
543;issd;;1600/tcp
544;issd;;1600/udp
545;nkd;;1650/tcp
546;nkd;;1650/udp
547;callbook;2000/tcp
548;callbook;2000/udp
549;dc;;2001/tcp
550;wizard;;2001/udp;curry
551;globe;;2002/tcp
552;globe;;2002/udp
553;mailbox;;2004/tcp
554;emce;;2004/udp;;;# CCWS mm conf
555;berknet;;2005/tcp
556;oracle;;2005/udp
557;invokator;2006/tcp
558;raid-cc;;2006/udp
559;dectalk;;2007/tcp
560;raid-am;;2007/udp
561;conf;;2008/tcp
562;terminaldb;2008/udp
563;news;;2009/tcp
564;whosockami;2009/udp
565;search;;2010/tcp
566;pipe_server;2010/udp
567;raid-cc;;2011/tcp
568;servserv;2011/udp
569;ttyinfo;;2012/tcp
570;raid-ac;;2012/udp
571;raid-am;;2013/tcp
572;raid-cd;;2013/udp
573;troff;;2014/tcp
574;raid-sf;;2014/udp
575;cypress;;2015/tcp
576;raid-cs;;2015/udp
577;bootserver;2016/tcp
578;bootserver;2016/udp
579;cypress-stat;2017/tcp
580;bootclient;2017/udp
581;terminaldb;2018/tcp
582;rellpack;2018/udp
583;whosockami;2019/tcp
584;about;;2019/udp
585;xinupageserver;2020/tcp
586;xinupageserver;2020/udp
587;servexec;2021/tcp
588;xinuexpansion1;2021/udp
589;down;;2022/tcp
590;xinuexpansion2;2022/udp
591;xinuexpansion3;2023/tcp
592;xinuexpansion3;2023/udp
593;xinuexpansion4;2024/tcp
594;xinuexpansion4;2024/udp
595;ellpack;;2025/tcp
596;xribs;;2025/udp
597;scrabble;2026/tcp

360 Practical TCP/IP for AIX V3.2/V4.1

598;scrabble;2026/udp
599;shadowserver;2027/tcp
600;shadowserver;2027/udp
601;submitserver;2028/tcp
602;submitserver;2028/udp
603;device2;;2030/tcp
604;device2;;2030/udp
605;blackboard;2032/tcp
606;blackboard;2032/udp
607;glogger;;2033/tcp
608;glogger;;2033/udp
609;scoremgr;2034/tcp
610;scoremgr;2034/udp
611;imsldoc;;2035/tcp
612;imsldoc;;2035/udp
613;objectmanager;2038/tcp
614;objectmanager;2038/udp
615;lam;;2040/tcp
616;lam;;2040/udp
617;interbase;2041/tcp
618;interbase;2041/udp
619;isis;;2042/tcp
620;isis;;2042/udp
621;isis-bcast;2043/tcp
622;isis-bcast;2043/udp
623;rimsl;;2044/tcp
624;rimsl;;2044/udp
625;cdfunc;;2045/tcp
626;cdfunc;;2045/udp
627;sdfunc;;2046/tcp
628;sdfunc;;2046/udp
629;shilp;;2049/tcp
630;shilp;;2049/udp
631;writesrv;2401/tcp;;;# Temporary Port Number
632;www-dev;;2784/tcp;;;# World Wide Web - development
633;www-dev;;2784/udp;;;# World Wide Web - development
634;NSWS;;3049/tcp
635;NSWS;;3049/udp
636;rfa;;4672/tcp;;;# Remote File Access Server
637;rfa;;4672/udp;;;# Remote File Access Server
638;commplex-main;5000/tcp
639;commplex-main;5000/udp
640;commplex-link;5001/tcp
641;commplex-link;5001/udp
642;rfe;;5002/tcp;;;# Radio Free Ethernet
643;rfe;;5002/udp;;;# Radio Free Ethernet
644;rmonitor_secure;5145/tcp
645;rmonitor_secure;5145/udp
646;padl2sim;5236/tcp
647;padl2sim;5236/udp
648;sub-process;6111/tcp;;;# HP SoftBench Sub-Process Cntl.
649;sub-process;6111/udp;;;# HP SoftBench Sub-Process Cntl.
650;xdsxdm;;6558/udp
651;xdsxdm;;6558/tcp
652;afs3-fileserver;7000/tcp;;;# File Server Itself
653;afs3-fileserver;7000/udp;;;# File Server Itself
654;afs3-callback;7001/tcp;;;# Callbacks to Cache Managers
655;afs3-callback;7001/udp;;;# Callbacks to Cache Managers
656;afs3-prserver;7002/tcp;;;# Users & Groups Database

Appendix B. Well-Known Numbers 361

657;afs3-prserver;7002/udp;;;# Users & Groups Database
658;afs3-vlserver;7003/tcp;;;# Volume Location Database
659;afs3-vlserver;7003/udp;;;# Volume Location Database
660;afs3-kaserver;7004/tcp;;;# AFS/Kerberos Auth. Service
661;afs3-kaserver;7004/udp;;;# AFS/Kerberos Auth. Service
662;afs3-volser;7005/tcp;;;# Volume Managment Server
663;afs3-volser;7005/udp;;;# Volume Managment Server
664;afs3-errors;7006/tcp;;;# Error Interpretation Service
665;afs3-errors;7006/udp;;;# Error Interpretation Service
666;afs3-bos;7007/tcp;;;# Basic Overseer Process
667;afs3-bos;7007/udp;;;# Basic Overseer Process
668;afs3-update;7008/tcp;;;# Server-To-Server Updater
669;afs3-update;7008/udp;;;# Server-To-Server Updater
670;afs3-rmtsys;7009/tcp;;;# Remote Cache Manager Service
671;afs3-rmtsys;7009/udp;;;# Remote Cache Manager Service
672;graPHIGS;8000/tcp;; ;# graPHIGS Remote Nucleus
673;x_st_mgrd;9000/tcp;; ;# IBM X Terminal
674;man;;9535/tcp
675;man;;9535/udp
676;isode-dua;17007/tcp
677;isode-dua;17007/udp
678;dtspc;;6112/tcp;

B.3 ONC/RPC Program Numbers in /etc/rpc

1;# @(#)44;1.3 src/nfs/etc/rpc, cmdnfs, nfs411, GOLD410 4/22/94 13:20:59
2;#
3;# COMPONENT_NAME: (CMDNFS) Network File System Commands
4;#
5;# FUNCTIONS:
6;#
7;# ORIGINS: 24
8;#
9;# Copyright (c) 1988 Sun Microsystems, Inc.
10;#
11;portmapper;100000;portmap sunrpc
12;rstatd;;100001;rstat rup perfmeter
13;rusersd;;100002;rusers
14;nfs;;100003;nfsprog
15;ypserv;;100004;ypprog
16;mountd;;100005;mount showmount
17;ypbind;;100007
18;walld;;100008;rwall shutdown
19;yppasswdd;100009;yppasswd
20;etherstatd;100010;etherstat
21;rquotad;;100011;rquotaprog quota rquota
22;sprayd;;100012;spray
23;3270_mapper;100013
24;rje_mapper;100014
25;selection_svc;100015;selnsvc
26;database_svc;100016
27;rexd;;100017;rex
28;alis;;100018
29;sched;;100019
30;llockmgr;100020
31;nlockmgr;100021
32;x25.inr;;100022
33;statmon;;100023

362 Practical TCP/IP for AIX V3.2/V4.1

34;status;;100024
35;bootparam;100026
36;ypupdated;100028;ypupdate
37;keyserv;;100029;keyserver
38;sunlink_mapper;100033
39;tfsd;;100037
40;nsed;;100038
41;nsemntd;;100039
42;showfhd;;100043;showfh
43;cmsd;;100068;dtcalendar
44;ypxfrd;;100069;ypxfr
45;ttdbserverd;100083;tooltalk
46;pcnfsd;;150001

