

ibm.com/redbooks

GPFS on AIX Clusters:
High Performance File System
Administration Simplified

Abbas Farazdel
Robert Curran
Astrid Jaehde

Gordon McPheeters
Raymond Paden

Ralph Wescott

Learn how to install and configure
GPFS 1.4 step by step

Understand basic and advanced
concepts in GPFS

Learn how to exploit
GPFS in your applications

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

GPFS on AIX Clusters: High Performance File
System Administration Simplified

August 2001

International Technical Support Organization

SG24-6035-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (August 2001)

This edition applies to Version 1 Release 4 of IBM General Parallel File System for AIX (GPFS 1.4,
product number 5765-B95) or later for use with AIX 4.3.3.28 or later.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 265.

Contents

Preface . ix
The team that wrote this redbook. ix
Special notice . xi
IBM trademarks . xi
Comments welcome. xi

Chapter 1. A GPFS Primer . 1
1.1 What is GPFS . 2
1.2 Why GPFS . 2
1.3 The basics . 3
1.4 When to consider GPFS . 7
1.5 Planning considerations . 7

1.5.1 I/O requirements . 8
1.5.2 Hardware planning . 8
1.5.3 GPFS prerequisites. 10
1.5.4 GPFS parameters . 10

1.6 The application view . 11

Chapter 2. More about GPFS . 13
2.1 Structure and environment . 14
2.2 Global management functions . 16

2.2.1 The configuration manager node . 16
2.2.2 The file system manager node . 17
2.2.3 Metanode . 17

2.3 File structure . 18
2.3.1 Striping . 18
2.3.2 Metadata . 20
2.3.3 User data. 21
2.3.4 Replication of files . 21
2.3.5 File and file system size . 21

2.4 Memory utilization . 23
2.4.1 GPFS Cache . 23
2.4.2 When is GPFS cache useful . 24
2.4.3 AIX caching versus GPFS caching: debunking a common myth . . . 25

Chapter 3. The cluster environment . 27
3.1 RSCT basics . 28

3.1.1 Topology Services. 30
3.1.2 Group Services . 30
© Copyright IBM Corp. 2001 iii

3.1.3 Event Management . 32
3.2 Operating environments for GPFS . 32

3.2.1 GPFS in a VSD environment . 33
3.2.2 GPFS in a non-VSD environment . 36
3.2.3 GPFS in a cluster environment . 36

3.3 GPFS daemon state and Group Services . 37
3.3.1 States of the GPFS daemon . 38
3.3.2 The role of RSCT for GPFS . 39
3.3.3 Coordination of event processing . 41
3.3.4 Quorum . 42
3.3.5 Disk fencing. 43
3.3.6 Election of the GPFS global management nodes 43

3.4 Implementation details of GPFS in a cluster . 45
3.4.1 Configuration of the cluster topology. 46
3.4.2 Starting and stopping the subsystems of RSCT 47
3.4.3 Dynamic reconfiguration of the HACMP/ES cluster topology 49

3.5 Behavior of GPFS in failure scenarios . 49
3.5.1 Failure of an adapter . 50
3.5.2 Failure of a GPFS daemon . 50
3.5.3 Partitioned clusters . 51

3.6 HACMP/ES overview . 55
3.6.1 Configuring HACMP/ES . 56
3.6.2 Error Recovery . 59

Chapter 4. Planning for implementation . 61
4.1 Software. 62

4.1.1 Software options . 62
4.1.2 Software as implemented . 62

4.2 Hardware . 64
4.2.1 Hardware options . 64
4.2.2 Hardware. 65

4.3 Networking . 66
4.3.1 Network options . 66
4.3.2 Network . 67

4.4 High availability . 68
4.4.1 Networks . 68
4.4.2 SSA configuration . 70

Chapter 5. Configuring HACMP/ES . 71
5.1 Prerequisites . 72

5.1.1 Security . 72
5.1.2 Network configuration . 72
5.1.3 System resources . 74
iv GPFS on AIX Clusters

5.2 Configuring the cluster topology . 74
5.2.1 Cluster Name and ID. 75
5.2.2 Cluster nodes . 75
5.2.3 Cluster adapters . 76
5.2.4 Displaying the cluster topology . 77

5.3 Verification and synchronization . 78
5.3.1 Cluster resource configuration . 78

5.4 Starting the cluster . 78
5.5 Monitoring the cluster . 81

5.5.1 The clstat command . 82
5.5.2 Event history . 84
5.5.3 Monitoring HACMP/ES event scripts . 84
5.5.4 Monitoring the subsystems . 85
5.5.5 Log files . 86

5.6 Stopping the cluster services . 87

Chapter 6. Configuring GPFS and SSA disks. 91
6.1 Create the GPFS cluster . 92

6.1.1 Create the GPFS nodefile . 92
6.1.2 Create the cluster commands . 92

6.2 Create the nodeset . 94
6.2.1 Create dataStrucureDump . 94
6.2.2 The mmconfig command. 94

6.3 Start GPFS. 95
6.4 Create the SSA volume groups and logical volumes. 96

6.4.1 Create PVID list. 97
6.4.2 Make SSA volume groups. 98
6.4.3 Vary on the volume groups . 99
6.4.4 Make logical volume . 101
6.4.5 Vary off the volume groups . 102
6.4.6 Import the volume groups . 102
6.4.7 Change the volume group. 103
6.4.8 Vary off the volume groups . 104

6.5 Create and mount the GPFS file system. 104
6.5.1 Create a disk descriptor file. 105
6.5.2 Run the mmcrfs create file system command 105
6.5.3 Mount the file system . 108

Chapter 7. Typical administrative tasks . 109
7.1 GPFS administration . 110

7.1.1 Managing the GPFS cluster . 110
7.1.2 Managing the GPFS configuration . 117
7.1.3 Unmounting and stopping GPFS . 119
 Contents v

7.1.4 Starting and mounting GPFS . 120
7.1.5 Managing the file system . 122
7.1.6 Managing disks . 127
7.1.7 Managing GPFS quotas . 133

7.2 HACMP administration . 137
7.2.1 Changing the cluster configuration . 137
7.2.2 Changing the network configuration . 141

Chapter 8. Developing Application Programs that use GPFS. 143
8.1 GPFS, POSIX and application program portability 144

8.1.1 GPFS and the POSIX I/O API. 144
8.1.2 Application program portability . 145
8.1.3 More complex examples . 146

8.2 Benchmark programs, configuration and metrics 146
8.3 GPFS architecture and application programming 147

8.3.1 Blocks and striping . 148
8.3.2 Token management . 150
8.3.3 The read and write I/O operations. 152

8.4 Analysis of I/O access patterns . 154
8.4.1 Tables of benchmark results . 155
8.4.2 Sequential I/O access patterns . 156
8.4.3 Strided I/O access patterns. 157
8.4.4 Random I/O access patterns. 159

8.5 Hints: Improving the random I/O access pattern 160
8.5.1 The GPFS Multiple Access Range hints API 161
8.5.2 GMGH: A generic middle layer GPFS hints API 169

8.6 Multi-node performance . 175
8.7 Performance monitoring using system tools 177

8.7.1 iostat . 177
8.7.2 filemon. 178

8.8 Miscellaneous application programming notes 180
8.8.1 File space pre-allocation and accessing sparse files 180
8.8.2 Notes on large files . 181
8.8.3 GPFS library . 182

Chapter 9. Problem determination . 183
9.1 Log files . 185

9.1.1 Location of HACMP log files . 185
9.1.2 Location of GPFS log files. 185

9.2 Group Services . 186
9.2.1 Checking the Group Services subsystem . 186

9.3 Topology Services . 188
9.3.1 Checking the Topology Services subsystem 188
vi GPFS on AIX Clusters

9.4 Disk problem determination . 190
9.4.1 GPFS and the varyonvg command . 191
9.4.2 Determining the AUTO ON state across the cluster 192
9.4.3 GPFS and the Bad Block relocation Policy 194
9.4.4 GPFS and SSA fencing. 195

9.5 Internode communications . 198
9.5.1 Testing the internode communications . 198

Appendix A. Mapping virtual disks to physical SSA disks 201
SSA commands . 202
Using diag for mapping . 202

Appendix B. Distributed software installation . 207
Creating the image . 208
Creating the installp command. 208
Propagating the fileset installation . 209

Appendix C. A useful tool for distributed commands 211
gdsh . 212

Appendix D. Useful scripts. 217
Creating GPFS disks. 218
comppvid . 226

Appendix E. Subsystems and Log files . 229
Subsystems of HACMP/ES . 230
Log files for the RSCT component . 231

Trace files . 231
Working directories . 231

Log files for the cluster group . 232
Log files generated by HACMP/ES utilities . 232

Event history . 232

Appendix F. Summary of commands . 233
GPFS commands . 234
SSA commands . 235
AIX commands . 235
HACMP commands . 236

Appendix G. Benchmark and Example Code . 237
The benchmark programs . 238

Summary of the benchmark programs . 238
Using the benchmark programs . 238
Linking the benchmark programs . 240
 Contents vii

Source Listing for GMGH . 242
gmgh.c . 242
gmgh.h . 256

Appendix H. Additional material . 259
Locating the Web material . 259
Using the Web material . 260

System requirements for downloading the Web material 260
How to use the Web material . 260

Related publications . 261
IBM Redbooks . 261

Other resources . 261
Referenced Web sites . 262
How to get IBM Redbooks . 263

IBM Redbooks collections. 263

Special notices . 265

Glossary . 267

Abbreviations and acronyms . 271

Index . 273
viii GPFS on AIX Clusters

Preface

With the newest release of General Parallel File System for AIX (GPFS), release
1.4, the range of supported hardware platforms has been extended to include
AIX RS/6000 workstations that are not part of an RS/6000 SP system. This is the
first time that GPFS has been offered to non-RS/6000 SP users. Running GPFS
outside of the RS/6000 SP does require the high availablity cluster
multi-processing/enhanced scalabilty (HACMP/ES) to be configured and the
RS/6000 systems within the HACMP cluster (that will be part of the GPFS
cluster) be concurrently connected to a serial storage architecture (SSA) disk
subsystem.

This redbook focuses on the planning, installation and implementation of GPFS
in a cluster environment. The tasks to be covered include the installation and
configuration of HACMP to support the GPFS cluster, implementation of the
GPFS software, and developing application programs that use GPFS. A
troubleshooting chapter is added in case any problems arise.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Abbas Farazdel is an SP/Cluster System Strategist, Technical Consultant, and
Senior Project Manager at the International Technical Support Organization,
Poughkeepsie Center. Before joining the ITSO in 1998, Dr. Farazdel worked in
the Global Business Intelligence Solutions (GBIS) group at IBM Dallas as an
Implementation Manager for Data Warehousing and Data Mining Solutions and
in the Scientific and Technical Systems and Solutions (STSS) group at the IBM
Thomas J. Watson Research Center as a High Performance Computing
Specialist. Dr. Farazdel holds a Ph.D. in Computational Quantum Chemistry and
an M.Sc. in Computational Physics from the University of Massachusetts.

Robert Curran is a Senior Technical Staff Member at the IBM Poughkeepsie
UNIX Development Laboratory. He has worked in IBM software development for
over 25 years. During most of this time, he has been involved in the development
of database, file system, and storage management products. He holds an M. Sc.
degree in Chemistry from Brown University. He is currently the development
project leader for GPFS.
© Copyright IBM Corp. 2001 ix

Astrid Jaehde is a software engineer at Availant, Inc., Cambridge, MA. She is a
member of the HACMP development team. Astrid has five years of UNIX
experience and holds a degree in Mathematics from Dartmouth College.

Gordon McPheeters is an Advisory Software Engineer with the GPFS
Functional Verification and Test team based in IBM Poughkeepsie, NY. His
background includes working as an AIX Systems Engineer for IBM Canada and
for the IBM agent in Saudi Arabia. Prior to getting involved in AIX in 1991, he
worked in the oil and gas industry in Western Canada as an MVS Systems
Programmer.

Raymond Paden works for IBM as an I/O architect and Project Manager
assisting customers with their I/O needs. Prior to joining IBM, he worked for six
years as a team manager and systems programmer developing seismic
processing applications and 13 years as a professor of Computer Science. He
holds a Ph.D. in Computer Science from the Illinois Institute of Technology. His
areas of technical expertise include disk and tape I/O, performance optimization
and operating systems on parallel systems such as the IBM SP system. He has
written on topics including parallel and combinatorial optimization, and I/O.

Ralph Wescott is an SP Systems Administrator working for Pacific Northwest
National Laboratory in Washington State. He holds a BS degree from the State
University of New York. During his almost 20 year career in IBM Ralph was a
Customer Engineer, Manufacturing Engineer and a Systems Engineer. His areas
of expertise include UNIX, RS/6000, SP, GPFS, and anything hardware.

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Austin Center

Matthew Parente

IBM Poughkeepsie

Myung Bae
Kuei-Yu Wang-Knop

Availant Inc., Cambridge

Jim Dieffenbach
John Olson
Venkatesh Vaidyanathan
x GPFS on AIX Clusters

Special notice
This publication is intended to help system administrators, analysts, installers,
planners, and programmers of GPFS who would like to install and configure
GPFS 1.4. The information in this publication is not intended as the specification
of any programming interfaces that are provided by GPFS or HACMP/ES. See
the PUBLICATIONS section of the IBM Programming Announcement for GPFS
Version 1, Release 4 and HACMP/ES Version 4, Release 4 for more information
about what publications are considered to be product documentation.

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

AIX
AS/400
Current
IBM ®
Notes
Redbooks Logo
SP
XT

AT
CT
e (logo)®
Micro Channel
Redbooks
RS/6000
SAA
SP2
 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii GPFS on AIX Clusters

Chapter 1. A GPFS Primer

This introductory chapter briefly describes topics which should be understood
prior to attempting the first installation of the GPFS product. It includes the
following:

� What is GPFS

� Why GPFS

� The basics

� When to consider GPFS

� Planning considerations

� The application view

1

© Copyright IBM Corp. 2001 1

1.1 What is GPFS
The General Parallel File System (GPFS) for AIX provides global access to data
from any of the hosts within a cluster or within an RS/6000 SP. It is IBM’s first
shared disk file system. It was initially released on the RS/6000 SP in 1998 using
a software simulation of a storage area network called the IBM Virtual Shared
Disk (VSD). The VSD provides the transport of disk data blocks across either IP
or a high performance protocol private to the SP switch. This is similar in function
to many initiatives within the computer industry to access disk blocks across IP
networks. The product has been running on cluster configurations of up to 512
nodes supporting demanding I/O loads and fault tolerance requirements since its
introduction.

GPFS file systems support multiple tera bytes of storage within a single file
system. As the hardware technology supporting storage attachment matures, it is
a logical extension of the GPFS environment to support disks that have a shared
direct attachment. GPFS 1.4 begins that process by introducing support for
clusters of IBM ^ pSeries and IBM RS/6000 machines running HACMP
and sharing access to disks through SSA links.

At its core, GPFS is a parallel disk file system. The parallel nature of GPFS
guarantees that the entire file system is available to all nodes within a defined
scope and the file system’s services can be safely applied to the same file
system on multiple nodes simultaneously. It also means that multiple records can
be safely written to the same file simultaneously by being striped across several
disks (thus improving performance). This GPFS parallel feature can improve the
performance of both parallel and sequential programs. In other words, you do not
have to write parallel I/O code to benefit from GPFS’s parallelization. GPFS will
automatically parallelize the I/O in your sequential program.

In addition to its parallel features, GPFS supports high availability and fault
tolerance. The high availability nature of GPFS means that the file system will
remain accessible to nodes even when a node in the file system dies. The fault
tolerant nature of GPFS means that file data will not be lost even if some disk in
the file system fails. These features are provided through integration with other
software and hardware, for example, HACMP/ES, and RAID.

1.2 Why GPFS
GPFS enables users to group applications based on a business need rather than
the location of the data.
2 GPFS on AIX Clusters

Specifically, GPFS allows:

� The consolidation of applications that share data on a cluster of pSeries or
RS/6000 server nodes or RS/6000 SP nodes. You no longer need to move
applications to data.

� The creation of multi-machine clusters for situations where the applications
require more computing resources than are available in one server or require
that processing be available from a backup server in the event of the failure of
the primary server. GPFS provides high performance data access from
multiple servers with proven scalability and can be configured to allow
continuous access to data with the failure of one or more nodes or their disk
attachment capabilities.

� The execution of parallel applications that require concurrent sharing of the
same data from many nodes in the complex, including concurrent updates of
all files. In addition, GPFS provides extended interfaces that can be used to
provide optimal performance for applications with difficult data access
patterns.

� Parallel maintenance of metadata, thus offering higher scalability and
availability.

GPFS provides high speed access data from any of the nodes of the HACMP
cluster or the SP through normal application interfaces; no special programming
is required. It performs all file system functions including metadata functions on
all members of the cluster. This is in contrast to other storage area network
(SAN) file systems, which have centralized metadata processing nodes for each
file system and can become a performance bottleneck. This allows the designer
of the system containing GPFS to allocate applications to compute resources
within the cluster without concern for which member of the cluster has the data.
GPFS provides recovery capabilities so that the failure of a machine will not
cause the loss of data access for the remaining machines.

1.3 The basics
This redbook is written for GPFS Version 1, Release 4; however, much of the
information applies to prior releases of GPFS operating on the RS/6000 SP.
GPFS 1.4 provides concurrent high speed file access to applications executing
on multiple nodes of an RS/6000 SP system or on multiple systems that form an
HACMP cluster. The support for HACMP clusters which are not executing on an
SP is new with release 4. This chapter will address topics that should be
understood prior to attempting the first installation of the product. It assumes that
the reader has a basic knowledge of either the RS/6000 SP with its associated
software or the HACMP environment.
 Chapter 1. A GPFS Primer 3

We will use the term cluster to describe either the nodes of an SP or the
members of an HACMP cluster that shares an instance of GPFS. We will use the
term direct attach to describe disks that are physically attached to multiple nodes
using SSA connections and contrast that to the VSD connections within the SP.
Figure 1-1 shows a cluster residing on an SP using the VSD. Figure 1-2 on
page 7 shows a similar cluster using directly attached disks.

GPFS is targeted at applications which execute on a set of cooperating cluster
nodes running the AIX operating system and shares access to the set of disks
that make up the file system. These disks may be physically shared using SSA
loops directly attached to each node within HACMP clusters or shared through
the software simulation of a storage area network provided by the IBM Virtual
Shared Disk and the SP switch. Consult the latest IBM product documentation
for additional forms of physically shared connectivity.

In addition, GPFS requires a communication interface for the transfer of control
information. This interface does not need to be dedicated to GPFS; however, it
needs to provide sufficient bandwidth to meet your GPFS performance
expectations. On the SP, this interface is the SP switch (SP Switch or SP
Switch2). For HACMP clusters, we recommend a LAN with a capability of at least
100Mb/sec.

Figure 1-1 A simple GPFS configuration with VSD on an SP

SP switch

Application

GPFS

VSD

Application

GPFS

VSD

Application

GPFS

VSD

Disk Device Driver

VSD

Disk Device Driver

VSD

Disk Collection
4 GPFS on AIX Clusters

GPFS provides excellent performance for each of the following classes of
applications:

� Parallel applications that require shared access to the same file from multiple
application instances,

� Batch serial applications that are scheduled to available computing resources
and require access to data on the available machine, or

� Simple applications that in their aggregate require the performance/reliability
of a cluster of machines.

GPFS is designed to provide a common file system for data shared among the
nodes of the cluster. This goal can be achieved using distributed file systems
such as NFS, but this often provides less performance and reliability than GPFS
users require. GPFS provides the universal access that applications need with
excellent performance and reliability characteristics. The basic characteristics of
GPFS are:

� It is an AIX style file system, that means most of your applications work
without any change or recompile.

� It provides access to all GPFS data from all nodes of the cluster. GPFS will
provide best performance for larger data objects, but can also provide
benefits for large aggregates of smaller objects.

� It can be configured with multiple copies of metadata allowing continued
operation should the paths to a disk or the disk itself be broken. Metadata is
the file system data that describes the user data. GPFS allows the use of
RAID or other hardware redundancy capabilities to enhance reliability.

� The loss of connectivity from one node to the storage does not affect the
others in the direct storage attachment configurations. In SP configurations
which use VSD and the SP switch, the capability is provided to route disk data
through multiple VSD servers allowing redundancy. In either configuration,
the loss of one node does not cause a total loss of access to file system data.

� In the direct attach configurations, the data performance is that of the SSA
connections between storage and the systems. Multiple SSA links can be
configured up to the maximum number of the adapter slots available in the
node selected. All of these SSA links can be applied to a single file system, if
necessary.

On the SP, that IBM Virtual Shared Disk (VSD) facility and the SP switch
fabric provides low overhead data movement between a node that has a
physical connection to a disk and an application node requiring the data on
the disk. The disks can be spread across a large number of adapters within a
server and across a large number of servers in order to generate very high
performance while accessing a single file system or a number of file systems.
 Chapter 1. A GPFS Primer 5

� It uses the Group Services component of the IBM Parallel Systems Support
Program (PSSP) or HACMP to detect failures and continue operation
whenever possible.

� Release 4 of GPFS uses SSA direct multi-attachment of disks. Additional
direct attachment methods are possible in the future. On the SP, VSD allows
the use of any type of disk which attaches to the RS/6000 SP and is
supported by AIX.

� GPFS data can be exported using NFS including the capability to export the
same data from multiple nodes. This provides potentially higher throughput
than servers that are limited to one node. GPFS data can also be exported
using DFS although the DFS consistency protocols limit the export to one
node per file system.

Figure 1-1 on page 4 illustrates a simple five node GPFS configuration. The
three nodes at the top of the configuration are home to applications using GPFS
data. The two at the bottom share connections to some number of disks. One of
these VSD servers is the primary path for all operations involving each disk, but
the alternate path is used if the primary is not available. A node can be the
primary for some disks and the backup for others.

GPFS uses a token manager to pass control of various disk objects among the
cooperating instances. This maintains consistency of the data and allows the
actual I/O path to be low function and high performance. Although we have
illustrated applications and VSD servers on independent nodes, they can also
share a node. The VSD servers consume only a portion of the CPU cycles
available on these nodes, and it is possible to run some applications there. The
GPFS product documentation describes these choices in more detail.

The use of the backup disk server covers the failure of a single VSD server node.
The failure of individual disk drives can cause data outages. However, the use of
RAID, AIX mirroring, or GPFS replication can mitigate these outages. GPFS also
provides extensive recovery capabilities that maintain metadata consistency
across the failure of application nodes holding locks or performing services for
other nodes. Reliability and recovery have been major objectives of the GPFS
product from its inception.

Figure 1-2 on page 7 shows a GPFS configuration within an HACMP cluster. The
HACMP cluster differs from the SP cluster in that it requires direct attachment of
the SSA disks to every node. It also requires the communications link shown to
carry control information such as tokens between nodes. The SSA adapters
support two nodes in RAID mode or eight nodes in JBOD (“just a bunch of disks”)
mode, so GPFS replication of data may be useful in larger configurations.
6 GPFS on AIX Clusters

Figure 1-2 GPFS in an HACMP environment

1.4 When to consider GPFS
There are several situations where GPFS is the ideal file system for data on the
SP or a cluster of RS/6000 machines.

� You have large amounts of file data which must be accessed from any node
and where you wish to more efficiently use your computing resources for
either parallel or serial applications.

� The data rates required for file transfer exceed what can be delivered with
other file systems.

� You require continued access to the data across a number of types of
failures.

GPFS is not a wide area distributed file system replacing NFS or DFS for
network data sharing, although GPFS files can be exported using NFS or DFS.

1.5 Planning considerations
This section will identify a few areas to think about before installing GPFS. The
detailed information behind this section is in the GPFS for AIX: Concepts,
Planning, and Installation Guide.

Application

GPFS

SSA Device Driver

IP network

SSA Disks

Application

GPFS

SSA Device Driver

Application

GPFS

SSA Device Driver

SSA loop
 Chapter 1. A GPFS Primer 7

There are four steps to be taken before attempting a GPFS installation. We will
overview the thought process and considerations in each of these steps:

� Consider your I/O requirements

� Plan your hardware layout

� Consider the GPFS prerequisites

� Consider the GPFS parameters required to meet your needs

1.5.1 I/O requirements
All of the steps which follow presume some knowledge of your applications and
their demands on I/O. This step is almost always imperfect, but better knowledge
leads to better results.

The following questions may help in thinking about the requirements:

� What are the parallel data requirements for your applications? If they are
parallel, are they long running? Running applications with higher parallelism
and shared data may generate requirements for LAN/switch bandwidth.

� What requirements do you have for the number of applications running
concurrently? What I/O rate do they generate? I/O rates should be specified
as either bytes/sec or number of I/O calls/sec whichever is the dominant
need. You must provide sufficient disk devices to sustain the required number
of I/Os or bytes/sec.

� How many files do you have and what size are they? There are GPFS
parameters which will optimize towards large or smaller files.

� What types of access patterns do your applications use? Are they random or
sequential or strided? Do they re-access data such that increased caching
might be useful?

With some thoughts on these topics, you will be better prepared to specify a
successful GPFS system and the hardware required.

1.5.2 Hardware planning
GPFS uses a number of hardware resources to deliver its services. The proper
configuration of these resources will result in better performance and reliability.

You should consider the number of disks required to supply data to your
application. Disks need to be measured both in terms of capacity and in terms of
I/O speed. When considering the I/O speed of your devices, you should be
looking at the specification of random I/O at the block size of the file system or
8 GPFS on AIX Clusters

the request size of your dominant applications, whichever is larger. This is not
the same as the burst I/O rate quoted by disk manufacturers. As file systems
fragment, disk blocks related to the same file will get placed where space is
available on the disks.

You should consider if RAID is needed for your systems and if so, match the
RAID stripe width to the block size of the file system. GPFS and other file
systems perform I/O in file system block multiples and the RAID system should
be configured to match that block size unless the application set is mostly read
only.

You should consider the disk attachment mechanism and its capabilities. In
general, both SSA and SCSI allow the attachment of more disks than the links
can transfer at peak rates in a short period. If you are attaching disks with an
objective for maximum throughput from the disks, you will want to limit the
number of disks attached through any adapter. If disk capacity, rather than
optimal transfer rates, is the major concern, more disks can use the same
adapter. If you are operating in direct attach mode, note that the disk attachment
media is shared among all the nodes and you should plan on enough disk
attachment media to achieve the desired performance.

If you are configuring your GPFS with VSDs you should consider the number of
VSD servers required to achieve your expected performance. The VSD server
performance is usually limited by the capabilities of the specific server model
used. The limiting factor is usually some combination of the I/O bandwidth of the
node and the LAN/switch bandwidth available to the node. CPU utilization of
VSD servers is usually relatively low. The capabilities of differing node types will
vary. Spreading the load across additional VSD servers may also be beneficial if
I/O demand is very bursty and will cause temporary overloads at the VSD
servers.

In a VSD environment, the decision to run applications on the VSD servers or to
have dedicated VSD servers is primarily dependent on the nature of your
applications and the amount of memory on the nodes. There are additional CPU
cycles on most VSD servers that can be used by applications. The requirements
of VSD service are high priority to be responsive to I/O devices. If the
applications are not highly time sensitive or highly coupled with instances that
run on nodes which do not house VSD servers, use of these extra cycles for
applications is feasible. You should insure that sufficient memory is installed on
these nodes to meet the needs of both the disk/network buffers required for VSD
and the working area of the application.
 Chapter 1. A GPFS Primer 9

1.5.3 GPFS prerequisites
A detailed discussion of pre-requisites is beyond the scope of this chapter; but
the following checklists might be useful in anticipating the requirements for
GPFS.

On the SP
� GPFS administration uses the PSSP security facilities for administration of all

nodes. You should insure that these are correctly set up. The PSSP:
Administration Guide, SA22-7348 describes this.

� GPFS uses the VSD and requires that it be configured correctly. Be sure to
consider the number of pbufs and the number and size of buddy buffers that
you need. The PSSP: Managing Shared Disks, SA22-7349 publication
describes these topics.

� GPFS uses the Group Services and Topology Services components of the
PSSP. In smaller systems, the default tuning should be acceptable for GPFS.
In larger configurations, you may wish to consider the correct values of
frequency and sensitivity settings. See the PSSP: Administration Guide,
SA22-7348 for this information.

In HACMP clusters
� GPFS uses an IP network which connects all of the nodes. This is typically a

LAN with sufficient bandwidth available for GPFS control traffic. A minimum
bandwidth of 100 Mb/sec is required.

� GPFS requires that the SSA disks be configured to all of the nodes within the
GPFS cluster.

� GPFS uses the Group Services and Topology Services components of
HACMP/ES.

� You may not use LVM mirroring or LVM bad block relocation.

1.5.4 GPFS parameters
The major decisions in the planning of GPFS involve the file system block sizes
and the amount of memory dedicated to GPFS. Using larger block sizes will be
beneficial for larger files because it will more efficiently use the disk bandwidth.
Use of smaller blocks sizes will increase the effectiveness of disk space
utilization for a workload that is dominated by large numbers of small files. It may
also increase cache memory utilization if the workload contains few files of a size
above one file system block. See the product documentation for more
information.
10 GPFS on AIX Clusters

GPFS, like all file systems, caches data in memory. The cache size is controlled
by a user command and is split into two pieces; space for control information and
space for file data. Increasing the amount of space available may increase the
performance of many workloads. Increasing it excessively will cause memory
shortages for other system components. You may wish to vary these parameters
and observe the effects on the overall system.

1.6 The application view
GPFS provides most of the standard file system interfaces so many applications
work unchanged. The only caution applies to parallel applications which update
the same file concurrently.

Some consideration of the partitioning of data in parallel applications will be
valuable because GPFS on each node must deal with file system blocks and disk
sectors. Optimal performance will be obtained from parallel applications, doing
updates of the same file, if they respect these system capabilities. If each task of
the parallel application were to operate on a series of consecutive file system
blocks, better throughput will be obtained than if multiple tasks updated data
within the same file system block or disk sector. Parallel applications coded in
this fashion also take advantage of the file systems ability to overlap needed data
fetches with application execution because sequential access allows prediction
of what data is needed next.
 Chapter 1. A GPFS Primer 11

12 GPFS on AIX Clusters

Chapter 2. More about GPFS

This chapter provides a high level, conceptual framework for GPFS by describing
its architecture and organization. It is particularly applicable to system
administrators who install, configure and maintain GPFS and to systems
programmers who develop software using GPFS. Chapter 8, “Developing
Application Programs that use GPFS” on page 143 explores GPFS in greater
depth from an application programming perspective. While GPFS can run in a
number of different environments, this chapter pursues its discussion assuming
that GPFS is running in a clustered environment with directly attached disks.
Chapter 3, “The cluster environment” on page 27 discusses clustering explicitly
in greater detail. Many of the concepts discussed in this chapter are discussed in
greater depth with broader scope in GPFS for AIX: Concepts, Planning, and
Installation Guide.

In particular, this chapter discusses:

� An overview of GPFS’s structure and environment

� GPFS’s global management functions

� GPFS file architecture

� GPFS’s use of memory, with an emphasis on caching

2

© Copyright IBM Corp. 2001 13

2.1 Structure and environment
GPFS is designed to work in an AIX environment. AIX provides basic operating
system services and a programmer visible API (e.g., open(), read(), write())
which acts on behalf of the application program to access the GPFS data
processing calls. In a clustered environment, AIX also provides the logical
volume manager (LVM) for concurrent disk management and configuration
services. In addition to these AIX services, GPFS needs services provided by
HACMP/ES and Group Services in a clustered environment. HACMP/ES
provides the basic cluster functionality that supports GPFS’s mode of concurrent
I/O operation. Group Services provides process failure notification, and recovery
sequencing on multiple nodes. Figure 2-1 illustrates this architecture.

Figure 2-1 GPFS architecture

In this setting, HACMP/ES defines a cluster of nodes. A GPFS cluster then
resides within the HACMP/ES cluster. The GPFS cluster defines a single
distributed scope of control for collectively maintaining a set GPFS file systems.
There can be one or more nodesets within the GPFS cluster. A nodeset is a set
of nodes over which a particular file system is visible. Figure 2-2 illustrates the
relationship between these entities. Chapter 3, “The cluster environment” on
page 27 discusses clustering in greater detail.

Group
Services

HACMP
ES

APP

AIX

GPFS

LVM

Group
Services

HACMP
ES

APP

AIX

GPFS

LVM

Group
Services

HACMP
ES

APP

AIX

GPFS

LVM
14 GPFS on AIX Clusters

Figure 2-2 HACMP cluster, GPFS cluster and nodeset relationship

Structurally, GPFS resides on each node as a multi-threaded daemon (called
mmfsd) and a kernel extension. The GPFS daemon performs all of the I/O and
buffer management. This includes such things as read-ahead for sequential
writes, write-behind for writes not declared to be synchronous and token
management to provide atomicity and data consistency across multiple nodes.
Separate threads from each daemon are responsible for some of these and other
functions. This prevents higher priority tasks from being blocked. Application
programs use the services of the GPFS kernel extension by making file system
calls to AIX, which in turn presents the request to GPFS. Thus GPFS appears as
another file system. In addition to the GPFS daemon and kernel extension,
system administration commands are also available on all nodes.

From another perspective, GPFS can be viewed as a client allocating disk space,
enforcing quotas, subdividing file records into blocks, guaranteeing I/O
operations are atomic, and so forth. It is the combined actions of HACMP/ES,
LVM and the disk hardware (e.g., SSA) that act as the server providing
connectivity between the nodes and to the disk.

nodeset
1

nodeset
2

GPFS cluster

HACMP cluster
 Chapter 2. More about GPFS 15

With this structure and environment, it is evident that GPFS consists of
numerous components and that it interacts with components from many other
systems; it is not a monolithic entity. Yet GPFS must coordinate its activities
between all of these components. To do so, it communicates using sockets. In
particular, user commands communicate with GPFS daemons using sockets and
daemons communicate among themselves using sockets.

2.2 Global management functions
For most services GPFS performs the same types of activities on all nodes. For
instance, all GPFS nodes in the cluster execute GPFS kernel extension system
calls and schedule GPFS daemon threads to transfer data between the GPFS
cache and disk. However, there are three management functions performed by
GPFS globally from one node on behalf of the others, which are implemented by
software components in GPFS. Because these functions are associated with a
particular node, the nodes assume the function names. They are called:

• The configuration manager node

• The file system manager node

• The metanode

2.2.1 The configuration manager node
The configuration manager node selects the file system manager node and
determines whether a quorum of nodes exist. A quorum in GPFS is the minimum
number of nodes needed in a nodeset for the GPFS daemon to start. For
nodesets with three or more nodes, the quorum size must be one plus half the
nodes in the nodeset (called a multi-node quorum). For a two node nodeset one
can either have a multi-node quorum or a single-node quorum. There is one
configuration manger per nodeset.

In a multi-node quorum, if GPFS fails on a node (i.e., the GPFS daemon dies), it
tries to recover. However, if the quorum is lost, GPFS recovery procedures
restart its daemons on all GPFS nodes and attempt to re-establish a quorum. If
the nodeset has only two nodes, then losing one of the nodes will result in the
loss of quorum and GPFS will attempt to restart its daemons on both nodes.
Thus three nodes in a nodeset is necessary to prevent shutting down the
daemons on all nodes prior to re-starting them.
16 GPFS on AIX Clusters

Alternatively, one can specify a single-node quorum when there are only two
nodes in the nodeset. In this case, a node failure will result in GPFS fencing the
failed node and the remaining node will continue operation. This is an important
consideration since a GPFS cluster using RAID can have a maximum of two
nodes in the nodeset. This two-node limit using RAID is an SSA hardware
limitation.

2.2.2 The file system manager node
The file system manager node performs a number of services including:

• File system configuration

• Disk space allocation management

• Token management

• Quota management

• Security services

There is only one file system manager node per file system and it services all of
the nodes using this file system. It is the configuration manager node’s role to
select the file system manager node. Should the file system manager node fail,
then the configuration manager node will start a new file system manager node
and all functions will continue without disruption.

It should be noted that the file system manager node uses some additional CPU
and memory resources. Thus it is sometimes useful to restrict resource intensive
applications from running on the same node as the file system manger node. By
default, all nodes in a nodeset are eligible to act as the file system manager
node. However, this can be changed by using mmchconfig to declare a node as
ineligible to act as the file system manager node (see the GPFS for AIX: Problem
Determination Guide, GA22-7434).

2.2.3 Metanode
For each open file, one node is made responsible for guaranteeing the integrity
of the metadata by being the only node that can update a file’s metadata. This
node is called the metanode. The selection of a file’s metanode is made
independently of other files and is generally the node that has had the file open
for the longest continuous period of time. Depending on an applications
execution profile, a file’s metanode can migrate to other nodes.
 Chapter 2. More about GPFS 17

2.3 File structure
The GPFS file system is simply a UNIX file system with its familiar architecture,
but adapted for the parallel features of GPFS. Thus a GPFS file consists of user
data and metadata with i-nodes and indirect blocks, striped across multiple disks.

2.3.1 Striping
Striping is one of the unique features of GPFS compared with many native UNIX
file systems such as the Journaled File System (JFS) under AIX. The purpose of
striping is to improve I/O operation performance by allowing records to be
automatically subdivided and simultaneously written to multiple disks; we will
sometimes refer to this as implicit parallelism as the application programmer
does not need to write any parallel code; all that is needed is to access records
that are larger than a block.

The fundamental granularity of a GPFS I/O operation is generally, but not
always, the block, sometimes called a stripe. The size of this block is set by the
mmcrfs command. The choices are 16K, 64K, 256K, 512K, or 1024K (K
represents 1024 bytes, or one kilobyte) and it cannot be arbitrarily changed
once set (see man pages for mmcrfs and mmchconfig). For example, suppose the
block size is 256K and an application writes a 1024K record. Then this record is
striped over four disks by dividing it into four 256K blocks and writing each block
to a separate disk at the same time. A similar process is used to read a 1024K
record.

The expression “granularity of a GPFS I/O” operation refers to the smallest unit
of transfer between an application program and a disk in GPFS file system.
Generally this is a block. Moreover, on disk, blocks represent the largest
contiguous chunk of data. However, because files may not naturally end on a
block boundary, a block can be divided into 32 subblocks. In some
circumstances, a subblock may be transferred between disk and an application
program making it the smallest unit of transfer. Section 8.3.1, “Blocks and
striping” on page 148 explains this in greater detail.

The choice of a block size is largely dependent upon a system’s job profile.
Generally speaking, the larger the block, the more efficient the I/O operations
are. But if the record size in a typical transaction is small, while the block is large,
much of the block is not being utilized effectively and performance is degraded.
Perhaps the most difficult job profile to match is when the record size has a large
variance. In the end, careful benchmarking using realistic workloads or synthetic
benchmarks (see Appendix G, “Benchmark and Example Code”) that faithfully
simulate actual workloads are needed to properly determine the optimal value of
this parameter.
18 GPFS on AIX Clusters

Blocks can be striped in three ways. The default and most common way is round
robin striping. In this method, blocks are written to the disks starting with a
randomly selected disk (called the first disk in this chapter) and writing
successive blocks to successive disks; when the last disk has been written to, the
process repeats beginning with the first disk again. For example (refer to
Figure 2-3), suppose you have 16 disks (disk0 to disk15) and the first disk
chosen is disk13; moreover, you are writing the first record, it is 1024K and it
starts at seek offset 0. It is then divided into 4 blocks (b0, b1, b2, b3) and is
written to disk13, disk14, disk15, and disk0. Suppose that the second record
written is 1024K and is written beginning at seek offset 3145728 (i.e., 3072K). It
to, is divided into 4 blocks, but is written to disk1, disk2, disk3, and disk4.

Figure 2-3 Round robin striping

The other methods are random and balanced random. Using the random
method, the mapping of blocks to disks is simply random. With either the round
robin or random method, disks are assumed to be the same size (if disks are not
the same size, space on larger volumes is not wasted, but it is used at a lower
throughput level). If the disks are not the same size, then the balanced random
method randomly distributes blocks to disks in a manner proportional to their
size. This option can be selected and changed using the mmcrfs and mmchfs
commands.

Striping significantly impacts the way application programs are written and is
discussed further in Chapter 8, “Developing Application Programs that use
GPFS” on page 143.

11 22 33 44 1414 1515disks

first
disk

record 1 record 2

b0 b1 b2 b3 b3b2b1b0

0K 256K 512K 768K 1024K 3072K 3328K 3584K 3840K 4096K

. . .00 55 1111 1212 1313
 Chapter 2. More about GPFS 19

2.3.2 Metadata
Metadata is used to locate and organize user data contained in GPFS’s striped
blocks. There are two kinds of metadata, i-nodes and indirect blocks.

An i-node is a file structure stored on disk. It contains direct pointers to user data
blocks or pointers to indirect blocks. At first, while the file is relatively small, one
i-node can contain sufficient direct pointers to reference the entire file’s blocks of
user data. But as the file grows, one i-node is insufficient and more are needed;
these extra blocks are called indirect blocks. The pointers in the i-node become
indirect pointers as they point to indirect blocks that point to other indirect blocks
or user data blocks. The structures of i-nodes and indirect blocks for a file is
represented as a tree with a maximum depth of four where the tree leaves are
the user data blocks. Figure 2-4 illustrates this.

Figure 2-4 File system tree

i-node

ABCD EFGH IJKL MNOP QRST UVWX YZ
data

blocks fragment

Metadata

indirect
blocks

Data
20 GPFS on AIX Clusters

Periodically when reading documentation on GPFS, you will encounter the term
vnode in relation to metadata. A vnode is an AIX abstraction level above the
i-node. It is used to provide a consistent interface for AIX I/O system calls, such
as read() or write(), to the i-node structures of the underlying file system. For
example, i-nodes for JFS and GPFS are implemented differently. When an
application programmer calls read() on a GPFS file, a GPFS read is then initiated
while the vnode interface gathers the GPFS i-node information.

2.3.3 User data
User data is the data that is read and used directly, or generated and written
directly by the application program. This is the data that is striped across the
disks and forms the leaves of the i-node tree. It constitutes the bulk of the data
contained on disk.

2.3.4 Replication of files
While it is generally the case that most shops have only one copy of disk data on
disk, GPFS provides a mechanism for keeping multiple copies of both user data
and metadata. This is called replication and each copy is stored in separate
failure groups. A failure group is a set of disks sharing a common set of adaptors;
a failure with any component in the failure group can render the data it contains
inaccessible. But storing each replica in a separate failure group guarantees that
no one component failure will prevent access to the data (see also Chapter 3,
“The cluster environment” on page 27). But it is not necessary to replicate both.
You can, for example, replicate only the metadata so that in the event of a disk
failure you can reconstruct the file and salvage the remaining user data. Such a
strategy is used to reduce the cost of replication in shops with large volumes of
data generated in short time periods.

2.3.5 File and file system size
GPFS is designed to support large files and large file systems. For instance,
there is no two gigabyte file size limit in GPFS as is common on many other file
systems. In terms of specific numbers, the current maximums for GPFS 1.4 are
listed below.

• 32 file systems per nodeset

• 9 terabytes per file and per file system

While the maximum limit is much larger, these are the largest file and
file system sizes supported by IBM Service.

• 256 million files per file system
 Chapter 2. More about GPFS 21

This is the architectural limit. The actual limit is set by using the mmcrfs
command. Setting this value unrealistically high unnecessarily
increases the amount of disk space overhead used for control
structures.

If necessary, limits on the amount of disk space and number of files can be
imposed upon individual users or groups of users through quotas. GPFS quotas
can be set using the mmedquota command. The parameters can set soft limits,
hard limits and grace periods.

Finally, a common task is to determine the size of a file. It is customary in a UNIX
environment to use the ls -l command to ascertain the size of a file. But this
only gives the virtual size of the file’s user data. For example, if the file is sparsely
populated, the file size reported by ls -l is equal to the seek offset of the last
byte of the file. By contrast, the du command gives the size of the file in blocks,
including its direct blocks. For sparse files, the difference in values can be
significant. Example 2-1 illustrates this. sparse.file was created with a 1
megabyte record written at the end of it (i.e., at seek offset 5367660544). Doing
the arithmetic to convert to common units, ls -l lists the file size as 5120
megabytes while du -k lists the file as just over 1 megabyte (i.e., 1.008; the extra
.008 is for direct blocks). Example 2-2 illustrates the same commands on a
dense file. Again, ls -l lists the file size as 5120 megabytes, but so does du -k.
Now consider df -k in the two examples. In each case, /gpfs1 is the GPFS file
system and contains only the one file listed by ls. Comparing df -k between the
two examples shows that it accounts for the real file size as does du -k. (The
same is also true for mmdf).

Example 2-1 Sparse file

host1t:/> ls -l /gpfs1/sparse.file
-rwxr-xr-x 1 root system 5368709120 Feb 14 13:49 /gpfs1/sparse.file
host1t:/> du -k /gpfs1/sparse.file
1032 /gpfs1/sparse.file
host1t:/> df -k /gpfs1
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/gpfs1 142077952 141964544 1% 13 1% /gpfs1

Example 2-2 Dense file
host1t:/> ls -l /gpfs1/dense.file
-rwxr-xr-x 1 root system 5368709120 Feb 14 13:49 /gpfs1/dense.file
host1t:/> du -k /gpfs1/dense.file
5242880 /gpfs1/dense.file
host1t:/> df -k /gpfs1
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/gpfs1 142077952 136722432 4% 13 1% /gpfs1
22 GPFS on AIX Clusters

2.4 Memory utilization
GPFS uses memory in three forms:

• Kernel heap

• Daemon segments

• Shared segments

Memory from the kernel heap is allocated most generally for control structures
that establish GPFS/AIX relations such as vnodes. The largest portion of
daemon memory is used by file system manager functions to store structures
needed for command and I/O execution. The shared segments are accessed
both by the GPFS daemon and the kernel and form a GPFS cache. They are
directly visible to the user and are more complex.

2.4.1 GPFS Cache
Shared segments consist of pinned and non-pinned memory used as caches.
Pinned memory is memory that can not be swapped; it is used to increase
performance.

A cache known as the pagepool is stored in the pinned memory. It stores user
data and metadata that can potentially improve I/O operation performance. For
example, consider a program which can overlap I/O writes with computation. The
program can write the data to the pagepool and quickly return control to the
program without waiting for the data to be physically written to disk. Later GPFS
can asynchronously write the data from the pagepool to disk while the CPU is
crunching on other data. Similarly, when GPFS can detect a read pattern, it can
asynchronously prefetch data from disk while the CPU is crunching some other
data and place it in the pagepool so that by the time the application program
reads the data, it only needs to fetch it from memory and not have to wait while
the data is fetched from disk.

The size of this cache is controlled by the pagepool parameter of the mmconfig
and mmchconfig commands. The size of the pagepool specified by this parameter
is merely an upper limit of the actual size of the pagepool on each node. GPFS
will dynamically adjust the actual size of the pagepool up to the value specified
by the pagepool parameter to accommodate the current I/O profile. Currently, the
maximum value of the pagepool parameter is 512MB while the minimum is 4 MB;
the default is 20 MB (MB represents 1048576 bytes or one megabyte).

In addition to the pagepool, there is a non-pinned cache that stores information
on opened and recently opened files. There are two classes of information stored
in this memory; metadata (i.e., i-nodes) and stat()1 information. They are called
the i-node cache and stat cache respectively.
 Chapter 2. More about GPFS 23

The size of the i-node cache is controlled, but not set, by the maxFilesToCache
parameter in the mmconfig and mmchconfig commands. The actual number of
i-nodes present in this cache is determined by how many times
maxFilesToCache exceeds the number of files having information in this cache; if
exceeded often, there will be fewer i-nodes stored in this cache than when it is
seldom exceeded.

The stat cache is quite different. Each cache line contains only enough
information to respond to a stat() call and is 128 bytes long. The number of
entries reserved for this cache is a maxStatCache * maxFilesToCache where
maxStatCache = 4 by default. mmchconfig is used to change this value.

This non-pinned cache is most useful in applications making numerous
references to a common file over short durations, as is done for file systems
containing user directories or in transaction processing systems. It is less helpful
for long duration number crunching jobs where there are only a small number of
files open and they remain open for long durations.

When discussing these various caches, the term cache is frequently used
generically and collectively to refer to all three types of cache (i.e., the pinned
pagepool and non-pinned i-node and stat caches), but it is also used to refer
generically to the pagepool alone (since the pagepool is a cache). When it’s
important, the context makes the intent of the authors clear.

2.4.2 When is GPFS cache useful
Simple, definitive rules characterizing where the GPFS cache is effective and not
effective are difficult to formulate. The utility of these various caches and the
optimum size of the controlling parameters are heavily application dependent.
But for applications that can benefit from them, setting their size too small can
constrain I/O performance. Setting the value arbitrarily to its maximum may have
no affect and may even be wasteful.

Regarding the pagepool specifically, a smaller pagepool size is generally most
effective for applications which frequently reference a small set of records over a
long duration (i.e., temporal locality). A larger pagepool is generally most
effective for applications which process large amounts of data over shorter
durations, but in a predictable pattern (i.e., spatial locality).

There are two occasions when these caches have no statistically measurable
effect. The first is when the I/O access pattern is genuinely random and the file’s
user data can not be contained in its entirety within the pagepool. No access
patterns can be predicted that allow GPFS to optimally schedule asynchronous

1 The stat() function is used to retrieve file information such as size, permissions, group ID, etc. It is used by commands
like ls -l and du.
24 GPFS on AIX Clusters

transfers between disk and cache, and records do not reside in cache long
enough to be re-used. The second situation occurs when the connections
between disk and the CPU/memory bus are saturated. No amount of caching
can compensate for such a heavy load being placed upon the inter-connections.

In the end, careful benchmarking using realistic workloads or synthetic
benchmarks (see Appendix G, “Benchmark and Example Code” on page 237)
that faithfully simulate actual workloads is needed to configure the GPFS caches
optimally. However, this parameter can easily be changed using the mmchconfig
command if necessary.

2.4.3 AIX caching versus GPFS caching: debunking a common myth
A common misunderstanding associated with GPFS is that AIX buffers data from
the write() and read() system calls in AIX’s virtual memory (i.e., page space)
before or after going through the pagepool. For instance, the authors have been
counselled to be sure that the file size used in a GPFS benchmark significantly
exceeds available node memory so that it is not artificially skewed by this
buffering action of AIX. There is no need for AIX to buffer GPFS data since GPFS
has exclusive use of its own private cache. The Example 2-3 illustrates this point.

Example 2-3 GPFS data is not buffered by AIX

host1t:/my_dir> ls -l
-rw-r--r-- 1 root sys 1073741824 Feb 12 18:28 file1
-rw-r--r-- 1 root sys 1073741824 Jan 29 21:42 file2
-rw-r--r-- 1 root sys 1073741824 Feb 24 13:02 file3
-rw-r--r-- 1 root sys 1073741824 Feb 17 19:17 file4
host1t:/my_dir> cp file1 /dev/null
host1t:/my_dir> time diff file1 file2
real 1m49.93s
user 0m41.83s
sys 1m7.89s
host1t:/my_dir> time diff file3 file4
real 1m48.00s
user 0m39.79s
sys 1m8.14s

Suppose a node has an 80 MB pagepool, 1512 MB of RAM, 1512 MB of page
space and /my_dir is contained in a GPFS mounted file system. Notice that the
files in Example 2-3 are significantly larger than the pagepool, and one of them
can easily fit in the page space, but not several. Each file has identical contents.
This test is done on an idle system. If AIX buffers the data as suggested, the cp
command shown in Example 2-3 would indirectly place the contents of file1 in
the page space as it is read and retain it for a little while. Then, when the diff
command follows, file1 is referenced from the copy in memory (provided that it is
 Chapter 2. More about GPFS 25

done before other tasks force that memory to be flushed) saving the overhead
and time of reading file1 from disk again. Yet, when diff is executed the second
time with different files not already cached in the page space, it takes nearly the
same amount of time to execute! This observation is consistent with the design
specifications for GPFS.

By contrast, a similar experiment (the files were only 256KB) conducted using
JFS (which does buffer JFS file data in the AIX page space) showed that copying
the file to /dev/null first allowed the diff operation to run nearly 3X faster; i.e., it
makes a big difference in JFS. But not having this AIX buffering action in GPFS is
not a loss; its just not needed. When a JFS file is not buffered, JFS actions go
slower, but the GPFS actions always go faster as they are always cached
(provided their I/O access pattern allows efficient caching). For instance, the
un-buffered JFS action took 3X longer than either of the GPFS actions in the
example above.
26 GPFS on AIX Clusters

Chapter 3. The cluster environment

This chapter focuses on the details of the implementation of GPFS in a cluster
environment.

GPFS runs in various environments:

1. In an SP environment using VSD

2. In an SP environment using HACMP/ES and SSA disks or disk arrays instead
of VSD

3. In a cluster environment using HACMP/ES and SSA disks or disk arrays

All implementations of GPFS rely on the IBM Reliable Scalable Cluster
Technology, (RSCT), for the coordination of the daemon membership during the
operation of GPFS and recovery actions in case of failure. The use of a quorum
rule in conjunction with disk fencing ensures data integrity in failure situations.

HACMP/ES is a clustering solution for AIX, designed for high availability. It
provides the operating and administrative environment for the subsystems of
RSCT in a cluster environment. This chapter ends with an overview of
HACMP/ES.

3

© Copyright IBM Corp. 2001 27

3.1 RSCT basics
In AIX, a subsystem is defined as a daemon that is under administration of the
System Resource Controller, (SRC). A distributed subsystem is a distributed
daemon under control of the SRC.

In this redbook, a cluster is defined as a set of RS/6000 hosts that share at least
one network and are under the administration of a system of distributed daemons
that provide a clustering environment.

For the systems we discuss in this book, the clustering environment is realized
by the IBM Reliable Scalable Cluster Technology, (RSCT). RSCT is a software
layer that provides support for distributed applications. RSCT implements tasks
that are commonly required by distributed applications, such as a reliable
messaging service between daemons on different nodes and a mechanism for
synchronization. Using the services provided by RSCT reduces the complexity of
the implementation of a distributed application. RSCT can support multiple
distributed applications simultaneously.

RSCT, a component of the IBM Parallel Systems Support (PSSP) software,
consists of the following three distributed subsystems:

1. Topology Services (TS)

2. Group Services (GS)

3. Event Management (EM)

Figure 3-1 on page 29 shows the client server relationship between the three
subsystems.
28 GPFS on AIX Clusters

Figure 3-1 RSCT

RSCT provides applications with its services for a certain scope. An application
may consist of multiple processes that run on multiple RS/6000 machines.
Therefore, when the application uses the services provided by the RSCT, it must
consider boundaries in which the application can use them.

An RSCT domain is the collection of nodes (SP node or an RS/6000 machine
running AIX) on which the RSCT is executing. There are two types of domains
for RSCT:

� SP domain

� HACMP domain

An SP domain includes a set of SP nodes within an SP partition. However, an
HACMP domain includes a set of SP nodes or non-SP nodes defined as an
HACMP/ES cluster.

A domain may not be exclusive. A node may be contained in multiple domains.
Each domain has its own instance of RSCT daemons. Hence multiple instances
of a daemon can be active on a node and each instance having separate
configuration data, log files, etc.

Group Services
"hags"

Reliable MSGing

OthersEvent Mgr RVSD

Topology
Services

"hats"

GS

EM RVSD

TS

NCT

} Group
Services
Clients

Heartbeat
(UDP)

Node 1Node 2

Reliable MSG
(UDP)

Group Services API
 Chapter 3. The cluster environment 29

3.1.1 Topology Services
Topology Services monitors the networks in the RSCT domain. Nodes in the
RSCT domain are connected by one or more networks. For a network to be
monitored by Topology Services, it has to be included into the configuration data
for Topology Services. Topology Services, as distributed subsystem, relies on all
daemons having the same configuration data.

Topology Services provides the following information to its clients:

State of adapters
Adapters are monitored by keepalive signals. If an adapter is detected as
unreachable (e.g., due to a hardware failure), it will be marked as down.

State of nodes
The state of nodes is deduced from the state of adapters. If no adapter on a node
is reachable, then the node is assumed to be down.

Reliable messaging library
The reliable messaging library contains a representation the network in the
RSCT domain in form of a connectivity graph. It resides in a shared memory
segment. Clients can use the reliable message library to determine
communication paths for the message passing between the daemons on distinct
nodes. If the state of an adapter changes, the reliable messaging library is
updated.

Clients of Topology Services, can subscribe to be updated about the status of
adapters, and typically use this information for the implementation of error
recovery.

