
ibm.com/redbooks

Tivoli Personalized
Services Manager
Device Manager 1.1
Pervasive Device Management

Kiriko Aoyama
Yoko Koyama

Iwao Murakami

Understand how to use Device Manager
for pervasive device management

Install, tailor, and configure the
Device Manager server

Learn useful information to
help you develop plug-ins

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Tivoli Personalized Services Manager
Device Manager 1.1: Pervasive Device Management

February 2001

SG24-6027-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (February 2001)

This edition applies to Version 1.1 of the Device Manager that is included in Tivoli Personalized
Services Manager Version 1.1, 5698-PSM, IBM WebSphere Everyplace Suite Enterprise Edition
Version 1.1, 5765-E59, and IBM WebSphere Everyplace Suite Service Provider Edition Version 1.1,
5697-G53.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. OSJB Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special notices” on page 255.

Take Note!

Contents

Figures .ix

Tables. xiii

Preface . xv
The team that wrote this redbook. xv
Comments welcome. xvii

Chapter 1. Introduction to Device Manager . 1
1.1 What is Device Manager . 1

1.1.1 Overview . 2
1.1.2 Device Manager components . 4
1.1.3 DM in Tivoli Personalized Services Manager (TPSM) 6
1.1.4 TPSM in WebSphere Everyplace Suite (WES) 8
1.1.5 Device Manager functions . 11
1.1.6 Supported devices . 12
1.1.7 What's new in DMS 1.1. 15

1.2 Why you need DMS . 17
1.2.1 The Internet and e-business today . 19
1.2.2 Pervasive computing and pervasive device management 20
1.2.3 The challenge. 22

Chapter 2. Architecture . 25
2.1 Overview . 25

2.1.1 Features of Device Manager. 28
2.2 Components of Device Manager . 30

2.2.1 Device management server servlet. 30
2.2.2 Device Manager database . 31
2.2.3 Device plug-ins. 32
2.2.4 Device Manager console . 35
2.2.5 Device management API . 37
2.2.6 Device management server API . 38

2.3 Control flow . 38
2.3.1 Connection handling . 40
2.3.2 Job flow . 45
2.3.3 Sample scenario. 47

2.4 Summary . 52
2.4.1 Features . 52
2.4.2 Components . 53
2.4.3 Job processing . 53
© Copyright IBM Corp. 2001 iii

Chapter 3. Installation and configuration . 55
3.1 Planning . 55

3.1.1 TPSM database server . 57
3.1.2 File server for software distribution package 57
3.1.3 Device Manager console PC . 58
3.1.4 WebSphere Everyplace Suite environment 58
3.1.5 Sample system configuration . 60

3.2 Installation flow . 63
3.2.1 Sample 1: Simple configuration . 63
3.2.2 Sample 2: Dedicated Device Manager server 65
3.2.3 Sample 3: Everyplace Suite deployment. 67

3.3 Installation . 68
3.3.1 System environment . 68
3.3.2 Installation tasks. 70

3.4 Configuration . 80
3.4.1 Registering the device plug-in classes . 81
3.4.2 Configuration on WebSphere Application Server 87
3.4.3 Starting the Device Manager server . 96
3.4.4 Configuration differences . 99
3.4.5 Properties files . 99

3.5 References. 105

Chapter 4. Administration . 109
4.1 Overview . 109
4.2 Device Manager server tasks . 110

4.2.1 Directories and files . 110
4.2.2 Managing a device class . 112
4.2.3 Managing job types and classes . 115
4.2.4 Administration authentication . 118
4.2.5 Managing large numbers of jobs or devices 121
4.2.6 Device Manager server log files . 124

4.3 Device Manager console tasks . 125
4.3.1 Device Manager console installation. 125
4.3.2 Filtering . 129
4.3.3 Managing devices. 131
4.3.4 Managing jobs . 135
4.3.5 Managing software . 139

4.4 Enabling SSL . 141
4.4.1 Enabling SSL on the DM server . 141
4.4.2 Enabling SSL for client devices . 143

Chapter 5. Device Manager database . 145
5.1 Data model. 146
iv Tivoli Personalized Services Manager Device Manager 1.1

5.1.1 ACTIVE_JOB table . 148
5.1.2 ACTIVE_JOB_HISTORY table . 149
5.1.3 DEV_CLASS_TEMPLATE table . 150
5.1.4 DEVICE table . 153
5.1.5 DEVICE_CLASS table . 155
5.1.6 DEVICE_CLASS_PARM table . 156
5.1.7 DEVICE_PARM table . 157
5.1.8 DMS_SERVER table . 158
5.1.9 INSTALLED_SW table . 159
5.1.10 JOB_CLASS_TABLE table . 160
5.1.11 JOB_HISTORY table . 161
5.1.12 JOB_PARM table . 163
5.1.13 SOFTWARE table. 164
5.1.14 SUBMITTED_JOB table . 166

5.2 Views . 168
5.2.1 JobStatusView . 168
5.2.2 EligibleView . 168
5.2.3 AllDevicesForJob . 169
5.2.4 LastJobStatus. 169

Chapter 6. Application programming interface 171
6.1 Overview . 171
6.2 Components of Device Manager . 172

6.2.1 Device Manager database . 172
6.2.2 Device plug-ins. 173
6.2.3 Device management server servlet. 173
6.2.4 Tivoli Personalized Services Manager integration toolkit 174

6.3 Device management server API . 175
6.3.1 Device and job classes . 175
6.3.2 Developing support for devices. 178

6.4 Device management API . 186
6.4.1 Managing devices. 188
6.4.2 Managing jobs . 190

Chapter 7. Using the DM functions . 193
7.1 Device agent installation . 193

7.1.1 Installing the device agent program . 193
7.1.2 Device settings . 194
7.1.3 Device setting with Palm Cradle . 199

7.2 Software distribution. 199
7.2.1 Planning for software distribution . 200
7.2.2 Placing the files on the server. 202
7.2.3 Preparing the file package definition file 202
v

7.2.4 Preparing the meta file package definition file. 205
7.3 Sample scenario for software distribution . 208

7.3.1 Scenario 1 . 208
7.3.2 System environment . 208
7.3.3 Server operations . 209
7.3.4 Client operations . 216

7.4 Device configuration . 220
7.4.1 Planning for device configuration . 220
7.4.2 Modifying the device configuration parameters 221

7.5 Sample scenario for device configuration . 225
7.5.1 Scenario 2 . 225
7.5.2 System environment . 226
7.5.3 Server operations . 226
7.5.4 Client operations . 229

Appendix A. Device parameters . 233
A.1 Parameters for the Palm plug-in . 233

A.1.1 Format tab . 233
A.1.2 General tab . 236
A.1.3 Network tab. 237
A.1.4 TCP/IP tab . 237
A.1.5 Modem tab . 237
A.1.6 Agent tab . 238
A.1.7 Proxy tab. 239

A.2 Parameters for the Aero 8000 plug-in. 239
A.2.1 PPP tab. 240
A.2.2 TCP/IP tab . 241
A.2.3 Browser tab. 241
A.2.4 Agent tab . 242
A.2.5 Mailer tab . 242
A.2.6 Mgmt tab. 243

A.3 Parameters for the Windows CE plug-in. 244
A.4 Parameters for the NetVista Internet appliance plug-in 244

A.4.1 Log Service tab . 245
A.4.2 HTTPD Service tab. 245
A.4.3 Device Agent tab . 246
A.4.4 Browser Default tab . 247
A.4.5 Time Server tab . 249
A.4.6 Printing tab . 249
A.4.7 Network Printer 1 tab . 249
A.4.8 Dialup tab . 250
A.4.9 Ethernet tab . 252
A.4.10 Syslog tab . 253
vi Tivoli Personalized Services Manager Device Manager 1.1

A.4.11 Email tab. 253
A.4.12 Connection Manager tab . 254
A.4.13 RAM drive tab . 254

Appendix B. Special notices . 255

Appendix C. Related publications . 259
C.1 IBM Redbooks . 259
C.2 IBM Redbooks collections . 259
C.3 Other resources . 260
C.4 Referenced Web sites . 261

How to get IBM Redbooks . 263
IBM Redbooks fax order form . 264

Glossary . 265

Index . 271

IBM Redbooks review . 283
vii

viii Tivoli Personalized Services Manager Device Manager 1.1

Figures

1. Device Manager overview . 3
2. Tivoli Personalized Services Manager . 6
3. WebSphere Everyplace Suite overview . 9
4. WebSphere Everyplace Suite components . 11
5. Changes in devices of Internet client . 18
6. e-business environment today . 20
7. e-business environment with PvC devices . 21
8. Tivoli Personalized Services Manager Components 22
9. Device Manager architecture . 26
10. Device Manager console . 29
11. Scalability and availability . 30
12. The parameter setting dialogue for Aero8000 device class 35
13. Device Manager Console . 36
14. DMD redirects the agent to Subscription Manager 41
15. Device enrollment to the Subscription Manager . 42
16. An enrolled device connection . 43
17. No jobs are submitted for this device . 44
18. Typical Device Manager job flow . 46
19. Connection flow . 48
20. Software distribution job control flow1 . 49
21. Software distribution job control flow2 . 51
22. Sample 1: Simple configuration . 61
23. Sample 2: Load balanced TPSM servers . 62
24. Sample 3: Everyplace Suite deployment . 63
25. TPSM installation flow overview: Simple configuration 65
26. TPSM installation flow overview: Dedicated DM server. 66
27. Recommended installation order of Everyplace Suite 67
28. Everyplace installer: Components selection . 68
29. Sample system configuration . 69
30. Example of /etc/system file . 72
31. Example screen of Device Manager installation . 76
32. Default settings for the TPSM database . 76
33. Data entry confirmation screen . 77
34. DMS servlet port number specification . 77
35. Console authentication method specification panel. 78
36. Authentication method confirmation panel. 78
37. TPSM installation complete panel . 79
38. Editing the Transaction.properties file . 82
39. Device plug-in registration selection panel . 83
40. The device plug-in selection panel. 83
© Copyright IBM Corp. 2001 ix

41. Device plug-in registration completion panel . 84
42. Sample pluginconfig.sh script file (Part 1 of 2). 85
43. Sample pluginconfig.sh script file (Part 2 of 2). 86
44. Editing the Transaction.properties file . 87
45. Configuration on WebSphere Application Server panel. 88
46. Advanced setting for default_host . 89
47. Create Application Server window. 90
48. Advanced setting for Servlet Engine . 91
49. Creating a Web application . 92
50. Selecting Add a Servlet . 92
51. Advanced setting for DeviceManagementServerServlet 94
52. Build number indicating the server started successfully 98
53. The Transaction.properties file using Oralcle8i as the TPSM database . 100
54. The Transaction.properties file using DB2 UDB as the TPSM database. 100
55. SubscriptoinMgr.properties file . 101
56. The authentication.properties file. 103
57. The tsmauthentication.properties file . 105
58. DMS related directories of the IBM AIX and Sun Solaris systems. 110
59. Syntax for devclasscfg.sh command . 113
60. Device class listing example . 115
61. Syntax for jobclasscfg.sh command . 116
62. Listing of default job classes . 118
63. Example of the /tmp/joblist.out file . 122
64. Example of the delcompjobs.sh command on AIX 124
65. Opening the DM console URL . 126
66. Device Manager console installer . 127
67. Confirmation window . 127
68. Device Manager console . 128
69. Device Manager console icon . 128
70. Job Filter . 130
71. Display devices in a secondary window . 133
72. Example of the jobclasscfg.sh command. 136
73. Job status flow . 137
74. Job Progress Summary . 138
75. Job status through Device Manager console . 139
76. Devices that received selected software . 140
77. Specifying the port number used by DeviceManagementServerServlet . 142
78. Adding an alias in the Host Aliases field . 143
79. Device Manager database data model . 147
80. DMS components . 172
81. Example of extending the DeviceJob class . 180
82. Example of a device class template file . 183
83. Example of the TCP/IP tab and Desktop tab definitions 186
x Tivoli Personalized Services Manager Device Manager 1.1

84. Example of isMore() method . 191
85. Install Tool window. 194
86. DevAgent icon . 194
87. Network setting from Prefs icon . 195
88. Logon setting window . 196
89. Warning window. 196
90. Device agent main window . 197
91. Select Server Setting option . 197
92. Server Setting . 198
93. Proxy Setting . 198
94. Software distribution preparation flow . 200
95. Sample directory structure e for software distribution 202
96. Sample file package definition file for Palm device 203
97. Sample meta file package definition file. 206
98. Sample scenario system environment . 209
99. Sample scenario Directory Structure . 211
100.Sample file package definition file for Scenario 1 211
101.Sample meta file package definition file for Scenario 1. 212
102.New Software Properties window . 213
103.Target Device For New Job window . 214
104.New Job Properties window . 215
105.Job Properties window . 216
106.Agent displays at the first connection . 217
107.Downloading the Web browser software. 218
108.Application selection window. 218
109.Description of the application . 219
110.Software selection window . 219
111.Job completed . 220
112.Device configuration job flow . 221
113.Example of empty DEVICE_CLASS_PARM table 223
114.Modifying the device class parameters . 224
115.Example of the DEVICE_CLASS_PARM table with entries 224
116.Palm template file . 225
117.Device configuration for a Palm device . 226
118.Device Parameter window. 228
119.Device configuration job property . 229
120.The device is directly redirected to the management server 230
121.The message after the device configuration job 230
122.The service name has changed . 231
123.The Device Manager server address has changed. 231
xi

xii Tivoli Personalized Services Manager Device Manager 1.1

Tables

1. DM functions and device plug-ins matrix . 12
2. Supported security functions . 15
3. The list of names . 38
4. List of installed software. 69
5. Update the following directory names . 73
6. Properties files . 99
7. DMS directories and files . 111
8. Database size required by Device Manager . 146
9. ACTIVE_JOB table . 148
10. ACTIVE_JOB_HISTORY table . 149
11. DEV_CLASS_TEMPLATE table . 151
12. DEVICE table. 153
13. DEVICE_CLASSES table . 155
14. DEVICE_CLASS_PARM table. 157
15. DEVICE_PARM table . 158
16. DMS_SERVER table . 159
17. INSTALLED_SW table. 159
18. JOB_CLASS_TABLE table . 160
19. JOB_HISTORY table . 161
20. JOB_PARM table. 163
21. SOFTWARE table . 164
22. SUBMITTED_JOB table . 166
23. JobStatusView view . 168
24. EligibleView view . 169
25. AllDeviceForJob view. 169
26. LastJobStatus view . 170
27. Template file keywords . 184
28. Distribution check list . 201
29. Keyword options for Palm . 204
30. Package properties for the Palm device . 207
31. Application properties for the Palm device. 207
32. Sample scenario job checklist . 210
33. Device configuration check list. 221
34. Sample scenario device configuration checklist 227
35. Palm plug-in: Parameters in the Format tab . 234
36. Palm plug-in: Parameters in the General tab. 236
37. Palm plug-in: Parameters in the Network tab . 237
38. Palm plug-in: Parameters in the TCP/IP tab . 237
39. Palm plug-in: Parameters in the Modem tab . 237
40. Palm plug-in: Parameters in the Agent tab . 238
© Copyright IBM Corp. 2001 xiii

41. Palm plug-in: Parameters in the Proxy tab . 239
42. Aero 8000 plug-in: Parameters in the PPP tab . 240
43. Aero 8000 plug-in: Parameters in the TCP/IP tab 241
44. Aero 8000 plug-in: Parameters in the Browser tab 241
45. Aero 8000 plug-in: Parameters in the Agent tab 242
46. Aero 8000 plug-in: Parameters in Mailer . 242
47. Aero 8000 plug-in: Parameters in the Mgmt tab 243
48. IAD plug-in: Parameters in the Log Service tab. 245
49. IAD plug-in: Parameters in the HTTPD Service tab. 245
50. IAD plug-in: Parameters in the Device Agent tab 246
51. IAD plug-in: Parameters in the Browser Default tab 247
52. IAD plug-in: Parameters in the Time Server tab 249
53. IAD plug-in: Parameters in the Printing tab . 249
54. IAD plug-in: Parameters in the Network Printer 1 tab 249
55. IAD plug-in: Parameters in the Dialup tab . 250
56. IAD plug-in: Parameters in the Ethernet tab . 252
57. IAD plug-in: Parameters in the Syslog tab . 253
58. IAD plug-in: Parameters in the Email tab. 253
59. IAD plug-in: Parameters in the Connection Manager tab 254
60. IAD plug-in: Parameters in the RAM drive tab . 254
xiv Tivoli Personalized Services Manager Device Manager 1.1

Preface

Device Manager Version 1.1 is software that functions as a part of Tivoli
Personalized Services Manager Version 1.1, or IBM WebSphere Everyplace
Suite Version 1.1. It enables pervasive devices to easily access a set of
network-based services, as well as Internet-based e-commerce services.

This IBM Redbook will assist developers and system architects who are
involved in building pervasive device management solutions that use Device
Manager Version 1.1. It explains how Device Manager Version 1.1 can be
used to manage devices in the growing pervasive computing world. Pervasive
devices are typically small, resource-limited, and not perceived as computers;
however, growth of these information appliances is increasing at an amazing
rate.

In this redbook, you will find information that to help you plan, tailor, and
configure the Device Manager to successfully implement solutions that an
e-business must address to access Internet-based services from pervasive
devices such as Palm devices, screenphones, and Wireless Application
Protocol (WAP) devices.

This redbook also looks at software distribution and device configuration
examples, introduction of supported APIs, and an explanation of device
plug-ins. It helps you to plan and make your own device plug-in when you
want to manage special devices not provided with Device Manager Version
1.1.

Prior to reading this redbook, you should have a basic knowledge of
pervasive computing, as well as some understanding of Web and Java
technologies, and the terminology used in the Internet and pervasive
computing world.

The team that wrote this redbook

This redbook was produced as a result of a special ITSO residency project
conducted by the Pervasive Computing (PvC) division of IBM Japan’s
Systems Engineering Co., Ltd (ISE). Three specialists were assigned to this
project to develop this redbook.

Kiriko Aoyama is an I/T specialist at ISE. She has ten years of experience in
the AIX field. She has been an IBM Certified Advanced Technical Expert -
RS/6000 AIX since 1998. Her areas of expertise include a wide range of AIX
© Copyright IBM Corp. 2001 xv

related products, particularly RS/6000 SP systems. She currently focuses in
the area of pervasive computing.

Yoko Koyama is an I/T Engineer in ISE. This company provides technical
support to customers and IBM Japan for all IBM hardware and software
products. She has three years of experience in technical support in her
organization. She was a member of the TPSM Device Manager Plug-ins 1.1
FVT team, and was involved in the testing of the Palm plug-in.

Iwao Murakami is an advisory I/T specialist in ISE. He conducted this
redbook project as a project leader in Japan. He worked as a 3270 developer
in Yamato Laboratory for ten years. Since 1995, he has been a group leader
of an ISE technical support group for PC areas such as host integration
(Pcomm, Hod, and so on), Netfinity, Warp and Windows. He currently focuses
on driving new business and taking advantage of the pervasive business
opportunities in Japan.

ISE is a wholly owned subsidiary of IBM Japan and is responsible for
providing technical support of IBM products to customers directly, as well as
to IBM Japan. ISE provides technical support for a wide range of products,
not only IBM products, but other major software such as Microsoft or Oracle
products. See the ISE Web site at:
http://www.jp.ibm.com/ise/english/ecomp.htm

This redbook could not be completed without significant help from Yamato
Software Development Laboratory (YSL), Software Group.

Thanks to the following people for their invaluable contributions to this project:

Kenji Kawasaki
Manager of PvC WES Project Management, YSL, SWG

Shuhzoh Kusuda
Project Manager of Device Management Development, YSL, SWG

Kazuhito Akiyama
Software Engineer, Device Management Development, YSL, SWG

Hiroaki Kameda
Project Manager of WES R1 Development, YSL, SWG

Hiroshi Suzuki
Staff Software Engineer, WES R1 Development, YSL, SWG
xvi Tivoli Personalized Services Manager Device Manager 1.1

Theresa Morris
Kent Hayes Jr
Dean Skidmore
Tivoli Systems

Stephen Hochstetler
International Technical Support Organization, Austin Center

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 283 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii Tivoli Personalized Services Manager Device Manager 1.1

Chapter 1. Introduction to Device Manager

This chapter provides the information you need to begin understanding
Device Manager. It contains information about Device Manager software
components and supported devices.

We also discuss the functionality to extend e-business applications to the new
classes of information applications, for example, Wireless Application
Protocol (WAP) devices, personal digital assistants (PDAs), and
screenphones.

1.1 What is Device Manager

Device Manager is software that helps service providers manage their
subscribers' devices. In this book, the term devices means information
appliances, such as the personal digital assistants (PDAs), handheld PCs,
sub-notebooks, smartphones, Wireless Application Protocol (WAP) devices,
set-top boxes, in-vehicle information systems, and other emerging devices for
pervasive computing.

Typically small, resource-limited, and not perceived as computers, these
information appliances are increasingly used to access that spectrum of
network-based services, including Internet-based e-commerce services.
Pervasive devices give their users, both expert and novice, the ability to
conveniently access and take action on information. Users can surf the Net,
send and receive e-mail, shop and bank online, and even arrange remote
home networking, often through a service provider.

On the other hand, people often experience frustration when setting up their
devices, updating and reconfiguring software, or subscribing to new services.
Even experienced users may have little knowledge about how their own
devices really work.

To offer the most value, and often to secure brand loyalty, service providers
need to help consumers efficiently manage their information and devices.
Device Manager addresses these needs, to include management of devices
and their related resources, like applications or rest pages.

As the popularity of pervasive devices grows steadily, service providers are
further challenged to manage thousands or even millions of devices
effectively. Device Manager will help service providers offer value-added
service to their customers by managing their information and devices, even
when they have millions of devices.
© Copyright IBM Corp. 2001 1

You use the Device Manager as a part of Tivoli Personalized Services
Manager 1.1 (5698-PSM). The Tivoli Personalized Services Manager (TPSM)
provides a completely integrated infrastructure of software components for
Internet service provisioning.

For more information about Tivoli Personalized Services Manager, refer to
1.1.3, “DM in Tivoli Personalized Services Manager (TPSM)” on page 6.

You can use TPSM as a component of IBM WebSphere Everyplace Suite
Enterprise Edition 1.1 (5765-E59), or IBM WebSphere Everyplace Suite
Service Provider Edition 1.1 (5697-G53). IBM WebSphere Everyplace Suite
is an integrated, modular suite of software components. These software
components provide reliable access to online information from a wide variety
of pervasive devices.

For more information about IBM WebSphere Everyplace Suite, refer to 1.1.4,
“TPSM in WebSphere Everyplace Suite (WES)” on page 8.

1.1.1 Overview
The purpose of Device Manager is to extend the functionality of the required
Subscription Manager product to include management of devices and their
related resources, like device application software.

For example, by using the software distribution function, the service provider
can automatically send the latest information and updated program whenever
their subscribers connect to their server. Subscribers do not need to pay
attention to their program versions, as long as their devices are managed by
a Device Manager server.

Device Manager must work in conjunction with Tivoli Personalized Services
Manager. Therefore, Figure 1 shows the components supplied with Device
Manager and the required Subscription Manager product and its relationship
to those components.
2 Tivoli Personalized Services Manager Device Manager 1.1

Figure 1. Device Manager overview

Figure 1 also shows the required Device Manager relational database. All job
and device information is stored in tables in this database. The relational
database is a required product and not a component, but it is shown to
illustrate its relationship to the components. As shown in the figure, the
Subscription Manager product and Device Manager share the same
database.

Device Manager uses Java technology. Its servers run on IBM AIX operating
system or Sun Solaris environments. It uses a global, relational database for
data storage. DB2 Universal Database Version 7 and Oracle 8 are supported
with DMS 1.1. Its administration clients run in Microsoft Windows operating
Chapter 1. Introduction to Device Manager 3

system environments, where the Device Manager console for administrators
is deployed.

Device Manager can be installed as a single-server deployment or, for larger
user and device numbers, as a multiserver environment with a network
dispatcher as the front end. Using a Network Dispatcher as a Load Balancer,
you can keep scalability and high availability for a number of Device Manager
servers.

1.1.2 Device Manager components
In this section, we briefly describe the functions of each Device Manager
component. For details about the functions and behaviors of each
component, refer to 2.2, “Components of Device Manager” on page 30.

Device Manager consists of six components:

• Device Manager server
• Device plug-ins
• Device management server API
• Device Manager database
• Device management API
• Device Manager console

1.1.2.1 Device Manager server
A Device Manager server is a computer that includes the device management
server servlet (DMS servlet) and the device plug-ins. When a new job is
submitted, Device Manager server processes jobs for devices.

The DMS servlet and device plug-ins work together to process a job. When a
device connects to the service provider's network, it is directed to a Device
Manager server for job processing. The device is redirected to an enrollment
application if it is not currently enrolled with Device Manager.

1.1.2.2 Device plug-ins
A device plug-in resides on the Device Manager server and provides the logic
that handles device identification, communications, job processing, and
high-level management tasks for a particular class of managed devices.

A device class is made up of specific kinds of manufacturer devices whose
operations can be similarly managed. For example, one device class provided
with Device Manager includes Palm PDAs that run PalmOS 3.0.1 (or later).
Another device class might include Internet appliance devices that use the
Windows CE operating system and a specific CPU. Device plug-ins are
typically developed and provided with Device Manager, but they can also
4 Tivoli Personalized Services Manager Device Manager 1.1

originate with a device manufacturer or integrator, and be installed later on a
Device Manager server.

1.1.2.3 Device management server API
The device management server API (package com.tivoli.dms.dmserver)
defines the programming interface between the device management server
servlet (DMS servlet) and the device plug-ins. This interface allows device
plug-ins to interact with a DMS servlet.

1.1.2.4 Device Manager database
The Device Manager database is the repository for all device management
information. It is implemented in a relational database and accessed using
the device management API. The database contains tables of entries that
describe devices and device-related data resources.

1.1.2.5 Device management API
The device management API (package com.tivoli.dms.dmapi) defines the
programming interface between Device Manager servers, administration
clients, or external applications, and the device-related data resources stored
in the Device Manager database.

Resources that can be managed include table entries describing devices and
classes of devices, their parameters, the device class template, software
defined for and available to devices, software actually installed on devices by
Device Manager, Device Manager servers, and jobs and classes of jobs.
Methods are provided to add, delete, and modify these entries, and to search
the database for entries matching certain criteria.

For more information about table contents, refer to 5.1, “Data model” on page
146.

1.1.2.6 Device Manager console
The Device Manager console is a graphical user interface (GUI) for
administering device management operations from a Microsoft Windows
client. Administrators use this interface to complete tasks such as add and
view devices and device software, submit jobs for devices, and query job
status.

The console invokes methods of the device management API to access
information in the Device Manager database and perform requested
operations. External applications, such as enrollment and billing, can also
use this API to retrieve device information from the database and submit
Device Management jobs.
Chapter 1. Introduction to Device Manager 5

1.1.3 DM in Tivoli Personalized Services Manager (TPSM)
The Tivoli Personalized Services Manager provides a completely integrated
infrastructure of software components for Internet service provisioning. It is
an industrial strength system designed to allow the Internet Service Provider
(ISP) to support several separately branded offerings simultaneously and to
provide each brand with a unique marketplace identity and with a full range of
business offerings.

The Tivoli Personalized Services Manager is designed for continuous
operation, flexible enhancement and high scalability. The system relies on
industry standard hardware and software components with a flexible
architecture for integrating additional and varied components.

ISPs using the Tivoli Personalized Services Manager can offer their
subscribers an unlimited variety of Internet features without having to alter a
core base of information management and customer service features.

Figure 2 shows Tivoli Personalized Services Manager (TPSM) components.

Figure 2. Tivoli Personalized Services Manager

Device Manager is the component of Tivoli Personalized Services Manager
responsible for the management of devices.

In the remainder of this section, we briefly introduce the following pvTPSM
components to better understand the relationships between each component:
6 Tivoli Personalized Services Manager Device Manager 1.1

• Enrollment and service provisioning
• Subscriber authentication and access control
• Customer care support
• Personalization
• Self-care

If you want information about all of the TPSM components, refer to the online
manual Tivoli Internet and Personalized Services Manager: Planning and
Installation.

1.1.3.1 Enrollment and service provisioning
ISPs use a centrally managed enrollment engine while being allowed
autonomy in presentation and payment plan offers. Using the enrollment and
service provision function of TPSM, a standard set of enrollment screens can
be customized to deliver uniquely branded messages and graphics, as well
as ISP-specific billing plans and payment options.

Behind the scenes, a consistent array of data elements is captured from each
new subscriber, thereby distributing all of Tivoli Personalized Services
Manager's additional features to every subscriber, regardless of their ISP.
With individual branding comes unique realm name distinction.

Each ISP hosted on Tivoli Personalized Services Manager is assigned a
realm, which is a partition within the overall database that distinguishes them
and their subscribers from all others in the system.

Realms help to extend brand name identification. Realm A could be
“ALPHA.com” and Realm B could be “BETA.com”. Every subscriber to the
ISP named “ALPHA” would receive a user name and e-mail address that is
unique to the realm of “ALPHA.com” (for example, JOHN@ALPHA.com).
Every subscriber enrolled with the ISP named “BETA” would get a user name
and e-mail address unique to “BETA.com”.

Realm distinctions provide benefits to system management. Customer Care
Representatives (CSRs) can be granted read and write security provisions to
specific realms. This keeps the privacy of a realm's data separate and secure.

1.1.3.2 Subscriber authentication and access control
Subscribers are granted single sign-on status throughout a session.
Information pertinent to the continuation of the session is preserved using
cookies, eliminating the need to re-enter ID information. For access to
critically secure data, Tivoli's Secureway Policy Director can be used in
conjunction with the Tivoli Personalized Services Manager.
Chapter 1. Introduction to Device Manager 7

1.1.3.3 Customer Care support
All data viewed by CSRs is completely up-to-date and any changes are
immediately accessible to the billing system and any other integrated
systems. Access control for customer service personnel can be restricted in
several ways. For example, they can be limited to read or write capabilities,
or they can be allowed to only access certain portions of the subscriber
population.

This degree of security control allows ISPs within TPSM to subcontract
customer service help in off-site locations where CSRs can log in to the Tivoli
Personalized Services Manager Customer Care application remotely and
securely work with subscriber data.

1.1.3.4 Personalization
Personalization allows users to customize their home page. Subscribers can
actively customize their portal page by configuring categories such as:

• Stock quotes (personal portfolio)
• Weather (local, national, or international)
• Entertainment (music, movies, theater, and so forth)
• Travel (destinations, prices, and so forth)
• News (local, national, or international)

The Tivoli Personalized Service Manager and virtual ISPs can personalize
subscriber home pages over and above the choices made by subscribers by
adding:

• Links to local content based on subscriber profile
• Targeted ads pulled from an external ad-queue management system

1.1.3.5 Self-care
Self-care is an another aspect of personalization. Subscribers can access
and modify some of their profile data. They can update their address and
telephone data, change their billing plan and method of payment data, and
subscribe to premium content through the Tivoli Personalized Services
Manager's self-care application. This application is linked to the central
database from links on their portal page.

1.1.4 TPSM in WebSphere Everyplace Suite (WES)
You can use the Tivoli Personalized Services Manager as a stand-alone
system or as a component of the WebSphere Everyplace Suite. The IBM
WebSphere Everyplace Suite is an integrated, modular suite of software
components.
8 Tivoli Personalized Services Manager Device Manager 1.1

These software components provide reliable access to online information
from a wide variety of pervasive devices such as cellular phones, personal
digital assistants (PDAs), and mobile computers, among other wireless and
traditionally connected devices. Each IBM WebSphere Everyplace Suite
component performs a different function in extending pervasive computing
connectivity.

If you use IBM WebSphere Everyplace Suite, you can install all components
using the same interface. The installation wizard prompts you for all the
necessary information to complete the installation. For all of the components
in the Everyplace Suite, the installation wizard automatically uses that
component’s installation program to properly install the component. The
Everyplace Suite installation wizard also uses the information to provide
limited configuration of each component after it is installed.

For detailed information about installation instructions, refer to the online
manual WebSphere Everyplace Suite Getting Started v1.1.

Figure 3 shows the Everyplace Suite providing connectivity between client
software on the pervasive devices and Internet applications and content.

Figure 3. WebSphere Everyplace Suite overview

The Everyplace Suite components provide the following services through the
corresponding components:

• Connectivity

- Everyplace Wireless Gateway: Provides a communications platform
that enables Internet Protocol and Wireless Application Protocol (WAP)
applications to run in a wireless environment.

Subscriber & Device
Management Services

Connectivity
Content
Handling

OptimizationSecurity

User
Data

Enterprise
Data

Web
Content

Device
Management

Agent

MQSeries client

Wireless client

Synchronization
client

Clients WebSphere Everyplace Suite Content
Chapter 1. Introduction to Device Manager 9

- Everyplace Authentication Server: Acts as the point of entry to the
Everyplace Suite domain for devices that do not connect through the
Everyplace Wireless Gateway.

- MQSeries Everyplace: Provides assured messaging capability
between devices and any MQSeries family platform.

- Everyplace Synchronization Manager: Enables mobile computing
devices to link remotely to applications such as Microsoft Exchange,
Lotus Notes or DB2 databases.

• Security

- Everyplace Wireless Gateway: Provides network access user
authentication for WAP and non-WAP users, and data encryption.
Supports Internet Protocol and WAP transport layer security and can
be configured to use a third party RADIUS server.

- Everyplace Authentication Server: Authenticates users defined to the
Everyplace Suite when they attempt to access Everyplace Suite
services.

• Subscriber and device management

- Tivoli Personalized Services Manager: Provides tools to centrally
manage subscribers and their devices, and allows for the creation of
discrete groups of users.

• Content handling

- WebSphere Transcoding Publisher: Adapts, reformats, and filters data
based on the destination device or network.

- WebSphere Edge Server Caching Proxy (Web Traffic Express):
Retrieves Internet data for multiple browser clients and acts as a
caching server and content filter.

• Optimization

- WebSphere Edge Server Load Balancer (Network Dispatcher):
Balances requests in real time among Everyplace Suite servers to
increase capacity and scalability of heavily accessed enterprises.

Figure 4 shows the data path in the IBM WebSphere Everyplace Suite
environment.
10 Tivoli Personalized Services Manager Device Manager 1.1

Figure 4. WebSphere Everyplace Suite components

1.1.5 Device Manager functions
The Device Manager feature provides a flexible framework and a set of
services for managing subscriber’s devices including:

• Enrollment

Easy methods to enroll new subscribers and their devices, and enroll
devices for existing subscribers.

• Update device configuration remotely

Perform initial device setup and change device setup as needed.

• Distribute software to the device

The service provider can centrally manage software and configure Tivoli
Personalized Services Manager to automatically distribute software to
subscriber’s personal devices.
Chapter 1. Introduction to Device Manager 11

• Update rest pages (startup pages) for devices supporting this functionality

Rest pages are device-resident initial start pages. They may contain icons,
and advertising that is remotely changed by the service provider. Tivoli
Personalized Services Manager Device Manager controls the distribution
of rest pages to devices.

• APIs

The device management API allows devices and related information to be
maintained in the Device Manager database and be used by external
applications, Device Manager servers, and administrative clients.

The Device management server API allows for configuration and
distribution requests to be queued for distribution to devices.

Device management server API allows the DMS servlet and device
plug-ins to communicate.

Table 1 shows the matrix of Device Manager functions and device plug-ins.
The rest page function is only supported on NetVista device.

Table 1. DM functions and device plug-ins matrix

1.1.6 Supported devices
This section describes the supported devices and device plug-ins that are
included in Device Manager 1.1. It also describes device characteristics.

Tivoli Personalized Services Manager Device Manager supports several
types of devices such as:

• Personal Digital Assistants (PDAs)
• Screenphones
• Wireless Application Protocol (WAP) devices

Palm Aero 8000 NetVista WinCE

Enrollment Supported Supported Supported Supported

Device config Supported Supported Supported Supported

Software distribution Supported Supported Supported Supported

Rest page support N/A N/A Supported N/A

APIs Supported Supported Supported Supported
12 Tivoli Personalized Services Manager Device Manager 1.1

Device Manager 1.1 includes an assortment of device plug-ins, which enable
Device Manager to manage the following classes of devices:

• Palm Computing PDAs
• Compaq Aero 8000 H/PC Pro devices
• NetVista Internet Appliance devices
• Generic support for Windows CE devices

1.1.6.1 Palm Computing PDAs
Device Manager supports all Palm III and Palm V-series Palm Computing
devices that use the PalmOS R3.0.1 (or later) operating system. Palm
positions these devices as PC companions used as “connected organizers.”
PalmOS devices, with their relatively small displays, infrequent network
connections, and portability features, are not necessarily optimized for all the
same services that might be offered to users of other devices.

For example, rest page management jobs are not supported on Palm devices
due to the limited graphics capability and the device is usually being utilized
in disconnected mode.

Device Manager uses the PalmOS APIs and the TCP/IP stack provided by
PalmOS 3.0. The Device Manager software includes the Palm device plug-in
and the Palm agent program. All PDAs that have the PalmOS 3.0 operating
system or higher, use the Palm plug-in and the Palm agent program.

The Palm plug-in installs with the Device Manager software. The plug-in
software and the device agent program communicate with each other using a
protocol, based on the HTTP or HTTPS protocol and perform system
management tasks. You can use SSL by enabling SSL for the Palm agent
program.

For more information about the Palm computing devices, see the Palm
organizer information on the Palm Computing Web site:

http://www.palm.com

1.1.6.2 Compaq Aero 8000 H/PC Pro devices
The Compaq Aero 8000 Handheld PC Professional (Aero 8000) is a handheld
PC or sub-notebook for sales and service people, mobile business
professionals, and other field personnel who need access to their enterprise
network or the Internet. This handheld PC includes Microsoft Windows CE for
Handheld PC Professional Edition, Version 3.0 operating system. With the
Aero 8000, you can access the Internet or the enterprise network with an
Ethernet PC card or internal modem.
Chapter 1. Introduction to Device Manager 13

The Aero 8000 can be preconfigured for Device Manager by a service
provider. The consumer has quick access to the Internet through the Pocket
Internet Explorer browser. For more about the Aero 8000, see the Compaq
Web site:

http://www5.compaq.com/products/handhelds/8000/

The Device Manager software includes a device plug-in for the Aero 8000 and
its agent program. The Aero 8000 plug-in installs with the Device Manager
software. The communication protocol between the Aero 8000 plug-in and its
agent program is based on the HTTP or HTTPS protocol. You can use SSL by
enabling SSL for the Aero 8000 agent program.

1.1.6.3 NetVista Internet Appliance devices
The NetVista Internet Appliance is a device for Internet access, e-mail, voice
mail, Personal Information Management (PIM), and other pervasive
computing tasks. This device uses the pervasive computing (PvC) client
stack as the base architecture, and then places a shell and applications on
the PvC client stack.

The PvC client stack is a set of software components for a wide range of
non-traditional devices, such as Service Gateway or Networked Vehicle. The
stack consists of a real time operating system, native programs, a JVM, the
Service Management Framework, and other services.

To manage the NetVista Internet Appliance efficiently, the plug-in software for
Device Manager server and the device agent program are needed. The
plug-in software and the device agent program communicate with each other
using a protocol, based on the HTTP or HTTPS protocol, and perform system
management tasks.

The plug-in software functions as the servlet on the HTTP server and the
device agent program is implemented as a Service Management Framework
bundle written in Java and functions as the client. When disconnected from
the service provider's network, the display on the NetVista Internet Appliance
presents a rest page, which is a Web page customized by the service
provider to display advertising and other information. The NetVista Internet
Appliance can be preconfigured for Device Manager by a service provider.

For more information about the NetVista Internet Appliance, see the NetVista
Web site:

http://www.pc.ibm.com/us/netvista/index.html
14 Tivoli Personalized Services Manager Device Manager 1.1

1.1.6.4 Generic Windows CE devices
A Windows CE device is a handheld PC, Palm-type device, pocket-type
device, or sub-notebook for sales and service people, mobile business
professionals, and other field personnel who need access to their enterprise
network or the Internet.

This handheld PC includes Microsoft Windows CE for Handheld PC
Professional Edition, Version 3.0 operating system. Windows CE devices
have resources unavailable with many Palm-type devices. With Windows CE
devices, you can access the Internet or the enterprise network with an
Ethernet PC card or internal modem.

A Windows CE device can be preconfigured for Device Manager by a service
provider. The consumer has quick access to the Internet through the Pocket
Internet Explorer browser.

The Device Manager software includes a device plug-in for Windows CE
devices and the Windows CE agent program. The Windows CE plug-in
installs with the Device Manager software.

The communication protocol between the Windows CE plug-in and the
Windows CE agent program is based on the HTTP or HTTPS protocol. The
Palm-type WinCE device has no SSL support.

Table 2 shows relationships between device type and supported security
functions.

Table 2. Supported security functions

1.1.7 What's new in DMS 1.1
The enhancements and changes for this release of Device Manager include:

• Job distribution by realm, deal, or both
• Support for DB2 Universal Database Version 7
• Changes to device plug-ins
• Cradle support
• Proxy support
• Enhancements to the Device Manager console

Palm Aero 8000 NetVista WinCE
(Palm-type) (Other)

Proxy Supported Supported Supported Supported Supported

SSL Supported Supported Supported N/A Supported
Chapter 1. Introduction to Device Manager 15

• Support for Japanese language
• Integration with IBM WebSphere Everyplace Suite

1.1.7.1 Job distribution by realm, deal, or both
A device's owner can be the member of a single realm and of one or more

deals, as defined by the Subscription Manager component used with Device
Manager. It is now possible to distribute jobs to devices in a realm, in a deal,
or in both. In addition, an administrator can filter jobs by realm or by deal.

For more information about job distribution, refer to 7.2, “Software
distribution” on page 199.

1.1.7.2 Support for DB2 Universal Database Version 7
Device Manager 1.1 provides support for DB2 Universal Database Version 7,
in addition to the existing support for Oracle8i Version 8.1.5, as its relational
database.

1.1.7.3 Changes to device plug-ins
The following device plug-ins have been added:

• The NetVista Internet Appliance device plug-in provides support for
devices used for Internet access, e-mail, voice mail, Personal Information
Management (PIM), and other pervasive computing tasks that use the
pervasive client stack as their base architecture.

• The generic Windows CE device plug-in provides basic support for all
devices that use the Microsoft Windows CE operating system.

1.1.7.4 Cradle support
Device Manager’s built-in Palm device plug-in supports Palm device access
using a cradle. To support this connection, Palm plug-in provides the conduit
software named TPSM1.1 Palm Cradle Support for Windows. The installation
program is shipped with Device Manager.

1.1.7.5 Proxy support
Device Manager 1.1 includes support for communication devices using proxy.
Each device can set a proxy server by enabling the ProxyEnable attribute for
the device agent program.

1.1.7.6 Enhancements to the Device Manager console
This console's filtering capability allows for more granularity and more
complex combinations of filtering criteria. New icons help an administrator to
identify which criteria are being used and which are not valid or not in effect.
16 Tivoli Personalized Services Manager Device Manager 1.1

Other “look and feel” changes improve the usability of the console and its
ability to display very large numbers of devices.

For more information on how to use the Device Manager console’s filtering
functions, refer to 4.3.2, “Filtering” on page 129.

1.1.7.7 Support for the Japanese language
In addition to single-byte, double-byte character set support is available. Also,
the menus, messages, and documentation are translated into double-byte
Japanese Kanji. Data and keyboard commands can be entered in Kanji.
Double-byte data is stored in the products' databases in double-byte format.
The Japanese language is selected when the product is installed.

1.1.7.8 Integration with IBM WebSphere Everyplace Suite
As part of Tivoli Personalized Services Manager Version 1.1, Device Manager
supports the WebSphere Everyplace Suite concept of an authentication
proxy. The authentication proxy provides a single sign-on to the WebSphere
Everyplace Suite servers, including the Tivoli Personalized Services Manager
server.

Installers who choose to take advantage of this support need to perform
additional steps during Device Manager configuration so that it can redirect
devices correctly through the authentication proxy during enrollment.

For more information about installation and configuration in IBM WebSphere
Everyplace Suite system, refer to the online manual WebSphere Everyplace
Suite Getting Started v1.1.

1.2 Why you need DMS

This section establishes the importance of managing pervasive devices.

The next wave of customer demand for e-business will be fueled by Internet
access from various pervasive devices. Figure 5 on page 18 illustrates the
expected growth in the use of the Internet from these new classes of devices
and the number of shipments for each type of device.
Chapter 1. Introduction to Device Manager 17

Figure 5. Changes in devices of Internet client

The key feature from Figure 5 is that PC penetration is flattening out because
of cost and usability reasons in both the consumer and commercial markets.

To increase the business chance or to provide new business models, service
providers must reach out to a larger set of users by making device usage as
simple as a wireless phone. They must increase the usefulness of the
devices and back-end data by merging personal and business data and
providing access from PvC devices, such as the smartphone, PDA, and
wireless phone.

There will also be a new class of not-so-personal devices that are more
consumer-oriented, such as the in-vehicle information system, home service
gateway, kiosks, set-top boxes, and so forth.

However, the functional capability and resources of pervasive devices are
normally limited or different between each kind of device. Users sometimes
have problems setting up devices, updating software, re-configuring devices,
or registering to new services because many of them are novice users. Even

1998 2000 2002
0

20

40

60

80

100

Source: Sherwood Research - March 99

1999 2000 2001 2002 2003
0

50

100

150

200

Browser-based wireless phone
Smart wireless phone
Connected PDA/2-way pager
Internet gaming device
STB for interactive TV
Network automobile
Internet appliance/screen phone

Source: IBM, 2/00

62%

Non-PC Device

PC

Percentage of Internet transactions Number of Pervasive Devices
18 Tivoli Personalized Services Manager Device Manager 1.1

if they are not novice users, they may have little knowledge about PvC device
details.

From a service provider’s point of view, they need to manage the users'
information and devices efficiently to provide better services and increase
their profits. Therefore, systems management in the PvC environment is very
important and required for both users and service providers.

Device Manager server provides the solution for system management in the
PvC world.

1.2.1 The Internet and e-business today
The modern Web environment consists of three-tier systems that are based
on a Web browser:

• The Web server receives inbound HTTP requests, manages
communication sessions, and routes requests to the appropriate
application server or servers.

• The Web application server executes the business logic, manages
application sessions, and interacts with the back-end systems.

• The back-end systems include various internal and external services that
ground the business processes being implemented by the e-business.

Service providers do not have to consider the client environments because
most clients are fat PCs that have similar capabilities and configurations.

To use pervasive devices such as clients, service providers must implement
the managing methods of their subscriber’s devices like Device Manager
server.

Figure 6 on page 20 shows the image of e-business today.
Chapter 1. Introduction to Device Manager 19

Figure 6. e-business environment today

1.2.2 Pervasive computing and pervasive device management
Pervasive computing is about connecting a variety of non-PC devices to
retrieve content, data, and applications from e-business servers.

When compared to e-business solutions today that connect desktop PCs to
these servers, pervasive computing introduces the following unique needs:

• Generate and process different types of input/output content.

Some devices have only text capabilities; others also have graphical
capabilities, and others may add or be limited to audio capabilities. The
industry is separating content from presentation using XML. Servers must
be capable of generating and processing multiple types of markup
languages such as subsets of HTML (HTML 3.2, CompactHTML) or other
XML presentation languages (WML, VoiceXML).

• Customize content and distribution based on user, device, and network
characteristics.

Content delivered to pervasive devices needs to be personalized, not only
to reflect the user's content preferences (content selection and filtering),

Clients
Web, applets, scripts ...

Java
Applets

Java
ServletBeans

Web Server
Connection management
Border security
Request routing

Standard Protocols
HTTP over TCP/IP

Clients
Integrated clients
(ActiveX, Java, etc.)

Java
Servlets
EnterpriseBeans
CORBA/IIOP/RMI
XML and Transcoding

Web Application Server
Business logic and objects
Session management
Security

Proprietary Protocols FW
External Services

Applications and data
Payments

Connectors

Content

Web-Enabled Services
Mail, collaboration, data, directory,
transactions
Business-to-business

FW

FW
20 Tivoli Personalized Services Manager Device Manager 1.1

but also to reflect the environment (reduce content size to match network
bandwidth, reformat content to closely match particular target device).
Notably, simply selecting the right markup language is insufficient,
because different pervasive devices will present that content differently.

• Manage the device from the network to reduce support costs and enhance
user experience.

Pervasive devices are often accessed by users who are not
computer-literate, or by mobile workers who are far from the physical
control of the enterprise IT department. Consequently, extremely
easy-to-use device management is needed to upgrade client software, set
up device configuration, and perform other management functions on
behalf of inexperienced users.