Appendix B. Well-Known Numbers 363

364 Practical TCP/IP for AIX V3.2/V4.1

Appendix C. Important Header Files

C.1 /usr/include/netinet/tcp.h

1;/* @(#)54;1.8.1.3 src/bos/kernext/inet/tcp.h, sockinc, bos411, 9428A410j 12/20/93 11:55:55 */
2;/*
3; * COMPONENT_NAME: SYSXINET
4; *
5; * FUNCTIONS:
6; *
7; * ORIGINS: 26,27,85,90
8; *
9; *
10; * (C) COPYRIGHT International Business Machines Corp. 1988,1993
11; * All Rights Reserved
12; * Licensed Materials - Property of IBM
13; * US Government Users Restricted Rights - Use, duplication or
14; * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
15; */
16;
17;/*
18; * (c) Copyright 1990, 1991, 1992, 1993 OPEN SOFTWARE FOUNDATION, INC.
19; * ALL RIGHTS RESERVED
20; */
21;/*
22; * OSF/1 1.2
23; */
24;/*
25; * Copyright (C) 1988,1989 Encore Computer Corporation. All Rights Reserved
26; *
27; * Property of Encore Computer Corporation.
28; * This software is made available solely pursuant to the terms of
29; * a software license agreement which governs its use. Unauthorized
30; * duplication, distribution or sale are strictly prohibited.
31; *
32; */
33;/*
34; * Copyright (c) 1982, 1986 Regents of the University of California.
35; * All rights reserved.
36; *
37; * Redistribution and use in source and binary forms are permitted provided
38; * that: (1) source distributions retain this entire copyright notice and
39; * comment, and (2) distributions including binaries display the following
40; * acknowledgement: This product includes software developed by the
41; * University of California, Berkeley and its contributors′ ′ in the
42; * documentation or other materials provided with the distribution and in
43; * all advertising materials mentioning features or use of this software.
44; * Neither the name of the University nor the names of its contributors may
45; * be used to endorse or promote products derived from this software without
46; * specific prior written permission.
47; * THIS SOFTWARE IS PROVIDED AS IS′ ′ AND WITHOUT ANY EXPRESS OR IMPLIED
48; * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
49; * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
50; *
51; *;Base:;tcp.h;7.5 (Berkeley) 6/29/88
52; *;Merged:;tcp.h;7.7 (Berkeley) 6/28/90
53; */

 Copyright IBM Corp. 1996 365

54;
55;#ifndef;_NETINET_TCP_H
56;#define;_NETINET_TCP_H
57;
58;#include <netinet/ip.h>
59;
60;typedef;u_long;tcp_seq;
61;
62;/*
63; * TCP header.
64; * Per RFC 793, September, 1981.
65; */
66;struct tcphdr {
67;;u_short;th_sport;;;/* source port */
68;;u_short;th_dport;;;/* destination port */
69;;tcp_seq;th_seq;;;;/* sequence number */
70;;tcp_seq;th_ack;;;;/* acknowledgement number */
71;;struct;ip_firstfour ip_ff;;/* see <netinet/ip.h> */
72;#define;th_off;;ip_v;;/* offset */
73;#define;th_x2;;ip_hl;;/* unused */
74;#define;th_xoff;;ip_vhl;;/* offset+unused */
75;#define;th_flags;ip_tos;;/* flags */
76;#define;th_win;;ip_ff.ip_fwin;/* window (unsigned) */
77;#define;TH_FIN;0x01
78;#define;TH_SYN;0x02
79;#define;TH_RST;0x04
80;#define;TH_PUSH;0x08
81;#define;TH_ACK;0x10
82;#define;TH_URG;0x20
83;;u_short;th_sum;;;;/* checksum */
84;;u_short;th_urp;;;;/* urgent pointer */
85;};
86;
87;#define;TCPOPT_EOL;;0
88;#define;TCPOPT_NOP;;1
89;#define;TCPOPT_MAXSEG;;2
90;#define TCPOPT_WINDOWSCALE;3;/* RFC 1323 window scale option */
91;#define TCPOPT_TIMESTAMP;8;/* RFC 1323 timestamp option */
92;
93;#define TCP_MAXWINDOWSCALE;14;/* RFC 1323 max shift factor */
94;
95;/*
96; * RFC 1323 - this define is used for fast timstamp option parsing...
97; */
98;#define TCP_FASTNAME;;;0x0101080A
99;#define TCP_TIMESTAMP_OPTLEN;;12
100;
101;/*
102; * RFC 1323 - Used by PAWS algorithm.
103; */
104;#define TCP_24DAYS_WORTH_OF_SLOWTICKS;(24 * 24 * 60 * 60 * PR_SLOWHZ)
105;
106;
107;/*
108; * Default maximum segment size for TCP.
109; * With an IP MSS of 576, this is 536,
110; * but 512 is probably more convenient.
111; * This should be defined as MIN(512, IP_MSS - sizeof (struct tcpiphdr)).
112; */

366 Practical TCP/IP for AIX V3.2/V4.1

113;#define;TCP_MSS;512
114;
115;#define;TCP_MAXWIN;65535;;/* largest value for window */
116;
117;/*
118; * User-settable options (used with setsockopt).
119; */
120;#define;TCP_NODELAY;0x01;/* don′ t delay send to coalesce packets */
121;#define;TCP_MAXSEG;0x02;/* set maximum segment size */
122;#define TCP_RFC1323;0x04;/* Use RFC 1323 algorithms/options */
123;#endif

C.2 /usr/include/netinet/tcp_timer.h

1;/* @(#)38;1.11 src/bos/kernext/inet/tcp_timer.h, sockinc, bos411, 9428A410j 9/15/93 16:48:43 */
2;/*
3; * COMPONENT_NAME: SYSXINET
4; *
5; * FUNCTIONS: TCPT_RANGESET
6; *;;
7; *
8; * ORIGINS: 26,27,85
9; *
10; *
11; * (C) COPYRIGHT International Business Machines Corp. 1988,1993
12; * All Rights Reserved
13; * Licensed Materials - Property of IBM
14; * US Government Users Restricted Rights - Use, duplication or
15; * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
16; */
17;
18;/*
19; *
20; * (c) Copyright 1991, OPEN SOFTWARE FOUNDATION, INC.
21; * ALL RIGHTS RESERVED
22; *
23; */
24;/*
25; * OSF/1 1.1 Snapshot 2
26; */
27;/*
28; * Copyright (c) 1982, 1986 Regents of the University of California.
29; * All rights reserved.
30; *
31; * Redistribution and use in source and binary forms are permitted provided
32; * that: (1) source distributions retain this entire copyright notice and
33; * comment, and (2) distributions including binaries display the following
34; * acknowledgement: This product includes software developed by the
35; * University of California, Berkeley and its contributors′ ′ in the
36; * documentation or other materials provided with the distribution and in
37; * all advertising materials mentioning features or use of this software.
38; * Neither the name of the University nor the names of its contributors may
39; * be used to endorse or promote products derived from this software without
40; * specific prior written permission.
41; * THIS SOFTWARE IS PROVIDED AS IS′ ′ AND WITHOUT ANY EXPRESS OR IMPLIED
42; * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
43; * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
44; *

Appendix C. Important Header Files 367

45; *;Base:;tcp_timer.h;7.6 (Berkeley) 6/29/88
46; *;Merged:;tcp_timer.h;7.8 (Berkeley) 6/28/90
47; */
48;
49;/*
50; * Definitions of the TCP timers. These timers are counted
51; * down PR_SLOWHZ times a second.
52; */
53;#define;TCPT_NTIMERS;4
54;
55;#define;TCPT_REXMT;0;;/* retransmit */
56;#define;TCPT_PERSIST;1;;/* retransmit persistance */
57;#define;TCPT_KEEP;2;;/* keep alive */
58;#define;TCPT_2MSL;3;;/* 2*msl quiet time timer */
59;
60;/*
61; * The TCPT_REXMT timer is used to force retransmissions.
62; * The TCP has the TCPT_REXMT timer set whenever segments
63; * have been sent for which ACKs are expected but not yet
64; * received. If an ACK is received which advances tp->snd_una,
65; * then the retransmit timer is cleared (if there are no more
66; * outstanding segments) or reset to the base value (if there
67; * are more ACKs expected). Whenever the retransmit timer goes off,
68; * we retransmit one unacknowledged segment, and do a backoff
69; * on the retransmit timer.
70; *
71; * The TCPT_PERSIST timer is used to keep window size information
72; * flowing even if the window goes shut. If all previous transmissions
73; * have been acknowledged (so that there are no retransmissions in progress),
74; * and the window is too small to bother sending anything, then we start
75; * the TCPT_PERSIST timer. When it expires, if the window is nonzero,
76; * we go to transmit state. Otherwise, at intervals send a single byte
77; * into the peer′ s window to force him to update our window information.
78; * We do this at most as often as TCPT_PERSMIN time intervals,
79; * but no more frequently than the current estimate of round-trip
80; * packet time. The TCPT_PERSIST timer is cleared whenever we receive
81; * a window update from the peer.
82; *
83; * The TCPT_KEEP timer is used to keep connections alive. If an
84; * connection is idle (no segments received) for TCPTV_KEEP_INIT amount of time,
85; * but not yet established, then we drop the connection. Once the connection
86; * is established, if the connection is idle for TCPTV_KEEP_IDLE time
87; * (and keepalives have been enabled on the socket), we begin to probe
88; * the connection. We force the peer to send us a segment by sending:
89; *;<SEQ=SND.UNA-1><ACK=RCV.NXT><CTL=ACK>
90; * This segment is (deliberately) outside the window, and should elicit
91; * an ack segment in response from the peer. If, despite the TCPT_KEEP
92; * initiated segments we cannot elicit a response from a peer in TCPT_MAXIDLE
93; * amount of time probing, then we drop the connection.
94; */
95;
96;#define;TCP_TTL;;60;;/* default time to live for TCP segs */
97;/*
98; * Time constants.
99; */
100;#define;TCPTV_MSL;(30*PR_SLOWHZ);;/* max seg lifetime (hah!) */
101;#define;TCPTV_SRTTBASE;0;;;/* base roundtrip time;