3.1.2 Group Services
Group Services provides an infrastructure for the communication and
synchronization among the peer daemons of a distributed system. The daemons
of a distributed system, to cooperatively act on their domain, need to pass
information between them and perform tasks in a coordinated way, that often
requires a synchronization among them at intermediate steps.

The implementation of a synchronization algorithm in any distributed system is
very complex, especially since error recovery (e.g., when a node fails during the
execution of a synchronization algorithm) is commonly a requirement.
30 GPFS on AIX Clusters

Group Services provides algorithms for the synchronization and information
sharing between the daemons of distributed systems, that abstract from the
specifics of the tasks, performed by any single distributed system, for which the
synchronization is required. By using Group Services, the implementation of a
distributed system becomes less complex and less expensive.

The daemons of distributed systems that use Group Services connect to it locally
on each node as clients. The synchronization algorithm is referred to as Group
Services voting protocol. Clients of Group Services are members of one or more
Group Services groups. All members of a group participate in the same voting
protocols. A member of a group can be a provider, a subscriber for that group, or
both. Daemons of different distributed systems can belong to the same group,
hence Group Services facilitates the interaction between different distributed
systems.

A Group Services voting protocol consists of one or more phases, they are called
one and n-phase voting protocols. A phase in the voting protocol entails the
distribution of information to all active members of the group and the
acknowledgement of receipt by all members. A one-phase voting protocol is
simply a distribution of information by one member to all others with
acknowledgement of receipt of that information. In an n-phase voting protocol,
any member can propose a next phase of voting at the completion of each
phase, depending on the outcome of the actions that are performed by that
daemon locally on the node in context with that phase. The phases of a voting
protocol are performed throughout the group in a serial way; a new phase is
started only if all members have finished the current one. Different phases of an
n-phase protocol are separated by barriers, the daemons on all nodes have to
reach a barrier before the next phase can be started. This is how Group Services
archives synchronization between daemons on distinct nodes.

Group Services maintains groups internally, to distribute to subscribers the state
of adapters, and nodes. Topology Services is a provider for this group. The
Group Services daemons on different nodes communicate with each other using
the sockets established by Topology Services.The reliable messaging library that
is maintained by Topology Services is used to determine a valid route. Clients
access Group Services through the Group Services API (GSAPI).

GPFS and HACMP/ES are clients of Group Services and use it for the
synchronization of recovery actions after failures and for the coordination of the
membership of daemons.

For more details about Group Services the reader is referred to RSCT: Group
Services Programming Guide and Reference, SA22-7355, and RSCT Group
Servcies: Programming Cluster Applications, SG24-5523.
 Chapter 3. The cluster environment 31

3.1.3 Event Management
The Event Management subsystem monitors system resources on the nodes in
the RSCT domain and provides its clients with the state of these resources.
System resources are processes, or hardware components with AIX
configuration settings pertaining to them. System resources are monitored by
Resource Monitors. A Resource Monitor is a client of the Event Management
daemon, connected to it by the Resource Monitor Application Program Interface
(RMAPI).

Clients of Event Management that are to be informed about the state of a
resource need to register for notification about that resource.

The daemons of the Event Management subsystem communicate among each
other using Group Services; Event Management is a client of Group Services.
The daemons of the Event Management subsystem use Group Services for the
information sharing.

The cluster manager subsystem of HACMP/ES is a client of Event Management.
For more details about the Event Management subsystem the reader is referred
to RSCT: Event Management Programming Guide and Reference, SA22-7355.

3.2 Operating environments for GPFS
GPFS is supported in three different operating environments.

GPFS on the SP
On an SP, GPFS exists in two environments that are distinguished by the
requirement of presence of the Virtual Shared Disk (VSD) layer.

1. VSD environment

– the RSCT component of PSSP
– the VSD and RVSD component of PSSP
– bandwidth of the high speed SP switch network
– SP infrastructure, for the configuration and administration of the RSCT

domain.

2. non-VSD environment

– the RSCT component of PSSP
– disk architecture that provides local access of each node to all disks
– HACMP/ES for the configuration and administration of the RSCT domain

in a cluster environment
32 GPFS on AIX Clusters

GPFS in a cluster of RS/6000 nodes
In a cluster of RS/6000 nodes, GPFS is supported in a cluster environment.

3. cluster environment

– RSCT, as part of HACMP/ES
– disk architecture, that provides local access of each node to all disks
– HACMP/ES for the configuration and administration of the RSCT domain

in a cluster environment

Note that all three implementations of GPFS rely on a clustering environment,
that is provided by RSCT.

3.2.1 GPFS in a VSD environment
The implementation of GPFS in a VSD environment relies on the IBM Virtual
Shared Disk (VSD), and on the IBM Recoverable Virtual Shared Disk (RVSD),
component of PSSP. It is only supported on the SP, since it requires the
bandwidth of the high speed network of the SP. GPFS and the RVSD subsystem
requires RSCT to provide a clustering environment.

VSD subsystem
The Virtual Shared Disk subsystem provides uniform disk access for all nodes in
its domain to raw logical volumes that are configured on disks under its
administration. Each disk is locally connected to at least one node in the domain,
but not required to be locally connected to all nodes. The logical volumes that are
managed by the VSD subsystem appear on all nodes in the VSD domain as
virtual shared disks. Applications access virtual shared disks on all nodes like
raw logical volumes.

Anode (to which a disk is locally connected) serves as a VSD server for each
disk. I/O requests to a virtual shared disk (on any node) are forwarded to the
VDS server of the disk on which the corresponding logical volume resides. The
I/O traffic is routed over the high speed embedded network of the SP.
 Chapter 3. The cluster environment 33

Figure 3-2 VSD environment

Figure 3-2 shows a cluster of three nodes. I/O traffic between node C and disks
1-3 is routed over host A, which is the VSD server for those disks. In regards to
I/O operations for disks 1-3 Node A is called the server node, and nodes B, and
C are called client nodes.

RVSD subsystem
The RVSD subsystem provides high availability for the virtual shared disk. If a
disk is locally connected to more than one node, two nodes can be configured to
act as VSD servers. They are referred to as primary and secondary VSD servers.
By default, the primary VSD server will be the server for that disk. If a failure
affects the primary VSD server, such as a loss of network connectivity, a disk
adapter or node failure, or a failure of the VSD server itself, the secondary VSD
server will take over, and all I/O requests will be routed to it instead. Once the
failure on the primary VSD server has been has been resolved, the primary node
will resume it’s role as the VSD server.

11

VSD

IPLVM

A B C

VSD VSD

LVM LVMIP IP

22

33

44

55

VSD Server VSD Client VSD Server

SP high speed networkI/O traffic between node C and disks 1-3
34 GPFS on AIX Clusters

Figure 3-3 RVSD environment

Figure 3-3 shows a VSD configuration, and a mutual takeover situation for the
VSD server of disks 1-3. Disks 1 and 2 have node A as the primary VSD server,
and node B as the secondary VSD server; disk 3 has node B as the primary and
node A as the secondary VSD server.

Disk fencing is performed in failure scenarios. GPFS uses the capability of the
RVSD for disk fencing. Therefore the RVSD subsystem is a requirement for the
implementation of GPFS in a VSD-environment. The role of disk fencing for error
recovery in GPGS is explained in more detail in Section 3.3.5, “Disk fencing” on
page 43.

The reader may expect that the Concurrent Logical Volume manager is required
by the RVSD to allow concurrent access of the primary and secondary VDSM to
the disks in order to reduce fallover times. However, this is not the case; the
CLVM is not required. The volume groups in a VSD environment are not created
as concurrent capable, they are varied on at only one node. If the secondary
VSD server takes control, it varies on the volume group, perhaps breaking the
disk reserve. The vary on only takes about ten seconds; the GPFS daemon can
tolerate time-outs for disk access up to 30 seconds.

For more details about VSD and RVDS, see PSSP 3.2: Managing Shared Disks,
SA22-7349.

RVSD

11

VSD

IPLVM

A B C

VSD VSD

LVM LVMIP IP

22 33 44

55
 Chapter 3. The cluster environment 35

3.2.2 GPFS in a non-VSD environment
GPFS requires all nodes to have local access to all disks under its
administration. Local access of multiple nodes of the same set of disks is
inherent to certain disk architectures, for instance SSA or Storage Area
Networks. The implementation of GPFS in a non-VSD environment relies on
local access of all nodes of the GPFS domain to all disks by the nature of the disk
architecture. Since all nodes have local access to all logical volumes, no routing
of I/O traffic over an external network is required, as it is in the VSD environment.

SSA
Currently, in version 1.4 of GPFS, Serial Storage Architecture (SSA) is the only
disk technology that is supported in a non-VSD environment. This limits the
number of nodes to eight, since an SSA loop cannot contain more than eight host
adapters. Hence, at maximum, eight nodes can have direct access to any disk.
However, nodes can participate in more than one SSA loop. In order to use SSA
disks for GPFS, a concurrent capable volume group should be configured on
each disk with each one containing a logical volume.

3.2.3 GPFS in a cluster environment
The implementation of GPFS in a cluster environment is similar to the
implementation of the cluster in a VSD environment with the difference being that
each node in the cluster environment must have access to the directly attached
disks. Currently, in version 1.4 of GPFS, SSA is the only supported disk
architecture in the cluster environment.

RSCT and HACMP/ES build the clustering environment for GPFS outside an SP
in a cluster of RS/6000 nodes. HACMP/ES provides the means for the
configuration and administration of the RSCT domain, which is given by the
cluster topology of HACMP/ES (see Chapter 3.4, “Implementation details of
GPFS in a cluster” on page 45). HACMP/ES requires redundant networking
connections between all nodes.

The HACMP/ES cluster constitutes an RSCT domain. Throughout this chapter,
the RSCT domain will be referred to as the HACMP/ES cluster.
36 GPFS on AIX Clusters

Figure 3-4 Clustering domains and GPFS nodesets

Figure 3-4 shows the relationship between the clustering domains, and GPFS
nodesets. All nodes that belong to a GPFS cluster must belong to the same
HACMP/ES cluster. Only one GPFS cluster can be configured within one
HACMP/ES cluster, which may contain further nodes that are not part of the
GPFS cluster. A GPFS cluster can contain multiple GPFS nodesets; nodes can
be dynamically added to, or removed from, a nodeset. GPFS nodesets are
disjoint, thus, a node cannot belong to two nodesets. All nodes that will be used
in the GPFS cluster need to have direct access to all disks.

SSA currently is the only disk architecture supported for GPFS in a cluster
environment, which limits the number of nodes in a GPFS cluster to eight.

The setup of GPFS in a cluster entails the configuration of the HACMP/ES
cluster topology, which is simple and straightforward from an operational point of
view.

3.3 GPFS daemon state and Group Services
Most of the synchronization in the GPFS subsystem is implemented in the
multithreaded model of the GPFS distributed daemon itself. During normal
operation, the GPFS daemons communicate with each other using TCP/IP
socket connections. Topology Services monitors the network adapters, on which
the sockets are configured, for failures.

GPFS Cluster

HACMP/ES Cluster

GPFS Nodeset 1 GPFS Nodeset 2
 Chapter 3. The cluster environment 37

Group Services are used to synchronize all actions required to bring a GPFS
daemon into an active state and for the handling of failures. If a failure has been
detected, the affected GPFS daemon leaves the active state and recovery
actions are performed to protect the integrity of the file system and the GPFS
subsystem.

Group Services maintain two groups for each GPFS nodeset, Gpfs.name and
GpfsRec.name, whereby .name is the name of the nodeset. This is an
implementation detail due to the architecture of Group Services (see
Section 3.3.3, “Coordination of event processing” on page 41).

3.3.1 States of the GPFS daemon
A GPFS daemon has three states, down, initializing, and active.

down
The GPFS daemon is down if it is shown inoperative by the System Resource
controller as shown in Example 3-1.

Example 3-1 GPFS daemon in the down state

host1t:/> lssrc -s mmfs
Subsystem Group PID Status
 mmfs aixmm inoperative

initializing
In Example 3-2, the GPFS daemon has been started by the mmstartup
command, which is a Shell script, to start the GPFS daemon on one or more
nodes. It issues a start of the daemon by the System Resource Controller on
each specified node. Once mmstartup has completed, the GPFS subsystem is
shown active by lssrc. The system resource controller will issue the runmmfs
command, which is another Shell script.

Example 3-2 GPFS daemon in the initializing state

host1t:/> mmstartup
Sat Mar 10 00:19:14 EST 2001: mmstartup: Starting GPFS ...
0513-059 The mmfs Subsystem has been started. Subsystem PID is 18128.
host1t:/> lssrc -s mmfs
Subsystem Group PID Status
 mmfs aixmm 18128 active
host1t:/> ps -ef | grep mm
root 18130 8270 0 00:21:48 - 0:00 ksh /usr/lpp/mmfs/bin/runmmfs
38 GPFS on AIX Clusters

To become part of the GPFS distributed subsystem, the GPFS daemon needs to
connect to the Group Services daemon as a client. The script
/usr/lpp/mmfs/bin/runmmfs tries periodically to connect to Group Services as a
client. This state is called the initialization state of the GPFS daemon. The
attempt to join the GPFS groups may not be successful if Group Services is not
active or the already active daemons in the GPFS groups deny a join.The latter
would occur, for instance, if the network adapter on which the GPFS socket
connection is established has been detected as failed by Topology Services.

active
If the GPFS daemon has connected with Group Services and joined the GPFS
distributed subsystem, it is in the active state, as shown in Example 3-3, and
ready to perform cooperatively with the other GPFS daemons that have
connected with Group Services. It is shown as a member of the Groups that
Group Services maintains for the nodeset. The script runmmfs will spawn the
mmfs daemon.

Example 3-3 GPFS daemon in the active state

host1t:/> lssrc -ls grpsvcs
Subsystem Group PID Status
 grpsvcs grpsvcs 31532 active
4 locally-connected clients. Their PIDs:
27790(hagsglsmd) 36584(mmfsd) 26338(haemd) 27234(clstrmgr)
HA Group Services domain information:
Domain established by node 3
Number of groups known locally: 5

Number of Number of local
Group name providers providers/subscribers
Gpfs.set1 3 1 0
GpfsRec.set1 3 1 0
ha_em_peers 3 1 0
CLRESMGRD_111 3 1 0
CLSTRMGR_111 3 1 0
host1t:/> ps -ef | grep mm
root 19888 4994 0 21:12:03 - 0:01 /usr/lpp/mmfs/bin/mmfsd

If a failure that affects the GPFS daemon is detected by RSCT, the GPFS
daemon will leave the active state and return to the initialization state.

3.3.2 The role of RSCT for GPFS
For a GPFS daemon to become a member or leave the active configuration, this
entails state changes that are performed on all active nodes. They are performed
in an n-phase voting protocol.
 Chapter 3. The cluster environment 39

Further, Topology Services monitors the state of network adapters and publishes
this information to the GPFS groups. A change is the state of a network adapter,
which affects the functionality of the cluster, will result in a change of
membership for the GPFS daemon on that node.

The role of RSCT in the implementation of GPFS is to detect and synchronize
the necessary changes of all active GPFS daemons that pertain to the following:

Membership of GPFS daemons
When a GPFS daemon joins or leaves an active configuration, this entails
multiple steps. All active GPFS daemons go through a multiple state change in
order to perform the changes that are required in the entire active GPFS
subsystem. This may entail the selection of new management nodes, the
mounting or unmounting of the file system, and an update of the fence registers
of disks. Those changes are synchronized by Group Services in a multiple phase
protocol.

State of the network adapters that support the GPFS communication
The GPFS daemons on all nodes subscribe to the adapter group that is updated
by Topology Services with the state of the adapters. If the adapter that carries
the socket for the GPFS communication has failed on a node, the GPFS daemon
on that node can no longer communicate with the other GPFS daemons. Upon
detection of the failure of the network adapter that carries the socket for GPFS,
the GPFS daemon on that node will leave the GPFS groups and transition into
the initialization state.

Connectivity to a node in the GPFS cluster
There are several reasons why a node, which had previously been detected by
Topology Services, may not be detected. The node itself may have failed or
network connectivity to it may be lost. Upon detection of the loss of connectivity
to any node on which GPFS has been active, the remaining GPFS daemons will
exclude that node from the GPFS groups to which they belong and perform
recovery actions, such as disk fencing.
40 GPFS on AIX Clusters

Figure 3-5 Error recovery by RSCT for a GPFS cluster

Figure 3-5 shows two nodes of a GPFS cluster. The two networks, NET1 and
NET2, are configured to the part of the HACMP/ES cluster topology. Hence, they
are monitored by Topology Services. The GPFS daemons between both nodes
communicate with each other using TCP/IP socket connections that are
established on the network devices of adapters, svc_1A and svc_2A. The
members in the GPFS groups are informed about the state of the adapters
svc_1A and svc_1B, the connectivity to nodes A and B, and the membership of
the mmfs daemons in the GPFS groups.

The recovery actions performed by the GPFS distributed subsystem are the
same that are performed upon the loss of a network adapter used for the GPFS
communication or entire loss of connectivity to a node. However, redundant
networking connections that are known to Topology Services are required, in an
implementation that relies on HACMP/ES to maintain GPFS performance after
failure (see Section 3.5.3, “Partitioned clusters” on page 51).

3.3.3 Coordination of event processing
Group Services maintains two groups for the GPFS subsystem to facilitate the
processing of multiple failures simultaneously and to process daemon
membership changes hierarchically.

svc_1A svc_1B

svc_2A svc_2B
NET2

NET1

mmfs mmfs

GPFS daemon communication

TCP/IP socket

A B
 Chapter 3. The cluster environment 41

Simultaneous processing of multiple failures
Group Services enforces the serial processing of recovery actions within one
group. In a multiphase voting protocol, a new phase is started when all members
have completed the previous phase and reached a barrier. Protocols within the
same group are processed serially as well, a new protocol can only be started if
no other protocol is currently processed.

If a failure of a GPFS daemon has been detected, the active GPFS daemons will
start running a multiphase voting protocol in the group Gpfs.name to perform
recovery actions. If another failure is detected, it will cause a protocol to be run in
the group GpfsRec.name. This protocol will cause a termination of the protocol
that is run in the group Gpfs.name and a restart of it with the updated information
about the set of GPFS daemons that are affected by failures. The performance of
recovery actions that are run during the n-phase protocol may take a while, since
they involve an update of disk fence registers, etc. The actions that are
performed in context of the protocol that is run in the second group,
GpfsRec.name, do not take much time, thus multiple failures are effectively
processed simultaneously.

Hierarchy of processing for join and fail requests
The n-phase protocols for join requests of GPFS daemons are run within the
group Gpfs.name. A failure that is detected while a join request is run will cause
a protocol to be run in the group GpfsRec.name, which causes an abort of the
processing of the join request and the processing of the failure. The join request
will be resubmitted periodically and the protocol will be started again after the
protocol to process the failure has finished.

3.3.4 Quorum
Quorum is a simple rule to ensure the integrity of a distributed system and the
resources under its administration. In GPFS, quorum is enforced.

The notion of quorum applies to the GPFS nodeset. In a GPFS nodeset, quorum
is achieved if half (in a nodeset consisting of two nodes), or more than half (in a
nodeset consisting of more than two nodes), of the GPFS daemons are in the
active state (as described in Section 3.3.1, “States of the GPFS daemon” on
page 38) and are able to communicate with each other. The latter may not be the
case after multiple network failures that result in a partitioned configuration (see
Section 3.5.3, “Partitioned clusters” on page 51).

In other words, quorum is achieved if more than half of the GPFS daemons are
members of the same instance of a GPFS group. File systems that are
configured in a GPFS nodeset can only be mounted if quorum is achieved.
42 GPFS on AIX Clusters

For a nodeset consisting of two nodes, quorum is user selectable. If Single Node
Quorum is not enabled, the GPFS daemons on both nodes have to be active for
all actions that otherwise depend on quorum to succeed.

3.3.5 Disk fencing
Disk fencing provides the means to set access permissions for hosts that all are
locally connected to a disk. The fence register of a disk is a hidden sector that
contains the access permissions for all nodes that have access to the disk, which
in a GPFS configuration are all nodes of the GPFS cluster.

In GPFS, disk fencing applies to a GPFS nodeset and all disks that are under its
administration. A disk configured for GPFS is only accessible by the nodes of the
nodeset to which it belongs.

Disk fencing is implemented for SSA technology in hardware and the device
driver level. The status of fence registers is not accessible through AIX
commands. In GPFS, the command mmshow_fence displays the content of the
fence registers on all disks that belong to the GPFS nodeset from which the
command was issued.

Disk fencing is implemented in GPFS according to a simple rule:

If quorum is achieved and the file system is mounted on any node in the GPFS
nodeset, then all nodes on which the file system is not mounted are fenced out.

The set of disks that are fenced out varies during the runtime of GPFS.

3.3.6 Election of the GPFS global management nodes
The global management nodes are the configuration manager, the file system
manager, and the metadata manager node. The latter exists for any open file
and is assigned dynamically. The configuration manager exists for each GPFS
nodeset and the file system manager for each file system in a GPFS nodeset. All
global management functions are performed by separate threads within the
GPFS daemon. See Section 2.2, “Global management functions” on page 16 for
more information.

If a GPFS daemon leaves the active GPFS subsystem, the election of any of the
above may be necessary. This is part of the recovery actions that are performed
during the n-phase protocol that is run to change the daemon membership. First,
if the daemon that leaves the active GPFS subsystem was the configuration
manager, a new one will be elected. If quorum persists for the GPFS nodeset,
 Chapter 3. The cluster environment 43

the configuration manager will elect a new file system manager for any file
system for which the daemon that has left the active GPFS subsystem had been
manager. The file system manager will initiate recovery actions for the file
system metadata and elect new metanodes for ope files, if necessary.

Configuration manager
The configuration manager is assigned internally. It does not impose any
significant load onto the system. The first GPFS daemon in a GPFS nodeset that
become active will be the configuration manager. It it leaves the active state, the
GPFS daemon with the next lowest node number that is active will be elected as
the new configuration manager.

Which node acts as the configuration manager, is normally not of interest from
an operational point of view. However, it can be determined by the command
mmfsadm dump cfgmgr.

File system manager
The file system manager is elected by the configuration manager after it has
been determined that quorum exists. If quorum does not persist, all file systems
will be unmounted and file system managers are not required. The file system
manager handles all token traffic and the assignment of metanodes, hence it can
impose an additional load onto the system.

A node can be specified not to perform as file system manager when creating the
nodeset via mmconfig or when modifying the configuration using mmaddnode, or
mmchconfig. There must be at least one node in the nodeset eligible for file
system management. However, GPFS will not always honor the user specified
exclusion of a node from file system management functions. For example, if all
nodes are excluded, then GPFS will elect one of the excluded nodes.

The command mmlsmgr lists all nodes that currently perform as file system
managers for the file systems in the GPFS nodeset. The command mmfsadm dump
cfgmgr lists all active file system managers as well.

Metanode
Metanodes are assigned internally. Usually the node which has the file open for
the longest amount of time is the Metanode for that file.
44 GPFS on AIX Clusters

3.4 Implementation details of GPFS in a cluster
HACMP/ES is designed to provide high availability for applications. An
application is highly available if it is restored within a short time span of a failure.
HACMP/ES monitors the application and system resources on which it relies and
performs recovery actions if a failure has been detected. The recovery actions
are coordinated by the HACMP/ES Cluster Manager, which is a distributed
daemon that uses Group Services for synchronization.

The implementation of GPFS for HACMP/ES does not make use of the
capabilities of HACMP/ES for high availability. HACMP/ES provides the
operating environment that GPFS requires for the subsystems of RSCT.

The HACMP/ES cluster services refer to the set of all distributed subsystems that
are part of HACMP/ES. The following subsystems are always activated when the
HACMP/ES cluster services are started on a node:

Topology Services
Group Services
Event Management
HACMP/ES Cluster Manager
HACMP/ES SMUX Peer Daemon

Figure 3-6 GPFS in the HACMP/ES operating environment

HACMP/ES
Cluster Group

HACMP/ES
Cluster

Lock Manager

Event Management

Group Services

Topology Services

GPFS

HACMP/ES
 Chapter 3. The cluster environment 45

Figure 3-6 on page 45 shows the client server relationship of all active
subsystems in the implementation of GPFS in a cluster. The HACMP/ES cluster
group contains the following daemons:

HACMP/ES Cluster Manager
HACMP/ES SMUX Peer Daemon
HACMP/ES Cluster Information Daemon

GPFS, Event Management, and the HACMP/ES Cluster Manager are clients of
Group Services. There is no interaction between the subsystems of the
HACMP/ES cluster group and the GPFS subsystem. The HACMP/ES Cluster
Lock Manager is a client of the HACMP/ES Cluster Manager.

HACMP/ES provides the means to configure and administer the operating
domain for RSCT. In particular:

� Configuration of the HACMP/ES cluster that defines an RSCT domain, which
can be changed dynamically, i.e. while the daemons are active

� Environment to start and stop the RSCT subsystem
� Cluster monitoring tools

An HACMP/ES cluster, while providing an operating domain for GPFS, can be
used to make other applications highly available. Few restrictions apply; see
Section 3.6.1, “Configuring HACMP/ES” on page 56 for more information.

3.4.1 Configuration of the cluster topology
The cluster topology of an HACMP/ES cluster consists of:

nodes
The set of nodes is the operating domain for HACMP/ES and RSCT.

adapters
Adapters are monitored by Topology Services by keepalive signals and used for
the communication within the cluster. They can be used to make IP addresses
highly available (see Section 3.6.1, “Configuring HACMP/ES” on page 56).

networks
Networks define the association of adapters to physical networks; two adapters
that belong to the same cluster network also belong to the same physical
network.

tuning parameters
Tuning parameters describe the frequency of keepalive signals, which are sent
by Topology Services, and grace periods, which designates the maximum time
span keepalive signals can be missed without issuing a failure notification.
46 GPFS on AIX Clusters

An HACMP/ES cluster is required to have redundant networking connections
between nodes to provide recovery for failures and typically have multiple
network adapters that connect a node to any network.

Figure 3-7 HACMP/ES cluster topology

Figure 3-7 shows a cluster of three nodes that all are connected by two TCP/IP
networks and a serial network. All nodes and networks are configured in the
HACMP/ES cluster topology, therefore they will be monitored by Topology
Services and used for message passing. Two networks, which are configured on
independent hardware components, ensure fault tolerance for the network
connectivity between nodes. One network has two host adapter connections with
each node.

3.4.2 Starting and stopping the subsystems of RSCT
The three states that a GPFS daemon can assume are explained in
Section 3.3.1, “States of the GPFS daemon” on page 38. The start of the
HACMP/ES cluster services entails starting the subsystems of RSCT.

host 1 host 2 host 3

Redundant network
adapters

two networks, on
independent hardware

Serial network
 Chapter 3. The cluster environment 47

Example 3-4 GPFS daemon is initializing; HACMP/ES cluster is down

host1t:/> ps -ef | grep mm
root 30012 6204 0 01:37:13 - 0:00 ksh /usr/lpp/mmfs/bin/runmmfs
host1t:/> lssrc -s mmfs
Subsystem Group PID Status
 mmfs aixmm 30012 active
host1t:/> lssrc -s clstrmgrES
Subsystem Group PID Status
clstrmgrES cluster inoperative

If the GPFS subsystem has been started on a node while the cluster services are
still inactive, the GPFS will be in the initializing state, as shown in Example 3-4.
After the cluster services have been started and Group Services has become
active, the GPFS daemon will attempt to join the GPFS groups and transition into
the active state. Furthermore, the HACMP cluster manager will connect with
Group Services after it is started.

Example 3-5 GPFS and HACMP/ES are both active

host1t:/> ps -ef | grep mm
 root 30012 6204 0 01:37:13 - 0:01 /usr/lpp/mmfs/bin/mmfsd

host1t:/> lssrc -ls grpsvcs
Subsystem Group PID Status
 grpsvcs grpsvcs 29606 active
4 locally-connected clients. Their PIDs:
15444(hagsglsmd) 30012(mmfsd) 18412(haemd) 20498(clstrmgr)
HA Group Services domain information:
Domain established by node 3
Number of groups known locally: 5
 Number of Number of local
Group name providers providers/subscribers
Gpfs.set2 4 1 0
GpfsRec.set2 4 1 0
ha_em_peers 4 1 0
CLRESMGRD_111 4 1 0
CLSTRMGR_111 4 1 0

Example 3-5 shows the groups maintained by Group Services when GPFS and
HACMP/ES are active. Group Services maintains five different groups on host1.
The groups Gpfs.set2, and GpfsRec.set2 correspond to the GPFS nodeset, to
which this node belongs, which has the nodeset name set2. The groups
CLRESMGRD_111, and CLSTRMGR_111 are maintained for the HACMP/ES
Cluster Manager subsystem. The HACMP/ES cluster ID is 111.
48 GPFS on AIX Clusters

Stopping the HACMP/ES cluster services entails stopping the subsystems of
RSCT as well. The GPFS daemon, if it has been in the active state, will transition
into the initializing state once Group Services has become inactive.

3.4.3 Dynamic reconfiguration of the HACMP/ES cluster topology
The HACMP/ES cluster topology can be changed dynamically, i.e. while the
cluster services are active on some nodes of the cluster. This is called Dynamic
Automatic Reconfiguration Event (DARE). Most changes in the HACMP/ES
cluster topology can be performed dynamically, in particular, adding or deleting
nodes and network adapters.

Figure 3-8 Adding a node the HACMP/ES cluster dynamically

Figure 3-8 illustrates a dynamic reconfiguration to extend the HACMP domain,
which consists of three nodes. A new node is added while the HACMP/ES cluster
services and GPFS are active on all nodes. After the node has been added, the
HACMP/ES cluster services can be started. After a node is properly configured
into the HACMP cluster, it can be added to the GPFS configuration.

3.5 Behavior of GPFS in failure scenarios
This section describes the recovery actions of GPFS in some failure scenarios.

Old HACMP domainOld HACMP domain

New HACMP domain

RSCT

GPFSHACMP/ES
 Chapter 3. The cluster environment 49

3.5.1 Failure of an adapter
Figure 3-9 illustrates the behavior of a GPFS daemon when it attempts to join the
active GPFS subsystem while the adapter that supports the GPFS socket is
detected as failed.

Figure 3-9 Join attempt of a GPFS daemon

3.5.2 Failure of a GPFS daemon
Figure 3-10 illustrates the behavior of GPFS when an active GPFS daemon fails
on a node. The same sequence of recovery actions is run if the adapter of the
network dedicated to GPFS has failed.

Adapter for
GPFS daemon
communication

alive

Join request of the
GPFS daemon on

node A

Wait

Configuration of join of
active configuration for

node A

Yes

No

GPFS daemon on node
A is in active state

Failure
Initializing state for
GPFS daemon on

node A

Success
50 GPFS on AIX Clusters

Figure 3-10 Failure of a GPFS daemon

3.5.3 Partitioned clusters
Due to multiple network failures, a cluster can subdivided into two or more sets of
nodes that can communicate with each other but not with nodes that belong to
another set. The nodes within such a set form a partition; the cluster in this case
is called a partitioned cluster. The network in this situation is also called a
sundered network.

RSCT
All subsystems of RSCT will remain active on each partition.

Within each partition, Topology Services will recreate its heartbeat rings,
excluding adapters that are not reachable, and keep monitoring all network
adapters in the cluster. The reliable messaging library will be updated to indicate
the loss of connectivity; adapters that do not belong to this partition are assumed
not to be alive. Group Services will be informed about the loss of connectivity to

Was node A
configuration

manager for this
node set?

GPFS daemon down
on node A

Yes

No

Elect new
configuration

manager

Was node A
file system
manager

Yes

No

Elect new file
system
manager

Does quorum
persist for this node

set?

Yes
Fence node A
out
recover log files
rebuild token
state

Unmount all file systems
on this node set

No
 Chapter 3. The cluster environment 51

the nodes of the other partition and ‘dissolve’ membership of them in the GPFS
group. For each group, it will keep providing its services to the active members in
a partition. There is no synchronization between the instances of the same group
that are run on distinct partitions.

After network connectivity has been reestablished, the subsystems of RSCT will
join their operating domains and continue to function without visible interruption.
Topology Services will reconnect the disjoint heartbeat rings to form rings that
include the corresponding adapters of all partitions. Group Services will merge
instances of each group into one group. This is actually done by dissolving all but
one instance of each group and letting the clients on nodes, for which an
instance has been dissolved, rejoin the corresponding group.

Quorum in GPFS nodesets
If a GPFS nodeset is affected by a partition, this leads to the unmounting of the
file system in all but one partition (or all, if none of them maintains quorum).

Figure 3-11 Partitioned cluster and quorum in GPFS nodesets

Figure 3-11 shows a GPFS cluster of eight nodes that is partitioned into two sets
of four nodes. Three GPFS nodesets exists, with nodeset IDs 1 through 3. The
nodes of the first nodeset belong to partition 1 maintaining quorum with the
nodes of the third nodeset in partition 2.

The second nodeset contains two nodes. At first, both nodes will maintain
quorum, if quorum is configured. If the file system is mounted on one node, this
node will attempt to fence the other node out from the disks, which will cause the
GPFS daemon on the other node to leave the active state. If the GPFS daemons
on both nodes are active and the file system is mounted, the surviving node is
the one which first succeeds with the recovery actions.

1 11 2 23 33

partition 2partition 1
52 GPFS on AIX Clusters

HACMP/ES
The HACMP/ES Cluster Manager will continue to operate on all partitions. After
the network connectivity has been reestablished, the nodes on all partitions,
except the one with the highest priority, will halt. A halt -q is performed as part
of the script clexit.rc, which is run. This may have a drastic impact on the
performance of GPFS and may lead to a loss of quorum for a GPFS nodeset
leading to the unmounting of file systems on all nodes. This should be a very rare
scenario if redundant networking connections are configured.

Disk fencing and quorum in a partitioned cluster
Figure 3-12 illustrates how disk fencing is used in conjunction with quorum to
maintain data integrity in a partitioned cluster. A network failure has lead to a
partitioned cluster, the partitions consist of nodes A,B,C, and D,E.

Figure 3-12 A partitioned cluster as a result of network failure

A B C D E
 Chapter 3. The cluster environment 53

Figure 3-13 Events on partitioned clusters

Figure 3-13 shows two sequences of recovery actions that are run without
synchronization after the cluster had become partitioned. The sequence of
events starts when GPFS runs a protocol to perform recovery actions for both
nodes, D and E.

First it is determined if a new configuration manager needs to be elected. The
configuration manager elects a new file system manager, if needed; a Group
Services barrier is reached. Afterwards, the file system manager nodes start the
recovery of all file systems, which involves fencing out nodes D and E, rebuilding
the token state, and updating the log files. The loss of connectivity to the nodes
of the corresponding other partition will not be detected at the same time by both
partitions.

Events on three-node partition
(A,B,C)

Events on two-node partition
(D,E)

Detection of D,E down

Election of Configuration Manager
Does this partition have quorum?

Yes

For each file system:

Election of File System Manager

Fence out nodes D,E on all disks
for that file system

Rebuild token state

Recover log files

Operation of GPFS continues on
A,B,C

D,E fenced off from all
disks

Detection of A,B,C down

Election of Configuration Manager
Does this partition have quorum?

No

Unmount file systems

GPFS daemons stay active
Configuration Manager waits for
quorum

File systems unmounted
on D,E
54 GPFS on AIX Clusters

At this point, a new configuration manager is elected, if necessary. The
configuration manager establishes that the nodes in this partition do not have
quorum and unmounts the file systems. When the recovery actions in both
partitions are not synchronized, disk fencing in conjunction with quorum helps to
maintain data integrity in a partitioned cluster. The nodes in the second partition
cannot access the disks after the recovery actions have been completed on the
first partition.

3.6 HACMP/ES overview
HACMP/ES is a clustering solution for AIX that provides high availability for
application programs. HACMP stands for High Availability Cluster
Multi-Processing. ES for Enhanced Scalability. The latter refers to the newer
version of HACMP that supports a cluster size up to 32 nodes in an SP
environment and 16 in a cluster of RS/6000 machines.

An application is highly available if it runs in a monitored system environment
and, in case of a failure, is restored within a short time span. High availability is
cheaper to implement than fault tolerance and satisfies the requirements of
applications for which a downtime in the range of a few minutes is acceptable.

High availability in an HACMP/ES cluster is realized by:

� A redundant hardware configuration: To provide high availability, a cluster
needs to contain two or more nodes and redundant networking connections
between them. The nodes serve each other as standby. If a node fails, other
nodes take over the applications than were active on that node.

� The distributed systems, that are part of HACMP/ES, that monitor the cluster
and initiate recovery actions when a failure has been detected. They are:

– Topology Services
– Group Services
– Event Management
– HACMP/ES Cluster Manager
– HACMP/ES SMUX Peer Daemon
– HACMP/ES Cluster Information Services
– HACMP/ES Cluster Lock Manager

The HACMP/ES Cluster Manager is the subsystem that drives the recovery
actions to provide high availability for resources. The HACMP/ES SMUX Peer
Daemon and the HACMP/ES Cluster Information Services are to provide other
applications of utilities of HACMP/ES with information about the cluster. The
HACMP/ES Cluster Lock Manager provides a locking protocol for applications
that concurrently access shared external data.
 Chapter 3. The cluster environment 55

Typically an application requires supporting system resources, such as a TCP/IP
configuration for the access of clients, volume groups, etc. System resources
can be associated with an application. On the cluster nodes, on which the
application is active, those system resources will be configured.

An HACMP/ES cluster can be configured to provide high availability for multiple
applications, depending on the number of nodes in the cluster and the
requirements of each application onto the system resources.

3.6.1 Configuring HACMP/ES
Conceptually, the HACMP/ES configuration data are subdivided into two
categories, the cluster topology and cluster resources. This configuration data is
stored in HACMP specific object classes in the Object Data Manager (ODM).

Cluster topology
The cluster topology has already been introduced in Section 3.4.1,
“Configuration of the cluster topology” on page 46.

A cluster adapter is of one of the following three types:

boot
A boot adapter is the primary adapter on a node for a given cluster network. It
can be replaced by a service IP label belonging to the same network.

service
A service adapter is either a primary adapter on a node for a given network or a
network interface configuration that will replace the configuration of a boot of
standby adapter on the network to which it belongs. In the latter case, the service
adapter is referred to as service IP label and is part of a resource group. If a
service adapter is the primary adapter on a node for a given network, it cannot be
moved to another node or replaced by another service label.

standby
Any further adapter, besides a boot or services adapter, that exists on a given
network is a standby adapter. A service IP label can replace a standby adapter.

Cluster resources
The cluster resources are the entity of system resources that are made highly
available by HACMP/ES.
56 GPFS on AIX Clusters

System resources that are made highly available in HACMP/ES belong to a
resource group. All resources belonging to a resource group are configured on a
node on which the resource group is online. Each resource group has a nodeset
defined, which contains the nodes on which the resource group can be brought
online. A resource group can be brought online on one or multiple nodes,
depending on the node relationship attribute for the nodeset. Further attributes of
the nodeset determine the choice of the node within the nodeset, on which the
resource group is brought online.

Example 3-6 shows the resource group definition of HACMP/ES. The resource
group in this example, RES1, has two nodes, A and B. The service IP label,
svc_1, will be configured on a cluster adapter of the node where the resource
group is online. Furthermore, the volume group vg_1 will be varied on on that
node, and the application APP1 will be started.

Example 3-6 SMIT screen for the configuration of a resource group

A:/> smitty hacmp
Cluster Configuration

Cluster Resources
Change/Show Attributes of a Resouce Group

[TOP] [Entry Fields]
 Resource Group Name RES1
 Node Relationship cascading
 Participating Node Names A B

Service IP Label(s) [svc_1] +
Filesystems [] +
Filesystems Consistency Check fsck +
Filesystems Recovery Method sequential +
Filesystems/Directories to Export [] +
Filesystems/Directories to NFS Mount [] +
Network For NFS Mount [] +
Volume Groups [vg_1] +
Concurrent Volume Groups [] +
Raw Disk PVIDs [] +
AIX Connections Services [] +
AIX Fast Connect Services [] +
Application Servers [APP1] +
Highly Available Communication Links [] +
Miscellaneous Data []

Inactive Takeover Activated false +
Cascading Without Fallback Enabled false +
9333 Disk Fencing Activated false +
SSA Disk Fencing Activated false +
 Chapter 3. The cluster environment 57

Filesystems mounted before IP configured false
+

More than one instance of each resource type can be configured in a resource
group. For example, a resource group could contain multiple volume groups.

Multiple resource groups can be configured in a cluster, depending on the
number of nodes in the cluster and the resources that are configured in each
group.

Configuration Limitations when GPFS is present
An HACMP/ES cluster that is used for GPFS can be further configured to make
other applications highly available. There exists one restriction onto the cluster
configuration: Any adapters that are used for the TCP/IP socket of the GPFS
daemon cannot participate in an IP Address Takeover.

The resource group in the above example has a service IP label configured. If
the resource group goes online on a node, the service IP label will replace a boot
or standby adapter of the same network. This is referred to as IP Address
Takeover.

Cluster verification and synchronization
Cluster verification and synchronization validate a cluster configuration and
distribute it to all cluster nodes.

Cluster verification
To function as a distributed system and to provide recovery for the cluster
resources, the HACMP/ES Cluster Manager depends on the following:

� The cluster manager daemons on all nodes have the same cluster
configuration data, which is referred to as the cluster being synchronized.

� The cluster configuration corresponds to the real, existing system resources.
For instance, adapters belonging to resource groups, which are configured in
the cluster topology or volume groups, are configured correctly on AIX.

Cluster verification checks the above conditions. A cluster that failed cluster
verification is not guaranteed to function reliably. In a cluster that is not
synchronized, an attempt of a cluster manager daemon to join the active cluster
manager subsystem will fail, if its cluster configuration is different from the one
known to the active cluster. Some configuration errors may not be detected
immediately, but are usually detected during the runtime of the cluster. For
example, you may not notice that a resource is not properly configured until a
node attempts to acquire a resource group and the acquisition of that particular
resource is not possible.
58 GPFS on AIX Clusters

Cluster synchronization
Cluster synchronization entails the distribution of a cluster configuration that is
locally present on a node to all nodes in the cluster. During cluster
synchronization the HACMP ODMs of the node from which the command is
issued, are copied to the other nodes in the cluster. Furthermore, the ODMs are
supplied with values that are specific to the configuration of system resources on
each node.

After any change to the cluster configuration or the system resources that relate
to cluster configuration data, the cluster configuration needs to be synchronized.
Verification is run by default during cluster synchronization. The cluster
configuration can be synchronized while the cluster manager is active on some
nodes.

3.6.2 Error Recovery
When a failure is detected, an event is enqueued. The event scripts that are run
for any cluster event perform the recovery actions.

Currently, in version 4.4 of HACMP/ES, error recovery is implemented for
failures of the following

cluster nodes
If a cluster node fails, all resource groups that are online on that node are moved
to another node. This is performed by the event scripts associated with the
node_down event.

cluster adapter
If a service or boot adapter fails, the IP address of that adapter is reconfigured on
the standby adapter by the event scripts associated with the
swap_adapter_event.

applications
If an application that is subscribed to application monitoring fails, the resource
group containing this application is moved to another node, by the events scripts
associated with the rg_move event.

Partitioned Cluster
In a partitioned cluster, the nodes in each partition will detect the other side as
down. The cluster will remain active within each partition; quorum is not
implemented. Node down events are run for the nodes in the corresponding
partition. If multiple partitions contain nodes of a resource group, that resource
group will be online on multiple nodes as a result of the partition.
 Chapter 3. The cluster environment 59

If the network connections in a partitioned cluster are reestablished and both
partitions can again communicate with each other, the nodes belonging to the
partition that has lower priority will halt.

Customization of error recovery
HACMP/ES provides recovery for failures in the cluster topology. Using
application monitoring, a cluster configuration can be customized to provide
recovery for other resources that are part of a resource group. It is a trend in the
development of high availability clustering products to extend the range of
system resources for which recovery from failures is provided. In versions of
HACMP/ES newer than version 4.4, error recovery may be extended to cover
system resources that are not discussed here.
60 GPFS on AIX Clusters

Chapter 4. Planning for
implementation

In this chapter we explain why we made certain design choices for our GPFS
cluster and then elaborate on exactly what those choices were. Each topic is split
into two parts. The first part of a topic covers a general range of decisions that
had to be made and the input to those decisions. The second part of each topic
details what we decided so later chapters can configure the cluster in that
manner. The one absolute we had to abide by was to use GPFS 1.4 without
PSSP, making our implementation a non-SP environment. The resulting
configuration is called a GPFS cluster.

4

© Copyright IBM Corp. 2001 61

4.1 Software
We divided our software discussion into two sections. The first section is a
general discussion on the software options while the second section covers our
specific software installation.

4.1.1 Software options
Software encompasses the AIX operating system, PSSP, HACMP/ES and GPFS
1.4. This section does not include any configuration of our application software,
just the results of our installation choices.

SP environment
GPFS 1.4 can operate within an SP environment with or without VSDs as long as
PSSP is version 3 release 2 or later on the control workstation. For the operating
system, AIX is required to be at version 4 release 3.3 (with APAR IY12051) or
later on the control workstation. PSSP provides group services to GPFS 1.4,
without which it will not function in an SP environment.

Non-SP environment
For GPFS 1.4 in a non-SP environment, the necessary services are provided by
RSCT (reliable scalable cluster technology), which is packaged with HACMP/ES
Version 4.4.0 (5765-E54) with PTF IY12984 or later. The AIX operating system
should again be at version 4 release 3.3 (5765-C34) with APAR IY12051 or later.

4.1.2 Software as implemented
The following sections describes which LPPs (licensed program products) we
installed on our four RS/6000 machines and how we generated those displays.

Operating system
AIX 4.3.3 with APAR IY12051 or later was required for our non-SP
implementation of GPFS clustering. We knew we were at AIX 4.3.3 by running
oslevel. The important item to learn was: Did we have the required APAR? This
APAR cross-referenced to PTF U473336 which is in the AIX 4.3.3 maintenance
level 05. The cross-reference information is available from:

http://techsupport.services.ibm.com/rs6k/fixdb.html
62 GPFS on AIX Clusters

We confirmed this level by running instfix -ik 433-05_AIX_ML, determined any
missing filesets by running instfix -ciqk 4330-05_AIX_ML | grep “:-:” and
corrected the inappropriate filesets. We could not use the simple command
instfix -i -k “IY12051” which will report “not installed” (even if it is installed)
since this is a packaging APAR number only and disappears as soon as it is
installed.

HACMP/ES
The required level for HACMP/ES is version 4.4.0 (5765-E54) with PTF IY12984
or later modifications. To determine if the PTF specified is installed, run the
instfix command, as shown in Example 4-1, and make sure all filesets are
found.

Example 4-1 Verification of required code level of HACMP/ES

host1t:/> instfix -i -k "IY12984"
 All filesets for IY12984 were found.

We had to install HACMP/ES from scratch on all four of our nodes. One method
is to acquire the code and run smitty install separately on each node. What
we chose to do was to create a NFS mounted file system we called /tools/images
and made it available to all nodes from host1t. We ran bffcreate to produce
install images of the desired software and simultaneously installed it across the
nodes. For a detailed explanation see Appendix B, “Distributed software
installation” on page 207.

GPFS 1.4
We installed GPFS 1.4 in the same manner that we installed HACMP/ES, by
using an NFS mounted filesystem mounted on every node with an image of the
desired application software created there by running bffcreate. Verification
was as easy as running lslpp, as shown in Example 4-2, since it had to be at
level 1.4. Prerequisites only applied to AIX and HACMP/ES since that was the
software that GPFS was specifically dependent on.

Example 4-2 Verification of GPFS installation

host1t:/> lslpp -l | grep mmfs
 mmfs.base.cmds 3.3.0.0 COMMITTED GPFS File Manager Commands
 mmfs.base.rte 3.3.0.0 COMMITTED GPFS File Manager
 mmfs.gpfs.rte 1.4.0.0 COMMITTED GPFS File Manager
 mmfs.base.rte 3.3.0.0 COMMITTED GPFS File Manager
 mmfs.gpfs.rte 1.4.0.0 COMMITTED GPFS File Manager
 mmfs.gpfsdocs.data 3.3.0.0 COMMITTED GPFS Server Manpages and
 Chapter 4. Planning for implementation 63

4.2 Hardware
We divided our discussion on the hardware requirements into two sections, first
the options available to a new installation and second, is how we implemented
the hardware into our environment.

4.2.1 Hardware options
While GPFS 1.4 operates in the traditional SP environment using an SP switch,
this implementation exercised the operating environment outside the SP on a set
of networked RS/6000 machines.

This implementation used two networks: A100 Mb/sec Ethernet and a 16 Mb/sec
Token Ring. There are no VSDs outside of the SP environment, so this cluster
used SSA disks directly attached to each node.

Host systems
The minimum hardware for GPFS 1.4 is a processor that is able to run AIX 4.3.3,
enough spare disk space for the additional filesets required by the application
software, an SSA adapter and at least one 100Mb/sec network adapter.

SSA disks and cabling diagram
There are many types of SSA adapters and disks, each with their own device
driver and microcode. Its important to keep drivers and microcode current; see
http://www.hursley.ibm.com/ssa/index.html for detailed information on code
for your SSA adapters and disks.

There is a limit of eight SSA adapters to a single SSA loop. If a configuration
requires more disk space than is supported by a single SSA adapter then
multiple SSA adapters can be used in each node, with each SSA adapter,
attached to separate loops. This will allow GPFS configurations in the cluster
environment to support a considerable amount of disks dependent on the
number of SSA adapters the server node can support. Some adapters have
smaller limits; refer to Understanding SSA Subsystems in Your Environment,
SG24-5750 for more information on this topic.

If SSA hardware RAID arrays are used, this limits the number of adapters in a
loop to two. This is called an SSA hardware limit as shown in Table 4-1 on
page 65. The use of the SSA RAID function is therefore limited to two-node
clusters.
64 GPFS on AIX Clusters

A more flexible approach to increased data availability in an eight-node cluster
would be to cable the SSA disks across two separate SSA adapters in each
node. The disks on each adapter would form a GPFS failure group allowing the
configuration of GPFS data and metadata replication.

Table 4-1 SSA 4-P adapter table

4.2.2 Hardware
This section is about how we connected the nodes.

Host systems
The four systems were identical except that host1t and host2t had three internal
SCSI disks while host3t and host4t had only two internal SCSI disks. This was
not a factor in performance or set up, just noteworthy since hdisk addressing is
not identical between the nodes. We used the spare SCSI disk in host1t as a
shared resource between all four nodes mounted over NFS and called it /tools.

� 4 RS/6000 F50s with the following hardware:

– 4 x CPUs each

– 1.5GB memory each

– 1 x 10/100 ethernet adapter 9-P

– 1 x token ring adapter 9-O

– 1 x SSA Adapter 4-P

SSA disks and cabling diagram
The SSA adapters were cabled into a 7133-D40 SSA disk drawer. We chose to
use both the A and B loops available on the SSA adapter cards. SSA bandwidth
is 40 MB/sec per loop in each direction for a total of 80MB/sec per loop and 160
MB/sec per adapter. The D40 SSA drawer was completely filled with sixteen
9.1GB SSA disk drives so they were split evenly between the two loops. We
could view the speed of the two loops by running the ssa_speed command. This
command could also be effective when troubleshooting a slow SSA loop.

Device Minimum Maximum

SSA disks 0 per loop 48 per loop, 96 per adapter

SSA adapters - Node 1 per node Node H/W dependent

SSA adapters - Loop 1 per loop 8 per loop

Nodes 1 per cluster 8 per cluster

RAID arrays 1 per cluster 2 per cluster
 Chapter 4. Planning for implementation 65

host1t:/> ssa_speed -l pdisk0
40 40

Figure 4-1 SSA Cabling

4.3 Networking
GPFS requires an IP network over which the GPFS socket connections will be
established. This network should be dedicated to GPFS only.

4.3.1 Network options
For GPFS 1.4 to function, we had to have a dedicated IP network of at least
100Mb/sec bandwidth, faster being better. On this network the socket
connections for the GPFS daemons will be established. The network will be
configured to belong to the HACMP/ES cluster topology as well, in order to
monitor the adapters for failures. This network is used by GPFS daemons for
communicating file system state data. The actual file system data travels over
the SSA adapters directly between nodes and disks.

The second IP network is used for user application traffic and will not be used by
GPFS state data traffic.

1 2 3 4
host

A1 A2

B1 B2

host host host

A1 A2 A1 A2 A1 A2

B1 B2 B1 B2 B1 B2

D40 positions 1-8

1 2 3 4 5 6 7 8
J1 J8

9 10 11 12 13 14 15 16
J9 J16
66 GPFS on AIX Clusters

The network defined for use by GPFS must not be a network designated for IP
address takeover by HACMP. It must be an adapter with only a service address
and no associated boot address. This network is assigned to GPFS with the
mmcrcluster command.

4.3.2 Network
The token ring network is the default network and our access to the outside
world. The second network is a 100 Mb ethernet that we dedicated to GPFS. To
simplify the network, we named the nodes host1 thru host4 and tacked on a letter
e for ethernet and a letter t for token ring addresses, as shown in Example 4-3.
The local ethernet adapters are connected to an 8 port Alteon 180 hub while the
token ring was attached to the laboratory network. A .rhosts file is required on all
nodes. Figure 4-2 on page 68 is a schematic diagram of our network
configuration.

Example 4-3 Listing of the adapter addresses for our nodes

host1t:/> cat /etc/hosts
127.0.0.1 loopback localhost # loopback (lo0) name/address
9.12.0.21 host1t host1t.itso.ibm.com
9.12.0.22 host2t host2t.itso.ibm.com
9.12.0.23 host3t host3t.itso.ibm.com
9.12.0.24 host4t host4t.itso.ibm.com
129.40.12.129 host1e host1e.itso.ibm.com
129.40.12.130 host2e host2e.itso.ibm.com
129.40.12.131 host3e host3e.itso.ibm.com
129.40.12.132 host4e host4e.itso.ibm.com

host1t:/> cat /.rhosts
host1t
host2t
host3t
host4t
host1e
host2e
host3e
host4e
 Chapter 4. Planning for implementation 67

Figure 4-2 Network configuration

4.4 High availability
The remainder of this chapter contains high availability considerations that apply
to the configuration of networks for HACMP/ES and SSA disk arrays.

4.4.1 Networks

Networking requirements to support GPFS
HACMP/ES requires redundant network connections between nodes. Otherwise
a single network failure potentially could cause a system halt on a subset of
nodes in the cluster, as explained in Section 3.5.3, “Partitioned clusters” on
page 51.

Our network configuration contains two IP networks. Often, in the hardware
setup of an HACMP/ES cluster, a serial network such as RS232 or Target Mode
SSA is used as the second redundant network connection between hosts. In our
case, to support GPFS, this is not recommended. Serial networks are slow and
error recovery performed over serial networks takes more time than over an IP
network. In most uses of HACMP/ES ‘this does not affect things. However, in
GPFS, fast processing of failures is important.

1 2 3 4

host1t host2t host3t host4t

host 1e host 2e host 3e host 4e

100 Mb
Ethernet

16 Mb Token Ring

Outside
world
68 GPFS on AIX Clusters

Requirements for networks used in HACMP/ES
The following are important considerations regarding the network configuration
used in an HACMP/ES cluster. They are not specific to the presence of GPFS.

Single points of failure in the networking hardware
To eliminate single points of failure, the HACMP/ES cluster should have
redundant network connections. It should be verified that the networking
hardware does not contain hidden single points of failures. Networking
connections are not redundant if they share hardware components, such as
networking switches, adapters, or cables.

Do not send heartbeats into the wide world
Networks used for HACMP/ES should provide a local connection between hosts.
A networking connection that requires keepalive signals to be sent over a
campus network, for instance, does not satisfy the requirements of HACMP/ES.

Requirements for the HACMP/ES GPFS dedicated network
As already discussed, the network dedicated to GPFS should be used
exclusively by GPFS. If the GPFS network is used for other purposes as well,
this could have an adverse effect on the overall GPFS performance. If
HACMP/ES is used to provide high availability for other applications, the
following limitation exists:

The adapters that support the TCP/IP socket connection for GPFS must not be
configured for IP Address Takeover in HACMP/ES.

All nodes within a GPFS nodeset have access to the same GPFS file systems
without the need for IP Address Takeover of the GPFS network adapter.

Any application that fails over to another HACMP node in the same GPFS
nodeset continues to have access to the same GPFS file systems as the failed
node.