To integrate pervasive device solutions, service providers must consider the
previously mentioned differences in the e-business environment today. There
are various types of devices, networks, and user environments to consider.

Figure 7 shows an image of e-business with pervasive devices.

Figure 7. e-business environment with PvC devices

Clients
Web, applets, scripts ...

Java
Applets

Java
ServletBeans

Web Server
Connection management
Border security
Request routing

Standard Protocols
HTTP, TCP/IP, SSL
Wireless (i-Mode, WAP,etc..)
SyncML

Clients
Integrated clients
(ActiveX, Java, etc.)

Java
Servlets
EnterpriseBeans
CORBA/IIOP/RMI
XML and Transcoding

Web Application Server
Business logic and objects
Session management
Security

Proprietary Protocols FW
External Services

Applications and data
Payments

Connectors

Content

Web-Enabled Services
Mail, collaboration, data, directory,
transactions
Business-to-business

FW

PvC Extention
Wireless/wireline gateway, VPN
Asynchronous messaging
Data synchronization
Device management
Transcoding FW
Chapter 1. Introduction to Device Manager 21

1.2.3 The challenge
To integrate PvC environments into e-business today, service providers have
to face two types of management challenges:

• Subscriber’s information (managed by Tivoli Subscriber Manager)
• Various types of devices (managed by Device Manager server)

TPSM provides both types of management services. By using TPSM, a
service provider can gather and store all information needed to manage their
subscribers.

Figure 8 shows the relationship between Tivoli Subscriber Manager and
Device Manager server.

Figure 8. Tivoli Personalized Services Manager Components

The Tivoli Personalized Services Manager provides a wide range of Internet
subscriber management features including:

• Enrollment and self-care
• Personalization
• Authentication and access control
• Customer care and self-care
• Director tool
• Reporting

Device
Manager Server

Subscription
Manager Server

Management
Database

Tivoli Personalized Services
Manager

Tivoli Internet Services
Manager
22 Tivoli Personalized Services Manager Device Manager 1.1

The Tivoli Personalized Service Manager (TPSM) includes the Device
Manager server component and it can extend these services to PvC device
environments. DMS provides the following core services:

• Enrolling subscribers and their devices
• Distributing software to the device
• Updating device configuration remotely
• Listing the devices owned by a user
• Updating rest pages (startup pages) for devices

The DMS feature provides a flexible framework and a set of services for
managing a subscriber’s devices. Device vendors can extend the system’s
framework and use it to enable their devices to be managed by developing
their own device plug-ins. TPSM includes the following APIs:

• Device management server API
• Device management API

DMS is software that helps service providers manage their subscribers'
information appliances such as Personal Digital Assistants (PDAs), handheld
PCs, subnotebooks, smartphones, Wireless Application Protocol (WAP)
devices, set-top boxes, in-vehicle information systems, and other, emerging
devices for pervasive computing.
Chapter 1. Introduction to Device Manager 23

24 Tivoli Personalized Services Manager Device Manager 1.1

Chapter 2. Architecture

This chapter describes how Device Manager is composed, how it works, and
how it interacts with other applications such as subscription management.

2.1 Overview

As you can see in Figure 9 on page 26, Device Manager consists of several
components:

• Device Manager database
• Device management server servlet
• Device plug-ins and agents
• Device Manager console
• Device management API
• Device management server API

Throughout this redbook, we may refer to Device Manager components and
other related components as follows:

• Device Manager database: DM DB
• Device management server servlet: DMS servlet
• Device plug-in: plug-in
• Device agent: agent
• Device Manager Console: DM console
• Subscription Manager: SM
© Copyright IBM Corp. 2001 25

Figure 9. Device Manager architecture

Device Manager has a Device Manager database as its core component. The
Device Manager database stores all device management information as
follows which is used to process device management jobs:

• Device related information

- Devices
- Device classes
- Device parameters

• Software information

- URL of the software package to be distributed
- Version of the software

• Job related information

- Job classes
- Submitted jobs

Device Manager Console

Device management API

Device Manager
database

Aero8000
Plugin

Other
Plugins

pervasive devices
(device agent)

Device management server servlet

Subscription
Manager

Device
m anagement

API

Device management API

HTTP or HTTPS

Device Manager

Device
Manager

server

Palm
Plugin

Device management server API

JDBC

JDBC

JDBC
26 Tivoli Personalized Services Manager Device Manager 1.1

Device Manager server, in the middle of Figure 9, processes the device
management tasks by using the data in the Device Manager database.
Device Manager identifies the devices connected and then redirects them to
the enrollment application, for example: enrollment service in TPSM
Subscription Manager, if it is not yet enrolled, or to the device management
server servlet if already enrolled. Device management server servlet actually
performs the base management tasks requested by device plug-ins.

Device Manager needs external device enrollment application. In TPSM, it is
the enrollment application server which is a feature of Subscription Manager.
The Subscription Manager’s enrollment application server accesses Device
Manager database by using device management API (DM API).

Device Manager can support various types of devices by using device type
specific plug-ins. It is device plug-ins that actually perform device-specific
management functions. For example, Device Manager’s built-in device
plug-ins provide management functions such as software distribution, device
configuration, and rest page management. Device plug-ins communicate with
the DMS servlet using the device management server API (DMS API). DMS
API is open to the public, so that device vendors or system integrators can
develop their own device plug-ins using the DMS API.

The device management server servlet is designed to coordinate the
processing of scheduled jobs on devices as they connect to the network.
Currently, the supplied job types are software distribution, device
configuration, and rest page management. Each of these job types is
implemented in a job class, and these job classes are somewhat device class
specific. The Device Manager database maintains the table of job definitions
and the device management API allows new job types and their associated
job classes to be defined in this job table. This allows enterprises, ISPs,
integrators, or device manufacturers to provide custom job classes for new
job types, to allow value-added product differentiation.

A device agent to be installed on the device knows how to communicate with
the associated Device Manager plug-in. This is developed together with each
device plug-in.

Business administrators and system administrators use Device Manager
console to perform management tasks. They can submit jobs, control device
parameter settings, and manage software to be distributed. This console
accesses and updates the Device Manager database through the DM API.

To execute a job for one or more devices, a job is submitted for the device or
devices using the Device Manager console or using the job management API.
Chapter 2. Architecture 27

At the time the job is submitted, the administrator or application specifies
information such as the job type to be processed, job-specific parameters,
target devices, and the activation and expiration time of the job. This
job-related information is stored in the Device Manager database. For more
information on the Device Manager database, refer to Chapter 5, “Device
Manager database” on page 145. For more information on submitting jobs,
refer to Chapter 4, “Administration” on page 109.

2.1.1 Features of Device Manager
This section describes the features of Device Manager.

2.1.1.1 Extensibility for managing various devices
To support extensibility to manage a variety of devices, the Device Manager
server supports a “plug-in” architecture. Device Manager provides some
basic device modules that can be easily extended to support various device
types, and it can support more than one device type at the same time.

TPSM Device Manager provides device plug-ins that support Palm Pilot, Aero
8000, general Windows CE, and NetVista Internet Appliance by default. Other
device vendors, system integrators or ISPs can develop their own plug-ins
that have specialized functions to meet their needs. Device agents are
provided with each device plug-in. A device agent resides on the device, and
communicates with the server side plug-in. The communication between a
device plug-in and the device agent is device-class-dependent and is
determined by the integrator that writes the plug-in code. For example, a
WAP device vendor can develop a “WAP device plug-in” and the agent that
uses WAP as its communication protocol between the plug-in and the agent.
TPSM Device Manager plug-ins, which support Palm Pilot, Aero8000,
general Windows CE devices, and NetVista Internet Appliance, use HTTP
and HTTPS as their transport mechanism between the plug-in and the device
agent. This allows device management traffic to pass through various kinds of
network elements such as firewalls. Interactions take the form of
request/response pairs initiated by the device.

The device management server API defines the programming interface
between a device plug-in and the device management server servlet. The
device management server API is designed to be generic and
protocol-independent to support many kinds of devices and jobs.

2.1.1.2 Centralized management
Device Manager console provides a graphical interface to manage devices,
software and jobs as shown in Figure 10.
28 Tivoli Personalized Services Manager Device Manager 1.1

Figure 10. Device Manager console

Business administrators and system administrators use only this console to
perform management tasks. They can perform almost all management tasks
from this tool. In addition, Device Manager console can cooperate with
Authentication Server of Subscription Manager and provide authentication
functions so that only valid administrators can use it.

2.1.1.3 Provisioning to other systems
Device management API provides the programming interface for managing
devices, jobs, and related resources in the Device Manager database. All of
the Device Manager components and all the other applications that access
the Device Manager database should use this API. For information about
device management API, refer to Chapter 6, “Application programming
interface” on page 171.

The interfaces between the Device Manager and the Subscription Manager
are well defined and highly localized. Consequently, DM can be used as a
facility through which other applications can perform device management.
Essentially, the DM system is a repository of device data and an engine for
processing jobs on devices when they are connected to the network. DM
relieves the applications that use it from the need to store detailed device
information such as operating system, installed software, and configuration
settings, and shields them from the protocols used to communicate with each
type of device.
Chapter 2. Architecture 29

2.1.1.4 Scalability and availability
Scalability is achieved horizontally, with many DM servers identically
configured. Requests are routed to these servers by a front end such as IBM
Network Dispatcher.

Figure 11. Scalability and availability

Network Dispatcher also allows adding some extra Device Manager servers,
without stopping the service.

For the back-end database system, you can use the IBM AIX HACMP
solution for high availability.

2.2 Components of Device Manager

This section describes Device Manager components in detail. They are:

• Device management server servlet
• Device Manager database
• Device Manager console
• Device plug-ins
• Device management API
• Device management server API

2.2.1 Device management server servlet
When a device connects to the service provider's network, the device
management server servlet (DMS servlet) ensures that the device is enrolled.
30 Tivoli Personalized Services Manager Device Manager 1.1

If it is, it coordinates the processing of all scheduled device management jobs
for the device. Jobs are job classes included with each device plug-in that
resides on the Device Manager server. Device Manager supports job types,
such as device configuration, software distribution, and rest page
management, which interface with the DMS servlet using the device
management server API.

Jobs are submitted for processing by an administrator using the Device
Manager console or by another application using the device management
API. At the time the job is submitted, the administrator or application specifies
the type of job, any job-specific parameters, the devices the job should run
on, the activation and expiration time for the job, and other information
required by the job.

When a device connects to the service provider's network, it communicates
either directly or through a Network Dispatcher to a Device Manager server
for job processing. Using device management server API calls, the DMS
servlet checks to make sure the device is enrolled with the service provider
and redirects it as needed.

• For a device requiring enrollment, the function redirects the device to the
service provider's enrollment server for registration.

• For an enrolled device, if there are jobs pending for it to run, the function
redirects the device back to the Device Manager server. This prevents the
device from returning through a Network Dispatcher during job processing
and then being rerouted to a different Device Manager server, should
multiple HTTP connections be required to complete the job.

The DMS servlet searches the database, again using the device
management API, for any submitted jobs eligible to be run that pertain to the
device and builds a prioritized job list. To run the jobs, the DMS servlet uses
device management server API calls through the device plug-in to interact
with the device, often through several iterations of requests and responses.

2.2.2 Device Manager database
Device Manager database stores all device management information which is
used to perform management tasks. When a device connects to the Device
Manager server for the first time, the device information is enrolled to the
Device Manager database, such as device ID, device type and user name. If
software distribution jobs are submitted to some devices, the information
about the job, software package name, distribute duration, target realm, and
so forth are stored.
Chapter 2. Architecture 31

Device Manager database is accessed using the device management API.
This is the way to correctly update the records in the Device Manager
database related to each other. Therefore, device management server
servlets, Device Manager console or all external applications such as
Subscription Manager and billing system should use device management API
to access Device Manager database. For detailed information about the
Device Manager database, see Chapter 5, “Device Manager database” on
page 145.

2.2.3 Device plug-ins
A device plug-in resides on the Device Manager server and provides the logic
that handles device identification, communications, job processing, and
high-level management tasks for a particular class of managed devices. Put
simply, a plug-in defines support for a Device Manager device class. A device
class defines a group of devices whose operations can be managed similarly.
For example, one of the device classes included with Device Manager defines
Palm PDAs that run Palm OS 3.0.1 or later. Device plug-ins are typically
provided with Device Manager, but may also originate with a device
manufacturer or integrator and be installed later on a Device Manager server.

The device plug-ins communicate with device agents (device-specific
software that is installed on the device), distribute software, perform remote
device configuration, or perform other types of jobs. The communications
between a device plug-in and the device agent is device-class-dependent and
is determined by the integrator who writes the plug-in code. The device
management server API defines the programming interface between a device
plug-in residing on Device Manager and the rest of Device Manager, including
its redirection function. The device management server API is designed to be
generic and protocol-independent to support many different kinds of devices
and jobs.

2.2.3.1 The components of device plug-in
Plug-ins are logically structured as four pieces:

• A device-specific communication component that the plug-in software
uses to communicate with the device. This interface is defined by the
plug-in developer.

• The internal device communications component, which enables
communication between the plug-in software and DMS servlet. This
includes a DeviceCommunicationManager implementation.

• The set of device-specific job classes. This piece of the plug-in interacts
with the DMS servlet, the device-specific communication component, and
32 Tivoli Personalized Services Manager Device Manager 1.1

the DeviceCommunicationManager implementation. It implements the
higher-level management tasks (such as software distribution or device
configuration). This piece is created by the plug-in developer, by
implementing the DeviceJob interface.

• An optional template file that describes the set of device parameters such
as the IP gateway or domain name server used, that can be configured for
all devices of the same device class.

Both DeviceCommunicationManager and DeviceJob are abstract Java
classes in the device management server API that the plug-in writer extends
as part of developing device classes and device jobs.

Device plug-ins provide the device-specific implementation logic for devices
managed by the Device Manager. Device plug-ins implement the logic
described in the first two bullet points in the previous list as the device class
layer. It defines a set of methods to perform low-level primitive operations on
the device. The job class layer implements high-level management tasks,
which is described in the third bullet in the previous list. It performs
management tasks by invoking the methods of the device class layer.

Device class
Each type of device managed by the DM has its own device class
implementation, and the DM assumes that all devices managed by a
particular device class are capable of running the same set of software
applications. In other words, when a software entry is defined in the device
management database, it is associated with a single device class, and all
devices managed by that device class are assumed to be able to run that
software. If an application can run on devices in more than one device class,
a software entry must be defined for each device class.

For device classes that use HTTPS as the protocol, the Web server
infrastructure can provide encryption of sensitive data such as userID and
password, but device classes that use some other protocols are responsible
for ensuring that the data is transmitted to devices in a secure manner. No
such security mechanism will be provided at the DM level.

Each device class may provide a template file that describes the
device-specific configuration parameters required by the devices it manages.
This template file will define the list of parameters, their syntax, and
information to assist the DM console in building a GUI to present the
parameters to an administrator. This GUI will allow the parameters to be
viewed or modified for a specific device or for the device class.
Chapter 2. Architecture 33

Job class
Job classes implement the logic to perform specific high-level management
tasks. For the initial release, job classes will be provided to perform software
distribution, device configuration and rest page management. The job classes
perform these high-level tasks by interacting with the other elements of the
device plug-in. For this reason, job classes are likely to be device-class
specific.

The instance of job class is created by the DMS servlet in order to process
jobs for a specific device.

The job class can get the job parameters, the device parameters, the
submitted job ID, and other information which is previously set by the DMS
servlet’s initJob call.

The job class can set or get the job context object so that any specific
information can be maintained as different portions of the job are executed.
The format of the job context can be freely defined inside the job class.

The job class implements the “doJob” method to process the job by invoking
the APIs to the device class. The doJob method is called by the DMS servlet.
This method’s parameter is the device context object passed through the
DMS servlet. The device context object indicates the device and
device-specific state or status information. The format of the device context
can be defined between the job class and the device class.

Template
The template file defines the set of device-specific parameters required for a
device. The template file is optional, so if a plug-in writer is creating a plug-in
for a device class that does not have any configurable parameters, a template
file is not required.

When the device class is registered to the DM server, the template file for the
device class is parsed and the parameter definitions are stored in the
DEV_CLASS_TEMPLATE table of the DM DB. If the file is not provided,
device configuration in the DM console for devices of this class will not be
supported.

The DM console uses the device management API to retrieve the parameter
definitions for a particular device class and build a device configuration
dialogue as shown in Figure 12. The dialogue consists of at least one tab.
Each tab includes device parameters such as text fields or combo boxes.
Configuration data (values) are stored in the DEVICE_PARMS and
34 Tivoli Personalized Services Manager Device Manager 1.1

DEVICE_CLASS_PARMS tables and passed to a job class when a job is
processed for a device.

The format of the template file is described in Chapter 7, “Using the DM
functions” on page 193. Appendix A, “Device parameters” on page 233, has
the list of the parameters provided by the built-in plug-ins. The information on
how you can use the device class configuration utility is described in Chapter
3, “Installation and configuration” on page 55.

Figure 12. The parameter setting dialogue for Aero8000 device class

Device agents
Device agents are also provided by plug-in vendors. This is the software
installed on the device to communicate with the server side device plug-in to
perform work.

Device agents can be written in any programming language. This should be
decided in consideration of performance, productivity, or other possible
conditions.

2.2.4 Device Manager console
The Device Manager console is a graphical user interface (GUI) to administer
device management operations from a Microsoft Windows client as shown in
Figure 13 on page 36. Administrators can use this interface to perform tasks
Chapter 2. Architecture 35

like add and view devices and device software, submit jobs for devices, and
query job status. The console invokes methods of the device management
API to access information in the Device Manager database and perform
requested operations.

From the DM console, a service provider's administrators can manage:

• Single devices
• Classes of devices
• Parameters for devices
• Parameters for device classes
• Jobs for specific devices
• Jobs for all devices in a particular realm
• Jobs for all devices in a particular deal
• Software for devices
• Device Manager servers

Typical jobs for devices include the following supplied job types though all job
types may not apply to all devices:

• Device configuration
• Software distribution
• Rest page management

Figure 13. Device Manager Console
36 Tivoli Personalized Services Manager Device Manager 1.1

Administrators submit these jobs to update the configuration of devices
including network parameters, distribute new or updated software
applications to devices, and update device rest pages with, for example,
timely new information from the service provider.

Administrators can initiate a new job of an available job type and target it to:

• All devices
• All devices of a device class
• All devices in a realm, a deal, or both
• One or more selected devices
• Other typical administrator tasks including:

- Viewing device jobs and their status, and canceling jobs

- Identifying and configuring a newly deployed device, including
associating the device with its owner

- Obtaining and displaying information about the software Device
Manager has distributed to a device, and the configuration parameters
it has set for a device

More information about Device Manager console and its uses may be found
in Chapter 4, “Administration” on page 109.

2.2.5 Device management API
Device management API provides the programming interface for managing
devices, jobs, and related resources in the Device Manager database. The
device management APIs will be used by the other Device Manager
components, such as DMS servlet and DM console. In addition, the device
management APIs will be used by various pieces of the Subscription
Manager (SM) component of TPSM. Examples of how the device
management APIs are (or can be) used by these components are:

• DM console will use DM API to perform the various operations that are
invoked by an administrator, such as creating/listing devices, displaying
device classes, viewing/modifying the parameters for devices or device
classes, and submitting new jobs for devices.

• SM component of TPSM will use DM API to define, configure, and
schedule jobs for new devices enrolled through the enrollment application.
In addition, customer care or self-care applications can be written to
enable customer support representatives (CSRs) or customers to view or
manage devices within their scope of control.

For more detailed information on device management API, refer to Chapter 6,
“Application programming interface” on page 171.
Chapter 2. Architecture 37

2.2.6 Device management server API
Device management server API (DMS API) defines the programming
interface between device management server servlet (DMS servlet) and
plug-ins. This interface allows plug-ins to interact with a DMS servlet. DMS
API is a general purpose, protocol-independent interface that serves as an
“abstraction layer”, allowing all classes of devices, though they may operate
differently, to be managed in the same way by Device Manager. Either Device
Manager, or the device manufacturer or integrator, provides a device plug-in
for the new device that implements the required functionality and contains
logic for performing the unique management functions for the class of
devices. DMS API can be used to develop plug-ins for any new class of
plug-ins to implement device identification, communications, and job
processing for all devices in the new device class.

For more detailed information on device management server API, refer to
Chapter 6, “Application programming interface” on page 171.

2.3 Control flow

This section describes how Device Manager controls the device connection
and job processing.

There are many package names, class names, interface names, and other
specific names in the following description. Table 3 shows the list of them and
their description by category.

Table 3. The list of names

Name Description

General

1 device ID The identifier of the device

2 realm It is a partition within the overall database that
distinguishes them and their subscribers from all
others in the system and the Internet at large.
Realms help extend brand name identification.

DMS servlet

3 fire(DeviceJobProcessing
CompleteEvent)

A method in class DeviceCommunicationManager
(DCM). It is called by a DCM to notify the DMS
servlet that it has completed a DeviceJob.
38 Tivoli Personalized Services Manager Device Manager 1.1

4 fire(DeviceRequestWork
Event)

A method in class DCM. It is called by a DCM to
notify the DMS servlet that a device is ready to
perform run or continue running a DeviceJob.

plug-in: device class

5 Device-specific
communication software

Typically, it represents the class which extends
DeviceCommunicationManager so that it can
manage the communication for the specific device
type.

6 device class Generally, device class means the group of devices
which have similar characteristics.

7 DeviceCommunication
servlet

The same meaning as Device-specific
communication software.

8 DeviceCommunication
Manager

This class describes the functionality to be extended
by a plug-in developer or device manufacturer to
enable a class of devices to be managed by Device
Manager. This class provides a common interface for
the Device Manager to communicate with plug-ins
supporting different types of devices.

9 DeviceConnectionEvent
event

It is typically called by a DCM to notify the DMS
servlet that a device has established or closed a
connection.

10 device class API The APIs provided by device classes and used by
job classes.

11 device context object It represents an actual instance of a device. It is
created and managed by associated device class. It
mainly works as device specific context holder
during job session.

12 getPackageData An API provided by the built-in plug-in device
classes. The software distribution job class invokes
it to obtain the software package data.

13 putPackage An API provided by the built-in plug-in device
classes. The software distribution job class invokes
it to put the software package to the device.

14 redirectToDevice
ManagementServer

A method in the DeviceCommunicationManager
class. Redirect the device to the DM server on the
specified host and port.

Name Description
Chapter 2. Architecture 39

2.3.1 Connection handling
Device Manager handles connected devices according to the device status.

2.3.1.1 New device connection
Devices new to Device Manager should be enrolled to the Device Manager
database at the first connection to Device Manager.

Assumption
In this case, the device is assumed to satisfy the following conditions:

15 redirectToEnrollment
Server

A method in the DeviceCommunicationManager
class. It is called by the DCM to instruct the DCM to
redirect the last client request to the indicated
subscriber manager enrollment server.

plug-in: job class

16 DeviceJob This class describes the basic functionality to be
extended so that device specific jobs can be created
and managed by the Device Manager.

17 doJob() Method in class DeviceJob.
It is called by the job management software so that
the device specific portion of the job (or the next part
of the job) may be executed.

18 initJob Method in class DeviceJob.
It is called by the job management software after the
DeviceJob is created and before it is passed to the
DMS servlet for execution.

19 job class Generally, we call the classes that override the
DeviceJob class as job class.

20 job context object The job context includes the job class state and
information that are saved at the previous process.

21 performPostProcessing()
method

A method in class DeviceJob. DMS servlet calls this
method to perform tasks required after complete the
job.

22 performPreProcessing()
method

A method in class DeviceJob. DMS servlet calls this
method to perform tasks required before start the
job.

23 software distribution job
class

A kind of job class, which extends the DeviceJob
class.

Name Description
40 Tivoli Personalized Services Manager Device Manager 1.1

• A Palm device is used.

• The device user has already registered to an ISP by telephone or Web
page. That is, the user is enrolled to the TPSM database as a subscriber
in advance of the first connection to Device Manager.

Connection flow
At first, the user invokes the device agent by clicking the agent icon. Figure 14
shows the steps in a connection flow.

Figure 14. DMD redirects the agent to Subscription Manager

The flow in Figure 14 is explained here:

1. The device agent connects to the Device Manager server. The device
class interacts with the device agent to determine a unique device
identifier (device ID). When the Device Manager has built-in plug-ins, the
HTTP headers contain sufficient information to derive this device ID.

2. The plug-in sends a CONNECT event to the DMS servlet.

3. The DMS servlet checks the cache of the device ID. If the ID of this device
is not found, it checks DM DB to see if the device has already been The

4. The DMS servlet gets the enrollment URL from the DM DB, and calls a
redirectToEnrollmentServer method on the plug-in to request it to redirect
the request. Together with this, the DMS servlet passes the URL of the DM
server so that any Network Dispatcher is bypassed and the targeted DM
server is accessed directly.

5. The plug-in sends a redirection message with the enrollment URL.

DMS
servlet

Plug
-
in

D
M
A
P
I

Device Manager server

DMDB

1.

4.5.

2.

5.

subscription
manager

D
M
A
P
I

Subscription Manager

3. 3.
Chapter 2. Architecture 41

Figure 15 shows how the Subscription Manager enrolls the device to the DM
DB.

Figure 15. Device enrollment to the Subscription Manager

The process flow in Figure 15 is explained here:

6. The agent is redirected to the Subscription Manager with device-specific
information such as device ID, user name, and realm.

7. The Subscription Manager associates the device to an already enrolled
user, and creates a device entry for it in the DM DB through the DM API.
Then, it submits a device configuration job for the device as an initial
configuration job.

8. The Subscription Manager sends the command to the device to redirect to
the DMS servlet.

The TPSM Subscription Manager feature implements these steps to
cooperate with Device Manager. In general, DM requires that this enrollment
application perform the following general steps:

1. Obtain the device ID and device class information from the URL
parameters or a cookie passed with the request.

2. Create the device entry for the device ID in the DM DB with the DM API
using the information such as device ID, device class, and the subscriber.

3. Submit a job for the new device that will perform the initial device
configuration. Any subscriber specific information needed by this job, such
as the user ID and password that the device should use when connecting

DMS
servlet

Plug
-
in

D
M
A
P
I

Device Manager server

subscription
manager

D
M
A
P
I

Subscription Manager

DMDB
6.

7.
8.
42 Tivoli Personalized Services Manager Device Manager 1.1

to the network, should be provided as job parameters when this job is
submitted.

4. Redirect the device back to the DMS servlet.

2.3.1.2 Enrolled device connection
Devices already enrolled have their entry in the DM DB. When devices
already enrolled to the DM DB connect to the Device Manager server, they
are redirected to the DMS servlet, bypassing any Network Dispatcher to
perform work.

Assumption
The following is assumed for an enrolled device connection:

• A user uses a Palm device.
• The device is already enrolled to the DM DB.

Connection flow
Figure 16 shows the flow for an enrolled device connection.

Figure 16. An enrolled device connection

The flow in Figure 16 is explained here:

1. The agent connects to the Device Manager server. The device class
interacts with the device agent to determine the device ID. When the
Device Manager has built-in plug-ins, the HTTP headers contain sufficient
information to derive this device ID.

2. The plug-in sends a CONNECT event to the DMS servlet.

Device Manager will not create a device entry in the device management
database because the device has not yet been assigned to a subscriber.

The reason why SM performs device enrollment

DMS
servlet

Plug
-
in

D
M
A
P
I

Device Manager server

DMDB

1.
3.

7.

2.

6.

3.

4.
5.
Chapter 2. Architecture 43

3. The DMS servlet checks the cache of the device ID. If the ID of this device
is not found, it checks the DM DB to see if the device has already been
enrolled to the DM DB. In this case, it is already enrolled.

4. The ID of this device is added to the device ID cache.

5. The DMS servlet checks to see if there is any job for the device. In this
case, there is a job submitted for this device.

6. The DMS servlet calls the plug-in to redirect the device directly to the DM
server.

7. The plug-in redirects the device to the DM server.

2.3.1.3 Enrolled device connection without submitted job
If there are no submitted jobs for the connected device, the DMS servlet
handles all the job sequences. The device is never redirected to the DMS
servlet to bypass the Network Dispatcher.

Assumption
The following points are assumed for enrolled device connections without
submitted jobs:

• A user uses a Palm device.
• The device is already enrolled to the Device Manager database.
• This is the fifth connection to the Device Manager server.
• No jobs are submitted for this device.

Connection flow
Figure 17 shows the connection flow for enrolled device connections without
submitted jobs.

Figure 17. No jobs are submitted for this device

The process flow in Figure 17 is explained here:

DMS
servlet

Plug
-
in

D
M
A
P
I

Device Manager server

DMDB

1.

4.

6.

2.

5.

3.
44 Tivoli Personalized Services Manager Device Manager 1.1

1. The agent connects to the Device Manager server. The device class
interacts with the device agent to determine the device ID. When the
Device Manager has built-in plug-ins, the HTTP headers contain sufficient
information to derive this device ID.

2. The plug-in sends a CONNECT event to the DMS servlet.

3. The DMS servlet checks the cache of the device ID. This time, the ID of
this device is hit in the cache.

4. The DMS servlet calls a DM API and checks to see if there are any jobs for
the device. In this case, there are no jobs for this device.

5. The DMS servlet calls the plug-in to tell the device that no jobs are
submitted.

6. The plug-in tells the device that no jobs are submitted, and the connection
ends.

2.3.2 Job flow
Device Manager’s built-in plug-ins have three functions:

• Software distribution
• Device configuration
• Rest page management

This section shows the general control flow of the job.

Figure 18 on page 46 shows a typical flow of events when a device connects
to Device Manager. The device is already enrolled, and is not redirected to an
enrollment server. A Network Dispatcher is in place to provide load-balancing
and fault tolerance.

Once a device connects to the Device Manager server, Network Dispatcher
is bypassed so that only one Device Manager server is used in the
connection.

In cases where the connected device is new to the Device Manager server,
the DMS servlet redirects the device to the enrollment server.

In cases where the connecting device is already enrolled, the DMS servlet
redirects it to the DM server directly, bypassing the Network Dispatcher.

Front-ended Network Dispatcher
Chapter 2. Architecture 45

Figure 18. Typical Device Manager job flow

The job flow in Figure 18 is explained here:

1. A device sends a request to connect. The request comes in through the
cluster URL of the Network Dispatcher.

2. The Network Dispatcher routes the device request to an available Device
Manager in its cluster. Device-specific communication software, as defined
by the plug-in, receives the communication from the device.

3. Device-specific communication software passes information to the
plug-in's DeviceCommunicationManager implementation. This
DeviceCommunicationManager implementation creates a
DeviceConnectionEvent event and calls the base

Device Manager database

DeviceManagement
Server servlet

Device-specific communication

Device
Communication

Manager

DeviceJob

Network
Dispatcher

device

DM server 2

DM server 1

Internet

1.

2.

3.

4. 5.

4. 6.

10.

8.

8.
9. 7.

10.

Legend

Device
Manager
function

Device
plug-in
function
46 Tivoli Personalized Services Manager Device Manager 1.1

DeviceCommunicationManager method to fire the event, which sends it to
the core Device Manager functionality.

4. Since the device is already enrolled, the DMS servlet checks the DM DB to
see if there is a job for the device to run. Assuming that it finds one or
more jobs ready to be run by the device, the DMS servlet calls the
redirectToDeviceManagementServer method to reroute the device directly
to Device Manager, bypassing the Network Dispatcher.

5. The device-specific communication for the device receives a message
from the device (in this example, a message requesting a job). The
device-specific communication calls the DeviceCommunicationManager.
The DeviceCommunicationManager creates the appropriate event and
calls the fire(DeviceRequestWorkEvent) method implemented in the base
DeviceCommunicationManager class to send the event to the DMS
servlet.

6. The DMS servlet checks the DM DB to see if there is a job for the device to
run.

7. When the DMS servlet finds a job, it creates and initializes an instance of
the deviceJob object and calls the performPreProcessing() method to
check for any required job and device parameters.

8. The DMS servlet calls the doJob() method on the DeviceJob object. The
DeviceJob, along with the other plug-in components and the device,
perform the requested job.

9. The DeviceCommunicationManager calls the
fire(DeviceJobProcessingCompleteEvent) method when the job is
completed.

10.The DMS servlet takes DeviceJob and calls the performPostProcessing()
method for it, and updates the DM DB with current device and job status,
such as job completed.

2.3.3 Sample scenario
This section describes a sample scenario, from connecting to the server to
finishing the job execution.

2.3.3.1 Assumptions
This scenario assumes a Palm device connection. The device has already
been enrolled to the Device Manager. A software distribution job has been
submitted for this device.
Chapter 2. Architecture 47

2.3.3.2 Connection and job processing
This flow assumes the Palm device case, but the control flow is common to all
other device classes which are built in to Device Manager. Before the device
connects to the DM server, administrators perform some management tasks
which are illustrated as arrows a, b, and c in Figure 20:

• Arrow a: The administrator creates a software package and places it on
the file server.

• Arrow b: The administrator registers the software to the Device Manager
database from DM console.

• Arrow c: The administrator submits a software distribution job for the
device class from DM console.

When the agent connects to the DM server, the DM server handles the
connection as illustrated in Figure 19.

Figure 19. Connection flow

The numbered arrows in Figure 19 are explained here:

1. The agent connects to the Device Manager server. The device class
interacts with the device agent to determine the device ID. In the Device
Manager built-in plug-ins case, the HTTP headers contain sufficient
information to derive this device ID.

2. The plug-in sends a CONNECT event to the DMS servlet.

3. The DMS servlet checks the cache of the device ID. If the ID of this device
is not found, it checks the DM DB to see if the device has already been
enrolled to the DM DB. In this case, it is already enrolled.

4. The ID of this device is added to the device ID cache.

5. The DMS servlet checks to see if there are any jobs for the device. In this
case, there is a job submitted for this device.

DMS
servlet

Plug
-
in

D
M
A
P
I

Device Manager server

DMDB

1.
3.

7.

2.

6.

3.

4.
5.
48 Tivoli Personalized Services Manager Device Manager 1.1

6. The DMS servlet calls the plug-in to redirect the device directly to DMS.

7. The plug-in redirects the device to DMS.

Then, the agent connects directly to the DM server again. Since a software
distribution job is submitted for this device, DM server processes the job as
illustrated in Figure 20.

Figure 20. Software distribution job control flow1

Palm Device
Class

Software
distribution
Job Class

device

Device Manager server

DMD/DMS servlet

DMS API

DM API

1.

2.

3.

4.

5.

6.

7.

10.

11.

File server

Administrator

DM
database

software packageDevice Manager
console

a.
b.c.

8.
9.
Chapter 2. Architecture 49

Figure 20 illustrates the flow of the software distribution job. Software
distribution jobs for Palm device classes are performed as follows:

1. The Device agent sends a RequestJob event to the DeviceCommunication
servlet, which is a component of the device class.

2. The device class sends a REQUEST event to the DMS servlet.

3. The DMS servlet checks the DM DB to see if there are any jobs for this
device. This time, a software distribution job is found. It obtains
information such as the software package URL from the database.

4. The DMS servlet creates an instance of the software distribution job class.
It sets the URL of the software package file as a job parameter. Then, it
calls the doJob method of the job class.

5. The job class calls getPackageData, which is one of the device class APIs,
with software package URL.

6. The device class gets the software package file from the specified URL.

7. The device class reads the software package file and creates the
application list.

8. The device class returns the result.

9. The job class calls putPackage (device class API.)

10.The device class sends the application list to the device agent.

11.The agent displays the application list. The user selects some applications
and clicks Install to install them.

Software distribution jobs for Palm device classes is performed in two steps.
In the middle of the job processing, it displays the graphical interface to list
the applications to be distributed, or to ask whether to install the software
package or not. The format of the application list is different according to the
software package definition. For detailed information on software package
definition, refer to Tivoli Internet and Personalized Services Manager Device
Manager: Device Plug-in Notes in Device Manager online documentation.
Chapter 7, “Using the DM functions” on page 193, also describes the use of
the software package definition.

Some software distribution job classes do not have any graphical interface.
Plug-in developers can design the plug-in either to display the graphical
interface on the device or not, according to the device characteristics or the
system requirements.

After the user chooses to install any of the application, the agent connects to
the DM server again as shown in Figure 21.
50 Tivoli Personalized Services Manager Device Manager 1.1

Figure 21. Software distribution job control flow2

The numbered arrows in Figure 21 are explained here:

12.After the user clicks Install, the agent sends a Request to the device
class, actually DeviceCommunication servlet.

13.DeviceCommunication servlet sends a CONTINUE event to the DMS
servlet.

14.The DMS servlet calls the doJob method of the job class again.

15.The job class calls the putPackage (Device class API) again.

16.The device class receives the application ID, file ID and file offset of the
file as the parameter, which are sent by the agent. If this is the first time
this file is put to the device, the device class gets the file from the URL.

17.The device class sends the specified file from the specified offset.

18.The agent receives the file and converts it if necessary.

Palm Device
Class

Software
distribution
Job Class

device

Device Manager server

DMD/DMS servlet

DMS API

DM API

File serverDM
database

software
package

12.

13. 14.

15.

16.

17.

18.

a.

b.

c.

d.
Chapter 2. Architecture 51

Then, the agent resends the ContinueJob event to the server and then
repeats the process from 12 to 18 (the numbers of the arrows in Figure 21 on
page 51) until all files are installed to the device. When the DM server sends
the last cluster of files to the device, it processes the job as shown by arrows
a through d in Figure 21 on page 51, to complete the job.

• Arrow a: The device class sends the file to the agent, together with the
information which indicates this is the last file to send.

• Arrow b: After receiving all the files, the agent sends the CompleteJob
event to the device class (DeviceCommunication servlet.)

• Arrow c: The DeviceCommunication servlet sends the JobComplete event
to the DMS servlet.

• Arrow d: The DMS servlet updates the progress status of this job and
other information related to this job in DM DB.

Now, the software distribution job has successfully completed.

2.4 Summary

This section summarizes the main concepts of this chapter.

2.4.1 Features
Device Manager has the following features:

• Device management service

Device Manager 1.1, which is a feature of Tivoli Personalized Services
Manager, provides the device management service to the other TPSM
components and external applications.

Device Manager uses the relational database as the repository of the
device management information. Device management API defines the
programming interface for the other components and external applications
to access and update the information stored in the Device Manager
database. Thanks to this API, other applications can use Device Manager
as their job processing engine on the device.

• Scalability and high availability

Scalability can be archived if the set of DM server machines or TPSM
server machines are deployed with front-ended Network Dispatcher.

Deployed with IBM AIX HACMP, the Device Manager database server can
achieve high availability.
52 Tivoli Personalized Services Manager Device Manager 1.1

• Device support

Thanks to the plug-in architecture, Device Manager can support various
types of devices. The plug-in will be provided for each type of device, and
can be developed by device vendors, ISPs, or other developers.

2.4.2 Components
Device Manager consists of the following components:

• Device Manager database

The central data repository that stores all the device management
information.

• Device management server servlet

Device management server servlet handles requests related to job
processing. It also provides the redirect function, thanks to which the devices
use only one DM server during the connection, bypassing the front-ended
Network Dispatcher.

• Device plug-ins and agents

Device plug-ins provide the logic that handles device identification,
communications, job processing, and high-level management tasks for a
particular class of managed devices. Plug-ins consist of device class, job
class, and optionally, template. The device agents reside on the device
and communicate with the server side plug-ins.

• Device Manager console

The Win32 based utility which provides the administrators with the
graphical interface to administer devices, device classes, jobs and
software.

• Device management API

Device management API provides the programming interface for
managing devices, jobs, and related resources in the Device Manager
database.

• Device management server API

Defines the programming interface between device management server
servlet (DMS servlet) and plug-ins.

2.4.3 Job processing
Device Manager performs the device management jobs in “pull” style.
Generally, the job is processed using the following steps:
Chapter 2. Architecture 53

1. At the time the device agent connects to the DM server, the server checks
the Device Manager database whether the device is already enrolled:

- If it is found in the DM DB, the server redirects the device directly to the
DM server to bypass the front-ended Network Dispatcher.

- If it is not yet enrolled, the server redirects the device to the
Subscription Manager server which enrolls the device and submits a
device configuration job as the initial configuration job. Then, it
redirects the device to the DM server again.

2. The DM server starts to process the job. It checks the DM DB for any
submitted jobs, and if any, initiates the corresponding job class.

3. The job class coordinates to process the job, communicating with the
device class.

4. If the job has completed successfully, the DM server updates the DM DB
to record the job completion.
54 Tivoli Personalized Services Manager Device Manager 1.1

Chapter 3. Installation and configuration

TPSM can be deployed by itself, and it also can be deployed as a component
of Everyplace Suite. With these two deployments, there are some differences
in planning considerations, prerequisites, and installation. Whichever you
choose, you should understand the TPSM installation and should consider
the system configuration well in advance. This is because TPSM can be
configured differently depending on the system requirements, and the
installation of TPSM is rather complex.

This chapter summarizes the keys for TPSM installation and configuration
planning. For details on planning, refer to the TPSM manual. If you deploy
TPSM as an Everyplace Suite component, WebSphere Everyplace Suite
Getting Started v1.1 and An Introduction to IBM WebSphere Everyplace Suite
Version 1.1, SG24-5995, will help you to understand and plan for your
Everyplace Suite system. We also introduce some sample TPSM system
configurations, and describe the installation flow of TPSM system installation
and configuration tasks.

3.1 Planning

TPSM consists of two main features: the Subscription Manager feature and
the Device Manager feature. Taking performance, availability and security into
consideration, you need to consider the following five factors.

• TPSM server

- Subscription Manager server (SM server)
- Device Manager server (DM server)

• TPSM database server
• File server for software distribution package
• Device Manager console PC
• WebSphere Everyplace Suite environment

This section discusses TPSM system specific considerations and guidelines,
and introduces some sample system configurations.

For network configuration, security, database system configuration, and other
considerations regarding general network and server configuration, follow the
general guidelines or consult each product’s documentation. The following
Web site can help you to design the network in a Web environment:

http://www.ibm.com/security/library
© Copyright IBM Corp. 2001 55

TPSM servers can be flexibly configured according to the system
requirements. You can configure DM server and SM server in one server
machine, or in different server machines. In addition, you can use front-ended
Network Dispatcher to archive scalability.

Considerations
The following items should be considered while planning for TPSM.

• Performance

- The number of servers required to support the target number of
concurrent devices during peak usage.

- The performance of Web server, Web application server.

• Scalability

- Whether to use front-ended Network Dispatcher.

- Whether the servers are used only for Device Manager services, or are
also used for other Subscription Manager services.

• High availability

- Whether to deploy more DM or TPSM servers than required for the
target number of devices.

Guidelines
The following guidelines will assist you while planning for your TPSM server.

• In a small system, it is cost effective to have SM server and DM server
reside in the same machine.

• Running Device Manager on a dedicated machine allows device support
to be scaled independently of other Subscription Manager services,
provided all machines are identically configured.

• If you use more than one server for the TPSM server, use IBM Network
Dispatcher. For more detailed information on IBM Network Dispatcher, see
the Web site:

http://www.ibm.com/software/network/dispatcher/

• If you want to ensure satisfactory operation and response time even if one
server is down, use more Device Manager servers than required for the
target number of devices.

• Subscription Manager and Device Manager need JDK, Web server, and
Web application server as their pre-required software for each. You should
tune the performance of Web server and Web application server
separately from the SM and DM servers.
56 Tivoli Personalized Services Manager Device Manager 1.1

3.1.1 TPSM database server
TPSM requires a relational database as its central data repository. TPSM 1.1
supports IBM DB2 UDB v7.1 and Oracle8i as its database system, and
supports AIX and Solaris as the platform of the database system. All of the
TPSM servers in the system access the centralized TPSM database.

3.1.1.1 Considerations
The following items should be considered while planning for your TPSM
database server.

• Performance

- Whether to reside in the same machine as TPSM server or to reside in
the dedicated database server machine.

- The size of the database.

• High availability

- Whether or not to use the HACMP solution.

3.1.1.2 Guidelines
The following guidelines will assist you while planning for your TPSM
database server.

• By using the IBM AIX HACMP solution, you can archive database high
availability. For detailed information about IBM AIX HACMP, refer to the
following Web site:

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/hacmp_index.h
tml#V44

Also, see 3.5, “References” on page 105 , for more references.

• DM database and SM database reside in the same database, but use
different sets of tables. Based on the number of the supported or deployed
devices, estimate the size of the DM database. Follow the formula
described in Chapter 5, “Device Manager database” on page 145.

For more information about Subscription Manager database, see Tivoli
Internet and Personalized Services Manager: Planning and Installation.

• For detailed information on database performance tuning, refer to
Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511.

3.1.2 File server for software distribution package
Device Manager 1.1 supports FILE and HTTP as the connection protocol to
the file server which stores the software packages. However, for performance
Chapter 3. Installation and configuration 57

reasons, the FILE protocol is recommended. In this section, we assume that
the FILE protocol is used.

File servers can reside either in the same machines as DM servers or in the
dedicated file server machines. However, every DM server in the TPSM
system should have accessible software packages in the same path, name
and context, because the software distribution jobs assume it. That is:

• If you use DM servers also as file servers, you should maintain software
package directories so that all servers are identically configured.

• If you use the dedicated file servers, all the mount points on DM servers
should be the same path.

3.1.3 Device Manager console PC
In conjunction with an external authentication application, Device Manager
console provides the authentication function for the administrators.

There are two authentication method options to choose from. You should
decide which to use in advance of TPSM system installation.

• TPSM authentication
• Other authentication

TPSM authentication is the default method in Device Manager, which is
provided in conjunction with TPSM Subscription Manager feature.

If you use another method, it must be one that is developed to meet the
Device Manager requirements for authentication application. For detailed
information on how to develop the authentication application, refer to Tivoli
Personalized Services Manager Device Manager: Developer’s Guide included
in TPSM Device Manager 1.1 online documentation.

3.1.4 WebSphere Everyplace Suite environment
Since TPSM interrelates with components of WebSphere Everyplace Suite, it
is important that you are familiar with Everyplace Suite components and
understand their relation. Detailed information about WebSphere Everyplace
Suite can be found in An Introduction to IBM WebSphere Everyplace Suite
Version 1.1, SG24-5995, and in WebSphere Everyplace Suite Getting Started
v1.1. The latter can be downloaded from the following Web site:

http://www.ibm.com/pvc/tech/library.shtml

As mentioned above, an Everyplace Suite system should be planned well in
advance of installation. If you decide to use TPSM, then you should keep in
58 Tivoli Personalized Services Manager Device Manager 1.1

mind single sign-on in addition to other considerations discussed in this
section.

3.1.4.1 Single sign-on
Everyplace Suite includes an authentication server component. If TPSM is
running in an Everyplace Suite environment, you can take advantage of the
authentication server services. When the authentication server is configured
as an authentication proxy, it performs user authentication based on HTTP
Authenticate headers. It serves as the single point of entry into the Tivoli
Personalized Services Manager servers, the network dispatcher, and the
Device Manager server. Users who choose to take advantage of this single
sign-on capability need to do some extra configuration steps to make sure
that redirection from Device Manager to an enrollment server will be done
correctly. How to configure Device Manager to support the Authentication
Server is described in 3.4.2, “Configuration on WebSphere Application
Server” on page 87.

To use the WebSphere Everyplace Suite Authentication Server as an
authentication proxy, you must configure the authentication proxy as a
reverse proxy, and additional configuration is required to cause the proxy
server to route redirection requests for Device Manager. See the chapter on
configuration and administration of the Everyplace Suite in WebSphere
Everyplace Suite Getting Started v1.1 for more details.

3.1.4.2 TPSM and other Everyplace Suite components
This section briefly summarizes the relation between TPSM and other
Everyplace Suite components.

Everyplace Suite is an integrated, modular suite of software components.
Each Everyplace Suite component performs a different function in extending
pervasive computing connectivity. Only the components that best provide or
extend the services you require need to be installed. Thus, with Everyplace
Suite, you need to plan which software components to use well in advance of
installation. For detailed information about Everyplace Suite planning,
TPSM’s role in the Everyplace Suite environment, see An Introduction to IBM
WebSphere Everyplace Suite Version 1.1, SG24-5995. Also, WebSphere
Everyplace Suite Getting Started v1.1 helps you to plan and install
Everyplace Suite.

TPSM provides services such as active session management, RADIUS
server and subscriber and device management to the other components of
Everyplace Suite. Everyplace Suite uses LDAP directory service, provided by
IBM SecureWay Directory, as its central repository to share information such
Chapter 3. Installation and configuration 59

as user, device and network information. TPSM provisions subscribers’
information to the LDAP directory, and all the other components access
subscribers’ information in the directory.

