
International Technical Support Organization

Understanding OSF DCE 1.1 for AIX and OS/2

October 1995

SG24-4616-00

International Technical Support Organization

Understanding OSF DCE 1.1 for AIX and OS/2

October 1995

SG24-4616-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (October 1995)

This edition applies to the IBM DCE Version 2.1 Product Family for AIX Version 4.1 and the IBM DCE 2.1 for OS/2
WARP Beta Program.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 821 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This publication is intended to help customers and system engineers understand
the Open Software Foundation (OSF) Distributed Computing Environment (DCE)
and its implementation on AIX and, in beta release, on OS/2 WARP. It explains,
at a high level, the functions and features of OSF DCE 1.1 to the level of detail
necessary to understand how everything works, including Tcl, threads and RPC
programming. Differences in previous DCE versions are explicitly mentioned. It
also provides step-by-step instructions on how to install and customize an
intercell scenario involving AIX and OS/2 WARP systems.

This document is a complete rework and replacement of the document OSF DCE
for AIX, OS/2 and DOS Windows Overview (order number GG24-4144).

(245 pages)

 Copyright IBM Corp. 1995 iii

iv Understanding OSF DCE 1.1

Contents

Abstract . i i i

Special Notices . xv

Preface . xvii
How This Document is Organized . xvii
Related Publications . xviii
International Technical Support Organization Publications xx
ITSO Redbooks on the World Wide Web (WWW) xxi
Acknowledgments . xxi

Chapter 1. Introduction . 1
1.1 OSF Distributed Computing Environment . 1
1.2 IBM ′s Open Blueprint . 1
1.3 The Open Software Foundation . 3

1.3.1 Open Software Mall . 3
1.3.2 OSF Technology Development Process 4
1.3.3 Special Interest Groups (SIG) and Workgroups 5
1.3.4 Application Environment Specification (AES) 6
1.3.5 Request For Comment (RFC) . 6
1.3.6 Available OSF Technologies . 7

1.4 OSF DCE Architecture . 7
1.4.1 Models of Distributed Computing . 8
1.4.2 DCE Cell . 9
1.4.3 DCE Security Service . 9
1.4.4 DCE Directory Service . 10
1.4.5 DCE Distributed Time Service . 10
1.4.6 Distributed File System . 11
1.4.7 Threads . 11
1.4.8 Remote Procedure Call . 11

1.5 OSF DCE 1.1 New Features . 11
1.5.1 Improved Administrative Functions . 12
1.5.2 Security Improvements . 12
1.5.3 Internationalization . 12
1.5.4 Performance Enhancements . 13
1.5.5 Other Enhancements . 13

1.6 IBM Added-Value Components for DCE . 13
1.6.1 DCE NFS to DFS Authenticating Gateway for AIX 13
1.6.2 DCE Manager for AIX . 13
1.6.3 User Data Masking Facility . 14
1.6.4 Online Documentation . 14

1.7 IBM DCE Product Information . 14
1.7.1 IBM DCE for AIX . 14
1.7.2 IBM DCE for OS/2 Warp . 16
1.7.3 IBM DCE for DOS Windows . 17
1.7.4 IBM DCE Cross Platform Matrix 9/95 18

Chapter 2. Directory Service . 19
2.1 What is a DCE Cell? . 20
2.2 Directory Services Component Overview 21
2.3 The DCE Global Naming Environment . 22

 Copyright IBM Corp. 1995 v

2.3.1 The Global Name Space . 22
2.3.2 Cell Names . 23
2.3.3 Hierarchical Cells . 24
2.3.4 Intercell Routing Services . 26
2.3.5 The DCE Cell Namespace . 27
2.3.6 Summary: DCE Naming . 28

2.4 Cell Directory Service (CDS) . 29
2.4.1 CDS Components . 29
2.4.2 CDS Database Structure . 30
2.4.3 CDS Namespace Example . 31
2.4.4 CDS Lookup . 33
2.4.5 CDS Clerk . 33

2.5 Security in CDS Environment . 34
2.6 CDS Administration . 34

2.6.1 CDS Control Programs dcecp and cdscp 35
2.6.2 Viewing the Namespace . 36
2.6.3 Managing Clerks, Servers and Clearinghouses 37
2.6.4 Managing CDS Directories . 38

2.7 Platform-Specific Implementation . 40
2.7.1 Directory Service on AIX Version 4 . 40
2.7.2 Directory Service on AIX Version 3.2 40
2.7.3 Directory Service on OS/2 Warp . 40
2.7.4 Directory Service on DOS Windows . 40

Chapter 3. Security Service . 41
3.1 Open Systems and Security . 42

3.1.1 Security Requirements . 42
3.1.2 Security Policies . 43
3.1.3 Security Standards . 44

3.2 DCE Security Service Components and Facilities 45
3.2.1 The Security Registry . 46
3.2.2 Extended Registry Attributes (ERA) . 49
3.2.3 Authentication Components and Procedures 52
3.2.4 PAC and Extended PAC . 60
3.2.5 Delegation . 60
3.2.6 Access Control List Facility . 62
3.2.7 Auditing . 66

3.3 Intercell Authentication . 68
3.3.1 Intercell Authentication Steps . 68
3.3.2 Trust Relationship . 69

3.4 Security Administration Tools . 70
3.5 Security with RPC . 71
3.6 Generic Security Service API (GSS-API) . 71
3.7 DCE Security and Other Core Components 72

3.7.1 DCE Security and DTS . 72
3.7.2 DCE Security and Naming . 72

3.8 Platform-Specific Implementation . 73
3.8.1 Security Service on AIX Version 4 . 73
3.8.2 Security Service on AIX Version 3.2 . 77
3.8.3 Security Service on OS/2 Warp . 78
3.8.4 DOS Windows DCE Security . 78

Chapter 4. Distributed Time Service . 79
4.1 Why a Time Service? . 79
4.2 DTS Daemon . 80

vi Understanding OSF DCE 1.1

4.2.1 Configuration Parameters for DTS Daemons 80
4.2.2 The Required Number of Servers . 81
4.2.3 DTS Clerk . 81
4.2.4 DTS Servers . 81

4.3 How Does Clock Synchronization Work? . 84
4.3.1 Time Intervals, Inaccuracy, Synchronization Triggering 84
4.3.2 Getting the Correct Time . 84
4.3.3 Adjusting the Clock . 86
4.3.4 Notion of Epochs . 87
4.3.5 Manually Setting a Correct Time Within a Cell 87

4.4 DTS Time Format . 87
4.4.1 Universal Time Coordinated (UTC) . 87
4.4.2 Time Zones or Time Differential Factor (TDF) 87
4.4.3 Time Representation . 88
4.4.4 Time Structures . 89

4.5 External Time Providers . 91
4.5.1 Time Provider Interface (TPI) . 91

4.6 DTS Administration . 93
4.6.1 Show the Time . 93
4.6.2 Setting the System Time . 94
4.6.3 Changing Roles of a Time Servers . 95

4.7 Platform-Specific Implementation . 96
4.7.1 Distributed Time Service on AIX . 96
4.7.2 Distributed Time Service on OS/2 Warp 96
4.7.3 Distributed Time Service on DOS Windows 96

Chapter 5. Distributed File Service . 97
5.1 DFS Architecture . 98
5.2 DFS File Server . 98
5.3 File Naming . 99
5.4 Performance . 100
5.5 File Consistency . 100
5.6 Availability . 101
5.7 Security . 102
5.8 Platform-Specific Implementation . 102

Chapter 6. Installation and Configuration of DCE 103
6.1 AIX Platform . 103

6.1.1 Preparation Steps . 104
6.1.2 Installation . 104
6.1.3 Fast Path . 105
6.1.4 Configuring the Master Security Server 106
6.1.5 Configuring the Initial CDS Server . 107
6.1.6 Configuring DTS Servers . 108
6.1.7 Further Cell Configuration . 109
6.1.8 Configuring DFS Servers . 115

6.2 OS/2 Platform . 116
6.2.1 Preparation Steps . 116
6.2.2 Installation . 117
6.2.3 Configuring OS/2 with Master Security and Initial CDS Servers . . 119
6.2.4 Configuring OS/2 as a DCE Client and an Additional CDS Server . 128

6.3 Setting Up Intercell Communication . 131

Chapter 7. Migration and Compatibility . 135
7.1 Compatibil ity . 135

Contents vii

7.2 Migration . 136
7.2.1 Using the AIX 4.1 Migration Utilities 136
7.2.2 Moving the Security Server . 137

7.3 Moving the Initial CDS Server . 138

Chapter 8. High-Performance and High-Availability Configurations 141
8.1 IBM AIX High Availability Cluster Multi-Processing 142

8.1.1 Resources and Resource Groups . 142
8.1.2 HACMP Cluster Configurations . 143
8.1.3 Benefits for DCE . 144

8.2 Multiprocessing . 144
8.2.1 Multiprocessor Architectures . 145
8.2.2 MP-Safe Programming . 146
8.2.3 Benefits for DCE . 146

Chapter 9. DCE Control Program and Tcl . 147
9.1 What is Tcl? . 147
9.2 dcecp Introduction . 148
9.3 Tcl Language Components . 149

9.3.1 Tcl Language Syntax . 149
9.3.2 Variables . 150
9.3.3 Data Structures . 151
9.3.4 Control Flow . 155
9.3.5 Procedures . 156
9.3.6 Files . 158
9.3.7 Executing External (Operating System) Commands 160
9.3.8 Other Tcl Commands . 161

9.4 The DCE Control Program . 162
9.4.1 DCE Command Syntax . 162
9.4.2 User Interface . 165
9.4.3 Help Facilities . 167
9.4.4 Convenience Variables . 168
9.4.5 Error handling . 169

9.5 Putting it Together: A dcecp Programming Example 170

Chapter 10. Remote Procedure Calls . 173
10.1 What is RPC? . 173

10.1.1 IDL, Stubs and RPC Runtime . 174
10.1.2 RPC Data Flow . 175
10.1.3 Synchronous vs. Asynchronous Models 176

10.2 RPC Components . 176
10.2.1 Stubs . 177
10.2.2 RPC Runtime . 178
10.2.3 Communication Protocols . 179
10.2.4 RPC Client Application . 180
10.2.5 RPC Application Server and Manager 180
10.2.6 Service Queues . 181

10.3 Finding Remote Services . 182
10.3.1 Binding Handles . 182
10.3.2 Name Service Interface . 186
10.3.3 Binding Methods . 187
10.3.4 DCE Daemon and Endpoint Map Service 188
10.3.5 Entry-Point Vector . 189
10.3.6 Object UUIDs and Manager Types 189
10.3.7 Putting It Together: A Summary of RPC Call Routing 190

viii Understanding OSF DCE 1.1

10.4 RPC and Security . 191
10.4.1 Authentication Service . 192
10.4.2 Level of Protection . 192
10.4.3 Authorization . 193
10.4.4 Key Management and Secret Key Authentication 193

10.5 Developing an RPC application . 194
10.5.1 Universal Unique Identifiers . 195
10.5.2 Interface Definition File . 195
10.5.3 Attribute Configuration File (ACF) . 197
10.5.4 IDL Compiler . 197
10.5.5 Developing a Basic Client . 198
10.5.6 Developing a Basic Server . 199
10.5.7 Servers with Multiple Interfaces . 201
10.5.8 Using Manager Types . 202

10.6 RPC Administration . 202
10.6.1 Managing CDS Entries for RPC . 203
10.6.2 Managing the Endpoint Map . 205

10.7 Network Computing System, iFOR/LS and DCE 205
10.8 Putting It All Together: Initialization, Routing and Execution 207

Chapter 11. Threads . 209
11.1 What are Threads? . 209

11.1.1 Multithreading . 210
11.1.2 Benefits of Multiple Threads . 212
11.1.3 Implementation Models . 212

11.2 DCE Threads Implementation . 213
11.3 Threads Basics . 214

11.3.1 Threads States and Control Operations 214
11.3.2 Thread Attributes . 215
11.3.3 Threads Scheduling . 216
11.3.4 Threads Synchronization . 219

11.4 More Advanced General Threads Topics 223
11.4.1 Error Handling . 223
11.4.2 Potential Problems with Multithreaded Programming 226

11.5 More Advanced Threads Topics in UNIX 227
11.5.1 Signals . 227
11.5.2 Jacket Routines for UNIX System Calls 228
11.5.3 Calling fork() in a Multithreaded Environment 229

11.6 Platform-Specific Implementation . 229
11.6.1 Threads on AIX Version 4 . 229
11.6.2 Threads on AIX Version 3.2.5 . 231
11.6.3 Threads on OS/2 Warp . 231
11.6.4 Threads for DOS Windows . 231

Appendix A. DCE Application Examples . 233

List of Abbreviations . 235

Index . 237

Contents ix

x Understanding OSF DCE 1.1

Figures

 1. IBM Open Blueprint Functional Description 2
 2. Open Software Foundation PST Process 4
 3. DCE Architecture . 8
 4. Client/Server Model . 8
 5. OSF DCE Directory Service . 19
 6. Multi-Cell Environment . 20
 7. Components of the Directory Service . 21
 8. The Global Name Space with Independent Cells 22
 9. Global Representation of a Subsystem Printer Queue 23
10. Comparison of Cell Name Representations 24
11. Related Cells . 25
12. Hierarchical Cells . 25
13. Name Search Routing between CDS, GDA and GDS 26
14. Directories Created for Each Cell . 27
15. CDS Components Performing a CDS Look-up 29
16. Cell Namespace Example . 31
17. Cell Namespace Showing Replication and Sites 32
18. DCE Architecture: Security . 41
19. Security Requirements . 43
20. Registry Structure and Accounts with PGO Assignments 48
21. Authentication Process. . 53
22. Delegation . 60
23. ACL Inheritance . 63
24. Direct and Transitive Trust Relationships 70
25. Generic Security Service API (GSS-API) 71
26. Distributed Time Services as a DCE Component 79
27. Time Servers and Clerks Requesting Time Values 82
28. Local, Courier and Global Time Servers 83
29. Time Intervals . 85
30. Faulty Server . 86
31. Absolute Time . 88
32. Relative Time Structure . 89
33. DTS Daemon and TP Process RPC Calling Sequence 92
34. OSF DCE Distributed File Service . 97
35. Architecture of the Distributed File Service (DFS) 98
36. Structure of Local File System (LFS) . 99
37. Naming Convention in DFS . 100
38. DFS Server′s Token Control . 101
39. DCE Environment Used in Our Laboratory 103
40. DCE Installation Copyright Notice . 117
41. DCE Install . 117
42. DCE Component Selection . 118
43. Installation Complete Notice . 119
44. Installation Main Window . 119
45. DCE Folder . 120
46. Specify Configuration Response File Names Window 120
47. Specify Configuration Type Window . 121
48. Configure Cell Window . 122
49. Host Detail Window . 123
50. Set Up a Host Window . 124
51. Select Protocols for a Host . 125

 Copyright IBM Corp. 1995 xi

52. DCE Start-Up Options for a Host . 126
53. Configure DCE Components on a Host Window 126
54. Configure a Registry Server Window . 127
55. Configure a DTS Server Window . 127
56. Configuration Progress Window . 128
57. Configure a Cell Window . 129
58. Configure DCE Components on a Host 130
59. Configure and Additional Namespace Server 131
60. The HACMP/6000 Environment . 142
61. Example Tcl Script to Reformat DCE Command Output 171
62. RPC as a DCE Component . 173
63. Steps Involved in a Remote Procedure Call 175
64. Marshalling and Unmarshalling between ASCII and EBCDIC Data . . . 177
65. Runtime API Operations . 178
66. Server Initialization . 181
67. Binding Information in CDS . 183
68. Steps Involved in Finding a Server . 190
69. UUID Structure . 195
70. IDL Compiling . 197
71. Client Development Tasks . 199
72. Putting It Together. 207
73. Threads as the Basis for DCE . 209
74. Work Crew Model . 211
75. Pipelining Model . 211
76. Threads Implementation Models . 213
77. Thread State Transitions . 214
78. User-Level Scheduling . 217
79. Kernel-Level Scheduling . 218
80. Only One Thread Locks a Mutex . 220
81. Synchronization via a Condition Variable 221

xii Understanding OSF DCE 1.1

Tables

 1. AIX DCE Function Summary . 15
 2. IBM Products for AIX DCE Version 1.3 . 15
 3. IBM Products for AIX DCE Version 2.1 . 16
 4. OS/2 DCE Function Summary . 16
 5. IBM DCE Products for OS/2 Version 1.2 . 17
 6. OS/2 DCE Minimum and Recommended Hardware Configurations . . . 17
 7. IBM DCE Products for Windows . 17
 8. IBM DCE Product/Function Matrix . 18
 9. cdscp Commands Not Supported by dcecp 34

 Copyright IBM Corp. 1995 xiii

xiv Understanding OSF DCE 1.1

Special Notices

This publication is intended to help customers and system engineers understand
the functions and features of OSF DCE 1.1 and how they are implemented on the
AIX and OS/2 platform. The information in this publication is not intended as the
specification of any programming interfaces that are provided by AIX 3.2.5, AIX
4.1, OS/2 Warp, DOS Windows, IBM′s DCE Version 1.3 product family for AIX
Version 3.2.5, IBM′s DCE Version 2.1 product family for AIX Version 4.1, IBM′s
DCE Version 1.2 for OS/2 and DOS Windows products, or the IBM DCE 2.1 for
OS/2 WARP Beta program. See the PUBLICATIONS section of the IBM
Programming Announcement for AIX 3.2.5, AIX 4.1, OS/2 Warp, DOS Windows,
IBM ′s DCE Version 1.3 product family for AIX Version 3.2.5, IBM′s DCE Version
2.1 product family for AIX Version 4.1, or IBM′s DCE Version 1.2 for OS/2 and
DOS Windows products for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX AIX/6000

 Copyright IBM Corp. 1995 xv

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

AnyNet APPN
AS/400 C/370
C/400 CICS
CICS/ESA CICS/6000
DB2 HACMP
IBM IMS/ESA
InfoExplorer MQSeries
MVS/ESA NetView
OpenEdition OS/2
OS/400 PS/2
RACF RISC System/6000
RS/6000 SOMobjects
SP1 SP2

AFS, Episode, Encina, Transarc Transarc Corporation
AT&T AT&T
Bull Bull S.A.
CORBA Object Management Group, Inc.
DCE, Motif, Open Software Foundation,
OSF/1, OSF

The Open Software Foundation

DEC, VAX, DIGITAL Digital Equipment Corporation
Hitachi Hitachi Ltd.
HP, HP-UX, Apollo Hewlett-Packard Company
Intel, 386, 486 Intel Corporation
Network File System, NFS, NIS, ONC, Sun Sun Microsystems, Inc.
Novell, UnixWare, IPX Novell, Inc.
ORACLE Oracle Corporation
POSIX Institute of Electrical and Electronic

Engineers
PostScript Adobe Systems, Inc.
Siemens, Siemens-Nixdorf, Sinix Siemens Aktiengesellschaft
Tandem Tandem Computers, Inc.
X/Open X/Open Company Limited
X-Windows Massachusetts Institute of Technology

xvi Understanding OSF DCE 1.1

Preface

The purpose of this document is to provide a comprehensive introduction to the
OSF DCE at level 1.1. It explains, in high-level terms, all the components and
features to the level of detail necessary to understand how everything works.

Three different types of users may be concerned with DCE:

• End-users
• Administrators
• Application developers

End-users need not know much of DCE. The applications they are using should
hide the distributed nature of the environment. For them, the first chapter may
be useful, if they want to know what DCE is.

Administrators need to understand many details and how all the components
work. The community of DCE administrators will grow when other products,
such as LAN Server for OS/2 or DSOM, become integrated with DCE. This
redbook can be a good tutorial for novice users who need to learn the internals
of DCE and for experienced administrators who need to understand the new
functions.

Developers need to know all the details, including RPC and threads
programming, if they are using the low-level DCE RPCs. They can then get the
same benefits from this redbook as explained above for an administrator.
However, it is more likely that developers of distributed applications will use a
higher level programming tool that uses DCE beneath it and hides much of its
complexities.

This redbook replaces the document OSF DCE for AIX, OS/2 and DOS Windows
Overview (order number GG24-4144). Although we do not cover the DCE for DOS
Windows, we kept some information on the currently available product, IBM DCE
for DOS Windows (OSF DCE level 1.0.2), from the old redbook when we discuss
platform-specific implementations of the DCE components.

How This Document is Organized
The first part, after the introduction, explains the DCE components with which a
DCE administrator has to deal the most: the CDS, the Security Service, the DTS,
and DFS. Then we describe, in a second part, how to install and configure a cell
with AIX and OS/2 systems followed by a discussion of compatibility and
migration issues. The third part covers Tcl, RPC and Threads, which are of
importance only to the reader who is interested in creating dcecp scripts and/or
in RPC program development. The chapters are the following:

• Chapter 1, “Introduction”

This chapter discusses DCE and the role it is playing in IBM′s strategy for
distributed computing, the Open Blueprint. It also explains the OSF and how
it acquires new technology. Finally, it provides an overview of the DCE
components, the new features of OSF DCE 1.1 and product information on the
AIX and OS/2 platforms.

• Chapter 2, “Directory Service”

 Copyright IBM Corp. 1995 xvii

This chapter explains the concept of a DCE cell and the DCE global
namespace and how the Directory Service is implemented.

• Chapter 3, “Security Service”

This chapter explains all the components of the Security Service that are
involved in authenticating and authorizing users and applications within a
cell and across cell boundaries.

• Chapter 4, “Distributed Time Service”

The DTS is an often neglected component. This chapter explains the
necessity of a time service and explains how it needs to be correctly laid out
in a cell.

• Chapter 5, “Distributed File Service”

This chapter gives an overview over the DFS and explains its concepts
without details that are covered in separate redbooks.

• Chapter 6, “Installation and Configuration of DCE”

This chapter provides step-by-step instructions on how to install DCE and
configure an intercell scenario involving AIX and OS/2 workstations.

• Chapter 7, “Migration and Compatibil ity”

This chapter discusses compatibility between the different OSF DCE releases
and provides help for migrating OSF DCE 1.0.x environments to OSF DCE 1.1
environments, particularly on the AIX platform.

• Chapter 9, “DCE Control Program and Tcl”

This chapter explains the Tool Command Language used by the new DCE
control program. It can be considered a Tcl programming and general dcecp
usage tutorial.

• Chapter 10, “Remote Procedure Calls”

This chapter explains how RPC applications work and how an RPC client
finds its way to a particular RPC server function. It also discusses how
Security Service features are exploited for RPC and shows the components
and steps involved in RPC application development. It can be considered a
high-level DCE application-development tutorial.

• Chapter 11, “Threads”

This chapter introduces the concepts of threads and threads programming.
It discusses mutexes and condition variables, scheduling, exception handling
and specialities in a UNIX environment, such as signals.

• Appendix A, “DCE Application Examples”

This appendix lists example application code that comes with the DCE
product and explains what these samples do and where to find them. These
examples are very useful for novice DCE RPC programmers.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

General DCE Books

• Networking Blueprint, Executive Overview, GC31-7057

xviii Understanding OSF DCE 1.1

• Understanding DCE Concepts, GC09-1478

• OSF DCE User′s Guide and Reference (Prentice Hall), SR28-4992

• OSF DCE Administration Reference (Prentice Hall), SR28-4993

• OSF DCE Application Development Guide (Prentice Hall), SR28-4994

• OSF DCE Application Development Reference (Prentice Hall), SR28-4995

• Understanding DCE (O′Reilly & Associates), SR28-4855

DCE Version 1.3 for AIX

• DCE V1.3 for AIX Release Notes, GC23-2434

• DCE V1.3 for AIX User′s Guide and Reference, SC23-2729

• DCE V1.3 for AIX Administration Guide -- Core Services, SC23-2730

• DCE V1.3 for AIX Administration Guide -- Extended Services, SC23-2731

• DCE V1.3 for AIX Administration Reference, SC23-2732

• DCE V1.3 for AIX Application Development Guide, SC23-2733

• DCE V1.3 for AIX Application Development Reference, SC23-2734

• DCE NFS to DFS Authenticating Gateway V1.3 for AIX, SC23-2735

• NetView for DCE and Encina Manager Guide V1.3, SC23-2736

• AIX HACMP for DCE and Encina Guide V1.3, SC23-2737

• AIX DCE Getting Started V1.3, SC23-2477

• AIX DCE and OS/2 DCE Message Reference, SC23-2583

DCE Version 2.1 for AIX

• Introduction to DCE V2.1 for AIX, SC23-2796

• DCE V2.1 for AIX: Getting Started, SC23-2797

These are the only printed manuals. The documentation basically comes with
the program components in softcopy form only. These manuals can be printed
from within the ASCII viewer in ASCII format or from within the IPF/X graphical
softcopy browser in PostScript format. The following softcopy books are
available:

• Introduction to DCE

• DCE for AIX Getting Started

• DCE for AIX Administration Guide

• DCE for AIX Administration Command Reference

• DCE for AIX Application Development Guide - Introduction

• DCE for AIX Application Development Guide - Core Services

• DCE for AIX Application Development Guide - Directory Services

• DCE for AIX Application Development Reference

• DCE for AIX DFS Administration Guide and Reference

• DCE for AIX NFS/DFS Authenticating Gateway Guide and Reference

DCE Version 1.2 for OS/2 and Windows

Preface xix

• IBM DCE for OS/2: Guide to Planning, Installation and Configuration,
S96F-8502

• IBM DCE for OS/2: Administrator′s Guide, S96F-8504

• IBM DCE for OS/2: Administrator′s Command Reference, S96F-8505

• IBM DCE for OS/2: Application Developer′s Guide, S96F-8506

• IBM DCE for OS/2: Application Developer′s Reference, S96F-8507

• IBM DCE for OS/2: Master Index, S96F-8615

• IBM DCE Client for Windows User′s Guide, S96F-8622

• IBM DCE SDK for Windows Guide and Reference, S96F-8623

International Technical Support Organization Publications
• IBM DCE Cross-Platform Guide, GG24-2543

• Using and Administering AIX DCE 1.3, GG24-4348

• Developing DCE Applications for AIX, OS/2 and Windows, GG24-4090

• The Distributed File System (DFS) for AIX/6000, GG24-4255

• Elements of Security: AIX 4.1, GG24-4433

• Using Network Security Program on AIX, OS/2, and DOS Platforms,
GG24-4149

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS
as ITSOCAT TXT. This package is updated monthly.

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and MasterCard are accepted. Outside the USA,
customers should contact their local IBM office. For guidance on ordering,
send a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called BOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

xx Understanding OSF DCE 1.1

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser to the
following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal
Redbooks home page may be found at the following URL:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Acknowledgments
This project was designed and managed by:

The authors of this document are:

This document is a complete rework and replacement of the document OSF DCE
for AIX, OS/2 and DOS Windows Overview (GG24-4144). This previous document
was created by:

This publication is the result of a residency conducted at the International
Technical Support Organization, Austin Center.

We would like to offer our thanks to Marcus Brewer of the ITSO Austin and to the
IBM-Austin DCE development team for their invaluable advice and assistance in
the reviewing of this document.

Rolf Lendenmann IBM ITSO Austin

Rolf Lendenmann IBM ITSO Austin
Joe Vicini IBM USA
Gerardo Vega IBM Mexico
Urs Weber IBM Switzerland

Edgar Villegas (Advisor) IBM ITSO Austin
Mathilde Ten Seldam IBM France
Ricardo Haragutchi IBM ITSO Raleigh
Salvatore La Pietra IBM Germany

Preface xxi

xxii Understanding OSF DCE 1.1

Chapter 1. Introduction

This document is about the IBM implementation of the Open Software Foundation
Distributed Computing Environment (OSF DCE) Version 1.1. The purpose of this
document is to provide the reader detailed, high-level information on DCE
concepts and the results of practical experience with the IBM DCE Version 2.1 for
AIX (product) and OS/2 (beta).

1.1 OSF Distributed Computing Environment
The OSF Distributed Computing Environment (DCE) is a set of integrated services
designed to support the development and use of distributed applications. OSF
DCE is operating-system independent and provides a solution to the problem of
sharing resources in a heterogeneous, networked environment. This is
accomplished by providing the services necessary to create an environment
where a group of networked machines can share and manage resources. This
allows for efficient use of present technology and for new technology to be
incorporated as it becomes available.

DCE provides interoperability and portability across diverse operating systems
and hardware platforms. DCE is a complete framework on which you can
develop and maintain your distributed applications and services in an
environment that you can scale to address the changing requirements of your
enterprise.

1.2 IBM ′s Open Blueprint
Open Blueprint is IBM′s functional description of open distributed computing.
The Open Blueprint does not specify software packages but rather, the functional
modules, software principles/guidelines and certain important interfaces. The
goal of the Open Blueprint is to provide a single system view of the network.

Existing products provide many of the functions described in the Open Blueprint.
Additional functionality will be provided through the introduction of new products.
IBM has encouraged the integration of multivendor products into the Open
Blueprint by publishing the standards for each component. IBM worked closely
with international standards organizations, industry consortia, customers, and
industry leaders to determine the most widely accepted standards available
today. Products that are written to the Open Blueprint provide designated
interfaces and protocols. Products that use resource managers defined within
the Open Blueprint could be integrated. For example, for applications and
resource managers that use security services from the distribution services
module of the Open Blueprint, a single user password would be possible. This
kind of integration helps to make the distributed environment more transparent
for both the user and the application developer.

The four roles of the Open Blueprint are:

 1. To help customers develop their architectures and organize products in an
open distributed environment.

 2. To describe IBM ′s direction for open distributed computing.

 3. To guide developers in product design and implementation.

 Copyright IBM Corp. 1995 1

 4. To provide a context for incorporating new technology into a distributed
environment.

OSF DCE plays an important role in the Open Blueprint. For example, the
Distributed Services module consists mainly of the OSF DCE core services, and
the Data Access Services standard for the byte-stream API is the DCE
Distributed File Service. Figure 1 presents the Open Blueprint Model.

Figure 1. IBM Open Blueprint Functional Description

The Open Blueprint specifies IBM′s strategy for open distributed computing.
Being part of that, DCE will be IBM′s strategic technology for communication and
distribution services. This means that even existing and well-known applications
or tools will get DCE support behind the scenes. An end-user will usually not be
affected, but administrators of these products will need to have DCE
administration skills.

DCE will provide the following benefits for customers moving to DCE-enabled
products:

• Global resource access and administration

2 Understanding OSF DCE 1.1

• Enterprise-wide integrated security
• One user ID, one password per user for all services
• Single administration model
• Better interoperability between products and platforms

Although not formally announced but mentioned by IBM speakers at trade shows
and press conferences, the following products will be the first to incorporate DCE
technologies:

• DB2
• MQSeries
• DSOM
• LAN Server
• Distributed Printing (Palladium)
• NetSP
• RACF

More products will follow. Some applications were built as distributed
applications with DCE technology. IBM ′s distributed Online Transaction
Processing (OLTP) products, Encina and CICS for AIX , are built on top of DCE.
Many other DCE applications are available on IBM platforms from vendors. See
1.7, “IBM DCE Product Information” on page 14 on how to get the catalog of DCE
applications (and development tools) that the OSF is publishing with quarterly
updates.

1.3 The Open Software Foundation
The Open Software Foundation (OSF) was incorporated in 1988 as a non-profit
organization to support the research, development and delivery of
vendor-neutral technology and industry standards. The OSF is a
member-supported organization open to any group that provides or uses open
systems. OSF sponsors include International Business Machines Corporation,
Bull Worldwide Information Systems, Hitachi Corporation, Hewlett-Packard
Corporation, Digital Equipment Corporation, and Sun-Soft Corporation.

The OSF is a host for industry-wide open systems research and development.
Users, software developers and hardware vendors share resources and ideas
with the goal of improving the scalability, probability and interoperability of
computer systems.

1.3.1 Open Software Mall
The Open Software Mall is a world-wide web software repository being
implemented by OSF to facilitate the distribution of innovative open systems
technology. The Mall will expedite the distribution of all of OSF′s software and
services, including technology from the Research Institute, from Advanced
Technology Offerings (ATO), Pre-Structured Technologies (PST) and Request for
Technologies (RFT) as well as relevant technology from OSF members and from
the research community. The Mall will also be a convenient vehicle to make
documentation, plans, specifications, and test suites available. The Mall is
accessible under the following URL:

http://www.osf.org/mall

At this time, the Mall is still under construction. At its inception, the Open
Software Mall will include four plazas: an OSF Research Institute plaza, an

Chapter 1. Introduction 3

Advanced Technology Offering (ATO) plaza, a Pre-Structured Technology (PST)
plaza, and an OSF Professional Services plaza. It is intended that additional
plazas will be added in the future.

1.3.2 OSF Technology Development Process
To develop OSF open systems technology, the OSF uses four methods which we
describe in the following sections.

1.3.2.1 Advanced Technology Offering (ATO)
An ATO develops technology to a sufficient degree of maturity that it can be
effectively explored by end users, ISV′s and vendors. The ATOs are freely
available from the Mall for non-commercial use. The target audience is the
research and academic communities from whom investors hope to obtain early
and low-cost feedback. An ATO technology that proves appealing can be the
starting point for an OSF Pre-Structured Technology (PST) or for individual
product development activities in the sponsor companies.

ATOs require a minimum of three investors contributing $100,000 for up to six
engineers. Investors get unrestricted commercial rights. At this time, the
following ATOs are underway:

• DCE Web ATO — Enables web servers and clients to employ OSF′s DCE for
improving naming, security and access control. Investors are AT&T, HP and
Hitachi.

• Microkernel Specification and Test Suite ATO — Will assure that microkernel
implementations support a common API. Conformance and performance test
suites will be included as part of this ATO. Investors are IBM,
Hewlett-Packard, Hitachi, and DEC.

• JAVA Evaluation and Porting ATO — JAVA technology from Sun
Microsystems enables Web distribution of smart data, new protocols,
animations, and other active information in a secure, architecture-portable
fashion. Investors are Sun, HP, AT&T, and Novell.

ATOs are expected to jumpstart collaboration around technology from industry,
academia or the OSF Research Institute, providing a counterpoint to the
commercial PSTs.

1.3.2.2 Pre-Structured Technology (PST)
The PST process is a new process that provides a method for working on
existing technology and bringing it to market.

Figure 2. Open Software Foundation PST Process

As outlined in Figure 2, the OSF PST process has five phases:

4 Understanding OSF DCE 1.1

 1. Authoring Phase — Companies work together to form a proposal for
submission to the OSF. This phase is open to both OSF members and
non-members alike and may be as public or private as the authors prefer.

 2. Approval Phase — Begins when a proposal is submitted to the OSF. OSF
checks the proposal for fit with OSF′s open systems technology map,
completeness, viability, and pro-competitiveness. The goal is to prepare the
proposal for submission and evaluation by OFS′s board.

 3. Funding Phase — Begins after OSF′s board approves a PST proposal. The
opportunity to participate as a project sponsor is opened to all OSF sponsor
companies.

 4. Development Phase — Actual work on the PST is undertaken by the Prime
Contractor. Work is directed by representatives of the project sponsor
companies, the end-user community and the project steering committee.
OSF acts as the overall program and project manager.

 5. Distribution and Support Phase — The completed offering is licensed. Plans
for any product support efforts are also completed and implemented.

1.3.2.3 Request For Technology (RFT)
The RFT process is used to search for new technology to provide open systems
solutions. The difference between the PST and RFT process is the technology
selection process. In RFTs, the technology is selected through an open call to
the industry, and then the OSF staff and consultants choose the best technology
from those received. In the PST process, the sponsors of a project bring the
technology to the OSF and then work with the OSF to collaborate on common
technology areas for development-cost savings. The PST process allows more
projects to be under development at one time because the work load is shared
by the prime contractors. OSF′s sponsors see more value in cost sharing and
savings than in a centralized location for source code creation and delivery.

1.3.2.4 The OSF Research Institute (RI)
The OSF RI provides a path for technology from academia, industry and
government agencies to be used in future open system solutions. The OSF RI
investigates the fundamental software technology needed to improve open
systems. The RI conducts collaborative research with academia and industry to
create complete prototypes of technologies that can be used as a basis for
further research. The output of the RI process may become the basis for a PST.

1.3.3 Special Interest Groups (SIG) and Workgroups
A Special Interest Group represents a group of OSF members focusing on a
particular technology issue. The purpose of the DCE SIG is to provide input and
assistance to the OSF in the area of distributed computing. Specifically, the SIG
is chartered:

• To propose enhancements to OSF to the existing DCE offering and to help
prioritize their relative importance.

• To make recommendations as to which new or emerging technologies
should be included in some future version of DCE.

• To provide feedback to OSF on the business issues related to pricing,
packaging, licensing, and marketing of the DCE technologies.

• To provide a liaison between OSF and various standards forums.
• To insure that technical issues which relate to both the DCE SIG and other

OSF SIGs are resolved quickly and appropriately and in a way which does
not compromise the success of the DCE.

Chapter 1. Introduction 5

• To provide a forum in which issues and status related to the progress and
status of the DCE development can be communicated to all SIG members.

There are no requirements for attendance at the SIG meetings, except OSF
membership.

The SIG has a number of working groups, each of which is focused on a
particular area. In order to create a new working group, you must make a
formal proposal (just discuss your idea) at a SIG meeting, and if there are
enough people who want to participate, a new working group can be established.

A list of the current working groups, their chairperson, and the name of the
distribution list for each one can be obtained by sending a note to
direct@osf.org. You can also request to be added to one of the distribution lists.

1.3.4 Application Environment Specification (AES)
An AES is the detailed specification for an OSF technology component. The
purpose of the AES/Distributed Computing (AES/DC) is to provide a portability
guide for DCE applications and a conformance specification for DCE
implementations. The different AES volumes specify the DCE model, services,
interfaces, and protocols.

1.3.5 Request For Comment (RFC)
The DCE RFC series of technical notes is intended as an online forum for the
OSF′s DCE Special Interest Group (DCE SIG) to share information about the DCE
and related technologies. It is inspired by, and in many ways intended to
resemble, its highly successful precursor, the Internet RFC series.

Internet RFCs have a highly-developed relationship with the Internet
standardization process. Experimental protocols and proposed standards are
published as (possibly draft) Internet RFCs and are subject to commentary
before they progress along the standardization track. All Internet standards are
disseminated as Internet RFCs.

DCE RFCs have no such necessary relationship with the OSF DCE offering (which
is the moral equivalent of an Internet standard). Thus, for example, there is no
commitment that components to be included in future releases of the DCE will be
debated via DCE RFCs, nor is the DCE RFC series intended as an avenue for
publication of the documentation for the DCE offering or for the DCE AES.

In the case of OSF and DCE, standardization would not be within the purview of
the RFC process as it would violate pre-existing OSF processes for selection and
standardization. This simplifies the RFC process considerably. All that is
needed, therefore, is an RFC editor and an FTP archive site. The RFC editor
should be limited to an administrative function: assigning numbers, copying into
the archive and announcing availability. The OSF would support this function
just as it presently deals with mailing lists and other such administrative tasks.

An RFC process is simply a tool for structured, informal conversations of
technical concepts, ideas and proposed solutions. The DCE community stands to
gain a great deal by adopting a DCE RFC process.

DCE RFCs must be submitted to the editor in markup language format. The
editor also assigns the actual DCE RFC number. Internet RFCs are numbered
with a single decimal number, and when they are reissued or updated, they

6 Understanding OSF DCE 1.1

acquire a new number. In contrast, DCE RFCs are numbered with a pair of
decimal numbers, a major number M and a minor number m separated by a
decimal point. This numbering syntax has the advantage of tracking the lineage
of DCE RFCs more clearly.

Thus, the official names look something like DCE-RFC M.m. When they are
reissued or updated, they (usually) retain the same major number, while the
minor number is incremented: DCE-RFC M.m+1.

1.3.6 Available OSF Technologies
As an outcome of previous RFT processes, the following OSF technologies are
available:

• The OSF/1 Operating System — The main technology providers are CMU
(Carnegie Mellon University), IBM, Mentat, and NFS SecureWare. The AES
for OSF/1 is available, and AIX for the RISC System/6000 conforms with it.
The AES from OSF is defined as interfaces and services based on the
precedence order of POSIX, ANSI C, XPG3, SVID 2, and BSD 4.3.

• The OSF/Motif Graphical User Interface on X-Windows — The main
technology providers were HP and Digital. HP has been the main integrator.
AES is available.

• The Common Desktop Environment (CDE) — This new GUI was originally
developed by the COSE Consortium (Common Open Software Environment)
consisting of IBM, Sun, HP, and Novell. The CDE maintenance and
development of new versions was handed over to OSF and its PST process.
COSE, with new members such as DEC, Fujitsu and Hitachi, will be working
on new proposals for CDE (authoring phase of the PST process).

• The Architecture-Neutral Distribution Format (ANDF) — The submission
came from the UK′s Defense Research Agency. ANDF enables software
vendors to write and distribute a single version of an application that will run
without any modifications or changes on PCs, workstations, minicomputers,
and enterprise systems.

• The Distributed Computing Environment (DCE) — The main technology
providers are: HP, Digital, SNI, and Transarc. IBM has been the main
integrator. Work is going on to define the DCE AES.

1.4 OSF DCE Architecture
OSF DCE is a selection of different technologies submitted during the Request
For Technology (RFT) issued by OSF in 1989 for the Distributed Computing
Environment. DCE is a layer of services that allows distributed applications to
communicate with a collection of computers, operating systems and networks.
This collection of machines, operating systems and networks, when managed by
a single set of DCE services, is referred to as a DCE cell .

Chapter 1. Introduction 7

Figure 3. DCE Architecture

Figure 3 shows the relation of the DCE to distributed applications, network
communications software and distributed (DCE) applications.

1.4.1 Models of Distributed Computing
OSF DCE components use three distributed computing models.

1.4.1.1 The Client/Server Model
In the client/server model, a distributed application is divided into two parts,
client and server. In simple terms, the client is the entity that initiates the
request for a service. The server is the entity that handles the request for a
service.

Figure 4. Client/Server Model

The terms client and server can refer to the role of a single application. For
example, machine A may have a program that requests a piece of information
from another machine, B. In this example, the program running on machine A is
assuming the role of a client, while the program on machine B that fulfills the
request is acting as the server. It is not hard to imagine that in a multitasking
operating system environment we may have both client and server applications
running on the same machine at the same time. It is also not hard to see that
both the client and server functions for a transaction may both run on the same
machine. In many cases, it will be necessary for the machine running the server

8 Understanding OSF DCE 1.1

to also run the client application in order to obtain access to the function it is
serving. As you will see, this is the case with the OSF DCE core servers.

The terms client and server can also be used to describe the dedicated role of a
given machine. This usually means that the service is available only from one
machine or from a limited number of machines. For example, in a DCE network,
one machine is designated to act as the directory server. Any machine that
wishes to have access to the function provided by the Cell Directory Service
(CDS) server process must also run the client program (CDS clerk). As a matter
of fact, any machine that wants to become part of a DCE cell must run the DCE
client (core) programs.

1.4.1.2 The Remote Procedure Call Model
In this model, the client makes what looks like a local procedure call. This
procedure call is translated, and network communications are handled by the
RPC mechanism. The server receives a request and executes the procedure,
returning the results to the client. DCE RPC is an implementation of this model
and is used by most of the other DCE technology components for their network
communications.

1.4.1.3 The Data Sharing Model
While client/server and RPC are focused on distributed execution, data sharing is
concerned with distributed data. In data sharing, the data of the server is sent to
the client. Data sharing must address such needs as multiple copies of data,
data consistency and managing simultaneous access to data. In OSF DCE, data
sharing is built upon RPC, which is used as the means of transferring data. Both
the Directory Service and the Distributed File System are based upon the data
sharing model.

1.4.2 DCE Cell
The collection of machines that are managed together as a DCE unit is referred
to as a cell. At a minimum, a cell must contain a Security Server, a Cell
Directory Server and Distributed Time Servers. All of these services may run on
one machine, or the servers can be spread among the machines that are to be
part of the cell. The Directory, Time and Security Services are collectively
known as the core services .

1.4.3 DCE Security Service
Most multi-user operating systems provide some method to verify the identity of
a user (authentication) and to determine whether a user should be granted
access to a resource (authorization). In a distributed environment, a way has to
be provided to authenticate requests made across the network and to authorize
access to the network′s resources. There must also be a mechanism to protect
network communications from attack. The challenge in a distributed
environment is to provide these services transparently to both users and
programs. For example, a user should not have to authenticate to each server
in the network. The DCE Security Service can provide this level of functionality
because of how it has been integrated with the other DCE services.

The DCE security specification was submitted by MIT. It is based on Kerberos
Version 5.1 with some enhancements made by Hewlett-Packard Corporation.
Kerberos is an authentication service that validates the identity of a user or
service. The DCE Security Service is made up of several parts.

Chapter 1. Introduction 9

• The Authentication Service allows processes on different machines to
determine each other′s identity (authenticate).

• The Privilege Service determines if an authenticated user is authorized to
access a server resource. The Privilege Service provides information that
servers need to determine the access that should be granted to the user.

• The Registry Service manages a security database used to hold entries for
all principals. A principal is a user, server or computer that can
communicate securely with another principal. The Registry Service is also
used by administrators to maintain the list of principals known to DCE.

• The Audit Service detects and records security operations performed by DCE
servers. This is new in OSF DCE 1.1.

• The Login Facility performs the initialization of the DCE environment for a
user. It uses the Security Service to authenticate a user and returns
credentials to the user. These credentials are then used to authenticate to
other services in the DCE cell. The credentials expire after a set period of
time or when the user exits from the DCE environment.

Most of these security components are transparent to the user.

1.4.4 DCE Directory Service
The Directory Service provides a naming model throughout the distributed
environment that allows users to identify, by name, network resources, such as
servers, users, files, disks, or print queues. The DCE Directory Service includes:

• Cell Directory Service (CDS)
• Global Directory Service (GDS)
• Global Directory Agent (GDA)
• Application Programming Interface (API)

The CDS manages information within a cell. The GDS is based on the CCITT
X.500 name schema and provides the basis for a global namespace. The GDA is
the CDS gateway to intercell communication. The GDA supports both Internet
addresses and X.500 addresses. If the address passed to the GDA is an X.500
address, the GDA contacts the GDS. If the address passed to GDA is an Internet
address, then the GDA uses the Internet Domain Name Service (DNS) to locate
the foreign cell. Both CDS and GDS use the X/Open Directory Service (XDS) API
as a programming interface.

1.4.5 DCE Distributed Time Service
Distributed Time Service (DTS) provides precise, fault-tolerant clock
synchronization for the computers participating in a Distributed Computing
Environment, both over LANs and WANs.

The synchronized clocks enable DCE applications to determine event
sequencing, duration and scheduling. DTS is based on Universal Time
Coordinated (UTC) time, an international time standard. The specification of the
Time Service was submitted by Digital (DEC), and it is based on DEC Distributed
Time Synchronization. DTS will be discussed in greater detail in Chapter 4,
“Distributed Time Service” on page 79.

10 Understanding OSF DCE 1.1

1.4.6 Distributed File System
The Distributed File System (DFS) presents directories and files in a global
namespace that can be accessed from any DFS client. Caching on DFS clients
reduces access time and network traffic and results in high performance.

DFS includes support for both Journaled File System (JFS) and Local File System
(LFS) formats. LFS is a fast-restarting, log-based physical file system that
supports file replication for high availability.

DFS files and directories can be protected by using Access Control Lists (ACL).
You can define an ACL for each file or directory to restrict or authorize access.
With DFS ACLs, you have the granularity to control access for users and groups
of the local or any foreign cell. DFS ACLs are different than the access control
list support provided through the AIX operating system.

The DFS is built on top of the core technologies: Security Service, Cell Directory
Service and Distributed Time Service. DFS also makes use of threads and
RPCs. It implements a superset of the POSIX 1003.1 file system semantic
standard submitted by Transarc Corporation and is based on the Andrew File
System. DFS will be discussed in Chapter 5, “Distributed File Service” on
page 97.

1.4.7 Threads
Threads support the creation, management and synchronization of multiple paths
of control within a single process. Threads specification was submitted by DEC
to the Open Software Foundation; it is based on DEC′s Concert Multithread
Architecture (CMA). The threads programming facility is also POSIX 1003.4a
Draft 4 compliant. If threads are already available on the operating system, DCE
can use them. Threads will be discussed in Chapter 11, “Threads” on
page 209.

1.4.8 Remote Procedure Call
This is a complete environment to help you develop client/server applications. A
development tool, consisting of an Interface Definition Language (IDL), is
provided. The RPC runtime service facilitates the implementation of the network
protocols used by the client and server applications to communicate. One
component of the RPC is the uuidgen, a program that generates a Universally
Unique Identifier (UUID; a 32-digit number) to uniquely identify resources,
services and users in DCE, independently from time and space. The RPC
specification was submitted by Apollo/HP, and it is based on Network Computing
System architecture (NCS) Release 2. RPC will be discussed in greater detail in
Chapter 10, “Remote Procedure Calls” on page 173.

1.5 OSF DCE 1.1 New Features
OSF DCE Version 1.1 offers many enhancements over OSF DCE Version 1.0.3.
Following is a summarized list of the enhancements and improvements that have
been incorporated into OSF DCE Version 1.1.

Chapter 1. Introduction 11

1.5.1 Improved Administrative Functions
• DCE Control Program (dcecp) — Provides a single administrative interface to

many of the DCE administrative functions. The dcecp interface includes Tcl,
a powerful scripting language that can be used to customize and simplify
many administrative tasks.

• DCE Daemon (dced) — Enables remote configuration and administration of
DCE services. Administrative highlights include startup, shutdown, status
queries, and cell configuration information.

• Enhanced diagnostic messaging capability — Allows instrumenting services
to capture more information and unify the message format across all DCE
components.

• Cell Aliasing — Permits a cell to have multiple names and allows the primary
name of a cell to be changed.

• Hierarchical Cells — Allows cell names to be registered in the CDS and
allows multiple cells to be organized to reflect the hierarchical structure of
an organization. This feature will initially be missing in IBM DCE for AIX
Version 2.1.

1.5.2 Security Improvements
• Security Delegation — Allows intermediary servers to act on behalf of an

initiating client while preserving the client′s and server′s identities and
access control attributes across chained RPC operations.

• Auditing — Allows administrators to track security-related events within
DCE′s trusted computing base. An API is included and permits development
of servers that record audit events, or it can be used to create tools that can
analyze audit records.

• Generic Security Service Application Program Interface (GSS-API) — Allows
non-RPC applications to use DCE security features. GDS has been extended
to use DCE security via the GSS-API.

• Extended Registry Attributes (ERA) — Enables single sign-on across
non-UNIX platforms and legacy applications by providing a secure way of
associating additional security information with users and groups.

• Extended Login Capabilities — Provides pre-authentication, password
management and enables applications to require access only from trusted
machines.

• ACL Manager Library — Supports easier implementation of access control
list (ACL) managers for application servers.

• Group Override — Customizes the group name mapping from host to host to
allow DCE to adopt to various operating system conventions.

1.5.3 Internati onalization
• Internationalized Interfaces — Allows the use of message catalogs for all

user-visible messages. It is now possible to localize DCE programs by
supplying DCE messages in other languages.

• Character Code Set Interoperability — Allows development of RPC
applications which automatically convert character data from one code set to
another.

12 Understanding OSF DCE 1.1

1.5.4 Performance Enhancements
• IDL Compiler — Generates smaller, cleaner RPC stub code and supports a

number of new IDL constructs, such as unique pointers, user exceptions and
node deletions.

• RPC Throughput Enhancements — Are provided by access to additional
sockets for peak usage and optimization of RPC runtime packets for
transmission and fast transport, such as FDDI or satellite.

1.5.5 Other Enhancements
• Modifications to various GDS components.
• DFS-NFS Gateway now supports PC-NFS.
• DFS Delegation allows a file to be passed with the initiator′s privileges intact.
• Subtree operations allow large-scale administrative name changes in a cell.

1.6 IBM Added-Value Components for DCE
IBM has added several components to the base OSF DCE offering to provide the
following functions:

• DFS access from NFS clients
• Management functions from SystemView
• Exportable data encryption
• Online documentation

1.6.1 DCE NFS to DFS Authenticating Gateway for AIX
Many customers use Network File System (NFS) technology to distribute file
systems over a network. The NFS/DFS gateway is a product on the AIX platform
that allows NFS client systems to access the DFS file space. The NFS client is
typically run on a system that is not part of the DCE cell or one that has no DFS
code installed.

The NFS/DFS Gateway is installed on a DFS client system that exports its DFS
file system into NFS, thus acting as an NFS server. The gateway provides a
bridge between the authentication methods of DFS and NFS. This is
accomplished by connecting an NFS client with a DCE principal. The NFS/DFS
Gateway allows the NFS client to obtain authenticated access to the DFS file
space.

The NFS/DFS Authenticating Gateway is available on DCE Version 1.3 (AIX 3.2.5)
and DCE Version 2.1 (AIX 4.1.3). The new version (AIX DCE 2.1) supports
automated authentication from PC-NFS clients.

1.6.2 DCE Manager for AIX
DCE Cell Manager is a product that allows NetView for AIX to automatically
discover and monitor all DCE core servers (Security, Time, Directory, RPC,
Global Directory). DCE Cell Manager also permits monitoring and discovery of
all DFS servers. DCE Cell Manager uses NetView for AIX′s object and topology
databases to store its data. It can be launched from NetView for AIX and makes
use of the NetView online help facility.

The DCE Manager is currently only available on DCE 1.3 for AIX 3.2.5.

Chapter 1. Introduction 13

1.6.3 User Data Masking Facility
The RPC communication provides different security levels, the highest being full
data encryption. However, the DES algorithm (data encryption standard)
internally used by DCE cannot be exported outside the U.S. in a user accessible
form. This means it cannot be used for data encryption.

On the AIX and OS/2 platforms, there is a User Data Masking Facility, which is
still referred to as Common Data Masking Facility or CDMF. CDMF allows you to
encrypt user data in RPCs using DES with a 40-bit key instead of the standard
52-bit key. Since this makes the encryption weaker, it has less export
restrictions from the U.S. It is a good solution for non-U.S. customers who want
increased privacy, but cannot have an export license for full DES.

1.6.4 Online Documentation
All DCE manuals are provided in softcopy form to be accessed with a graphical
viewer. The graphical softcopy files are INF files, which is the standard format
for OS/2 online documentation. They can be accessed through the Interactive
Presentation Facility (IPF).

The IBM DCE Version 2.1 for AIX Version 4.1 provides an IPF viewer for
X-Windows (IPF/X). The xview command that starts IPF/X provides hypertext
linking, search and print facilities, inline graphics display, a bookmark function,
and online help. Its startup is integrated into InfoExplorer. IBM DCE 2.1 for AIX
also provides the documentation in ASCII from which can be viewed from ASCII
terminals with an ASCII browser. The dceman command emulates MAN pages for
DCE commands.

On IBM DCE 1.3 for AIX, softcopy documentation is in InfoExplorer format.

1.7 IBM DCE Product Information
This section summarizes the DCE functions supported on the AIX and OS/2
platforms as well as the product packaging and system requirements. We
provide also information about the current DCE offering on the DOS Windows
platform.

DCE Products on Non-IBM Platforms

A complete listing of products that support the DCE environment is available
on the Internet at:

http://www.osf.org/comm/lit/dce-prod-cat/

For a DCE function summary on all IBM platforms, see 1.7.4, “IBM DCE Cross
Platform Matrix 9/95” on page 18 at the end of this section.

1.7.1 IBM DCE for AIX
The RISC System/6000 currently supports two major versions of AIX and DCE:

• AIX DCE Version 1.3 for AIX Version 3.2.5 at OSF DCE Level 1.0.3

• AIX DCE Version 2.1 for AIX Version 4.1.3 at OSF DCE Level 1.1

The two DCE versions can perfectly coexist and interoperate in the same DCE
cell but can only run on the specified version of AIX.

14 Understanding OSF DCE 1.1

The product packaging has considerably changed between the two versions.
The AIX DCE 2.1 bundles all base services with AIX. So, the following features
are part of AIX Version 4.1.3:

• Threads (DCE Threads compatibility library) and RPC
• All client functions (CDS, Security, DFS)
• DTS server
• Base DFS server (no Local File System support)

Table 2 above lists the packaging with product numbers for AIX DCE 1.3,
whereas Table 3 on page 16 does the same for AIX DCE 2.1.

Table 1. AIX DCE Function Summary

DCE Function AIX DCE 1.3 AIX DCE 2.1

OSF DCE Level 1.0.3 1.1

Threads √ √

RPC Client and Server √ √

Time Service (DTS) Clerk and Server √ √

Security Service Client and Server √ √

Directory Service (CDS) Client and Server √ √

Global Directory Agent (GDA) √ √

Global Directory Service (GDS) Client and Server √ —*

DFS Client √ √

Enhanced DFS Server √ √

Note: (*) The Global Directory Service is supported with AIX DCE 1.3

Table 2. IBM Products for AIX DCE Version 1.3

Product
Number

Description

5765-232 IBM DCE Threads for AIX (Version 1.3) *

5765-117 IBM DCE Base Services for AIX (Version 1.3) (includes all clients) **

5765-118 IBM DCE Security Server for AIX (Version 1.3)

5765-119 IBM DCE Cell Directory Server for AIX (Version 1.3)

5765-121 IBM DCE Enhanced Distributed File System for AIX (Version 1.3)

5765-120 IBM DCE Global Directory Server for AIX (Version 1.3)

5765-259 IBM DCE Global Directory Client for AIX (Version 1.3)

5765-456 IBM DCE Manager for AIX (Version 1.3)

5765-457 IBM DCE NFS to DFS Authenticating Gateway for AIX (Version 1.3)

Note:

(*) The Threads package is included in DCE Base Services for AIX. This separate
offering enables the usage of threads with AIX 3.2.5 in an environment without DCE.

(**) The DCE DFS Base Services are included in the DCE Base Services.

Chapter 1. Introduction 15

The system requirements for a DCE/DFS client machine is at least 16 MB of RAM
and 35 MB of harddisk, including a 10 MB cache for DFS. If online publications
are to be loaded on a local disk, add another 15 MB of harddisk space. Systems
running DCE/DFS servers should at least have 32 MB of RAM. Their harddisk
requirement depends on the amount of data they need to store.

Table 3. IBM Products for AIX DCE Version 2.1

Product
Number

Description

5765-533 IBM DCE Security Services for AIX (Version 2.1)

5765-534 IBM DCE Cell Directory Services for AIX (Version 2.1)

5765-537 IBM DCE Enhanced Distributed File System for AIX (Version 2.1)

5765-540 IBM DCE NFS to DFS Authenticating Gateway for AIX (Version 2.1) **

5765-532 IBM Getting Started with DCE for Application Developers (Version 2.1)
*

5765-538 IBM DCE User Data Masking Encryption Facility for AIX (Version 2.1) **

Note:

The DCE/DFS Base Services for AIX (Version 2.1) are now included in the AIX
operating system version 4.1.3 (5765-393).

(*) This is a combined software/service offering that includes DCE tools, attendance in
one LAN Systems Workshop and a one year subscription to the IBM Developer
Connection for AIX program.

(**) See 1.6, “IBM Added-Value Components for DCE” on page 13 for more
information

1.7.2 IBM DCE for OS/2 Warp
The OS/2 platform currently supports a product version of DCE at OSF level 1.0.2
and a beta version of OFS DCE 1.1, which will become a product in the near
future:

• OS/2 DCE Version 1.2 for OS/2 Version 2.1 at OSF DCE Level 1.0.2

• OS/2 DCE Version 2.1 for OS/2 Warp Beta at OSF DCE Level 1.1

The product packaging information for OS/2 DCE Version 2.1 is not available yet.
Table 5 on page 17 below lists the packaging with product numbers for the
currently available product OS/2 DCE 1.2, which may soon be outdated.

Table 4. OS/2 DCE Function Summary

DCE Function OS/2 DCE 1.2 OS/2 DCE 2.1

OSF DCE Level 1.0.2 1.1

Threads √ √

RPC Client and Server √ √

Time Service (DTS) Clerk and Server √ √

Security Service Client and Server √ √

Directory Service (CDS) Client and Server √ √

Global Directory Agent — √

User Data Masking — √

DFS Client — √

16 Understanding OSF DCE 1.1

The specifications that go with the beta version list the system requirements as
shown in Table 6 below.

Table 5. IBM DCE Products for OS/2 Version 1.2

Product
Number

Description

5696-657 IBM DCE SDK for OS/2 and Windows Version 1.0

5696-692 IBM DCE Client for OS/2 Version 1.0

Table 6. OS/2 DCE Min imum and Recommended Hardware Configurations

Workstation Type Minimum Configuration Recommended Configuration

DCE Client • 25 MHz 386 System

• 12 MB RAM

• +4 MB RAM for DFS

• 33 MHz 486 System

• 16 - 24 MB RAM

DCE Server • 33 MHz 486 System

• 16 MB RAM (with one
core server)

• 20 MB RAM (for two core
servers)

• 50 MHz 486 System

• 24 MB RAM, or more

1.7.3 IBM DCE for DOS Windows
The current DCE implementation on DOS Windows is based on OSF DCE 1.0.2
and originally developed by Gradient Technologies. It provides full client and
server support for RPC as well as client support for CDS, security service and
DTS.

IBM has plans to bring enhancements to their DCE for Windows. Several
vendors will also come up with implementations of OSF DCE 1.1 and a DFS
client.

The following table lists the order numbers for the currently available IBM DCE
for DOS Windows product:

IBM DCE for Windows runs on any Intel platform with a 386 processor or higher,
at least 4 MB of memory, 5 MB of free disk space, and 5 MB of Windows
swapfile. It requires DOS 5.0 or higher and Windows 3.1.