In the HACMP/ES cluster topology an adapter has one of three functions, boot,
standby, or service, that determine the role of an adapter in relation to IP
Address Takeover.

A network that is used in an HACMP/ES cluster typically has two or more adapter
connections with each host, whereby one is configured as boot and all further as
standby adapters.

For our purposes, a single adapter is sufficient on each network, since
HACMP/ES is not used to provide high availability of the TCP/IP socket
connection established by GPFS itself. If only one network adapter that connects
a host to a network is present, then this adapter, due to the HACMP/ES
 Chapter 4. Planning for implementation 69

configuration rules, will be configured in the HACMP/ES cluster topology as a
service adapter. The network adapter over which the TCP/IP socket connection
for GPFS is established, could be configured as boot or a standby adapter.
However, if it is configured as service adapter, we are sure that it cannot be used
‘by accident’ for IP Address Takeover, since such a configuration would not pass
cluster verification. See HACMP 4.3: Enhanced Scalability Installation and
Administration Guide, Vol.1, SC23-4284-02 for more details regarding the
configuration of networks adapters.

4.4.2 SSA configuration
There are two possibilities for disk data replication, using RAID groups or
configuring failure groups.

A failure group in GPFS is a group of disks that share a common point of failure.
All disks that belong to an SSA adapter are in the same failure group. The disks
in SSA loops that do not share host adapters constitute different failure groups.
Hence, to use failure groups for GPFS in a cluster, at least two SSA host
adapters are required on each node. When configuring the file system, disks can
be assigned to failure groups. Then, replication of user data and/or metadata can
be specified for that file system.

For more details refer to GPFS for AIX: Concepts, Planning, and Installation
Guide.

Our configuration does not plan for data replication due to the fact that the
implementation only has one SSA adapter per node.
70 GPFS on AIX Clusters

Chapter 5. Configuring HACMP/ES

This chapter details the steps that are necessary to configure a HACMP/ES
cluster for GPFS and shows it by example for our configuration. A cluster
configuration for GPFS only requires the definition of a cluster topology.

In this chapter, we will discuss:

� Requirement onto the system environment

� Configuring the HACMP/ES cluster topology

� Starting and stopping the HACMP/ES cluster services

� Monitoring the cluster

5

© Copyright IBM Corp. 2001 71

5.1 Prerequisites
Sections 5.1.1, 5.1.2, and 5.1.3 describe the prerequisites that we need before
starting to configure the HACMP/ES cluster.

5.1.1 Security
Before starting the configuration of HACMP/ES, we need to verify the remote
access permissions regarding the system security.

Remote access permissions
On each node, the file /.rhosts needs to contain the names of all service and boot
adapters in the cluster. The operation of the cluster services daemons itself does
not depend on remote access permissions, however utilities and administrative
commands require that remote access is allowed to all cluster nodes as shown in
Example 5-1. We verify that on all cluster nodes the /.rhosts file contains the
following aliases:

Example 5-1 Aliases for all nodes in /.rhosts file

host1t/> more /.rhosts
host1t
host2t
host3t
host4t
host1e
host2e
host3e
host4e

5.1.2 Network configuration
We verify that the network configuration corresponds to our network as planned
in “Network” on page 67, and that name resolution is configured correctly.

Network interfaces
The correct configuration of network interfaces is crucial for HACMP/ES. The
following need to be verified:

� All network interfaces that are used to configure cluster adapters are in the up
state, as ascertained by the netstat command.

� The configuration of network interfaces corresponds to the one present at
boot time.

� All network interfaces that will be configured as cluster adapters belong to the
same IP subnet.
72 GPFS on AIX Clusters

We verify that the interface configuration contains all host adapters. The netstat
command is issued on all hosts.

Example 5-2 Verify network adapters are up

host1t:/> netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en1 1500 link#2 0.4.ac.3e.b3.95 857150 0 864472 289 0
en1 1500 129.40.12.1 host1e 857150 0 864472 289 0
tr0 1492 link#3 0.4.ac.ad.ce.50 1412205 0 1287386 0 0
tr0 1492 9.12 host1t 1412205 0 1287386 0 0
lo0 16896 link#1 325031 0 325563 0 0
lo0 16896 127 loopback 325031 0 325563 0 0
lo0 16896 ::1 325031 0 325563 0 0

The network interface configuration, as shown above, needs to correspond to the
configuration present at boot time.

In Example 5-3, we confirm that all adapters of one network type belong the
same IP subnet.

Example 5-3 Verify boot time configuration

host1t:/> for i in 1 2 3 4; do
> rsh host”$i”t netstat -i | grep host”$i”e
> done
en1 1500 129.40.12.1 host1e 185615 0 177040 1211 0
en1 1500 129.40.12.1 host2e 749881 0 717379 3057 0
en1 1500 129.40.12.1 host3e 765077 0 707196 0 0
en1 1500 129.40.12.1 host4e 858264 0 895507 5860 0

host1t:/> for i in 1 2 3 4; do
> rsh host”$i”t netstat -i | grep host”$i”t
> done
tr0 1492 9.12 host1t 1296792 0 1434347 0 0
tr0 1492 9.12 host2t 1721115 0 1348656 0 0
tr0 1492 9.12 host3t 177266 0 148358 0 0
tr0 1492 9.12 host4t 324299 0 250125 0 0

Name resolution
Aliases need to be configured for all IP addresses that will be used as cluster
adapters.
 Chapter 5. Configuring HACMP/ES 73

It is good practice to keep the /etc/hosts files on all cluster nodes identical and to
use a naming convention for cluster adapters that reflects the adapter function
and network membership. Example 5-4 lists all of the aliases we have defined for
our cluster adapters.

Example 5-4 Verify aliases for all cluster adapters

host1t:/> more /etc/hosts

127.0.0.1 loopback localhost # loopback (lo0) name/address
9.12.0.21 host1t host1t.itso.ibm.com
9.12.0.22 host2t host2t.itso.ibm.com
9.12.0.23 host3t host3t.itso.ibm.com
9.12.0.24 host4t host4t.itso.ibm.com
129.40.12.129 host1e host1e.itso.ibm.com
129.40.12.130 host2e host2e.itso.ibm.com
129.40.12.131 host3e host3e.itso.ibm.com
129.40.12.132 host4e host4e.itso.ibm.com

Name resolution should be configured such that name lookup is first attempted
locally. The name lookup sequence is determined by the hosts keyword in the
/etc/netsvcs.conf file as shown in Example 5-5.

Example 5-5 netsvcs.conf file

host1t:/> more /etc/netsvcs.conf
hosts = local , bind

5.1.3 System resources
HACMP/ES subsystems and GPFS generate log files that are stored in /var. The
size of /var should be sufficiently large; the RSCT subsystems will not start
unless there is enough free space available in /var. In Example 5-6, we verify that
our /var file has enough free space to start the RSCT subsystem.

Example 5-6 Checking size of /var

host1t:/> df -s /var
Filesystem 1024-blocks Free* %Used Iused %Iused Mounted on
/dev/hd9var 32768 15492 53% 524 7% /var

5.2 Configuring the cluster topology
When configuring the cluster topology, all configurations are first performed on
one node. Afterwards, cluster synchronization is necessary to distribute the
configuration to all other nodes.
74 GPFS on AIX Clusters

The following steps in the configuration of the cluster topology have to be
performed in the order below:

1. Cluster Name and ID
2. Cluster Nodes
3. Cluster Adapters

5.2.1 Cluster Name and ID
When more than one HACMP/ES cluster is created on a set of hosts that share a
common network, the cluster names and IDs within that node set must be
unique. In Example 5-7, we use the smitty hacmp command to define both the
cluster name and ID number.

Example 5-7 Defining the cluster name and ID

host1t:/> smitty hacmp
Cluster Configuration

Cluster Topology
Configure Cluster

Add a Cluster Definition
(we choose the following values)

Cluster ID 111
Cluster Name hcluster

The cluster definition can be modified at any point the cluster is not active on any
node.

5.2.2 Cluster nodes
After having defined a cluster name, the set of nodes that will belong to the
cluster can be specified. The node set can be modified at any later point.

One or more node names can be entered, separated by whitespaces as shown
in Example 5-8.

Example 5-8 Defining cluster node names

host1t:/> smitty hacmp
Cluster Configuration

Cluster Topology
Configure Nodes

Add Cluster Nodes
(the screen will include the following entries)

Node Names host1t host2t host3t host4t
 Chapter 5. Configuring HACMP/ES 75

5.2.3 Cluster adapters
By configuring an adapter for HACMP/ES, it is assigned to the network topology,
hence is monitored for failures and used for the communication in the cluster.
Each adapter will be specified to belong to a cluster network, indicating the
connectivity between adapters. We choose the following names for our cluster
networks:

gpfs_net For the adapters belonging to the Ethernet
noname_net For the adapters belonging to the Token Ring network

We configure the adapters below in Example 5-9.

Example 5-9 Defining cluster adapters

host1t:/> smitty hacmp
Cluster Configuration

Cluster Topology
Configure Adapter

Add an Adapter
(the screen will include the following entries)

Adapter IP label host1e
Network Type ether
Network Name gpfs_net
Network Attribute public
Adapter Function service
Node Name host1t

The ‘entries’ above mean the following:

Adapter IP Label: The alias of the IP address of the adapter, as it appears in
/etc/hosts, or the IP address of the adapter.

Network Type: Refers to the physical type of the network, such as Ethernet or
Token Ring. PF4 generated a list of supported type.

Network Name: The user defined name of the network to which this adapter
belongs.

Network Attribute: Refers to the function that a cluster network can have. The
network attribute can have the value public, private, or serial. We defined our
networks as public.

Adapter Function: A cluster adapter can be a boot, service, or standby adapter.
We chose service as adapter function, see “Requirements for the HACMP/ES
GPFS dedicated network” on page 69.

Node Name: The node to which this adapter belongs. The node must belong to
the set of cluster nodes that we configured above.
76 GPFS on AIX Clusters

Example 5-10 shows the configuration of an adapter for the network noname_net.

Example 5-10 Configuration of cluster adapter

Adapter IP label host1t
Network Type token
Network Name noname_net
Network Attribute public
Adapter Function service
Node Name host1t

In Example 5-11, we add the remaining three adapters from the command line.

Example 5-11 Adding adapters via the command line

host1:/> for i in 2 3 4; do
> /usr/es/sbin/cluster/utilities/claddnode -a host”$i”e:ether\
> :gpfs_net:public:service::-n host1t
> done
host1:/> for i in 2 3 4; do
> /usr/es/sbin/cluster/utilities/claddnode -a host”$i”t:token\
> :noname_net:public:service::-n host1t
> done

5.2.4 Displaying the cluster topology
After the configuration has been performed locally on host1t, we verify that our
configuration is correct with the smitty hacmp command as shown in
Example 5-12.

Example 5-12 Display cluster topology

host1t:/> smitty hacmp
Cluster Configuration

Cluster Topology
Show Cluster Topology

Show Topology Information by Network Name
Show all Networks
(the screen will look as follows)

gpfs_net public host1t host1e
 host2t host2e
 host3t host3e
 host4t host4e

noname_net public host1t host1t
 host2t host2t
 host3t host3t
 host4t host4t
 Chapter 5. Configuring HACMP/ES 77

5.3 Verification and synchronization
In the last section, the cluster topology was defined on the local node, host1t.
The configuration now needs to be synchronized as shown in Example 5-13, in
order for all other nodes in the cluster to recognize it. Cluster synchronization
needs to be performed again after any change to the cluster configuration and
also after changing certain system resources. Cluster synchronization, by
default, entails that cluster verification is run first, which validates that our
configuration does not contain conflicting settings that would cause the cluster
services to exit abnormally. If cluster verification detects an error, the smitty
hacmp command will not succeed and will give details about the configuration
errors that were found.

Example 5-13 .Synchronize cluster topology

host1t:/> smitty hacmp
Cluster Configuration

Cluster Topology
Synchronize Cluster Topology
(the screen will include the following entries)

Ignore Cluster Verification Errors? No
Emulate or Actual? actual
Skip Cluster Verification No

5.3.1 Cluster resource configuration
A configuration of HACMP/ES for GPFS does not entail defining cluster
resources. It is possible to use HACMP/ES for other applications besides GPFS.
See “Requirements for the HACMP/ES GPFS dedicated network” on page 69 for
details.

5.4 Starting the cluster
Before starting the cluster, we made sure that the system times are synchronized
on all nodes. In Example 5-14, we use the gdsh utility to simultaneouly set the
clocks on all the nodes. The subsystem of RSCT relies on a time synchronization
between all cluster nodes.

Example 5-14 Synchronize clocks on all cluster nodes

host1t:/> gdsh setclock host1t
host1t: Thu Feb 22 10:14:27 2001
host2t: Thu Feb 22 10:14:28 2001

Note: The cluster topology always needs to be synchronized.
78 GPFS on AIX Clusters

host3t: Thu Feb 22 10:14:28 2001
host4t: Thu Feb 22 10:14:28 2001

The gdsh utility is covered in Appendix C, “A useful tool for distributed
commands” on page 211.

Starting the cluster services on a node entails the startup of the HACMP/ES
cluster manager daemon and all subsystems on which it depends.

In Example 5-15, we start the cluster services on node host1t.

Example 5-15 Start cluster services

host1t:/> smitty hacmp
Cluster Services

Start Cluster Services
(the screen will include the following entries)

Start now, on system restart or both now
BROADCAST message at startup? true
Startup Cluster Lock Services? false
Startup Cluster Information Daemon? true

The previous smit screen corresponds to the following command:

host1t:/> /usr/es/sbin/cluster/etc/rc.cluster -boot -N -b -i

The above command starts the daemons of the RSCT subsystems, the
HACMP/ES cluster manager, clstrmgrES, and the clinfoES daemon.

A successful completion of rc.cluster only indicates that all daemons have
been started. We still have to wait for all events in context with the startup of the
cluster node to finish successfully.

On node host1t, we issue the clstat command, as shown in Example 5-16, to
monitor the state of the cluster on all nodes.

Example 5-16 Monitor cluster status

host1t:/> /usr/es/sbin/cluster/clstat

 clstat - HACMP for AIX Cluster Status Monitor

Cluster: hcluster (111) Thu Feb 22 10:26:01 EST 2001
 State: UP Nodes: 4
 SubState: STABLE
 Chapter 5. Configuring HACMP/ES 79

 Node: host1t State: UP
 Interface: host1e (0) Address: 129.40.12.129
 State: UP
 Interface: host1t (1) Address: 9.12.0.21
 State: UP

 Node: host2t State: DOWN
 Interface: host2e (0) Address: 129.40.12.130
 State: DOWN
 Interface: host2t (1) Address: 9.12.0.22
 State: DOWN

 Node: host3t State: DOWN
 Interface: host3e (0) Address: 129.40.12.131

 State: DOWN
 Interface: host3t (1) Address: 9.12.0.23
 State: DOWN

 Node: host4t State: DOWN
 Interface: host4e (0) Address: 129.40.12.132
 State: DOWN
 Interface: host4t (1) Address: 9.12.0.24
 State: DOWN

************************ f/forward, b/back, r/refresh, q/quit *****************

After awhile, the output of the above command should indicate that the cluster is
stable, which indicates that no more events are enqueued to be processed.

Alternatively, we can convince ourselves that the start of the cluster services has
been successful by inspecting the log files as in Example 5-17.

Example 5-17 Check cluster log files

host1t:/> more /usr/es/sbin/cluster/history/cluster.02222001
Feb 22 10:24:56 EVENT START: node_up host1t
Feb 22 10:24:58 EVENT COMPLETED: node_up host1t
Feb 22 10:24:58 EVENT START: node_up_complete host1t
Feb 22 10:24:59 EVENT COMPLETED: node_up_complete host1t

The output of the above command shows that the node_up and node_up_complete
event have completed. These are the two events that are processed by all
members when a node joins the HACMP/ES cluster.
In Example 5-18 on page 81 we can now start the cluster services on the
remaining three cluster nodes simultaneously.
80 GPFS on AIX Clusters

Example 5-18 Simultaneously start cluster services on multiple nodes

host1t:/> gdsh -w host2t,host3t,host4t \
> ‘/usr/es/sbin/cluster/etc/rc.cluster -boot -N -b -i’

The Group Services subsystem will serialize the requests of the daemons to join
the clstrmgrES subsystem. After all daemons have joined, the cluster will return
to the stable state.

A look at the log file, as shown in Example 5-19, illustrates the serialization of
events by Group Services. When the cluster daemon on a node joins the
clstrmgrES subsystem, a node_up and a node_up_complete event are run.

The file on all nodes will show the same order of events.

Example 5-19 Check cluster log files

host1t:/> more /usr/es/sbin/cluster/history/cluster.02222001
Feb 22 10:24:56 EVENT START: node_up host1t
Feb 22 10:24:58 EVENT COMPLETED: node_up host1t
Feb 22 10:24:58 EVENT START: node_up_complete host1t
Feb 22 10:24:59 EVENT COMPLETED: node_up_complete host1t
Feb 22 10:40:42 EVENT START: node_up host2t
Feb 22 10:40:42 EVENT COMPLETED: node_up host2t
Feb 22 10:40:45 EVENT START: node_up_complete host2t
Feb 22 10:40:45 EVENT COMPLETED: node_up_complete host2t
Feb 22 10:41:13 EVENT START: node_up host3t
Feb 22 10:41:14 EVENT COMPLETED: node_up host3t
Feb 22 10:41:16 EVENT START: node_up_complete host3t
Feb 22 10:41:16 EVENT COMPLETED: node_up_complete host3t
Feb 22 10:41:43 EVENT START: node_up host4t
Feb 22 10:41:44 EVENT COMPLETED: node_up host4t
Feb 22 10:41:47 EVENT START: node_up_complete host4t
Feb 22 10:41:48 EVENT COMPLETED: node_up_complete host4t

The subsystems of RSCT, Topology Services, Group Services, and Event
Management are started when starting the cluster manger subsystem. Once the
node_up event for a node has been started, we know that Topology Services
and Group Services have become active.

5.5 Monitoring the cluster
The state of the cluster and the event history usually give enough information to
verify that the cluster is operational.
 Chapter 5. Configuring HACMP/ES 81

5.5.1 The clstat command
The clstat command, as shown in Example 5-20, gives information about the
state of the cluster as a distributed subsystem and the state of individual nodes
and adapters.

Example 5-20 Cluster monitoring

host1t:/> /usr/es/sbin/cluster/clstat

 clstat - HACMP for AIX Cluster Status Monitor

Cluster: hcluster (111) Thu Feb 22 17:11:21 EST 2001
 State: UP Nodes: 4
 SubState: STABLE

 Node: host1t State: UP
 Interface: host1e (0) Address: 129.40.12.129
 State: UP
 Interface: host1t (1) Address: 9.12.0.21
 State: UP

 Node: host2t State: DOWN
 Interface: host2e (0) Address: 129.40.12.130
 State: DOWN
 Interface: host2t (1) Address: 9.12.0.22
 State: DOWN

 Node: host3t State: UP
 Interface: host3e (0) Address: 129.40.12.131

State: UP
 Interface: host3t (1) Address: 9.12.0.23
 State: UP

 Node: host4t State: DOWN
 Interface: host4e (0) Address: 129.40.12.132
 State: DOWN
 Interface: host4t (1) Address: 9.12.0.24
 State: DOWN

************************ f/forward, b/back, r/refresh, q/quit *****************

Cluster state
The cluster state refers to the state of the cluster manager as a distributed
subsystem on all nodes. It can have the values up, down, and unknown.
82 GPFS on AIX Clusters

Cluster substate
The cluster substates listed below give detailed information about the cluster.

stable
� The cluster services are active on at least one node.
� The cluster manager subsystem is in an error free state.
� No events are currently processed.

unstable
� The cluster services are active on at least one node.
� The cluster manager is currently processing events.

unknown
� The state is not determined.

reconfig
� The cluster services are active on one or more nodes in the cluster. On one

node an event is running and has exceeded the maximum time limit that is
assumed for an event to be run. This is likely due to a failure while executing
an event script.

� No new event can be processed; user intervention is necessary.

error
� The cluster services are active on at least one node.
� An error has occurred and no events can be processed.

Node state
The state of a node can have one of the following four values.

up The node is part of the cluster
down The node is not part of the cluster
joining The node is joining the cluster
leaving The node is leaving the cluster

Adapter state
The state of an adapter can have the following values:

up The adapter is currently configured, and detected as alive
by Topology Services

down The adapter is currently not configured, or a failure of it
has been detected.

The clstat command requires that the clinfoES subsystem is active on the node
on which it is issued.
 Chapter 5. Configuring HACMP/ES 83

5.5.2 Event history
The file /usr/es/sbin/cluster/history/cluster.mmddyyyy gives a list of all events that
have been run on a day, specified by the date in the filename suffix. Events are
the units for Group Services barrier synchronization in the cluster. Therefore, the
files on all nodes will give the same information regarding the sequence of events.

host1t:/> more /usr/es/sbin/cluster/history/cluster.02222001

5.5.3 Monitoring HACMP/ES event scripts
HACMP/ES event scripts are Korn shell scripts that are run on the cluster nodes
to perform the configuration changes that are required by a certain event. The file
/tmp/hacmp.out contains the output of the event scripts that are run on the local
node. See Example 5-21 for a sample output of /tmp/hacmp.out on host4t; note
that the example omits a part of the output.

Example 5-21 Execution of event scripts

host4t:/> more /tmp/hacmp.out

Feb 22 10:41:43 EVENT START: node_up host4t

node_up[124] [[high = high]]
node_up[124] version=1.10.1.23
node_up[125] node_up[125] cl_get_path
HA_DIR=es
node_up[127] NODENAME=host4t
node_up[129] HPS_CMD=/usr/es/sbin/cluster/events/utils/cl_HPS_init
node_up[130] VSD_CMD=/usr/lpp/csd/bin/hacmp_vsd_up1
node_up[131] SS_FILE=/usr/es/sbin/cluster/server.status

.

.
node_up[170] [-n -a -f /usr/es/sbin/cluster/events/utils/cl_HPS_init]
node_up[228] [REAL = EMUL]
node_up[233] cl_ssa_fence up host4t
cl_ssa_fence[70] [[high = high]]
cl_ssa_fence[70] version=1.9
cl_ssa_fence[71] cl_ssa_fence[71] cl_get_path
HA_DIR=es
cl_ssa_fence[74] echo PRE_EVENT_MEMBERSHIP=host1t host2t host3t
PRE_EVENT_MEMBERSHIP=host1t host2t host3t
cl_ssa_fence[75] echo POST_EVENT_MEMBERSHIP=host1t host2t host3t host4t
POST_EVENT_MEMBERSHIP=host1t host2t host3t host4t
cl_ssa_fence[77] EVENT=up
cl_ssa_fence[78] NODENAME=host4t
cl_ssa_fence[79] STATUS=0
84 GPFS on AIX Clusters

cl_ssa_fence[82] export EVENT_ON_NODE=host4t
cl_ssa_fence[84] [2 -gt 1]
cl_ssa_fence[91] [host4t = host4t]
cl_ssa_fence[93] [host1t host2t host3t !=]
cl_ssa_fence[95] exit 0
node_up[236] [0 -ne 0]
node_up[316] rm -f /tmp/.NFSSTOPPED
node_up[317] rm -f /tmp/.RPCLOCKDSTOPPED
node_up[356] [host4t != host4t]
node_up[375] exit 0
Feb 22 10:41:44 EVENT COMPLETED: node_up host4t

Feb 23 10:41:47 EVENT START: node_up_complete host4t

node_up_complete[62] [[high = high]]
node_up_complete[62] version=1.1.3.18
node_up_complete[63] node_up_complete[63] cl_get_path
HA_DIR=es
node_up_complete[65] NODENAME=host4t

.

.
node_up_complete[263] exit 0
Feb 22 10:41:48 EVENT COMPLETED: node_up_complete host4t

The commands that are executed during an event depend on the cluster
configuration and the system environment.

The file /tmp/hacmp.out is the main diagnostic source for errors that occur during
an event. If an event fails, one can easily localize the command that caused the
failure of the event.

5.5.4 Monitoring the subsystems
All subsystems of HACMP/ES are subscribed to the system resource controller.
We can monitor them using the lssrc command as shown in Example 5-22.

Example 5-22 List HACMP/ES subsystems

host1t:/> lssrc -a | grep active

(the output will include the following)
topsvcs topsvcs 20460 active
grpsvcs grpsvcs 20538 active
grpglsm grpsvcs 21218 active
emsvcs emsvcs 21432 active
 Chapter 5. Configuring HACMP/ES 85

emaixos emsvcs 20850 active
clstrmgrES cluster 17938 active
clsmuxpdES cluster 22204 active
clinfoES cluster 19640 active

For a complete listing of all subsystems belonging to HACMP/ES, see
Appendix E, “Subsystems and Log files” on page 229.

For the subsystems belonging to the RSCT component, a long listing is
generated by the lssrc command as shown in Example 5-23. We look at the
output lssrc generated for the Group Services subsystem:

Example 5-23 Group services subsystem

host1t:/> lssrc -ls grpsvcs
Subsystem Group PID Status
 grpsvcs grpsvcs 19162 active
3 locally-connected clients. Their PIDs:
21218(hagsglsmd) 21432(haemd) 17938(clstrmgr)
HA Group Services domain information:
Domain established by node 1
Number of groups known locally: 3
 Number of Number of local
Group name providers providers/subscribers
ha_em_peers 4 1 0
CLRESMGRD_111 4 1 0
CLSTRMGR_111 4 1 0

The above contains the groups in which clients of Group Services on host1t
participate. Three clients exist on host1t, hagsglsmd, haemd, and clstrmgr.

5.5.5 Log files
The log files that are generated by the daemons of the cluster group and
HACMP/ES utilities can be found in the below smit menu in Example 5-24.

Example 5-24 Show a cluster log directory

host1t:/> smitty hacmp
Cluster System Management

Cluster Log Management
Change/Show a Cluster Log Directory

The most commonly used log files are:

� /tmp/hacmp.out

Generated by HACMP/ES event scripts
86 GPFS on AIX Clusters

� /usr/es/adm/cluster.log

Generated by cluster scripts and daemons

� /usr/es/sbin/cluster/history/cluster.mmdd

Cluster history file generated daily

Further log files exist, that contain debugging information. For a complete list of
all log files maintained by all subsystems of RSCT and HACMP/ES, see
Appendix E, “Subsystems and Log files” on page 229.

5.6 Stopping the cluster services
Stopping the cluster services entails terminating all subsystems in a controlled
way and reversing changes to the AIX configuration that were made when
starting the cluster. Example 5-25 shows the use of the smitty hacmp command
to stop the cluster services.

Example 5-25 Stop cluster services–smitty
host1t:/> smitty hacmp

Cluster Services
Stop Cluster Services
(the screen will include the following entries)

Stop now, on system restart or both now
BROADCAST cluster shutdown? true
Shutdown mode graceful

Shutdown mode specifies what reconfigurations of the system environment will
be performed when resource groups are online on this node. We do not have
resource groups configured, hence the setting for this value in our case will not
make a difference.

The above smit screen in Example 5-25 corresponds to the following clstop
command in Example 5-26.

Example 5-26 Stop cluster services–clstop
host1t:/> /usr/es/sbin/cluster/utilities/clstop -y -N -g
Feb 22 2001 18:22:41/usr/es/sbin/cluster/utilities/clstop: called with flags -y
-N -g

Broadcast message from root@host1t (tty) at 18:22:41 ...

HACMP/ES for AIX on shutting down.
Please exit any cluster applications...
 Chapter 5. Configuring HACMP/ES 87

0513-044 The clstrmgrES Subsystem was requested to stop.
0513-044 The clinfoES Subsystem was requested to stop.
0513-044 The clsmuxpdES Subsystem was requested to stop.

A successful completion of the above command only indicates that a request to
stop has been issued successfully to all daemons. We still have to wait until all
events in context with the stopping of the cluster node have successfully finished.
In Example 5-27, we use the lssrc command to verify that all of the cluster
subsystems are inoperative.

Example 5-27 Check status of cluster subsystems

host1t:/> lssrc -g cluster
Subsystem Group PID Status
 clstrmgrES cluster inoperative
 clsmuxpdES cluster inoperative
 clinfoES cluster inoperative

Note that after successful exit of the cluster manager, the subsystems of RSCT
will terminate as well as shown in Example 5-28.

Example 5-28 Check status of RSCT subsystems

host1t:/> lssrc -a | grep svcs
 topsvcs topsvcs inoperative
 grpsvcs grpsvcs inoperative
 grpglsm grpsvcs inoperative
 emsvcs emsvcs inoperative
 emaixos emsvcs inoperative

In Example 5-29, we stop the cluster services on the remaining three nodes
using the Cluster Single Point of Control (CSPOC) facility.

Example 5-29 Stop cluster services

host1t:\> smitty hacmp
Cluster system Management

HACMP for AIX Cluster Services
Stop Cluster Services
(the screen will include the following entries)

* Stop now, on system restart or both now
 Stop Cluster Services on these nodes [host2t,host3t,host4t]
 BROADCAST cluster shutdown? true
* Shutdown mode graceful

(graceful or graceful with takeover, forced)
88 GPFS on AIX Clusters

We verify that the cluster services have stopped on all nodes, by issuing the
above command lssrc -g cluster on the remaining three nodes, which will
show that the subsystems of the cluster group have become inactive.

When a node leaves the HACMP/ES cluster, a node_down, and node_down
complete event are run on all active cluster nodes. The sluster log file in
Example 5-30 shows these events starting and completing.

Example 5-30 Check cluster log files

host2t:/> more /usr/es/sbin/cluster/history/cluster.02222001
...
Feb 22 10:41:43 EVENT START: node_up host4t
Feb 22 10:41:44 EVENT COMPLETED: node_up host4t
Feb 22 10:41:47 EVENT START: node_up_complete host4t
Feb 22 10:41:48 EVENT COMPLETED: node_up_complete host4t
Feb 22 17:50:13 EVENT START: node_down host1t graceful
Feb 22 17:50:14 EVENT COMPLETED: node_down host1t graceful
Feb 22 17:50:15 EVENT START: node_down_complete host1t graceful
Feb 22 17:50:17 EVENT COMPLETED: node_down_complete host1t graceful
Feb 22 17:50:28 EVENT START: node_down host2t graceful
Feb 22 17:50:28 EVENT COMPLETED: node_down host2t graceful
Feb 22 17:50:29 EVENT START: node_down_complete host2t graceful
Feb 22 17:50:31 EVENT COMPLETED: node_down_complete host2t graceful
 Chapter 5. Configuring HACMP/ES 89

90 GPFS on AIX Clusters

Chapter 6. Configuring GPFS and SSA
disks

This chapter steps you through the necessary commands to create volume
groups, logical volumes, and the various mmfs configurations that allowed us to
finally mount a GPFS file system. Our choice of technique and scripts does not
reflect the only way to perform the following tasks; it is meant to be simple to
follow.

� Create the GPFS cluster

� Create the nodeset

� Start GPFS

� Create the SSA volume groups and logical volumes

� Create and mount the GPFS file system

6

© Copyright IBM Corp. 2001 91

6.1 Create the GPFS cluster
Make sure that all appropriate HACMP subsystems are running by either
observing that the /usr/es/sbin/cluster/clstat indicators are all green or running
lssrc -a | egrep “clstrmgrES|grpsvcs|topsvcs” on every node, as shown in
Example 6-1. Do not proceed unless the subsystems are active, refer to
Chapter 5, “Configuring HACMP/ES” on page 71. Use of the lssrc -ls grpsvcs
as explained in Section 5.5.4, “Monitoring the subsystems” on page 85 is also
useful.

Example 6-1 Verify HACMP subsystems are running

host1t:/> lssrc -a | egrep "clstrmgrES|grpsvcs|topsvcs"
 topsvcs topsvcs 20460 active
 grpsvcs grpsvcs 20538 active
 grpglsm grpsvcs 21218 active
 clstrmgrES cluster 17938 active

6.1.1 Create the GPFS nodefile
In our case we created a file /tools/gpfs_config/gpfs_nodefile that was visible to
every node where we expected to mount this file system. Again we used our NFS
mounted /tools file system to simplify this task. An alternative would be to create
the gpfs_nodefile (an arbitrary name) on every node; the contents of this file is
listed in Example 6-2. The names selected in this file reflect the ethernet
addresses of these nodes in our dedicated network for GPFS internal
communications. We designated a secondary sever and a primary server node,
but we could have also created a file that limited the nodes that could be File
System Manager nodes. That file is called /var/mmfs/etc/cluster.preferences and
would contain a simple list of eligible nodes.

Example 6-2 Ethernet node names

host1t:/tools/gpfs_config> cat gpfs_nodefile
host1e
host2e
host3e
host4e

6.1.2 Create the cluster commands
Example 6-3 on page 93 illustrates how to use the mmcrcluster command to
create a GPFS cluster from a set of nodes.

� mmcrcluster

– -t hacmp type of cluster
92 GPFS on AIX Clusters

– -p host1e primary GPFS configuration data server name (pick any)

– -s host2e secondary GPFS configuration data server name (pick any)

– -n /tools/gpfs_config/gpfs_node our nodefile location and name (list of
node descriptors)

Example 6-3 Create GPFS cluster

host1t:/> mmcrcluster -t hacmp -p host1e -s host2e -n \
/tools/gpfs_config/gpfs_node

mmcrcluster: Command successfully completed
mmcrcluster: Propagating the changes to all affected nodes.
This is an asynchronous process.

To verify that this command was successful, run the mmlscluster command, as
shown in Example 6-4.

Example 6-4 List GPFS cluster information

host1t:/> mmlscluster

GPFS cluster information
========================

GPFS system data repository servers:

 Primary server: host1e
 Secondary server: host2e

Cluster nodes that are not assigned to a nodeset:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 3 host3e 129.40.12.131 host3e
 4 host4e 129.40.12.132 host4e

If you are unhappy with the GPFS cluster you created, run mmdelcluster, as in
Example 6-5, to remove the cluster and start over.

Example 6-5 Delete GPFS cluster

host1t:/tools/gpfs_config> mmdelcluster -n gpfs_nodefile
mmdelcluster: Command successfully completed
 Chapter 6. Configuring GPFS and SSA disks 93

6.2 Create the nodeset
Within the GPFS cluster we just defined we need to include one or more GPFS
nodesets. Any node can only be in one nodeset at a time but can be transferred
between nodesets when desired.

6.2.1 Create dataStrucureDump
We decided a better place for the mmfs dumps was under the /tmp file system.
This must be created on all nodes. In Example 6-6, we used gdsh “mkdir
/tmp/mmfs” to make the directory and we inform the configuration about it in the
mmconfig command.

Example 6-6 Create mmfs dumps directory

host1t:/> gdsh “mkdir /tmp/mmfs”
host1t:/>

host1t:/> gdsh "ls -l /tmp/mmfs"
host1t: total 0
host2t: total 0
host3t: total 0
host4t: total 0

6.2.2 The mmconfig command
This commands defines a new GPFS nodeset and configures GPFS prior to
creating the file. We defined the following parameters:

� mmconfig

– -n gpfs_nodefile (NodeFile)

– -A autostart GFS daemons is yes

– -C set1 (NodesetId, any name will do)

– -D /tmp/mmfs (dataStructureDump, dump file location)

– -p 80M (pagepool size)

After running the mmconfig command, we ran mmlsnode -a and mmlsconfig, as
shown in Example 6-7 on page 95, to verify proper configuration. Notice that
Filesystems in nodeset set1 replies with (none). We also checked for the
existence of /etc/cluster.nodes, /var/mmfs/gen/mmsdrfs and
/var/mmfs/etc/mmfs.cfg, three very important files for GPFS.
94 GPFS on AIX Clusters

Example 6-7 Verify configuration

host1t:/tools/gpfs_config> mmconfig -n gpfs_nodefile -A -C set1 -D \
/tmp/mmfs -p 80M

mmconfig: Command successfully completed
mmconfig: Propagating the changes to all affected nodes.
This is an asynchronous process.
host1t:/tools/gpfs_config> mmlsnode -a
GPFS nodeset Node list
------------- ---
 set1 host1e host2e host3e host4e
host1t:/tools/gpfs_config> mmlsconfig
Configuration data for nodeset set1:

pagepool 80M
dataStructureDump /tmp/mmfs
multinode yes
autoload yes
useSingleNodeQuorum no
wait4RVSD no
comm_protocol TCP
clusterType hacmp
group Gpfs.set1
recgroup GpfsRec.set1
File systems in nodeset set1:

(none)

6.3 Start GPFS
Start the subsystem for GPFS with the mmstartup command, as shown in
Example 6-8, on one node (which will then propagate to all the nodes in the
named set), or use the startsrc -s mmfs on all appropriate nodes. Next, verify
the processes are running on all appropriate nodes by gdsh “lssrc -s mmfs”.
We cannot create a file system at this point until we have defined the volume
groups and logical volumes for the SSA drives.

Example 6-8 Start GPFS subsystem

host1t:/tools/gpfs_config> mmstartup -C set1
Fri Feb 9 11:21:32 EST 2001: mmstartup: Starting GPFS ...
host1e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 24176.
host2e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 17626.
host3e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 11910.
host4e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 14846.
 Chapter 6. Configuring GPFS and SSA disks 95

host1t:/tools/gpfs_config> gdsh "lssrc -s mmfs"
host1t: Subsystem Group PID Status
host1t: mmfs aixmm 24176 active
host2t: Subsystem Group PID Status
host2t: mmfs aixmm 17626 active
host3t: Subsystem Group PID Status
host3t: mmfs aixmm 11910 active
host4t: Subsystem Group PID Status
host4t: mmfs aixmm 14846 active

6.4 Create the SSA volume groups and logical volumes
We had to perform several steps on all nodes in our cluster in order to make the
SSA disks usable by GPFS.

A high level overview of these steps is:

� On one node, define volume groups and logical volumes on each disk for use
by GPFS.

� On the remaining nodes in the GPFS cluster, import volume groups to make
the logical volume definitions known to each node’s ODM.

It is the logical volumes that are created and made available to each node that
GPFS file systems are made up of. Only after the logical volumes are created
and made available to each node, can GPFS file systems be created.

Since various machines can have different numbers of internal disks and SSA
disks, we could not depend on the pdisk# and hdisk# being the same across all
four of our nodes. We needed to know this to build volume groups so we could in
turn build logical volumes that GPFS pointed to during its configuration step. The
following is a brief outline of the steps needed to complete this task. Following
this is a high level overview of the procedure for creating the volume groups and
logical volumes.

� Perform on host1t only

– mkvg -n -f -s 16 -c -y gpfs(0-15) hdisk(x) make volume group

– varyonvg gpfsvg(0-15) vary on volume group

– mklv -b n -w n -y gpfslv(0-15) gpfsvg(0-15) 542 make logical
volume

– varyoffvg gpfsvg(0-15) vary off volume group
96 GPFS on AIX Clusters

� Perform the following three steps completely on each node before moving on
to the next node. This is only to be done on the rest of the nodes in the cluster
(host2t, host3t and host4t in our case).

– importvg -y gpfs(0-15) hdisk(x) import volume group

– chvg -a n gpfsvg(0-15) make volume group non auto varyon

– varyoffvg gpfsvg(0-15) vary off volume group

6.4.1 Create PVID list
The match between pdisks and hdisk is not always the same across different
nodes. In Example 6-9, we queried each node to discover what node referred to
pdisk0.

Example 6-9 Nodes and pdisk

host1t:/> gdsh “ssaxlate -l pdisk0”
host1t: hdisk3
host2t: hdisk3
host3t: hdisk2
host4t: hdisk2

Notice that pdisk0 is hdisk3 on two nodes (host1t and host2t) while it is hdisk2 on
two other nodes (host3t and host4t). The only descriptor guaranteed to be
consistent is the physical volume ID (PVID) which is the middle number in the
lspv command, as shown in Example 6-10. Refer to Appendix A, “Mapping
virtual disks to physical SSA disks” on page 201, for a detailed explanation of
translating between pdisk numbers and hdisk numbers.

Example 6-10 List physical volumes

host1t:/> lspv
hdisk0 000b4a7df90e327d rootvg
hdisk1 000b4a7de4b48b4f rootvg
hdisk2 000b4a7d1075fdbf toolsvg
hdisk3 000007024db58359 None
hdisk4 000007024db5472e None
hdisk5 000007024db54fb4 None
hdisk6 000007024db5608a None
hdisk7 000007024db571ba None
hdisk8 000007024db5692c None
hdisk9 000158511eb0f296 None
hdisk10 000007024db57a49 None
hdisk11 000007024db58bd3 None
hdisk12 000007024db53eac None
hdisk13 000007024db5361d None
hdisk14 000007024db51c4b None
 Chapter 6. Configuring GPFS and SSA disks 97

hdisk15 000007024db524ce None
hdisk16 000007024db52d7b None
hdisk17 000007024db513d2 None
hdisk18 000007024db55810 None

We can run lspv | awk ‘{print $2}’ > logvolpvid, as shown in Example 6-11,
to create a file with just PVIDs then eliminate the entries that are not the SSA
disks we want for our file system (SCSI disks or other SSAs). This file can then
be used to loop commands we need to define the volume groups properly. We
also could have run ssadisk -a ssa0 -L and ssadisk -a ssa0 -P to make these
determinations, but spare SSA disks would have to be removed manually.

Example 6-11 Create file with only PVIDs

host1t:/tools/ralph> lspv | awk '{print $2}' > logvolpvid

host1t:/tools/ralph> cat logvolpvid
000007024db58359
000007024db5472e
000007024db54fb4
000007024db5608a
000007024db571ba
000007024db5692c
000158511eb0f296
000007024db57a49
000007024db58bd3
000007024db53eac
000007024db5361d
000007024db51c4b
000007024db524ce
000007024db52d7b
000007024db513d2
000007024db55810

6.4.2 Make SSA volume groups
We made a volume group for every SSA disk attached to node host1t (16 disks),
incrementing the volume group name and selecting the disks in the order they
appeared in the lspv command and stored in the file logvolpvid.

� mkvg

– -n do not vary on on restart

– -f force

– -s 16 PP size

– -c concurrent
98 GPFS on AIX Clusters

– -y gpfsvg(x) volume group name, we’ll vary the x from 0-15

When we ran the following script, shown in Example 6-12, we were able to create
a volume group on all our disks.

Example 6-12 Make SSA volume groups

#!/usr/bin/ksh
j=0
for i in `cat logvolpvid`
do
hdisk=`lspv | grep $i | awk '{print $1}'`
mkvg -n -f -s 16 -c -y gpfs$j $hdisk
j=`expr $j + 1`

done

To verify the successful creation, run the lspv command, as shown in
Example 6-13. Notice that the gpfsvg names start at 0 and continue to 15.

Example 6-13 Verify creation of SSA volume groups

host1t:/tools/paden/config> lspv
hdisk0 000b4a7df90e327d rootvg
hdisk1 000b4a7de4b48b4f rootvg
hdisk2 000b4a7d1075fdbf toolsvg
hdisk3 000007024db58359 gpfsvg0
hdisk4 000007024db5472e gpfsvg1
hdisk5 000007024db54fb4 gpfsvg2
hdisk6 000007024db5608a gpfsvg3
hdisk7 000007024db571ba gpfsvg4
hdisk8 000007024db5692c gpfsvg5
hdisk9 000158511eb0f296 gpfsvg6
hdisk10 000007024db57a49 gpfsvg7
hdisk11 000007024db58bd3 gpfsvg8
hdisk12 000007024db53eac gpfsvg9
hdisk13 000007024db5361d gpfsvg10
hdisk14 000007024db51c4b gpfsvg11
hdisk15 000007024db524ce gpfsvg12
hdisk16 000007024db52d7b gpfsvg13
hdisk17 000007024db513d2 gpfsvg14
hdisk18 000007024db55810 gpfsvg15

6.4.3 Vary on the volume groups
We now need to vary on the volume groups in order to build the logical volumes.
Since the volume groups are now in numerical order (0 - 15), the simplest way to
vary on all of them is with a while loop, as shown in Example 6-14 on page 100.
 Chapter 6. Configuring GPFS and SSA disks 99

Example 6-14 Vary on the volume groups

#!/usr/bin/ksh
i=0
while ["$i" -le 15]
do
varyonvg gpfsvg$i
i=`expr $i + 1`

done

To verify this operation was successful, we ran the lsvg -o command, as shown
in Example 6-15, which only shows volume groups that are varied on, making
sure all sixteen disks were present and ignoring other volume groups such as
rootvg. We also ran the lsvg gpfsvg(0-15) command to view the details of each
volume group. Pay particular attention to the line Concurrent : Capable, it’s
important all volume groups be concurrent capable or simultaneous sharing will
not be possible.

Example 6-15 List volume groups

host1t:/tools/ralph> lsvg -o
gpfsvg15
gpfsvg14
gpfsvg13
gpfsvg12
gpfsvg11
gpfsvg10
gpfsvg9
gpfsvg8
gpfsvg7
gpfsvg6
gpfsvg5
gpfsvg4
gpfsvg3
gpfsvg2
gpfsvg1
gpfsvg0
toolsvg
rootvg

host1t:/tools/ralph> lsvg gpfsvg0
VOLUME GROUP: gpfsvg0 VG IDENTIFIER: 000b4a7d70d6b2e7
VG STATE: active PP SIZE: 16 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 542 (8672 megabytes)
MAX LVs: 256 FREE PPs: 0 (0 megabytes)
LVs: 1 USED PPs: 542 (8672 megabytes)
OPEN LVs: 1 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
100 GPFS on AIX Clusters

ACTIVE PVs: 1 AUTO ON: no
Concurrent: Capable Auto-Concurrent: Disabled
VG Mode: Non-Concurrent
MAX PPs per PV: 1016 MAX PVs: 32

6.4.4 Make logical volume
Example 6-16 shown the script we used to make GPFS logical volumes.

� mklv

– -b n bad block relocation no
– -w n mirror write no
– -y gpfslv(x) select a logical volume name
– gpfsvg(x) 542 the maximum blocks a 9.1GB SSA disk can hold

Example 6-16 Make logical volume

#!/usr/bin/ksh
i=0
while ["$i" -le 15]
do
mklv -b n -w n -y gpfslv$i gpfsvg$i 542
i=`expr $i + 1`

done

To verify success, we can run lslv gpfslv(x), as shown in Example 6-17,
against every GPFS logical volume we just created. Only gpfslv0 is displayed for
simplicity.

Example 6-17 List GPFS logical volumes

host1t:/tools/ralph> lslv gpfslv0
LOGICAL VOLUME: gpfslv0 VOLUME GROUP: gpfsvg0
LV IDENTIFIER: 000b4a7d70d6b2e7.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 542 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 542 PPs: 542
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV ?: yes
 Chapter 6. Configuring GPFS and SSA disks 101

6.4.5 Vary off the volume groups
When we finished defining the logical volumes, we had to vary off the volume
groups from host1t. We used a while loop, as shown in Example 6-18, to address
all the volume groups and vary them off and confirmed this was successful by
running lsvg -o, as shown in Example 6-19, to make sure they were unavailable
to host1t.

Example 6-18 Vary off the volume groups

#!/usr/bin/ksh
i=0
while ["$i" -le 15]
do
varyoffvg gpfsvg$i
i=`expr $i + 1`

done

Example 6-19 List volume groups

host1t:/tools/ralph> lsvg -o
toolsvg
rootvg

6.4.6 Import the volume groups
� importvg

– -y gpfsvg(x) name the volume group

This step, and the following four steps, must be done on each node completely
before moving on to the next node. Again, we must match (synchronize) what the
current node calls its PVID and its hdisk(x) with the gpfsvg(x) we gave that disk
on the first node (host1t). An lspv shows that relationship but we want to assign
the gpfsvg(0-15) IDs in the same order as the PVIDs appear in the file logvolpvid
we created earlier. We will use the gdsh commands, so we must use absolute
paths wherever required. Again, the NFS mounted /tools directory is very handy
to make this information available to all nodes simultaneously. To import the
volume groups onto the second node (host2t) run the following script, shown in
Example 6-20 on page 103. Scripts can be named and placed in the /tools
directory as we did, or they can be slightly modified and run directly from the
command line.
102 GPFS on AIX Clusters

Example 6-20 Import volume groups

#!/usr/bin/ksh
j=0
for i in `cat /tools/ralph/logvolpvid`
do
hdisk=`lspv | grep $i | awk '{print $1}'`
importvg -y gpfsvg$i $hdisk
j=`expr $j + 1`

done

We confirmed the success of this command by running lsvg on that node and
observing that, along with the existing rootvg volume group, all sixteen GPFS
volume groups should now exist. An alternate method is to run lspv, as shown in
Example 6-21, which shows additional information. We do not need to run
varyonvg at this point, since importvg automatically varies on the volume groups.

Example 6-21 List physical volumes

host1t:/tools/ralph> gdsh -w host2t "lspv"
host2t: hdisk0 000b4a9dcac1948a rootvg
host2t: hdisk1 000b4a9dcac192ef rootvg
host2t: hdisk2 000444527adfc8bd None
host2t: hdisk3 000007024db58359 gpfsvg0
host2t: hdisk4 000007024db5472e gpfsvg1
host2t: hdisk5 000007024db54fb4 gpfsvg2
host2t: hdisk6 000007024db5608a gpfsvg3
host2t: hdisk7 000007024db571ba gpfsvg4
host2t: hdisk8 000007024db5692c gpfsvg5
host2t: hdisk9 000158511eb0f296 gpfsvg6
host2t: hdisk10 000007024db57a49 gpfsvg7
host2t: hdisk11 000007024db58bd3 gpfsvg8
host2t: hdisk12 000007024db53eac gpfsvg9
host2t: hdisk13 000007024db5361d gpfsvg10
host2t: hdisk14 000007024db51c4b gpfsvg11
host2t: hdisk15 000007024db524ce gpfsvg12
host2t: hdisk16 000007024db52d7b gpfsvg13
host2t: hdisk17 000007024db513d2 gpfsvg14
host2t: hdisk18 000007024db55810 gpfsvg15

6.4.7 Change the volume group
� chvg

– -a n gpfs(x) auto activation no
 Chapter 6. Configuring GPFS and SSA disks 103

We cannot allow any node to grab the disks and mount them, so auto activation
on all nodes for all GPFS disks must be set to no. That can be checked by
running lsvg gpfsvg(x) | grep AUTO on every GPFS volume group and
observing the word “no” follows AUTO ON. We already set that to no on host1t
during the mkvg command, now we must also do it on the rest of the nodes in
turn. In Example 6-22, another simple while loop will assist us. Run gdsh -w
host2t /tools/ralph/changevg, the script changevg follows.

Example 6-22 Change volume groups

#!/usr/bin/ksh
i=0
while ["$i" -le 15]
do
chvg -a n gpfsvg$i
i=`expr $i + 1`

done

6.4.8 Vary off the volume groups
In Example 6-23, the following while loop is identical to the one used earlier on
host1t and the verification test is the same, run lsvg -o and make sure the
volume groups are gone. We cannot export the volume group unless it is varied
off.

Example 6-23 Vary off volume groups

#!/usr/bin/ksh
i=0
while ["$i" -le 15]
do
varyoffvg gpfsvg$i
i=`expr $i + 1`

done

Step through all remaining nodes (in our case, do host3t then host4t, since we
just did host2t).

6.5 Create and mount the GPFS file system
These final steps will bring everything else together.
104 GPFS on AIX Clusters

6.5.1 Create a disk descriptor file
A descriptor must be passed to GPFS for every disk in the file system. This
descriptor took the form of DiskName::::FailureGroup. In our case, shown in
Example 6-24, the disk name was the logical volume name and since all disks
are seen by all nodes, there can only be one failure group. This file must be
available on all nodes. We elected to place this file in the NFS mounted /tools
directory as /tools/gpfs_config/disk.desc and arbitrarily chose a failure group
number of one.

Example 6-24 Disk descripton file

host1t:/tools/gpfs_config> cat disk.desc
gpfslv0::::1
gpfslv1::::1
gpfslv2::::1
gpfslv3::::1
gpfslv4::::1
gpfslv5::::1
gpfslv6::::1
gpfslv7::::1
gpfslv8::::1
gpfslv9::::1
gpfslv10::::1
gpfslv11::::1
gpfslv12::::1
gpfslv13::::1
gpfslv14::::1
gpfslv15::::1

6.5.2 Run the mmcrfs create file system command
In Example 6-25, the mmcrfs command will create the GPFS file system based
on the attached parameters.

� mmcrfs

– /gpfs mount point for the gpfs file system

– gpfs the device name of the file system to be created

– -F disk.desc points to file containing list of disk descriptors

– -C set1the nodeset identifier you want the file system to belong to

– -A no do not automatically mount the file system (personal choice)

Example 6-25 Create file system

host1t:/tools/gpfs_config> mmcrfs /gpfs1 gpfs1 -F disk.desc -C set1 -A no
The following disks of gpfs1 will be formatted on node host1t:
 gpfslv0: size 8880128 KB
 Chapter 6. Configuring GPFS and SSA disks 105

 gpfslv1: size 8880128 KB
 gpfslv2: size 8880128 KB
 gpfslv3: size 8880128 KB
 gpfslv4: size 8880128 KB
 gpfslv5: size 8880128 KB
 gpfslv6: size 8880128 KB
 gpfslv7: size 8880128 KB
 gpfslv8: size 8880128 KB
 gpfslv9: size 8880128 KB
 gpfslv10: size 8880128 KB
 gpfslv11: size 8880128 KB
 gpfslv12: size 8880128 KB
 gpfslv13: size 8880128 KB
 gpfslv14: size 8880128 KB
 gpfslv15: size 8880128 KB
Formatting file system ...
Creating Inode File
Creating Allocation Maps
Clearing Inode Allocation Map
Clearing Block Allocation Map
 41 % complete on Fri Feb 9 11:53:20 2001
 86 % complete on Fri Feb 9 11:53:25 2001
 100 % complete on Fri Feb 9 11:53:26 2001
Flushing Allocation Maps
Completed creation of file system /dev/gpfs1.
All disks up and ready
mmcrfs: Propagating the changes to all affected nodes.
This is an asynchronous process.

In Example 6-26, we verified the file system was created by observing the new
entry in the /etc/filesystems. We ran the following cat command on all nodes to
make sure.

Example 6-26 Verify creation of the file system

host1t:/tools/gpfs_config> cat /etc/filesystems | grep -p /gpfs1
/gpfs1:
 dev = /dev/gpfs1
 vfs = mmfs
 nodename = -
 mount = false
 type = mmfs
 account = false
106 GPFS on AIX Clusters

Another verification step is to run the lslv -l gpfsls(x) command on all nodes,
as shown in Example 6-27. We built a while loop and ran it on every node. Only
host1t is shown for simplification.

Example 6-27 List logical volumes

#!/usr/bin/ksh
i=0
while ["$i" -le 15]
do
lslv -l gpfslv$i
i=`expr $i + 1`
done

host1t:/tools/ralph> testfs | pg
gpfslv0:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk3 542:000:000 19% 109:108:108:108:109
gpfslv1:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk4 542:000:000 19% 109:108:108:108:109
gpfslv2:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk5 542:000:000 19% 109:108:108:108:109
gpfslv3:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk6 542:000:000 19% 109:108:108:108:109
gpfslv4:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk7 542:000:000 19% 109:108:108:108:109
gpfslv5:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk8 542:000:000 19% 109:108:108:108:109
gpfslv6:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk9 542:000:000 19% 109:108:108:108:109
gpfslv7:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk10 542:000:000 19% 109:108:108:108:109
gpfslv8:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk11 542:000:000 19% 109:108:108:108:109
gpfslv9:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk12 542:000:000 19% 109:108:108:108:109
gpfslv10:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk13 542:000:000 19% 109:108:108:108:109
gpfslv11:N/A
PV COPIES IN BAND DISTRIBUTION
 Chapter 6. Configuring GPFS and SSA disks 107

hdisk14 542:000:000 19% 109:108:108:108:109
gpfslv12:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk15 542:000:000 19% 109:108:108:108:109
gpfslv13:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk16 542:000:000 19% 109:108:108:108:109
gpfslv14:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk17 542:000:000 19% 109:108:108:108:109
gpfslv15:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk18 542:000:000 19% 109:108:108:108:109

6.5.3 Mount the file system
Once the verifications are complete, run the mount command on all nodes by
entering gdsh “mount /gpfs1”. Another mount command is gdsh “mount -t
mmfs” which accomplishes the same thing. The simplest way to verify is a df
command to all nodes and compare the results, as shown in Example 6-28.
Finally cd to the new file system, touch a file then rm that file.