Everyplace Suite offers a single sign-on environment by using Everyplace
Authentication Server. Authentication server uses TPSM RADIUS server to
authenticate the subscriber, and updates Active Session Table, which is
managed by TPSM Active Session Table server. From the view point of
TPSM, TPSM delegates its authentication service to the authentication
server. Thus, Everyplace authentication server requires TPSM as its
prerequisite software. In addition, Everyplace Suite components, including
TPSM, should be configured to support authentication server.

Everyplace Wireless Gateway also uses TPSM RADIUS server and Active
Session Table server. The Wireless Gateways are placed in front of
authentication server, and access TPSM RADIUS server for authentication.
Then, Wireless Gateways update the LDAP directory and Active Session
Table, and pass the control to the authentication server. For more detailed
information on Everyplace Suite architecture, refer to An Introduction to IBM
WebSphere Everyplace Suite Version 1.1, SG24-5995.

3.1.5 Sample system configuration
This section shows some sample TPSM system configurations. Please note
that these samples do not deeply consider other network elements such as
Network Dispatcher and firewalls.

3.1.5.1 Sample 1: simple configuration
The first sample system is configured from one TPSM server machine and
one database server machine (see Figure 22.)
60 Tivoli Personalized Services Manager Device Manager 1.1

Figure 22. Sample 1: Simple configuration

In this sample, all the TPSM application servers reside in one server
machine, and the TPSM database is deployed in the other server machine. In
a small system, it is cost effective and easy to maintain.

However, if the number of subscribers and devices or the network traffic is
greatly increased to the extent that this system cannot afford to manage them
in the future, the whole system should be re-designed.

3.1.5.2 Sample 2: dedicated Device Manager servers
TPSM components can be deployed in multiple server machines. In a large
system, you can breakup the network load by dividing TPSM components into
multiple boxes. Figure 23 on page 62 is a sample configuration with
front-ended Network Dispatcher servers. It deploys SM servers and DM
servers in different sets of server machines, and each set is front-ended by
the Network Dispatcher. This configuration allows device support to be scaled
independently of the Subscription Manager services.

In addition, if you use more DM servers than required for the target number of
devices, you can ensure satisfactory operation and response time even if one
server is down. With the Network Dispatcher, you can also add other DM or
SM server machines to the system, without having to stop the management
services.

TPSM
database

Internet

F
i
r
e
w
a
l
l

TPSM server
SM feature
DM feature

File server for SW package

database server
TPSM database
Chapter 3. Installation and configuration 61

Figure 23. Sample 2: Load balanced TPSM servers

The TPSM database servers in Figure 23 use the IBM AIX HACMP solution to
archive the database high availability. The IBM AIX HACMP solution allows
customers to automatically detect system failures and recover users,
applications and data on backup systems, minimizing downtime to minutes or
seconds. In addition, using HACMP for AIX virtually eliminates planned
outages, since users, applications and data can be moved to backup systems
during scheduled system maintenance.

3.1.5.3 Sample 3: Everyplace Suite deployment
Figure 24 on page 63 is a sample configuration of a WebSphere Everyplace
Suite system. To simplify the figure, the relations between Everyplace Suite
components are omitted. This deployment has almost all the key components
of Everyplace Suite, and could be typical for an enterprise that is looking for a
complete solution for pervasive device support along with traditional wired
Internet services.

For detailed information on Everyplace Suite system planning, refer to
WebSphere Everyplace Suite Getting Started v1.1. WebSphere Everyplace
Suite: README also provides important information on system planning.

Internet

SM servers
Enrollment
Authentication
Personalization
Other functions

Network
dispatcher

TPSM database
servers with

IBM AIX HACMP
solution

F
i
r
e
w
a
l
l

Network
dispatcher

DM servers

File server for
SWD package

devices

TPSM
database
62 Tivoli Personalized Services Manager Device Manager 1.1

Figure 24. Sample 3: Everyplace Suite deployment

In this deployment, there are two TPSM servers, one is for enrollment service
and the other is for other TPSM services. Some SM services, DM server and
TPSM database are installed in TPSM server B together.

3.2 Installation flow

This section describes the installation flow overview of the system
configuration introduced in 3.1.5, “Sample system configuration” on page 60.

3.2.1 Sample 1: Simple configuration
This section describes the installation flow for the system introduced in 3.2.1,
“Sample 1: Simple configuration” on page 63. This system assumes a
database server box and a TPSM server box.

Figure 25 on page 65 illustrates the TPSM installation flow. Junctions in the
figure mean that branches of it have no installation dependency on each
other. For example, you can configure DM server either before creating DM
database tables or after creating them, if they have been completed before
starting up the DM server.

Internet

F
i
r
e
w
a
l
l

wired devices

LDAP
database

TPSM
database

wireless devices

Enterprise
network

Everyplace
Wireless
Gateway

TPSM server B
SM server
RADIUS
Authentication
AST server
Other services

WebSphere
Transcording

Publisher

MQSeries
Everyplace

SecureWay
DirectoryTPSM server A

Enrollment

Everyplace
Authentication

Server

DM server
TPSM database
File server
Chapter 3. Installation and configuration 63

At first, the database system should be set up for TPSM system. TPSM
provides a Database Integration component, which installs the database
system and configures it for the TPSM system.

Second, you should configure the runtime environment for the TPSM server.
This includes the installation of JDK, HTTP server and WAS. Then, you can
install Subscription Manager server and Device Manager server. You can
install Device Manager either before Subscription Manager or after it, if you
do not start the Device Manager server before starting up the Subscription
Manager server. However, we recommend installing Device Manager after the
Subscription Manager installation.

After configuring and starting the Device Manager server, install Device
Manager console which is used to administer all the device management
jobs.
64 Tivoli Personalized Services Manager Device Manager 1.1

Figure 25. TPSM installation flow overview: Simple configuration

3.2.2 Sample 2: Dedicated Device Manager server
This section describes the installation flow for the system introduced in
3.1.5.2, “Sample 2: dedicated Device Manager servers” on page 61. Figure
26 on page 66 illustrates the installation flow for this configuration.

The action to the
Database server

machine

The action to
the TPSM

server machine

Legend

finish

start

Setup the TPSM server's
runtime environment

Run TPSM DB install assistance

Create the DB owner user

Install the database system

Create database for TPSM

Create TPSM data tables

Start the DM server

Install DMconsole

Install the Device
Manager server

Register the classes
of the device plug-in

to the DB

Configure
WAS servlets

for DM

Install Subscription Manager

Configure the SM
server

Start the SM
server

Prepare the system environment
for the database server machine

Install TPSM DB
install assistance

The action to
the DMconsole

machine

Create DM
data tables, if it has not

been performed yet

Configure the Device
Manager server
Chapter 3. Installation and configuration 65

Figure 26. TPSM installation flow overview: Dedicated DM server

The major difference from the installation described in 3.2.1, “Sample 1:
Simple configuration” on page 63, is that you have to set up the TPSM
runtime environment for both Subscription Manager server and Device
Manager server. As described in Tivoli Personalized Services Manager
Device Manager: Planning and Installation, since Subscription Manager and
Device Manager require the same runtime environment, install the same set
of software for both servers as the runtime support.

The action to the
Database server

machine

The action to
the SM server

machine

Legend

finish

start

Run TPSM DB install assistance

Create the DB owner user

Install the database system

Create TPSM data tables

Start the DM server

Install DMconsole

Installthe Device
Manager server

Register the classes
of the device plug-in

to the DB

Configure the
WAS servlets

for DM

Install Subscription Manager

Configure theSM
server

Start the SM
server

Prepare the system environment
for the database server machine

Install TPSM DB
install assistance

Create the DM
data tables, if not

performed yet

Configure the Device
Manager server

The action to
the DM server

machine

The action to
the DMconsole

machine

Setup the TPSM server's
runtime environment

Setup the TPSM server's
runtime environment

Create database for TPSM
66 Tivoli Personalized Services Manager Device Manager 1.1

3.2.3 Sample 3: Everyplace Suite deployment
This section describes the installation flow for the system introduced in
3.1.5.3, “Sample 3: Everyplace Suite deployment” on page 62.

We recommend installing Everyplace Suite components in the order
illustrated in Figure 27. You can install IBM SecureWay Directory after the
other components. However, the installation flow will be simple if you install
IBM SecureWay Directory first, because all the other components write their
configuration information into the LDAP directory during their installation. As
mentioned in 3.1.4.2, “TPSM and other Everyplace Suite components” on
page 59, Everyplace Authentication Server and Everyplace Wireless
Gateway should be installed after TPSM has been installed, configured and
started. For more detailed information on Everyplace Suite installation, refer
to WebSphere Everyplace Suite Getting Started v1.1.

Figure 27. Recommended installation order of Everyplace Suite

Everyplace Suite provides its special installer. In and Everyplace Suite
environment, all the component products are installed by Everyplace Suite
installer.

First, install IBM SecureWay Directory. Refer to WebSphere Everyplace Suite
Getting Started v1.1 for detailed information on IBM SecureWay Directory
installation. While installing SecureWay Directory, write down the following
information because they are required in TPSM installation:

• LDAP server name
• The user ID for the SecureWay Directory administrator
• The password for the administrator
• The port number for the directory service

IBM SecureWay
Directory

Everyplace
Wireless
Gateway

Tivoli
Personalized

Services
Manager

Websphere
Transcording

Publisher

Other WES
components

Everyplace
authentication

server

** All the WES component software
should be installed by the WES installer.
Chapter 3. Installation and configuration 67

After starting the IBM SecureWay Directory, install TPSM services. The
installer provides a window to select the components to be installed as shown
in Figure 28. Everyplace Suite installer checks the software dependency in
advance of installation. If you are going to install Tivoli Device Manager
before Database Integration, it will notify you to install Database Integration
first.

Figure 28. Everyplace installer: Components selection

3.3 Installation

This section describes a sample installation task for a simple system
configuration.

3.3.1 System environment
This sample system, shown in Figure 29, uses the minimum configuration of
TPSM to run device management services (Subscription Manager enrollment
application and Device Manager).

Because this is a simple configuration, one dedicated database server
without high availability and a TPSM server without load balancing is used.
Subscription Manager enrollment application and Device Manager server,
reside on the same machine. The network is private, and a PSTN simulator is
used which assumes dial-up users.
68 Tivoli Personalized Services Manager Device Manager 1.1

Figure 29. Sample system configuration

Table 4 is the list of software that is installed in the servers shown in Figure
29.

Table 4. List of installed software

Server Software

TPSM server

RS6000
hostname:
aix2000.wes.ibm.com

AIX4.3.3 + fix pak2
IBM JDK 1.2.2 (installed with WAS)
IBM HTTP Server 1.3.12 (installed with WAS)
WAS3.5 Standard Edition
Oracle JDBC driver
TPSM 1.1 Subscription Manager
TPSM 1.1 Device Manager server

Database server

Solaris
hostname:
sol2000.wes.ibm.com

- Solaris7
- Solaris7 recommended patches
- patches (106980-13, 107081-22)
- Sun JDK1.2.2_05a
- Oraclel8i Enterprise Edition 8.1.5
- Subscription Manager database installation script

RAS server - Windows NT Server 4.0 + SP6a
- RAS service

PSTN simulator

RAS server

TPSM server
- DM server
- SM server

TPSM database
- SM database
- DM database

DMconsole PC

Device (WAN connection)

Device (LAN
connection)

Conduit PC

Server environment
Chapter 3. Installation and configuration 69

3.3.2 Installation tasks
This section describes actual installation steps for the sample system
mentioned previously. TPSM installation steps are different depending on the
system platform and database product, because their prerequisites are
different. If you are going to use other combinations of TPSM and database
products than this sample case, refer to Tivoli Internet and Personalized
Services Manager: Planning and Installation, and confirm the installation
steps.

3.3.2.1 TPSM database server installation
This section shows the installation steps of Oracle8i product on Solaris
platform. Installation instructions for this combination are not described in
detail in Tivoli Internet and Personalized Services Manager: Planning and
Installation, so these installation steps will help you if you use Sun Solaris
and Oracle8i for TPSM database.

TPSM provides the database integration component. In the sequence of this
script, it installs Oracle8i database, creates a database for TPSM, and
configures the database for Subscription Manager. After this script
completes, run the SQL script and create Device Manager database tables.
This SQL script creates these tables in the TPSM database.

The following software is used in this case.

• Solaris7
• Solaris7 recommended patches cluster
• Solaris7 patch 106980-13 (Prerequisite of JDK)
• Solaris7 patch 107081-22 (Prerequisite of JDK)
• JDK1.2.2_05a
• Oracle8i Enterprise Edition 8.1.5 for Solaris
• TPSM Oracle database integration

Solaris7 recommended patches cluster and other patches can be
downloaded from the Sun Web site at:

DM console PC - Windows 98 second edition
- Microsoft Internet Explorer 5.5

Conduit PC - Windows 98 second edition
- Palm desktop
- TPSM1.1 Palm Cradle Support for Windows

Device - Device agent for Palm Pilot

Server Software
70 Tivoli Personalized Services Manager Device Manager 1.1

http://sunsolve.sun.com/

You can download JDK1.2.2_05a from the following Web site:

http://www.sun.com/software/solaris/java/download.html

Consult the JDK1.2.2_05a Readme file to confirm required Solaris patches,
because it requires different sets of patches depending on the system
location or other elements. In this case, JDK requires four patches
106980-10, 107636-03, 107081-11, 108376-03. Two patches 107636-03 and
108376-07, are already installed by Solaris7 and recommended patches.
Others can be installed according to your system requirements.

The installation tasks are outlined here:

1. Set up the operating system environment.

a. Install Solaris7. TPSM database requires /db as its database system
directory, and /dbfiles as its database data directory. Be sure to create
directories which have those names. It is highly recommended that you
create file systems for each and mount them at the time the system
starts up. Be sure to point to the proper DNS server so that the host
name of the TPSM server can be resolved.

b. Install the Solaris7 recommended patches cluster, then reboot the
system. For detailed installation steps, refer to the Readme file.

2. Install JDK1.2.2_05a, which is the Oracle8i prerequisite software. Follow
these instructions:

a. Install Solaris7 patches, 106980-13 and 107081-22. For detailed
installation steps, refer to the Readme file.

b. Install JDK1.2.2_05a. If you have two versions of JDK co-existing in the
system, change the symbolic link /usr/java to point to /usr/java1.2 after
the JDK installation completes. For detailed installation steps, refer to
the Readme file.

3. Prepare the system environment for database installation.

Follow the preconfiguration instructions in the database product’s
installation manual, which is shipped with Oracle installation image and
placed in oracle/docs/solaris.815/a67456.pdf. However, you need not
create an Oracle owner user and group, because TPSM Oracle database
integration will create them. In the kernel parameter update step, insert
the lines shown in Figure 30 on page 72 at the end of the /etc/system file.
Chapter 3. Installation and configuration 71

Figure 30. Example of /etc/system file

Figure 30 shows an example of the /etc/system file of this system, which
has 1 GB of RAM. This system has one database instance, and its
PROCESSES value in the initispd.ora file is 100.

Two keys are system specific. The value of shmsys:shminfo_shmmax is to
the half of the physical memory in bytes. The value of
semsys:seminfo_semmns is the result of the following formula. In this, A,
B,...,Y, Z are the value of the PROCESSES parameter in the initsid.ora
files for each Oracle database. Z is the maximum value among them.

After you edit the file, reboot the system.

4. Install the TPSM Oracle database integration to the database server. It is
included in the Subscription Manager Version 1.1 installation. The Solaris
version of the TPSM database integration will be installed together with all
the other Subscription Manager components. However, the AIX version of
the TPSM database integration can be installed independently of other
components. Actually, what you install on the Sun server machine to be
the TPSM database server is the TPSM 1.1 Subscription Manager feature.
On the Sun server machine, perform these steps:

a. Insert the TPSM installation CD to the CD-ROM drive. Make sure that
you are logged in as root.

b. Change the current directory to the CD root. Issue the following
command to install the Subscription Manager package named
TivTISM:

pkgadd -d . TivTISM

forceload: sys/shmsys
forceload: sys/semsys

set shmsys:shminfo_shmmax=524288000
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=200
set shmsys:shminfo_shmseg=20
set semsys:seminfo_semmni=1000
set semsys:seminfo_semmsl=100
set semsys:seminfo_semmns=210
set semsys:seminfo_semopm=100
set semsys:seminfo_semvmx=32767

x

x A=

Y

� 2 Z×() 10 the number of database×()+ +
72 Tivoli Personalized Services Manager Device Manager 1.1

Subscription Manager is installed in the /opt/TivTSM path. TPSM
Oracle database integration is placed under the directory.

c. Before you run the database integration program, edit the following
files to correct the directories as listed in Table 5:

• /opt/TivTSM/reporting/bin/StartReportTxServer.ksh
• /opt/TivTSM/sysmgmt/bin/StartConsoleTxServer.ksh
• /opt/TivTSM/install/etc/rc.webservers
• /opt/TivTSM/install/etc/rc.txservers
• /opt/TivTSM/install/etc/rc.websphere
• /opt/TivTSM/radius/bin/start_radius.ksh
• /opt/TivTSM/radius/bin/reload_radius.ksh
• /opt/TivTSM/radius/conf/radius-acct.cf
• /opt/TivTSM/radius/conf/radius-auth.cf

Change the five directory names and variables in Table 5 to the ones
listed in the right-hand column of the table.

Table 5. Update the following directory names

5. On the local machine, run the following commands:

export DISPLAY=:0.0
xhost +

The following message should be displayed:

Access control should be disabled. Clients can connect from any host.

If you see the following message:

1346-217 xhost: must be on local machine to enable or disable access
control

an error has occurred and you must correct the xhost issues before you
continue.

6. Run the TPSM Oracle database integration. This script creates schema
owner user, installs the database software, configures the database
environment, and sets up the Subscription Manager database. The
installation tasks are:

Before After

/usr/jdk_base /usr/java

/usr/TivTSM /opt/TivTSM

/usr/netscape /opt/netscape

/var/adm/logs /var/adm/log

LIBPATH LD_LIBRARY_PATH
Chapter 3. Installation and configuration 73

a. Insert the Oracle 8 installation CD into the CD-ROM drive. The
database integration program requires you to mount the Oracle 8
installation CD on /cdrom/oracle/.

b. Change the current directory to /opt/TivTSM/install/db/oracle, and run
the following commands to set the system environment:

./TSMOracle8i

Follow the instructions displayed by the program. It may take an hour or
more because it will install the Oracle database system, create the
database schema, and perform other configuration tasks.

For detailed TPSM database installation tasks, see Tivoli Internet and
Personalized Services Manager: Planning and Installation. Also, see your
database product’s documentation for system prerequisites and preparation.

3.3.2.2 TPSM server installation
After you have installed the TPSM database, you can set up the TPSM
server. First, you must install runtime support software. Then, install
Subscription Manager and Device Manager respectively. These installation
instructions assume an AIX version of the installation.

Installing runtime support software
First, install the AIX4.3.3 operating system. TPSM 1.1 requires AIX PTF2 and
some AIX support software. TPSM 1.1 also requires Java_dev2.rte 1.2.2.8,
Web server and WebSphere Application Server 3.5 Standard Edition.
However, Java_dev2.rte and IBM HTTP Server 1.3.12 will be installed
together with WAS v3.5, because the installer is designed to perform the
installation for them.

In summary, install the runtime support software as explained in the following
steps. You can find detailed information on the installation instructions in the
documentation for each product.

1. Install IBM AIX4.3.3.

2. Install AIX PTF2.

3. Install the following AIX support software if they are not currently installed.
All of them are included in the AIX product CD.

- X11.adt 4.3.3.0
- X11.base.lib
- X11.base.rte
- AIX smitty
74 Tivoli Personalized Services Manager Device Manager 1.1

4. Install WebSphere Application Server 3.5 Standard Edition. Be sure to
choose the following options. This also installs Java_dev2.rte and IBM
HTTP Server 1.3.12.

a. On the Install Options panel, choose Custom Installation.

b. On the Choose Application Server Components panel, select IBM
HTTP Server.

c. On the Choose Application Server Components panel, select IBM
HTTP Server plug-in.

d. On the Database Options panel, select InstantDB.

Installing TPSM
After you install the runtime support software, install the Subscription
Manager server. Detailed installation tasks are described in Tivoli Internet
and Personalized Services Manager: Planning and Installation. After you
install Subscription Manager, install Device Manager as explained in the
following steps. Please note that no installation logs are created by the DMS
installer. We recommend that you redirect the standard output to a file.

1. Insert the product CD into the CD-ROM drive, and change the current
directory to the CD-ROM root. The Device Manager installation script,
dms_install.sh, should be there.

2. Run the dms_install.sh script. You are asked to type the path of the JDBC
driver. Since this Device Manager installation is for an AIX machine and
the database system is Oracle, the path to type here is
/usr/lpp/TivDMS/doc/classes12_01.zip. After the installation completes,
copy the JDBC driver to the path above.

The path you should specify is:

- AIX + DB2 UDB: /usr/lpp/TivDMS/doc/db2java.zip

- AIX + Oracle: /usr/lpp/TivDMS/doc/classes12_01.zip

- Solaris + DB2 UDB: /opt/TivDMS/doc/db2java.zip

- Solaris + Oracle: /opt/TivDMS/doc/classes12_01.zip

Figure 31 on page 76 shows an example of a screen from the Device
Manager installation.
Chapter 3. Installation and configuration 75

Figure 31. Example screen of Device Manager installation

3. Enter the following information as shown in Figure 32 . Since The TPSM
Subscription Manager database installation scripts create the same
database entries as prompted here by default, you can simply press Enter
to accept the default settings for the database.

- The host name of the database machine
- DB user ID
- DB user’s password
- DB connect port number
- DB connect name

Figure 32. Default settings for the TPSM database

4. You can confirm your previous input, as shown in Figure 33. If you made a
mistake, you can reply with an “n”, and return to the previous screen.

aix2000[/tmp/dms]#./dms _install.sh

--

The Oracle8i JDBC thin-client driver for JDK 1.2.x (classes12_01.zip) OR
the DB/2 UDB JDBC thin-client driver for JDK 1.2.x (db2java.zip) is required,
and must exist in the /usr/lpp/TivDMS/doc directory after installation.

--

Enter the path and filename of JDBC driver: /usr/lpp/TivDMS/doc/classes12_01.zip

>>> JDBC driver /usr/lpp/TivDMS/doc/classes12_01.zip was not found !!!

The Oracle8i JDBC thin-client driver (classes12_01.zip).
The DB/2 UDB JDBC thin-client driver (db2java.zip).
One of the above is required and must be copied to the
/usr/lpp/TivDMS/doc directory after installation.

===
Enter the hostname of the machine that the Database was installed on: sol2000
Enter DB user ID (default use ID = stage_user): (press Enter)
DB user ID is stage_user
Enter DB password (default password = oracle): (press Enter)
DB password is oracle
Enter DB connect port number (default port number = 1521): (press Enter)
DB connect port is 1521
Enter DB connect name (default DB name = ispb) : (press Enter)
DB name is ispb
--
76 Tivoli Personalized Services Manager Device Manager 1.1

Figure 33. Data entry confirmation screen

5. Specify the port number used by the Device Manager Server servlet as
shown in Figure 34. In some cases, this value is 80, but if you only use an
SSL connection, specify 443 as the port number.

Figure 34. DMS servlet port number specification

6. Select the authentication method for administrators. As shown in Figure 35
on page 78, choose TPSM authentication (1) if you have not developed
the other authentication application to meet the Device Manager
requirements for the authentication application. This method can also be
changed later.

Next, specify the authentication profile. If you have not specially created
the profile for administrators, simply press Enter and accept the default.
The profile used for the administrator authentication can be changed later.

The following data will be used in Transaction.properties file:

DB hostname: sol2000
DB user ID: stage_user
DB password: oracle
DB connect port: 1521
DB name: ispb
--

Are they correct (y/n)? y

===
Specify the port number used by Device Manager Server Servlet
(default port number = 80): (press Enter)

Port number is 80

Chapter 3. Installation and configuration 77

Figure 35. Console authentication method specification panel

7. You can confirm your input as shown in Figure 36. If you made a mistake,
you can reply with an “n” and return to the previous screen.

Figure 36. Authentication method confirmation panel

8. Once all the information has been entered, the installation script starts
copying the files.

9. The message shown in Figure 37 is displayed, and the installation is
complete.

===
Configuration of device classes needs to be done only once to configure
the database tables !!!
If you have the Database JDBC driver /usr/lpp/TivDMS/doc/classes12_01.zip
directory, you can issue the following command to configure the device classes
after installation: /usr/lpp/TivDMS/bin/dms_addplugin.sh
===
Select one of the following Console authentication methods to be used:

1) Tivoli Personalized Services Manager authentication
2) Other authentication
Enter 1 or 2: 1
You chose -> Tivoli Personalized Services Manager authentication
Enter authentication profile name (default profile name = Device Admin):
(press Enter)

The following data will be used for Console administrator authentication:

Authentication: Tivoli Personalized Services Manager
Profile name: Device Admin

Correct (y/n)? y
78 Tivoli Personalized Services Manager Device Manager 1.1

Figure 37. TPSM installation complete panel

10.Copy the JDBC driver to the DMS doc path /usr/lpp/TivDMS/doc (AIX) or
/opt/TivDMS/doc (Solaris).

Since this configuration uses an AIX system as the Device Manager and
Oracle 8.1.5 for the database system, copy the Oracle8i JDBC driver
classes12_01.zip to the /usr/lpp/TivDMS/doc path.

3.3.2.3 Creating Device Manager data tables
When the TPSM database integration has been installed to the database
server, Device Manager data tables can be created. However, this step can
be performed on the database server after Device Manager has been
installed. The Device Manager database installation scripts are provided in
the product path /usr/lpp/TivDMS/bin (AIX) or /opt/TivDMS/bin (Solaris), which
are created in the sequence of Device Manager installation. There are six
script files for the Solaris version of DM database:

• create_DMS_ora.sql
• createDMSSeqs_ora.sql
• createDMSSyns_ora.sql
• createDMSTables_ora.sql
• createDMSTriggers_ora.sql
• createDMSViews_ora.sql

If you use DB2 UDB as the TPSM database system, the following five scripts
are used:

• create_DMS_db2.sql
• createDMSSyns_db2.sql

Name Level Part Event Result

TivDMS.base 1.1.0.0 USR APPLY SUCCESS

>>> The JDBC driver is not in the /usr/lpp/TivDMS/doc directory !!!

WARNING: The Oracle8i or DB2 JDBC thin-client driver for the specified JDK
is required and must be copied to the /usr/lpp/TivDMS/doc directory.

--

If you have the Oracle8i or DB2 JDBC driver in the /usr/lpp/TivDMS/doc
directory, you can issue the following command to configure the device classes:

/usr/lpp/TivDMS/bin/dms_addplugin.sh
#

Chapter 3. Installation and configuration 79

• createDMSTables_db2.sql
• createDMSTriggers_db2.sql
• createDMSViews_db2.sql

1. Copy the SQL scripts to the database server from the Device Manager
server. These scripts assume that the following Device Manager default
settings are used:

- Database schema user: stage_user
- Tablespace name: ISPB_DATA
- Database schema owner: stage_master

If you are using other names than those above, edit the SQL scripts to
meet your system environment before you execute them.

2. Login to the database server as a user who has appropriate permission to
run sqlplus.

3. Change the current directory to the path in which the SQL scripts exist.

4. Run sqlplus. Login as stage_user, who is the owner of the Device Manager
database.

5. Execute the following script. This script calls others and creates all the
tables and other database elements.

sqlplus> @create_DMS_ora

This script calls all the other scripts. These scripts drop existing tables or
other elements first, then creates new ones. All of these attempts are
logged to the create_DMS_ora.log file.

6. Exit sqlplus.

Next, register device plug-in classes to the database. This procedure is
explained in 3.4.1, “Registering the device plug-in classes” on page 81.

3.4 Configuration

After you install Device Manager, register the device classes and job classes
to the Device Manager database, and configure the WebSphere Application
Server.

If you install the Device Manager from Everyplace Suite installer, it will
perform most of the configuration on WAS for Device Manager. Perform the
configuration on WAS, set only one parameter, and register the classes in the
Everyplace Suite deployment.
80 Tivoli Personalized Services Manager Device Manager 1.1

In summary, for a non-Everyplace Suite environment, you need to complete
the following required configuration tasks:

• Register the device plug-in classes. Follow the instructions in 3.4.1,
“Registering the device plug-in classes” on page 81.

• Configure WAS for Device Manager. Follow the instructions in 3.4.2,
“Configuration on WebSphere Application Server” on page 87.

In an Everyplace Suite environment, you need to complete the following
required configuration tasks:

• Register the device plug-in classes. Follow the instructions in 3.4.1,
“Registering the device plug-in classes” on page 81.

• If you use Everyplace Authentication Server in the Everyplace Suite
environment, set a authProxyDmsUrl parameter for the
DeviceManagementServer servlet on the WAS administrator console. The
actual configuration instructions are in 3.4.2, “Configuration on
WebSphere Application Server” on page 87.

The following section explains how to register the classes, configure WAS for
Device Manager, and start and shut down the DM server.

3.4.1 Registering the device plug-in classes
Before you start the Device Manager server, you need to configure the
Device Manager database. To configure the database, build the database
tables and register the device classes and job classes for specific device
classes to the Device Manager database. This section describes the tasks
needed to register the classes to the database. How to create the tables in
TPSM database is described in 3.3.2.3, “Creating Device Manager data
tables” on page 79.

There are two ways to register the classes to the database. One is to use the
dms_addplugin.sh script, which provides interactive installation. The other is to
use the devclasscfg.sh and jobclasscfg.sh scripts. By creating a shell script
file including the scripts, you can execute unattended plug-in installation.

3.4.1.1 Registering using dms_addplugin.sh
Device Manager provides the dms_addplugin.sh script file, which is located in
the path /usr/lpp/TivDMS/bin (AIX) or /opt/TivDMS/bin (Solaris). This script file
performs the registration of built-in device classes and job classes
interactively. Using this script, you do not have to be concerned with the
detailed options actually required for the registration. For example, it will
register the set of device parameters to the database.
Chapter 3. Installation and configuration 81

You should gather the following information before you start the script:

• Device plug-ins you want to register.

• The device enrollment URL for each device plug-in, if possible. This can
be registered later using the Device Manager console.

To register device plug-ins with dms_addplugin.sh, complete the following
steps. This case assumes that only the Palm device plug-in is registered.

1. Before you start dms_addplugin.sh, edit the Transaction.properties file
located in /usr/lpp/TivDMS/Class (AIX) or /opt/TivDMS/Class (Solaris). As
shown in Figure 38, change the words after the “@” character in the
second line to the database server name (shown in bold italic), the value
of JDBC.dbUser in the third line to the schema user, and the value of
JDBC.dbPassword in the forth line to the schema user’s password.

Figure 38. Editing the Transaction.properties file

2. The dms_addplugin.sh script is placed in the path /usr/lpp/TivDMS/bin (AIX)
or /opt/TivDMS/bin (Solaris). Change the directory and issue the following
command as the root:

./dms_addplugin.sh

3. A list of device plug-ins is displayed, and you are prompted to enter the
number of the device plug-in that you want to configure as shown in Figure
39.

JDBC.dbDriver=oracle.jdbc.driver.OracleDriver
JDBC.dbConnect=jdbc:oracle:thin:@sol2000:1521:ispb
JDBC.dbUser=stage_user
JDBC.dbPassword=oracle

MinDBConnections=1
MaxDBConnections=200
Thread_Control=true
Queue_Length=-1

enableRMI=false
enabletrace=false
82 Tivoli Personalized Services Manager Device Manager 1.1

Figure 39. Device plug-in registration selection panel

4. Type 1 to register a Palm plug-in.

Figure 39 also shows a prompt, which asks you to enter the device
enrollment URL, if known.

5. The panel shown in Figure 40 is displayed. If you want to register other
plug-ins, type the corresponding number. Again, you are prompted for the
enrollment URL for the plug-in.

Figure 40. The device plug-in selection panel

6. If you have finished selecting all the plug-ins you want to register, enter 0
in the prompt to exit, and add the classes to the Device Manager
database.

aix2000[/usr/lpp/TivDMS/bin]#./dms _addplugin.sh

===
Configuration of device classes needs to be done only once to configure
the database tables !!!
The following device classes are available:

1) Palm plug-in
2) Aero8000 plug-in
3) Windows CE plug-in
4) NetVista Internet Appliance plug-in
5) PvC client stack plug-in

What device class wuld you like to configure in the database?
Enter number or 0 if done: 1
You chose -> Palm plug-in
Enter device enrollment URL if known (or press Enter):
http://aix2000.wes.ibm.com:18080/enroll/DeviceEnrollServlet

Device Class: PalmOS
Enrollment URL: http://aix2000.wes.ibm.com:18080/enroll/DeviceEnrollServlet

The following device classes are available:

1) Palm plug-in
2) Aero8000 plug-in
3) Windows CE plug-in
4) NetVista Internet Appliance plug-in
5) PvC client stack plug-in

What device class would you like to configure in the database?
Enter number or 0 if done:
Chapter 3. Installation and configuration 83

7. Registration starts. You can confirm the installation results by checking the
log files created in the /tmp directory as shown in Figure 41. They have
names such as DMSplugin.plugin_name.log.

Figure 41. Device plug-in registration completion panel

3.4.1.2 Registering by using devclasscfg.sh and jobclasscfg.sh
Device Manager provides devclasscfg.sh and jobclasscfg.sh scripts, which
are located in /usr/lpp/TivDMS/bin (AIX) or /opt/TivDMS/bin (Solaris). They
perform general management tasks for device classes and job classes on the
server.

If you want to register device plug-ins using an unattended method, you need
to create a shell script file that includes the devclasscfg.sh and jobclasscfg.sh

command lines, and place it in the appropriate path. Figure 42 shows a
sample script file named pluginconfig.sh, which assumes the current
directory is /usr/lpp/TivDMS/bin (AIX) or /opt/TivDMS/bin (Solaris). If you want
to place the shell script file in the other directory, be sure to set the
environment or change the command line so that they can be run properly.

The syntax and more details about the use of devclasscfg.sh and
jobclasscfg.sh are described in Chapter 4, “Administration” on page 109.

The following device classes are available:

1) Palm plug-in
2) Aero8000 plug-in
3) Windows CE plug-in
4) NetVista Internet Appliance plug-in
5) PvC client stack plug-in
What device class would you like to configure in the database?
Enter number or 0 if done: 0
You chose -> Exit
==

Adding Device Class Palm to Device Manager DEVICE_CLASS table
DYM4031I Device class -add command completed successfully
DYM4032I Job class -add command completed successfully
DYM4032I Job class -add command completed successfully
--
Check /tmp/DMSplugin.PalmOS.log for more information.
84 Tivoli Personalized Services Manager Device Manager 1.1

Figure 42. Sample pluginconfig.sh script file (Part 1 of 2)

#!/bin/ksh
#

./setpath.sh
###
############### pluginconfig.sh #############
###

###
############# Aero 8000 plug-in #############
###

register Aero 8000 device class
./devclasscfg.sh -add Aero8000 -class com.tivoli.dms.plugin.win.wince.hpcpro
.aero8000.Aero8000
-enroll http://aix2000.wes.ibm.com:18080/enroll/DeviceEnrollServlet
-template Aero8000.template

register software distribution job class for Aero8000 plug-in
./jobclasscfg.sh -add -type SW_DIST -javaclass
com.tivoli.dms.plugin.base.rdmi.RdmiSoftwareDistributionJob
-deviceclass Aero8000

register device configuration job class for Aero8000 plug-in
./jobclasscfg.sh -add -type DEVICE_CFG -javaclass
com.tivoli.dms.plugin.win.wince.hpcpro.aero8000.Aero8000DeviceConfigurationJob
-deviceclass Aero8000

###
############# Windows CE plug-in ############
###

register WindowsCE device class
./devclasscfg.sh -add Wince -class com.tivoli.dms.plugin.win.wince.Wince
-enroll http://aix2000.wes.ibm.com:18080/enroll/DeviceEnrollServlet
-template Wince.template

register software distribution job class for WindowsCE plug-in
./jobclasscfg.sh -add -type SW_DIST -javaclass
com.tivoli.dms.plugin.base.rdmi.RdmiSoftwareDistributionJob
-deviceclass Wince

register device configuration job class for WindowsCE plug-in
./jobclasscfg.sh -add -type DEVICE_CFG -javaclass
com.tivoli.dms.plugin.base.rdmi.RdmiDeviceConfigurationJob
-deviceclass Wince
to be continued to the next page
Chapter 3. Installation and configuration 85

Figure 43. Sample pluginconfig.sh script file (Part 2 of 2)

Complete the following instructions to register the classes using
devclasscfg.sh and jobclasscfg.sh:

1. Before you run the pluginconfig.sh script, edit the Transaction.properties
file located in /usr/lpp/TivDMS/Class (AIX) or /opt/TivDMS/Class (Solaris).
Change the words after the “@” character in the second line to the
database server name (shown in bold italic), the value of JDBC.dbUser in
the third line to the schema user, and the value of JDBC.dbPassword in
the fourth line to the schema user’s password.

continued from the previous page

###
############### Palm plug-in ################
###

register Palm device class
./devclasscfg.sh -add Palm -class com.tivoli.dms.plugin.palm.Palm -enroll
http://aix2000.wes.ibm.com:18080/enroll/DeviceEnrollServlet
-template Palm.template

register software distribution job class for Palm plug-in
./jobclasscfg.sh -add -type SW_DIST -javaclass
com.tivoli.dms.plugin.palm.PalmSoftwareDistributionJob -deviceclass Palm

register device configuration job class for Palm plug-in
./jobclasscfg.sh -add -type DEVICE_CFG -javaclass
com.tivoli.dms.plugin.palm.PalmDeviceConfigurationJob -deviceclass Palm

###
################ IAD plug-in ################
###

register IAD device class
./devclasscfg.sh -add Iad -class com.tivoli.dms.plugin.pvc.iad.Iad -enroll
http://aix2000.wes.ibm.com:18080/enroll/DeviceEnrollServlet
-template Iad.template

register software distribution job class for IAD plug-in
./jobclasscfg.sh -add -type SW_DIST -javaclass
com.tivoli.dms.plugin.base.rdmi.RdmiSoftwareDistributionJob -deviceclass Iad

register device configuration job class for IAD plug-in
./jobclasscfg.sh -add -type DEVICE_CFG -javaclass
com.tivoli.dms.plugin.base.rdmi.RdmiDeviceConfigurationJob -deviceclass Iad

register restpage management job class for IAD plug-in
./jobclasscfg.sh -add -type RESTPAGE_MGMT -javaclass
com.tivoli.dms.plugin.pvc.iad.IadSampleRestPageJob -deviceclass Iad
86 Tivoli Personalized Services Manager Device Manager 1.1

Figure 44. Editing the Transaction.properties file

2. Create a shell script file to register the classes. The previous sample script
can be used as a guide.

3. Run the script.

3.4.2 Configuration on WebSphere Application Server
After you install DMS, you should configure the application server on
WebSphere Application Server. Follow these steps:

1. Open the administration client console of WebSphere Application Server
using the following instructions:

a. As shown in Figure 45 on page 88, change the directory to
/usr/WebSphere/AppServer/bin (AIX) or /opt/WebSphere/AppServer/bin
(Solaris).

b. To launch WebSphere, issue the command:

./startupServer.sh &

This will take several minutes to come up.

c. To see the log file of WAS, issue the command:

tail -f /usr/IBMWebAS/logs/tracefile

d. Wait for the message “A WebSphere Administration server open for
e-business” to appear. Then, exit the tail command by pressing Ctl + c.

e. To launch the administration GUI, issue the command:

./adminclient.sh &

This will take several minutes to come up.

JDBC.dbDriver=oracle.jdbc.driver.OracleDriver
JDBC.dbConnect=jdbc:oracle:thin:@sol2000:1521:ispb
JDBC.dbUser=stage_user
JDBC.dbPassword=oracle

MinDBConnections=1
MaxDBConnections=200
Thread_Control=true
Queue_Length=-1

enableRMI=false
enabletrace=false
Chapter 3. Installation and configuration 87

Figure 45. Configuration on WebSphere Application Server panel

2. Expand the tree node WebSphere Administrative Domain.

3. Click default_host (shown in Figure 46.)

a. On the right pane, click the Advanced tab.

b. Add alias <your fully qualified server>:80.

If you want, also add alias <IP address of server>:80 and <hostname>:80.

c. Add an entry to the MIME table parameters:

• Extention: jar
• MIME Type: java/application-archive

d. Click Apply.

aix2000[/]#cd /usr/WebSphere/AppServer/bin
aix2000[/usr/WebSphere/AppServer/bin]#./startupServer.sh &
[1] 24536
aix2000[/usr/WebSphere/AppServer/bin]#tail -f /usr/WebSphere/AppServer
/logs/tracefile
[00.12.01 15:04:39:902 JST] 980101ae ActiveServerP A Stopped server:
"DMS_AppServer" (pid "19118")
InstantDB - Version 3.13
Copyright (c) 1997-2000 Instant Computer Solutions Ltd.
[00.12.01 15:08:13:903 JST] a2b3c09e AdminServer A Initializing WebSphere
Administration server
[00.12.01 15:08:13:917 JST] 710c095 DrAdminServer A DrAdmin available
on port 38,152
[00.12.01 15:09:03:932 JST] a2b3c09e AdminServer A WebSphere
Administration server open for e-business
^C
aix2000[/usr/WebSphere/AppServer/bin]#./adminclient.sh
No remote host or port argument specified. This host and port 900 will
be used.
88 Tivoli Personalized Services Manager Device Manager 1.1

Figure 46. Advanced setting for default_host

The MIME type setting for jar files is required so that Netscape Navigator
browsers can correctly handle downloading the Device Manager console
files.

4. Create the application server.

a. Right-click <your hostname>. Select Create -> Application Server
from the list.
Chapter 3. Installation and configuration 89

Figure 47. Create Application Server window

b. Specify the following attributes for the Create Application Server
window.

• name: DMS_AppServer

• command line arguments:

-classpath
/usr/WebSphere/AppServer/hosts/default_host/dmserver/servlets:
/usr/lpp/TivDMS/doc/dmapi.jar:
/usr/lpp/TivDMS/doc/log.jar:
/usr/lpp/TivDMS/doc/logging.jar:
/usr/lpp/TivDMS/doc/util.jar:
/usr/lpp/TivDMS/doc/iTk_core.jar:
/usr/lpp/TivDMS/doc/classes12_01.zip:
/usr/lpp/TivDMS/Class/baseplugin.jar:
/usr/lpp/TivDMS/Class/palmplugin.jar:
/usr/lpp/TivDMS/Class/iadplugin.jar:
/usr/lpp/TivDMS/Class/aero8000plugin.jar:
/usr/lpp/TivDMS/Class/win32plugin.jar:

If you use the Sun Solaris platform, specify the following command line
arguments:

-classpath
/opt/WebSphere/AppServer/hosts/default_host/dmserver/servlets:
/opt/TivDMS/doc/dmapi.jar:
/opt/TivDMS/doc/log.jar:
90 Tivoli Personalized Services Manager Device Manager 1.1

/opt/TivDMS/doc/logging.jar:
/opt/TivDMS/doc/util.jar:
/opt/TivDMS/doc/iTk_core.jar:
/opt/TivDMS/doc/classes12_01.zip:
/opt/TivDMS/Class/baseplugin.jar:
/opt/TivDMS/Class/palmplugin.jar:
/opt/TivDMS/Class/iadplugin.jar:
/opt/TivDMS/Class/aero8000plugin.jar:
/opt/TivDMS/Class/winceplugin.jar

In addition, we recommend that you change the log file names. If you
only specify the name of the log files, they are placed in
/usr/WebSphere/AppServer/bin. If you want to place them in another
path, specify the whole path as
/usr/WebSphere/AppServer/logs/DMS_stdout.log

c. Click OK.

5. Create the DMS servlet engine using the following instructions:

a. Right-click DMS_AppServer. Select Create -> Servlet Engine from
the list.

b. In the General tab, type DMS_ServletEngine for the name of the servlet
engine.

c. Click the Advanced tab.

d. Click Settings. Add ibmoselink8 for the Queue Name.

e. Click OK.

Figure 48. Advanced setting for Servlet Engine

6. Create the Web application.

a. Right-click DMS_ServletEngine in the left pane. Select Create -> Web
Application from the list.
Chapter 3. Installation and configuration 91

Figure 49. Creating a Web application

b. In the General tab, specify the following attributes:

• name: dmserver
• web path: /dmserver

c. Click OK.

7. Create the File Serving Enabler, using the following instructions:

a. On the menu bar, select Console->Task.

b. Select Add a servlet.

Figure 50. Selecting Add a Servlet

c. In the first window, select No and click Next.

d. Expand all the nodes and select dmserver. Click Next.

e. Select Create File-Serving Servlet.

f. Click Finish.
92 Tivoli Personalized Services Manager Device Manager 1.1

8. Create Device Manager servlet.

a. Right-click dmserver in the left pane. Select Create -> Servlet.
Specify the following attributes for the General tab.

• name: DeviceManagementServerServlet
• class: com.tivoli.dms.dmserver.DeviceManagementServerServlet
• Web path: /dmserver/DeviceManagementServerServlet

b. Click the Advanced tab.

c. Enter the following Init parameters:

• fullyQualifiedHostNameOfServer: for example,
aix2000.wes.ibm.com

• portNumberOfServer: 80
• EnableTrace: false
• EnableAPITrace: false
• LogDebugToPrintStream: false

d. In an Everyplace Suite environment, using the Everyplace
Authentication Server, set the following Init parameter in addition to the
previous five parameters. The value for this parameter will differ
according to the setting of Authentication Server. For more detailed
information on this parameter setting, refer to Tivoli Internet and
Personalized Services Manager: Planning and Installation.

authProxyDmsUrl: http://auth.proxy/DMS/

e. For Load at Startup, select True.

f. Click OK.
Chapter 3. Installation and configuration 93

Figure 51. Advanced setting for DeviceManagementServerServlet

9. Create the Palm Servlet (optional).

a. Right-click dmserver. Select Create -> Servlet. Specify the following
attributes for the General tab.

• name: PalmServlet
• class: com.tivoli.dms.plugin.palm.PalmServlet
• web path: /dmserver/PalmServlet

b. Click the Advanced tab.

c. For Load at Startup, select True.

d. Click OK.

10.Create Aero 8000 Servlet (optional).

a. Right-click dmserver.

b. Select Create -> Servlet. Specify the following attributes for the
General tab.

• name: Aero8000Servlet

• class:
com.tivoli.dms.plugin.win.wince.hpcpro.aero8000.Aero8000Servlet

• web path: /dmserver/Aero8000Servlet

c. Click the Advanced tab.
94 Tivoli Personalized Services Manager Device Manager 1.1

d. For Load at Startup, select True.

e. Click OK.

11.Create a Windows CE Servlet (optional).

a. Right-click dmserver. Click Create -> Servlet. Specify the following
attributes for the General tab:

• name: WinceServlet
• class: com.tivoli.dms.plugin.win.wince.WinceServlet
• web path: /dmserver/WinceServlet

b. Click the Advanced tab.

c. For Load at Startup, select True.

d. Click OK.

12.Create a PvC Client Stack Servlet (optional).

a. Right-click dmserver in the left pane.

b. Click Create -> Servlet. Specify the following attributes for the General
tab:

• name: IadServlet
• class: com.tivoli.dms.plugin.pvc.iad.IadServlet
• web path: /dmserver/IadServlet

c. Click the Advanced tab.

d. For Load at Startup, select True.

e. Click OK.

Now you can start the Device Manager server.

13.Start the Web server by issuing the following command:

/usr/HTTPServer/bin/apachectl start

14.In the WebSphere Administration GUI, select the node DMS_AppServer
in the left pane.

15.On the menu bar, click the play button (the triangle on its side.) A
message stating that the application server was successfully started is
displayed.

The status window should say “DMS_AppServer started successfully”, and
there should be no errors in the log files that are stored in the
/usr/WebSphere/AppServer/bin/stdout.txt and stderr.txt paths by default.
Chapter 3. Installation and configuration 95

To access any of the DMS HTML including the Device Manager console
installation program, WebSphere must be running and the dmserver Web
Application must be active.

The next section describes the whole sequence of starting a DM server.

3.4.3 Starting the Device Manager server
Now that all the configuration tasks have been performed, you can start the
Device Manager server.