Table 7. IBM DCE Products for Windows

Product
Number

Description

5696-657 IBM DCE SDK for OS/2 and Windows Version 1.0

5696-690 IBM DCE Client for Windows Version 1.0

Chapter 1. Introduction 17

1.7.4 IBM DCE Cross Platform Matrix 9/95

Table 8. IBM DCE Product/Function Matrix

DCE Function OS/2
Warp

Windows AIX 3.2 AIX 4.1 OS/400 MVS/ESA VM/ESA

OSF Level 1.1
Beta

1.0.2 1.0.3 1.1 1.0.2 1.0.2 1.0.2

DCE Core Client Functions

Threads √ √ √ √ √ √ Ann

RPC Client √ √ √ √ √ √ Ann

CDS Client √ √ √ √ √ √ Ann

DTS Clerk √ √ √ √ √ √ SoD

Security Service Client √ √ √ √ √ √ Ann

DCE Core Server Functions

RPC Server √ √ √ √ √ √ Ann

DTS Server √ √ √ SoD √ SoD

CDS Server √ √ √ SoD

Security Server √ √ √ SoD SoD

X.500 Inter-Cell Access

Global Directory Service
(Client)

√

Global Directory Service
(Server)

√

Data Sharing Services

Distributed File System Client √ OEM √ √ SoD Beta

Enhanced DFS Server √ √ √ (1)

Other Services

Encina Clients √ OEM √ √

Encina Servers √ √

Application Support IMS, CICS N/A N/A N/A N/A N/A √ N/A

Note:

√ Implemented today.

(1) OSF Level 1.0.3. No FLDB or Backup server available; an AIX system must provide these
services.

OEM Available from an Independent Software Vendor, such as Transarc or Gradient.

Beta Early code customer test (beta).

SoD Statement of Direction.

N/A This feature is not applicable to this platform.

Ann Feature has been announced, the General Availability date is February 23, 1996.

18 Understanding OSF DCE 1.1

Chapter 2. Directory Service

A distributed computing environment contains many users, computers,
applications, and printers dispersed in the network. This creates a complex
group of resources and users that somehow have to be located. These
resources and users, also referred to as objects, can be easily located if we
have a centralized process that keeps track of every change in the network.

Figure 5. OSF DCE Directory Service

The directory service is the process that makes it possible for the user to locate
objects in the network without knowing their physical location. It hides from the
user the distributed nature of the environment. It is like a telephone directory
assistance service that provides the phone number when given a person′s
name.

Users do not normally access or use the directory services directly. They run
applications which might use the directory services to find objects. The only
thing a user might have to know is object names and maybe the naming model.

DCE administrators must understand the directory service to be able to
administer objects and manage the service and its database.

A programmer can use the X/Open Directory Service (XDS) API to directly
access the directory service or the RPC Name Service Interface (NSI) from within
DCE RPC applications.

This chapter will describe the concepts related to the directory service and the
way it manages the naming environment in DCE.

 Copyright IBM Corp. 1995 19

2.1 What is a DCE Cell?
A cell is a group of users, systems and resources that are typically centered
around a common purpose and that share common DCE services. The number
of systems and physical locations does not define the cell boundaries, but it is
influenced by:

• Business Needs — Different groups in an organization, such as marketing,
manufacturing or development, may want to share different resources. The
number of objects that require shared access, and the frequency of shared
access can determine the boundaries of a cell.

• Administration — The number of administrative tasks related to DCE services
and their respective databases as well as the number of people available to
do these tasks can also determine the boundaries of a cell. Many small
cells require administration of many DCE core servers and intercell setup.
Intercell setup is not just defining GDS or DNS, it also means management of
permissions for foreign users. This is what may cause a tremendous
administration overhead.

• Security — Security in a cell is a big issue, and it can be interesting for the
organization to define more cells to reduce the risk of break-ins or the
amount of work necessary to recover from a break-in.

• Overhead — Usually, there is more interaction within a cell; so the
boundaries have to be defined considering the kind of resources the users
need to access and how often they access them.

There is not a clear recipe for a company to decide whether it is going to have
one (large) or multiple (smaller) cells. This decision must be made on a
per-company basis and includes a lot of decision factors, such as the ones listed
above.

Figure 6. Multi-Cell Environment

20 Understanding OSF DCE 1.1

Figure 6 gives an example of a multi-cell environment. As you can see, cell A
includes a complex network including different LANs and WANs. Cell B is only a
LAN, and cell C includes two interconnected LANs.

Each cell is a self-sufficient, independently managed unit in a global distributed
computing environment. It must at least have the following DCE core services:

• One Security Server
• One CDS Server
• Three DTS Servers per LAN (the use of DTS is optional)

2.2 Directory Services Component Overview
The directory service component that controls names inside a cell is called the
Cell Directory Service (CDS). The CDS stores names of resources in that cell so
that when given a name, CDS returns the network address of the named
resource.

Sometimes we need to find resources outside the cell. The directory service
component that helps resolve foreign names is called Global Directory Service
(GDS). Access to GDS is through an intermediate component called the Global
Directory Agent (GDA). This is called a two-tier architecture.

Figure 7. Components of the Directory Service

The origin of the CDS is Digital Equipment′s Distributed Naming Service
(DECdns), and the origin of the GDS is the Siemens Dir-X implementation of the
CCITT X.500/ISO 9594 international standard. X.500 is an emerging global
directory service standard, but the Internet domain name system (DNS) is an
established industry standard. For interoperability purposes, GDS supports both
X.500 and DNS transparently.

Note: The Global Directory Service (GDS) is not provided in the AIX DCE 2.1
release nor in DCE for OS/2. However, GDS can exist in the same cell and can
be used for intercell communication if it is provided by an another product, such
as AIX DCE 1.3.

Chapter 2. Directory Service 21

2.3 The DCE Global Naming Environment
DCE Naming Service provides a naming model throughout the distributed
environment. This model allows users to identify, by name, resources, such as
servers, files, disks, or print queues, and gain access to them without needing to
know where they are located in a network. Further, users can continue referring
to a resource by the same name even when a characteristic of the resource
changes, such as its network address.

In this section, we will explain the structure of this global namespace and how
names are built to become unique and addressable throughout the whole world.

2.3.1 The Global Name Space
The global distributed computing environment is composed of administratively
independent cells. The name space is hierarchically organized and forms a tree,
with containers (directories) and leaf objects. As illustrated in Figure 8 below,
the root directory /... is global and contains all cell names on its first
subdirectory level.

Figure 8. The Global Name Space with Independent Cells

The cell names build the root directories for each cell. The subtrees underneath
each /.../<cellname> directory are under the management domain of their
respective cell. However, the basic subtree structure of each cell is the same,
so that users can rely on something fixed when accessing foreign cells. We will
explain the cell namespace in 2.3.5, “The DCE Cell Namespace” on page 27.

Users defined in Cell A can access objects in Cell B using the full name for
objects, such as /.../CellB/cell-profile. Users in Cell B can, of course, do the
same. However, since most access is supposedly in their own cell, users in Cell
B can use an abbreviated local name to access all objects in the local Cell B.
The local name is /.:/lan-profile.

22 Understanding OSF DCE 1.1

2.3.2 Cell Names
To be globally addressable, cell names must be unique. There must be an
administration authority that keeps track of names and assigns new, unique
names. Furthermore, there must be some global network routing mechanism
that can find a communication path to the requested cell so that a foreign cell
can be accessed.

There are two well-established naming schemes in place that DCE makes use of:

• CCITT X.500
• Internet Domain Name Service (DNS)

The only well-established, multi-vendor-supported global network today is the
Internet. It has global addressing and routing. The DNS naming scheme makes
direct use of the Internet naming and routing scheme by extending the
information that each Internet DNS server carries. The X.500 naming scheme is
independent from the Internet and more general. It is implemented with the
Global Directory Service (GDS), which can store any kind of object. DCE uses
GDS to store cell names and their addresses, which today are also Internet
addresses. So, the access of the foreign cell is established over the Internet in
both cases.

2.3.2.1 X.500 Names
Figure 9 shows a global name that refers to a printer queue object defined in the
IBM ITSO cell. Local users can address it with /.:/susbsys/PrintQ. The prefix
(/...) indicates that the name is global. Following the prefix, the X.500 syntax
defines four blocks, each one with two parts separated by an equal sign (=).
The abbreviation of each block stands for country (C), organization (O),
organizational unit (OU), and common name (CN, not shown).

Figure 9. Global Representation of a Subsystem Printer Queue

2.3.2.2 DNS Names
The DCE naming environment supports DNS based on the Internet RFCs 1034
and 1035. The DNS is very common in many networks as a name service for
host names. It can also be represented as a hierarchical tree with its top-most
levels under the control of the Network Information Center (NIC).

The name directly under the root is a two-letter code for country (such as us or
uk) as defined in ISO standard 3166. Other names one level below the root
include several generic administrative categories, such as com (commercial),
edu (educational), gov (government) and org (other organizations). The owners
of these names can grant permission to companies and organizations to create
new subordinate names.

Chapter 2. Directory Service 23

Figure 10. Comparison of Cel l Name Representations

Figure 10 shows a comparison of the DNS hierarchical tree structure and the
X.500 CDS representation. X.500 picks the names in a top-down order, while
DNS does it in bottom-up order.

2.3.2.3 Cell-Name Aliases
Cell-name aliasing is a new function in the OSF DCE 1.1 release. Cell aliasing
enables cell names to be changed and allows cells to have multiple names to
reflect changes in an organization. Your cell has a primary name, which is the
name that DCE services return for the cell when queried, and one or more alias
names that the DCE services recognize in addition to the primary name. For
example, if your cell is registered in the GDS global directory service, and you
want to register it in the DNS as well, you obtain a DNS name for the cell, and
set it up as a cell alias. The GDS name remains the primary name.

To change the cell name, you would first assign an alias name with the following
command:

dcecp> cellalias create <new_name>

Then you can make the alias name the new primary name with the following
command:

dcecp> cellalias set <new_name>

This step contacts every DCE host daemon in the cell and makes it interchange
the values stored for the cell name and cell aliases.

Note: Cell aliasing is not implemented in AIX DCE 2.1; it will be supported in the
next version.

2.3.3 Hierarchical Cells
A new function in OSF DCE Release 1.1 are the hierarchical cells. Independent
DCE cells can now be connected into a hierarchical cell configuration which
makes it easier for companies to build cell structures that correspond to the
company structure. Cell names can now be registered in CDS, thus making one
cell ′s CDS the higher-level directory service and the cell itself the parent cell.

24 Understanding OSF DCE 1.1

Figure 11. Related Cells

Figure 11 shows DCE cells that may have grown independently from each other.
They may have set up intercell communication individually and exported their
names into DNS (or GDS if the cell names were X.500). These cells may now be
integrated into hierarchical structures within their companies with only the
top-most cell names exported into DNS.

A child′s cell name consists of its parent′s cell name and an additional child
name in CDS syntax. The parent cell name can be queried with the getcellname
command. The child cell has to establish its new name as an alias name and
make it the primary name. It then uses a dcecp registry connect command to
create the cross-cell authentication information with the parent cell and a dcecp
cellalias connect command to register its cell name with the parent cell′s CDS
server(s).

The hierarchy can include multiple levels. Figure 12 illustrates the cell hierarchy
that results from restructuring the cells of Figure 11. Child cell names look like
regular CDS objects of the parent cell.

Figure 12. Hierarchical Cells

The term hierarchical cells might be misleading. Child cells are full-fledged,
self-sufficient cells, and they have their own security servers and everything
needed in a cell. Parent and children are not one big cell with shared
resources; they are still foreign cells to each other. What is actually hierarchical
is the way cell names and intercell communication definitions are administered.

The advantage, for the time being, is that intercell communication can now be
defined within CDS. Global naming services (GDS or DNS) need not be involved.

Chapter 2. Directory Service 25

Part of the concept, but not implemented in OSF DCE 1.1, is the concept of
transitive trust, which will make security management across cells easier.

Note: Hierarchical cells are not implemented in AIX DCE 2.1; this will be
supported in the next version.

2.3.4 Intercell Routing Services
When the directory service of the local cell (Cell Directory Service or CDS)
receives a global name that starts with global root (/...), it determines that it is a
foreign name, unless the cell name is equal to its own cell name.

If it is a foreign name, the CDS server returns the address of a Global Directory
Agent (GDA) contained in the CDS_GDAPointers attribute of its root directory.
The CDS clerk sends the request to the GDA. When the request is for a
hierarchical cell name, the GDA passes it to the CDS server of the top-most cell
in the hierarchy. The CDS server in this cell walks down the cell hierarchy to
locate the name. This is the concept of hierarchical cells introduced with OSF
DCE 1.1.

If the request is for a foreign cell outside the same hierarchy, the GDA sends the
request to a global service and returns the address of the CDS server that
contains the requested object. This is illustrated in Figure 13 below.

Figure 13. Name Search Routing between CDS, GDA and GDS

The GDA recognizes the type of name that is used. If it receives an X.500 cell
name, it passes the request to the Global Directory Service (GDS) client in its
own cell. The GDS client passes the request to a GDS server, which can be
anywhere in the whole global network. If the name is a DNS name, the GDA
passes the request to its local DNS server to resolve the address of the foreign
cell.

The result of the look-up is the address (binding information) to a CDS server in
the foreign cell. The CDS client that made the request then must connect to the
foreign CDS server to obtain the information as if the CDS server were in the
local cell. See 2.4, “Cell Directory Service (CDS)” on page 29 for explanations
on how look-ups are performed in a cell.

6.3, “Setting Up Intercell Communication” on page 131 provides guidance on
how to set up intercell communications.

26 Understanding OSF DCE 1.1

2.3.5 The DCE Cell Namespace
Figure 14 shows the DCE cell namespace created by CDS for each cell in the
DCE environment. Since the CDS namespace is independently managed within
the DCE cell, an administrator can add to this structure or even change it.
However, this basic structure should be maintained in every cell so that
interoperability is easier.

Figure 14. Directories Created for Each Cell

Not all DCE names are stored directly in the DCE directory service. Some
services, such as the Security Service (sec) and the Distributed File System (fs),
connect into the namespace by means of specialized CDS entries, called
junctions . A junction entry contains binding information that enables a client to
connect to a directory server outside of the directory service.

In DCE 1.1, the DCE host daemon on every node also manages a part of the
namespace, starting from the / . : /hosts/<hostname>/conf ig junction of every
host. DCE daemon objects, such as keytab objects managed in the
/ . : /hosts/<hostname>/conf ig/keytab directory, allow local resources on the
< h o s t n a m e > host to be remotely managed from other nodes in the cell. More
information on this topic can be found in 3.2.3.6, “Keys and Key Management”
on page 57.

The security namespace is managed by the registry service of the DCE security
component, and the DFS namespace is managed by the Fileset Location
Database (FLDB) service of DFS.

The following list contains a description of the different standard entries:

• /.:/cell-profile - This is the default master profile for the cell where all hosts,
users and other profiles must chain up to.

• /.:/lan-profile - This is the default LAN profile used by DTS to store the names
of the local DTS server set.

• /.:/hostname_ch - This is the clearinghouse of the cell.

• /.:/hosts - This is where host directories are catalogued.

• /.:/hosts/ hostname - Each host has a directory in which RPC server entries,
groups, and profiles associated with this host are stored.

Chapter 2. Directory Service 27

• /.:/hosts/ hostname/config - This entry contains binding information to the
various dced objects, such as keytab or hostdata. For every DCE host, this is
a junction to the dced-administered namespace.

• /.:/hosts/ hostname/self - This entry contains a binding to the dced daemon on
host hostname.

• /.:/hosts/ hostname/profile - This is the default profile for host hostname and it
must contain a default which points at /.:/cell-profile.

• /.:/hosts/ hostname/cds-clerk - This entry contains the binding for a CDS
clerk.

• /.:/hosts/ hostname/cds-server - This entry contains the binding for a CDS
server.

• /.:/sec - This is the RPC group of all security servers for this cell.

• /.:/fs - This is the RPC binding of all fileset database machines housing the
Fileset Location Database (FLDB).

• /.:/subsys - This directory contains directories for different subsystems in this
cell.

• /.:/subsys/dce - This directory contains DCE specific names.

• /.:/subsys/dce/dfs - This directory contains DFS specific names.

• /.:/subsys/dce/dfs/bak - This entry contains the RPC bindings of all. backup
database machines storing the backup databases.

• /.:/subsys/dce/sec - This entry contains security specific names.

• /.:/subsys/dce/sec/master - This is the server entry for the master security
server for this cell.

2.3.6 Summary: DCE Naming
Let us summarize the naming convention with an example of a file in a
Distributed File System (DFS). The file name is local/bin/ghostscript, a tool used
to view postscript files. We want to make this available in the shared file system
of the DCE cell itso.austin.ibm.com.

Users within the itso.austin.ibm.com cell execute this command in one of the
following ways:

• /:/local/bin/ghostscript
• /.:/fs/local/bin/ghostscript
• /.../itso.austin.ibm.com/fs/local/bin/ghostscript

Of course, they would normally use the first option. Users of other cells would
find this file only by specifying the third command:

• /.../itso.austin.ibm.com/fs/local/bin/ghostscript

This is DNS naming. If the cell had been defined with X.500 syntax, the global
access could only be established with the following command:

• /.../C=US/O=IBM/OU=ITSO/CN=AUSTIN/fs/local/bin/ghostscript

28 Understanding OSF DCE 1.1

2.4 Cell Directory Service (CDS)
The CDS manages to locate names within the cell and is optimized for local
access. It is a partitioned, distributed database service, and the partitions can
be stored in different locations, thus allowing good scalability. The CDS can also
be replicated which allows good availability of the system. A cache mechanism
improves the performance by reducing the number of times it needs to be
accessed.

This section introduces the components involved in the look-up of resources, the
CDS database structure and how database look-ups are performed.

2.4.1 CDS Components
Like any other DCE application, it follows the client/server model. The CDS
server manages a database where a CDS server adds, modifies, deletes, and
retrieves data on behalf of client applications. This database is called a
clearinghouse . Each DCE machine runs a CDS clerk which intermediates
between the client applications and the CDS server. The clerk receives a
request from the DCE application to store or retrieve information and sends the
request to the CDS server for processing. The clerk caches the results of
look-ups so that it does not have to repeatedly go to a server for the same
information. The cache is written to disk periodically so that the information can
survive an application or DCE services restart. The cache is deleted upon
reboot of the machine.

Figure 15. CDS Components Performing a CDS Look-up

Figure 15 shows the look-up process:

 1. The client application on node 1 sends a look-up request to the local clerk.

 2. The clerk checks its cache and, not finding the name there, contacts the
server on node 2.

 3. The server checks to see if the name is in its clearinghouse.

Chapter 2. Directory Service 29

 4. The name exists in the clearinghouse; so the server gets the requested
information.

 5. The server returns the information to the clerk on node 1.

 6. The clerk caches the information and passes the requested data to the client
application.

2.4.2 CDS Database Structure
The namespace is hierarchically organized and forms a tree, with containers
(directories) and leaf objects. The data structure is very much like a UNIX file
system. There, we have directories that build the branches of the tree. They are
used to group information together. Directories can hold other directories or
files. The files are the leaves of the tree and are actually the pieces that store
information. Any part of the whole file tree can be a separate file system
mounted to a directory. Such a file system can be imported from another
machine. Furthermore, symbolic links can be used to give alias names to files
and directories. With symbolic links, you can actually overlay parts of the file
tree with another structure, which can become confusing and hard to track down.

The CDS structure is basically the same, but the terminology is different. See
Figure 16 on page 31 for an example. A directory is called a replica because it
is the unit that can be distributed and/or replicated to another clearinghouse. A
directory can be duplicated. All duplicates (or replicas) of a directory contain
exactly the same information and build the replica set for that directory. The
replica set contains two types of replicas:

• Master replica (exactly one)
• Read-only replica (none, one, or many)

The master replica is the read/write instance of a specific directory in the
namespace. The first instance created is automatically the master replica.

A read-only replica is a copy of a directory that is available only for looking up
information. CDS does not create, modify or delete names in read-only replicas.
It simply updates them with changes made to the master replica.

After adding read-only copies of the directory to the replica set, it is possible to
select another replica to be the master. This is done through redefining the
replica set with the following command:

cdscp set directory <directory_name> to new epoch master /.:/ev1_ch \
readonly /.:/ev4_ch /.:/ev3_ch

Replicas can contain three kinds of entries:

• Object entries — The analogy to a file in the UNIX file system is a CDS leaf
object or object entry. It consists of a name and attributes stored within the
object. It usually contains binding information (addresses) to RPC servers,
but it can also store any user-defined information. A clearinghouse object
entry contains a list of directories contained in the respective clearinghouse
as well as the address of the CDS server managing it.

• Soft links — Like a symbolic link in the UNIX file system, a soft link is a
pointer that provides an alternate name for an object entry, directory or
another soft link in the namespace. With soft links, it is possible to do minor
restructuring of a namespace or give multiple names for an object so that
different users can refer to a name that makes more sense to them.

30 Understanding OSF DCE 1.1

• Child pointers — Child pointers are nothing more than subdirectories.
However, instead of storing the subdirectory within the parent directory, CDS
only stores a pointer to all instances of the (otherwise self-sufficient)
subdirectory.

Not only can directories be replicated, they can also be distributed. This means
that the master replicas of all directories can be spread over different
clearinghouses, and a particular clearinghouse does not need to contain all
directories from the root all the way down to a leaf object. See 2.4.3, “CDS
Namespace Example” for more explanations on the CDS structure and
replication.

2.4.3 CDS Namespace Example
Let us look at an example to explain the CDS terminology and replication.
Figure 16 shows parts of possible cell namespace.

Figure 16. Cell Namespace Example

The namespace is organized in a way that groups objects together which are
location dependent. Besides the usual entries, such as the lan-profile, the
cell-profile, the hosts and subsys directories, the clearinghouse objects, and the
sec and fs junctions, we have a directory for each major location of a fictitious
company right underneath the local root level. So, for instance, objects that are
mostly accessed and updated in Zurich, such as specific print servers, printers
or location-specific applications, are in separate directories.

Figure 16 does not illustrate where the replicas are stored. This is pretty
independent from the tree structure. The whole tree could be stored in one
single clearinghouse, and it could be replicated in another clearinghouse for
backup, performance and availability reasons. It is good practice to start with
such a CDS namespace configuration. Later, when the cell is growing, the
location-specific directories can be replicated and their master replica moved to
new clearinghouses at these locations without restructuring the namespace.

Chapter 2. Directory Service 31

Figure 17. Cell Namespace Showing Replication and Sites

Figure 17 illustrates replication details of the shaded part of the CDS tree shown
in Figure 16 on page 31. Cell root′s replica set consists of three (identical)
replicas in clearinghouses in Munich, Paris and Zurich. The root directory
contains the first hierarchy level of the CDS tree, such as the cell-profile, the
child pointer to the zurich subdirectory, the zurich_ch and paris_ch
clearinghouse entries, and a child pointer to the APPS directory.

The /.:/zurich subdirectory has only one replica and is stored in the zurich_ch
clearinghouse. This replica contains two child pointers to the /.:/zurich/printer
and /.:/zurich/apps subdirectories.

The /.:/zurich/apps replica set consists of two replicas, one in Zurich and one in
Paris. The company′s Paris location apparently wants to be independent of the
availability of the CDS server in Zurich and to be able to quickly obtain the
contents of this directory. This means the clearinghouse paris_ch managed by a
CDS server in Paris will contain a read-only replica of the /.:/zurich/apps
directory.

The /.:/APPS directory is only in the munich_ch clearinghouse and contains a
soft link. Users that want to access /.:/zurich/apps/appX can do so by specifying
the alternative name /.:/APPS/X.

To further clarify Figure 17, we can list the replicas contained in each
clearinghouse:

• zurich_ch

/.:
/.:/zurich
/.:/zurich/printer
/.:/zurich/apps

32 Understanding OSF DCE 1.1

• paris_ch

/.:
/.:/zurich/apps

• munich_ch

/.:
/.:/APPS

2.4.4 CDS Lookup
CDS stores the names and attributes of resources in the local cell. Although
users are free to define their own objects and attributes, in most cases the
attributes store network address of servers that provide access to the resources.
The address attribute is called CDS_Towers and can contain several addresses
of compatible servers.

Knowing the resource name, a client program can look up the address in the
CDS. The RPC client uses the Name Service Interface (NSI) API to get binding
information from the CDS. As explained in 2.4.1, “CDS Components” on
page 29, a CDS clerk performs the look-up on behalf of the client application.

The CDS clerk first checks its local cache. When the cache is empty, it might
have to perform several look-ups to resolve a long pathname. For example, in
Figure 17 on page 32, a client in Munich that only knows the munich_ch
clearinghouse wants to access the /.:/APPS/X application. The /.:/APPS
directory is in the Munich clearinghouse. But since /.:/APPS/X is a soft link with
a CDS_LinkTarget attribute, this look-up resolves to /.:/zurich/apps/appX. From
the Munich clearinghouse, the CDS clerk learns about the /.:/zurich directory and
its location (the Zurich clearinghouse). It then accesses the zurich_ch
clearinghouse. The /.:/zurich directory contains the child pointer to the apps
subdirectory. From the CDS_Replicas attribute of this child pointer, it learns that
the /.:/zurich/apps directory is in Zurich and Paris, and it can access the
/.:/zurich/apps/appX object in one of these clearinghouses.

Each clearinghouse has a copy of the root directory, and the root directory has
all clearinghouse entries. And since a clearinghouse object entry has the
address of the CDS server that manages it and a list of all replicas contained in
the clearinghouse, each clearinghouse knows about the locations of all replicas
of the namespace.

If a clearinghouse does not contain a requested object, it provides to the caller
as much information as it can, for instance other clearinghouses. Once the CDS
clerk has more information, it goes straight to nearest clearinghouse that
supposedly contains the required entry.

2.4.5 CDS Clerk
Before a CDS clerk is able to request a lookup to the CDS server, the CDS clerk
has to learn how to locate one CDS server in the DCE environment. There are
three ways for the clerk to locate them:

• Solicitation and advertisement protocol
• During a look-up
• Management command

The advertisement protocol is used by the CDS server to broadcast messages at
regular intervals to advertise its existence to clerks in a LAN. The advertisement

Chapter 2. Directory Service 33

message contains information, such as the cell that the server belongs to, the
server ′s network address and the clearinghouses it manages. At startup, the
clerks send out solicitation messages (broadcasts) to request for advertisement.

During a look-up, if the CDS server does not find the name in its clearinghouse,
it gives the clerk as much data as it can about where else to search for the
name. For example, if its clearinghouse contains replicas that are part of the full
name being looked up, it returns data from a relevant child pointer in the replica
it does have. The child pointer′s CDS_Replicas attribute contains information of
clearinghouse names and binding information.

The CDS administrator can use the dcecp program with the cdscache create
subcommand to create knowledge in the clerk′s cache about a server. This
command is useful when the server and the clerk are separated by a wide area
network (WAN) where the advertisement protocol does not work.

2.5 Security in CDS Environment
The CDS, as any other DCE service, is integrated into the security service. The
CDS server only completes an operation over the clearinghouse if the user is
authenticated and authorized by the Security Service. It is a two-way process
where the user or the principal is first authenticated to prove who he is and then
authorized to do certain operations.

CDS authorization allows you to control user access to:

• Names in the namespace, including clearinghouses, directories, object
entries, soft links, and child pointers

• Execution of privileged CDS clerk and server commands

Access control is done by creating access control lists (ACL) that contain
individual ACL entries that determine which user (principal) can use the name
and what management operations they are allowed to perform on it.

CDS ACL management software, incorporated into all CDS clerks and servers,
performs access checking for incoming requests. When a principal requests an
operation on a CDS name or a privileged operation on a CDS clerk or server,
ACL management software examines the ACL entry associated with that name
or principal name and grants or denies the operation.

2.6 CDS Administration
The DCE control program dcecp is the tool for the CDS administration tasks in
OSF DCE 1.1. The CDS control program cdscp of OSF DCE 1.0.x is still supported,
and in fact, a few CDS management tasks supported by cdscp cannot be
performed with dcecp.

Table 9 (Page 1 of 2). cdscp Commands Not Supported by dcecp

Commands Descriptions

disable clerk Stops the execution of the CDS clerk.

disable server Stops the execution of the CDS server.

34 Understanding OSF DCE 1.1

The cdsli provides a recursive listing of directories and objects in the whole
namespace.

A further CDS administration program is the CDS namespace browser . The CDS
namespace browser is a client application that allows you to inspect the cell′s
namespace. The browser is based on the OSF/Motif graphical user interface. It
allows you only to show the DCE namespace, not to change or modify it. You
can start the browser with the cdsbrowser command.

In addition to the CDS control programs, other DCE interfaces allow access to,
and management of, CDS names. The access control list (ACL) editing
command (acl_edit) supplied with the DCE security service is used for users to
control access to CDS directories and their contents.

The following sections will describe how to use the CDS user interfaces.

Table 9 (Page 2 of 2). cdscp Commands Not Supported by dcecp

Commands Descriptions

set cdscp confidence Sets the confidence level for cdscp calls. High
confidence means that the clerk is forced to look
entries up in the CDS server rather than in its cache.

set dir to new epoch Redefines the replica set, designating a new master
replica.

show cdscp confidence Shows the confidence level in effect.

show cell Shows information about the cell needed for entries in
DNS or GDS.

show clerk Displays counter attributes of the CDS clerk.

show server Displays counter attributes of the CDS server.

2.6.1 CDS Control Programs dcecp and cdscp
The CDS control programs are interactive command line interfaces with which
you can manage the components of the CDS and the contents of the namespace.
To start the CDS control programs, enter:

dcecp
dcecp> quit
cdscp
cdscp> quit

Instead of quit, you can use q or exit to leave the CDS control programs. The
dcecp command contain the following elements:

dcecp> <object> <verb> [argument] [options]

where:

object The CDS managed objects are:
• directory
• l ink
• object
• clearinghouse
• cdscache

verb Action to be taken
argument Affects the result of the action specified
options Associates the options to that object

Chapter 2. Directory Service 35

To list all options for an object operation, you can use the following command:

dcecp> <object> help <verb>

2.6.2 Viewing the Namespace
The CDS control program, dcecp, allows you to view the namespace structure
and contents.

2.6.2.1 Viewing a Cell
You can show the attributes of a cell configuration with:

dcecp> cell show
{secservers
 /.../itsc1.austin.ibm.com/subsys/dce/sec/master}
{cdsservers
 /.../itsc1.austin.ibm.com/hosts/ev1}
{dtsservers
/.../itsc1.austin.ibm.com/hosts/ev1}
{hosts
/.../itsc1.austin.ibm.com/hosts/ev1}

2.6.2.2 Viewing a Clearinghouse
To show the clearinghouse names, use the following command:

dcecp> clearinghouse catalog
/.../itsc1.austin.ibm.com/austin_ch
/.../itsc1.austin.ibm.com/ev1_ch

The dcecp> clearinghouse show /.:/ev1_ch returns the attributes of the
clearinghouse /.:/ev1_ch

2.6.2.3 Viewing a Directory
The following command list the descendants (contents) of a directory /.:/ from
the current cell:

dcecp> directory list /.:/

With the show command, you can see the attributes of a directory:

dcecp> directory show /.:/

2.6.2.4 Recursively Listing the Namespace
The cdsli command can selectively list parts of the namespace tree structure.
The following command lists everything:

cdsli -cworld

2.6.2.5 Viewing an Object
The following command displays all of the object entries stored in the /.:/sec
directory:

dcecp> object show /.:/sec

36 Understanding OSF DCE 1.1

2.6.3 Managing Clerks, Servers and Clearinghouses
CDS clerks, servers and clearinghouses are initially created and started as part
of CDS clerk and server configuration. They are largely self-regulating and,
apart from monitoring, require minor management intervention.

2.6.3.1 Displaying Information
Every clerk, server and clearinghouse maintains a set of attributes called
counters to keep track of the operations performed since it was last started up.
To list these counters, issue the following commands:

• Display clerk counters:

cdscp> show clerk

• Display server counters:

cdscp> show server

• Display clearinghouses counters:

cdscp> show clearinghouse /.:/ev1_ch
dcecp> clearinghouse show /.:/ev1_ch

Just as an example, when you display the server counters, you get the following
answers:

cdscp> show server
SHOW

SERVER
AT 1995-06-01-10:06:33

Creation Time = 1995-05-31-15:24:20.077
Future Skew Time = 0
Read Operations = 6409
Write Operations = 33
Skulks Initiated = 7
Skulks Completed = 7

Times Lookup Paths Broken = 0
Crucial Replicas = 0

Child Update Failures = 0
Security Failures = 0

Known Clearinghouses = /.../itsc1.austin.ibm.com/ev1_ch

2.6.3.2 Starting and Stopping CDS Entities
To manage clerks and servers on the local machine, you need cdscp with the
following subcommands:

• To disable a clerk, enter:

cdscp> disable clerk

• To disable a server, disable the clerk first:

cdscp> disable clerk
cdscp> disable server

• To restart a CDS client, you need to start the advertiser:

cdsadv

• To restart a CDS server, you need to start the advertiser first and then the
CDS daemon:

cdsadv
cdsd

Chapter 2. Directory Service 37

2.6.3.3 Backing up the Clearinghouse(s)
If the CDS database becomes corrupted, for example, after the system time had
been set forward by mistake, you should be able to restore a consistent level of
CDS rather than having to reconfigure the whole cell. To back up the CDS, do
the following on all CDS servers:

 1. Log into the CDS server system that contains the clearinghouse.

 2. Stop the CDS server as explained above. The server writes the in-memory
copy of its clearinghouse to checkpoint files.

 3. Backup all files associated with a clearinghouse, for example, ev1_ch:

tar -cvf/dev/rmt0 /var/dce/directory/cds/*ev1_ch.* \
/var/dce/directory/cds/cds_files /etc/dce/cds_attributes \
/etc/dce/cds_config /etc/dce/cds.conf

 4. Reactivate the CDS server.

2.6.3.4 Restoring the Clearinghouse(s)
To restore any of the clearinghouses, perform the following steps:

 1. Stop DCE.

 2. Restore the database(s).

 3. Restart DCE - or better reboot the system to clean out all caches.

 4. Clean all clerk caches as described below.

2.6.3.5 Cleaning up the Clerk Cache
To clean up a CDS clerk′s cache, perform the following steps:

 1. Log into the CDS clerk system on which you want to clean the clerk cache.

 2. Stop the CDS client as explained above. If the system runs a CDS server,
stop the CDS server.

 3. Remove the cache files:

rm /opt/dcelocal/var/adm/directory/cds/cds_cache.*
rm /opt/dcelocal/var/adm/directory/cds/cdsclerk_*

 4. Reactivate the local CDS entity.

2.6.4 Managing CDS Directories
In small networks, you can maintain all your names in the root directory and
may not need to create additional directories. However, for larger networks, you
should consider creating at least one additional level of directories.

2.6.4.1 Creating a Directory
CDS cell configuration creates an initial hierarchy of directories under the root
directory to provide DCE components with fixed locations within the namespace
where they can create and catalog their object entries.

To create a directory, you need the following permissions:

• Insert permission to the parent of the new directory.

• Write permission to the clearinghouse that will store the master replica.

• The server principal for the server system where you enter the create
command must have read and insert permission to the parent directory of
the new directory.

38 Understanding OSF DCE 1.1

To create the /.:/subsys/PrintQ directory as master replica, use the following
command:

dcecp> directory create /.:/subsys/PrintQ

2.6.4.2 Creating a Replica
When creating a replica, it is important to verify that the clearinghouse
containing the master replica of the directory is running and reachable.

To create a read-only replica of the /.:/subsys/PrintQ directory in the
/.:/austin_ch clearinghouse, use the following command:

dcecp> directory create /.:/subsys/PrintQ -replica -clearinghouse /.:/austin_ch

With the dcecp> directory show /.:/subsys/PrintQ command, you′ ll see the
change.

2.6.4.3 Deleting a Replica
To delete the replica, use the following command:

dcecp> directory delete /.:/subsys/PrintQ -replica -clearinghouse /.:/austin_ch

2.6.4.4 Skulking a Directory
The skulk operation is a periodic distribution of recent modifications made to the
namespace. CDS skulks every directory at regular intervals according to the
value assigned to the directory′s CDS_Convergence attribute. You can synchronize
the replica set rather than waiting for the next scheduled skulk with the following
command:

dcecp> directory synchronize /.:/subsys/PrintQ

Ensure that every replica in the directory′s replica set is reachable.

2.6.4.5 Merging or Appending a Directory
Reorganizing the namespace can be done with soft links. This is one way to do
it which also worked in OSF DCE 1.0.x. However, the information is not really
moved. OSF DCE 1.1 introduces new subtree commands that allow you to
actually move or delete entire subtrees to another directory.

Merging a directory means the contents of a directory (object entries, child
pointers and soft links) are copied over to another directory that might already
contain other elements. For instance, the /.:/zurich directory in Figure 16 on
page 31 could be merged into the /.:/APPS directory and then be deleted at the
old place with the following commands:

 1. Perform a skulk on the /.:/zurich directory to synchronize all replicas:

dcecp> directory synchronize /.:/zurich

 2. Perform the merge with the -tree option to perform a recursive copy
including subdirectories:

dcecp> directory merge /.:/zurich -into /.:/APPS -tree

 3. Delete the /.:/zurich directory after synchronizing it:

dcecp> directory synchronize /.:/zurich
dcecp> directory delete /.:/zurich -tree

 4. You can create a soft l ink from the old to the new location so that the old
path is still available:

Chapter 2. Directory Service 39

dcecp> link create /.:/zurich -to /.:/APPS

The /.:/APPS directory then has the following contents:

cdsli -world /.:/APPS
l /.:/APPS/X
d /.:/APPS/apps
o /.:/APPS/apps/appX
d /.:/APPS/printer

Appending a directory means copying the whole source directory (not just its
contents) into a target directory. This is achieved by first creating a new
directory and then merging the contents of the source directory into the new
directory. In the above example, you would first create a /.:/APPS/zurich target
directory and then merge the /.:/zurich directory into the /.:/APPS/zurich
directory by following the above steps. This would yield the following structure:

cdsli -world /.:/APPS
l /.:/APPS/X
d /.:/APPS/zurich/apps
o /.:/APPS/zurich/apps/appX
d /.:/APPS/zurich/printer

2.7 Platform-Specific Implementation
This section gives a summary of the platform-specific implementation differences
for the CDS.

2.7.1 Directory Service on AIX Version 4
The directory service on AIX is an implementation of the OSF DCE 1.1 directory
service. It contains the CDS client, the CDS server and the Global Directory
Agent (GDA). The Global Directory Service (GDS) is not provided in this AIX
DCE Release 2.1. However, GDS can exist in the same cell and be used for
intercell communication if its provided by an another product, such as AIX DCE
1.3. Also, the hierarchical cell and the cell name aliasing features are not
supported in the current AIX DCE 2.1 version. They will be supported in the next
version.

2.7.2 Directory Service on AIX Version 3.2
IBM DCE Version 1.3 for AIX Version 3.2 supports all CDS components on the
level of OSF DCE 1.0.3 as well as the Global Directory Service (GDS).

2.7.3 Directory Service on OS/2 Warp
The current OSF DCE 1.1 for OS/2 prototype provides the implementation of the
CDS client, the CDS server and the Global Directory Agent (GDA). The Global
Directory Service GDS (client and server) are not supported on OS/2.

2.7.4 Directory Service on DOS Windows
DCE Directory Service on DOS Windows is only a CDS client service
implementation. The Global Directory Service GDS (client and server) is not
supported on DOS Windows.

40 Understanding OSF DCE 1.1

Chapter 3. Security Service

Distributed computing encourages a free flow of data between nodes, thus
expanding the capabilities of interconnectivity and interoperability. Security
breaches might come from any component of the distributed system. The
Security Service is a strong building block of the DCE core services that provides
secure authentication, authorization and auditing mechanisms for users and
distributed client/server applications.

Figure 18. DCE Architecture: Security

Security is one of the main reasons why customers are interested in DCE.
Developers can use the DCE Security Service to make their distributed
client/server applications or products secure. They do not necessarily need to
use the DCE RPC API. The GSS-API allows interaction with the DCE Security
Service without using any other DCE components. In their Open Blueprint
strategy paper, IBM announced that it would integrate the DCE Security Service
into other products to provide them a higher level of security.

Administrators must understand all the concepts and components of the Security
Service. As other products, such as DB2 or LAN Server, imbed a DCE security
layer, the community of administrators with DCE knowledge will grow above the
pure DCE administrator community.

Users will not notice much of DCE security, if they do not want to. In some
systems, they have to perform a separate login to the DCE to obtain their
network credentials, but this DCE login will be integrated more and more into the
operating system login, resulting in a single login. For instance, AIX Version 4
provides an authentication method that contacts the DCE registry to obtain login
credentials for the local system. Users might have to understand Access Control
Lists (ACLs) to protect their own objects. However, administrators can set up
default ACLs that are inherited when new objects are created so that users do
not even have to deal with ACLs.

 Copyright IBM Corp. 1995 41

In this section, we will explain the concepts and the components of the DCE
Security Service.

3.1 Open Systems and Security
In a picture of modern computing, hundreds of heterogeneous systems
interoperate with each other and are connected via local and wide area
networks. For a variety of procedural, physical, automated, and historical
reasons, each of the various computers and networks carry with them implicit or
explicit levels of trust or threats.

Networks could create larger holes and greater threats than a single system.
Network security is becoming a big concern for several companies because
anyone can have access to the various systems′ resources. Nowadays networks
are considered part of the system. However, trusted networks have been
studied much less than trusted computer systems. One of the major reasons is
the complexity of the distributed environment. Security standards have been
developed for network security, but very few systems, so far, have been
evaluated for conformance.

A security threat is often thought of as hackers from outside trying to get access
to critical data. However, it will take the hacker some time to realize where the
valuable data is located. As a matter of fact, most of the security problems are
generated internally from employees within the company or former employees
who have some inside knowledge. They cannot be blindly trusted. It is
important that your management understands security and sets a policy. If in
the company security is considered too expensive, the management is not able
to estimate the value of the information asset it is managing.

Security refers to protection against unwanted disclosure and modification of
data and files in a system. It also refers to the safeguarding of systems
themselves. Education in security is important. Users, developers, system
administrators, and customers should know how to buy and use systems that
implement security.

The rest of this section will discuss the main security requirements, security
policies and security standards.

3.1.1 Security Requirements
Open Systems stands for portability, scalability and interoperability, which
suggests some degree of anarchy and disorder. However, a system can be open
and secure at the same time. Security threats can be:

• Eavesdropping: Data can be read as it flows over the network.

• Masquerading: A system can pretend to be another system and thus gain
unauthorized access to resources.

• Modification: Data can be modified as it flows over the network.

• Denial of service: Service can be denied from an unauthorized source.

These are just a few of the problems that can arise. A secure environment has
to fulfill the following requirements:

42 Understanding OSF DCE 1.1

• Confidentiality: The information is disclosed only to authorized users.
Passive wire-tapping can be a form of security threat that breaks
confidentiality.

• Integrity: The information is modified only by authorized users. Active
wire-tapping is a form of security threats that breaks integrity.

• Availability: The use of systems, applications and services cannot be
maliciously denied to authorized users.

• Accountability: Users are accountable for actions relevant to their security.

Figure 19. Security Requirements

Figure 19 illustrates the prevailing requirements of Open Systems and security.
Both arenas are based on international standards.

3.1.2 Security Policies
The particular system security needs will vary from organization to organization
and, within them, from application to application. As a result, organizations must
both understand their applications and think through the relevant choices to
achieve the appropriate level of security. Then, they must set the appropriate
policy.

A discretionary policy requires that single individuals protect their own assets.
However, a user with super-user authority can bypass any level of protection
that has been set. A mandatory policy is set at the organizational level and is
not controlled by the users.

All countermeasures should be taken in order to handle threats that might
exploit a vulnerability of the system. A recovery policy must be in place,
independent from the policy the organization has chosen, if the system has been
compromised. A threat analysis should be conducted in your organization to
evaluate the resources that are at risk.

Incident reporting and tracking is also important. If a hole is identified in a
distributed or widely available software package, it would be better to be prudent
and not to publicize the problem. Report the bug quietly to the vendors and to
the security crisis centers, such as the CERT (Computer Energy Response Team)
that monitors computer security or the CIAC (Computer Incident Advisory
Capability).

Chapter 3. Security Service 43

3.1.3 Security Standards
Characterizing a computer system as being secure presupposes some criteria,
explicit or implicit, against which the system in question is measured or
evaluated.

The evaluation criteria reflect two independent aspects: functionality and
assurance. The first one refers to the facilities by which security services are
provided to users, such as:

• Identification
• Authentication
• Access Control
• Auditing

A product rating intended to describe security assurance expresses an
evaluator ′s degree of confidence in the effectiveness of the implementation of
security functionality. Assurance criteria, which are not user-visible, are the
following:

• Integrity
• System Management
• Object Reuse

In 1983, the National Computer Security Center (NCSC) published the Trusted
Computer System Evaluation Criteria (TCSEC), best known as the Orange Book.
Later in 1987, the Trusted Network Interpretation (TNI) and the series of Rainbow
books, including the Green Book for Password Management, were published. It
considers the network and its various interconnected components as special
occurrences of a trusted system.

In the Orange Book publications, NCSC established ratings that span four
hierarchical divisions: D, C, B, and A in ascending order. For each division, one
or more classes are defined for a total of seven classes. The ratings reflect
increasing provisions of security:

• Division D — No Guaranteed Security

Class D1: No Security

• Division C — Discretionary Access Control

− Class C1: Discretionary
− Class C2: Controlled Access Protection

• Division B — Mandatory Access Control

− Class B1: Labeled Security Protection
− Class B2: Structured Protection
− Class B3: Security Domains

• Division A — Verified Model

− Class A1: Verified Design

Each class bundles both security functionalities and assurance. When we talk
about security classes, we will always refer to the Orange Book classes (D1, C1,
C2, B1, B2, B3 and A1). In 1985, the U.S government directed that all computers
used in government agencies and organizations have a C2 rating by 1992 and a
B1 rating by 2001. DCE implements C2 security.

44 Understanding OSF DCE 1.1

Several other countries, such as Canada, Sweden and Australia, developed their
own evaluation criteria. France, Germany, the Netherlands, and the U.K. joined
to write a security evaluation criteria document and named it the ITSEC
(Information Technology Security Evaluation Criteria).

Organizations, such as POSIX, X/Open and ISO/OSI, are focusing on some
functional aspects of security. The International Standards Organization (ISO),
with the SC27 group, focuses on security techniques for encryption and
authentication, but X.400 and X.500 also consider security. X/Open has
published in the X/PG4 an API for auditing. POSIX, with the group 1003.6, has
published in draft form the model for the access control list (ACL). DCE
implements a superset of POSIX ACL Draft.

3.2 DCE Security Service Components and Facilities
The DCE Security component comprises three services running on the security
server and several other facilities. Most of the DCE security is related to the
concept of a principal. A principal is an entity that can be securely identified
and can engage in a trusted communication. A principal usually represents a
user, a network service, a particular host, or cell. Each principal is uniquely
named and identified by its principal UUID. A record for each principal
containing the name, the private keys and the expiration date is kept in the
registry database on a highly secure system.

The three services are:

• Registry Service (RS) — A replicated service which maintains the cell′s
security database. This database contains entries for accounts, principals,
groups, organizations, and administrative policies.

• Authentication Service (AS) — Used to verify the identity of principals. It
contains a Ticket-Granting Service (TGS) which grants tickets to these
principals and services so that they can engage in a secure communication.

• Privilege Service (PS) — Certifies a principal′s credentials that are going to
be forwarded in a secure way to DCE servers. The credentials (see EPACs
below) allow the target server to check the principal′s access rights to
resources.

These services are implemented in the security server daemon (secd). The DCE
services are considered the DCE′s Trusted Computing Base (TCB). If security is
compromised for any of those services, the security of all DCE is compromised.
It is important that the security daemon runs on a secure, and highly available,
computer under the control of a dedicated system administrator or, better yet, an
Information System Security Officer (ISSO). The registry database is only as
secure as the security provided by the machine on which it resides.

On each client machine, there is a Security Validation Service integrated into
the DCE daemon process. In OSF DCE 1.0.x, this used to be the sec_clientd
process (AIX) or sclientd (OS/2). It has the following duties:

• Verifying that the security server is authentic

• Managing the machine principal (see also 3.2.3.6, “Keys and Key
Management” on page 57)

• Certifying login contexts (see also 3.2.3.1, “DCE Login Facility” on page 52)

Chapter 3. Security Service 45

Client applications actually use the Security Service facilities and services via a
Security Service API or the Generic Security Services API (GSS-API). The
facilities serving these APIs are:

• Login Facility (LF) — Initializes a user′s DCE security environment (login
context) and provides them with their security credentials.

• Extended Registry Attribute (ERA) — Extends the standard set of registry
database attributes (which cannot be changed) and allows for user-defined
attributes.

• Extended Privilege Attribute Certificate (EPAC) — Basically a certified list of
the principal name, groups of which the principal is a member, and the ERAs
for an authenticated principal. A client must present its EPAC to a server
when performing authenticated RPC. The server uses the EPAC to examine
the client′s access rights. Other information in the EPAC allows clients and
servers to invoke secure operations through one or more intermediate
servers (delegation).

• Access Control List (ACL) Facility — An ACL is a list of principals or groups
and their access permissions. ACLs are assigned to any type of resource
that DCE servers manage. The ACL facility provides a generalized means of
checking a principal′s access request against the ACLs on the requested
resource.

• Key Management Facility — Enables non-interactive principals (such as
application servers) to manage their secret keys.

• ID Map Facility — Allows intercell communication, mapping local cell
principal names to global cell principal names and vice versa.

• Password Management Facility — Enables principal passwords to be
generated and to be submitted to strength checks beyond those defined in
DCE standard policy.

• Audit Service — Detects and reports events that are relevant to the
management of a secure environment. Events are written in a log file, called
an audit trail file. The application programmers need to use an audit API to
build auditing of relevant operations into their applications.

All of the Security Service′s events, such as creating users, logging in and giving
tickets, can be recorded in the audit trail file. The Security Service is enabled to
use its Audit Service.

The following sections will explain these components in more detail.

3.2.1 The Security Registry
The registry server manages the registry database where the security-relevant
information of a DCE cell is stored. The registry database can be replicated as a
whole. There is a master site which can updated and an arbitrary number of
replica or slave sites which are read-only.

The sec_create_db command on AIX, or screatdb on OS/2, is used to create the
master database. These commands are implicitly called by the AIX and OS/2
provided administration tools to configure a DCE cell. See Chapter 6,
“Installation and Configuration of DCE” on page 103 for more information about
these specific tools. Then the security daemon is started and initial users,
groups and accounts are entered.

46 Understanding OSF DCE 1.1

The administrator can create several security replica servers to balance the load
on the master security server and to preserve the cell in case the master
becomes disabled. The sites where the security database will be replicated
must be as secure as the site where the master copy of the security database is
stored.

The registry database contains the following information, also called registry
objects :

• Policies — The standard policy regulates such things as account and
password lifetime and format. It can be set for the registry and for specific
organizations.

The authentication policy regulates ticket lifetimes and can be set for the
whole registry, an individual organization or an individual account.

• Properties — They define such things as the default certificate (ticket)
lifetimes and the range of UNIX, group and organization IDs. This is done
only for the registry as a whole.

• Principals — They are either interactive users of the system or
non-interactive servers, machines and cells. Principals can be associated
with access permissions.

• Groups — They are collections of principals identified by a group name.
Groups can be associated with access permissions.

• Organizations — They are collections of principals identified by an
organization name. Organizations do not have any access permissions; they
define policies associated with the principals.

• Accounts — An account is a definition of a potential network identity for a
principal. The attributes that define an account are a unique combination of
principal, group and organization, also known as PGO. The account contains
other attributes, such as the password, home directory, whether it can be
logged into it, or whether it can be a server.

• xattrschema — Such an object contains the definition of an extended registry
attribute (ERA) created with the ERA facility. This is described in 3.2.2,
“Extended Registry Attributes (ERA)” on page 49.

• replist — Used to manage the replicas of the registry database.

Chapter 3. Security Service 47

Figure 20. Registry Structure and Accounts with PGO Assignments

Figure 20 illustrates the structure of the registry. Each account is defined with a
unique PGO combination. Groups and organizations can have several members.
A principal is usually identified with its security namespace entry, such as,
/.:/gerardo. However, commands that work on objects of different namespaces
(such as acl_edit) need the full name in the CDS namespace, which is
/.:/sec/principal/gerardo. See also 3.7.2, “DCE Security and Naming” on page 72
for a further discussion of names.

To create principals, accounts, groups, and organizations, the administrator uses
the dcecp program (OSF DCE 1.1). The rgy_edit command, used to manage the
registry in OSF DCE 1.0.x, is kept for compatibility reasons.

The registry database contains UNIX user IDs and group IDs. They are used for
compatibility with UNIX programs. UNIX commands determine file ownership or
access rights based on these IDs. If there is a mismatch between a principal′s
UNIX ID in the registry and its local definition in a UNIX machine, file ownership
of DFS files can become quite confusing. It is therefore important that all UNIX
machines in a cell use consistent IDs for one specific principal.

Before we can create an account, we must define a principal, and maybe a
group and an organization. We must then explicitly add the principal to a group
and to an organization, which was implicitly done with rgy_edit. This is
illustrated in the following example:

dcecp> principal create nayeli
dcecp> group add users -member nayeli
dcecp> organization add ibm -member nayeli
dcecp> account create nayeli -password secret -mypwd dce \
 -group users -organization ibm

The use of groups and organizations simplifies the security management for the
cell administrator. Using DCE′s groups, we can have the same benefits as when
we use groups in the UNIX environment. We can give ACL permissions to a

48 Understanding OSF DCE 1.1

group, and all principals in that group will have the same access permissions to
the object. Administrators can use organizations to apply global security
policies to several principals (the members of the organization) at once.

The registry database is maintained in the virtual memory of the security
servers. All updates are made to the in-memory copy of the master and then
immediately sent to the slaves. The registry is checkpointed out to the disk
every two hours. This is the default value, but the checkpoint interval can be
changed by restarting the secd and specifying a parameter to the secd command
as follows:

secd -cpi 300

This would force the secd to create a checkpoint every five minutes. Remember
to be user root when you restart secd. All the changes made to the database
between checkpoints are written to an update_log file. In case of a crash, the
last checkpoint is recovered, and the log helps to restore the registry database.

Applications communicate with the registry server via authenticated RPC. This
is documented in 10.4, “RPC and Security” on page 191.

3.2.2 Extended Registry Attributes (ERA)
Initially designed for UNIX systems, the registry contains a user ID and a group
ID for each account. When accessing services on UNIX systems, DCE principals
assume these IDs which eventually determine their local access permissions.
Recognizing that not all the machines in a distributed environment are running
some variant of the UNIX operating system, a mechanism for storing user and
group attributes for arbitrary operating systems has been added in DCE 1.1: the
Extended Registry Attribute (ERA).

The registry continues to use the standard set of attributes, a fixed schema, for
its objects as in older versions of the registry. For example, the account still has
the UID, GID, the home directory, and so on. The ERAs introduce a dynamic
schema that extend the fixed schema. New attributes can be defined as schema
entries or attribute types. You can then, optionally, add instances of these
defined attribute types to registry objects as extended attributes.

So, there are basically two administration tasks required before ERAs can be
used: managing ERA definitions and assigning ERAs to registry objects.

3.2.2.1 Managing ERA Definitions
The extensions to the registry schema are maintained in the extended attribute
schema (xattrschema) object of the registry which is identified by the name
xattrschema under the security junction point (/.:/sec) in the CDS namespace.

The /.:/sec/xattrschema object provides a catalog (directory) for all extended
attributes known to the system. This catalog may be dynamically updated to
create, modify or destroy schema entries (attribute definitions).

A schema entry defines the semantics (format and usage) of an attribute type
and is identified by a name and a UUID. The characteristics of an attribute
definition are:

• -encoding (required) — Defines the format, such as printstring, integer and
UUID.

Chapter 3. Security Service 49

• -aclmgr (required) — The registry has a different ACL Manager for each of its
objects. See 3.2.1, “The Security Registry” on page 46 for a list and
description of the registry objects. By specifying one of these names for the
ACL Manager characteristic, you define to which type of object the attribute
can be added and which ACL Manager handles the permission check.

More than one ACL Manager can be listed with this flag to build an ACL
Manager set. It also defines the permission bits needed to query, update,
test, and delete attribute instances assigned to particular registry objects.

• -multivalued — If this boolean type is set to yes, one single registry object
can have several attributes of the same type.

• -unique — If this boolean type is set to yes, no two instances of this attribute
can have the same value.

• -reserved — If this boolean type is set to yes, an instance of this attribute
cannot be deleted, before it is changed to no (non-reserved).

• -trigtype — This option allows you to associate the access of an attribute with
the automatic execution of another DCE RPC server. This may be useful, for
instance, if the value has to be verified with an external database or is
stored there. A trigger binding must be specified that contains a binding
handle to a remote DCE server.

The following example is a first step towards login integration of DCE users into
MVS. If we want to associate MVS user names with DCE principals, we can
create an attribute schema named MVSname as follows:

dcecp> xattrschema create /.:/sec/xattrschema/MVSname -encoding
printstring -aclmgr {principal r c r D}

The MVSname attribute, as specified above, will accept strings and can only be
assigned to principals. Access control to the MVSname attribute assigned to a
particular principal is managed by the ACL of that principal (and the principal
ACL Manager). So, in order to query, update, test, or delete the attribute of a
principal, the caller needs to have r, c, r, or D permission, respectively, on that
principal object.

To see all defined ERAs and to check the definition of one them, enter the
following commands:

dcecp> xattrschema cat /.:/sec/xattrschema
/.../itso7.austin.ibm.com/sec/xattrschema/pre_auth_req
/.../itso7.austin.ibm.com/sec/xattrschema/pwd_val_type
/.../itso7.austin.ibm.com/sec/xattrschema/pwd_mgmt_binding
/.../itso7.austin.ibm.com/sec/xattrschema/X500_DN
/.../itso7.austin.ibm.com/sec/xattrschema/X500_DSA_Admin
/.../itso7.austin.ibm.com/sec/xattrschema/disable_time_interval
/.../itso7.austin.ibm.com/sec/xattrschema/max_invalid_attempts
/.../itso7.austin.ibm.com/sec/xattrschema/passwd_override
/.../itso7.austin.ibm.com/sec/xattrschema/test_any
/.../itso7.austin.ibm.com/sec/xattrschema/test_void
/.../itso7.austin.ibm.com/sec/xattrschema/test_printstring
/.../itso7.austin.ibm.com/sec/xattrschema/test_printstring_array
/.../itso7.austin.ibm.com/sec/xattrschema/test_integer
/.../itso7.austin.ibm.com/sec/xattrschema/test_bytes
/.../itso7.austin.ibm.com/sec/xattrschema/test_confidential_bytes
/.../itso7.austin.ibm.com/sec/xattrschema/test_i18n_data
/.../itso7.austin.ibm.com/sec/xattrschema/test_uuid
/.../itso7.austin.ibm.com/sec/xattrschema/test_attr_set

50 Understanding OSF DCE 1.1

/.../itso7.austin.ibm.com/sec/xattrschema/test_binding
/.../itso7.austin.ibm.com/sec/xattrschema/MVSname
dcecp>
dcecp> xattrschema show /.:/sec/xattrschema/MVSname
{aclmgr {principal {{query r} {update c} {test r} {delete D}}}}
{annotation {}}
{applydefs no}
{encoding printstring}
{intercell reject}
{multivalued yes}
{reserved no}
{scope {}}
{trigbind {}}
{trigtype none}
{unique no}
{uuid a609d8c0-e484-11ce-87ea-10005aa86e2d}

DCE ACLs also control the access to the xattrschema registry object. If you want
to manipulate an attribute schema, for instance, create a new attribute type
definition, you need the appropriate permissions on the ACLs of the
/.:/sec/xattrschema object.

3.2.2.2 Assigning ERAs to Registry Objects
Once the ERAs are defined, ERA instances can be assigned to, modified on or
deleted from registry object instances. For example, we can add the above
created MVSname attribute to the DCE principal nayeli:

dcecp> principal modify nayeli -add {MVSname a948r18}
dcecp> principal show nayeli -xattr
{MVSname a948r18}

The second command shows the attribute. An instance of the ERA object
/.:/sec/xattrschema/MVSname is attached to the prinipal object
/.:/principal/nayeli. If anybody wanted to modify nayeli′s MVSname attribute,
they would need to have control (c) permission in the ACL of /.:/principal/nayeli.

3.2.2.3 Attribute Sets
An attribute set is a collection of attribute types that can be identified together
for display or retrieval purposes. In other words, if you display an attribute that
is a set, it actually displays all attributes that are members of this set.

An attribute set is defined as a multivalued attribute of encoding type attrset. It
is handled like an attribute and can be assigned to an object. The value that is
given to a set attribute when it is added to a registry object is a list of UUIDs of
attributes that are to be the members of the set.

3.2.2.4 ERA API
The DCE′s Extended Registry Attribute API (consisting of sec_attr() calls)
provides facilities for extending the registry database by creating, maintaining
and viewing attribute types and instances and by providing information to, and
receiving it from, outside attribute servers (or attribute triggers). It is the
preferred API for security schema and attribute manipulations.

The DCE Attribute Interface (consisting of dce_attr_sch() calls) is provided for
schema and attribute manipulation of data repositories other than the registry. It
is limited to creating schema entries (attribute types) and does not provide calls
to create and manipulate attribute instances or to access trigger servers.

Chapter 3. Security Service 51

3.2.3 Authentication Components and Procedures
The DCE Security Service allows a principal to verify if the other principals are
who they say they are (authentication) and if they have the right to do what they
want to do (authorization). DCE makes use of the Kerberos authentication
service from the Massachusetts Institute of Technology′s Project Athena.
Kerberos uses a sophisticated mechanism that meets the requirements of open
computer networks.

This section describes the authentication procedure as well as features and
services that enable a secure authentication.

3.2.3.1 DCE Login Facility
The DCE login facility allows users to participate in DCE. It has a user interface
(the dce_login command) and an API. Interactive principals use the dce_login
command (AIX) or the the dcelogin command (OS/2) to communicate with the
security server and establish a login context, which means a principal′s identity
is validated, and initial tickets are provided.