Example 6-28 Display file systems on all nodes

host1t:/tools/ralph> gdsh "df -k /gpfs1"
host1t: Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
host1t: /dev/gpfs1 142077952 141965568 1% 12 1% /gpfs1
host2t: Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
host2t: /dev/gpfs1 142077952 141965568 1% 12 1% /gpfs1
host3t: Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
host3t: /dev/gpfs1 142077952 141965568 1% 12 1% /gpfs1
host4t: Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
host4t: /dev/gpfs1 142077952 141965568 1% 12 1% /gpfs1

host1t:/tools/ralph> cd /gpfs1
host1t:/gpfs1> ls -l
total 0
host1t:/gpfs1> touch test
host1t:/gpfs1> ls -l
total 0
-rw-r--r-- 1 root system 0 Feb 13 16:38 test
host1t:/gpfs1> rm test
host1t:/gpfs1> ls -l
total 0
108 GPFS on AIX Clusters

Chapter 7. Typical administrative tasks

To keep a GPFS file system viable to its users requires monitoring, tuning, and
alterations. The original mission for the file system will change over time so the
parameters for HACMP and GPFS will have to be updated. Some of these
changes are temporary, due to the reality of hardware interruptions, while others
become permanent in order to achieve a desired goal.

7

© Copyright IBM Corp. 2001 109

7.1 GPFS administration
A properly configured /.rhost file must exist on every node of the GPFS cluster.
This requirement only exists for the non-SP, or GPFS, cluster environment.

7.1.1 Managing the GPFS cluster
Some of the commands are dependent on the success of previous operations.
Wherever possible, we step completely through each process.

GPFS cluster information
To list the current configuration for the cluster, run mmlscluster, as shown in
Example 7-1. This command displays the current GPFS system data repositories
(GSD), unassigned nodes and nodes within a nodeset.

Example 7-1 List GPFS cluster information

host1t:/> mmlscluster

GPFS cluster information
========================

GPFS system data repository servers:

 Primary server: host1e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 3 host3e 129.40.12.131 host3e
 4 host4e 129.40.12.132 host4e

Deleting nodes from a cluster
Removing a node from a GPFS cluster first requires us to delete the node from
the nodeset. This procedure, shown in Example 7-2 on page 111, is one of the
more involved ones since the mmfs subsystem also has to be stopped and
mmdelnode -c has to be run to adjust the list of cluster nodes in the GPFS
configuration data. We have to stop mmfs on all nodes in the cluster whenever the
-c option is specified. The node we delete will not be the primary or secondary
GPFS system data repository server.
110 GPFS on AIX Clusters

Order of events
� mmshutdown everywhere (does an automatic umount of the file system)
� mmdelnode the node to remove
� mmdelcluster the node to remove
� mmstartup to restore the mmfs subsystem to active
� mount the file system

Example 7-2 Deleting nodes from a cluster

host1t:/> mmshutdown -a
Thu Feb 22 11:52:16 EST 2001: mmshutdown: Starting force unmount of GPFS
filesystems
host1e: forced unmount of /gpfs1
host2e: forced unmount of /gpfs1
host4e: forced unmount of /gpfs1
host3e: forced unmount of /gpfs1
Thu Feb 22 11:52:21 EST 2001: mmshutdown: Shutting down GPFS daemons
host1e: Shutting down!
host1e: 0513-044 The mmfs Subsystem was requested to stop.
host2e: Shutting down!
host2e: 0513-044 The mmfs Subsystem was requested to stop.
host4e: Shutting down!
host4e: 0513-044 The mmfs Subsystem was requested to stop.
host3e: Shutting down!
host3e: 0513-044 The mmfs Subsystem was requested to stop.
Thu Feb 22 11:52:24 EST 2001: mmshutdown: Finished

host1t:/> mmdelnode -c -C set1 host3e
Verifying GPFS is stopped on all nodes ...
mmdelnode: Propagating the changes to all affected nodes.
This is an asynchronous process.

host1t:/> mmlscluster

GPFS cluster information
========================

GPFS system data repository servers:

 Primary server: host1e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 4 host4e 129.40.12.132 host4e

Cluster nodes that are not assigned to a nodeset:
 Chapter 7. Typical administrative tasks 111

 3 host3e 129.40.12.131 host3e

host1t:/> mmlsnode -a
GPFS nodeset Node list
------------- ---
 set1 host1e host2e host4e

host1t:/> mmdelcluster host3e
mmdelcluster: Propagating the changes to all affected nodes.
This is an asynchronous process.
host1t:/> mmlscluster

GPFS cluster information
========================

GPFS system data repository servers:

 Primary server: host1e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 4 host4e 129.40.12.132 host4e

host1t:/> mmstartup -a
Wed Feb 21 17:38:26 EST 2001: mmstartup: Starting GPFS ...
host1e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 17268.
host2e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 18092.
host4e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 18442.

host1t:/> gdsh "ps -ef | grep mmfs"
host1t: root 33300 3462 0 16:12:47 - 0:01 /usr/lpp/mmfs/bin/mmfsd
host2t: root 11622 3886 0 16:17:33 - 0:02 /usr/lpp/mmfs/bin/mmfsd
host4t: root 16730 3118 0 16:27:01 - 0:01 /usr/lpp/mmfs/bin/mmfsd

host1t:/> gdsh “mount /gpfs1”

host1t:/> gdsh "df -k | grep gpfs"
host1t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host2t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host4t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1

host2t:/> mmfsadm dump cfgmgr
Cluster Configuration: Type: 'HACMP'
Domain , 3 nodes in this cluster
112 GPFS on AIX Clusters

autoSgLoadBalance off

 node adapter admin fails SGs mem daem TMreq
 idx no host name ip address node status panics mngd free CPU /sec
---- ---- -------------- ----------- ----- ------- ------- --- ---- ---- -----
 0 1 host1e 129.40.12.129 y up 0/0 1 99% 0% 0
 1 2 host2e 129.40.12.130 y up 0/0 0 99% 0% 0
 2 4 host4e 129.40.12.132 y up 0/0 0 99% 0% 0

Adding nodes to a cluster
To add a node to a cluster, that node cannot belong to another cluster, it must be
available and a properly configured member of our HACMP/ES cluster. The
steps in this proceedure are shown in Example 7-3.

Order of events
� mmaddcluster to add node to cluster

� mmaddnode to add node to specified nodeset

� mount to mount the file system

Example 7-3 Adding nodes to a cluster

host1t:/> mmlscluster

GPFS cluster information
========================

GPFS system data repository servers:

 Primary server: host1e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 4 host4e 129.40.12.132 host4e

host1t:/> mmaddcluster host3e
mmaddcluster: Command successfully completed
host1t:/> mmlscluster

GPFS cluster information
========================

GPFS system data respository servers:

 Chapter 7. Typical administrative tasks 113

 Primary server: host1e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 4 host4e 129.40.12.132 host4e

Cluster nodes that are not assigned to a nodeset:

 3 host3e 129.40.12.131 host3e

host1t:/> mmaddnode -C set1 host3e
mmaddnode: Propagating the changes to all affected nodes.
This is an asynchronous process.

host3t:/> mmlsnode -a
GPFS nodeset Node list
------------- ---
 set1 host1e host2e host4e host3e

host1t:/> mmlscluster

GPFS cluster information
========================

GPFS system data repository servers:

 Primary server: host1e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 4 host4e 129.40.12.132 host4e
 3 host3e 129.40.12.131 host3e

host2t:/> gdsh -w host3t "startsrc -s mmfs"
host3t: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 5006.

host2t:/> mmfsadm dump cfgmgr
Cluster Configuration: Type: 'HACMP'
Domain , 4 nodes in this cluster
 - 3 nodes (Used in quorum calculation)
 - 1 new node (Not used in quorum calculation)

autoSgLoadBalance off
114 GPFS on AIX Clusters

 node adapter admin fails SGs mem daem TMreq
 idx no host name ip address node status panics mngd free CPU /sec
---- ---- -------------- ----------- ----- ------- ------- --- ---- ---- -----
 0 1 host1e 129.40.12.129 y up 0/0 1 99% 0% 0
 1 2 host2e 129.40.12.130 y up 0/0 0 99% 0% 0
 2 4 host4e 129.40.12.132 y up 0/0 0 99% 0% 0

New node list:

 node adapter admin fails SGs mem daem TMreq
 idx no host name ip address node status panics mngd free CPU /sec
---- ---- -------------- ----------- ----- ------- ------- --- ---- ---- -----
 3 3 host3e 129.40.12.131 y down 0/0 0 0% 100%

After giving node host3e a minute to complete dynamic addnode processing, mount
the file system.

host2t:/> gdsh -w host3t "mount /gpfs1"

host2t:/> mmfsadm dump cfgmgr
Cluster Configuration: Type: 'HACMP'
Domain , 4 nodes in this cluster

autoSgLoadBalance off

 node adapter admin fails SGs mem daem TMreq
 idx no host name ip address node status panics mngd free CPU /sec
---- ---- -------------- ----------- ----- ------- ------- --- ---- ---- -----
 0 1 host1e 129.40.12.129 y up 0/0 1 99% 0% 0
 1 2 host2e 129.40.12.130 y up 0/0 0 99% 0% 0
 2 4 host4e 129.40.12.132 y up 0/0 0 99% 0% 0
 3 3 host3e 129.40.12.131 y up 0/0 0 99% 0% 0

host3t:/> cat /var/adm/ras/mmfs.log.latest
Thu Feb 22 11:09:36 EST 2001 /usr/lpp/mmfs/bin/runmmfs starting
Removing old /var/adm/ras/mmfs.log.* files:
/usr/lpp/mmfs/bin/mmfskxload: /usr/lpp/mmfs/bin/mmfs is already loaded at
897819
64.
Thu Feb 22 11:09:39 2001: mmfsd initializing. {Version: 3.3.0.0 Built: Feb 2
2001 16:44:59} ...
Thu Feb 22 11:09:40 2001: useSPSecurity no
Thu Feb 22 11:09:40 2001: Cluster type: 'HACMP'
Thu Feb 22 11:10:07 2001: Using TCP communication protocol
/usr/bin/lslpp: Fileset bos.up not installed.
Thu Feb 22 11:10:07 2001: Connecting to 129.40.12.130
Thu Feb 22 11:10:07 2001: Connected to 129.40.12.130
Thu Feb 22 11:10:07 EST 2001 /var/mmfs/etc/gpfsready invoked
 Chapter 7. Typical administrative tasks 115

Thu Feb 22 11:10:07 2001: mmfsd ready
Thu Feb 22 11:11:06 2001: Command: mount /dev/gpfs1 17412
Thu Feb 22 11:11:06 2001: Connecting to 129.40.12.129
Thu Feb 22 11:11:06 2001: Connected to 129.40.12.129
Activated gpfsvg0 successfully.
Activated gpfsvg1 successfully.
Activated gpfsvg2 successfully.
Activated gpfsvg3 successfully.
Activated gpfsvg4 successfully.
Activated gpfsvg5 successfully.
Activated gpfsvg6 successfully.
Activated gpfsvg7 successfully.
Activated gpfsvg8 successfully.
Activated gpfsvg9 successfully.
Activated gpfsvg10 successfully.
Activated gpfsvg11 successfully.
Activated gpfsvg12 successfully.
Activated gpfsvg13 successfully.
Activated gpfsvg14 successfully.
Activated gpfsvg15 successfully.

host3t:/> gdsh "df -k | grep gpfs"
host1t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host2t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host3t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host4t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1

Changing the system data server
When we set up our initial GPFS cluster, we designated a primary and
secondary server. If for any reason we wanted to remove the primary server, we
would move that responsibility to another node using the mmchcluster command
first, as shown in Example 7-4.

Example 7-4 Changing the primary GPFS cluster

host3t:/> mmlscluster

GPFS cluster information
========================

GPFS system data respository servers:

 Primary server: host1e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
116 GPFS on AIX Clusters

 2 host2e 129.40.12.130 host2e
 4 host4e 129.40.12.132 host4e
 3 host3e 129.40.12.131 host3e

host3t:/> mmchcluster -p host3e
mmchcluster: Command successfully completed
host3t:/> mmlscluster

GPFS cluster information
========================

GPFS system data respository servers:

 Primary server: host3e
 Secondary server: host2e

Nodes for nodeset set1:

 1 host1e 129.40.12.129 host1e
 2 host2e 129.40.12.130 host2e
 4 host4e 129.40.12.132 host4e
 3 host3e 129.40.12.131 host3e

7.1.2 Managing the GPFS configuration
We could tune our GPFS configuration after is was up and running by using
mmconfig. As shown in Example 7-5, some of the attributes that are alterable are
pagepool and autoload. These parameters can be changed immediately, be
made permanent, or even not persist after GPFS is restarted.

Example 7-5 Changing the GPFS configuration

host1t:/> mmlsconfig
Configuration data for nodeset set1:

pagepool 80M
dataStructureDump /tmp/mmfs
multinode yes
autoload no
useSingleNodeQuorum no
wait4RVSD no
comm_protocol TCP
clusterType hacmp
group Gpfs.set1
recgroup GpfsRec.set1
 Chapter 7. Typical administrative tasks 117

File systems in nodeset set1:

/dev/gpfs1

host1t:/> mmchconfig pagepool=100M -C set1 -i
mmchconfig: Command successfully completed
mmchconfig: Propagating the changes to all affected nodes.
This is an asynchronous process.
host1t:/> mmlsconfig
Configuration data for nodeset set1:

pagepool 100M
dataStructureDump /tmp/mmfs
multinode yes
autoload no
useSingleNodeQuorum no
wait4RVSD no
comm_protocol TCP
clusterType hacmp
group Gpfs.set1
recgroup GpfsRec.set1

File systems in nodeset set1:

/dev/gpfs1

host1t:/> mmchconfig autoload=yes -C set1
mmchconfig: Command successfully completed
mmchconfig: Propagating the changes to all affected nodes.
This is an asynchronous process.
host1t:/> mmlsconfig
Configuration data for nodeset set1:

pagepool 100M
dataStructureDump /tmp/mmfs
multinode yes
autoload yes
useSingleNodeQuorum no
wait4RVSD no
comm_protocol TCP
118 GPFS on AIX Clusters

clusterType hacmp
group Gpfs.set1
recgroup GpfsRec.set1

File systems in nodeset set1:

/dev/gpfs1

7.1.3 Unmounting and stopping GPFS
The command mmshutdown will stop GPFS and will also umount the file system.
An alternative command would be to umount /gpfs1 on all the nodes and then
stopsrc -s mmfs on all the affected nodes. This procedure is more cumbersome
than the mmshutdown command, as shown in Example 7-6.

Example 7-6 Stopping GPFS

host1t:/> mmshutdown -C set1
Thu Feb 22 11:52:16 EST 2001: mmshutdown: Starting force unmount of GPFS
filesystems
host1e: forced unmount of /gpfs1
host2e: forced unmount of /gpfs1
host4e: forced unmount of /gpfs1
host3e: forced unmount of /gpfs1
Thu Feb 22 11:52:21 EST 2001: mmshutdown: Shutting down GPFS daemons
host1e: Shutting down!
host1e: 0513-044 The mmfs Subsystem was requested to stop.
host2e: Shutting down!
host2e: 0513-044 The mmfs Subsystem was requested to stop.
host4e: Shutting down!
host4e: 0513-044 The mmfs Subsystem was requested to stop.
host3e: Shutting down!
host3e: 0513-044 The mmfs Subsystem was requested to stop.
Thu Feb 22 11:52:24 EST 2001: mmshutdown: Finished

host1t:/> gdsh "lssrc -s mmfs"
host1t: Subsystem Group PID Status
host1t: mmfs aixmm inoperative
host2t: Subsystem Group PID Status
host2t: mmfs aixmm inoperative
host3t: Subsystem Group PID Status
host3t: mmfs aixmm inoperative
host4t: Subsystem Group PID Status
host4t: mmfs aixmm inoperative

host1t:/> cat /var/adm/ras/mmfs.log.latest
Thu Feb 22 11:52:22 2001: mmfsd shutting down.
Thu Feb 22 11:52:22 2001: Reason for shutdown: Normal shutdown
 Chapter 7. Typical administrative tasks 119

/var/mmfs/etc/mmfsdown.scr: /usr/bin/lssrc -s mmfs
Subsystem Group PID Status
 mmfs aixmm 17272 stopping
/var/mmfs/etc/mmfsdown.scr: /usr/sbin/umount -f -t mmfs

7.1.4 Starting and mounting GPFS
The mmfs subsystem has to be started and then the file system has to be
mounted, as shown in Example 7-7. The command mmstartup -C NodesetId will
start the subsystem on all nodes in the specified nodeset. An alternate method
would be to use startsrc -s mmfs on all desired nodes. Had we designated in
the mmconfig command that Autoload=yes (viewable with mmlsconfig), this step
would be unnecessary during a reboot as mmfs would start automatically.

The next step is to mount the file system with the mount /gpfs1 command on
every desired node. Had we designated Automatic mount option=yes during the
mmcrfs command (now viewable by mmlfs gpfs1) the file system would mount
whenever mmfs became available.

Example 7-7 Start GPFS

host1t:/> mmstartup -C set1
Thu Feb 22 11:55:39 EST 2001: mmstartup: Starting GPFS ...
host1e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 31800.
host2e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 18096.
host4e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 12210.
host3e: 0513-059 The mmfs Subsystem has been started. Subsystem PID is 5008.

host1t:/> mmfsadm dump cfgmgr
Cluster Configuration: Type: 'HACMP'
Domain , 4 nodes in this cluster

autoSgLoadBalance off

 node adapter admin fails SGs mem daem TMreq
 idx no host name ip address node status panics mngd free CPU /sec
---- ---- -------------- ----------- ----- ------- ------- --- ---- ---- -----
 0 1 host1e 129.40.12.129 y up 0/0 0 0% 100% 0
 1 2 host2e 129.40.12.130 y up 0/0 0 0% 100% 0
 2 4 host4e 129.40.12.132 y up 0/0 0 0% 100% 0
 3 3 host3e 129.40.12.131 y up 0/0 0 0% 100% 0

Cluster configuration manager is 129.40.12.130 (other node)
Stripe groups managed by this node:
 (none)
Using TCP communication with epoch number 0, PrevLapiEpochNo 0
Phoenix Group Names:Gpfs.set1, GpfsRec.set1; Group State:Active; Quorum:3
Versio
120 GPFS on AIX Clusters

n:(5:5)

host1t:/> gdsh "lssrc -s mmfs"
host1t: Subsystem Group PID Status
host1t: mmfs aixmm 31800 active
host2t: Subsystem Group PID Status
host2t: mmfs aixmm 18096 active
host3t: Subsystem Group PID Status
host3t: mmfs aixmm 5008 active
host4t: Subsystem Group PID Status
host4t: mmfs aixmm 12210 active

host1t:/> cat /var/adm/ras/mmfs.log.latest
Thu Feb 22 11:55:43 EST 2001 /usr/lpp/mmfs/bin/runmmfs starting
Removing old /var/adm/ras/mmfs.log.* files:
/usr/lpp/mmfs/bin/mmfskxload: /usr/lpp/mmfs/bin/mmfs is already loaded at
897123
32.
Thu Feb 22 11:55:46 2001: mmfsd initializing. {Version: 3.3.0.0 Built: Feb 2
2001 16:44:59} ...
Thu Feb 22 11:55:47 2001: useSPSecurity no
Thu Feb 22 11:55:48 2001: Cluster type: 'HACMP'
Thu Feb 22 11:55:48 2001: Using TCP communication protocol
/usr/bin/lslpp: Fileset bos.up not installed.
Thu Feb 22 11:55:48 2001: Connecting to 129.40.12.130
Thu Feb 22 11:55:48 2001: Connected to 129.40.12.130
Thu Feb 22 11:55:48 EST 2001 /var/mmfs/etc/gpfsready invoked
Thu Feb 22 11:55:48 2001: mmfsd ready
Thu Feb 22 11:56:04 2001: Command: dump cfgmgr

host1t:/> gdsh "mount /gpfs1"

host1t:/> gdsh "df -k | grep gpfs"
host1t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host2t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host3t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host4t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1

host1t:/> tail /var/adm/ras/mmfs.log.latest
Thu Feb 22 11:57:55 2001: Command: mount /dev/gpfs1 28744
Thu Feb 22 11:58:12 2001: Accepted and connected to 129.40.12.131
Thu Feb 22 11:58:15 2001: Accepted and connected to 129.40.12.132
 Chapter 7. Typical administrative tasks 121

7.1.5 Managing the file system
Some of the following command and techniques are mentioned elsewhere in this
section since other topics are dependent on them. We’ll cover them briefly here
along with any new topics in file system management.

Mounting the file system
Once the mmfs subsystem is up and running, we issued the mount /gpfs1
command, as shown in Example 7-8, to all the nodes where we wanted it
mounted.

Example 7-8 Mount GPFA file system

host1t:/> gdsh "mount /gpfs1"

host1t:/> gdsh "df -k | grep gpfs"
host1t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host2t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host3t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1
host4t: /dev/gpfs1 142077952 138653184 3% 13 1% /gpfs1

Unmounting the file system
In Example 7-9, we unmounted the file system by issuing umount /gpfs1 to all
the appropriate nodes. If we also want to bring down GPFS, we could use
mmshutdown -C set1, which automatically unmounts the file system and stops
the mmfs subsystem.

Example 7-9 Unmounting the GPFS file system

host3t:/> gdsh “umount /gpfs1”
host1t:/> gdsh "df -k | grep gpfs"
host1t:/>

host1t:/> mmshutdown -C set1
Thu Feb 22 11:52:16 EST 2001: mmshutdown: Starting force unmount of GPFS
filesys
tems
host1e: forced unmount of /gpfs1
host2e: forced unmount of /gpfs1
host4e: forced unmount of /gpfs1
host3e: forced unmount of /gpfs1
Thu Feb 22 11:52:21 EST 2001: mmshutdown: Shutting down GPFS daemons
host1e: Shutting down!
host1e: 0513-044 The mmfs Subsystem was requested to stop.
host2e: Shutting down!
host2e: 0513-044 The mmfs Subsystem was requested to stop.
host4e: Shutting down!
host4e: 0513-044 The mmfs Subsystem was requested to stop.
122 GPFS on AIX Clusters

host3e: Shutting down!
host3e: 0513-044 The mmfs Subsystem was requested to stop.
Thu Feb 22 11:52:24 EST 2001: mmshutdown: Finished

Deleting the file system
Before deleting a file system, unmount it on all nodes and then run mmdelfs from
any node, as shown in Example 7-10.

Example 7-10 Delete the GPFS file system

host1t:/> mmdelfs gpfs1

mmdelfs: 6027-1366 Marking the disks as available
GPFS: 6027-573 All data on following disks of gpfs1 will be destroyed:
gpfslv0
gpfslv1
gpfslv2
gpfslv3
gpfslv4
gpfslv5
gpfslv6
gpfslv7
gpfslv8
gpfslv9
gpfslv10
gpfslv11
gpfslv12
gpfslv13
gpfslv14
gpfslv15
GPFS: 6027-574 Completed deletion of file system gpfs1.
mmdelfs: 6027-1371 Propagating the changes to all affected nodes.
This is an asynchronous process.

Checking and repairing the file system
The mmfsck command finds and repairs problem conditions in the file system.
This command can be run in two modes, online or offline. Online mode will check
and recover unallocated blocks on the mounted file system. Offline mode checks
for file inconsistencies in an unmounted file system. Before the command can be
initiated, run mmlsdisk, as shown in Example 7-11 on page 124, and make sure
none of the disks are in a down state. Run mmchdisk to change the state of the
disk to unrecovered or up.
 Chapter 7. Typical administrative tasks 123

Example 7-11 Check and repair GPFS file system

host1t:/> mmfsck gpfs1
Cannot check. "gpfs1" is mounted on 4 node(s) and in use on 4 node(s).
host1t:/> gdsh "umount /gpfs1"
host1t:/> mmfsck gpfs1
Checking "gpfs1"
Checking inodes
Checking inode map file
Checking directories and files
Checking log files
Checking extended attributes file
Checking file reference counts
Checking file system replication status
139264 inodes
 17 allocated
 0 repairable
 0 repaired
 0 damaged
 0 deallocated
 0 orphaned
 0 attached

 17760256 subblocks
 428709 allocated
 0 unreferenced
 0 deletable
 0 deallocated

File system is clean.

Listing file system attributes
The best command for checking the file system attributes is mmlsfs, as shown in
Example 7-12.

Example 7-12 List file system attributes

host1t:/> mmlsfs gpfs1
flag value description
---- -------------- ---
 -s roundRobin Stripe method
 -f 8192 Minimum fragment size in bytes
 -i 512 Inode size in bytes
 -I 16384 Indirect block size in bytes
 -m 1 Default number of metadata replicas
 -M 1 Maximum number of metadata replicas
 -r 1 Default number of data replicas
 -R 1 Maximum number of data replicas
 -a 1048576 Estimated average file size
124 GPFS on AIX Clusters

 -n 32 Estimated number of nodes that will mount file system
 -B 262144 Block size
 -Q none Quotas enforced
 -F 139264 Maximum number of inodes
 -V 4 File system version. Highest supported version: 4
 -z no Is DMAPI enabled?
 -d
gpfslv0;gpfslv1;gpfslv2;gpfslv3;gpfslv4;gpfslv5;gpfslv6;gpfslv7;gpfslv8;gpf
slv9;gpfslv10;gpfslv11;gpfslv12;gpfslv13;gpfslv14;gpfslv15 Disks in file
system
 -A no Automatic mount option
 -C set1 GPFS nodeset identifier
 -E no Exact mtime default mount option
 -S no Suppress atime default mount option

Modifying file system attributes
The mmchfs command performs the function of modifying existing file system
attributes. Current attributes are listed by running mmlsfs.

Balancing data with mmdf and mmrestripefs
Data is evenly striped across all active disks in the file system. When a disk is
deleted, the data should be spread evenly across all remaining disks. When a
disk is added to the file system, it will appear with zero data unless we
specifically request that data be rebalanced across all disks. To view the existing
data ratios run mmdf; to rebalance the data run mmrestripefs, as shown in
Example 7-13. To make sure all the disks we want to balance across are
available, we run mmlsdisk. Running mmchdisk allowed us to change the disk
status so it was or was not affected by the mmrestripefs command.

Example 7-13 View data ratios and redistribute

host1t:/> mmdf gpfs1
disk disk size failure holds holds free KB free KB
name in KB group metadata data in full blocks in fragments
--------------- --------- -------- -------- ----- --------------- ---------------
gpfslv0 8880128 1 yes yes 8665088 (98%) 552 (0%)
gpfslv1 8880128 1 yes yes 8665088 (98%) 552 (0%)
gpfslv2 8880128 1 yes yes 8665856 (98%) 312 (0%)
gpfslv3 8880128 1 yes yes 8665344 (98%) 560 (0%)
gpfslv4 8880128 1 yes yes 8665344 (98%) 296 (0%)
gpfslv5 8880128 1 yes yes 8665344 (98%) 312 (0%)
gpfslv6 8880128 1 yes yes 8665600 (98%) 312 (0%)
gpfslv7 8880128 1 yes yes 8664320 (98%) 552 (0%)
gpfslv8 8880128 1 yes yes 8665088 (98%) 568 (0%)
gpfslv9 8880128 1 yes yes 8665344 (98%) 568 (0%)
gpfslv10 8880128 1 yes yes 8665344 (98%) 568 (0%)
gpfslv11 8880128 1 yes yes 8665088 (98%) 808 (0%)
 Chapter 7. Typical administrative tasks 125

gpfslv12 8880128 1 yes yes 8665088 (98%) 808 (0%)
gpfslv13 8880128 1 yes yes 8665344 (98%) 552 (0%)
gpfslv14 8880128 1 yes yes 8665088 (98%) 792 (0%)
gpfslv15 8880128 1 yes yes 8665344 (98%) 552 (0%)
 --------- -------------- --------------
(total) 142082048 138643712 (98%) 8664 (0%)
Inode Information

Total number of inodes: 139264
Total number of free inodes: 139247

host1t:/> mmrestripefs gpfs1 -r
Scanning file system metadata, phase 1 ...
Scan completed successfully.
Scanning file system metadata, phase 2 ...
Scan completed successfully.
Scanning file system metadata, phase 3 ...
Scan completed successfully.
Scanning user file metadata ...
Scan completed successfully.

File system fragmentation and defragmentation
When a file is closed after it has written the last logical block of data, that data is
reduced to the actual number of subblocks required, thus creating a fragmented
block. The mmdefragfs command, as shown in Example 7-14, can be used to
query the current fragmented state of the file system and to reduce the
fragmentation of the file system.

Example 7-14 Defragment file system

host1t:/tools/ralph> mmdefragfs gpfs1
Warning: "gpfs1" is mounted on 4 node(s) and in use on 4 node(s)
Start processing: iteration 1
Processing Pass 1 of 1
Disk Name: gpfslv0 gpfslv1 gpfslv2 gpfslv3 gpfslv4 gpfslv5 gpfslv6 gpfslv7
gpfsl
v8 gpfslv9 gpfslv10 gpfslv11 gpfslv12 gpfslv13 gpfslv14 gpfslv15
 41 % complete on Fri Feb 23 17:58:58 2001
 63 % complete on Fri Feb 23 17:59:03 2001
 83 % complete on Fri Feb 23 17:59:08 2001

 free subblk free
disk in full subblk in % %
name blocks blk fragments free blk blk util
 before after freed before after before after before after
---------- ----------------------- ----------------- ------------ ------------
gpfslv0 519808 519808 0 219 209 46.83 46.83 99.96 99.96
gpfslv1 519776 519776 0 279 265 46.83 46.83 99.95 99.96
126 GPFS on AIX Clusters

gpfslv2 519904 519904 0 219 209 46.84 46.84 99.96 99.96
gpfslv3 519840 519840 0 250 240 46.83 46.83 99.96 99.96
gpfslv4 519776 519776 0 277 263 46.83 46.83 99.95 99.96
gpfslv5 519840 519840 0 219 209 46.83 46.83 99.96 99.96
gpfslv6 519872 519872 0 219 209 46.83 46.83 99.96 99.96
gpfslv7 519712 519712 0 249 237 46.82 46.82 99.96 99.96
gpfslv8 519744 519744 0 339 325 46.82 46.82 99.94 99.94
gpfslv9 519872 519872 0 311 297 46.83 46.83 99.95 99.95
gpfslv10 519840 519840 0 371 353 46.83 46.83 99.94 99.94
gpfslv11 519808 519808 0 371 353 46.83 46.83 99.94 99.94
gpfslv12 519840 519840 0 311 297 46.83 46.83 99.95 99.95
gpfslv13 519776 519776 0 339 321 46.83 46.83 99.94 99.95
gpfslv14 519744 519744 0 337 323 46.82 46.82 99.94 99.95
gpfslv15 519744 519744 0 309 297 46.82 46.82 99.95 99.95
 ----------------------- ----------------- ------------
(total) 8316896 8316896 0 4619 4407 99.95 99.95

7.1.6 Managing disks
Disk drives in a file system are the most likely item to be replaced, either due to
mechanical failure or upgrade. Removal, addition, or even swapping of a disk
drive can be done with the file system mounted and online. In a cluster
environment, a properly configured /.rhost file must exist on each node in the
GPFS cluster. Since GPFS remained operational during the delete, replace, and
add disk operations, all that activity was captured in /var/adm/ras/mmfs.log.latest
for later referral.

Deleting disks from a file system
First we view the current status of all the disks in the file system with the
mmlsdisk gpfs1 command, as shown in Example 7-15.

Example 7-15 View status of disks

host1t:/> mmlsdisk gpfs1
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfslv0 disk 512 1 yes yes ready up
gpfslv1 disk 512 1 yes yes ready up
gpfslv2 disk 512 1 yes yes ready up
gpfslv3 disk 512 1 yes yes ready up
gpfslv4 disk 512 1 yes yes ready up
gpfslv5 disk 512 1 yes yes ready up
gpfslv6 disk 512 1 yes yes ready up
gpfslv7 disk 512 1 yes yes ready up
gpfslv8 disk 512 1 yes yes ready up
gpfslv9 disk 512 1 yes yes ready up
 Chapter 7. Typical administrative tasks 127

gpfslv10 disk 512 1 yes yes ready up
gpfslv11 disk 512 1 yes yes ready up
gpfslv12 disk 512 1 yes yes ready up
gpfslv14 disk 512 1 yes yes ready up
gpfslv15 disk 512 1 yes yes ready up

Before a disk can be replaced, we must suspend the disk. By using the mmchdisk
command, as shown in Example 7-16, a disk can be placed in several states,
such as suspend, start, and stop. You cannot write new data to a suspended disk
but you can update existing data and read from that disk. A disk is typically
suspended prior to restriping or deletion. We arbitrarily chose to remove gpfslv13
for our test.

Example 7-16 Change disk status to suspend

host1t:/> mmchdisk gpfs1 suspend -d gpfslv13
host1t:/> mmlsdisk gpfs1
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfslv0 disk 512 1 yes yes ready up
gpfslv1 disk 512 1 yes yes ready up
gpfslv2 disk 512 1 yes yes ready up
gpfslv3 disk 512 1 yes yes ready up
gpfslv4 disk 512 1 yes yes ready up
gpfslv5 disk 512 1 yes yes ready up
gpfslv6 disk 512 1 yes yes ready up
gpfslv7 disk 512 1 yes yes ready up
gpfslv8 disk 512 1 yes yes ready up
gpfslv9 disk 512 1 yes yes ready up
gpfslv10 disk 512 1 yes yes ready up
gpfslv11 disk 512 1 yes yes ready up
gpfslv12 disk 512 1 yes yes ready up
gpfslv13 disk 512 1 yes yes suspended up
gpfslv14 disk 512 1 yes yes ready up
gpfslv15 disk 512 1 yes yes ready up

Now that we have observed gpfslv13 is suspended we could immediately delete
it with mmdeldisk, as shown in Example 7-17. We used this command with a -r
modifier to restripe the data across the remaining disks, rebalancing the data.
Notice that the mmlsdisk command reveals that gpfslv13 is now missing.

Example 7-17 Delete disk

host1t:/> mmdeldisk gpfs1 gpfslv13 -r
Deleting disks ...
Scanning file system metadata, phase 1 ...
Scan completed successfully.
Scanning file system metadata, phase 2 ...
128 GPFS on AIX Clusters

Scan completed successfully.
Scanning file system metadata, phase 3 ...
Scan completed successfully.
Scanning user file metadata ...
 100 % complete on Thu Feb 22 13:51:13 2001
Scan completed successfully.
tsdeldisk completed.
mmdeldisk: Propagating the changes to all affected nodes.
This is an asynchronous process.
Restriping gpfs1 ...
Scanning file system metadata, phase 1 ...
 23 % complete on Thu Feb 22 13:51:23 2001
 45 % complete on Thu Feb 22 13:51:26 2001
 68 % complete on Thu Feb 22 13:51:29 2001
 90 % complete on Thu Feb 22 13:51:32 2001
 100 % complete on Thu Feb 22 13:51:33 2001
Scan completed successfully.
Scanning file system metadata, phase 2 ...
Scan completed successfully.
Scanning file system metadata, phase 3 ...
Scan completed successfully.
Scanning user file metadata ...
 100 % complete on Thu Feb 22 14:01:28 2001
Scan completed successfully.
Done

host1t:/> mmlsdisk gpfs1
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfslv0 disk 512 1 yes yes ready up
gpfslv1 disk 512 1 yes yes ready up
gpfslv2 disk 512 1 yes yes ready up
gpfslv3 disk 512 1 yes yes ready up
gpfslv4 disk 512 1 yes yes ready up
gpfslv5 disk 512 1 yes yes ready up
gpfslv6 disk 512 1 yes yes ready up
gpfslv7 disk 512 1 yes yes ready up
gpfslv8 disk 512 1 yes yes ready up
gpfslv9 disk 512 1 yes yes ready up
gpfslv10 disk 512 1 yes yes ready up
gpfslv11 disk 512 1 yes yes ready up
gpfslv12 disk 512 1 yes yes ready up
gpfslv14 disk 512 1 yes yes ready up
gpfslv15 disk 512 1 yes yes ready up
 Chapter 7. Typical administrative tasks 129

Replacing disks in a file system
Replacing an existing disk in a GPFS file system with a new one is the same as
performing a delete disk operation followed by an add disk operation. The benefit
in doing it in one step is that the data does not need to be redistributed. A simple
automated copy to the new disk and it should look just like before the command
was issued. The new disk has to have a volume group and logical volume name
assigned to it and it has to be a concurrent volume, see Chapter 6, “Configuring
GPFS and SSA disks” on page 91 for a more detailed information.

In Example 7-18, we replaced gpfslv7 with the earlier deleted disk gpfslv13. Note
that concurrent mode is capable, an absolute in the case of a non-VSD
environment. The disk to be replaced is in the ready status mode, we do not
place that disk in suspend mode for a mmrpldisk operation. Notice in the
mmlsdisk example that gpfslv7 is now missing while gpfslv13 is again present.

Example 7-18 Replacing disks in file system

host1t:/gpfs1> lspv hdisk16
PHYSICAL VOLUME: hdisk16 VOLUME GROUP: gpfsvg13
PV IDENTIFIER: 000007024db52d7b0000000000000000 VG IDENTIFIER
000b4a7d7
0d7eecd
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 1
TOTAL PPs: 542 (8672 megabytes) VG DESCRIPTORS: 2
FREE PPs: 0 (0 megabytes)
USED PPs: 542 (8672 megabytes)
FREE DISTRIBUTION: 00..00..00..00..00
USED DISTRIBUTION: 109..108..108..108..109

host1t:/gpfs1> lsvg gpfsvg13
VOLUME GROUP: gpfsvg13 VG IDENTIFIER: 000b4a7d70d7eecd
VG STATE: active PP SIZE: 16 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 542 (8672 megabytes)
MAX LVs: 256 FREE PPs: 0 (0 megabytes)
LVs: 1 USED PPs: 542 (8672 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: no
Concurrent: Capable Auto-Concurrent: Disabled
VG Mode: Non-Concurrent
MAX PPs per PV: 1016 MAX PVs: 32

host1t:/gpfs1> mmrpldisk gpfs1 gpfslv7 gpfslv13::::1
Replacing gpfslv7 ...

The following disks of gpfs1 will be formatted on node host1t:
130 GPFS on AIX Clusters

 gpfslv13: size 8880128 KB
Extending Allocation Map
Completed adding disks to file system gpfs1.
Scanning file system metadata, phase 1 ...
Scan completed successfully.
Scanning file system metadata, phase 2 ...
Scan completed successfully.
Scanning file system metadata, phase 3 ...
Scan completed successfully.
Scanning user file metadata ...
 100 % complete on Thu Feb 22 14:19:08 2001
Scan completed successfully.
Done
mmrpldisk: Propagating the changes to all affected nodes.
This is an asynchronous process.

host1t:/gpfs1> mmlsdisk gpfs1
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfslv0 disk 512 1 yes yes ready up
gpfslv1 disk 512 1 yes yes ready up
gpfslv2 disk 512 1 yes yes ready up
gpfslv3 disk 512 1 yes yes ready up
gpfslv4 disk 512 1 yes yes ready up
gpfslv5 disk 512 1 yes yes ready up
gpfslv6 disk 512 1 yes yes ready up
gpfslv8 disk 512 1 yes yes ready up
gpfslv9 disk 512 1 yes yes ready up
gpfslv10 disk 512 1 yes yes ready up
gpfslv11 disk 512 1 yes yes ready up
gpfslv12 disk 512 1 yes yes ready up
gpfslv13 disk 512 1 yes yes ready up
gpfslv14 disk 512 1 yes yes ready up
gpfslv15 disk 512 1 yes yes ready up

Adding disks to a file system
Adding a disk requires the new disk to have a volume group name and a logical
volume name (see Chapter 6, “Configuring GPFS and SSA disks” on page 91 for
more information). In Example 7-19 on page 132, we used the recently replaced
disk gpfslv7 as our new disk. We also used mmadddisk -r to redistribute or
rebalance the data across all disks evenly instead of leaving the new disk with
zero data. When specifying this new disk the failure group “1” must be explicitly
named (gpfslv7::::1) or this disk will default to the “-1” failure group.
 Chapter 7. Typical administrative tasks 131

Example 7-19 Adding disks to a file system

st1t:/gpfs1> mmadddisk gpfs1 gpfslv7::::1 -r

The following disks of gpfs1 will be formatted on node host1t:
 gpfslv7: size 8880128 KB
Extending Allocation Map
Completed adding disks to file system gpfs1.
mmadddisk: Propagating the changes to all affected nodes.
This is an asynchronous process.
Restriping gpfs1 ...
Scanning file system metadata, phase 1 ...
 22 % complete on Thu Feb 22 14:24:53 2001
 41 % complete on Thu Feb 22 14:24:56 2001
 60 % complete on Thu Feb 22 14:24:59 2001
 79 % complete on Thu Feb 22 14:25:02 2001
 100 % complete on Thu Feb 22 14:25:05 2001
Scan completed successfully.
Scanning file system metadata, phase 2 ...
Scan completed successfully.
Scanning file system metadata, phase 3 ...
Scan completed successfully.
Scanning user file metadata ...
 100 % complete on Thu Feb 22 14:35:04 2001
Scan completed successfully.
Done

host1t:/gpfs1> mmlsdisk gpfs1
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfslv0 disk 512 1 yes yes ready up
gpfslv1 disk 512 1 yes yes ready up
gpfslv2 disk 512 1 yes yes ready up
gpfslv3 disk 512 1 yes yes ready up
gpfslv4 disk 512 1 yes yes ready up
gpfslv5 disk 512 1 yes yes ready up
gpfslv6 disk 512 1 yes yes ready up
gpfslv7 disk 512 1 yes yes ready up
gpfslv8 disk 512 1 yes yes ready up
gpfslv9 disk 512 1 yes yes ready up
gpfslv10 disk 512 1 yes yes ready up
gpfslv11 disk 512 1 yes yes ready up
gpfslv12 disk 512 1 yes yes ready up
gpfslv13 disk 512 1 yes yes ready up
gpfslv14 disk 512 1 yes yes ready up
gpfslv15 disk 512 1 yes yes ready up
132 GPFS on AIX Clusters

7.1.7 Managing GPFS quotas
Limiting user access to the file space provided by GPFS might be required in
certain instances. For this eventuality, quotas exist. Quota limit checking can be
applied to groups, users, or both. Important options consist of soft limit, hard
limit, and grace period. GPFS clusters require a /.rhosts file on every node.

Activating quotas
When running mmcrfs, the default is to not institute quotas on the GPFS file
system. We would have to include the option mmcrfs -Q yes to activate quotas
during creation of the file system or mmchfs -Q yes after the fact. When running
mmchfs, we have to first issue umount /gpfs1 on all the nodes or the change will
not take affect. Example 7-20 shows the result of mmlsfs before quota activation.
After activation, both user and group appear as flag values that can be enforced.
Running the quota report generator mmrepquota before activation, yielded no
quota management installed. Afterwards, a table is written, but is empty pending
editing of the quota limit file via mmedquota.

Example 7-20 Activating quotas

host1t:/> mmlsfs gpfs1 -Q
flag value description
---- -------------- ---
 -Q none Quotas enforced

host1t:/> mmrepquota -g -a
gpfs1: no quota management installed

host1t:/> mmchfs gpfs1 -Q yes
mmchfs: Propagating the changes to all affected nodes.
This is an asynchronous process.

host1t:/> mmlsfs gpfs1 -Q
flag value description
---- -------------- ---
 -Q user;group Quotas enforced

host1t:/> mmrepquota -u -a
*** Report for USR quotas on gpfs1
 Block Limits
Name type KB quota limit in_doubt grace

| File Limits
| files quota limit in_doubt grace
 Chapter 7. Typical administrative tasks 133

Establishing quotas
Once we turned quotas on, we designated different limits to different users. In
Example 7-21, we created users red, green, blue and yellow and made
directories (not required) under /gpfs1 for each of them. These users owned all
the files within these directories.

A soft limit is the total of all that user’s files and does not immediately impact the
ability of that user to created or add to those files. That changes when the user
exceeds the grace period (the time passed after initially going over the soft limit)
or if the user hits the hard limit. Since the limits must be a multiple of the block
size, we chose a soft limit of 256K, a hard limit of 256K and grace period of 2
days (default is 7 days) for user green. For user red, we picked a soft limit of
512K and a hard limit of 1024K, while the grace period is the same for all users.
For the sake of experimentation, we left the inodes at zero, which means
unlimited.

Example 7-21 Establishing quotas

host1t:/> mmedquota -u green
*** Edit quota limits for USR green
NOTE: block limits will be rounded up to the next multiple of the block size.
gpfs1: blocks in use: 0K, limits (soft = 0K, hard = 0K)
 inodes in use: 0, limits (soft = 0, hard = 0)

*** Edit quota limits for USR green
NOTE: block limits will be rounded up to the next multiple of the block size.
gpfs1: blocks in use: 0K, limits (soft = 256K, hard = 256K)
 inodes in use: 0, limits (soft = 0, hard = 0)

host1t:/> mmedquota -u red
*** Edit quota limits for USR red
NOTE: block limits will be rounded up to the next multiple of the block size.
gpfs1: blocks in use: 0K, limits (soft = 0K, hard = 0K)
 inodes in use: 0, limits (soft = 0, hard = 0)

*** Edit quota limits for USR red
NOTE: block limits will be rounded up to the next multiple of the block size.
gpfs1: blocks in use: 0K, limits (soft = 512K, hard = 1024K)
 inodes in use: 0, limits (soft = 0, hard = 0)

host1t:/> mmedquota -t -u
*** Edit grace times
Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for USRs:
134 GPFS on AIX Clusters

gpfs1: block grace period: 7days, file grace period: 7days
*** Edit grace times
Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for USRs:
gpfs1: block grace period: 2days, file grace period: 7days

Listing quotas
To view any established quota, as in Example 7-22, we ran mmlsquota, or
mmrepquota, depending on the format of the output we wanted. As long as we did
not exceed the quota for a user, grace shows up as none. When we exceed our
quota, grace displays the number of days the user has to correct the over quota
problem before the ability to write is curtailed. The output of these commands is
very wide and separated near the middle by a “|” symbol. The mmlsfs gpfs1 -Q
command shows the current options for the specified file system, the -Q line
shows quotas are enfoced for both user and group.

Example 7-22 Listing quotas

host1t:/gpfs1/red> mmlsquota -u green
 Block Limits |
File
 Limits
Filesystem type KB quota limit in_doubt grace
gpfs1 USR 456 256 256 -216 2days

| files quota limit in_doubt grace
| 19 0 0 -9 none

host1t:/gpfs1/green> mmrepquota -u -a
*** Report for USR quotas on gpfs1
 Block Limits |
 File Limits
Name type KB quota limit in_doubt grace
root USR 65954312 0 0 5120 none
red USR 128 512 1024 0 none
green USR 4056 256 256 -3728 2days
blue USR 24 0 0 0 none
yellow USR 16 0 0 0 none

| files quota limit in_doubt grace
| 16 0 0 20 none
| 6 0 0 0 none
 Chapter 7. Typical administrative tasks 135

| 23 0 0 -2 none
| 2 0 0 0 none
| 2 0 0 0 none

host1t:/gpfs1/green> mmlsfs gpfs1 -Q
-Q user;group Quotas enforced

Deactivating quotas
In Example 7-23, we ran mmquotaoff to deactivate quotas. By specifying the file
system name without modifiers, the command disabled both user and group
quotas. Had we specified -u or -g, we could have turned off only user or group
quotas respectively. When we ran mmlsquota, it still looked like quotas was
running; we had to use umount /gpfs1, mmchfs -Q no to completely stop quotas
and then mount /gpfs1 before mmlsquota responded with no quota management
installed.

Example 7-23 Deactivating quotas

host1t:/gpfs1/green> mmquotaoff gpfs1

host1t:/gpfs1/green> mmlsquota
 Block Limits
Filesystem type KB quota limit in_doubt grace gpfs1
USR no limits

| File Limits
| files quota limit in_doubt grace

host1t:/gpfs1/green> mmchfs -Q no
host1t:/gpfs1/green> gdsh "umount /gpfs1"
host1t:/gpfs1/green> gdsh "mount /gpfs1"

host1t:/> gdsh "df -k | grep gpfs"
host1t: /dev/gpfs1 142077952 75916032 47% 67 1% /gpfs1
host2t: /dev/gpfs1 142077952 75916032 47% 67 1% /gpfs1
host3t: /dev/gpfs1 142077952 75916032 47% 67 1% /gpfs1
host4t: /dev/gpfs1 142077952 75916032 47% 67 1% /gpfs1

host1t:/> mmrepquota -u -a
gpfs1: no quota management installed

host1t:/> mmlsquota
 Block Limits
136 GPFS on AIX Clusters

Filesystem type KB quota limit in_doubt grace

| File Limits
| files quota limit in_doubt grace gpfs1: no quota management
installed

7.2 HACMP administration
In this section we describe common maintenance tasks that the user will
encounter.

7.2.1 Changing the cluster configuration
Changes to the cluster configuration are performed while the cluster services are
active on some nodes are called Dynamic Automatic Reconfiguration Event
(DARE).

Deleting and adding cluster nodes
In the following example, we will add and delete the node host2t from the
HACMP/ES cluster. We perform all commands from host3t.

In Example 7-24, before removing host2t from the cluster nodeset, we stop the
mmfs daemon and remove it from the GPFS configuration.

Example 7-24 Deleting a cluster node

host3t:/> rsh host2t mmshutdown
Thu Feb 22 18:17:07 EST 2001: mmshutdown: Starting force unmount of GPFS
filesystems
Thu Feb 22 18:17:12 EST 2001: mmshutdown: Shutting down GPFS daemons
Shutting down!
Thu Feb 22 18:17:12 EST 2001: mmshutdown: Finished
host3t:/> mmdelnode host3e
Verifying GPFS is stopped on all nodes ...
mmdelnode: Removing old nodeset information from the deleted nodes.
This is an asynchronous process.
mmdelnode: Propagating the changes to all affected nodes.
This is an asynchronous process.
host3t:/>

In Example 7-25 on page 138, we stop the HACMP/ES cluster services on host2t
and wait until the cluster is stable. A dynamic reconfiguration event can only be
performed when the cluster is stable.
 Chapter 7. Typical administrative tasks 137

Example 7-25 Stop cluster services

host3t:/> rsh host2t ‘/usr/es/sbin/cluster/utilities/clstop -y -N -g’
Feb 22 2001 18:23:20/usr/es/sbin/cluster/utilities/clstop: called with flags -y
-N -g

0513-044 The clstrmgrES Subsystem was requested to stop.
0513-044 The clsmuxpdES Subsystem was requested to stop.
0513-044 The clinfoES Subsystem was requested to stop.

We wait until the cluster is stable, as displayed by the clstat command, as
shown in Example 7-26.

Example 7-26 Execute clastat command

host3t:/> /usr/es/sbin/cluster/clstat

Next, in Example 7-27, we remove host2t from the nodeset of the cluster. This
will remove all cluster adapters that are configured on the node as well. Note that
all following commands have to be performed on a node on which the cluster
services are active; this is a requirement for DARE. We chose host3t.

Example 7-27 Remove cluster node

host3t:/> smitty hacmp
Cluster Configuration

Cluster Topology
Configure Nodes

Remove a Cluster Node
(select host2t)

The node now has been removed from the node set in the HACMP/ES cluster
configuration on host3t, and all cluster adapters that were configured on it.

In Example 7-28, we synchronize the cluster topology on host3t. This will
distribute the change made locally to the cluster topology on host3t to all other
nodes in the cluster. It will update the cluster configuration that is known to the
cluster manager. The cluster manager daemons will run a reconfig_topology
event.

Example 7-28 Synchronize cluster topology

host3t:\> /usr/es/sbin/cluster/utilities/cldare -t

The cluster verification cannot be skipped when synchronizing the cluster
configuration while the cluster services are active on some nodes, since an
invalid cluster configuration could cause the cluster to go into the error state.
138 GPFS on AIX Clusters

In Example 7-29, we monitor the events that are run during the DARE.

Example 7-29 Verify successful synchronization

host3t:/> more /usr/es/sbin/cluster/history/cluster.0306
Feb 22 18:28:39 EVENT START: node_down host2t graceful
Feb 22 18:28:39 EVENT COMPLETED: node_down host2t graceful
Feb 22 18:28:40 EVENT START: node_down_complete host2t graceful
Feb 22 18:28:41 EVENT COMPLETED: node_down_complete host2t graceful
Feb 22 18:34:00 EVENT START: reconfig_topology_start
Feb 22 18:34:01 EVENT COMPLETED: reconfig_topology_start
Feb 22 18:34:01 EVENT START: reconfig_topology_complete
Feb 22 18:34:05 EVENT COMPLETED: reconfig_topology_complete

We can convince ourselves that host2t has been removed from the cluster
topology by displaying the cluster networks, as in Example 7-30.

Example 7-30 Display cluster network

host3t:/> /usr/es/sbin/cluster/utilities/cllsnw
Network Attribute Node Adapter(s)

gpfs_net public host1t host1e
host3t host3e

 host4t host4e

noname_net public host1t host1t
 host3t host3t
 host4t host4t

In Example 7-31, we add host2t back to the nodeset of the cluster.

Example 7-31 Add node

host3t:/> /usr/es/sbin/cluster/utilities/clnodename -a host2t

Afterwards, inExample 7-32, we need to add the cluster adapters, host3t and
host3e, that were previously configured.

Example 7-32 Add cluster adapters

host3t:/> /usr/es/sbin/cluster/utilities/claddnode -a host2t:token:\
> noname_net:public:service : : -n host2t
host3t:/> /usr/es/sbin/cluster/utilities/claddnode -a host2e:ether:\
> gpfs_net:public:service : : -n host2t
 Chapter 7. Typical administrative tasks 139

In Example 7-33, we synchronize the cluster topology.

Example 7-33 Synchronize cluster topology

host3t:/> /usr/es/sbin/cluster/utilities/cldare -t

Example 7-34 shows the sequence of events that is run while the reconfiguration
is performed.

Example 7-34 Cluster reconfiguration events

host1t:/> tail -f /usr/es/sbin/cluster/history/cluster.03062001
Feb 22 19:09:38 EVENT START: reconfig_topology_start
Feb 22 19:09:38 EVENT COMPLETED: reconfig_topology_start
Feb 22 19:09:39 EVENT START: reconfig_topology_complete
Feb 22 19:09:42 EVENT COMPLETED: reconfig_topology_complete

In Example 7-35, we restart the cluster services on host2t.

Example 7-35 Restart cluster services

host3t:/> rsh host2t ‘/usr/es/sbin/cluster/etc/rc.cluster -boot -N -b -i’

Finally, we add host2t back to the GPFS nodeset and start the GPFS daemon.
First, we determine that quorum exists for the node set. Otherwise, the adding of
a new node may not be successful. In Example 7-36, we can obtain the number
of active nodes in the GPFS nodeset from the long listing for the Group Services
subsystem

Example 7-36 First group services subsystems

host3t:/> lssrc -ls grpsvcs
Subsystem Group PID Status
 grpsvcs grpsvcs 10204 active
4 locally-connected clients. Their PIDs:
16582(hagsglsmd) 14028(haemd) 16018(clstrmgr) 14166(mmfsd)
HA Group Services domain information:
Domain established by node 3
Number of groups known locally: 5
 Number of Number of local
Group name providers providers/subscribers
Gpfs.set1 4 1 0
GpfsRec.set1 4 1 0
ha_em_peers 4 1 0
CLRESMGRD_111 4 1 0
CLSTRMGR_111 4 1 0
host3t:/>
140 GPFS on AIX Clusters

The command shows that the groups Gpfs.set1 and GpfsRec.set1 have four
providers, hence GPFS is active on all four nodes and quorum exits.

7.2.2 Changing the network configuration
The user may encounter the need to add or remove network adapters, or to
change the rate at which keepalive signals are sent, or update the grace period
for the detection of failures.

Adding and removing network adapters
In Section 7.2.1, “Changing the cluster configuration” on page 137, we discussed
how to change the network configuration while the cluster is active. Network
adapters can be added or deleted as shown Section 7.2.1. While doing so when
the cluster is active, for instance to exchange a network, any new network should
be added before another one is removed, to maintain redundant network
connections at any moment.

Configuration of cluster network modules
In Example 7-37, for each network type (i.e., Ethernet and Token Ring), Topology
Services sends keepalive signals with a certain frequency, and ignores missing
responses from adapters for a certain time span before declaring the adapter has
failed.