3.4.3.1 Checklist
Before starting the Device Manager server, check the following factors. This
list is useful also for troubleshooting:

• TPSM database

- Are the tables are properly created?
- Are all the required device classes and job classes registered?
- Is the database and the listener properly started?

• Device Manager setting

- Is the configuration on WAS correct?

- Are properties files properly set? Check the following files. Section
3.4.5, “Properties files” on page 99, offers detailed information on these
properties files.

• Transaction.properties
• SubscriptionMgr.properties
• authentication.properties
• tsmauthentication.properties

Tracing is off by default, but can be turned on by changing the following two
parameters in the Advanced tab of DeviceManagementServerServlet:

• EnableTrace: true
• LogDebugToPrintStream: true

If tracing is on, logs are stored in DMS_stdout.log and DMS_stderr.log. The
size of the log files can increase to a great extent. Check them often.

Turning on the trace
96 Tivoli Personalized Services Manager Device Manager 1.1

• Subscription Manager server

Is the Subscription Manager server properly up and running before
starting up the Device Manager server?

3.4.3.2 Starting the server
Before you start the Device Manager server, start the following servers in the
order specified. These instructions assume that Device Manager and
Subscription Manager are on the same machine.

1. On the TPSM database server, start the database instance and the
listener.

2. On the TPSM server, start the HTTP server daemon.

3. Start WebSphere Application Server and its administration client on the
TPSM server.

4. Start Subscription Manager services from the WAS administration client
window.

Next, you can start the Device Manager server, using the following
instructions:

5. In the WAS administration client window, select the DMS_AppServer
node in the left pane.

6. On the menu bar, click the play button (the triangle on its side.) A
message stating that the application was successfully started is displayed.

You can confirm whether the Device Manager server has successfully started
by accessing the URL:

http://dmserver_hostname/dmserver/Build.html

If you see the page shown in Figure 52 on page 98, this means
FileServingEnabler of the Device Manager server started successfully.
Chapter 3. Installation and configuration 97

Figure 52. Build number indicating the server started successfully

You can see start up logs in the file DMS_stdout.log and DMS_stderr.log. The
paths and the file names are system dependent because these names are
specified as the configuration parameters of
DeviceManagementServerServlet. You can confirm the path and the name of
these log files in the WAS administration client console.

3.4.3.3 Stopping the Device Manager server
You can stop the Device Manager server by using the following instructions:

1. Stop the Device Manager server.

To stop the Device Manager server, select the DMS_AppServer
application server in WAS administration client’s left pane. Then click the
Stop button (the black square button in the window.)

If you are going to shut down the system, use the following instructions in
addition to stopping the Device Manager server.

2. Stop WebSphere Application Server.

If other Subscription Manager servers are on the same machine, stop all
the application servers on the system. Then, select the icon hostname in
the left pane of the WAS administration client and click the Stop button
(the black square in the window.) This action stops all the WAS daemons
and closes the administration client window. After the window is closed,
confirm that there are no Java processes left on the system by issuing the
following command:

ps -ef grep java
98 Tivoli Personalized Services Manager Device Manager 1.1

3. Stop the HTTP server and shut down the system.

3.4.4 Configuration differences
This section describes the configuration differences between Device Manager
in an Everyplace Suite environment and in a non-Everyplace Suite
environment.

From the viewpoint of tasks you must perform, if you deploy Device Manager
in a non-Everyplace Suite environment, you should configure the WAS for
Device Manager server manually. In Everyplace Suite, Everyplace Suite
installer performs the installation and almost all configuration tasks on WAS
automatically.

However, settings in WebSphere Application Server have only one difference
between the two installations. It is the parameter of
DeviceManagementServerServlet, named AuthProxyDmsUrl. In an Everyplace
Suite environment, this parameter is the only parameter to be set manually,
and required so that Authentication Server can be properly passed. In a
non-Everyplace Suite environment, the AuthProxyDmsUrl parameter is not
required.

3.4.5 Properties files
Device Manager controls its authentication configuration connection to the
Device Manager database by using some configuration files. According to
your system requirements, edit these files before you start up the Device
Manager server. Table 6 contains the list of the key properties files.

Table 6. Properties files

You can manually edit these files if you want to change the database server
or the administrator’s profile or for other reasons.

File name Description

Transaction.properties Contains the information to connect to the Device
Manager database server

SubscriptionMgr.properties Contains the class name of the Subscription Manager,
which is used as the enrollment application

authentication.properties Contains the name of the class that is used to
authenticate the DM console administrator

tsmauthentication.properties Contains the name of the profile that is used as the DM
console administrator profile
Chapter 3. Installation and configuration 99

3.4.5.1 The Transaction.properties file
This file is in the path /usr/lpp/TivDMS/Class (AIX) or /opt/TivDMS/Class
(Solaris) and contains critical database connectivity information. After the
Device Manager installation, if you want to change the database server, or in
case of trouble, you should confirm or update this file.

If you are using Oracle8i as the TPSM database, the file is in a format similar
to the format shown in Figure 53. The items you need to check appear in bold
italic.

Figure 53. The Transaction.properties file using Oralcle8i as the TPSM database

If you are using DB2 Universal Database as the TPSM database, the file is in
a format similar to the format shown in Figure 54. The items you need to
check appear in bold italic.

Figure 54. The Transaction.properties file using DB2 UDB as the TPSM database

To improve Device Manager performance, set the database connections
higher in Transaction.properties. By default, MinDBConnections is set to 1,
and MaxDBConnections is set to 200.

It is more efficient to open a larger number of database connections at startup
rather than later, during run time. Later, opening database connections slows

JDBC.dbDriver=oracle.jdbc.driver.OracleDriver
JDBC.dbConnect=jdbc:oracle:thin:@host_name:port_number:database_name
JDBC.dbUser=user_ID
JDBC.dbPassword=password
MaxDBConnections=200
MinDBConnections=1
EnableRMI=false
enabletrace=false
Thread_Control=true
Queue_Length=-1

JDBC.dbDriver=COM.ibm.db2.jdbc.net.DB2Driver
JDBC.dbConnect=jdbc:db2://host_name:port_number/database_name
JDBC.dbUser=user_ID
JDBC.dbPassword=password
MaxDBConnections=200
MinDBConnections=1
EnableRMI=false
enabletrace=false
Thread_Control=true
Queue_Length=-1
100 Tivoli Personalized Services Manager Device Manager 1.1

server capabilities to process requests, which affects device clients, and
therefore, subscribers.

For a thousand concurrent device clients, 70 to 100 connections being used
is typical. Use this as a guideline to set the MinDBConnections.
MaxDBConnections should be larger, but not more that the system can
realistically handle. The recommended maximum is 256 or 512.

3.4.5.2 SubscriptionMgr.properties
This file contains the information about Subscription Manager that is used as
the device enrollment application by Device Manager. This file contains the
class name of the Subscription Manager and some additional information as
shown in Figure 55.

Figure 55. SubscriptoinMgr.properties file

The class name of the Subscription Manager in TPSM is
com.tivoli.dms.dmapi.tsm.TSMSubscriptionMgr. This is the default setting.
However, you can use any other subscription application, providing that the
following functions are included:

• The subscription management product must provide an enrollment
application that registers new devices in the Device Manager database
upon enrollment.

• The enrollment application must ensure that each registered device has
only one owner, the subscriber, associated with it.

If you are using DB2 Universal Database as the relational database,
increase the Maximum Locks DB2 configuration parameter from 10 (which
is the default value) to 20.

DB2 specific settings

#---
5698-PSM
(C) Copyright Tivoli Systems Inc., an IBM Company 2000. All rights reserved.
#
The source code for this program is not published or otherwise
divested of its trade secrets, irrespective of what has been
deposited with the U.S. Copyright Office.
#---
CLASS_NAME=com.tivoli.dms.dmapi.tsm.TSMSubscriptionMgr
USER_UPPERCASE=true
REALM_UPPERCASE=true
OFFERING_UPPERCASE=false
Chapter 3. Installation and configuration 101

• The enrollment application must know how to interact with supported
devices to obtain the necessary enrollment information.

• The Subscription Manager must provide a Java exit that validates realm,
deal, and user information, lists valid realms and deals, and handles
errors. The exit shipped with Device Manager is called
TSMSubscriptionMgr.java, and it is customized for Tivoli Personalized
Services Manager. The SubscriptionMgr.properties file contains a pointer
to the class name for the exit.

TPSM does not have a toolkit to develop the subscription application that
satisfies the functions described above.

If you want to use a subscription management product other than TPSM,
update this file to point to the class name of the product.

Both the TPSM Subscription Manager and Device Manager use the same
database. They use their own tables, which have no relation to each other,
but they store duplicate data in both tables. Because the database is
case-sensitive, Device Manager must store and retrieve data in the same
case that Subscription Manager is using. To settle this, the
SubscriptionMgr.properties file has three keyword/value pairs:

• USER_UPPERCASE (default: true)
• REALM_UPPERCASE (default: true)
• OFFERING_UPPERCASE (default: false)

Set these values to true or false, depending on how the Subscription Manager
stores data in these fields. The value true is for uppercase data, and false is
for lowercase data.

3.4.5.3 Authentication.properties
This file contains the name of the class that is used to authenticate the
Device Manager console administrator. This is located at /opt/TivDMS/doc on
Solaris or at /usr/lpp/TivDMS/doc on AIX.

During installation, you can choose the class from two options:

• Tivoli Personalized Services Manager authentication
• Other Authentication

Use the Tivoli Personalized Services Manager authentication to give access
to a predefined group of authorized Tivoli Personalized Services Manager
administrators. This is the default authentication. If Tivoli Personalized
Services Manager authentication is specified during installation, the
102 Tivoli Personalized Services Manager Device Manager 1.1

authentication.properties file is updated with the class
com.tivoli.dms.console.security.tsm.TSMAuthentication.

The class used for TPSM authentication is located in the Device Manager
classpath. This class is specified as a keyword = value statement in the
authentication.properties file, as shown in Figure 56.

Figure 56. The authentication.properties file

Use other authentication if you or an integrator wants to write your own Java
class for some alternative authentication method, which Device Manager then
instantiates. If you specify this authentication at install time, the installation
program asks for the name of the authentication class to be instantiated. You
must then supply the name of the Java class you created. The installation
program adds this name to the authentication.properties file, for example:

authClass = com.tivoli.dms.console.security.MyAuthentication

It is up to you or the integrator to install this class on the administration client
computers that use the console – either by copying the class to each
computer or by adding it to the console.jar file that is downloaded to
administration clients when you install the console.

#---
5698-PSM
(C) Copyright Tivoli Systems Inc., an IBM Company 2000. All rights reserved.
#
The source code for this program is not published or otherwise
divested of its trade secrets, irrespective of what has been
deposited with the U.S. Copyright Office.
#---
authClass = com.tivoli.dms.console.security.tsm.TSMAuthentication
Chapter 3. Installation and configuration 103

For more information about writing and implementing your own authentication
class, see Device Manager: Developer's Guide, and Device Manager:
Administration, which are provided as DM online documents.

3.4.5.4 tsmauthentication.properties
This file specifies the profile of the Device Manager console administrator.
This is located at /opt/TivDMS/doc on Solaris or at /usr/lpp/TivDMS/doc on AIX.
If you select TPSM authentication during installation, you are also asked for
the name of a Tivoli Personalized Services Manager profile identifying a
group of authorized administrators' user IDs. The default TPSM profile name
is Device Admin. This profile sets no limit to access the Device Manager
database, so the administrator can access any of the device management
data. The file is shown in Figure 57.

Device Manager provides an authentication class for a test environment,
named com.tivoli.dms.console.security.DefaultAuthentication.

It allows successful login by only two users:

• Administrator/password
• a/pw

To switch to this, choose one of the following options:

• Choose Other during installation, and enter the class
com.tivoli.dms.console.security.DefaultAuthentication

• Edit your authentication.properties to read:
authClass = com.tivoli.dms.console.security.DefaultAuthentication

This authentication allows users to access all the data in the Device
Manager database tables. Use this only in the test phase or for
troubleshooting. This authentication class is developed just for the test
environment, in spite of its name “DefaultAuthentication”.

The default authentication class is
com.tivoli.dms.console.security.tsm.TSMAuthentication, which is called as
TPSM authentication.

authClass for test environments
104 Tivoli Personalized Services Manager Device Manager 1.1

Figure 57. The tsmauthentication.properties file

If a Device Admin profile does not already exist in Tivoli Personalized
Services Manager, you can add one using its Director Tool. For information
on how to add a new profile, see “Access Control Configuration” in Tivoli
Internet and Personalized Services Manager: Director Tool. It describes how
to set up security profiles for system administrators.

If you want to perform any access control to the database, create a profile
with Director tool and specify the profile name in this file. After you update the
file, restart the Device Manager application server to activate the change.

3.5 References

These are links to TPSM-related product documentation needed during
installation:

• Device Manager online documents

Device Manager provides following online documents:

- Tivoli Personalized Services Manager Device Manager: Planning and
Installation

- Tivoli Personalized Services Manager Device Manager: Administration

- Tivoli Personalized Services Manager Device Manager: Developer’s
Guide

- Tivoli Personalized Services Manager Device Manager: Device Plug-in
Notes

You can access them by:

- The Help menu on the Device Manager console window

- The Internet at: http://hostname/dmserver/web/en/index.htm

• Tivoli Internet and Personalized Services Manager: Programmer’s Guide

#---
5698-PSM
(C) Copyright Tivoli Systems Inc., an IBM Company 2000. All rights reserved.
#
The source code for this program is not published or otherwise
divested of its trade secrets, irrespective of what has been
deposited with the U.S. Copyright Office.
#---
profile = Device Admin
Chapter 3. Installation and configuration 105

• IBM Redbook: Introducing Tivoli Personalized Services Manager 1.1,
SG24-6031

• IBM AIX HACMP

- HACMP V4.4 publications Online documents

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/hacmp_inde
x.html#V44

The manual HACMP for AIX 4.4 Planning Guide, SC23-4277, is useful
for planning the HACMP system, which is located on the previously
mentioned Web site.

• IBM HTTP Server

- IBM Software: IBM HTTP Server Web site:

http://www.ibm.com/software/webservers/httpservers/

- IBM Redbook: IBM HTTP Server Powered by Apache on RS/6000,
SG24-5132

• IBM WebSphere Application Server

- IBM Software: WebSphere Application Server product Web site:

http://www.ibm.com/software/webservers/appserv/

The home for IBM WebSphere Application Server, see this Web site for
multiplatform information about the product.

- IBM Redbook: WebSphere Application Servers: Standard and
Advanced Editions, SG24-5460

Although this redbook focuses on the AIX and Windows NT platforms
and older version of WAS, it contains good information about the
WebSphere Application Server product in general, such as planning for
and troubleshooting WebSphere Application Server.

• Database systems

- IBM Redbook: Database Performance on AIX in DB2 UDB and Oracle
Environments, SG24-5511

• IBM Network Dispatcher

- IBM Software:

http://www.ibm.com/software/webservers/edgeserver

From the Web site, you can locate User's guide (Version 3.0 for
Multiplatforms), GC31-8496

- IBM Redbook: IBM WebSphere Performance Pack: Load
Balancing·with IBM SecureWay Network Dispatcher, SG24-5858
106 Tivoli Personalized Services Manager Device Manager 1.1

The current product name is IBM Network Dispatcher, which is a
feature of WebSphere Edge Server.

• Java resources

- Sun Microsystems Java Technology Web site:

http://java.sun.com

Sun home page for Java technology, this Web site is a valuable
resource for Java news, specifications, products, APIs, and
documentation.

- Sun JDK Web site:

http://www.sun.com/software/solaris/java/download.html

- JDBC driver (DB2 UDB)

This is included in the DB2 product.

- JDBC driver (Oracle. Registration is free and is required).

http://technet.oracle.com/software/tech/java/sqlj_jdbc/software_inde
x.htm

- General information about JDBC Web site:

http://java.sun.com/products/jdbc/
Chapter 3. Installation and configuration 107

108 Tivoli Personalized Services Manager Device Manager 1.1

Chapter 4. Administration

This chapter describes how to perform administration tasks using Device
Manager. Most administration tasks are performed from a Microsoft Windows
computer by using the Device Manager console.

4.1 Overview

There are two types of administration tasks to provide device management
support for service subscribers. Most administration tasks are performed from
Device Manager console, and some are performed from the Device Manager
server.

Device Manager server tasks are performed by keying a command from a
command line interface of the Device Manager server. You can perform the
following tasks:

• Manage device classes
• Manage job types and classes
• Change administration authentication
• Manage large numbers of jobs or devices

Detailed explanations are provided in 4.2, “Device Manager server tasks” on
page 110.

Administrators should also monitor important log files on the Device Manager
server for error and informational messages.

Device Manager console tasks are management tasks that administrators
can perform such as, manage devices, device classes, jobs, and software in
your network and display Device Manager server information. Typical console
tasks include:

• Managing devices
• Managing jobs
• Managing software

Detailed explanations for each task can be found in 4.3, “Device Manager
console tasks” on page 125.

You can install and start the Device Manager console from the Device
Manager server by locating the following Web site:

http://server_name/dmserver/DMconsole.html
© Copyright IBM Corp. 2001 109

For more information about how to install and customize the Device Manager
console, refer to 4.3.1, “Device Manager console installation” on page 125.

4.2 Device Manager server tasks

In this section, we describe Device Manager server tasks that need to be
performed from a Device Manager server. The following section summarizes
directory structure differences between operating systems and introduce
several important operation commands.

To install and customize the Device Manager server, refer to Chapter 3,
“Installation and configuration” on page 55.

4.2.1 Directories and files
You need to know directory structures and some files that are important to
manage the Device Manager server as an administrator.

The Device Manager server runs on the IBM AIX system or the Sun Solaris
system, and their directory structures are different from each other. From now
on, when we mention directory and file names, we are referring to only IBM
AIX system names. If your system is a Sun Solaris, replace the names
according to the information illustrated in Figure 58, which shows the Device
Manager server related directories.

Figure 58. DMS related directories of the IBM AIX and Sun Solaris systems

/

/usr/var

/dms /WebSphere/HTTPServer

/TivDMS

/lpp

/bin/Class /doc

/DMSMsgn.log

/

/opt/var

/dms /WebSphere/IBMHTTPD/TivDMS

/bin/Class /doc

/DMSMsgn.log

IBM AIX system Sun Solaris system

/agents /agents
110 Tivoli Personalized Services Manager Device Manager 1.1

There are important directories and files that you need to know how to
manage. Table 7 summarizes the directories and files used by the Device
Manager server.

Table 7. DMS directories and files

Directory File or files Description

/usr/lpp/TivDMS/
Class

In this directory, there are some jar files using by IBM WebSphere
Application Server, and some property files.

Transaction.properties A properties file for the Device
Manager database, includes:
server address and db user
information

SubscriptionMgr.properties A properties file of the
Subscription Manager

<plug-in name>.jar Jar files for each device plug-ins

/usr/lpp/TivDMS/
bin

In this directory, there are template files, DDL files and shell script
files for administrator

<plug-in name>.template Template files for each device
plug-ins

createDMSxxxx.sql The DDL files to create Device
Manager database

dms_addplugins.sh A shell script to install device
classes supplied with Device
Manager server 1.1

devclasscfg.sh A shell script to handle device
classes

jobclasscfg.sh A shell script to handle job classes

delcompjobs.sh A shell script to delete completed
jobs

DMSUtil.sh a shell script to manage the large
number jobs
Chapter 4. Administration 111

4.2.2 Managing a device class
A device class is a group of devices with similar characteristics and functions.
A new device class must be installed and configured on the Device Manager
server before any devices of that class are added to, or managed by, Device
Manager.

The installation and configuration tasks for device classes are run from a
command line script named devclasscfg.sh on the Device Manager server.

The tasks for managing a device class include:

• Installing a new device class
• Deleting a device class
• Modifying a device class
• Listing device classes

/usr/lpp/TivDMS/
doc

In this directory, there are some property files and jdbc driver, and
many documentation files

authentication.properties A properties file for authentication
of the Device Manager console.

classes12_01.zip A jdbc driver

lookup.properties A properties file used during
Device Manager console
installation

tsmauthentication.properties A properties file for the TPSM
authentication method.

/usr/lpp/TivDMS/
agents

This directory has some directories, each of them have device
name. There are client software under these directories

<device name>/ Client software for each plug-in.
Refer to 7.1, “Device agent
installation” on page 193

/var/dms DMSMsgn.log A Device Manager server log file

/usr/WebSphere
/AppServer/logs
*

DMS_stdout.log A informational message file

DMS_stderr.log A error message file

* Note: You can change these file names, refer to 4.2.6, “Device
Manager server log files” on page 124

Directory File or files Description
112 Tivoli Personalized Services Manager Device Manager 1.1

The characteristics and functions of a device class are stored as properties in
the DEVICE_CLASS data table in the Device Manager database.

The syntax of the devclasscfg.sh command is shown in Figure 59.

Figure 59. Syntax for devclasscfg.sh command

For more information about supported parameters with devclasscfg.sh, refer
to the “Parameters for devclasscfg.sh” in the online manual Tivoli
Personalized Services Manager Device Manager: Administration.

4.2.2.1 Installing a new device class
When you install and configure a new device class, you must follow these
steps:

1. Verify that the Device Manager database is started and working properly.

2. Copy the Java class files that implement the device class to the application
server classpath on the Device Manager server or servers.

3. Use the devclasscfg.sh -add DeviceClassName command:

devclasscfg.sh -add DeviceClassName -class JavaClass -enroll
EnrollmentURL -template TemplateFile -description Description

4. Restart the device management server(s) servlet to create an instance of
the device class.

The devclasscfg.sh -add DeviceClassName command creates a
DEVICE_CLASS table entry in the Device Manager database used by all of
the Device Manager servers.

The dms_addplugin.sh command, used during Device Manager server
installation, also calls the devclasscfg.sh command.

For more information about the dms_addplugin.sh command, refer to 3.4.1,
“Registering the device plug-in classes” on page 81.

devclasscfg.sh -add DeviceClassName -class JavaClass [-template TemplateFile]\
[-enroll Enrollment URL] [-description "Description"]

devclasscfg.sh -delete DeviceClassName

devclasscfg.sh -modify DeviceClassName [-name NewDeviceClassName] [-class JavaClass]\
[-template TemplateFile] [-enroll Enrollment URL] [-description "Description"]

devclasscfg.sh -list [DeviceClassName]
Chapter 4. Administration 113

4.2.2.2 Deleting a device class
You can delete a device class using the devclasscfg.sh command. When you
delete a device class from the database, the following related information is
deleted as well:

• All device class configuration parameters for the device class
• All job classes for the device class
• The software objects for the device class
• All job entries for the device class

Deleting a device class only updates the Device Manager database, that is,
Java class files for the deleted device class still remain on the server. You
must delete the Java class files from each Device Manager server manually.

You cannot delete a device class if physical devices of that device class exist
in the DEVICES table in the Device Manager database.

4.2.2.3 Modifying device class properties
You can modify device class properties using the devclasscfg.sh command.
The following properties can be changed:

• Device class name
• Description
• Java class name
• Enrollment URL
• Configuration template file

The description and the enrollment URL can also be modified from the Device
Manager console.

Modifying a device class with the devclasscfg.sh command only updates the
information in the Device Manager database.

The devclasscfg.sh command does not change the Java class files, that is,
you must change Java class files on each Device Manager server manually.

4.2.2.4 Listing device classes
To list (display information about) a device class, use the following command
from the Device Manager server:

devclasscfg.sh -list DeviceClassName .

The DeviceClassName for the -list parameter is optional.

If DeviceClassName is specified, the device class fields are displayed, and
the configuration template file fields for that device class are displayed.
114 Tivoli Personalized Services Manager Device Manager 1.1

You have the same output when you use the SQL statement:

SQL> select * from DEVICE_CLASS where DEVICE_CLASS_NAME = ‘Palm’;

If DeviceClassName is omitted, all device classes are displayed, but no
configuration template file fields are displayed as shown in Figure 60.

Figure 60. Device class listing example

4.2.3 Managing job types and classes
Multiple job types can be defined for each device class. For example, there is
a job type for updating the configuration of a device class and another job
type for distributing software to a device class.

For each job type, there is a corresponding device-specific job class to the job
type. For example, Device Manager provides a job class for software
distribution to Palm devices and another job class for software distribution to
Internet appliances.

aix2000[/usr/lpp/TivDMS/bin]#./devclasscfg.sh -list
13:10:28.927 com.tivoli.dms.dmapi.DMDeviceClass read(Connection) main
HSMIC0001I: SQL Statement: SELECT DEVICE_CLASS.* FROM DEVICE_CLASS.

Device Class - Palm

Main Java(R) class - com.tivoli.dms.plugin.palm.Palm
Enrollment URL - http://aix2000.wes.ibm.com:18080/enroll/DeviceEnrollServlet
Version - 1.1
Description -

Device Class - Aero8000

Main Java(R) class - com.tivoli.dms.plugin.win.wince.hpcpro.aero8000.Aero8000
Enrollment URL -
Version -
Description -

Device Class - Wince

Main Java(R) class - com.tivoli.dms.plugin.win.wince.Wince
Enrollment URL -
Version -
Description -

Device Class - Iad

Main Java(R) class - com.tivoli.dms.plugin.pvc.iad.Iad
Enrollment URL -
Version -
Description -

aix2000[/usr/lpp/TivDMS/bin]#
Chapter 4. Administration 115

Remember that even though these two job classes have the same role of
software distribution, the device-specific characteristics of these two tasks
require a different software distribution job class for each device class.

A job class is written in Java language. You can see all job classes installed in
the Device Manager server using the jobclasscfg.sh command. For
information about how to use the command, see 4.2.3.4, “Listing job classes”
on page 117.

The installation and configuration tasks for job types and classes are run from
a command line using the jobclasscfg.sh command on the Device Manager
server.

The managing job type and class tasks include:

• Installing a new job class
• Deleting a job class
• Modifying a job type, the device class, and Java class
• Listing job classes

After a device class has been installed and configured on the Device
Manager server, the job class written to implement the job types for a device
class must be installed and configured on the server. The job class must be
configured before an administrator can submit a job of that job type.

For each job class, the job type, associated device class, and Java class are
stored in the JOB_CLASS_TABLE database on the Device Manager server.

The jobclasscfg.sh command syntax is shown in Figure 61.

Figure 61. Syntax for jobclasscfg.sh command

4.2.3.1 Installing a job class
When you install and configure a new job class, follow these steps:

1. Verify that the Device Manager database is started and working properly.

2. Copy the Java class files that implement the job class to the application
server classpath on the Device Manager server or servers.

jobclasscfg -add -type JobType -deviceclass DeviceClassName -javaclass JavaClassName

jobclasscfg -delete -type JobType -deviceclass DeviceClassName

jobclasscfg -modify -type JobType -deviceclass DeviceClassName [-newtype JobType] \
[-newdeviceclass DeviceClassName] [-newjavaclass JavaClassName]

jobclasscfg -list
116 Tivoli Personalized Services Manager Device Manager 1.1

3. Issue the jobclasscfg.sh -add command.

jobclasscfg.sh -add -type JobType -deviceclass DeviceClassName
-javaclass JavaClassName

The jobclasscfg.sh -add command adds a job class record to the
JOB_CLASS_TABLE, which stores the job class definitions in the Device
Manager database used by all of the Device Manager servers.

4.2.3.2 Deleting a job class
If you use the jobclasscfg.sh command with the -delete parameter, a job type
and associated device class are deleted from the Device Manager database.
You must specify the -type and -deviceclass parameters to delete a job class.

When a job class is deleted, only the job class record in the Device Manager
database is deleted. To delete the Java class files that implement the job type
for the device class, you must delete those Java class files from each Device
Manager server manually.

When a job class is deleted, any outstanding jobs of that job type generate an
error exception when the jobs are attempted.

4.2.3.3 Modifying job class properties
You can modify the following job class properties using the jobclasscfg.sh

command:

• Job type
• Device class name
• Java class name

Modifying a job class with the jobclasscfg.sh command only updates the
information in the Device Manager database. Any changes to the Java class
files that implement the job type for the device class must be performed at
each Device Manager server.

4.2.3.4 Listing job classes
To list (display information about) a job class, use the jobclasscfg.sh -list

command from the Device Manager server. Figure 62 on page 118 shows a
listing of default job classes.
Chapter 4. Administration 117

Figure 62. Listing of default job classes

4.2.4 Administration authentication
During the installation of the Device Manager server, the type of
authentication is defined. It is used to identify Device Manager administrators.
You can find which type of authentication is used through the
authentication.properties file on the Device Manager server as shown in the
following example.

authClass = com.tivoli.dms.console.security.tsm.TSMAuthentication

aix2000[/usr/lpp/TivDMS/bin]#./jobclasscfg.sh -list

*************** Some lines are deleted *************************

JOB_CLASS_TABLE

Job Type - SW_DIST
Java class - com.tivoli.dms.plugin.palm.PalmSoftwareDistributionJob
Device Class Name - Palm

Job Type - DEVICE_CFG
Java class - com.tivoli.dms.plugin.palm.PalmDeviceConfigurationJob
Device Class Name - Palm

Job Type - SW_DIST
Java class - com.tivoli.dms.plugin.base.rdmi.RdmiSoftwareDistributionJob
Device Class Name - Aero8000

Job Type - DEVICE_CFG
Java class - com.tivoli.dms.plugin.win.wince.hpcpro.aero8000.Aero8000DeviceConfigurationJob
Device Class Name - Aero8000

Job Type - SW_DIST
Java class - com.tivoli.dms.plugin.base.rdmi.RdmiSoftwareDistributionJob
Device Class Name - Wince

Job Type - DEVICE_CFG
Java class - com.tivoli.dms.plugin.base.rdmi.RdmiDeviceConfigurationJob
Device Class Name - Wince

Job Type - SW_DIST
Java class - com.tivoli.dms.plugin.base.rdmi.RdmiSoftwareDistributionJob
Device Class Name - Iad

Job Type - DEVICE_CFG
Java class - com.tivoli.dms.plugin.base.rdmi.RdmiDeviceConfigurationJob
Device Class Name - Iad

Job Type - RESTPAGE_MGMT
Java class - com.tivoli.dms.plugin.pvc.iad.IadSampleRestPageJob
Device Class Name - Iad

aix2000[/usr/lpp/TivDMS/bin]#
118 Tivoli Personalized Services Manager Device Manager 1.1

There are two types of authentication handling:

• Tivoli Personalized Services Manager authentication

Grants access using a TSMAuthentication class and an existing profile of
authorized Tivoli Personalized Services Manager administrators and their
user IDs. This is the default authentication.

• Other authentication

Grants access using a Java class for an alternative authentication method
written or provided by the service provider.

If you select Tivoli Personalized Services Manager authentication as your
method of authenticating Device Manager administrators, the Device
Manager installation program asks for the name of a TPSM security profile
identifying a group of authentication administrators’ user IDs.

The tsmauthentication.properties file contains the security profile name. If
your security profile was the default profile, Device Admin, then the file
contains the following statement:

profile = Device Admin

4.2.4.1 Changing to Other authentication
When you want to change your authentication methods to Other
authentication from the default Tivoli Personalized Services Manager
authentication, perform the following steps:

1. Provide your own authentication class that implements
com.tivoli.dms.console.security.AuthenticationInterface. Name this class
com.my_company.MyAuthentication, where my_company is your
company’s name.

For more information about writing and implementing your own
authentication class, refer to the online manual Tivoli Personalized
Services Manager Device Manager: Developer’s Guide.

2. Save a backup copy of com.my_company.MyAuthentication. This file will
be needed the next time you have to install an updated version of the
console. Do not put your backup copy in the DM console directory tree on
the administration client computer, because that tree may be overridden
during future console updates. We recommend that you keep your backup
copy on another computer.

3. Modify the authClass statement in the authentication.properties file on
every Device Manager server to read as follows:

authClass = com.my_company.MyAuthentication
Chapter 4. Administration 119

4. Copy MyAuthentication.class to the following location on every
administration client running the Device Manager console:

DMconsole\uid\tivolitivolidms<nn...n>\<your_path>

Here, <nn...n> is a string that represents a random number created for the
current version of the console you installed (you can view this string by
looking at the DM console directory path from Windows Explorer after the
console is installed). Replace <your_path> with the fully qualified path
name indicating the location of MyAuthentication.class on the
administration client computer (for example, com\my_company). Following
is an example of the complete path when the default TPSM authentication
method is selected:

DMconsole\uid\tivoli_tivolidmsEDA822E5A0E565FB50D6EE75F204B5BF_1_0_0_20
001025\com\tivoli\dms\console\security\tsm

The next time the console is started, it will retrieve the new
authentication.properties file from the same Device Manager server that was
accessed originally to install the console. The console then starts using the
new authentication class, MyAuthentication.

If the console fails to communicate with its Device Manager server for any
reason, the authentication.properties file will not be retrieved and another
attempt will not be made until the next time the console is started.

4.2.4.2 The Device Manager console update
If a new version of the console is installed on the Device Manager server (for
example, if you updated Device Manager by installing a PTF), the next time
the console is started on each administration client:

• The Device Manager Console Installer will retrieve the new console
version.

• All the path names on the administration client that contain the <nn...n>
random number string will change.

If you use the TPSM authentication, all files will be copied automatically to the
administration client.

But, if your authentication type is Other, the MyAuthentication.class file that
was copied to the administration client will be lost and unrecoverable. Access
to the started Device Manager console will be denied because Device
Manager will not be able to find the current MyAuthentication.class file.
Therefore, on each administration client, after the started console has
retrieved and installed the new console version from the Device Manager
server, you must perform the following steps to access the new console:
120 Tivoli Personalized Services Manager Device Manager 1.1

1. Close the started console.

2. Obtain the backup copy of MyAuthentication.class.

3. Copy MyAuthentication.class to the new location on the administration
client running the Device Manager console.

4.2.5 Managing large numbers of jobs or devices
From the command line on any Device Manager server, you can issue the
following commands to manage large numbers of jobs or devices efficiently:

• DMSUtil.sh command: Manipulates large numbers of jobs or devices

• delcompjobs.sh command: Deletes records from the database of all jobs
that were submitted and have completed successfully

4.2.5.1 Using the DMSUtil.sh command
Administrators can use the DMSUtil.sh command to manipulate large numbers
of jobs or devices. For the purpose of simplicity, performance, avoiding the
need to display large numbers of objects, or other reasons, administrators do
not want to handle these large amounts of data through the Device Manager
console. They would rather handle them through the DMSUtil.sh command.

You can use the DMSUtil.sh command to:

• Display jobs: (DSUtil.sh -listjobs [job filter])
• Cancel jobs: (DMSUtil.sh -canceljobs [job filter])
• Delete jobs: (DMSUtil.sh deletejobs [job filter])
• Clean up expired jobs: (DSUtil.sh -cleanupexpiredjobs)
• Display devices: (DMSUtil.sh -listdevices [device filter])
• Delete devices: (DMSUtil.sh -deletedevices [device filter])

This command does not have any particular log file, so we recommend that
you redirect stdout to a file that you specify, for example:

DMSUtil.sh -listjobs [your_filter] >> listjobs.log 2>&1

You can use the script command to save everything displayed on your
terminal. As shown in Figure 63 on page 122, typed commands and output of
the commands are saved in the /tmp/joblist.out file.
Chapter 4. Administration 121

Figure 63. Example of the /tmp/joblist.out file

The script command makes a typescript of everything displayed on your
terminal. The typescript is written to the file specified by the File parameter. If
no file name is given, the typescript is saved in the current directory with the
file name typescript. This command ends when the forked shell exits.

You can use filter attributes to specify the results you want to display. The
attributes you can use depend on which option you use with the DMSUtil.sh

command.

Job filter
Job filter allows the following attributes:

• JOB_TYPE: Specifies the type of job that you want to filter by. Valid values
for job type include DEVICE_CFG for device configuration jobs, SW_DIST
for software distribution jobs, and RESTPAGE_MGMT for rest page
management jobs. Your site may provide additional job types that you can
filter by.

• REALM: Specifies a Tivoli Personalized Services Manager-defined realm
that you want to filter by. Realms distinguish one service provider from
another. For example, there may be a realm defined as COFFEESHOP
and another realm defined as BAKERY.

aix2000[/usr/lpp/TivDMS/bin]#script /tmp/joblist.out
Script started, file is /tmp/joblist.out
aix2000[/usr/lpp/TivDMS/bin]#./DMSUtil.sh -listjobs DEVICE_CLASS_NAME=Palm

******* Some data are deleted *****************
There were 37 submitted jobs matching the filter criteria.
JOB_ID = 1000085

JOB_TYPE = DEVICE_CFG
REALM = null
OFFERING = null
TARGET_DEVICE_ID = 1000061
TARGET_DEVCLASS_ID = 1000000
SUBMITTED_TIME = Tue Nov 14 15:45:09 JST 2000
ACTIVATION_TIME = Fri Jan 01 00:00:00 JST 1999
EXPIRATION_TIME = Tue Dec 31 00:00:00 JST 2002
JOB_STATUS = EXECUTABLE
JOB_PRIORITY = 5
JOB_DESCRIPTION = Device Config job for Palm named 1115_5
JOB_INTERVAL = 0
JOB_INTERVAL_UNIT = null
LAST_MODIFIED = Mon Oct 30 18:10:08 JST 2000

******* Some data are deleted *******************
aix2000[/usr/lpp/TivDMS/bin]#exit
Script done, file is /tmp/joblist.out
aix2000[/usr/lpp/TivDMS/bin]#
122 Tivoli Personalized Services Manager Device Manager 1.1

• DEAL: Specifies a Tivoli Personalized Services Manager-defined deal that
you want to filter by. A deal defines the subscriber's usage fees, special
access features, and so on. Typically, a service provider offers several
deals to its subscribers.

• DEVICE_NAME: Specifies that you want to filter by the name of the
device on which the job was submitted to run.

• DEVICE_CLASS_NAME: Specifies that you want to filter by the name of
the device class on which the job was submitted to run.

• JOB_STATUS: Specifies that you want to filter by the current processing
status of an existing job. Status is calculated by comparing the current
date and time on the server with the Device Manager database to the
activation and expiration dates and times stored in the Device Manager
database itself.

• JOB_PRIORITY: Specifies that you want to filter by the numeric level of
importance the administrator attached to expediting the submitted job. A
valid job priority is a number from one to ten, where one is the highest
priority and ten is the lowest priority.

Device filter
The device filter allows the following attributes:

• REALM: Specifies a Tivoli Personalized Services Manager-defined realm
that you want to filter by. Realms distinguish one service provider from
another.

• MODEL: Specifies that you want to filter by the model number for the
device. The model number can be up to 32 characters long. Blanks and
special characters are allowed, except for asterisks (*).

• DEVICE_CLASS_NAME: Specifies that you want to filter by the name of
the device class for the device.

4.2.5.2 Using the delcompjobs.sh command
Every time a new device is enrolled, the enrollment server in the Subscription
Manager component submits a device configuration job to configure the new
device. Over time, as these jobs are processed, thousands of records of
successfully completed jobs can accumulate in the Device Manager
database.

The delcompjobs.sh command is useful to delete records from the database of
all jobs that were submitted and have completed successfully. As a result, the
records of any jobs with a job status of Completed are removed.
Chapter 4. Administration 123

You can also use the DMSUtil.sh -deletejobs command to remove completed
jobs with the same effect as if you used the delcompjobs.sh command.

The delcompjobs.sh command must be run from a Device Manager server.

After you enter the command, you are asked whether you want to continue
and delete the job records, or exit. Specify an r (or R) after the command if
you do not want this prompt to be displayed.

Figure 64 shows an example of the delcompjobs.sh command on the AIX
system.

In this example, we ran the delcompjobs.sh command first without specifying
the r option, and we received a message. Then, we pressed c. The
delcompjobs.sh command ended without doing anything. Next, we ran the
delcompjobs.sh command with the r option specified. The delcompjobs.sh

command deleted jobs without being prompted.

Figure 64. Example of the delcompjobs.sh command on AIX

4.2.6 Device Manager server log files
The administrator should monitor the Device Manager server log file
/var/dms/DMSMsg<n>.log.

aix2000[/usr/lpp/TivDMS/bin]#./delcompjobs.sh

DYM4055I This program deletes all jobs that were submitted for single devices and have completed with a
job progress of 'OK'.
Enter Y to continue and anything else to exit.
c
aix2000[/usr/lpp/TivDMS/bin]#./delcompjobs.sh r

Deleted Jobs

1000000,'DEVICE_CFG','','',1000000,1000000,'Oct 30, 2000','Jan 1, 1999','Dec 31, 2002','M',5,'Device
Config job for Palm named TEST',0,'','Oct 30, 2000'
1000001,'DEVICE_CFG','','',1000001,1000000,'Oct 30, 2000','Jan 1, 1999','Dec 31, 2002','M',5,'Device
Config job for Palm named 10GB18507807',0,'','Oct 30, 2000'

1000064,'DEVICE_CFG','','',1000055,1000000,'Nov 1, 2000','Jan 1, 1999','Dec 31, 2002','M',5,'Device Config
job for Palm named EM_ID_31111',0,'','Nov 1, 2000'
1000077,'DEVICE_CFG','','',1000002,1000000,'Nov 2, 2000','Nov 2, 2000','Dec 31, 2000','M',5,'Dev Config
for EM_IS_SAMPLE',0,'','Nov 2, 2000'

Total Number of records deleted = 100.
aix2000[/usr/lpp/TivDMS/bin]#./delcompjobs.sh
124 Tivoli Personalized Services Manager Device Manager 1.1

In this file, <n> indicates the number of a message log that wraps between
files numbered 1, 2, and 3. This log contains important error and other
messages.

Other error and informational messages that the administrator should monitor
are the default IBM WebSphere Application Server log files:

• /usr/WebSphere/AppServer/logs/DMS_stdout.log
• /usr/WebSphere/AppServer/logs/DMS_stderr.log

You can change file names by changing standard output and standard errors
of DMS_AppServer using the IBM WebSphere Application Server
Administrative Console. After you change file names, you need to restart the
Device Manager server servlet to apply the changes you made. The size of
these two files increase, so you need to watch them.

In addition to the previously mentioned log files, the administrator should pay
attention to the following IBM HTTP Server log files:

• /usr/HTTPServer/logs/access_log
• /usr/HTTPServer/logs/error_log

4.3 Device Manager console tasks

In this section, we describe the tasks that can be performed using the Device
Manager console, which runs on a Microsoft Windows client. The console is
very useful for an administrator to manage pervasive devices and related
jobs.

The following three functions are frequently used Device Manager console
functions:

• Managing devices
• Managing jobs
• Managing Software

Detailed information about these three functions are provided in 4.3.3,
“Managing devices” on page 131, in 4.3.4, “Managing jobs” on page 135, and
in 4.3.5, “Managing software” on page 139.

4.3.1 Device Manager console installation
To use Device Manager console (DM console), you must first install and
configure it on a Microsoft Windows client. In this section, we describe how to
install DM console and start it.
Chapter 4. Administration 125

After DM server has been successfully configured and started, Device
Manager console can be installed to a Microsoft Windows client. To install it,
a client machine needs a \temp (or \tmp) directory with 11 MB of free disk
space for the install image, plus another 32 MB for the Device Manager
Console Installer and the Device Manager console. The 11 MB install image
is deleted following the console installation.

For detailed information about prerequisites for the DM console machine,
refer to the online manual Tivoli Internet and Personalized Services Manager:
Planning and Installation.

Device Manager server is assumed to be configured and started in advance
of Device Manager console installation.

1. From the Microsoft Windows client, start the Web browser. This case uses
Microsoft Internet Explorer 5.5.

2. Open the following URL as shown in Figure 65.

http://dmserver_hostname/dmserver/DMconsole.html

Figure 65. Opening the DM console URL

At the first connection to the DM console URL, Device Manager console is
automatically downloaded and installed to the client machine.

3. Select the default for all the questions from the installation program,
shown in Figure 66. Then the installation program completes.
126 Tivoli Personalized Services Manager Device Manager 1.1

Figure 66. Device Manager console installer

Since more files need to be downloaded from the Device Manager server,
installation continues.

4. Click Yes to install Device Manager console when the confirmation display
shown in Figure 67 appears. Then, the installer starts downloading.

Figure 67. Confirmation window

After downloading all the files, the Device Manager console window,
shown in Figure 68 on page 128 appears. You are asked for your
administrator user ID and password. For information about how to set up
administrator authentication, refer to 3.4.5.3, “Authentication.properties”
on page 102.
Chapter 4. Administration 127

Figure 68. Device Manager console

The Device Manager console icon shown in Figure 69 is created on the
desktop. Next time, you can invoke Device Manager console from this icon, or
you can also invoke Device Manager console by accessing the following URL
from the Web browser:

http://dmserver_hostname/dmserver/DMconsole.html

Figure 69. Device Manager console icon

Device Manager console is installed in the DM console folder in the system
drive by default.
128 Tivoli Personalized Services Manager Device Manager 1.1

When the console starts for the first time after installation, it tries to retrieve
the Transaction.properties from the device management server servlet. The
Transaction.properties provides the console with information required to
connect to the Device Manager database. If the Web server or application
server is down, or the servlet is not running for any reason, the
Transaction.properties file cannot be retrieved, and the console is unable to
communicate or exchange data with the Device Manager database.

If the file is retrieved, it is saved in the local classpath on the Microsoft
Windows client. The next time the console starts, it again tries to retrieve the
Transaction.properties file from the DMS servlet. If the file cannot be
retrieved, the console checks to see if the file was saved in the classpath of
the client computer. If the file is located, the console uses the file. In this
case, even if the application server or the DMS servlet is down when the
console starts, it can still communicate with the database and exchange data.

4.3.2 Filtering
If you do some management tasks without using filters, a large list of objects
from the Device Manager database may be returned resulting in processing
and network overhead. You can bypass or disable filtering. However, if your
site supports thousands of devices, we recommend that you filter the objects
you want to display.

Figure 70 on page 130 shows a filtering example. A filter is displayed by
default when you select Devices, Jobs, or Software in the left pane of the
console. On the filter pane, you can specify the number in the Maximum
items returned field for the most database query items you want the Device
Manager to display. If you don’t specify the number, the default value is 500.

The How Many button returns the number of existing items that match your
current filter criteria.

Figure 70 on page 130 shows the result of the How Many button using Job
Filter with JOB_STATUS = Completed. This result means that you have 13
completed jobs.
Chapter 4. Administration 129

Figure 70. Job Filter

You can use filters with devices, jobs, and software. In the following section,
we describe the various types of filters.

4.3.2.1 Job filter
The job filter includes the following attributes:

• Job ID
• Submission Date
• Target Device Name
• Target Device Class
• Description
• Status
• Activation Date
• Expiration Date
• Target Realm
• Target Deal
• Job Type

4.3.2.2 Device filter
The device filter includes the following attributes:
130 Tivoli Personalized Services Manager Device Manager 1.1

• Device Name
• Device Class
• Friendly Name
• Owner
• Realm

4.3.2.3 Software filter
The software filter includes the following attributes:

• Software Name
• Version
• Device Class

4.3.3 Managing devices
The Device Manager console uses the device management API and Device
Manager database to retrieve, store, delete, view, and filter the information
that the console displays and manages. This Device Manager database
contains table entries that include:

• Devices
• Classes of devices
• Related parameters
• Installed software
• Device jobs
• Device Manager servers

For more information about table contents, refer to 5.1, “Data model” on page
146.

Using the device management API, the Device Manager console can access
the Device Manager database directly without connecting to a Device
Manager server at all, except when it displays device parameters or receives
updates at session startup.

4.3.3.1 Enrolling new devices
Devices can be enrolled automatically by an enrollment server, or manually
by a Device Manager administrator. The manual enrollment is not
recommended, especially in any up-and-running service provider
environment.

Before enrolling a new device, administrators need to install the device
plug-in for that device and to configure and define its device class in the
Device Manager database.
Chapter 4. Administration 131

It is not recommended to enroll a new device when its device class is not
configured in the Device Manager database. This could cause unpredictable
results, for example, loss of data integrity.

For more information on installing the device plug-ins and configuring the
device class, refer to 3.4, “Configuration” on page 80.

4.3.3.2 Adding new devices
You can add a new device through the Device Manager console, but this
operation is not recommended because a device name must be unique in its
device class. When you name the device, you must use the exact naming
convention provided by the device class. To prevent the conflict, you should
enroll your device through an enrollment server.

4.3.3.3 Displaying devices
You can display the status of devices already enrolled. We recommend that
you use the device filter to reduce the volume of result displayed. To display
devices, select Devices in the left pane. The Device Filter is displayed.
Specify your filter criteria and click OK.

You can also display devices that have installed specific software or belonged
to the device class in a secondary window. For example, from the Device
class window, select the target device class and right-click it, then select
View Devices. The Device Filter is displayed. Specify your filter criteria and
click OK.