Application servers (and clients) can use the sec_login...() API to perform the
equivalent of an interactive user login. In this way, they can establish their own
login context rather than running under the identity of the principal that started
them.

The syntax of the dce_login command is:

dce_login principal_name password [-c]

The user/principal is asked for the name and password.

dce_login
Enter Principal Name:
Enter Password: <not-echoed>

If the authentication ends correctly, the Security Service returns the DCE
credentials which consist of initial tickets, the Ticket Granting Ticket and
Privilege Ticket Granting Ticket (TGT, PTGT), and certified user attributes
(EPAC). The explanation for these terms will be the subject of the following
sections. The credentials will be used to authenticate the user to distributed
services that are accessed during the user′s session, such as DFS.

The -c option causes the principal′s identity to be certified. Without this option,
the principal identity is only validated. The difference between the simple login
validation and certification is strictly a client issue.

Validation means that you have obtained credentials which you can use over the
network. This demonstrates that you share authentication information with a
cell ′s Key Distribution Center or authentication server.

Certification means that you have done the validation stage and have
successfully authenticated to a service on your machine. By obtaining a valid
service ticket for your machine from the Security Service, your machine
(principal) can be sure that the user authentication was correct and the Security
Service itself is authentic. If the certification is not done, the user could have
contacted a spoofing security server to obtain a login to the local machine.

The certification is particularly useful if the operating system login and the DCE
login are integrated. In order to use other DCE servers, certification is not

52 Understanding OSF DCE 1.1

needed because a valid ticket can only be obtained if all involved principals
(including the Security Service) are authentic. If certification is requested, an
entry is created in the local registry that allows a user to log in to the system
when the Security Service is unavailable. However, to execute dce_login -c, the
user needs root authority.

The dce_login facility, among other things, initializes the KRB5CCNAME environment
variable. It contains the name of a file which contains the various tickets that the
principal obtains during the lifetime of its initial master ticket, the Ticket Granting
Ticket or TGT. The credential cache file is in the form of dcecred_xxxxxxxx on
AIX, where the xxxxxxxx stands for a randomly assigned number:

echo $KRB5CCNAME
FILE:/opt/dcelocal/var/security/creds/dcecred_416bb00c
#

On OS/2, the whole eight-character file name is randomly assigned. For
example:

[C:\:] set KRB5CCNAME
KRB5CCNAME=FILE:C:\OPT\DCELOCAL\var\security\creds\GTUPRHJP
[C:\:]

/opt/dcelocal/var/security/creds/dcecred_ffffffff represents the machine
principal ′s credential cache file on AIX. On OS/2, the file name is MACHCTXT
for the machine principal. If you want to clean up expired credential caches, you
can use the rmxcred command. This command also allows you to selectively
remove credential files for specific principals. It is recommended that you
include this command in the root user′s crontab entry on AIX and run it
regularly.

3.2.3.2 Secret-Key Authentication Steps
The authentication process between principals is accomplished through the
exchange of secret messages that prove their identities to each other.

Figure 21. Authentication Process.

Figure 21 is a simplified illustration of the secret key authentication process that
includes the following steps:

Chapter 3. Security Service 53

 1. Create User

The administrator uses the rgy_edit command (DCE 1.0.x), or the dcecp
command in OSF DCE 1.1, to administer user accounts in the Registry
Service.

 2. Log Me In

OSF DCE 1.1 introduces preauthentication. This prevents a security server
from responding to unidentified clients so that they cannot guess user IDs
and try logins anymore. See 3.2.3.3, “Preauthentication Protocols” on
page 55 for more details.

If the security client is at OSF DCE 1.1 level, the Login Facility asks for the
user password at this point. If the principal initiating the login is a client or
server application acquiring its own login context, the secret key is obtained
from the local keytab file. If the security client is at OSF DCE 1.0.x level, the
password is prompted from the user only after it receives the TGT.

Then a request for a Ticket Granting Ticket (TGT) is sent to the
Authentication Service (AS).

 3. Ticket

The AS performs a preauthentication if it is at OSF DCE 1.1 level. If
preauthentication is successful or not done at all (OSF DCE 1.0.x), the
security server sends the (TGT) and a conversation key in an envelope
encrypted with the user′s secret key. The TGT itself is encrypted with the
authentication server′s own key; the client cannot decrypt it.

In OSF DCE 1.1, the password is already verified at this point, and the key
can be used to decrypt the message. In OSF DCE 1.0.x, the security client
can only decrypt the message if the user enters the right password or if the
key stored in the keytab file is correct. It cannot discover an invalid
password earlier than this.

The security client then needs a ticket to the Privilege Service (PS). It uses
the conversation key to encrypt a request to the AS, which creates a ticket
that contains the principal UUID and a new conversation key and is
encrypted with the PS′s secret key. Together with the new conversation key,
this ticket is put into an envelope, encrypted with the first conversation key
and transmitted to the client.

 4. Authorize Me

The client can decrypt the envelope, learn the new conversation key for the
PS and send the ticket to the PS. Since the client does not know the PS′s
secret key, it cannot decrypt or manipulate this ticket.

 5. EPAC

The PS uses its own secret key to decrypt the ticket hereby learning the
principal UUID and the new conversation key. It then puts together the
user ′s authorization credentials. In OSF DCE 1.0.x, this was called the
Privilege Attribute Certificate (PAC) and contains the principal UUID and
groups of which the user is a member. In OSF DCE 1.1, the PAC is extended
by the Extended Registry Attributes (ERAs) and is called Extended PAC
(EPAC).

The EPAC is sealed with a checksum encrypted in the AS′s secret key.
Together with a third conversation key, the EPAC and the seal are
incorporated into a Privilege-Ticket Granting Ticket (PTGT) . The PTGT
(except for the EPAC) is encrypted with the AS′s secret key and transmitted

54 Understanding OSF DCE 1.1

to the client together with the third conversation key, which is encrypted with
the second conversation key.

 6. Authenticated RPC

The client can decrypt the message and learns the third conversation key
that it will need to use in further conversations with the AS. It can read the
EPAC, but cannot manipulate it to its own liking.

If the client wants to call an application server, it sends a request for a
service ticket to the AS together with the PTGT. The AS prepares a ticket by
re-encrypting the EPAC with the application server′s secret key. This ticket
is sent to the application server with the first RPC request. More on this can
be found in 10.4.4, “Key Management and Secret Key Authentication” on
page 193.

3.2.3.3 Preauthentication Protocols
The authentication protocol used on OSF DCE 1.0.x has a problem in that the
security server always responds to the client login request without verifying that
the user knows the password or where the request comes from.

OSF DCE 1.1 extends the previous authentication process. It introduces three
protocols for preauthentication. Only if the preauthentication is successful does
the Security Service send out the TGT as described above in 3.2.3.2, “Secret-Key
Authentication Steps” on page 53. Each principal can be assigned an Extended
Registry Attribute (ERA) that defines the lowest level of preauthentication that
the principal can accept. If this pre_auth_req ERA is undefined or zero, then the
principal has no particular preference for a protocol and can be authenticated
using any protocol. The three protocols are:

• No preauthentication — This protocol is always used when an OSF DCE 1.0.x
client is initiating the authentication procedure for a principal. If the
principal ′s ERA in the registry requires a higher protection level
(pre_auth_req>=1), the login request is rejected. In other words, a principal′s
pre_auth_req ERA must be undefined (or zero) to allow it to login from an
OSF DCE 1.0.x client.

OSF DCE 1.1 clients do not use this protocol. OSF DCE 1.0.x security servers
always use this protocol and ignore requests of DCE 1.1 clients for higher
level protocols.

• Timestamps protocol — If DCE 1.1 clients are not able to construct the
third-party protocol, for example, because the machine′s session key is not
available, they create a timestamps protocol login request.

The client sends a timestamp encrypted with the principal′s secret key and
the principal name. The Security Service decrypts the timestamp with the
principal ′s secret key stored in the registry. If the timestamp is within five
minutes of the correct time, the Security Service considers this evidence that
the client side principal is authentic.

If the principal′s ERA requires a higher level of security (pre_auth_req=2),
then the login request fails. If the pre_auth_req ERA of the principal is set to
one, then the client must request at least timestamp protocol. If the
pre_auth_req ERA of the principal is undefined or zero, this protocol also
works, because then any protocol is accepted by the Authentication Service.

This method prevents attackers from masquerading as a security client, but
is still vulnerable to processes that monitor the network.

Chapter 3. Security Service 55

• Third-party protocol — This is the default protocol for DCE 1.1 clients.
Basically, the procedure is the same as with the timestamp protocol, but the
information (principal UUID, principal-secrect-key-encrypted timestamp) is
additionally encrypted with several other keys based on the machine′s
session key with the Authentication Service.

If the pre_auth_req ERA of the principal is set to two, the client must request
the third-party protocol; otherwise the request fails. The Authentication
Service also accepts client requests using this protocol, if the pre_auth_req
ERA of the principal is undefined, zero or one.

All clients, except cell_admin, should be defined with pre_auth_req=2 once all
machines are on OSF DCE 1.1 level so that only this protocol can be used. This
provides the most protection against attacks. Administrator principals should be
able to log in before the session key is available; so they should be defined with
pre_auth_req=1.

If preauthentication succeeds, the Security Service sends the TGT and the
normal secret-key authentication process goes on as described in 3.2.3.2,
“Secret-Key Authentication Steps” on page 53.

For example, to request that a principal always authenticates using the third
party protocol, we can modify the principal as follows:

dcecp> principal modify nayeli -add {pre_auth_req 2}

3.2.3.4 Invalid Login Management
In OSF DCE 1.0.x, there was no way for the Security Service to detect invalid
login attempts. The password validation was done on the client side. With
preauthentication and pre_auth_req=2 in OSF DCE 1.1, the security server can
detect and track invalid login attempts.

Two ERAs should be defined for each principal to determine the number of
invalid login attempts permitted before marking an account as disabled
(max_invalid_attempts ERA) and for how long (in minutes) the account should be
disabled (disable_time_interval ERA).

Note: At OSF DCE 1.1 level, the counter is only updated against invalid attempts
at the master registry. Since the replicas do not communicate to the master,
they cannot report invalid logins at a replica registry.

3.2.3.5 Password Management
The DCE registry maintains, in the standard policies, a password policy that
allows you to set the following rules:

• Minimum password length
• Whether a password can be all spaces
• Whether a password can be all alphanumeric
• Password expiration date or lifetime

The first three items describe the password format. The standard password
strength policies enforce these password rules, which might not be strong
enough for many purposes. OSF DCE 1.1 includes the option to create a
password management server that performs customized password checking
(stronger rules) and generation. The password management server is invoked
upon password creation or changes. The pwd_strengthd is an example provided
to be used as a basis for a password management server that suits your needs.

56 Understanding OSF DCE 1.1

A pwd_val_type ERA allows you to define whether an account password should
be subject to extended password strength policies and whether it should be set
by the user or be generated. If this ERA is zero or undefined for a principal, only
the standard policies are applied. If extended password strength policies are
set, then the pwd_mgmt_binding ERA defines a binding to a password
management server. This server should run on the same machine as the
security server.

When a password expires, the principal is locked out of DCE. You can allow a
principal to log in with an expired password by setting the passwd_override ERA
to 1:

dcecp> principal modify cell_admin -add {passwd_override 1}

With this setting, the regular dce_login (AIX) or dcelogin (OS/2 Beta) display an
information message and accept the user without enforcing a change. On the
other hand, if the DCE authentication method is used in AIX 4.1, this is the
recommended setting, because the AIX login then requires the user to change
the password. See also 3.8.1.1, “AIX and DCE Security Integration” on page 74
for more information.

3.2.3.6 Keys and Key Management
An important part of the authentication concepts of the DCE Security Service (or
Kerberos) are keys and tickets. Keys are used to encrypt/decrypt messages.
They are only known to a very limited number of principals. A principal ′s secret
key is only known to the according principal and the Authentication Service. It is
the principal′s password encrypted by the Security Service runtime of the
machine where the password is entered in clear text.

A conversation key is assigned by the Authentication Service (AS) and is only
known by two principals engaged in a direct conversation. When server and
client principal can understand each other using the conversation key, they can
be sure of each other′s identity because they trust that the AS which issued the
key has properly identified each individual principal before.

A principal′s secret key is primarily used to identify a principal to the AS. If the
principal is a server, then its secret key is also used by the AS to encrypt a
service ticket for access to this server. The client receives the ticket and passes
it on to the server which can decrypt it. See also 3.2.3.7, “Tickets and Ticket
Lifetimes” on page 59. After this initial sending of the ticket, only randomly
generated conversation keys are used to avoid sending too many messages
encrypted with the secret keys.

Users (interactive principals) log into DCE by entering their password. The login
facility (3.2.3.1, “DCE Login Facility” on page 52) uses their password to
generate their secret key. A non-interactive principal (such as a server) also
needs a way to provide a password. The principal′s key, generated from a
password, is stored in a local keytab file on the machine where the principal
resides. The password can be entered by the administrator or randomly
generated. The randomly generated key is also sent to the registry.

The following commands add a randomly generated password to the bank_srv
principal and forward the generated key to the registry:

rgy_edit
rgy_edit> ktadd -p bank_srv -pw <bank_srv_password>
rgy_edit> ktadd -p bank_srv -a -r

Chapter 3. Security Service 57

This is the way to add a key in OSF DCE 1.0.x. In order to store a random
password which is synchronized between the local keytab and the registry, a
two-step procedure is necessary:

 1. With the principal ′s name and the plain password, as by specified by the
administrator upon account creation, you need to create a first local keytab
entry. The password is encrypted and stored in the keytab. A server
principal is now ready to authenticate itself to the registry because the
password is synchronized.

 2. The ktadd procedure can now assume the principal′s identity, authenticate
itself to the registry and change the password, on the principal′s behalf, to a
random password. This random password is also stored in the local keytab
file.

From now on, the server principal should regularly change its password to other
randomly generated passwords to reduce the risk of being impersonated. The
rgy_edit command is still available in OSF DCE 1.1, but it only lets you create a
keytab entry on the local machine. The default keytab file is /krb5/v5srvtab on
AIX and \OPT\DCELOCAL\krb5\v5srvtab on OS/2.

In OSF DCE 1.1, keytab management is performed via the DCE host daemon
(dced), which allows management of a remote server host′s keytab. The dcecp
keytab create command lets you create a dced keytab object in the dced
namespace junction and associate it with a file. The following command creates
a keytab object, /.:/hosts/ev1/config/keytab/bank_srv_tab, and associates it with
the file /opt/dcelocal/keys/bank_srv_tab on host ev1:

dcecp
dcecp> keytab create /.:/hosts/ev1/config/keytab/bank_srv_tab -storage \
/opt/dcelocal/keys/bank_srv_tab -data {bank_srv plain 1 bank_srv_passwd}

A dced keytab object cannot be created without specifying a keytab entry. The
command also fails if the /opt/dcelocal/keys directory does not exist or if the
/opt/dcelocal/keys/bank_srv_tab object does already exist. The default keytab
fi le, /krb5/v5srvtab, is associated with /.:/hosts/<hostname>/config/keytab/self.
The following command can be used to list the contents of the newly created
keytab from any host in the cell:

dcecp> keytab show /.:/hosts/ev1/config/keytab/bank_srv_tab
{uuid d88acdee-026c-11cf-b54a-10005a4f4629}
{annotation {}}
{storage /opt/dcelocal/keys/bank_srv_tab}
{/.../cell1.itsc.austin.ibm.com/bank_srv des 1}

Once the dced keytab object with its associated disk file exists, more entries can
be added. In order to create a random password for a newly created principal,
you need to perform the same two-step procedure as with the rgy_edit
command explained above. The following two commands perform this for the
account atm_srv:

dcecp> keytab add /.:/hosts/ev1/config/keytab/bank_srv_tab -member atm_srv \
-key atm_srv_passwd -version 1
dcecp> keytab add /.:/hosts/ev1/config/keytab/bank_srv_tab -member atm_srv \
-random -registry

Long-running server applications usually spawn off a thread that checks the
password expiration date, goes to sleep, wakes up shortly before the password
expires, and updates the password with another randomly generated password.

58 Understanding OSF DCE 1.1

The local Security Validation Service of the DCE daemon (sec_clientd or sclientd
in DCE 1.0.x) automatically maintains the machine password in this way.

The Key Management API provides simple key management functions for
non-interactive principals. See also 10.4.4, “Key Management and Secret Key
Authentication” on page 193 for more information.

3.2.3.7 Tickets and Ticket Lifetimes
A ticket is a secret message issued by the Authentication Service (AS) to
mediate a secure communication between a client and a server. The AS seals
the ticket or parts of the ticket with the secret key of the server for which it is
issued. The client receives the ticket and might be able to read some
(non-encrypted) parts of it. However, if a part of ticket is not encrypted with the
server ′s key, there is an encrypted checksum which seals the ticket in such a
way that the client cannot manipulate the ticket to its liking. The client then
sends the ticket to the server, which can decrypt it. The ticket contains a
conversation key which will be used to encrypted further messages between the
two.

The Privilege-Ticket Granting Ticket (PTGT) is the client′s ticket to the
Authentication Service (AS) which allows it to request service tickets to other
DCE servers. The PTGT contains the EPAC of the client in readable form, but is
sealed with a checksum. So, the client can read its own EPAC, but cannot
manipulate it. Other tickets are usually completely encrypted.

Tickets have a lifetime (ten hours by default), after which they expire and are no
longer useful. This value, defined as the default ticket lifetime property for the
registry, can be changed. Principals can request tickets with a longer lifetime,
which is gated by the lower value of either the time remaining on the principal′s
TGT or the maximum certificate lifetime authentication policy of the registry or a
specific account (default one day).

Tickets can be automatically renewed up to the time remaining on the principal′s
TGT if the principal′s account is flagged to be able to get renewable certificates .

A principal′s TGT lifetime can be requested via the login API when the principal
establishes its own identity. For principals that log in with the interactive DCE
login commands, the DCE Login Facility chooses to set the default ticket lifetime.
This is why interactive user principals obtain a ten-hour TGT. To change this,
you must change the default ticket lifetime property of the registry. The
maximum renewable lifetime authentication policy defines the maximum TGT
lifetime that can be requested.

When the TGT expires, a principal must reauthenticate. Users must log in again
or run the kinit command. The kinit command allows the user to request a
specific TGT lifetime. Long running servers that establish their own login context
usually spawn off a thread that monitors the ticket expiration and reauthenticates
in time. They do the same to monitor and refresh their keys (passwords) before
they expire.

By increasing default and maximum ticket lifetimes, you could set up accounts
so that tickets never expire. The shorter you make the lifetime, the greater the
security of the system. On the other hand, extremely short ticket lifetimes cause
frequent renewals and processing overhead.

Chapter 3. Security Service 59

Note: The maximum renewable lifetime and the able to get renewable
certificates flag are not supported by the current OSF DCE 1.1 release. So, the
maximum TGT is determined by the maximum certificate lifetime.

3.2.4 PAC and Extended PAC
When the user asks for a service, the privilege server extracts from the registry
database all principal-related information and assembles a Privilege Attribute
Certificate (PAC).

The OSF DCE 1.0 version of the PAC contains the following data:

• Authenticated — Indicates whether the PAC has been authenticated or not.
• Cell UUID — Identifies the principal′s cell.
• Principal UUID — Principal UUID and name associated with this PAC.
• Group UUID — Primary group UUID and name associated with this PAC.
• Number Local Groups — Number of the local groups in the pointer chain.
• Number Foreign Groups — Number of the foreign groups.
• Pointer Local Groups — Pointer to a chain of local groups.
• Pointer Foreign Groups — Pointer to a chain of foreign groups.

In OSF DCE 1.1, the PAC had to be extended to deliver the additional information
that can be stored in the registry for each principal and to allow for delegation
(see 3.2.5, “Delegation”). The Extended PAC (EPAC) contains the pre-DCE 1.1
PAC, the Extended Registry Attributes (ERAs) and information used to determine
delegation initiator or targets.

The EPAC is sealed in the tickets that are used to establish client/server
conversations and to check authorization of incoming requests.

An OSF DCE 1.1 server always needs an EPAC, whereas a pre-DCE 1.1 server
can only deal with PACs. For a DCE 1.1 application server, the security runtime
automatically converts a PAC delivered by a pre-DCE 1.1 client into an EPAC.
For a pre-DCE 1.1 server, the security runtime automatically extracts the PAC
data from the EPAC delivered by a DCE 1.1 client.

3.2.5 Delegation
Sometimes, as part of the execution of a remote request from a DCE client, a
DCE application server needs to issue a request to another DCE server. The last
server in the chain needs to authorize the request, but whose permission does
the server check, the DCE client′s or the intermediary′s? In Release 1.0.x, the
last server in a chain could not see the DCE client. Should the intermediary
change its identity in order to act on behalf of the initiating client?

Figure 22. Delegation

60 Understanding OSF DCE 1.1

As Figure 22 shows, the intermediary server can now pass on the client′s
identity without having to change its own identity. It can either temporarily
impersonate the initiator of the call (″I am Fred″) or pass on its own identity
together with the initiator′s identity (″I am Barney and acting on behalf of Fred″).
So there are two delegation types:

• Impersonation — The service ticket includes only the identity of the
delegation chain initiator as well as target/delegate restrictions.

• Traced Delegation — The service ticket (also called the credentials)
presented to the target server includes the identities of all members of the
delegation chain. Each intermediary adds its own EPAC to the already
existing credentials obtained from the predecessor′s ticket. This is the
preferred type of delegation.

The DCE delegation model is based on the extension of two components which
we will discuss:

 1. Service tickets — Can contain multiple EPACs
 2. ACLs — Entries for delegated access are added in the ACL model

The initiating client principal uses sec_login_become_initiator() to set the
delegation type and to obtain a new login context enabled for delegation. The
EPAC contains the type of delegation and target/delegate restrictions set by the
initiating principal.

The client then starts authenticated RPC. Its PTGT is sent to the Authentication
Service (AS), which prepares a service ticket to the first intermediary server.
The client call is then routed to this server, which realizes that it needs to call
another server to process the client′s call.

From the client′s service ticket, the first intermediary server learns the type of
delegation and, depending on this type, calls sec_login_become_delegate() or
sec_login_become_impersonate() to enable delegation on its part. The
intermediary may specify additional target/delegate restrictions with one of these
calls. Then it sends the ticket received from the client together with its own
PTGT to the Security Service and requests a ticket for the next server.

The AS creates a new service ticket containing all the delegation information
added up so far. The intermediary server presents this ticket to the next server,
which may be the target server or another intermediary.

When a principal enables delegation or becomes an intermediary in a delegation
chain, the principal may specify target and delegate restrictions. These are lists
of principals which may become target servers in a delegation chain (target
restrictions) and which may become intermediaries (delegate restrictions). If
there is no list, all principals may become targets or delegates. If there is one
or more lists set by the initiator and/or any intermediary, however, only the
listed principals may become targets or delegates and only if they are listed in
every forthcoming list.

When a target server is excluded from a list, the Security runtime replaces all
principal identities which excluded this target server with the anonymous
principal. Then the call is executed. However, it may fail to access an object
because the anonymous principal might have insufficient permission.

Chapter 3. Security Service 61

When one or more intermediary server(s) are excluded from being delegate
servers, their principal identities are replaced with the anonymous principal, and
then the call is executed. So, the chain is not interrupted by target or delegate
restrictions, but principal IDs may be replaced.

Part of the ticket that is used for contacting delegate servers is an encrypted
delegation token which contains all the EPACs. In the case of delegation, the
EPACs are also called an EPAC chain . Once the request is received at the
target server, this server evaluates the EPACs to check the permissions. If the
application server uses an ACL Manager, it can leave the permission check up
to the ACL Manager.

The ACLs in OSF DCE 1.1 contain new ACL Entry types , such as
user_obj_delegate, group_obj_delegate, user_delegate, and so on, to define the
permissions of intermediary principals which act on behalf of the initiating
principal. So, the object being protected by ACLs has to set up the according
permissions if it wants to allow delegated access. See 3.2.6, “Access Control
List Facility” for more information.

Pre-DCE 1.1 clients cannot request delegation and for pre-DCE 1.1 servers the
EPACs in the chain are reduced to one PAC as described in 3.2.4, “PAC and
Extended PAC” on page 60. For this case, the client has to pre-specify whether
the initiator′s or the last intermediary′s EPACs are considered.

In order to put delegate authorization into objects defined in the Cell Directory
Server, the directory on which we are making the change should have the
CDS_DirectoryVersion attribute equal or greater than 4.0.

Note: Delegation is not just there in existing applications, it has to be built in by
the application developers. The administrators then might be able to use an
application-specific tool to enable delegation or to optionally define
target/delegate restrictions and acl_edit to define permissions for the
intermediaries, if necessary.

3.2.6 Access Control List Facility
All objects in the DCE namespace can have an associated access control list
(ACL) that specifies which operations can be performed by which user. ACLs
can be associated with files, directories, registry objects, or be implemented by
arbitrary applications to control access to their internal objects.

Each ACL consists of multiple ACL entries that define who can access the object,
what kind of access those principals or groups have to the object and what kind
of access is allowed to unauthenticated users. The DCE ACL is a superset of
POSIX ACL and conforms to the POSIX 1003.6 Draft 12. DCE ACLs implement a
discretionary access control policy, where it is up to the user or the system
administrator to set up the access policy for the objects.

This section gives a short explanation of ACLs and their management.

Note: The cell administrator or anyone who gains the cell administrator
authority, legally or not, has access to any resource of the DCE cell.

62 Understanding OSF DCE 1.1

3.2.6.1 ACL Managers and ACL Types
An ACL Manager implements ACLs for a specific set of objects that it controls.
It defines the permission set and performs permission checks on behalf of
application servers.

It is either the responsibility or the choice of an application developer to
implement an ACL Manager to manage authorization. If they decide to do so,
the ACL Manager has to support the calls defined in the RDACLIF API. This
enables administration of the user-provided ACLs, through the ACL management
tool acl_edit or the dcecp acl commands, which call this interface. In OSF DCE
1.1, the implementation of ACL Managers has been significantly simplified.

An application can implement different ACL Managers for different types of
objects it manages. An example is the Security Service that currently
implements several ACL Managers for its objects. See 3.2.1, “The Security
Registry” on page 46 for a list of objects.

Applications that manage a hierarchical structure of objects, such as the DFS or
CDS, may define different ACL types, such as:

• Object ACLs — This is the ACL of a specific object, which can be a container
object (directory) or a leaf object (file).

• Initial Object Creation ACLs (IOC) — Define what ACLs a new leaf object in
this container will inherit.

• Initial Container Creation ACLs (ICC) — Define what ACLs a new
child-container will inherit. The ICC of the parent will determine the new
container object ACL as well as the ICC of the child container. The child will
inherit the IOC from its parent.

ACL types and ACL inheritance are illustrated in Figure 23 below.

Figure 23. ACL Inheritance

3.2.6.2 DCE ACL Entries
An ACL contains multiple ACL entries each of which defines the access rights of
a specific principal (or group) to the object to which the ACL is associated. If the
user does not match an ACL entry for a specific user, they might accrue the
access rights granted to one or more groups, if they are a member of these
groups.

An ACL entry consists of an entry type, an identifier dependent upon the entry
type and a permission set:

Chapter 3. Security Service 63

• Entry type — The following types require no additional identifier because the
grantee is either derived from the owner principal or is generally valid:

user_obj The owner of the object.
group_obj The primary group of the owner principal′s account.
other_obj All principals in the default cell.
foreign_obj All principals in a foreign cell.
any_obj All local or foreign principals that do not match any other

entry and all unauthenticated principals.
xxx_delegate The ′xxx′ stands for all of the above entry types and is in

effect when they are acting as delegates.

The following types require an optional cell name and a group name or a
user name:

user A specific user of the default cell.
group A specific group of the default cell.
foreign_user A specific user of a foreign cell.
foreign_group A specific user of a foreign cell.
xxx_delegate The ′xxx′ stands for all of the above entry types and is in

effect when they are acting as delegates.

You can define two mask entries that define a maximum permission certain
entry types can be granted.

mask_obj The permission set of all entry types except for user_obj,
user_obj_delegate, other_obj, and other_obj_delegate are
ANDed with the permission set of this mask. This can be
used to impose a temporary access restriction.

unauthenticated All of the above entry types apply to authenticated users.
If a user is unauthenticated, which means that their
privilege attributes have not been certified by the
Authentication Service, their permissions are masked
(ANDed) with the unauthenticated mask. If there is no
such mask, no permissions will be granted to
unauthenticated users.

Unauthenticated users that have no credentials at all are
only checked against the any_other permissions which
are then masked with the unauthenticated mask. Both
the any_other entry and the unauthenticated mask, must
be present for such users to get access; otherwise they
will be denied any access.

• Identifier — Entry types that stand for specific users or groups require the
name of the user or the group. ACL entry types for foreign users or groups
require the cell name followed by the user/group name. For instance, the
fully qualified name of user goofy in the cell xycorp.com would be
xycorp.com/goofy.

• Permission set — Each ACL Manager can define a set of one-character
permissions, where each character defines a certain access right. What
access right a character stands for is ACL Manager-dependent. There are
some conventions, though. When you access the ACL Manager of a specific
object, you can display the defined permissions. For example, for the
/.:/ev7_ch CDS object:

64 Understanding OSF DCE 1.1

acl_edit /.:/ev7_ch
sec_acl_edit> pe
Token Description
r Read entry attributes
w Update entry attributes
d Delete entry
t Test attribute values
c Change ACL
sec_acl_edit> exit
#
dcecp
dcecp> acl pe /.:/ev7_ch
{r Read entry attributes}
{w Update entry attributes}
{d Delete entry}
{t Test attribute values}
{c Change ACL}
dcecp> exit

This is just a sample collection; there are many more permissions defined in
the various ACL Managers.

3.2.6.3 Permission Evaluation
An ACL Manager searches the ACL entries in a predefined order, and if a
principal matches a specific user_obj, user_obj_delegate, user, user_delegate,
foreign_user, or foreign_user_delegate entry, it stops checking. Even if the
principal were member of a group with more rights, it only gets what is in its
user entry.

If there is no matching user entry, all group entries are searched, and all
matching entries (groups of which the principal is a member) are ORed. If the
requested right can be granted, checking stops.

If checking has not stopped yet, it checks whether the principal matches the
other_obj and other_obj_delegate entries, then the foreign_other and
foreign_other_delegate entries, and finally the any_other and any_other_delegate
entries. Checking stops as soon as the principal requesting permission matches
the criteria of one of these ACL types.

For initiator principals in delegation chains , the xxx_delegate entries are not
checked. These principals must match a standard ACL entry type. If the initiator
principal is denied access, then checking stops. In traced delegation, all
intermediaries are then checked according to the above evaluation procedure.
All entries types are checked for them. They can match either a standard type
or a xxx_delegate entry. The advantage of defining xxx_delegate entries for
intermediaries over standard entries is that intermediaries are prevented from
directly accessing objects (without being a delegate node). The final permission
is the intersection of the permissions of the initiator principal and of each
delegate principal. In other words, the initiator and each delegate must have the
appropriate permission to be granted access.

If delegation or target restrictions have been applied (see 3.2.5, “Delegation” on
page 60), then the anonymous principal might be present in the EPAC chain to
be evaluated. The anonymous principal is represented by the UUID
fad18d52-ac83-11cc-b72d-0800092784e9, not with a name. It qualifies for the
other_obj, any_other, other_obj_deleg, and any_other_deleg entry types, if any of
these are present.

Chapter 3. Security Service 65

The final permission is then masked with the mask_obj mask (except for
user_obj, user_obj_delegate, other_obj or other_obj_delegate entries) and with
the unauthenticated mask.

3.2.6.4 ACL Management Example
To define an ACL entry for an object, we can use the acl_edit command or the
dcecp acl command. For example, to add read/write permissions to the principal
nayeli for the /.:/APPS CDS directory and to deny any rights to principal gerardo,
type the following:

dcecp> acl modify /.:/APPS -add {user nayeli rw}
dcecp> acl modify /.:/APPS -add {user gerardo}
dcecp> acl show /.:/APPS
{unauthenticated r--t---}
{user cell_admin rwdtcia}
{user hosts/ev4/cds-server rwdtcia}
{user nayeli rw-----}
{user gerardo -------}
{group subsys/dce/cds-admin rwdtcia}
{group subsys/dce/cds-server rwdtcia}
{any_other r--t---}

When principal gerardo requests access, the evaluation of his permission is
stopped at his specific user entry. Because he has no permissions set, he is
denied all access, even if he were a member of the subsys/dce/cds-admin
group.

If a user without DCE credentials (one that did not perform a DCE login) comes
in, they can acquire read and test permissions because it is specified in the
any_other entry, and the unauthenticated mask allows this, too. If one of these
entries were missing, they would not have any access at all.

3.2.7 Auditing
Originally, the three heads of Kerberos signified authentication, authorization
and auditing. DCE′s security on releases 1.0.x does not provide auditing.
Auditing is a new service provided by the OSF DCE release 1.1.

Once a principal has been authorized to perform an action, they might abuse
their power for an unauthorized purpose. One common example is the Teller
who, from every transaction performed on an account, sends the cents (or the
fractions) to their account. Tellers are authorized to move money from one
account to another; however, they are not usually authorized to take a
percentage of each transaction for their own personal gain. Auditing can help to
uncover such situations.

Auditing is necessary for detecting and recording critical events in distributed
applications. The DCE Audit Service is a non-distributed service. Audit record
logging is always done to file(s) on the machine where the audit API is used, that
is on application servers or core servers. A log file is called audit trail file . The
audit daemon manages the central audit trail file of a machine. Audit clients can
choose to use a local audit trail file which is directly accessed.

The DCE Audit Service has the following components:

• Audit daemon (auditd) — Performs the logging of audit events (audit records)
into the central audit trail file and manages audit filters . It must run on all
server machines that use the machines′ central audit trail file and/or audit

66 Understanding OSF DCE 1.1

filters. The relevant audit information is provided by audit clients via an RPC
interface.

• APIs — Allows audit clients to record audit events and the dcecp control
program to control the audit daemon. These APIs can also be used to create
tools that can analyze the audit records.

• Audit clients — Usually application servers and also DCE core services that
are enabled for auditing. In OSF DCE 1.1, DTS and the Security Service are
enabled as audit clients; so machines running one of these services should
also run the audit daemon.

Programmers of audit clients identify (RPC) functions that need to be
audited, so called code points . They assign an event number to each code
point and use the DCE Audit API calls within each code point to record
events. In other words, in each manager function of a DCE RPC server, the
programmer uses dce_aud_start() to initialize an audit record, adds event
information with the dce_aud_put_ev_info() calls and closes the record with
the dce_aud_commit() call.

Before adding records, an audit trail file has to be opened. This is achieved
during server initialization through a dce_aud_open() call. When the DCE
RPC server shuts down, it closes the audit trail file.

• Management functions — Administrators manage the operation of, and
access control to, the audit daemon. They also manage the recorded events.
The administrator obtains the event numbers from the developer and can
define event classes by listing event numbers within event class files. Event
classes group events with some commonality and facilitate management.

Furthermore, the administrator can turn auditing on or off and define audit
filters to limit such things as what event classes are recorded or which
principals ′ actions should or should not be monitored.

• Event Classes — Administrators can define event classes by logically
grouping several events that have something in common. Event classes are
defined in files in the /opt/dcelocal/etc/audit/ec directory in AIX and
\OPT\DCELOCAL\etc\audit\ec directory in OS/2. The directory already
contains some predefined classes for the DTS, Audit and Security Services.

For class names, servers should use the format ec_org_product_class
(vendors), such as ec_osf_dce_authentication, or the format
dce _server-name_class, such as dce_sec_control. Since OS/2 is more
limited on file names, the latter is called SECNTRL in OS/2.

One event number can be used in several event classes. Classes can be
used in filters to limit the recording of events.

• Filters — Filters can be used to limit the amount of records that are written to
the audit trail. A filter consists of a filter subject identity and one or more
filter guides . The subject defines to whom the filter applies. For instance, it
may apply to a specifically named principal, group, cell, or all (world). A
guide defines a combination of an audit condition (event success, failure,
access denied), an action (display and/or log to audit trail) and an event
class(es) to which the filter will apply.

• ACL Manager — The permission to the audit daemon are set and modified
with the ACL facility like any other object in the DCE namespace. To be able
write audit records, an audit client principal must have log permission. To
create filters, an administrator must have write permission. Using the dcecp

Chapter 3. Security Service 67

acl command on the /.:/hosts/hostname/audit-server object calls the audit
daemon ′s ACL Manager and lets you work with the daemon′s ACL.

Note: Auditing is not just there in existing applications, it has to be built in by
the application developers. The administrators then might be able to use an
application-specific tool to additionally configure auditing or to enable/disable it.

Note: Auditing is not supported in the current release of DCE for AIX Version
2.1. It will be enabled at a later date.

3.3 Intercell Authentication
The authentication mechanism is based on the exchange of secret messages
between principals. We have explained that in 3.2.3.2, “Secret-Key
Authentication Steps” on page 53. Principals trust each other in the same cell
because the Authentication Services (AS) has authenticated both. This is true
for all principals except the Authentication Service, which is the only principal in
the cell which does not share its key. That is, the key of the AS is private, while
the key of any other principal is secret (it′s known to two principals). The AS is
trusted by all principals a priori.

When a principal in a cell wants to communicate with a principal in a foreign
cell, it cannot obtain a ticket to the foreign principal from its local AS because
the ticket to the foreign principal must be encrypted with the secret key of the
foreign principal which is not known to the local AS. The secret key of the
foreign principal is only known to the foreign principal itself and the foreign AS.
Therefore, there must be a mechanism in place by which the two instances of
the Authentication Service can securely convey information about their
respective principals to one another, without having to share their private keys
(sharing private keys would introduce an unacceptable security risk).

DCE solves this problem by extending the shared-secret key authentication
model previously discussed. An administrator must create a principal
representing the foreign cell in both Registries and they share the same key.
The two registry database entries are known as mutual authentication
surrogates , and the two cells that maintain the mutual authentication surrogates
are called trust peers . It is through their surrogates that the two instances of the
AS are enabled to convey information about their respective principals to one
another, thus enabling a principal from one cell to acquire a ticket to a principal
in another cell.

3.3.1 Intercell Authentication Steps
The intercell authentication process is similar to the one we discussed. When a
client principal wants to communicate with a foreign server principal, the client′s
security runtime recognizes by the name that the server is foreign and makes a
request to the local AS for a TGT to the AS of the foreign cell. This request is
called a Foreign TGT (FTGT) request or Cross-Cell TGT (XTGT).

The FTGT request proceeds like the request of any other TGT. The local AS
constructs a ticket with the EPAC of the client and encrypts it using the secret
key that the two authentication surrogates share. With this FTGT, the client
requests a ticket to the foreign Privilege Service (PS) from the foreign AS.
Because the FTGT is encrypted on the shared surrogate key, the foreign AS
trusts the client and gives it a ticket to the foreign PS. The client then requests a
Foreign PTGT (FPTGT) or Cross-Cell PTGT (XPTGT) from the foreign Privilege

68 Understanding OSF DCE 1.1

Service. The FPTGT is simply the client′s original EPAC reencrypted with the
key of the foreign PS. With the FPTGT, the client can request a ticket to any
principal on the foreign cell.

If users have access to an account defined in the foreign registry, they can log in
to that account by specifying the full principal name. For example, once the trust
relationship is established between the two cells, a user in cell
itso7.austin.ibm.com, with an account gerardo in the foreign cell
itso1.austin.ibm.com, can log in as follows:

dce_login /.../itso1.austin.ibm.com/gerardo
Enter Password:
#

On OS/2, the same cross-cell login would be:

[C\] dcelogin /.../itso1.austin.ibm.com/gerardo
Enter Password:
DCE LOGIN SUCCESSFUL
[C\]

3.3.2 Trust Relationship
The creation of mutual authentication surrogates is known as establishing a trust
relationship between the two cells. This can be done using the dcecp registry
connect command in OSF DCE 1.1 or with the rgy_edit cell command in OSF
DCE 1.0.x. This command creates two accounts, one in your cell′s registry to
represent the foreign cell and one in the foreign cell′s registry to represent your
cell. Such an account is named k rb tg t / <ce l l name> . Once the trust relationship
is established, you can control foreign principals′ access to specific objects with
ACL entries, just as you do for principals in the local cell.

There are two kinds of trust relationship that can be defined:

• Direct trust relationship — This is the trust relationship described above,
where the two cell′s AS share a secret key. A direct trust relationship
involves only two cells. In the context of hierarchical cells, we need to
distinguish between two important variations of this relationship:

− Direct trust relationship is between a parent and an immediate child cell
of a cell hierarchy

− Direct trust peer relationship is between any two cells that are not
ancestors or descendents of each other

• Hierarchical transitive trust relationship — A transitive relationship involves
three or more hierarchical cells. As shown in Figure 24 on page 70, the
direct trust relationships between every parent-child pair build a trust path
along the branches of the cell tree. All cells within a name hierarchy then
trust each other when they can be reached following a trust path. This is
called transitive trust.

The trust path can go across one trust peer, but once it goes up and across,
it cannot go up anymore. This means that a trust peer should be defined
between the top-level cells of two cell hierarchies and not between any
lower-level cells.

Transitive trust drastically reduces the number of direct trust relationships
that would have been necessary in OSF DCE 1.0.x to define any-to-any
intercell communication with so many cells. On the other hand, obtaining an
FPTGT going up and down a trust path involves dealing with many

Chapter 3. Security Service 69

intermediary Authentication Services and introduces some processing
overhead. After that, the foreign cell can be contacted directly to obtain
service tickets as long as the FPTGT is valid.

A principal accessing a foreign cell using transitive trust needs not be
authenticated by each cell traversed, only by the target cell.

Figure 24. Direct and Transitive Trust Relationships

For example, Figure 24 shows different trust relationships. We have two direct
peer trust relationships between ibm.com and osf.org and between mit.edu/cs
and osf.org/cambridge. Within the cell hierarchies, we have a direct trust
relationship between every parent and immediate child. This enables the
transitive trust relationships shown with dotted lines.

See also 2.3.3, “Hierarchical Cells” on page 24 for more information about
hierarchical cells.

Note: The transitive trust relationship is not supported on the OSF DCE Release
1.1 code; hence it is not supported in IBM DCE Version 2.1 for AIX and OS/2.

3.4 Security Administration Tools
The sec_admin command in AIX or the secadmin command in OS/2 are the
security server administration tools used in OSF DCE 1.0.x. All the functionality
of sec_admin, except for the monitor subcommand, is included in the dcecp
command in OSF DCE 1.1. However, since dcecp is a complete and extendible
shell script language (see Chapter 9, “DCE Control Program and Tcl” on
page 147), the monitor function can easily be programmed.

The rgy_edit tool is used to manage the registry database. In OSF DCE 1.1, this
command has been replaced by the dcecp command, but is still available for the
time being. The only function not supported by the dcecp command is the
maintenance of the local registry. For that, the rgy_edit command must still be
used.

The local registry allows login from a machine if a network registry is not
available. It contains account information and keys of principals that log into
DCE on the local machine using the dce_login -c command. However, this
command requires root user privileges in order to create a local registry entry.
Otherwise, arbitrary users would be able to manipulate the local registry.

70 Understanding OSF DCE 1.1

3.5 Security with RPC
Authentication, authorization and data protection are provided with the RPC
runtime facility to enable applications to use the DCE Security Service for their
RPC communication. Basically, RPC application servers define, during their
initialization, what authentication, authorization and data protection levels they
support. RPC clients may choose a security level they want to use. Of course,
the level they choose must match a level supported by the server.

We describe authenticated RPC in the RPC chapter. Please see 10.4, “RPC and
Security” on page 191.

3.6 Generic Security Service API (GSS-API)
The Generic Security Service (GSS) provides an alternative way of securing
distributed applications that handle network communications by themselves.
With the GSS-API, applications can establish secure connections and act like
DCE RPC servers.

The GSS-API is a standard API for interfacing with security services, as defined
by the IETF RFCs 1508 and 1509. It allows flexible use of the DCE security by
programs, even if they don′ t use DCE RPC to communicate (see Figure 25).
Because the GSS-API is product neutral, you can define your security policy and
implement it using the generic API. It will then, for instance, be portable
between a NetSP and a DCE environment, which are (theoretically) pluggable
and interchangeable underneath the API.

Figure 25. Generic Security Service API (GSS-API)

The GSS available with DCE includes the standard GSS-API routines (Internet
RFC 1509) as well as OSF DCE extensions to the GSS-API routines. These
extensions are routines that enable an application to use the DCE Security
Service. However, if applications make use of the DCE extensions, they will not
be portable to other security mechanisms because they will not understand, for
instance, EPACs.

Chapter 3. Security Service 71

A GSS-API caller (usually the application client) accepts tokens provided to it by
its local GSS-API implementation and transfers the tokens to a peer (usually the
application server) on a remote system. That peer then passes the received
tokens to its local GSS-API implementation for processing.

Clients as well as servers first have to authenticate themselves with the security
server (network login). Clients then use the gss_init_sec_context() call to
create the token needed to access a server. In the DCE environment, this call
will result in a request to the privilege service for a service ticket to the specified
server by presenting the client TGT (Ticket Granting Ticket) obtained from the
login. This ticket contains the DCE Extended Privilege Attribute Certificate
(EPAC) and is returned to the client within the GSS-API security context token.
The client sends the token to the server, which hands it over to the GSS-API.
The server-side GSS-API verifies the client security context and keeps it for later
references until it is destroyed.

In addition to exchanging tokens for initial authentication, the application (client
or server) can then create and validate tokens, so called signature tokens, to
protect messages. The sender of a message requests a signature token from
the GSS-API and sends the token together with the message. The receiver calls
the GSS-API to verify the signature token along with the message.

A typical GSS-API caller is itself a communications protocol, calling on GSS-API
in order to protect its communications with the underlying security mechanisms.

3.7 DCE Security and Other Core Components
In the following two sections, we briefly mention the effects of the Security
Service on two other DCE core components: the DTS and the CDS.

3.7.1 DCE Security and DTS
Time is defined with tickets, which have a lifetime with a starting and an ending
time. If the network time skew factor becomes too big, it might happen that
unexpired tickets may be regarded as invalid, and expired tickets may be
considered valid. Time in DCE is very important. This is because from the
security viewpoint, time can open some security holes in DCE. Time should
always be under the control of the cell administrator.

If you attempt to run DCELOGIN from DOS Windows or OS/2, you might get an
error message such as:

Password validation failure, - Clock skew too great (dce/krb)

If the DCE security server and the DOS Windows client are not synchronized, the
skew should be less than five minutes.

3.7.2 DCE Security and Naming
The security namespace is rooted in the CDS namespace; therefore security
names have an equivalent CDS name. However, the Security Service refers to
its objects in a different manner than commands, which are able to operate on
objects of different name spaces, such as the acl_edit or dcecp acl commands.

All security commands, such as dce_login and rgy_edit, use and (only)
understand names of the security namespace, such as the following principal
name:

72 Understanding OSF DCE 1.1

/.../itso7.austin.ibm.com/nayeli

What might puzzle you is that this name looks like an object in the CDS
namespace. However, for commands that work on objects of the global
namespace, such as acl_edit, the above name is undefined:

acl_edit /.../itso7.austin.ibm.com/nayeli
ERROR: acl object not found (dce / sec)
Unable to bind to object /.../itso7.austin.ibm.com/nayeli

The acl_edit expects the principal′s fully qualified object name in the CDS
namespace:

acl_edit /.../itso7.austin.ibm.com/sec/principal/nayeli
sec_acl_edit>

This command allows you to manage permissions on the registry object, such as
who is allowed to delete this principal.

The naming scheme becomes even more confusing when the principal provides
an RPC server with its own ACL Manager, such as the DCE daemon with the
principal name hosts/ev7/self. The global name
/.../itso7.austin.ibm.com/hosts/ev7/self stands for the principal name as used by
the security commands and for a CDS object as used by RPC to advertise
binding information. So, the name is context sensitive and contains three
different sets of ACLs:

 1. acl_edit /.../itso7.austin.ibm.com/sec/principal/hosts/ev7/self

This ACL controls who may access and manipulate the principal definition in
the registry. The command accesses the registry object.

 2. acl_edit /.../itso7.austin.ibm.com/hosts/ev7/self

This command uses the binding information stored in the CDS object to
contact the DCE daemon and its ACL Manager. It allows you to define the
permissions to manage the DCE daemon.

 3. acl_edit -e /.../itso7.austin.ibm.com/hosts/ev7/self

This command accesses the CDS object entry and defines who may
manipulate it; for example, who may add a new binding handle to it or delete
it from the namespace.

3.8 Platform-Specific Implementation
This section describes platform-specific implementation differences of the
Security Service and features that are not available on all platforms.

3.8.1 Security Service on AIX Version 4
IBM DCE for AIX Version 2.1 is the implementation of OSF DCE 1.1. However, for
several reasons, some of the Security Service features of OSF DCE 1.1 described
in this document did not make it into the current release, such as:

• Transitive Trust (not in the OSF release)
• Renewable Tickets (not in the OSF release)
• Auditing (not in DCE for AIX Version 2.1)
• Hierarchical Cells (CDS; not in DCE for AIX Version 2.1)

Chapter 3. Security Service 73

In the rest of this section, we will discuss some issues present in all UNIX
operating systems. Special considerations are necessary because UNIX is a
multi-user operating system with an already implemented security system that
must be integrated, or at least coexist, with the DCE security.

3.8.1.1 AIX and DCE Security Integration
In the DCE for AIX Version 2.1, the AIX base operation security services have
been integrated with the DCE Security Services. In previous versions of DCE, the
user had to log into AIX first and then to DCE. This required the maintenance of
two user IDs and passwords. Furthermore, the DCE login credentials
(represented by the environment variable KRB5CCNAME) could only be passed
to child windows, but not to parent windows or other descendents of the parent
window. Depending on your environment, you might have had to log into DCE
several times.

This release of DCE permits the user to see a single-system image rather than
separate images of AIX and DCE. Most users will be able to acquire DCE
credentials through AIX commands, such as login and su, to change their
password through the AIX passwd command and to get information from the DCE
registry through the standard C library (libc.a) routines, such as getpw*() and
getgr*(). Remote telnet or ftp users will also authenticate with the DCE registry
when they access an account set up for DCE authentication.

To support DCE integration with the AIX login, two new user attributes (SYSTEM
and registry) have been defined in the /etc/security/user file. This file defines
such things as authentication methods, password policies or the umask for the
user accounts of the local system. It defines default values and allows you to
create a stanza for each individual user that may override some or all of the
default values. The file also contains lots of explanations.

The SYSTEM attribute is used to select one or more of the system-provided
methods which authenticate a user to the local machine. The valid values are
boolean expression strings that may contain the boolean operators AND and OR.
The valid values are:

files Use local authentication with the /etc/security/passwd file
compat Use local files and/or NIS
DCE Authenticate through DCE

For example, to use DCE Security Service for authentication when a user logs in
or, if DCE is not available, local files or NIS, we can define the following entry in
the /etc/security/user:

auth1 = SYSTEM
SYSTEM = ″DCE OR (DCE[UNAVAIL] AND compat)″

The SYSTEM attribute is used in the auth1 or auth2 attributes to specify that a
system-provided authentication method is to be used. If this is the default
definition, users with no local definitions can log in. Such users are called
wanderers. However, if the network is down, wanderers will not be able to log
in.

The registry attribute is used to force password operations to be performed
either locally or to the DCE Security Service. It defines the database in which a
user ′s password is administered or where password queries and changes take
place. The valid values are:

74 Understanding OSF DCE 1.1

files Use the local /etc/security/passwd file
NIS Use NIS
DCE Use the DCE registry

It is strongly recommended to maintain the DCE registry and local files
synchronized as closely as possible. This means that for a particular user or
group, the user ID and group ID should be the same on all systems of the cell
and in the registry. If this is not the case, a user authenticating with DCE and
assuming the user ID stored in the registry might appear as another user on the
local machine.

For users that have a different user ID in the DCE registry, you should set the
SYSTEM and registry attributes in the /etc/security/user file to local (or
compat/NIS). This protects local resources from unauthorized access. You can
also use the password_override file to map incoming DCE principals to other
local account attributes or deny them access at all. See 3.8.1.2, “The
passwd_override File” below.

To activate the security integration, you must do the following:

 1. Ensure that the /usr/lib/security/DCE module is installed on the system.

 2. Edit the /etc/security/login.cfg file, and add the following lines:

DCE:
program = /usr/lib/security/DCE

 3. Ensure that the dceunixd daemon is running. You can add this daemon to
the /etc/inittab file. This daemon communicates to the DCE servers secd and
dced on behalf of the AIX commands. Be sure to start DCE services before
dceunixd.

 4. Edit the /etc/security/user stanza file to define the authentication method(s)
for the users. This means setting the auth1 and SYSTEM attributes as
explained above.

 5. To explicitly prevent certain DCE users from any access to the local system,
you should modify the /opt/dcelocal/etc/passwd_override and
/opt/dcelocal/etc/group_override files.

For users that authenticate via DCE, you should set the passwd_override ERA to
1, so that DCE allows them to log in with an expired password. The AIX login
process then requires the user to change the password. Otherwise the user
would be locked out and the cell administrator would have to set a new
password. See also 3.2.3.5, “Password Management” on page 56.

3.8.1.2 The passwd_override File
The local administrator can deny DCE authenticated access to the local machine
for a specific principal by putting the appropiate entry in the
/opt/dcelocal/etc/passwd_override or /opt/dcelocal/etc/group_override fi le. For
example, to deny local system access to DCE user joe, we can add the following
line to the passwd_overrride file:

joe:OMIT:::::

The fields in the passwd_overrride file correspond to the fields you find in an
/etc/passwd file. The override file can also be used to map account attributes
defined in the DCE registry to different local attributes when that user logs into
the local system with their DCE identity. So, this file can be used to locally
adjust unsynchronized user IDs.

Chapter 3. Security Service 75

3.8.1.3 The passwd_import and passwd_export Tools
The passwd_import command is a mechanism for creating registry database
entries from local password and group file entries. If there are duplicate entries,
passwd_import follows your directions on how to handle them.

The /opt/dcelocal/bin/passwd_export command creates local password and
group files from registry data. Use passwd_export to keep these local files
consistent with the registry database. When passwd_export runs, it makes backup
copies of the current password and group files, if they exist. The files are named
passwd.bak and group.bak, respectively. The passwd_export is commonly run
through an entry in root′s crontab file.

3.8.1.4 AIX and DCE ACL Interoperability
The editor acl_edit is used for updating DCE ACL. The editor works via RPC; so
the administrator can be local or remote. The acl_edit must not be confused
with the acledit command, which is the ACL editor for AIX ACL. The two ACLs
are not compatible.

3.8.1.5 ACL Awareness
It is important to understand that all UNIX commands, such as tar, cpio or dd, do
not preserve DFS ACLs. So, it is a good rule to have some sort of migration tool
available that helps you backup and restore ACLs on the objects if you need to
use AIX commands and want to preserve the ACLs. To store the ACL of an
object into a file and reinstate them from a file, use the following commands:

acl_edit <object> -l > <object>.acl
acl_edit <object> -f <object>.acl
#

The DFS backup and restore commands preserve ACLs for DFS, but they cannot
be used when you want to move files from one cell to another.

The AIX chmod, chown, chgrp commands also affect the DFS ACLs. They will
recalculate file ownership and permissions for the user_obj, group_obj and
other_obj.

3.8.1.6 DCE Security Integrity
It would be good system administration practice to add to the DCE security
daemon and command to the local AIX Trusted Computing Base (TCB) and to
the /etc/security/sysck.cfg database. This will allow the system administrator to
monitor the integrity of the DCE security sensitive files and commands and verify
that they have not been compromised. There is an installation option for the
TCB when installing AIX 4.1. TCB cannot be added after AIX 4.1 is installed.

First of all, it is important to add all the DCE security commands to the local AIX
TCB with the chtcb command as follows:

chtcb on /usr/lpp/dce/bin/*
chtcb query /usr/lpp/dce/bin/dce_login
/usr/lpp/dce/bin/dce_login is in the TCB

After having done that for each command in the /usr/lpp/dce/bin directory, add
an entry to the /etc/security/sysck.cfg command as follows:

76 Understanding OSF DCE 1.1

/usr/lpp/dce/bin/kinit:
class = inventory,apply
owner = bin
group = bin
mode = TCB,555
symlinks = /usr/bin/kinit
type = FILE
checksum = ″14226 210″
size = 214231

Remember, the checksum for the file is calculated with the sum command as
follows:

sum -r kinit
14226 210 kinit
#

You must also add the /krb5 and /var/dce/security directory and files to the TCB
and the sysck.cfg file. Remember that the registry database,
/var/dce/security/rgy_data/rgy, and all the files under /var/dce/security/rgy_data
have both checksum and size VOLATILE.

Refer to the tcbck command to add entries in the sysck file and to verify the
integrity of the DCE security sensitive files.

3.8.2 Security Service on AIX Version 3.2
IBM DCE for AIX Version 1.3 runs on AIX Version 3.2 and provides a full
implementation of OSF DCE 1.0.3. The following sections, that were described
above for AIX Version 4, are also valid for AIX Version 3.2:

• 3.8.1.2, “The passwd_override File” on page 75
• 3.8.1.3, “The passwd_import and passwd_export Tools” on page 76
• 3.8.1.4, “AIX and DCE ACL Interoperability” on page 76
• 3.8.1.5, “ACL Awareness” on page 76
• 3.8.1.6, “DCE Security Integrity” on page 76

The security integration as described in 3.8.1.1, “AIX and DCE Security
Integration” on page 74 is not available in AIX 3.2.5. If the user wants to get
their DCE network credentials, they have to log in as a normal AIX user and then
use the dce_login command, providing their DCE user name and DCE password.
This will launch a new shell with the KRB5CCNAME environment variable set to
the path name of the credential file for that user.

The user can then use line-oriented commands like klist, kinit, and kdestroy,
respectively, to see or renew their credentials or to destroy them.

It is possible to have better integration of DCE authentication in AIX with a
product named Single Login/6000. It allows users to log in with their DCE name
and password and to automatically acquire their network credentials. The user
does not have to be defined on any local machine; their local definitions are
automatically generated and maintained. The CDS is used to keep track of
where the user is currently logged in. It contains a password management
function, can invalidate a user account if too many login attempts fail and can
control the number of times a user can concurrently log in. It also implements a
department concept. Departmental users can log into any machine in their
department; global users can log into any machine in the cell.

Chapter 3. Security Service 77

For more information (more details, latest versions, ordering, prices), contact the
following address:

IBM Deutschland Entwicklung GmbH
Customized Banking Technology
att. Hans-Juergen Dittgen

Schoenaicher Str. 220
71032 Boeblingen

Germany
Tel. xx49-7031-16-4867
Fax xx49-7031-16-4572
IBMMAIL: DEIBMQVR at IBMMAIL
Vnet: DITTGEN at BOEVM4

This product is also discussed in more detail in the redbook Using and
Administering AIX DCE 1.3.

If you are working for IBM, Single Login/6000 is available on the AIXTOOLS disk.
To obtain a copy, type the following command from the VM command line:

TOOLS SENDTO USDIST MKTTOOLS AIXTOOLS GET SI_LOGIN PACKAGE

3.8.3 Security Service on OS/2 Warp
The current version of DCE for OS/2 is at OSF level 1.0.2. IBM DCE for OS/2
Warp Version 2.1 is available in Beta and is an implementation of OSF DCE 1.1.
The Beta version currently contains the same restrictions as listed in 3.8.1,
“Security Service on AIX Version 4” on page 73.

Security in OS/2 is identical to AIX DCE Security in terms of security
components, APIs and security administration tools. The rgy_edit, acl_edit
security administration tools are available on this operating system. The
sec_admin command is called secadmin, and dce_login is called dcelogin in OS/2
DCE Version 2.1. All the key management commands, kinit, klist and kdestroy,
are available. On OS/2, security can be configured either as a client or as a
server.

The dcelogin command has been enhanced to support a systemwide login. The
systemwide login (option -s) allows a principal to log into a given session and to
have the resulting DCE credentials be associated with all DCE programs
subsequently started in that session and all other sessions. Also, DCE 2.1
includes a new command, dcelgoff, to be used in conjunction with the
systemwide login. It prevents DCE programs that are subsequently started from
inheriting credentials established by a previous systemwide login.

3.8.4 DOS Windows DCE Security
The current DCE for DOS Windows is at OSF DCE level 1.0.2. Security can be
configured only as a client. The administration tools, rgy_edit and acl_edit, are
available. The key management kinit and kdestroy and the dce_login command
are available to participate in a DCE cell. All these commands are available
through the Windows presentation manager at this time. Also, the
implementation of OSF DCE on DOS Windows provides the DCE security API.

78 Understanding OSF DCE 1.1

Chapter 4. Distributed Time Service

Many applications use timestamps to coordinate independent events. Although
not mandatory, the Distributed Time Service (DTS) should run on every host in
the Distributed Computing Environment, keeping host clocks closely
synchronized. It is also possible to synchronize the distributed environment with
others by connecting to an external time signal, such as a Universal Time
Coordinated (UTC) provider.

Figure 26. Distributed Time Services as a DCE Component

The components of DTS are:

• Time clerk
• Time servers

− Local time server
− Global time server
− Courier time server
− Backup courier time server

• DTS application programming interface (DTS API)
• Time provider interface (TPI)
• Time format, which includes an inaccuracy value

The active components are the time clerk and the time servers. The two
interfaces, DTS API and TPI, are the developing interfaces for the DTS.

4.1 Why a Time Service?
Problems can occur when clocks are not synchronized. On networks composed
of multiple hosts, each host has its own clock and its own time reference.

A good example of troubles due to unsynchronized clocks is the make command.
The make command selects files for compilation based on their creation time.

 Copyright IBM Corp. 1995 79

Modified source files on a tardy host can appear older than corresponding object
files on the host with the faster clock. In this case, make does not recompile files
that should be recompiled.