Example 7-37 Configure cluster network modules

host1t:/> smitty hacmp
Cluster Configuration

Cluster Topology
Configure Network Modules

Change/Show a Network Module
(we choose ether)
(

[* Network Module Name ether
 Description [Ethernet Protocol]
 Parameters []
 Grace Period [30]
 Failure Detection Rate Custom
 Failure Cycle [4]
 Heartbeat Rate (in tenths of a second) [5]

 Note: A changed value in the Heartbeat Rate
 field will be ignored if the Failure Detection
 Rate is not set to "Custom".
 Chapter 7. Typical administrative tasks 141

The Heartbeat Rate is the frequency keepalive signals are sent. The Grace
Period is the time span keepalive signals from an adapter can be missed before
Topology Services declares this adapter has failed. The network module settings
are configured by network type. In this example, the settings would apply to all
cluster adapters of type ether. A short grace period is desirable, however no
false adapter failures should be generated, due to a saturated network. We tried
the above settings on the network used by GPFS and did not see any errors. An
adapter failure would be visible in the event history in our configuration as a
network_down event.

After the network module setting has been changed, the cluster topology needs
to be synchronized to update Topology Services on all nodes.
142 GPFS on AIX Clusters

Chapter 8. Developing Application
Programs that use GPFS

This chapter describes concepts and provides guidelines related to the
development of application programs using GPFS in a clustered environment.
This chapter revisits many of the concepts introduced in Chapter 2, “More about
GPFS” on page 13, but discusses them as they affect application programming
performance. With this focus, numerous benchmark results are provided. Since
this book is being written for an environment without PSSP, it is assumed that the
programs are not parallel (i.e., MPI nor OpenMP is used); however, many of the
concepts in this chapter are equally applicable to parallel programs. See GPFS
for AIX: Administration and Programming Reference for more details.

In particular, this chapter includes:

� The relationship of the POSIX I/O API to GPFS

� The relationship of GPFS architecture and organization to application
programming

� The analysis of several I/O access patterns and examples of how to improve
the random I/O access pattern using the GPFS Multiple Access Range hint

� Multinode performance considerations

� Numerous benchmark results and performance monitoring

8

© Copyright IBM Corp. 2001 143

8.1 GPFS, POSIX and application program portability
This section discusses the relationship of GPFS to the POSIX I/O API and the
portability of programs designed to use GPFS.

8.1.1 GPFS and the POSIX I/O API
The POSIX API1, including its I/O routines, is a common standard that most
UNIX implementations adhere to (including AIX). GPFS is designed to work with
programs using this API in a simple and straight forward manner. By sticking to
this standard, an application programmer can write a program without concern
for the fact that they are using a GPFS file system and can expect it to work
correctly on GPFS as well as any other UNIX and UNIX file system combination
adhering to the POSIX standard. For example, a programmer writing code for a
GPFS file system need not worry about where the disks are mounted (even
though they may be mounted on multiple nodes). There are no special calls to
send data to some other node or directives to open the file over several nodes.
Assuming that the application program is not a parallel program (i.e., MPI or
PVM is not used), the programmer can write the program in an intuitively clear
and straight forward manner without concern for the distributed nature of the
GPFS file system and expect the program to work correctly. But while sticking to
this standard guarantees program correctness, it does not imply anything about
efficiency.

A simple example
The following code segment illustrates the simple way GPFS can be used. It
directly uses the familiar POSIX APIs open(), lseek(), write(), fsync() and close().
But there are no specialized system calls, no macros, nor anything else
exceptional.

offset_t seek_offset;
int fd;
int k;
char fname = “my_file”;
char buf[16384];
int buf_size;
. . .
fd = open(fname, O_RDWR|O_CREAT|O_TRUNC, 0777);
for (k = 0; k < 10000; k++)
{

seek_offset = do_something(buf_size, buf);
lseek(fd, seek_offset, SEEK_SET);
write(fd, buf, buf_size);

1 See POSIX Programmer’s Guide, Donald Levine, O’Reilly and Associates, April 1991, ISBN 0-937175-73-0 for further
details.
144 GPFS on AIX Clusters

}
fsync(fd);
close(fd);

By defining the _LARGE_FILES flag, this code segment can access files
exceeding 2 GB. See Section 8.8.2, “Notes on large files” on page 181 for further
details.

While production codes are far more complex in practice, any program using the
POSIX API which works correctly on a sequential file system–such as the
Journaled File System (JFS)–will work correctly using GPFS, but with several
added benefits. For instance, this program can safely read or write a file
distributed over several disks in parallel. In other words, the program can be
written using a conventional sequential style and GPFS will automatically
parallelize the I/O operations. It also includes the ability to access the file from
any of the several nodes where the GPFS file system is simultaneously mounted.

Note on terminology
In many RS6000 and AIX manuals, the reader encounters the term system call.
This generally refers to the API presented by AIX to the application programmer
and it includes the POSIX API calls. The authors use terms like AIX system call
and GPFS system call to distinguish between API calls generally available to
application programmers via AIX and more restricted ones like those associated
with GPFS. If the term system call is used without qualification, assume that it
means an AIX system call.

8.1.2 Application program portability
There are three perspectives regarding portability to consider.

1. Can the program work correctly on different UNIX file systems?
2. Can the program work efficiently on different UNIX file systems?
3. Can the program work efficiently on GPFS by relaxing the requirement that it

work on different UNIX file systems?

The preceding example illustrates the first point that programs sticking to the
POSIX standard naturally work correctly on other UNIX file systems. But while
programs using the POSIX standard may work correctly on GPFS and other
UNIX file systems, their performance may not be as good as desired. So when
necessary, the application programmer can tune their codes to allow GPFS to
more easily exploit I/O access patterns and thereby improve performance. Even
this can be done most of the time when sticking to the POSIX standard. However,
while this tuned code works faster using GPFS and works correctly on other
UNIX and UNIX file system combinations, it may not perform as well on these
other systems. While it is possible to tune some programs to work reasonably
 Chapter 8. Developing Application Programs that use GPFS 145

well across multiple file systems, often subtle changes which significantly
improve a program on one file system may not have the same effect on others.
So regarding the second point, POSIX portability guarantees only correctness,
not performance standards.

Finally, regarding the third point, GPFS provides additional AIX system calls that
go beyond the POSIX standard to improve performance in some select cases.
These include the GPFS hints and data shipping features. Programs which use
these features can, under the right circumstances, experience a significant
performance lift, but programs using these features are not generally portable to
other UNIX and UNIX file system combinations.

8.1.3 More complex examples
Appendix G, “Benchmark and Example Code” on page 237 contains references
to complete programs using GPFS and a source listing for a middle layer utility
code used by several of these programs. They serve both as benchmark
programs and as nontrivial examples of how to write programs effectively using
GPFS. They are extensively commented to facilitate the reader’s understanding
of GPFS programming principles. Appendix H, “Additional material” on page 259
explains how these programs can be downloaded. Also see the GPFS for AIX:
Administration and Programming Reference for programming guidelines.

8.2 Benchmark programs, configuration and metrics
This chapter cites a number of results based upon the execution of various
benchmarks. The benchmark programs are described in Appendix G,
“Benchmark and Example Code” and can be downloaded as described in
Appendix H, “Additional material” on page 259. These programs have detailed
user comments in their comment headers (reminiscent of man pages) to assist
the reader in executing them. Because benchmark results are dependent upon
the particular configuration they are executed on, Table 8-1 summarizes the key
parameters of the configuration used to produce them. Unless stated otherwise,
the reader should assume these apply to any benchmark result given in this
chapter.

Table 8-1 Benchmark system configuration

Parameter Value

Node model 7025-F50

Number of nodes 4

Number of CPUs per node 4
146 GPFS on AIX Clusters

In addition to the configuration parameters, it is also important to understand how
the results are measured. These programs use rtc() from libxlf90 to measure
time. This is a low overhead timer compared to the more familiar gettimeofday()
timer and can make relatively fine grained measurements. The exact granularity
of rtc() is dependent upon the model of the CPU being used (but is generally, at
most, a couple microseconds). The I/O rates reported in the tables are measured
in MB/s reported to three significant figures (though the raw values generally
have more). This rate is determined by counting the total data processed by the
program divided by the total time. The timer is started just after the file has been
opened till just after it is closed; it does not measure the overhead of processing
user parameters and other such things. fsync() is called just before closing the
file and getting the final time. The programs can simulate either an I/O intensive
profile (e.g., 99%) or a balanced CPU and I/O intensive profile. Appendix G,
“Benchmark and Example Code” on page 237 provides examples of the output
listings from the benchmark programs.

8.3 GPFS architecture and application programming
As pointed out earlier, GPFS is simple to use by application programmers. Yet it
is profoundly subtle with many opportunities available to improve application
program performance. This section describes aspects of the GPFS architecture
and its organization that can be exploited by the application programmer to
improve I/O performance.

Memory 1.5 GB

GPFS block size 256 KB

Disk model 7133-D40 SSA

Number of disks 16 disks on 1 loop

Logical volumes 1 disk per logical volume

Configured file system size 135 GB

GPFS network 100 MB ether

Maximum number of benchmark tasks per
node

1

Parameter Value
 Chapter 8. Developing Application Programs that use GPFS 147

8.3.1 Blocks and striping
When writing an application program that uses file I/O, the programmer reads or
writes a record. In a UNIX environment, a record is a set of bytes whose size is
arbitrary. For example, in one operation a program could write a 262,144 byte
record and in the next operation read a 42 byte record. While this arbitrary record
size provides great flexibility for the read() and write() system calls, it has a
significant impact upon the performance of I/O operations in GPFS (and most
other file systems).

By contrast, a GPFS block has a fixed size and it is set when the file system is
created, and it is not easily changed. Moreover, a block is generally, but not
always, the basic granularity of a GPFS I/O operation. In other words, regardless
of the size of the record specified by a read() or write() system call, the
corresponding GPFS operation is performed in units of blocks, the number of
blocks determined automatically by GPFS to accommodate the size of the
record.

However, there are exceptions to this rule. If the application program specifies a
record that is smaller than a block or that touches a fragment that covers less
than a block, and no other portion of the block is accessed during its life in the
GPFS pagepool, then only the corresponding subblocks are transferred between
disk and the pagepool. This can save overhead by not having to wait for the disk
to spin under the head as long. But this is only relative; utilizing full blocks is
generally more efficient. If a subblock is accessed, all other parts of the
transaction overhead still occur, but are now amortized over a small unit of
transfer. Examples of where subblocks are transferred include strided or random
access I/O operations.

When records do not align with block boundaries
A common difficulty when writing an application program to be used with a GPFS
file system is to align records with block boundaries. Figure 8-1 on page 149
illustrates this with a specific example. Assume the GPFS block size is 256 KB,
the record is 288 KB and the seek offset is 1342169088 which is 1310712K
(represented by “A” in Figure 8-1). The seek offset closest to A that is aligned to
a block boundary is A+8K or 1310720K. Therefore this record spans three
blocks. Suppose the I/O operation is a read and these blocks are not already in
the pagepool (i.e., GPFS cache). Then GPFS will read the complete block in the
middle and one subblock before and another after it from three separate disks at
the same time.
148 GPFS on AIX Clusters

Now, suppose that the seek offset is 1310742K. Then this record would span
only two blocks. Either case is relatively inefficient. These operations can be
significantly improved by reading a 256KB record with a seek offset of 1310720.
Then the record would be block aligned and only one block would be accessed.
But aligning records on block boundaries like this is not always possible. A
similar problem occurs when a program writes a record that does not align
properly with a block boundary.

Figure 8-1 Reading a record that does not align with the GPFS block boundary

Table 8-2 on page 150 provides benchmark I/O rates corresponding to
Figure 8-1. In order to eliminate other cache optimizations, this benchmark writes
a 5 GB file using a random access pattern with the given record sizes. As can be
seen, the 256 KB record case significantly out performs the 288 KB record case.
However, if the program can be redesigned to use a record size that aligns with
the block boundary, then significant savings could be realized. For example,
suppose the natural record size is indeed 288 KB and the records are accessed
in a random pattern. Then the program could be redesigned to read 512 KB
block aligned records which contain the 288 KB of data needed. Using the same
benchmark program, the raw I/O rate is now 58.3 MB/s. However, since the

256K

A

256k 16k16k

block 1

page pool

288K

record

A+288K

A A+288K

288K

256K 256K

block 0block 0 block 1block 1 block 2block 2
 Chapter 8. Developing Application Programs that use GPFS 149

access pattern is random, the file must be read twice over to access all of the
data. This means that it takes twice as long to execute, thus reducing the
effective I/O rate to 29.2 MB/s. Even so, 29.2 MB/s is significantly better than the
raw rate of 12.8 MB/s when reading 288 KB records.

Table 8-2 Record/block mis-alignment

When records can be striped
Table 8-3 illustrates that a related problem occurs when a record is smaller than
a block. Suppose the record is only 16 KB and the block size is 256 KB.
Regardless of the seek offset, one block is read or written and the utilization is
only 6.25% for this transaction. Obviously, larger records improve the utilization.
The ideal is to have a record whose size is a multiple of the block size.

On the other hand, when records are significantly larger than a block, the parallel
operation of GPFS striping pays significant dividends. Suppose the block size is
256 KB, and the record size 1024 KB and it is properly aligned with a block
boundary. Then, ideally, four blocks are accessed simultaneously in the same
amount of time it takes to read one block (due to parallel overhead, its not quite
this good, but it is significantly improved). In general, designing an application
program to use large records that are a multiple of the block size leads to
optimum I/O performance for GPFS.

Table 8-3 Matching record and block sizes

8.3.2 Token management
Suppose job 1 is writing to file X. Now suppose job 2 starts and also wants to
write to file X. This situation requires careful coordination to prevent corrupting
file X. For instance, the file system could lock file X as soon as job 1 starts writing
to it and keeps it locked until job 1 is complete. In the meantime, job 2 remains
idle. This technique is called file locking, and while it is effective, it can be
inefficient. Another alternative would be to lock only that portion of file X that job 1
is writing to and allow job 2 to write concurrently to another section of the file. If
job 2 does try to write to the same section job 1 is, then job 2 would have to wait.
This technique is called byte range locking and is more efficient than file locking
as multiple tasks or threads can access the file simultaneously. Now suppose
these jobs are running on different nodes. This is a routine situation and it is
handled by the token manager in GPFS.

Record size 256 KB 288 KB

I/O rate 52.6 MB/s 12.8 MB/s

Record size 16 KB 256 KB 1024 KB

I/O rate 1.39 MB/s 13.20 MB/s 29.70 MB/s
150 GPFS on AIX Clusters

Consider Figure 8-2. Let file X be the 8 GB file in this figure and without loss of
generality let job 1 run on node 1. Now, consider jobs 3 and 4 in particular.
Perhaps job 3 is writing in the byte range 4 G to 6.5 G and job 4 desires to write
in the byte range 6 G to 8 G. That poses a potential write conflict. In this case,
before job 4 can write to the conflicted area, the GPFS daemon must acquire a
token from the token manager.

Subblocks also play a role in the token manager as the fundamental granularity
for byte range locking is the subblock.

Figure 8-2 Byte range locking

GPFS is designed to support parallel programming models which simultaneously
modify, or modify and read, common files, but it requires careful design of the
application program. Since parallel programming is beyond the scope of this
book and the token manager’s activities are more critical to the parallel
programming model, we will not further elaborate upon this point. However, the
reader must be cautious to not allow programs to simultaneously modify, or
modify and read, a common file without proper design as GPFS does not lock
files being modified. If a sequential program is allowed to modify a file while
some other program is accessing it, GPFS will not generate a warning, as it is
designed to support such activities with properly designed programs.

write conflict

file X: 8 GB

job 1
node 1
locks
offsets
0-2 G

job 2
node 2
locks
offsets
2-4 G

job 3
node 3
locks
offsets
4-6.5 G

job 4
node 4
locks
offsets
6-8 G
 Chapter 8. Developing Application Programs that use GPFS 151

8.3.3 The read and write I/O operations
The GPFS I/O operations, taking the largest of bulk of time and therefore having
the most significant impact upon I/O performance, are the read and write I/O
operations. The complexity of these I/O operations for sequential programs can
be largely understood in terms of locality of reference or more simply, locality.2
Without going into detail, good locality leads to the situation where a given record
is accessed multiple times after first being placed in cache, or where an access
pattern can be predicted, and the relevant records placed in cache
asynchronously prior to their first access. The cache in this case is the GPFS
pagepool (see Section 2.4, “Memory utilization” on page 23). This leads to two
levels of complexity for understanding the read and write I/O operations.

1. The record is in the pagepool
2. The record must be accessed directly on disk

These I/O operations begin with an AIX system call (i.e., read() or write()) that
leads to a GPFS call in the GPFS kernel extension. The AIX system call presents
the I/O request to GPFS on behalf of the user. It performs routine tasks like
collecting application program parameters, initializing GPFS structures,
collecting error return codes upon failure and so forth. But it does not buffer the
data; the application program record is copied straight to the pagepool when
writing, or the record is retrieved directly from the pagepool to an application
program supplied buffer when reading. If the data being accessed is in the
pagepool, GPFS kernel extensions resolve the request without resorting to
daemons, but if the data is not there, then GPFS daemons are dispatched to
acquire the data.

The read I/O operation
Consider the read I/O operation from its two levels of complexity.

1. The record is contained in the pagepool

This situation results when data from an early operation is being used again
or when the access pattern had been predicted and the data prefetched. In
this case, no GPFS daemons are involved and the data being read is
transferred from the pagepool to a user buffer. This operation is very efficient.

2. The record is not contained in the pagepool

In this case, a request is sent to a daemon which allocates a buffer in the
cache, locks in the byte range (to prevent the token from being stolen) and
initiates the I/O operation to the device holding the data. The process initiating
the request blocks until notified by the daemon that the data is available.

2 Since the activities of the token manager are greatly subdued (but not eliminated) for sequential application programs,
its role for read and write I/O operations is not considered here. See GPFS for AIX: Concepts, Planning, and Installation
Guide for further details.
152 GPFS on AIX Clusters

At the completion of the read operation a determination is made as to whether
additional data should be prefetched. This is called read-ahead. A determination
is made as to how much data should be prefetched based upon the program’s
I/O execution profile. A daemon asynchronously goes about prefetching the data
as necessary. Sequential and strided access patterns effectively exploit
read-ahead (see Section 8.4.1, “Tables of benchmark results” on page 155).
Hints can also be supplied when the pattern is random to assist read-ahead (see
Section 8.5, “Hints: Improving the random I/O access pattern” on page 160).

The write I/O operation
When an application program running under AIX writes to a GPFS file using the
write() system call, a record is copied from the application program’s buffer to the
GPFS cache (and no other copies are made). Generally, it is scheduled for
flushing at some later time to increase performance. Flushing is the process of
physically placing the data that is in cache on the disk. But flushing does not
necessarily mean that the data has been removed from cache. This process of
scheduling the flushing operation sometime later is called write-behind.

A block is scheduled to be flushed when one or more of the following situations
occur:

• The application specifies a synchronous write

• The application program calls a sync() system call

• The last byte of a block on sequential write has been written

• The cache is full and room is needed for a new block

• Another process is writing to the same file block

The last item guarantees cache coherence. A daemon actually does the flushing.
Unless specified otherwise (as in the first case), the flush is done asynchronously
(i.e., independently of, and concurrently with, the application program threads).

As with the read case, consider the write I/O operation from its two levels of
complexity.

1. The record is contained in the pagepool

When we say that the record is contained in the pagepool, we mean that the
GPFS blocks that will contain the record are in the pagepool. In this case, the
GPFS kernel extension copies the record from the buffer provided by the
application program directly to the pagepool. Unless this is a synchronous
write, control is then returned to the application program and if one of the
situations occur forcing a flush, it is scheduled and processed asynchronously
by a daemon.

2. The record is not contained in the pagepool
 Chapter 8. Developing Application Programs that use GPFS 153

If the blocks that will contain the record are not present in the pagepool, the
GPFS kernel extension suspends the application program and dispatches a
thread to allocate the blocks before writing the record. There are three options
to consider.

• A partial block is being written

If a disjoint part of the block has already been written to, then the block
is first copied from disk to cache and the portion of disk now being
written to is overlaid by the current record. When it is flushed, it
replaces the old block on disk.

• A complete block is being written

There is no reason to copy a block from disk to cache. An empty block
in cache is allocated and the record is written to it. When it is flushed, it
replaces the old block on disk.

• A new block is being written

The daemon allocates an empty block in cache and assigns it to a
block in the file. When it is flushed, it is copied to a new location on the
disk.

Design strategies that exploit locality
From this analysis, it can be seen that application program designs that exploit
cache locality are more efficient than those that do not. For example, designing
an application program that references records multiple times in quick
succession, or that allows prefetching, is far more efficient than those that don’t.

8.4 Analysis of I/O access patterns
This section analyzes I/O access patterns. We use this term to refer to the order
in which records are accessed and the topology of the records (e.g., size, block
alignment). It is the I/O access pattern that determines how efficiently GPFS can
execute I/O operations. Where possible, GPFS automatically utilizes caching,
striping and record/boundary alignment with respect to the I/O access pattern to
improve I/O performance. By designing an application program to use an I/O
access pattern that can easily be exploited, overall program performance can be
enhanced. While designing a program to use one of these efficient access
patterns may not be the natural way to do it, if it is possible, the benefits can
make the effort worth while. For example, we know of one case where a
production program was improved 10X by redesigning it to use a sequential
access pattern with large records, rather than a random access pattern with
small records.
154 GPFS on AIX Clusters

8.4.1 Tables of benchmark results
It is not possible to analyze every conceivable I/O access pattern. However, a
range of relatively common patterns with varying degrees of efficiency are
discussed, which illustrate the principles discussed earlier in this chapter. But
before actually discussing these patterns, Table 8-4 summarizes the results of
benchmark tests measuring the I/O rates of each access pattern. They are
based on the programs referenced in Appendix G, “Benchmark and Example
Code” on page 237. These are sequential programs and they were executed on
idle systems (i.e., they were the only jobs running on any of the four nodes in the
system). Section 8.2, “Benchmark programs, configuration and metrics” on
page 146 summarizes the configuration parameters used for these benchmarks.
In addition, the following information pertains to this table:

� Three record sizes were used:

• L = 1024 KB (large)

• M = 256 KB (medium) which is the block size for this configuration

• S = 16 KB (small)

� Records are block aligned and have a fixed size

� The file size for each job is always 5 GB

The programs represented in the columns designated “I/O only” perform no CPU
tasks beyond the immediate needs of doing the I/O operation; the time devoted
to CPU activity is a fraction of a percent. The programs represented in the
columns designated “I/O and CPU” are balanced between CPU and I/O activity;
the time devoted to CPU activity is somewhat variable, depending on the pattern,
but typically ranges between 50% to 60%.

Table 8-4 Benchmark results for I/O access pattern tests

Record size-
Pattern

Write
I/O Only

Read
I/O Only

Write
I/O and CPU

Read
I/O and CPU

L-Sequential 67.00 MB/s 75.90 MB/s 32.70 MB/s 30.80 MB/s

M-Sequential 64.00 MB/s 73.2 MB/s 32.60 MB/s 30.60 MB/s

S-Sequential 66.80 MB/s 69.80 MB/s 34.9 MB/s 35.90 MB/s

L-Strided 65.90 MB/s 75.20 MB/s 32.80 MB/s 30.70 MB/s

M-Strided 64.80 MB/s 72.80 MB/s 32.00 MB/s 30.50 MB/s

S-Strided 10.70 MB/s 19.90 MB/s 10.70 MB/s 20.60 MB/s

L-Random 64.40 MB/s 29.80 MB/s 32.40 MB/s 19.00 MB/s

M-Random 52.60 MB/s 13.20 MB/s 21.50 MB/s 10.60 MB/s
 Chapter 8. Developing Application Programs that use GPFS 155

We recommended that you execute these benchmarks on your local systems
since the results of a benchmark are heavily dependent upon the system (and its
configuration) on which they are executed. Therefore, if the system configuration
is different, the values will also be different. Moreover, even if the systems are
identical, the results may not be identical, as there is some variance (as much as
10% or more) associated with these figures. But the trends should be similar.

Each of the I/O access patterns listed in Table 8-4 are now discussed. They are
presented in an approximate hierarchy from the most effective to the least
effective.

8.4.2 Sequential I/O access patterns
A sequential I/O access pattern involves accessing records one after the other
starting at the beginning of the file and going to the end. This is by far the most
efficient I/O access pattern for GPFS.

When the records are large (e.g., 1024 KB) relative to the block size (e.g., 256
KB), GPFS is able to stripe these records across several disks improving
performance using implicit parallelism; each record accessed can spin multiple
disks at the same time. Moreover, GPFS’s read-ahead and write-behind
algorithms detect the sequential locality and schedule transfers between disk
and cache optimally. This can be seen by comparing the results of the large
record sequential patterns with the large record random patterns in Table 8-4. In
the large record random case, access is improved by striping, but the read-ahead
and (to a lesser extent) write-behind are not as effective and the performance is
significantly less than in the corresponding sequential case.

But even if the records are medium (e.g., 256 KB) or small (e.g., 16 KB), the
read-ahead and write-behind algorithms detect the sequential locality, group
these records into multiple blocks, and stripe them as in the large record case.
These observations are consistent with the figures in Table 8-4 on page 155. The
differences between the large, medium and small record reads and writes are
statistically insignificant.

S-Random 6.23 MB/s 1.39 MB/s 5.64 MB/s 1.36 MB/s

Record size-
Pattern

Write
I/O Only

Read
I/O Only

Write
I/O and CPU

Read
I/O and CPU
156 GPFS on AIX Clusters

8.4.3 Strided I/O access patterns
When discussing strided I/O access pattern, there is a stride factor of N
associated with it. A stride of N means that a record is accessed, the next N-1
records are skipped, a record is accessed, the next N-1 records are skipped, and
so on. Once the program gets to the end of the file, it goes back to the beginning
and starts with the next un-accessed record and repeats the strided pattern
again shifted by one record. The relative efficiency of this method is dependent
on the size of the record. But even if the records are smaller, GPFS accelerates
this access pattern.

First consider the case when the records are large (e.g., 1024 KB) relative to the
block size (e.g., 256 KB). Large blocks like this are striped and efficiency is very
good due to the implicit parallelism associated with striping. Its performance is
statistically identical to large record sequential.

Next consider the case when the records are medium sized (i.e., the same as the
block size or 256 KB). In earlier versions of GPFS, the performance would have
been identical to a random I/O access pattern, but in the later versions of GPFS,
it can detect this strided pattern; when it does, it either pre fetches blocks
asynchronously when it is reading a file, or it optimally schedules the records to
be written to disk after being placed in the pagepool using write-behind. Thus,
the medium record strided pattern performs statistically the same as large record
strided and the sequential patterns3.

A significant performance degradation is observed when the record size is small
(e.g., 16 KB) relative to the block size (e.g., 256 KB), especially of reads. But the
performance is still better than a random I/O access pattern for the same block
size. The reason is that GPFS can detect the strided pattern and read-ahead or
write-behind accordingly, but since it only uses a small portion of the block, the
overhead of reading an entire block is amortized over the small record. It is like
using a large pipe to transport a trickle of water. When measuring I/O rates
based on the amount of data accessed by the application program, the rate for
the small record program is proportional to the rate of the same program using
records equal to the block size where the constant of proportionality is the
fraction of the record size to the block size. This assumes that stride N is such
that two or more records come from one block. This relation can be expressed
more clearly mathematically:

• Let QL be a record whose size is equal to one GPFS block.

• Let QS be a small record size with QS < QL.

3 This statistical identical performance to sequential access patterns of the medium and large record strided writes is
surprising to the authors. On SP systems using VSD servers, the write performance is relatively good but is only 60% of
sequential access patterns.
 Chapter 8. Developing Application Programs that use GPFS 157

• Let n be the number of records accessed per block with n > 1. n is
inversely proportional to the stride N.

• Let F = QS / QR.

• Let RL be the I/O rate using the large records QL.

• Let RS be the I/O rate using the small records QS.

Then we conclude:

• RS = k1 * n * F * RL + k2 where k1 and k2 are constants.

or more simply, the rate RS = O(n). In other words, when the record size is less
than the block size and n > 1, the I/O rate varies linearly with the number of
records accessed per block. Since n = O(1/N), we can also say that the I/O rate is
inversely proportional to the stride. When n = 1, the constants k1 and k2 change
because GPFS now reads a subblock.

Table 8-5 shows this relationship. In this example, the benchmark programs write
or read a 1 GB file with a record size of 16 KB. The block size is 256 KB. Thus
there is 16 records per block. Note that each time the stride doubles, the rate is
cut in half, until the stride = 16 and the constants k1 and k2 change. When stride
= 1, the I/O access pattern becomes small record sequential and striping
becomes operational. The rates in this case are 66.2 MB/s for the write and 75.9
MB/s for the read.

Table 8-5 Relationship between stride and I/O rate for small record strided

Summarizing, large and medium record strided I/O access patterns perform at
the same rate as sequential I/O access patterns; small record strided I/O access
do not perform as well, but perform better than a random I/O access pattern for
blocks of the same size.

Stride (N) Records per block
(n)

Write rate (RS) Read rate (RS)

2 8 24.30 MB/s 40.70 MB/s

4 4 10.60 MB/s 19.70 MB/s

8 2 5.03 MB/s 9.56 MB/s

16 1 9.73 MB/s 22.10 MB/s
158 GPFS on AIX Clusters

8.4.4 Random I/O access patterns
Random I/O access patterns are problematic, but for many applications this
method cannot be avoided. The problem is that GPFS cannot detect a pattern.
Therefore impact of the read-ahead and write-behind algorithms is significantly
reduced.

First, consider the case when the records are large (e.g., 1024 KB) relative to the
block size (e.g., 256 KB). Here GPFS can only exploit the implicit parallelism
from striping a large record. Because no pattern can be detected, read-ahead
cannot be exploited at with any statistically significant impact. In the write case,
the scheduling of transfers from the pagepool to disk using write-behind are
much more efficient and perform at a rate nearly the same as the sequential
patterns.

The other cases are harder to analyze. Consider the read case when the records
are medium (i.e., the same as the block size or 256 KB) and small (e.g., 16 KB).
In the medium case, the read performance drops significantly as there is neither
a pattern that can be detected and exploited by the read-ahead algorithm, nor is
there any opportunity for implicit parallelism associated striping. When the
records are small, only the number of subblocks needed to fill the request are
read (e.g., two, 8 KB subblocks). The overhead of transfer from disk to the
pagepool must be amortized over a smaller unit of transfer and performance
suffers relative to the medium record case.

The analysis of the write case for the small and medium random I/O access
patterns is similar to the read case when the two write cases are compared to
themselves; medium record random is faster than small record random as the
small case must amortize the overhead of transfer over a small unit of transfer.
But what is surprising to the authors is that writes are from 2X to 4X faster than
the reads. Testing parallel versions of these benchmarks on RS6000 systems
using an SP2 switch and VSD servers yields just the opposite.

Incidentally, a similar mathematical relationship that exists for the small record
strided I/O access pattern also exists for the small record random I/O access
pattern.
 Chapter 8. Developing Application Programs that use GPFS 159

8.5 Hints: Improving the random I/O access pattern
As can be seen from examining Table 8-4 on page 155, random I/O access
patterns do not perform as well as sequential or strided I/O access patterns.
Thus it is well worth the effort to redesign an algorithm to use one of the more
efficient patterns discussed in Section 8.4, “Analysis of I/O access patterns” on
page 154. However, GPFS provides a mechanism to improve random I/O access
patterns when they cannot be avoided.

The problem with a random I/O access pattern is that GPFS cannot predict which
records will be accessed next. This renders write-behind and prefetching
in-effective. To counteract this shortcoming, GPFS provides mechanisms by
which the application program can identify a list of blocks (not records) to be
accessed prior to their first use. This gives GPFS the opportunity to
asynchronously perform prefetching and write-behind. These mechanisms are
generically called hints.

There are two types of hints: the GPFS access range hint, which specifies a
single range in which future accesses will occur, and the GPFS multiple access
range hint which is finer grained.

The API for GPFS hints is not POSIX compliant (and therefore not portable) and
it can be quite cumbersome, since it was designed for the needs of MPI-IO rather
than application programmers. However, a simple API that is more naturally
attuned to the needs of an application program can be designed as a middle
layer utility, thus allowing programmers to use some of the advanced features of
GPFS without having to resort to MPI.

To this end, this section discusses the implementation and use of such a middle
layer utility based upon the GPFS multiple access range hint (MAR hint). In
particular, it describes:

� Selected key aspects of the MAR hint API needed by this middle layer utility

� A generic middle layer utility, called GMGH, based upon the MAR hint API to
provide an easier to use hints API for application programs

� Benchmarks comparing random I/O access patterns using and not using
hints

For the remainder of this section, assume the term hints is synonymous with
MAR hints.
160 GPFS on AIX Clusters

8.5.1 The GPFS Multiple Access Range hints API
In order to understand how GMGH works, it is necessary to understand the basic
MAR hint API (both its syntax and associated semantics). This section does not
explain every nuance and feature of this API, nor even everything used by
GMGH, but it does explain in broad relief the key features of this API so that the
reader can intelligently use GMGH and modify it to meet specific needs. Greater
details regarding the system calls and structures associated with the MAR API
can be found in GPFS for AIX: Administration and Programming Reference . The
working code for GMGH which uses the MAR API serves as a complete example
and can be found in Appendix G, “Benchmark and Example Code” on page 237.

To begin with, there are five principles guiding the semantics of the MAR hint
API:

1. Hints are suggestions to GPFS; they are not guaranteed to be acted on.

2. Hints are issued prior to accessing a record with a read() or write() system
call. For reads and writes, this allows blocks corresponding to the record to be
placed in the pagepool, as necessary, asynchronously by GPFS daemon
threads prior to their first use. It also assists writes with their write-behind
scheduling.

3. Since a GPFS I/O operation never exceeds a block (remember, a large record
is divided into multiple blocks), hints are issued for each block corresponding
to the record.

4. The number of outstanding hints is limited by the system configuration. Hints
are issued until no more are accepted. Hints are released for blocks that have
been accessed and then new ones are issued.

5. Operationally, hints can be issued and released after each read() or write()
system call.

Each component of the MAR hints API is now discussed with several examples
included to illustrate their use. The examples are designed to work with large files
(i.e., files that exceed 2 GB).

gpfs_fcntl()
The only system call included in the MAR hints API is gpfs_fcntl(). This is a
general purpose system call which invokes different functions based upon the
structure fields in the parameters being passed to it. It is similar in spirit to the
familiar ioctl() system call. The syntax of this system call is:

#include <gpfs_fcntl.h>
int gpfs_fcntl(int fd, void *fcp)

The parameters are defined as:
 Chapter 8. Developing Application Programs that use GPFS 161

� fd

The file descriptor for the open file to which the hints are being applied

� fcp

This is a pointer to a nested structure designed by the application
programmer containing other GPFS defined structures; the particular
structures included determine the functions to be invoked and contain the
relevant parameters.

The return value is zero if gpfs_fcntl() is successful, otherwise it is -1. In the latter
case, the global variable errno is set to record the specific error.

Note that the application program using this function must be linked with libgpfs.a
(specified by the compiler -lgpfs).

There are three GPFS defined structures used by GMGH that can be contained
in the structure pointed to by fcp. They are:

� gpfsFcntlHeader_t

� gpfsCancelHints_t

� gpfsMultipleAccessRange_t

gpfsFcntlHeader_t
This structure is used by gpfs_fcntl() to specify the version and the size of the
operand (i.e., the size of the structure pointed to by fcp) being passed to it. The
fields used by GMGH are:

typedef struct
{

int totalLength; /* size of the operand */
int fcntlVersion; /* the particular function to be issued */
int fcntlReserved; /* always set to 0 */
int errorOffset; /* not used in GMGH */

} gpfsFcntlHeader_t;

fcntlVersion is always set to GPFS_FCNTL_CURRENT_VERSION, whose value
is set in gpfs_fcntl.h. The operand pointed to by fcp is a structure whose size and
fields vary with the particular function being launched by gpfs_fcntl().

gpfsCancelHints_t
This is one of the structures used by gpfs_fcntl() to determine which GPFS
functions are being invoked. Strictly speaking, the function associated with this
structure is not a hint, but a directive; as a directive, it is not just good advice
given to GPFS, but an action that must be executed.
162 GPFS on AIX Clusters

The function associated with this structure is to remove any hints that have been
issued against the open file. It restores the hint status to what it was when the file
was first opened, but it does not alter the status of the GPFS cache.

The syntax of this structure is:

typedef struct
{

int structLen;
int structType;

} gpfsClearFileCache_t;

structlen specifies the size of the gpfsClearFileCache_t structure. structType
specifies the function associated with the call to gpfs_fcntl(); its value is
GPFS_CLEAR_FILE_CACHE and is set in gpfs_fcntl.h.

The following code segment is a simple example illustrating how gpfs_fcntl() is
called and how the structures are aggregated to specify its function and form its
parameters.

struct
{

gpfsFcntlHeader_t hdr;
gpfsCancelHints_t cancel;

} chint;

chint.hdr.totalLength = sizeof(chint);
chint.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
chint.hdr.fcntlReserved = 0;

chint.cancel.structLen = sizeof(gpfsCancelHints_t);
chint.cancel.structType = GPFS_CANCEL_HINTS;

if (gpfs_fcntl(fd, &chint) < 0)
{

printf("*** ERROR *** gpfs_fcntl error: errno = %d\n", errno);
return -1;

}

gpfsMultipleAccessRange_t
This is another one of the structures used by gpfs_fcntl() to determine which
GPFS functions are being invoked. It is a nested structure used to present a
range of blocks to the MAR hint mechanism; blocks can be issued as a hint
and/or they can be released after having been accessed.

The structure’s syntax is:

typedef struct
{

 Chapter 8. Developing Application Programs that use GPFS 163

int structlen;
int structType;
int accRangeCnt;
int relRangeCnt;
gpfsRangeArray_t accRangeArray[GPFS_MAX_RANGE_COUNT];
gpfsRangeArray_t relRangeArray[GPFS_MAX_RANGE_COUNT];

} gpfsMultipleAccessRange_t;

GPFS_MAX_RANGE_COUNT specifies the maximum number of blocks that
can be issued as a hint and released in a single call to gpfs_fcntl(). Its value is
specified in gpfs_fcntl.h. structType specifies the function associated with the call
to gpfs_fcntl(); its value is GPFS_MULTIPLE_ACCESS_RANGE, since this is
the MAR hint function and is also set in gpfs_fcntl.h. structlen specifies the size
of the gpfsMultipleAccessRange_t structure. accRangeArray and relRangeArray
are used to issue and release hints in connection with accRangeCnt and
relRangeCnt.

By listing blocks in accRangeArray, they are issued as hints. As an input
parameter, accRangeCnt specifies the number of entries in accRangeArray
starting from the beginning of the array. After returning from gpfs_fcntl(),
accRangeCnt specifies the number of hints actually accepted; it’s always the first
n entries in accRangeArray. If some of the hints are not accepted, they must be
issued again in the next call to gpfs_fcntl().

By listing blocks in relRangeArray, they are released; relRangeCnt specifies the
number of entries in relRangeArray starting from the beginning of the array.
Blocks that have been issued and accepted as a hint must be released after they
have been accessed (via the read() or write() system calls); if this is not done,
hints will no longer be accepted. Blocks listed in relRangeArray are always
accepted for release, but if these blocks do not correspond to blocks that have
been issued earlier, no error occurs.

Each block in the range being hinted is described by the structure:

typedef struct
{

offset_t blockNumber; /* data block number to access */
int start; /* displacement to 1st byte in block */
int length; /* number of bytes in block being accessed */
int isWrite; /* 0 - read, 1 - write */
char padding[4];

} gpfsMultipleAccessRange_t;

Consider blockNumber. A file can be viewed logically as a linear collection of
blocks and each block has a seek offset indexing its first byte. blockNumber is
then set by doing an integer divide of this seek offset by the GPFS block size.
The GPFS block size can be found as follows:
164 GPFS on AIX Clusters

struct stat64 sbuf;
fstat64(fd, &sbuf);
gpfs_blksize = sbuf.st_blksize;

start is the displacement (relative to the block) to the first byte in the block to be
accessed by the application program (for block aligned records, start is 0). length
specifies the number of bytes being accessed starting from start. If the block is
being written, isWrite is 0; if its being read, isWrite is 1.

Application programs think in terms of records, whereas the MAR hint API thinks
in blocks. Therefore it is necessary to correlate records to the blocks they span.
The following code segments illustrate one way to issue the hints corresponding
to the application program records. They come from the function
gmgh_issue_hint() listed in Appendix G, “Benchmark and Example Code” on
page 237. References in the following discussion to actions taken elsewhere in
this code (e.g., generating the hint vector and block list) are highlighted in the
appendix by call-out boxes. To improve the readability of this example, error
checking, debugging code segments, and comments made redundant by
embedded text have been removed; it is otherwise a complete and correct
function.

This first code segment is the function header.

int gmgh_issue_hint
(
 gmgh *p,
 int nth
)

GMGH is a structure containing various parameters and lists. There are two
important lists in GMGH. p->hint is a vector whose entries are pointers to
structures describing each record the application program has submitted for
hinting by calling gmgh_post_hint(). There can be a maximum of 128 entries in
this vector. Once exhausted, the application program submits another batch of
128 entries, and so on. The number 128 is arbitrary and can be set to meet
application program needs. Corresponding to this vector is the block list
p->blklst; its entries are pointers to structures describing the blocks
corresponding to the records in p->hint. When the application program posts its
records as hints (i.e., enters them into p->hint), another function,
gmgh_gen_blk(), creates corresponding entries in p->blklst. gmgh_gen_blk()
determines how many blocks each record in p->blklst spans and creates one
entry for each block. Since the record size is variable in this example, a
maximum block size must be declared; this is used to set p->nbleh which is the
maximum number of blocks per record. So if the GPFS block size is 256 KB, and
the maximum record size is set to 1024 KB, then there will be four times as many
entries in p->blklst as there are in p->hint.
 Chapter 8. Developing Application Programs that use GPFS 165

nth specifies the current record being issued as a hint; nth is always less than
p->nhve, which is the number of entries in the hint vector.

The following code segment simply defines some local variables used in the
code segments that follow. Embedded comments briefly describe them, but
detailed analysis of their use is explained further below.

{
int rem; /* remember a value */

 int accDone, relDone; /* while loop conditions */
 int nhntacc; /* number of hints accepted */
 int rbx; /* block list index for released blocks */
 int ibx; /* block list index for issued blocks */

ghint is the parameter that is passed to the gpfs_fcntl() system call. It is being
intialized here.

 struct
 {
 gpfsFcntlHeader_t hdr;
 gpfsMultipleAccessRange_t marh;
 } ghint;

ghint.marh.structLen = sizeof(ghint.marh);
 ghint.marh.structType = GPFS_MULTIPLE_ACCESS_RANGE;

Some more routine initialization comes next. p->nbleh is the maximum number of
block entries per hint; thus rbx references the next set of blocks to be hinted.
relDone and accDone are Boolean values used to determine when we are done
releasing and issuing hints. “acc” in accDone indicates acceptance of hints; if
accDone = TRUE, we are done accepting hints, so no more can be issued.

 rbx = nth * p->nbleh; /* first block in block list to release */

if (nth == -1) relDone = TRUE; /* no hints to release */
 else relDone = FALSE;

 accDone = FALSE;

This is where we get down to business. Blocks associated with the last accessed
record are released, and we continue issuing new hints (i.e., one hint per block)
until no more are accepted.

 while(!accDone || !relDone)
 {

This following for loop prepares the relRangeArray structures for release of
issued hint blocks. It does this by extracting the block information from p->blklst
starting with p->lstblkreleased. Notice that relDone is set to TRUE in an if
statement. If the record size is very large relative to the GPFS block size, then
166 GPFS on AIX Clusters

the number of blocks corresponding to the record size may exceed
GPFS_MAX_RANGE_COUNT. Since this is the maximum number of blocks that
can be processed in one call to gpfs_fcntl(), then it may be necessary to cycle
through the outer while loop to release the remaining blocks, even if no more
hints are being accepted.

 for (k = 0; k < GPFS_MAX_RANGE_COUNT; k++)
 {
 if (p->hint[nth].lstblkreleased >= p->hint[nth].nblkstouched)
 {
 relDone = TRUE;
 break;
 }

 ghint.marh.relRangeArray[k].blockNumber = p->blklst[rbx].blknum;
 ghint.marh.relRangeArray[k].start = p->blklst[rbx].blkoff;
 ghint.marh.relRangeArray[k].length = p->blklst[rbx].blklen;
 ghint.marh.relRangeArray[k].isWrite = p->blklst[rbx].isWrite;

 rbx++;
 p->hint[nth].lstblkreleased++;
 }
 ghint.marh.relRangeCnt = k;

The next statements do some book keeping chores. The first one handles the
case where GPFS_MAX_RANGE_COUNT divides the number of blocks
touched. The second one handles an unusual situation that, after repeated
testing, has never occurred, but that we cannot rule out. It is possible that we
have not had hints accepted for some period of time and the records have been
accessed and released (releasing un-issued hints is not a problem). Thus, state
variables are set to be certain that we do not issue these hints since they are no
longer needed.

if (p->hint[nth].lstblkreleased >= p->hint[nth].nblkstouched)
 relDone = TRUE;

if (p->nxtblktoissue <= rbx)
 p->nxtblktoissue = p->nbleh * (nth + 1);

This following while loop prepares the accRangeArray structures for issuing
hints. It does this by extracting the block information from p->blklst starting with
p->nxtblktoissue. Notice the variable rem; it is used to remember where we
started so that if some of the blocks are not accepted, we are able to backtrack.
As in the case of releasing blocks, if the number of blocks per record exceeds
GPFS_MAX_RANGE_COUNT, it must cycle through the outer while loop again.

 rem = p->nxtblktoissue;
 ibx = p->nxtblktoissue;
 k = 0;
 Chapter 8. Developing Application Programs that use GPFS 167

 while (!accDone &&
 k < GPFS_MAX_RANGE_COUNT &&
 ibx < p->UBnblks)
 {
 if (p->blklst[ibx].blkoff >= 0) /* Is the next entry OK? */
 {
 ghint.marh.accRangeArray[k].blockNumber = p->blklst[ibx].blknum;
 ghint.marh.accRangeArray[k].start = p->blklst[ibx].blkoff;
 ghint.marh.accRangeArray[k].length = p->blklst[ibx].blklen;
 ghint.marh.accRangeArray[k].isWrite = p->blklst[ibx].isWrite;

 ibx++;
 k++;
 }
 else /* If not, find next good one. */
 ibx++;
 }
 ghint.marh.accRangeCnt = k;

p->nxtblktoissue = ibx;

Here we set the fields of the gpfsFcntlHeader_t structure and call gpfs_fcntl() to
release accessed blocks and issue the new hints that have been packaged in the
preceding nested loops.

ghint.hdr.totalLength = sizeof(ghint);
 ghint.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
 ghint.hdr.fcntlReserved = 0;

gpfs_fcntl(p->fd, &ghint);

Finally, there is one last set of book keeping chores to settle. If GPFS did not
accept all of the hints that were issued, it is necessary to determine which ones
were not accepted and set state variables to pick up where it left off. The variable
nhntacc is set to the number of hints not accepted. rem records the first block
issued in the most recent call to gpfs_fcntl(). This information is used to reset
p->nxtblktoissue to the first unaccepted block so that we can start where we left
off next time. Notice the test p->blklst[++ibx].blkoff < 0; because the record size is
variable, the block offset blkoff is set to -1 for unused blocks in p->blklst.

nhntacc = ghint.marh.accRangeCnt;
if (nhntacc < GPFS_MAX_RANGE_COUNT)

 {
 accDone = TRUE; /* no more hints this time */

 ibx = rem - 1;
 k = 0;
 while (k < nhntacc)
 {
 if (p->blklst[++ibx].blkoff < 0) /* find next real data */
168 GPFS on AIX Clusters

 continue;
 k++;
 }
 p->nxtblktoissue = ibx + 1;
 }
 }

 return 0;
}

Incidentally, when executing the GMGH code listed in Appendix G, “Benchmark
and Example Code” on page 237, an option exists to print illustrative hint
patterns which can clarify the actions of gmgh_issue_hint(). It is turned on by
compiling the code with the -DDEBUG flag.

The process of issuing hints using the native MAR hint API is tedious, but it can
be packaged in a more convenient API for use by application programmers as
described next.

8.5.2 GMGH: A generic middle layer GPFS hints API
GMGH is a generic middle layer utility implementing a hints API for use by high
level application programs. It is used in the benchmarks sited elsewhere in this
book and it serves as an example for application programmers who can use it as
is or adapt to their situation. To facilitate its role as an example, the GMGH code
has been thoroughly documented. The code listed in Appendix G, “Benchmark
and Example Code” on page 237 has been tested in both sequential and parallel
programs; the code in this redbook is used only in sequential programs. This
section describes many of the features of this API. By reading the preceding
subsection and this subsection, and examining the source code in the appendix,
the reader can quickly discern how it works internally.

The GMGH API calls
The GMGH API calls can be divided into two groups. The first group is intended
to be used publicly by the application program, while the second group is
intended for use privately within the GMGH utility only4.

� Public (used by application program)

– gmgh_init_hint()

– gmgh_post_hint()

– gmg_declare_1st_hint()

– gmgh_xfer()

4 This code is written in ANSI C; had it been written in C++, these functions would have been declared public and private
respectively.
 Chapter 8. Developing Application Programs that use GPFS 169

� Private (used within GMGH only)

– gmgh_gen_blk()

– gmgh_issue_hint()

– gmgh_cancel_hint()

Each of these public functions are discussed individually. A general discussion
that illustrates how to use them is mixed in with example code segments. The
actions of the private functions are discussed in the context of their use by the
public functions. Many references are made to the discussion associated with
gmgh_issue_hint() example in the preceding subsection.

gmgh_init_hint()
This function initializes the structures used internally by GMGH. Its syntax is:

#include “gmgh.h”
int gmgh_init_hint(gmgh *p, int fd, int maxrsz, int maxhint)

The parameters are defined as follows:

� p

p points to the GMGH structure defined in gmgh.h. The application program
does not need to explicitly reference any of the fields in p.

� fd

fd is the file descriptor for the opened file to which hints are being applied.

� maxrsz

maxrsz specifies the maximum size in bytes that a record can be. Records
can be variable in size in GMGH. So, in order to be processed, maxrsz must
be at least as large as the largest record. If a record exceeds the size of
maxrsz is accessed, blocks corresponding to the record beyond maxrsz will
be ignored.

� maxhint

maxhint specifies the maximum size of the hint set. A hint set is the set of
records that is posted in the hint vector p->hint, whose corresponding blocks
in p->blklst will later be issued as hints. maxhint must not exceed MAXHINT,
as defined in gmgh.h; doing so will cause the function to fail, but the value of
MAXHINT is somewhat arbitrary and can be changed if necessary (in our
examples, its value is 128). It is customary to issue new hints after each call
to read() or write(). Since the number of hints that will be accepted is not
known, the hint set must be large enough so that there is always a set of
blocks available for the issuing of new hints. Once the hint set is exhausted, it
must be re-populated.
170 GPFS on AIX Clusters

Setting the hint set too small prevents sufficient numbers of hints from being
issued and increases overhead by forcing the hint set to be re-populated
unnecessarily. Setting the hit set too large just wastes memory reserved for
internal structures.

Upon success, this function returns 0, otherwise it returns -1.

gmgh_post_hint()
This function posts records indicating that they will be issued as hints in the
future. The posting action places each posted record in the hint set (i.e., enters
them into p->hint). As the record is posted, gmgh_gen_blk() is called by
gmgh_post_hint() to determine how many blocks each record spans and it
creates one entry for each block corresponding to the record in p->blklst. Before
any of the records in the hint set are accessed, gmgh_post_hint() is called up to
maxhint times posting records one after another. The syntax is:

#include “gmgh.h”
int gmgh_post_hint(gmgh *p, offset_t soff, int nb, int nth, int isWrite)

The parameters are defined as follows:

� p

p points to the gmgh structure defined in gmgh.h.

� soff

soff is the seek offset for the record to be accessed.

� nb

nb is the actual length of the record to be accessed. nb < maxrsz.

� nth

nth is an ordinal number of the record. It simply acts as an index into p->hint
where the record is posted. When the record is actually accessed by
gmgh_xfer(), nth is used again to correlate the record with blocks in p->blklst
for releasing.

� isWrite

isWrite is used to specify whether the operation is a read or write. isWrite = 1
(true) implies it is write, isWrite = 0 (false) implies it is a read.

Notice that there is no parameter for a buffer to contain the record; it is not
needed at this point. The only information needed for posting a record and
issuing hints for the corresponding blocks is the seek offset and size of the
record.
 Chapter 8. Developing Application Programs that use GPFS 171

The following is a simple example illustrating how to post hints. The loop
generates the hint set one record at a time (next_rec() determines the seek offset
for the next record). Notice that no records are accessed in the loop; that
happens in a loop that comes after this one.

for (i = 0; i < maxhint; i++)
{

soff = next_rec();
gmgh_post_hint(p, soff, bsz, i, 1);

}

gmgh_declare_1st_hint()
gmgh_xfer() is used to access records and gmgh_issue_hint() is called after a
record is accessed. But, the first time gmgh_xfer() is called for the hint set, no
hints have been issued prior to accessing that first record.
gmgh_declare_1st_hint() is therefore designed to be called after posting the last
record in the hint set and prior to calling gmgh_xfer() to access the first record in
the hint set. gmgh_declare_1st_hint() first calls gmgh_cancel_hint() to clean the
slate (n.b., it releases any issued hints leftover from the previous hint set), then
calls gpfs_issue_hint(). The syntax is:

#include “gmgh.h”
int gmgh_declare_1st_hint(gmgh *p)

� p

p points to the gmgh structure defined in gmgh.h.

gmgh_xfer()
gmgh_xfer() is used to access records by calling the read() or write() system
calls, but it first calls llseek() with the whence parameter set to SEEK_SET. After
the record has been accessed, gmgh_issue_hint() is called which issues,
re-issues and releases hints as necessary. gmgh_xfer() is called for each record
in the hint set after all the records have been posted by gmgh_post_hint() and
gmgh_declare_1st_hint() has been called the first time. The syntax is:

#include “gmgh.h”
int gmgh_xfer(gmgh *p, char *buf, int nth)

� p

p points to the gmgh structure defined in gmgh.h.

� buf

buf points to a buffer supplied by the user to contain the record. Its size must
be at least maxrsz bytes.

� nth
172 GPFS on AIX Clusters

nth is the ordinal number of the record and is an index into p->hint where the
record is posted. gmgh_xfer() uses the nth entry in p->hint to get the seek
offset, record size and whether it should be read or written.

General discussion and example
The following code segments are adapted from one of the benchmark programs
referenced in Appendix G, “Benchmark and Example Code” on page 237 to
illustrate how to use GMGH. This program can also be downloaded (see
Appendix H, “Additional material” on page 259 for further details). In order to
simplify the code segments and ensuing discussion, constants are used to
initialize program parameters, error test and timing statements are removed, and
self documenting identifiers are used.

To begin with, the GMGH header file containing function prototypes, other
include files, constant definitions, and so forth, is included.