Figure 71 shows the device information belonging to the Palm device class in
a secondary window.
132 Tivoli Personalized Services Manager Device Manager 1.1

Figure 71. Display devices in a secondary window

A secondary window cannot be used to modify or perform an action on a
device. However, you can view devices without replacing the current display
in the console.

4.3.3.4 Modifying device characteristics
You can modify the device characteristics for one or more devices, or all
devices of a device class. A device and a device class have two types of
characteristics: device parameters and device properties.

The difference between device parameters and device properties are:

• Device parameters depend on the class of device to which the device
belongs, and they are determined by the configuration template file for
that class of device.

• Device properties are common set of attributes for all devices regardless
of the device class to which they belong. Device properties include
information such as device class name or serial number.

The difference between device class parameters and device class properties
are:

• Device class parameters are determined by the configuration template file
for that class of device.
Chapter 4. Administration 133

• Device class properties for all classes of a device have the same
attributes, such as device class name or enrollment URL, although the
values for these attributes are different for each device class.

Device parameters are initially inherited from the device class, but can be
overridden for an individual device. If a device parameter is overridden, the
associated check box for the parameter value is marked in the Device
Parameters window for the device. If a device parameter is inherited, the
associated check box for the parameter value is not marked.

You can also modify the device name field, but we do not recommend this
operation. You can use this capability to correct a mistake that has been
made during a manual enrollment process, which is also not recommended.
Remember that Device Manager no longer recognizes the device as enrolled
if you change the device name.

The device name and device class value pair identify a unique device.
Therefore, no two devices have the same combination of values in both their
device name and device class values. Unique devices include:

• 10GB18507808, Palm
• 10GB18507809, Palm
• 10GB18507808, Aero8000
• 10GB18507809, Aero8000

To modify device configurations, first set the device parameters for each
device class or individual device as desired and then submit a device
configuration job. The actual steps are outlined in 7.4, “Device configuration”
on page 220.

4.3.3.5 Deleting devices
You can delete one or more devices using the Device Manager console.
When you use the console to delete a device, the following information for the
deleted device is removed from the Device Manager database:

• All device parameter values set for the deleted device
• All job progress records pertaining to the deleted device
• All records of jobs submitted only to the deleted device
• All records of software that Device Manager distributed to the deleted

device

To delete a device or devices, select one or more target devices. Then,
right-click the selected devices, select Delete, and click Yes.
134 Tivoli Personalized Services Manager Device Manager 1.1

You cannot delete a device class using the Device Manager console. If you
want to delete it, use the devclasscfg.sh command from the Device Manager
server. For more information about the devclasscfg.sh command, refer to
4.2.2.2, “Deleting a device class” on page 114.

4.3.4 Managing jobs
The Device Manager console provides windows for manipulating job-related
information in the Device Manager database. Through the console, you can
submit, display, cancel, and delete jobs, as well as query the current status of
jobs and view their properties.

4.3.4.1 Job types
A job is any specialized processing initiated through Device Manager or its
API and performed on a device or more than one device in the same device
class. When the administrator creates a job, the type of job is identified. The
job types supplied with Device Manager are:

• Device configuration: Updates the configuration of devices, including
device parameters

• Software distribution: Distributes new or updated software applications
to devices

• Rest page management: Updates the rest pages for Internet appliances
with, for example, timely new information from the service provider

Jobs are submitted for processing by an administrator using the Device
Manager console or by another application using the device management
API.

At the time the job is submitted, the administrator or application specifies the
job type, any job-specific parameters, the devices the job should run on, the
activation and expiration time for the job, and other specific job properties.
The job type and the devices should be configured in the Device Manager
database before you submit a job.

If you need to add new job types, they can be added using the jobclasscfg.sh

command as shown in Figure 72 on page 136. This operation must be
performed from the Device Manager server. For more information on adding a
new job class, refer to 4.2.3.1, “Installing a job class” on page 116.
Chapter 4. Administration 135

Figure 72. Example of the jobclasscfg.sh command

4.3.4.2 Job status
You need to know the status of your jobs to manage them. A submitted job
may have a status of:

• Pending: The job has been submitted but has not reached activation data
and time. You can cancel a pending job.

• Executable: The job has been submitted and has reached the activation
data and time, but has not reached the expiration date and time. You can
view the job progress of an executable job to obtain more information
about it. You can cancel an executable job.

• Completed: The job has been completed. This job status only applies to
jobs that were submitted for a single device. You can either cancel or
delete a completed job.

• Expired: The job has passed its expiration date and time. You can view
the job progress of an expired job to obtain more information about it. You
can cancel or delete an expired job.

• Canceled: The job has been canceled from the console. You can view the
job progress of a canceled job to obtain more information about it. You can
delete a canceled job.

Figure 73 shows the job status flow.

/usr/lpp/TivDMS/bin/jobclasscfg.sh -add -type RESTPAGE_MGMT -javaclass \
com.tivoli.dms.plugin.pvc.iad.IadSampleRestPageJob -deviceclass Iad
#
#sqlplus stage_user/oracle
SQL> select * from JOB_CLASS_TABLE where JOB_TYPE='RESTPAGE_MGMT';

JOB_TYPE DEVICE_CLASS_ID
-- ---------------
REALM

JOB_JAVA_CLASS
--
LAST_MODI

RESTPAGE_MGMT 1000003

com.tivoli.dms.plugin.pvc.iad.IadSampleRestPageJob
30-OCT-00
136 Tivoli Personalized Services Manager Device Manager 1.1

Figure 73. Job status flow

4.3.4.3 Submitting jobs
You can submit a job for:

• All devices
• All devices in one or more device classes
• One or more selected devices

When you submit a job to more than one device or device class, a job with the
same properties (job type, priority, activation and expiration date, and so on)
are created for every device or device class specified in the Submit Job
window. These jobs are identical except for their target devices or device
classes. Each job receives its own job ID and can be viewed, canceled,
deleted, or otherwise managed as a separate entity using the Device
Manager console.

4.3.4.4 Displaying jobs
After you submit more than one job, you can display each job status, or job
progress summary by using Device Manager console. It includes:

• Job status
• Job properties

Submit

Excutable Pending

Completed

Expired

Cancel

Canceled

Delete
Chapter 4. Administration 137

• Job progress
• Job progress summary

Figure 74 shows the Job Progress Summary view.

Figure 74. Job Progress Summary

4.3.4.5 Canceling jobs
You can cancel a job when its status is Pending, Executable, Expired, or
Completed. The job status changes to Canceled. After a job is canceled, it
remains in the Device Manager database until you delete it.

4.3.4.6 Deleting jobs
You can delete a job only when its status is Canceled, Expired, or Completed.

Figure 75 shows the various types of job status.
138 Tivoli Personalized Services Manager Device Manager 1.1

Figure 75. Job status through Device Manager console

4.3.5 Managing software
Device Manager does not maintain a library of software that you distribute.
Instead, Device Manager stores URLs in the Device Manager database that
point to the software that you have prepared to deploy and provides software
distribution jobs you can submit to deploy the software.

4.3.5.1 Adding software
Device Manager stores URLs in the Device Manager database that point to
the software you want to deploy. Before you register the software by adding
software information to the database, you need to copy the software into a
location accessible using HTTP or FILE protocol on a Web server where the
Device Manager server can access it, and prepare a software distribution
package.

Then, you can use the Device Manager console to register the software with
the database. This entails creating a software definition that contains the URL
that points to the software. The final step is to distribute the software to
devices by submitting a software distribution job using the software definition
with its URL.
Chapter 4. Administration 139

4.3.5.2 Distributing software
After you complete the three steps in 4.3.5.1, “Adding software” on page 139,
you can submit a software distribution job that deploys the software to one or
more target devices.

To distribute software to one or more devices whose device class supports
software distribution, submit a job that specifies a job type of Software
Distribution.

Refer to Chapter 7, “Using the DM functions” on page 193, for actual
operations.

4.3.5.3 Displaying devices that received selected software
If you want to display the number of devices that are using selected software,
or which devices already have it, you can view the list shown in Figure 76.

To display a list of software, right-click a software object in the right pane,
select View Devices from the context menu, use Device Filter if you need,
and click OK.

Figure 76. Devices that received selected software
140 Tivoli Personalized Services Manager Device Manager 1.1

4.3.5.4 Deleting software
You can remove the record of a software object from the Device Manager
database when you no longer want the software to be available for distribution
to devices of a particular class.

When you remove the software object, the object and its properties are
deleted from the Device Manager database and removed from the Device
Manager console. This removal includes the URL that points to the location of
the software meta file package definition file or file package definition file.

You can remove a software object only if the software is not currently listed in
the software record for any existing device of the device class affiliated with
the software. Before you clean up any of these records, you need to make
sure that the software is no longer being used by any device in the class, and
has been removed from the devices.

The following operation removes records from the Device Manager database,
but does not remove any actual software and definition files from any device
or server:

Software -> select your target software -> Delete -> Yes

4.4 Enabling SSL

For system administrators, system security is always important. Using Device
Manager 1.1, your pervasive device can communicate to the DM server with
SSL protocol. This section explains how to enable the SSL setting in both the
DM Server and pervasive devices.

4.4.1 Enabling SSL on the DM server
If you want to communicate using SSL, you need to complete the following
two steps. Before you start these operations, refer to 3.3.2, “Installation tasks”
on page 70, for complete installation steps using the default port number =
80.

1. Make sure the SSL communication is enabled on the IBM HTTP Server by
modifying the httpd.conf file to ensure secure connections over the
network. For information on how to modify the httpd.conf file, refer to:

http://www.ibm.com/software/webservers/httpservers

2. While you are using the dms_install.sh command, when you are asked to
specify the port number used by DeviceManagementServerServlet, type
443 and press Enter instead of the default value (port number = 80) as
shown in Figure 77 on page 142.
Chapter 4. Administration 141

Figure 77. Specifying the port number used by DeviceManagementServerServlet

3. As a part of the post-installation tasks, you need to configure the
application server. During these steps, to identify the host name of the
Device Manager server and enable physical devices to connect at server
port 443 (or the port you specified for the DMS servlet when you installed
the Device Manager server), from the IBM WebSphere Application Server
Administrative Console, complete these steps:

a. From the console, click Topology.

b. On the left pane, open WebSphere Administrative Domain in the
tree.

c. Click default_host.

d. On the right pane, click the Advanced tab.

e. In the Aliases list (shown in Figure 78), add a new host name entry for
your Device Manager server. Make sure the port number matches the
number you specified for the Device Manager server when you
installed it, for example, aix2000.wes.ibm.com:443.

===
Specify the port number used by Device Manager Server Servlet
(default port number = 80): (press Enter)
443

Port number is 443

142 Tivoli Personalized Services Manager Device Manager 1.1

Figure 78. Adding an alias in the Host Aliases field

4. Click Apply, and then restart DMS_AppServer for the new Host Alias that
you added to take effect.

4.4.2 Enabling SSL for client devices
After the Device Manager server is ready to communicate with pervasive
devices using SSL protocol, you also need to enable SSL for client devices.
The tasks you need to complete are:

1. Change the device properties or device class properties and submit a
device configuration job to the target devices.

You need to change the DMSPort device parameter to 443 from 80
(default) and change the SSLOn device parameter to 1 from 0 (default).
Then, you need to submit the device configuration job to the target devices
to affect these parameters.

The DMSPort and SSLOn device parameters are for the Palm device. For
information about each device class, refer to the online manual Tivoli
Internet and Personalized Services Manager Device Manager: Device
Plug-in Notes.

For information on how to modify device properties, refer to 7.5.3, “Server
operations” on page 226.

2. Install the certificate file to the target pervasive device.
Chapter 4. Administration 143

You need to install the certificate file, which will be offered from the ISP, to
pervasive devices that want to communicate with SSL protocol. This
operation should be done using the HotSync operation.

For more information about how to install client software, refer to 7.1,
“Device agent installation” on page 193.
144 Tivoli Personalized Services Manager Device Manager 1.1

Chapter 5. Device Manager database

This chapter describes the data model, tables, and columns of the Device
Manager database. This information helps plug-in developers and system
architects to understand Device Manager architecture. Please note that the
database structure described in this chapter applies only to Device Manager
1.1. You must not modify any portion of the database by other methods than
the supported programming interface.

Device Manager database is the core component of the Device Manager
feature. This database has much information about devices, software to be
distributed, and other operations required to manage devices.

The Device Manager database consists of a series of relational database
tables for storing information about devices and their associated resources.
As a TPSM feature, Device Manager provides its device management
information to the Subscription Manager feature, which uses this device
information for more personalized services.

The device management data tables are stored in the same database as that
used by the Subscription Manager. Thus, TPSM features use the same
database but different tables. The reason why there are no direct
relationships between device management data and subscription
management data is provisioning. Device management data could be used
through the device management API by not only the Subscription Manager
but other applications.

Tivoli Personalized Services Manager supports IBM DB2 Universal Database
Version 7.1, and Oracle8i database 8.1.5, as its management database
DBMS. Their platform can be either AIX or Sun Solaris, and they can reside
on the same box as TPSM or on other boxes, depending on system
requirements. There is a DB2 UDB version and an Oracle version of TPSM.

Any modifications to the Device Manager portion of the database must be
made using the supported Device Manager programming APIs. Changes
made using other mechanisms may invalidate portions of the database,
breaking the installation and making it unsupportable.

The database schema described in this chapter is valid for Device Manager
1.1 only and will be changed as new software is released.

Important notice for this chapter
© Copyright IBM Corp. 2001 145

This is because there are slight differences between the scripts. However,
there are no differences in the database tables, columns, and so forth.

Determine the size of the database according to the estimated number of
devices. Since the Device Manager database resides in the same database
as the Subscription Manager database, actual table space size is the sum of
the two.

Table 8 shows the database size required by Device Manager.

Table 8. Database size required by Device Manager

You can use the following formula to obtain the required database size, based
on the planned number of devices (n):

For more information about the Subscription Manager database, see the
online manual Tivoli Internet and Personalized Services Manager: Planning
and Installation.

5.1 Data model

Figure 79 shows the Device Manager database data model.

Planned number of devices Database size in bytes

100 971,715

1,000 9,341,715

10,000 93,041,715

50,000 465,041,715

100,000 930,041,715

500,000 4,650,041,715

1,000,000 9,300,041,715

Database size in bytes 41 715, 9 300,+() n×=
146 Tivoli Personalized Services Manager Device Manager 1.1

Figure 79. Device Manager database data model
Chapter 5. Device Manager database 147

The tables in the database are:

• ACTIVE_JOB
• ACTIVE_JOB_HISTORY
• DEV_CLASS_TEMPLATE
• DEVICE
• DEVICE_CLASS
• DEVICE_CLASS_PARM
• DEVICE_PARM
• DMS_SERVER
• INSTALLED_SW
• JOB_CLASS_TABLE
• JOB_HISTORY
• JOB_PARM
• SOFTWARE
• SUBMITTED_JOB

This section describes the fields in each table. We use a dash (-) in the Field
length column for the DATE Field type because this value depends on the
database software in use.

5.1.1 ACTIVE_JOB table
The ACTIVE_JOB table maintains currently activated jobs. If a submitted job
is targeted to multiple devices, the job is broken into multiple jobs, where
each job is targeted to each device, and the job records are stored in this
table. When a device connects, the Device Manager server checks this table
to see if there are any jobs for the device.

Table 9 describes the fields defined in each row of the ACTIVE_JOB table.
Each row corresponds to a job for a device.

Table 9. ACTIVE_JOB table

Field name Field type Field
length

Required

JOB_ID (PK,FK) NUMERIC 18,0 YES

DEVICE_ID (PK,FK) NUMERIC 18,0 YES

DEVCLASS_ID (PK,FK) NUMERIC 18,0 YES

NEXT_RUN_DATE DATE - NO

LAST_MODIFIED DATE - NO
148 Tivoli Personalized Services Manager Device Manager 1.1

Each field in Table 9 is defined here:

JOB_ID The ID of the job that is active. This ID is a foreign key
that maps to the JOB_ID field of the SUBMITTED_JOB
table.

DEVICE_ID The ID of the device for which this job is activated. This
ID is a foreign key that maps to the DEVICE_ID field of
the DEVICE table.

DEVCLASS_ID The ID of the device class to which the device-specified
DEVICE_ID key belongs. This ID is a foreign key that
maps to the DEVICE_CLASS_ID field of the
DEVICE_CLASS table.

NEXT_RUN_DATE This field controls periodic jobs. When the periodic job is
performed on a device, this field is filled with a DATE
value that is calculated from the INTERVAL and
INTERVAL_UNIT fields of the corresponding row in the
SUBMITTED_JOB table. If this field is filled with a DATE
value, this job is not performed until that particular date.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.2 ACTIVE_JOB_HISTORY table
One device could have made several attempts to run a job. All of those
attempts are recorded in this table. For a periodic job, the repeat interval of
the periodic job is not used in any way. Therefore, its latest attempt might be
quite old, and unattempted means that the device has never attempted this
job.

Table 10 describes the fields defined in each row of the
ACTIVE_JOB_HISTORY table.

Table 10. ACTIVE_JOB_HISTORY table

Field name Field type Field
length

Required

JOB_ID (FK) NUMERIC 18,0 YES

DEVICE_ID (FK) NUMERIC 18,0 YES

DEVCLASS_ID (FK) NUMERIC 18,0 YES

JOB_COMP_STATUS CHAR 1 YES
Chapter 5. Device Manager database 149

Each field in Table 10 on page 149 is defined here:

JOB_ID The ID of the job which was performed. This ID is a
foreign key that maps to the JOB_ID field of the
SUBMITTED_JOB table.

DEVICE_ID The ID of the device for which this job is performed.
This ID is a foreign key that maps to the DEVICE_ID
field of the DEVICE table.

DEVCLASS_ID The ID of the device class to which the device
specified DEVICE_ID key belongs. This ID is a
foreign key that maps to the DEVICE_CLASS_ID
field of the DEVICE_CLASS table.

JOB_COMP_STATUS This field shows the completion status of this job.
Possible values are O (OK), D (Delayed), R
(Failed--will retry), and N (Failed--no retry.)

LAST_MODIFIED The date and time that this table row was last
modified. This field is maintained automatically by
the device management APIs.

5.1.3 DEV_CLASS_TEMPLATE table
A device class template file is provided with each device class defined to
Device Manager and describes the set of device parameters required by
devices of that device class. To use these device parameters, the device
parameters should be registered in this table before starting the Device
Manager. This task is done in conjunction with registering the device class.

Table 11 describes the fields defined in each row of the
DEV_CLASS_TEMPLATE table. Each row corresponds to the definition of
one device parameter in the template file for a particular device class. Device
classes that define multiple parameters in their template file will have one row
in this table for each parameter. The information in this table is created by the
device class install utility and is used by the Device Manager console to build

LAST_MODIFIED DATE - NO

Field name Field type Field
length

Required
150 Tivoli Personalized Services Manager Device Manager 1.1

a graphics user interface (GUI) to allow administrators to view and modify
device parameters for specific devices or device classes.

Table 11. DEV_CLASS_TEMPLATE table

Each of the field names in Table 11 are defined here:

DEVICE_CLASS_ID The ID of the device class for which this template
parameter is defined. This ID is a foreign key that
maps to the DEVICE_CLASS_ID field of the
DEVICE_CLASSES table.

TYPE The data type of the parameter. Support types are
String, Integer, Boolean, or Tab.

LABEL_KEY The label key of the parameter. The label key is used
to look up the name of the parameter in the translation
resource bundle which can be displayed.

LABEL The default name of the parameter that can be
displayed. This label is used as the name of the

Field name Field type Field
length

Required

DEVICE_CLASS_ID (FK) NUMERIC 18,0 Yes

TYPE VARCHAR 8 Yes

MAX_LENGTH NUMERIC 18,0 No

LABEL_KEY VARCHAR 255 Yes

LABEL VARCHAR 255 Yes

EDITABLE CHAR 1 Yes

TAB VARCHAR 64 No

CHOICES VARCHAR 1024 No

RANGE VARCHAR 255 No

DEFAULT_VALUE VARCHAR 255 No

TAB_INDEX NUMERIC 18,0 Yes

PARM_DESCRIPTION VARCHAR 255 No

PARM_DESCRIPTION_KEY VARCHAR 255 No

PARM_KEY VARCHAR 255 Yes

LAST_MODIFIED DATE - Yes
Chapter 5. Device Manager database 151

parameter if the name cannot be retrieved from the
translation resource bundle using the LABEL_KEY.
This field supports DBCS characters to allow
maximum flexibility to device class implementations.

EDITABLE Indicates whether the parameter should be editable by
an administrator (that is, whether the field should be
enabled in the GUI). This field will be set to either “T”
(true) or “F” (false).

TAB Defines the name of the tab under which this
parameter should be grouped. For device classes that
support a large number of parameters, this tab field is
used to create a multi-tabbed property sheet, where
each tab displays a different group of parameters. The
tab name is used to look up the name of the tab that
can be displayed in the translation resource bundle.

CHOICES Specifies the list of valid values, separated by
commas, for the parameter. Each of these values is
used to look up the name of the value that can be
displayed in the translation resource bundle. This field
is optional and is only used for parameters whose
values must be one of a specific list of valid values.

RANGE Specifies the valid range of values. This field is
optional and is only used for Integer data types whose
values must be within a specific range. The format of
this field is “start,end”. This field supports DBCS
characters to allow maximum flexibility to device class
implementations.

DEFAULT_VALUE Specifies the default value of the parameter when no
value is explicitly set by an administrator. This field is
optional and is only used for parameters that have a
default value. This field supports DBCS characters to
allow maximum flexibility to device class
implementations.

TAB_INDEX Specifies the position of this parameter relative to
other parameters on the same tab.

PARM_DESCRIPTIONThe description of the parameter or tab. This
description is used if the corresponding description is
not found in a bundle. It is the default description of
the parameter or tab. This description is used if the
description cannot be retrieved from the translation
152 Tivoli Personalized Services Manager Device Manager 1.1

resource bundle using the
PARM_DESCRIPTION_KEY. This field supports
DBCS characters to allow maximum flexibility to
device class implementations.

PARM_DESCRIPTION_KEYThe description key of the parameter. The
description key is used to look up the description in a
translating resource bundle. This field is optional and
supports DBCS characters to allow maximum
flexibility to device class implementations.

PARM_KEY The parameter key that is sent to the device. The set
of the parameter key and its value is sent to the device
in the device configuration job.

LAST_MODIFIED The date and time that this table row was last
modified. This field is maintained automatically by the
device management APIs.

5.1.4 DEVICE table
The device table maintains a base set of information for each device being
managed. Each device is associated with a single owner, such as a Tivoli
Personalized Services Manager subscriber.

Table 12 describes the fields defined in each row of the DEVICE table. Each
row corresponds to a single instance of a device and maintains information
about that device.

The primary key is DEVICE_ID. A set of DEVICE_NAME and
DEVICE_CLASS_ID is the alternate key.

Table 12. DEVICE table

Field name Field type Field
length

Required

DEVICE_ID (PK) NUMERIC 18,0 Yes

DEVICE_NAME VARCHAR 255 Yes

DEVICE_CLASS_ID (FK) NUMERIC 18,0 Yes

FRIENDLY_NAME VARCHAR 255 No

USER_NAME VARCHAR 32 No

USER_REALM VARCHAR 32 No

SERIAL_NUMBER VARCHAR 32 No
Chapter 5. Device Manager database 153

The fields in Table 12 are defined here:

DEVICE_ID This is generated for the device when the device is
created. The device ID is unique across all devices in
this table. This is the primary key to the device table.

DEVICE_NAME The name of the device. Each device class is
responsible for the initial identification of its devices and
for determining a device name that is unique across all
devices of that device class. (The device class should
use device-specific information, such as a serial number
or MAC address, to compute this device name.) The
combination of a device's device name and its
associated device class name form the unique “external”
device identification for the device. This indicates that
the device is identified by the combination of the device
name and the device type. Thus, devices with the same
names can exist, if the device types are different. This
field supports DBCS characters to allow maximum
flexibility to device class implementations.

DEVICE_CLASS_ID The ID of the device class that supports the device. This
ID is a foreign key that maps to the DEVICE_CLASS_ID
field of the DEVICE_CLASS table.

FRIENDLY_NAME The friendly name of the device (optional).

USER_NAME The user name of the owner of the device.

USER_REALM The realm name to which the user belongs.

SERIAL_NUMBER The serial number of the device. This field is optional
and supports DBCS characters to allow maximum
flexibility to device manufacturers.

MODEL The model of the device. This field is optional and
supports DBCS characters to allow maximum flexibility
to device manufacturers.

MODEL VARCHAR 32 No

DEV_DESCRIPTION VARCHAR 255 No

DEVICE_STATUS CHAR 1 No

LAST_MODIFIED DATE - Yes

Field name Field type Field
length

Required
154 Tivoli Personalized Services Manager Device Manager 1.1

DEV_DESCRIPTIONA human-readable description of the device. This field is
optional and supports DBCS characters to allow
maximum flexibility to device manufacturers.

DEVICE_STATUS A one-character status indicator for the device. This field
is intended to allow a device to exist in various states,
such as “unassigned”, “in use”, or “pending deletion”.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.5 DEVICE_CLASS table
A device class represents a type of device supported by Device Manager; for
example, all devices that use Palm OS. For each device class, Device
Manager is configured with the device plug-in, which consists of a Java class
that provides the interface to the device and a template file that describes the
set of device parameters required by devices of that device class.

Table 13 describes the fields defined in each row of the DEVICE_CLASS
table. Each row corresponds to a device class defined to the DMS and
maintains information about that device class.

Table 13. DEVICE_CLASSES table

The field names in Table 13 are defined here:

DEVICE_CLASS_ID An integer ID generated for the device class when
the device class is defined to the DMS. The device
class ID is unique across all device classes in this
table. This is the primary key to the device classes
table.

Field name Field type Field
length

Required

DEVICE_CLASS_ID (PK) NUMERIC 18,0 Yes

DEVICE_CLASS_NAME VARCHAR 255 Yes

DEVICE_CLASS_VER VARCHAR 64 No

DEVICE_JAVA_CLASS VARCHAR 255 Yes

ENROLLMENT_URL VARCHAR 512 No

DC_DESCRIPTION VARCHAR 255 No

LAST_MODIFIED DATE - Yes
Chapter 5. Device Manager database 155

DEVICE_CLASS_NAMEThe name of the device class. Each device class is
assigned a name by the device class installer when
the device class is defined to the DMS. This device
class name must be unique across all defined
device classes. This field supports DBCS characters
to allow maximum flexibility to device class
installers.

DEVICE_CLASS_VER The version of the device class (optional).

DEVICE_JAVA_CLASS The fully-qualified name of the Java class that
provides the interface to devices of this device class.
The methods of this Java class perform device-level
operations on behalf of the job classes that invoke
them.

ENROLLMENT_URL The URL on the Subscription Manager enrollment
server to which devices of this device class should
be redirected when a new device connects that is
unknown to the DMS or has no owner associated
with it.

DEV_DESCRIPTION A human-readable description of the device class.
This field is optional and supports DBCS characters
to allow maximum flexibility to device
manufacturers.

LAST_MODIFIED The date and time that this table row was last
modified. This field is maintained automatically by
the device management APIs.

5.1.6 DEVICE_CLASS_PARM table
This table maintains the device parameters set or all devices of a particular
device class.

Table 14 describes the fields defined in each row of the device class
parameters table. Each row corresponds to one parameter (key/value pair)
defined for a specific device class. Device classes that have multiple
parameters defined will have one row in this table for each parameter. When
a device configuration job is submitted for a device, the values in the
156 Tivoli Personalized Services Manager Device Manager 1.1

PARM_VALUE field for the device class is set to the device, overridden by the
DEVICE_PARM settings.

Table 14. DEVICE_CLASS_PARM table

The field names in Table 14 are defined here:

DEVICE_CLASS_ID The ID of the device class for which this parameter is
defined. This ID is a foreign key that maps to the
DEVICE_CLASS_ID field of the DEVICE_CLASS table.

PARM_KEY The key (name) of the parameter. Parameter keys are
stored as PARM_KEY in the DEV_CLASS_TEMPLATE
table. The device parameter is uniquely identified by the
combination of DEVICE_CLASS_ID and PARM_KEY.

PARM_VALUE The value of the parameter. Parameter values are
always stored as strings in the device class parameters
table, even though they may be defined as other data
types in the template file. This field supports DBCS
characters to allow maximum flexibility to device class
implementations.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.7 DEVICE_PARM table
A device parameter is a key/value pair that provides configuration information
to a device, such as IP Gateway or DNS Server, which the device uses. This
table maintains the parameters set for specific devices.

Table 15 on page 158 lists the fields defined in each row of the
DEVICE_PARM table. Each row corresponds to one parameter (key/value
pair) defined for a specific device. Devices that have multiple parameters
defined will have one row in this table for each parameter. If a parameter set

Field name Field type Field
length

Required

DEVICE_CLASS_ID (FK) NUMERIC 18,0 Yes

PARM_KEY VARCHAR 255 Yes

PARM_VALUE VARCHAR 1024 No

LAST_MODIFIED DATE - Yes
Chapter 5. Device Manager database 157

in the DEVICE_PARM table is also set in the DEVICE_CLASS_PARM table,
the value in the DEVICE_PARM is set to the device.

Table 15. DEVICE_PARM table

The field names in Table 15 are defined here:

DEVICE_ID The ID of the device for which this parameter is defined.
This ID is a foreign key that maps to the DEVICE_ID field
of the DEVICES table.

PARM_KEY The key name of the parameter. Parameter keys are
stored as PARM_KEY in the DEV_CLASS_TEMPLATE
table.

PARM_VALUE The value of the parameter. Parameter values are always
stored as strings in the device parameters table, even
though they may be defined as other data types in the
template file. This field supports DBCS characters to allow
maximum flexibility to device class implementations.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.8 DMS_SERVER table
This table maintains the Device Manager servers that use this database as its
Device Manager database. Each record corresponds to a Device Manager
server, and the record is created by the Device Manager at the first
connection to this database. Each Device Manager server coordinates the
execution of device management jobs scheduled for devices. Scheduled jobs
are maintained in a central database.

Field name Field type Field length Required

DEVICE_ID (FK) NUMERIC 18,0 Yes

PARM_KEY VARCHAR 64 Yes

PARM_VALUE VARCHAR 1024 No

LAST_MODIFIED DATE - Yes
158 Tivoli Personalized Services Manager Device Manager 1.1

Table 16 describes the fields defined in each row of the DMS_SERVER table.
Each row corresponds to one DMS server in the network.

Table 16. DMS_SERVER table

Each field in Table 16 is defined here:

DMS_ID An integer ID generated when the DMS server definition
is created. The home DMS server ID is unique across all
DMS servers in this table. This is the primary key to the
DMS servers table.

DMS_HOSTNAME The host name (or IP address) of the home DMS server.

PORT_NUMBER The port number of the Web server on the DMS server
that is configured to route requests from HTTP devices
to the servlet of the corresponding device class.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.9 INSTALLED_SW table
This table maintains information about what software has been downloaded
to specific devices.

Table 17 describes the fields defined in each row of the installed
INSTALLED_SW table. Each row corresponds to one software package
installed on one device. Devices that have multiple software packages
installed will have one row in this table for each installed software package.

Table 17. INSTALLED_SW table

Field name Field type Field length Required

DMS_ID (PK) NUMERIC 18,0 Yes

DMS_HOSTNAME VARCHAR 255 Yes

PORT_NUMBER NUMERIC 18,0 No

LAST_MODIFIED DATE - Yes

Field name Field type Field length Required

DEVICE_ID (FK) NUMERIC 18,0 Yes

SW_ID (FK) NUMERIC 18,0 Yes

LAST_MODIFIED DATE - Yes
Chapter 5. Device Manager database 159

Each field in Table 17 on page 159 is defined here:

DEVICE_ID The ID of the device on which the software package is
installed. This ID is a foreign key that maps to the
DEVICE_ID field of the DEVICES table.

SW_ID The ID of the software package installed on the device.
This ID is a foreign key that maps to the SW_ID field of the
SOFTWARE table.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.10 JOB_CLASS_TABLE table
A job class is a Java class that provides the implementation of a high-level
device management operation, such as software distribution, device
configuration, or rest page management. This table maintains the set of job
classes defined to Device Manager and the set of device classes that each of
these job classes supports. The records should be registered to this table
before the Device Manager server starts, by executing the dms_addplugin.sh or
jobclasscfg.sh script in the path /usr/lpp/TivDMS/bin (AIX) or /opt/TivDMS/bin
(Solaris).

Table 18 describes the fields defined in each row of the JOB_CLASS_TABLE
table. Each row defines the Java class name of the job class that implements
a specific job type (that is, Software Distribution, and so on) for a specific
device class. For job class implementations that support more than one
device class, there must be a separate entry in this table defined for each
device class supported by the job class.

Table 18. JOB_CLASS_TABLE table

Each field in Table 18 is explained in the following list:

Field name Field type Field
length

Required

JOB_TYPE VARCHAR 64 Yes

DEVICE_CLASS_ID (FK) NUMERIC 18,0 Yes

REALM VARCHAR 32 No

JOB_JAVA_CLASS VARCHAR 255 Yes

LAST_MODIFIED DATE - Yes
160 Tivoli Personalized Services Manager Device Manager 1.1

JOB_TYPE The job type that is implemented by the job class. The
base set of job types that will be shipped with the DMS
in the initial release are Software Distribution
(SW_DIST), Device Configuration (DEVICE_CFG),
and Rest Page Management (RESTPAGE_MGMT.)
Job classes that implement the basic function of these
job types will be developed by the device class
providers. However, the DMS architecture allows other
job types to be defined (by device class providers,
system integrators, and so on) and added to this table.

DEVICE_CLASS_ID The ID of the device class that this job class
implementation supports. This ID is a foreign key that
maps to the DEVICE_CLASS_ID field of the
DEVICE_CLASSES table.

REALM The realm for which this job class is used.

JOB_JAVA_CLASS The fully-qualified Java class name of the job class
implementation.

LAST_MODIFIED The date and time that this table row was last
modified. This field is maintained automatically by the
device management APIs.

5.1.11 JOB_HISTORY table
This table contains IDs for jobs that have completed on specific devices. It is
used to record when a job completes successfully on a device so that the job
is not executed again on the same device. Unsuccessful completions are also
recorded as an aid to problem determination. Records are removed from the
table when the job is deleted from the SUBMITTED_JOB table.

Table 19 describes the fields defined in each row of the JOB_HISTORY table.
Each row corresponds to the job submission progress record.

Table 19. JOB_HISTORY table

Field name Field type Field
length

Required

JOB_ID (PK) NUMERIC 18,0 Yes

JOB_TYPE VARCHAR 64 Yes

REALM VARCHAR 32 No

OFFERING VARCHAR 32 No

TARGET_DEVICE_ID NUMERIC 18,0 No
Chapter 5. Device Manager database 161

Each field in Table 19 on page 161 is explained here:

JOB_ID An integer ID that represents a submitted job. This
job ID represents the same job as the same ID in
the SUBMITTED_JOB table. This is the primary
key to the job history table.

JOB_TYPE The job type that is submitted. Job types available
for this Device Manager system are registered to
JOB_CLASS_TABLE at database configuration
time.

REALM The realm name for which this job is submitted.
This is optional.

OFFERING The offering name for which this job is submitted.
This is optional.

TARGET_DEVICE_ID The device ID for which this job is submitted. This
field is filled if the job is targeted to a device.

TARGET_DEVCLASS_ID The device class ID for which this job is submitted.
This field is filled if the job is targeted to a device
class.

SUBMITTED_TIME The time this job is submitted.

ACTIVATION_TIME The time this job will be activated. This field allows
any time value if it is less than the expiration time.

TARGET_DEVCLASS_ID NUMERIC 18,0 No

SUBMITTED_TIME DATE - No

ACTIVATION_TIME DATE - Yes

EXPIRATION_TIME DATE - Yes

JOB_STATUS CHAR 1 No

JOB_PRIORITY NUMERIC 0,0 Yes

JOB_DESCRIPTION VARCHAR 255 No

INTERVAL NUMERIC 0,0 No

INTERVAL_UNIT VARCHAR 32 No

LAST_MODIFIED DATE - No

Field name Field type Field
length

Required
162 Tivoli Personalized Services Manager Device Manager 1.1

EXPIRATION_TIME The time this job will be expired. This field allows
any time value that is greater than the activation
time.

JOB_STATUS The job progress status. This field can take values
of C (CANCELED), X (EXPIRED), M
(COMPLETED), and S. The value S stands for
PENDING, EXECUTABLE, or EXPIRED according
to the relation between current system time, the
job activation time, and the job expiration time.

JOB_PRIORITY The job execution priority. This is optional. If not
specified, the value is set to 5. A valid job priority
is a number from 1 to 10, where 1 is the highest
priority and 10 is the lowest priority.

JOB_DESCRIPTION The description for this job. This is optional.

INTERVAL The interval of this job execution. This field is used
in case this job is performed periodically.

INTERVAL_UNIT The unit of the job execution interval. This field is
used together with INTERVAL field. Possible
values are HOURS, DAYS, WEEKS and
MONTHS.

LAST_MODIFIED The date and time that this table row was last
modified. This field is maintained automatically by
the device management APIs.

5.1.12 JOB_PARM table
This table contains configuration parameters provided when the job is
submitted. A job parameters is a set of key/value pairs for parameters to be
associated with this job. The required key names depend on the job type.
Records are removed from the table when the job is deleted from the
SUBMITTED_JOB table.

Table 20 describes the fields defined in each row of the JOB_PARM table.
Each row corresponds to the job submission progress record.

Table 20. JOB_PARM table

Field name Field type Field length Required

JOB_ID (FK) NUMERIC 18,0 Yes

PARM_KEY VARCHAR 255 Yes

PARM_VALUE VARCHAR 1024 No
Chapter 5. Device Manager database 163

Each of the field names in Table 20 on page 163 are explained in the following
list:

JOB_ID The job ID for which the job configuration parameter is
set. This ID is a foreign key that maps to the JOB_ID field
of the SUBMITTED_JOB table.

PARM_KEY The key name of the configuration parameter. For
example, built-in device plug-ins use
DMS_URL_OF_SOFTWARE_PACKAGE key in this field,
to specify the URL of the software package to be
distributed.

PARM_VALUE The value that corresponds to the key in the PARM_KEY
field. In the case where a row represents the URL of a
software package, the actual URL is stored in this field.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.13 SOFTWARE table
This table maintains information about software that can be downloaded to
specific devices.

Table 21 describes the fields defined in each row of the SOFTWARE table.
Each row corresponds to the definition of one software package that can be
downloaded to devices of the corresponding device class. If a software
package can be run on devices of more than one device class, there must be
a separate entry in this table to define the software package for each
supported device class.

Table 21. SOFTWARE table

LAST_MODIFIED DATE - Yes

Field name Field type Field
length

Required

SW_ID (PK) NUMERIC 18,0 Yes

SW_NAME VARCHAR 255 Yes

SW_VERSION VARCHAR 64 Yes

SW_URL VARCHAR 512 Yes

Field name Field type Field length Required
164 Tivoli Personalized Services Manager Device Manager 1.1

The following list explains the field names in Table 21:

SW_ID An integer ID generated when the software package
definition is created. The software ID is unique across
all software packages in this table. This is the primary
key to the software table.

SW_NAME The name of the software package. Each software
package is assigned a name by the software installer
when the software package is defined to the DMS. The
software name, combined with the software version,
fully identify the software package, and this combination
must be unique for all software packages defined for a
particular device class. This field supports DBCS
characters to allow maximum flexibility to device class
installers.

REALM The realm for which this software will be distributed.

SW_VERSION The version of the software package. Each software
package is assigned a version by the software installer
when the software package is defined to the DMS. The
software name, combined with the software version,
fully identify the software package, and this combination
must be unique for all software packages defined for a
particular device class. This field supports DBCS
characters to allow maximum flexibility to device class
installers.

SW_URL The URL of the software package file. The format and
contents of this file are defined by the device class or
job class that distributes the software to devices; that is,
the format and contents of this file may vary from one
device class to another.

DEVICE_CLASS_ID The ID of the device class for which this software
package is defined. This ID is a foreign key that maps to

REALM VARCHAR 32 No

DEVICE_CLASS_ID NUMERIC 18,0 Yes

SW_DESCRIPTION VARCHAR 255 No

LAST_MODIFIED DATE - Yes

Field name Field type Field
length

Required
Chapter 5. Device Manager database 165

the DEVICE_CLASS_ID field of the DEVICE_CLASSES
table.

SW_DESCRIPTION A human-readable description of the software package.
This field is optional and supports DBCS characters to
allow maximum flexibility to device manufacturers.

LAST_MODIFIED The date and time that this table row was last modified.
This field is maintained automatically by the device
management APIs.

5.1.14 SUBMITTED_JOB table
This table contains information about jobs submitted for a specific device, all
devices of a specific device class, and all devices. This table only contains
PENDING, EXECUTABLE, or EXPIRED jobs. When a job is CANCELED or
COMPLETED, it is removed from this table.

Table 22 describes the fields defined in each row of the SUBMITTED_JOB
table. Each row corresponds to a job submitted to the specific device or to all
the devices in a device class.

Table 22. SUBMITTED_JOB table

Field name Field type Field
length

Required

JOB_ID (PK) NUMERIC 18,0 Yes

JOB_TYPE VARCHAR 64 Yes

REALM VARCHAR 32 No

OFFERING VARCHAR 32 No

TARGET_DEVICE_ID (FK) NUMERIC 18,0 No

TARGET_DEVCLASS_ID (FK) NUMERIC 18,0 No

SUBMITTED_TIME DATE - Yes

ACTIVATION_TIME DATE - Yes

EXPIRATION_TIME DATE - Yes

JOB_PRIORITY NUMERIC 18,0 Yes

JOB_DESCRIPTION VARCHAR 255 No

INTERVAL NUMERIC 18,0 No

INTERVAL_UNIT VARCHAR 32 No
166 Tivoli Personalized Services Manager Device Manager 1.1

The field names in Table 22 are explained here:

JOB_ID An integer ID generated when the job is
submitted. The job ID is unique across all jobs in
this table. This is the primary key to the submitted
job table.

JOB_TYPE The job type that is submitted. Job types available
for this Device Manager system are registered to
JOB_CLASS_TABLE at database configuration
time.

REALM The realm for which this job is submitted. This is
optional.

OFFERING The offering name for which this job is submitted.
This is optional.

TARGET_DEVICE_ID The device ID for which this job is submitted. This
field is filled if the job is targeted to a device.

TARGET_DEVCLASS_ID The device class ID for which this job is submitted.
This field is filled if the job is targeted to a device
class.

SUBMITTED_TIME The time this job is submitted.

ACTIVATION_TIME The time this job will be activated. This field allows
any time value if it is less than the expiration time.

EXPIRATION_TIME The time this job will be expired. This field allows
any time value that is greater than the activation
time.

JOB_PRIORITY The job execution priority. This is optional. If not
specified, the value is set to 5. A valid job priority
is a number from 1 to 10, where 1 is the highest
priority and 10 is the lowest priority.

JOB_DESCRIPTION The description for this job.

INTERVAL The interval of this job execution. This field is used
if this job is performed periodically.

INTERVAL_UNIT The unit of the job execution interval. This field is
used together with the INTERVAL field. Possible

LAST_MODIFIED DATE - Yes

Field name Field type Field
length

Required
Chapter 5. Device Manager database 167

values are HOURS, DAYS, WEEKS, and
MONTHS.

LAST_MODIFIED The date and time that this table row was last
modified. This field is maintained automatically by
the device management APIs.

5.2 Views

There are several views in the Device Manager database. This section looks
at these types of views:

• JobStatusView
• EligibleView
• AllDevicesForJob
• LastJobStatus

These views are mainly used to display the job status in Device Manager
console.

5.2.1 JobStatusView
This view lists the jobs that have not completed, that have completed in retry
or delay state, or that have completed successfully, but that is a periodic job.
The SUBMITTED_JOB table will only contain PENDING, EXECUTABLE, or
EXPIRED jobs, because when a job is CANCELED or COMPLETED, it is
removed from this table.

Table 23 shows the contents of the JobStatusView view.

Table 23. JobStatusView view

5.2.2 EligibleView
This view provides a list of jobs and all devices that have run or could run this
job. This is used to present a count of devices that a specific job affects.

Field name Original

jobID JOB_ID from JOB_STATUS

status Calculated by function. Possible values are:
- CANCELED
- EXPIRED
- COMPLETED
- PENDING
- EXECUTABLE
168 Tivoli Personalized Services Manager Device Manager 1.1

Table 24 shows the contents of the EligibleView view.

Table 24. EligibleView view

5.2.3 AllDevicesForJob
This view provides a list of jobs and the devices that have attempted to run
this job, plus the last known completion status reported by the device for the
job.

This view is used to present the count of devices for each completion status
for a specific job_id by issuing the following SQL query:

select count(device_id), job_comp_status
from lastjobstatus where job_id=xxxx
group by job_comp_status;

Table 25 shows the contents of AllDEviceForJob view.

Table 25. AllDeviceForJob view

5.2.4 LastJobStatus
This view provides a list of the job status. If the job has been attempted
multiple times, only the status of latest attempt is shown in this view.

Field Original Conditions

jID JOB_ID in ACTIVE_JOB Rows that satisfy the
following two conditions:

- The job for which JOB_ID
exists both in ACTIVE_JOB
and SUBMITTED_JOB.
- The job that is active.

jType JOB_TYPE in ACTIVE_JOB

jRealm REALM in ACTIVE_JOB

offering OFFERING in ACTIVE_JOB

dID DEVICE_ID in ACTIVE_JOB

jPriority JOB_PRIORITY in ACTIVE_JOB

jInterval INTERVAL in ACTIVE_JOB

jIntervalUnit INTERVAL_UNIT in ACTIVE_JOB

next_run_date NEXT_RUN_TIME in ACTIVE_JOB

Field Original Conditions

job_id JOB_ID in ACTIVE_JOB or
ACTIVE_JOB_HISTORY

The job that has the unique
combination of JOB_ID and
DEVICE_ID and that is in an
ACTIVE_JOB table or
ACTIVE_JOB_HISTORY table.

device_id DEVICE_ID inACTIVE_JOB
or ACTIVE_JOB_HISTORY
Chapter 5. Device Manager database 169

Table 26 shows the contents of the LastJobStatus view.

Table 26. LastJobStatus view

Field Original Conditions

job_id JOB_ID in
ACTIVE_JOB_HISTORY

The latest job among multiple
attempts of the job to a device

device_id DEVICE_ID in
ACTIVE_JOB_HISTORY

job_comp_status JOB_COMP_STATUS in
ACTIVE_JOB_HISTORY
170 Tivoli Personalized Services Manager Device Manager 1.1

Chapter 6. Application programming interface

This chapter provides an overview of the development of the device plug-in
software for a new device and explains how to integrate an external
application using DMS APIs.

6.1 Overview

Device Manager includes application programming interfaces (APIs) that
device manufacturers and integrators can use to develop plug-in software for
managing new devices and to integrate external applications for enrollment,
billing, customer care, and more. Device Manager has its own set of business
objects that are based on classes and methods provided by the Tivoli
Personalized Services Manager Integration Toolkit.

The device management server API defines the programming interface
between the device management server servlet (DMS servlet) and the device
plug-ins. This interface allows device plug-ins to interact with a Device
Manager server. The device management server API is a general purpose,
protocol-independent interface that serves as an abstraction layer, allowing
all classes of devices, though they may operate differently, to be managed in
the same way by Device Manager.

Either Device Manager, or the device manufacturer or integrator, provides a
device plug-in for the new device that implements the required functionality
and contains logic for performing the unique management functions for the
class of devices. The device management server API can be used to develop
plug-ins for any new class of device--plug-ins that implement device
identification, communications, and job processing for all devices in the new
device class.

The device management API defines the programming interface for
manipulating the device and job-related data resources stored in the Device
Manager database. Resources that can be managed include database
entries describing devices and classes of devices, their parameters, the
device class template, software defined for and available to devices, software
installed on devices by Device Manager, Device Manager servers, and job
classes.

Methods are provided to create, delete, and update these entries, as well as
search the database for entries matching certain criteria. These are the same
types of functions that can be done by an administrator through the Device
Manager console.
© Copyright IBM Corp. 2001 171

6.2 Components of Device Manager

To program to the APIs provided by Device Manager, you need to understand
the functions of the Device Manager database, the device plug-ins, and the
device management server servlet. Table 80 illustrates the DMS components.