DTS helps to avoid such situations by synchronizing host clocks in LANs and
WANs with the following:

• DTS provides a way to periodically synchronize the clocks on the different
hosts in a distributed environment.

• DTS also provides a way of keeping that synchronized notion of time close to
the correct time. In DTS, a correct time is considered to be Universal Time
Coordinated (UTC), an international standard.

4.2 DTS Daemon
The DTS clerk and DTS server are both implemented as a DTS daemon (dtsd)
process. They are therefore sometimes denoted with the neutral term DTS
entity. A dtsd process becomes a server in response to a management
command. Each of these processes communicate with each other via
authenticated RPC.

An administrator may issue commands to a dtsd via the dtscp command (DCE
1.0.x), which is still available, or with the dcecp command (DCE 1.1). A dtsd
makes RPC calls to other DTS daemons configured as servers.

The dtsd command restarts the DTS daemon. With the option dtsd -c, the DTS
daemon is started as a time clerk and with the option dtsd -s as time server.
When the system is booting or restarting DCE, this command is automatically
executed as part of the overall DCE configuration procedure.

We might use dtsd interactively only when troubleshooting.

4.2.1 Configuration Parameters for DTS Daemons
The DTS entities do not have a configuration file or database. However, they
have many configuration parameters that influence their behavior. These values
have to be provided to the running dtsd process by means of the dtscp or the
dcecp command. To list all configuration values, enter:

#dtscp show all

or

#dcecp
dcecp> dts show
dcecp> dts show /.:/hosts/ev1/dts-entity

Note: The dcecp allows dealing with remote DTS entities, whereas dtscp only
affects the local system.

These attributes define the type of the DTS entity (server or clerk) and, for
servers, their role. By changing these values, for instance, a clerk can be
temporarily converted into a server.

The settings of these values also affect the accuracy of the system time and the
network load. The skew factor, the difference between any two system clocks,
can be made smaller through frequent synchronizations with a high number of

80 Understanding OSF DCE 1.1

servers. However, this obviously generates more traffic on the network. A
tradeoff is necessary.

Note: The configuration parameters are lost when the DTS entity is stopped.
They have to be set manually over and over again, or the appropriate commands
have to be included into the startup procedure to effect a permanent change.
Also, check the default values indicated in this publication with the dcecp dts
show command. They might have changed in the final product.

4.2.2 The Required Number of Servers
The Servers Required (DCE 1.0.x) or minservers (DCE 1.1) attribute specifies how
many DTS servers must supply time values before the local clock can be
synchronized.

You can change this attribute for each running DTS daemon with the following
command. For example, to change the number to four, enter:

dcecp> dts modify -minservers 4

Since configuration parameters are volatile and on a per-system basis, this
attribute has to be set on each system every time the DTS entity is restarted.

Note: If the DTS entity does not get a sufficient number of time values (default is
1 for clerks and 3 for servers), it never does adjust its clock. So, special care
has to be taken that either the required number of servers can be reached from
every system, or the attribute has to be adjusted to match the cell configuration.
This is particularly important for servers. If servers do not synchronize, their
clock might drift away from the other systems, and even worse, clients might
pick up that faulty time when their minservers attribute is 1.

4.2.3 DTS Clerk
The time clerk is the client side of the DTS. It keeps the machine′s local time
synchronized by asking as many time servers as is specified in its minservers
attribute. The default value is 1. In this case, the clerk randomly picks one
server and adjusts its clock to that value, no matter how different this time value
might be from its own system time.

The clerk synchronizes every 10 minutes, if necessary. Its syncinterval (DCE 1.1)
defaults to 10 minutes. In DCE 1.0.x, this parameter was called Synchronization
Hold Down.

It is recommended to increase the minservers value to three if there are at least
three servers in the cell to make sure a faulty server does not mess up
clerk-only systems. Should network performance become a problem, it is better
to increase synchronization intervals than to rely on just one DTS server.

See 4.3, “How Does Clock Synchronization Work?” on page 84 for more details
on how clocks are synchronized.

4.2.4 DTS Servers
A time server is a node that is designated to answer queries about time. The
number of time servers in a DCE cell is configurable; at least three per LAN is a
typical number. Time clerks query these time servers for the time, and the time
servers query each other, computing the new system time and adjusting their
own clocks as appropriate.

Chapter 4. Distributed Time Service 81

Figure 27. Time Servers and Clerks Requesting Time Values. In the default
configuration, the three servers query each other, and each client randomly queries one
server at each synchronization.

If an external time provider is present (see 4.5, “External Time Providers” on
page 91) on a DTS server, this server only synchronizes with the time provider.
If not, a server synchronizes with other servers.

The minservers attribute value defaults to 3 for servers. The server′s own time
value is one of them. If there are not two other time servers available, they
don ′ t synchronize, and their clocks might drift apart from each other. The
synchronization interval is two minutes by default, and you can modify this
default. To show the attributes, use the following command:

dcecp> dts show
 ...
{syncinterval +0-00:02:00.000I-----}
 ...

If you want do change this value, for example, to five minutes, use the following
command:

dcecp> dts modify -syncinterval +0-00:05:00.000

Note: This change modifies the current dtsd. After a reboot, the DTS process
will be reset to the default value.

When a DTS server is configured, its name is entered into the /.:/lan-profile of
its own LAN. By synchronizing among each other, DTS servers maintain an
accurate time in an entire cell with minimal skew factors between every system.
To make synchronization work across LAN boundaries, DTS defines DTS server
roles which are not mutually exclusive: local-only, global and three courier types.

4.2.4.1 Local Time Server
A collection of computers that are close in terms of communication delay (a
LAN) needs a set of local time servers to keep the time. These servers
periodically synchronize their clocks with one another.

The local time servers are in the same LAN and cannot be reached or used from
the outside. When the required number of servers is not on the LAN, each DTS
entity must contact as many global time servers as is necessary to get the

82 Understanding OSF DCE 1.1

required number of values. To find a global time server, the dtsd performs a
lockup in the CDS.

4.2.4.2 Global Time Server
The global time servers are time servers that advertise themselves in the
/.:/cell-profile in CDS. This is what makes the difference to local time servers
and is why they are globally accessible.

A global time server acts as a local server for DTS servers and clients in the
same LAN. Global servers are used by DTS couriers from other LANs within the
cell. This feature helps keep multiple LANs within a cell synchronized while
minimizing network traffic across expensive or slow WAN links.

If clerks and local time servers cannot get the required number of servers in
their own LAN, they must contact global time servers, if there are any.

Note: A DTS server can either be configured as local or global. However,
global servers are also local servers in their own LAN.

4.2.4.3 Courier Time Server
Each local and global time server has a courier role assigned. There are three
roles:

• Courier
• Backup (courier)
• Noncourier

A courier time server must synchronize with one global time server outside the
courier ′s LAN even if it had enough local time servers to query. It thus imports
a LAN-external time by synchronizing with an outside time server.

Figure 28. Local, Courier and Global Time Servers

In Figure 28, the courier time server in LAN B must query the global time server
on LAN A. In this configuration, the LAN B synchronizes its time to the time in
LAN A. If you want a mutual synchronization between both LANs, you need a
courier and a global server in both LANs.

Chapter 4. Distributed Time Service 83

Noncouriers are released from the obligation to ever contact a global server as
long as they can reach enough local time servers. This is the default.

Backup couriers have to be ready to stand in for a courier if the courier becomes
unavailable. How do they know when they are on? Every DTS server maintains
an in-memory list of local DTS servers with their attributes. So, they know who
the courier is and whether it is available. If the courier becomes unavailable,
the backup couriers start a negotiation process to elect a new courier.

4.3 How Does Clock Synchronization Work?
The DTS entity (daemon) running on every system is responsible for obtaining
the correct time from a number of time servers and for adjusting its own clock.
This process is basically the same for servers and clerks, except for the fact that
a server may have an external time provider and that a server also uses its own
time for the calculation of the correct time. This section explains how this is
done.

4.3.1 Time Intervals, Inaccuracy, Synchronization Triggering
DTS uses an inaccuracy value, or tolerance, to determine the relative precision
of time values that it obtains from system clocks and external time providers.
The time value obtained from a DTS entity is a time interval that contains the
correct time, rather than a point on a continuum.

The measurement of the inaccuracy value takes into account cumulative clock
error, communications delays and processing delays. System clocks
continuously drift away from the correct time in the order of a few seconds per
day. DTS uses manufacturers′ specifications to calculate the amount of time the
clock may have drifted since DTS previously read the clock. This amount is
added to the previously existing inaccuracy.

So, the inaccuracy of the local system clock, the time interval, is constantly
increasing. If the inaccuracy value reaches a certain threshold, the
maxinaccuracy value, a synchronization is triggered. The default for this value is
0.10 seconds (100 milliseconds). However, if the amount of time passed since
the last synchronization is less than the syncinterval (DCE 1.1), synchronization
is suppressed until the synchronization interval is used up. In DCE 1.0.x this
parameter was called the Synchronization Hold Down, which more accurately
describes its purpose: It prevents too frequent synchronizations.

A successful synchronization results in a more accurate time value with a
smaller skew to the other systems in the cell and a smaller inaccuracy interval.

4.3.2 Getting the Correct Time
Each DTS daemon uses the LAN profile to find DTS servers in the same LAN.
The /.:/lan-profile is the default LAN profile used by DTS. This profile contains
entries for the local DTS server set, meaning all servers on the LAN. Global
servers are listed in the /.:/cell-profile. The DTS daemon maintains an
in-memory list of all local and global DTS servers with some of their attributes.
So, it knows, for example, their epoch, their courier role and whether they are
faulty.

This in-memory list about DTS servers is updated at every synchronization by
querying CDS for time servers and their bindings, which, by the way, may create

84 Understanding OSF DCE 1.1

considerable network traffic and CDS accesses. In this way, new servers are
detected on time for every synchronization. The list is purged every two hours,
which gives faulty or bad-epoch servers a chance for rehabilitation.

The DTS daemons randomize the internal list of servers to choose the right
number of servers that are not marked faulty. If the DTS daemon is itself a
server, it only needs minservers-1 servers and only chooses servers with the
same epoch number. Each time the synchronization is done, it will randomize
the list of servers. This is an attempt to ensure that all servers in the cell will be
used to perform the synchronization, unless they are marked faulty.

Each server replies with what it estimates to be the correct time and also with a
bound on the accuracy of this time estimate. Thus, the DTS daemon receives a
set of intervals with which it has to determine a current time interval that is
tighter than any intervals obtained. See Figure 29.

Figure 29. Time Intervals

The DTS daemon first adjusts the intervals to take into account communication
and processing delays. It then builds the intersection of the intervals. The
intersection builds the new inaccuracy interval and its midpoint yields the
computed time.

One or more of the servers might be totally wrong about the time of day. In this
case, the intersection of the intervals received by the client might be null. If one
time interval does not intersect with the majority, it is ignored and that server is
marked faulty. The faulty server will not be used anymore to obtain time values
until the list is purged.

Chapter 4. Distributed Time Service 85

Figure 30. Faulty Server

Figure 30 illustrates how a faulty server is detected. The DTS daemon was
configured to require four time servers. Server 2 delivers a time interval that
does not intersect with the others and is marked faulty.

4.3.3 Adjusting the Clock
When any DCE node running a DTS daemon has detected a difference between
its local time (time on the machine where the daemon is running) and the
correct time it has calculated from time values obtained from DTS servers, it
usually adjusts its own clock. Under normal circumstances, such adjustment
should never cause a clock to move backwards to provide for proper event
sequencing.

The update can be gradual or abrupt. Usually, however, it is desirable to update
the clock gradually. Instead of changing the system time, we adjust the number
of clock ticks that make up one second. The tick increment is modified until the
correct time is reached. In other words, if a clock is normally incremented 10
milliseconds at each clock interrupt, and the clock is behind, then the clock
register will instead be incremented 10.1 milliseconds at each clock tick until it
shows the correct time. By default, we adjust the clocks by one percent for a
period long enough to effect the desired change. So, in fact, we slow down or
speed up the system clock.

Note: DCE on AIX directly manipulates the system clock in the way described
above. OS/2 does not allow changes to the increment value. It changes the
clock abruptly and uses a separate DCE clock register that is continuously
adjusted. As a consequence, standard OS/2 commands which display the
system clock′s value may, at times, display another time than the DTS
commands.

If a clock is discovered to be wrong, 30 days for example, adjusting the time
gradually would take a long time. If a clock is off by more than a given value
(the Error Tolerance in DCE 1.0.x or the tolerance in DCE 1.1), then it is set
immediately to the correct time rather than adjusted gradually. The tolerance
now defaults to five minutes. It used to be ten minutes in DCE 1.0.x.

86 Understanding OSF DCE 1.1

4.3.4 Notion of Epochs
The DTS works with epochs. Before one server can obtain time values from
another, the servers must have the same epoch number. Epochs divide the DTS
implementation into logically separate areas; servers only synchronize with
other servers that have the same epoch numbers (clients do not have epoch
numbers).

To allow a new notion of time to be propagated throughout a cell, times are
interchanged along with an epoch identifier (a simple integer).

4.3.5 Manually Setting a Correct Time Within a Cell
To introduce a new correct time within a cell, a new epoch is created (by
incrementing the epoch number). The machine that has received the new time
then ignores times passed to it by other servers and vice versa.

An administrator then changes the epoch of the other DTS servers in the cell.
When a server is moved to another epoch, it does not advertise the time until it
has received the current time within the new epoch from some other server. For
more information on how to do a manual adjustment, see 4.6.2, “Setting the
System Time” on page 94 in the DTS Administration section.

4.4 DTS Time Format
The next section will explain the DTS time format.

4.4.1 Universal Time Coordinated (UTC)
The Universal Time Coordinated (UTC) is, by international agreement, based on
atomic clocks. However, also by international agreement, UTC is occasionally
adjusted to the time observed at the Greenwich meridian. This adjustment is
performed by addition (or subtraction) of leap seconds, which may be added to
(or subtracted from) UTC at the end of any month.

Since it is not known sufficiently far in advance when these leap seconds will
occur, the DCE Distributed Time Service does not have built-in knowledge about
when to apply leap seconds.

However, since a leap second might occur at the end of any month (and since
the clock uses UTC), we must add one second to the inaccuracy of our clocks at
the end of each month. The added inaccuracy induced by a possible leap
second will be dealt with by some external, knowledgeable source.

4.4.2 Time Zones or Time Differential Factor (TDF)
The system clocks on all systems in the world store the same time value in their
clock registers, in theory. It is UTC. Environment variables in AIX and OS/2
make sure that time zones and seasonal changes are taken into consideration
when time is displayed or set. Users always see or enter their local time, and
the commands that read or manipulate the system clocks add or subtract the
local time difference to the UTC stored in the system clock register.

For example, in Austin, which is in the Central Standard Time zone, the
environment variable CST6CDT is used in AIX. AIX also knows the rules for
seasonal changes. It applies the changes from/to Daylight Savings Time

Chapter 4. Distributed Time Service 87

automatically. In the summer, we are five hours behind UTC; in the winter, we
are six hours behind.

DCE uses a Time Differential Factor (TDF) component in their absolute time
values to account for time zones and seasonal changes. The time and date
displayed are local times, and they are derived from UTC stored in the system
clock register and the TDF.

The TDF factor is correctly set up during the initial configuration of the DTS
entity. The TDF is also correctly maintained when the time is changed from/to
Daylight Savings Time. However, for operations on the system time, DTS uses
the TDF and ignores the environment variable. So, when setting an absolute
time, the TDF has to be specified.

4.4.3 Time Representation
DTS uses opaque binary timestamps that represent UTC for all of its internal
processes. These timestamps cannot be read or disassembled. The DTS API
allows applications to convert and manipulate them, but they cannot be
displayed. DTS API calls convert timestamps in ASCII text strings, which can be
displayed.

4.4.3.1 Absolute Time Representation
An absolute time is a point on a time scale. DTS uses the UTC time scale.
Absolute time measurements are derived from system clocks or external
time-providers. DTS records the time in an opaque binary timestamp that also
includes the inaccuracy and other information.

When an absolute time is displayed, DTS converts the time to ASCII text as
shown in the following display :

dcecp> clock show
1995-05-24-17:05:21.343-05:00I000.082

DTS displays all time values in a format that complies with the International
Standards Organization (ISO).

Figure 31. Absolute Time

DTS also allows variation to the ISO format. For more information, consult the
DCE for AIX Application Development Guide - Core Services (article Basic DTS
Concepts or use the search argument ISO-Compliant Time Format Variation).

88 Understanding OSF DCE 1.1

Note: The inaccuracy portion of the time is not defined in the ISO standard; so,
time that does not contain an inaccuracy is accepted.

Examples of Time Formats

Represents Time Format

1995-7-14-18:30:00 July 14, 1995 18:30 GMT without inaccuracy
(default)

1995-7-14-12:01:00-05:00I100 Local time of 12:01 (17:01 GMT) on July 14, 1995
with a TDF of five hours and an inaccuracy of 100
seconds

12:00 12:00 GMT in the current day, month, and year,
with unspecified inaccuracy

1995-7-14 July 14, 1995 00,00 GMT with unspecified
inaccuracy

4.4.3.2 Relative Time Representation
A relative time is a discrete time interval that is added to or subtracted from
another time. A relative time is normally used as input for commands or system
routines.

Figure 32. Relative Time Structure

Examples of Relative Time Formats

Represents Time Format

21-10:30:15.000I000.300 A relative time of 21 days, 10 hours and 30
minutes,15 seconds with inaccuracy of 0.300 seconds

-20.2 A negative relative time of 20.2 seconds with
unspecified inaccuracy (default)

10:15.1I4 A relative time of 10 minutes, 15.1 seconds with an
inaccuracy of four seconds

4.4.4 Time Structures
The DTS API uses four structures to modify binary times for
 applications:

• utc
• tm
• t imespec
• relt imespec

Chapter 4. Distributed Time Service 89

4.4.4.1 utc Structure
DTS uses 128-bit binary numbers to represent time values internally. These
binary numbers, representing time values, are referred to as binary timestamps.

typedef struct utc {
idl_byte char_array[16];
} utc_t;

The opaque utc structure displayed above contains the following information:

• Count of 100-nanosecond units since 00:00:00:00, 15 October 1582 (date of the
Gregorian reform to the Christian calendar)

• Count of 100-nanosecond units of accuracy applied to the preceding item
• Time Differential Factor (TDF) expressed as the signed quantity
• DTS version number

The API provides the necessary routines for converting between opaque binary
timestamps and character strings that can be displayed and read by users.

4.4.4.2 tm Structure
The tm structure is based on the time in years, months, days, hours, minutes,
and seconds since 00:00:00 GMT, 1 January 1900.

This structure is defined in the time.h header file.

strut tm {
int tm_sec; /* Seconds (0-59) */
int tm_min; /* Minutes (0-59) */
int tm_hour; /* Hours (0-23) */
int tm_mday; /* Day of month (1-31) */
int tm_mon; /* Month (0-11) */
int tm_year; /* Year -1900 */
int tm_wday; /* Day of week (Sunday=0) */
int tm_yday; /* Day of year (0-364) */
int tm_isdst; /* non zero if Daylight Saving Time */

} /* is in effect */

4.4.4.3 timespec Structure
The timespec structure is normally used in combination with, or in place of, the
tm structure to provide finer resolution for binary times. The timespec structure
provides the number of seconds and nanoseconds since the base time of
00:00:00 GMT, 1 January 1970.

This structure is in the dce/utc.h header file.

tyedef struct timespec {
time_t tv_sec; /* seconds since of 00:00:00 GMT, 1 January 1970 */
long tv_nsec; /* additional nanoseconds since tv_sec */

} timespec_t;

4.4.4.4 reltimespec Structure
The reltimespec structure represents relative time. This structure is similar to
the timespec structure, except that the first field is signed in the reltimespec
structure.

This structure is in the dce/utc.h header file.

90 Understanding OSF DCE 1.1

tyedef struct reltimespec {
time_t tv_sec; /* Seconds of relative time */
long tv_nsec; /* Additional nanoseconds of relative time */

} reltimespec_t;

4.5 External Time Providers
To prevent the whole cell from drifting away from the UTC time, the notion of
correct time should come from an outside source. An atomic clock or some
other time service, such as the Internet NTP (Network Time Protocol), might be
used to feed DTS.

There are several devices that can acquire the UTC time values via radio,
satellite or telephone. These devices can provide standardized time values to
computer systems. DTS servers can synchronize with time providers by means
of the time provider interface (TPI). The TPI is a DCE interface with an IDL file
that specifies the communications between the DTS server process and the time
provider process. The time provider process is user-written. It has to read and
interpret the external time value and listens to RPC calls from the DTS server.
See 4.5.1, “Time Provider Interface (TPI)” below for more details on the TPI.

If an external time provider process is available that answers a DTS server′s
calls to the TPI interface, that time server synchronizes only with the TP. If the
calls are not served via the TPI, the DTS server synchronizes with other DTS
servers. This more accurate time value with a usually small interval is picked
up by the other DTS entities through their regular synchronizations, thus keeping
the synchronized time in the cell close to UTC.

Let only one time service manage the time

To prevent deadlocks or loops, let only one time service adjust the systems′
clocks in the DCE cell. If an NTP server is used as an external time provider
and is running on the same machine as the DTS server, use the null_provider
time provider process. It tells DTS, via the TPI, not to adjust the clock
(because NTP has already done it) and only sets an inaccuracy value.

If you use NTP or another time service to synchronize the time on your
systems in the DCE cell, do not configure DTS and vice versa.

You can run time providers on multiple systems in the cell. The DTS servers on
these machines then only synchronize via the TPI and provide their time values
to the other DTS entities for their synchronization process.

4.5.1 Time Provider Interface (TPI)
The external time provider is implemented as an independent process that
communicates with a DTS server process through Remote Procedure Call
(RPCs).

• DTS daemon is the client
• Time-Provider process (TP process) is the server

Both the RPC client (DTS daemon) and the server (TP process) must be running
on the same system. If connected to a TP, a time server uses this value to set
its own clock. By assigning a very small confidentiality interval, this time value
gets a high weight in the time calculation procedure of other DTS daemons.

Chapter 4. Distributed Time Service 91

The RPC interface used by the DTS daemon is predefined and consists of two
procedures. The interface is called the Time Provider Interface (TPI). The TP
process has to implement the code executing these procedures. The TP process
is user-written. It reads the time provided by an external device or another time
provider, transforms it into UTC time, assigns an inaccuracy value, and sends
time values back when called by the DTS daemon. Example programs for
several time providers are supplied for AIX in /usr/lpp/dce/examples/dts. They
are ready to be compiled and used. OS/2 does not provide any time provider
examples. The two procedures defined by the TPI are:

• ContactProvider()

This procedure is the first called by DTS. It verifies that the TP process is
running and obtains a control message that DTS uses for subsequent
communications with the TP process and for synchronization after it receives
the timestamps. As part of the answer to this call, the TP process tells the
DTS daemon whether it is allowed to change the system clock to the
transmitted time values. If another time provider, such as an NTP server,
updates the system clock, then the DTS daemon should not also do it.

• ServerRequestProviderTime()

After the TP process is successfully contacted, this procedure is called by
DTS to obtain the timestamps from the external time-provider. The
timestamps contain an inaccuracy value, which is usually small. This gives
this DTS server a high weight in the synchronization process of other DTS
entities.

Figure 33. DTS Daemon and TP Process RPC Call ing Sequence

Steps 1 through 4 in Figure 33 show the execution of ContactProvider()
procedure that checks the existence of an external time provider. Steps 5

92 Understanding OSF DCE 1.1

through 8 show the flow of the ServerRequesterProviderTime() procedure used to
obtain time values with an inaccuracy interval.

For more information on the TPI, see the DCE for AIX Application Development
Guide - Core Services.

4.6 DTS Administration
To manage DTS, you can use the DCE Control Program, dcecp, which is new in
DCE 1.1. The previous dtscp used in DCE 1.0.x is still available. The advantage
of dcecp over dtscp is that you can manage DTS daemons of remote systems
without having to log into the remote system.

In the following examples, we will always show the new command first and then
the dtscp that achieves the same result.

4.6.1 Show the Time
To show the DTS time of the local machine, use the following command:

dcecp
dcecp> clock show
1995-05-25-14:59:58.527-05:00I-----
dcecp> quit
#
dtscp
dtscp> show current time
Current Time = 1995-05-25-15:01:11.711-05:00I-----
dtscp> quit

With the following command, you will display all attribute values for the DTS
entity on the local node:

dcecp> dts show
{tolerance +0-00:05:00.000I-----}
{tdf -0-05:00:00.000I-----}
{maxinaccuracy +0-00:00:00.100I-----}
{minservers 1}
{queryattempts 3}
{localtimeout +0-00:00:05.000I-----}
{globaltimeout +0-00:00:15.000I-----}
{syncinterval +0-00:10:00.000I-----}
{type clerk}
{clockadjrate 10000000 nsec/sec}
{maxdriftrate 50000 nsec/sec}
{clockresolution 10000000 nsec}
{version V1.0.1}
{timerep V1.0.0}
{autotdfchange no}
{nexttdfchange 1995-10-29-01:00:00.000-06:00I0.000}
{status enabled}
{localservers
 {name /.../itsc7.austin.ibm.com/hosts/ev7/self}
 {timelastpolled 1995-08-03-15:58:43.422-05:00I-----}
 {lastobstime 1995-08-03-15:58:48.803-05:00I-----}
 {lastobsskew +0-00:00:05.381I-----}
 {inlastsync TRUE}
 {transport RPC}}

Chapter 4. Distributed Time Service 93

dtscp> show all
Error Tolerance = +0-00:05:00.000I-----
Local Time Differential Factor = -0-05:00:00.000I-----
Maximum Inaccuracy = +0-00:00:00.100I-----
Servers Required = 1
Query Attempts = 3
Local Set Timeout = +0-00:00:05.000I-----
Global Set Timeout = +0-00:00:15.000I-----
Synchronization Hold Down = +0-00:10:00.000I-----
Type = Clerk
Clock Adjustment Rate = 10000000 nsec/sec
Maximum Clock Drift Rate = 50000 nsec/sec
Clock Resolution = 10000000 nsec
DTS Version = V1.0.1
Time Representation Version = V1.0.0
Automatic TDF Change = FALSE
Next TDF Change = 1995-10-29-01:00:00.000-06:00I0.000

4.6.2 Setting the System Time
DTS only lets you set the time on DTS servers. The time can either be changed
monotonically or abruptly. A monotonic change is continuously done by slowing
down or speeding up the clock adjustment rate as described above in 4.3.3,
“Adjusting the Clock” on page 86. To initiate a monotonic change on DTS
server, ev7, issue the following commands from any system:

dcecp> clock show /.:/hosts/ev7/dts-entity
1995-05-25-14:58:19.651-05:00I5.119
dcecp> clock set -to 1995-05-25-15:02:00-05.00I01.00 /.:/hosts/ev7/dts-entity
dcecp> clock show /.:/hosts/ev7/dts-entity
1995-05-25-15:02:11.877-05:00I2.151

dtscp> update time 1995-05-25-15:02:00-05.00I01.00

The new time and inaccuracy (one second in the above example) you specify
must form a smaller interval than the current system interval (5.119 seconds)
and be contained in the current interval. In other words, the new time must be
more accurate. To manually set a new time, you should have access to a
trusted time reference. Type the command in, and wait until the time reference
reaches the desired time; then press <enter> to execute the command.

Don ′ t forget the TDF

When you set a new time, remember that DTS is dealing with local time. So,
don ′ t forget to specify the time with the correct TDF (-05.00 for Austin during
Daylight Savings Time). Otherwise, when you omit the TDF, your local time
is set to UTC and, because the TDF is still in effect, it is actually set back five
hours. The DTS commands do not honor the environment variables used by
the operating system, they only use the TDF.

If the system clock is way out of synchronization and the problem that caused
the error has been fixed, you might want to change the system time abruptly.
Also, if the new time falls out the time interval of the other DTS servers, DTS
only lets you perform an abrupt change. Such a change can only be done
together with a change of the epoch. This prevents this server from being
declared faulty. To initiate an abrupt change in combination with an epoch
change on the local DTS server, issue the following command:

94 Understanding OSF DCE 1.1

dcecp> clock set -to 1995-05-25-15:10:00-05.00I01.00 -abruptly -epoch 1
dcecp> clock show
1995-05-25-15:10:11.567-05:00I1.011

dtscp> change epoch 1 time 1995-05-25-15:10:00-05.00I01.00

Note: The AIX date command to change the time or date also changes the DTS
time. So, be careful; don′ t use the date command to change the time in a DCE
environment.

Beware of abrupt changes

DCE servers, especially CDS, are largely dependent upon timestamps. An
abrupt change, particularly backwards, could mess up the whole DCE cell.
For example, when time is adjusted backwards and changes were made to
CDS while the time was wrong, CDS does not perform some operations on
objects with timestamps specifying future times.

The actions to be performed on a system with a faulty clock depend on the
machine ′s role in the DCE cell. If it is, for example, a CDS server with
master replicas, you might need to install the latest backup of its CDS
database. If it is a client, it might be necessary to reconfigure that client
only.

On client systems, you can force a synchronization if you need to adjust the
system clock outside of the regular synchronization process.

dcecp> dts synchronize [-abruptly]
dtscp> synchronize [set clock true]

The option for an abrupt change makes the DTS entity perform an immediate
clock adjustment to the value resulting from the synchronization.

4.6.3 Changing Roles of a Time Servers
You can change a Local Time Server to a Global Time Server with one of the
following commands:

dcecp> dts configure -global
dtscp> advertise

To remove the server from the /.:/cell-profile and make it local-only:

dcecp> dts configure -nonglobal
dtscp> unadvertise

To modify a time server to a courier role, use one of the two following
commands:

dcecp> dts modify -change {courierrole courier}
dtscp> set courier role courier

To reconfigure the time server as non-courier server, use one of the two
following commands:

dcecp> dts modify -change {courierrole noncourier}
dtscp> set courier role noncourier

With the dcecp subcommand, dts show, you can see the change.

Chapter 4. Distributed Time Service 95

4.7 Platform-Specific Implementation
This section gives a summary of the platform-specific implementation differences
for the DTS.

4.7.1 Distributed Time Service on AIX
AIX implements DTS servers and clerks. It provides example implementations
for external time providers that are ready to be compiled and run.

The DTS directly affects the system clock. A monotonic adjustment of the
system clock executed by DTS is also observed with the AIX date command. On
the other hand, a change of time and date with the AIX date command are like
an abrupt change for DTS.

4.7.1.1 Routines with Unsupported Features
In the utc_mkreltime DTS routine, on the input argument, inacctm, the tm_zone
structure is not ignored.

4.7.1.2 Removed Command
The dtss-graph command, which converts a DTS synchronization trace record
into Postscript in DCE 1.0.3 on AIX 3.2.5, is not supported anymore.

4.7.2 Distributed Time Service on OS/2 Warp
OS/2 implements DTS servers and clerks. There is no sample code for external
time providers.

The DTS has a separate clock register which is gradually adjusted upon
monotonic changes. The system clock is always abruptly changed. For a period
of time, when DTS is performing a gradual adjustment, the time returned by
OS/2 commands and DTS commands may be different.

4.7.3 Distributed Time Service on DOS Windows
The DCE Distributed Time Service API is not supported in OSF DCE for DOS
Windows. Only DTS clerks, and no DTS servers, are implemented on this
platform.

96 Understanding OSF DCE 1.1

Chapter 5. Distributed File Service

The Distributed File Service (DFS) is a DCE application that provides global file
sharing. Access to files located anywhere in interconnected DCE cells is
transparent to the user. To the user, it appears as if the files were located on a
local drive. DFS servers and clients may be heterogeneous computers running
different operating systems.

Figure 34. OSF DCE Distributed File Service

The origin of DFS is Transarc Corporation′s implementation of the Andrew File
System (AFS) from Carnegie-Mellon University. DFS conforms to POSIX 1003.1
for file system semantics and POSIX 1003.6 for access control security. DFS is
built onto and integrated with all of the other DCE services and was developed to
address identified distributed file system needs, such as:

• Location transparency
• Uniform naming
• Good performance
• Security
• High availability
• File consistency control
• NFS interoperability

Administrators must understand the concepts and components of the DFS. By
creating a useful fileset hierarchy, default ACLs, replication sites, and backup
concepts, they can make the DFS use easy for their end-users. Users do not
have to know anything about DFS except the pathnames of DFS files; they can
access these files just like local files. Maybe advanced users will manage their
own ACL definitions to limit access permissions on their files.

This chapter gives a very brief overview of the DFS concepts. You can find more
details, as well as installation and administration instructions, in the The

 Copyright IBM Corp. 1995 97

Distributed File System (DFS) for AIX/6000 and the Using and Administering AIX
DCE 1.3 redbooks or in the DCE for AIX DFS Administration Guide and Reference.

5.1 DFS Architecture
DFS follows the client/server model, and it extends the concept of DCE cells by
providing DFS administrative domains , which are an administratively
independent collection of DFS server and client systems within a DCE cell.

There may be many DFS file servers in a cell. Each DFS file server runs the file
exporter service which makes files available to DFS clients. The file exporter is
also known as the protocol exporter.

Figure 35. Architecture of the Distributed File Service (DFS)

DFS clients run the cache manager , an intermediary between applications that
requests files from DFS servers. The cache manager translates file requests into
RPCs to the file exporter on the file server system and stores (caches) file data
on disk or in memory to minimize server accesses. It also ensures that the
client always has an up-to-date copy of a file.

5.2 DFS File Server
The DFS file server can serve two different types of file systems:

• Local File System (LFS), also known as the Episode File System

• Some other file system, such as the UNIX File System (UFS)

Full DFS functionality is only available with LFS and includes:

• High performance

• Log-based, fast restarting filesets for quick recovery from failure

• High availability with replication, automatic updates and automatic bypassing
of failed file server

• Strong security with integration to the DCE security service providing ACL
authorization control

98 Understanding OSF DCE 1.1

Figure 36 on page 99 shows the LFS structure. It uses aggregates which are
physically equivalent to a standard UNIX partition or a logical volume in AIX.

An aggregate holds DFS structural data which contains information about the
structure and location of data on the aggregate. Each aggregate can host
multiple filesets , which is a hierarchical grouping of files managed as a single
unit. A fileset corresponds logically to a directory in the file tree. The place at
which the fileset is attached to the file tree is known as a mount point . DFS
appears as single file tree although the filesets may physically reside on file
systems hosted by several computers.

Figure 36. Structure of Local File System (LFS)

The fileset mechanism is used to provide effective support for the advanced
features of DFS, for support of replication, and to permit simplified system
management of such tasks as reconfiguration and backup. System
administrators can easily move LFS filesets from one aggregate to another to
ensure availability and to balance the load on file systems. Information on
fileset location is saved in the fileset location database (FLDB) . When the DFS
clients needs a file, it queries the FLDB which returns the location of a DFS
server holding the fileset. If the pathname stretches over several filesets, this
look-up process can be an iteration of multiple file server and FLDB accesses
the first time a file is looked up.

5.3 File Naming
DFS uses the Cell Directory Service (CDS) name /.:/fs as a junction to its
self-administered namespace. This CDS entry is an RPC group that contains the
binding information to the FLDB servers which, as a replicated service,
administer the DFS namespace. DFS objects of a cell (files and directories) build
a file system tree rooted in /.:/fs of every cell. Since the DFS junction (/.:/fs) can
be globally accessed through its full name (/.../cellname/fs), all DFS file systems
become part of a global file system.

Chapter 5. Distributed File Service 99

Figure 37. Naming Convention in DFS

Figure 37 shows an example of a file in the global namespace using GDS (X.500)
syntax and DNS syntax. The local name can also be abbreviated to
/:/usr/ricardoh/games/tictactoe.exe. The /: abbreviation is extended to
/.../local_cell/fs.

5.4 Performance
Performance is one of the main goals of DFS, and it achieves it by including
features, such as:

• Cache manager — Files requested from the server are stored in cache
before being passed to the client so that the client does not need to send
requests for data across the network every time the user needs a file. This
reduces load on the server file systems and minimizes network traffic,
thereby improving performance.

• Multithreaded servers — DFS servers make use of DCE threads support to
efficiently handle multiple file requests from the clients.

• RPC pipes — The RPC pipe facility is extensively used to transport large
amounts of data efficiently.

• Replication — Replication support allows efficient load-balancing by
spreading out the requests for files across multiple servers.

5.5 File Consistency
Using copies of files cached in memory at the client side can cause problems
when the file is being used by multiple clients in different locations. There must
be file consistency control so that clients can be sure to see other client′s
changes and also to have their changes done.

DFS uses a token mechanism to synchronize concurrent file accesses by
multiple users. A DFS server has a token manager which manages the tokens
that are granted to clients of that file server. On the client side, the cache
manager is responsible to comply with the token control. Using this mechanism,

100 Understanding OSF DCE 1.1

DFS ensures that users are always working with the most recent version of a
file. The whole process is transparent to the user.

Figure 38 shows the token control done by the DFS server.

Figure 38. DFS Server ′s Token Control

 1. The client sends a file read request to the DFS server; multiple read tokens
can coexist at the same time.

 2. If no other client has a write token to the file, DFS sends the data of the file
and a read token to the client.

 3. The DFS server now receives a file write request from a second client; only
one write token can exist at a time and cannot coexist with any read token.

 4. The DFS server sees that the file is being used by the first client and sends it
a read token revoke.

 5. If the first client is not using the file at that time, it accepts the revoke and
inform the server.

 6. The server now can send a write token to the second client.

All these steps are automatically done and are transparent to the client
application. After accepting a revoke, the client discards the file in the cache
and gets a new copy from the server the next time the file is needed.

5.6 Availability
Replication of LFS filesets on multiple servers are provided for better availability
in DFS. Every fileset has a single read/write version and multiple read-only
replicas of that fileset. The read/write version is the only one that contains
modifiable versions of directories and files in that fileset; the read-only replicas
cannot be modified and can be placed at various sites in the file system. Every
change in the read/write fileset is reflected in the replicated filesets.

If there is a crash of a server system housing a replicated fileset, the work is not
interrupted, and the client is automatically switched to another replica.

There are more features to improve availability, such as:

Chapter 5. Distributed File Service 101

• DFS LFS log-based file system — DFS logs information about operations that
affect the metadata associated with aggregates and filesets so that it can
rapidly return to a consistent state when restarted.

• DFS LFS administration — Allows system administrators to perform routine
administration, such as backups and fileset moves between disks, while a
server is in operation and available to users. Fileset moves and backups are
only possible within a DCE cell. When files need to be moved to another
cell, traditional tools need to be used, and ACLs need to be manually
transferred.

5.7 Security
DCE security provides DFS with authentication of user identities, verification of
user privileges and authorization control. Using the DCE security′s ACL
mechanism, DFS extends the UNIX permissions (read, write, execute) by
providing precise definitions of access rights for directories and files (owner,
insert and delete). Note that only LFS backups provide preservation of ACL
information; backups with operating-system commands loose the ACLs.

5.8 Platform-Specific Implementation
Only AIX provides a full DFS implementation with DFS clients and servers. DFS
clients can export all or parts of DFS to NFS; they can act as NFS servers.
However, if NFS clients access DFS through such an NFS server, their access is
unauthenticated, and their access permissions are very limited. Also, on the AIX
platform, there is an NFS to DFS Authenticating Gateway that allows an NFS
user to establish a DCE login on the gateway machine and become an
authenticated user. In the latest version of the gateway for AIX Version 4.1 and
IBM DCE 2.1, the PC-NFS authentication service (pcnfsd) is integrated to allow
automatic DCE authentication from a PC-NFS client.

The DCE Beta Version for OS/2 Warp provides a DFS client.

The current IBM DCE for OS/2 and IBM DCE for DOS Windows do not provide
any DFS. The only way for them to access DFS is as an NFS client.

102 Understanding OSF DCE 1.1

Chapter 6. Installation and Configuration of DCE

This chapter will describe the DCE installation process on AIX and OS/2. We will
describe how to create and configure a DCE cell, including client and server
components. For DFS configuration, see the redbook Using and Administering
AIX DCE 1.3.

In the implementation section, we will refer to our DCE test environment, as
shown in Figure 39. We will configure cell1 step by step as shown in Figure 39.
The configuration of cell2 can easily be done following the description for cell1.
Finally, we describe how to configure intercell communication.

Figure 39. DCE Environment Used in Our Laboratory

There are two phases to the configuration of a DCE cell. During the first phase,
or initial cell configuration , certain tasks must be performed to initialize the cell.
During the second phase, additional features can be configured into the cell.

The minimum requirements for a cell are:

• One security server
• One CDS server
• At least one DTS server (three per LAN is recommended)

For details about correct DTS layout see Chapter 4, “Distributed Time Service”
on page 79. These servers must be configured to initialize a cell. After the cell
is up and running, you can configure other components, such as DFS servers,
DCE and DFS clients, replicas for the security and CDS servers, a global
directory agent, and additional DTS servers or clients.

6.1 AIX Platform
On AIX, you can perform all initial and additional configuration tasks using the
standard system management interface tool (SMIT). However, AIX also provides
commands to perform these same configuration tasks at the command line,
which allows automation by incorporating the commands into shell scripts.

 Copyright IBM Corp. 1995 103

6.1.1 Preparation Steps
If you install DCE for the first time, you should perform some preparation steps
before you install the DCE code:

 1. Make sure you have at least 100 MB of paging space (lsps -a command) and
increase it if necessary or add another paging space. For example, to
increase an existing paging space by seven partitions (28 MB), run the
following command:

chps -s′7 ′ hd6

 2. Create a separate file system for the /var/dce directory to prevent it from
being filled up by AIX subsystems, such as the print spooler and the trace
facility. The DCE V2.1 for AIX: Getting Started manual (or Release Notes)
lists the disk space requirements underneath the /var/dce directory, which
depends on the components you intend to install. A DCE/DFS client needs 4
MB, and a DCE/DFS server needs something between 24 MB and 50 MB.
The following example creates a 24 MB file system:

crfs -v jfs -g rootvg -a size=48000 -m/var/dce -Ayes -prw
mount /var/dce

 3. If you run a DFS client on the system, you should also create a separate file
system for the DFS cache to isolate it from the rest of the DCE storage. The
following example makes room for a 10 MB cache on a 12 MB file system:

crfs -v jfs -g rootvg -a size=24000 -m/var/dce/adm/dfs/cache -Ayes -prw
mount /var/dce/adm/dfs/cache

 4. Check the TCP/IP network. Make sure names are correctly resolved using
the host command and the routing works with the ping command.

 5. Synchronize the system clocks, for instance, with the following command:

setclock <time_providing_host_name>

If DCE is already installed, please check whether you comply with the above
suggestions, and decide whether you want to change your environment.

6.1.2 Installation
Installation is done using smit or the installp command. To install DCE call smit
in the following way:

smitty installp
→Install/Update From All Available Software

Select your input device, and then you′ ll get:

104 Understanding OSF DCE 1.1

� �
Install/Update From All Available Software

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* INPUT device / directory for software /dev/rmt0.1
* SOFTWARE to install [] +
PREVIEW only? (install operation will NOT occur) no +
COMMIT software updates? no +
SAVE replaced files? yes +
ALTERNATE save directory []
AUTOMATICALLY install requisite software? yes +
EXTEND file systems if space needed? yes +
OVERWRITE same or newer versions? no +
VERIFY install and check file sizes? no +
DETAILED output? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

On the SOFTWARE to install line, press F4, and select the filesets you want to
install on this machine. Set the installation options you want to apply on this
machine. Select Do . For further general information about installation
procedures and SMIT, refer to the AIX Version 4.1 RISC System/6000 Installation
Guide.

6.1.3 Fast Path
In the following sections for the AIX DCE configuration, we will configure ev1 as
the primary security server, the initial CDS server and a local DTS server. Node
ev2 will be configured as a DCE client first, and then its role will be extended to
become a secondary CDS server, a secondary security server, a local DTS
server, and a global directory agent (GDA) for intercell communication.

With the following fast path commands, you can achieve the same configuration
as described in the rest of this section:

 1. On ev1, execute the following command:

mkdce -n cell1.itsc.austin.ibm.com sec_srv cds_srv dts_local
Enter password to be assigned to initial DCE accounts:
Re-enter password to be assigned to initial DCE accounts:

 2. On ev2, execute the following command:

mkdce -R -n cell1.itsc.austin.ibm.com -s ev1 sec_srv cds_second dts_local gda
Enter password for DCE account cell_admin:

Now you can go directly to the configuration of sys5, as illustrated in 6.2, “OS/2
Platform” on page 116.

Chapter 6. Installation and Configuration of DCE 105

6.1.4 Configuring the Master Security Server
To configure the master security server for the cell, call smit on ev1 in the
following way:

smitty mkdce
→Configure DCE/DFS Servers

→SECURITY Server

You will be asked to select whether this server is going to be the primary
(master) or secondary (replica) server. Since we are on the initial configuration,
you must choose 1 primary . You will get the following screen:

� �
SECURITY Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [cell1.itsc.austin.ibm.com]
* Cell ADMINISTRATOR′ s account [cell_admin]
Machine′ s DCE HOSTNAME []
PRINCIPALS Lowest possible UNIX ID [100]
GROUPS Lowest possible UNIX ID [100]
ORGANIZATION Lowest possible UNIX ID [100]
MAXIMUM possible UNIX ID [32767]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Fill in the cell name and other information for your cell. You can select a DCE
hostname for this machine that is different from the TCP/IP hostname. The
default is to take the TCP/IP hostname as the DCE hostname. After filling in the
information, select Do . When prompted, enter the password for the cell
administrator ′s account. You will get the following messages:

Enter password to be assigned to initial DCE accounts:
Re-enter password to be assigned to initial DCE accounts:

Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Server (sec_srv)...
Configuring Security Client (sec_cl)...
Security Client (sec_cl) configured successfully

Security Server (sec_srv) configured successfully

Current state of DCE configuration:
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

The same action could be performed on the command line with the following
command:

mkdce -n cell1.itsc.austin.ibm.com sec_srv

106 Understanding OSF DCE 1.1

At this point, the DCE daemon (shown as RPC Endpoint Mapper), the security
server and security client are configured on the machine. This command also
starts the dced and secd processes.

6.1.5 Config uring the Initial CDS Server
Each cell can only have one primary CDS server. To configure the initial CDS
server for a cell, call smit in the following way:

smitty mkdce
→Configure DCE/DFS Servers

→CDS (Cell Directory Service) Server

Select the 1 initial option, and you will get the following screen:

� �
CDS (Cell Directory Service) Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../cell1.itsc.austin>
* SECURITY Server [ev1]
* Cell ADMINISTRATOR′ s account [cell_admin]
* LAN PROFILE [/.:/lan-profile]
Machine′ s DCE HOSTNAME [ev1]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

If you are configuring the CDS initial server on the same machine where the
security server is running, all the information will be filled already. If you were
on a different machine, you would have to enter the cell name at the prompt and
the host name (or IP address) of the security server. Select Do . You will get the
following messages:

Enter password for DCE account cell_admin:

Configuring Initial CDS Server (cds_srv)...
Configuring CDS Clerk (cds_cl)...
Waiting (up to 2 minutes) for cdsadv to find a CDS server.
Found a CDS server.

Initializing the namespace ...
Modifying acls on /.:
Creating /.:/cell-profile
.

<< cut some output here
Modifying acls on /.:/ev1_ch

Initial CDS Server (cds_srv) configured successfully

CDS Clerk (cds_cl) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server

Chapter 6. Installation and Configuration of DCE 107

rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

Press Enter to continue

One of the following commands could have achieved the same result:

mkdce -n cell1.itsc.austin.ibm.com -s ev1 cds_srv
mkdce cds_srv

At this point, the RPC, security client, CDS server, and CDS clerk are configured
on ev1. This command also starts the CDS server (cdsd), the CDS clerk
(cds_clerk) and the CDS advertiser (cds_adv) daemons, in addition to the already
running daemons dced and secd.

If the CDS Server had been configured on a different machine than ev1, you
would have to configure a CDS client on ev1 now. Refer to 6.1.7.1, “Configuring
DCE Clients” on page 109 for instructions on how to install a client.

6.1.6 Configuring DTS Servers
You can configure DTS local or global servers. To configure a local DTS server
on ev1, call smit in the following way:

smitty mkdce
→Configure DCE/DFS Servers

→DTS (Distributed Time Service) Server

� �
DTS Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Type of SERVER local +
Type of COURIER noncourier +

* CELL name [/.../cell1.itsc.austin>
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR′ s account [cell_admin]
* LAN PROFILE [/.../cell1.itsc.austin>
Machine′ s DCE HOSTNAME [ev1]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Select the appropriate Type of SERVER and Type of COURIER for this machine.
Select Do . The following messages will be displayed:

Enter password for DCE account cell_admin:

Configuring Local DTS Server (dts_local)...
Local DTS Server (dts_local) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_srv COMPLETE Initial CDS Server
dts_local COMPLETE Local DTS Server

108 Understanding OSF DCE 1.1

rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Master)

Press Enter to continue

It is possible to create the same definition with the following command:

mkdce dts_local

If the DTS server is on a different machine than the CDS and Security Server,
you will have to configure a DTS entity (server or client) on those machines.

6.1.7 Further Cell Configuration
Once the security, CDS and DTS servers are configured, you have completed the
initialization of the cell. Now we can add clients into the cell or configure other
servers for replication of the primary servers.

6.1.7.1 Configuring DCE Clients
Configuring clients entails two distinct sets of operations:

• Tasks that require cell administrator authority within the DCE cell.

• Tasks that require root user authority on the machine that is to be configured
as a DCE client.

Because the cell administrator is unlikely to have root user access to every
machine in a cell and because the root users of other machines are unlikely to
get cell_admin′s password, these tasks are separated into a split configuration of
clients. For configuring security and CDS clients, the configuration can be a
two-step process. The cell administrator runs the administrator portion from any
machine in the cell to update the namespace and security registry. The root
users of the client machines then run the local portion to create necessary files
and to start client daemons for all client components. The cell administrator can
run the full process on machines where they have root access.

To perform the cell administrator ′s part of the split configuration method , call
smit on ev1 in the following way:

smitty mkdce
→Configure DCE/DFS Clients

→3 admin only configuration for another machine

� �
Administrator DCE Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CLIENTS to configure [sec_cl cds_cl] +
* Cell ADMINISTRATOR′ s account [cell_admin]
Client Machine DCE HOSTNAME [ev2]

* Client Machine IDENTIFIER [ev2]
* LAN PROFILE [/.../cell1.itsc.austin>

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Chapter 6. Installation and Configuration of DCE 109

Select the clients you want to configure on the machine. We show the example
for ev2. Fill in the TCP/IP hostname (on the Client Machine IDENTIFIER prompt)
and the DCE hostname (if different from TCP/IP). Select Do . You will get the
following messages:

Enter password for DCE account cell_admin:

Configuring Security Client (sec_cl) for dce_host ev2 on
machine ev2.itsc.austin.ibm.com ...

Completed admin configuration of Security Client (sec_cl) for
dce_host ev2 on machine ev2.itsc.austin.ibm.com

Configuring CDS Clerk (cds_cl) for dce_host ev2 on
machine ev2.itsc.austin.ibm.com ...

Modifying acls on hosts/ev2
Modifying acls on hosts/ev2/self
Modifying acls on hosts/ev2/cds-clerk
Modifying acls on hosts/ev2/profile
Modifying acls on /.:/lan-profile

Completed admin configuration of CDS Clerk (cds_cl) for
dce_host ev2 on machine ev2.itsc.austin.ibm.com

Cell administrator′ s portion of client configuration has completed
successfully. Root administrator for ev2.itsc.austin.ibm.com should now
complete the client configuration on that machine.

Press Enter to continue

You can type the next command instead:

mkdce -o admin -i ev2 -h ev2 sec_cl cds_cl

To do the local part of the split configuration , log in as root on the designated
machine ev2, and call smit in the following way:

smitty mkdce
→Configure DCE/DFS Clients

→ 2 local only configuration for this machine

110 Understanding OSF DCE 1.1

� �
Local DCE/DFS Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [cell1.itsc.austin.ibm.>
* CLIENTS to configure [rpc sec_cl cds_cl] +
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Client Machine DCE HOSTNAME [ev2]
The following fields are used
ONLY if a DFS client is configured

* DFS CACHE on disk or memory? [disk] +
* DFS cache SIZE (in kilobytes) [10000]
* DFS cache DIRECTORY (if on disk) [/var/dce/adm/dfs/cache]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Fill in the cell name, the clients to configure, the name of security server, and
the DCE hostname of the local machine. You will get the following messages:

Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Client (sec_cl)...
Security Client (sec_cl) configured successfully on the
local machine

Configuring CDS Clerk (cds_cl)...
CDS Clerk (cds_cl) configured successfully on the
local machine

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Press Enter to continue

Using the full configuration method on a client system, you can make it in one
step if you know the cell administrator′s password. On ev2, you can call smit
with the following path:

smitty mkdce
→Configure DCE/DFS Clients

→1 full configuration for this machine

Chapter 6. Installation and Configuration of DCE 111

� �
Full DCE/DFS Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [cell1.itsc.austin.ibm.com>
* CLIENTS to configure [rpc sec_cl cds_cl] +
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR′ s account [cell_admin]
* LAN PROFILE [/.:/lan-profile]
Client Machine DCE HOSTNAME [ev2]

The following fields are used
ONLY if a DFS client is configured

* DFS CACHE on disk or memory? [disk] +
* DFS cache SIZE (in kilobytes) [10000]� �

Fill in the required information, and select Do .

6.1.7.2 Configuring a Secondary CDS Server
The administrator of the cell may decide to have a secondary cell directory
server for backup and availability reasons. When you create a secondary CDS
server, the root directory of the CDS is automatically replicated on this server.

To configure a secondary CDS server, call smit on ev2 as follows:

smitty mkdcesrv
→CDS (Cell Directory Service) Server

→2 additional

� �
CDS (Cell Directory Service) Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../cell1.itsc.austin>
* SECURITY Server [ev1]
Initial CDS Server (If in a separate network) []

* Cell ADMINISTRATOR′ s account [cell_admin]
* LAN PROFILE [/.../cell1.itsc.austin>
Machine′ s DCE HOSTNAME [ev2]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image� �

All the fields should be automatically filled. Select Do . You will be prompted for
the cell administrator′s password. You will get the following messages:

Enter password for DCE account cell_admin:

Configuring Additional CDS Server (cds_second)...

Modifying acls on ev2_ch

Additional CDS Server (cds_second) configured successfully

112 Understanding OSF DCE 1.1

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_second COMPLETE Additional CDS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Press Enter to continue

6.1.7.3 Configuring a Security Replica Server
The configuration of a security replica decreases the load on the master security
server and keeps the cell functional in case the master security server becomes
unavailable. To configure ev2 as a security replica server, log in as root on ev2,
and call smit in the following way:

smitty mkdcesrv
→SECURITY Server

→2 secondary

� �
SECURITY Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../cell1.itsc.austin>
* Cell ADMINISTRATOR′ s account [cell_admin]
* REPLICA name [ev2]
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* LAN PROFILE [/.../cell1.itsc.austin>
Machine′ s DCE HOSTNAME [ev2]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

All fields should be automatically filled. Select Do . You will be prompted for the
cell administrator ′s password. You will get the following messages:

Enter password for DCE account cell_admin:

Configuring Security Server (sec_srv)...

Modifying acls on /.:/sec/replist
Modifying acls on /.:/subsys/dce/sec
Modifying acls on /.:/sec
Modifying acls on /.:
Modifying acls on /.:/cell-profile

Security Server (sec_srv) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_second COMPLETE Additional CDS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Replica)

Press Enter to continue

Chapter 6. Installation and Configuration of DCE 113

6.1.7.4 Configuring Additional DTS Servers
To configure a machine as a DTS Server, it must be at least a DCE client for all
components (except DTS). If the machine is configured as a DTS client,
unconfigure it. You must log in as root on the designated machine, and start
smit on ev2 the following way:

smitty mkdcesrv
→DTS (Distributed Time Service)

� �
DTS Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Type of SERVER local +
Type of COURIER noncourier +

* CELL name [/.../cell1.itsc.austin>
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR′ s account [cell_admin]
* LAN PROFILE [/.../cell1.itsc.austin>
Machine′ s DCE HOSTNAME [ev2]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Select the appropriate type of server and type of courier. Select Do . You will be
prompted for the cell administrator′s password. The following messages will be
shown:

Enter password for DCE account cell_admin:

Configuring Local DTS Server (dts_local)...
Local DTS Server (dts_local) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_second COMPLETE Additional CDS Server
dts_local COMPLETE Local DTS Server
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Replica)

Press Enter to continue

6.1.7.5 Configuring the Global Directory Agent
The machine designated to run the GDA should be configured at least as a DCE
client. To configure GDA, you must call smit on ev2 in the following way:

smitty mkdcesrv
→GDA (Global Directory Agent) Server

114 Understanding OSF DCE 1.1

� �
GDA Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* CELL name [/.../cell1.itsc.austin>
* SECURITY Server [ev1]
CDS Server (If in a separate network) []

* Cell ADMINISTRATOR′ s account [cell_admin]
* LAN PROFILE [/.../cell1.itsc.austin>
Machine′ s DCE HOSTNAME [ev2]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Because this machine is already a client, all the information should be
automatically filled. Select Do . When prompted, enter the cell administrator′s
password. You will get the following messages:

Enter password for DCE account cell_admin:

Configuring Global Directory Agent (gda)...
Global Directory Agent (gda) configured successfully

Current state of DCE configuration:
cds_cl COMPLETE CDS Clerk
cds_second COMPLETE Additional CDS Server
dts_local COMPLETE Local DTS Server
gda COMPLETE Global Directory Agent
rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server (Replica)

Press Enter to continue

6.1.8 Configuring DFS Servers
To configure DFS servers, you have to take several steps:

 1. Configure one or more system control machines (SCM server).

 2. Configure one or more fileset location database servers (FLDB server).

 3. Configure one or more file server machines.

You can create, optionally, one or more fileset replication server machines and
one or more backup database machines. For information on how to configure
the DFS servers, refer to Using and Administering AIX DCE 1.3, GG24-4348, and
to The Distributed File Systems (DFS) for AIX/6000, GG24-4255.

Chapter 6. Installation and Configuration of DCE 115

6.2 OS/2 Platform
On OS/2 you can perform installation and configuration tasks from a graphical
user interface. Note that the description of these tasks is based on the IBM DCE
for OS/2 Warp Beta 2 code with a release date of August 1995. There may be
changes to this in the final product. However, the basic installation and
configuration procedures will be similar to those presented here:

 1. A series of windows will guide you through the installation. First, you wil l
need to specify the components you want to install on the system, and then
the files will be copied from the installation media to the local harddisk. An
OS/2 DCE v2.1 folder will be created containing several program objects for
DCE configuration and management.

 2. You will be able to start the configuration process by double-clicking a
Configure DCE object in the OS/2 DCE v2.1 folder. A series of windows will
guide you through the configuration.

 3. After the first two steps, DCE is up and running. An administrator can then,
for instance, use the object-oriented administration GUI to monitor and/or
manage the cell.

Please look for Release Notes and/or README files which may contain current
recommendations, instructions or limitations.

6.2.1 Preparation Steps
The IBM DCE for OS/2 Beta 2 supports TCP/IP and NetBIOS protocols. We use
TCP/IP to be able to communicate with the AIX machines. However, you could
choose NetBIOS between two OS/2 machines. The DCE protocol sequences for
NetBIOS are ncadg_nb_dgram (connectionless) and ncacn_nb_stream
(connection-oriented).

Before you install DCE, the network must be properly configured and working:

 1. Install MPTS (Multi-Protocol Transport Service) for OS/2 Version 3.0.
 2. Configure your network adapter and protocol stacks in MPTS
 3. Configure TCP/IP

The MPTS installation is done, for example, from diskettes with the A:\INSTALL
command. This installs an MPTS icon on the desktop. Double-click this icon to
configure MPTS.

In the Configure window, you need to select the LAPS (LAN adapters and
protocols) to configure the network adapter and protocol drivers you use. Be
sure to select the TCP/IP protocol. This is done in the LAPS Configuration
window. Back in the Configure window, you must select the Socket MPTS
Transport Access. Again, be sure to select TCP/IP. Then, click on Configure and
eventually on the Exit buttons.

To configure TCP/IP, double-click on TCP/IP folder and on the TCP/IP
Configuration icon within that folder. This brings up the TCP/IP Configuration
window with a notebook-like interface to fill in the different configuration
parameters. On the Network page, fill in the IP address and the subnet mask.
On the Routing page, fill in at least a default route by pushing the Insert Before
button. On the Services page one, fill in the hostname, the domain name and
domain name server address. Then, exit the program and test the network, for
example, with the ping command.

116 Understanding OSF DCE 1.1

6.2.2 Installation
Assuming Z: is the drive that contains the installation software, type the
following command at the OS/2 command line:

[Z:\] install

First, the OS/2 DCE v2.1 Installation window is displayed overlapped by an
copyright window. This is shown in Figure 40 below.

Figure 40. DCE Installation Copyright Notice

Push the Continue button to get to the Install window which is shown in
Figure 41 below.

Figure 41. DCE Install

Chapter 6. Installation and Configuration of DCE 117

The Update CONFIG.SYS is already selected. So, click on the OK button to
confirm this. The Install — directories in Figure 42 on page 118 below is
displayed.

Figure 42. DCE Component Selection

Select the components you want to install and optionally specify installation path
names. This example shows the selection of the DCE Client, Security Server and
CDS Server components. In fact, we also selected the DFS components and the
Online Documentation for our installation. When you are done, push the Install
button.

The Install — progress window will be displayed. The files are now copied from
the installation media into the /opt/dcelocal directory on the target drive. When
all files are copied, the Installation and Maintenance information window is
displayed as shown in Figure 43 on page 119 below.

118 Understanding OSF DCE 1.1

Figure 43. Installation Complete Notice

When you click on the OK button, the OS/2 DCE v2.1 Installation window is
redisplayed as shown in Figure 44 below.

Figure 44. Installation Main Window

Push the Exit button, and reboot your machine.