 102;;;;;;; if 0, no idea yet */
103;#define;TCPTV_SRTTDFLT;(3*PR_SLOWHZ);;/* assumed RTT if no info */

368 Practical TCP/IP for AIX V3.2/V4.1

104;
105;#define;TCPTV_PERSMIN;(5*PR_SLOWHZ);;/* retransmit persistance */
106;#define;TCPTV_PERSMAX;(60*PR_SLOWHZ);;/* maximum persist interval */
107;
108;#define;TCPTV_KEEP_INIT;(75*PR_SLOWHZ);;/* initial connect keep alive */
109;#define;TCPTV_KEEP_IDLE;(120*60*PR_SLOWHZ);/* dflt time before probing */
110;#define;TCPTV_KEEPINTVL;(75*PR_SLOWHZ);;/* default probe interval */
111;#define;TCPTV_KEEPCNT;8;;;/* max probes before drop */
112;
113;#define;TCPTV_MIN;(1*PR_SLOWHZ);;/* minimum allowable value */
114;#define;TCPTV_REXMTMAX;(64*PR_SLOWHZ);;/* max allowable REXMT value */
115;
116;#define;TCP_LINGERTIME;120;;;/* linger at most 2 minutes */
117;
118;#ifndef;CONST
119;#define;CONST
120;#endif
121;
122;#ifdef;TCPTIMERS
123;CONST;char *tcptimers[] =
124; { ″REXMT″, ″PERSIST″, ″KEEP″, ″2MSL″ };
125;#endif
126;
127;/*
128; * Force a time value to be in a certain range.
129; */
130;#define;TCPT_RANGESET(tv, value, tvmin, tvmax) { \
131;;(tv) = (value); \
132;;if ((tv) < (tvmin)) \
133;;;(tv) = (tvmin); \
134;;else if ((tv) > (tvmax)) \
135;;;(tv) = (tvmax); \
136;}
137;
138;#ifdef _KERNEL
139;extern int tcp_keepidle;;;/* time before keepalive probes begin */
140;extern int tcp_keepintvl;;;/* time between keepalive probes */
141;extern int tcp_maxidle;;;;/* time to drop after starting probes */
142;extern int tcp_ttl;;;;/* time to live for TCP segs */
143;extern int tcp_rtolow;;;;/* TCP RTO backoff low watermark */
144;extern int tcp_rtohigh;;;;/* TCP RTO backoff high watermark */
145;extern int tcp_rtolimit;;;/* TCP RTO backoff exponential mark */
146;extern int tcp_rtolength;;;/* TCP RTO backoff total# elements */
147;extern int tcp_rtoshift;;;/* TCP RTO backoff delta shift; the */
148;;;;;;/* number of bit shitfs from */
149;;;;;;/* tcp_rtolow to tcp_rtohigh inclusive */
150;#define TCP_BACKOFF(x) \
151; ((((x)+1) >= (tcp_rtolimit)) ? (tcp_rtohigh) : \
152;;;;(tcp_rtolow) << (((tcp_rtoshift)*(x))/(tcp_rtolimit)))
153;#endif

C.3 /usr/include/netinet/tcp_var.h

1;/* @(#)55;1.14.2.5 src/bos/kernext/inet/tcp_var.h, sockinc, bos411, 9428A410j 3/15/94 17:00:24 */
2;/*
3; * COMPONENT_NAME: SYSXINET
4; *
5; * FUNCTIONS: REASS_MBUF

Appendix C. Important Header Files 369

6; *;;TCPMISC_LOCK
7; *;;TCPMISC_LOCKINIT
8; *;;TCPMISC_UNLOCK
9; *;;TCP_REXMTVAL
10; *;;intotcpcb
11; *;;sototcpcb
12; *;;
13; *
14; * ORIGINS: 26,27,85,90
15; *
16; *
17; * (C) COPYRIGHT International Business Machines Corp. 1988,1993
18; * All Rights Reserved
19; * Licensed Materials - Property of IBM
20; * US Government Users Restricted Rights - Use, duplication or
21; * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
22; */
23;
24;/*
25; * (c) Copyright 1990, 1991, 1992, 1993 OPEN SOFTWARE FOUNDATION, INC.
26; * ALL RIGHTS RESERVED
27; */
28;/*
29; * OSF/1 1.2
30; */
31;/*
32; * Copyright (C) 1988,1989 Encore Computer Corporation. All Rights Reserved
33; *
34; * Property of Encore Computer Corporation.
35; * This software is made available solely pursuant to the terms of
36; * a software license agreement which governs its use. Unauthorized
37; * duplication, distribution or sale are strictly prohibited.
38; *
39; */
40;/*
41; * Copyright (c) 1982, 1986 Regents of the University of California.
42; * All rights reserved.
43; *
44; * Redistribution and use in source and binary forms are permitted provided
45; * that: (1) source distributions retain this entire copyright notice and
46; * comment, and (2) distributions including binaries display the following
47; * acknowledgement: This product includes software developed by the
48; * University of California, Berkeley and its contributors′ ′ in the
49; * documentation or other materials provided with the distribution and in
50; * all advertising materials mentioning features or use of this software.
51; * Neither the name of the University nor the names of its contributors may
52; * be used to endorse or promote products derived from this software without
53; * specific prior written permission.
54; * THIS SOFTWARE IS PROVIDED AS IS′ ′ AND WITHOUT ANY EXPRESS OR IMPLIED
55; * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
56; * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
57; *
58; *;Base:;tcp_var.h;7.8 (Berkeley) 6/29/88
59; *;Merged:;tcp_var.h;7.10 (Berkeley) 6/28/90
60; */
61;
62;/*
63; * Kernel variables for tcp.
64; */

370 Practical TCP/IP for AIX V3.2/V4.1

65;
66;/*
67; * Tcp control block, one per tcp; fields:
68; */
69;struct tcpcb {
70;;struct;tcpiphdr *seg_next;;/* sequencing queue */
71;;struct;tcpiphdr *seg_prev;
72;;short;t_state;;;/* state of this connection */
73;;short;t_softerror;;;/* possible error not yet reported */
74;;short;t_timer[TCPT_NTIMERS];;/* tcp timers */
75;;short;t_rxtshift;;;/* log(2) of rexmt exp. backoff */
76;;short;t_rxtcur;;;/* current retransmit value */
77;;short;t_dupacks;;;/* consecutive dup acks recd */
78;;u_short;t_maxseg;;;/* maximum segment size */
79;;char;t_force;;;/* 1 if forcing out a byte */
80;;u_short;t_flags;
81;#define;TF_ACKNOW;0x0001;;/* ack peer immediately */
82;#define;TF_DELACK;0x0002;;/* ack, but try to delay it */
83;#define;TF_NODELAY;0x0004;;/* don′ t delay packets to coalesce */
84;#define;TF_NOOPT;0x0008;;/* don′ t use tcp options */
85;#define;TF_SENTFIN;0x0010;;/* have sent FIN */
86;#define TF_RFC1323;0x0020;;/* Use RFC1323 TCP options */
87;#define TF_SENT_WS;0x0040;;/* TCP has sent a windowscale option */
88;#define TF_RCVD_WS;0x0080;;/* TCP has rcvd a windowscale option */
89;#define TF_SENT_TS;0x0100;;/* TCP has sent a timestamp option */
90;#define TF_RCVD_TS;0x0200;;/* TCP has rcvd a timestamp option */
91;
92;/* out-of-band data */
93;;char;t_oobflags;;;/* have some */
94;;char;t_iobc;;;;/* input character */
95;#define;TCPOOB_HAVEDATA;0x01
96;#define;TCPOOB_HADDATA;0x02
97;
98;;struct;tcpiphdr t_template;;/* skeletal packet for transmit
99;;;;;; * (used to be mbuf)
100;;;;;; */
101;;struct;inpcb *t_inpcb;;;/* back pointer to internet pcb */
102;;tcp_seq;t_timestamp;;;/* used by slowtimo */
103;/*
104; * The following fields are used as in the protocol specification.
105; * See RFC783, Dec. 1981, page 21.
106; */
107;/* send sequence variables */
108;;tcp_seq;snd_una;;;/* send unacknowledged */
109;;tcp_seq;snd_nxt;;;/* send next */
110;;tcp_seq;snd_up;;;;/* send urgent pointer */
111;;tcp_seq;snd_wl1;;;/* window update seg seq number */
112;;tcp_seq;snd_wl2;;;/* window update seg ack number */
113;;tcp_seq;iss;;;;/* initial send sequence number */
114;;u_long;snd_wnd;;;/* send window */
115;/* receive sequence variables */
116;;u_long;rcv_wnd;;;/* receive window */
117;;tcp_seq;rcv_nxt;;;/* receive next */
118;;tcp_seq;rcv_up;;;;/* receive urgent pointer */
119;;tcp_seq;irs;;;;/* initial receive sequence number */
120;/* RFC 1323 - variables */
121;;short;snd_wnd_scale;;;/* snd window scale */
122;;short;rcv_wnd_scale;;;/* rcv window scale */
123;;short;req_scale_sent;