Figure 80. DMS components

6.2.1 Device Manager database
As with Tivoli Personalized Services Manager, a relational database is at the
core of Device Manager. The database contains all the information needed to
manage a subscriber's devices. A set of tables contains information about
Device Manager jobs and devices. The APIs understand the interactions
between the tables and take care of creating, updating, or deleting related
information across all the tables to keep them synchronized.

The business objects of Device Manager provide a way of interacting with the
database in a uniform and consistent way without having to understand SQL
or the structure of the device database. These high-level, business-oriented

Device agent

Device plug-in
Device specific Communication
DeviceCommunicationManager

DeviceJob class

Device management server servlet

Device management API

Device
Manager
console

External
applications

Device management server API

Device Manager database
172 Tivoli Personalized Services Manager Device Manager 1.1

objects are built on simpler, table-oriented functions provided by the Tivoli
Personalized Services Manager integration toolkit.

6.2.2 Device plug-ins
A device plug-in resides on the Device Manager server and provides the logic
that handles device identification, communications, job processing, and
high-level management tasks for a particular class of managed devices. Put
simply, a plug-in defines support for a Device Manager device class. A device
class defines a group of devices whose operations can be similarly managed.

Plug-ins are logically structured in four pieces:

• A device-specific communication component that the plug-in software
uses to communicate with the device. This interface is defined by the
plug-in developer, typically it is implemented as a servlet.

• The internal device communications component, which enables
communication between the plug-in software and the DMS servlet. This
piece is created by the plug-in developer by providing a
DeviceCommunicationManager API implementation for the plug-in.

• The set of device-specific job classes. This piece of the plug-in interacts
with the DMS servlet, the device-specific communication component, and
the DeviceCommunicationManager implementation. It implements the
higher-level management tasks (such as software distribution or device
configuration). This piece is created by the plug-in developer, by
implementing the DeviceJob interface.

• An optional template file that describes the set of device parameters, such
as the IP gateway or domain name server used, that are supported by all
devices of the device class.

Both DeviceCommunicationManager and DeviceJob are abstract Java
classes in the device management server API that the plug-in writer extends
as part of developing device classes and device jobs.

6.2.3 Device management server servlet
When a device connects to the service provider's network, the device
management server servlet ensures that the device is enrolled. If it is, it
coordinates the processing of all scheduled device management jobs for the
device. Jobs are job classes included with each device plug-in that resides on
the Device Manager server. Device Manager supports job types, such as
device configuration, software distribution, and rest page management.
Chapter 6. Application programming interface 173

Jobs are submitted for processing by an administrator using the Device
Manager console or by another application using the device management
API. At the time the job is created, the administrator or application specifies
the type of job, any job-specific parameters, the devices the job should run
on, the activation and expiration time for the job, and so on.

When a device connects to the service provider's network, communicating
either directly or through a network dispatcher, to a Device Manager server,
the DMS servlet checks to make sure the device is enrolled with the service
provider and redirects it as needed:

• For a device requiring enrollment, the function redirects the device to the
service provider's enrollment server for registration.

• For an enrolled device, if there are jobs pending for it to run, the function
redirects the device back to the Device Manager server. This prevents the
device from returning through a network dispatcher during job processing
and then being rerouted to a different Device Manager server, should
multiple HTTP connections be required to complete the job.

The DMS servlet searches the database for any submitted jobs eligible to be
run that pertain to the device and builds a prioritized job list. To run the jobs,
the DMS servlet uses device management server API calls through the
device plug-in to interact with the device, often through several iterations of
requests and responses.

6.2.4 Tivoli Personalized Services Manager integration toolkit
To understand the Device Manager APIs, it is necessary to have a basic
understanding of the Tivoli Personalized Services Manager integration toolkit.
The toolkit provides a base set of classes that are used by Tivoli Personalized
Services Manager for database access. The base classes are used as the
building blocks for a set of business-level classes called business objects.

These higher-level classes give the programmer a means of manipulating
data and data relationships from a business perspective, rather than as bits of
data in a relational database. Tivoli Personalized Services Manager
integration toolkit includes a set of business objects built on the base classes
for subscriber database information.

For Device Manager, the device management API uses the Tivoli
Personalized Services Manager integration toolkit base classes to implement
a set of business objects for device management, using the same
programming model.
174 Tivoli Personalized Services Manager Device Manager 1.1

All of Device Manager's business objects based on the Tivoli Personalized
Services Manager integration toolkit extend the integration toolkit's TxObject.
Think of TxObject as an object that is manipulated in the context of a
Transaction (another class provided by the toolkit). Business objects are
instantiated locally for an application, and methods on the business object are
invoked to set and get the values of fields in the business object. The values
of these fields are then used to manipulate the relevant information in the
relational database by passing the business object to methods (create,
update, and so on) of a Transaction object. The Transaction object invokes
the corresponding method of the business object to perform the requested
operation.

For details of the integration toolkit's programming model and classes, refer to
the online manual Tivoli Internet and Personalized Services Manager
Documentation: Programmer's Guide.

6.3 Device management server API

Device plug-ins provide the device-dependent logic to perform management
operations (or jobs) on specific types of devices. The communications
between a device plug-in and the actual device is device-dependent and is
determined by the integrator who writes the plug-in code. The device
management server API defines the programming interface between a device
plug-in residing on Device Manager and the rest of Device Manager
(including its redirection function). The device management server API is
designed to be generic and protocol-independent to support many different
kinds of devices and jobs.

The device management server API includes two main abstract classes
called DeviceCommunicationManager and DeviceJob. A plug-in developer
extends these abstract Java classes to enable a device to be managed by
Device Manager and to implement device class-specific jobs.

The following sections highlight some of the main classes in the device
management server API.

6.3.1 Device and job classes
Device Manager uses the concept of device class to describe a group of
devices of similar characteristics or functions. For example, a device class
could include all screenphones of a particular model from a particular
manufacturer. Device Manager stores information about classes of devices in
its device database.
Chapter 6. Application programming interface 175

For a device class, a plug-in writer defines job classes that are supported for
that device. Note that job classes are device class-specific. For example, the
Device Manager product package includes software distribution for specific
devices, such as Palm III and Palm V-series Computing devices. Even though
both jobs can generically be described as “software distribution”, the
implementation varies according to the different device class.

6.3.1.1 DeviceCommunicationManager class
The DeviceCommunicationManager abstract class has the function to enable
a device to be managed by Device Manager. The interfaces defined by this
class include:

• A method for instantiating a device class.

• A method for the Device Manager server to register itself as the default
event handler for a device class.

• Methods that the Device Manager uses to cause the device class to
redirect a device to a server. A device can be redirected to the Tivoli
Personalized Services Manager enrollment application if it needs to enroll.
It can also be redirected to bypass the network dispatcher and connect
directly to a specific Device Manager, an important capability in a situation
where the device needs to have multiple connections with the same
Device Manager machine (such as a large or multi-step job).

• Methods for a device class to notify the Device Manager server of
incoming events from a device. The definition of the methods describes
the types of events that can occur and the parameters that must be
provided for each event type. For example, for CONNECT events, the
device class must provide the unique identification of the connecting
device.

• A method for a device class to notify the device management server of an
exception condition.

6.3.1.2 DeviceJob class
The DeviceJob abstract class has the basic function to allow device-specific
jobs to be created and managed by Device Manager.

The interfaces defined by this class include:

• A method for the DMS servlet to initialize a job and enumerate any
device-specific configuration or job parameters, that is, initJob().

• A method for the DMS servlet to start or resume processing of a job on a
particular device. The definition of this method describes how job and
176 Tivoli Personalized Services Manager Device Manager 1.1

device parameters are passed to the job class and the return indicators
that can be received from the job class, that is, doJob().

The DeviceJob class has several reserved parameters defined for use as job
or device parameters to be passed on a call to the initJob method of
DeviceJob. The reserved parameters are easily identified because their
names start with <DMS_>. The parameters include networking information
such as a device's default gateway, IP address, or subnet mask, and user
information such as a user ID or password.

The API includes three job-specific classes that extend DeviceJob. These
classes are provided as a convenience for doing some common jobs and they
will handle some pre- and post-job processing tasks automatically. The
classes are:

• DeviceConfigurationJob
• SoftwareDistributionJob
• RestPageManagementJob

6.3.1.3 PervasiveDeviceID class
The PervasiveDeviceID class provides an identifier to uniquely identify a
specific device within Device Manager. The class contains the following
information:

• The fully-qualified Java class name of the class managing the device; for
example, com.tivoli.dms.deviceCommunicationManager.device.

• The short class name that uniquely identifies the type of device managed
by a particular DeviceCommunicationManager, typically just the device
class name.

• A unique identifier, such as the device's serial number.

6.3.1.4 DeviceManagementEvent class
The DeviceManagementEvent class provides the base function that
DeviceCommunicationManagers use to alert Device Manager of device
initiated events, such as a request for work. The fire() methods in the
DeviceCommunicationManager class are used to initiate these events.

The following four subclasses extend this base class with event-specific
functionality:

• DeviceConnectionEvent notifies Device Manager that a device has
initiated or closed a connection.
Chapter 6. Application programming interface 177

• DeviceRequestWorkEvent notifies Device Manager that a device is
requesting a new job or is asking to continue processing of a job in
progress.

• DeviceJobProcessingCompleteEvent notifies Device Manager of the
completion of a job and the status of the job, for example, that it completed
successfully, that is failed but should be retried, and so on.

• DeviceErrorEvent notifies Device Manager of an error. It returns the Java
exception, if there is one, as well as a description of the event.

The API includes four corresponding “listener” classes, one for each of the
event-specific classes listed here, that process the events as they are
received. These listeners are registered by calling methods in the
DeviceCommunicationManager class.

6.3.2 Developing support for devices
To support a new device, it is the integrator's responsibility to create a device
class plug-in to support the associated device class.

Before a device can be managed by Device Manager, plug-in developers
must determine the best way to interact with Device Manager. You should
consider the following points:

• How should the device communicate with Device Manager?
• What jobs are supported by the device?
• What steps are needed for the device to be managed by Device Manager?
• Are there device-specific parameters needed to operate the device?

Each one of these design points can take considerable developer effort.

To support a particular device class, a plug-in writer needs to complete the
following steps:

1. Create a servlet (or other mechanism) that communicates with the device
using HTTP or some other protocol and that communicates with Device
Manager using the device management server API.

2. Optionally extend the DeviceCommunicationManager class to implement
methods for managing communications.

3. As appropriate, extend the DeviceConfigurationJob,
SoftwareDistributionJob, and RestPageManagementJob classes to create
jobs.

4. Extend the DeviceJob class to create jobs that are specific to the device
class.
178 Tivoli Personalized Services Manager Device Manager 1.1

5. Optionally, create a template file that defines device parameters that an
administrator will use to manage the device.

To communicate with a device, providing a device agent code is required. But
the design of agent code is not discussed in this book because it is specific to
the device.

6.3.2.1 Developing the plug-in
A plug-in developer must determine the communication protocol between an
agent program and a device plug-in. The communications between a device
plug-in and the actual device is device-dependent. This component is
developed by the plug-in developer, and is typically implemented as a servlet.

The above device-specific communication component is the client side code
needed to enable the device for Device Manager. A plug-in developer also
needs to develop an internal device communications component, which
enables communication between the device-specific communication
component and the DMS servlet. This component is created by the plug-in
developer by providing a DeviceCommunicationManager API implementation
for the plug-in.

A plug-in developer needs to define job classes that are supported for that
device. Note that job classes are device class-specific. Job classes
implement the logic for performing higher-level management tasks, such as
software distribution, device configuration, and rest page management. A job
class performs these high-level tasks by invoking the device class methods
necessary to accomplish the task.

A plug-in developer extends DeviceCommunicationManager and DeviceJob
abstract Java classes to enable a device to be managed by Device Manager
and to implement device class-specific jobs.

A description of the API calls and other communications between a device
and Device Manager components can be found in 2.3.2, “Job flow” on page
45.

Developing jobs for a device
To create a general-purpose job, extend the DeviceJob class. In the default
constructor of a particular DeviceJob, required parameters can be defined
through one or more requiredParameters.addElement(parameters), where
requiredParameters is a Vector of required parameters. The DeviceJob base
class automatically checks the required parameters against the job
parameters and device parameters when Device Manager calls the
job.performPreProcessing() method.
Chapter 6. Application programming interface 179

For example, suppose you extended DeviceJob to create a specific job called
MyJob as shown in Figure 81.

Figure 81. Example of extending the DeviceJob class

It is important to note that if there is a conflict between a device parameter
and a job parameter (in other words, if the keywords match), the job
parameter takes precedence and will be used to complete the job.

Job-specific classes are provided for software distribution, device
configuration, and rest page management jobs. These classes perform any
pre- or post-processing specific to the specific type of job, and they also allow
all jobs of a specific type, such as software distribution, to be grouped
together for convenience, such as for display in the Device Manager console.

Device Manager provides an object called deviceContext that can contain any
Java object that is useful for maintaining device state information. When a
device contacts Device Manager with a request, the
DeviceCommunicationManager calls fire() to make the appropriate request.
The fire() method calls a corresponding process() method so that the DMS
servlet will process the event.

DeviceCommunicationManager creates the deviceContext object and passes
it to the DMS servlet as part of the process() call. The DMS servlet passes
the deviceContext object back to the DeviceCommunicationManager when it
calls DeviceJob.doJob(deviceContext).

The communication between DeviceCommunicationManager and the DMS
servlet is done through Java device management events. The
DeviceCommunicationManager creates an event object of the appropriate
type: DeviceConnectionEvent, DeviceJobProcessingCompleteEvent,

import com.tivoli.dms.dmserver.DeviceJob;

public class MyJob extends DeviceJob {

public MyJob {

requiredParameters.addElement(SomeParameterMyJobNeeds);

}

public void doJob(Object deviceContext) throws DeviceManagementException {

// Your job goes here....

}
}

180 Tivoli Personalized Services Manager Device Manager 1.1

DeviceRequestWorkEvent, and DeviceErrorEvent. DeviceManagementEvent
is the abstract base class for device management events. When the
DeviceCommunicationManager creates a device management event, it
passes in the following information:

• The object source: The object creating the event, either the
DeviceCommunicationManager or DeviceJob.

• The pervasive device ID.

• The deviceContext object.

• Other event-specific information that must be passed to the event as it is
created. For example, on a DeviceRequestWorkEvent, it must pass the
status indicating whether this is a new job request, or a request to
continue a job.

In addition, DeviceErrorEvents must include the type of the error, and can
optionally include a description of the error and a related Java exception error
that is the underlying reason for the error.

Typical one-step job processing scenario
The following scenario describes the API calls and other communications
between a device and Device Manager components during execution of a job
that requires only one step to complete:

1. Through its plug-in, a device contacts DeviceCommunicationManager to
request a job. The communications interface between the plug-in's device
communication software and DeviceCommunicationManager is
proprietary and determined by the plug-in developer.

2. DeviceCommunicationManager creates a DeviceRequestWorkEvent with
a request of DEVICE_REQUEST_JOB, and then calls
fire(DeviceRequestWorkEvent DEVICE_REQUEST_JOB). The event is
constructed with information denoting the event source, the
PervasiveDeviceID, and the DeviceContext objects.

3. The fire() method calls the associated process() method in the
DeviceManagementServer class to process the event.

4. The DMS servlet finds the highest-priority job (called Job1Step in this
scenario) for the device that is scheduled to be processed. It creates an
object instance of the job, associates it with the device's
PervasiveDeviceID, and initiates it with any associated job or device
parameters.

5. The DMS servlet calls job1Step.performPreProcessing() to do any
job-specific preprocessing.
Chapter 6. Application programming interface 181

6. The DMS servlet calls job1Step.doJob(), which is a method of the
deviceJob class, to enable device-specific processing to be done. The
implementation of the device job job1Step is unique to the device, and is
written by the device vendor or integrator. Note that Job1Step was
previously initialized with the jobParameters, the deviceParameters, and
the PervasiveDeviceID, so this information does not have to be explicitly
passed to the doJob() method. There are methods that a job can use to
set and get a DeviceCommunicationManager job-specific object called
jobContext. This object can be used as a holding place to store any
job-related state information for jobs that require multiple interactions
between the device and Device Manager.

7. The Job1Step object works with other plug-in components to return a
message to the device instructing it to perform Job1Step.

8. The device performs Job1Step.

9. The device sends a message to DeviceCommunicationManager notifying
it that the job has completed successfully.

10.The DeviceCommunicationManager creates a
DeviceJobProcessingCompleteEvent with a status of JOB_COMPLETED.
The event is constructed with information denoting the event source, the
PervasiveDeviceID, and the deviceContext objects. The
DeviceCommunicationManager calls the
fire(DeviceJobProcessingCompleteEvent) method.

11.The fire(DeviceJobProcessingCompleteEvent) method calls the
associated process() method on the DeviceManagementServer to process
the event.

12.The DMS servlet calls job1Step.performPostProcessing() to perform any
job-specific post-processing, including updating the device database with
information about the software and the device.

13.The DMS servlet updates the Device Manager database with completion
information.

The Javadoc for the device management server API provides details of all
device management server API classes and their associated methods.

6.3.2.2 Creating a template file
For each new device class developed, a device class developer may provide
a template file that describes the device-specific parameters required by the
devices it manages. In the template file, the device developer describes each
parameter, its syntax, and additional information to enable the Device
182 Tivoli Personalized Services Manager Device Manager 1.1

Manager console to build a user interface to present the device parameters to
an administrator.

The format of the template file is common across all device classes. Device
Manager provides a utility for installing template files when a particular device
class is installed. The template file is optional, so if a plug-in writer is creating
a plug-in for a device class that does not have any configurable parameters, a
template file is not needed.

Template file format
A device class configurator included with Device Manager parses the
template file and stores the device parameter definitions in the
DEV_CLASS_TEMPLATE database table. The Device Manager console uses
the device management API to retrieve the parameter definitions for a
particular device class and to build a device configuration dialog. The dialog
consists of at least one tab. Each tab includes device parameters, such as
text fields or combo boxes. Device configuration values are stored in the
DEVICE_PARM and DEVICE_CLASS_PARM tables and are passed to a job
class when a device configuration job is processed for a device.

The template file is a set of keyword/value pairs that follow a bracketed tab or
parameter name. The template file contains tab definitions and device
parameter definitions. Device parameters are displayed in the user interface
within a named tab. Both types of definitions consist of the tab or item name
in brackets, followed by several keyword=value statements. Figure 82 shows
an example of a template file.

Figure 82. Example of a device class template file

The name contained in brackets is looked up in the resource bundle. The
name of the device class resource bundle must be
DeviceClassTemplate.properties or DeviceClassTemplate_lang.properties,
for example, \com\tivoli\dms\plugin\palm\PalmTemplate.properties. If the
bundle does not exist, or the bracketed name is not found in the bundle, the

[tab name]
type=Tab
keyword=value
keyword=value
:
:
[parameter name]
tab=tab name
keyword=value
keyword=value
:
:

Chapter 6. Application programming interface 183

label field is used as the displayed name on the user interface. The tab name
is also used as the identifier when storing the parameter value in the
DEVICE_PARM or DEVICE_CLASS_PARM tables. Keywords should conform
to the list of predefined device parameter keywords.

Valid keyword/value pairs
Figure 27 lists the keywords and definitions for the template file. The
keywords are valid only for parameters unless otherwise noted.

Table 27. Template file keywords

Keyword Description

type A value type, valid for tabs and as a parameter. This keyword is
required for all tabs and parameters. Valid values are String, Int or
Integer, Bool, or Tab.

range Value range. This value is optional and is valid only for Integer types.
It is specified in “start, end” format, where start is the starting value
and end is the ending value. For example, range=1,10 means that the
values can range from 1 to 10.

default The recommended value. It is not stored as a value for any device or
device class unless the administrator decides to take the default. This
value is optional. If a range or group of choices is configured, the
default must be within the range or one of the choices.

descriptionkey A description of the parameter that should be displayed as flyover help
for the item in the Device Manager console. The descriptionkey is
used as a key in the resource bundle for the description text. If the
resource bundle cannot be found, Device Manager uses the value
specified for the description keyword as the flyover help text. If neither
descriptionkey nor description is specified, no flyover help is available
for that item in the Device Manager console.

description A default description of the parameter, stored in the database. This
keyword is optional, and is valid for both tabs and parameters. In the
event that descriptionkey is not specified or the resource bundle
cannot be found, the value specified for the description keyword is
displayed in flyover help in the Device Manager console. If neither
descriptionkey nor description is specified, no flyover help is available
for that item in the Device Manager console.
184 Tivoli Personalized Services Manager Device Manager 1.1

Template file example
Figure 83 on page 186 shows and example if defining two tabs. The TCP/IP
tab contains two text fields, and the Desktop tab contains one combo box and
one text field.

labelkey This keyword is optional and is valid for both tabs and parameters.
The labelkey is used as a key in the device class resource bundle to
retrieve the field name displayed for the Device Manager console. If
the resource bundle does not exist, or the key is not found, the label
is used instead as the displayed parameter name in the Device
Manager console. The labelkey cannot contain any spaces. If a
labelkey is not specified, the label keyword is used as the displayable
field name for the Device Manager console.

label The name of the parameter. This keyword is required and is valid for
both tabs and parameters. The name in brackets is a string that is
displayed as the field name for the Device Manager console. The label
keyword is used only if a labelkey keyword is not specified.

choices The list of possible values that are used in a combo box. This keyword
is optional and only applies to String and Int parameters. Each item is
separated by a comma. The user interface will always support a blank
choice. For example, choices=A,B,C puts up a combo box with A, B,
C, and blank as the possible choices.

A list of choices can also be specified as
choices=Value1|Label1,Value2|Label2,Value3|Label3.... The value
specified on Value is stored in the database; the value specified on
Label is displayed in the Device Manager console. For example,
choices=1|Monday,2|Tuesday,3|Wednesday stores the values 1, 2,
and 3 in the database, and displays Monday, Tuesday, and
Wednesday in the Device Manager console.

Special characters can be delineated using a backward slash (\) as an
escape character. For example, to format an entry as 09,12,2000, you
would specify it as 09\,12\,2000.

editable Indicates whether the parameter value is editable. This keyword is
optional. Valid values are T (for true) and F (for false).

tab The tab to which the parameter belongs. This keyword is required. For
example, tab=tcpip puts the item on the TCP/IP tab.

length The maximum length of a String value, up to 1024 characters. This
keyword is optional and is valid only for String types. Length cannot
be specified if editable=false or if choices are specified.

Keyword Description
Chapter 6. Application programming interface 185

Figure 83. Example of the TCP/IP tab and Desktop tab definitions

6.4 Device management API

The device management API provides the programming interface for
managing devices, jobs, and related resources in the device management
database. All Device Manager servers in a network share a common device

TCP/IP Tab Definition
#
[tcpip]
type=Tab
label=TCP/IP
description=TCP/IP settings
[pop3]
type=String
length=32
description=POP3 server address
label=POP3 Server:
labelkey=POP3
tab=tcpip
[ppp]
type=String
description=Dialup phone number
label=PPP Access Point:
labelkey=tcpipPPP
tab=tcpip
#
Desktop Tab Definition
#
[desktop]
type=Tab
label=Desktop
description=Desktop settings
descriptionkey=Personalize your desktop settings
label=PPP Access Point:
labelkey=desktopPPP
[bgColor]
type=String
description=Background color of desktop
label=Background Color:
labelkey=bgcolor
choices=White,Black,Red,Yellow,Green,Blue
editable=true
tab=desktop
[timeout]
type=int
range=1,60
default=5
description=Default idle duration minutes to turn off screen
descriptionkey=Specify number of minutes for idle screen to wait before turning off
label=Idle screen Time-out:
labelkey=timeout
tab=desktop
186 Tivoli Personalized Services Manager Device Manager 1.1

management database. The device management API consists of a callable
set of Java methods. These methods are called by many other entities,
including:

• Other components of Device Manager. The Device Manager console uses
the device management APIs to interact with the database to accomplish
administrator-initiated operations, and the device management server API
calls device management APIs to obtain information from the database
that it needs to process jobs.

• Device management applications, such as the subscription management
component of Tivoli Personalized Services Manager.

• External applications, such as billing systems, customer care, and
self-care applications.

Using the device management API, you can manage the following types of
data in the device management database:

• Jobs

The device management API provides methods for creating, canceling,
and deleting jobs and listing existing jobs. A job is a piece of work to be
done for a device or group of devices, such as software distribution or
configuration.

• Device classes

Device class entries describe each of the device classes installed on a
Device Manager server. The device management API provides methods
for creating, updating, and deleting device class entries in the database,
and for listing device classes.

• Devices

Device entries describe a device that is owned by a subscriber. That is, the
device's owner is assumed to have subscribed with the ISP for device
management services. Device entries are created in the device
management database when devices are first enrolled with an ISP. The
device management API provides methods for creating, deleting, and
updating device entries, for adding, deleting and updating the device
parameters for devices, and for defining the list of software installed on
devices. Additional methods provide the ability to filter the list of devices,
based on search criteria.

• Software

Software entries describe device software that has been packaged for
distribution to devices. Each software entry is associated with devices of a
specific device class. That is, if a particular software application runs on
Chapter 6. Application programming interface 187

devices supported by different plug-ins, you must define entries for each
software-device class relationship. The device management API provides
methods for creating, deleting, and updating software entries in the
database. An additional method provides the capability to list software
based on matching specific software attributes.

• Device Manager servers

Device Manager server entries describe each of the Device Manager
servers in the network. The device management API provides methods for
creating, updating, and deleting Device Manager server entries in the
device management database, and for listing known servers. Note that
Device Manager itself manages the entries in these tables by registering
itself automatically when it is started; the programmer does not need to
update these entries.

6.4.1 Managing devices
The device management API provides a set of callable methods for managing
devices and their related resources in the device management database. The
database contains entries describing devices, device software, related
parameters, and Device Manager servers. Methods are provided for creating,
deleting, and updating these entries, as well as for searching the database for
entries matching certain criteria.

6.4.1.1 Device management business objects
The device management API provides the following business objects, which
are based on the TxObject class in Tivoli Personalized Services Manager's
Integration Toolkit. The device management business objects are:

• DMDevice is used to create, delete, and update devices and device
attributes in the DEVICE table. Additionally, you use DMDevice to list
devices and their related attributes, such as device parameters or software
available for install, from the DEVICE_PARM or INSTALLED_SW database
tables. For example, you would use this object to query the database for a
list of software installed on a particular device.

• DMDeviceClass is used to create, delete, and update device class entries
and parameters in the associated DEVICE_CLASS table, as well as to list
device classes and their related attributes (such as device class
parameters) from the DEVICE_CLASS_PARM table.

• DMServer is used to create, delete, update, and list Device Manager
server entries in the associated DMS_SERVER table.

• DMSoftware is used to create, delete, and update software information in
the SOFTWARE table, as well as to list software packages and device
188 Tivoli Personalized Services Manager Device Manager 1.1

class data. Note that since this business object does not know about the
INSTALLED_SW table, you need to use the DMDevice business object to
list software that has actually been installed as opposed to software that is
available for installation.

• DMJobClass is used to create, delete, update, and list information in the
JOB_CLASS_TABLE table about job classes and their relationship to
device classes.

Each device management business object provides two levels of APIs to
manipulate database entries:

• The low-level APIs require the caller to get an instance of the business
object, call the various set methods to set the required fields, get an
integration toolkit Transaction instance, and pass the business object to
the desired Transaction method.

• The high-level APIs are built on top of the low-level APIs. These
higher-level APIs manipulate Transaction objects and make function calls
as needed, and they automatically join with additional database tables (if
appropriate.)

For most programming purposes, the high-level APIs are the preferred
programming method. A programmer who is very familiar with Tivoli
Personalized Services Manager's integration toolkit may choose to use the
low-level APIs in certain situations.

6.4.1.2 Device Manager database tables
The Device Manager database consists of a series of relational database
tables for storing information about devices and their associated resources.
The tables you can use are:

• DEVICE: The device table maintains a base set of information for each
device being managed. Each device is associated with a single owner; for
example, a Tivoli Personalized Services Manager subscriber.

• DEVICE_CLASS: A device class represents a type of device supported by
Device Manager, for example, all devices that use PalmOS. For each
device class, Device Manager is configured with the device plug-in, which
consists of a Java class that provides the interface to the device and a
template file that describes the set of device parameters required by
devices of that device class.

• DEVICE_PARM: A device parameter is a key/value pair that provides
configuration information to a device, such as IP Gateway or DNS Server,
which the device uses. This table maintains the parameters set for specific
devices.
Chapter 6. Application programming interface 189

• DEVICE_CLASS_PARM: This table maintains the device parameters set
or all devices of a particular device class.

• DEVICE_CLASS_TEMPLATE: A device class template file is provided
with each device class defined to the Device Manager and describes the
set of device parameters required by devices of that device class.

• SOFTWARE: This table maintains information about software that can be
downloaded to specific devices.

• INSTALLED_SW: This table maintains information about what software
has been downloaded to specific devices.

• DMS_SERVER: This table maintains the list of Device Manager servers in
the network. Each Device Manager server coordinates the execution of
device management jobs scheduled for devices. Scheduled jobs are
maintained in a central database.

• JOB_CLASS_TABLE: A job class is a Java class that provides the
implementation of a high-level device management operation, such as
Software Distribution, Device Configuration, or Rest Page Management.
This table maintains the set of job classes defined to the Device Manager
and the set of device classes that each of these job classes supports.

For more information about table entries, refer to Chapter 5, “Device Manager
database” on page 145.

6.4.2 Managing jobs
The device management API provides a set of classes for manipulating the
information about jobs in the device management database. Methods are
provided to submit, cancel, and delete jobs, as well as to query the current
state of jobs.

6.4.2.1 Job management business objects
The device management API uses two business objects for job management.
These business objects are based on the business objects defined for the
Tivoli Personalized Services Manager Integration Toolkit.

• DMSSubmittedJob is the business object representing a submitted job.
The API uses the base Integration Toolkit business object's methods for
creating, updating, reading, and deleting the DMSubmittedJob object.

• DMChildJob is the business object representing a child job. Child jobs
cannot be created, deleted, or updated through the Device Manager
console. The child job object is used primarily for checking on the status of
a job.
190 Tivoli Personalized Services Manager Device Manager 1.1

6.4.2.2 Job management database tables
The job management database consists of a series of relational database
tables for storing information about jobs submitted on a specific Device
Manager. The tables you can use are:

• SUBMITTED_JOB: This table contains information about jobs submitted
for a specific device, all devices of a specific device class, and all devices.

• ACTIVE_JOB_HISTORY: This table contains IDs for jobs that have
completed on specific devices. It is used to record when a job completes
successfully on a device so that the job is not executed again on the same
device. Unsuccessful completions are also recorded as an aid to problem
determination. Records are removed from the table when the job is
deleted from the SUBMITTED_JOB table.

• JOB_PARM: This table contains device parameters provided when the job
is submitted.

6.4.2.3 Displaying information in the DM console
The Device Manager console administrator has the capability to limit how
many items are returned on a query. To support this, the DMResult class has
two methods:

• isMore() returns true if more than the maximum number of items would be
returned on the query specified in the query. It also causes the warning
message shown in Figure 84 to be displayed.

Figure 84. Example of isMore() method

• getObjects() returns a vector of the following “lightweight” (scaled-down)
objects:

- DMDeviceData
- DMSubmittedJobData
- DMChildJobData
- DMSoftwareData
- DMServerData
- DMDeviceClassData
- DMJobClassData

DYM0115W The number of items matching the filter criteria exceeded the
specified maximum of maximum_number. Only maximum_number items
were returned.
Chapter 6. Application programming interface 191

192 Tivoli Personalized Services Manager Device Manager 1.1

Chapter 7. Using the DM functions

This chapter explains how to use the Device Manager functions, software
distribution, and device configuration. It describes the operational tasks, step
by step, and then shows the operations for both the Device Manager server
and subscriber using sample scenarios.

Before you can start creating jobs, you need to have administrator privileges
to manage target devices through the Device Manager console.

For information on how to install and customize the Device Manager console,
refer to the online manual Tivoli Personalized Services Manager Device
Manager: Administration.

7.1 Device agent installation

To use any Device Manager function, subscribers need to install the device
agent program on their pervasive devices. This is developed together with
each device plug-in. The subscribers connect to the Device Manager server
by invoking this agent program.

In this section, we describe how to install and setup the device agent program
for the Palm device. For another device agent program installation, refer to
the online manual, Tivoli Internet and Personalized Services Manager Device
Manager: Device Plug-in Notes.

7.1.1 Installing the device agent program
First, you need to install the device agent program for the Palm device. This
should be done using the HotSync operation. Complete the following tasks:

1. Connect the Palm cradle to the HotSync-installed PC, and place the Palm
device in the cradle.

2. Open the Install Tool window, shown in Figure 85 on page 194, of the Palm
Desktop. Then, install the PvcPalm.prc file.

If you need to use SSL to communicate with the Device Manager server,
you need to install the certificate file and set the agent to SSL-enabled.
This is done by installing the PDB file to perform the setting or by using a
device configuration job. PDB files contain database records that are used
by the Palm OS to store the application data, and they have features
unique to the Palm OS.
© Copyright IBM Corp. 2001 193

Figure 85. Install Tool window

3. The DevAgent icon, shown in Figure 86, appears on the Palm display
when installation process completed.

Figure 86. DevAgent icon

7.1.2 Device settings
After installing the device agent, you should configure the network settings of
the Palm, and set up the agent.

You need some information from the service provider when you try to set up
your device. The information you need includes:
194 Tivoli Personalized Services Manager Device Manager 1.1

• PPP userID
• PPP password
• Network service name
• ISP’s phone number
• ISP’s userID (TPSM subscriber userID)
• ISP’s password (TPSM subscriber password)
• The address and port number of Device Manager server
• Servlet name
• Proxy address (if necessary)

Following are the step-by-step instructions for setting up the Palm device.

1. Set the Palm device network parameters and connection preferences from
the Prefs icon. Figure 87 shows the Preferences and Details windows.

a. From the Connection menu, select the proper modem, and set the
value.

b. From the Network menu, select create new service, and set the ppp
userID/password, connection, and phone number.

c. Click Details, and set the DNS server address.

Figure 87. Network setting from Prefs icon

2. Click Home to return to the main menu. Next, click the DevAgent icon.
Since this is the first time the device agent program is invoked, additional
setting windows appear.

3. In the confirmation window, respond with Never DSP. When the Logon
window, shown in Figure 88, is displayed, enter the subscriber information
in the following format:
Chapter 7. Using the DM functions 195

- Username: username@realmname
- Password TPSM user’s password
- ServiceName The service name of the ISP

This information should be provided by the ISP before you try to install device
agent program.

Figure 88. Logon setting window

4. When the warning window shown in Figure 89 is displayed, click OK.

Figure 89. Warning window

5. Next, the PalmAgent window, shown in Figure 90, is displayed.

The Logon window only appears the first time the device agent is invoked.
If the wrong information is set, you must reinstall the device agent program
to correct it.

Logon window
196 Tivoli Personalized Services Manager Device Manager 1.1

Figure 90. Device agent main window

6. Click the List menu icon, and open Options -> Server setting as shown
in Figure 91.

Figure 91. Select Server Setting option

7. Enter the server address, server port, and the servlet name in the Server
Information window, shown in Figure 92 on page 198, and then click OK.
Chapter 7. Using the DM functions 197

Figure 92. Server Setting

By clicking the Default button, you can set Port and Servlet Name fields to
default. The value to be set to the Port field depends on the SSL setting of the
agent. In cases where SSL is enabled, the Port field is set to 443, and in
cases where SSL is disabled, the Port field is set to 80. The Default button
always sets the value of the Servlet Name field to /dmserver/PalmServlet.

For instructions on how to enable SSL, refer to 4.4, “Enabling SSL” on page
141.

8. If your ISP instructs you to set the proxy address, select the Proxy Setting
from the Options menu, shown in Figure 93. Then, mark the square to the
left of Enable Proxy, and set the proxy server address in the Proxy
Information window, shown in Figure 94 on page 200. To apply your
settings, click OK.

Figure 93. Proxy Setting

Now you can connect to the Device Manager server by clicking Connect in
the PalmAgent window, or by clicking the DevAgent icon.
198 Tivoli Personalized Services Manager Device Manager 1.1

7.1.3 Device setting with Palm Cradle
The Palm device can communicate using a modem. Using Device Manager’s
built-in Palm device plug-in support, the Palm device can also communicate
using a cradle. To support this connection, the Palm plug-in provides the
conduit software named TPSM 1.1 Palm Cradle Support for Windows.

The installation program named /usr/lpp/TivDMS/agents/palm/CondInst.exe
is shipped with Device Manager. This contains a plug-in to the Palm Desktop
software, named CondAgent.

The conduit PC needs to have Palm Desktop software installed and be able
to resolve the host name of the DM servers properly.

To install TPSM 1.1 Palm Cradle Support for Windows, simply run the
CondInst.exe program on the machine with Palm Desktop installed. It will
temporarily stop the Palm HotSync Manager, install the cradle support
software, and then restart the Palm HotSync Manager.

To connect to the Device Manager from the cradle-connected Palm device,
simply click the DevAgent icon as you connect the DM server using a
modem. The settings are the same as those used for modem communication.

The device agent has a function to distinguish whether the device is
connected to the modem or the cradle.

After the agent notices that the device is connected to the cradle, it invokes
the HotSync program. TPSM 1.1 Palm Cradle Support for Windows is
invoked as a plug-in to HotSync and connects to the Device Manager server
as if it is a device agent. It creates a folder on the local disk, with the same
name as the device ID, and stores the configuration parameters and the
distributed software in that folder.

7.2 Software distribution

Software distribution is one of the important functions of the Device Manager.
The service provider can centrally manage software that is installed in a
subscriber’s personal device using this function. In this section, we describe

Some types of Palm devices or Palm modems cannot be distinguished by
the device agent. In that case, the agent displays a window asking whether
the device is connected using a cradle or modem.

Note
Chapter 7. Using the DM functions 199

how to plan and prepare for tasks that you need to perform when you use the
software distribution function for the Palm device.

Although the preparation tasks are almost the same as when you use other
types of devices, like Windows CE or Aero 8000, supported parameters are
slightly different. For detailed information about the software distribution
function for each device class, refer to the online manual Tivoli Internet and
Personalized Services Manager Device Manager: Device Plug-in Notes.

7.2.1 Planning for software distribution
The system administrator uses the Device Manager console or an application
to create a software distribution job and submit the job for processing.

7.2.1.1 Understanding the flow
You need to know the procedure to prepare files and create a software
distribution job. We describe each task in the following sections.

Figure 94 shows the flow for distributing software to pervasive devices.

Figure 94. Software distribution preparation flow

1. Put the files on server

2. Prepare file package
definition files

3. Prepare meta file package
definition file

4. Add the software to the
Device Manager console

5. Submit the software
distribution job using the
Device Manager console

* n
(for each application package)

0. Fill out the check list
200 Tivoli Personalized Services Manager Device Manager 1.1

7.2.1.2 Making the checklist
You need to know some items needed to make and characterize a software
distribution job, for example, whether it overwrites existing software or not. Or,
let the subscriber choose whether to install the software now or later.

We recommend that you make a checklist like the one shown in Table 28 as
your first step. This table contains only the minimum items needed to create a
software distribution job. You may have to add items based on your system
needs.

Table 28. Distribution check list

Item Description Valid value

Target device
class

Target device you want to
distribute

- Aero8000
- Iad
- Palm
- Wince

Target device Target device you want to
distribute

- All devices of a device class
- A single device

Target realm Target realm name existing realm(s)

Target deal Target deal name existing deal(s)

Activation date Date job become in service YYYY MM/DD hh:mm

Expiration date Date job become out of service YYYY MM/DD hh:mm

Software name Name for software package Any value

UserSelection User selection for this package

For detail, refer to Table 30 on
page 207

- no
- yes/delay
- yes/reject
- yes/delay/reject

Application name Name for each application in this
software package

Any value

Application size The needed space in bytes Any valid numeric value
for example, 1000

Installed
software check

Determines if a file is overwritten
on the target device

- y=do not overwrite
- n=overwrite
- v=version check
Chapter 7. Using the DM functions 201

7.2.2 Placing the files on the server
You need to put the files to be distributed on the server machine. The location
must be accessible using the FILE or HTTP protocol. The server
administrator can identify an appropriate directory.

As long as the files are accessible using the FILE or HTTP protocol, an
administrator can put all the files where he wants, even in the same directory.
He can also name a file package definition file, and a meta file package
definition file.

We recommend that you decide on your naming rules first; for example,
applicationname.def for a file package definition file, and packagename.meta
for a meta file package definition file. A set of rules for your directory structure
is also needed. Figure 95 shows a sample directory structure.

Figure 95. Sample directory structure e for software distribution

7.2.3 Preparing the file package definition file
The file package definition file is comprised of a header and five sections. The
sections are:

• Keyword options
• Files and directories to be distributed
• Nested file packages (not used for DMS 1.1 device plug-ins)
• Excluded files (not used for Palm)
• Extra (not used for Palm)

DIST_SOFT

/APP/META

/package1.meta

/package2.meta

/package3.meta

/appl1 /appl2 /appl3

/appl3_a/appl3.def/appl1_a/appl1.def

/appl2_a
/appl2_b
/appl2_c

/appl2.def
202 Tivoli Personalized Services Manager Device Manager 1.1

A file package definition file must have four percent symbols (%%%%)
delimiting the five parameter sections. Even if there are no parameters for a
section, there must be a percent symbol delimiting each section. There is no
delimiter between the header and the first section. The first section starts on
the second line of the file package definition file.

The valid options for each section depends on the device plug-ins. In this
section, we describe the file contents for a Palm device.

For information about the valid options for each device class, refer to the
online manual Tivoli Internet and Personalized Services Manager Device
Manager: Device Plug-in Notes

Figure 96 shows a sample file package definition file for a Palm device.

Figure 96. Sample file package definition file for Palm device

Header section
The header line must be the first line of the file package definition file. The
header typically lists the version number, for example:

#*DFP-v1.00 DM FilePack (version 1.00)

Keyword options section
The keyword options section contains a list of keywords and values which
control the behavior of the file distribution job. The format for the keyword
section is a keyword followed by an equal sign (=) and then a value for that
keyword. Space around the equal sign is not allowed.

aix2000[/S_DIST/APP/pscape]#cat pscape.def
#*DFP-v1.00 DMS FilePack (version 1.0)
need_space=289000
no_overwrite=y

%
Palmscape35.prc Xd="Palmscape for Palm OS3.5" s=/S_DIR/APP/pscape

%
%
%
aix2000[/S_DIST/APP/pscape]#
Chapter 7. Using the DM functions 203

Table 29 shows a list of keywords supported for Palm devices.

Table 29. Keyword options for Palm

Files and directories section
This section contains the names of the files that comprise the application
package.

Each file entry is listed on a separate line. For a file entry, you can optionally
provide a file description, or override the source path previously specified with
the src_relpath keyword, or both. The options are:

• s: Specifies a path on the source host from which to obtain the file and
directory. Overrides the src_relpath keyword option.

• Xd: Specifies the file description. The format is Xd="description".

Nested file packages section
The nested file package section is not supported in DMS 1.1 and is reserved
for future use. Even though this section is not supported, you must include a
% symbol to delimit this section.

Keyword Description Valid values

need_space Specifies the needed space in bytes Any valid numeric

no_overwrite Determines if a file is already
installed on the target

- y=do not overwrite
- n=overwrite(default)
- v=version check

src_relpath Specifies the path on the source
host relatives to the files and
directories in the file package

A full path or a relative path
from the current directory
on the source host

For software distribution, the amount of free space available on the device
should be at least twice the size of the software distribution job plus the
agent heap space.

For example, if an application package requires 100 KB, then the amount of
free space needed on the device would be (100*2) + (32 to 48)=232 to 248
KB. If you attempt to install software when there is not sufficient space, the
following error message appears:

There is not enough storage on this device for this job

Free space requirement
204 Tivoli Personalized Services Manager Device Manager 1.1

Excluded files section
The exclude files section is not supported in DMS 1.1 and is reserved for
future use. Even though this section is not supported, you must include a %
symbol to delimit this section.

Extra section
The extra section is not supported in DMS 1.1 and is reserved for future use.
Even though this section is not supported, you must include a % symbol to
delimit this section.

7.2.4 Preparing the meta file package definition file
The meta file package definition file provides software distribution properties
for the job; for example, to allow the user to delay or to reject the software
distribution job. These properties are called package properties.

The meta file package definition file also has a numbered application stanza,
[Application#], for each application package in the software distribution job.
The application stanza must be uniquely named and each stanza must begin
with the word Application. The application stanza identifies application
properties. The file package definition file is identified with one of the
application properties, the ApplicationURL keyword. There are additional
properties identified for each application package, such as a version and
description.

The meta file package definition file contains:

• Package properties - Define package characteristics
• Application properties - Define each application characteristics

Figure 97 on page 206 shows a sample meta file package definition file for a
Palm device.
Chapter 7. Using the DM functions 205

Figure 97. Sample meta file package definition file

For each software distribution job, there is one meta file package definition
file. When an administrator adds software to the Device Manager console, the
meta file package definition file is named in the Software URL field.

Refer to 7.3.3, “Server operations” on page 209, for details on adding
software and submitting jobs for software distribution.

Package properties section
The package properties section contains a list of keywords and values which
describe and control the behavior of the software distribution job. The format
for the package properties section is a keyword followed by an equal sign (=)
and then a value for that keyword. Space around the equal sign is not
allowed.

The setting for the PackageUserSelection keyword allows the user to choose
to download the software distribution job now, delay the download, or reject
the software distribution job. The package properties also provide a name,
version, and description.

aix2000[/S_DIST/META]#cat game.meta
PackageUserSelection=no
PackageName=WebBrowser
PackageVersion=3.5
PackageDescription=WebBrowser Package for PalmOS 3.5

[Application1]
ApplicationUrl=APP/pscape/pscape.def
ApplicationSelectionDisable=no
ApplicationName=Palmscape
ApplicationVersion=3.5
ApplicationDescription=Palmscape3.0 for PalmOS3.5
aix2000[/S_DIST/META]#
206 Tivoli Personalized Services Manager Device Manager 1.1

Table 30 provides a list of package properties for the Palm device.

Table 30. Package properties for the Palm device

Application properties section
The application properties section contains a list of keywords and values
which describe and control the behavior of each application package in the
software distribution job.

The meta file package definition file has a separate application stanza for
each application package like a sample file shown in Figure 97.

Within each application stanza, the ApplicationURL keyword identifies the file
package definition file for the application package. The application stanza
also has properties that are specified for each application package, such as
version and description.

Table 31. Application properties for the Palm device

Keyword Description Valid value

PackageUserSelection User selection for this package - no
- yes/delay
- yes/reject
- yes/delay/reject

no: no choice by user, always install

yes/delay: user can choose to install
now or delay choice

yes/reject: user can choose to install
now or cancel installation

yes/delay/reject: user can choose to
install now, delay choice,or cancel
installation

PackageName Name for the package Any value

PackageVersion Version for the package Any value

PackageDescription Description for the package Any value

Keyword Description Valid values

ApplicationURL Location the file or URL
that contains the file
package definition file

- A valid URL
- file name (relative path or
full path)

ApplicationSelectionDisable Determine user’s choice - yes=application is always
installed
- no=application is only
installed if the user checks
it
Chapter 7. Using the DM functions 207

7.3 Sample scenario for software distribution

Following Figure 94 on page 200, this section explains, step-by-step, how to
create a software distribution job for the Palm device.

7.3.1 Scenario 1
An ISP advertises for subscribers. This ISP allows Palm III and V users to be
served. A user subscribes to the ISP using the Web or a phone call, and then
he or she is granted the right to download the Device agent. Together with the
Device agent, the subscriber receives the information necessary to connect
to the ISP, and to the Device Manager server.

The subscriber purchases the Palm device on the market, and sets up the
device agent. The subscriber also wants some network settings to be set at
the first connection. These network settings are common to all devices.

The ISP assumes that the Palm device of the new subscriber does not have a
Web browser installed, so at the first connection, the ISP wants to install a
Web browser to the subscriber’s Palm device. The ISP also gives free game
software to their new customers if the customers want to install it.

7.3.2 System environment
Figure 98 shows the system environment we used for this scenario. We used
two UNIX servers, one IBM RS/6000 acting as the Device Manager server
and the other is a Sun Enterprise server acting as a Services Manager
server. The Device Manager database is installed in the Sun Enterprise
server machine.

ApplicationName Name for the application
package

Any value

ApplicationVersion Version for the
application package

Any value

ApplicationDescription Description for the
application package

Any value

Keyword Description Valid values
208 Tivoli Personalized Services Manager Device Manager 1.1

Figure 98. Sample scenario system environment

7.3.3 Server operations
According to the scenario mentioned in 7.3.1, “Scenario 1” on page 208, the
system administrator needs to prepare the following two jobs:

• Job1: Distribute browser named PalmScape
This software is automatically installed when a new device connects to the
Device Manager server the first time.