6.2.3 Configuring OS/2 with Master Security and Initial CDS Servers
You can start the configuration process from within the DCE 2.1 Beta folder
shown in Figure 45 on page 120 by double-clicking on the DCE Configuration
icon.

Note: In this section, we are going to explain how to configure an OS/2 machine
with all components needed for a cell (master security server and initial CDS
server). If you want to configure the OS/2 machine as it is shown in our test

Chapter 6. Installation and Configuration of DCE 119

environment, Figure 39 on page 103, go directly to 6.2.4, “Configuring OS/2 as a
DCE Client and an Additional CDS Server” on page 128.

Figure 45. DCE Folder

After starting the configuration process, a welcome window with the IBM logo
shows up. Select Continue . This will bring up the Specify Configuration
Response File Names window as shown in Figure 46.

Figure 46. Specify Configuration Response File Names Window

A response file contains the information that you enter in the various window
fields during the configuration process. Creating a response file allows you to
speed-up and automate the process by eliminating the need to enter the
information for each window. Response files are automatically created when
you configure DCE. If you have previously created response files, enter their

120 Understanding OSF DCE 1.1

names. Then click on the OK button, which will bring up the Specify
Configuration Type window as shown in Figure 47 on page 121 below.

Figure 47. Specify Configuration Type Window

You must select the type of configuration you want to perform. This corresponds
to the options you have for the installation of a DCE client as explained in 6.1.7.1,
“Configuring DCE Clients” on page 109. The Administrative option would initiate
the administrator part of the split configuration method, whereas the Local option
stands for the local part of the split configuration. However, since we are
configuring an initial cell with all components on this machine, we select Full ,
and push the OK button. The Configure a Cell window in Figure 48 on page 122
is displayed.

Chapter 6. Installation and Configuration of DCE 121

Figure 48. Configure Cell Window

Enter the cell name and the cell administrator if you want to overwrite the default
of cell_admin and the administrator′s password. Click on the Set up host button.
The Host Details in Figure 49 on page 123 window is displayed.

122 Understanding OSF DCE 1.1

Figure 49. Host Detail Window

The picture shown in Figure 49 already has the values that we are going to
configure. To set up the configuration parameters, you can either click on the
Edit button of a specific options area, or click on the Edit Settings to sequentially
step through all areas. This is what we are going to do. The first window
coming up is the Set up a Host window, shown in Figure 50 on page 124 below.

Chapter 6. Installation and Configuration of DCE 123

Figure 50. Set Up a Host Window

The OS/2 operating system is already selected. Enter the DCE hostname of this
machine, which is SYS5. It is also recommended to synchronize the clock with
another node. If you want to do so, select that option, and enter the hostname of
a system carrying a good time reference. Then click on the Next button.

The Select Protocols for a Host window is displayed and shown in Figure 51 on
page 125 below.

124 Understanding OSF DCE 1.1

Figure 51. Select Protocols for a Host

The TCP/IP configuration is already filled in as it needs to be. Local RPC is not
supported in this beta version. Local RPC corresponds to the
ncacn_unix_stream RPC protocol and is used in RPC client/server
communications within the same machine. It uses faster inter-process
communication and bypasses all the network layers.

Then click on the Next button. The Set up DCE Startup Options for a Host
window is displayed, as shown in Figure 52 on page 126.

Chapter 6. Installation and Configuration of DCE 125

Figure 52. DCE Start-Up Options for a Host

In this window, you can specify the target drive where the DCE code is located.
This is already filled in. You can also choose to automatically start DCE at
system startup. Then click on the Next button. The Configure DCE Components
on a Host window is displayed as shown in Figure 53.

Figure 53. Configure DCE Components on a Host Window

126 Understanding OSF DCE 1.1

Select the Server and client in the Registry options, Initial server and client in the
Namespace options and Local server in the DTS options. The RPC is
pre-selected because it is required on every host. Push the OK button. Since
we have selected to be a security server, the Configure a Registry Server
window in Figure 54 is displayed.

Figure 54. Configure a Registry Server Window

Click on the OK button, unless you want to change any of the UNIX ID bounds.
The Configure a DTS Server window will be displayed as shown in Figure 55
below.

Figure 55. Configure a DTS Server Window

Chapter 6. Installation and Configuration of DCE 127

Select the type of courier you want this server to be. If there were an external
time provider, you could specify its name here. When you click on the OK
button, the Host Details window as illustrated in Figure 49 on page 123 will be
redisplayed. Click on the OK button. The Configure a cell window is displayed.
See Figure 48 on page 122. Now push the Run Configuration button. The
response files are automatically saved.

The View Configuration Progress window is displayed as shown in Figure 56.

Figure 56. Configuration Progress Window

When configuration is complete, push the OK button to return to the DCE
configuration window and the Exit button end the configuration process.

The DCE is already up and running. From a OS/2 command line window, you
can run a dcelogin and other commands to test the environment.

6.2.4 Configuring OS/2 as a DCE Client and an Additional CDS Server
In the previous section, we configured a one-machine cell with an OS/2 machine
as the master security server and initial CDS server. However, for our
environment illustrated in Figure 39 on page 103, we want the OS/2 machine to
be part of the cell we have already created with AIX machines. In order to add it
to our cell, we need to unconfigure it with the following command:

[C:\] ucfgdce

This is the only way to unconfigure DCE in the current beta version. It stops all
running DCE processes and unconfigures the machine. It does not uninstall the
DCE code.

To configure DCE on the OS/2 machine, follow this steps:

 1. Open the OS/2 DC v2.1 folder.
 2. Double-click on the Configure DCE icon (see Figure 45 on page 120).
 3. A welcome screen in the DCE Configuration window wil l be displayed.
 4. Select Continue .

128 Understanding OSF DCE 1.1

 5. The Specify Configuration Response File Names window wil l come up (see
Figure 46 on page 120).

 6. Click on the OK button.
 7. The Specify Configuration Type window is displayed (see Figure 47 on

page 121).
 8. Choose Full , and click on the OK button.
 9. The Configure a Cell window is displayed shown in Figure 57 below.

Figure 57. Configure a Cell Window

In this screen, we must enter the cell name, the cell administrator′s password,
the IP hostname of the security server, and the IP hostname of the namespace
server, if it is not in the same LAN. Then click on the Set up Host button.

A series of windows described and illustrated in 6.2.3, “Configuring OS/2 with
Master Security and Initial CDS Servers” on page 119 come up, which you need
to handle as follows:

 1. In the Host Detail window (see Figure 49 on page 123), you click on the Edit
Settings button.

 2. In the Set up a Host window (see Figure 50 on page 124), OS/2 is already
selected as the operating system. Fill in the DCE hostname (sys5). We also

Chapter 6. Installation and Configuration of DCE 129

recommend specifying the name of a server with a good time reference to
synchronize the system clock with. Then click on the Next button.

 3. In the Select Protocols for a Host window, the necessary TCP/IP protocols
are already selected. Click on the Next button.

 4. In the Set up DCE Startup Options for a Host window (see Figure 52 on
page 126), you could choose to automatically start DCE at system startup.
Click on the Next button.

 5. The Configure DCE Components on a Host window comes up, as shown in
Figure 58 below.

Figure 58. Configure DCE Components on a Host

Select Client in the Registry server, Additional server and client in the
Namespace server and Local server in the DTS server group. Then click on the
OK button.

You will be prompted for the name of the clearinghouse we are creating (see
Figure 59 on page 131).

130 Understanding OSF DCE 1.1

Figure 59. Configure and Addit ional Namespace Server

Execute the following steps to complete the configuration:

 1. Push the OK button.

 2. The Configure a DTS Server wil l be displayed (see Figure 55 on page 127).

 3. Select the courier role and, if present, fill in the information for an external
time provider. Click on the OK button.

 4. The Host Details window is redisplayed (see Figure 49 on page 123).

 5. Click on the OK button.

 6. The Configure a Cell window is displayed (see Figure 57 on page 129).

 7. Select Run Configuration .

 8. The Configuration Progress window is displayed.

When configuration is complete, push the OK button to return to the DCE
Configuration window and the Exit button to end the configuration process.

The DCE is now up and running. From an OS/2 command line window, you can
run a dcelogin and other commands to test the environment.

6.3 Setting Up Intercell Communication
To enable intercell communication, we must globally define both cells (either as
X.500 or DNS). As shown on Figure 39 on page 103, we have two DCE cells in
the same TCP/IP domain (itsc.austin.ibm.com). So, we must define these cells in
DNS.

In our environment, we set ev1 as the DNS server. To enable intercell
communication, you will have to define your cells on the DNS server. After
registering the cells globally, you must establish a trust relationship between the
two cells (see 3.3, “Intercell Authentication” on page 68).

To register cell1 globally, log in as root on ev1. Then log in to DCE as the cell
administrator. Call smit in the following way:

dce_login cell_admin <password>
smitty mkdce

→Register Cell Globally

Chapter 6. Installation and Configuration of DCE 131

� �
Register Cell Globally

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Name of INPUT File []
Name of named DATA FILE [/etc/named.data]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Fill in the fields with your appropriate file names, and select Do . This command
will add the following resource records to the named.data file:

;BEGIN DCE CELL /.../cell1.itsc.austin.ibm.com INFORMATION
;Initial CDS server
cell1.itsc.austin.ibm.com. IN MX 1 ev1.itsc.austin.
ibm.com.
cell1.itsc.austin.ibm.com. IN A 9.3.1.68
cell1.itsc.austin.ibm.com. IN TXT ″1 5583b618-f812-11ce-99
ca-10005a4f4629 Master /.../cell1.itsc.austin.ibm.com/ev1_ch 54aa689a-f812-11ce-
99ca-10005a4f4629 ev1.itsc.austin.ibm.com″
;Secondary CDS server
cell1.itsc.austin.ibm.com. IN MX 1 ev4.itsc.austin.
ibm.com.
cell1.itsc.austin.ibm.com. IN A 9.3.1.123
cell1.itsc.austin.ibm.com. IN TXT ″1 5583b618-f812-11ce-99
ca-10005a4f4629 Read-only /.../cell1.itsc.austin.ibm.com/ev4_ch 657883c2-f813-11
ce-9520-02608c2f0653 ev4.itsc.austin.ibm.com″
;Secondary CDS server
cell1.itsc.austin.ibm.com. IN MX 1 sys5.itsc.austin
.ibm.com.
cell1.itsc.austin.ibm.com. IN A 9.3.1.121
cell1.itsc.austin.ibm.com. IN TXT ″1 5583b618-f812-11ce-99
ca-10005a4f4629 Read-only /.../cell1.itsc.austin.ibm.com/sys5_ch 12de6b60-f8f7-1
1ce-98d2-08005aceebf3 sys5.itsc.austin.ibm.com″
;END DCE CELL /.../cell1.itsc.austin.ibm.com INFORMATION

The first resource record (of type Mail Exchanger, MX) contains the host name of
the system where the CDS server resides. The second resource record (of type
Address record, A) contains the address of the system where the CDS server
resides. The third record of type TXT, contains information about the replica of
the root directory that the server maintains. This information includes the UUID
of the cell namespace, the type of replica (Master), the global CDS name of the
clearinghouse (ev1_ch), the UUID of the clearinghouse, and the DNS name of the
host where the clearinghouse resides.

The same information is added for additional CDS servers in the cell. After
having added the information to the DNS server′s configuration file, this
command refreshes the named daemon. Run the following command to check
that the machine ev3 that runs the global directory agent in cell2 can resolve the
name of cell1. On ev3, type the following command:

host cell1.itsc.austin.ibm.com
cell1.itsc.austin.ibm.com is 9.3.1.68

132 Understanding OSF DCE 1.1

On Error

If the cell name is not known, make sure the /etc/resolv.conf file on ev3
points to the name server on ev1. Then restart the name daemon on ev1:

kill -1 `cat /etc/named.pid`

If this does not help, try the following:

stopsrc -s named; startsrc -s named

On any machine in cell2, log in as root and as cell_admin, and do the following:

cdscp show cell as dns > /tmp/dns_cell2
cdscp show clearinghouse /.:/* CDS_CHLastAddress >> /tmp/dns_cell2

Transfer the dns_cell2 file to the DNS server (ev1), and call smit on ev1 in the
following way:

smitty mkdce
→Register Cell Globally

� �
Register Cell Globally

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Name of INPUT File [/tmp/dns_cell2]
Name of named DATA FILE [/etc/named.data]

� �

This command will add the information of cell2 to the DNS data file and refresh
the DNS server (named process). Note that a temporary file, such as
/tmp/dns_cell2, was not necessary in cell1 because the cell registration on the
DNS name server machine has direct access to cell1 information.

Now, we must establish the direct trust peer relationship between the two cells.
The gdad daemon must be running on both cells. If it is not running, start it with
the following command on the system where it resides:

rc.dce gdad

On any machine in cell1, run the following command:

dcecp
dcecp> registry connect /.../cell2.itsc.austin.ibm.com -group none \
-org none -mypwd dce -fgroup none -forg none -facct cell_admin -facctpwd dce

The registry connect command creates a mutual authentication surrogate in
both cells. For more information on intercell authentication, refer to 3.3,
“Intercell Authentication” on page 68. You can also create the same trust
relationship by running the rgy_edit command as follows:

rgy_edit
Current site is: registry server at /.../cell1.itsc.austin.ibm.com/subsys/dce/se
c/master
rgy_edit=> cell /.../cell2.itsc.austin.ibm.com
Enter group name of the local account for the foreign cell: none
Enter group name of the foreign account for the local cell: none
Enter org name of the local account for the foreign cell: none

Chapter 6. Installation and Configuration of DCE 133

Enter org name of the foreign account for the local cell: none
Enter your password:
Enter account id to log into foreign cell with: cell_admin
Enter password for foreign account:
Enter expiration date [yy/mm/dd or ′ none′] : (none)

 On Error

If you get an error message, make sure that the GDA is correctly configured
on ev4.

host cell1
cell1.itsc.austin.ibm.com is 9.3.1.68

If this command does not find the address of ev1, check the /etc/resolv.conf
file on ev4. It must point to the name server on ev1. Then stop and restart
the GDA daemon on ev4:

dce.clean gdad
rc.dce gdad

You can now view the contents of the registry database to check the principals
that have been created in both cells. Still in cell1, you can access the registry
service of cell2 with the following commands:

rgy_edit
Current site is: registry server at /.../cell1.itsc.austin.ibm.com/subsys/dce/se
c/ev2 (read-only)
rgy_edit=> site /.../cell2.itsc.austin.ibm.com
Site changed to: registry server at /.../cell2.itsc.austin.ibm.com/subsys/dce/se
c/master
rgy_edit=> do p
Domain changed to: principal
rgy_edit=> v
nobody -2
root 0
daemon 1
 ...
dce-ptgt 20
dce-rgy 21
cell_admin 100
krbtgt/cell2.itsc.austin.ibm.com 101
hosts/ev3/self 102
hosts/ev3/cds-server 103
hosts/ev3/gda 104
krbtgt/cell1.itsc.austin.ibm.com 108

In the registry of cell2, the registry connect command has created a principal
krbtgt/cell1.itsc.austin.ibm.com for cell1. You can run the same command on
cell1 to check the principal that has been created for cell2. The principal there is
krbtgt/cell2.itsc.austin.ibm.com.

To further check out intercell access from a machine in cell1, you can log into an
account of cell2:

dce_login /.../cell2.itsc.austin.ibm.com/cell_admin
Enter password:

134 Understanding OSF DCE 1.1

Chapter 7. Migration and Compatibility

This chapter outlines our experience in migrating machines in a cell configured
with AIX DCE Version 1.3 running on AIX Version 3.2.5 for the RISC System/6000
to AIX DCE Version 2.1 running on AIX Version 4.1.3 for the RISC System/6000.
We will set out the steps that we used to migrate the cell.

If a customer has a one-machine cell and no other AIX machines available, their
options for migration are very limited. If, however, a customer has the DCE
servers spread over several machines in a cell, they have a couple of options.
They can choose to migrate all of the machines in the cell, one after the other, to
AIX Version 4.1.3 and then to AIX DCE Version 2.1. The problem here is
availability. While a machine is being upgraded, the DCE services it provides
are unavailable.

The migration strategy that we employed took advantage of the fact that, by
design, machines running OSF DCE 1.0.x and machines running OSF DCE 1.1
may coexist within a cell. We also took advantage of the fact that the primary
security server and the initial CDS server can be moved to other machines in the
cell. So, we moved the DCE services to another machine in the cell while the
original server machine is upgraded. This second approach gives the
administrator more flexibility in scheduling the upgrade of the machine, and the
server is made unavailable for only a few minutes. The downside of this is that
moving servers around can be very complex.

Because servers and clients with different DCE levels can coexist in the same
cell, the upgrade process does not have to be performed all at once.

7.1 Compatibility
We tested a mix of DCE servers and clients running at both the AIX DCE 1.3 level
(OSF DCE 1.0.3) and the AIX DCE 2.1 level (OSF DCE 1.1) in the same cell, and
this is what we found. Servers and clients at both levels can coexist in the same
cell. You can even use the dcecp interface from a AIX DCE 2.1 machine to
perform a subset of functions on AIX DCE 1.3 machines. The functions you can
perform are limited to those you would normally be able to perform with the
cdscp or the sec_admin commands. Commands for distributed management of
clients and servers are not available for AIX DCE 1.3 machines because the dced
daemon is not available on those machines. The value would be in using the
dcecp shell (or the Tcl language) to automate or customize some tasks.

Some features of the CDS in OSF DCE 1.1, such a cell name aliases and
hierarchical cells, require that you upgrade the Directory Version attribute on the
cell root directory to Version 4.0. The default Directory Version for AIX DCE 2.1
is 3.0. At the 3.0 level, the CDS of AIX DCE 1.3 and 2.1 is compatible. AIX DCE
1.3 CDS is not compatible with CDS Directory Version 4.0. For more details, see
Chapter 2, “Directory Service” on page 19.

By design, the Security Service provides for incompatibilities between security
clients and servers with different DCE levels. For instance, DCE servers on the
OSF DCE 1.1 level provide Extended Registry Attributes (ERAs) that are included
in the Privilege Attribute Certificates (PACs), now called Extended PACs (EPACs).
The EPACs are used to enable authorization checks. Towards OSF DCE 1.0.x

 Copyright IBM Corp. 1995 135

clients, the OSF DCE 1.1 security server behaves like an OSF DCE 1.0.x server
and does not expect the client to send preauthentication information. In tickets
for OSF DCE 1.0.x servers, it does not provide ERAs and EPACs, only PACs. For
more details, see Chapter 3, “Security Service” on page 41.

As outlined in 7.2, “Migration” below, we were able to move server functions
between machines running AIX DCE at the 2.1 and the 1.3 level. This allows for
a greater degree of flexibility when migrating a cell to the new DCE version.
Although we used these procedures in a migration process, they have equal
value in maintaining the availability of a cell.

7.2 Migration
As outlined above, our strategy was to move the DCE services to other machines
to provide continuous DCE availability during the migration. Once the DCE core
services are on other machines we upgrade the original DCE servers from AIX
3.2.5 to AIX 4.1.3 and install the new AIX DCE 2.1 code. Then we move the
relocated services back to the original system, where AIX DCE 2.1 is able to
automatically convert the DCE core service databases to the new format.

Since machines with different DCE levels interoperate, you can also upgrade
machine after machine without moving the DCE core services first, if their
availability is not required all the time. Begin, for instance, with the security
server machines. Once they are upgraded, the cell works with mixed-level
machines. Then do the CDS servers if they are on different machines than the
security servers. All other DCE nodes can be upgraded at your convenience.

 Recommendation

Note that the following procedures in 7.2.2, “Moving the Security Server” on
page 137 and 7.3, “Moving the Initial CDS Server” on page 138 require
actions on all machines in the cell and are relatively complex. The CDS
server swap is only easy if there is only one CDS server defined, which is
very unlikely. If the CDS configuration is more complex, the procedure needs
modification.

If you want the target servers to take over the new roles for good, it might be
worth while to do the swap. If you wanted the old servers to eventually
become the new servers again, you would need to perform these steps twice.
So, it might be much more convenient to make system backups as a fallback
option, and reserve a weekend or night to upgrade a set of machines in one
shot without having to move servers around. In case of problems, you
restore the old configuration. The upgrade is explained in 7.2.1, “Using the
AIX 4.1 Migration Utilities” below.

7.2.1 Using the AIX 4.1 Migration Utilities
We upgraded an AIX Version 3.2.5 systems to AIX 4.1 using the migration option.
After the base operating system was at the new level, we then had to install the
DCE for AIX 2.1 code. When the installation completed, we found that DCE had
been upgraded to the 2.1 level, and all of our data remained intact. We also
found the installation procedure did not remove the reference to AIX 1.3 code
from the object data manager. This was easily remedied by using smit
install_remove to remove the reference.

136 Understanding OSF DCE 1.1

7.2.2 Moving the Security Server
The following procedure was taken from the DCE 1.3 documentation. We tested
this procedure to move the security server from an DCE 1.3 machine to a
machine in the same cell running DCE 2.1. The procedure is provided here for
your convenience:

 1. Add a Version 4.1.3 machine with DCE 2.1 to the existing cell as a client.

 2. Configure the Version 4 machine as a secondary security server.

 3. On the original primary security server, do the following:

a. Update the rpccp cache on /.:/sec:

dce_login cell_admin <password>
rpccp show group /.:/sec -u
sec_admin -s /.:/subsys/dce/sec/master
sec_admin> state -m
sec_admin> state -s
sec_admin> quit

b. Back up the registry database and support files:

cd /opt/dcelocal/var/security
tar <tarfile> ./.mkey ./rgy_data

The file <tarfile> is any file or device that can be used to transfer data
to the new primary server.

 c. Stop the secd daemon:

sec_admin> stop

d. Remove the registry database and support files on the original primary
machine:

rm /opt/dcelocal/var/security/.mkey
rm -r /opt/dcelocal/var/security/rgy_data
rm -r /opt/dcelocal/var/security/rgy_data.bak
rm /opt/dcelocal/var/security/tmp/krb5kdc_rcache

e. Comment-out the line in /etc/rc.dce that will restart the secd when
/etc/rc.dce is executed:

from: daemonrunning $DCELOCAL /bin/secd
to: # daemonrunning $DCELOCAL /bin/secd

f. Delete the line in /etc/mkdce.data that indicates the primary security
server is running on the local machine:

sec_srv COMPLETE Security Server

 4. On the NEW primary server, perform the following steps:

a. Remove references to the old server in the namespace:

dce_login cell_admin <password>
cdscp delete obj /.:/subsys/dce/sec/master
rpccp remove member /.:/sec -m /.:/subsys/dce/sec/master
rpccp remove member /.:/sec-v1 -m /.:/subsys/dce/sec/master

b. Destroy the secondary machine:

sec_admin -s /.:/subsys/dce/sec/repl1
sec_admin> destroy subsys/dce/sec/repl1
sec_admin> quit

Chapter 7. Migration and Compatibil i ty 137

 c. Verify that the /opt/dcelocal/var/security/rgy_data directory is empty, and
restore the backed-up files from the original primary machine to the
/opt/dcelocal/var/security directory:

cd /opt/dcelocal/var/security
tar -xvf <tarfile>

Verify that the permission set on the restored rgy_data directory is 755,
and the permission on all restored files (.mkey and all files in the
rgy_data directory) is 600.

 5. On every machine in the cell, do the following:

a. Edit the /opt/dcelocal/etc/security/pe_site file, and change the IP address
to that of the new primary server.

b. Edit the /krb/krb.conf file, and update the entry to reflect the new security
server machine (change machine name).

 6. On the new primary machine, do the following:

a. Start the secd by issuing the command :

secd -d -v

If secd does not restart, try using ″dce.clean secd″; wait three minutes,
and try again. Our experience was that it did not work until we did the
dce.clean.

b. Log in as cell_admin, and perform the following steps to complete the
clean-up of the old secondary machine:

dce_login cell_admin <password>
sec_admin -s /.:/subsys/dce/sec/master
sec_admin> delrep subsys/dce/sec/repl1 -f
sec_admin>quit

 7. On every machine in the cell, except for the new primary, kil l all of the CDS
daemons currently active on the system. If you don′ t perform this step, the
sec_clientd might not restart!

cd /opt/dcelocal/var/adm/directory/cds
rm cds_cache.*
rm cds_clerk_*
rc.dce cds
rpccp show group /.:/sec -u
rpccp show group /.:/sec-v1 -u

 8. On every machine in the cell, stop and restart sec_clientd so that it wil l
re-bind to the new primary machine. Use the -purge option so that existing
credentials will be destroyed and re-created.

dce_clean sec_clientd
sec_clientd -purge

7.3 Moving the Initial CDS Server
This procedure has been used to move the CDS server in an AIX DCE 1.3
environment and was successfully tested in moving a CDS server from an AIX
DCE 1.3 machine to an AIX DCE 2.1 machine.

Note: This procedure only works straight forwardly if no second CDS server has
already been defined. If one or more CDS servers are active and master
replicas are spread over different clearinghouses, this procedure needs

138 Understanding OSF DCE 1.1

modifications. When defining the replica set, you need to specify all existing
replicas.

This is the procedure we tested:

 1. Create an additional CDS server on the machine you want to become the
initial CDS server.

mkdce cds_second or
smit mkcdssrv

 2. Log in to DCE as cell_admin on both machines.

 3. Use the cdsli command to verify the directories in CDS. We wil l copy all
directories from BoxA to BoxB.

cdsli -dR

 4. Verify that the additional CDS server is empty on BoxB.

cdscp
cdscp> set cdscp preferred clearinghouse /.:/<BoxB>_ch
cdscp> show dir /.:/*
cdscp> quit

 5. Replicate all CDS directories to the new additional CDS server ′s (BoxB)
clearinghouse, and make them the master replicas:

for dir in $(cdsli -R); do
> echo ″Creating replica for $dir″
> cdscp create replica $dir clear /.:/<BoxB>_ch
> echo ″Swapping master CDS attribute for $dir″
> cdscp set dir $dir to new epoch master /.:/<BoxB>_ch readonly /.:/<BoxA>_ch
> done

 6. Verify that the swap worked. You should see that the master replica for
everything, including the /.: directory located on BoxB′s clearinghouse:

cdscp
cdscp> show dir /.:
cdscp> show dir /.:/*

 7. At this point, everything has been moved to the new CDS server (BoxB). All
entries in the CDS server on BoxB are the master replica entries. You have
swapped the initial CDS server to the additional CDS server and vice versa.
Now we must modify the /etc/mkdce.data file to reflect the change. Edit the
/etc/mkdce.data file on BoxA to change the line:

from: cds_srv COMPLETE Initial CDS Server
to: cds_second COMPLETE Additional CDS Server

Edit the /etc/mkdce.data file on BoxB to change the line:

from: cds_second COMPLETE Additional CDS Server to
to: cds_srv COMPLETE Initial CDS Server

 8. Delete the CDS cache on both machines:

dce.clean cds
cd /var/dce/adm/directory/cds
rm cds_cache.*
rc.dce cds

 9. It is a good idea to stop and restart DCE on the two machines you have just
worked with:

dce.clean all
rc.dce all

Chapter 7. Migration and Compatibil i ty 139

10. Remove the additional CDS server from BoxA. (Be sure that you are logged
into DCE as cell_admin):

rmdce cds_second

11. Then perform a CDS client cache refresh on all systems in the cell:

dce.clean cds
cd /var/dce/adm/directory/cds
rm cds_cache.*
rc.dce cds

140 Understanding OSF DCE 1.1

Chapter 8. High-Performance and High-Availability Configurations

Depending on the number of users, the amount of DCE applications and
application servers, the number of DCE clients, and the size of a cell in general,
DCE can impose heavy load on the Security and CDS server machines. Users,
DCE clients and DCE servers all need several kinds of tickets from the Security
Service to authenticate themselves and to run authenticated RPCs. DCE clients
need information from CDS when they look for application servers, and
application servers export their interfaces when they start and should unexport
them when they terminate.

So, we need fast machines for these DCE Core Services, and we also need them
to be highly available. Although DCE Core Services are all replicated, which
improves performance and availability, there are circumstances where
replication is not sufficient:

• Applications exporting and unexporting their interfaces need access to a
read/write replica of CDS.

• In a network topology with many remote sites and relatively slow
communication links, replication might introduce additional bottlenecks if
requests go to the ″wrong″ replication servers. Careful planning is
necessary to avoid this situation.

The RISC System/6000 is the most advanced platform on which to run DCE
Services. It provides the following options to improve performance and
availability in situations where replication is not sufficient:

• IBM AIX High Availability Cluster Multi-Processing — DCE core servers and
Distributed File System (DFS) servers can be put on an HACMP cluster.
These servers run on one node, and when this node dies, the other node can
take over. The IP address, and even the LAN hardware address of the
server, remains unchanged. So, the base DCE functions are permanently
read/write accessible.

• IBM RS/6000 SMPs — Since DCE servers are inherently multithreaded, they
can all take advantage of shared-memory symmetric multiprocessor
machines with the new DCE Version 2.1 on AIX Version 4.

• IBM SP2 — For DCE, this machine can be considered as multiple distinct
machines with a very fast communication link. So, installing DCE servers
which have to communicate a lot with each other on different SP2 nodes
might be helpful. This can be core servers, DFS servers and application
servers. HACMP can also be run between nodes in an SP2.

The following two sections give an overview of the basic concepts and terms
used in discussing multiprocessor machines and HACMP.

Please Note

We did not have the opportunity to test these configurations. However, we
would like to share with you our assumptions based on theory so that you
understand the concept. Please watch for official announcements as to
whether or not these are supported and tested configurations.

 Copyright IBM Corp. 1995 141

8.1 IBM AIX High Availability Cluster Multi-Processing
IBM AIX High Availability Cluster Multi-Processing represents an important
product that combines software and hardware to minimize down time by quickly
restoring services when a system, a component or an application fails. While
not instantaneous like fault-tolerant or continuous-availability systems, restoring
services is rapid and usually takes only a couple of minutes.

HACMP features are used in business-critical applications, such as order
processing, debit/credit transactions in banking or hotel reservations and others.
Particularly in conjunction with RAID disks, HACMP provides a stable
environment for Relational Database Management System (RDBMS)
applications.

Figure 60. The HACMP/6000 Environment

HACMP can be configured to provide no single point of failure. To achieve this
and operate correctly, HACMP requires extra hardware, such as two TCP/IP link
attachments per cluster node, a direct serial connection, and shared (twin-tailed)
SCSI or serial disks.

8.1.1 Resources and Resource Groups
The basic concept of HACMP Version 4.1 is that of resources and resource
groups as entities that can be taken over by another node in the cluster. A
resource can be one of the following:

• Disks
• Volume Groups
• File systems (including NFS-mounted or exported file systems)
• Service IP addresses
• Applications

Each resource in a cluster is defined as part of a resource group . This allows
you to combine related resources that need to be together to provide a
particular service. A resource group also includes the list of nodes that can
acquire those resources and serve them to clients. A resource group is defined
as one of three types:

142 Understanding OSF DCE 1.1

• Cascading Resource Groups — All nodes in a cascading resource group are
assigned priorities for that resource group. The resources always cascade
to the highest priority node joining or reintegrating into the cluster.

• Rotating Resource Groups — A rotating resource group is associated with a
group of nodes, rather than with a particular node. As participating nodes
join the cluster, they acquire the first available rotating resource group until
all groups are acquired. A node can only possess a maximum of one
rotating resource group per network. The remaining nodes remain in a
standby mode. When a node holding a resource group leaves the cluster,
the node with the highest priority and available connectivity takes over. A
reintegrating node remains in standby if all resource groups are currently
owned; it does not take back the resources that it had initially served.

• Concurrent Resource Groups — May be simultaneously shared by multiple
nodes. Resources that can be part of a concurrent resource group are
limited to volume groups with raw logical volumes, and raw disks. The disks
involved must be RAID 9333-xx1 or SSA disks. When a node fails, there is no
takeover involved. On reintegration, a node once again accesses the
resources simultaneously with the other nodes.

8.1.2 HACMP Cluster Configurations
Combining its ability to integrate up to eight nodes in a cluster with the concept
of resource groups makes HACMP very flexible. Some of the basic failover
configurations of HACMP are as follows:

• Non-Concurrent Disk Access Configurations — Disk resources are owned
and accessed by one machine which has the highest priority for that
resource at any one time. Four different variations are:

− Hot standby — Assuming that there is a single (cascading) resource
group in the cluster, a node 1 has priority for it over node 2. Node 2 may
be idle or may be providing non-critical services which it can give up. It
is therefore referred to as a hot standby node. When node 1 fails or has
to leave the cluster for a scheduled outage, node 2 acquires the resource
group and starts providing the service. When node 1 reintegrates into
the cluster, it takes back the resources. The advantage of this type of
configuration is that you can shift from a single-system environment to
an HACMP cluster at a low cost by adding a less powerful processor to
serve in a failover situation.

− Rotating standby — A similar hardware configuration as the hot standby
configuration. However, since the resources are defined as rotating,
node 2 keeps ownership of the shared resources after a failover when
node 1 rejoins the cluster. Node 1 becomes the standby node in this
case. Unlike in the hot standby mode, node 1 and node 2 should be
machines of equal power. They provide better availability and
performance than a hot standby configuration.

− Mutual takeover — For this configuration, we assume that we have two
cascading resource groups and two nodes. Each node has priority over
the other for one of the resource groups. So, both machines are doing
work and are watching each other, ready to take over the other′s
resources (disks and service IP address). In case of a failover, one
machine performs the work previously spread over two machines.

− Third-party takeover — The machines that are performing critical
services just take care of the resource group(s) for which they have

Chapter 8. High-Performance and High-Availabil i ty Configurations 143

priority 1 and have no resource group(s) assigned with a lower priority.
This means they are not configured for taking over a failing machine′s
resources. A third machine acts as a standby (priority 2 or lower) for the
resource groups of two (or more) productive machines, ready to take
over the resources if one (or more) of them fails.

• Concurrent Disk Access Configurations — They actually share the disks and
are able to concurrently access them. Special daemons control and
serialize competing disk access requests. Programs running in this mode,
such as the ORACLE Parallel Database Server, have to use the special
locking API provided by those daemons.

8.1.3 Benefits for DCE
AIX DCE and Encina services can basically run on non-concurrent configurations,
with some restrictions. Since HACMP has become much more flexible, we must
come up with some rules:

 1. Everything which makes up a certain DCE node must be configured into the
same resource group. This includes the /var/dce and /etc/dce file systems
as well as the service IP address of the DCE node. It may also include
application-specific file systems.

 2. Configure the cluster so that multiple resource groups or nodes containing
DCE services cannot be taken over by a single node.

What this means is that you must make sure that two different DCE machines are
not accidentally migrated to one single machine in a failover situation. If you
have a mutual takeover configuration, as described above, only one machine
should be configured as a DCE node. If you have third-party takeover, only one
of the productive machines that can be taken over by a specific, third machine
should be configured as a DCE node.

Both security and CDS servers can be replicated within DCE, but if the system
containing the master database fails, write access is not possible anymore.
Tickets can be issued from a slave security server, thus leaving the cell
operational. However, if for any reason write access to the security registry is
always required, the master security server must be in an HACMP cluster. CDS
is a little bit different. When application servers start, they export their binding
information into the CDS namespace. So, running CDS in an HACMP cluster
always makes sense, if the directories to which write access is needed are not
distributed.

8.2 Multiprocessing
In the past, improvements in computer performance have been achieved simply
by designing better, faster uniprocessor (UP) machines. However, UP designs
have built-in bottlenecks. The address and data bus restrict data transfers to a
one-at-a-time trickle of traffic. The program counter forces instructions to be
executed in strict sequence. It now appears that further significant performance
gains will need a different design. A way to increase performance is through a
multiprocessor (MP) architecture. However, MP architectures do not just help to
improve performance. Scaling-up a system (by putting more processors in it),
rather than replacing it, is also a good way to protect the investment.

144 Understanding OSF DCE 1.1

8.2.1 Multiprocessor Architectures
Multiprocessing can be categorized in a number of ways, but some of the more
important aspects to consider are:

 1. Do the processors share resources, or do they each have their own?
Resources to consider include the operating system, memory, input/output
channels, control units, files, and devices.

 2. How are the processors connected? They might be in a single machine
sharing a single bus, connected by other topologies (like switch, ring), or
they might be in several machines using message-passing across a network.

 3. Will all the processors be equal, or wil l some of them be specialized? For
instance, all the processors might be able to do integer arithmetic, but only
one of them can do floating point.

 4. Will parallel programming be supported? The act of sharing parts of a
program represents an extra task in itself.

 5. Will it be easy to enhance/upgrade the system at a later date? Usually, the
addition of a new processor will not cause system throughput to increase by
the rated capacity of the new processor because there is additional
operating-system overhead and increased contention for system resources.

 6. What happens if one of the processors fails? One of the most important
capabilities of MP operating systems is their ability to withstand equipment
failures in individual processors and to continue operation.

Sometimes MP environments are classified with the terms loosely coupled
multiprocessing and tightly coupled multiprocessing. However, this usually only
relates to the type and speed of the network connecting the nodes together that
perform some common work. The following classification is more useful:

• Shared-Nothing MP — Each processor is a stand-alone machine, and each
one has its own caches, memory and disks. Also, each processor runs a
copy of the operating system. Processors can be interconnected via a LAN if
they are loosely coupled or via a switch if they are tightly coupled.
Communication between processors is done via a message-passing library.
Examples of shared-nothing MPs are the IBM SP1 and SP2 as well as
Tandem, Teradata and most of the so-called massively parallel systems.

• Shared-Disks MP — Each processor has its own caches and memory, but
disks are shared. Also, each processor runs a copy of the operating system.
Processors can be interconnected through a LAN or a switch.
Communication between processors is done via message passing.
Examples of shared-disks MPs are IBM RS/6000 with HACMP and DEC
VAX-cluster.

• Shared-Memory Cluster — Each processor has its own caches, memory and
disks and runs a copy of the operating system. Processors are
interconnected via a piece of shared memory over which communication is
done. This is not a very widespread form of MP.

• Shared-Memory MP — All of the processors are tightly coupled inside the
same box with a high-speed bus or switch between the processors, the I/O
subsystem and the memory. Each processor has its own caches, but shares
the same global memory, disks and I/O devices. Only one copy of the
operating system runs on all processors. It means that the operating system
has to be designed to exploit this type of architecture. There are two basic
operating-system organizations for shared-memory MPs:

Chapter 8. High-Performance and High-Availabil i ty Configurations 145

 1. Master/slave organization (asymmetric) — One processor is designed as
the master and the others are the slaves. The master is a
general-purpose processor and performs input and output operations as
well as computation. The slave processors perform only computation.
Utilization of a slave may be poor if the master does not service slave
requests efficiently enough. I/O-bound jobs may not run efficiently since
only the master executes the I/O operations. Failure of the master is
catastrophic.

 2. Symmetric multiprocessing organization — All of the processors are
functionally equivalent and can perform I/O and computational
operations. The operating system manages a pool of identical
processors, any of which may be used to control any I/O devices or
reference any storage unit. A process may be run at different times by
any of the processors, and at any given time, several processors may
execute operating-system functions in kernel mode.

Shared memory MP with symmetric organization (or SMP) is one of the most
common multiprocessing implementations on the commercial market.
Examples of this implementation are the IBM G30, J30 and R30 models.

8.2.2 MP-Safe Programming
AIX Version 4 can make use of SMP machines because it supports kernel-level
threads and can dispatch threads to distinct processors. When programming
multithreaded applications, you must consider serialization of access to
resources. A program is thread-safe when multiple threads in a process can be
running that program successfully without data corruption. A library is reentrant
or thread-safe when multiple threads can be running a routine in that library
without data corruption. To be thread-safe, programs use reentrant libraries and
implement locking schemes to prevent data from being accessed by multiple
threads at the same time. See also Chapter 11, “Threads” on page 209 for
more details on threads.

To be MP-safe , a multiprocess program or a multithreaded program must
serialize access to shared resources by using a global lock mechanism.
However, the lock mechanism used in a UP environment may not be sufficient in
an MP environment. In particular, programs designed for UPs that spawn off
multiple processes must be ported to MP environments, unless they make
themselves run only on a specific processor of an MP. They need to use a
special locking API for MPs. Thread-safe programs are usually MP-safe.

A program is MP-efficient when it is MP-safe and when it spends a minimum
time dealing with locks. Finer granularity locks usually improve the efficiency
because they decrease the waiting time for other threads. However, overly
fine-granular locks may lead to a higher number of calls to the locking API,
which takes up a considerable amount of CPU cycles. So, a good balance must
be found for the degree of granularity.

8.2.3 Benefits for DCE
The use of multiple threads concurrently running in an SMP system improves the
performance of an application. This is true for RPC servers as well as for RPC
clients. Using multiple threads allows an RPC client or server to make or serve
multiple concurrent RPC calls. Application threads can continue processing
independently of RPCs.

146 Understanding OSF DCE 1.1

Chapter 9. DCE Control Program and Tcl

The DCE Control Program (the dcecp command) is the administrator tool in OSF
DCE 1.1 that integrates the functions of several tools used in OSF DCE 1.0.x, such
as cdscp, rpccp, rgy_edit, acl_edit, and dtscp.

The dcecp language is based on the Tool Command Language, generally known
as Tcl (pronounced ″tickle″). The dcecp commands are implemented as Tcl
commands in a Tcl interpreter.

This chapter introduces Tcl and explains how to create dcecp programs and
extensions.

9.1 What is Tcl?
Tcl (Tool Command Language) is a freely distributable, simple interpreted
language designed to be used as a common extension and customization
language for applications. It was designed and implemented by Dr. John
Ousterhout in the hope that application designers could spend more of their time
on applications and less on scripting languages and in the hope that users could
spend less time learning new scripting languages for each new application.
Many useful applications, some of them sold commercially, use Tcl as their
scripting language.

Tcl is clean, regular and relatively easy to learn. It is command-oriented, and
commands added by applications and users exist on an equal footing with the
built-in Tcl commands. Tcl has both simple variables and associative arrays
(tables), and all values (including procedure bodies) are represented as strings.
Simple customization scripts (such as preference initialization scripts) usually
look much like novice users expect them to: a series of simple commands which
set options.

Tcl is implemented as a C library that can be embedded in an application. The
application can add its own commands to the interpreter (using a clean C
interface). It is distributed under a license which allows use for any purpose
with no royalties.

The Tcl library consists of a parser for the Tcl language, routines to implement
the Tcl built-in commands and procedures that allow each application to extend
Tcl with additional commands specific to that application. The application
program generates Tcl commands and passes them to the Tcl parser for
execution. Commands may be generated by reading characters from an input
source or by associating command strings with elements of the application′s
user interface, such as menu entries, buttons or keystrokes. When the Tcl
library receives commands, it parses them into component fields and executes
built-in commands directly. For commands implemented by the application, Tcl
calls back to the application to execute the commands. In many cases,
commands will invoke recursive invocations of the Tcl interpreter by passing in
additional strings to execute (procedures, looping commands and conditional
commands all work in this way).

An application program gains three advantages by using Tcl for its command
language:

 Copyright IBM Corp. 1995 147

• Tcl provides a standard syntax — Once users know Tcl, they will be able to
issue commands easily to any Tcl-based application.

• Tcl provides programmability — All a Tcl application needs to do is to
implement a few application-specific, low-level commands. Tcl provides
many utility commands plus a general programming interface for building up
complex command procedures. By using Tcl, applications need not
re-implement these features.

• Extensions to Tcl, such as the Tk toolkit, provide mechanisms for
communicating between applications by sending Tcl commands back and
forth. The common Tcl language framework makes it easier for applications
to communicate with one another.

Note that Tcl was designed with the philosophy that one should actually use two
or more languages when designing large software systems. One for
manipulating complex internal data structures, or where performance is key, and
another, such as Tcl, for writing small scripts that tie together the C pieces and
provide hooks for others to extend. For the Tcl scripts, ease of learning, ease of
programming and ease of gluing are more important than performance or
facilities for complex data structures and algorithms. Tcl was designed to make
it easy to drop into a lower language when you come across tasks that make
more sense at a lower level. In this way, the basic core functionality can remain
small, and one need only bring along pieces that one particularly wants or
needs.

9.2 dcecp Introduction
Many people seem to get confused trying to understand the relationship between
dcecp and Tcl. It is a close relationship, but understanding which commands are
Tcl commands and which are DCE commands is unimportant. The dcecp
language is implemented as a Tcl extension and supports all Tcl commands.

A user of dcecp starts the control program and enters interactive commands at
the dcecp> prompt. There are other use models, such as writing scripts and
entering commands from the shell command line, but they are less common. An
important usability feature of dcecp is that it provides command-line recall and
editing similar to ksh′s Emacs mode. At the prompt, the user can enter base Tcl
commands, such as:

dcecp> echo foo
foo
dcecp> lsort {a c e b d}
a b c d e
dcecp> foreach i [lsort {a c e b d}] {puts stdout $i}
a
b
c
d
e

The Tcl library implements an interpreter that understands all the base Tcl
commands. Any program using this library has access to these same
commands. A typical Tcl program usually implements new project-specific
commands. Not surprisingly, dcecp implements commands that manipulate DCE
data. Users can, at the same dcecp> prompt, enter DCE commands, such as:

148 Understanding OSF DCE 1.1

dcecp> principal create nordpol -fullname {Norbert Nordpol}
dcecp> acl modify /.:/hosts -add {user nordpol -rwx}
dcecp> object delete /.:/hosts/gandalf

Note: The only part of DCE that uses Tcl is dcecp. The Tcl library is not part of
libdce. The goal of DCE is to ship dcecp, not Tcl.

To the user of dcecp, there is no visible difference between base a Tcl command
and a command that manipulates DCE data. They might see the base Tcl
commands when running other programs that use Tcl, but they will only see the
DCE commands in dcecp. The Tcl and DCE commands can be combined (output
not shown for space reasons):

dcecp> foreach i [dir list /.: -directories] {dir show $i}

This allows an advanced user to write extensible scripts, a feature that is very
important.

9.3 Tcl Language Components
This section explains Tcl basics which are needed to develop extensions to the
dcecp command. It can be followed as a tutorial.

9.3.1 Tcl Language Syntax
The syntax of Tcl commands is simple:

command_name arg1 arg2

command_name is the name of a built-in command or a procedure. To terminate a
command, you use a newline character or a semicolon. The words in the
command are separated by spaces or tabs.

Tcl executes a command in two steps: parsing and execution. In the parsing
step, the Tcl interpreter divides the command into words and performs variable
and command substitutions. In the execution part, Tcl assigns meanings to the
words. Tcl searches for a built-in command or procedure that matches the first
word. If a command is found, it is invoked with all the words of the command
passed as arguments.

Tcl provides two forms of substitution: variable and command substitution.
Variable substitution is performed when the parser encounters a dollar sign.
The value of the variable is then inserted into the command word (See 9.3.2,
“Variables” on page 150). Command substitution causes part or all of a
command word to be replaced with the result of another Tcl command.
Command substitution is invoked by enclosing a nested command in brackets:
[command]. This causes command to be executed and its result to be inserted in
the command word. To print the special characters, such as the dollar sign and
bracket, you can use the backslash. The backslash can also be used to insert
special characters, such as newlines or backspaces. Examples of substitution
are:

dcecp> set server hosts/ev7/self
hosts/ev7/self
dcecp> set server_attr [principal show $server]
{fullname {}}
{uid 102}
{uuid 00000066-edbe-21ce-9000-10005aa86e2d}
{alias no}

Chapter 9. DCE Control Program and Tcl 149

{quota 0}
{groups none subsys/dce/dts-servers}
dcecp> set total 15.50
15.50
dcecp> puts stdout ″Total is \$$total″
Total is $15.50

The first command assigns the value hosts/ev7/self to the server variable. The
second command assigns the result of executing the principal command over
the principal stored in the server variable to the server_attr variable. The last
two commands show the use of the backslash to print a dollar sign.

9.3.2 Variables
Tcl supports two kinds of variables: simple variables and associative arrays.
The set command is used to define variables of any type. This command takes
two arguments, the name of the variable and its value. If only the variable′s
name is passed, it returns its value. Once you have established a value for a
variable, it can be used elsewhere in your script. The dcecp program uses the
dollar sign to trigger insertion of the current value into the command word.
Some simple examples are:

dcecp> set a 7
7
dcecp> expr $a+2
9
dcecp> set CDS_DirectoryVersion 4.0
4.0

To remove a variable, use the unset command:

dcecp> unset a
dcecp> set a
Error: can′ t read ″a″: no such variable

Arrays are explained in 9.3.3.2, “Arrays” on page 152.

9.3.2.1 Expressions
Expressions are useful for things, such as comparing numeric information,
setting thresholds for monitoring purposes or producing statistical information.
Expressions combine values with operators to produce new values. The expr
command takes one argument: the expression. In comparison operations, Tcl
returns 0 for false and 1 for true. For example:

dcecp> set x 12
12
dcecp> expr $x + 4
16
dcecp> expr {$x <= 3}
0
dcecp> expr sin($x) * 3.1415
-1.68564

The dcecp program normally treats numbers as integers or real numbers.
Integers are usually specified in decimal, but if the first character is 0, then the
number is read in octal. For hexadecimal interpretation precede the number
with 0x. Numbers can also be represented in the format specified by the ANSI C
standard, such as 3.45e-3. Tcl supports operators similar to the operator
expressions in ANSI C, which are: *, /, %, +, -, <<, >>, <, >, <=, ==, !=, &,

150 Understanding OSF DCE 1.1

¬, |, &&, and ||. It also includes math functions, such as sin(), cos() and
tan().

Strings can also be compared with the expr command. You must quote the
string value so the expression parser can identify it as a string. For example:

dcecp> set x foo
foo
dcecp> if { $x == ″foo″ } {puts foo}
foo
dcecp> expr {$x < ″goo″}
1

9.3.3 Data Structures
In Tcl, there is only one data type, which is strings. All commands, expressions,
variable values, and procedure return values are strings. In addition, there are
two higher-level data structures: lists and arrays. Lists are implemented as
strings. Their structure is defined by the syntax of the string. Some Tcl
commands interpret the strings in different manners. For example, expr treats
its argument as an expression. The argument it receives is a string. If the
argument is 4 + 5, the returned result is the string 9.

9.3.3.1 Strings
A string is a sequence of characters. The chief command to manipulate strings
is string. The string command is actually about a dozen string manipulation
commands rolled into one. Its syntax is:

string <operation> <string_value> <args>

Some examples of string command operations are:

compare <str1> <str2> Compares strings. Returns -1 if <str1> is
lexicographically less than <str2>, 0 if equal and 1 if
greater.

first <str1> <str2> If <str1> is contained in <str2>, it returns the index of
the first occurrence or -1 otherwise.

last <str1> <str2> If <str1> is contained in <str2>, it returns the index of
the last occurrence or -1 otherwise.

length <string> Returns the number of characters in <string>.

match <pattern> <str> Returns 1 if <pattern> matches <str> using global
style matching rules. This pattern matching is similar
to that of UNIX shells. For example, a*.[ch], matches
all words that begin with ″a″ and end with ″.c″ or ″.h″.

range <string> <i> <j> Returns a substring from <string> that lies between
the indices given by <i> and <j>. The third argument
can be the keyword end to indicate the last character
of the string.

Another command used when working with strings is the format command,
which is similar to the sprintf() function in C. Its syntax is:

format <spec> <value1> <value2> ...

The <spec> argument is a format string which may contain a list of conversion
specifiers enclosed in quotes, such as ″ % . 3 f″. For each specifier in the format

Chapter 9. DCE Control Program and Tcl 151

list, a replacement string is inserted which consists of the next value of the
argument list reformatted according to the conversion specifier. The result is the
specification string, with each conversion specifier replaced by the
corresponding replacement string. Format supports almost all of the conversion
specifiers defined for the sprintf() function in C. For example:

dcecp> clock show
1995-07-03-10:49:10.028-05:00I-----
dcecp> set time [string range [clock show] 11 18]
10:49:27
dcecp> format ″Time of the day is: %s″ $time
Time of the day is: 10:49:27

9.3.3.2 Arrays
Tcl implements one-dimensional arrays. However, since an array′s index is a
string, you can ″simulate″ multi-dimensional arrays by concatenating multiple
indices into a single element name. The index of an array is delimited by
parentheses. The following example simulates a two-dimensional array:

dcecp> set a(1,1) 1
1
dcecp> set a(1,2) 3
3
dcecp> set i 1 ; set j 2
2
dcecp> set a($i,$j)
3

The array command can be used to obtain information about an array. The
following commands inquire the number of elements (size) and the forthcoming
indices (names) of an array:

dcecp> array size a
2
dcecp> array names a
1,1 1,2

The array command can also be used to iterate through array elements. The
startsearch option returns a search identifier key. Using this search identifier
key, the nextelement option returns a string representing the first (next) index
name. The donesearch option terminates the search and frees any resources
used by the search. This is shown in the following example:

dcecp> array startsearch a
s-1-a
dcecp> array nextelement a s-1-a
1,1
dcecp> set a([array nextelement a s-1-a])
3
dcecp> array donesearch a s-1-a

9.3.3.3 Lists
Some Tcl commands interpret their string arguments as a list. In Tcl, a list
consists of elements separated by white spaces (space, tab or newline). The
following three examples are lists which have three elements:

tom dick harry
a b c
1 2 !

152 Understanding OSF DCE 1.1

There are three metacharacters that are treated specially when parsing lists.
They are:

{ } Braces are used for grouping. If a left brace is encountered, then the
element is terminated by the matching right brace, instead of the next
whitespace. Braces nest. The following are also examples of lists with
three elements:

tom {dick harry} {sue mary jane}
a {b {c d e}} f

However, some elements in the above example are lists or even nested
lists.

″ ″ Double quotes are also used for grouping. However, there are two
differences between them and braces. First, they do not nest. Second,
Tcl will perform command, variable and backslash substitutions for items
within double quotes. Tcl does not perform these substitutions when
braces are used.

\ Backslashes are used to escape metacharacters and to insert non-printing
characters. Standard substitutions occur. \t is a tab character, and \n is
a newline. Braces and double quotes can be inserted in lists with
backslashes as follows:

a b\ c d
a b \}

Again, these example lists all have three elements.

The net effect of using these metacharacters and Tcl commands on a command
line is that lists appear as elements surrounded by braces. The fact that the top
level of braces is not present on output might be confusing and has to do with
how commands are parsed. The best way to explain it is with an example (see
“Querying Lists” below).

In dcecp, there are several data structures used to represent DCE objects, such
as attributes, bindings and ACLs. Most of these had some representation in the
existing control programs, known as the string syntax of the data structure. The
dcecp supports some of it for backward compatibility. Many data structures used
by dcecp are lists, and to make it easier for Tcl to handle them, dcecp uses the
Tcl syntax . An example of the string syntax of an ACL is:

user:pascal:-rw----

The corresponding Tcl syntax is:

{user pascal -rw----}

There are several Tcl commands to create and modify lists as well as to search
for an element or get an element of a list.

Querying Lists: The Tcl command lindex takes two arguments, a list and an
integer (remember, both of these are just strings, and it is the lindex command
that interprets the string arguments specially). It returns the element indicated
by the second argument. Elements in lists are numbered from zero; so the
following command will return the second element:

dcecp> lindex {a b c} 1
b

Chapter 9. DCE Control Program and Tcl 153

The braces in the example are used to group the elements of the list so that they
are passed as one argument to the lindex command. Now, the following
example returns a list:

dcecp> lindex {a {b c} d} 1
b c

The result is without braces around it, but it is a perfectly valid list. To prove
this, pass it to the llength command which takes a list as an argument and
returns the number of elements as an integer (in Tcl, square brackets perform
command substitution, much like backquotes do in command shells):

dcecp> llength [lindex {a {b c} d} 1]
2

The lrange command takes a list as its first argument and two indices (start and
end) as second and third arguments. It returns the specified range of elements
from the list. The third argument can be the keyword end to indicate all elements
up to the end of the list. Here are some simple examples:

dcecp> llength [directory show /.:]
16
dcecp> lrange [directory show /.:] 7 9
{CDS_InCHName new_dir}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
dcecp> lindex [directory show /.:] 8
CDS_DirectoryVersion 3.0

Manipulating Lists: The list command takes each argument as a list element
and displays the list. The lappend command takes a list variable as its first
argument, appends the rest of its arguments to the variable and displays it. If
the list variable does not exist, it creates one. The concat command displays a
single list made by joining multiple lists. This is shown is the following example:

dcecp> set a {1 2 3}
1 2 3
dcecp> set b [list $a 4] --or-- set b ″{$a} 4″
{1 2 3 } 4
dcecp> concat $a $b
1 2 3 {1 2 3 } 4
dcecp> lappend a 4
1 2 3 4

The linsert command has the following syntax:

linsert <list> <index> <value> <value> ...

It returns a new list formed by inserting all <value> arguments before the <index>
element of <list>. The lreplace is used to replace a range of list elements with
new elements or to delete a range of elements (if you do not specify new
elements); the result is returned as a new list. It has the following syntax:

lreplace <list> <first> <last> <value> <value> ...

Neither the linsert nor the lreplace commands stores the result of the operation
in the list variable; they just display it. These two commands are illustrated in
the following example:

154 Understanding OSF DCE 1.1

dcecp> set a { a {b c} d e}
 a {b c} d e
dcecp> linsert $a 2 ch
 a {b c} ch d e
dcecp> lreplace $a 1 1 b c
 a b c d e
dcecp> lreplace $a 1 1
 a d e
dcecp>

The split command displays a list created by splitting a string at specified
characters (the default character is the white space). The join command is the
inverse of split; it concatenates the elements of a list with a specified character
between them and returns a string.

dcecp> split ″a:b:c″ :
a b c
dcecp> join {a b c} :
a:b:c

Searching and Sorting Lists: The lsearch command returns the index of an
element in the list or -1 if not present. Its syntax is:

lsearch [-exact|-glob|-regexp] <list> <pattern>

If <pattern> is present in <list>, the index of its first appearance is returned.
The optional switch modifies the search. Use -exact for exact mapping and
-glob for pattern matching similar to that of UNIX shells. The -regexp switch
uses pattern matching similar to the one used by egrep command, for example:

dcecp> set a {tcl Tcl.1 Tcl.2 -4.5 5 8.9}
tcl Tcl.1 Tcl.2 -4.5 5 8.9
dcecp> lsearch -glob $a T*
1
dcecp> lsearch -regexp $a ^(-)\[0-9[(.\[0-9[*)$
3

The lsort command sorts a list in a variety of ways, depending on the optional
switches: -increasing or -decreasing for the order and -ascii, -integer or -real
for the comparison function. For special purpose sorting needs, you can specify
your own comparison function with the -command switch.

dcecp> lsort -increasing $a
-4.5 5 8.9 Tcl.1 Tcl.2 tcl

9.3.4 Control Flow
The dcecp control program provides several commands for controlling the flow of
execution in a script. These control flow commands are similar to those found in
the C programming language, such as if, for, while, foreach, and case.

9.3.4.1 The if Statement
The syntax of the if statement is:

if <test1> <true_body1> [[elseif <test2> <true_body2>]* else <false_body>]

The <test1> argument is evaluated and if its value is true, then the <true_body1>
executes as a script and returns its value. Tcl considers an expression true
when the value returned is different from zero. The <elseif> and <else> parts
are optional. If <test1> returns a zero value, then it evaluates <test2> as an
expression. If its value is non-zero, it executes <true_body2>. It continues

Chapter 9. DCE Control Program and Tcl 155

evaluating all the <elseif>s until one succeeds. If no test succeeds, then
<false_body> executes as a Tcl script.

9.3.4.2 The switch Statement
The switch statement is a better way of writing a program when a series of
if-elses occurs. It has two formats:

switch [flags] <string> <pattern1> <body1> <pattern2> <body2> ...
switch [flags] <string> { <pattern1> <body1> <pattern2> <body2> ... }

The type of flags are the same as used for the search (see “Searching and
Sorting Lists” on page 155). They are -exact, -glob and -regexp. This
command matches the <string> against each <pattern> in order until a match is
found; then it executes the <body> corresponding to the matching pattern. If the
last pattern is <default>, then it matches anything. It returns the result of the
body executed or an empty string if no pattern matches.

9.3.4.3 The foreach Loop
When you want to perform a given operation on each element in a list, use the
foreach command. The syntax of the foreach command is:

foreach <var_name> <list> <body>

For each element of <list>, in order, it sets the variable <var_name> to that list
element and runs the script <body> as a Tcl script. The foreach command returns
an empty string.

9.3.4.4 The while Loop
The while loop takes two arguments: an expression and a script. When the
<expression> evaluates to non-zero, the while command executes the <body> and
reevaluates the <expression>, continuing the loop until the <expression> evaluates
to 0. The syntax is:

while <expression> <body>

9.3.4.5 The for Loop
The for loop behaves like the for loop in C. The syntax is:

for <init> <test> <reinit> <body>

It executes <init> as a Tcl script. Then it evaluates <test> as an expression. If
it evaluates to true, it executes the <body> script, the <reinit> script, which is
normally used to increase counter values for the next test, and eventually
evaluates <test> again. The loop repeats until the test becomes false.

9.3.4.6 The continue and break Statements
The continue and break commands terminate loops started with the while, for
and foreach commands. The continue command terminates the current iteration
of the innermost looping command and goes on to the next iteration of the
command. The break command terminates the innermost loop execution.

9.3.5 Procedures
A procedure in Tcl can perform a particular task and supports the concept of
modular programming design techniques. You can define procedures with the
proc command. Its syntax is:

proc <name> <parameters> <body>

156 Understanding OSF DCE 1.1

The <name> argument defines the name of the procedure to be created. The
second argument stands for a list of parameters used by the procedure. The
third argument is the implementation of the procedure. Once defined, it can be
used like any other command. The result of a procedure is the result returned
by the last command in the <body> script. You can invoke the return command if
you want a procedure to return early without executing its entire script.