Appendix C. Important Header Files 371

124;;short;req_scale_rcvd;
125;;tcp_seq;last_ack_sent;;;/* seqno of last ACK sent (RTTM) */
126;;u_long;timestamp_recent;;/* most recent timestamp rcved (RTTM) */
127;;int;timestamp_age;;;/* age of timestamp_recent */
128;/*
129; * Additional variables for this implementation.
130; */
131;/* receive variables */
132;;tcp_seq;rcv_adv;;;/* advertised window */
133;/* retransmit variables */
134;;tcp_seq;snd_max;;;/* highest sequence number sent;
135;;;;;; * used to recognize retransmits
136;;;;;; */
137;/* congestion control (for slow start, source quench, retransmit after loss) */
138;;u_long;snd_cwnd;;;/* congestion-controlled window */
139;;u_long snd_ssthresh;;;/* snd_cwnd size threshhold for
140;;;;;; * slow start exponential to
141;;;;;; * linear switch
142;;;;;; */
143;/*
144; * transmit timing stuff. See below for scale of srtt and rttvar.
145; * ″Variance″ is actually smoothed difference.
146; */
147;;short;t_idle;;;;/* inactivity time */
148;;short;t_rtt;;;;/* round trip time */
149;;tcp_seq;t_rtseq;;;/* sequence number being timed */
150;;short;t_srtt;;;;/* smoothed round-trip time */
151;;short;t_rttvar;;;/* variance in round-trip time */
152;;u_short;t_rttmin;;;/* minimum rtt allowed */
153;;u_long ;max_rcvd;;;/* most peer has sent into window */
154;;u_long;max_sndwnd;;;/* largest window peer has offered */
155;};
156;
157;#define;intotcpcb(ip);((struct tcpcb *)(ip)->inp_ppcb)
158;#define;sototcpcb(so);(intotcpcb(sotoinpcb(so)))
159;
160;/*
161; * The smoothed round-trip time and estimated variance
162; * are stored as fixed point numbers scaled by the values below.
163; * For convenience, these scales are also used in smoothing the average
164; * (smoothed = (1/scale)sample + ((scale-1)/scale)smoothed).
165; * With these scales, srtt has 3 bits to the right of the binary point,
166; * and thus an ″ALPHA″ of 0.875. rttvar has 2 bits to the right of the
167; * binary point, and is smoothed with an ALPHA of 0.75.
168; */
169;#define;TCP_RTT_SCALE;;8;/* multiplier for srtt; 3 bits frac. */
170;#define;TCP_RTT_SHIFT;;3;/* shift for srtt; 3 bits frac. */
171;#define;TCP_RTTVAR_SCALE;4;/* multiplier for rttvar; 2 bits */
172;#define;TCP_RTTVAR_SHIFT;2;/* multiplier for rttvar; 2 bits */
173;
174;/*
175; * The initial retransmission should happen at rtt + 4 * rttvar.
176; * Because of the way we do the smoothing, srtt and rttvar
177; * will each average +1/2 tick of bias. When we compute
178; * the retransmit timer, we want 1/2 tick of rounding and
179; * 1 extra tick because of +-1/2 tick uncertainty in the
180; * firing of the timer. The bias will give us exactly the
181; * 1.5 tick we need. But, because the bias is
182; * statistical, we have to test that we don′ t drop below

372 Practical TCP/IP for AIX V3.2/V4.1

183; * the minimum feasible timer (which is 2 ticks).
184; * This macro assumes that the value of TCP_RTTVAR_SCALE
185; * is the same as the multiplier for rttvar.
186; */
187;#define;TCP_REXMTVAL(tp) \
188;;(((tp)->t_srtt >> TCP_RTT_SHIFT) + (tp)->t_rttvar)
189;
190;/* XXX
191; * We want to avoid doing m_pullup on incoming packets but that
192; * means avoiding dtom on the tcp reassembly code. That in turn means
193; * keeping an mbuf pointer in the reassembly queue (since we might
194; * have a cluster). As a quick hack, the source & destination
195; * port numbers (which are no longer needed once we′ ve located the
196; * tcpcb) are overlayed with an mbuf pointer.
197; */
198;#define REASS_MBUF(ti) (*(struct mbuf **)&((ti)->ti_t))
199;
200;/*
201; * RFC 1323 - In the spirit of Header Prediction, we use this struct to
202; * ;;check for the TS option. If we match, then we avoid
203; *;;tcp_dooption() parsing...
204; */
205;struct tcp_ts {
206;;u_long; ts_name;
207;;u_long; ts_val;
208;;u_long ts_ecr;
209;};
210;
211;/*
212; * TCP statistics.
213; * Many of these should be kept per connection,
214; * but that′ s inconvenient at the moment.
215; */
216;struct;tcpstat {
217;;u_long;tcps_connattempt;;/* connections initiated */
218;;u_long;tcps_accepts;;;/* connections accepted */
219;;u_long;tcps_connects;;;/* connections established */
220;;u_long;tcps_drops;;;/* connections dropped */
221;;u_long;tcps_conndrops;;;/* embryonic connections dropped */
222;;u_long;tcps_closed;;;/* conn. closed (includes drops) */
223;;u_long;tcps_segstimed;;;/* segs where we tried to get rtt */
224;;u_long;tcps_rttupdated;;/* times we succeeded */
225;;u_long;tcps_delack;;;/* delayed acks sent */
226;;u_long;tcps_timeoutdrop;;/* conn. dropped in rxmt timeout */
227;;u_long;tcps_rexmttimeo;;/* retransmit timeouts */
228;;u_long;tcps_persisttimeo;;/* persist timeouts */
229;;u_long;tcps_keeptimeo;;;/* keepalive timeouts */
230;;u_long;tcps_keepprobe;;;/* keepalive probes sent */
231;;u_long;tcps_keepdrops;;;/* connections dropped in keepalive */
232;
233;;u_long;tcps_sndtotal;;;/* total packets sent */
234;;u_long;tcps_sndpack;;;/* data packets sent */
235;;u_long;tcps_sndbyte;;;/* data bytes sent */
236;;u_long;tcps_sndrexmitpack;;/* data packets retransmitted */
237;;u_long;tcps_sndrexmitbyte;;/* data bytes retransmitted */
238;;u_long;tcps_sndacks;;;/* ack-only packets sent */
239;;u_long;tcps_sndprobe;;;/* window probes sent */
240;;u_long;tcps_sndurg;;;/* packets sent with URG only */
241;;u_long;tcps_sndwinup;;;/* window update-only packets sent */

Appendix C. Important Header Files 373

242;;u_long;tcps_sndctrl;;;/* control (SYN|FIN|RST) packets sent */
243;
244;;u_long;tcps_rcvtotal;;;/* total packets received */
245;;u_long;tcps_rcvpack;;;/* packets received in sequence */
246;;u_long;tcps_rcvbyte;;;/* bytes received in sequence */
247;;u_long;tcps_rcvbadsum;;;/* packets received with ccksum errs */
248;;u_long;tcps_rcvbadoff;;;/* packets received with bad offset */
249;;u_long;tcps_rcvshort;;;/* packets received too short */
250;;u_long;tcps_rcvduppack;;/* duplicate-only packets received */
251;;u_long;tcps_rcvdupbyte;;/* duplicate-only bytes received */
252;;u_long;tcps_rcvpartduppack;;/* packets with some duplicate data */
253;;u_long;tcps_rcvpartdupbyte;;/* dup. bytes in part-dup. packets */
254;;u_long;tcps_rcvoopack;;;/* out-of-order packets received */
255;;u_long;tcps_rcvoobyte;;;/* out-of-order bytes received */
256;;u_long;tcps_rcvpackafterwin;;/* packets with data after window */
257;;u_long;tcps_rcvbyteafterwin;;/* bytes rcvd after window */
258;;u_long;tcps_rcvafterclose;;/* packets rcvd after ″close″ */
259;;u_long;tcps_rcvwinprobe;;/* rcvd window probe packets */
260;;u_long;tcps_rcvdupack;;;/* rcvd duplicate acks */
261;;u_long;tcps_rcvacktoomuch;;/* rcvd acks for unsent data */
262;;u_long;tcps_rcvackpack;;/* rcvd ack packets */
263;;u_long;tcps_rcvackbyte;;/* bytes acked by rcvd acks */
264;;u_long;tcps_rcvwinupd;;;/* rcvd window update packets */
265;;u_long ;tcps_pawsdrop;;;/* (RFC 1323) pkts dropped because
266;;;;;;;of PAWS */
267;#if;defined(_KERNEL) && LOCK_NETSTATS
268;;simple_lock_data_t tcps_lock;;/* statistics lock */
269;#endif
270;};
271;
272;#ifdef _KERNEL
273;#if;NETSYNC_LOCK
274;extern;simple_lock_data_t;misc_tcp_lock;
275;#define TCPMISC_LOCKINIT();{;;;;;\
276;;lock_alloc(&misc_tcp_lock, LOCK_ALLOC_PIN, TCPMISC_LOCK_FAMILY, -1);\
277;;simple_lock_init(&misc_tcp_lock);;;;;\
278;}
279;#define TCPMISC_LOCK_DECL();int;_tcpml;
280;#define TCPMISC_LOCK();;_tcpml = disable_lock(PL_IMP, &misc_tcp_lock)
281;#define TCPMISC_UNLOCK();unlock_enable(_tcpml, &misc_tcp_lock)
282;#else;/* !NETSYNC_LOCK */
283;#define TCPMISC_LOCKINIT()
284;#define TCPMISC_LOCK()
285;#define TCPMISC_UNLOCK()
286;#endif
287;
288;extern;int tcp_compat_42;
289;extern;struct;inpcb tcb;;;/* head of queue of active tcpcb′ s */
290;extern;struct;tcpstat tcpstat;;/* tcp statistics */
291;#endif