#include “gmgh.h”

The following statements are variable declarations. The variable names and
associated comments should make their meaning clear.

int fd; /* file descriptor */
int nrec = NUMBER_OF_RECORDS; /* obvious */
int bsz = SIZE_OF_RECORDS; /* fixed size records */
char buf[SIZE_OF_RECORDS]; /* record buffer */
int nrn; /* next record number */
offset_t soff; /* seek offset */
gmgh *p; /* pointer to gmgh structure */
int maxhint = MAXHINT; /* max number of hints */
int i, k, nhint; /* miscellaneous */

The next two statements are some initialization tasks. Since we are generating a
random I/O access pattern, we need a random number generator. We are calling
it rand(); it returns single precision, floating point, uniform random deviates
between 0 and 1. seed_rand() seeds the random sequence. Afterwords, we
open a file to be written to whose size can exceed 2 GB.

seed_rand(1.0); /* seed the random number generator */

fd = open(“my_file”, O_RDWR | O_CREAT | O_TRUNC | O_LARGEFILE, 0777);

What comes next is the first GMGH call. We mallocate memory for the GMGH
structure, initialize the fields to zero and call gmgh_init_hint().

p = (gmgh*)malloc(sizeof(gmgh));
memset(p,’\0’,sizeof(gmgh));
gmgh_init_hint(p, fd, bsz, maxhint); /* Building hint data */
 Chapter 8. Developing Application Programs that use GPFS 173

The following loop cycles through all of the records in chunks of size maxhint
which sets the maximum size of the hint set. nhint is the actual size of the hint
set; typically it is maxhint, but if maxhint does not divide nrec, then the last time
through the loop, nhint is set to the appropriate size.

for (k = 0; k < nrec; k+=maxhint)
{

if (k + maxhint > nrec) nhint = nrec - k;
else nhint = maxhint;

The following code segment is the first of two inner loops. The next record
number, nrn, is generated randomly. Based on the seek offset, soff is calculated.
The purpose of this loop is to post hints for each record in the hint set.
Immediately following the loop, we declare (i.e., issue) the first hint.

for (i = 0; i < nhint; i++)
{

nrn = (int)((float)nrec * rand()); /* 0.0 <= rand() < 1.0 */
soff = (offset_t)nrn * (offset_t)bsz;

gmgh_post_hint(p, soff, bsz, i, 1); /* remember, 1 means write */
}
gmgh_declare_1st_hint(p);

The next inner loop actually writes the data using gmgh_xfer() after generating
the data. make_data() generates the data to be written and uses the seek offset
to be sure it generates the right data. Since the records are posted before the
data is generated, it is important that correct data is placed in the buffer before
writing it. But generating the data after posting it may not always be possible due
to the difficulty of correlating the seek offset with the data (the seek offset may
need to be recalculated). In that case, the application program can generate,
save, and post the records in one loop and write them in the next loop using
gmgh_xfer(). This requires extra memory (but no significant extra time) and
allows the hints to be issued.

Also, remember that the hints are issued, re-issued, and released as part of the
activities of gmgh_xfer().

for (i = 0; i < nhint; i++)
{

make_data(soff, buf);
gmgh_xfer(p, buf, i); /* write the record */

}
}

174 GPFS on AIX Clusters

Benchmark results
Table 8-6 compares the benchmark codes of MAR hints in use versus MAR hints
not in use. These are the I/O intensive versions of the benchmarks. Similar
results hold for mixed CPU and I/O benchmarks. As can be readily seen from
inspecting this table, the use of hints significantly improves the performance of
the read benchmarks. What is puzzling is that performance is degraded for all of
the write benchmarks except for the medium record size case (and here the
improvement is marginal). The authors have tested parallel versions of these
same benchmark programs on SP systems with VSD servers using small record
random writes and the performance increased threefold.

Table 8-6 Using and not using MAR hints

In general, it is fair to conclude that random I/O access patterns are not as
efficient as other access methods. Moreover, the relationships between the
various solution strategies are somewhat perplexing. If a random pattern must be
adopted in an application, it is recommended that careful benchmarking be done
to assess its performance relative to these various strategies before
implementing a definitive algorithm for use in production.

8.6 Multi-node performance
It is unlikely that a multi-node system will only have a single job executing on it at
a time as is the case with the benchmarks discussed in Section 8.4, “Analysis of
I/O access patterns” on page 154. A GPFS file system is designed to be
accessible from multiple nodes having multiple jobs running simultaneously. But
this suggests the question, how well do multiple programs simultaneously using
the file system perform? To assess this question, the authors executed a series
of benchmarks which simultaneously ran multiple programs (at most, one per
node) and measured the I/O performance in MB/s. The results are summarized
in Figure 8-3 on page 176.

In this series of tests, a sequential I/O access pattern using large records (e.g.,
1024 KB with 256 KB blocks) is tested. The same benchmark programs and
parameters are used as with the benchmarks in Section 8.4, “Analysis of I/O
access patterns” (n.b., they are not parallel programs, just multiple instances of
the same sequential program accessing a unique file each time).

Record size-
Pattern

Write - NO
hints

Write - using
hints

Read - NO
hints

Read - using
hints

L-Random 64.40 MB/s 47.20 MB/s 29.80 MB/s 60.60 MB/s

M-Random 52.60 MB/s 56.00 MB/s 13.20 MB/s 55.20 MB/s

S-Random 6.23 MB/s 4.92 MB/s 1.39 MB/s 8.93 MB/s
 Chapter 8. Developing Application Programs that use GPFS 175

Write tests are first launched on two, three and four nodes, followed by read tests
on two, three and four nodes. Figures from single node tests are included in the
table for comparison. In addition, tests mixing reads and writes are launched. In
the first case, there is one write test launched on one node and one read test
launched on another node. The test is repeated except that there are two write
tests and two read tests launched with one test per node. Perusing this table, the
reader sees that the I/O rate per node goes down, but more importantly that the
aggregate I/O rate increases as the number of nodes increases (n.b., it drops off
slightly on four nodes). Thus, more total work is being done.

Figure 8-3 Multi-node tests

A similar tests were conducted using large (e.g., 1024 KB) and small (e.g., 16
KB) record random I/O access patterns and similar results were observed; the
I/O rate per node goes down, but the aggregate I/O rate increases as the number
of nodes increases.

Number of nodes
1 2 3 4

Write-Test
Aggregate Rate 66.97 105.36 120.10 110.90
Rate on node 1 66.97 52.74 41.12 28.77
Rate on node 2 52.68 40.03 27.73
Rate on node 3 40.14 28.69
Rate on node 4 28.88
Harmonic Mean 66.97 52.71 40.42 28.51

Read-Test
Aggregate Rate 75.91 103.65 114.89 109.14
Rate on node 1 75.91 51.82 38.30 27.37
Rate on node 2 52.27 39.58 27.56
Rate on node 3 39.05 27.28
Rate on node 4 27.51
Harmonic Mean 75.91 52.04 38.97 27.43

Mixed Read/Write Test
Aggregate Rate 92.11 117.11
Rate on node 1 write-> 66.00 write-> 41.04
Rate on node 2 read-> 46.05 write-> 41.77
Rate on node 3 read-> 29.33
Rate on node 4 read-> 29.28
Harmonic Mean 54.26 34.32
176 GPFS on AIX Clusters

8.7 Performance monitoring using system tools
In previous examples, the performance figures sited are based on application
programming instrumentation. In particular, the programs contained calls to rtc(),
which recorded times, and counters, which tracked the amount of data written.
However, the user may wish to use system tools to monitor performance. Two
such tools are iostat and filemon.

8.7.1 iostat
The iostat command is a useful command for monitoring I/O and CPU activity. It
generates statistical reports at designated time intervals for designated devices
and lists them on stdout. Since the focus of this book is on GPFS, we shall
examine iostat regarding its disk I/O monitoring features.

The format of the iostat command for disk I/O is:

iostat -d [physical volume] [interval [count]]

The -d option specifies that a disk utilization report is generated. Each of the
parameters in brackets are optional, but if missing have default values.

� [physical volume]

This is a space separated list of physical volumes. If it is omitted, then all
volumes are monitored.

� [interval [count]]

interval specifies a time interval in seconds between reports; if it is omitted,
then only one report is generated, but if it is included, count can be given to
specify how many reports are generated. If interval is specified, but count is
not, the reports are generated indefinitely.

The statistics are reported in five columns for the -d option. The first report is the
cumulative calculation of each of these statistics since the system was last
rebooted. Each subsequent report is over the most recent time interval.

� tm_act - percentage of time the physical volume was active
� Kbps - I/O rate in KB per second
� tps - the number of transfers per second
� Kb_read - total KB read
� Kb-wrtn - total KB written
 Chapter 8. Developing Application Programs that use GPFS 177

In the following example, each report consists of three rows, one for each listed
physical volume. The first report is the cumulative measurement of each statistic
since the system was last rebooted (n.b., the system used in this example had
been recently rebooted). The second report was generated during a write
benchmark and the third report during a read benchmark. Care should be taken
interpreting these results. For example, I/O rate (Kbps) is for one physical
volume only; it is not an aggregate I/O rate.

host1t:/> iostat -d hdisk3 hdisk4 hdisk5 60 3
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk4 0.2 13.6 0.2 695227 1684270
hdisk3 0.2 13.5 0.2 691926 1673121
hdisk5 0.2 13.5 0.2 692550 1672352
hdisk4 46.3 4376.5 34.2 0 43776
hdisk3 44.9 4376.5 34.2 0 43776
hdisk5 45.9 4376.5 34.2 0 43776
hdisk4 47.9 4555.7 35.6 45568 0
hdisk3 43.6 4581.3 35.8 45824 0
hdisk5 47.1 4606.8 36.0 46080 0

8.7.2 filemon
filemon is another useful command for monitoring I/O activity. Unlike the iostat
command which only examines file I/O from the perspective of physical volumes,
filemon monitors the performance of the file system on behalf of logical files,
virtual memory segments, logical volumes and physical volumes. In its normal
mode, filemon runs in the background while application programs and system
commands are being executed and monitored. It starts collecting data as soon
as it is launched and stops once directed to by the trcstop command. There are
many alternatives for using filemon, but we restrict this discussion to a limited
number of them.

The format of filemon for the options we are considering is:

filemon [-u] [-o File] [-O levels]

Each of the parameters in brackets are optional, but if missing, have default
values.

� [-u]

Collect statistics on files opened prior to launching the filemon command.

� [-o File]

Redirect output to the named file. If omitted, output is sent to stdout.

� [-O levels]

Collect statistics for the designated file system levels. The options are
178 GPFS on AIX Clusters

– logical file (lf)
– logical volume (lv)
– virtual memory (vm)
– physical volume (pv)

If omitted, statistics are collected for the vm, lv and pv options.

After executing the filemon command, you must execute the trcstop command
to stop the statistics being collected and to write the data to the output file. By
default, the statistics are reported for the 20 most active files.

The following example illustrates how to use this tool. Statistics are being
collected for the lf option. Two of the I/O benchmarks referenced in Appendix G,
“Benchmark and Example Code” on page 237 are being executed and
monitored. However, any application program or system command would do.

host1t:/> filemon -u -o fmon.out -O lf
Enter the “trcstop” command to complete filemon processing
host1t:/> ibm_sgw /gpfs1/fmeg 262144 8192 no seq
host1t:/> ibm_sgr /gpfs1/fmeg 262144 8192 no seq
host1t:/> trcstop
host1t:/> [filemon: Reporting started]
[filemon: Reporting completed]
[filemon: 137.177 secs in measured interval]
host1t:/>ls -l f*
-rw-r--r-- 1 root system 7500 Feb 28 20:17 fmon.out

The report in fmon.out is to lengthy to include in this example, so selected
portions extracted and listed below. To begin with, only the five of the 20 Most
Active Files are listed; the rest are omitted. The columns reporting statistics in
this section represent (relative to the duration of the report):

� #MBs - MB per second
� #opns - number of times the file was opened
� #rds - number read system calls made against the file
� #wrs - number write system calls made against the file

After this, the first file in the Detailed File Stats section is listed.

These samples, from the fmon.out file, are enough to provide you with the flavor
of the information provided in this helpful report. You should experiment with the
other options.

host1t:/> less fmon.out
Wed Feb 28 20:15:20 2001
System: AIX host1t Node: 4 Machine: 000B4A7D4C00
Cpu utilization: 11.6%
Most Active Files

 Chapter 8. Developing Application Programs that use GPFS 179

 #MBs #opns #rds #wrs file volume:inode

4096.0 2 8192 8192 fmeg /dev/gpfs1:90129
 18.5 0 592 0 pid=19976_fd=5
 1.0 0 253 94 pid=24450_fd=4
 0.5 0 137 0 pid=14124_fd=0
 0.5 0 131 51 pid=14726_fd=4

--
Detailed File Stats
--
FILE: /gpfs1/fmeg volume: /dev/gpfs1 inode: 90129
opens: 2
total bytes xfrd: 4294967296
reads: 8192 (0 errs)
 read sizes (bytes): avg 262144.0 min 262144 max 262144 sdev 0.0
 read times (msec): avg 3.353 min 2.930 max 34.183 sdev 0.554
writes: 8192 (0 errs)
 write sizes (bytes): avg 262144.0 min 262144 max 262144 sdev 0.0
 write times (msec): avg 3.648 min 3.166 max 244.538 sdev 5.472
lseeks: 16384

8.8 Miscellaneous application programming notes
This section discusses several smaller, but important items involving application
programs using GPFS.

8.8.1 File space pre-allocation and accessing sparse files
A common task in some applications is to pre-allocate the space for a file and
perhaps initialize all of the space to zeros. This can be quite expensive for large
files. For example, a common task in some applications is to read a record from a
file, add a new record to it, and write it back to the same location in the file.

There is a very quick and easy way to do this for a GPFS file. A program can
write a record (or even just one byte) at the end of the file (find an example of this
in the benchmark codes ibm_sgw and ibm_shw sited in Appendix G,
“Benchmark and Example Code” on page 237). This pre-allocates all of the file
space preceding this record and initializes it to zero. The operation takes
something on the order of a millisecond or less to do. However, this is only
pre-allocates virtual space.
180 GPFS on AIX Clusters

For example, suppose a file system has been configured to have 1024 GB of
storage and 960 GB is already occupied; there is only 64 GB of free space.
Suppose job1 pre-allocates 50 GB of storage and actually writes 10 GB of data
to the file. Doing an ls -l after job1 completes shows the file size to be 50 GB
while a du -k shows its real size to be a little over 10 GB (remember, du also
includes a file’s indirect blocks; see Example 2-1, “Sparse file” on page 22).

Now suppose job2 begins, and it writes 50 GB of data to disk. The 50 GB of
virtual space job1 allocated plus the 50 GB of space job2 actually use exceeds
the 64 GB of free space that was available before job1 began. The reason that
this can happen is that only 10 GB real space was used by job1. That means
between job1 and job2, 60 GB of real space was used and now only 4 GB of file
space is actually available in this file system. If job1 resumes activity and tries to
use its remaining 40 GB of virtual space, the file system will run out of space.

This example illustrates an inconvenience associated with pre-allocating file
space. In spite of this, many shops find that the time savings of file pre-allocation
outweigh this inconvenience; they simply adjust their storage policies to handle
this situation.

Continuing with this example (but assuming there is an abundance of file space),
suppose a job reads a record of virtual file space that has not actually had
anything written to it. Then the record is returned containing all zeros; this is a
normal situation and not an error5. On the other hand, suppose a program tried
to read a record beyond the end of the virtual space. This generates an error with
the errno value EBADF (Bad file descriptor).

8.8.2 Notes on large files
GPFS and AIX, beginning in version 4.2, supports large files (i.e., file size
exceeds 2 GB). This means that the seek offset value can be larger than a 32 bit
signed integer can handle. To accommodate this change, new AIX I/O APIs were
created. For example, such familiar calls as open() are lseek() are replaced with
open64() and lseek64(). Variables declared as off_t are replaced with off64_t or
the long type. This interface, however, is not POSIX compliant.

In order to use the standard POSIX I/O API with large file support, the application
code must define the _LARGE_FILES6 flag before the inclusion of any header
files. This automatically replaces POSIX I/O system calls and types with their 64
bit equivalent. The easiest way to do this is to include this flag on the compile line

5 But caution is urged when reading a record that contains both virtual and real space. The authors have occasionally
encountered unexpected results in this situation.
6 The _LARGE_FILES flag should not be confused with the open() system call flag O_LARGEFILE; this latter flag is used
to open a large file when a file system like NFS or JFS may not be configured to support files exceeding 2 GB by default.
The O_LARGEFILE flag doesn’t effect GPFS since it is always configured to support files greater than 2 GB.
 Chapter 8. Developing Application Programs that use GPFS 181

in the makefile (i.e., -D_LARGE_FILES). The benchmark and example codes
referenced in Appendix G, “Benchmark and Example Code” on page 237 defines
this flag in this way. See General Programming Concepts: Writing and Debugging
Programs , 2nd edition, Sept 1999 for further details.

8.8.3 GPFS library
When using the MAR hint API, it is necessary to link the application program with
libgpfs.a. This is done by placing the flag -lgpfs on the compile line in the
makefile. This flag is not needed for programs accessing GPFS files.
182 GPFS on AIX Clusters

Chapter 9. Problem determination

This chapter is designed to assist with the problem determination in a GPFS for
HACMP Cluster environment. It is intended to compliment the product specific
guides for this environment, namely:

� GPFS for AIX: Problem Determination Guide, GA22-7434

� HACMP/ES 4.4 for AIX: Installation and Administration Guide, Vol.2,
SC23-4306

� HACMP/ES 4.4 for AIX: Troubleshooting Guide, SC23-4280

This chapter will review:

� Logs available for HACMP and GPFS

� Group services (grpsvcs)

� Topology services (topsvcs)

� Disk related errors

– varyonvg related problems

– Definition problems

– SSA Disk Fencing

• Determining fence IDs

• Setting fence IDs

• GPFS daemon error messages when the fence ID is set incorrectly

9

© Copyright IBM Corp. 2001 183

� Internode communications

– Checking interfaces defined to HACMP

– .rhost files

– Testing rsh/rcp for correct setup
184 GPFS on AIX Clusters

9.1 Log files
This section will review the logs available for assisting in the problem
determination process from both the HACMP and GPFS products.

In addition to the logs that are specific to both HACMP and GPFS, many errors
result in the creation of an AIX error log entry. These error logs are reviewed with
the errpt command. There are often helpful details in the AIX error logs that
correspond to the information in the log files of HACMP or GPFS.

9.1.1 Location of HACMP log files
/usr/es/adm/cluster.log Contains time-stamped, formatted messages

generated by HACMP/ES scripts and daemons. This is
a standard text file that can be viewed directly or with
the cldiag utility.

/tmp/hacmp.out Contains time-stamped, formatted messages
generated by HACMP/ES scripts on the current day.

system error log Contains time-stamped, formatted messages from all
AIX subsystems, including scripts and daemons.

There are other logs specific to the other HACMP/ES subsystems including
group services and topology services. These are detailed in the aforementioned
HACMP manuals.

9.1.2 Location of GPFS log files
The following are two important log files:

/var/adm/ras/mmfs.log.latest → link to latest mmfs log file

/var/adm/ras/mmfs.log.previous → link to previous mmfs log file

In normal operations, GPFS writes both operational messages and error data to
the mmfs log file. The log files are found in the /var/adm/ras directory on each
node. The mmfs log file is called mmfs.log.date where date is the time-stamp of
when the latest instance of GPFS was started on the node. The latest mmfs log
can be found by using the symbolic link /var/adm/ras/mmfs.log.latest. The mmfs
log from the previous instance of GPFS can be found by using the symbolic link
/var/adm/ras/mmfs.log.previous.

By default, the last 11 days of logs are retained. This value can be adjusted by
changing the value in the /usr/lpp/mmfs/bin/runmmfs script.

An example of the messages that appear in the mmfs log are:
 Chapter 9. Problem determination 185

Fri Apr 6 16:02:00 EDT 2001 runmmfs starting
Removing old /var/adm/ras/mmfs.log.* files:
Loading modules from /usr/lpp/mmfs/bin
GPFS: 6027-500 /usr/lpp/mmfs/bin/mmfs loaded and configured.
Fri Apr 6 16:02:01 2001: GPFS: 6027-310 mmfsd initializing.
Fri Apr 6 16:02:01 2001: GPFS: 6027-1531 useSPSecurity no
Fri Apr 6 16:02:02 2001: GPFS: 6027-841 Cluster type: 'HACMP'
Fri Apr 6 16:02:03 2001: Using TCP communication protocol
Fri Apr 6 16:02:03 2001: GPFS: 6027-1710 Connecting to 9.114.121.2
Fri Apr 6 16:02:03 2001: GPFS: 6027-1711 Connected to 9.114.121.2
Fri Apr 6 16:02:03 EDT 2001 /var/mmfs/etc/gpfsready invoked
Fri Apr 6 16:02:03 2001: GPFS: 6027-300 mmfsd ready

The GPFS daemon is not ready to accept commands until the message GPFS:
6027-300 mmfsd ready has been issued.

9.2 Group Services
The successful startup of GPFS depends on group services being active on all
nodes that are going to be part of the GPFS cluster. GPFS will not start on a
node without group services being active on that node. Group Services is started
on a node when HACMP/ES is started.

9.2.1 Checking the Group Services subsystem
Issue the lssrc -ls grpsvcs command to list the status of the group services
subsystem. If the grpsvcs subsystem is not active on the node, then the
command returns the following message:

(17:13:21) c185n01:/ # lssrc -ls grpsvcs
0513-036 The request could not be passed to the grpsvcs subsystem.
Start the subsystem and try your command again.

Also note that the hagsd daemon is not active on this node:

(17:16:31) c185n01:/ # ps -ef|grep grpsvcs|grep -v grep
(17:19:48) c185n01:/ #

Note: The proper operation of both GPFS and HACMP depend on having
space available for their logs files. The /usr, /var, and /tmp filesystems should
be monitored to be sure that they do not become full.
186 GPFS on AIX Clusters

The lack of group services means that HACMP is not active on this node. Start
HACMP and run the same series of commands. How to start HACMP is covered
in Chapter 5, “Configuring HACMP/ES” on page 71.

With HACMP active on a node, the hagsd daemon is also active:

(17:29:49) c185n01:/ # ps -ef|grep grpsvcs|grep -v grep
root 12532 7820 0 17:22:46 - 0:00 hagsd grpsvcs

(17:31:07) c185n01:/ #

Now that group services is active, the "lssrc -ls grpsvcs" command shows the
activity of the groups that are subscribed to group services, in this case, HACMP.

(17:29:42) c185n01:/ # lssrc -ls grpsvcs
Subsystem Group PID Status
grpsvcs grpsvcs 12532 active

3 locally-connected clients. Their PIDs:
13946(hagsglsmd) 18770(haemd) 15244(clstrmgr)
HA Group Services domain information:
Domain established by node 5
Number of groups known locally: 3

Number of Number of local
Group name providers providers/subscribers
ha_em_peers 8 1 0
CLRESMGRD_15 8 1 0
CLSTRMGR_15 8 1 0
(17:29:49) c185n01:/ #

The above display from the lssrc -ls grpsvcs command shows that this node
is a "provider" of services, one of eight in this cluster.

The above display shows a state which is ready to support the operation of a
GPFS cluster.

Operation of GPFS without Group Services
If the GFPS daemon is started before group services is active, then the daemon
will not start. Rather then starting, GPFS will monitor the existence of group
services, waiting for it to come active. An excerpt from the
/var/adm/ras/mmfs.log.latest shows this behavior:

(18:11:16) c185n01:/ # tail -f /var/adm/ras/*latest
Sun Apr 8 18:11:06 EDT 2001 runmmfs starting
Removing old /var/adm/ras/mmfs.log.* files:
Loading modules from /usr/lpp/mmfs/bin
GPFS: 6027-506 /usr/lpp/mmfs/bin/mmfskxload: /usr/lpp/mmfs/bin/mmfs is already
loaded at 90670232.
 Chapter 9. Problem determination 187

Sun Apr 8 18:11:07 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:12:07 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:13:08 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:14:08 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:15:08 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs

After the group services daemon is started, then GPFS will continue with it's
initialization. An excerpt from the /var/adm/ras/mmfs.log.latest shows this
behavior:

(18:11:16) c185n01:/ # tail -f /var/adm/ras/*latest
Sun Apr 8 18:11:06 EDT 2001 runmmfs starting
Removing old /var/adm/ras/mmfs.log.* files:
Loading modules from /usr/lpp/mmfs/bin
GPFS: 6027-506 /usr/lpp/mmfs/bin/mmfskxload: /usr/lpp/mmfs/bin/mmfs is already
loaded at 90670232.

Sun Apr 8 18:11:07 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:12:07 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:13:08 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:14:08 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:15:08 EDT 2001 runmmfs: 6027-1242 GPFS is waiting for grpsvcs
Sun Apr 8 18:16:03 2001: GPFS: 6027-310 mmfsd initializing.
Sun Apr 8 18:16:03 2001: GPFS: 6027-1531 useSPSecurity no
Sun Apr 8 18:16:04 2001: GPFS: 6027-841 Cluster type: 'HACMP'
Sun Apr 8 18:16:07 2001: Using TCP communication protocol
Sun Apr 8 18:16:07 2001: GPFS: 6027-1710 Connecting to 9.114.121.2
Sun Apr 8 18:16:07 2001: GPFS: 6027-1711 Connected to 9.114.121.2
Sun Apr 8 18:16:07 EDT 2001 /var/mmfs/etc/gpfsready invoked
Sun Apr 8 18:16:07 2001: GPFS: 6027-300 mmfsd ready

9.3 Topology Services
The operation of GPFS depends on the availability of the network that has been
defined for its use. GPFS subscribes to topology services in order to monitor the
health of this network. Like group services, the topology services daemon (hatsd)
is started by HACMP.

9.3.1 Checking the Topology Services subsystem
Issue the lssrc -ls topsvcs command to check on the operational status of the
topology services subsystem. Here is an example of the topology services status
with the network named GBether is the GPFS network.
188 GPFS on AIX Clusters

(18:00:25) c185n01:/ # lssrc -ls topsvcs
Subsystem Group PID Status
topsvcs topsvcs 10458 active

Network Name Indx Defd Mbrs St Adapter ID Group ID
GBether_0 [0] 8 8 S 9.114.121.1 9.114.121.8
GBether_0 [0] en1 0x32d0d6a5 0x32d0d6be
HB Interval = 1 secs. Sensitivity = 4 missed beats

2 locally connected Clients with PIDs:
haemd(18770) hagsd(12532)

Dead Man Switch Enabled:
reset interval = 1 seconds
trip interval = 8 seconds

Configuration Instance = 3
Default: HB Interval = 1 secs. Sensitivity = 4 missed beats
Daemon employs no security
Data segment size: 6764 KB. Number of outstanding malloc: 318
User time 1 sec. System time 1 sec.
Number of page faults: 2. Process swapped out 0 times.
Number of nodes up: 8. Number of nodes down: 0.

(18:04:40) c185n01:/ #

The above status show the network GBether that has eight members and this
nodes state (the "St" field) is S.

Topology Services Display with Network Interface Problems
If the interface associated with the GPFS network was to go down then the
topology services status would change reflecting this operational state.

For example, on node c185n01, the interface in the network GBether is en1. If it
was brought down by the ifconfig en1 down command, a number of things
would happen on this node. First, the operational status of the network would
change in topology services. Secondly, as GPFS is dependent on this network
for it's internode communication, the GPFS daemon would go down.

Here is the output from lssrc -ls topsvcs after en1 was brought down:

(18:21:28) c185n01:/ # lssrc -ls topsvcs
Subsystem Group PID Status
topsvcs topsvcs 15306 active

Network Name Indx Defd Mbrs St Adapter ID Group ID
GBether_0 [0] 8 0 D 9.114.121.1
GBether_0 [0] en1
HB Interval = 1 secs. Sensitivity = 4 missed beats

2 locally connected Clients with PIDs:
haemd(15478) hagsd(18798)

Dead Man Switch Enabled:
 Chapter 9. Problem determination 189

reset interval = 1 seconds
trip interval = 8 seconds

Configuration Instance = 3
Default: HB Interval = 1 secs. Sensitivity = 4 missed beats
Daemon employs no security
Data segment size: 6764 KB. Number of outstanding malloc: 316
User time 0 sec. System time 0 sec.
Number of page faults: 1. Process swapped out 0 times.
Number of nodes up: 8. Number of nodes down: 0.

Note the change in the "St" field from "S" to "D".

Another way to view this interface is with the netstat -in command:

(18:21:33) c185n01:/ # netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en0 1500 link#2 0.60.94.e9.7f.84 625423 0 616640 0 0
en0 1500 9.114.121.6 9.114.121.65 625423 0 616640 0 0
en1* 1500 link#3 0.4.ac.7c.d6.c0 497283 0 589281 0 0
en1* 1500 9.114.121 9.114.121.1 497283 0 589281 0 0
lo0 16896 link#1 439176 0 442219 0 0
lo0 16896 127 127.0.0.1 439176 0 442219 0 0
lo0 16896 ::1 439176 0 442219 0 0

Note the asterisk (*) next to the interface en1 marking it down.

In addition to topology services changing states in response to en1, GPFS has
also been informed by its membership that en1 has gone down. Here is the mmfs
log showing this state change:

Sun Apr 8 18:56:00 2001: GPFS: 6027-300 mmfsd ready
Sun Apr 8 18:56:31 2001: GPFS: 6027-820 My adapter en1 has failed. Shutting
down the daemon.

Sun Apr 8 18:56:31 2001: GPFS: 6027-831 Terminated connections to Group
Services.

Sun Apr 8 18:56:31 2001: GPFS: 6027-650 The mmfs daemon is shutting down
abnormally.

Sun Apr 8 18:56:31 2001: GPFS: 6027-311 mmfsd shutting down.

9.4 Disk problem determination
This version of GPFS is limited to using SSA disks when running on HACMP
clusters. The following section will deal with typical problems that may be
encountered in the operation of these SSA multi-tailed clusters.
190 GPFS on AIX Clusters

The process of defining volume groups, defining logical volumes, getting the
volume groups imported to all the nodes in the GPFS cluster, setting the volume
group "AUTO ON" parameter is a complicated, but critical procedure for the
proper operation of a GPFS cluster environment.

Chapter 6, “Configuring GPFS and SSA disks” on page 91 discusses how to
define volume groups and logical volumes and how to use importvg to import
these volume groups to the rest of the nodes in the GPFS cluster. The problems
that may be encountered if these procedures are not followed exactly will be
discussed In the coming sections, as well as procedures that can be used to
verify that all the disks, volume groups, and logical volumes are in the proper
state for GPFS usage.

9.4.1 GPFS and the varyonvg command
varyonvg is the AIX command to make a volume group available to a node. In the
GPFS for HACMP clusters environment the same physical volume must be
available to all the nodes in the cluster concurrently. The technique used is to
varyonvg each volume group with the -u option. The varyonvg -u option allows a
volume group to be varied on to a node without a lock being set on that volume
group. Contrast this behavior to a normal (no -u parameter) varyonvg command,
where the node that varies on the volume group locks it with the expressed
purpose of keeping other nodes from accessing it concurrently.

If a volume group is varied online to a node without using the -u option of the
varyonvg command, then all other nodes will lose access to the volume group.
This includes nodes that had access to the volume through the proper use of the
varyonvg command with the -u option.

We recommend varyonvg commands not be issued by users and to allow GPFS
to manage the varyonvg state of all of it's volume groups. GPFS is capable of
varying on disks for any operation, creation of file systems (mmcrfs), replacement
of disks in file systems (mmrpldisk), adding disks to existing file systems
(mmadddisk), or the mounting of file systems via the mount command. There is
never a case where a user needs to issue a varyonvg command for a volume
group for GPFS's usage.

Problems encountered during varyonvg processing
One potential error during the definition of a disk for usage in the GPFS for
HACMP clusters environment is not to set the volume group's AUTO ON
parameter to NO. This parameter is properly set to NO by the -n option of the
mkvg command. The AUTO ON parameter is also changed on each node after
the volume group has been imported with the chvg -a n command.
 Chapter 9. Problem determination 191

If this parameter is not properly set, then the default behavior of the AUTO ON
parameter is to vary on the volume group at boot time. In the case where one or
more nodes have this parameter improperly set, then one node will get the
volume group varied online and all the other nodes will have errors trying to read
the volume group.

Typical errors that will be seen will include:

(21:34:00) c185n01:/ # varyonvg -u gpfsvg16
PV Status: hdisk66 000167498707c169 PVNOTFND
0516-013 varyonvg: The volume group cannot be varied on because

there are no good copies of the descriptor area.

This is typical of the node where this varyonvg command is running from being
locked out from a disk that is in an improper vary on state on another node.

There is an SSA utility command called ssa_rescheck that can assist with this
problem state.

(21:34:30) c185n01:/ # ssa_rescheck -l hdisk66
Disk Primary Secondary Adapter Primary Secondary Reserved

Adapter Adapter In Use Access Access to
hdisk66 ssa0 ==== ssa0 Busy ==== c185n02

The ssa_resehck command is in the devices.common.IBM.ssa.diag fileset. Its full
usage is documented in the manual: Advanced SerialRaid Users Guide and
Maintenance Information, SA33-3285

In order to solve the problem of not having the proper access to a volume group,
the action is to either run the ssa_rescheck command and determine which node
had it in the wrong state, or to vary off the volume group from all nodes and re-try
the operation that created the above failure.

9.4.2 Determining the AUTO ON state across the cluster
The AUTO ON setting for a volume group can be determined with the lsvg
command:

(21:34:07) c185n02:/ # lsvg gpfsvg16
VOLUME GROUP: gpfsvg16 VG IDENTIFIER: 0002025690caf44f
VG STATE: active PP SIZE: 16 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 268 (4288 megabytes)
MAX LVs: 256 FREE PPs: 0 (0 megabytes)
LVs: 1 USED PPs: 268 (4288 megabytes)
OPEN LVs: 0 QUORUM: 2
192 GPFS on AIX Clusters

TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: no
Concurrent: Capable Auto-Concurrent: Disabled
VG Mode: Non-Concurrent
MAX PPs per PV: 1016 MAX PVs: 32

Here the setting AUTO ON is set to no which is the proper setting for volume
groups in the GPFS for HACMP clusters environment.

The lsvg command needs to have the volume group online before it returns
information including the setting of the AUTO ON setting for that volume group.

Another command that can be used to determine the AUTO ON setting for a
volume group without that volume group having to be online is the getlvodm
command.

getlvodm -u volume_group_name returns a y or an n depending on the setting of
AUTO ON.

Here is a sample script that will return all the settings of all volume groups on one
node whose names include the string gpfs.

#!/usr/bin/ksh
#
for vg in $(lsvg |grep gpfs)
do

auton=$(getlvodm -u $vg)
echo VG: $vg AutoOn: $auton

done

Here is an example of the above script on a node within a cluster, assuming the
above script is called chkautovg:

(00:33:29) c185n01:/ # chkautovg
 VG: gpfsvg0 AutoOn: n
 VG: gpfsvg1 AutoOn: n
 VG: gpfsvg2 AutoOn: n
 VG: gpfsvg3 AutoOn: n
 VG: gpfsvg5 AutoOn: n
 VG: gpfsvg6 AutoOn: n
 VG: gpfsvg7 AutoOn: n
 VG: gpfsvg8 AutoOn: n
 VG: gpfsvg9 AutoOn: n
 VG: gpfsvg10 AutoOn: n
 VG: gpfsvg11 AutoOn: n
 VG: gpfsvg12 AutoOn: n
 Chapter 9. Problem determination 193

 VG: gpfsvg13 AutoOn: n
 VG: gpfsvg14 AutoOn: n
 VG: gpfsvg15 AutoOn: n
 VG: gpfsvg4 AutoOn: n
 VG: gpfsvg16 AutoOn: n
 VG: gpfsvg17 AutoOn: n
 VG: gpfsvg18 AutoOn: n
 VG: gpfsvg19 AutoOn: n
 VG: gpfsvg20 AutoOn: n
 VG: gpfsvg21 AutoOn: n
 VG: gpfsvg22 AutoOn: n
 VG: gpfsvg23 AutoOn: n
 VG: gpfsvg24 AutoOn: n
 VG: gpfsvg25 AutoOn: n
 VG: gpfsvg26 AutoOn: n
 VG: gpfsvg27 AutoOn: n
 VG: gpfsvg28 AutoOn: n
 VG: gpfsvg29 AutoOn: n
 VG: gpfsvg30 AutoOn: n
 VG: gpfsvg31 AutoOn: n
(00:33:36) c185n01:/ #

This would have to be run on each node within the cluster and the grep
parameters may have to be adjusted according to the naming standards of the
GPFS vgs in any individual cluster.

9.4.3 GPFS and the Bad Block relocation Policy
Another of the critical options that is documented on the creation of a logical
volume is the -b option of the mklv command, the Bad Block relocation policy
option.

In an AIX system, the Bad Block relocation policy defaults to “y,” which causes
Bad Block relocation to occur. A high level description of what happens upon the
discovery of a Bad Block (BB) in a logical volume by the logical volume manager
(LVM) is that an alternate block is assigned in the place of the bad one, the data
in the BB is copied to the new one (if possible) and this change to the logical
volume is then recorded in the object data manager (ODM).

In the concurrently shared disk environment, Bad Block relocation cannot be
allowed to happen as there is no coordination between nodes to communicate
this Bad Block relocation activity. If a node relocated a block while other nodes
were concurrently accessing the modified disk, the other nodes would continue
to attempt to access the relocated block at its original position. At this point, data
integrity would be compromised.
194 GPFS on AIX Clusters

In order to prevent this situation from occurring, all logical volumes in the GPFS
for HACMP clusters environment need to have Bad Block relocation turned off
(The BB POLICY must be set to non-relocatable.).

To check the setting of Bad Block relocation use the lslv command:

(21:52:08) c185n02:/ # lslv gpfslv16
LOGICAL VOLUME: gpfslv16 VOLUME GROUP: gpfsvg16
LV IDENTIFIER: 0002025690caf44f.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: mmfsha WRITE VERIFY: off
MAX LPs: 268 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 268 PPs: 268
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV ?: yes

9.4.4 GPFS and SSA fencing
SSA disk fencing is a facility that is provided in the SSA disk subsystem. It allows
multiple using systems to control access to a common set of disks.

By using the SSA fencing commands, GPFS can prevent particular nodes from
accessing particular disks while all other nodes can continue to have normal
access. GPFS uses disk fencing primary in recovery situations, but its use is not
limited to this area.

To use disk fencing, the node_number attribute of the ssar router must be set to
a unique value for each node in the cluster. In the GPFS for HACMP clusters
environment, the value that is set in the node_number attribute is the HACMP
node number as returned by the /usr/es/sbin/cluster/utilities/clhandle
command.

An example of the clhandle command:

(22:19:23) c185n01:/ # clhandle -a
1 c185n01
2 c185n02
3 c185n03
4 c185n04
5 c185n05
6 c185n06
 Chapter 9. Problem determination 195

7 c185n07
8 c185n08

This shows an eight node cluster; the nodes are numbered from one to eight.
The value of the ssa router object ssar is determined by the lsattr command:

(22:20:52) c185n01:/ # gdsh lsattr -El ssar
c185en01: node_number 1 SSA Network node number True
c185en02: node_number 2 SSA Network node number True
c185en03: node_number 3 SSA Network node number True
c185en04: node_number 4 SSA Network node number True
c185en05: node_number 5 SSA Network node number True
c185en06: node_number 6 SSA Network node number True
c185en07: node_number 7 SSA Network node number True
c185en08: node_number 8 SSA Network node number True

This shows how the ssar node_number attribute has been set to be equal to the
node number on each node in the cluster. The procedure to change the ssar
node_number is the chdev command:

chdev -l ssar -a node_number=X

In the above example, X is the node number as returned by clhandle.

If there is an error returned:

(22:23:11) c185n01:/ # chdev -l ssar -a node_number=1
Method error (/usr/lib/methods/chgssar):

0514-031 A device is already configured at the specified location.

The device ssar already configured the child devices and cannot be changed
with the chdev command. It must be changed with the HACMP command,
set_fenceid:

/usr/es/sbin/cluster/utilities/set_fence_id -l gpfslv16 1

In the above example, -l is a parameter that accepts a logical volume name.
Provide it with a logical volume name that is on the SSA disks. The last
parameter is the ssar node_number that is set to the fence ID.
196 GPFS on AIX Clusters

SSAR Node Number and GPFS Startup
Since GPFS depends on SSA fencing to ensure file system data integrity, the
GPFS daemon checks the value of the ssar node_number object on each node
each time it is started. If the GPFS daemon finds that the node_number set in
SSAR does not match the node number assigned to the node as returned by the
clhandle command, the daemon will not start.

Here is an excerpt from the mmfs log of this event:

The fence id 9 returned from my_fence_id command does not match with my node
number 1. First set fence id and try again

The fence id 9 returned from my_fence_id command does not match with my node
number 1. First set fence id and try again

The fence id 9 returned from my_fence_id command does not match with my node
number 1. First set fence id and try again

In this case, the ssar node_number is incorrectly set to nine while it should be set
to one, to match this node's HACMP node number:

(22:38:50) c185n01:/ # clhandle
1 c185n01

Disks passed to GPFS with fence bits set
GPFS uses SSA fencing as a hardware technique to control which nodes can
and cannot access disks. While GPFS manages the state of the fencing without
any special interaction with system administrators, there is one case where
GPFS will not unfence a disk in order to use it even though the disk has been
passed to GPFS for use by an administrative command.

The case is where GPFS has been asked to use a disk and the disk is found to
be fenced. The disk would have been a parameter to a GPFS administrative
command like mmcrfs, mmrpldisk or mmadddisk. In this case, GPFS will issue an
error message and not use this disk.

The reasoning behind this decision is that GPFS does not know why this disk is
fenced and it may be fenced by another application. The GPFS response is to
ask the administrator to ensure that this disk is, in fact, not in use by any other
applications and to unfence it. Once the disk has been unfenced, it will then be
eligible for use by GPFS.

The disk can be unfenced by the HACMP command:

/usr/es/sbin/cluster/utilities/fence_clear_all
 Chapter 9. Problem determination 197

9.5 Internode communications
GPFS communicates across the nodes in a cluster for a variety of reasons,
including sharing file system state data between GPFS daemons and
administrative commands keeping configuration files in sync. In order for this
communication to happen properly in the GPFS for HACMP clusters
environment, rsh and rcp must be setup to operate properly.

During the installation and configuration of HACMP/ES in standard security
mode, the .rhosts files will normally be created and distributed to all nodes in the
cluster. All of the interfaces that will be used by GPFS must be included in the file
along with the root userID.

The .rhosts file must be in root's home directory, normally /. While the operation
of rsh does not depend on any specific permissions on the .rhost file, it is
recommended that it be set to 600, which is owner read/write only (600, rw-------).

If the rhosts file is missing, then the rsh command will fail. If the host issuing the
command does not have its name in the target node's .rhosts file, the command
will fail.

Example of failed commands:

(14:17:57) c185n01:/ # rsh c185n02 date
rshd: 0826-813 Permission is denied.

The same message is issued to the user if the target node is missing its .rhosts
file, or if the .rhosts file exists but is missing the entry of the issuing node.

9.5.1 Testing the internode communications
In order to test the ability of all nodes to communicate with each other, issue the
command:

(01:01:30) c185n01:/ # for i in $(cat /etc/cluster.nodes)
> do
> rsh $i date
> done
Fri Apr 20 01:01:48 EDT 2001
Fri Apr 20 01:02:06 EDT 2001
Fri Apr 20 01:02:41 EDT 2001
Fri Apr 20 01:01:34 EDT 2001
Fri Apr 20 01:01:31 EDT 2001
Fri Apr 20 01:02:16 EDT 2001
(01:01:48) c185n01:/ #
198 GPFS on AIX Clusters

This will run the date command on each node in the nodeset. This command
should be repeated on each node within the cluster. Any failures will indicate that
there is a problem with the .rhost file on the node returning the error.
 Chapter 9. Problem determination 199

200 GPFS on AIX Clusters

Appendix A. Mapping virtual disks to
physical SSA disks

Once SSA disks are cabled and the hosts powered on, one-to-one relationships
(mapping or translations) will be established between virtual (hdisk) and physical
(pdisk) disk drives on all hosts that are connected via SSA adapter cards.
Normally, we can get along with just knowing the hdisk number, but in the case
of concurrently mounted drives, different host machines can refer to the same
physical disk with a different hdisk address. Because of this, we need to become
knowledgeable in determining which hdisk address refers to a predetermined
physical disk known to all the hosts.

There are several ways to determine physical disks, but the most accessible is
the PVID (Physical Volume ID). The PVID is the middle column listed by the
lspv command. The PVID is unique for every SSA disk manufactured.
Comparing the PVID’s across nodes will show that hdiskx names are not always
consistent between nodes.

A

© Copyright IBM Corp. 2001 201

SSA commands
To translate (or map) pdisk to hdisk we used ssaxlate -l pdisk0 and hdisk to
pdisk was ssaxlate -l hdisk3. This command has limited applications in our
case but is useful for some verification.

host1t:/> ssaxlate -l pdisk0
hdisk3
host1t:/> ssaxlate -l hdisk7
pdisk4

Using diag for mapping
Contained under the diag facility in AIX resides a tool for viewing several
different features of the SSA disks and cabling configuration, including the
location of disks in the SSA drawers and their current status. When performing
problem determination, this tool can make selected disk drives blink to aid in
hardware identification. Enter diag on the command line and follow the
appropriate path to desired information.

diag
Task Selection(Diagnostics, Advanced Diagnostics, Service Aids, etc.)

SSA Service Aids

Set Service Mode
 Link Verification
 Configuration Verification
 Format Disk
 Certify Disk
 Display/Download Disk Drive Microcode
 Link Speed
 Physical Link Configuration
 Enclosure Configuration
 Enclosure Environment
 Enclosure Settings
 SMIT - SSA RAID Arrays
 SMIT - SSA Disks
202 GPFS on AIX Clusters

diag
Task Selection(Diagnostics, Advanced Diagnostics, Service Aids, etc.)

SSA Service Aids
Configuration Verification

host1t:pdisk0 29CD5754 SSA160 Physical Disk Drive
 host1t:pdisk1 29CD697E SSA160 Physical Disk Drive
 host1t:pdisk2 29CD6980 SSA160 Physical Disk Drive
 host1t:pdisk3 29CD6A3B SSA160 Physical Disk Drive
 host1t:pdisk4 29CD6ACA SSA160 Physical Disk Drive
 host1t:pdisk5 29CD6B0D SSA160 Physical Disk Drive
 host1t:pdisk6 29CD6C12 SSA160 Physical Disk Drive
 host1t:pdisk7 29CD6D07 SSA160 Physical Disk Drive
 host1t:pdisk8 29CD6D0A SSA160 Physical Disk Drive
 host1t:pdisk9 29CD6E19 SSA160 Physical Disk Drive
 host1t:pdisk10 29CD6EDB SSA160 Physical Disk Drive
 host1t:pdisk11 29CD6EE1 SSA160 Physical Disk Drive
 host1t:pdisk12 29CD70BD SSA160 Physical Disk Drive
 host1t:pdisk13 29CD70C5 SSA160 Physical Disk Drive
 host1t:pdisk14 29CD731D SSA160 Physical Disk Drive
 host1t:pdisk15 29CD7372 SSA160 Physical Disk Drive
 host1t:hdisk3 29CD5754 SSA Logical Disk Drive
 host1t:hdisk4 29CD697E SSA Logical Disk Drive
 host1t:hdisk5 29CD6980 SSA Logical Disk Drive

host1t:hdisk6 29CD6A3B SSA Logical Disk Drive
 host1t:hdisk7 29CD6ACA SSA Logical Disk Drive
 host1t:hdisk8 29CD6B0D SSA Logical Disk Drive
 host1t:hdisk9 29CD6C12 SSA Logical Disk Drive
 host1t:hdisk10 29CD6D07 SSA Logical Disk Drive
 host1t:hdisk11 29CD6D0A SSA Logical Disk Drive
 host1t:hdisk12 29CD6E19 SSA Logical Disk Drive
 host1t:hdisk13 29CD6EDB SSA Logical Disk Drive
 host1t:hdisk14 29CD6EE1 SSA Logical Disk Drive
 host1t:hdisk15 29CD70BD SSA Logical Disk Drive
 host1t:hdisk16 29CD70C5 SSA Logical Disk Drive
 host1t:hdisk17 29CD731D SSA Logical Disk Drive
 host1t:hdisk18 29CD7372 SSA Logical Disk Drive

diag
Task Selection(Diagnostics, Advanced Diagnostics, Service Aids, etc.)

SSA Service Aids
Link Verification
 Appendix A. Mapping virtual disks to physical SSA disks 203

 host1t:ssa0 10-78 IBM SSA 160 SerialRAID Adapter (

Physical Serial# Adapter Port
 A1 A2 B1 B2 Status

host1t:pdisk14 29CD731D 0 10 Good
 host1t:pdisk11 29CD6EE1 1 9 Good
 host1t:pdisk12 29CD70BD 2 8 Good
 host1t:pdisk13 29CD70C5 3 7 Good
 host1t:pdisk10 29CD6EDB 4 6 Good
 host1t:pdisk9 29CD6E19 5 5 Good
 host1t:pdisk1 29CD697E 6 4 Good
 host1t:pdisk2 29CD6980 7 3 Good
 host4t:ssa0:A 8 2
 host3t:ssa0:A 9 1
 host2t:ssa0:A 10 0

host1t:pdisk15 29CD7372 0 10 Good
 host1t:pdisk3 29CD6A3B 1 9 Good
 host1t:pdisk5 29CD6B0D 2 8 Good
 host1t:pdisk4 29CD6ACA 3 7 Good
 host1t:pdisk7 29CD6D07 4 6 Good
 host1t:pdisk0 29CD5754 5 5 Good
 host1t:pdisk8 29CD6D0A 6 4 Good
 host1t:pdisk6 29CD6C12 7 3 Good
 host4t:ssa0:B 8 2
 host3t:ssa0:B 9 1
 host2t:ssa0:B 10 0

diag
Task Selection(Diagnostics, Advanced Diagnostics, Service Aids, etc.)

SSA Service Aids
Physical Link Verification

 host1t:ssa0 10-78 IBM SSA 160 SerialRAID Adapter (

Link Port Device Location Port Link
40-I host1t:pdisk14 4C09-01 || 40-C

 40-I host1t:pdisk11 4C09-02 40-I
 40-I host1t:pdisk12 4C09-03 40-I
 40-I >> host1t:pdisk13 4C09-04 40-I
 40-I host1t:pdisk10 4C09-05 >> 40-I
 40-I host1t:pdisk9 4C09-06 40-I
204 GPFS on AIX Clusters

 40-I host1t:pdisk1 4C09-07 40-I
 40-C || host1t:pdisk2 4C09-08 40-I
 40-C A2 host4t:ssa0 A1 40-C
 40-C A2 host3t:ssa0 A1 40-C
 40-C A2 host2t:ssa0 A1 40-C
 40-C A2 host1t:ssa0
 host1t:ssa0 B1 40-C
 40-I host1t:pdisk15 4C09-09 || 40-C
 40-I host1t:pdisk3 4C09-10 40-I

40-I host1t:pdisk5 4C09-11 40-I
 40-I >> host1t:pdisk4 4C09-12 40-I
 40-I host1t:pdisk7 4C09-13 >> 40-I
 40-I host1t:pdisk0 4C09-14 40-I
 40-I host1t:pdisk8 4C09-15 40-I
 40-C || host1t:pdisk6 4C09-16 40-I
 40-C B2 host4t:ssa0 B1 40-C
 40-C B2 host3t:ssa0 B1 40-C
 40-C B2 host2t:ssa0 B1 40-C
 40-C B2 host1t:ssa0
 Appendix A. Mapping virtual disks to physical SSA disks 205

206 GPFS on AIX Clusters

Appendix B. Distributed software
installation

After installing the base AIX operating system onto our four nodes using CDs
and applying the program temporary fixes (PTFs), we had to choose the method
to add HACMP and GPFS filesets to our systems. We chose the same method
many SP administrators use, which is bffcreate. Instead of moving from node to
node and inserting various CDs, we created an installable image of the software
on an NFS mounted disk that all nodes could access. The added advantage of
this method is once we know the installp syntax we want to use, we can send
that command simultaneously to all nodes we want updated. We created the
installable image on host1t which serves the NFS mounted filesystem
/tools/images. All nodes in our cluster had to be able to communicate to each
other and the NFS directory had with be executable from any node.

B

© Copyright IBM Corp. 2001 207

Creating the image
The simplest method is to run smitty bffcreate and follow the path to make an
image of the desired software. Once in the smit screens, many filesets can be
chosen to populate the images directory, but for ease of understanding we will
demonstrate only sysmgt.websm. When we created update images, we put them
in a separate directory. Due to naming conflicts, it is a bad idea to install from the
same source that updates reside in.

host1t:/> smitty bffcreate

* INPUT device / directory for software /dev/cd0
* SOFTWARE package to copy [sysmgt.websm > +
* DIRECTORY for storing software package [/tools/images]
 DIRECTORY for temporary storage during copying [/tmp]
 EXTEND file systems if space needed? no +
 Process multiple volumes? yes +

Creating the installp command
We could now run installp from the command line, but we prefer to build the
command using smit. A log is created whenever smitty runs. To simplify
identifying the most recent activity, we removed smit.script and smit.log from
/root. It is also important to have an updated .toc (table of contents) in the
/tools/images directory, otherwise the smitty install command will miss filesets
stored there. To update the .toc, run rm .toc then inutoc . from within
/tools/images directory. We could choose to run smitty -x install which does
not perform the install but does produce a usable smit.script command line. We
chose to perform the install for the sake of testing on one node before
propagating to all the other nodes.

host1t:/tools/images/> rm .toc
host1t:/tools/images/> inutoc .

host1t:/> rm smit.script
host1t:/> rm smit.log

host1t:/tools/images/> smitty install

->Install and Update Software
208 GPFS on AIX Clusters

->Install and Update from ALL Available Software
->INPUT device / directory for software [/tools/images] +

* INPUT device / directory for software /tools/images
* SOFTWARE to install [sysmgt.websm > +
 PREVIEW only? (install operation will NOT occur) no +
 COMMIT software updates? yes +
 SAVE replaced files? no +
 AUTOMATICALLY install requisite software? yes +
 EXTEND file systems if space needed? yes +
 OVERWRITE same or newer versions? no +
 VERIFY install and check file sizes? no +
 DETAILED output? no +
 Process multiple volumes? yes +

Propagating the fileset installation
The preceding SMIT produced the command installp -acgNqwX -d
/tools/images -f /tools/images/File 2>&1 after successfully installing our
chosen fileset. We looked inside File and found bos.data, the only piece of
software we wanted installed. Normally, File would be placed under /root and we
would have to copy it to all the different nodes. In our case, using the NFS
mounted directory created another simplification by making File immediately
available to all nodes. At this point, we sent the installp command to all the rest
of the nodes and then verified it was successful. Verification can be done through
viewing the smit.log file on every node (the logs show detail about the
installation) or by checking every node for the presence of the newly installed
software.

gdsh -e host1t “installp -acgNqwX -d /tools/images -f /tools/images/File 2>&1”

host1t:/> gdsh -a "lslpp -l | grep sysmgt.websm.rte"
host1t: sysmgt.websm.rte 4.3.3.0 COMMITTED Web-based System
Manager
host2t: sysmgt.websm.rte 4.3.3.0 COMMITTED Web-based System
Manager
host3t: sysmgt.websm.rte 4.3.3.0 COMMITTED Web-based System
Manager
host4t: sysmgt.websm.rte 4.3.3.0 COMMITTED Web-based System
Manager
 Appendix B. Distributed software installation 209

210 GPFS on AIX Clusters

Appendix C. A useful tool for distributed
commands

When working with multiple hosts, it is desirable to perform all system
administration functions from one workstation. Administrators with an SP use dsh
commands. We performed similar commands with gdsh, which actually uses the
rsh command to perform its functions. To obtain a copy of the gdsh source code
script, see Appendix H, “Additional material” on page 259 for details.

C

© Copyright IBM Corp. 2001 211

gdsh
This tool is available to download as described in Appendix H, “Additional
material” on page 259. It is to be used “at your own risk”.