Many dcecp commands return a list of lists (in the form of an attribute-value list)
as a result of their execution. Sometimes, we just need one attribute from that
list; so we can define a procedure to obtain a specific attribute from that list:

dcecp> proc get_attr {list pattern} {
> foreach i $list {
> if { [lsearch -regexp $i $pattern] >= 0 } {
> return $i
> }
> }}
dcecp> get_attr [acl show /.:] unauth
unauthenticated r--t---
dcecp> get_attr [dir show /.:] CDS_ReplicaSt
CDS_ReplicaState on

The get_attr procedure takes two arguments; the first one is the list of lists and
the second argument is the pattern we are looking for. In a for loop, one
element in the list after another is stored in the i variable, and lsearch is called
with the current i. We use a regular expression type search so that we can find
the pattern even if the name is not completely given. When the pattern is found,
its value is returned.

Inside the procedure, all variables have a local scope, and they are undefined
after the procedure terminates. If a procedure needs to reference a global
variable, it has to use the global command. A local variable can override or
hide a global variable by choosing the same name. This is illustrated in the
following example:

dcecp> set a 5
5
dcecp> proc a_print {} {puts $a }
dcecp> a_print
Error: can′ t read ″a″: no such variable
dcecp> proc print_a {} { global a; puts $a}
dcecp> print_a
5

The upvar command provides a mechanism for accessing variables outside the
context of a procedure. Instead of a value, the argument passed to the
procedure is a variable name, basically a pointer to the variable′s value. It is
similar to the call-by-reference argument passing. Its syntax is:

upvar [level] <var_name> <local_var_name>

The level argument is optional and indicates how many levels up the call stack
you are referencing. You can specify an absolute number with a #number syntax.
The global level is #0. The second argument is the name of the variable you
want to access, and the third one is its local name. The following example
illustrates the difference between the argument′s value (variable name b) and
the value it indirectly references (5):

Chapter 9. DCE Control Program and Tcl 157

dcecp> proc print_var { var_name } {
> upvar $var_name x
> puts ″$var_name = $x ″
> }
dcecp> set b 5
5
dcecp> print_var b
b = 5

9.3.6 Files
Tcl provides commands for reading and writing files. The commands are similar
to the procedures in the C standard I/O library. You use the same UNIX-style file
names to reference a file.

9.3.6.1 Opening and Closing Files
You can open a file for reading and writing using the open command. The first
argument to open is the name of the file; the second argument specifies the file
access mode. The access mode may have one of the following values:

r Reading only. The file must already exist.
r+ Reading and writing. The file must already exist.
w Writing only. Truncate the file if it already exists; otherwise create a new

one.
w+ Reading and writing only. Truncate the file if it already exists; otherwise

create a new one.
a Writing only. Set the initial access position to the end of the file. If the file

doesn ′ t exist, create a new one.
a+ Reading and writing. Set the initial access position to the end of the file. If

the file doesn′ t exist, create a new one.

Tcl also supports the specification of the file access mode as a list of POSIX
flags, such as RDONLY and CREAT. The open command assigns a file identifier to
each file when it is opened:

dcecp> open /etc/passwd r
file9

Use the file identifier to refer to files in subsequent commands. There are three
file identifiers already defined and always available for use: stdin (standard
input), stdout (standard output) and stderr (standard error). To close a file, use
the close command with the file identifier as argument:

dcecp> close file9

9.3.6.2 Reading and Writing Files
To read a new line from a file, use the gets command:

gets <file_id> [<var_name>]

The first argument is the file identifier on which the read is going to be
performed. The second argument is optional and refers to the name of a
variable where you want to store the line. If it is specified, the command places
the line in that variable and returns a count of characters in the line (or -1 for
end of file). If it is not specified, it returns the line read as a result (or empty
string on end-of-file). The puts command has the following syntax:

puts [-nonewline] <file_id> <string>

158 Understanding OSF DCE 1.1

It writes <string> to the file referenced by <file_id>, appending a newline
character unless -nonewline is specified. If no <file_id> is specified, it defaults
to standard output. Examples for this are:

dcecp> open /etc/passwd r
file9
dcecp> gets file9 line
22
dcecp> puts $line
root:!:0:0::/:/bin/ksh

To write out any buffered output that has been generated for a file, use the flush
command with the file identifier as argument. To test if an end-of-file condition
has occurred, use the eof command on the file identifier.

9.3.6.3 Random File Access
File I/O is sequential by default. To access the files non-sequentially, you can
use the seek, tell and eof commands. To change the current access position,
use the seek command:

seek <file_id> <offset> [start|current|end]

This command changes the current access position of the file identified by
<file_id>; so the next access starts at <offset> (a positive or negative number)
bytes from the origin. The origin is the last argument. The default for it is start.
The tell command returns the current access position of a particular identifier.

9.3.6.4 File Management
To manipulate file names, Tcl provides two commands: glob and file. The glob
command takes one or more patterns as arguments and returns a list of all the
file names that match the pattern:

dcecp> cd /usr/include/dce
dcecp> glob pt*.h
pthread.h pthread_exc.h

The file command has many options to manipulate file names and to retrieve
information about files. Some examples:

dcecp> file dirname /a/b/c
/a/b
dcecp> file extension /a/b/program.c
.c
dcecp> file tail /a/b/c.bak.c
c.bak.c
dcecp> file type /etc
directory
dcecp> file type /usr/bin/ls
file
dcecp> file type /dev/rootvg
characterSpecial

It also has an option to list the last access and modification time (atime, mtime),
to test if the file exists (exist) and whether it is an executable (executable), a
directory (isdirectory) or a file (isfile).

The stat option invokes a stat() system call and returns the information on an
array. The following example illustrates this (some comments are added to
clarify the meaning of each value):

Chapter 9. DCE Control Program and Tcl 159

dcecp> file stat /etc/passwd passwd_stat
dcecp> foreach i [array names passwd_stat] {
> puts [format ″%-6s is %s ″ $i $passwd_stat($i)]
> }
mtime is 802989564 # last modification time
atime is 804542794 # Time of last access
gid is 7 # group id
nlink is 1 # Number of links
mode is 33204 # Mode bits for file
type is file #
ctime is 802989564 # Time of last status change
uid is 0 # Owner′ s user id
ino is 454 # Inode number
size is 333 #
dev is 655365 # Identifier for device containing file

9.3.6.5 File I/O Example
We can write a script that prints the name of the users that are defined in both
the /etc/passwd file and the DCE Security Registry:

dcecp> set principals [principal catalog]
/.../cell1.itsc.austin.ibm.com/nobody
/.../cell1.itsc.austin.ibm.com/root
/.../cell1.itsc.austin.ibm.com/sys
 .
 .
/.../cell1.itsc.austin.ibm.com/hosts/sys5/self
/.../cell1.itsc.austin.ibm.com/hosts/sys5/cds-server
dcecp> set fd [open /etc/passwd r]
file8
dcecp> while { [gets $fd line_fd] >= 0 } {
> set user_name [lindex [split $line_fd :] 0]
> if [lsearch -regexp $principals $user_name] {puts stdout $user_name}
> }
root
bin
sys
adm
uucp
guest
lpd
dcecp> close $fd

First, we store the list of the cell′s principals in the principals variable. We
open /etc/passwd for reading and store the file identifier in the fd variable. The
while loop reads all lines of the passwd file, and for each line, it extracts the
user ′s name, checks whether the user is also a DCE principal and, if so, prints
the name.

9.3.7 Executing External (Operating System) Commands
Although dcecp is versatile, there are times when you may want your script to
use operating-system commands to accomplish some operation. The exec
command provides a way for scripts to perform Tcl-external commands. It does
that by forking a subprocess in which the command executes. The exec
command supports I/O redirection of standard input or output similar to the one
provided by UNIX shells (<, <<, >> and |). You can use the ampersand (&) to run
a subprocess in background. Some examples are:

160 Understanding OSF DCE 1.1

dcecp> exec grep guest /etc/passwd
guest:!:100:100::/home/guest:
dcecp> exec grep guest /etc/passwd | awk -F: ″{print \$3}″
100

In the last example, we must put the backlash to prevent Tcl from interpreting $3
as a variable. It is important to consider that exec does not perform any file
name expansion. This has to be done with the glob command:

dcecp> exec rm *.c
Error: rm: *.c: A file or directory in the path name does not exist.
dcecp> exec rm [glob *.c]
Error: rm: test1.c test2.c: A file or directory in the path name does not exist.
dcecp> eval exec rm [glob *.c]

The first remove fails because the exec does not perform file expansion; glob
does, but since it returns its result as a single string, and the operating system
could not find a file with ″test1.c test2.c″ as name, it also fails. The solution is to
use the eval command to reparse the output from the glob command so that it
gets divided into multiple words.

The open command can also be used to create a subprocess and attach its input
or output to a pipeline that can be used with the gets and puts commands. To
define a pipe, the first character on the file name given to the open command
must be the pipe character (|) as the following example shows:

dcecp> set f1 [open ″ | ls ″ r]
file6
dcecp> gets $f1
acct.h
dcecp> gets $f1
acct.idl
dcecp> pid $f1
26556

The pid command can be used to get a list of the process identifiers in the
pipeline associated with an open file.

9.3.8 Other Tcl Commands
Tcl provides a command to obtain information about the state of the interpreter:
the info command. This command can take several options. For example, the
exists option allows us to query for the existence of a variable:

dcecp> set CDS_CH ev2_ch
ev2_ch
dcecp> info exists CDS_CH
1
dcecp> info exists Undefined_var
0

There are other options that operate on variables: vars returns the names of all
variables accessible at the current level of procedure call, globals returns the
names of global variables and locals returns the names of local variables.

Other options available with the info command return information on
procedures. The procs option returns a list of all defined procedures. The args
option returns a list of the argument names of a procedure:

Chapter 9. DCE Control Program and Tcl 161

dcecp> info args get_attr
list pattern
dcecp> info body get_attr
foreach i $list {
if { [lsearch -regexp $i $pattern] >= 0 } {

 return $i
}

}

The body option returns the procedure′s body. The commands option returns a list
of all available commands.

Tcl provides the time command to measure the performance of Tcl scripts. It
takes two arguments: a script name and a repetition count. It returns the
execution average time of each repetition:

dcecp> time {principal show cell_admin} 5
85879 microseconds per iteration

The rename command changes the name of a command; it takes two arguments:
current name and new name of the procedure. If the new name is an empty
string, the command is deleted.

9.4 The DCE Control Program
This section explains the dcecp command syntax, user interface, customization,
and error handling. Tcl programming constructs needed to extend the dcecp
command or write dcecp scripts are discussed 9.3, “Tcl Language Components”
on page 149.

9.4.1 DCE Command Syntax
The dcecp commands are implemented as procedures in a Tcl interpreter.
Commands return strings, and the main interpreter loop displays the results to
the user. Errors are displayed as well. In most cases, a Tcl object-oriented
approach has been used to define the commands. The syntax for dcecp
commands is the following:

<object> <operation> <name> [-<option> [<value>]]...

In this approach, a command is represented by a type of object, and its first
argument, the operation, actually defines what needs to be performed on the
particular instance (<name>) of the object. Operation names are consistent
whenever appropriate. For example, create is always used to create a new
instance of the object; delete is always be used to delete an instance. The third
and following arguments are options and values. Some commands might
require one or more options. Options have a leading dash (-) and are a full
word rather than a single letter, but may be abbreviated (see 9.4.2.4,
“Abbreviations” on page 167 for details). Some options take a value which
immediately follows the option. All arguments are strings, and all commands
return strings as values.

The commands available to the user are those known by the Tcl interpreter. In
the dcecp, the interpreter knows about the Tcl built-in commands and the
additional dcecp commands.

If a command name that Tcl does not know about is invoked, then Tcl calls the
Tcl built-in command unknown with the entered command and arguments. The

162 Understanding OSF DCE 1.1

user is free to define this command as desired to have a variety of things
happen. By default, Tcl defines the unknown command to use the following
heuristic:

 1. See if the Tcl autoload facility can locate the command in a Tcl script file. If
so, load it, and execute it.

 2. If running interactively, see whether the command exists as an executable
UNIX program. If so, exec the command.

 3. If the command was invoked at the top-level:

• See if the command requests csh-like history substitution in one of the
common forms, such as !!, !<number>, or ^<old>^<new>. If so, emulate
csh′s history substitution.

• See if the command is a unique abbreviation for another command. If
so, invoke the command.

 4. Otherwise, fail with an error indicating an unrecognized command.

This means that from the dcecp> prompt, for instance, a UNIX user can type ls to
see a listing of the files in the current directory or rm foo to delete the file foo.

9.4.1.1 Object-Operation vs. Operation-Object
The choice of using an object-operation command order has been controversial.
Many parties have stated that an operation-object ordering is more intuitive and
is more common in other user interfaces. The major advantage to using an
object-operation model is extensibility. To add a new object type to dcecp, that
object type merely needs to be added with all supported operations. If an
operation-object order were used, then each operation that was supported by the
object would need to be taught about the new object. This would be a big
problem as operations are expected to be common among objects, such as,
create, delete and show.

In deference to the operation-object faction, dcecp includes a script that can be
loaded by any user or configured to be loaded for an entire system. This script
defines commands named for operations, such as create, delete and show. The
commands expect their first argument to be the name of an object and will try to
execute the operation on that object using the object-operation syntax. This
provides an operation-object syntax to the user in addition to the
object-operation order. The commands are based on the Tcl info command and
the operations command supported by each object. Therefore, as new objects
are added to the system, these commands will learn about them automatically.
A sample (and incomplete) implementation of the show command is shown
below:

proc show {obj args} {
if {[llength [info commands $obj*]] < 1} {
error ″Object $obj does not exist″

} elseif {[llength [info commands $obj*]] > 1} {
error ″$obj not unique″

} else {
if {[llength [lsearch [$obj operations] show]] < 1} {
error ″show command not supported by $obj object″

} else {
$obj show $args

}
}

}

Chapter 9. DCE Control Program and Tcl 163

Note that the user of these commands will not have to understand the above
script. Since the difference is just transposing the first two words, it should not
be a problem for a DCE administrator to use the operation-object syntax.

9.4.1.2 Attribute Lists and Options
Many of the commands need to specify attributes to operate upon. For example,
the modify command allows attributes to be changed, and the create command
often allows attributes to be created along with the object. In all cases, a
mechanism exists so that an attribute list is used to specify the attributes and
their values. This makes passing information from one command to another
very easy. For example, an ACL copy operation could be written as follows:

copy acl name1 to acl name2
no error checking
proc acl_copy {name1 name2} {
acl replace $name2 -acl [acl show $name1]

}

While attribute lists are useful for writing scripts, they are often not user-friendly.
For those objects that have a fixed selection of attributes, such as principal and
dts, there is an option for each attribute that takes a single value. So, for
example, the following two commands are equivalent:

principal create nordpol -attribute {{quota 5} {uid 123}}
principal create nordpol -quota 5 -uid 123

9.4.1.3 Lists of lists
Since Tcl lists are confusing enough, it′s worth noting here a common usage
when lists contain lists. See the 9.3.3, “Data Structures” on page 151 section
above for a brief description of Tcl lists. The following example is the command
to remove some ACLs from the object /.:/foo:

dcecp> acl modify /.:/foo -remove {user nordpol}

The argument to the -remove option is an ACL entry. The ACL entry happens to
be a list where the first element describes the ACL type, in this case user, and
the second is the key for which user, in this case nordpol. However, the -remove
option may take a list of ACL entries; so the following is valid as well:

dcecp> acl modify /.:/foo -remove {{user nordpol} {user sally}}

All of this seems pretty clear. The point to remember is that lists of one value
that do not contain spaces do not need braces. The string syntax of an ACL
entry allows the type and key to be separated by a colon (:). So, all the
following examples are valid:

dcecp> acl modify /.:/foo -remove user:nordpol
dcecp> acl modify /.:/foo -remove {user:nordpol user:sally}
dcecp> acl modify /.:/foo -remove {{user nordpol}}
dcecp> acl modify /.:/foo -remove {user:nordpol}
dcecp> acl modify /.:/foo -remove {{user:nordpol} {user:sally}}

The following is not legal since it is a list of a list of a list, and the value of the
-remove option is a list of lists:

acl modify /.:/foo -remove {{{user nordpol}}}

Also note that lists are just strings with spaces and that braces are just one way
to quote the spaces from being interpreted as argument separators. Double
quotes and backslashes would work as well. The following are all valid:

164 Understanding OSF DCE 1.1

acl modify /.:/foo -remove {″user nordpol″ ″user sally″}
acl modify /.:/foo -remove user:nordpol\ user:sally

9.4.2 User Interface
The dcecp presents a command-line interface to the user with command-line
recall and editing capabilities. The commands and command-line editing
interfaces are described below.

9.4.2.1 Invocation
The dcecp is a command-line user interface for administrative commands. There
are several methods of invocation:

 1. The user starts dcecp and then sees the dcecp prompt:

dcecp
dcecp>

The above is the default prompt. It can be changed using the standard Tcl
tcl_prompt1 and tcl_prompt2 mechanisms.

 2. The user invokes dcecp with one argument which is a fi lename of a dcecp
script. The script is run, and then dcecp exits. This method of invocation
allows interpreter files (those with #!/bin/dcecp as the first line) to work.

Tcl sets the argc, argv, and arg0 variables to provide access to command-line
arguments.

 3. The user invokes dcecp with the -c option followed by a set of commands, all
on one line separated by semi-colons (;) which must be quoted in the shell.
The commands are executed, and then dcecp terminates. For example:

dcecp -c ″directory create /.:/foo″

The dcecp program also accepts a -s option which causes it not to contact
any servers during initialization. Specifically, it will not try to inherit a login
context from the invoking process. This can be useful when trying to invoke
dcecp when DCE is not functioning properly.

9.4.2.2 Initialization
When dcecp is invoked, it executes the following scripts in the order shown:

 1. [info library]/init.tcl — Contains standard Tcl initialization commands on
a per-host basis as well as definitions for the unknown command and the
auto_load facility. Administrators should avoid adding dcecp customizations
to this file. The info library command usually resolves to /opt/dcelocal/tcl.

 2. /opt/dcelocal/dcecp/init.dcecp — Contains dcecp-specific startup information
for the host. This affects all instances of dcecp running on a host. The dcecp
scripts implementing commands and tasks are stored in the
/opt/dcelocal/dcecp directory.

 3. $env(HOME)/.dcecprc — This file stores user customizations.

9.4.2.3 Command-Line Editing Commands
Previously entered commands can be retrieved. Retrieved commands or
manually typed-in lines may be edited before being sent to the dcecp by typing
control characters or escape sequences.

Most editing commands may be given a repeat count, <n>, where <n> is a
number. To enter a repeat count, type the escape key, the number and then the
command to execute. For example, ESC 4 Ctrl-f moves forward four characters,

Chapter 9. DCE Control Program and Tcl 165

or ESC 4 ESC f moves forward four words. If a command may be given a repeat
count, then the text [n] is given at the end of its description.

The following control characters are accepted (not case-sensitive):

Ctrl-A Move to the beginning of the line
Ctrl-B Move left (backwards) [n]
Ctrl-D Delete character [n]
Ctrl-E Move to end of line
Ctrl-F Move right (forwards) [n]
Ctrl-G Ring the bell
Ctrl-H Delete character before cursor (backspace key) [n]
Ctrl-I Complete filename (tab key); see below
Ctrl-J Done with line (return key)
Ctrl-K Kill to end of line (or column [n])
Ctrl-L Redisplay line
Ctrl-M Done with line (alternate return key)
Ctrl-N Get next line from history [n]
Ctrl-P Get previous line from history [n]
Ctrl-R Search backward (forward if [n]) through history for text; must

start line if text begins with an uparrow
Ctrl-T Transpose characters
Ctrl-V Insert next character, even if it is an edit command
Ctrl-W Wipe to the mark
Ctrl-XCtrl-X Exchange current location and mark
Ctrl-Y Yank back last killed text
Ctrl-[Start an escape sequence (escape key)
Ctrl-]c Move forward to next character c
Ctrl-? Delete character before cursor (delete key) [n]

The following escape sequences are provided (case-sensitive):

ESC Ctrl-H Delete previous word (backspace key) [n]
ESC DEL Delete previous word (delete key) [n]
ESC SPC Set the mark (space key); see Ctrl-XCtrl-X and Ctrl-Y above
ESC . Get the last (or [n]′ th) word from previous line
ESC ? Show possible completions; see below
ESC < Move to start of history
ESC > Move to end of history
ESC b Move backward a word [n]
ESC d Delete word under cursor [n]
ESC f Move forward a word [n]
ESC l Make word lowercase [n]
ESC u Make word uppercase [n]
ESC y Yank back last killed text
ESC w Make area up to mark yankable
ESC nn Set repeat count to the number nn

There is filename completion. Suppose the current directory has the following
files in it:

bin vmunix
core vmunix_old

The following example illustrates the use of file name completion feature (type in
what is marked bold):

166 Understanding OSF DCE 1.1

dcecp> rm vm<TAB>
dcecp> rm vmunix<ESC>?
vmunix vmunix_old
dcecp> rm vmunix_<TAB>
dcecp> rm vmunix_old

This is actually all happening on the same line. If you start typing a file name
and then press the tab key, as much of the name as possible will be finished off
by adding unix. Because the name is not unique, it will then beep. If you type
the escape key and a question mark, it will display the two choices. If you then
continue typing the next character (the underscore) and press the tab key, the
file name will be completed.

9.4.2.4 Abbreviations
The dcecp makes use of two mechanisms to allow all object names, operation
names and options to be abbreviated to the shortest unique string. The first is a
standard Tcl mechanism built-in to the Tcl unknown command. However, this
mechanism only works if the command is interactively entered. If the command
is found in a script, abbreviation checking is not performed by the standard
implementation of unknown. This is to discourage the practice of using
abbreviations of commands in scripts.

The other mechanism used for abbreviations is built-in to the individual dcecp
commands themselves. They all share the same parser code which is used for
both the operation names and the option names. This allows operations and
options to be abbreviated to the shortest unique string representing a supported
operation or option. For example, in most cases -member can be abbreviated -m
since few other options begin with ″m″. Note that this form of abbreviation is
always available, whether invoked interactively or via a script.

9.4.3 Help Facilities
The dcecp command offers help in several ways. To see a list of objects
provided by the DCE control program, enter the help command. All objects
support the operations command to list the operations supported on them. For
example, to list the operations that can be performed on the principals, enter:

dcecp> principal operations
catalog create delete modify rename show help operations

To get more detailed help about an object and its operations, type <object> help.
For example:

dcecp> rpcentry help
create Creates a list of empty RPC Entries.
delete Deletes a list of RPC Entries.
export Stores bindings in a list of RPC Entries.
import Returns the bindings from a list of RPC Entries.
show Returns the attributes of a list of RPC Entries.
unexport Deletes bindings from a list of RPC Entries.
help Prints a summary of command-line options.
operations Returns the valid operations for command.

To get information about available command options, you can call help for a
specific operation as shown in the following example:

Chapter 9. DCE Control Program and Tcl 167

dcecp> rpcentry help export
-binding A list of string bindings.
-interface Specify a single Interface ID.
-object A list of object UUID′ s.

You can use the option -verbose to get help about an object itself.

9.4.4 Convenience Variables
All dcecp commands set several variables on execution to store such information
as, for instance, the name of the object operated on, the return value of the last
command or the DCE name of the user. Users can substitute the value of these
variables into the next command to save typing. These are regular Tcl
variables; so any mechanism to perform the variable substitution is supported.
The most common method is to prefix a $ before the name of the variable,
though the set command can be used as well.

All convenience variables are named with two characters: a leading underscore
and a single letter. Currently all are lowercase; however, it should be noted that
Tcl is case sensitive. Also, one of the variables is an array; so a subscript must
be given with it. Some of these variables are read-only to the user, which is
explicitly mentioned below.

The following variables are defined in dcecp:

_b Name of the server bound to for the last command. This is actually a Tcl
array where the indexes are used to identify the service. Currently, there
is only one defined index: sec.

The value specifies the name of a server in whatever manner the service
finds useful. This could be the name of an RPC server entry in the
namespace, a string binding or the name of a cell. This variable may not
be set by the user.

_c Name of the cell that the principal in the current login context is registered
in. See the _u convenience variable below. This variable is read-only;
setting it via set will generate an error.

_h DCE name of the current host. This variable is read-only.

_n List of the names entered to the last object command as the <name>
argument. These names are the names that the command operated on,
typically entered as the third argument.

_o Object type used in the last operation. This variable is read-only.

_p Parent of _n. If _n is a list, then this is a list of the same length. This is
accomplished syntactically by removing the last name in the pathname of
each element in _n. This variable is read-only.

_r Return value of the last executed command. This variable is read-only.

_s Name of a server to bind to for the next command. This is actually a Tcl
array where the indexes are used to identify the service. The currently
defined indexes are: sec, cds, dts, and aud.

The value specifies the name of a server in whatever manner the service
finds useful. This could be the name of an RPC server entry in the
namespace, a string binding or the name of a cell. This variable may be
set by the user; it is not set by dcecp.

The values of this variable (array) are treated differently by each service:

168 Understanding OSF DCE 1.1

• The Security Service uses this variable as a default for the next registry
operation. If bound to a read-only replica and an update is requested,
dcecp will try to bind to the master registry to perform the change.

• The Cell Directory Service uses this variable in the same way as the
cdscp concept of a preferred clearinghouse. If set, CDS will only
attempt to communicate with the specified server

• The Auditing Service uses this variable in a similar manner to the CDS
server. To contact an audit daemon on another host, set this variable
to identify that server.

• The Distributed Time Service behaves the same way.

_u Current simple principal name. The cell name of _u is stored in _c; so the
fully qualified principal name is $_c/$_u. This variable is read-only.

9.4.5 Error handling
All commands in dcecp return either a list of some information or an empty string
on success. When an error occurs, it generally causes all active Tcl commands
to be aborted. To prevent early termination, Tcl provides facilities for scripts to
catch errors and invoke error handlers.

You can generate an error by executing the error command; for example, the
following could be part of a script:

set dts_cat_out [dts catalog]
if { [llength $dts_cat_out] == 0 } {

error ″Unable to find any DTS servers″
}

The catch command lets you trap and ignore errors so your script can continue
processing. The argument to catch is a Tcl script, which is evaluated. If the
script completes normally, then catch returns 0. If an error occurs in the script,
catch traps the error and returns 1 to indicate an error. The command can also
take a second argument, which is the name of a variable that catch will modify
to hold either the script′s return value (if it returns normally) or the error
message (if the script generates an error). For example:

dcecp> proc test1 {x} {
> if { $x < 5 } { error ″$x is less than 5″ }
> }
dcecp> catch {test1 4} msg
1
dcecp> set msg
4 is less than 5

The dcecp makes use of Tcl′s native error handling facilities. There are two
global Tcl variables visible in dcecp, which are errorInfo and errorCode. The
former contains the stack-trace of the possibly nested error messages stored by
Tcl, and the latter is meant to be machine-readable information.

On error, dcecp commands will return the message string of the error, raise the
Tcl Error exception (which can be caught with the Tcl catch command) and set
errorCode as appropriate to a list where the first element is DCE. The second
element is the numeric value of the status code. The error text is printed to
standard error. If the global dcecp_verbose_errors variable is set to one, dcecp
will instead output the entire contents of errorInfo with the string ″Error:″
prepended. A dcecp script which traps an error is shown below:

Chapter 9. DCE Control Program and Tcl 169

This routine returns 1 if the argument is the name
of a CDS directory, 0 if it is not. It uses the show
operation to determine if it is a directory. If the
command works then it is a valid directory, if not,
an error is generated and caught by the Tcl catch
command and the routine returns 0.

proc isdirectory {name} {
if {[catch {directory show $name}]==0} {return 1} {return 0}

}

In cases where an argument list is given to a command indicating that an
operation is to be performed on more than one object, the operations are usually
performed iteratively. If there is an error, the command will abort at the time of
error with the Tcl TCL_ERROR exception. Some operations will have finished and
others will not have. The operations are always performed in the order entered,
and the error message should make it clear on which object the command
failed.

9.5 Putting it Together: A dcecp Programming Example
Most dcecp commands return their output as a list of lists which is sometimes
difficult to read, whereas the output of the previous DCE commands were more
readable. For example, the output of a rpccp command may be as follows:

rpccp show entry /.:/servers/PrintServer

objects:

96b316fe-9c66-11ce-ae77-10005aa86e2d
3b98b9f0-b551-11ce-aba2-10005a4f4629
5db11410-b551-11ce-aba2-10005a4f4629

binding information:

<interface id> b367ea90-9cf7-11ce-ba29-10005aa86e2d,1.1
<string binding> ncadg_ip_udp:9.3.1.126[]
<string binding> ncacn_ip_tcp:9.3.1.126[]
<string binding> ncadg_ip_udp:9.3.1.241[]
<string binding> ncacn_ip_tcp:9.3.1.241[]

<interface id> 5db0f098-b551-11ce-aba2-10005a4f4629,2.1
<string binding> ncadg_ip_udp:9.3.1.241[]
<string binding> ncacn_ip_tcp:9.3.1.241[]

The corresponding dcecp command produces the following output:

dcecp
dcecp> rpcentry show /.:/servers/PrintServer
{b367ea90-9cf7-11ce-ba29-10005aa86e2d 1.1
{ncacn_ip_tcp 9.3.1.241}
{ncadg_ip_udp 9.3.1.241}
{ncacn_ip_tcp 9.3.1.126}
{ncadg_ip_udp 9.3.1.126}}

{5db0f098-b551-11ce-aba2-10005a4f4629 2.1
{ncadg_ip_udp 9.3.1.241}
{ncacn_ip_tcp 9.3.1.241}}

{96b316fe-9c66-11ce-ae77-10005aa86e2d

170 Understanding OSF DCE 1.1

3b98b9f0-b551-11ce-aba2-10005a4f4629
5db11410-b551-11ce-aba2-10005a4f4629}

Thanks to its extensibility and Tcl, the dcecp is powerful enough to build our own
commands. Following is a program that reformats the output of dcecp rpcentry:

� �
 1 #!/usr/bin/dcecp
 2 proc rpcentry_show {entry args} {
 3
4 set entry_info [eval rpcentry show $entry $args]
5 set elements [llength $entry_info]
6 set binding_info [lrange $entry_info 0 [expr $elements - 2]]
7 set objects_info [lrange $entry_info [expr $elements - 1] end]
8
9 puts ″\nobjects:\n″

 10 foreach object $objects_info {
 11 puts $object
 12 }
 13
 14 puts ″\nbinding information:″
 15 foreach bind_inf $binding_info {
 16 set interface_id [lindex $bind_inf 0]
 17 set version [lindex $bind_inf 1]
 18 puts [format ″\n <interface id> %s,%s″ $interface_id $version]
 19 foreach object [lrange $bind_inf 2 end] {
 20 set protocol [lrange $object 0 0]
 21 set ip [lrange $object 1 1]
 22 set end_point [lrange $object 2 2]
 23 puts [format ″ <string_binding> %s:%s\[%s\]″ $protocol \
 24 $ip $end_point]
 25 }
 26 }
 27 }
 28
 29 eval rpcentry_show $argv� �

Figure 61. Example Tcl Script to Reformat DCE Command Output

The procedure in Figure 61 takes two arguments. The first argument is the
name of the entry we want to display, and the second argument, with the special
value args, means that the rest of the command line is passed as a whole.

The arguments are passed to the rpcentry show command (see line 4), and the
output is stored in the entry_info variable. Since the args variable holds all the
arguments as one string, we have to call eval to separate the arguments in
words. The rpcentry show command returns a list consisting of two or more lists.
Each list, except for the last one, contains one interface definition with its binding
information, and the last one is made up of object UUIDs. On lines 5 through 7,
we separate these elements, and store them in their corresponding binding_info
and objects_info variables.

Lines 9 through 11 write a title and display the object UUIDs within a foreach
loop. Line 14 puts the title binding information.

The binding_info variable is itself a list of lists. It contains a list of interfaces,
each of which contains an interface ID, a version and a list of string bindings.
Line 15 through 18 build an outer foreach loop iterating over the interfaces,
separating its components into variables and printing the interface ID and
version number. Lines 19 through 24 build an inner loop over the string bindings

Chapter 9. DCE Control Program and Tcl 171

of the interface treated in the outer loop. They separate each string binding into
variables for the RPC protocol, network address and endpoint and print them in
the rpccp format.

The last line invokes the procedure. To use it, we enter this procedure into a file
named rpcentry_show and set the executable permission bit. The following are
two examples for the output of this new command:

rpcentry_show /.:/servers/PrintServer

objects:

96b316fe-9c66-11ce-ae77-10005aa86e2d
3b98b9f0-b551-11ce-aba2-10005a4f4629
5db11410-b551-11ce-aba2-10005a4f4629

binding information:

<interface id> b367ea90-9cf7-11ce-ba29-10005aa86e2d,1.1
<string_binding> ncadg_ip_udp:9.3.1.241[]
<string_binding> ncacn_ip_tcp:9.3.1.241[]
<string_binding> ncadg_ip_udp:9.3.1.126[]
<string_binding> ncacn_ip_tcp:9.3.1.126[]

<interface id> 5db0f098-b551-11ce-aba2-10005a4f4629,2.1
<string_binding> ncacn_ip_tcp:9.3.1.241[]
<string_binding> ncadg_ip_udp:9.3.1.241[]

#
#
rpcentry_show /.:/servers/PrintServer -interface \

5db0f098-b551-11ce-aba2-10005a4f4629,2.1

objects:

96b316fe-9c66-11ce-ae77-10005aa86e2d
3b98b9f0-b551-11ce-aba2-10005a4f4629
5db11410-b551-11ce-aba2-10005a4f4629

binding information:

<interface id> 5db0f098-b551-11ce-aba2-10005a4f4629,2.1
<string_binding> ncacn_ip_tcp:9.3.1.241[]
<string_binding> ncadg_ip_udp:9.3.1.241[]

172 Understanding OSF DCE 1.1

Chapter 10. Remote Procedure Calls

Distributed client/server applications in DCE use remote procedure calls (RPCs)
to make function calls (transparently) across a network. Other DCE services also
use RPCs; they are also client/server applications. RPC is the basis for DCE.

Figure 62. RPC as a DCE Component

This chapter discusses all components involved in the execution of an RPC,
including CDS and Security Services access. It explains how clients and servers
are written and work together. At the end of the chapter, we give a complete
picture of how everything works together.

A DCE application development guide is about RPC programming and how to
use the different DCE core services to make the application globally available
and secure.

Although this chapter is fairly detailed and comprehensive, it tries to be
high-level and cannot contain every detail of RPC programming. Readers who
want to know how RPCs work behind the scenes and interoperate with CDS and
Security should read this. They will also find a description of application
development steps.

10.1 What is RPC?
The RPC application has two sides: the client side which calls the remote
procedure and the server side which executes the procedure in its own address
space. Clients and servers can be on different computers linked by
communications networks.

 Copyright IBM Corp. 1995 173

A procedure is defined as a closed sequence of instructions that is entered from,
and returns control to, an external source. Data values may be passed on both
directions along with the flow of control. A procedure call is the invocation of a
procedure. A local procedure call and an RPC behave similarly; however, there
are semantic differences due to the distributed nature of RPCs.

In a local procedure call, the arguments and results are passed on the process′s
stack because the calling and the called procedure share the same address
space. A local procedure call commonly uses the call by reference passing
mechanism for input/output parameters. Due to the differing address spaces of
calling and called procedures, RPCs with input/output parameters have copy-in,
copy-out semantics.

While a local procedure call depends on a static relationship between the calling
and the called procedure, the RPC paradigm requires a more dynamic behavior.
In a local application, this relationship is established by linking the calling and
called code. Linking gives the calling code access to the address of each
procedure to be called. Enabling a remote procedure call to go to the right
procedure requires a similar relationship (called a binding) between the client
and the server. A binding is a temporary relationship that depends on a
communications link.

The use of remote procedures increases complexity in the application design.
Issues such as a remote system crash, security problems, communication links,
naming, and binding require the use of new functions that are unnecessary for
local procedure calls. DCE′s RPC provides a high-level programming model for
distributed application development hiding most of these communication details
from the application programmers.

An end-user does not see any RPC at all. The minimal amount of administration
involved in RPC can usually be handled by the server-side application code. It is
the application programmer who most often comes in contact with the RPC
component. Application programmers design and implement how RPC behaves.
They have to be aware of such things as how the server is going to be located or
whether the application will be multithreaded or not.

10.1.1 IDL, Stubs and RPC Runtime
When developing an RPC application, the application designer must create an
RPC interface that is a logical grouping of operations, data types and constants
that serves as a unique network contract for a set of remote procedures. This
RPC interface is stored in an interface definition language (IDL) file. An example
of a simple IDL file is:

[
uuid(de6a43a8-b6f8-11ce-8223-10005a4f4629),
version(1.0)

]
interface math
{
long int add([in] long int a, [in] long int b);
long int product([in] long int a, [in] long int b);

}

The math interface defines two remote operations (add and product) that the
math server provides. Through this interface, a client can request a server to
perform an add() operation and return the result as an integer. DCE RPC

174 Understanding OSF DCE 1.1

development tools have a special IDL compiler that automatically generates
client and server stub code from the interface definition file. You find a more
detailed description of the IDL and IDL files in 10.5, “Developing an RPC
application” on page 194.

The stubs are needed to manage the communication between the client and the
server. Figure 63 below shows the RPC layers involved in the communication
between client and server. The client stub takes the call with its arguments from
the client, prepares it for transmission and passes it on to the runtime library.
The RPC runtime performs such tasks as controlling communications between
clients and servers or finding servers for clients on request. The server stub
receives the call through the RPC runtime and calls the desired application
procedure. The stubs and runtime library are linked into the client and server
executables.

You can find a more detailed description of the RPC components in 10.2, “RPC
Components” on page 176.

10.1.2 RPC Data Flow
The following figure illustrates how the RPC call is passed through the different
software layers and between client and server:

Figure 63. Steps Involved in a Remote Procedure Call

In this figure, the following steps are performed:

 1. The client′s application code calls the remote procedure. For the application
code, this is like a local procedure call. The client stub gets the input
arguments, prepares them for transmission and dispatches the call to the
client′s RPC runtime.

 2. The client′s RPC runtime transmits the input argument to the server ′s RPC
runtime.

 3. The server ′s RPC runtime receives the arguments and dispatches the call to
the server stub for the called RPC interface.

Chapter 10. Remote Procedure Calls 175

 4. The server stub converts the input to an appropriate format for the server
and calls the procedure.

 5. The procedure executes and returns the results to the server stub.

 6. The server stub prepares the arguments for transmission and passes them
to the server′s RPC runtime.

 7. The server ′s RPC runtime transmits the results over the communication
network to the client′s RPC runtime.

 8. The client′s RPC runtime receives the arguments and dispatches them to the
client stub.

 9. The client stub converts the input to an appropriate format for client and
passes them on to the calling procedure.

10.1.3 Synchronous vs. Asynchronous Models
The procedure call model always has a synchronous behavior; that is, the calling
procedure must wait until the called procedure terminates. This is true for local
and remote procedure calls. The procedure call model is different from other
communication models, such as messages queues, that have an asynchronous
behavior. Examples of asynchronous models for communications are the
Recoverable Queuing Service (RQS) of Encina and the Message Queuing
Interface (MQI; part of the IBM MQSeries product).

Asynchronous models are good for batch processing or when the client initiating
the request cannot afford to wait for it to complete. Synchronous models have
the benefit of assuring the caller that the request was either completed or
abnormally terminated when it gets back the results. This type of model is good
for applications that require immediate response, such as online transaction
processing.

Although RPCs are synchronous, the use of multiple threads of execution allows
the client to perform other tasks while one thread is waiting for an RPC to
terminate. This does not change the synchronous behavior of RPCs, but gives
some of the benefits of asynchronous models to the client application.

10.2 RPC Components
There are several components involved in the processing of an RPC. These
components include:

• Stubs
• RPC runtime
• Protocols
• RPC client application
• RPC application server and manager
• Service queues

Other components are needed to support the client in finding and addressing the
right application server. They are explained in 10.3, “Finding Remote Services”
on page 182. In this section, we will explain the components that process an
RPC call.

176 Understanding OSF DCE 1.1

10.2.1 Stubs
The use of DCE RPCs gives to the application programmer the advantage of
thinking in the same way as when he is developing a non-distributed application.
The application programmer can use a remote procedure call as if they were
calling a local procedure, but, in fact, they are calling the stub code. On the
server side of the application, the remote procedure can be implemented just as
if a local procedure were calling it. The code that hides all the communication
details and provides this view to the programmers is the stub code .

As we mentioned, the stub is the code generated automatically by the IDL
compiler from an interface definition file. It is an interface or application-specific
code module that provides a basic support function for remote procedure calls.
Stubs prepare input and output arguments for transmission between systems
with different forms of data representation. The stubs use the RPC runtime to
send and receive remote procedure calls. When using automatic binding (see
10.3.3, “Binding Methods” on page 187), the client stub can use the RPC runtime
to locate a server for the client.

When a client application calls a remote procedure, the client stub first prepares
the input and output arguments for transmission. The process of preparing
arguments for transmission is known as marshalling . It converts call arguments
into byte-stream format and packages them for transmission.

On the server side, upon receiving call arguments, the stub unmarshalls them.
Unmarshalling is the process by which a stub disassembles incoming network
data and converts it into application data by using a format that the local system
understands.

Marshalling and unmarshalling permit client and server systems to use a
different data representation for equivalent data (for example, the ASCII and
EBCDIC character set).

Figure 64. Marshalling and Unmarshall ing between ASCII and EBCDIC Data

Chapter 10. Remote Procedure Calls 177

DCE uses a receiver-makes-it-right scheme. All calls are tagged with a
description of the calling machine′s basic data representations (for example,
how integers, characters and floating-point data are represented). When the call
is received, the receiver converts the data from the sender′s to the receiver′s
representation, if necessary.

For application-specific types of data, a developer must supply user-defined
marshalling routines. The client and server parts of a distributed application are
linked with their corresponding stub code to build the executable code.

10.2.2 RPC Runtime
Every RPC client and RPC server is linked with a copy of the RPC runtime.
Runtime operations perform such tasks as controlling communication between
clients and servers or finding servers for the clients on request. Stubs exchange
arguments through their local RPC runtimes.

The client runtime transmits remote procedure calls to the server. The server
runtime receives the calls and dispatches each call to the appropriate stub. The
server runtime passes the call results to the client runtime.

As shown in Figure 65 below, the DCE RPC runtime provides an API used by the
stubs and by user applications. Client application code can use the API for
several purposes, such as selecting the type of authentication it wants to use or
locating a service. The application server must contain server initialization code
with calls to RPC runtime routines when the server is starting up and shutting
down.

Figure 65. Runtime API Operations

The following list explains the different services provided by the RPC runtime:

• Communication operations

The RPC runtime is responsible for establishing a binding (the
communication link) and for the data transfer between client and server. At
initialization, RPC servers makes a number of calls to communications
operations, for example, for selecting the protocol sequences to be used.

• Directory service interface operations

The RPC runtime can be used to store and search for the location of servers
(binding information) in the directory service (CDS). The CDS can be
accessed through DCE RPC Name Service Interface (NSI). Using the NSI

178 Understanding OSF DCE 1.1

export operation, an RPC server can place information about its interfaces,
objects and addresses into a namespace entry. Using NSI import
operations, the RPC clients can access this information.

• Endpoint operations

On one host, there could be several RPC servers running; so a host address
is not sufficient to locate a server. The complete address of a server
instance is called a fully bound binding handle, and it contains a host
address and an endpoint (see 10.3.1, “Binding Handles” on page 182). DCE
RPC endpoint operations allow servers to dynamically create their own
endpoints in the local endpoint map. Clients can resolve partial binding
information into fully bound binding handles that contain the appropriate
endpoints.

• Authentication operations

The authentication operations prove the identity of clients and servers to
each other in order to make appropriate authorization decisions. The RPC
authentication operations define what authentication mechanism (usually
DCE Kerberos) and what protection level will be used for ongoing RPC
communication.

• In addition, there are operations to manipulate UUIDs and to manage RPC
applications, as well as several other kinds of operations.

10.2.3 Communication Protocols
A communication protocol is a clearly defined set of operation rules and
procedures for communications. A communication link depends on a set of
communications protocols. The Open Systems Interconnect (OSI) standards
body defined a reference model with seven communication layers that depend
on each other. Each of these layers covers a specific part of the communication
between two computers and uses the lower layer to communicate with its peer
on the other system. Each layer defines protocols for doing so.

An example of a protocol set is the Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) and Internet Protocol (IP), commonly known as TCP/IP.
IP implements the network layer of the OSI model. TCP and UDP implement the
transport protocol, which both use IP. Other examples of communication
protocols are IBM System Network Architecture (SNA), NetBIOS or Novell′s IPX.

An RPC protocol is a communication protocol that supports the semantics of
DCE RPC API and is responsible for marshalling and unmarshalling. It runs over
specific combinations of transport and network protocols. DCE RPC provides two
RPC protocols:

 1. Network Computing Architecture Connection-Based Protocol (NCACN)

This protocol runs over a connection-oriented transport protocol, such as
TCP. It guarantees reliability in the delivery of data, and it provides
indication of a connection loss.

 2. Network Computing Architecture Datagram Protocol (NCADG)

This connectionless protocol runs over connectionless transport protocols,
such as UDP. DG does it ″as best as it can″. Packets are individually
addressed. They can follow different network paths; therefore, the sequence
of the incoming packets may be mixed up. Packets can get lost. Reliability
must be provided by higher layers; it is not protocol-inherent. DG protocol
supports broadcast calls.

Chapter 10. Remote Procedure Calls 179

For two systems to communicate via DCE RPC, their RPC runtimes must support
at least one identical communication protocol and transfer syntax. Initially, the
supported transport layers were TCP and UDP over IP because they are most
widely supported. NetBIOS is supported by DCE for OS/2. The only supported
transfer syntax is Network Data Representation (NDR) as used by the NCA.

Furthermore, both AIX and OS/2, support a fast local transport via inter-process
communication (IPC) for use by clients and servers running on the same
machine. These protocols are called local RPC (LRPC). The LRPC binding
handles are not seen outside the machine; they are automatically generated
when the RPC components realize that client and server are running on the
same machine.

10.2.4 RPC Client Application
The client part of a client/server application is the one that contains the
application logic and the user interface. It uses RPC calls to specialized servers
which help the client perform the work. Of course, work done by a server upon
a single RPC call from a client can itself be quite complex and involve calls to
other servers.

DCE RPC programmers have all the flexibility in the world to create client
programs. A simple program can use one single server and need not even be
aware of the fact that a procedure call is served by remote server. It just has to
include a header file created by the IDL compiler and link with the client stub. A
complex program can use several different servers offering the same or different
interfaces at the same time. In between, there are many variants.

A client has to decide on a binding method first. If it does not care about which
particular server instance it is connected to and the network is relatively small,
using the automatic binding method may be sufficient. With this method, a client
just calls procedures as if they were local; it does not need to be aware of the
fact that it is using RPCs. When a client wants to have control over which
server(s) it is going to use, it might want to use implicit or explicit binding, where
it can specify the server address. This might be necessary for user-provided
load balancing in a large network. For authenticated RPC, it needs access to the
binding handle; so it cannot use automatic RPC.

If a client wants to use more than one server in parallel, for instance, to speed
up matrix calculations, it needs to be multithreaded . In order to perform RPC in
parallel threads, a client must use explicit binding. It is also useful to spawn off
a thread for a simple RPC because then you can have a control thread that could
kill the RPC thread if anything goes wrong. That is the way to implement a
user-controlled timeout mechanism.

10.2.5 RPC Application Server and Manager
The server implements the RPC procedures defined in the RPC interface
definition file. A server consist of two parts:

• A server part that initializes the server and defines its capacities
• A manager part that implements the procedures as defined in the IDL

The server initialization code sets up the environment. Since it is very
server-specific, the server initialization needs to be written by the application
developer. In several steps, which are explained in more detail in 10.5.6,
“Developing a Basic Server” on page 199, the server registers its interfaces,

180 Understanding OSF DCE 1.1

protocol sequences and endpoints with the RPC runtime. This is illustrated in
Figure 66 on page 181 as step (1). It then advertises itself into CDS (2) and
begins to listen for incoming calls (3).

Figure 66. Server Initialization

The server part must also handle the clean-up tasks when it ends. The server
should unregister the endpoints from the local endpoint mapper and delete its
entries from the namespace before stopping.

The manager is the set of procedures that implements the RPC interface defined
in the interface definition file. For each procedure specified in the IDL file, the
manager code must have a corresponding procedure that implements it. A
server can have multiple managers for the same interface that can overlay each
other. In this case, a type is associated with each manager. The server RPC
runtime basically looks at an object UUID coming in with the call and dispatches
the call to the right manager. We describe objects and manager types in 10.3.6,
“Object UUIDs and Manager Types” on page 189.

A server is always multithreaded because server part and manager run in
different threads. However, if you specify in the rpc_server_listen() call that the
number of concurrent threads is one, then only one manager thread is created,
and it does not have to be thread-safe. As soon as you allow more manager
threads, the code must be made thread-safe.

10.2.6 Service Queues
There are two service queues to handle incoming requests in the server:

 1. A system request buffer
 2. A call queue

When the server declares the protocol sequences it supports to the RPC runtime,
it can also specify the maximum number of concurrent remote procedure call
requests that the server can accept. At this point, the RPC runtime creates the
endpoint(s) and assigns a network buffer for each endpoint that is large enough
to accept at least this number of concurrent call requests. These are system
request buffers . Each server process regularly dequeues requests, one by one,

Chapter 10. Remote Procedure Calls 181

from all of its request buffers. At this point, the server process recognizes them
as incoming calls. An incoming call is rejected if the call queue is full.

As part of the call to initiate listening, the server application specifies the
maximum number of concurrent calls it will execute. This number depends on
the design of the application. The RPC runtime creates the same number of call
threads in the server process. Each call thread can execute one RPC request.
Each server process uses a first-in, first-out call queue . When the server is
already executing the maximum number of concurrent calls, it uses the queue to
hold incoming calls. The capacity of the queues for incoming calls is
implementation dependent (in AIX, the queue size is eight times the number of
threads).

The appearance of the rejected call depends on the RPC protocol the call is
using. If using a connectionless protocol, the call fails as if the server does not
exist, returning a communication failure status code. If using a
connection-oriented protocol, the server rejects the call with a server too busy
status code.

10.3 Finding Remote Services
The process of finding the server and establishing a relationship over a
communication link between the client and server RPC runtimes is called a
binding. There are several ways in which a client can find a server. The most
simple is to hard-code the address, endpoint and protocols of a server into the
application. Obviously this implementation is not flexible. A more flexible way is
to use the namespace maintained by the Cell Directory Service. A client can
find a server by asking the CDS for the location of a server that handles the
interface that the client is interested in. This is done using the Name Service
Interface import operations. A client can also obtain server binding information
in string format (called string binding) from an application-specific source, such
as a file or an environment variable.

In this section, we describe the components that are important for a client to find
a server, which are:

• Binding handles
• Name Service Interface (NSI)
• Binding methods
• DCE daemon and endpoints
• Entry-Point Vector (EPV)
• Object UUIDs and manager types

10.3.1 Binding Handles
In general terms, binding information is data about one or more potential
bindings. Binding information includes a set of data that identifies a server to a
client or a client to a server. Binding information is maintained in several
places:

• Server RPC runtime — Information about the objects, routines and protocols
registered by the server as well as information about client(s) currently using
this server.

• Server host DCE daemon (endpoint mapper) — A system-wide list with an
entry for each combination of supported objects, interfaces, protocols, and
endpoints for all application servers.

182 Understanding OSF DCE 1.1

• CDS — Information about globally available application servers.
• Client RPC runtime — Information about the server(s) it is currently using.

Clients and servers do not have direct access to binding information. They need
procedures to obtain a reference, an opaque pointer, to these internal data
structures. These pointers are called binding handles . There are other
procedures to access and to manipulate binding handles. The binding handles
are used by application programs in calls to the RPC runtime or in RPC calls.

rpccp show entry /.:/subsys/dce/sec/master

objects:

997d0bd2-ce94-11ce-8ab9-10005aa86e2d

binding information:

.... cut some data

<interface id> 47b33331-8000-0000-0d00-01dc6c000000,0.0
<string binding> ncacn_ip_tcp:9.3.1.126[]
<string binding> ncadg_ip_udp:9.3.1.126[]

<interface id> 47b33331-8000-0000-0d00-01dc6c000000,1.0
<string binding> ncadg_ip_udp:9.3.1.126[]
<string binding> ncacn_ip_tcp:9.3.1.126[]

Figure 67. Binding Information in CDS

A good example to illustrate and explain the elements of binding information is
the CDS entry in Figure 67. It consists of the following components:

• Object UUIDs (optional)

A server may manage several distinct objects or resources within one or
multiple interfaces. The purpose of object UUIDs is to specify a particular
object or resource the server needs to work on.

What is actually done with the object UUID is completely up to the server
implementation. The client does not need to know how the server deals with
it; it only has to know when it needs to specify one. In the example in
Figure 67, the security server supports one object UUID. For more
information on object UUIDs, see 10.3.6, “Object UUIDs and Manager Types”
on page 189.

• Interface UUID and version number

An interface is defined by its interface UUID and a version number. This
enables the server to support different versions of the same interface. The
version number consists of a major and a minor number. Interfaces with the
same major number are considered compatible if the client specifies a minor
number that is smaller or equal to the one that is exported by the server.

The example in Figure 67 shows two (incompatible) interfaces with the same
interface UUID but different major version numbers (1.0 and 0.0).

• Protocol sequence

The protocol sequence specifies the transport and network layer, such as
TCP/IP or UDP/IP, and the DCE RPC protocol, such as network computing

Chapter 10. Remote Procedure Calls 183

architecture datagram (NCADG) or network computing architecture
connection-oriented (NCACN).

The example in Figure 67 on page 183 shows that the server supports the
NCADG protocol over UDP (ncadg_ip_udp) and the NCACN protocol over TCP
(ncacn_ip_tcp).

• Network address

This is a transport-protocol-dependent address that identifies the host
system, for example, the IP address when the TCP/IP protocol is used.

The example in Figure 67 on page 183 shows that this security server runs
on an IP node with address 9.3.1.126.

• Endpoint

The endpoint is the transport-layer specific address of the process serving
the call. In TCP/IP, this is the port number of the socket address the server
process is listening for.

In the above example, Figure 67 on page 183, the endpoint is not defined.
CDS stores partial binding information because the actual endpoint is
dynamically assigned by the DCE daemon on that server host. When
executing an RPC call with a partly bound handle, the client RPC runtime
contacts the remote DCE daemon to obtain the fully bound handle with an
endpoint to a compatible server.

Each application server creates this binding information during its initialization
with several calls to the RPC runtime. We gave a short introduction on the
server initialization in 10.2.5, “RPC Application Server and Manager” on
page 180 and give more details on it in 10.5.6, “Developing a Basic Server” on
page 199.

Each object UUID (only one in Figure 67 on page 183) is combined with all
interface entries and protocols. This yields valid potential binding handles (four
in the example). The information exported to the local endpoint mapper looks
very similar. However, the endpoint mapper lists every one of these potential
combinations as distinct entries and adds the appropriate endpoint to them. By
querying the security server machine′s endpoint map, we can see what binding
handles are available on the server machine:

rpccp show mapping

.... cut some data

<object> 997d0bd2-ce94-11ce-8ab9-10005aa86e2d
<interface id> 47b33331-8000-0000-0d00-01dc6c000000,0.0
<string binding> ncacn_ip_tcp:9.3.1.126[2578]
<annotation> DCE user registry rdaclif_v0_0_s_ifspec

<object> 997d0bd2-ce94-11ce-8ab9-10005aa86e2d
<interface id> 47b33331-8000-0000-0d00-01dc6c000000,0.0
<string binding> ncadg_ip_udp:9.3.1.126[3428]
<annotation> DCE user registry rdaclif_v0_0_s_ifspec

<object> 997d0bd2-ce94-11ce-8ab9-10005aa86e2d
<interface id> 47b33331-8000-0000-0d00-01dc6c000000,1.0
<string binding> ncacn_ip_tcp:9.3.1.126[2578]
<annotation> DCE user registry rdaclif_v1_0_s_ifspec

184 Understanding OSF DCE 1.1

<object> 997d0bd2-ce94-11ce-8ab9-10005aa86e2d
<interface id> 47b33331-8000-0000-0d00-01dc6c000000,1.0
<string binding> ncadg_ip_udp:9.3.1.126[3428]
<annotation> DCE user registry rdaclif_v1_0_s_ifspec

The new commands for the CDS access and the endpoint mapper listing would
be:

dcecp> rpcentry show /.:/subsys/dce/sec/master
dcecp> endpoint show

When a client wants to connect to a server, it needs to find a compatible server .
A server is considered compatible if it offers the same interface UUID, the same
major interface version number, the same or a higher minor version number, the
same protocol sequence, and the same object UUID as the client requests. The
requirement for the same object UUID is not so strict. If the client requests a
non-nil object UUID not offered by the server, the nil object UUID is considered
compatible. On the other hand, if the client requests the nil object UUID, it might
get a randomly selected object UUID (including nil) back from CDS.

To establish the actual connection, the client needs a server binding handle .
Server binding information is maintained in CDS as well as in the endpoint map
and the RPC runtime of the server machine. CDS usually delivers partly bound
handles. 10.3.2.2, “Searching The Namespace” on page 186 explains how a
client can obtain binding handles from CDS. 10.3.4, “DCE Daemon and Endpoint
Map Service” on page 188 explains how the client RPC runtime gets an endpoint
from the remote DCE daemon to form a fully bound handle used to contact the
server application directly.

However, the server might support multiple object UUIDs, interfaces and protocol
sequences. And multiple server machines may support the same application
servers. So, when the client looks for binding handles, it might obtain handles to
several compatible servers. It depends on the binding method (see 10.3.3,
“Binding Methods” on page 187) whether the client uses a random selection or
whether it wants to control, through several management calls to CDS and the
remote endpoint mapper, what specific binding handle it wants to use.

When making a remote procedure call, the client runtime provides information
about the client to the server runtime. This information, known as client binding
information , includes the address where the call originated, the RPC protocol
used by the client, the object UUID that a client requests, and authentication
information. A server application can use the client binding handle to ask the
RPC runtime about this information.

The binding handles are annotated with security information. The server adds
the levels of security its supports to the handles registered with its RPC runtime.
The client adds the requested security level and its own identity into the binding
handle used to contact the server. This is explained in 10.4, “RPC and Security”
on page 191.

Chapter 10. Remote Procedure Calls 185

10.3.2 Name Service Interface
The Name Service Interface defines several kinds of Cell Directory Service (CDS)
entries that can be made in the namespace. The NSI interface provides APIs
which allow servers to export binding information into CDS objects and clients to
import them.

Binding information in CDS does not have endpoints; binding handles returned
by NSI calls are partly bound. Dynamic endpoints can be different every time
they are assigned; so information in CDS would have to be updated very
frequently if CDS were to store fully bound handles containing endpoints. Only
well-known endpoints are stored in CDS. In this case, clients obtain fully bound
handles.

10.3.2.1 RPC Entries in CDS Objects
Application servers can store binding information in CDS leaf objects. Several
servers may offer the same services and are interchangeable. Multiple server
entries may be grouped in specific CDS objects to provide for a randomized or
prioritized list of compatible servers. This allows for server replication and load
balancing.

RPC can store the following entities in a CDS leaf object:

• An RPC server entry stores binding information and object UUIDs for an RPC
server.

• An RPC group stores names of one or more RPC server entries or RPC
groups, which should represent compatible or interchangeable server
instances. By looking up binding information in a group rather than in a
specific server entry, a client can initialize a random search for a compatible
server. This allows an administrator to provide for load balancing.

• An RPC profile is similar to the group. It contains other server entries,
groups and profiles which allow a search for a compatible server binding.
Other than group elements which are randomly searched, profile elements
have an assigned priority which specifies a search path.

10.3.2.2 Searching The Namespace
NSI provides two methods for finding a server, the rpc_ns_binding_import_*()
routines and the rpc_ns_binding_lookup_*() routines. Both operations search
server entries for a compatible server.

The difference between import and lookup operations is that the lookup
operations return a list of binding handles in the sequence in which they are
stored in CDS, while the former returns just one randomly chosen binding handle
at a time.

To search for a compatible server, the client must perform the following steps:

 1. To start a search, a client calls the rpc_ns_binding_*_begin() routines, where
the asterisk (*) stands for import or lookup. Input parameters for these calls
are a CDS object name where the search begins along with the interface
identifier and object UUID to specify the compatibility criteria for the
requested server. The CDS entry can be any of the entries mentioned above
in 10.3.2.1, “RPC Entries in CDS Objects.” This step returns a name service
handle needed for the actual lookup operations.

186 Understanding OSF DCE 1.1

 2. The application calls the rpc_ns_binding_*_next() routines with the context
handle created in the previous step. Each next operation returns another
value (for the import operation) or list of values (a binding vector for the
lookup operation).

 3. The client may examine the binding handle or simply accept it when it
comes in as a single handle. When a binding vector is returned, the client
can examine the handles contained in the vector or call
rpc_ns_binding_select() to randomly select one. If the client wants to
examine a handle, it has to convert it to a string binding with
rpc_binding_to_string_binding() because the binding handle is a pointer to
an opaque data structure. In the string binding, the client could check, for
example, the network address or the object UUID.

 4. When the client does not want to accept or try a binding handle, it can go
back to step 2.

 5. When the client accepts a binding, it should delete the name service handle
by calling the corresponding NSI rpc_ns_binding_*_done() operation.

10.3.3 Binding Methods
The client process needs a binding handle to execute an RPC call. In the
simplest case, a programmer need not worry about binding handles. If they do
not care to which (compatible) server instance an RPC call will be routed, they
can use automatic binding. In this case, the client stub looks up binding
information in CDS and creates the handle.

If the programmer wants full flexibility, he might want to select a server
according to some application-specific criteria. The programmer is responsible
to obtain a binding handle either via CDS lookups or by assembling a
string-format binding and converting it to a binding handle. If they use the same
handle for all RPC calls, they can use implicit binding. If they want to use
different servers from the same client, they need to use the most complex
method, that is explicit binding.