C.4 /usr/include/sys/protosw.h

1;/* @(#)97;1.12 src/bos/kernel/sys/protosw.h, sockinc, bos411, 9433A411a 8/12/94 10:09:06 */
2;/*
3; * COMPONENT_NAME: SOCKINC
4; *
5; * FUNCTIONS: PRC_IS_REDIRECT

374 Practical TCP/IP for AIX V3.2/V4.1

6; *;;
7; *
8; * ORIGINS: 26,27,85
9; *
10; *
11; * (C) COPYRIGHT International Business Machines Corp. 1988,1993
12; * All Rights Reserved
13; * Licensed Materials - Property of IBM
14; * US Government Users Restricted Rights - Use, duplication or
15; * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
16; */
17;/*
18; * (c) Copyright 1990, 1991, 1992, 1993 OPEN SOFTWARE FOUNDATION, INC.
19; * ALL RIGHTS RESERVED
20; */
21;/*
22; * OSF/1 1.2
23; */
24;/*
25; * Copyright (c) 1982, 1986 Regents of the University of California.
26; * All rights reserved.
27; *
28; * Redistribution and use in source and binary forms are permitted provided
29; * that: (1) source distributions retain this entire copyright notice and
30; * comment, and (2) distributions including binaries display the following
31; * acknowledgement: This product includes software developed by the
32; * University of California, Berkeley and its contributors′ ′ in the
33; * documentation or other materials provided with the distribution and in
34; * all advertising materials mentioning features or use of this software.
35; * Neither the name of the University nor the names of its contributors may
36; * be used to endorse or promote products derived from this software without
37; * specific prior written permission.
38; * THIS SOFTWARE IS PROVIDED AS IS′ ′ AND WITHOUT ANY EXPRESS OR IMPLIED
39; * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
40; * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
41; *
42; *;Base:;protosw.h;7.4 (Berkeley) 9/4/89
43; *;Merged: protosw.h;7.6 (Berkeley) 6/28/90
44; */
45;
46;#ifndef;_SYS_PROTOSW_H_
47;#define;_SYS_PROTOSW_H_
48;
49;/*
50; * Protocol switch table.
51; *
52; * Each protocol has a handle initializing one of these structures,
53; * which is used for protocol-protocol and system-protocol communication.
54; *
55; * A protocol is called through the pr_init entry before any other.
56; * Thereafter it is called every 200ms through the pr_fasttimo entry and
57; * every 500ms through the pr_slowtimo for timer based actions.
58; * The system will call the pr_drain entry if it is low on space and
59; * this should throw away any non-critical data.
60; *
61; * Protocols pass data between themselves as chains of mbufs using
62; * the pr_input and pr_output hooks. Pr_input passes data up (towards
63; * UNIX) and pr_output passes it down (towards the imps); control
64; * information passes up and down on pr_ctlinput and pr_ctloutput.

Appendix C. Important Header Files 375

65; * The protocol is responsible for the space occupied by any the
66; * arguments to these entries and must dispose it.
67; *
68; * The userreq routine interfaces protocols to the system and is
69; * described below.
70; */
71;struct protosw {
72;;short;pr_type;;;/* socket type used for */
73;;struct;domain *pr_domain;;/* domain protocol a member of */
74;;short;pr_protocol;;;/* protocol number */
75;;short;pr_flags;;;/* see below */
76;#ifdef;_KERNEL
77;;void;(*pr_input)();;;/* prototypes per-domain */
78;;int;(*pr_output)();;;/* prototypes per-domain */
79;;void;(*pr_ctlinput)(int, struct sockaddr *, caddr_t);
80;;int;(*pr_ctloutput)(int, struct socket *, int, int, struct mbuf **);
81;;int;(*pr_usrreq)(struct socket *, int,
82;;;;;struct mbuf *, struct mbuf *, struct mbuf *);
83;;int;(*pr_send)(struct socket *, struct mbuf *, struct uio *,
84;;;;;struct mbuf *, struct mbuf *, int);
85;;int;(*pr_receive)(struct socket *, struct mbuf **, struct uio *,
86;;;;;struct mbuf **, struct mbuf **, int *);
87;;void;(*pr_init)(void);
88;;void;(*pr_fasttimo)(void);
89;;void;(*pr_slowtimo)(void);
90;;void;(*pr_drain)(void);
91;#else
92;/* protocol-protocol hooks */
93;;void;(*pr_input)();;;/* input to protocol (from below) */
94;;int;(*pr_output)();;;/* output to protocol (from above) */
95;;void;(*pr_ctlinput)();;/* control input (from below) */
96;;int;(*pr_ctloutput)();;/* control output (from above) */
97;/* user-protocol hook */
98;;int;(*pr_usrreq)();;;/* user request: see list below */
99;;int ;(*pr_send)();;;/* protocol-specific sosend */
100;;int;(*pr_receive)();;/* protocol-specific soreceive */
101;/* utility hooks */
102;;void;(*pr_init)();;;/* initialization hook */
103;;void;(*pr_fasttimo)();;/* fast timeout (200ms) */
104;;void;(*pr_slowtimo)();;/* slow timeout (500ms) */
105;;void;(*pr_drain)();;;/* flush any excess space possible */
106;#endif
107;};
108;
109;#define;PR_SLOWHZ;2;;/* 2 slow timeouts per second */
110;#define;PR_FASTHZ;5;;/* 5 fast timeouts per second */
111;
112;/*
113; * Values for pr_flags.
114; * PR_ADDR requires PR_ATOMIC;
115; * PR_ADDR and PR_CONNREQUIRED are mutually exclusive.
116; */
117;#define;PR_ATOMIC;0x01;;/* exchange atomic messages only */
118;#define;PR_ADDR;;0x02;;/* addresses given with messages */
119;#define;PR_CONNREQUIRED;0x04;;/* connection required by protocol */
120;#define;PR_WANTRCVD;0x08;;/* want PRU_RCVD calls */
121;#define;PR_RIGHTS;0x10;;/* passes capabilities */
122;#define PR_NOEOR 0x4000 /* Records not supported */
123;#define PR_INTRLEVEL 0x8000 /* Protocol runs on interrupt level */

376 Practical TCP/IP for AIX V3.2/V4.1

124;
125;/*
126; * The arguments to usrreq are:
127; *;(*protosw[].pr_usrreq)(up, req, m, nam, control);
128; * where up is a (struct socket *), req is one of these requests,
129; * m is a optional mbuf chain containing a message,
130; * nam is an optional mbuf chain containing an address,
131; * and control is a pointer to a control chain or nil.
132; * The protocol is responsible for disposal of the mbuf chain m,
133; * the caller is responsible for any space held by nam and control.
134; * A non-zero return from usrreq gives an
135; * UNIX error number which should be passed to higher level software.
136; */
137;#define;PRU_ATTACH;;0;/* attach protocol to up */
138;#define;PRU_DETACH;;1;/* detach protocol from up */
139;#define;PRU_BIND;;2;/* bind socket to address */
140;#define;PRU_LISTEN;;3;/* listen for connection */
141;#define;PRU_CONNECT;;4;/* establish connection to peer */
142;#define;PRU_ACCEPT;;5;/* accept connection from peer */
143;#define;PRU_DISCONNECT;;6;/* disconnect from peer */
144;#define;PRU_SHUTDOWN;;7;/* won′ t send any more data */
145;#define;PRU_RCVD;;8;/* have taken data; more room now */
146;#define;PRU_SEND;;9;/* send this data */
147;#define;PRU_ABORT;;10;/* abort (fast DISCONNECT, DETACH) */
148;#define;PRU_CONTROL;;11;/* control operations on protocol */
149;#define;PRU_SENSE;;12;/* return status into m */
150;#define;PRU_RCVOOB;;13;/* retrieve out of band data */
151;#define;PRU_SENDOOB;;14;/* send out of band data */
152;#define;PRU_SOCKADDR;;15;/* fetch socket′ s address */
153;#define;PRU_PEERADDR;;16;/* fetch peer′ s address */
154;#define;PRU_CONNECT2;;17;/* connect two sockets */
155;/* begin for protocols internal use */
156;#define;PRU_FASTTIMO;;18;/* 200ms timeout */
157;#define;PRU_SLOWTIMO;;19;/* 500ms timeout */
158;#define;PRU_PROTORCV;;20;/* receive from below */
159;#define;PRU_PROTOSEND;;21;/* send to below */
160;
161;#define;PRU_NREQ;;21
162;
163;#ifndef;CONST
164;#define CONST
165;#endif
166;
167;#ifdef PRUREQUESTS
168;CONST char;*prurequests[] = {
169;;″ATTACH″ , ; ″DETACH″ , ; ″BIND″ , ; ; ″ LISTEN″ ,
170;;″CONNECT″ , ; ″ACCEPT″ , ; ″DISCONNECT″ , ; ″SHUTDOWN″ ,
171;;″RCVD″ , ; ; ″ SEND″ , ; ; ″ ABORT″ , ; ″CONTROL″ ,
172;;″SENSE″ , ; ″RCVOOB″ , ; ″SENDOOB″ , ; ″SOCKADDR″ ,
173;;″PEERADDR″ , ; ″CONNECT2″ , ; ″FASTTIMO″ , ; ″SLOWTIMO″ ,
174;;″PROTORCV″ , ; ″PROTOSEND″
175;};
176;#endif
177;
178;/*
179; * The arguments to the ctlinput routine are
180; *;(*protosw[].pr_ctlinput)(cmd, sa, arg);
181; * where cmd is one of the commands below, sa is a pointer to a sockaddr,
182; * and arg is an optional caddr_t argument used within a protocol family.