• Job2: Distribute packaged software
The subscriber can choose to install the packaged software now or later,
and can select which software packages to install.

The following sections describe the tasks that the system administrator needs
to perform to distribute software for the Palm device.

192.168.0.0
Domain: wes.ibm.com

Line
Simulator

aix2000
DM server #1
OS: AIX4.3.3

sol2000
SM server

DM database
(Oracle 8.1.5)
OS: Solaris7

DNS
server
Chapter 7. Using the DM functions 209

7.3.3.1 Filling out the checklist
We completed the checklist shown in Table 32 for our sample scenario.

Table 32. Sample scenario job checklist

7.3.3.2 Putting the files on the server
For this scenario, we decided to use the directory structures shown in Figure
99. We put the files to be distributed, along with the definition files, on the
server and made sure the files had read authority.

Item Job1 Job2

Target device
class

Palm Palm

Target device All devices All devices

Target realm IBM IBM

Target deal PACK1 PACK1

Activation date 2000 11/01 14:00 2000 11/01 00:00

Expiration date 2002 12/01 12:00 2002 01/01 00:00

Software name WebBrowser GamePackage

UserSelection no yes/delay

Application name Palmscape BOMBRUN pocketra Astroids

Application size 289000 6000 15000 65000

No_overwrite y v v v
210 Tivoli Personalized Services Manager Device Manager 1.1

Figure 99. Sample scenario Directory Structure

7.3.3.3 Preparing the file package definition file
Based on the checklist, we prepared the file package definition file for each of
the four application packages. Figure 100 is a sample file package definition
file for an application package named Asteroids.

Figure 100. Sample file package definition file for Scenario 1

7.3.3.4 Preparing the meta file package definition file
Based on the checklist, we prepared the meta file package definition files for
each job; that is, we prepared two meta file package definition files. Figure
101 on page 212, shows a sample meta file package definition file for Job2
named game.meta.

S_DIST

/APP/META

/browser.meta
/game.meta

/pscape /Bombrun /pocketra

/pscape.def

/Palmscape35.prc
/Bombrun.def
/Bombrun.prc

/pocketra.def
/pocketra.prc

/Astroids

/Astroids.def
/AstroidsGS.prc

JOB1 JOB2

aix2000[/S_DIST/APP/Astroids]#cat Astroids.def
#*DFP-v1.00 DMS FilePack (version 1.0)
need_space=65000
no_overwrite=v

%
astroidsGS.prc Xd="astroidsGS Palm file"

%
%
%

aix2000[/S_DIST/APP/Astroids]
Chapter 7. Using the DM functions 211

Figure 101. Sample meta file package definition file for Scenario 1

At this point, you are ready to add the software and submit jobs for software
distribution using Device Manager console.

7.3.3.5 Adding the software to the Device Manager console
To add the new software to the Device Manager console, follow these steps:

1. Right-click software and select New Software from the context menu.
The New Software Properties window, shown in Figure 102, is displayed.

2. Complete all the required fields, including the URL, which is the software
URL. Specify the meta file package definition file name using the HTTP or
FILE protocol.

To prevent duplication, no two software packages can have duplicate
information in all three of the following fields:

- Software name
- Version
- Device class

At least one of these fields must be different for any two software
packages.

aix2000[/S_DIST/META]#cat game.meta
PackageUserSelection=yes/delay
PackageName=GamePackage
PackageVersion=1.0
PackageDescription=Game Applications

[Application1]
ApplicationUrl=APP/Bombrun/Bombrun.def
ApplicationSelectionDisable=no
ApplicationName=BOMBRUN
ApplicationVersion=1.0
ApplicationDescription=BOMBRUN

[Application2]
ApplicationUrl=APP/pocketra/pocketra.def
ApplicationSelectionDisable=no
ApplicationName=pocketra
ApplicationVersion=0.50
ApplicationDescription=pocketra

[Application3]
ApplicationUrl=APP/Astroids/Astroids.def
ApplicationSelectionDisable=no
ApplicationName=Astroids
ApplicationVersion=1.52
ApplicationDescription=Astroids
aix2000[/S_DIST/META]#
212 Tivoli Personalized Services Manager Device Manager 1.1

3. To save this information and close the window, click OK.

Figure 102. New Software Properties window

7.3.3.6 Submitting the software distribution job
Before submitting a job to the customer’s device, you have to submit a test job
to a specific test device. This is required to ensure that the package has been
created properly and its associated software has been properly deployed to
the customer’s environment.

It also ensures that the software definition, specifically the URL referencing
the software package, has been properly configured in Device Manager.

1. Make sure that a software package that was added in the previous
operation, is highlighted in the right pane of the console. Right-click it and
select Submit Job from the context menu. The Target Device(s) For New
Job, shown in Figure 103 on page 214, is displayed.

2. Select All devices of a device class, and make sure Palm is selected in
Target device class.

3. To save this information and close the window, click OK. The New Job
Properties window is displayed.
Chapter 7. Using the DM functions 213

Figure 103. Target Device For New Job window

4. Make the appropriate changes to the fields in the New Job Properties
window, shown in Figure 104. Fill in the Activation date, Expiration date,
Target realm, and Target Deal fields using the information from the
checklist in Table 32 on page 210.

5. Click OK to submit the job.
214 Tivoli Personalized Services Manager Device Manager 1.1

Figure 104. New Job Properties window

6. Right-click a software package that was previously submitted and select
View Applicable Jobs from the context menu. A secondary window,
shown in Figure 105 on page 216, is displayed showing all software
distribution jobs applicable to the software.

7. Right-click a job in the right pane of the console and select Properties
from the context menu. The Job Properties window is displayed.

8. Click Close to close the window.
Chapter 7. Using the DM functions 215

Figure 105. Job Properties window

You cannot modify the fields in the Job Properties window because you have
already submitted this job. If there are any fields you want to change, you
need to cancel the job and submit it as a new job. When all fields are correct,
the administrator operations are complete.

7.3.4 Client operations
Now that the Palm device has been set, connect to the Device Manager
server. This is the first time a connection to the server has been made, so this
device should be enrolled to the Device Manager database. According to the
scenario mentioned in 7.3.1, “Scenario 1” on page 208, two software
distribution jobs and some device parameter settings were submitted in
advance.

The following events need to take place:

1. The device is enrolled to the Device Manager database.

2. Software distribution jobs are submitted to this device.

3. The initial device configuration job is submitted. This causes the change in
the network settings of the Palm device and device agent.
216 Tivoli Personalized Services Manager Device Manager 1.1

Following is a description of how the user connects to the Device Manager
server, and how the jobs look to the user.

These tasks need to be completed to communicate with the Device Manager
server:

1. Place the Palm device on the Palm modem, and connect the phone cable.

2. Click the DevAgent icon or connect button in the PalmAgent window of
the device. The device agent program dials up the server.

3. After successfully connecting to the Device Manager server, the windows
shown in Figure 106 are displayed.

Figure 106. Agent displays at the first connection

In this case, the device is new to the system, so it is initially redirected to
the enrollment server to be enrolled in the Device Manager database. It is
then redirected to the device management server because there are more
jobs submitted to this device.

4. The software distribution job for the Web browser is then submitted. This
job is set so that users do not select the package or application, so the
Web browser software is installed to the device with no user operation.

Figure 107 on page 218 shows the progress of the software downloading.
Chapter 7. Using the DM functions 217

Figure 107. Downloading the Web browser software

5. After downloading the Web browser software, another software distribution
job starts. This job is set so that users can select the software to be
installed. The application selection window, shown in Figure 108, is
displayed.

Figure 108. Application selection window

6. Click the triangle to the left of the application name to display the
description window of the application you selected, as shown in Figure
109.
218 Tivoli Personalized Services Manager Device Manager 1.1

Figure 109. Description of the application

7. To install one of the software packages listed in the Application Selection
window, shown in Figure 110, click the square to the left of the application
name and click Install.

Figure 110. Software selection window

8. After downloading the selected software, the initial device configuration
job is submitted to this device.

Figure 111 on page 220 shows that the device configuration job completed
successfully.
Chapter 7. Using the DM functions 219

Figure 111. Job completed

The device agent program disconnects from the network automatically after
all the jobs have completed.

7.4 Device configuration

Each device class provides a configuration template file that describes the
device-specific configuration parameters required by the devices it manages.
This configuration template file defines the parameters, their syntax, and
information to assist the Device Manager console in building a graphical user
interface (GUI) to present the configuration parameters to an administrator.
Device Manager console allows the configuration parameters to be viewed
and modified for a specific device or for the device class.

7.4.1 Planning for device configuration
The system administrator uses the Device Manager console or an application
to create a device configuration job and submit the job for processing.

At first, you need to know the flow to submit a device configuration job.

Figure 112 shows the steps you need to complete to modify device
parameters for pervasive devices.
220 Tivoli Personalized Services Manager Device Manager 1.1

Figure 112. Device configuration job flow

When planning for device configuration, we recommend that you first create
and complete a checklist like the one shown in Table 33.

Table 33. Device configuration check list

Some configuration parameters are device class unique. Refer to the online
manual Tivoli Internet and Personalized Services Manager Device Manager:
Device Plug-in Notes to learn more about each device parameter.

7.4.2 Modifying the device configuration parameters
A service provider can set the device configuration parameters for each
device, or for all devices of a device class, at any time. Normally, the
configuration parameters are set as an initial job by the service provider.

Items Description Valid value

Target device class Target device you want to
modify its configuration

- Aero 8000
- Iad
- Palm
- Wince

Target device Target device you want to
modify its configuration

- All devices of a device
class
- A single device

Activation date Date job become in service YYYY MM/DD hh:mm

Expiration date Date job become out of
service

YYYY MM/DD hh:mm

Configuration Parameters LabelKey to be modified Depends on the parameter

1 . M o d i fy p a r a m e t e r s

2 . S u b m it t h e d e v ic e
c o n f ig u ra t io n jo b u s in g
th e D e v i c e M a n a g e r
c o n s o le

0 . F i l l o u t t h e c h e c k l i s t
Chapter 7. Using the DM functions 221

7.4.2.1 The template file
When you prepare your customized configuration template file or modify an
existing one, refer to the following resources:

• Lists of configuration parameters in Tivoli Internet and Personalized
Services Manager Device Manager: Device Plug-in Notes

• Configuration template file for each device class in the /usr/lpp/TivDMS/bin

directory on the Device Manager server

• Configuration template file format information in the online manual Tivoli
Personalized Services Manager Device Manager: Developer’s Guide

The format of the configuration template file is common for all device classes.
As described in Chapter 6, “Application programming interface” on page 171,
Device Manager provides a command line utility, the devclasscfg.sh command
script, to install the configuration template files when the device class plug-in
is configured. For more information about the devclasscfg.sh command script,
refer to 4.2.2, “Managing a device class” on page 112.

7.4.2.2 Device Manager database tables
When you modify an existing device configuration using Device Manager
console or device management API, only modified parameters are stored in
the Device Manager database. It means there is no entry in the
DEVICE_PARM table and the DEVICE_CLASS_PARM table.

• DEVICE_PARM table is a table that includes information about the
modifications you made for each device.

• DEVICE_CLASS_PARM table is a table that includes information about
the modifications you made for a device class.

For detailed information about the previously mentioned tables, refer to
Chapter 5, “Device Manager database” on page 145.

You can make changes to device class parameters through the Device
Manager console as described in the next section.

In Device Manager 1.1, device configuration parameters may be set for
individual devices or all devices of a device class; they cannot be set by
realm. Until this is corrected, the desired realm-specific configuration
parameters may programmatically be set to the desired configuration for
the individual devices in the realm. A realm-specific device configuration
job can then be submitted.

Note
222 Tivoli Personalized Services Manager Device Manager 1.1

7.4.2.3 Modifying parameters using Device Manager console
Figure 113 shows an empty DEVICE_CLASS_PARM table.

Figure 113. Example of empty DEVICE_CLASS_PARM table

To modify parameters using Device Manager console, complete the following
steps:

1. In the right pane of the console, highlight the device class you want to
modify (in our case we selected Palm device class). Next, right-click it and
select Device Parameters from the context menu. The Device
Parameters For Palm window is displayed.

2. Select and modify the desired attributes.

3. To save this information and close the window, click OK.

Figure 114 on page 224 shows the Device Parameters For Palm window
previously described.

SQL> select * from DEVICE_CLASS_PARM;

no rows selected

SQL>
Chapter 7. Using the DM functions 223

Figure 114. Modifying the device class parameters

Now, you can retrieve modified parameters from the DEVICE_CLASS_PARM
table in the Device Manager database as shown in Figure 115.

Figure 115. Example of the DEVICE_CLASS_PARM table with entries

The meanings of the entries in the PARM_VALUE field are described in the
template files, as shown in Figure 116. The PARM_KEY and the
PARM_VALUE depend on the device classes.

SQL> select * from DEVICE_CLASS_PARM;

DEVICE_CLASS_ID PARM_KEY PARM_VALUE LAST_MODI
--

1000000 TimeFormat 4 03-NOV-00

DEVICE_CLASS_ID PARM_KEY PARM_VALUE LAST_MODI
--

1000000 Preset 13 03-NOV-00

SQL>
224 Tivoli Personalized Services Manager Device Manager 1.1

Figure 116. Palm template file

After modifying the parameters, you need to submit a job for device
configuration. Make sure that Device Configuration is selected in the Job type
field.

7.5 Sample scenario for device configuration

This section explains how to modify the device parameters and submit device
configuration jobs for the Palm device.

7.5.1 Scenario 2
An ISP is moving from the pilot to the production stage. In the pilot stage, a
single Device Manager server was used. In the production environment,
scalability and fault tolerance are more of a concern, so more DM servers and
a Network Dispatcher is added. The DM server address now must change
from the address of the pilot DM server to that of the Network Dispatcher
cluster for the Device Manager machines.

This section shows you how to create device configuration jobs according to
Figure 112 on page 221.

aix2000[/usr/lpp/TivDMS/bin]#more Palm.template
....... Some text are deleted

[TimeFormat]
type=int
label=Time Format :
labelKey=TimeFormat
description=Time format
descriptionKey=TimeFormatDescKey
choices=0|HH_COLON_MM,1|HH_COLON_MM_am/pm,2|24HH_COLON_MM,\
3|HH.MM,4|HH.MM_am/pm,5|24HH.MM,6|H_am/pm,7|24H, 8|24HHCommaMM
#range=0,8
tab=Format
editable=true
default=1
Valid values
1:00 HH:MM = 0
1:00 pm HH:MM am/pm = 1
13:00 24HH:MM= 2
1.00 HH.MM= 3
1.00 pm HH.MM am/pm= 4
13.00 24HH.MM= 5
1 pm H am/pm= 6
13 24H= 7
13,00 24HH,MM= 8

labelKey and choices
Chapter 7. Using the DM functions 225

7.5.2 System environment
The system environment is almost the same as the one described in Figure
98 on page 209. The only difference is that now we have a new Device
Manager server and a Network Dispatcher machine. Figure 117 shows the
image of this device configuration job.

Figure 117. Device configuration for a Palm device

7.5.3 Server operations
To change the Device Manager server and connection port number for a Palm
device named EM_ID_SAMPLE, we had to change the following four
parameters:

• DMSAddress: Device Manager server address. This device was
connected to server aix2000.wes.ibm.com. After the device configuration
job, aix5000.wes.ibm.com is this device’s new Device Manager server.
Actually, this is the address of the Network Dispatcher cluster for the
Device Manager machines.

• SSLOn: SSL Enable.

• DMSPort: Device Manager server port number (integer value). The
default port is 80, and the new port is 443.

aix2001
DM server #2
OS: AIX4.3.3

Line
Simulator

aix2000
DM server #1
OS: AIX4.3.3

sol2000
SM server

DM database
(Oracle 8.1.5)
OS: Solaris7

192.168.0.0
Domain: wes.ibm.com

DNS
server

EM_ID_SAMPLE

[New paramerters]
Service Name: TestAgent

Server Port : 443

aix5000
Network

Dispatcher
226 Tivoli Personalized Services Manager Device Manager 1.1

• ServiceName: Service (Network interface) name to be used. The default
service name is DevAgent, and the new service name is TestAgent.

7.5.3.1 Filling in the check list
This section describes the system administration device configuration steps.

Based on the sample scenario mentioned in 7.5.1, “Scenario 2” on page 225,
we completed the checklist shown in Table 34.

Table 34. Sample scenario device configuration checklist

7.5.3.2 Modifying the parameters and submit job
1. Make sure a device, named EM_ID_SAMPLE, is highlighted in the right

pane of the console. Then, right-click it and select Device Parameters

Item Valid value

Target device class Palm

Target device a device
EM_ID_SAMPLE

Activation date 2000 11/02 12:00

Expiration date 2000 12/31 12:00

Parameter(s) DMSAddress: aix5000.wes.ibm.com

SSLOn: 1

DMSPort: 443

ServiceNAme: TestAgent

WebSphere Edge Server Load Balancer (Network Dispatcher) provides
dynamic load balancing, scalability, and high availability for servers,
boosting overall server performance by automatically finding the optimal
server within a group of servers to handle each incoming request. It can be
used with Web servers, e-mail servers, distributed parallel database
queries, and other Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP) applications.

For more information about Network Dispatcher, see the Web site:
http://www.ibm.com/software/network/dispatcher

Network Dispatcher
Chapter 7. Using the DM functions 227

from the context menu. The Device Parameters For EM_ID_SAMPLE
window is displayed.

2. Select the Agent tag, and then select the boxes to the left of the
parameters to be modified. Next, change the parameters.

Figure 118 shows the Device Parameter window when the Agent tag is
selected.

Figure 118. Device Parameter window

3. To save this information and close the window, click OK.

4. To enable the changes, you need to submit a device configuration job to
the target device. Make sure a device, named EM_ID_SAMPLE, is
highlighted in the right pane of the console. Then right-click it and select
Submit Job from the context menu. The New Job Properties window is
displayed.

5. Complete the necessary information like Activation date field, and make
sure Job Type is Device Configuration. Click OK.
228 Tivoli Personalized Services Manager Device Manager 1.1

When a target device connects to the Device Manager server, the device
configuration job runs and the modified parameters are sent to the
appropriate device. Then the status of the job changes to Completed.

Figure 119 shows the job status after the device configuration job executed.

Figure 119. Device configuration job property

7.5.4 Client operations
According to the scenario mentioned in 7.5.1, “Scenario 2” on page 225,
some device parameter settings to communicate with the Device Manager
server through a Network Dispatcher using SSL, are submitted in advance.

The following information describes the user operations for connecting to the
Device Manager server and how the job looks to the user.

The tasks to communicate with the Device Manager server are listed here:

1. Click the DevAgent icon or Connect button in the PalmAgent window to
invoke the device agent program.
Chapter 7. Using the DM functions 229

2. The device is already enrolled to the Device Manager database at this
time, so the device is automatically redirected to the Device management
server as shown in Figure 120.

Figure 120. The device is directly redirected to the management server

3. The device configuration job is performed. This job changes some network
settings on the device.

4. The window shown in Figure 121, indicating that the network parameters
have been changed, is displayed.

Figure 121. The message after the device configuration job

5. Now that the network service that the device agent program uses is
changed to “TestAgent”, select TestAgent in the network preference
window shown in Figure 122.
230 Tivoli Personalized Services Manager Device Manager 1.1

Figure 122. The service name has changed

6. The device configuration job also changed the Device Manager server
address and SSL setting. This can be confirmed from the Device Manager
main window. Click the List menu icon and select Options -> Server
Settings. Then you can see the window shown in Figure 123, with the
parameters already changed.

Figure 123. The Device Manager server address has changed

Now the device agent settings are changed to use SSL. The next time you
connect to the Device Manager server, the communication will be established
with SSL based on the settings.
Chapter 7. Using the DM functions 231

232 Tivoli Personalized Services Manager Device Manager 1.1

Appendix A. Device parameters

This appendix provides the list of all the device parameters for the built-in
device plug-ins. These are defined in each plug-in specific device parameter
file on the Device Manager server, whose format is described in Chapter 6,
“Application programming interface” on page 171. You can set values to these
parameters from the Device Manager console or device management API.
For detailed steps to use the DM console, refer to Chapter 7, “Using the DM
functions” on page 193. For information about device management API, refer
to Chapter 6, “Application programming interface” on page 171.

A.1 Parameters for the Palm plug-in

Parameters for the Palm devices are classified into seven tabs:

• Format
• General
• Network
• TCP/IP
• Modem
• Agent
• Proxy

The first five tabs have parameters for Palm OS preferences, and the latter
two tabs have parameters for Palm device agent settings.

A.1.1 Format tab

The parameters that can be set in the Format tab (Table 35 on page 234)
correspond to those in Prefs -> Format on the Palm device.
© Copyright IBM Corp. 2001 233

Table 35. Palm plug-in: Parameters in the Format tab

Label name Palm keyword Valid values

Country Set for
Preset

Preset Integer
Changing the configuration value for
Preset has no effect on the values for the
other Format keywords.
23 (UnitedStates) is the default.
The valid values are:

0: Australia
1: Austria
2: Belgium
3: Brazil
4: Canada
5: Denmark
6: Finland
7: France
8: Germany
9: HongKong
10: Iceland
11: Ireland

12: Italy
13: Japan
14: Luxembourg
15: Mexico
16: Netherlands
17: NewZealand
18: Norway
19: Spain
20: Sweden
21: Switzerland
22: UnitedKingdom
23: UnitedStates

Time Format TimeFormat Integer
1 (HH:MM am/pm) is the default.
Valid values are as follows.
The examples of the format are in
parentheses.

0: HH:MM (1:00)
1: HH:MM am/pm (1:00 pm)
2: 24HH:MM (13:00)
3: HH.MM (1.00)
4: HH.MM am/pm (1.00 pm)
5: 24HH.MM (13.00)
6: H am/pm (1 pm)
7: 24H (13)
8: 24HH,MM (13,00)
234 Tivoli Personalized Services Manager Device Manager 1.1

Date Format DateFormat Integer
0 (M/D/Y) is the default.
Valid values are as follows.
The examples of the format are in
parentheses.

0: M/D/Y (12/31/95)
1: D/M/Y (31/12/95)
2: D.M.Y (31.12.95)
3: D-M-Y (31-12-95)
4: Y/M/D (95/12/31)
5: Y.M.D (95.12.31)
6: Y-M-D (95-12-31)
7: MDY Long w/ comma (Dec 31, 1995)
8: DMY Long (31 Dec 1995)
9: DMY Long w/ dot (31. Dec 1995)
10: DMY Long No Day (Dec 1995)
11: DMY Long w/ comma (31 Dec, 1995)
12: YMD Long w/ Dot (1995.12.31)
13: YMD Long w/ Space (1995 Dec 31)
14: MY Med (Dec '95)
15: MY No Post (Dec 95)

Long Date Format LongDateFormat Integer
7 (MDY Long w/ comma) is the default.
Valid values are as follows.
The examples of the format are in
parentheses.

7: MDY Long w/ comma (Dec 31, 1995)
8: DMY Long (31 Dec 1995)
9: DMY Long w/ dot (31. Dec 1995)
10: DMY Long No Day (Dec 1995)
11: DMY Long w/ comma (31 Dec, 1995)
12: YMD Long w/ Dot (1995.12.31)
13: YMD Long w/ Space (1995 Dec 31)

Week Start Day WeekStartDay Integer
0 (Sunday) is the defalut value.
Valid values are as follows.

0: Sunday
1: Monday
2: Tuesday
3: Wednesday

4: Thursday
5: Friday
6: Saturday

Label name Palm keyword Valid values
Appendix A. Device parameters 235

A.1.2 General tab

The parameters that can be set in the General tab (Table 36) correspond to
those in Prefs -> General on the Palm device.

Table 36. Palm plug-in: Parameters in the General tab

Number Format NumberFormat Integer
0 (CommaPeriod) is the default value.
Valid values are as follows. The numbers
in parentheses indicate examples of the
format.

0: CommaPeriod (1,000.00)
1: PeriodComma (1.000,00)
2: SpaceComma (1 000,00)
3: ApostrophePeriod (1’000.00)
4: ApostropheComma (1’000.00)

Label name Palm keyword Valid values

Set Date/Time SetDateTime Use the keyword CURRENT or a string
value. Default value is CURRENT.

Auto-Off Timer
(min.)

AutoOffTimer Auto power off timer in minutes (integer)
2 (min.) is the default value. Set to 0 to
disable the timer.

System Sound
Setting

SystemSound Integer
High is the default setting.
There are four choices for this keyword.
The values actually set to Palm device are
in parentheses.

No sound (0)
Low (8)
Medium (16)
High (64)

Alarm Sound
Setting

AlarmSound Integer
High is the default setting.
There are four choices for this keyword
(the same as SystemSound).

Game Sound
Setting

GameSound Integer
High is the default setting.
There are four choices for this keyword
(the same as SystemSound).

Label name Palm keyword Valid values
236 Tivoli Personalized Services Manager Device Manager 1.1

A.1.3 Network tab

The parameters that can be set in the Network tab (Table 37) correspond to
User name and Password keys in Prefs -> Network on the Palm device.

Table 37. Palm plug-in: Parameters in the Network tab

A.1.4 TCP/IP tab

The parameters that can be set in the TCP/IP tab (Table 38) correspond to
those in Prefs -> Format -> Details ... on the Palm device.

Table 38. Palm plug-in: Parameters in the TCP/IP tab

A.1.5 Modem tab

The parameters that can be set in the Modem tab (Table 39) correspond to
the phone key in Prefs -> Network on the Palm device.

Table 39. Palm plug-in: Parameters in the Modem tab

Label name Palm keyword Valid values

User Name for
PPP

UserName These keywords should be String and are
used for a PPP connection.

They are separate from the PalmUserID
and PalmPassword in the Agent tab,
which are used for the Subscription
Manager component single sign-on.

Password Password

Label name Palm keyword Valid values

PPP queries for
DNS address

DNSQuery Integer
On is the default value.
Valid values are as follows:

On (1)
Off (0)

Primary DNS PrimaryDNS String

Secondary DNS SecondaryDNS String

Label name Palm keyword Valid values

Modem Phone
Number

ModemPhone String
Appendix A. Device parameters 237

A.1.6 Agent tab

The parameters that can be set in the Agent tab (Table 40) are for the Palm
device agent. DMSAddress, DMSPort, and PalmServletName have a GUI for
you to set them manually.

Table 40. Palm plug-in: Parameters in the Agent tab

Label name Palm Keyword Valid Values

SSL On SSLOn Off is the default setting.
Valid values are as follows:

On (1)
Off (0)

User ID PalmUserID String.
The subscriber's user ID as defined in the
Subscription Manager component

Password PalmPassword String.
The subscriber's password as defined in
the Subscription Manager component.

DMS Server
Address

DMSAddress Either hostname or IP address

DMS Server Port DMSPort Integer.
Default is 80 (in case non-SSL) or 443 (in
case SSL).
Palm agent will use SSL connection if
SSLOn is On and DMSPort is 443.

Palm Servlet
Name

PalmServletName String
Default is /dmserver/PalmServlet.

Service Name ServiceName String
Network interface name to use for Palm
OS agent program.
Default is DevAgent.

Buffer size BufferSize Integer
Agent receive buffer size in KB.
Default is 8 (KB).
Valid range is 4 through 24 with SSL off, 4
through 8 with SSL on.
238 Tivoli Personalized Services Manager Device Manager 1.1

A.1.7 Proxy tab

The parameters that can be set in the Proxy tab (Table 41) are for the Palm
device agent. The device agent has a GUI for you to set them manually.

Table 41. Palm plug-in: Parameters in the Proxy tab

A.2 Parameters for the Aero 8000 plug-in

The parameters for the Aero 8000 devices are classified into six tabs:

• PPP
• TCP/IP
• Browser
• Agent Setting
• Mailer
• Mgmt

Each parameter for Aero 8000 has an Aero 8000 keyword name, which may
correspond to a common key. The Aero 8000 agent program recognizes the
configuration parameters by the Aero 8000 keyword name. The common key
name is defined by Tivoli Personalized Services Manager and does not
depend on the Aero 8000 device. Common key names are converted to Aero
8000 keyword names by the Aero 8000 device configuration job class.
Therefore, we recommend that you use the Aero 8000 keyword names, not
the common key names. For this reason, this appendix does not introduce
the common keys. For more detailed information on the common keys, refer
to Tivoli Personalized Services Manager Device Manager: Developer’s Guide
and Tivoli Internet and Personalized Services Manager Device Manager:
Device Plug-in Notes included in Device Manager online documents.

The mapping of Aero 8000 keywords and common keys is not one-to-one.
When using keyword names, use either all Aero 8000 keyword names or all

Label name Palm keyword Valid values

ProxyEnable ProxyEnable Integer
Off is the default.
Valid values are as follows:

On (1)
Off (0)

ProxyAddress ProxyAddress String
Specify the hostname of the proxy server.

ProxyPort ProxyPort Integer
Default is 80.
Appendix A. Device parameters 239

common key names. Do not use a mixture of names from the two keyword
sets.

A.2.1 PPP tab

Table 42 lists the parameters in the PPP tab. The keywords ppp.user and
ppp.pass are disabled in the template file by default. If you want to use them,
remove the comment symbols from them in the aero8000.template file placed
in the /usr/lpp/TivDMS/bin (AIX) or /opt/TivDMS/bin (Solaris) directory before
you register the Aero 8000 device class to the Device Manager database.

Table 42. Aero 8000 plug-in: Parameters in the PPP tab

Label name Aero8000
keyword

Valid values

PPP access point ppp.dial String.
The telephone number of PPP access
point.

PPP user ID ppp.user String

There are some configuration parameters that are unique for each Aero
8000 device, such as the user ID, password, and mail server information.
The device unique configuration parameters are commented out in the
aero8000.template file and do not appear on the Device Manager console.

If an administrator wants to set values for the device unique configuration
parameters, edit the configuration parameter file so these fields appear on
the Device Manager user interface.

For the Aero 8000, the device unique configuration parameters are:

• PPP tab

- ppp.user
- ppp.pass

• Mailer tab

- pop3.uid
- mail.address

Descriptions of these device unique configuration parameters appear in
following parameter descriptions.

Device unique configuration parameters
240 Tivoli Personalized Services Manager Device Manager 1.1

A.2.2 TCP/IP tab

Table 43 lists the parameters in the TCP/IP tab.

Table 43. Aero 8000 plug-in: Parameters in the TCP/IP tab

A.2.3 Browser tab

Table 44 lists the parameters in the TCP/IP tab.

Table 44. Aero 8000 plug-in: Parameters in the Browser tab

PPP password ppp.pass String

Label name Aero8000
keyword

Valid values

DNS primary net.dns1 String

DNS secondary net.dns2 String

Label name Aero8000
keyword

Valid values

Start page bsr.startpage String
URL of Start page

HTTP proxy server bsr.proxyaddr String
Proxy server IP address

HTTP proxy port bsr.proxyport Integer
Proxy server port number
80 is the default.

PCT setting pct.enable String
PCT setting for browser
Valid values for this parameter are as
follows:

ON
OFF

SSL2 setting ssl2.enable String
SSL2 setting for browser
Valid values for this parameter are as
follows:

ON
OFF

Label name Aero8000
keyword

Valid values
Appendix A. Device parameters 241

A.2.4 Agent tab

Table 45 lists the parameters in the Agent tab.

Table 45. Aero 8000 plug-in: Parameters in the Agent tab

A.2.5 Mailer tab

Table 46 lists the parameters in the Mailer tab. The keywords pop3.uid and
mail.address are disabled in the template file by default. If you want to use
them, remove the comment symbols from them in the aero8000.template file
placed in the /usr/lpp/TivDMS/bin (AIX) or /opt/TivDMS/bin (Solaris) directory
before you register the Aero 8000 device class to the Device Manager
database.

Table 46. Aero 8000 plug-in: Parameters in Mailer

SSL3 setting ssl3.enable String
Valid values for this parameter are as
follows:

ON
OFF

Label name Aero8000
keyword

Valid values

SSL setting ssl.enable String.
Valid values for this parameter are as
follows:

ON
OFF

Label name Aero8000
keyword

Valid values

POP3 server pop3.server String
For example, pop3svr.tivoli.com

SMTP server smtp.server String
For example, smtpsvr.tivoli.com

POP3 user ID pop3.uid String

Mail account mail.address String
Mail account for return e-mail address
Device unique.

Label name Aero8000
keyword

Valid values
242 Tivoli Personalized Services Manager Device Manager 1.1

A.2.6 Mgmt tab

Table 47 lists the parameters in the Agent tab. As described in the table,
please note that some keys are not applied to Pocket Internet Explorer. Refer
to the last row of Table 47.

Table 47. Aero 8000 plug-in: Parameters in the Mgmt tab

Label name Aero8000 keyword Valid values

Mgmt server mgmt.server String
Management server URL
For example, http://9.3.4.1/mgsrvlt

Polling timer mgmt.pollingtimer Integer
Polling timer in hours
10 is the default.
Valid range: 1 to 65535

Agent run mode mgmt.agentrunmode String
Determines if the agent program runs
after all jobs are complete.
Valid values are as follows.

ON = Leaves the agent program running.
OFF = Closes the agent program after the

jobs are run.

Proxy enable mgmt.proxy.enable OFF is the default.
Valid values are as follows.

ON
OFF

Proxy server
address

mgmt.proxy.addr For example, www.proxy.com

Proxy server
port

mgmt.proxy.port 80 is the default.

TPSM user ID mgmt.auth.user String
The ID defined in the Subscription
Manager component.

TPSM password mgmt.auth.pass String.
The password in the Subscription
Manager component.
Appendix A. Device parameters 243

A.3 Parameters for the Windows CE plug-in

The parameters for the Windows CE devices are classified into six tabs:

• PPP
• TCP/IP
• Browser
• Agent Setting
• Mailer
• Mgmt

For detailed information on Windows CE device parameters, refer to A.2,
“Parameters for the Aero 8000 plug-in” on page 239, because the set of
parameters and their attributes are the same as the Aero 8000 plug-in’s.

A.4 Parameters for the NetVista Internet appliance plug-in

The parameters for the Windows CE devices are classified into 15 tabs:

• Log Service
• HTTPD Service
• Device Agent
• Browser Default
• Time Server
• Printing
• Network Printer 1
• Network Printer 2
• Network Printer 3
• Dialup
• Ethernet
• Syslog
• Email

Note:
The settings for mgmt.proxy.addr and mgmt.proxy.port do not apply to the Pocket
Internet Explorer browser or any other Web browser. The proxy settings of the Pocket
Internet Explorer browser are independent from these settings.

The subscriber's password, as defined in the Subscription Manager component, is
entered by the user when the device agent program starts. The password is stored in
memory only, so that no one can peek at the password in the registry.

Label name Aero8000 keyword Valid values
244 Tivoli Personalized Services Manager Device Manager 1.1

• Connection Manager
• PAM Drive

We call NetVista Internet Appliance “IAD” in this appendix.

A.4.1 Log Service tab

Table 48 lists the parameters in Log Service tab.

Table 48. IAD plug-in: Parameters in the Log Service tab

A.4.2 HTTPD Service tab

Table 49 lists the parameters in the HTTPD Service tab.

Table 49. IAD plug-in: Parameters in the HTTPD Service tab

Description Internet
Appliance
keyword

Valid values

Log Entry Size /s/smf/LogService/
LogSize

Integer.
Maximum number of recordable logs.
100 is the default.

Log Threshold /s/smf/LogService/
LogThreshold

Integer.
This sets the log level.
2 is the default.
Valid range is from 1 to 4.

Label name Internet
Appliance
keyword

Valid values

HTTP Port /s/smf/HttpService
/HttpPort

Integer
80 is the default.

HTTP Maximum
Threads

/s/smf/HttpServce/
MaxThreads

Integer
6 is the default.

HTTP Thread
Priority

/s/smf/HttpService
/TreadPriority

Integer
Running priority of threads in HTTPD
4 is the default.
Appendix A. Device parameters 245

A.4.3 Device Agent tab

Table 50 lists the parameters in the Device Agent tab.

Table 50. IAD plug-in: Parameters in the Device Agent tab

Label name Internet
Appliance
keyword

Valid values

Management
Server URL

/PvCAgent/Server
Address

For example, https://9.3.8.100/mgmtservlet

Enrollment Server
URL

/PvCAgent/Enroll
ServerAddress

For example, http://9.3.8.200/enrollment

Proxy Address /PvCAgent/ProxyA
ddress

For example, proxy.company.com

Proxy Port /PvCAgent/ProxyP
ort

Integer
For example, 8080

Proxy Enablement /PvCAgent/ProxyE
nable

False is the default.
Valid values are as follows.

True
False

Reboot Window-
Start

/PvCAgent/Reboo
tStart

String.
The default is RebootStart = RebootEnd, so
a reboot occurs.
For example, 2:00

Reboot Window-
End

/PvCAgent/Reboo
tEnd

String
The default is RebootStart = RebootEnd, so
a reboot occurs.
For example, 4:59

Polling Interval /PvCAgent/Polling
Interval

Integer
Job polling interval in hours
4 is the default.
1 hour is the minimum and valid range is 1
to 65535.

Polling
Enablement

/PvCAgent/Polling
Enable

True is the default setting.
Valid values are as follows.

True
False
246 Tivoli Personalized Services Manager Device Manager 1.1

A.4.4 Browser Default tab

Table 51 shows the parameters in the Device Agent tab.

Table 51. IAD plug-in: Parameters in the Browser Default tab

Polling Window-
Start

/PvCAgent/Polling
Start

String
The default is PollingStart = PollingEnd, so
polling occurs.
For example, 2:00

Polling Window-
End

/PvCAgent/Polling
End

String
The default is PollingStart = PollingEnd, so
polling occurs.
For example, 3:59

Basic
Authentication
User ID

/PvCAgent/Authen
ticationUserID

String

Basic
Authentication
Password

/PvCAgent/Authen
ticationPassword

String

UI panel timeout /PvCAgent/PanelT
imeout

Integer
Time-out value to close user interface
20 (seconds) is the default.

Label name Internet Appliance
keyword

Valid values

Cache Size /shell/defaultSetting/WWW
Section/Cache Size

Integer.
5000 is the default (KB).

Image Cache Size /shell/defaultSetting/WWW
Section/Image Cache Size
KB

Integer
1024 is the default (KB).

Page Cache Size /shell/defaultSetting/WWW
Section/Page Cache Size

Integer
4 is the default.

Max Connections /shell/defaultSetting/WWW
Section/Max Connections

Integer
Maximum number of
connections
5 is the default.

Label name Internet
Appliance
keyword

Valid values
Appendix A. Device parameters 247

Use Proxy Server /shell/defaultSetting/WWW
Section/Use Proxy Server

True is the default.
Valid values are as follows.

True
False

Proxy Overrides /shell/defaultSetting/WWW
Section/Proxy Overrides

List of host names or IP
addresses which bypass the
currently selected proxy server.
Use a comma to separate the list
members.
For example,
www.internal.ibm.com

Socks Proxy
Address

/shell/defaultSetting/WWW
Section/Socks Proxy Address

For example, socks.ibm.com

Socks Proxy Port /shell/defaultSetting/WWW
Section/Socks Proxy Port

Integer
1080 is the default.

FTP Proxy
Address

/shell/defaultSetting/WWW
Section/FTP Proxy Address

For example, proxy.ibm.com

FTP Proxy Port /shell/defaultSetting/WWW
Section/FTP Proxy Port

Integer.
80 is the default.

HTTPS proxy
address

/shell/defaultSetting/WWW
Section/HTTPS Proxy
Address

For example, proxy.ibm.com

HTTPS Proxy Port /shell/defaultSetting/WWW
Section/HTTPS Proxy Port

Integer
80 is the default.

HTTP Proxy
Address

/shell/defaultSetting/WWW
Section/HTTP Proxy Address

For example, proxy.ibm.com

HTTP Proxy Port /shell/defaultSetting/WWW
Section/HTTP Proxy Port

Integer
80 is the default.

Home Page /shell/defaultSetting/WWW
Section/Home Page

URL for home page.
For example, www.ibm.com

Label name Internet Appliance
keyword

Valid values
248 Tivoli Personalized Services Manager Device Manager 1.1

A.4.5 Time Server tab

Table 52 lists the parameters in the Time Server tab.

Table 52. IAD plug-in: Parameters in the Time Server tab

A.4.6 Printing tab

Table 53 shows the parameters in the Printing tab.

Table 53. IAD plug-in: Parameters in the Printing tab

A.4.7 Network Printer 1 tab

Table 54 shows the parameters in the Network Printer 1 tab. Network Printer
2 tab and Network Printer 3 tab have the same set of parameters as Network
Printer 1 tab. However each tab has its own keyword. For example,
/native/NetworkPrinter1/RemoteMachineName is the keyword for Network
printer machine name of Network Printer 1, and
/native/NetworkPrinter2/RemoteMachineName is that of Network Printer 2. In
this table, we describe only parameters in Network Printer 1 tab.

Table 54. IAD plug-in: Parameters in the Network Printer 1 tab

Label name Internet Appliance keyword Valid values

Time Zone /native/TimeZone String
Local time zone
For example, jst-09

Time Server /native/TimeServer Time server address to adjust
the system clock.
For example,
time.company.com

Label name Internet Appliance keyword Valid values

Spool directory
for Spooler

/native/Printer/Spooler/Directory The directory used to create
print spooler files.
For example, /ram/spooler

Error Logging
File Name

/native/Printer/ErrorLog Specify log file for errors.
For example, /logs/sys/errorlog

Label name Internet Appliance keyword Valid values

Remote Machine
Name

/native/NetworkPrinter1/Remo
teMachineName

Network printer machine name.
For example,
netprinter.company.com
Appendix A. Device parameters 249

A.4.8 Dialup tab

Table 55 lists the parameters in the Dialup tab.

Table 55. IAD plug-in: Parameters in the Dialup tab

Remote Machine
Argument

/native/NetworkPrinter1/Remo
teMachineArg

Arguments for network printer.
For example, josa-ps

Data Stream /native/NetworkPrinter1/DataS
tream

Valid values are as follows.

ps
pc1

Printer Name /native/NetworkPrinter1/Name Network printer short name.
For example, InfoPrint21

Printer Description /native/NetworkPrinter1/Descr
iption

Description of network printer.
For example, Info Printer 21 in
test lab

Spooler Device
Name

/native/NetworkPrinter1/Spool
er/DeviceName

Device name to send the spool
file to.
For example, /dev/null

Printer Queue
Size

/native/NetworkPrinter1/Queu
eSize

Integer
Maximum queue size in KB to
be used for this printer.
5000 is the default (KB).

Spooler Directory /native/NetworkPrinter1/Spool
Directory

Directory where temporary files
are created for spooler.
For example, ram/spooler

Label name Internet Appliance keyword Valid values

Phone Number /native/DialupPhoneNumber For example, 555-1212

Userid /native/DialupUserid String
Dialup user ID

Password /native/DialupPassword String
Dialup password

Authentication /native/DialupAuthentication Dialup authentication.
PAP is the default setting.
Valid values are as follows.

PAP
CHAP

Label name Internet Appliance keyword Valid values
250 Tivoli Personalized Services Manager Device Manager 1.1

Dialup Phone
Number Prefix

/native/DialupPhoneNumberPrefix Prefix to use before the
phone number when dialing.
For example, 9

Modem Speaker
Volume

/native/DialupModemVolume Integer
1 is the default setting.
Valid range is from 0 to 3.

Connect Timeout /native/DialupConnectTimeout Integer.
Timeout in seconds for
achieving a connection once
the number is dialed.
30 is the default (seconds).

Retry /native/DialupRetries Integer.
Number of dial retries, for
situations such as a busy
signal.
2 is the default.

Idle Timeout /native/DialupIdleTimeout Integer
Disconnect after specified
number of minutes of idle
time.
For example, 5

Dial Type /native/DialupDialType Tone is the default.
Valid values are as follows.

Tone
Puls

Modem Init String /native/DialupModemInitString AT command set modem init
string.
For example, ATZ

Login Script /native/DialupLoginScript String
Script string consisting of
chat expect-send pairs. This
in used only when
Authentication is Manual.

DNS Server 1 /native/DialupDNSServer1 DNS server address (1st
search).
For example, 1.2.3.1

DNS Server 2 /native/DialupDNSServer2 DNS server address (2nd
search).
For example, 1.2.3.2

Label name Internet Appliance keyword Valid values
Appendix A. Device parameters 251

A.4.9 Ethernet tab

Table 56 shows the parameters in the Ethernet tab.

Table 56. IAD plug-in: Parameters in the Ethernet tab

DNS Server 3 /native/DialupDNSServer3 DNS server address (3rd
search).
For example, 1.2.3.3

Label name Internet Appliance keyword Valid values

Connection Type /native/EthernetConnectonType Ethernet connection type.
DHCP is the default setting.
Valid values are as follows.

DHCP
Static

DHCP Timeout /native/EthernetDHCPTimeout Integer
Number of seconds to wait for
DHCP server before timing out.
15 is the default (seconds).

IP Address /native/EthernetIPAddress Ethernet static IP address.
For example, 5.2.8.110

Subnet Mask /native/EthernetSubnetMask Ethernet static subnet mask.
For example, 255.255.255.0

Gateway /native/EthernetGateway Ethernet static gateway
address.
For example, 5.2.8.1

DNS Server 1 /native/EthernetDNSServer1 Ethernet static DNS server
address (1st search).
For example, 5.2.8.250

DNS Server 2 /native/EthernetDNSServer2 Ethernet static DNS server
address (2nd search).
For example, 5.2.8.251

DNS Server 3 /native/EthernetDNSServer3 Ethernet static DNS server
address (3rd search).
For example, 5.2.8.252

Domain /native/EthernetDomain Ethernet static domain.
For example,
dept.company.com

Label name Internet Appliance keyword Valid values
252 Tivoli Personalized Services Manager Device Manager 1.1

A.4.10 Syslog tab

Table 57 lists the parameters in the Syslog tab.

Table 57. IAD plug-in: Parameters in the Syslog tab

A.4.11 Email tab

Table 58 shows the parameters in the Email tab.

Table 58. IAD plug-in: Parameters in the Email tab

Label name Internet Appliance keyword Valid values

Syslog Severity native/SyslogSeverity Integer
System log severity.
5 is the default setting.
Valid range is from 0 to 10.

Label name Internet Appliance
keyword

Valid values

Mail Server /shell/defaultSetting/Email
/Mail Server

IMAP4 or POP3 e-mail server
address.
For example, email.company.com

Mail Server
Protocol

/shell/defaultSetting/Email
/Mail Server Protocol

IMAP4 is the default setting.
Valid values are as follows.

IMAP4
POP3

SMTP Server /shell/defaultSetting/Email
/SMTP Server

For example, smtp.company.com

Saved Folder
Name

/shell/defaultSetting/Email
/Saved Folder Name

Name of the server-side e-mail
folder.
For example, /my_mail

Check Mail
Interval

/shell/defaultSetting/Email
/Check Mail Interval

Integer.
Interval in minutes to check for new
e-mail.
For example, 30 (minutes)

Email Massage
Size Limit

/shell/defaultSetting/Email
/Message Size Limit

Maximum size for a single e-mail
message in KB.
For example, 500 (KB)

Drafts Size Limit /shell/defaultSetting/Email
/Drafts Size Limit

Maximum size of the local draft
folder in KB Draft folder is kept
locally on the Internet appliance.For
example, 200 (KB)
Appendix A. Device parameters 253

A.4.12 Connection Manager tab

Table 59 lists the parameters in the Connection Manager tab.

Table 59. IAD plug-in: Parameters in the Connection Manager tab

A.4.13 RAM drive tab

Table 60 shows parameter in the RAM drive tab.