� gdsh

– -v means verbose mode, extra output available during execution

– -a is enable entire cluster

– -w allows specific nodes to be targeted for commands
– -e specifically excludes specific nodes from the stated command

We had to create a file under /root called all.nodes on every host machine which
was a complete list of all the nodes we might want to select for remote command
activity. We used the token ring addresses since we tried to reserve the ethernet
for GPFS specific processes.

host1t:/> cat all.nodes
host1t
host2t
host3t
host4t

host1t:/> gdsh -w host4t "date"
host4t: Wed Feb 14 17:45:19 EST 2001

host1t:/> gdsh -e host4t,host3t "date"
host1t: Wed Feb 14 17:45:30 EST 2001
host2t: Wed Feb 14 17:43:44 EST 2001

host1t:/> gdsh -a "date"
host1t: Wed Feb 14 17:45:59 EST 2001
host2t: Wed Feb 14 17:44:13 EST 2001
host3t: Wed Feb 14 17:44:21 EST 2001
host4t: Wed Feb 14 17:46:41 EST 2001

#!/usr/bin/perl
#
#
use Getopt::Std;

getopts("vae:w:", \%option);

if ($option{v}) {
212 GPFS on AIX Clusters

 print "Verbose mode enabled\n";
 if ($option{a}) {
 print "Entire cluster mode enabled\n";
 }
 if ($option{e}) {
 print "some nodes are being excluded\n";
 }
 if ($option{w}) {
 print "specific nodes are being included\n";
 }
print "\n";
}

$node_ctr=-1;

if ($option{e}) {
 @exclude_nodes=split(/\,/, $option{e});
 foreach $t (@exclude_nodes) {
 $excluded_nodes{$t} = "yes";
 if ($option{v}) {
 print "Excluding $t\n";
 }
 }
}

if (! ($option{a} || $option{w})) {

 if (-r "/all.nodes") {
 open (NODELIST, "< /all.nodes");
 while (<NODELIST>) {
 chomp;
 if (index($_,"#") != 0) {
 if (! defined $excluded_nodes{$_}) {
 $node_ctr++;
 $node_name[$node_ctr] = $_;
 }
 }

}
 close (NODELIST);
 } else {
 print "The node list file /all.nodes was not found. Exiting.\n";
 exit(1);
 }

} elsif ($option{w}) { # option w
 @include_nodes=split(/\,/, $option{w});
 foreach $node (@include_nodes) {
 $node_ctr++;
 $node_name[$node_ctr] = $node;
 Appendix C. A useful tool for distributed commands 213

 }

} else { # option a is only one left
 open (NODELIST, "/usr/sbin/cluster/utilities/clhandle -a |");
 while (<NODELIST>) {
 chomp;
 @f=split;
 if (! defined $excluded_nodes{$f[1]}) {
 $node_ctr++;

$node_name[$node_ctr] = $f[1];
 }
 }
 close (NODELIST);
}

if ($option{v}) {
 print "Current working collective:\n";
 foreach $node (@node_name) {
 print "$node\n";
 }
$i=$#ARGV +1;
print "Number parms is: $i \n";
}

if ($#ARGV >=0) {
 $i=0;

 while ($i <= $#ARGV) {
 $parm_string = $parm_string . " " . $ARGV[$i] ;
 $i++;

}
 if ($option{v}) {
 print "The complete parm string is: $parm_string\n";
 }
} else {
 print "Usage: gdsh -ave node1,node2 cmds \n";
 print " where:\n";
 print " -a -> all nodes in hacmp cluster (as reported by clhandle
-a)\n";
 print " -v -> verbose mode\n";
 print " -e -> nodes to exclude in comma separated list\n";
 print " -w -> nodes to include in comma separated list\n";
 print " Command will use /all.nodes as working collective\n";
 exit(1);
}

214 GPFS on AIX Clusters

foreach $node (@node_name) {
 $t = `rsh $node $parm_string 2>&1`;

 if ($t ne "") {
 @f = split (/$\//, $t);

 foreach $line (@f) {
 print "$node: $line\n";
 }
 }
}

 Appendix C. A useful tool for distributed commands 215

216 GPFS on AIX Clusters

Appendix D. Useful scripts

This appendix describes some useful scripts that you may use “at your own risk.”
These scripts are provided as suggestions and not the only way to perform any
specific action. To obtain a copy of the source code of any of these scripts, see
Appendix H, “Additional material” on page 259 for details.

D

© Copyright IBM Corp. 2001 217

Creating GPFS disks
The following three scripts provide an alternate automated technique to define
volume groups and logical volumes for use by GPFS.

mkvgdriver This script will create a "driver" file for the next script. This
is the script where we describe the disks to be used by
GPFS and provide the volume group and logical volume
naming standards.

mkgpfsvg This script will create the actual volume group and logical
volume on the disk and set the "AUTO ON" volume group
property. After this script has completed all the volume
groups and logical volumes will be known to one of the
nodes in the cluster.

importvgs.to.newtail This script will be run from the node where the volume
groups and logical volumes have been defined. Its
function will be to import these LVM disk definitions to the
other nodes in the cluster.

These scripts follow the same principles described in Chapter 6, “Configuring
GPFS and SSA disks” on page 91 but provide some ideas on how this task can
be further automated.

The same process is followed using these three scripts:

� The volume groups and logical volumes are defined completely on one node
in the cluster.

� The volume groups are then imported to all the other nodes in the cluster.

These scripts will be described in some detail and an example will be given. As
these scripts are general in nature, they will have to be modified for each use.

The first script, mkvgdriver, will output a series of commands that will in turn call
the mkgpfsvg script. The disks that will be used are coded in this first script.

Example: D-1 mkvgdriver script

#!/usr/bin/ksh
#
script will create a driver file for the mkgpfsvg script.
this will list all SSA disks that have successfully configured
hdisks and create a mkgpfsvg command for that disk.
#
vg_prefix="gpfsvg"
lv_prefix="gpfslv"
#
start_count=0 # where to start the volume group count from
218 GPFS on AIX Clusters

#
((disk_count = $start_count))
#
get all Available pdisk names
for pdisk in $(lsdev -Ccpdisk -S Available -F name)
do
 hdisk=$(ssaxlate -l $pdisk) # get the hdisk to be sure its configured
 if [[-n $hdisk]] then

vgname=$(lspv|grep -w $hdisk | awk '{print $3}') # not other vg
 if [[$vgname = "None"]] then
 echo mkgpfsvg $hdisk ${vg_prefix}${disk_count}
${lv_prefix}${disk_count}
 ((disk_count += 1))
 else
 echo Disk $hdisk belongs to vg $vgname. Skipping
 fi
 else
 echo Error, no logical hdisk for pdisk $pdisk. Skipping disk.
 fi
done

In this example of mkvgdriver, all the SSA disks will be used. The volume groups
will be called gpfsvgXX and the logical volumes will be called gpfslvXX, where
XX is a counter starting at zero and incriminating by one for each disk.

This script can be customized in many ways. For instance, if only the SSA disks
in a specific enclosure were to be included, the lsdev -Ccpdisk -S Available -F
name could be changed to list only them.

To only use the SSA disks in enclosure 30-58-P, the command would be:

(00:37:52) c185n01:/ # lsdev -Ccpdisk|grep 30-58-P
pdisk0 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk1 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk2 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk3 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk4 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk5 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk6 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk7 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk8 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk9 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk10 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk11 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk12 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk13 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk14 Available 30-58-P 4GB SSA C Physical Disk Drive
pdisk15 Available 30-58-P 4GB SSA C Physical Disk Drive
 Appendix D. Useful scripts 219

(00:37:55) c185n01:/ # lsdev -Ccpdisk|grep 30-58-P|awk '{print $1}'
pdisk0
pdisk1
pdisk2
pdisk3
pdisk4
pdisk5
pdisk6
pdisk7
pdisk8
pdisk9
pdisk10
pdisk11
pdisk12
pdisk13
pdisk14
pdisk15

By piping the lsdev command into different grep commands this script can be
very flexible.

The output of the mkvgdriver script will be a list of mkgpfsvg commands. These
should be saved in a file to be run in the next step.

(00:41:52) c185n01:/u/gmcpheet/hacmp/scripts # running mkvgdriver
mkgpfsvg hdisk2 gpfsvg2 gpfslv2
mkgpfsvg hdisk3 gpfsvg3 gpfslv3
mkgpfsvg hdisk4 gpfsvg4 gpfslv4
mkgpfsvg hdisk5 gpfsvg5 gpfslv5
mkgpfsvg hdisk6 gpfsvg6 gpfslv6
mkgpfsvg hdisk7 gpfsvg7 gpfslv7
mkgpfsvg hdisk8 gpfsvg8 gpfslv8
mkgpfsvg hdisk9 gpfsvg9 gpfslv9
mkgpfsvg hdisk10 gpfsvg10 gpfslv10
mkgpfsvg hdisk11 gpfsvg11 gpfslv11
mkgpfsvg hdisk12 gpfsvg12 gpfslv12
mkgpfsvg hdisk13 gpfsvg13 gpfslv13
mkgpfsvg hdisk14 gpfsvg14 gpfslv14
mkgpfsvg hdisk15 gpfsvg15 gpfslv15
mkgpfsvg hdisk16 gpfsvg16 gpfslv16
mkgpfsvg hdisk17 gpfsvg17 gpfslv17

To save this in a script: mkvgdriver > mkvgdriver.output

On to the next step, the actual creation of volume groups and logical volumes.
220 GPFS on AIX Clusters

The mkgpfsvg script is the script that creates the volume groups and logical
volumes.

Example: D-2 mkgpfsvg script

#!/usr/bin/ksh
#
#
script to assist with the definitions of gpfsvg and lvs
#
#
#
this is the proper set up for 4.5 GB SSA disks
#
size_pps=16 # pp size
#
#num_pps=542 #9.1 GB at 16MB
num_pps=268 #4.5GB at 16MB
#
if [[$# -ne 3]] then
 echo Incorrect number of parms.
 echo Usage is $0 hdisk vgname lvname
 exit 1
fi
#
hdisk=$1
vgname=$2
lvname=$3
#
echo
echo Now creating a volume group $vgname with lv $lvname on hdisk $hdisk
#
verify passed disk is SSA
#
pdisk=$(ssaxlate -l $hdisk)
rc=$?
if [[$rc != 0]] then
 echo hdisk $hdisk is not a SSA disk.
 exit 1
fi
#
verify vg does not already exist
#
vgcount=$(lspv | grep -w $vgname | wc -l)
if [[$vgcount -ne 0]] then
 echo A volume group with name already exists.
 exit 1
fi
#
verify lv does not already exist
 Appendix D. Useful scripts 221

#
lvcount=$(/usr/sbin/getlvodm -l $lvname > /dev/null 2>&1)
rc=$?
if [[$rc = 0]] then
 echo There is a LV with the name $lvname.
 exit 1
fi
#
Issue the mkvg command
#
mkvg -f -n -s $size_pps -c -y $vgname $hdisk
rc=$?
if [[$rc != 0]] then
 echo Error creating vg $vgname on $hdisk. rc=$rc
 exit 1
fi
#
varyonvg $vgname
rc=$?
if [[$rc != 0]] then
 echo Error varying on vg $vgname. rc=$rc
 exit 1
fi
#
mklv -b n -w n -t mmfsha -x $num_pps -y $lvname $vgname $num_pps
rc=$?
if [[$rc != 0]] then
 echo Error making lv $lvname on vg $vgname. rc=$rc
 exit 1
else
 echo Successfully created lv $lvname on $vgname
fi
#
varyoffvg $vgname
rc=$?
if [[$rc != 0]] then
 echo Error varying off vg $vgname. rc=$rc
 exit 1
fi
#
echo Successfully completed creation of $vgname containing $lvname on disk
$hdisk

This script runs the commands which are the output from the mkvgdriver script.
This script is also very flexible and this example demonstrates this. In this script
the PP size and number of PPs to fit on one SSA disk must be coded. These are
the parameters num_pps and size_pps.
222 GPFS on AIX Clusters

This script will then confirm that:

1. The disk being used is an SAA disk

2. The volume group name being requested doesn't exist

3. The logical volume name being requested doesn't exist

After these tests are passed, the mkvg command is issued, the volume group is
then varied online and the mklv command is issued. After the mklv has
completed the disk is varied offline.

After this script completes all the disks selected in the mkvgdriver script will have
volume groups and logical volumes on them in the proper state for use by GPFS.

The next step is to import these volume groups to all the other nodes in the
cluster.

The importvgs.to.newtail script serves this purpose.

Example: D-3 importvgs.to.newtail script

#!/usr/bin/ksh
#
this script will import volume groups on a multi tailed SSA config
from a node where they are defined to a node in the loop where
the vgs are not known.
#
The script needs to be run on the node where the vgs are
currently defined and the "remote_node" is the node where they
need to be imported.
#
remote_node=$1
if [[-z $remote_node]] then
 echo Usage: importvgs.to.newtail nodename
 echo " where nodename is the node to import the vgs to."
 echo " The node where this command is run must already have the vgs
imported."
 exit 1
fi
#
lspv|grep gpfs|\
while read disk pvid vg
do
remote_vg=$(rsh $remote_node -n "lspv|grep $pvid")
remote_vgname=$(echo $remote_vg|awk '{print $3}')
remote_hdisk=$(echo $remote_vg|awk '{print $1}')
#
if [["$vg" = "$remote_vgname"]] then
 echo $disk which is pvid $pvid vg $vg is known as vg $remote_vgname on
$remote_node. OK
 Appendix D. Useful scripts 223

else
 echo $disk which is pvid $pvid vg $vg is known as vg $remote_vgname on
$remote_hdisk on $remote_node.
 if [[$remote_vgname = "None"]] then
 echo Running importvg -y $vg $remote_hdisk on $remote_node
 rsh $remote_node -n importvg -y $vg $remote_hdisk
 echo chvg -a n $vg
 rsh $remote_node -n chvg -a n $vg
 echo varyoffvg $vg
 rsh $remote_node -n varyoffvg $vg
 else
 echo $disk pvid $pvid vg $remote_vgname on $remote_node has a volume
group. Not processed.
 fi
fi
#
done

This script is run on the node where all of the volume groups have already been
defined. This script expects one parameter, that of the node where the disks are
to be imported.

For example, if the node c185n08 has all the SSA disks defined, and node
c185n01 needs them imported, then the command is issued on node c185n08
with the parameter of c185n01.

Before the command is issued, the disks should look like this on node c185n01:

hdisk2 000167498707c169 gpfsvg16
hdisk3 00001351566acb07 gpfsvg17
hdisk4 00001351566ae6aa gpfsvg18
hdisk5 00001351566b0f35 gpfsvg19
hdisk6 0000099017a37f8c gpfsvg20
hdisk7 00001351566b378d gpfsvg21
hdisk8 00001351566b4520 gpfsvg22
hdisk9 00001351566b52f3 gpfsvg23
hdisk10 00001351566b60a7 gpfsvg24
hdisk11 00001351566b6e63 gpfsvg25
hdisk12 00001351566b7be6 gpfsvg26
hdisk13 0002025690cec645 gpfsvg27
hdisk14 00001351566b8977 gpfsvg28
hdisk15 00001351566c1e3d gpfsvg29
hdisk16 00001351566c2bea gpfsvg30
hdisk17 00001351566c6231 gpfsvg31

And the node to be imported to c185n01 should look like this:

hdisk2 000167498707c169 None
hdisk3 00001351566acb07 None
224 GPFS on AIX Clusters

hdisk4 00001351566ae6aa None
hdisk5 00001351566b0f35 None
hdisk6 0000099017a37f8c None
hdisk7 00001351566b378d None
hdisk8 00001351566b4520 None
hdisk9 00001351566b52f3 None
hdisk10 00001351566b60a7 None
hdisk11 00001351566b6e63 None
hdisk12 00001351566b7be6 None
hdisk13 0002025690cec645 None
hdisk14 00001351566b8977 None
hdisk15 00001351566c1e3d None
hdisk16 00001351566c2bea None
hdisk17 00001351566c6231 None

(01:06:44) c185n08:/u/gmcpheet/hacmp/scripts # importvgs.to.newtail c185n01
hdisk2 which is pvid 000167498707c169 vg gpfsvg16 is known as vg None on hdisk2
on c185n01.
Running importvg -y gpfsvg16 hdisk2 on c185n01
gpfsvg16
0516-783 importvg: This imported volume group is concurrent capable.
 Therefore, the volume group must be varied on manually.
chvg -a n gpfsvg16
0516-1260 chvg: Device configuration database has been updated with new
information.
 Since the volume group gpfsvg16 is not varied on, if the gpfsvg16 is of
Big
 Volume group type, chvg command must be run with the volume group
varied
 on for these attributes to be saved across exportvg/importvg operation.
varyoffvg gpfsvg16
0516-010 lvaryoffvg: Volume group must be varied on; use varyonvg command.
0516-942 varyoffvg: Unable to vary off volume group gpfsvg16.
hdisk3 which is pvid 00001351566acb07 vg gpfsvg17 is known as vg None on hdisk3
on c185n01.
Running importvg -y gpfsvg17 hdisk3 on c185n01
gpfsvg17
0516-783 importvg: This imported volume group is concurrent capable.
 Therefore, the volume group must be varied on manually.
chvg -a n gpfsvg17
0516-1260 chvg: Device configuration database has been updated with new
information.
 Since the volume group gpfsvg17 is not varied on, if the gpfsvg17 is of
Big
 Volume group type, chvg command must be run with the volume group
varied
 on for these attributes to be saved across exportvg/importvg operation.
varyoffvg gpfsvg17
0516-010 lvaryoffvg: Volume group must be varied on; use varyonvg command.
 Appendix D. Useful scripts 225

0516-942 varyoffvg: Unable to vary off volume group gpfsvg17.
hdisk4 which is pvid 00001351566ae6aa vg gpfsvg18 is known as vg None on hdisk4
on c185n01.
Running importvg -y gpfsvg18 hdisk4 on c185n01

...... this command produces more output then is shown here.

This output, although verbose, is actually successful. The chvg command is
issuing a warning stating that this command was issued with the volume group
varied offline. It then warns that if this volume group is of the type "Big Volume,"
more action is required. However, these volume groups are not of this type
therefore no further action is required.

After this script runs the disks on node c185n01:

hdisk2 000167498707c169 gpfsvg16
hdisk3 00001351566acb07 gpfsvg17
hdisk4 00001351566ae6aa gpfsvg18
hdisk5 00001351566b0f35 gpfsvg19
hdisk6 0000099017a37f8c gpfsvg20
hdisk7 00001351566b378d gpfsvg21
hdisk8 00001351566b4520 gpfsvg22
hdisk9 00001351566b52f3 gpfsvg23
hdisk10 00001351566b60a7 gpfsvg24
hdisk11 00001351566b6e63 gpfsvg25
hdisk12 00001351566b7be6 gpfsvg26
hdisk13 0002025690cec645 gpfsvg27
hdisk14 00001351566b8977 gpfsvg28
hdisk15 00001351566c1e3d gpfsvg29
hdisk16 00001351566c2bea gpfsvg30
hdisk17 00001351566c6231 gpfsvg31

This script would then be called for all the nodes in the cluster, for example:

importvgs.to.newtail c185n01
importvgs.to.newtail c185n02
importvgs.to.newtail c185n03
importvgs.to.newtail c185n04

This would import the volume group definitions known on the node where it is run
to nodes c185n01/c185n02/c185n03 and c185n04.

comppvid
This script is used to compare the volume groups to the PVIDs on each node to
make sure they are in sync. This assures the administrator that each PVID is
known on each node by only one volume group name.
226 GPFS on AIX Clusters

#!/usr/bin/ksh
a script to compare what volume groups were created on each node
#
for i in `lspv |grep -v rootvg | awk '{print $2}'`
do
gdsh -a "lspv | grep $i"
echo "***************************************"
done

host1t:/tools/ralph> comppvid
host1t: hdisk2 000b4a7d1075fdbf toolsvg

host1t: hdisk3 000007024db58359 gpfsvg0
host2t: hdisk3 000007024db58359 gpfsvg0
host3t: hdisk2 000007024db58359 gpfsvg0
host4t: hdisk2 000007024db58359 gpfsvg0

host1t: hdisk4 000007024db5472e gpfsvg1
host2t: hdisk4 000007024db5472e gpfsvg1
host3t: hdisk3 000007024db5472e gpfsvg1
host4t: hdisk3 000007024db5472e gpfsvg1

host1t: hdisk5 000007024db54fb4 gpfsvg2
host2t: hdisk5 000007024db54fb4 gpfsvg2
host3t: hdisk4 000007024db54fb4 gpfsvg2
host4t: hdisk4 000007024db54fb4 gpfsvg2

host1t: hdisk6 000007024db5608a gpfsvg3
host2t: hdisk6 000007024db5608a gpfsvg3
host3t: hdisk5 000007024db5608a gpfsvg3
host4t: hdisk5 000007024db5608a gpfsvg3

host1t: hdisk7 000007024db571ba gpfsvg4
host2t: hdisk7 000007024db571ba gpfsvg4
host3t: hdisk6 000007024db571ba gpfsvg4
host4t: hdisk6 000007024db571ba gpfsvg4

host1t: hdisk8 000007024db5692c gpfsvg5
host2t: hdisk8 000007024db5692c gpfsvg5
host3t: hdisk7 000007024db5692c gpfsvg5
host4t: hdisk7 000007024db5692c gpfsvg5

host1t: hdisk9 000158511eb0f296 gpfsvg6
host2t: hdisk9 000158511eb0f296 gpfsvg6
host3t: hdisk8 000158511eb0f296 gpfsvg6
host4t: hdisk8 000158511eb0f296 gpfsvg6
 Appendix D. Useful scripts 227

host1t: hdisk10 000007024db57a49 gpfsvg7
host2t: hdisk10 000007024db57a49 gpfsvg7
host3t: hdisk9 000007024db57a49 gpfsvg7
host4t: hdisk9 000007024db57a49 gpfsvg7

host1t: hdisk11 000007024db58bd3 gpfsvg8
host2t: hdisk11 000007024db58bd3 gpfsvg8
host3t: hdisk10 000007024db58bd3 gpfsvg8
host4t: hdisk10 000007024db58bd3 gpfsvg8

host1t: hdisk12 000007024db53eac gpfsvg9
host2t: hdisk12 000007024db53eac gpfsvg9
host3t: hdisk11 000007024db53eac gpfsvg9
host4t: hdisk11 000007024db53eac gpfsvg9

host1t: hdisk13 000007024db5361d gpfsvg10
host2t: hdisk13 000007024db5361d gpfsvg10
host3t: hdisk12 000007024db5361d gpfsvg10
host4t: hdisk12 000007024db5361d gpfsvg10

host1t: hdisk14 000007024db51c4b gpfsvg11
host2t: hdisk14 000007024db51c4b gpfsvg11
host3t: hdisk13 000007024db51c4b gpfsvg11
host4t: hdisk13 000007024db51c4b gpfsvg11

host1t: hdisk15 000007024db524ce gpfsvg12
host2t: hdisk15 000007024db524ce gpfsvg12
host3t: hdisk14 000007024db524ce gpfsvg12
host4t: hdisk14 000007024db524ce gpfsvg12

host1t: hdisk16 000007024db52d7b gpfsvg13
host2t: hdisk16 000007024db52d7b gpfsvg13
host3t: hdisk15 000007024db52d7b gpfsvg13
host4t: hdisk15 000007024db52d7b gpfsvg13

host1t: hdisk17 000007024db513d2 gpfsvg14
host2t: hdisk17 000007024db513d2 gpfsvg14
host3t: hdisk16 000007024db513d2 gpfsvg14
host4t: hdisk16 000007024db513d2 gpfsvg14

host1t: hdisk18 000007024db55810 gpfsvg15
host2t: hdisk18 000007024db55810 gpfsvg15
host3t: hdisk17 000007024db55810 gpfsvg15
host4t: hdisk17 000007024db55810 gpfsvg15

228 GPFS on AIX Clusters

Appendix E. Subsystems and Log files

This appendix gives a listing of subsystems of RSCT and HACMP/ES, and log
files.

E

© Copyright IBM Corp. 2001 229

Subsystems of HACMP/ES
The following is a listing of the subsystems of HACMP/ES. The corresponding
name in an SP environment appears in brackets.

Name Subsystem Group Daemon

Topology Services
(High Availability Topology Services,
HATS)

topsvcs
(hats)

topsvcs /usr/sbin/rsct/bin/hatsd

Group Services
(High Availability Group Services,
HAGS)

grpsvcs
(hags)

grpsvcs /usr/sbin/rsct/bin/hagsd

Cluster Globalized Server Daemon grpglsm grpsvcs /usr/sbin/rsct/bin/hagsglsmd

Event Management
(High Availability Event
Management, HAEM)

emsvcs emsvcs /usr/sbin/rsct/bin/haemd

Event Management AIX Operating
System Resource Monitor

emaixos emsvcs /usr/sbin/rsct/bin/emaixos

HACMP/ES Cluster Manager clstrmgrES cluster /usr/es/sbin/cluster/clstrmgrES

HACMP/ES Cluster SMUX Peer
deamon

clsmuxpdES cluster /usr/es/sbin/cluster/clsmuxpdES

HACMP/ES Cluster Information
Program daemon

clinfoES cluster /usr/es/sbin/cluster/clinfoES

HACMP/ES Cluster Lock Manager
daemon

cllockdES lock /usr/es/sbin/cluster/cllockdES
230 GPFS on AIX Clusters

Log files for the RSCT component

Trace files
/var/ha/log contains the trace files for daemons.

Topology Services
topsvcs.DD.HHMMSS.name in a non SP environment
hats.DD.HHMMSS.name in a SP environment

DD day of the month
HHMMSS hours, minutes, seconds of the day
name HACMP/ES cluster name

Group Services
grpsvcs_nodenum_instnum.name in a non SP environement
hats_nodenum_instnum.name in a SP environment

nodenum node number, as determined by clhandle, ...
instnum instance number of daemon
name HACMP/ES cluster name

Working directories
/var/ha/run contains a directory for each domain of a RSCT subsystem. Each
directory contains the core files (find out how many here)

In a non SP environment those are

topsvcs.name
grpsvcs.name
emsvcs.name

name is the HACMP/ES cluster name.

In an SP environment those are

hats.syspar_name
hags.syspar_name
haem.syspar_name

syspar.name is the name of the system partition
 Appendix E. Subsystems and Log files 231

Log files for the cluster group

clstrmgrES
/tmp contains log files that contain debug information for the cluster manager
daemon.

clstrmgr.debug
clstrmgr.debug.1
clstrmgr.debug.bak
clstrmgr.debug.bak.1

clresmgrd.

When the cluster manager is started, the file clstrmgr.debug is moved to
clstrmgr.debug.1. In during the runtime of the cluster manager the log file
exceeds the length of .. , ...

clstrmgr.debug.bak and clstrmgr.debug.bak.1 are the files of the last two ...

clsmuxpdES
/usr/es/adm/cluster.log

clinfoES
/tmp contains log files

clinfo.rc.out
clinfo.rc.out.n

where n is the file

Log files generated by HACMP/ES utilities

Event history
/tmp/hamcp.out

/usr/es/sbin/cluster/history/cluster.mmdd

/tmp/cspoc.log
232 GPFS on AIX Clusters

Appendix F. Summary of commands

The following is a compilation of some of the commands we used while working
with HACMP and GPFS. We created this list to serve the wide range of
experience (or lack of) for the folks managing GPFS. This list is not definitive and
we suggest that you refer to the man pages to understand the syntax required for
each one.

F

© Copyright IBM Corp. 2001 233

GPFS commands
mmaddcluster Adds nodes to an existing GPFS cluster

mmadddisk Adds disks to a GPFS file system

mmaddnode Adds nodes to a GPFS nodeset

mmchattr Changes attributes of one or more GPFS files

mmchcluster Changes the primary or secondary GPFS SDR server

mmchconfig Changes GPFS configuration attributes

mmchdisk Changes state or parameters of one or more disks

mmcheckquota Checks file system i-node and space usage

mmchfs Changes the attributes of a GPFS file system

mmconfig Defines and configures a new GPFS nodeset

mmcrcluster Create a GPFS cluster from a set of nodes

mmcrfs Creates a GPFS file system

mmdefragfs Reduces disk fragmentation by increasing the number of
full free blocks available to the file system.

mmdelcluster Deletes nodes from an existing GPFS cluster

mmdeldisk Removes a disk from a GPFS file system

mmdelfs Removes a GPFS file system

mmdelnode Removes one or more nodes from a GPFS nodeset

mmfsadm cleanup Attempts to repair mmfs subsystems

mmfsadm dump cfgmgr Reveals detailed about mmfs configuration

mmfsadm dump waiters Used for mmfs problem determination

mmfsadm shutdown Orderly stop of mmfs subsystems

mmfsck Checks and repairs a GPFS file system

mmlsattr Queries file attributes

mmlscluster Displays GPFS cluster information

mmlsdisk Displays configuration and state of disks in a file system

mmlsquota Displays quota information for a user or group

mmquotaoff Deactivates quota limit checking

mmquotaon Activates quota limit checking

mmrestripefs Rebalances or restores the replication factor of all files
234 GPFS on AIX Clusters

mmrpldisk Replaces the specified disk

mmshow_fence Displays nodes fenced out by disk

mmstartup Starts GPFS on some or all nodes

mmshutdown Unmounts all GPFS file systems and stops GPFS on one
or more nodes

SSA commands
ssa_speed Displays speed of SSA loops

ssaadap Lists the adapters to which an SSA logical disk or physical
disk is connected

ssacand Displays the unused connection locations for an SSA
adapter

ssaconn Displays the SSA connection details for the physical disk

ssadisk Returns all pdisks or all hdisks attached to a node

ssaidentify Blinks the light on a specific SSA disk

ssaxlate Translates pdisk to hdisk and hdisk to pdisk

AIX commands
bffcreate Creates installation image files in backup format

cfgmgr Configures devices and optionally installs device software
by running the programs specified in the Configuration
Rules object class.

exportvg Exports the definition of a volume group from a set of
physical volumes

filemon Monitors the performance of the file system, and reports
the I/O activity on behalf of logical files, virtual memory
segments, logical volumes, and physical volumes

importvg Imports a new volume group definition from a set of
physical volumes

installp Installs available software products in a compatible
installation package

iostat Reports Central Processing Unit (CPU) statistics and
input/output statistics for tty devices, disks, and
CD-ROMS.
 Appendix F. Summary of commands 235

lsattr Displays attribute characteristics and possible values of
attributes for devices in the system.

lscfg Displays system configuration data

lsdev -Cc disk Displays disks in the system and their characteristics

lslpp Lists software products

lslv Displays information about a logical volume

lssrc Gets the status of a subsystem

mklv Creates a logical volume

mkvg Creates a volume group

netstat Shows network status

odmget Retrieves objects from the specified object classes into an
odmadd input file

oslevel Reports the latest installed maintenance level of the
system

rmdev Unconfigures and undefines specified devices

setclock Sets the time and date for a host on a network

varyoffvg Deactivates a volume group

varyonvg Activates a volume group

vmstat Reports virtual memory statistics

HACMP commands
claddnode Adds adapter entry to the adapter ODM object class

HACMPadapter

cldare Updates the HACMP Cluster Manager and associated
daemons with new

clhandle Gives node handle

clstat Monitors the status of an HACMP cluster

clstop Stops the Cluster daemons

rc.cluster Starts the cluster services subsystem on a node, all
subsystems on which it depends, and a specified set of
clients
236 GPFS on AIX Clusters

Appendix G. Benchmark and Example
Code

This appendix contains descriptions of the benchmark programs used in this
book and a complete source listing with additional commentary for GMGH (which
is carefully documented to augment its role as an example). Source code (in
electronic form) for the benchmark programs used in this book, plus other related
programs are also available; see Appendix H, “Additional material” on page 259
for details.

In particular, this appendix contains:

� A summary of the benchmark programs used in this book

� Source listing plus highlights for GMGH

G

© Copyright IBM Corp. 2001 237

The benchmark programs
This section summarizes the benchmark programs and discusses how to use
them. It also discusses matters related to linking them.

Summary of the benchmark programs
Four programs are used to generate the benchmark results sited in Chapter 8,
“Developing Application Programs that use GPFS” on page 143. These
programs also provide an example of how to use GPFS. They are available
electronically (see Appendix H, “Additional material” on page 259 for more
information). These four programs are:

ibm_sgw Write to a GPFS file using different I/O access patterns. If
a random pattern is chosen, GPFS hints are not used.

ibm_sgr Read from a GPFS file using different I/O access
patterns. If a random pattern is chosen, GPFS hints are
not used.

ibm_shw Write to a GPFS file using the random I/O access pattern
only. GPFS hints are used.

ibm_shr Read from a GPFS file using the random I/O access
pattern only. GPFS hints are used.

Using the benchmark programs
Each program can be executed as a command with parameters. The parameters
are the same for each program, but in some cases there are restrictions on the
parameters. The syntax is: <prog_name> <path_file> <rec_size> <num_rec>
<crunch> <order> <stride>

<prog_name> Program name

<path_file> This is the name of the file being accessed. It must
include the full path, otherwise it will access a file in the
same directory where the program is being executed. The
path implicitly specifies the file system is being used;
specifying a GPFS directory results in using GPFS.
ibm_sgw and ibm_sgr can access non-GPFS file
systems, but the other programs can not. Also note that if
the file already exists, ibm_sgw and ibm_shw will
overwrite it.

<rec_size> Record size given in bytes

<num_rec> This is the number of records being accessed. If the file is
being written, <rec_size> * <num_rec> is the file size.
238 GPFS on AIX Clusters

<crunch> Specifies whether or not the program includes significant
amounts of CPU activity (i.e., number crunching) other
than that needed strictly for doing I/O. There are two
options:
yes - Do some number crunching to simulate a balanced
CPU and I/O load. The number crunching loop may need
to be tuned to the CPU model to keep the load balanced.
no - Do no number crunching.

<order> Specifies the I/O access pattern. Section 8.4, “Analysis of
I/O access patterns” on page 154 discusses several of
these patterns. Five case insensitive options are possible:
seq - sequential
strd - strided
rndm - random
bkwd - backward sequential
bkst - backward strided

<stride> Specifies the stride for the <order> options strd and bkst.

The following example illustrates the use of one of these programs. It specifies
no for the number crunching option. By taking the difference between the I/O
time and overall time, CPU time devoted to non-I/O tasks can be measured
implicitly; with number crunching turned off, the processing time is negligible.

host1t:/> ibm_sgw /gpfs1/L.strd 1048576 5120 no strd 4
--
JOB: ibm_sgw
User Parameter Summary
--
base file name = /gpfs1/L.strd
buffer size = 1048576
number of records = 5120
simulate number crunching = no
processing order = strd
stride = 4
--
summary statistics
--
data processed = 5120.0 MB
I/O time = 77.573 sec
overall time = 77.637 sec
Amortized I/O rate = 65.948 MB/s
--
 Appendix G. Benchmark and Example Code 239

The following example illustrates the use of another one of these programs. It
specifies yes for the number crunching option. In this case, CPU time devoted to
non-I/O activities is explicitly measured as crunch time. By tuning the number
crunching loop, the ratio of I/O time to crunch time can be altered.

host1t:/> ibm_shr /gpfs1/Mc.rndm 262144 20480 yes rndm

JOB: ibm_shr
User Parameter Summary

base file name = /gpfs1/Mc.rndm
buffer size = 262144
number of records = 20480
simulate number crunching = yes
processing order = rndm
--
summary statistics
--
data processed = 5120.0 MB
crunch time = 98.748 sec
I/O time = 87.532 sec
overall time = 186.670 sec
Amortized I/O rate = 27.428 MB/s
--

Linking the benchmark programs
Depending on the configuration of the system you use to make these benchmark
codes, it may be desired (or even necessary) to make some modifications.

First, the benchmark codes use a random number generator to generate seek
offsets for the random I/O access patterns. The random generator used in these
programs is good, but if the reader wishes, it can be replaced with other ones. In
particular, it has been coded to use the same API as the one provided in the
ESSL library, surand(). If the ESSL version is preferred, the makefile can be
modified by removing all references to ibm_urd and adding the -lessl flag to the
xlc line. The programs will then work without modification to the source code.

Second, the benchmark programs use rtc() as a timer to calculate I/O rates. rtc()
is provided in the Fortran 90 library libxlf90. It is used because of its very low
overhead and high granularity compared with other timers. If this library is not
available on the reader’s system, then the rtc() system call can be replaced with
240 GPFS on AIX Clusters

the gettimeofday() system call and the -lxlf90 flag may be removed from the
makefile xlc lines. By comparing Example G-1and Example G-2 the reader can
easily see how to replace rtc() with gettimeofday() in the benchmark codes, if
necessary.

Example: G-1 Using rtc()

#include <stdio.h>
#include <time.h>

double rtc();

int main()
{
 int k;
 double xsum = 0.0;
 double bg, dn, delta;

 bg = rtc();
 for (k = 0; k < 10000000; k++)
 xsum += (double)k;
 dn = rtc();
 delta = dn - bg;

 printf("delta = %10.6lf sec\n", delta);

 return 0;
}

Example: G-2 Using gettimeofday()

#include <stdio.h>
#include <sys/time.h>

int main()
{
 int k;
 double xsum = 0.0;

 double t1, t2;
 double delta;
 struct timeval bg, dn;

 gettimeofday(&bg, NULL);
 for (k = 0; k < 10000000; k++)
 xsum += (double)k;
 gettimeofday(&dn, NULL);

 /* convert time to seconds, then calculate the difference */
 Appendix G. Benchmark and Example Code 241

 t1 = (double)bg.tv_sec + (double)bg.tv_usec/1000000.0;
 t2 = (double)dn.tv_sec + (double)dn.tv_usec/1000000.0;
 delta = t2 - t1;

 printf("delta = %10.6lf\n", delta);

 return 0;
}

Source Listing for GMGH
The source code for GMGH is divided into two source files, gmgh.c and gmgh.h.
Both are listed below. Call out boxes highlight key elements of this code. This is
designed to help the reader grasp the overall concept of this code. Compare this
with the example at the end of Section 8.5.1, “The GPFS Multiple Access Range
hints API” on page 161.

gmgh.c
/***/
/* Title - Generic Middle-layer GPFS Hint package */
/* Module - gmgh.c */
/* Envir. - GPFS 1.4, VAC 5.0.1, AIX 4.3.3 */
/* Last Mod - */
/* */
/* ABSTRACT: */
/* This is a generic middle layer code encapsulating the GPFS */
/* multiple access hint facility. The native GPFS interface is */
/* overly tedius for use in high level application codes. This */
/* code creates a simpler to use interface for high level programs.*/
/* */
/* The use of the multiple access hint facility in GPFS 1.3 and */
/* higher can significantly improve I/O performance of programs */
/* whose I/O access patterns are random. The to use this code the */
/* high level programmer must post up to MAXHINT hints in advance */
/* followed later by the data transfers (i.e., read or write) */
/* operations. The comment headers for each function describe the */
/* use of this code in detail. See also ibm_phw.c and ibm_phr.c */
/* for examples of how to use this code. */
/* */
/* FUNCTIONS AND PARAMETERS: */
/* gmgh_init_hint(p, fd, maxbsz, maxhint) */
/* gmgh_post_hint(p, soff, nbytes, nth, isWrite) */
/* gmgh_declare_1st_hint(p) */
242 GPFS on AIX Clusters

/* gmgh_xfer(p, buf, nth) */
/* gmgh_gen_blk(p, nth, isWrite) */
/* gmgh_issue_hint(p, nth) */
/* gmgh_cancel_hint(fd) */
/* */
/* buf = caller provided buffer to deliver/receive data */
/* type - char*; input, output */
/* fd = file descriptor */
/* type - int; input, output */
/* isWrite = boolean: 1 -> write, 0 -> read */
/* type - int; input */
/* maxbsz = max buffer size; maxbsz <= nbytes */
/* type - int; input */
/* maxhint = max entries in hint vector */
/* type - int; input */
/* nbytes = number of bytes in record written/read */
/* type - int; input */
/* nth = ordinal value refering to the nth element */
/* type - int; input */
/* p = gmgh structure; see function headers for details */
/* type - gmgh*; input, output */
/* soff = 64 bit seek offset for record to be read/written */
/* type - off_t; input */
/* */
/* COMPILATION FLAG PARAMETER: */
/* DEBUG - print an illustrative record to stdout of the accepted */
/* and released hints. */
/* */
/* WARNINGS AND CAVEATES: */
/* Error and warning messages printed directly to stdout. */
/***/

#include "gmgh.h"

/***************************** FUNCTION ******************************/
/* Purpose: */
/* "Mallocate" memory for the gmgh structures and initialize */
/* several fields in the structure. maxbsz should be set large */
/* enough to handle the largest record that will be accessed. */
/* maxhint specifies the maximum number of records that will be */
/* posted as hints prior to accessing them. There is a large */
/* arbitrary upper bound placed on these parameters to prevent */
/* careless mistakes. Note, however, that the GPFS hint facility */
/* supporting this feature has been optimized for small record, */
/* randomly distributed accesses. So when selecting maxbsz larger */
/* than a GPFS block size caution should be used as performance */
/* may decrease in some cases. See gmgh_post_hint() comment */
/* header for further details. */
/* Parameters: */

Don’t forget the
header file.
 Appendix G. Benchmark and Example Code 243

/* (I,O) gmgh *p - gmgh structure. The caller provides an */
/* uninstantiated pointer; this function */
/* instantiates it by mallocating memory for */
/* it and several substructures as well as */
/* initializing some fields in the structure. */
/* (O) p->blklst - mallocate block list */
/* (O) p->fd - initialize file descriptor */
/* (O) p->gbsz - initialize GPFS block size */
/* (O) p->hint - mallocate hint vector */
/* (O) p->nbleh - initialize max number of block list entries */
/* per hint */
/* (O) p->nhve - initialize max number of hint vector entries*/
/* (I) fd - file descriptor */
/* (I) maxbsz - max buffer size */
/* (I) maxhint - max entries in hint vector */
/* Return: */
/* Upon success, 0 will be returned, otherwise -1 is returned. */
/***/
int gmgh_init_hint
(
 gmgh *p, /* gmgh structure */
 int fd, /* file descriptor */
 int maxbsz, /* max buffer size */
 int maxhint /* max entries in hint vector */
)
{
 struct stat64 sbuf;
 gmgh_hint_t *hvec;
 blklst_t *blst;

 /*---*/
 /* Set a few parameters needed for calculations. */
 /*---*/

 p->fd = fd;

 if (fstat(p->fd, &sbuf) != 0)
 {
 printf("*** ERROR *** fstat error: errno = %d\n", errno);
 return -1;
 }
 p->gbsz = sbuf.st_blksize;

 p->nbleh = maxbsz / p->gbsz; /* validated below */
 if (maxbsz % p->gbsz > 0) p->nbleh++;

 p->nhve = maxhint; /* validated below */

 /*---*/
244 GPFS on AIX Clusters

 /* Be sure we are starting with a clean slate. */
 /*---*/

 if (gmgh_cancel_hint(p->fd) < 0) /* error message already printed */
 return -1;

 /*---*/
 /* The following limits are artificial. Practically speaking, they */
 /* are quite large and merely are trying to prevent wasting space if */
 /* not carefully defined. */
 /*---*/

 if (p->nbleh > MAXBLK)
 {
 printf("*** ERROR *** Hint buffersize too big. See gmgh.h.\n");
 return -1;
 }

 if (p->nhve > MAXHINT)
 {
 printf("*** ERROR *** Too many hints requested. See gmgh.h.\n");
 return -1;
 }

 /*---*/
 /* "Mallocate" memory for the hint structures. */
 /*---*/

 if (!(hvec = (gmgh_hint_t*)malloc(p->nhve * sizeof(gmgh_hint_t))))
 {
 printf("*** ERROR *** malloc error: errno = %d\n", errno);
 return -1;
 }
 p->hint = hvec;

 if (!(blst = (blklst_t*)malloc(p->nhve * p->nbleh * sizeof(blklst_t))))
 {
 printf("*** ERROR *** malloc error: errno = %d\n", errno);
 return -1;
 }
 p->blklst = blst;

 return 0;
}

/***************************** FUNCTION ******************************/
/* Purpose: */
/* This function is called once for each record to be posted in a */
/* set of hints. It tells gmgh which records are to be accessed */
 Appendix G. Benchmark and Example Code 245

/* in the future so that hints can be issued to GPFS (which */
/* results in prefetching records to cache). The maximum number of */
/* hints that can be posted in a set must not exceed what was */
/* specified by gmgh_init_hint(). Each record posted here will */
/* later be accessed by gmgh_xfer() which will read or write the */
/* record as declared by isWrite. However, one must not call */
/* gmgh_xfer() untill all the records for the hint set are posted. */
/* After the last record is posted, gmgh_declare_1st_hint() must */
/* be called once and then gmgh_xfer() is called for each posted */
/* record. The programmer should note that "under the covers" */
/* each record will be divided into blocks equal to the GPFS block */
/* size if the record exceeds that size. If the record size */
/* exceeds the max buffer size specified by gmgh_init_hint(), the */
/* extra blocks will be ignored. While there is no limit on the */
/* size of the record or number of hints that can be posted */
/* (beyond exceeding what was specified via gmgh_init_hint()), */
/* there is a limit to the number of GPFS blocks which will be */
/* accepted in a hint, but it is dependent upon the logical */
/* configuration of the disks. gmgh will attempt to issue as many */
/* posted hints prior to access as possible, but if the record */
/* size is quite large (e.g., multiple MB) not all of the GPFS */
/* blocks will be prefetched under the hint mechanism. Again, */
/* this is handled automatcally by gmgh. In general, the hint */
/* facility is optimized to work with small record, randomly */
/* distributed accesses. */
/* Parameters: */
/* (I) gmgh *p - gmgh structure. */
/* (O) p->hint - add nth hint to hint vector */
/* (I) p->nbleh - max number of block list entries per hint */
/* (I) p->nhve - max number of hint vector entries */
/* (O) p->UBnblks - upper bound on number of used blocks */
/* (I) off_t soff - seek offset */
/* (I) int nbytes - record length in bytes */
/* (I) int nth - nth record in hint vector */
/* (I) int isWrite - boolean; 0 = read, write = 1 */
/* Return: */
/* Upon success, 0 will be returned, otherwise -1 is returned. */
/***/
int gmgh_post_hint
(
 gmgh *p, /* gmgh structure */
 off_t soff, /* seek offset */
 int nbytes, /* record length in bytes */
 int nth, /* 0 <= nth < p->nhve */
 int isWrite /* read or write? */
)
{
 int status = 0;
246 GPFS on AIX Clusters

 if (0 <= nth && nth < p->nhve)
 {
 if (nth == 0) p->UBnblks = 0;

p->hint[nth].soff = soff;
 p->hint[nth].len = nbytes;
 p->hint[nth].lstblkreleased = 0;
 p->hint[nth].isWrite = isWrite;

 p->UBnblks += p->nbleh; /* upper bound on number of used blocks */

 if (gmgh_gen_blk(p, nth, isWrite) <= 0) /* error has been printed */
 status = -1;
 }
 else
 {
 printf("*** ERROR *** invalid hint index; nth = %d\n", nth);
 status = -1;
 }

 return status;
}

/***************************** FUNCTION ******************************/
/* Purpose: */
/* Calling this function forces GPFS to prefetch as many of the */
/* records posted by gmgh_post_hint() as possible as well as */
/* resetting a few necessary GPFS structures and gmgh parameters. */
/* Records that can not be prefetched now will be prefetched */
/* automatically (if possible) when gmgh_xfer() is called. This is */
/* done automatically. */
/* */
/* Call this function after the last call to gmgh_post_hint() for */
/* the hint set and prior to the first call to gmgh_xfer() for the */
/* hint set. Failure to call this function in this manner will */
/* result in poor performance, without warning messages. */
/* Parameters: */
/* (I) gmgh *p - gmgh structure. */
/* (I) p->fd - initialize file descriptor */
/* Return: */
/* Upon success, 0 will be returned, otherwise -1 is returned. */
/***/
int gmgh_declare_1st_hint
(
 gmgh *p /* gmgh structure */
)
{
 int k;

Put records in
the hint vector
 Appendix G. Benchmark and Example Code 247

 gmgh_cancel_hint(p->fd); /* done once for each block of hints */

 /* Is there a way to enforce calling this in the correct order? */
 /* Probably yes. Perhaps put some status variables in gmgh and */
 /* test/reset them PRN... but can this be made threadsafe? */

 p->nxtblktoissue = 0; /* do before first call to gmgh_issue_hint */

 k = gmgh_issue_hint(p, -1); /* prefetch 1st records for future access */

 return k;
}

/***************************** FUNCTION ******************************/
/* Purpose: */
/* Will either read or write the nth record in a hint set as */
/* specified by gmgh_post_hint() and will prefetch as many records */
/* in advance of future "xfers" as possible. This function should */
/* be called once for each record in a hint set and each record */
/* should be "xfered" in the same order it was posted. */
/* Parameters: */
/* (I) gmgh *p - gmgh structure. */
/* (I) p->fd - initialize file descriptor */
/* (I) p->hint - hint vector */
/* (I,O) buf - caller provided data buffer */
/* (I) nth - nth record in hint vector */
/* Return: */
/* Upon success, 0 will be returned, otherwise -1 is returned. */
/***/
int gmgh_xfer
(
 gmgh *p, /* gmgh structure */
 char *buf, /* externally provided data buffer */
 int nth /* nth record in hint vector; 0 <= nth < p->nhve */
)
{
 int nb;
 int status = 0;

 if (0 <= nth && nth < p->nhve)
 {
 if (lseek(p->fd, p->hint[nth].soff, SEEK_SET) < 0)
 {
 printf("*** ERROR *** seek error: soff = %lld, errno = %d\n",
 p->hint[nth].soff, errno);
 return -1;
 }

if (p->hint[nth].isWrite)

Here is where
the record is
actually
accessed
248 GPFS on AIX Clusters

 nb = write(p->fd, buf, p->hint[nth].len);
 else
 nb = read(p->fd, buf, p->hint[nth].len);

 if (nb != p->hint[nth].len)
 {
 printf("*** ERROR *** disk I/O error: nth = %d, nb = %d, errno= %d\n",
 nth, nb, errno);
 return -1;
 }
 }
 else
 {
 printf("*** ERROR *** invalid hint index; nth = %d\n", nth);
 return -1;
 }

status = gmgh_issue_hint(p, nth); /* prefetch records for future access*/

 return status;
}

/***************************** FUNCTION ******************************/
/* Purpose: */
/* For each record to be read or written, calculate the number of */
/* GPFS blocks touched and prepare a "block list" description for */
/* each block required for the GPFS_MULTIPLE_ACCESS_RANGE hint. */
/* Note that each entry in the gmgh hint vector corresponds to one */
/* record in a read or write access and that this function will */
/* process only entry at a time. */
/* */
/* This is a "private" function and should only be called in gmgh. */
/* Parameters: */
/* (I) gmgh *p - gmgh structure. */
/* (O) p->blklst - add block(s) to block list */
/* (I) p->fd - file descriptor */
/* (I) p->gbsz - initialize GPFS block size */
/* (I,O) p->hint - hint vector */
/* (I) p->nbleh - max number of block list entries per hint */
/* (I) int nth - nth record in hint vector */
/* (I) int isWrite - boolean; 0 = read, write = 1 */
/* Return: */
/* Upon success, the number of blocks touched is returned and */
/* should be greater than 0. Returning a value <= 0 indicates are */
/* error ocurred. */
/***/
int gmgh_gen_blk
(
 gmgh *p, /* gmgh structure */

Now issue the
next hints
 Appendix G. Benchmark and Example Code 249

 int nth, /* nth entry; 0 <= nth < p->nhve */
 int isWrite /* 1 - write access, 0 - read access */
)
{
 int i; /* loop variables */
 int nbt; /* number of blocks touched */
 int blkidx; /* block index */
 int disp; /* displacement */
 off_t bn; /* block number */
 int fblen, lblen; /* first/last block’s length */

 /*------------------------------*/
 /* How many blocks are touched? */
 /*------------------------------*/

/* if the record touches more than p->nbleh blocks, ignore extra blocks */

 nbt = (p->hint[nth].len + p->hint[nth].soff % p->gbsz - 1)/p->gbsz + 1;
 nbt = (nbt <= p->nbleh) ? nbt : p->nbleh;

 p->hint[nth].nblkstouched = nbt;

 /*---------------------------------------*/
 /* Calculate parameters for first block. */
 /*---------------------------------------*/

 /* displacement to record in first GPFS block */

 disp = (int)(p->hint[nth].soff % (off_t)p->gbsz);

 /* first GPFS block touched by record */

 bn = p->hint[nth].soff/(off_t)p->gbsz;

 /* length of first and last block in record */

 if (nbt == 1)
 fblen = p->hint[nth].len;
 else
 {
 fblen = p->gbsz - disp;
 lblen = (disp + p->hint[nth].len) - ((nbt - 1) * p->gbsz);
 }

 /*--*/
 /* Set parameters for each block touched. */
 /*--*/

 /*** get the first block’s index ***/

Calculate how
many blocks
are spanned by
the record
250 GPFS on AIX Clusters

 blkidx = nth * p->nbleh;
 p->hint[nth].fblkidx = blkidx;

 /*** do first block outside loop since its a little different ***/

p->blklst[blkidx].blkoff = disp;
 p->blklst[blkidx].blknum = bn;
 p->blklst[blkidx].blklen = fblen;
 p->blklst[blkidx].isWrite = isWrite;

 /*** do rest of the blocks if they exist ***/

 for (i = 1; i < nbt; i++)
 {
 p->blklst[blkidx + i].blkoff = 0;
 p->blklst[blkidx + i].blknum = bn + i;
 p->blklst[blkidx + i].isWrite = isWrite;

 if (i < nbt - 1)
 p->blklst[blkidx + i].blklen = p->gbsz;
 else
 p->blklst[blkidx + i].blklen = lblen;
 }

 /*** pad the unused blocks for variable length records ***/

 for (i = nbt; i < p->nbleh; i++)
 {
 p->blklst[blkidx + i].blkoff = -1;
 p->blklst[blkidx + i].blknum = 0;
 p->blklst[blkidx + i].blklen = 0;
 p->blklst[blkidx + i].isWrite = 0;
 }

 return nbt; /* nbt > 0 => everything’s OK */
}

/***************************** FUNCTION ******************************/
/* Purpose: */
/* This function will issue the GPFS_MULTIPLE_ACCESS_RANGE hints */
/* via gpfs_fcntl(). It will take the hints as expanded in */
/* p->blklst and cancel the hints for the issued GPFS blocks */
/* corresponding to the nth entry in p->hint (i.e., the nth record */
/* in the hint set which is presumably the latest record accessed).*/
/* In the same call, it will also issue as many new hints from */
/* p->blklst as possible (in sets of GPFS_MAX_RANGE_COUNT). Once */
/* no more new hints are accepted, it will stop issuing new hints */
/* and will re-issue any new hints that were not accepted in the */

Find the hint
blocks
corresponding
to the record

Find the hint
blocks
corresponding
to the record
and put them in
the block list
 Appendix G. Benchmark and Example Code 251

/* last set. This function should be called once for each record */
/* (as specified by the parameter nth), just after its been */
/* accessed, and once before the first record in the hint set is */
/* accessed (in this case, nth = -1). */
/* */
/* This is a "private" function and should only be called in gmgh. */
/* */
/* WARNING: This code is subtle and prone to "off by one" bugs. */
/* use caution when modifying this. */
/* */
/* Parameters: */
/* (I) gmgh *p - gmgh structure. */
/* (I) p->blklst - block list */
/* (I) p->fd - file descriptor */
/* (I) p->hint - hint vector */
/* (I) p->nbleh - max number of block list entries per hint */
/* (I) p->nhve - max number of hint vector entries */
/* (I,O) p->nxtblktoissue - next block to issue */
/* (I) p->UBnblks - upper bound on number of used blocks */
/* (I) int nth - nth record in hint vector */
/* Return: */
/* Upon success, 0 will be returned, otherwise -1 is returned. */
/***/
int gmgh_issue_hint
(
 gmgh *p, /* gmgh structure */
 int nth /* hint index to release; -1 <= nth < p->nhve*/
)
{
 int k, kk; /* loop variables */
 int rem; /* remember a value */
 int accDone, relDone; /* while loop conditions */
 int nhntacc; /* number of hints accepted */
 int rbx; /* block list index for released blocks */
 int ibx; /* block list index for issued blocks */

 struct
 {
 gpfsFcntlHeader_t hdr;
 gpfsMultipleAccessRange_t marh;
 } ghint;

 /*-----------------------*/
 /* Initialization stuff. */
 /*-----------------------*/

 ghint.marh.structLen = sizeof(ghint.marh);
 ghint.marh.structType = GPFS_MULTIPLE_ACCESS_RANGE;

252 GPFS on AIX Clusters

 rbx = nth * p->nbleh; /* first block in block list to release */

 if (nth < -1 || nth >= p->nhve)
 {
 printf("*** ERROR *** invalid nth parameter: nth = %d\n", nth);
 return -1;
 }

 if (nth == -1) relDone = TRUE; /* no hints to release */
 else relDone = FALSE;

 accDone = FALSE;

 /*--*/
 /* Release all blocks associated with the last accessed record, and */
 /* continue issuing hints until no more are accepted or exist. */
 /*--*/

 while(!accDone || !relDone)
 {
 /*** prepare data structure to release hints for accessed blocks ***/

 for (k = 0; k < GPFS_MAX_RANGE_COUNT; k++)
 {
 if (p->hint[nth].lstblkreleased >= p->hint[nth].nblkstouched)
 {
 relDone = TRUE;
 break;
 }

ghint.marh.relRangeArray[k].blockNumber = p->blklst[rbx].blknum;
 ghint.marh.relRangeArray[k].start = p->blklst[rbx].blkoff;
 ghint.marh.relRangeArray[k].length = p->blklst[rbx].blklen;
 ghint.marh.relRangeArray[k].isWrite = p->blklst[rbx].isWrite;

 rbx++;
 p->hint[nth].lstblkreleased++;
 }
 ghint.marh.relRangeCnt = k;

 /*** in case p->hint[nth].nblkstouched % GPFS_MAX_RANGE_COUNT == 0 ***/

 if (p->hint[nth].lstblkreleased >= p->hint[nth].nblkstouched)
 relDone = TRUE;

 /*** if we get behind, don’t issue hints for released records ***/

 if (p->nxtblktoissue <= rbx)
 p->nxtblktoissue = p->nbleh * (nth + 1);

Prepare list of
hint blocks to
be released
 Appendix G. Benchmark and Example Code 253

 /*** prepare data structure to issue hints for future accesses ***/

 rem = p->nxtblktoissue;
 ibx = p->nxtblktoissue;
 k = 0;

 while (!accDone &&
 k < GPFS_MAX_RANGE_COUNT &&
 ibx < p->UBnblks)
 {
 if (p->blklst[ibx].blkoff >= 0) /* Is the next entry OK? */
 {

ghint.marh.accRangeArray[k].blockNumber = p->blklst[ibx].blknum;
 ghint.marh.accRangeArray[k].start = p->blklst[ibx].blkoff;
 ghint.marh.accRangeArray[k].length = p->blklst[ibx].blklen;
 ghint.marh.accRangeArray[k].isWrite = p->blklst[ibx].isWrite;

 ibx++;
 k++;
 }
 else /* If not, find next good one. */
 ibx++;
 }
 ghint.marh.accRangeCnt = k;
 kk = k; /* needed for DEBUG segment below */
 p->nxtblktoissue = ibx;

 /*** actually release/issue hints ***/

 ghint.hdr.totalLength = sizeof(ghint);
 ghint.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
 ghint.hdr.fcntlReserved = 0;

if (gpfs_fcntl(p->fd, &ghint) != 0)
 {
 printf("*** ERROR *** gpfs_fcntl error: errno = %d\n", errno);
 return -1;
 }
 else
 nhntacc = ghint.marh.accRangeCnt;

#ifdef DEBUG
 for (k = 0; k < ghint.marh.relRangeCnt; k++)
 printf("R --> k = %d, blockNumber =%lld, start =%d, length =%d\n", k,
 ghint.marh.relRangeArray[k].blockNumber,
 ghint.marh.relRangeArray[k].start,
 ghint.marh.relRangeArray[k].length);
 printf("\n");

Prepare list of
hint blocks to
be issued

Actually issue
and release
hint blocks

Prints record of
released and
issued blocks
which is helpful
in learning how
this code works
254 GPFS on AIX Clusters

 for (k = 0; k < kk; k++)
 printf("A --> k = %d, blockNumber =%lld, start =%d, length =%d\n", k,
 ghint.marh.accRangeArray[k].blockNumber,
 ghint.marh.accRangeArray[k].start,
 ghint.marh.accRangeArray[k].length);
 printf("hints accepted = %d\n", nhntacc);
 printf(".........\n");
#endif

 /*** if all hints are not accepted, back track to last accepted hint ***/

 if (nhntacc < GPFS_MAX_RANGE_COUNT)
 {
 accDone = TRUE; /* no more hints this time */

 ibx = rem - 1;
k = 0;
while (k < nhntacc)

 {
 if (p->blklst[++ibx].blkoff < 0) /* find next real data */
 continue;
 k++;
 }
 p->nxtblktoissue = ibx + 1;
 }
 }

 return 0;
}

/***************************** FUNCTION ******************************/
/* Purpose: */
/* Remove any hints that have been issued against the open file */
/* p->fd. This restores the hint status to what it was when the */
/* file was first opened, but it does not alter the status of the */
/* GPFS cache. */
/* */
/* This is a "private" function and should only be called in gmgh. */
/* */
/* Parameters: */
/* (I) gmgh *p - gmgh structure. */
/* (I) p->blklst - block list */
/* (I) p->fd - file descriptor */
/* (I) p->hint - hint vector */
/* (I) p->nbleh - max number of block list entries per hint */
/* (I) p->nhve - max number of hint vector entries */
/* (O) p->nxtblktoissue - next block to issue */
/* (I) p->UBnblks - upper bound on number of used blocks */
/* (I) int nth - nth record in hint vector */

Figure out
which hints
were not
accepted
 Appendix G. Benchmark and Example Code 255

/* Return: */
/* Upon success, 0 will be returned, otherwise -1 is returned. */
/***/
int gmgh_cancel_hint(int fd) /* file descriptor */
{
 struct
 {
 gpfsFcntlHeader_t hdr;
 gpfsCancelHints_t cancel;
 } cancel;

 cancel.hdr.totalLength = sizeof(cancel);
 cancel.hdr.fcntlVersion = GPFS_FCNTL_CURRENT_VERSION;
 cancel.hdr.fcntlReserved = 0;
 cancel.cancel.structLen = sizeof(gpfsCancelHints_t);
 cancel.cancel.structType = GPFS_CANCEL_HINTS;

 if (gpfs_fcntl(fd, &cancel) < 0)
 {
 printf("*** ERROR *** gpfs_fcntl error: errno = %d\n", errno);
 return -1;
 }

 return 0;
}

gmgh.h
/***/
/* Title - Generic Middle-layer GPFS Hint package */
/* Module - gmgh.h */
/* */
/* See comments in gmgh.c for details. */
/***/

#ifndef GMGH_H
#define GMGH_H

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <memory.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <gpfs_fcntl.h>
256 GPFS on AIX Clusters

#define FALSE 0
#define TRUE 1

#define GMGH_HINT_READ 0 /* Convenient parameters defined for user; */
#define GMGH_HINT_WRITE 1 /* to be used in gmgh_post_hint. */

#define MAXBLK 256 /* max blklst size; reclen <= MAXBLK * 256KB */
#define MAXHINT 128 /* max number of gmgh hints */

typedef struct /* block descriptor -- nbleh blocks per hint */
{
 int blkoff; /* offset in bytes to start of record in block */
 off_t blknum; /* GPFS block number -- 1 block = 256KB */
 int blklen; /* lenght in bytes of record in block */
 int isWrite; /* write access = TRUE, otherwise FALSE */
} blklst_t;

typedef struct /* one entry per record */
{
 off_t soff; /* 64 bit seek offset in bytes */
 int len; /* record length in bytes */
 int nblkstouched; /* number of blocks touched by record */
 int lstblkreleased; /* last block released from hint */
 int isWrite; /* write access = TRUE, otherwise FALSE */
 int fblkidx; /* this hint’s 1st entry in block list */
} gmgh_hint_t;

typedef struct
{
 int fd; /* file descriptor */
 int gbsz; /* GPFS block size */
 int nbleh; /* max number of block list entries per hint */
 int nhve; /* max number of hint vector entries */
 int UBnblks; /* upper bound on number of used blocks */
 gmgh_hint_t *hint; /* hint vector -- 1 entry per record */
 int nxtblktoissue; /* next block to issue as hint in block list */
 blklst_t *blklst; /* block list -- each hint has 1 or more blocks
*/
} gmgh;

int gmgh_init_hint(gmgh*, int, int, int);
int gmgh_post_hint(gmgh*, off_t, int, int, int);
int gmgh_declare_1st_hint(gmgh*);
int gmgh_xfer(gmgh*, char*, int);
int gmgh_gen_blk(gmgh*, int, int);
int gmgh_issue_hint(gmgh*, int);
int gmgh_cancel_hint(int);

#endif

Here is the
block list
structure

Here is the hint
vector
structure

Here is the
general gmgh
structure which
contains the
hint vector and
block list
 Appendix G. Benchmark and Example Code 257

258 GPFS on AIX Clusters

Appendix H. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246035

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6035.