Appendix C. Important Header Files 377

183; */
184;#define;PRC_IFDOWN;;0;/* interface transition */
185;#define;PRC_ROUTEDEAD;;1;/* select new route if possible ??? */
186;#define;PRC_QUENCH2;;3;/* DEC congestion bit says slow down */
187;#define;PRC_QUENCH;;4;/* some one said to slow down */
188;#define;PRC_MSGSIZE;;5;/* message size forced drop */
189;#define;PRC_HOSTDEAD;;6;/* host appears to be down */
190;#define;PRC_HOSTUNREACH;;7;/* deprecated (use PRC_UNREACH_HOST) */
191;#define;PRC_UNREACH_NET;;8;/* no route to network */
192;#define;PRC_UNREACH_HOST;9;/* no route to host */
193;#define;PRC_UNREACH_PROTOCOL;10;/* dst says bad protocol */
194;#define;PRC_UNREACH_PORT;11;/* bad port # */
195;/* was;PRC_UNREACH_NEEDFRAG;12; (use PRC_MSGSIZE) */
196;#define;PRC_UNREACH_SRCFAIL;13;/* source route failed */
197;#define;PRC_REDIRECT_NET;14;/* net routing redirect */
198;#define;PRC_REDIRECT_HOST;15;/* host routing redirect */
199;#define;PRC_REDIRECT_TOSNET;16;/* redirect for type of service & net */
200;#define;PRC_REDIRECT_TOSHOST;17;/* redirect for tos & host */
201;#define;PRC_TIMXCEED_INTRANS;18;/* packet lifetime expired in transit */
202;#define;PRC_TIMXCEED_REASS;19;/* lifetime expired on reass q */
203;#define;PRC_PARAMPROB;;20;/* header incorrect */
204;#define PRC_IFATTACH;;21;/* if attach notification */
205;#define PRC_IFDETACH;;22;/* if detach notification */
206;
207;#define;PRC_NCMDS;;23
208;
209;#define;PRC_IS_REDIRECT(cmd);\
210;;((cmd) >= PRC_REDIRECT_NET && (cmd) <= PRC_REDIRECT_TOSHOST)
211;
212;#ifdef PRCREQUESTS
213;CONST char;*prcrequests[] = {
214;;″IFDOWN″, ″ROUTEDEAD″, ″#2″, ″DEC-BIT-QUENCH2″ ,
215;;″QUENCH″, ″MSGSIZE″, ″HOSTDEAD″, ″#7″,
216;;″NET-UNREACH″, ″HOST-UNREACH″, ″PROTO-UNREACH″, ″PORT-UNREACH″ ,
217;;″#12″, ″SRCFAIL-UNREACH″, ″NET-REDIRECT″, ″HOST-REDIRECT″ ,
218;;″TOSNET-REDIRECT″, ″TOSHOST-REDIRECT″, ″TX-INTRANS″, ″TX-REASS″ ,
219;;″PARAMPROB″, ″IFATTACH″, ″IFDETACH″
220;};
221;#endif
222;
223;/*
224; * The arguments to ctloutput are:
225; *;(*protosw[].pr_ctloutput)(req, so, level, optname, optval);
226; * req is one of the actions listed below, so is a (struct socket *),
227; * level is an indication of which protocol layer the option is intended.
228; * optname is a protocol dependent socket option request,
229; * optval is a pointer to a mbuf-chain pointer, for value-return results.
230; * The protocol is responsible for disposal of the mbuf chain *optval
231; * if supplied,
232; * the caller is responsible for any space held by *optval, when returned.
233; * A non-zero return from usrreq gives an
234; * UNIX error number which should be passed to higher level software.
235; */
236;#define;PRCO_GETOPT;0
237;#define;PRCO_SETOPT;1
238;
239;#define;PRCO_NCMDS;2
240;
241;#ifdef PRCOREQUESTS

378 Practical TCP/IP for AIX V3.2/V4.1

242;CONST char;*prcorequests[] = {
243;;″GETOPT″, ″SETOPT″
244;};
245;#endif
246;
247;#endif

Appendix C. Important Header Files 379

380 Practical TCP/IP for AIX V3.2/V4.1

Index

Special Characters
/etc/hosts 8, 12, 36, 92, 105, 109, 202
/etc/inetd.conf 59, 60, 140
/etc/inittab 161, 163
/etc/l ib/objrepos 66
/etc/netsvc.conf (V4.1) 38
/etc/networks 12, 202
/etc/objrepos 66
/etc/rc.bsdnet 28, 34
/etc/rc.net 9, 34, 35, 201, 234
/etc/rc.nfs 34, 162
/etc/rc.tcpip 34, 54, 142, 156, 161
/etc/resolv.conf 8, 131
/etc/rpc (ONC/RPC) 144
/etc/services 60, 127, 134
/etc/share/l ib/objrepos 66
/etc/syslog.conf 153
/sbin/rc.boot 33
/usr/include/net/if_arp.h 89
/usr/include/netinet/tcp_timer.h 136, 141, 293, 302,

310
/usr/include/netinet/tcp_var.h 141, 284, 294
/usr/include/netinet/tcp.h 261
/usr/include/rpc/pmap_prot.h 147
/usr/include/rpc/rpc_msg.h 148
/usr/include/spc.h 167
/usr/include/srcerrno.h 178
/usr/include/sys/protosw.h 140, 295
/usr/include/sys/syslog.h 152
/var/yp/Makefi le 37

A
ARP

ARP cache (table) 87
ARP cache back pocket 97
Checking data link functionality 108
overview. 85
proxy ARP 93

arp (command)
-a 89
-d 90
-s 90, 93
overview 88

B
BOOTP 93, 206
broadcast 17, 145

C
cfgmgr (command) 4, 41

chdev (high-level command) 14, 90
chssys (high-level command) 57, 156, 173
Configuration manager

overview 35
phase 1 35
phase 2 35
phase 2 service 35

Configuration methods
cfgif 9
cfginet 10
defif 9
definet 10
overview 10

D
daemons

Configure with SMIT and /etc/rc.tcpip 64
DNS

/etc/netsvc.conf (V4.1) 38
lookup 104, 131, 184
NSORDER (V4.1) 38
resolver 8, 37
t imeout 109, 111

E
errlogger (command) 224
error messages

a remote host did not respond within the timeout
period (telnet) 128, 212

a remote host refused an attempted connection
operation (telnet) 96, 129, 172

a route to the remote host is not available
(ping) 106, 109

a system call received a parameter that is not
valid. (telnet) 278

cannot create a socket. the error number is 74.
(no) 278

cannot display information about XXXX because...
(lsattr) 14, 25

cannot perform the requested function
because...(method) 19

DUP! (ping) 117
host name NOT FOUND (ping) 105, 108
incomplete (arp) 128
procedure unavailable (rpcinfo) 151
program not registered (rpcinfo) 146
program not registered (spray) 322
program XXXXXX is not available (rpcinfo) 146
program XXXXXX version X is not available

(rpcinfo) 151
the following device was not found in the...

(lsattr) 41
the following device was not found in the...

(mkdev) 43

 Copyright IBM Corp. 1996 381

error messages (continued)
the request could not be passed to the inetd

subsystem. (lssrc) 175
the socket creation call failed:... (ping) 278
the System Resource Controller is experiencing

problems... (lssrc) 278
timeout waiting for command response.