Table 60. IAD plug-in: Parameters in the RAM drive tab

Address Book Size
Limit

/shell/defaultSetting/Email
/Address Book Limit

Maximum size of the local address
book in KB.
For example, 100 (KB)

Userid /shell/defaultSetting/Email
/Userid

String.
E-mail user ID

Password /shell/defaultSetting/Email
/Password

String.
E-mail password

Full Name /shell/defaultSetting/Email
/Full Name

It will appear in the e-mail as the
user's full name.
For example, Chris Jones

Email Address /shell/defaultSetting/Email
/Email Address

User's e-mail address.
For example, user@e-mail_server

Label name Internet Appliance keyword Valid values

Interfaces /native/ConnectionInterfaces An ordered list of the interface
names the connection manager is
to attempt to connect to. Use a
space to separate list members.
For example, Ian.eth0 v90.ppp0

Label name Internet Appliance keyword Valid values

dev-f RAM Size /native/ramfssize Integer
Size in MB of the file system
created in memory.
2 is the default.
Valid range is from 1 to 16

Label name Internet Appliance
keyword

Valid values
254 Tivoli Personalized Services Manager Device Manager 1.1

Appendix B. Special notices

This publication is intended to help people who need to understand the
concepts and implementations of Tivoli Personalized Services Manager
Device Manager Version 1.1, and who need to develop their own device
plug-ins to manage their special devices. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by Tivoli Personalized Services Manager Device Manager Version
1.1 and IBM WebSphere Everyplace Suite Version 1.1. See the
PUBLICATIONS section of the IBM Programming Announcement for Tivoli
Personalized Services Manager Device Manager Version 1.1 and IBM
WebSphere Everyplace Suite Version 1.1 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
© Copyright IBM Corp. 2001 255

depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer -
Tivoli.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

e (logo)®
IBM ®

Redbooks
Redbooks Logo

AIX AS/400
DB2 DB2 Universal Database
Lotus Lotus Notes
MQSeries Netfinity
NetVista RS/6000
SecureWay System/390
WebSphere
256 Tivoli Personalized Services Manager Device Manager 1.1

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix B. Special notices 257

258 Tivoli Personalized Services Manager Device Manager 1.1

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 263.

• An Introduction to IBM WebSphere Everyplace Suite Version 1.1,
SG24-5995

• Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511

• IBM HTTP Server Powered by Apache on RS/6000, SG24-5132

• WebSphere Application Servers: Standard and Advanced Editions,
SG24-5460

• IBM WebSphere Performance Pack: Load Balancing·with IBM SecureWay
Network Dispatcher, SG24-5858

• IBM Network Dispatcher User's Guide (Version 3.0 for Multiplatforms),
GC31-8496

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title CollectionKit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2001 259

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

C.3 Other resources

These publications are also relevant as further information sources:

• HACMP for AIX 4.4 Planning Guide, SC23-4277

The following publications mentioned in this redbook are Product
Documentation, which can be obtained in Tivoli product CD-ROMs or IBM
WebSphere Everyplace Suite product CD-ROMs:

• WebSphere Everyplace Suite Getting Started v1.1

• Tivoli Internet and Personalized Services Manager Documentation: TPSM
Overview

• Tivoli Internet and Personalized Services Manager Documentation:
Planning and Installation

• Tivoli Internet and Personalized Services Manager Documentation:
Administration

• Tivoli Internet and Personalized Services Manager Documentation:
Director Guide

• Tivoli Internet and Personalized Services Manager Documentation:
Programmer’s Guide

• Tivoli Personalized Services Manager Device Manager: Planning and
Installation

• Tivoli Personalized Services Manager Device Manager: Administration

• Tivoli Personalized Services Manager Device Manager: Developer's Guide

• Tivoli Personalized Services Manager Device Manager: PalmOS Plug-in
Notes

• Tivoli Personalized Services Manager Device Manager: NetVista Internet
Appliance Plug-in Notes

• Tivoli Personalized Services Manager Device Manager: Aero 8000 Plug-in
Notes

• Tivoli Personalized Services Manager Device Manager: Windows CE
Plug-in Notes

C.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.jp.ibm.com/ise/english/ecomp.htm

ISE Co., Ltd
260 Tivoli Personalized Services Manager Device Manager 1.1

• http://www.palm.com

Palm Computing

• http://www.compaq.com/products/handhelds/8000

Compaq Aero 8000

• http://www.pc.ibm.com/us/netvista/index.html

IBM NetVista

• http://www.ibm.com/software/network/dispatcher

IBM Network Dispatcher

• http://www.ibm.com/security/library/

IBM Security general information

• http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

hacmp_index.html#V44

IBM HACMP Version 4.4

• http://www.ibm.com/pvc/tech/library.shtml

IBM Pervasive technical library

• http://www.sun.com/software/solaris/java/download.html

Sun JDK download site

• http://www.ibm.com/software/webservers/httpservers

IBM HTTPServer

• http://www.ibm.com/software/webservers/appserv

IBM WebServer Apach server

• http://www.ibm.com/software/webservers/edgeserver

IBM Network Dispatcher User’s Guide

• http://java.sun.com

Sun Java Technology

• http://technet.oracle.com/software/tech/java/sqlj_jdbc/

software_index.htm

JDBC driver for Oracle database (Registration in free is required.)

• http://java.sun.com/products/jdbc

Sun JDBC driver general information

• http://sunsolve.sun.com

Sun Solaris 7 PTF Download Site
Appendix C. Related publications 261

262 Tivoli Personalized Services Manager Device Manager 1.1

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 263

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
264 Tivoli Personalized Services Manager Device Manager 1.1

Glossary

Aero 8000 The Compaq Aero 8000 Handheld
PC, which is a kind of Windows CE machine. It
uses Hitachi SH4 processor and has a 10-inch
color SVGA screen with 800 x 600 resolution,
256 colors, and a 0.24 pixel pitch.

AIX Advanced Interactive eXecutive. An IBM
industrial-strength version of UNIX.

API Application program interface.

ASP Application Service Provider. An Internet
service provider that offers application services.

business object An object containing
business methods (logic) and state that is
intended for use within business applications.
Business objects are Managed Objects. In some
contexts, the term “business object” in this book
is used to refer to a business object class. It
may also be used to refer to a composition of
business object classes.

Challenge Handshake Authentication
Protocol (CHAP) A type of authentication in
which the authentication agent (typically a
network server) sends the client program a key
to be used to encrypt the username and
password.

CHAP See Challenge Handshake
Authentication.

conduit A component of Palm Desktop
software. A conduit specifies how to transfer
and translate data between your handheld and
your computer for a specific handheld
application or database during a Hot Sync
operation.

cradle The docking station for PDA devices to
connect to the desktop PC. Generally, they also
have the function to charge the device.

DBCS Double byte character set.

DDL Data Definition Language.

deal Deals represent the service plan that is
being subscribed to.

Device management API An API (package
com.tivoli.dms.dmapi) that defines the
© Copyright IBM Corp. 2001
programming interface for manipulating the
device- and job-related data resources stored in
the Device Manager database.

Device management server API An API
(package com.tivoli.dms.dmserver) that defines
the programming interface between the device
management server servlet and the device
plug-ins.

Device Manager console A graphical user
interface, written by Java, for administering
device management operations.

DHCP See Dynamic Host Configuration
Protocol.

DM Device Manager.

DM console see Device Manager console.

DMD Device Management Dispatcher.

DMS servlet device management server
servlet.

DNS See Domain Name System.

Domain Name System (DNS) A function to
associate names and addresses on Internet
domain servers.

Dynamic Host Configuration Protocol
(DHCP) A protocol for assigning dynamic IP
addresses to devices on a network.

e-business A term used by IBM to describe
the use of Internet technologies to transform
business processes. In practice, this means
using Internet clients, such as Web browsers, as
front ends for applications that access back-end
legacy systems to allow greater access. See
http://www.software.ibm.com/ebusiness for
more information.

eXtensible Markup Language (XML) This
markup language, a streamlined version of
SGML, is regulated by WC3 (the World Wide
Web Consortium). Can create more advanced
links than HTML.
265

file package Describes which files and
directories to distribute and how to distribute
them.

file package definition file An ASCII file that
identifies the contents and characteristics of a file
package.

File Transfer Protocol (FTP) The protocol used
for sending files over the network.

FTP See File Transfer Protocol.

GUI Graphical User Interface.

HACMP High Availability Cluster
Multi-Processing.

HotSync A Palm function to do two-way
synchronization of records between your
handheld and your computer. Changes that you
make on your handheld or your computer are
updated on both platforms after a HotSync
operation. The HotSync operation only
synchronizes the changed portions of data,
reducing HotSync time.

HTTP See Hyper Text Transmission Protocol.

Hyper Text Transmission Protocol (HTTP) The
communications protocol used to connect to
servers on the World Wide Web. Its primary
function is to establish a connection with a Web
server and transmit HTML pages to the client
browser.

IBM International Business Machines.

IMAP See Internet Message Access Protocol.

Integrated Services Digital Network (ISDN)
An international communications standard for
sending voice, video, and data over digital
telephone lines or normal telephone wires.

Internet Message Access Protocol (IMAP) A
protocol for retrieving e-mail messages.

Internet screenphone A telephone-like
appliance with a built-in display screen that may
be used to call up Internet sites quickly.

Internet Service Provider (ISP) Offers services
on the Internet, such as connection services.

ISDN See Integrated Services Digital Network.

ISP See Internet Service Provider.

iTk Tivoli Internet Services Manager Integration
Toolkits.

Java A high-level programming language
developed in 1991 by Sun Microsystems that
works on virtually any computer. Unlike HTML,
which is a document display format that is
continually improved to make it do more, Java is a
full-blown programming language like C and C++.
It allows for the creation of sophisticated
client/server applications to be developed for the
Web and for intranets.

Java Database Connectivity (JDBC) A Java
API that allows Java programs to communicate
with different database management systems in a
platform-independent manner. Database vendors
provide JDBC drivers for their platforms that
implement the API for their database, allowing
the Java developer to write applications to a
consistent API no matter which database is used.

Java Development Kit (JDK) A software
development kit (SDK) for producing Java
programs.

JDBC See Java Database Connectivity.

JDK See Java Development Kit.

kiosk services Solutions for business center
service providers such as hotel chains, airports,
and office service franchises that offer document
services (storing, reproduction, and distribution)
through shared access devices in public spaces.

LAN See Local Area Network.

LDAP See Lightweight Directory Access
Protocol.

Lightweight Directory Access Protocol
(LDAP) A set of protocols for accessing
information directories. LDAP is based on the
X.500 protocol, but supports TCP/IP, which is
necessary for Internet access. Because it's a
simpler version of X.500, LDAP is sometimes
called X.500-lite.

Local Area Network (LAN) A computer network
that spans a relatively small area, such as a
building or a group of buildings.

meta file definition file An ASCII file that
provides software distribution properties for the
266 Tivoli Personalized Services Manager Device Manager 1.1

job, also has a numbered application stanza,
[Applicationn], for each application package in
the software distribution job.

NetVista The IBM NetVista™ systems include
all-in-one, legacy-free, traditional desktops, and
thin clients to provide a full range of computing
solutions for your business or home.

Palm OS platform A popular operating system
for Palm and other handheld devices, designed
by Palm specifically for information management.

Palm Pilot One of the most popular brands of
PDAs, which uses Palm OS provided by Palm,
Inc. Nowadays, 3Com, IBM, Sony, and some
other vendors sell their original Palm Pilot
devices.

Palm OS resource database Commonly
referred to as a PRC (Palm Resource). A PRC
can exist as a file on the host computer (that is, a
PC or a Macintosh) and is commonly referred to
as a PRC file. A PRC contains database header
information as well as individual resource records
in the database itself.

Palmscape Palmscape is a Web browser for
PDA. Palm version of Palmscape works on the
Palm OS 3.0 and above.

PAP See Password Authentication Protocol.

Password Authentication Protocol (PAP) The
most basic form of authentication, in which a
user's name and password are transmitted over a
network and compared to a table of
name-password pairs.

PDA See Personal Digital Assistant.

PDB PDB files contain database records that
are used by Palm OS to store the application
data. They have features unique to the Palm OS.

Personal Digital Assistant (PDA) A small
handheld device that offers functions such as
address storage, calendar, and e-mail. This
mobile device can be synchronized with desktop
PCs.

Point-to-Point Protocol (PPP) A data link
protocol that provides dial-up access over several
lines.

POP See Post Office Protocol.

Portal Toolkit (pTk) A toolkit which features a
Multi-device portal engine which supports web
devices such as Win CE based PDAs,
screenphones, WAP devices, as well as PCs. It
also features a User Preference API, which
allows user and users group profiling.

Post Office Protocol (POP) A protocol used to
retrieve e-mail from a mail server.

PPP See Point-to-Point Protocol.

PRC Palm Resource. See Palm OS resource
database.

proxy A proxy server is configured to manage
network traffic and to protect your network.

PSTN See Public Switched Telephone Network.

PTF Problem temporary fix.

pTk See Portal Toolkit.

Public Switched Telephone Network (PSTN)
The international telephone system based on
copper wires carrying analog voice data. This is
in contrast to newer telephone networks based
on digital technologies, such as ISDN and FDDI.

RADIUS Remote Access Dial-In User Service.

RAM disk Refers to RAM that has been
configured to simulate a disk drive. You can
access files on a RAM disk as you would access
files on a real disk.

RAS Short for Reliability, Availability,
Serviceability. See Remote Access Services.

Realm Realms are a division of the subscriber
name-space that allow the ISP to divide its
Internet provisioning services, effectively creating
a set of “Virtual ISPs”.

Remote Access Services (RAS) A feature built
into Windows NT that enables users to log into an
NT-based LAN using a modem, X.25 connection
or WAN link.

screenphone See Internet screenphone.

servlets Java classes that run on Web servers
to provide dynamic HTML content to clients. They
take as input the HTTP request from the client
and output dynamically generated HTML. For
267

more information on servlets, see
http://www.software.ibm.com/ebusiness/
pm.html#Servlets

Simple Mail Transfer Protocol (SMTP) A
protocol for sending e-mail messages between
servers.

SM See Subscription Manager.

smart phone Enables connections to the
Internet or Lotus Notes network so that users can
access e-mail, faxes, voice mail, Web pages and
other files. It also has the potential to connect to
a speech recognition server by phone, which
would allow a user to dictate notes or responses
and then see the recognized text as it is returned
from the server.

SMTP See Simple Mail Transfer Protocol.

Solaris A UNIX-based operating environment
developed by Sun Microsystems, originally
developed to run on Sun's SPARC workstations, it
now runs on many workstations from other
vendors. Solaris includes the SunOS operating
system and a windowing system (either Open
Windows or CDE).

SQL See Structured Query Language.

SSL Secure Sockets Layer. A protocol for
transmitting private documents securely via the
Internet.

Structured Query Language (SQL) A standard
set of statements used to manage information
stored in a database. By using these statements,
users can add, delete, or update information in a
table, request information through a query, and
display the result in a report.

Subscription Manager (SM) A feature of the
Tivoli Internet and Personalized Services
Manager: Programmer’s Guide, which has
functions such as enrollment, access control, and
personalization.

TCP/IP Transmission Control Protocol/Internet
Protocol.

TISM Tivoli Internet Services Manager.

TPSM Tivoli Personalized Services Manager.

transcoding The operation of changing data
from one format to another, such as XML to
HTML, so that the output will be displayed in a
manner appropriate to the device.

TSM Tivoli Subscriber Manager.

UDB DB2 Universal Database from IBM.

URL Universal Resource Locator.

WAN Wide Area Network.

WAP See Wireless Application Protocol.

WAS IBM WebSphere Application Server.

WE See WebSphere Everyplace Suite.

WebSphere Everyplace Suite (WES) IBM
WebSphere Everyplace Suite is the solution for
pervasive computing that connects any device to
any data, anywhere, anytime. It supports the
following features: Connectivity, Content
Adaptation, Optimization, Security, Management
Services, and Services.

WebSphere Transcoding Publisher (WTP)
A network software that modifies content
presented to users based on the information
associated with the request, such as device
constraints, network constraints, user
preferences, and organization policies.
Transforming content can reduce or eliminate the
need to maintain multiple versions of data or
applications for different device types and
network service levels.

Windows CE A version of the Windows
operating system designed for small devices
such as personal digital assistants (PDAs) (or
handheld PCs in the Microsoft vernacular). The
Windows CE graphical user interface (GUI) is
similar to Windows 95 so devices running
Windows CE should be easy to operate for
anyone that is familiar with Windows 95.

Wireless Application Protocol (WAP) A
protocol to transfer content to and from wireless
devices.

Wireless Markup Language (WML) A
language to present content on wireless devices.

WML See Wireless Markup Language.
268 Tivoli Personalized Services Manager Device Manager 1.1

WTE Web Traffic Express.

WTP See WebSphere Transcoding Publisher.

XML See eXtensible Markup Language.
269

270 Tivoli Personalized Services Manager Device Manager 1.1

Index

Symbols
3

Numerics
443 77, 141, 142, 143, 198, 226, 227, 238
80 77

A
access control 7
activation date 201, 221
active session management 59
active session table 60
ACTIVE_JOB 148
ACTIVE_JOB_HISTORY 149, 191
adminclient.sh command 87
administration authentication 118
administration tasks 28
administrator 28

authentication 58, 77, 102
other authentication 103
profile 104
TPSM authentication 102

Aero 8000 265
Aero 8000 H/PC Pro 13
Aero 8000 Servlet 94
Aero8000Servlet 94
agent 25, 35, 53
AIX 265

operating system 3
PTF2 74
smitty 74

AllDevicesForJob 169
apachectl command 95
API 12, 265

for managing devices and jobs 37
application 201

ID 51
package file 202
properties 205
properties section 207
size 201

application server 89
command line argument 90

ApplicationDescription 208
ApplicationName 208

ApplicationSelectionDisable 207
ApplicationURL 205, 207
ApplicationVersion 208
architecture 25

overview 25
ASP 265
attribute, ProxyEnable 16
authClass 102, 103, 118
authentication 7, 28, 118

class file 119
other authentication 118
proxy 59
TPSM authentication 118

Authentication Server
authProxyDmsUrl 99

authentication.properties 96, 99, 102, 112
authProxyDmsUrl 99
availability 4, 30

TPSM database 30

B
business object 172, 188, 265

C
canceljobs option 121
centralized management 28
challenge handshake authentication protocol 265
CHAP 265
choices,template keyword 185
CHTML 20
classes12_01.zip 75, 112
cleanupexpiredjobs option 121
client operations 216
command

adminclient.sh 87
apachectl 95
create_DMS_db2.sql 79
create_DMS_ora.sq 79
createDMSSeqs_ora.sql 79
createDMSSyns_db2.sql 79
createDMSSyns_ora.sql 79
createDMSTables_db2.sql 80
createDMSTables_ora.sql 79
createDMSTriggers_db2.sql 80
createDMSTriggers_ora.sql 79
createDMSViews_db2.sql 80
createDMSViews_ora.sql 79
delcompjobs.sh 111, 121
271

devclasscfg.sh 81, 84, 111, 113, 134
dms_addplugin.sh 81
dms_addplugins.sh 111
dms_install.sh 75, 141
DMSUtil.sh 111, 121
export 73
jobclasscfg.sh 81, 84, 111, 115, 116
jobslasscfg.sh 135
pkgadd 72
script 121, 122
sqlplus 80
startupServer.sh 87
TSMOracle8i 74
xhost 73

CompactHTML 20
CompleteJob event 52
CondInst.exe 199
conduit 265
configuration 55

device-specific parameters 33
for non-WES Device Manager 81
on WAS 80
parameters 221
register device plug-ins 80
template file 222
WAS administration client 87
WES 80

CONNECT event 41, 43, 45, 48
considerations

developing a new plug-in 178
CONTINUE event 51
ContinueJob event 52
cradle 265

support 15, 16
create_DMS_db2.sql command 79
create_DMS_ora.log file 80
create_DMS_ora.sql command 79
createDMSSeqs_ora.sql command 79
createDMSSyns_db2.sql command 79
createDMSSyns_ora.sql command 79
createDMSTables_db2.sql command 80
createDMSTables_ora.sql command 79
createDMSTriggers_db2.sql command 80
createDMSTriggers_ora.sql command 79
createDMSViews_db2.sql command 80
createDMSViews_ora.sql command 79
CSR 8
Customer Care Representative 7

D
data access,device management API 29
data encryption 33
database 145

connection setting 100
high availability 30, 61
reference 105
schema owner 80
schema user 80
tablespace name 80

DB2 Universal Database Version 7 3
DB2 Universal Database,JDBC driver 75
db2java.zip file 75
DBCS 265

support 17
DDL 111, 265
deal 7, 265
dedicated Device Manager server 65
default,template keyword 184
default_host,MIME type 89
DefaultAuthentication 104
delcompjobs.sh command 111, 121
deletedevices option 121
deletejobs option 121
description,template keyword 184
descriptionkey,template keyword 184
DEV_CLASS_TEMPLATE 34, 150, 183
DevAgent 194, 217, 229

icon 194
devclasscfg.sh

register device class 84
devclasscfg.sh command 81, 111, 113
develop plug-in 171
device 1

device management API 187
enroll 27
enrolled 31
requiring enrollment 31

Device Admin profile 104
device agent 25, 27, 28, 35

install 193
installation 193
password 195
servicename 195
username 195

device class 4, 32, 33, 39, 155
API 39
delete 114
device management API 187
272 Tivoli Personalized Services Manager Device Manager 1.1

DeviceClassName parameter 114
DeviceCommunicationManager 32
install 113
interactive registration 81
list 114
modify 114
parameter 133
property 133
register 150
unattended registration 84

device class API 39
device communication 32
device configuration 30, 135, 220

check list 227
client operation 229
example 225
modify parameter 221, 223

device context object 34, 39
device filter 123
device ID 38
device ID cache 41, 48
device identification 32
device management 131

add device 132
delete 134
enroll device 131
list device 132
modify 133

device management API 5, 29, 30, 37, 53, 171,
186, 265

business object 188
high-level API 189
low-level API 189
managing devices 188
users 187
what it manages 187

device management server API 5, 30, 38, 53, 171,
175, 265

DeviceCommunicationManager 33
DeviceJob 33
protocol-independent 32

device management server servlet 25, 27, 30, 53,
173

redirect 27
device management service 52
Device Manager 1, 3, 57

API 12
application server 87
architecture 25

components 25, 30, 172
consideration in WES 59
control flow 38
device support 28
distributing software 11
enrollment 11
functions 11
improve performance 100
install 75
online documents 105
supported device 12
to turn on tracing 96
updating device configuration 11
updating rest page 12

Device Manager console 5, 25, 28, 30, 35, 53,
125, 150, 265

data exchange 128
device filter 123
filtering 16
icon 128
install 125
installation 125
Job filter 122
list of administrator tasks 36
other authentication 103
PC 58
set MIME type 89
startup 128
URL 109, 126

Device Manager database 3, 5, 26, 30, 31, 53,
145, 172

ACTIVE_JOB 148
ACTIVE_JOB_HISTORY 149
AllDevicesForJob 169
connection setting 100
create tables 79
DEV_CLASS_TEMPLATE 34, 150, 183
DEVICE 153, 188, 189
DEVICE_CLASS 113, 155, 188, 189
DEVICE_CLASS_PARM 156, 183, 188, 190,
222, 223
DEVICE_CLASS_PARMS 35
DEVICE_CLASS_TEMPLATE 190
DEVICE_PARM 157, 183, 188, 189, 222
DEVICE_PARMS 34
DEVICES 114
DMS_SERVER 158, 188, 190
EligibleView 168
estimate the size 146
273

IBM DB2 UDBv7.1 145
INSTALLED_SW 159, 188, 189, 190
JOB_CLASS_TABLE 116, 160, 189, 190
JOB_HISTORY 161
JobStatusView 168
LastJobStatus 169
Oracle8i database 8.1.5 145
SOFTWARE 164, 188, 190
SUBMITTED_JOB 166
supported DBMS 145
supported platform 145
tables 148, 189, 222
the length of DATE field 148

Device Manager server 4
core services 23
device management API 188
log file 112
log files 124
plan 56
port number 77
scalability 56
start the service 97
stop the service 98

Device Manager server enhancement
cradle support 15
DB2 Universal Database Version 7 15
job distribution 15
proxy support 15
support for Japanese language 16

Device Manager servlet 93
enhancements 15

device parameter 32, 34, 133
DEV_CLASS_TEMPLATE 150
DMSPort 143
for a device 157
for a device class 156
GUI 150
key 156
NLS 151
priority 157
SSLOn 143
template file 150
translation resource bundle 151
value 156

device plug-in 3, 4, 25, 28, 30, 32, 53
develop own plug-in 28
device class 32
interactive registration 81
job class 32

logical structure 32
provided by TPSM 28
register 81
structure 173
template file 32
unattended registration 84

device property 133
device related information

device classes 26
device parameters 26
devices 26

device settings 194
device specific 32

communication component 173
communication software 39
job class 173
management functions 27

device support 28, 53
DEVICE table 153, 188, 189
device template 32, 150
device vendor 28
DEVICE_CLASS 113, 155, 188, 189
DEVICE_CLASS_PARM 156, 183, 188, 190, 222,
223
DEVICE_CLASS_PARMS 35
DEVICE_CLASS_TEMPLATE 190
DEVICE_PARM 157, 183, 188, 189, 222

override 157
DEVICE_PARMS 34
DEVICE_REQUEST_JOB 181
DeviceClassTemplate.properties 183
DeviceClassTemplate_lang.properties 183
DeviceCommunication servlet 39, 50, 51, 52
DeviceCommunicationManager 32, 39, 46, 173,
181
DeviceCommunicationManager class 173, 175,
176
DeviceConfigurationJob class 177
DeviceConnectionEvent 39, 46, 177, 180
DeviceContext 181
DeviceErrorEvent 178, 181
DeviceErrorEvents 181
DeviceJob 173
DeviceJob class 40, 173, 175, 176

extended 180
DeviceJob interface 32
DeviceJobProcessingCompleteEvent 47, 178,
180, 182
DeviceManagementEvent class 177, 181
274 Tivoli Personalized Services Manager Device Manager 1.1

DeviceManagementServer servlet 26
DeviceManagementServerServlet 93, 141

authProxuDmsUrl 99
DeviceRequestWorkEvent 47, 178, 181
DEVICES 114
DHCP 265
directory

/opt/TivDMS 110
/usr/lpp/TivDMS 110

distributing software 11
DM database. See Device Manager database
DM DB. See Device Manager database
DM. See Device Manager
DMChildJob class 190
DMChildJobData class 191
DMconsole.html 125
DMD 265
DMDevice class 188
DMDeviceClass class 188
DMDeviceClassData class 191
DMDeviceData class 191
DMJobClass class 189
DMJobClassData class 191
DMResult class 191
DMS servlet 4, 25, 30, 53, 265
DMS servlet engine 91
dms_addplugin.sh

DMSplugin.plugin_name.log 84
register device plug-in 81

dms_addplugin.sh command 81
dms_addplugins.sh command 111
DMS_AppServer 91
dms_install.sh command 75
DMS_SERVER 158, 188, 190
DMS_ServletEngine 91
DMS_stderr.log 96, 112, 125
DMS_stdout.log 96, 112, 125
DMSAddress 226
DMServer class 188
DMServerData class 191
DMSMsgn.log 112
DMSoftware class 188
DMSoftwareData class 191
DMSplugin.plugin_name.log 84
DMSPort 143, 226
DMSSubmittedJob class 190
DMSubmittedJobData class 191
DMSUtil.sh command 111, 121
DNS 265

doJob method 34, 40, 47, 51, 177, 180, 182
double byte

support 17
double byte character set 265
DSP 195

E
e-business 19, 265

demand 17
e-business, 20
editable,template keyword 185
EligibleView 168
EnableTrace 96
enhancement,Device Manager server 15
enrolled device 31
enrolled device connection flow 43

without submitted job 44
enrollment 7, 11
enrollment application 26

SubscriptionMgr.properties 101
enrollment URL 114
Everyplace Authentication Server 10, 60, 67
Everyplace Suite deployment 67
Everyplace Wireless Gateway 10, 60, 67
exception 181
excluded files 202
excluded files section

software distribution 205
expiration date 201, 221
export command 73
Extensibility 28
external device enrollment application 27
extra 202
extra section,software distribution 205

F
file

.jar 111

.template 111
/etc/system 71
authentication.properties 96, 99, 112, 118, 119
classes12_01.zip 75, 79, 112
Condinst.exe 199
create_DMS_db2.sql 79
create_DMS_ora.log 80
createDMSSyns_db2.sql 79
createDMSTables_db2.sql 79
createDMSTriggers_db2.sql 79
275

createDMSViews_db2.sql 79
createDMSxxxx.sql 111
db2java.zip 75
DDL files 111
DeviceClassTemplate.properties 183
DeviceClassTemplate_lang.properties 183
DMS_stderr.log 96, 112, 125
DMS_stdout.log 96, 112, 125
DMSMsgn.log 112
DMSplugin.plugin_name.log 84
httpd.conf 141
initispd.ora 72
lookup.properties 112
MyAuthentication.class 120
PvcPalm.prc 193
SubscriptionMgr.properties 96, 99, 111
template 111
transaction.properties 82, 96, 111, 128
tsmauthentication.properties 99, 112

file ID 51
file package 266

definition file 266
file package file

keyword option 202
FILE protocol 57
file server,protocol 57
File Serving Enabler 92
file transfer protocol 266
files and directories section

software distribution 204
files,need to correct 73
filter

device filter 122
job filter 122

filtering 16, 129
device filter 129, 130
how many button 129
job filter 129, 130
software filter 129, 131

fire method 38, 47, 177, 180, 181
FTP 266

G
getObjects method 191
getPackageData method 39, 50
GUI 266

H
HACMP 30, 61, 266

reference 105
HACMP solution 30
header section 203
high availability 52, 56
highest-priority job 181
home page,personalized 8
HotSync 193, 266
HTML 20
HTML 3.2 20
HTTP 57, 266
HTTP Server log files 124
HTTPS 33

I
IadServlet 95
IBM 266
IBM HTTP Server 141

reference 105
IMAP 266
information appliance 1
initJob method 40, 176
install

AIX support software 74
Device Manager 75
dms_install.sh 75
IBM HTTP Server 75
JDK 75
runtime support 74
sample system 68
TPSM database server 70
TPSM in WES 68
TPSM server 74
WAS 75

Install Tool window 193
installation 55

wizard 8
installed software check 201
INSTALLED_SW 159, 188, 189, 190
instance

of job class 34
integration toolkit

Transaction 175
TxObject 175

internal device communications component 173
Internet screenphone 266
Internet transaction 17
276 Tivoli Personalized Services Manager Device Manager 1.1

ISDN 266
isMore method 191
ISP 7, 28, 266
iTk 266

J
Japanese language support 17
jar 89
Java 266

reference 105
Java class

DeviceCommunicationManage 173
DeviceJob 173

Java_dev2.rte 1.2.2.8 74
JDBC 266

reference 105
JDBC driver

classes12_01.zip 75, 79
copy 79
db2java.zip 75

JDBC.dbConnect 100
JDBC.dbPassword 100
JDBC.dbPassword parameter 82, 86
JDBC.dbUser 100
JDBC.dbUser parameter 82, 86
JDK 56, 64, 266
job

ACTIVE_JOB 148
cancel 138
complete status 149
delete 138
develop 179
device management API 187
display 137
history 149
manage 190
progress 137
properties 137
submit 137, 213

job class 30, 32, 34, 40, 115, 160
delete 117
install 116
interactive registration 81
list 117
register 160
unattended registration 84

job context object 34, 40
job distribution

by realm, deal 15, 16
job filter 122
job ID 137
job management 135
job management business object 190
job management database

ACTIVE_JOB_HISTORY 191
JOB_PARM 191
SUBMITTED_JOB 191
tables 191

job processing 30, 53
job property 137
job related information

job classes 26
submitted jobs 26

job specific classes
provided 177

job status 136, 137
Canceled 136, 138
Completed 136
Deleted 138
Executable 136
Expired 136
Pending 136, 174

job target 37
job type 115, 135
job types 135
JOB_CLASS_TABLE 116, 160, 189, 190
JOB_COMPLETED 182
JOB_HISTORY 161
JOB_PARM 191
jobclasscfg.sh command 81, 111, 116

register job class 84
JobComplete event 52
job-specific classes

provided 177
JobStatusView 168

K
Kanji support 17
keyword option 202
keyword options section

software distribution 203
Kiosk services 266

L
label

template keyword 185
277

labelkey
template keyword 185

LAN 266
LastJobStatus 169
lCondAgent 199
LDAP 266

directory 60
length

template keyword 185
lightweight object 191
list

installed software 159
of Device Manager server 158

listdevices option 121
listjobs option 121
loadbalansor 4
log files 124
LogDebugToPrintStream 96
logging 96
Logon window 195, 196
lookup.properties 112

M
manage

bulk jobs 121
job type 115
new device 171

manage job class 115
MaxDBConnections 100
MaxDBConnections parameter 100
meta file definition file 266
meta file package definition file 205
methods

doJob 34, 40, 47, 51, 177, 180, 182
fire 38, 47, 177, 180, 181
getObjects 191
getPackageData 39, 50
initJob 40, 176
isMore 191
performPostProcessing 40
performPreProcessing 40, 47, 181
process 180, 181
putPackage 39, 50, 51
redirectToDeviceManagementServer 39, 47
redirectToEnrollmentServer 40, 41

MIME type
jar 89

MinDBConnections 100

MinDBConnections parameter 100

N
need_space 204
nested file package 202
Netscape Navigator

Device Manager console 89
NetVista 267
NetVista Internet Appliance 13, 14
Network Dispatcher 4, 30, 61

reference 105
Networked Vehicle 14
new device

connection flow 40
support 178

new software properties window 213
no_overwrite 204
number of pervasive devices 17

O
OFFERING_UPPERCASE 102
one-step job processing 181
operational task 193
optional template 173
Oracle8 3
Oracle8i

as TPSM database server 70
JDBC driver 75

other authentication 58, 103

P
package properties 205

section 206
PackageDescription 207
PackageName 207
PackageUserSelection 206, 207
PackageVersion 207
Palm Computing PDA 13
Palm cradle 199
Palm III 13
Palm OS 267
Palm PDA 13
Palm pilot 267
Palm Servlet 94
Palm V 13
PalmAgent 198, 217, 229
PalmOS 4
278 Tivoli Personalized Services Manager Device Manager 1.1

PalmOS API 13
Palmscape 209, 267
PalmServlet 94
PAP 267
PARM_KEY 224
PARM_VALUE 224
password 196
password authentication protocol 267
patches

106980-10 71
106980-13 69
107081-11 71
107081-22 69
107636-03 71
108376-03 71
required for JDK 71

PDA 1, 12, 267
PDB 193, 267
percentage of Internet transactions 17
performPostProcessing method 40
performPreProcessing method 40, 47, 181
personalization

TPSM 6
pervasive computing 20
pervasive device 1
PervasiveDeviceID class 177, 181
pkgadd command 72
planning

device configuration 220
plug-in 25

architecture 28
components 32
develop 179
device class 33
interactive registration 81
logical structure 173
template file 34
unattended registration 84

Pocket Internet Explorer browser 15
pointer to the exit class 102
POP 267
port 443 77
port 80 77
PPP 267

password 195
userID 195

PRC 267
privilege

administrator 193

process method 180, 181
PROCESSES parameter 72
profile

Device Manager console administrator 104
Director tool 104
parameter 119

program
Condinst.exe 199

provisioning 29, 145
proxy 267
proxy address 195
proxy setting 198
proxy support 15, 16
ProxyEnable attribute 16
PSTN 267

simulator 68
PTF 267
pTk 267
putPackage method 39, 50, 51
PvC client stack 14
PvC Client Stack Servlet 95
PvcPalm.prc 193

Q
queue management system 8

R
RADIUS 267

server 10, 59
RAM disk 267
range

template keyword 184
RAS 267
realm 7, 38, 122, 153, 267
REALM_UPPERCASE 102
redirect device 174
redirectToDeviceManagementServer method 39,
47
redirectToEnrollmentServer method 40, 41
reference

database 105
Device Manager online document 105
HACMP 105
IBM HTTP Server 105
Java 105
JDBC 105
Network Dispatcher 105
TPSM 105
279

WebSphere Application Server 105
register

device plug-in 81
repository 29
REQUEST event 50
RequestJob event 50
rest page 1, 12, 13, 14, 27, 34, 36, 37, 45, 135
rest page management 30, 135
RestPageManagementJob class 177
runtime support 74

S
sample configuration

in WES 62
simple deployment 60
with scalability 61

sample flow 47
sample scenario 47
scalability 4, 30, 52

TPSM server 30
scheduled jobs 27
screenphone 12, 267
script command 122
script. See command
secure communication 141
secure port 141
SecureWay Directory 67
SecureWay Policy Director 7
security 15, 33, 141
security profile 119
self care 6
Server Information 197
Server setting 197
Service Gateway 14
Service Management Framework 14
ServiceName 196, 227
servlet 267
servlet name 195
setting information

provided by ISP 194
single sign-on 7, 59
SM 25, 268
SM component 37
SMTP 268
SOFTWARE 164, 188, 190
software

device management API 187
Software distribution 199

software distribution 30, 135, 139, 199, 202
check list 201
file location 202
file package file 202
flow 200
job class 40
list 159
meta file package file 202

software information
software version 26
URL 26

software management 139
add 139
delete 141
device list 140
distribute 139, 140

software name 201
software package

FILE protocol 57
HTTP protocol 57

SoftwareDistributionJob class 177
Solaris 268
Solaris platform

DMS command line argument 90
SQL 268
sqlplus command 80
src_relpath 204
SSL 33, 141, 268
SSLOn 143, 226
start Device Manager

configuration before start 80
start Device Manager server 97

pre-start check list 96
startupServer.sh command 87
step

developing a new plug-in 178
stop Device Manager server 98
submit job 135
Submit Job window 137
SUBMITTED_JOB 166, 191
subscriber 153
subscriber profile 8
Subscription Manager 2, 3, 25, 26, 145

class name 101
component 37
database 145

SubscriptionMgr.properties 96, 99, 101, 111
OFFERING_UPPERCASE 102
REALM_UPPERCASE 102
280 Tivoli Personalized Services Manager Device Manager 1.1

USER_UPPERCASE 102
Sun Solaris environment 3
supplied job types

device configuration 27
rest page management 27
software distribution 27

support for DB2 Universal Database Version 7 16
support for Japanese language 16
supported device

PDA 12
screenphone 12
WAP device 12

supported security functions
Proxy 15
SSL 15

system integrator 28

T
tab

template keyword 185
table

ACTIVE_JOB 148
ACTIVE_JOB_HISTORY 149
create 79
DEV_CLASS_TEMPLATE 150
DEVICE 153
DEVICE_CLASS 115, 155
DEVICE_CLASS_PARM 156
DEVICE_PARM 157
DEVICES 114
DMS_SERVER 158
INSTALLED_SW 159
JOB_CLASS_TABLE 115, 160
JOB_HISTORY 161
SOFTWARE 164
SUBMITTED_JOB 166

target deal 201
target device 201, 221
target device class 201, 221
target device for new job window 214
target realm 201
TCP/IP 268
template 34

choices 185
create 182
default 184
description 184
descriptionkey 184

editable 185
file format 183
label 185
labelkey 185
length 185
range 184
tab 185
type 184
valid keyword and value 184

template file 32, 33, 34, 111, 133, 150, 222
three-tier system 19
TISM 268
Tivoli Personalized Services Manager 2
TivTISM package 72
TPSM 2, 6, 22, 23, 268

access control 6
Active Session Table 60
authentication 6, 62
customer care 6, 8
enroll 6
enrollment 62
integration Toolkit 174
personalization 8
reference 105
self care 8
subscriber 153
the position in WES 59

TPSM authentication 58, 102
TPSM database 145

case sensitive 102
connection setting 100
TPSM Oracle database integration 70

TPSM installation flow 65
TPSM Integration Toolkit 171, 188
TPSM server

plan 56
scalability 56

trace 96
transaction.properties 96, 100, 111
transaction.properties file 82
TSM 268
TSMAuthentication 104
TSMAuthentication class 102, 118, 119
tsmauthentication.properties 96, 99, 104, 112
TSMOracle8i command 74
TSMSubscriptionMgr class 101
TSMSubscriptionMgr.java exit 102
TxObject class 188
type
281

template keyword 184
typical jobs

device configuration 36
rest page management 36
software distribution 36

U
UDB 268
updating device configuration 11
updating rest page 12
URL 268
USER_UPPERCASE 102
username 196
UserSelection 201

V
view 168

AllDevicesForJob 169
EligibleView 168
JobStatusView 168
LastJobStatus 169

virtual ISP 8
VoiceXML 20

W
WAN 268
WAP 1, 268
WAP device 12
WAS 268

Administrative Console 142
database option 75
default_host 142
install option 75

WAS administration client
Device Manager application server 87

WAS log files 124
Web Server 19
Web system 19
WebSphere Application Server

reference 105
WebSphere Everyplace Suite 2, 8
WES 8, 268

authProxyDmsUrl 99
central repository 59
Everyplace Authentication Server 9, 60
Everyplace Synchronazation Manager 9
Everyplace Wireless Gateway 9, 60

installation order 67
installer 68
MQSeries Everyplace 9
Network Dispatcher 10
SecureWay Directory 67
TPSM 10
WebSphere Edge Server Caching Proxy 10
WebSphere Edge Server Load Balancer 10
WebSphere Transcoding Publisher 10
WTE 10

WinceServlet 95
Windows CE 15, 268

device 13
security 15
servlet 95

Wireless Gateway 60
WML 20, 268
WTE 269
WTP 269

X
X11.adt 4.3.3.0 74
X11.base.lib 74
X11.base.rte 74
xhost command 73
XML 20, 269
282 Tivoli Personalized Services Manager Device Manager 1.1

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6027-00
Tivoli Personalized Services Manager Device Manager 1.1: Pervasive
Device Management

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/
© Copyright IBM Corp. 2001 283

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.ibm.com/privacy/yourprivacy/

284 Tivoli Personalized Services Manager Device Manager 1.1

(0.5” spine)
0.475”<->0.875”

Tivoli Personalized Services M
anager Device M

anager 1.1

®

SG24-6027-00 ISBN 0738421162

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Tivoli Personalized
Services Manager
Device Manager 1.1
Pervasive Device Management

Understand how to
use Device Manager
for pervasive device
management

Install, tailor, and
configure the Device
Manager server

Learn useful
information to help
you develop plug-ins

Device Manager Version 1.1 is software that functions as a part of
Tivoli Personalized Services Manager Version 1.1, or IBM
WebSphere Everyplace Suite Version 1.1. It enables pervasive
devices to easily access a set of network-based services, as well as
Internet-based e-commerce services.

This IBM Redbook will assist developers and system architects who
are involved in building pervasive device management solutions that
use Device Manager Version 1.1. It explains how Device Manager
Version 1.1 can be used to manage devices in the growing pervasive
computing world. Pervasive devices are typically small,
resource-limited, and not perceived as computers; however, growth
of these information appliances is increasing at an amazing rate.

In this redbook, you will find information that to help you plan, tailor,
and configure the Device Manager to successfully implement
solutions that an e-business must address to access Internet-based
services from pervasive devices such as Palm devices,
screenphones, and Wireless Application Protocol (WAP) devices.

This redbook also looks at software distribution and device
configuration examples, introduction of supported APIs, and an
explanation of device plug-ins. It helps you to plan and make your
own device plug-in when you want to manage special devices not
provided with Device Manager Version 1.1.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to Device Manager
	1.1 What is Device Manager
	1.1.1 Overview
	1.1.2 Device Manager components
	1.1.3 DM in Tivoli Personalized Services Manager (TPSM)
	1.1.4 TPSM in WebSphere Everyplace Suite (WES)
	1.1.5 Device Manager functions
	1.1.6 Supported devices
	1.1.7 What's new in DMS 1.1

	1.2 Why you need DMS
	1.2.1 The Internet and e-business today
	1.2.2 Pervasive computing and pervasive device management
	1.2.3 The challenge

	Chapter 2. Architecture
	2.1 Overview
	2.1.1 Features of Device Manager

	2.2 Components of Device Manager
	2.2.1 Device management server servlet
	2.2.2 Device Manager database
	2.2.3 Device plug-ins
	2.2.4 Device Manager console
	2.2.5 Device management API
	2.2.6 Device management server API

	2.3 Control flow
	2.3.1 Connection handling
	2.3.2 Job flow
	2.3.3 Sample scenario

	2.4 Summary
	2.4.1 Features
	2.4.2 Components
	2.4.3 Job processing

	Chapter 3. Installation and configuration
	3.1 Planning
	3.1.1 TPSM database server
	3.1.2 File server for software distribution package
	3.1.3 Device Manager console PC
	3.1.4 WebSphere Everyplace Suite environment
	3.1.5 Sample system configuration

	3.2 Installation flow
	3.2.1 Sample 1: Simple configuration
	3.2.2 Sample 2: Dedicated Device Manager server
	3.2.3 Sample 3: Everyplace Suite deployment

	3.3 Installation
	3.3.1 System environment
	3.3.2 Installation tasks

	3.4 Configuration
	3.4.1 Registering the device plug-in classes
	3.4.2 Configuration on WebSphere Application Server
	3.4.3 Starting the Device Manager server
	3.4.4 Configuration differences
	3.4.5 Properties files

	3.5 References

	Chapter 4. Administration
	4.1 Overview
	4.2 Device Manager server tasks
	4.2.1 Directories and files
	4.2.2 Managing a device class
	4.2.3 Managing job types and classes
	4.2.4 Administration authentication
	4.2.5 Managing large numbers of jobs or devices
	4.2.6 Device Manager server log files

	4.3 Device Manager console tasks
	4.3.1 Device Manager console installation
	4.3.2 Filtering
	4.3.3 Managing devices
	4.3.4 Managing jobs
	4.3.5 Managing software

	4.4 Enabling SSL
	4.4.1 Enabling SSL on the DM server
	4.4.2 Enabling SSL for client devices

	Chapter 5. Device Manager database
	5.1 Data model
	5.1.1 ACTIVE_JOB table
	5.1.2 ACTIVE_JOB_HISTORY table
	5.1.3 DEV_CLASS_TEMPLATE table
	5.1.4 DEVICE table
	5.1.5 DEVICE_CLASS table
	5.1.6 DEVICE_CLASS_PARM table
	5.1.7 DEVICE_PARM table
	5.1.8 DMS_SERVER table
	5.1.9 INSTALLED_SW table
	5.1.10 JOB_CLASS_TABLE table
	5.1.11 JOB_HISTORY table
	5.1.12 JOB_PARM table
	5.1.13 SOFTWARE table
	5.1.14 SUBMITTED_JOB table

	5.2 Views
	5.2.1 JobStatusView
	5.2.2 EligibleView
	5.2.3 AllDevicesForJob
	5.2.4 LastJobStatus

	Chapter 6. Application programming interface
	6.1 Overview
	6.2 Components of Device Manager
	6.2.1 Device Manager database
	6.2.2 Device plug-ins
	6.2.3 Device management server servlet
	6.2.4 Tivoli Personalized Services Manager integration toolkit

	6.3 Device management server API
	6.3.1 Device and job classes
	6.3.2 Developing support for devices

	6.4 Device management API
	6.4.1 Managing devices
	6.4.2 Managing jobs

	Chapter 7. Using the DM functions
	7.1 Device agent installation
	7.1.1 Installing the device agent program
	7.1.2 Device settings
	7.1.3 Device setting with Palm Cradle

	7.2 Software distribution
	7.2.1 Planning for software distribution
	7.2.2 Placing the files on the server
	7.2.3 Preparing the file package definition file
	7.2.4 Preparing the meta file package definition file

	7.3 Sample scenario for software distribution
	7.3.1 Scenario 1
	7.3.2 System environment
	7.3.3 Server operations
	7.3.4 Client operations

	7.4 Device configuration
	7.4.1 Planning for device configuration
	7.4.2 Modifying the device configuration parameters

	7.5 Sample scenario for device configuration
	7.5.1 Scenario 2
	7.5.2 System environment
	7.5.3 Server operations
	7.5.4 Client operations

	Appendix A. Device parameters
	A.1 Parameters for the Palm plug-in
	A.1.1 Format tab
	A.1.2 General tab
	A.1.3 Network tab
	A.1.4 TCP/IP tab
	A.1.5 Modem tab
	A.1.6 Agent tab
	A.1.7 Proxy tab

	A.2 Parameters for the Aero 8000 plug-in
	A.2.1 PPP tab
	A.2.2 TCP/IP tab
	A.2.3 Browser tab
	A.2.4 Agent tab
	A.2.5 Mailer tab
	A.2.6 Mgmt tab

	A.3 Parameters for the Windows CE plug-in
	A.4 Parameters for the NetVista Internet appliance plug-in
	A.4.1 Log Service tab
	A.4.2 HTTPD Service tab
	A.4.3 Device Agent tab
	A.4.4 Browser Default tab
	A.4.5 Time Server tab
	A.4.6 Printing tab
	A.4.7 Network Printer 1 tab
	A.4.8 Dialup tab
	A.4.9 Ethernet tab
	A.4.10 Syslog tab
	A.4.11 Email tab
	A.4.12 Connection Manager tab
	A.4.13 RAM drive tab

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 IBM Redbooks
	C.2 IBM Redbooks collections
	C.3 Other resources
	C.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