10.3.3.1 Automatic Binding
This is the simplest method of managing the binding for remote procedure calls
since the client stub automatically manages the binding for the application code.
The automatic method completely hides binding management from client
application code. The client stub handles all needed operations to obtain a
binding handle. If the client makes a series of remote procedure calls, the stub
passes the same binding handle to these calls.

With the automatic method, a disrupted call can sometimes be automatically
rebound. The client must specify the CDS object name for the CDS search in the
RPC_DEFAULT_ENTRY environment variable. The environment variable can be
set externally or within the program through a setenv() call.

10.3.3.2 Implicit Binding
This is a relatively simple method to manage a binding. With the implicit
method, the client is responsible for obtaining a server binding handle and
assigning it to a global variable specified in the interface definition. When
calling a remote procedure call, the client stub passes this global binding handle
to the runtime.

Chapter 10. Remote Procedure Calls 187

10.3.3.3 Explicit Binding
This is a more complex and flexible method of managing a binding. As with the
implicit method, the client application code creates a binding handle. In the
explicit method, however, this binding handle is supplied by the application code
as a parameter to each remote procedure call.

By allowing a client to manage bindings for individual calls, the explicit method
enables clients to meet specialized binding requirements. A client can be
multithreaded and use several different remote services at the same time.

10.3.4 DCE Daemon and Endpoint Map Service
A DCE server host may run several RPC server applications. For an RPC client
to connect to a particular RPC server, it needs to know the:

• Network address of the server machine
• Address of the process serving the call, called an endpoint

An endpoint is a transport-layer address to the application server. The endpoint
address is specific to the transport protocol the application server will use. For
example, in TCP/IP, the machine address is the IP address, and the endpoint is
the port address. Together, they build an IP socket to which the server process
is listening. Applications can listen to one or multiple endpoints. That is
completely up to the application and usually depends on how many interfaces,
protocols, object UUIDs, and manager routines it supports. A simple application
server will support one endpoint.

An application can choose to use a well-known endpoint and listen to it without
using the DCE daemon. However, this would require a lot of coordination effort
between the different developers, vendors and manufacturers. For TCP/IP, port
addresses are administered and assigned by the ARPANET Network Information
Center. Therefore, applications better use dynamic endpoints. They are
assigned when a server application starts. The endpoint map service manages
the current list of endpoint addresses. As part of the RPC binding process
between a client and a server, the endpoint mapper tells the client which port it
should use to connect to the desired server process.

The endpoint mapper, shown in Figure 66 on page 181, is a service of the DCE
daemon (dced) in OSF DCE 1.1. It used to be part of the RPC daemon (rpcd) in
OSF DCE 1.0.x, which is no longer available.

The dced process always uses the same network endpoint; so its process
address is well known. It listens on one endpoint for each protocol. For
example, if a host supports TCP/IP and UDP/IP, dced will listen on one TCP and
one UDP socket (port 135 on both) for client requests.

In addition to the endpoint mapper service, the dced provides the DCE host
services that are able to control and manage other DCE servers, including
application servers. The services include tasks such as security validation,
starting and stopping individual servers, monitoring a running server′s states,
and managing server passwords remotely. This is a new function in OSF DCE
1.1.

188 Understanding OSF DCE 1.1

10.3.5 Entry-Point Vector
When a call arrives at the server, the server must be able to determine which
routine to call. The manager is part of the server implementation that contains
all procedures defined in the interface.

For each interface supported by the server, there is an entry-point vector (EPV)
that contains a list of addresses of the remote procedures provided by the
manager. It is an array of function pointers. A manager EPV must contain
exactly one entry point for each procedure defined in the interface definition. A
default manager EPV is typically generated into the stub code by the IDL
compiler. A server that does not handle several managers can use the default
EPV provided in the stub.

For any additional manager of the same RPC interface, the server must create
and register a unique manager EPV. Each manager must also be associated
with a distinct type object. See 10.3.6, “Object UUIDs and Manager Types” for
more details on multiple manager types for the same interface.

For example, the bank demo that comes with the DCE application development
tools defines several interfaces, and for each interface, it defines an entry point
vector (a vector of pointers to procedures):

globaldef admin_v1_0_epv_t admin_epv = { admin_open_bank,
admin_write_bank,
admin_create_acct,
admin_delete_acct,
admin_inquire_acct
};

globaldef trans_v0_0_epv_t res_trans_epv = { res_deposit,
res_withdraw

};

When it calls the rpc_server_register_if() function to register an interface, it
also passes the respective entry point vector as an argument.

10.3.6 Object UUIDs and Manager Types
An RPC object is an entity that an RPC server defines and identifies to its clients.
Frequently, an RPC object is a distinct computing resource, such as a particular
database, directory, device, or processor. Applications can use RPC objects to
differentiate between RPC interfaces that operate on specific resources. An RPC
object can also be an abstraction that is meaningful to an application, such as a
service or the location of a server.

RPC applications generally use RPC objects to enable clients to find and access
a specific server. When servers are completely interchangeable, using RPC
objects may be unnecessary. However, when clients need to distinguish
between two servers that offer the same RPC interface, RPC objects are
essential.

As we mentioned before, a server can offer multiple implementations (or
managers) of the same RPC interface. It can overlay the set of procedures
pointed to by an EPV with another set of procedures. It needs to define another
manager EPV that points to different functions. A manager is associated with a
type UUID and must also be associated with an object UUID which can be
referenced by client. During server initialization, the rpc_object_set_type()

Chapter 10. Remote Procedure Calls 189

routine has to be called for every manager type-to-object UUID association. For
every manager, the rpc_server_register_if() has to be called which registers a
particular manager EPV with the interface.

By choosing another object UUID, the client can choose another set of
procedures executed on behalf of its calls. For those readers who are familiar
with object oriented programming, the interface can be compared with a parent
class containing only virtual methods, and manager types can be compared with
classes that inherit from the parent and have to implement the methods. The
term object UUID can be seen as a pointer to a remote object with its methods.

10.3.7 Putting It Together: A Summary of RPC Call Routing
We discussed (partially and fully bound) binding handles, endpoints, binding
methods, NSI lookups, object UUIDs, and RPC managers. Here, we will
summarize how a client finds a particular routine in a remote application server.

Figure 68. Steps Involved in Finding a Server

Figure 68 illustrates a simplified process of a client searching for a server. It
performs the following steps:

 1. Looking up a binding in CDS

The client sends a request to its local CDS client (cdsclerk) to look up an
entry in the name space. If it does not have the information in its own
cache, the local cdsclerk contacts the CDS server to search for compatible
binding information. Depending on the calls it used, the client gets one
randomly selected binding handle at a time or a binding vector. The handles
are partly bound, meaning they do not have an endpoint.

190 Understanding OSF DCE 1.1

If the RPC entry used to start the search in CDS was a group or profile, the
look up can go over multiple server entries providing a random selection of
one of multiple machines running the same application servers.

 2. Contacting the remote endpoint mapper

The client selects a binding handle and issues the RPC call. Since the
handle is a partly bound handle, the call goes to the remote DCE daemon
listening on the well-known endpoint 135. The endpoint mapper function of
the DCE daemon looks up the endpoint registered for the requested
interface, object and protocol. It adds the endpoint to the binding handle and
returns it to the client′s RPC runtime.

 3. Executing the RPC

With the fully bound handle, the client′s RPC runtime then directly calls the
server process listening to the endpoint. The server′s RPC runtime takes the
call, checks what object and interface is being addressed, chooses the right
manager EPV, and dispatches the call to the procedure point to by the EPV.

If the client uses automatic binding, it just calls the desired function, and the
RPC runtime performs all the above look-up and selection steps.

10.4 RPC and Security
DCE RPC supports authenticated communications between clients and servers.
Authenticated RPC is provided by the RPC runtime facility and works with the
authentication and authorization services provided by the DCE security service.

Before authenticated RPC can be used, the application server registers its
principal name and the supported authentication service with its RPC runtime. A
server usually assumes its own (authenticated) login identity during its
initialization. It performs the equivalent of a user login by specifying its DCE
account name and password stored in the local keytab file. See also 10.5.6,
“Developing a Basic Server” on page 199 for details on the server initialization
steps.

A client usually runs with the login context of the user that called it. To use
authenticated RPC, a client must specify the server principal name and establish
the authentication service, protection level and authorization service that it
wants to use in its communications with a server. The client does this with a
call to rpc_binding_set_auth_info(), which adds this security information to the
server binding handle. The client then uses this extended binding handle in its
further RPC calls.

The client can call rpc_mgmt_inq_server_princ_name() with the server binding
handle established so far if it does not know the server principal name. This
procedure contacts the server′s RPC runtime to query the registered server
principal name.

10.8, “Putting It All Together: Initialization, Routing and Execution” on page 207
explains at what stage of the client/server communication security routines are
called. The rest of this section describes the authentication service, protection
level and authorization service. At the end of this section, there is a caveat on
server key management and secret key authentication.

Chapter 10. Remote Procedure Calls 191

10.4.1 Authentication Service
The DCE Remote Procedure Call (RPC) programming facility is connected with
the security components to provide mutual client/server authentication of
principal identity.

The RPC mechanism includes automatic use of the DCE Kerberos authentication
protocol. DCE RPC offers several types of authentication protocols.

When a client establishes authenticated RPC, it must indicate the authentication
service that it wants to use. The server must have registered the same service
with a call to rpc_server_register_auth_info(). A server can register more than
one authentication service.

The possible values for the authentication service are the following:

• None. No authentication.

• DCE_secret. DCE shared-secret key authentication.

• DCE_public. DCE public key authentication.

• Default. DCE default authentication service (which is DCE_secret).

10.4.2 Level of Protection
When a client establishes authenticated RPC, it can specify the level of
protection to be applied to its communication with the server. The protection
level determines the degree to which client/server messages are actually
encrypted. As a rule, the more restrictive the protection level, the greater the
impact on performance.

The following protection levels are available:

• None. No communication protection.

• Connection. Performs an encrypted handshake the first time the client
communicates with the server.

• Call. Attaches an encrypted verifier only at the beginning of each remote
procedure call over connectionless communication. This level does not
apply for TCP connections.

• Packet. Attaches a verifier to each message sent over the network to make
sure all messages are from the expected client.

• Packet Integrity. Ensures and verifies that no messages have been modified
by computing and encrypting a checksum over each message.

• CDMF Privacy. Encrypts RPC arguments and data in each call using CDMF.

• Packet Privacy. Encrypts RPC arguments and data in each call using DES.

Encryption is done with the session key, which is only known by the client and
the server for which the service ticket was issued. More explanations on
session keys and how they are obtained and managed are in 10.4.4, “Key
Management and Secret Key Authentication” on page 193 below.

On most platforms, encryption is done with the data encryption standard (DES)
algorithm which cannot be exported outside the U.S. in a user-accessible form.
This means that DES can be used for protection levels up to and including
Packet Integrity, but not for Data Privacy.

192 Understanding OSF DCE 1.1

On the AIX platform, there is a User Data Masking Facility, which is still referred
to as Common Data Masking Facility or CDMF. CDMF allows you to encrypt user
data in RPCs using DES with a 40-bit key instead of the standard 52-bit key.
Since this makes the encryption weaker, it has less export restrictions from the
USA. It is a good solution for non-U.S. customers who want increased privacy,
but cannot have an export license for full DES.

It is possible that data privacy will not be usable due to laws in some countries
(France, UK) which restrict encrypted data from crossing their borders; in this
case, only data integrity can be used.

10.4.3 Authorization
Authorization is the mechanism that allows the server to control client access to
a resource. The authorization process is application dependent. It is up to the
server side of the application to implement the appropriate authorization
checking it needs. The authorization process involves the matching of clients′
privilege attributes against the permissions associated with an object.

The server can ask the RPC runtime for the privileges associated with a client.
Authenticated RPC supports the following operations for making client
authorization information available to servers for access checking:

• None. No authorization information is provided to the server.

• Name. Only the client principal name is provided to the server. This type of
authorization is called name-based authorization.

• DCE. The client′s DCE Extended Privilege Attribute Certificate (EPAC) is
provided to the server with each remote procedure call made using the
binding parameter. The EPAC contains the principal name and a list of
groups of which the principal is member. The EPAC also contains the name
and group memberships of a principal in the delegation chain and any
extended attributes that apply to the principal.

Once the server obtains the client′s authorization information, is up to it what to
do with this information. To perform an authorization check, it can implement its
own authorization scheme based on information stored on a file or a database;
or it can even compare the information received with some hard-coded
authorization information. The server can also implement an ACL manager that
allows a security administrator to maintain permission in a standardized way
outside of the program by using the acl_edit program or dcecp. The server calls
the appropriate ACL manager for the type of object requested by the client and
passes the manager the client EPAC. The manager compares the client
authorization data to the permission associated with the object and either
refuses or permits the requested operation. If the EPAC contains a delegation
chain, the ACL manager grants access for the requested operation only if all
principals in the delegation chain have the necessary permissions on the object
that is the eventual target of the operation.

10.4.4 Key Management and Secret Key Authentication
When installing an application server that needs to run authenticated RPCs, it
has to register a server principal name with the RPC runtime. This is done
through the rpc_server_register_auth_info() call. The client specifies the server
principal it wants to connect to with the rpc_binding_set_auth_info() call. The
client and server runtimes then perform the mutual authentication.

Chapter 10. Remote Procedure Calls 193

Authentication is basically done with the server key . The server key is the
server ′s encrypted password. How does the server supply its password? The
administrator has to create a principal and an account in the Security Registry.
The administrator then uses the rgy_edit′s ktadd command or the dcecp′s keytab
add command to add a password, which can be randomly generated. The
password is encrypted by the local Security Service runtime and saved in the
local keytab file as well as in the Security Registry. This is the server key.

The client RPC runtime requests a service ticket from the Security Service. This
ticket contains the client′s extended privilege attribute certificate (EPAC) and a
session key for the upcoming client/server communication. The EPAC contains
the principal name and groups of which this principal is a member. This ticket is
encrypted with the server′s session key. So, the client cannot decrypt and
change it to its own liking. Together with the (unreadable) ticket, the client also
is sent the session key. Of course, this communication between client and
Security Service is itself encrypted.

The client RPC runtime encrypts the RPC call with the session key and sends it
to the server′s runtime together with the ticket. The server immediately
challenges the client by sending it a randomly generated number which the
client has to encrypt with the session key and return to the server.

The server′s runtime obtains the server′s key from the local keytab file and
decrypts the ticket, thereby learning the session key and the client′s EPAC. The
random number is decrypted, and if it matches, everything is set for
authenticated RPC. The session key is used in further communication over this
binding. In theory, the server can register more than one principal and
authentication service. Then, each of these principals has to have a password
(key) in the keytab file.

For automated key management , servers spawn off a thread and call the
sec_key_mgmt_manage_key() routine, which checks the expiration date of a
particular principal′s key and replaces it in time with another randomly
generated password. This has nothing to do with ticket lifetime . If the ticket
expires, the server throws the session key away, and the client RPC runtime has
to obtain a new ticket.

The server can use (one of) its registered principal name(s) and the
accompanying key to perform the equivalent of a user login and create its own
login context. Long-running servers (and clients) should also spawn off a thread
to monitor the ticket lifetimes and refresh tickets, if necessary.

See also 3.2.3.6, “Keys and Key Management” on page 57 for more information.

10.5 Developing an RPC application
This section explains the elements involved in the RPC application development
process.

194 Understanding OSF DCE 1.1

10.5.1 Universal Unique Identifiers
UUIDs are guaranteed to be unique numbers. They have to be unique for all
time (at least for the life time of the companies using them). A UUID is a 16-byte
structure composed of the current time of day, measured in hundreds of
nanoseconds since January 1,1970, and the IEEE802 network hardware address.

A well-behaved clock will never move backwards. This is very important for
guaranteeing the uniqueness of UUIDs. The UUID generator keeps track of the
last UUID generated. If it detects that the clock has moved backward, it adjusts
for this with the clock sequence number field which is modified each time the
clock is found to have moved backwards.

There are three variants of the UUID specification. The variant in use is
identified in the reserved field (this allows the variants to coexist). The version
number field is the version of the variant.

Figure 69. UUID Structure

The applications use UUIDs to identify several kinds of entities, such as:

 1. Interface UUIDs as a required part of the RPC interface definition

 2. Object UUIDs to identify resources a server manages

 3. Type UUIDs as classes of RPC objects with their own manager routines

DCE provides a utility to create UUIDs. In addition to plain UUIDs, the UUID
generator (uuidgen command) can also create an RPC interface definition
template file (an .idl file) containing the newly generated interface UUID. To
create template for an IDL file and display it, run the following commands:

uuidgen -i -o Bank.idl
cat Bank.idl
[

uuid(9967703a-b821-11ce-9060-10005a4f4629),
version(1.0)

]
interface INTERFACENAME
{
}

10.5.2 Interface Definition File
The first step in developing an application is to write an interface definition file.
It declares the remote procedures in its own interface definition language (IDL),
which is similar to the C programming language with the addition of attributes.
The IDL file is pre-compiled with an IDL compiler to create the client and server
stub code. This is explained in 10.5.4, “IDL Compiler” on page 197.

In 10.5.1, “Universal Unique Identifiers,” we describe how to create a skeletal
interface definition file with the uuidgen command. This file needs to be edited to

Chapter 10. Remote Procedure Calls 195

contain all the data types, attributes and procedure call declarations that make
up the interface. The RPC interface definition contains two basic components:

• An interface header that contains a UUID, interface version numbers and an
interface name.

• An interface body that declares any application specific data types and
constants as well as operation declarations with their parameters and return
values.

In local programs, the operations, the parameters and the structures are stored
in the same process′s memory and are easily accessible via pointers. In
distributed applications, you need to worry much more about the efficiency of
data access or transfer between a calling and a called function. IDL uses
attributes to define the behavior of a particular client/server application. For
instance, attributes specify how arrays and pointers are to be treated and how
the portion of memory referenced by them is transmitted. The pointer_default
attribute in the example below defines the type of pointer:

[uuid(88fdbace-f5a3-11c9-9999-02608c2ea88e), pointer_default(ptr),
version(0)]
interface trans
{

import ″acct_type.idl″ ;

error_status_t deposit(
[in] handle_t h,
[in] char name[30],
[in] long amount

);

error_status_t withdraw(
[in] handle_t h,
[in] char name[30],
[in] long amount

);
}

For every parameter in the list, the programmer also has to specify whether it is
for input, output or both. The example above has only input parameters (in).
The return value of the functions tells the caller whether a deposit or withdrawal
to/from the account specified by the input parameters was performed or failed.

The interface header is all made up of attributes. In addition to the UUID,
version, interface name, and pointer_default you can also define a well-known
endpoint.

IDL defines many new data types, such as binding handles and pipes. Pipes are
used to transfer large amounts of data. Another feature of IDL are context
handles. They are used to maintain the state or value of variables on the server
between successive calls of the same client.

196 Understanding OSF DCE 1.1

10.5.3 Attribute Configuration File (ACF)
We can tailor how the IDL compiler creates stubs. This can be done differently
for clients and servers without changing the interface definition. The IDL file
defines the interface, whereas the ACF can, for instance, instruct the IDL
compiler to include only a subset of functions into a specific client stub or how it
should handle marshalling and unmarshalling.

The ACF file can also define a specific binding method for a server. Defining the
explicit binding method in the ACF, for instance, instructs the IDL compiler to
add a binding handle to each procedure without having to specify it in the IDL
file. In this way, another client could be built for the same interface using
automatic binding. The comm_status and fault_status attributes are examples of
ACF implicitly adding parameters to the parameter list.

We associate the filename.idl file with filename.acf.

10.5.4 IDL Compiler
The DCE IDL compiler processes the RPC interface definition written in the .idl
and .acf file and generates header files and stub object code. You can also
request the IDL compiler to keep the intermediary stub source code written in
ANSI C.

The IDL compiler also generates a data structure called interface specification
which contains identifying and descriptive information about the compiled
interface. It creates a companion global variable, the interface handle , which is
a reference to the interface specification.

The interface handle is directly used by runtime operations to obtain required
information about the interface, such as UUID and version number. Servers use
the interface handle during their initialization to register the interface, and clients
use it to locate a compatible server.

Figure 70. IDL Compil ing

Figure 70 shows the steps needed to compile a RPC interface. After creating
the .idl file (and optionally the .acf file), you can run the IDL compiler to generate

Chapter 10. Remote Procedure Calls 197

the client and server stub code. For example, to generate the stub code for the
math interface, you run the following command:

idl math.idl -keep c_source

Besides the regular header (math.h) and stub files (math_cstub.o and
math_sstub.o), the compiler is instructed to also keep the ANSI C source files for
the stubs (math_cstub.c and math_sstub.c).

10.5.5 Developing a Basic Client
The complexity of a client program depends on the binding method. When using
automatic binding, the simplest client does not have to worry about finding and
contacting a server. It just uses the remote call; the stub and runtime do the
rest.

For example, when a client wants to use the product() call as defined in the
math interface shown in 10.1, “What is RPC?” on page 173, it can do so using
the following code:

#include ″math.h″

int main(int ac, char *argv[])
{

 if (ac != 3) {
printf(″Usage: %s number_1 number_2\n″ ,argv[0]);
exit (1);

 }
 printf(″ %s + %s = %d\n″ ,argv[1],argv[2],product(atoi(argv[1]),atoi(argv[2])));
}

The program has to be linked with the math_cstub.o. At runtime, the
RPC_DEFAULT_ENTRY environment variable must be set to a directory service entry
that contains binding information about the math server. If the client were to use
implicit or explicit binding, it would have to use the NSI search functions
described in 10.3.2.2, “Searching The Namespace” on page 186.

If the client wants authenticated RPC, it needs to annotate the binding handle
with the name of the server principal and the requested security levels. 10.4,
“RPC and Security” on page 191 discusses how to achieve this.

Figure 71 on page 199 shows the steps needed to develop a DCE RPC client.

198 Understanding OSF DCE 1.1

Figure 71. Client Development Tasks

10.5.6 Developing a Basic Server
The server implements the RPC procedures defined in the RPC interface
definition file. As introduced in 10.2.5, “RPC Application Server and Manager”
on page 180, a server consist of two parts:

 1. A server part that initializes the server and defines its capacities
 2. A manager part that implements the procedures as defined in the IDL

The development steps illustrated in Figure 71 are the same for servers; instead
of client stub and code, you would put server stub and server/manager code.
So, we want to concentrate on the server initialization in this section. Basically,
this involves the following tasks in the listed sequence:

 1. Creating a login context: several sec_login_*() commands

A server basically runs under the identity of the user who started the
process. If the root user started the process without having done a DCE
login, the server runs under the authenticated machine principal. This might
be sufficient. However, if the server wants to establish its own login identity
(login context), it performs the equivalent of a DCE user login with its own
user account. The password (actually the key, which is the locally encrypted
password) is taken from the local keytab file.

This step is optional, but be aware that the principal name in the login
context is used when this server turns into a client and wants, for instance,
access any object protected by ACLs.

 2. Assigning manager types to objects: rpc_object_set_type()

The association of a manager type to a manager is a mechanism for
overlaying one manager offering a set of procedures with another manager
offering the same (but differently implemented) procedures. An object UUID
has to be assigned to every manger type that serves client requests for the
same interface. Clients can specify an object UUID to select a specific

Chapter 10. Remote Procedure Calls 199

manager. We explain objects in more detailed in 10.3.6, “Object UUIDs and
Manager Types” on page 189.

 3. Registering interfaces: rpc_server_register_if()

Registering an interface informs the runtime that the server is offering that
interface. The first parameter is the interface handle as found in the IDL
compiler-generated header file. Further parameters are a manager type
UUID and the manager EPV that is pointing to the functions implemented by
this manager. Both can be NULL. If the server offers more than one
interface and/or more than one manager for the same interface, it must call
this routine several times.

 4. Specifying supported protocols: rpc_server_use_all_protseqs()

The server can inquire about the protocols sequences that the local RPC
runtime supports before it calls this routine. You must use at least one
protocol sequence to receive remote procedure calls. After a server has
passed the supported protocols sequences to the RPC runtime, the RPC
runtime creates the necessary endpoints and server binding handles, one for
each protocol sequence, regardless of how many interfaces or managers you
specified in the step before. At this point, a binding handle consists of a
protocol sequence, a network address and an endpoint. All interfaces of the
same server are served by the same binding handle(s).

A server can supply a well-known endpoint. When using dynamic endpoints
in TCP/IP, this step creates new sockets which will be served by this
application server. The number of sockets created also depends on the size
of the requested request buffer, since a socket can only queue five requests.

 5. Obtaining a list of binding information: rpc_inq_server_bindings()

The server can query the RPC runtime about the binding handles created on
the previous step. Each binding handle represents one way to establish a
binding with the server. The list of binding handles is needed as input to the
next steps which advertise bindings.

 6. Registering endpoints with dced: rpc_ep_register()

A server can use a well-known or dynamic endpoints with any protocol
sequence. To use the dynamic endpoints, a server must register the
server ′s binding handles with the local endpoint mapper (managed by the
dced daemon). With this call, the server has to specify one interface handle,
the binding handles obtained in the step before, all object UUIDs that belong
to this interface, and a textual annotation. For every combination of binding
handle and object UUID, the DCE daemon creates an entry in its endpoint
map for the particular interface handle that goes with this call. If the server
registers more than one interface, it has to run this call once for each
interface.

A server does not need to register well-known end points; however, by
registering well-known endpoints, the server ensures that clients can always
obtain them even if they do not know them.

 7. Advertising the server in CDS: rpc_ns_binding_export()

This step exports the binding information to one or more entries in the CDS
namespace.

 8. Registering authentication information: rpc_server_register_auth_info()

200 Understanding OSF DCE 1.1

Registers the supported authentication level with the RPC runtime together
with the server principal name and information on how the runtime can
access the server′s key to perform the secret-key authentication.

The server can register multiple authentication levels and principal names
by calling the routine more than once. The client can request any of these
registered server principal names and establish an authenticated
communication. In fact, the server principal(s) registered here can be
different from the principal name of the process′s login context.

 9. Listening for remote procedure calls: rpc_server_listen()

When the server is ready to accept remote procedure calls, it starts listening.
With this step, it specifies the maximum number of calls it can concurrently
execute.

10.5.7 Servers with Multiple Interfaces
As we said before, a server can register multiple interfaces. For example, the
bank demo uses two interfaces, an admin and a trans interface. These
interfaces act on four objects: a checking account, a savings account, a CD
account and an IRA account. The checking and savings account have a type of
unrestricted. The CD and IRA account have a type of restricted. Each of these
types have different manager code to implement the deposit and withdraw bank
transactions. This eventually results in restricted withdrawal and deposit
operations, and unrestricted withdrawal and deposit operations, which are
selected depending on the type of the object (account type) they are applied to.

The server code has three IDL files. The acct_type.idl file is just a definition of
files.

To create the server, you have to run the IDL compiler over these .idl files:

idl acct_type.idl -I/usr/include/dce
idl admin.idl -I/usr/include/dce
idl trans.idl -I/usr/include/dce

This generates the header files and the compiled stub code. The server code
must include both header files (admin.h and trans.h). The server must register
both interfaces with the RPC runtime. Since the trans interface implements two
managers, it registers this interface twice with different type managers
(restricted and unrestricted type) and manager EPVs:

rpc_server_register_if(admin_v1_0_s_ifspec, (uuid_p_t)NULL,
(rpc_mgr_epv_t)&admin_epv, &st);

rpc_server_register_if(trans_v0_0_s_ifspec, &rest_type,
(rpc_mgr_epv_t)&res_trans_epv, &st);

rpc_server_register_if(trans_v0_0_s_ifspec, &unrest_type,
(rpc_mgr_epv_t)&unres_trans_epv, &st);

When compiling the server code, it must be linked with the admin_sstub.o file
and the trans_sstub.o file.

Chapter 10. Remote Procedure Calls 201

10.5.8 Using Manager Types
Manager types allow you to have different implementations of the same
interface. The bank demo we explained in the previous section uses two
manager types for the transaction RPC interface. It defines restricted and
unrestricted transactions. Depending on the object that the client is requesting,
the RPC runtime will select the appropriate manager (EPV) to handle the RPC.
The server code defines a specific UUID for each object (accounts) and for each
type. To be able to use manager types, it has to associate an object UUID to
each manager type:

rpc_object_set_type(checking_obj, unrest_type, &st);
rpc_object_set_type(savings_obj, unrest_type, &st);
rpc_object_set_type(cd_obj, rest_type, &st);
rpc_object_set_type(ira_obj, rest_type, &st);

This has to be done at first, before registering the interface. Then it registers the
interfaces, as shown in the previous section 10.5.7, “Servers with Multiple
Interfaces” on page 201.

The client side will set an object UUID according to the account it will operate
on. The object UUID is added to the binding handle before the RPC is made:

rpc_binding_set_object(trans_bindinghandle[bank],&acct_uuid,&st);
.
.

st = deposit(trans_bindinghandle[bank],name,amt);

When the server RPC runtime receives this RPC, it will route it to the appropriate
manager, depending on the object UUID.

10.6 RPC Administration
Only few administrative tasks must be performed when running a distributed
application using RPC. The application server executes most of these tasks
when it first starts. Non-automated RPC administration is minimal. It is
essential that each DCE machine has a DCE host daemon running on it. The
DCE daemon is the first process started when DCE is brought up. When
managing RPC applications, an administrator might have to do the following:

• Create security registry information for the server (principal, account)
• Create a keytab entry with password for the server
• Create namespace entries for the server′s bindings
• Change the ACLs of objects the server principal has to access
• Manage the endpoint mapper of the server′s DCE daemon

The administrator might have to perform some of these tasks with DCE
commands. More likely, an application will provide installation and configuration
tools that do the job.

The first step after installing an RPC application is to create a principal and an
account in the Security Registry. This must be the same name as the server
exports into its RPC runtime upon initialization. The administrator then creates a
keytab entry so that the server can automatically authenticate itself with the DCE
Security Service. See 10.4, “RPC and Security” on page 191 for more
information.

202 Understanding OSF DCE 1.1

The rest of this section describes how to manage the namespace and the
endpoint map. If the server has to access any objects that are protected by
ACLs, you also need to add an entry for the server principal. One example of
this is the CDS directory to which the server wants to export its bindings.

10.6.1 Managing CDS Entries for RPC
An administrator may be involved in registering servers in the namespace, but
this can also be done by the server itself upon initialization. Otherwise, the
administrator might have to use the dcecp command (OSF DCE 1.1) or the rpccp
command (DCE 1.0.x), which is still available, to manually register this
information. An application can provide a configuration tool (or a script written
in dcecp) to create static entries in the namespace.

Authorized individuals can add entries to and remove them from the namespace,
or they can add information to and remove it from those entries. In the example
below, we assume that there are two CDS directories: /.:/home and /.:/servers.
The following steps create an RPC server entry and an RPC profile containing
this server entry:

 1. Login as cell_admin and start a dcecp shell:

dcelogin cell_admin <password>
dcecp
dcecp>

 2. Create two UUIDs and assign them to variables:

dcecp> set printer_intf [list [uuid create] 1.1]
b367ea90-9cf7-11ce-ba29-10005aa86e2d 1.1

dcecp> set laser_printer [uuid create]
96b316fe-9c66-11ce-ae77-10005aa86e2d

The printer_intf variable defines the interface UUID with version 1.1 for the
printer. The laser_printer variable specifies an object UUID for the laser
printer object.

 3. Create a new CDS object which can later be used as a server entry, a group
entry or a profile entry:

dcecp> rpcentry create /.:/servers/PrintServer

 4. Convert the CDS object into an RPC server entry with the printer interface
version 1.1, the UDP and TCP protocol sequences, the IP address of the
server machine, and the object UUID for the laser printer:

dcecp> rpcentry export /.:/servers/PrintServer -interface \
$printer_intf -binding {ncacn_ip_tcp:9.3.1.126 ncadg_ip_udp:9.3.1.126} \
-object $laser_printer

 5. Check the entry:

dcecp> rpcentry show /.:/servers/PrintServer
{b367ea90-9cf7-11ce-ba29-10005aa86e2d 1.1
{ncacn_ip_tcp 9.3.1.126}
{ncadg_ip_udp 9.3.1.126}}

{96b316fe-9c66-11ce-ae77-10005aa86e2d}

 6. To add this server entry to an RPC profile, issue the following command:

dcecp> rpcprofile add /.:/home/UserProfile -member /.:/servers/PrintServer \
-interface $printer_intf -priority 3 -annotation ″1st floor laser printer″

Chapter 10. Remote Procedure Calls 203

 7. An import operation, starting with the profile just created, wil l return the
bindings for the printer interface. You can check this with the following
command available on AIX:

rpcresolve -n /.:/home/UserProfile -p -s
(P) /.:/home/UserProfile

(E) element : /.../itsc7.austin.ibm.com/servers/PrintServer
interface id: b367ea90-9cf7-11ce-ba29-10005aa86e2d,1,1
priority : 3
annotation : 1st floor laser printer

(S) /.../itsc7.austin.ibm.com/servers/PrintServer
(O) 96b316fe-9c66-11ce-ae77-10005aa86e2d
(I) b367ea90-9cf7-11ce-ba29-10005aa86e2d,1.1

(B) ncacn_ip_tcp:9.3.1.126[]
(B) ncadg_ip_udp:9.3.1.126[]

Since the RPC entries are registered in the CDS namespace, we can also use
normal CDS commands to display the entry. The output is less meaningful for
RPC, though, but it shows UUIDs and timestamps. For example, enter the
following cdscp and dcecp commands:

cdscp show object /.:/servers/PrintServer

SHOW
OBJECT /.../cell1.itsc.austin.ibm.com/servers/PrintServer

AT 1995-07-06-14:32:06
RPC_ClassVersion = 0100
RPC_ObjectUUIDs = fe16b396669cce11ae7710005aa86e2d

CDS_CTS = 1995-07-06-19:27:16.238528100/10-00-5a-4f-46-29
CDS_UTS = 1995-07-06-19:27:26.009520100/10-00-5a-4f-46-29

CDS_Class = RPC_Server
CDS_ClassVersion = 1.0

CDS_Towers = :
Tower = ncacn_ip_tcp:9.3.1.126[]

CDS_Towers = :
Tower = ncadg_ip_udp:9.3.1.126[]

dcecp
dcecp> object show /.:/servers/PrintServer
{RPC_ClassVersion {01 00}}
{RPC_ObjectUUIDs
 {fe 16 b3 96 66 9c ce 11 ae 77 10 00 5a a8 6e 2d}}
{CDS_CTS 1995-07-06-19:27:16.238528100/10-00-5a-4f-46-29}
{CDS_UTS 1995-07-06-19:27:26.009520100/10-00-5a-4f-46-29}
{CDS_Class RPC_Server}
{CDS_ClassVersion 1.0}
{CDS_Towers
 {050013000d90ea67b3f79cce11ba2910005aa86e2d01000200010013000d045d888aeb1cc9119f
e808002b10486002000200000001000b020001000100070200000001000904000903017e}
 {050013000d90ea67b3f79cce11ba2910005aa86e2d01000200010013000d045d888aeb1cc9119f
e808002b10486002000200000001000a020000000100080200000001000904000903017e}}

Most application servers also perform clean-up tasks when they terminate. This
includes unexporting the binding information from CDS. However, if the server
dies or it does not implement the clean-up tasks, the administrator might have to
remove the entries manually to prevent clients from further trying to bind to that
server. Since the CDS namespace is a distributed namespace and each client
has a local cache (stored by the cdsclerk), the administrator might refresh the
caches of the CDS clerk to avoid clients from getting the binding information of

204 Understanding OSF DCE 1.1

this server. To do so on a particular machine, stop the CDS clerk and the
server, if there is one, and delete the following files:

rm /opt/dcelocal/var/adm/directory/cds/cds_cache.*
rm /opt/dcelocal/var/adm/directory/cds/cdsclerk_*

10.6.2 Managing the Endpoint Map
DCE provides several commands to manipulate the local endpoint map. To
show the endpoint map on the local machine, you can use the following
command:

dcecp> endpoint show
{{object 07dfb17a-b54e-11ce-aaae-10005a4f4629}
 {interface {e1af8308-5d1f-11c9-91a4-08002b14a0fa 3.0}}
 {binding {ncacn_ip_tcp 9.3.1.68 135}}
 {annotation {Endpoint Resolution}}}
 .
 .
{{object 019ee420-682d-11c9-a607-08002b0dea7a}
 {interface {019ee420-682d-11c9-a607-08002b0dea7a 1.0}}
 {binding {ncadg_ip_udp 9.3.1.68 1204}}
 {annotation {Time Service}}}

The same information can also be displayed with the rpccp show mapping
command of OSF DCE 1.0.x.

If servers terminate, they should remove their own map elements from the
endpoint map to prevent clients from receiving stale data. If a remote procedure
call uses an endpoint from an outdated map element, the call fails to find a
server. The endpoint map service routinely removes any map element
containing an outdated endpoint; however, a lag time exists during which stale
entries remain. An endpoint can be deleted manually with the endpoint delete
command of dcecp:

dcecp> endpoint delete -interface {83eb9d64-b7e3-11ce-80be-10005a4f4629 1.0} \
> -binding {ncadg_ip_udp 9.3.1.68 5555}

You can also create an entry, for example, if you have deleted an interface by
mistake:

dcecp> endpoint create -interface [uuid create],1.0 -binding \
> {ncadg_ip_udp 9.3.1.68 5555} -annotation Prueba -object [uuid create]
dcecp> endpoint show -object 83ec0f60-b7e3-11ce-80be-10005a4f4629
{{object 83ec0f60-b7e3-11ce-80be-10005a4f4629}
 {interface {83eb9d64-b7e3-11ce-80be-10005a4f4629 1.0}}
 {binding {ncadg_ip_udp 9.3.1.68 5555}}
 {annotation Prueba}}

10.7 Network Computing System, iFOR/LS and DCE
DCE RPCs are based on the RPCs of Apollo′s Network Computing System (NCS)
2.0. NCS uses location brokers to find RPC servers the same way DCE uses the
CDS and its namespace. The local location broker (LLB), which runs as the llbd
daemon, maintains a database of the objects and interfaces exported by servers
running on the host. In addition, it acts as a forwarding agent for requests. An
llbd daemon must be running on hosts that run RPC servers. However, it is
recommended to run an llbd daemon on every host in the network or Internet.

Chapter 10. Remote Procedure Calls 205

A client agent is running on every system. It is a set of library calls linked into
the client and server code. When a client needs to know the location of server,
it can ask a global location broker and then directly connect with the service. If
it knows a hostname, the client agent can call that host′s LLB forwarding agent.
The llbd process is listening on port 135. It manages an endpoint map just like
the DCE daemon does for DCE RPCs. The llbd sends the full address
information back to the client, which then makes the call directly to the service.

The software license management system used by AIX Version 4 products is
Information For Operation Retrieval/License System (iFOR/LS). Through the use
of encrypted keys, iFOR/LS can monitor the type and number of licenses used by
stand-alone machines or by machines within a network.

The iFOR/LS software uses NCS version 1.5. The user applications that make
license requests are NCS clients. The license server (netlsd) is an NCS server.
Therefore, before an application can get a license from an iFOR/LS server, it
must first communicate with a global location broker to find out where the
license servers are running. The global location broker receives the client
request and replies with the information necessary for the client to establish
communications with the server. The local location broker (llbd) provides some
data and communications management during the transaction.

The iFor/LS documentation also suggests running an llbd on client systems if
contacting a glbd takes too long. This is because some applications first try to
look up a local LLB and try to get to the glbd only after a timeout.

The dced and the llbd daemons both listen on port 135; so, both servers cannot
be started simultaneously. NCS applications can coexist with DCE on the same
machine. The DCE RPC daemon (dced) is used to provide the services of the
NCS llbd daemon and is run instead of llbd. To run NCS 1.5.1 applications within
a DCE environment, for example, iFOR/LS applications, do the following:

 1. Install the NCS and iFOR/LS software if not already on the system.

 2. Set up the NCS system manually or use the netls_config shell script in the
/usr/l ib/netls/conf directory.

 3. Edit the netls_first_time shell script generated by netls_config, and
comment out the line with the command:

startsrc -s llbd

to

startsrc -s llbd

 4. Uncomment and change the line that says:

/etc/rc.dce rpc

to

/etc/rc.dce dced

 5. Start the netls_first_time shell script.

206 Understanding OSF DCE 1.1

10.8 Putting It All Together: Initialization, Routing and Execution
With this section and Figure 72, we try to recapitulate and give the big picture on
how all the RPC components work together.

Figure 72. Putting It Together.

The sequence of actions taken to execute a remote procedure call are:

 1. Server initializes

The server part of the application server can optionally create its own login
identity. Then it registers its interface(s) (rpc_server_register) and the
protocol sequence(s) it supports (rpc_use_protocol) with the local RPC
runtime. The latter step creates the dynamic endpoints (EPs) and binding
handles the server will be listening on, one per protocol sequence. The
server must query the binding handles from the RPC runtime
(rpc_inq_binding) in order to be able to register the endpoints with the DCE
daemon. This step enables the DCE daemon to route calls to the right EPs.
The server then exports its binding information to a CDS server entry (rpc_ns
binding_export) and creates entries in RPC groups and/or profiles. Another
way to make the bindings accessible to servers is to convert them to string
bindings and write them to a file. The next step is to optionally set up
authenticated RPC. This includes specifying the server principal,
authentication level of clients and servers, encryption level, and whether
authorization is to performed based on client EPACs. Finally, it initiates
listening (rpc_server_listen).

 2. Client imports a server binding

If the client looks up information in CDS (2a), it can either use the
rpc_ns_binding_import or the rpc_ns_binding_lookup commands which return

Chapter 10. Remote Procedure Calls 207

binding information in slightly different ways. If the automatic binding
method is used, the client′s RPC runtime performs the lookup behind the
scenes. For the explicit or implicit binding methods, the client application
would have to do this. It would have to analyze and select a suitable binding
handle and assign it to a global variable (implicit binding) or use it in every
RPC call (explicit binding). If the client uses the explicit or implicit binding
method, it can, for instance, also take a string binding and convert it to
binding handle (2b).

 3. Client issues an RPC call

After the client has the binding handle, it can add to it the desired security
level for the RPC calls. Then it issues an RPC to the server. The client calls
the remote procedure, which actually goes to the client stub. The client stub
gets the arguments, marshalls them and calls the RPC runtime.

 4. Client′s RPC runtime requests an endpoint

Binding handles obtained from CDS are usually incomplete; they lack an
endpoint. The client RPC runtime must contact the endpoint mapper (dced)
of the server machine. The endpoint mapper, to which all application
servers register their interfaces, searches its database and returns the full
binding handle for a (randomly selected) compatible server. If the client
specified a fully bound handle with its RPC call, this step would not be
necessary.

 5. Client′s RPC runtime calls the application server

The client′s runtime can now make a call to the application server. The
client RPC runtime transmits the remote procedure calls (and arguments) to
the server′s RPC runtime at the specified endpoint. Remember that an
endpoint is just a matter of a protocol sequence. If the server supports
multiple interfaces and managers, calls for all of them come to the same
endpoint. The server′s RPC runtime receives the request and selects the
appropriate manager entry point vector (manager EPV) to handle the request
based on the interface, the version and the type UUID requested.

 6. Server′s RPC runtime calls the manager routine

The server stub unmarshalls the arguments and calls the requested
procedure.

 7. The manager routine executes the call

The remote procedure begins execution. It extracts the client principal name
and its Extended Privilege Attribute Certificates (EPACs) and checks whether
the client is authorized to execute the procedure. If the server has
implemented an ACL manager, the security information is passed to the ACL
manager for evaluation of the permissions. Then the procedure executes
and returns the results to the server stub, which marshalls the results and
transmits them, via server′s RPC runtime, back to the client.

208 Understanding OSF DCE 1.1

Chapter 11. Threads

Threads support the creation, management and synchronization of multiple
concurrent execution paths within a single process. This provides a great deal
of flexibility to application developers in a variety of areas, such as parallel
execution, task control, exploitation of multiprocessor machines, and faster task
switching. On the other hand, threads introduce considerable, additional
complexity.

The DCE core services, and all dependent applications, use threads. This all
happens behind the scenes. Customer applications may or may not use threads
for their applications.

Figure 73. Threads as the Basis for DCE

This chapter discusses the DCE threads implementation and some basic
concepts of threads programming. DCE application developers should become
familiar with threads programming. DCE application servers work most
efficiently when they allow for concurrent execution of client RPC calls, and DCE
clients can access multiple servers in parallel only when they use threads.
Threads are also needed to perform such things as refreshing tickets or
passwords and for implementing application-level timeouts.

DCE users and administrators are not concerned with threads.

11.1 What are Threads?
A thread is the abstraction of a processor. It is a single sequential flow of
control within a program. Most computer programs use only one thread of
control. Execution of the program proceeds sequentially, and at any given time,
only one point in the program is currently executing. It is useful, sometimes, to

 Copyright IBM Corp. 1995 209

write a program that contains multiple threads of control for one of the following
reasons:

• The application includes parallel algorithms well suited for multiprocessor
systems.

• An application accessing slow I/O devices does not want to become blocked.

• The RPC application needs to access multiple servers at the same time.

• An RPC server needs to serve multiple clients.

• The user interfaces can be decoupled from processing.

Most of the preceding structure examples could be implemented on multiple
processes, but they have higher creation costs, require more memory and
synchronization is more expensive than with threads.

Threads are lightweight processes that share a single address space. Each
thread shares all the resources of the originating process, including signal
handlers and descriptors. Each thread has its own thread identifier, scheduling
policy and priority and the required system resources to support a flow of
control.

11.1.1 Multithreading
An environment with multiple concurrent flows of control within a process is said
to be a multithreaded environment. This multithreaded environment is desirable
for applications requiring multitasking. Software models for multithreaded
programming are:

• Boss/Worker Model — One main thread is performing the boss functions. It
assigns tasks to worker threads. When a worker thread has finished a task,
it interrupts the boss to get some other jobs done.

The Queue Model is a variation of the Boss/Worker design. Each task is
enqueued by the boss thread and when a worker thread is ready, it checks
the queue to find the next job it has to run.

• Work Crew Model — In this model, a task is divided into microtasks that can
be run concurrently. The microtasks are run by multiple threads working
together to provide the work of the original task.

210 Understanding OSF DCE 1.1

Figure 74. Work Crew Model

An example of this model could be the assembly of the four wheels on a car.
Four threads can each assemble a wheel to the car; in this way, you divide
the wheels assembly time by a little bit less than four.

• Pipelining Model — In this model, the task is divided into steps. Each step is
a specialized task that can be provided by specialized threads. At each
time, the thread can be performing the same task on the output of the
previous thread. This model can only apply if there is a regular flow of tasks
that are always divided into the same steps.

Figure 75. Pipelining Model

Chapter 11. Threads 211

We can compare this model with a car assembly line, where each thread is
performing the same work on any car that is running on the line.

• Combinations of Models — Most of the applications will require different
types of design models to make the use of threads more efficient. For
example, a program could be divided into steps (Pipeline Model), and some
of these steps could be designed on the Work Crew Model. This is the case
for the assembly line where the wheel assembly is a step of the general
pipeline design.

With a thread package, a developer can create several threads within a process.
Threads execute concurrently in a single address space. They can run in a user
or kernel space. Within a multithreaded process, there are multiple paths of
execution at any time. Multiple threads of control allow an application to overlap
operations, such as reading from a network connection and writing to a disk file
or printing a file while reading and processing user input at the same time.

11.1.2 Benefits of Multiple Threads
Multithreaded programming can bring the following benefits:

• Shared resources — Multiple threads share a single address space, all open
files and other resources.

• Exploitation of multiprocessor machines — Threads are required to most
efficiently use multiprocessor systems.

• Performance — Threads improve the performance of a program. In
multiprocessor machines, threads can concurrently run on separate
processors. However, multiple threads also improve program performance
on single-processor systems by overlapping slow operations with
computational operations.

• Potential simplicity — Multiple threads might reduce the complexity of some
applications that are suited for threads.

On the other hand, this new concept may also introduce some additional
complexity in managing concurrent access to shared resources.

11.1.3 Implementation Models
There are at least two strategies for implementation of a thread system. Put
simply, the individual threads may be known (and supported) by the operating
system, or they may exist strictly at the user level.

When the threads only exist at the user level, we have an N:1 model; this means
that all threads visible to the process are mapped onto a single kernel thread.
This is illustrated as model (a) in Figure 76 on page 213. AIX Version 3 works
that way.

212 Understanding OSF DCE 1.1

Figure 76. Threads Implementation Models

Model (b) in Figure 76 implements a 1:1 model; for every thread visible to an
application, there is a corresponding kernel thread. This is how AIX Version 4,
which is based on the OSF/1 libpthreads, and OS/2 work.

It is also possible to have an M:N threads model, like model (c) in the picture,
where M user threads are multiplexed on N kernel threads. This is, however,
not supported by AIX or OS/2. Model (d) is the traditional UNIX process
environment, where the process is a single thread implementation.

An issue is whether or not threads can take advantage of multiple (real)
processors.

11.2 DCE Threads Implementation
DCE Threads is based upon Digital′s implementation of Concert Multithread
Architecture (CMA). The DCE threads component is based on the threads
interface specified by POSIX in 1003.4a Draft 4, called pthreads interface. It is
designed as a user-level thread package that can run on operating systems that
do not support threads in their kernel.

If the operating system does not support threads in its kernel, the threads are
running in (non-privileged) user mode. The kernel is then not aware of threads
running in a process — it can only see (and dispatch) the process as a whole.
The problem is that one thread could put the entire process into a wait state,
thereby making all other threads also wait. Programmers have to be aware of
this situation if they use threads. To avoid blocking the process with a thread,
they should either use only calls of thread-safe, reentrant libraries, use
asynchronous I/O calls or write their applications in a way that one server is
only talking to one client at a time and vice versa.

If a system has an alternative implementation of POSIX compatible threads, the
DCE thread calls may be mapped directly to kernel threads, and the DCE threads

Chapter 11. Threads 213

library just has a mapping function. In this case, the intermediary library might
have to adapt different levels of threads implementation between the Draft 4
threads defined by DCE and another level implemented by the kernel threads.
For example, the AIX Version 4.1 libpthreads implementation is based on the
newer POSIX 1003.4a Draft 7 specification.

Routines implemented by DCE Threads that are not specified by Draft 4 of the
POSIX 1003.4a standard are indicated by an _np suffix on the name. These
routines are not portable.

11.3 Threads Basics
This section describes the basic concepts behind DCE threads. For detailed
information on the multithreading routines referenced in this section, see the
chapters on threads in the DCE Application Development Guide Core
Components for AIX or OS/2.

11.3.1 Threads States and Control Operations
A thread is created using the pthread_create() routine, which returns to its caller
a unique identifier (handle) for that thread. Like a traditional process, an
executing thread is then subject to state transitions until it terminates. As
illustrated in Figure 77, a thread is in one of the following states:

• Waiting — The thread is not eligible to execute because it is synchronizing
with another thread or with an external event, such as the completion of an
I/O.

• Ready — The thread is eligible to be executed by a processor.

• Running — The thread is currently being executed by a processor.

• Terminated — The thread has completed all of its work.

Figure 77. Thread State Transitions

Once a thread is executing, there are several operations that can be performed
on it, such as:

• pthread_join() — Another thread suspends its execution (waits) until this
thread terminates. The caller must know the unique identifier (handle) for
the thread it wants to wait for. If multiple threads call this routine and
specify the same thread, all threads resume execution when the specified
thread terminates. Calling the pthread_join() routine on the current thread
causes a deadlock.

214 Understanding OSF DCE 1.1

• pthread_cancel() — Another thread may call this routine to request that a
running thread terminate itself.

• pthread_detach() — After a thread terminates, it continues to live and can be
joined to by others. Another thread (or the main thread) must call this
routine to clean up the allocated resources of the terminated thread. If
called before termination, the thread will be cleaned up right after its
termination, and no other thread can join to it or cancel it.

• pthread_exit() — A thread can specify multiple points to regularly terminate
in addition to just running up to the last statement.

More details and operations can be found in the DCE Application Development
Guide.

11.3.2 Thread Attributes
Attributes can be assigned to threads, mutexes and condition variables. If such
an object is to be created with attribute values different from the default values,
a so-called attributes object must be created and provided to the routine that
creates the object. An attributes object is basically a collection of attributes that
will be assigned as a whole. Internally, it is a data structure that is referenced
by an object handle (pointer).

The pthread_attr_create() call is used to create a thread attributes object , which
may contain the following attributes:

• Scheduling Policy Attribute
• Scheduling Priority Attribute
• Inherit Scheduling Attribute
• Stacksize Attribute

When creating a new thread, such a thread attributes object can be provided to
the pthread_create() call to overwrite the default values for thread attributes.

The pthread_attr_set..() routines can be used to change attributes in an already
established attributes object, and attributes of executing threads can be altered
by one of the pthread_set..() routines. For example, a thread is created with a
thread attributes object that contains a priority. This priority was set up with a
pthread_attr_create() call and may be altered by a pthread_attr_setprio()
routine before the thread is created. Once the thread is running, its priority can
only be changed with a pthread_setprio() routine.

Similarly to thread attributes, you can create a mutex attributes object with a
pthread_mutexattr_create() call. To overwrite default values for mutex attributes,
this object must then be specified in the pthread_mutex_init() call that creates a
mutex. The mutex type attribute specifies whether a mutex is fast, recursive or
non-recursive (see 11.3.4.1, “Mutexes” on page 220).

No attributes are currently defined that affect condition variables. The stack size
attribute is the minimum size (in bytes) of the memory required for a thread′s
stack. The default value is machine dependent. The attribute may be set with
the pthread_attr_setstacksize() routine. There is currently no support for
extending the size of a stack when overflow is encountered.

Chapter 11. Threads 215

11.3.3 Threads Scheduling
If there are fewer available processors than the number of threads to be run,
some decision must be made as to which thread runs first. This is analogous to
the scheduling of processes by the operating system on a timesharing system,
except that the threads scheduling is visible to and controllable by the
application programmer. DCE threads scheduling is built on two basic,
interacting mechanisms:

• Scheduling priorities
• Scheduling policies

Each thread has a scheduling priority associated with it. Threads with a higher
priority have precedence over threads with a lower priority when scheduling
decisions are made. The exact treatment of threads of different priorities
depends on the scheduling policy they are running under.

Note: POSIX specifies that scheduling is optional. So, systems using their own
threads implementations may miss the functionality provided by DCE threads.

11.3.3.1 User-Level Scheduling
One approach to designing a threads system is to implement them strictly at the
user level. On a UNIX system, the strategy is for the entire program to run
within a process. The operating system provides its own, single thread; the
user-level threads system must multiplex this operating system thread among
any number of user threads. So, scheduling threads is done within the process,
whereas the operating system schedules the process as a whole. This is
illustrated in Figure 78 on page 217.

A major advantage of this approach is that most operations on threads do not
require calls to the operating system and thus are relatively inexpensive. A
potential disadvantage is that a blocking system call will more often block the
entire process and not only the threads that have made the call. DCE threads on
AIX 3.2 are based on this approach, the AIX scheduler dispatches processes
only.

216 Understanding OSF DCE 1.1

Figure 78. User-Level Scheduling

11.3.3.2 Kernel-Level Scheduling
In this case, threads are supported by the operating system (this is the case of
OSF/1, OS/2 and AIX 4.1). Thus, only one scheduler is needed, the one in the
operating system kernel. Threads are the dispatchable unit for the OS
scheduler. On these operating systems, all system calls can be executed by
threads without blocking the entire process.

In AIX Version 4.1 and OS/2, the implementation of threads is 1:1. This means
that for every user space thread there will be one kernel space thread to support
it. They are permanently bound to each other until the thread terminates.
Architecturally, this type of implementation produces user threads that are said
to be system scope threads. All system scope threads contend with each other
for resources. This is illustrated in Figure 79 on page 218.

The POSIX 1003.4a Draft 7 specification allows for an alternative implementation
of threads. In particular, it allows the M:N implementation, where, in addition to
system scope threads, there can be user threads that are not permanently
attached to kernel threads. These threads are called process scope threads.
This allows multiple user threads to be scheduled and multiplexed onto a
smaller number of kernel threads. This is done in user space, as part of the
threads library function, thereby reducing demand on system resources. This
sort of implementation is particularly advantageous for applications that have
large numbers of threads most of which are waiting most of the time. It can also
bring performance improvements for thread creation and deletion because the
OS threads are recycled. IBM MVS OpenEdition threads work this way.

Chapter 11. Threads 217

Figure 79. Kernel-Level Scheduling

11.3.3.3 Scheduling Priorities and Policies
For each scheduling policy, a maximum and minimum priority value is defined.
When setting the scheduling priority for a thread with the pthread_attr_create(),
the pthread_setprio() or the pthread_attr_setprio() routines, a priority value
must be specified within the range defined for the chosen policy.

The scheduling policy determines how the priorities are interpreted and used to
dispatch the threads. The pthread_attr_create() or pthread_attr_setsched() calls
are used to set the scheduling policy and priority on attributes objects which are
used to create new threads. See 11.3.2, “Thread Attributes” on page 215 for
more information on attributes. The pthread_setscheduler() routines are used to
change the policy and priority of an active thread.

There are three policies according to which the prioritized threads are
dispatched. For the explanations of these policies, let′s assume we have four
threads (A, B, C, D), and we have assigned to them three different priorities
(min, mid, max), which are within the range of valid priorities:

A min
B mid
C mid
D max

We assume that all waiting threads are ready to execute when the current
thread waits or terminates and that no higher priority thread is awakened while
a thread is executing (during the flow). This is what happens within each policy:

• FIFO (First In / First Out) or SCHED_FIFO — This is a non-preemptive
scheduling mechanism. A thread created with SCHED_FIFO will run at a fixed
priority and will not be timesliced. The thread in the highest priority
category is scheduled first and is allowed to run until it voluntarily
relinquishes by blocking or yielding. We get the following thread scheduling
sequence:

218 Understanding OSF DCE 1.1

D --> B --> C --> A

When two waiting threads have the same priority, the one that has to wait
longer is scheduled. That is why B is before C. A SCHED_FIFO thread with a
high enough priority could monopolize the processor.

• Round Robin or SCHED_RR — The highest-priority thread runs until it blocks;
however, threads of equal priority, if that priority is the highest among other
threads, are timesliced. The timeslicing is a mechanism that ensures that
every thread is allowed time to execute by preempting running threads at
fixed intervals. We get the following sequence:

D --> B --> C --> B --> C --> A

Round Robin threads are like FIFO threads, except that they are timesliced.
Thread D executes until it waits or terminates. Then, execution of threads B
and C is timesliced because they both have the same priority. Finally,
thread A executes.

• Default or SCHED_OTHER — Each thread is given turns running by timeslicing.
Higher priority threads are given longer periods of time to run, but even the
lowest priority thread eventually has a chance to run. We get the following
sequence:

D --> B --> C --> D --> A --> B --> C -->

This is much like the normal AIX scheduling, where priority degrades with
CPU usage. Because low-priority threads eventually run, the default
scheduling policy protects against the problem of priority inversion (see
11.4.2, “Potential Problems with Multithreaded Programming” on page 226).

• Foreground / Background or SCHED_FG_NP, SCHED_BG_NP — These policies are
basically the same as the default policy. The SCHED_FG_NP is just another
name for SCHED_OTHER, whereas threads with SCHED_BG_NP only run when no
other threads are ready to run. The _NP routines are not POSIX-conformant.

If the DCE threads component uses kernel scheduling, policies can only be set
by a user with root authority.

By default, a thread inherits its attributes, including its scheduling priority, from
the thread that creates it. Whether a newly created thread inherits the
scheduling attributes of the creating thread or not is determined by the inherit
scheduling attributes that can be set by the pthread_attr_setinheritsched() call.

11.3.4 Threads Synchronization
Threads can communicate through shared variables: One thread sets a variable
that another thread later reads. However, concurrent access to shared data
might lead to conflicts and data corruption. Also, threads can depend on each
other, but due to scheduling policies and priorities, one might terminate before
the other expects it. For both cases, a synchronization mechanism must be in
place.

DCE threads contain an implementation of the POSIX 1003.4a required
synchronization routines, which provide three features:

 1. Mutexes — Stands for mutual exclusion and ensures that no more than one
thread may have access at any one time to certain data structures.

 2. Condition variables — Used in conjunction with mutexes to provide a more
sophisticated form of synchronization.

Chapter 11. Threads 219

 3. Join routine — Allows a thread to wait for another, specific thread to
complete its execution. When the second thread has finished, the first
thread unblocks and continues its execution.

Unlike mutexes and condition variables, the join routine (pthread_join()) is not
associated with any particular shared data. While the pthread_join() call is
explained in 11.3.1, “Threads States and Control Operations” on page 214, we
want to explain the mutex and the condition variable in the following subsections
and give a programming example thereafter.

11.3.4.1 Mutexes
A mutual exclusion or (mutex) is an object that multiple threads use to ensure
the integrity of a shared resource that they access. It can have two states:
locked and unlocked. For each piece of shared data, all threads accessing that
data must use the same mutex to lock the data before accessing it with
pthread_mutex_lock() and unlock it with pthread_mutex_unlock() when finished.

Figure 80. Only One Thread Locks a Mutex

When a thread, B in Figure 80, requests the lock of a mutex that is already
locked by another thread, A, thread B′s lock is blocked. When thread A that
owns the block finishes with the shared data and unlocks the mutex, thread B is
unblocked and gains control of the mutex. Thread B can also call
pthread_mutex_trylock(), which would not block and would allow it to continue
processing.

Each mutex must be initialized with the pthread_mutex_init() routine. This
routine allows one to specify one of three following mutex types:

 1. Fast mutex (default) — Can be locked and unlocked more rapidly than other
mutexes. It is the most efficient form of mutex. However, it provides little
error checking, and if a thread calls the lock a second time before unlocking
it, the thread gets blocked and deadlocks itself.