(lssrc) 172
errpt (command) 82, 177, 178, 222, 224
Ethernet

cable type (dix, bnc, N/A) 48
heart beat (SQE) 51
link test 51

F
FTP 127, 280, 304
ftp (client command)

debug mode by traceon/traceoff 179
ftpd (daemon)

-k (keep-alive) 304
debug mode by traceon/traceoff 179
debug mode SYSLOG example 159
log mode SYSLOG example 159
using SYSLOG 157

H
HCON 190
High-level commands 1
hop count 13

I
ICMP

address mask request/reply 206
destination unreachable 95, 110, 113, 122, 130
echo/reply 103
information request/reply 206
message code 103, 205
message type 103, 205
overview 205
time exceeded for datagram 121

ifconfig (command) 22, 29
inetd (daemon)

-d 57, 156
/etc/inetd.conf 157, 170
debug mode by traceon/traceoff 179
debug mode using SYSLOG 155
debugging a SRC related problem 172

inetd configuration
subserver with /etc/inetd.conf and inetimp

command 60
subserver with SMIT 62
with /etc/rc.tcpip 54
with command-line execution 57
with SMIT and /etc/rc.tcpip 55
with startsrc and chssys command 56

inetimp (high-level command) 60, 158
inetserv (low-level command) 60, 61
IP

broadcast 117, 265
checksum 271
don ′ t fragment (DF) bit 198
fragmentation 198, 246
more fragment (MF) bit 246
MTU 199, 245
reassemble 198
record route option 107

IP address 4
ipreport (command) 183
iptrace (command) 183

K
kill (command) 57, 182

L
logger (command) 155
Logical devices status

available 5
defined 5
stopped 5

lsattr (high-level command) 7, 234
-D 43, 252
-R 43, 244, 252

lscfg (high-level command) 84, 101
lsdev (high-level command) 5, 18, 26, 68
lsparent (high-level command) 26
lssrc (high-level command) 56

-a 162
-ls 155, 156, 173, 174
-s 56, 173
-t 159, 164, 165

M
MAC address

assignment 99
Assignment rule violation 102
individual/group identif ier 99
Knowing your MAC address 100
universally/locally identif ier 99

mbuf 228, 273
mbuf-cluster 228, 273
metr ic 12
mkdev (high-level command) 43
mknod (command) 184
mktcpip (high-level command) 6, 36

N
netpmon (command) 324
netstat (command) 191

-a 132, 140, 178
-D (V4.1) 188

382 Practical TCP/IP for AIX V3.2/V4.1

netstat (command) (continued)
-f 132, 178
-i 23, 100, 203, 246
-m 229
-m (V4.1) 230
-n 45
-p icmp 113, 124, 132, 207
-p ip 196
-p tcp 131, 214
-p udp 219
-r 45, 110, 203
-rs 204
-v 100, 101, 191, 193
overview 187

network interface status
detach 19
down 19
RUNNING 22
up 19, 22

NFS 141
anomaly 151
nfsd (server daemon) 146
rsize/wsize option (mount command) 276
server port 2049 151
socket buffer 274

nfso (command)
-a (V3.2) 334
-a (V4.1) 335
nfs_chars 276
nfs_socketsize (V4.1) 275
nfsudpcksum 271
udpchecksum (V4.1) 270

nfsstat (command) 242
NIS 37, 141
no (command)

-a 199
-a (V3.2) 333
-a (V4.1) 334
-d 233
-o 201
arpt_kil lc 88
arptab_bsiz (V4.1) 89
arptab_nb (V4.1) 89
bcastping (V4.1) 118
directed_broadcast 200
icmpaddressmask 207
ipforwarding 125, 200
ipfragtt l 267
ipqmaxlen 264
ipsendredirects 200
lowclust 232
lowmbuf 232
maxtt l 267
mb_cl_hiwat 233
nonlocsrcroute 200
rfc1122addrchk 272
rfc1323 316
rto_high (V4.1) 300

no (command) (continued)
rto_length (V4.1) 300
rto_limit (V4.1) 300
rto_low (V4.1) 300
sb_max 277
subnetsarelocal 261
tcp_keepidle 303
tcp_keepinit 128, 292
tcp_keepintvl 303
tcp_mssdflt 261
tcp_recvspace 276
tcp_sendspace 276
tcp_ttl 267
thewall 232
udp_recvspace 276
udp_sendspace 276
udp_ttl 267
udpcksum (V4.1) 270

O
ODM

Config_Rules 35
CuAt (customized device attribute) 71
CuDep (customized device dependency) 72
CuDv (customized device) 71
CuVPD (customized vital product data) 72
InetServ 61, 158, 163
Object 67
Object class 66
Object descriptor 66
ODM editor 76
ODMDIR 65, 73
odme 76
overview 1, 65
PdAt (predefined device attribute) 69
PdCn (predefined connection) 70
PdDv (predefined device) 68
SRCnotify 165, 170
SRCsubsvr 163, 165, 169
SRCsubsys 165, 166

odmadd (command) 74
odmchange (command) 74, 75
odmdelete (command) 74, 75
odmget (command) 67, 156, 158, 164
odmshow (command) 66

P
ping (command) 79

-c 97, 104, 117, 321
-f 321
-R 107
-s 321
broadcast 117
overview 102

program number (ONC/RPC) 144

Index 383

R
RARP (reverse ARP) 93, 206
refresh (high-level command) 60, 154, 158
RIP (Routing Information Protocol) 267
rmdev (high-level command) 41
route (command) 31, 258

-mtu 258
RPC

DCE (Distributed Computing Environment) 139
llb (NCS) 139
NCS (Network Computing Architecture) 139
ONC (Open Network Computing) 139, 142
portmap (ONC) 139, 142, 322
rpcd (DCE) 139
XID, transaction ID 145

rpcinfo (ONC/RPC command) 143, 144, 146
RTT (Round Trip Time) 277

S
showmount (NFS command) 143
SMIT

how to find a fast path 46
overview 1

SNA Server/6000 190
socket

buffer 135, 272
Protocol Control Block (PCB) 139
registered port 138
ring buffer 140
SO_DEBUG, setsockopt() 139
SO_KEEPALIVE, setsockopt() 304
SO_REUSEADDR, setsockopt() 136
socket-level trace 179
TCP_NODELAY, setsockopt() 284
UNIX domain 177
well-known port 138

SPRAY
port look up 142
spray (client command) 322
sprayd (server command) 322

SRC
NFS subsystems 161
NIS subsystems 161
overview 160
srcmstr 34, 161, 175
subserver 163
subsystem 161
subsystem group 160
TCP/IP subsystems 161

Standard UNIX commands 1
startsrc (high-level command) 56, 155, 156, 166
stopsrc (high-level command) 56
subnet mask 4, 114
SYSLOG

/etc/syslog.conf 152, 153
facil ity 152
level 153

SYSLOG (continued)
syslogd (daemon) 152
syslogd configuration 154
trace (log) 179

T
tai l (command) 184
TCP

2MSL timeout 288
ACK segment (flag) 129
checksum 268
congestion avoidance 284
connection establishment timeout 128, 288, 289
delayed ACK ′ t imeout 289
Delayed ACKs 283
FIN_STATE_2 timeout 288
keep-alive timeout 288, 301
Maximum Segment Life-time (MSL) 136
Maximum Segment Size (MSS) 256
Nagle algorithm 284
persist t imeout 288, 309
receive window 280
retransmission t imeout 288, 293
RST segment (flag) 128, 136
Send Window 280
sil ly window syndrome avoidance algorithm 283
slow start 284
socket buffer 272
SYN segment (flag) 128
TIME_WAIT 136
timestamps option 315
window 279
window scale option 315

TCP/IP configuration
Add a logical device by cfgmgr command 41
Add a logical device by mkdev command 43
Add a static route by chdev command 13
Add a static route by route command 31
Add a static route by SMIT 12
Add an interface by ifconfig command 29
Check an interface status 22
Check routing information 15
Detach an interface by chdev command 21
Detach an interface by ifconfig command 22
Detach an interface by SMIT 20
Minimum configuration by mktcpip command 5
Minimum configuration by SMIT 3
Modify an adapter by chdev command 26
Modify an adapter by SMIT 24
Modify an interface by chdev command 18
Modify an interface by SMIT 15
Remove a logical device by rmdev command 41
Remove a static route by chdev command 14
Remove a static route by route command 32
Remove a static route by SMIT 13
Remove an interface by ifconfig command 30
Up an interface by chdev command 21
Up an interface by ifconfig command 22

384 Practical TCP/IP for AIX V3.2/V4.1

TCP/IP configuration (continued)
Up an interface by SMIT 21

TELNET 126, 134, 139, 140, 256, 304
telnet -d (client command) 140
telnet debug mode by traceon/traceoff 179
telnetd -n (keep-alive) 304
telnetd -s (server daemon) 139
telnetd debug mode by traceon/traceoff 179

traceoff (command) 179
traceon (command) 179
traceroute (command) 120, 125
trcon (command) 326
trcstop (command) 326
trpt (command) 141
TTL (Time-To-Live) 97, 120, 208, 265

U
UDP

broadcast 220
checksum 269
connectionless 204
debugging application 126, 131
fragmentation consideration 253
retransmission 220, 287
socket buffer 273
timeout 132, 287

X
X-station 92

Y
ypbind (NIS daemon) 37
ypserv (NIS daemon) 37

Index 385

ITSO Redbook Evaluation

International Technical Support Organization
Learning Practical TCP/IP for AIX V3.2/V4.1 Users:
Hints and Tips for Debugging and Tuning
May 1996

Publication No. SG24-4381-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) Are you an employee of IBM or its subsidiaries: Yes____ No____

b) Do you work in the USA? Yes____ No____

c) Was this redbook published in time for your needs? Yes____ No____

d) Did this redbook meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this redbook?

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Redbook Evaluation
SG24-4381-00 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department HZ8, Building 678
P.O. BOX 12195
RESEARCH TRIANGLE PARK NC
USA 27709-2195

Fold and Tape Please do not staple Fold and Tape

SG24-4381-00

IBML 

Printed in U.S.A.

SG24-4381-00

	Learning Practical TCP/IP for AIX V3.2/V4.1 Users: Hints and Tips for Debugging and Tuning
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	Purpose of This Book
	How This Document Is Organized
	Related Publications
	International Technical Support Organization Publications
	How Customers Can Get Redbooks and Other ITSO Deliverables
	How IBM Employees Can Get Redbooks and Other ITSO Deliverables

	Acknowledgments
	Chapter 1. TCP/IP Configuration for AIX V4.1
	Configuration Overview
	SMIT and High- Level Command with ODM
	Minimum Configuration
	Where the Configuration Information Is Stored
	The Startup Script /etc/ rc. net
	Network Device Configuration
	Network Interface Device Configuration
	Adapter Device Configuration
	Standard UNIX Commands with ASCII Configuration Files
	BSD Style Startup Configuration
	Customizing the Startup Script /etc/ rc. bsdnet
	Interface Configuration with ifconfig Command
	Routing Configuration with Route Command
	AIX Network- Related Boot Process
	Boot Process Overview
	How Is the Script /etc/ rc. net Executed?
	Configuration Hints and Tips
	Do Not Run mktcpip or smitty mktcpip Twice
	IP Address Retrieval Priority
	Host Name for Multi- Homed Host
	If You Mess Up the ODM
	Two Tips for netstat
	SMIT Hints
	Ethernet Configuration
	Ethernet Transceiver Configuration
	ISA Bus Adapter Consideration
	Network Application Configuration
	The Internet Super Server inetd
	The inetd Subservers
	Other Network Subsystems (Servers)
	The ODM
	The ODM Database
	Object Class, Object and Object Descriptor
	Device and the ODM
	Predefined Device Information
	Customized Device Information
	Updating the ODM Information

	Chapter 2. Debugging TCP/IP Troubles
	When Something Is Wrong with the Network
	Keep In Mind
	Bottom- Up Approach
	Debugging the Physical Layer
	How to Recognize a Physical Layer Problem
	How to Identify a Failed Unit
	Check the Error Log with errpt Command
	Ethernet Adapter Problem (EC Level)
	Debugging Data Link Layer with ARP
	ARP Mechanism Basics
	ARP Cache Operation
	ARP Successful Examples
	ARP Failed Example
	Proxy ARP and RARP
	Duplicated IP Address
	ARP Pitfalls
	MAC Address Basics
	A MAC Address Pitfall
	Debugging IP Layer with ICMP (ping)
	ping Basics
	When ping Doesn¢ t Work
	Error Message: host name NOT FOUND
	Error Message: A Route to the Remote Host Is Not Available
	No Response, But ping with the IP Address Is OK
	No Response, and ping Fails Even with the IP Address
	ping for a While
	ping to the Broadcast Address
	ping to the Multicast Address
	Debugging IP Routing with traceroute
	traceroute Basics
	Successful Example
	Failed Examples
	Debugging TCP/ IP Applications
	Checking the TCP Connection with TELNET
	Watching ICMP for UDP Application
	Monitoring TCP and UDP Connection with netstat -a
	Socket Port Number Basics
	Getting TCP Socket- Level Trace
	Enabling TCP Socket Trace Function
	Trace Result Example (TCP Closing Operation)
	Debugging ONC/ RPC Applications
	ONC/ RPC Basics
	Checking Server Port Registration Status with rpcinfo
	Finding an RPC Server with rpcinfo
	Checking Server Status with rpcinfo
	RPC Mechanism and Pitfalls
	Using syslog
	Configuration File /etc/ syslog. conf
	Configuration Procedure
	inetd Example
	ftpd Example
	The SRC Basics
	The SRC Overview
	The SRC Subsystems
	The SRC Subservers
	The SRC- Related Object Class in the ODM
	The inetd- Related Object Class InetServ
	Debugging inetd Example
	Other SRC Pitfalls
	IP Trace
	IP Trace Basics
	Getting the IP Trace with the iptrace and ipreport Command
	Some Hints and Tips

	Chapter 3. Getting Information for Performance Tuning
	When Something Is Wrong...
	How to Approach the Performance Problem
	Check Packet Statistics
	Data Link Layer
	Token- Ring
	Ethernet
	Network Layer (IP)
	IP Packet Statistics
	no Command Options for Router Configuration and ICMP
	Network Interface Statistics
	IP Packet Statistics by Route
	Network Layer (ICMP)
	Internet Control Message Protocol (ICMP) Basics
	no Command Option for ICMP (Address Mask)
	ICMP Message Statistics
	Modified Route by ICMP
	Transport Layer
	TCP Segment Statistics
	UDP Datagram Statistics
	Application (nfsstat Command for NFS)
	Client Statistics Example
	Server Statistics Example
	Error Log
	Error Log Example
	Some Hints and Tips

	Chapter 4. System Parameter Tuning
	mbuf Tuning
	mbuf Basics
	Getting the Current Status (V3.2 Only)
	Getting the Current Status (V4.1)
	Problem Symptom (V3.2 Only)
	Configure mbuf with the no Command
	Making the Update Permanent
	RDTO and Trailer Protocol (V3.2 Only)
	Receive Data Transfer Offset (RDTO) Basics
	RDTO Configuration
	Trailer Encapsulation Protocol Basics
	Trailer Protocol Configuration
	Transmit/ Receive Queue
	Queue Basics
	Getting the Current Status
	Queue Size Configuration

	Chapter 5. TCP/ IP Related Parameter Tuning
	MTU and Fragmentation
	MTU Basics
	Fragmentation Mechanism
	MTU Configuration
	MTU Pitfalls
	TCP Maximum Segment Size
	MSS Basics
	The Route -mtu Command
	The no -o tcp_mssdflt Command
	IP Queue
	Getting IP Queue Status
	IP Queue Configuration
	IP Queue Pitfall
	TTL (Time- To- Live)
	IP Datagram TTL Basics
	TTL Configuration
	Checksum
	TCP Checksum
	UDP Checksum
	UDP Checksum for NFS
	IP Checksum
	Optional Address Check by RFC 1122
	Socket Buffer
	Buffer Basics
	Socket Buffer Pitfalls for TCP
	Buffer Size Configuration
	Configuration Pitfalls
	TCP Window Size
	TCP Window Basics
	Window in Action (IP Trace Example)
	Actual Implementation Complexity
	Getting Window Status
	TCP/ IP and Timeout
	Timeout Basics
	TCP Timeout at Connection Establishment
	TCP Retransmission Timeout (RTO)
	TCP Keep- Alive Timeout
	TCP Persist Timeout
	New Option rfc1323 to Implement RFC1323
	New Options Defined by RFC1323
	Option Negotiation Examples

	Chapter 6. Performance Tuning Tools
	ping
	Convenient Options
	Considerations
	spray
	Configuration
	Convenient Options
	Considerations
	netpmon
	Operation
	Report Example
	no and nfso
	no Command of V3.2
	no Command of V4.1
	nfso Command of V3.2
	nfso Command of V4.1

	Appendix A. Network Configuration Startup Scripts
	A.1 /etc/ rc. net
	A.2 Startup Script /etc/ rc. bsdnet
	A.3 Startup Script /etc/ rc. tcpip
	A.4 Startup Script /etc/ rc. nfs
	A.5 Startup Script /etc/ inittab
	A.6 Configuration File /etc/ inetd. conf

	Appendix B. Well-Known Numbers
	B. 1 Well- Known Protocols in /etc/ protocols
	B. 2 Well- Known Ports in /etc/ services
	B. 3 ONC/ RPC Program Numbers in /etc/ rpc

	Appendix C. Important Header Files
	C. 1 /usr/ include/ netinet/ tcp. h
	C. 2 /usr/ include/ netinet/ tcp_ timer. h
	C. 3 /usr/ include/ netinet/ tcp_ var. h
	C. 4 /usr/ include/ sys/ protosw. h

	Index
	Special Characters
	D
	E
	A
	B
	C
	F K
	L
	H
	I
	M
	N
	O
	P
	R
	T
	S
	U
	X
	Y
	ITSO Redbook Evaluation