 2. Recursive mutex — Thanks to a recursion count, this mutex can be locked
several times by the thread that already holds the mutex without causing a
deadlock. The thread has to call the pthread_mutex_unlock() routine the
same number of times it has called the pthread_mutex_lock() before another
thread can lock the mutex.

 3. Non-recursive mutex — Like with the fast mutex, a thread can only hold one
lock on a mutex at any point in time. However, if it tries to lock the mutex
again without first unlocking it, the thread receives an error. Thus,
non-recursive mutexes are more informative than a fast mutex. This kind of
mutex is very useful during application debugging.

220 Understanding OSF DCE 1.1

Note: The concept of different types of mutexes is not required in POSIX
1003.4a, but is explicitly permitted.

11.3.4.2 Condition Variables
A condition variable is a special type of shared data used for explicit
communications among threads. A condition variable allows a thread to block
its own execution until some shared data reaches a particular state.
Cooperating threads check the shared data and wait on the condition variable.

Like any other shared data, the condition variable is protected by a mutex.
However, if the synchronization were based on a regular shared variable, the
thread would have to go into a loop that locks the mutex, checks the variable,
unlocks the mutex, and waits for awhile before it goes through the same cycle
over and over. What is special about the shared condition variable is that it
provides a single pthread_cond_wait() call to the threads kernel that internally
unlocks the mutex and waits until the variable reaches the desired value or
state.

For example, one thread in a program produces work-to-do packets, and another
thread consumes these packets. If the work queue is empty when the consumer
thread checks it, the thread waits on a work-to-do condition variable. When the
producer threads puts a packet on the queue, it signals the work-to-do condition
variable. Note that although the condition variable is used for explicit
communication among threads, the communication is anonymous.

Figure 81. Synchronization via a Condition Variable

In Figure 81, thread A may need to wait for a thread B to finish a task X before
thread A proceeds to execute task Y. A condition variable ready is defined that
needs to be set to yes by thread B, before thread A continues. Thread A needs
to lock the mutex and checks the condition variable a first time. It unlocks the
mutex and continues, if ready=yes; otherwise, it calls pthread_cond_wait().
Much like the select() system call in UNIX, this call blocks until the variable is
set to yes.

The pthread_cond_wait() call passes the variable and the mutex to the threads
kernel which unlocks the mutex to enable write operation to another thread.
Thread B can then lock the mutex, set the variable, unlock the mutex, and
awaken waiting threads with one of the following calls:

Chapter 11. Threads 221

• pthread_cond_signal() awakes one thread. If more than one thread is
waiting, the one with the highest priority is signalled.

• pthread_cond_broadcast() awakes all waiting threads.

When thread A is awakened, the mutex is automatically locked again. Thread A
checks the condition and, depending on whether it is what it expected, continues
or decides to continue to wait.

A condition variable is initialized with a pthread_cond_init() call and eventually
cleaned up with a pthread_cond_destroy() command. The waiting thread can
also call a time-limited wait by using the pthread_cond_timedwait() call.

11.3.4.3 Thread Programming Example
We have a simple code that maintains the queue of a resource — one thread
adds queue elements, another thread dequeues and processes elements.

The resource in our example is a structure with the following members:

• A count of the number of items in the list
• A mutex to ensure that only one thread at a time is accessing the header
• A condition variable used to wait for items to be added to the list
• A pointer to a list of elements (the queue)

The code to acquire a queue element is:

acquire_resource(resource) {
/* gain exclusive access to the header by blocking its mutex */
ret=pthread_mutex_lock(resource.mutex);
/* check whether there are any items on the queue */
while (resource.count == 0)
/* waiting for an item to be added to the list by using the condition variable */
/* A while loop is better than an if statement, because it will check again*/
ret = pthread_cond_wait(resource.cond, resource.mutex);

/* Now an item is in the queue; call a routine that properly dequeues it */
acquired_resource = dequeue(resource.queue);
resource.count --;

/* Release mutex and and return pointer to dequeued element */
ret = pthread_mutex_unlock(resource.mutex);
return (acquired_resource);
}

The code to enqueue an element is:

release_resource(resource) {
/* Lock the resource */
ret=pthread_mutex_lock(resource.mutex);
/* Queue an element and increase the count */
enqueue(resource.queue, resource);
resource.count ++;
/* Release the mutex lock and signal a dequeuing thread */
ret=pthread_mutex_unlock(resource.mutex);
ret=pthread_cond_signal(resource.cond);

 }

222 Understanding OSF DCE 1.1

11.4 More Advanced General Threads Topics
This section covers, still at a high level, some more specialized topics, such as
error handling and potential problems in relation with threads programming.
See also 11.5, “More Advanced Threads Topics in UNIX” on page 227 for
UNIX-specific topics, such as signals and forking processes.

11.4.1 Error Handling
An exception is an abnormal condition that can occur during program execution.
Error checking and error handling is extremely important in a multithreaded
environment. The conditions in which a thread is executing can change at any
time due to the activity of other threads executing concurrently on the same
address space.

DCE threads provides the following two ways to obtain information about the
results of a threads call:

• The routine returns a status value to the thread. This method is specified by
the POSIX 1003.4a (pthreads) Draft standard. Errors are reported to the
thread by setting the external errno variable to an error code and returning a
function value of -1.

• The routine raises an exception . This is provided by the exception-returning
interface, which is a DCE extension to the basic POSIX functionality (and is
not standard). When an exception is raised by any level of nested routines,
program execution jumps to a predefined section in the code and continues
from there. Exception error handling must be explicitly enabled. See
11.4.1.2, “Enabling Exceptions” on page 224 for more details.

Note: On IBM DCE Version 2.1 for AIX, the exception error handling is only
available through the DCE Pthreads Compatibility library.

Before you write a multithreaded program, you must choose one of these two
methods of receiving error status. They cannot be used together in the same
code module.

11.4.1.1 Exceptions
Exceptions represent a deviation in the normal flow of control of a thread,
typically caused by an error. These errors can be:

• Hardware errors (for example, divide-by-zero)
• Operating-system errors (for example, invalid argument on system call)
• User-defined errors

User-level errors are managed by return codes. In UNIX, the first two categories
normally result in a signal sent to the faulting process. See 11.5.1, “Signals” on
page 227 for further explanations. A few signals are converted into exceptions,
and the rest must be handled by a thread which could, for instance, raise an
exception. Here is the syntax of exception handling:

TRY
try_block

[CATCH (exception_name)
handler_block] ...

[CATCH_ALL
handler_block]

ENDTRY

Chapter 11. Threads 223

The try_block and handler_block are a sequence of statements. If an exception
is raised in the try_block with a statement RAISE(exception_name), the program
jumps to the inner-most exception block defined by the CATCH(exception_name) or,
if undefined, to the CATCH_ALL block. If the code within a handler block does not
fully handle an exception, it should call RERAISE to further propagate the
exception. If it does reraise, then the next handler that might exist higher up in
a nested hierarchy is called. If it does not reraise, propagation stops, and
execution is resumed after the ENDTRY statement. The thread terminates if the
exception remains unhandled.

Instead of using CATCH/CATCH_ALL, you can also use a common epilogue, the
FINALLY statement, as follows:

TRY try_block
[FINALLY final_block]
ENDTRY

The statements defined in a final block are executed on success or after an
exception has been raised. In the exception case, propagation of the exception
is resumed after execution of the final block, and an implicit RERAISE is
performed.

11.4.1.2 Enabling Exceptions
To use the exception returning interface, the program must include the
dce/pthread_exc.h file instead of the pthread.h file, which is used to obtain errno
values. For DOS Windows, we should include pthreadx.h.

11.4.1.3 Special Considerations for the Main Thread
On OS/2, to install the exception handler for the main thread, we have to invoke
the pthread_inst_exception_handler() macro. The exception handler is
automatically installed on threads created with the pthread_create() call. The
macro should be the first executable statement of the main(). The macro defines
some local variables. The pthread_dinst_exception_handler() macro has to be
called as the last executable statement just before the return.

On AIX, we can invoke pthread_signal_to_cancel_np(). This is a DCE threads API
call which specifies a thread to be cancelled when a valid signal is received by
the process. We set the signal mask so that the SIGINT and SIGTERM signal
cancel the main thread.

11.4.1.4 Example (Banking)
In this example, you can approach the notion of exception and how it is handled.
The following code can be part of a client transaction calling a withdraw() and
deposit() function. These two functions are enabled to raise exceptions. The
main transaction code contains the TRY-CATCH-ENDTRY clauses:

TRY {
withdraw(accountA,amount)
. . /* this part defines the code over which */
. . /* the exception are caught : */
. . /* the exception-handling region */
deposit(accountB,amount)

}
CATCH (red) { /* example of catching exception */

warning(accountA); /* and specifying the recovery action */
printf(″ALERT trying to get more money than there is\n″) ;
RERAISE;

224 Understanding OSF DCE 1.1

}
CATCH (unknown_acct) {

deposit(temp_acct, amount);
warning_action(accountB);
RERAISE;

}
. .
. .
. .

CATCH_ALL { /* absorbs the rest of the exception that have */
big_trouble(); /* not been caught in the other CATCH clauses */
RERAISE;

}
ENDTRY

The functions that raise the exceptions can be as shown below:

withdraw(account,amount) {
if (amount > total)
RAISE(red);

total -= amount;
}

deposit(account,amount) {
if (!exist(account))
RAISE(unknown_acct);

}

If any other exception propagates out of withdraw, big_trouble() will be
executed. In either situation, the propagation of the exception resumes because
of the RERAISE statement and eventually terminates the thread if not handled by
an upper-level handler.

11.4.1.5 DCE Threads Exception Handling on DOS Windows
IBM DCE for DOS Windows has extensive error and exception handling. System
error conditions can be displayed to the user and recorded in an error log.
Exceptions are managed through the DCE exception handling facility. The
implementation uses a set of preprocessor macros and calls interface in the DCE
DLL to maintain a stack of exception handlers in exactly the same manner as
UNIX DCE.

In IBM DCE for DOS Windows, there are no floating point or arithmetic exception
handlers. They can be raised by translating the errors into the corresponding
DCE exception.

Some exceptions that can be handled in UNIX cannot be trapped in DOS
Windows applications, including most forms of memory addressing violations.
The DOS Windows kernel will usually report an unrecoverable application error
and kill the application. This is a restriction of DOS Windows 3.0 and 3.1.

Servers running on UNIX or other platforms can return exceptions to a DCE
client on Windows that are not normally recoverable exceptions to a DOS
Windows program. The client should be prepared to deal with such exceptions.
The DCE API has two interfaces: exception-handling and exception-returning.
Both interfaces are defined in the same pthreadx.h header file.

Chapter 11. Threads 225

11.4.2 Potential Problems with Multithreaded Programming
Although thread programming has many advantages over traditional processes
(performance, shared resources), it also introduces new issues in other areas,
such as the following:

• Potential Complexity — The level of expertise required for designing, coding
and maintaining multithreaded programs may be higher than most
single-threaded programs. A multithreaded program may need shared
access to resources, mutexes and condition variables. Weigh the potential
benefits against the complexity and its associated risks.

• Non-Reentrant Software — Thread-reentrant code is code that works properly
while multiple threads execute it concurrently. Thread-reentrant code is
thread-safe, but thread-safe code may not be thread-reentrant. When you
need to call non-reentrant code, you need to globally lock its use before you
call it. Consult the DCE Application Development Guide with the search
terms global lock mechanism or thread-specific data interface.

• Priority Inversion — Priority inversion occurs when interaction among three
or more threads blocks the highest-priority thread from executing. For
example, a high-priority thread waits for a resource locked by a low-priority
thread, and the low-priority thread waits while a middle-priority thread
executes. So, the middle-priority thread executes while the high-priority
thread is made to wait.

To avoid priority inversion, associate a priority with each resource, and force
the thread using that object to first raise its priority to that associated with
that object. Or use the default scheduling policy (SCHED_OTHER) that prevents
priority inversion.

• Race Conditions — A race condition occurs when two or more threads
perform an operation on a shared variable and are interrupted before they
end the operation. An example is that thread A reads the variable and is
interrupted by a higher-priority thread or the timeslicing mechanism. Thread
B changes the value of the variable, and when thread A is running again, it
goes from the old value of the variable. The result will be inconsistent and
unpredictable.

To avoid race conditions, we have to ensure that any variables modified by
more than one thread have a mutex (see 11.3.4.1, “Mutexes” on page 220)
associated with it.

• Deadlocks — A deadlock occurs when one or more threads are permanently
blocked from executing because each thread waits on a resource held by
another thread in the deadlock. A thread can also deadlock on itself.

To avoid a deadlock, use mutexes associated with a sequence number and
lock them in sequence, or use a recursive mutex if threads need to lock the
same mutex more than once before unlocking it.

• Blocking Calls — On a system that does not have support for kernel threads,
certain system or library calls may cause an entire process to block while
waiting for the call to complete. As a result, all other threads stop executing.
DCE threads provide jacket routines that make certain system calls
thread-synchronous. See 11.5.2, “Jacket Routines for UNIX System Calls” on
page 228 below for more explanations.

• I/O Handling — See Blocking Calls above.

226 Understanding OSF DCE 1.1

11.5 More Advanced Threads Topics in UNIX
This section covers, at a high level, some more specialized programming topics
present in UNIX environments, such as signals and forking processes.

11.5.1 Signals
Signals are a traditional way of process communication in the UNIX environment;
they are a way of notifying a process that a certain event has occurred. Signals
are a single mechanism for dealing with two kinds of events:

• An exception is a result of an event that occurs inside a process and is
delivered synchronously with respect to that event. It is also called a
synchronous signal and is typically an indication of a problem.

• An interrupt is a result of an event that is external to the process, such as a
kill command or a user pressing Ctrl-c at their terminal. This is considered
an asynchronous signal .

There is very little distinction between the two types of signals within a
single-threaded UNIX process. One may establish a handler for a signal to catch
it. When the signal is raised, the handler is called. Both types of signals can be
terminating or nonterminating. Terminating signals terminate the process if the
user (programmer) does not catch it.

In a multithreaded environment, it is more complicated. The problem is, when a
signal is sent to a process, we have to choose which thread should deal with the
signal. Indeed, signal behavior is one of the largest and most debated
differences between POSIX 1003.4a Draft 4 and Draft 7. The original DCE
pthreads library, including signals, is based on Draft 4. The following is the
behavior of the two types of signals, and how they can be handled:

• Synchronous Signals are delivered to the faulting thread. To handle them,
signal handlers must be established on a per-thread basis using the
sigaction() call. If not handled, the default action is usually to dump a core
image and terminate. Synchronous signals cannot be waited for by using
sigwait() because a thread can only trigger this type of signal, such as a
segmentation violation, when it is running and not waiting.

• Asynchronous Signals are directed to the process where the DCE Threads
catches and handles them by means of jacket routines. This type of signal
awakes all threads that called sigwait() to wait for that particular signal, and
the signal is dismissed (ignored). If there is no thread waiting for a signal, it
is considered unhandled when it arrives, and the default action takes place,
which usually means terminating the process. A way to handle these signals
is to set up one thread per signal to wait for it and act upon it.

The use of UNIX signals in a multithreaded environment is discouraged. By
using mutexes and signals on condition variables, you can avoid the use of UNIX
signals.

Chapter 11. Threads 227

AIX Specialities

AIX DCE is different from OSF DCE in that it allows signal handlers to be set
up also for asynchronous signals with the sigaction() call.

The DCE Pthreads compatibility library implemented by AIX Version 4.1
maintains the signal semantics of POSIX 1003.4a Draft 7, which is different
from that of Draft 4:

• In Draft 7, all signal handlers are per process and executed in the context
of the thread that is running at the time of signal delivery. If another
thread establishes a handler for an already established handler, it
overwrites the previous setting. Even if your application compiles without
any errors, the pthreads signal behavior may be incorrect. The
synchronous signals could be handled per thread in Draft 4.

• In Draft 7, signal masks , used to block signals, are per thread . When a
signal is blocked, it cannot delivered to a thread and it is marked pending
until the signal mask bit is turned off. In Draft 4, the signal mask was
process-wide.

11.5.2 Jacket Routines for UNIX System Calls
DCE threads provide jacket routines for a number of UNIX system calls. Threads
call the jacket routine instead of the UNIX system service; this allows DCE
threads to take action on behalf of the thread before or after calling the system
service. For example, the jacket routine ensures that only one thread calls any
particular service at a time to avoid problems with system calls that are
non-reentrant and would otherwise block the process.

Jacket routines are provided for the following system calls:

• I/O calls — Examples of jacketed system calls are read(), write(), open(),
socket(), send(), recv().

• fork() — This call creates another process as an exact clone. The atfork()
routine allows you to define actions to clean-up the thread environment right
before and after the fork. See 11.5.3, “Calling fork() in a Multithreaded
Environment” on page 229.

• sigaction() — This call allows you to set up a signal handler. The jacket
allows each individual thread to set up its own handlers. Note that in AIX
DCE 2.1, signal handlers are only process-wide, as explained in 11.5.1,
“Signals” on page 227.

Jackets are not provided for any other UNIX system calls or for any of the C
runtime library services, such as wait(), sigpause(), msgsnd(), msgrcv() and
semop(). If a thread makes a call to any non-jacketed, blocking system call, the
thread, and with it the whole process, are prevented from executing.

The jacket routine ensures that only the calling thread is blocked and that the
process remains available to execute other threads. A list of jacket routines can
be found in the /usr/include/dce/cma_ux.h file.

You do not have to rename your system calls to take advantage of the jacket
routines. Macros put the jacket routines into place when you compile your
program; these macros rename the jacketed system calls to the name of the
DCE threads jacket routine. Thus, a reference to the DCE threads jacket routine

228 Understanding OSF DCE 1.1

is compiled into your code instead of a reference to the system call. When the
code is executed, it calls the jacket routine, which then calls the system on your
code ′s behalf.

11.5.3 Calling fork() in a Multithreaded Environment
The fork() system call creates an exact duplicate of the address space from
which it is called, resulting in two address spaces executing the same code.
Problems can occur if the forking address space has multiple threads executing
at the same time of the fork(). When multithreading is a result of library
invocation, threads are not necessarily aware of each other′s threads.

POSIX defines the behavior of fork() in the presence of threads to propagate
only the forking thread and to eliminate other threads. No cancels are sent and
no handlers are run. All other portions of the address space are cloned,
including all mutex states. If the other threads have a mutex locked, the mutex
will be locked in the child process, but the lock owner will not exist to unlock it.
Therefore, the resource protected by the lock will be permanently unavailable. If
your code does not attempt to lock a mutex that could be locked by another
thread at the time of the fork(), your code will be safe.

The jacketed fork() call allows you to use the atfork() call to set up routines
that will run at the following times:

• Prior to the fork() in the parent process
• After the fork() in the child process
• After the fork() in the parent process

With these routines, you can lock all mutexes before the fork() and unlock them
after the fork(). Another solution is to save state information of the threads,
terminate them before the fork(), and reinstate them as necessary afterwards.

11.6 Platform-Specific Implementation
This section explains the minor differences among implementations of DCE
threads for AIX, OS/2 and DOS Windows operating systems.

11.6.1 Threads on AIX Version 4
The AIX Version 4.1 kernel now supports multiple threads of control within a
single process. Its libpthreads.a library has been written to the POSIX 1003.4a
Draft 7 specification and is a linkable user library that provides user space
threads service to an application.

There is also a set of kernel services provided to write kernel extensions for
creating and managing threads as well as new locking services to assist the
kernel developer working in the multiprocessor environment.

11.6.1.1 Multithreaded Programming
AIX 4.1 provides a thread-safe, reentrant version of the AIX C library, libc_r.a ,
which allows multiple threads to execute concurrently. Some routines in the
library do not have any change, but other routines required interface changes in
the form of additional parameters to provide reentrancy. These routines have
new names in the form of the original routine name plus an _r suffix. The C
library has not been made fully reentrant, some SUN ONC RPC and NIS routines
may not be reentrant.

Chapter 11. Threads 229

11.6.1.2 Compatibility
AIX 4.1 offers the DCE Pthreads compatibility library, which is an implementation
of the user threads on top of its kernel threads. It is based on the POSIX 1003.4a
Draft 4 documentation with POSIX 1003.4a Draft 7 signal semantics, which is not
binary compatible with AIX 3.2.5. However, the DCE pthread compatibility library
exceptions are source level compatible with AIX 3.2.5 pthreads and the
application must be recompiled. This compatibility library is available with the
DCE LPP for backward compatibility.

Although, at present, all the POSIX threads documentation is on draft level, it
seems that the POSIX 1003.4a Draft 10 will become the POSIX standard.
Therefore, we strongly suggest to create applications that use the AIX Pthreads
based on POSIX 1003.4a Draft 7, which is closer to the soon-to-be POSIX
standard.

To compile a program using AIX 4.1 BOS pthreads, we need to use the cc_r or
xlc_r compiler, the pthread.h header file, and link the program with the
libpthreads.a library. With the threads compatibility packet, DCE for AIX provides
a cc_r4/xlc_r4 compiler (compatible to cc_r or xlc_r in AIX 3.2.5), the
pthread_exc.h header (to use the exception handling mechanism) and the
libdcelibc_r.a and libdcepthreads.a libraries (compatible to libc_r.a and
libpthreads.a libraries in AIX 3.2.5).

Note: In AIX Version 4.1, all signal handlers are installed on a per-process
basis. Hence, programs installing signal handlers need to be aware that they
may replace existing handlers installed by other threads. The DCE Pthreads
compatibility library maintains the signal semantics of POSIX 1003.4a Draft 7,
which is different from that of Draft 4 (see 11.5.1, “Signals” on page 227). Even if
your application compiles without any errors, the pthreads signal behavior may
be incorrect.

11.6.1.3 AIX dbx Debugger
An application program can be debugged with the dbx command. The dbx is not
part of DCE; it is an AIX operating-system tool. And it is fully thread-aware. It
allows you to:

• Display and switch the current thread
• Display general information on alert, task control block and stack of a

particular thread
• Display mutexes, condition variables and attribute objects

11.6.1.4 Fork
The POSIX 1003.4a Draft 7 specification defines a new function, forkall(), that
solves the problem of inconsistent data between the child and the parent by
requiring that the child contain replicas of all threads of the parent. However,
this routine is not implemented on AIX Version 4.1. It would solve the problem of
cancelling threads without notice, but introduces a new one, which is how to
deal with threads suspended in system calls.

11.6.1.5 Non-Blocking I/O Support
In AIX Version 4.1, all the I/O calls are supported to block only the calling thread
and not the entire process.

230 Understanding OSF DCE 1.1

11.6.1.6 Scheduling
The DCE scheduling policies, SCHED_FG_NP and SCHED_BG_NP, are mapped onto
SCHED_OTHER in AIX. Also, the maximum and minimum scheduling priorities for
these policies are mapped to the default values.

11.6.2 Threads on AIX Version 3.2.5
This version of AIX does not support kernel threads. The user-level pthreads
library is based on the POSIX 1003.4a Draft 4 and basically has all the features
or suffers from all the restrictions described in 11.5, “More Advanced Threads
Topics in UNIX” on page 227.

The dbx (see 11.6.1.3, “AIX dbx Debugger” on page 230), the reentrant libc_r.a
jacket library and the cc_r/xlc_r compilers are also available on AIX Version
3.2.5.

The DCE Threads for AIX Version 3.2.5 are available as part of the DCE Base
Services and as a separate licensed program product. AIX DCE Threads/6000 is
available for users that need threads capability without DCE.

11.6.3 Threads on OS/2 Warp
For OS/2 users, threads are well known since OS/2 has had multitasking and
threads support built-in since its first days. OS/2′s DCE implementation is a
mapping of the DCE Threads API (based on POSIX 1003.4a Draft 4) to the
corresponding OS/2 APIs (non POSIX).

DCE Threads APIs and OS/2 threads APIs can coexist within the same process,
but they cannot interoperate. That is, you can use both APIs within the same
process, or even within the same thread, but you cannot, for example, use one
set of APIs to wake up a thread that is blocked in the other set of APIs.

From a performance perspective, DCE threads APIs are a layer on top of OS/2
threads APIs, and are therefore (insignificantly) slower. So, if portability is an
issue, DCE threads are preferred over the native threads.

11.6.4 Threads for DOS Windows
The current IBM DCE for DOS Windows, based on OSF DCE 1.0.2 and the threads
programming environment, is provided by the IBM DCE Client SDK. The use of
the pthreads programming interface requires some precautions in the following
areas:

• Stack segments and compiler behavior — Each DCE thread runs on its own
stack which is allocated in a separate segment. This means that the stack
segment (SS) is not equal to the data segment (DS). So, the standard
assumption made by most DOS C compilers that SS equals DS does not hold
true. The code has to be compiled with the /Aw flag causing a C compiler to
generate a warning if it sees a code that assumes SS is equal to DS.
Typically, this is where the stack pointers are passed to APIs.

• Non-preemptive Threads — Under IBM DCE for DOS Windows, threads are
non-preemptive. The multitasking behavior of DOS Windows applications is
achieved by the cooperative processing of messages by DOS Windows tasks,
and not by preemption or interrupts. However, the OSF DCE implementation
of pthreads uses a preemptive timer to schedule threads. Since DOS
Windows timers are non-preemptive (they just post message), timers cannot
be relied upon to schedule threads. Therefore, threads are reliably

Chapter 11. Threads 231

scheduled only by using explicitly yielding calls, such as pthread_yield(),
pthread_cond_wait() and DCEyield().

• No reentrant libraries needed — To guarantee that the threads are
scheduled, you can set a timer and call pthread_yield() whenever you
receive a timer message.

Since a thread cannot be preempted asynchronously, a thread always yields
synchronously, and when it yields, it is always inside DCE and never inside
any application libraries. Therefore, there is no possibility of re-entering a
library and standard libraries do not need to be thread-safe or reentrant.
The wrapper routines are not necessary on this platform. However, libraries
in IBM DCE for DOS Windows must be thread-safe because they use threads.
This is true for any user program or library that uses threads. The
synchronization is the same as other system environments (use of condition
variable APIs and mutex APIs).

• Yielding to DOS Windows — Because of the non-preemptive nature of the
DOS Windows environment, DCE applications have to be compatible with
DOS Windows in order to allow other applications to run. In order to be
compatible with DOS Windows, a DCE application must process messages
and yield control to DOS Windows. The threads subsystem handles this by
calling its blocking API. It yields the processor if no thread is ready to run.
However, long-running threads that never block must call a DCEyield() to
give other DOS Windows applications a chance to run.

• Stack size limitation — Since the DOS program stack must fit within a
segment and the DOS Windows stack segment has a 16-byte overhead, the
thread stack size is limited to 64 K, minus 16 bytes.

• Default stack size — Since DOS Windows must allocate real memory for
stacks, the DCE default stack size has been reduced from 30 K to 12 K. The
default stack size can be modified by the application. Certain applications
ported from UNIX that have large numbers or sizes of arguments defined in
their IDL files may have to increase the threads′ stack size.

• Pthread callback APIs — The pthread_create(), pthread_once() and
pthread_keycreate() calls require you to pass to a callback API within your
application. At the point in the program where one of these APIs is called,
the value of the DS register must be equal to the data segment assumed by
the callback API. This is normally the default data segment, unless you have
to change DS explicitly. If the callback API assumes a different data
segment, the pointer to the callback API should be the address returned by
the MakeProcInstance() call.

232 Understanding OSF DCE 1.1

Appendix A. DCE Application Examples

The following chapter will give you a starting point and a reference for DCE
application examples. For further information about DCE application examples
and DCE developing, consult the redbook Developing DCE Applications for AIX,
OS/2 and Windows or one of the DCE Application Developing Guide manuals.

If you install the AIX fileset dce.tools, you will receive some DCE application
examples. The DCE examples are located in the /usr/lpp/dce/examples
directory. Following is a list of the examples with a short description of their
purposes:

• Time Provider (/usr/lpp/dce/examples/dts) — This example contains
samples for time providers. Four sample external time-provider interface
programs are provided.

• Timop (/usr/lpp/dce/examples/timop) — The example timop (Time
Operations Sample Application) is a tutorial DCE application example. It
exercises the basic DCE technologies: threads, RPC, security, directory, and
time.

• ACL manager (/usr/lpp/dce/examples/acl_mgr) — The ACL manager
example is a client/server application that demonstrates how one would go
about writing an ACL manager. It is not meant to be an efficient use of
storage, nor is it a complete manager. It′s sole purpose is to instruct one on
how to start the task of writing an ACL manager.

• Bank demo program (/usr/lpp/dce/examples/bank) — The DCE Motif Bank
demo is a client/server application that exploits all core services of DCE
(threads, RPC, CDS, Security and DTS). An OSF/Motif front-end provides a
graphical user interface to operations of the bank.

• RPC client/server examples (/usr/lpp/dce/examples/type_mgr) — This
program implements a simple client/server distributed application, along
with a management (administration) application. The actual application RPC
operations implemented are trivial; the intention of the example is to
demonstrate particular techniques that can be abstracted to production
applications.

• Documentation examples (/usr/lpp/dce/examples/pubs) — This are four
samples, which are described in the DCE Application Development Guide.

• Greet (/usr/lpp/dce/examples/pubs/greet) — One of the popular sample, the
greet example, is in this directory.

• Demo (/usr/lpp/dce/examples/demo) — This directory contains the source
code for a generic sample for a DCE client/server application.

• SVC (/usr/lpp/dce/examples/svc) — This directory comprises two new
samples, which use the new DCE Serviceability API. They were developed
mainly during the writing of the OSF DCE Application Development Guide
chapter on Serviceability.

The examples comprise a Steps or a README file, which contains instructions
for compilation and execution. These examples use five different types of source
files to create, compile and run the DCE RPC examples:

 Copyright IBM Corp. 1995 233

• .idl : — This file contains declarations for the RPC interface that the client and
the server will be sharing. The .idl file is used later by the IDL compiler to
create the header and stub files.

• .acf : — This file contains information that changes how an IDL compiler
interprets the interface definition (.idl file). The definition of an .acf file is
optional.

• server.c : — This file contains the RPC initialization calls needed to accept,
control and terminate a communication with client applications.

• <manager> .c : — This file contains the actual code that defines the services
provided by the server program.

• <c l i en t> . c : — This file contains the Remote Procedure Calls needed to
contact the server application and the logic to consume the services
provided by the server application.

• Makefile : — This file is used to create the executable object code.

234 Understanding OSF DCE 1.1

List of Abbreviations

ACL access control list

ANSI Amercian National Standards
Institute

ATM asynchronous transfer mode

CDMF Common Data Masking
Facility

CDS Cell Directory Service

CICS Customer Information Control
System

CMA Concert Multithread
Architecture

CMIP common management
interface protocol

CMVC Configuration Management
and Version Control

CORBA common object request
broker

COSE Common Open Software
Environment

DAP directory access protocol

DCE Distributed Computing
Environment

DES data encryption standard

DFS Distributed File System

DNS domain name service

DSOM distributed system object
model

DSS distributed system services

EPAC extended privi lege attribute
certif icate

ERA extended registry attributes

FCS fibre channel standard

FLDB Fileset Location Database

GDA Global Directory Agent

GDS Global Directory Service

HACMP High Availabil ity Cluster
Multi-Processing

IBM International Business
Machines Corporation

ICC Initial Container Creation
(ACL)

IDL interface definition language

IEEE Institute of Electrical and
Electronics Engineers

IETF Internet Engineering Task
Force

IOC Initial Object Creation (ACL)

IP internet protocol

ISO International Standardization
Organization

ITSO International Technical
Support Organization

LAN local area network

LFS Local File System

LSE LAN Server Enterprise

LRPC local RPC

MAN metropolitan area network

MQI message queuing interface

MTPN Multiprotocol Network
Transport

NCACN Network Computing
Architecture Connection
Based Protocol

NCADG Network Computing
Architecture Datagram
Protocol

NFS Network File System

NIS Network Information System

NSI Name Service Interface

NTP network time protocol

OLTP on-line transaction processing

OMG Object Management Group

ONC Open Network Computing

OSF Open Software Foundation

PAC privi lege attribute certif icate

PGO principal, group, organization

RAID redundant array of
independent disks

RDBMS relational database
management system

RPC remote procedure call

SCM System Control Machine

SLC Secured Logon Coordinator
(NetSP)

SNG Secured Network Gateway
(NetSP)

SNMP simple network management
protocol

 Copyright IBM Corp. 1995 235

SOM system object model

SQL structured query language

TCP transmission control protocol

TPI t ime provider interface

UDP user datagram protocol

UUID universal unique identif ier

WAN wide area network

XMP X/Open management protocol

236 Understanding OSF DCE 1.1

Index

A
abbreviations 235
access control list (ACL) 62
account 47
account creation 48
ACL

ACL facility 46, 62
backup/restore in DFS 76, 102
dcecp acl command 66
for delegated access 61, 64
for registry objects 49, 51
in AIX 76
in CDS 34
in DFS 11, 76, 102
in RPC 203
inheritance 63
manager 50, 63, 193, 208
manager example 233
manager l ibrary 12
one object - multiple ACLs 73
permission evaluation 65
POSIX 1003.6 45

acl_edit 35, 64, 66, 73
acronyms 235
adjusting the clock 86
administration GUI 116
administrative domains (DFS) 98
advertisement protocol (CDS) 33
aggregates 99
AIX platform

CDS implementation specifics 40
DCE function summary 14
fast path configuration 105
installing/configuring DCE 103
preparation steps 104
product packaging 15
security implementation specifics 73, 77
security integration 74
single login 78
threads implementation specifics 229, 231

ANDF 7
annotating a binding handle 185, 191
anonymous principal 61, 65
application environment specification (AES) 6
application examples 233
arrays (dcecp) 152
assigning ERAs 51
asymmetric MP 146
asynchronous signals 227
ATO 4
attribute certificate (PAC/EPAC) 60, 194
attribute configuration file (ACF) 197
attribute sets (ERA) 51

attributes object (threads) 215
attrset 51
audit service 10, 46, 66
audit trail 66
auditing 12
authenticated RPC 55, 191
authentication

in RPC 55, 179, 191
policy (registry) 47
service 10, 45, 192

authorization level 193
automatic binding 187
availabi l i ty 141, 142
awakening a thread 222

B
B1 44
backup couriers 84
backup/restore of a clearinghouse 38
bank demo program 233
basic client development steps 198
basic server development steps 199
binding

handles 182
method 180, 187
what is binding 174

blocking call 216, 226
blueprint 1
boss/worker model 210
break statement (dcecp) 156
byte-stream API 2

C
C1 44
C2 44
cache manager 98
call queue 182
CATCH 223
catch command (dcecp) 169
CCITT 10
CCITT X.500/ISO 9594 21
CDMF 193
CDS

administration tools 34
backup/restore of a clearinghouse 38
CDS control program 35
cell name alias 12
cell namespace 27
clerk 33
component overview 21, 29
configuring a primary server on AIX 107
configuring a primary server on OS/2 119
database structure 30

 Copyright IBM Corp. 1995 237

CDS (continued)
global directory agent (GDA) 10
global directory service (GDS) 10
global namespace 22
HACMP 144
hierarchical cells 12, 24
leaf object 186
managing CDS entries for RPC 203
merging directories 39
moving the initial CDS server 138
name look-up 29, 33
namespace structuring example 31
NSI interface 178, 186
overview 10
platform-specific implementations 40
RPC group entry 186
RPC profile entry 186
RPC server entry 186
searching the namespace 186
subtree operations 39

CDS_Convergence attribute 39
CDS_LinkTarget 33
CDS_Replicas attribute 34
cdsbrowser 35
cdscp 35
cell

DCE Manager (for NetView) 13
hierarchies 24, 70
name alias 12, 24
what is a cell 9, 20

cell-profile 31, 84
CERT 43
certif ied network identity 52
checkpoint interval 49
checkpoints (registry database) 49
child pointer (CDS) 31, 34
CIAC 43
CICS for AIX 3
clearinghouse 29, 33, 138
clerk 29, 33
clerk cache 38
client configuration 109
client/server computing model 8
clock synchronization (DTS) 84, 95
cluster configurations (HACMP) 143
CMA 213
coexistence of different DCE releases 135
command abbreviations (dcecp) 167
command substitution (dcecp) 149, 150
command-line editing commands (dcecp) 165
common data masking facility (CDMF) 14
Common Desktop Environment (CDE) 7
Common Open Software Environment (COSE) 7
compatibi l i ty 135
compatible (RPC) server 185, 190
Concert Multithread Architecture (CMA) 11
condition variables (threads) 221

configuring a DCE intercell scenario 103
container object (CDS) 30
continue statement (dcecp) 156
convenience variables (dcecp) 168
conversation key 57, 59, 194
correct t ime 84
courier t ime server 83
creating an account 48
creating ERAs 49
credentials 10, 41, 45, 52, 138
crontab 53, 76
cross-cell TGT (XTGT) 68
cross-platform product support 18

D
data access services 2
data encryption 14, 192
data representation (RPC) 177
data sharing model 9
data structures (dcecp) 151
daylight savings time 87
DB2 3
DCE

application examples 233
architecture 7
cell 9, 20
DCE 1.1 new features 11
dcecp (Control Program) 12
dced (DCE host daemon) 12
directory service overview 10
distributed fi le system overview 11
global namespace 22
HACMP configurations 144
IBM open blueprint 2
install ing/configuring 103
RPC overview 11
security service overview 9
SMP machines 146
Special Interest Groups (SIG) 5
split configuration 109, 121
threads service overview 11
time service overview 10

DCE daemon 188
DCE hostname 106
DCE in other products 3
DCE Web 4
dce_attr_sch() 51
dce_login 52, 76, 78
dcecp (Control Program)

as a new feature of OSF DCE 1.1 12
command language (Tcl) 147
programming, see Tcl
user interface (Tcl) 165

dcecp acl 65
dcecp keytab add 58, 194
dcecp registry connect 133
dced (DCE host daemon) 12, 188

238 Understanding OSF DCE 1.1

dced namespace junction 27
dced object 27, 58
DCEyield() 232
deadlock 214, 226
debugger, threads-aware 230
default ticket l ifetime 59
delegate ACLs 64
delegate restrictions 61
delegation 12, 60
delegation chain 193
denying access 66, 75
DES 14, 193
developing a basic client 198
developing a basic server 199
DFS

ACLs 102
administrative domains 98
advantages 97
architecture 98
consistency (tokens) 100
fileset location database (FLDB) 99
fileset replication 101
namespace 99
NFS-DFS authenticating gateway 13, 102
overview 11
platform-specific implementations 102

direct trust relationship 69
directory service overview 10
disable_time_interval ERA 56
disabling CDS clerks and servers 34, 37
Discretionary Access Control 44
discretionary policy 43
distributed fi le system overview 11
Distributed Printing (Palladium) 3
distributed services 2
domain name service (DNS) 21, 23, 131
DOS Windows platform

CDS implementation specifics 40
DCE function summary 17
security implementation specifics 78
threads implementation specifics 231

DSOM 3
DTS

adjusting the clock 86
administrat ion 93
clerk 81
clock synchronization 84, 95
component overview 79
configuration parameters 80
configuring a local server on AIX 108
configuring a local server on OS/2 119
courier t ime server 83
DTS Control Program 93
DTS Daemon 80
epoch 87
global t ime server 83
in-memory list of DTS servers 84
inaccuracy 84

DTS (continued)
local t ime server 82
minservers attr ibute 81, 82
overview 10
servers 81
time differential factor (TDF) 87
time format 87
time provider interface (TPI) 91
time structures 89

dtscp 93
dtsd 80
dtss-graph 96
dynamic endpoints 188

E
Encina 3
encryption 192
endpoint

endpoint map service 188
endpoint mapper 188
operations 179
what is an endpoint 184

entry-point vector (EPV) 189
EPAC 46, 60, 135, 193, 194
EPAC chain 62
epoch (DTS) 87
ERA 46
ERA assignment 51
ERA creation 49
errno variable 223
error handling (dcecp) 169
exception handling (threads) 223
exec command (dcecp) 160
explicit binding 188
expressions (dcecp) 150
extended login capabilities 12
extended registry attributes (ERA) 12, 49
external t ime providers 91

F
FIFO scheduling (threads) 218
file access (dcecp) 158
file exporter 98
file namespace (DFS) 99
fileset location database (FLDB) 99
FINALLY 224
for loop (dcecp) 156
foreach loop (dcecp) 156
foreign TGT (FTGT) 68
fork() 228, 229, 230
forkall() 230
fully bound handle 186, 191
function summary for DCE on AIX 14
function summary for DCE on DOS Windows 17
function summary for DCE on OS/2 16

Index 239

G
G30 146
GDA 21, 26
GDS 21
generated password 57, 194
global directory agent (GDA) 10, 21
global directory service (GDS) 10
global location broker 206
global namespace 22
global t ime server 83
greet example 233
group entry 186
group_override 75
GSS-API 12, 71

H
HACMP 141, 142
HACMP and DCE 144
handling an exception (threads) 224
help facilities (dcecp) 167
hierarchical cell 12, 24, 70
hierarchical transit ive trust 69
hot standby 143

I
IBM added-value components 13
IBM products incorporating DCE 3
IDL 174, 195
if statement (dcecp) 155
iFOR/LS 205
impersonation 61
implicit binding 187
inaccuracy (DTS) 84, 87, 89
INF files 14
InfoExplorer 14
inherit scheduling attribute 215
installing DCE 103
intercell authentication 68
intercell login 134
intercell scenario configuration 131
interface definition language (IDL) 11
interface handle 197
interface specification 196, 197
interface UUID and version 183
intermediary server 61
internationalization 12
internet protocol 179
interoperabil i ty 1, 135
invalid login attempts 56
IP 179
IPF/X 14
IPX 179

J
J30 146
jacket routines 228
Java 4
join (dcecp) 155
journaled file system (JFS) 11
junction (CDS) 27
junction (DFS) 99

K
kdestroy 78
Kerberos 52
kernel-level scheduling 217
kernel-level threads 146, 213
key management 57, 194
keytab file 54, 57, 194
keytab object (dced) 27, 58
kinit 77, 78
klist 78
KRB5CCNAME 53
ktadd 57, 194

L
lab scenario 103
LAN Server 3
lan-profile 31, 82, 84
leaf object (CDS) 30, 186
leap seconds 87
lightweight processes 210
linsert, lappend, lreplace (dcecp) 154
lists (dcecp) 152
llength, lrange (dcecp) 154
local file system (LFS) 11, 98, 102
local location broker (llbd) 206
local procedure call 174
local registry 70
local RPC 180
local t ime server 82
locking 144, 220
locking a mutex 220
login facility 10, 46
login integration 74
loosely coupled 145
lsearch, lsort (dcecp) 155

M
machine context 53
machine principal 53
MakeProcInstance() 232
mall (OFS) 3
man 14
manager code 181, 208
manager EPV 189
manager types 189, 202

240 Understanding OSF DCE 1.1

managing CDS entries for RPC 203
mandatory policy 43
marshalling (RPC) 177
mask entry (ACL) 64
master replica (CDS) 30
master/slave organization 146
max_invalid_attempts ERA 56
maximum renewable l i fetime 59
maxinaccuracy (DTS) 84
merging directories (CDS) 39
Message Queuing Interface 176
microkernel specification, OSF 4
migrat ion 136
migration strategy 135
minservers (DTS) 81, 82
mkdce 105
monitoring the cell 13
Moti f 7
moving the initial CDS server 138
moving the master security server 137
MP architectures 145
MP-efficient 146
MP-safe 146
MPTS (Multi-Protocol Transport Service) 116
MQSeries 3, 176
multiplexed threads model 213
multiprocessor (MP) machines 141
multithreaded RPC 146, 180
mutex 220, 226
mutex attr ibutes 215
mutual authentication (RPC) 193
mutual authentication surrogate 68, 133
mutual exclusion 219
mutual takeover (HACMP) 143
MVS OpenEdition threads 217
MVSname ERA example 50
MX record (in DNS) 132

N
name look-up (CDS) 29, 33
namespace (DFS) 99
namespace junction 27
naming confusion 72
ncacn 179
ncadg 179
NCS 205
NCSC 44
NetBIOS 116, 179
netls_config 206
netls_first_time 206
netlsd 206
NetSP 3
NetView for AIX 13
network computing architecture (nca) 179
Network Computing System (NCS) 11
Network Information Center (NIC) 23
NFS-DFS authenticating gateway 13, 102

NIC 23
non-reentrant software 226
NSI interface 178, 186
null_provider 91

O
object UUIDs 183, 189
online documentation 14
online transaction processing (OLTP) 3
open blueprint 1
Orange Book 44
order numbers on AIX 15
order numbers on OS/2 16
organization (registry object) 47
OS/2 platform

administration GUI 116
CDS implementation specifics 40
DCE function summary 16
installing/configuring DCE 116
preparation steps 116
product packaging 16
security implementation specifics 78
threads implementation specifics 231

OSF
Advanced Technology Offering (ATO) 4
Application Environment Specification (AES) 6
available OSF technology 7
DCE 1.1 new features 11
DCE architecture 7
members 3
other technologies 7
Pre-Structured Technology (PST) 4
product catalog 14
Request For Comment (RFC) 6
Request For Technology (RFT) 5
Research Institute (RI) 5
software mall 3
Special Interest Groups (SIG) 5
technology development 4

OSF/1 7

P
PAC 60, 135
partly bound handle 191
passwd_import, passwd_export 76
passwd_override 75
password for a server 57, 194
password management server 56
password strength 56
PC-NFS clients 13, 102
performance 141
PGO 47
pipelining model 211
port 135 188, 206
portabi l i ty 1
POSIX

1003.1 11, 97

Index 241

POSIX (continued)
1003.4a 11, 214, 219
1003.4a Draft 10 230
1003.4a Draft 4 213, 227
1003.4a Draft 7 214, 217, 227, 228

Pre-Structured Technology (PST) 4
pre_auth_req ERA 55
preauthentication 54, 55
principal 47
priority inversion 226
privi lege service 10, 54
Privilege-Ticket Granting Ticket (PTGT) 54, 59
procedures (dcecp) 156
product catalog 14
product packaging on AIX 15
product packaging on OS/2 16
products with DCE support 3
profi le entry 186
programming example (dcecp) 170
properties (registry) 47
protection level (RPC) 192
protocol exporter (DFS) 98
protocol sequences (RPC) 179, 183
protocols, RPC 179, 183
pthread_attr_create() 215
pthread_attr_setprio() 215
pthread_attr_setsched() 218
pthread_attr_setstacksize() 215
pthread_cancel() 215
pthread_cond_signal() 222
pthread_cond_wait() 221, 232
pthread_detach() 215
pthread_exc.h 224
pthread_exit() 215
pthread_inst_exception_handler() 224
pthread_join() 214, 220
pthread_keycreate() 232
pthread_mutex_init() 220
pthread_mutex_lock() 220
pthread_mutex_trylock() 220
pthread_once() 232
pthread_setprio() 215
pthread_setscheduler() 218
pthread_signal_to_cancel_np() 224
pthread_yield() 232
pthread.h 224
Pthreads compatibil ity l ibrary 228
pwd_mgmt_binding ERA 57
pwd_val_type ERA 57

Q
queue model 210

R
R30 146
race conditions 226

RACF 3
RAID 142
raising an exception 224
randomly generated password 57, 194
receiver-makes-it-r ight 178
Recoverable Queuing Service (RQS) of Encina 176
reentrancy 146
reentrant l ibraries 213
registering a cell 131
registering an interface 200
registering authentication information 200
registering endpoints 200
registry database checkpoints 49
registry service 10, 45, 47
relocating the initial CDS server 138
relocating the master security server 137
relt imespec 89
remote procedure call 9
renewable tickets 60
replica (CDS) 30, 39
replica set (CDS) 30
replication (DFS) 101
replist 47
request buffer 200
request for comment (RFC) 6
Research Institute (OSF) 5
resource groups (HACMP) 142
RFT 5
rgy_edit 48, 70, 78
rotating standby (HACMP) 143
round robin scheduling (threads) 219
routing RPC calls 182, 190, 207
RPC

administrat ion 202
application examples 233
authenticated RPC 55, 191
authentication operations 179
binding 174
binding handles 182
binding method 180, 187
call routing 182, 190, 207
communication protocols 179, 183
computing model 9
data flow 175
data representation 177
definition of RPC 173
development steps 194
endpoint map service 188
endpoint operations 179
endpoints 184
entry-point vector (EPV) 189
group entry in CDS 186
manager types 189, 202
managing CDS entries for RPC 203
marshall ing 177
multithreaded RPC 180
NSI interface 178, 186
object UUIDs 183, 189

242 Understanding OSF DCE 1.1

RPC (continued)
overview 11
profile entry in CDS 186
protection levels 192
protocol sequences 179, 183
runt ime 174, 178
searching the namespace 186
secret key management 57
server and manager 180
server entry in CDS 186
server init ial ization 180, 199, 207
service queues 181
stubs 177
summary 207
timeout mechanism 180
using SMP machines 146

rpc_binding_set_auth_info() 191
rpc_binding_to_string_binding() 187
rpc_mgmt_inq_server_princ_name() 191
rpc_ns_binding_import 186, 207
rpc_ns_binding_lookup 186, 207
rpc_object_set_type() 190, 199
rpc_server_listen() 181
rpc_server_register_if() 189, 200
rpc_server_use_all_protseqs() 200

S
scenario 103
SCHED_BG_NP 219
SCHED_FG_NP 219
SCHED_FIFO 218
SCHED_OTHER 219
SCHED_RR 219
scheduling policy 218
scheduling policy attribute 215
scheduling priority 218
scheduling priority attribute 215
searching the namespace 186
sec_admin 70, 78
sec_clientd 45, 59
sec_login_become_delegate() 61
sec_login_become_impersonate() 61
sec_login_become_initiator() 61
secd 45
secret key 54, 57
secret key authentication 57, 194
security context token 72
security level classification 44
security policies 43
Security Service

access control lists (ACL) 62
administration tools 70
audit service 10, 66
auditing 12
authenticated RPC 55, 191
authentication policy (registry) 47
authentication service 10
authentication steps 53

Security Service (continued)
client services 45
components and facil it ies overview 45
configuring a master server on AIX 106
configuring a master server on OS/2 119
creating an account 48
delegation 12, 60
delegation chain 193
EPACs 60
extended login capabilities 12
Extended Registry Attributes (ERA) 12, 49
GSS-API 12
HACMP 144
intercell authentication 68
invalid login attempts 56
keytab object 27
login facility 10
moving the master security server 137
overview 9
platform-specific implementations 73
preauthentication 54, 55
privi lege service 10
properties (registry) 47
registry 46
registry service 10
secret key management 57
standard policy (registry) 47
third-party protocol 56
timestamps protocol 55
validation services 45

security threats 42
server entry 186
server init ial ization 180, 199, 207
server key 194
server password 57, 194
server principal name 191
service queues 181
service ticket 59, 194
session key 194
setting the time 87, 94
shared-disks MP 145
shared-memory cluster 145
shared-memory MP 145
shared-nothing MP 145
SIG 5
signal semantics 230
signalling a thread 222
signals and threads 227
sigwait() 227
single login 74, 78
skulking (CDS) 39
SMP 141, 146
SMP and DCE 146
soft link (CDS) 30
softcopy documentation 14
software mall (OSF) 3
solicitation protocol (CDS) 34

Index 243

SP2 141, 145
split (dcecp) 155
split configuration 109, 121
stacksize attr ibute 215
standard policy (registry) 47
string binding 187
strings (dcecp) 151
stubs 174, 177
surrogates 68
switch statement (dcecp) 156
symmetric MP 146
synchronizing clocks 124
synchronous signals 227
syncinterval (DTS) 81, 84
sysck.cfg 76
system request buffers 181

T
Tandem 145
target restrictions 61
TCB 45
Tcl

arrays 152
catch command 169
command abbreviations 167
command substitution 149
continue, break statements 156
convenience variables 168
data structures 151
error handling 169
exec command 160
expressions 150
extensions (Tk or dcecp) 148
file access 158
for loop 156
foreach loop 156
help facilities 167
if statement 155
introduction 147
linsert, lappend, lreplace 154
lists 152
llength, lrange 154
lsort, lappend 155
performing external commands 160
procedures 156
programming example 170
split, join 155
strings 151
switch statement 156
syntax 149
variables 150
while loop 156

TCL_ERROR 170
TCP 179
Teradata 145
test scenario 103
third-party protocol 56

third-party takeover 143
thread identif ier 210
thread-safe 146
thread-safe libraries 213
threads

attr ibutes object 215
benefits 212
computing models 210
condit ion variables 221
definition of threads 209
errno variable 223
error handling 223
exception handling 223
exceptions in DOS Windows 225
implementation models 212
in AIX Version 4 229
locking a mutex 220
mutexes 220
overview 11
POSIX 1003.4a Draft 10 230
POSIX 1003.4a Draft 4 213, 227
POSIX 1003.4a Draft 7 214, 217, 227, 228
potential difficulties 226
programming example 222
Pthreads compatibil ity l ibrary 228
scheduling policy 218
scheduling priority 218
signalling a thread 222
signals 227
special UNIX topics 227
states and state transitions 214
synchronization 219
thread identif ier 210
TRY, CATCH, FINALLY 223
using SMP machines 146
waiting for a thread 214, 220

Ticket Granting Service (TGS) 45
Ticket Granting Ticket (TGT) 54
tickets 59
tightly coupled 145
time clerk 81
time differential factor (TDF) 87, 94
time format 87
time interval 84
time provider example 233
time provider interface (TPI) 91
time representation 88
time servers 81
time service overview 10
timeout mechanism 180
timespec 89
timestamps protocol 55
timop example 233
tokens (DFS) 100
traced delegation 61
transit ive trust relationship 69
trigger attr ibute 50

244 Understanding OSF DCE 1.1

t r igger server 51
trust peer 68, 69, 133
Trusted Computing Base (TCB) 76
TRY 223

U
UDP 179
unauthenticated mask (ACL) 64
uniprocessor (UP) machines 144
Universal Time Coordinated (UTC) 10, 87
UNIX user/group ID 48, 49
unmarshalling (RPC) 177
unsynchronized clocks 79
update_log 49
user data masking facility 14
user-level scheduling 216
user-level threads 212, 213
utc 96
utc_mkrelt ime 96
UUID 174, 195
uuidgen 11, 195

V
v5srvtab 58
viewing the namespace 36

W
waiting for a thread 214, 220
Web, DCE 4
well-known endpoint 186, 188
while loop (dcecp) 156
work crew model 210
workgroups 5

X
X/Open 10
X.500 10, 21, 23, 24
xattrschema 47, 49
XDS API 10
XTGT 68
xview 14

Index 245

ITSO Technical Bulletin Evaluation RED000

International Technical Support Organization
Understanding OSF DCE 1.1 for AIX and OS/2
October 1995

Publication No. SG24-4616-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
SG24-4616-00 IBML

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department JN9, Building 821
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

SG24-4616-00

IBML

Printed in U.S.A.

SG24-4616-00

	Understanding OSF DCE 1.1 for AIX and OS/2
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	ITSO Redbooks on the World Wide Web (WWW)
	Acknowledgments

	Chapter 1. Introduction
	OSF Distributed Computing Environment
	IBM¢ s Open Blueprint
	The Open Software Foundation
	Open Software Mall
	OSF Technology Development Process
	Special Interest Groups (SIG) and Workgroups
	Application Environment Specification (AES)
	Request For Comment (RFC)
	Available OSF Technologies
	OSF DCE Architecture
	Models of Distributed Computing
	DCE Cell
	DCE Security Service
	DCE Directory Service
	DCE Distributed Time Service
	Distributed File System
	Threads
	Remote Procedure Call
	OSF DCE 1.1 New Features
	Improved Administrative Functions
	Security Improvements
	Internationalization
	Performance Enhancements
	Other Enhancements
	IBM Added- Value Components for DCE
	DCE NFS to DFS Authenticating Gateway for AIX
	DCE Manager for AIX
	User Data Masking Facility
	Online Documentation
	IBM DCE Product Information
	IBM DCE for AIX
	IBM DCE for OS/ 2 Warp
	IBM DCE for DOS Windows
	IBM DCE Cross Platform Matrix 9/ 95

	Chapter 2. Directory Service
	What is a DCE Cell?
	Directory Services Component Overview
	The DCE Global Naming Environment
	The Global Name Space
	Cell Names
	Hierarchical Cells
	Intercell Routing Services
	The DCE Cell Namespace
	Summary: DCE Naming
	Cell Directory Service (CDS)
	CDS Components
	CDS Database Structure
	CDS Namespace Example
	CDS Lookup
	CDS Clerk
	Security in CDS Environment
	CDS Administration
	CDS Control Programs dcecp and cdscp
	Viewing the Namespace
	Managing Clerks, Servers and Clearinghouses
	Managing CDS Directories
	Platform- Specific Implementation
	Directory Service on AIX Version 4
	Directory Service on AIX Version 3.2
	Directory Service on OS/ 2 Warp
	Directory Service on DOS Windows

	Chapter 3. Security Service
	Open Systems and Security
	Security Requirements
	Security Policies
	Security Standards
	DCE Security Service Components and Facilities
	The Security Registry
	Extended Registry Attributes (ERA)
	Authentication Components and Procedures
	PAC and Extended PAC
	Delegation
	Access Control List Facility
	Auditing
	Intercell Authentication
	Intercell Authentication Steps
	Trust Relationship
	Security Administration Tools
	Security with RPC
	Generic Security Service API (GSS- API)
	DCE Security and Other Core Components
	DCE Security and DTS
	DCE Security and Naming
	Platform- Specific Implementation
	Security Service on AIX Version 4
	Security Service on AIX Version 3.2
	Security Service on OS/ 2 Warp
	DOS Windows DCE Security

	Chapter 4. Distributed Time Service
	Why a Time Service?
	DTS Daemon
	Configuration Parameters for DTS Daemons
	The Required Number of Servers
	DTS Clerk
	DTS Servers
	How Does Clock Synchronization Work?
	Time Intervals, Inaccuracy, Synchronization Triggering
	Getting the Correct Time
	Adjusting the Clock
	Notion of Epochs
	Manually Setting a Correct Time Within a Cell
	DTS Time Format
	Universal Time Coordinated (UTC)
	Time Zones or Time Differential Factor (TDF)
	Time Representation
	Time Structures
	External Time Providers
	Time Provider Interface (TPI)
	DTS Administration
	Show the Time
	Setting the System Time
	Changing Roles of a Time Servers
	Platform- Specific Implementation
	Distributed Time Service on AIX
	Distributed Time Service on OS/ 2 Warp
	Distributed Time Service on DOS Windows

	Chapter 5. Distributed File Service
	DFS Architecture
	DFS File Server
	File Naming
	Performance
	File Consistency
	Availability
	Security
	Platform- Specific Implementation

	Chapter 6. Installation and Configuration of DCE
	AIX Platform
	Preparation Steps
	Installation
	Fast Path
	Configuring the Master Security Server
	Configuring the Initial CDS Server
	Configuring DTS Servers
	Further Cell Configuration
	Configuring DFS Servers
	OS/ 2 Platform
	Preparation Steps
	Installation
	Configuring OS/ 2 with Master Security and Initial CDS Servers
	Configuring OS/ 2 as a DCE Client and an Additional CDS Server
	Setting Up Intercell Communication

	Chapter 7. Migration and Compatibility
	Compatibility
	Migration
	Using the AIX 4.1 Migration Utilities
	Moving the Security Server
	Moving the Initial CDS Server

	Chapter 8. High-Performance and High-Availability Configurations
	IBM AIX High Availability Cluster Multi- Processing
	Resources and Resource Groups
	HACMP Cluster Configurations
	Benefits for DCE
	Multiprocessing
	Multiprocessor Architectures
	MP- Safe Programming
	Benefits for DCE

	Chapter 9. DCE Control Program and Tcl
	What is Tcl?
	dcecp Introduction
	Tcl Language Components
	Tcl Language Syntax
	Variables
	Data Structures
	Control Flow
	Procedures
	Files
	Executing External (Operating System) Commands
	Other Tcl Commands
	The DCE Control Program
	DCE Command Syntax
	User Interface
	Help Facilities
	Convenience Variables
	Error handling
	Putting it Together: A dcecp Programming Example

	Chapter 10. Remote Procedure Calls
	What is RPC?
	IDL, Stubs and RPC Runtime
	RPC Data Flow
	Synchronous vs. Asynchronous Models
	RPC Components
	Stubs
	RPC Runtime
	Communication Protocols
	RPC Client Application
	RPC Application Server and Manager
	Service Queues
	Finding Remote Services
	Binding Handles
	Name Service Interface
	Binding Methods
	DCE Daemon and Endpoint Map Service
	Entry-Point Vector
	Object UUIDs and Manager Types
	Putting It Together: A Summary of RPC Call Routing
	RPC and Security
	Authentication Service
	Level of Protection
	Authorization
	Key Management and Secret Key Authentication
	Developing an RPC application
	Universal Unique Identifiers
	Interface Definition File
	Attribute Configuration File (ACF)
	IDL Compiler
	Developing a Basic Client
	Developing a Basic Server
	Servers with Multiple Interfaces
	Using Manager Types
	RPC Administration
	Managing CDS Entries for RPC
	Managing the Endpoint Map
	Network Computing System, iFOR/ LS and DCE
	Putting It All Together: Initialization, Routing and Execution

	Chapter 11. Threads
	What are Threads?
	Multithreading
	Benefits of Multiple Threads
	Implementation Models
	DCE Threads Implementation
	Threads Basics
	Threads States and Control Operations
	Thread Attributes
	Threads Scheduling
	Threads Synchronization
	More Advanced General Threads Topics
	Error Handling
	Potential Problems with Multithreaded Programming
	More Advanced Threads Topics in UNIX
	Signals
	Jacket Routines for UNIX System Calls
	Calling fork() in a Multithreaded Environment
	Platform- Specific Implementation
	Threads on AIX Version 4
	Threads on AIX Version 3.2.5
	Threads on OS/ 2 Warp
	Threads for DOS Windows

	Appendix A. DCE Application Examples
	List of Abbreviations
	Index
	A
	B
	C
	D
	E
	F
	G J
	K
	H
	L
	I
	M
	O
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	ITSO Technical Bulletin Evaluation RED000