H

© Copyright IBM Corp. 2001 259

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

README.ibm_seq This is an ASCII file containing instructions regarding the
ibm_seq.tar file.

ibm_seq.tar This is a tar file containing the source code, makefile and
ksh scripts for the sequential benchmark programs
discussed in the book.

README.ibm_par This is an ASCII file containing instructions regarding the
ibm_par.tar file.

ibm_par.tar This is a tar file containing the source code, makefile, ksh
scripts and hostfiles for the parallel benchmark codes
corresponding to the sequential benchmark codes
discussed in the book.

gpfs.utilities.tar This tar file contains the scripts detailed in Appendix C, “A
useful tool for distributed commands” on page 211 and
Appendix D, “Useful scripts” on page 217.

System requirements for downloading the Web material
There are few specific requirements for downloading this web material. The
specific recommendations are:

Hard disk space: 0.5 MB
Operating System: UNIX

How to use the Web material
Create a unique subdirectory for each tar file in an AIX RS 6000 system and
transfer the desired tar file to the appropraite subdirectory. If you use ftp to do
this, be sure to set the file transfer type to binary for the tar files. Next untar the
files and make the executables. The README.<ext> file provides detailed
instructions regarding the system requirements and usage of these programs.
260 GPFS on AIX Clusters

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications see , “How to get IBM Redbooks”
on page 263.

� Exploiting HACMP 4.4: Enhancing the Capabilities of Cluster
Multi-Processing, SG24-5979

� GPFS: A Parallel File System, SG24-5165

� Monitoring and Managing IBM SA Disk Subsystems, SG24-5251

� A Practical Guide to Serial Storage Architecture for AIX, SG24-4599

� PSSP Version 3 Survival Guide, SG24-5344

� RSCT Group Services: Programming Cluster Applications, SG24-5523

� Sizing and Tuning GPFS, SG24-5610

� Understanding SSA Subsystems in Your Environment, SG24-5750

Other resources
These publications are also relevant as further information sources:

� 7133 SSA Subsstem: Hardware Technical Information, SA33-3261

� 7133 SSA Subsystem: Operator Guide, GA33-3259

� 7133 Models 010 and 020 SSA Disk Subsystems: Installation Guide,
GA33-3260

� 7133 Models 500 and 600 SSA Disk Subsystems: Installation Guide,
GA33-3263

� 7133 SSA Disk Subsystem: Service Guide, SY33-0185

� GPFS for AIX: Guide and Reference, SA22-7452

� GPFS for AIX: Installation and Tuning Guide, GA22-7453

� GPFS for AIX: Problem Determination Guide, GA22-7434

� GPFS for AIX: Concepts, Planning, and Installation Guide, GA22-7453
© Copyright IBM Corp. 2001 261

� HACMP 4.3: Enhanced Scalability Installation and Administration Guide,
Vol.1, SC23-4284-02

� HACMP 4.3: Enhanced Scalability Installation and Administration Guide,
Vol.2, SC23-4306-01

� Micro Channel SSA RAID Adapters Technical Reference, SA33-3270

� PCI SSA RAID Adapters: Technical Reference, SA33-3225

� Planning SSA RAID Subsystems, GA33-3271

� POSIX Programmer’s Guide, Donald Levine, O’Reilly and Associates, April
1991, ISBN 0-937175-73-0

� PSSP: Administration Guide, SA22-7348

� PSSP: Managing Shared Disks, SA22-7349

� RSCT: Group Services Programming Guide and Reference, SA22-7355

� SSA Adapters: Technical Reference, S31H-8612

� SSA Adapters: User’s Guide and Maintenance Information, SA33-3272

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://www.rge.com/pub/systems/aix/bull/

This is a collection of freeware and shareware prepackaged for installation on
AIX based systems. It contains GNU and other offerings. Its maintained by
Group Bull.

� http://www.gnu.org/

This is the GNU web page. If a GNU offering is not in the Group Bull listing, it
can be obtained here, though a little more work will be required to install it. In
addition to its own offerings, the GNU web site has pointers to numerous
other sites with free software.

� http://home.flash.net/~marknu/less/download.html

In doing the concomitant lab work associated with writing this book, the
authors downloaded a helpful tool called less from this web site. less is a
pager program which uses the vi commands for scrolling and has other useful
pager tool functions.

� http://www.hursley.ibm.com/ssa/index.html

This site provides current information on IBM SSA adapters and disk drives
including compatibility, microcode and device drivers.
262 GPFS on AIX Clusters262 GPFS on AIX Clusters

� http://techsupport.services.ibm.com/rs6000/support

A place to start when updating your RS/6000 host with fixes, drivers and
tools.

� http://www.rs6000.ibm.com/resource/technology/gpfs_perf.html

GPFS performance White Paper

� http://www.cae.de.ibm.com/forum/ssa/ssa.forum.html

This site carries discussions on SSA and can provide additional links to other
useful sites.

How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy
from the Redbooks Web Site

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web Site for information about all the CD-ROMs offered, updates and
formats.
 Related publications 263

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

264 GPFS on AIX Clusters264 GPFS on AIX Clusters

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2001 265

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
266 GPFS on AIX Clusters

Glossary

block. The largest contiguous segment of
data in a GPFS file. It is set when the file
system is created using the mmcrfs command
and can not be reset using the mmchfs
command. Data is commonly accessed in
units of blocks, but under some
circumstances only subblocks are accessed.

cluster. A loosely-coupled set of nodes
organized into a network for the purpose of
sharing resources and communicating with
each other. See GPFS cluster.

concurrent access. Simultaneous access
to a shared volume group or a raw disk by
two or more nodes. In this configuration, all
the nodes defined for concurrent access to a
shared volume group are owners of the
shared resources associated with the volume
group or raw disk.

If one of the nodes in a concurrent access
environment fails, it releases the shared
volume group or disk, along with its
resources. Access to the shared volume
group or disk is, however, continuously
available, as long as another node is up.
Applications can switch to another server
immediately.

configuration manager. A GPFS global
management function assigned to the
longest running node in the file system group
as monitored by group services. It selects file
system manager nodes and guarantees
quorum exists.

datashipping. A GPFS optimization where
one node accesses records from another
node’s GPFS cache. Using this prevents the
© Copyright IBM Corp. 2001
node with the record from having to flush its
copy to cache and the requesting node to
fetch it from disk. The efficacy of this
optimization is limited by the fact that the
data must be transferred between nodes;
while this is faster than flushing to and
fetching from disk, it is not as fast as a node
accessing its own cache. This optimization is
useful for applications which perform fine
grained writes across multiple nodes or
which append data to the end of a file from
multiple nodes. Datashiping is a GPFS
directive.

directive. See GPFS directive.

disk descriptor. A disk descriptor defines
how a disk is to be used within a GPFS file
system. Each descriptor must be in the form:

DiskName:::DiskUsage:FailureGroup

Where DiskName is the name of the disk. In a
vsd environment this must be the virtual
shared disk name. In either a GPFS cluster
or non-vsd environment, this must be the
name of the concurrent logical volume.
DiskUsage tells GPFS whether data,
metadata, or both are to be stored on the
disk. The FailureGroup designation indicates
to GPFS where not to place replicas of data
and metadata. All disks with a common point
of failure should belong to the same failure
group. Since GPFS does not place replicated
information on disks in the same failure
group, the availability of information is
ensured even in the event of disk failure.

failure group. A set of disks that share a
common adaptor or access path and which
 267

could become inaccessible by one hardware
failure.

File System Manager. There is one File
System Manager per file system. It assumes
responsibility for file system configuration, disk
space allocation management, token
management, quota management and
security services.

flush. Transfer file information in main
memory to disk. The fsync() call does not
return control to application program until this
transfer is complete. It does not necessarily
affect the contents of a file cache.

GPFS cluster. A subset of clustered nodes
declared as being available to GPFS. See
cluster and nodeset.

GPFS Access Range hint. A mechanism
whereby an application program discloses a
range of GPFS file blocks to be accessed in
advance of their actual access. It assumes
that all application program accesses are in
the specified range.

GPFS directive. An action specified by the
application program that GPFS must execute
or else return an error. It is stronger than a
GPFS hint.

GPFS hint. A disclosure of future file
accesses to GPFS allowing prefetching and
write-behind access when the pattern can not
be automatically recognized. A hint is only a
suggestion and is not guaranteed to be acted
upon (and is weaker than a GPFS directive).

GPFS Multiple Access Range hint. A
flexible mechanism whereby an application
program discloses a range of GPFS file blocks
to be accessed in advance of their actual
access. The API allows this range to be
released without altering the GPFS cache so
that a new range can be specified.

GPFS system data (GSD). A repository of
GPFS configuration data. It is stored in the
SDR on an SP system and on the primary and
secondary nodes of a cluster as defined by the
mmcrcluster command.

GSD. See GPFS system data

hint. See GPFS hint.

i-node. Metadata stored on disk describing a
file to AIX. It contains the file size, addresses
of the physical data blocks or indirect blocks
which in turn point to the physical data blocks
comprising the file, etc.

Journaled File System (JFS). A sequential
file system commonly used as the local file
system in AIX RS6000 nodes.

Logical Volume Manager (LVM). Manages
disk space at a logical level. It controls
fixed-disk resources by mapping data between
logical and physical storage, allowing data to
be discontiguous, span multiple disks,
replicated, and dynamically expanded.

MAR hint. See GPFS Multiple access range
hint.

metadata. Information about a file. It is used
by GPFS to describe the file and to locate its
contents. It includes i-nodes, indirect blocks
and other data.

metanode. The node responsible for
maintaining the integrity of the metadata for an
open file. It is generally the node on which the
file has been open for the longest continuous
period of time.

mirroring. The process of maintaining a
duplicate copy of all disk data in order to
preserve a file in the event of a disk failure.
Mirroring is done at the logical volume
268 GPFS on AIX Clusters

manager (LVM) level and is unrelated to
GPFS replication.

mmfsd. The GPFS daemon.

multi-node quorum. A quorum algorithm
used with three or more nodes. A quorum is
defined as one plus half the number of nodes
in a nodeset.

nodeset. A subset of nodes in a GPFS
cluster which have access to the same file
systems. If multiple nodesets are defined in a
GPFS cluster, they must be disjoint.

quorum. The minimum number of nodes that
must be running in a nodeset for the GPFS
daemon to start.

quota. The maximum amount of disk space
that can be used by a single user or group.

RAID. Redundant Array of Inexpensive
Disks. A set of disks that act as a single
physical volume using parity checking prevent
data loss.

read-ahead. A read I/O operation
optimization in GPFS where GPFS places
records in its cache prior to their access. This
allows a read() system call to return after
fetching the record from memory without
having to wait for it to be delivered from disk to
memory first.

replication. A GPFS mechanism for creating
and maintaining multiple file copies to ensure
availability in the advent of a hardware failure.
This is not related to LVM mirroring.

single-node quorum. A quorum algorithm
used with two nodes. Only one node is
needed for a quorum.

SSA. Serial Storage Architecture. An
expanded storage adapter for multi-processor
data sharing in UNIX-based computing,
allowing disk connection in a high-speed loop.

stripe group. The set of disks comprising
the storage assigned to a file system.

striping. The mechanism used by GPFS for
writing files in parallel to multiple disks instead
of to a single disk in a serial operation.

subblock. One thirty second of a block. It is
the smallest unit of data accessible in a GPFS
file operation, though data is more commonly
transferred in whole blocks.

Token Management. A mechanism for
controlling access to a shared file. A token is
granted for a given byte range in a file and the
process holding this token has exclusive use
of that byte range as needed.

twin tailing. Connecting a disk to multiple
nodes;

vnode. The data structure which contains
information about a file system object in AIX.

Virtual Shared Disk. A component of PSSP
commonly used on an SP system where
nodes have access to remotely mounted raw
logical volumes. It is commonly used as a
server by GPFS clients. It is not available at
this time in GPFS clusters.

VSD. See Virtual Shared Disk.

write-behind. A write I/O operation
optimization in GPFS where a write() system
call places a record in GPFS cache and the
record is scheduled to be written to disk at
some later, more optimum time. This allows
the write() system call to return control to the
application program without waiting for it to be
physically placed on disk.
 Glossary 269

270 GPFS on AIX Clusters

 acronyms
ANSI American National
Standards Institute

API Application Programming
Interface

ATM Asynchronous Transfer
Mode

BOS Base Operating System

BLOB Binary Large Object

CLVM Concurrent LVM

CSPOC Cluster Single Point of
Control

DARE Dynamic Automatic
Reconfiguration Event

DNS Domain Name System

EOF End of File

ESSL Engineering & Scientific
Subroutine Library

FCAL Fibre Channel Arbitrated
Loop

FTP File Transfer Protocol

GMGH Generic Middle layer GPFS
Hint API

GPFS IBM General Parallel File
System for AIX

GSAPI IBM Group Services API

HACMP High Availability Cluster
Multi-Processing

HACMP/ES High Availability Cluster
Multi-Processing/Enhanced
Scalability

IBM International Business
Machines Corporation

ISO International Organization
for Standardization

IT Information Technology

Abbreviations and
© Copyright IBM Corp. 2001
ITSO International Technical
Support Organization

I/O Input/Output

JBOD Just a Bunch Of Disks

JFS Journaled File System

LAN Local Area Network

LPP Licensed Program Products

LRU Least Recently Used

LV Logical Volume

LVCB Logical Volume Control
Block

LVM Logical Volume Manager

MAR Multiple Access Range hint

NFS Network File System

ODM Object Data Manager

OEM Original Equipment
Manufacturer

OSF Open Software Foundation,
Inc.

PCI Peripheral Component
Interconnect

PID Process ID

POSIX Portable Operating System
Interface

PSSP IBM Parallel System
Support Programs for AIX

PESSL Parallel ESSL

PTF Program Temporary Fix

PV Physical Volume

PVID Physical Volume
Identification

RAID Redundant Array of
Independent Disks

RAS Reliability Availability
Serviceability
 271

RSCT IBM Reliable Scalable Cluster
Technology

RVSD IBM Recoverable Virtual
Shared Disk

SAN Storage Area Network

SCSI Small Computer System
Interface

SGID Set Group ID

SMIT System Management
Interface Tool

SMP Symmetric Multiprocessor

SSA Serial Storage Architecture

TCP/IP Transmission Control
Protocol/Internet Protocol

UTP Unshielded Twisted Pair

VFS Virtual File System

VG Volume Group

VGDA Volume Group Descriptor
Area

VGSA Volume Group Status Area

VSD IBM Virtual Shared Disk

VSDM Virtual Shared Disk Manager

WebSM Web-based System Manager
272 GPFS on AIX Clusters

Index

Symbols
/tmp/cspoc.log 232
/tmp/hacmp.out 185
/tmp/hamcp.out 232
/usr/es/adm/cluster.log 185
/usr/es/sbin/cluster/clinfoES 230
/usr/es/sbin/cluster/cllockdES 230
/usr/es/sbin/cluster/clsmuxpdES 230
/usr/es/sbin/cluster/clstrmgrES 230
/usr/es/sbin/cluster/history/cluster.mmdd 232
/usr/es/sbin/cluster/utilities/clhandle 195
/usr/lpp/mmfs/bin/runmmfs 185
/usr/sbin/rsct/bin/emaixos 230
/usr/sbin/rsct/bin/haemd 230
/usr/sbin/rsct/bin/hagsd 230
/usr/sbin/rsct/bin/hagsglsmd 230
/usr/sbin/rsct/bin/hatsd 230
/var/adm/ras/mmfs.log.latest 185
/var/adm/ras/mmfs.log.previous 185
_LARGE_FILES 145, 181

A
adapter

boot 69
service 69
standby 69

add disk 132
add node to cluster 113
administrative tasks 109
AIX 62
AIX buffering 25
AIX commands

bffcreate 235
cfgmgr 235
exportvg 235
filemon 235
importvg 235
installp 235
iostat 235
lsattr 236
lscfg 236
lsdev 236
lslpp 236
© Copyright IBM Corp. 2001
lslv 236
lssrc 236
mklv 236
mkvg 236
netstat 236
odmget 236
oslevel 236
rmdev 236
setclock 236
varyoffvg 236
varyonvg 236
vmstat 236

AIX Maintenance Level
instfix 63

AIX system calls 145
AIX,mirroring 268
APAR 62
autoload 117

B
bandwidth 66
benchmark configuration 146
Benchmark programs

downloading 260
parallel 260
sequential 260

benchmark programs 146, 238
linking 240
Parameters 238
using 238

benchmark results 150, 155, 158, 175, 176
benchmark results,measuring 147
bffcreate 63, 207, 235
blink light 235
block

choosing size 18
size 148

block larger than record 150
block smaller than record 150
block, GPFS 18, 148, 267

hint 161
record alignment 148
record larger than block 150
 273

record smaller than block 150
size 18
stripe 18
subblock 18, 148, 151

buffering 152
byte range locking 150

granularity 151

C
cache coherence 153
cfgmgr 235
change server 116
characteristics of GPFS 5
chddev 196
checking Topology Services 188
chkautovg 193
chvg 191
claddnode 236
cldare 236
clhandle 195, 236
client 15
clinfoES 230, 232
cllockdES 230
close() 144
clsmuxpdES 230, 232
clstat 236
clster events

node_up 81
clstop 236
clstrmgrES 230, 232
cluster 37, 267

adapters 76
add node 113
definition 4
environment 33
event history 84
GPFS 37
HACMP/ES 29, 37
ID 75
monitoring 81
name 75
network 76
partition 51
partitioned 51
state 81
synchronization 74, 78
synchronized 58
topology 37

verification 78
cluster adapters

configuring 76
cluster network

single point of failure 69
cluster nodes

adding 75
cluster resources

configuration 78
cluster services

starting 78
stopping 87

cluster topology
adding adapters 141
configuring 74
deleting adapters 141
displaying 77

cluster_events
node_up_complete 81

clustering environment 28
CLVM 32, 201
CLVM,server 15
Commands

bffcreate 207, 235
cfgmgr 235
chdev 196
chkautovg 193
chvg 191
claddnode 236
cldare 236
clhandle 195, 236
cllsnw 139
clstat 82, 83, 236
clstop 87, 236
comppvid 226
df 22
diag 202
distributed commands 211
dsh 211
du 22, 181
exportvg 235
filemon 178, 235
gdsh 211
getlvodm 193
importvg 235
installp 207, 235
inutoc 208
iostat 177, 235
list of commands 233
274 GPFS on AIX Clusters

ls -l 22, 181
lsattr 236
lscfg 236
lsdev 236
lslpp 209, 236
lslv 236
lssrc 38, 85, 86, 236
lssrc -ls grpsvcs 186
lssrc -ls topsvcs 188, 189
mklv 194, 236
mkvg 236
mmaddcluster 234
mmadddisk 191, 234
mmaddnode 44, 234
mmchattr 234
mmchcluster 234
mmchconfig 17, 18, 23, 234
mmchdisk 234
mmcheckquota 234
mmchfs 19, 234, 267
mmconfig 23, 44, 234
mmcrcluster 234
mmcrfs 18, 19, 22, 191, 234, 267
mmdefragfs 234
mmdelcluster 234
mmdeldisk 234
mmdelfs 234
mmdelnode 234
mmedquota 22
mmfsadm 44
mmfsadm cleanup 234
mmfsadm dump cfgmgr 234
mmfsadm dump waiters 234
mmfsadm shutdown 234
mmfsck 234
mmlsattr 234
mmlscluster 234
mmlsdisk 234
mmlsquota 234
mmquotaoff 234
mmquotaon 234
mmrestripefs 234
mmrpldisk 191, 235
mmshow_fence 43, 235
mmshutdown 235
mmshutdwon 137
mmstartup 38, 235
netstat 72, 236
odmget 236

oslevel 62, 236
rc.cluster 236
rmdev 236
rsh 211
runmmfs 38, 39
set_fenceid 196
setclock 236
ssa_rescheck 192
ssa_speed 65, 235
ssaadap 235
ssacand 235
ssaconn 235
ssadisk 235
ssaidentify 235
ssaxlate 202, 235
varyoffvg 236
varyonvg 191, 236
vmstat 236

commands, list 233
compare VG to PVID 226
component

VSD 33
comppvid 226
Concurrent Logical Volume Manager

See CLVM
configuration 236

benchmark programs 146
configuration manager 16, 267
Constants

GPFS_CANCEL_HINTS 163, 256
GPFS_CLEAR_FILE_CACHE 163
GPFS_FCNTL_CURRENT_VERSION 162,
163, 254, 256
GPFS_MAX_RANGE_COUNT 164, 253, 254,
255
GPFS_MULTIPLE_ACCESS_RANGE 164,
249, 252
MAXHINT 170

CPU statistics 235
CSPOC 88

D
daemon, memory 23
daemon, segments 23
daemon,multi-threaded 15
Daemons

mmfsd 15
DARE 137
 Index 275

data replication 70
failure groups 70
metadata 70
user data 70

datashipping 267
deactivate quota 136
DEBUG 169
dedicated 67
default network 67
definition, cluster 4
device 236

attributes 236
driver 64
remove 236

df 22
diag 202, 203
direct attach disks 4
direct pointers 20
directive 162, 268
disk 64

mirroring 268
disk fencing 53

GPFS nodest 43
quorum 53
SSA 43

disk, RAID 269
disk, twin tailing 269
disks

direct attach 4
distributed subsystem 28
domain

HACMP 29
RSCT 29
SP 29

domain,RSCT 30
down 123
dsh 211
du 22, 181
du,sparse file size 22

E
emaixos 230
emsvcs 230
environment

cluster 33
non-VSD 32
VSD 32

ESSL 240

establish quota 134
event

reconfig_topology 138
Event Management 28, 55

overview 32
Resource Monitor 32

events
network_down 142

Example
replace rtc() with gettimeofday() 241

exportvg 235

F
failure

adapter 142
failure group 21, 65, 70, 267
fence register 43
fencing 17
file

large 161, 181
locking 150
metadata 18
record 148
replication 21
size 21
space pre-allocation 180
sparse 22, 180
virtual size 22
virtual space 180

file space pre-allocation 180
file system

defragmentation 126
modify 125
repair 123
size 21

file system manager 17, 268
disk space allocation 17
file system configuration 17
quota management 17
security services 17
token management 17

file system size
df 22

file, large 161, 181
_LARGE_FILES 145, 181
O_LARGEFILE 181

filemon 178, 235
Files
276 GPFS on AIX Clusters

.rhosts 67
/.rhosts 72, 109
/etc/cluster.nodes 94
/etc/hosts 74
/var 74
/var/adm/ras/mmfs.log.latest 115, 119, 121
/var/mmfs/etc/cluster.preferences 92
/var/mmfs/etc/mmfs.cfg 94
/var/mmfs/gen/mmsdrfs 94

Filesets
instifx 63

filesets 64
Flags

_LARGE_FILES 145, 181
DEBUG 169
-lessl 240
-lgpfs 182
-lxlf90 147, 240

flush 153, 268
fsync() 144, 147

G
gdsh 209, 211
General Parallel File System

See GPFS
Generic Middle Layer GPFS Hints API

See GMGH
getlvodm 193
gettimeofday() 147, 241
global management functions 16
GMGH

benchmark results 175
block list 165, 251, 257
DEBUG 169, 254
Example 165, 173
gmgh structure 257
gmgh.c 242
gmgh.h 243, 256
gmgh_cancel_hint() 245, 248, 256
gmgh_declare_1st_hint() 172, 247
gmgh_gen_blk() 165, 249
gmgh_init_hint() 170, 244
gmgh_issue_hint() 165, 248, 252
gmgh_issue_hints() 249
gmgh_post_hint() 171, 246
gmgh_xfer() 172, 248
gpfs_fcntl() 254, 256
hint set 170

hint vector 165, 247, 257
hints accepted 168, 255
issuing hints 167, 254
MAXHINT 170
p->blklst 165, 171, 251, 257
p->hint 165, 247, 257
releasing hints 166, 253

gmgh structure 257
gmgh.c 242
gmgh.h 243, 256
gmgh_cancel_hint() 245, 248, 256
gmgh_declare_1st_hint() 172, 247
gmgh_gen_blk() 165, 249
gmgh_init_hint() 170, 244
gmgh_issue_hint() 165, 248, 252
gmgh_issue_hints() 249
gmgh_post_hint() 171, 246
gmgh_xfer() 172, 248
GPFS 207

and batch serial applications 5
and parallel applications 5
and SSA fencing 195
and the Bad Block Relocation Policy 194
and the varyonvg command 191
application programs using 147
applications 5
architecure 14
autoload 117
balanced random striping 19
benchmark programs 146, 238
block 18, 148
block size 148
buffering 152
byte range locking 150
byte range locking granularity 151
cache 23
cache coherence 153
cache effectiveness 24
cache myth 25
caching vs AIX buffering 25
characteristics 5
choosing block size 18
client 15
cluster 14, 37, 268
cluster environment 33, 36
configuration manager 16, 44, 267
configuration with VSD 4
daemon state 38
data replication 70
 Index 277

datashipping 267
delete disk 128
directive 162, 268
disk space allocation 17
failure group 21, 70
failure processing 41
features 2
fencing 17
file space pre-allocation 180
file system configuration 17
file system manager 17, 44, 268
global management functions 16
global management nodes 43
GPFS buffering cf JFS buffering 26
GPFS_CANCEL_HINTS 163, 256
GPFS_CLEAR_FILE_CACHE 163
gpfs_fcntl() 161, 254, 256
GPFS_FCNTL_CURRENT_VERSION 162,
163, 254, 256
GPFS_MAX_RANGE_COUNT 164, 253, 254,
255
GPFS_MULTIPLE_ACCESS_RANGE 164,
249, 252
gpfsCancelHints_t 162
gpfsFcntlHeader_t 162
gpfsMultipleAccessRange_t 163
granularity 18, 148
hardware planning 8
hint 268
hints 161
hints as suggestions 161
I/O operation 152
I/O requirements 8
i-node 268
i-node cache 23
JFS,relationship to 145
kernel extension 15
maxFilesToCache 24
maxStatCache 24
memory utilization 23
metadata 18, 20, 23, 268
metanode 17, 44, 268
mmchconfig 17, 18, 23
mmchfs 19
mmconfig 23
mmcrfs 19, 22
mmedquota 22
mmfsd 15
monitoring 109

multi-node quorum 16, 269
nodeset 14, 37, 269
non-pinned memory 23
non-VSD environment 36
on the SP 10
operating environments on the SP 32
operating environmentss 32
operation without Group Services 187
pagepool 23, 117, 152, 153
pagepool effectiveness 24
parallel programming 151
pinned memory 23
planning 7, 8
prefetching 23, 153
prerequisites 10
previous mmfs log file 185
primary server 116
program portability 145
quorum 16, 42, 269
quota 269
quota management 17
random striping 19
read I/O operation 152
read-ahead 15, 153, 269
record larger than block 150
record smaller than block 150
record/block alignment 148
recovery 14
relationship to POSIX statndard 144
replace disk 130
replication 21, 269
round robin striping 19
security services 17
single-node quorum 16, 269
sockets 16
start GPFS 120
startup and SSAR Node Number 197
stat cache 23
stripe 18
striping 18, 148, 269
subblock 18, 148, 151
system call 145
token management 15, 17, 150, 269
two node quorum 43
user data 18, 21
vnode 21, 269
VSD environment 33
What is?
when to consider it? 7
278 GPFS on AIX Clusters

write I/O operation 153
write-behind 15, 153, 269

GPFS access range hint 160, 268
GPFS add disk 132
GPFS and SSA fencing 195
GPFS and the Bad Block Relocation Policy 194
GPFS and the varyonvg command 191
GPFS cache 23, 152, 153

buffering 152
effectiveness 24
hints 161
i-node 23
maxFilesToCache 24
maxStatCache 24
metadata 23
myth 25
non-pinned memory 23
pagepool 23
pagepool effectiveness 24
pinned memory 23
stat 23
stat() 23
vs AIX buffering 25

GPFS characteristics 5
GPFS cluster 14, 62, 268
GPFS Commands

mmchfs 267
mmcrfs 267

GPFS commands
mmaddcluster 234
mmadddisk 234
mmaddnode 234
mmchattr 234
mmchcluster 234
mmchconfig 17, 18, 23, 234
mmchdisk 234
mmcheckquota 234
mmchfs 19, 234
mmconfig 23, 234
mmcrcluster 234
mmcrfs 19, 22, 234
mmdefragfs 234
mmdelcluster 234
mmdeldisk 234
mmdelfs 234
mmdelnode 234
mmedquota 22
mmfsadm cleanup 234
mmfsadm dump cfgmgr 234

mmfsadm dump waiters 234
mmfsadm shutdown 234
mmfsck 234
mmlsattr 234
mmlscluster 234
mmlsdisk 234
mmlsquota 234
mmquotaoff 234
mmquotaon 234
mmrestripefs 234
mmrpldisk 235
mmshow_fence 235
mmshutdown 235
mmstartup 235
stop GPFS 119

GPFS commmands
mmstartup 120

GPFS daemon
active 39
down 38
initializing 38

GPFS hints 160, 268
accepted 161
issued 161
not POSIX compliant 160
only suggestions 161
released 161

GPFS in an HACMP environment 7
GPFS memory utilization

cache 23
daemon segments 23
kernel heap 23
shared segments 23

GPFS multiple access range hint 160
accepted 161
issued 161
principles 161
released 161

GPFS on the SP 10
GPFS prerequisites 10
GPFS SDRS 110
GPFS secondary server 116
GPFS startup and SSAR Node Number 197
GPFS subblock 269
GPFS system data 268
GPFS system data repository server 110
GPFS, block 267
GPFS_CANCEL_HINTS 163, 256
GPFS_CLEAR_FILE_CACHE 163
 Index 279

gpfs_fcntl() 161, 254, 256
GPFS_FCNTL_CURRENT_VERSION 162, 163,
254, 256
GPFS_MAX_RANGE_COUNT 164, 253, 254, 255
GPFS_MULTIPLE_ACCESS_RANGE 164, 249,
252
gpfsCancelHints_t 162
gpfsFcntlHeader_t 162
gpfsMultipleAccessRange_t 163
Grace Period

Network Module settings
Grace Period 142

granularity 18, 148, 151
Grou Services

event serialization 31
Group Servcies

GPFS 31
Group Services 14, 28, 31, 51, 55, 62

barrierer 31
groups 31
groups maintained for a GPFS nodeset 38
HACMP/ES 31
overview 30
partitioned cluster 51
provider 31
subscriber 31
synchronization in HACMP/ES 84
voting protocol 31

grpglsm 230
GSD 268

H
HACMP 207

add adapter 236
domain 29
GPFS configuration with 7
name node 236
RCST 62
start cluster 236
status monitor 236
stop cluster 236
update daemons 236

HACMP commands
claddnode 236
cldare 236
clhandle 236
clstat 236
clstop 236

rc.cluster 236
HACMP/ES 14, 32, 33, 62

adapter function 76
adapter IP label 76
boot adapter 56
cluster 29, 37, 267
cluster adapters 46, 76
cluster configuration 56
cluster ID 75
Cluster Information Services 55
Cluster Lock Manager 55
Cluster Manager 55
cluster name 75
cluster networks 46
cluster nodes 46, 75
cluster resources 56
cluster synchronization 58, 74, 78
cluster topology 37, 46, 47, 56, 74
cluster verification 58, 78
configuration restrictions for GPFS 58
DARE 49
dynamic reconfiguration 49
error recovery 59
events script 84
high availability 55
IP address takeover 69
IP Address Takeover. 58
log files 86
name resolution 73
network attribute 76
network tuning parameters 46
network type 76
networking requirements by GPFS 68
partitoned cluster 59
resource group 57
server 15
service adapter 56
service IP label 56
SMUX Peer Daemon 55
standby adapter 56

hardware 236
hardware planning for GPFS 8
hats 230
hdisk 201, 235
Heartbeat Rate 142
high availability 55

networks 68
planning for 68
SSA configuration 70
280 GPFS on AIX Clusters

hint 268
hints 160, 161, 268

acepted 161
issued 161
released 161

I
I/O access pattern 239

benchmark results 155
heirarchy 156
random, no hints 159
random, using hints 160
sequential 156
stride vs I/O rate 157
strided 157

I/O operation 152
granularity 18, 148
read 152
write 153

I/O performance monitoring
filemon 178
gettimeofday() 241
iostat 177
rtc() 147, 177, 240

I/O performance, measuring 147
I/O rates,measuring 147
I/O rates,units 147
I/O requirements for GPFS 8
IBM General Parallel File System

See GPFS
IBM Virtual Shared Disk 33
ibm_sgr 238
ibm_sgw 238, 239
ibm_shr 238, 240
ibm_shw 238
image 207
implicit parallelism 18
importvg 235
indirect blocks 18
indirect pointers 20
i-node 18, 20, 268

cache 23
install image 235
install images 63
installp 207, 235
instfix 63
inutoc 208
iostat 177, 235

IP network 66

J
JFS 18, 268

buffering 26
GPFS,relationship to 145

Journaled File System
SeeJFS

K
kernel heap 23

L
large file 161, 181

_LARGE_FILES 145, 181
O_LARGEFILE 181

latest mmfs log file 185
-lessl 240
-lgpfs 182
libessl 240
libgpfs 182
Libraries

libessl 240
libgpfs 182
libxlf90 147, 240

libxlf90 147, 240
licensed program products 62
limit file 133
linking benchmark programs 240
list of commands 233
list quota 135
locality of reference 152

exploiting 154
logical volume

create 91, 236
display 236

LPPs 62
ls -l 22, 181
lsattr 236
lscfg 236
lsdev 236
lseek() 144, 181, 248
lseek64() 181
lslpp 63, 209, 236
lslv 236
lspv 130
lssrc 119, 236
 Index 281

lsvg 130
LVM 14

mirroring 268
-lxlf90 147, 240

M
maintenance level 236
man pages 233
MAR 160
MAR hint

See GPFS multiple access range hint
maxFilesToCache 24
MAXHINT 170
maxStatCache 24
memory 236
metadata 18, 20, 23, 268

direct pointers 20
indirect blocks 18
indirect pointers 20
i-node 18, 268
vnode 21, 269

metanode 17, 268
metatada

i-node 20
microcode 64
mirroring 268
mklv 194, 236
mkvg 236
mmaddcluster 113, 234
mmadddisk 132, 191, 234
mmaddnode 114, 234
mmchattr 234
mmchcluster 117, 234
mmchconfig 17, 18, 23, 118, 234
mmchdisk 123, 128, 234
mmcheckquota 234
mmchfs 19, 125, 234, 267
mmconfig 23, 117, 234
mmcrcluster 234
mmcrfs 18, 19, 22, 120, 133, 191, 234, 267
mmdefragfs 126, 234
mmdelcluster 112, 234
mmdeldisk 128, 234
mmdelfs 123, 234
mmdelnode 110, 111, 234
mmdf 125
mmedquota 22, 133
mmfsadm cleanup 234

mmfsadm dump cfgmgr 112, 114, 234
mmfsadm dump waiters 234
mmfsadm shutdown 234
mmfsck 123, 234
mmfsd 15
mmlfs 120
mmlsattr 234
mmlscluster 110, 112, 113, 116, 234
mmlsconfig 118
mmlsdisk 123, 125, 128, 131, 234
mmlsnode 112, 114
mmlsquota 135, 136, 234
mmquotaoff 136, 234
mmquotaon 234
mmrepquota 133, 135
mmrestripefs 125, 234
mmrpldisk 130, 191, 235
mmshow_fence 235
mmshutdown 111, 119, 122, 235
mmstartup 112, 235
monitoring 109
mount 112, 120, 122
multi-node jobs

benchmark results 176
multi-node quorum 16, 269
multiple access range hint 160

N
netstat 236
network

private 76
public 76
serial 68

network interfaces
configuration for HACMP/ES 72

Network Module
configuration 141

Network Module settings
Heart Beat Rate 142

network status 236
new devices 235
NFS 63, 207
NFS mount 65
node

configuration manager 16, 267
file system manager 17, 268
metanode 17, 268

nodeset 14, 269
282 GPFS on AIX Clusters

GPFS 37
non-pinned memory 23
non-VSD environment 32

O
O_LARGEFILE 181
odmget 236
open() 14, 144, 181
open64() 181
oslevel 62, 236

P
p->blklist 165
p->blklst 171
p->hint 165
packaging APAR 63
pagepool 23, 117, 152, 153

buffering 152
hints 161
pinned memory 23

parallel programming 151
Parameters

benchmark programs 238
I/O access pattern benchmarks 155
maxFilesToCache 24
maxStatCache 24

partition 51
partitioned cluster 51, 53

RSCT 51
pdisk 201, 235
performance 65

affected by record size 148
multi-node jobs 175

performance monitor 235
performance monitoring

filemon 178
gettimeofday() 241
iostat 177
rtc() 147, 177, 240

pinned memory 23
planning GPFS 7
POSIX API 144, 181
POSIX I/O API 144
pre-allocation, file space 180
prefetching 23, 153, 160
prerequisites for GPFS 10
previous mmfs log file 185
primary server 116

program portability
GPFS, correctness 145
performance 145

Programs
benchmark 146, 238
benchmark configuration 146
ibm_sgr 179, 238
ibm_sgw 179, 180, 238, 239
ibm_shr 180, 238, 240
ibm_shw 238

PSSP 62
PTF 62, 207
PVID 201

Q
quorum 16, 269

disk fencing 53
GPFS 42
GPFS nodeset 42
multi-node 16, 269
single-node 16, 269

quota 269
deactivate 136
establish 134
limit file 133
list 135
report 133

R
RAID 70, 269

adapter 65
array 64

random I/O access pattern 160
benchmark results 155, 175
no hints 159
using hints 160, 268

random number generator 240
rc.cluster 236
read I/O operation 152
read I/O operation,prefetching 153
read() 14, 21, 25, 152, 249
read-ahead 15, 153, 269
rebalance 131
record 148, 150
record,variable size vs performance 148
record/block alignment 148
recovery 14
Redbooks Web Site 263
 Index 283

Redbooks Web site
Contact us xi

redistribute 131
reliable scalable cluster technology 62
remote access permissions

HACMP/ES 72
repair file system 123
replace disk 130
replication 21, 65, 269
replication,failure group 21
report

quota 133
rmdev 236
RSCT 28, 32, 33, 35, 51, 62

cluster environment 33
domain 29, 32
partitioned cluster 51

RSCT working directories 231
RSCT,domain 30
rsh 211
rtc() 147, 177, 240, 241
RVSD 32, 34

S
secondary server 116
sequential I/O access pattern 156

benchmark results 155
server 15
set_fenceid 196
setclock 236
shared resource 65
shared segments,GPFS cache 23
single-node quorum 16, 269
smit.log 208
smit.script 208
smitty

install 63
sockets 16
Software

bffcreate 207
fileset installation 209
GPFS 207
HACMP 207
install image 235
installable image 207
installp 207, 235
inutoc 208
list products 236

maintenance level 236
smit.log 208
smit.script 208

SP 62
domain 29
switch 64

space pre-allocation 180
sparse file 22, 180

pre-allocation 180
virtual space 180

SSA 36, 37, 202
adapter 64
adapter features 202
configuration verification 203
disk 64
disk features 202
disk fencing 43
disk verification 202
disks 64
failure group 70
hdisk-to-pdisk 202
host adapter 36
link verification 203
loop 36
pdisk-to-hdisk 202
RAID 269
replication of data 70
ssa_speed 65
ssaxlate 202
twin tailing 269

SSA adapter 64, 201
device driver 64
ssaadap 235
ssacand 235

SSA commands
ssa_speed 235
ssaadap 235
ssacand 235
ssaconn 235
ssadisk 235
ssaidentify 235
ssaxlate 235

SSA disk
blink light 235
delete 128
translate 235

ssa_rescheck 192
ssa_speed 65, 235
ssaadap 235
284 GPFS on AIX Clusters

ssacand 235
ssaconn 235
ssadisk 235
ssaidentify 235
ssaxlate 202, 235
start GPFS 120
stat cache 23
stat() 23
statistics 235

memory 236
status

network 236
status, subsystem 236
stopsrc 119
strided I/O access pattern 157

benchmark results 155, 158
mathematical expression,stride vs I/O rate 157
stride vs I/O rate 157

stripe 18
stripe group 269
stripe vs. block 18
stripe, size 18
striping 18, 148, 269

balanced random 19
first disk 19
implicit parallelism 18
random 19
round robin 19

subblock 18, 148, 151, 269
subsystem 28

distributed 28
RVSD 34
VSD 33

subsystem status 236
Subsystems

clinfoES 83
sundered network 51
surand() 240
switch 64
System calls 145, 181

AIX 145
close() 144
fsync() 144, 147
gettimeofday() 147, 241
GPFS 145
gpfs_fcntl() 161, 254, 256
lseek() 144, 248
lseek64() 181
open() 14, 144, 181

open64() 181
POSIX API 144
POSIX I/O API 144
read() 14, 21, 25, 152, 249
rtc() 147, 177, 240, 241
stat() 23
surand() 240
write() 14, 21, 25, 144, 153, 249

system error log 185
system resource 32
System types

gpfsCancelHints_t 162
gpfsFcntlHeader_t 162
gpfsMultipleAccessRange_t 163
off_t 181
off64_t 181

T
time and date 236
timing

filemon 178
gettimeofday() 147, 241
iostat 177
rtc() 147, 177, 240

token management 15, 150, 269
byte range locking 150
byte range locking granularity 151
parallel programming 151

Topology Services 28, 47, 51, 55
detection of failures 142
overwiev 30
partitioned cluster 51
reliable messaging library 30
reliable messaging service 30
status of adapters 30

Topology Services, checking 188
topsvcs 230
translate 202

hdisk-to-pdisk 235
pdisk-to-hdisk 235

troubleshooting 65
twin tailing 269

U
umount 119, 122
unrecovered 123
up 123
user data 18, 21
 Index 285

V
varyoffvg 236
varyonvg 191, 236
Virtual Shared Disk 269
virtual size 22
vmstat 236
vnode 21, 269

read() 21
write() 21

volume group
activate 236
create 91, 236
deactivate 236
export 235
import 235

voting protocol
n-phase 31
one phase 31

VSD 32, 33, 62, 64
environment 4, 32
See Virtual Shared Disk
subsystem 33

VSD environment 32
VSDM

primary 34
secondary 34

W
write I/O operation 153

cache coherence 153
complete block 154
flush 153, 268
new block 154
partial block 154
write-behind 153

write() 14, 21, 25, 144, 153, 249
write-behind 15, 153, 160, 269
286 GPFS on AIX Clusters

GPFS on AIX Clusters; High Perform
ance File System

 Adm
inistration Sim

plified

®

SG24-6035-00 ISBN 0738422088

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

GPFS on AIX Clusters:
High Performance File System
Administration Simplified

Learn how to install
and configure GPFS
1.4 step by step

Understand basic
and advanced
concepts in GPFS

Learn how to exploit
GPFS in your
applications

With the newest release of General Parallel File
System for AIX (GPFS), release 1.4, the range of
supported hardware platforms has been extended
to include AIX RS/6000 workstations that are not
part of an RS/6000 SP system. This is the first time
that GPFS has been offered to non-RS/6000 SP
users. Running GPFS outside of the RS/6000 SP
does require that HACMP/ES is configured and
that the RS/6000 systems within the HACMP
cluster that will be part of the GPFS cluster be
concurrently connected to an SSA disk subsystem.

This redbook focuses on the planning, installation
and implementation of GPFS in a cluster
environment. The tasks to be covered include the
installation and configuration of HACMP to support
the GPFS cluster, implementation of the GPFS
software, and developing application programs that
use GPFS. A troubleshooting chapter is added in
case any problems arise.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Chapter 1. A GPFS Primer
	1.1 What is GPFS
	1.2 Why GPFS
	1.3 The basics
	1.4 When to consider GPFS
	1.5 Planning considerations
	1.5.1 I/O requirements
	1.5.2 Hardware planning
	1.5.3 GPFS prerequisites
	1.5.4 GPFS parameters

	1.6 The application view

	Chapter 2. More about GPFS
	2.1 Structure and environment
	2.2 Global management functions
	2.2.1 The configuration manager node
	2.2.2 The file system manager node
	2.2.3 Metanode

	2.3 File structure
	2.3.1 Striping
	2.3.2 Metadata
	2.3.3 User data
	2.3.4 Replication of files
	2.3.5 File and file system size

	2.4 Memory utilization
	2.4.1 GPFS Cache
	2.4.2 When is GPFS cache useful
	2.4.3 AIX caching versus GPFS caching: debunking a common myth

	Chapter 3. The cluster environment
	3.1 RSCT basics
	3.1.1 Topology Services
	3.1.2 Group Services
	3.1.3 Event Management

	3.2 Operating environments for GPFS
	3.2.1 GPFS in a VSD environment
	3.2.2 GPFS in a non-VSD environment
	3.2.3 GPFS in a cluster environment

	3.3 GPFS daemon state and Group Services
	3.3.1 States of the GPFS daemon
	3.3.2 The role of RSCT for GPFS
	3.3.3 Coordination of event processing
	3.3.4 Quorum
	3.3.5 Disk fencing
	3.3.6 Election of the GPFS global management nodes

	3.4 Implementation details of GPFS in a cluster
	3.4.1 Configuration of the cluster topology
	3.4.2 Starting and stopping the subsystems of RSCT
	3.4.3 Dynamic reconfiguration of the HACMP/ES cluster topology

	3.5 Behavior of GPFS in failure scenarios
	3.5.1 Failure of an adapter
	3.5.2 Failure of a GPFS daemon
	3.5.3 Partitioned clusters

	3.6 HACMP/ES overview
	3.6.1 Configuring HACMP/ES
	3.6.2 Error Recovery

	Chapter 4. Planning for implementation
	4.1 Software
	4.1.1 Software options
	4.1.2 Software as implemented

	4.2 Hardware
	4.2.1 Hardware options
	4.2.2 Hardware

	4.3 Networking
	4.3.1 Network options
	4.3.2 Network

	4.4 High availability
	4.4.1 Networks
	4.4.2 SSA configuration

	Chapter 5. Configuring HACMP/ES
	5.1 Prerequisites
	5.1.1 Security
	5.1.2 Network configuration
	5.1.3 System resources

	5.2 Configuring the cluster topology
	5.2.1 Cluster Name and ID
	5.2.2 Cluster nodes
	5.2.3 Cluster adapters
	5.2.4 Displaying the cluster topology

	5.3 Verification and synchronization
	5.3.1 Cluster resource configuration

	5.4 Starting the cluster
	5.5 Monitoring the cluster
	5.5.1 The clstat command
	5.5.2 Event history
	5.5.3 Monitoring HACMP/ES event scripts
	5.5.4 Monitoring the subsystems
	5.5.5 Log files

	5.6 Stopping the cluster services

	Chapter 6. Configuring GPFS and SSA disks
	6.1 Create the GPFS cluster
	6.1.1 Create the GPFS nodefile
	6.1.2 Create the cluster commands

	6.2 Create the nodeset
	6.2.1 Create dataStrucureDump
	6.2.2 The mmconfig command

	6.3 Start GPFS
	6.4 Create the SSA volume groups and logical volumes
	6.4.1 Create PVID list
	6.4.2 Make SSA volume groups
	6.4.3 Vary on the volume groups
	6.4.4 Make logical volume
	6.4.5 Vary off the volume groups
	6.4.6 Import the volume groups
	6.4.7 Change the volume group
	6.4.8 Vary off the volume groups

	6.5 Create and mount the GPFS file system
	6.5.1 Create a disk descriptor file
	6.5.2 Run the mmcrfs create file system command
	6.5.3 Mount the file system

	Chapter 7. Typical administrative tasks
	7.1 GPFS administration
	7.1.1 Managing the GPFS cluster
	7.1.2 Managing the GPFS configuration
	7.1.3 Unmounting and stopping GPFS
	7.1.4 Starting and mounting GPFS
	7.1.5 Managing the file system
	7.1.6 Managing disks
	7.1.7 Managing GPFS quotas

	7.2 HACMP administration
	7.2.1 Changing the cluster configuration
	7.2.2 Changing the network configuration

	Chapter 8. Developing Application Programs that use GPFS
	8.1 GPFS, POSIX and application program portability
	8.1.1 GPFS and the POSIX I/O API
	8.1.2 Application program portability
	8.1.3 More complex examples

	8.2 Benchmark programs, configuration and metrics
	8.3 GPFS architecture and application programming
	8.3.1 Blocks and striping
	8.3.2 Token management
	8.3.3 The read and write I/O operations

	8.4 Analysis of I/O access patterns
	8.4.1 Tables of benchmark results
	8.4.2 Sequential I/O access patterns
	8.4.3 Strided I/O access patterns
	8.4.4 Random I/O access patterns

	8.5 Hints: Improving the random I/O access pattern
	8.5.1 The GPFS Multiple Access Range hints API
	8.5.2 GMGH: A generic middle layer GPFS hints API

	8.6 Multi-node performance
	8.7 Performance monitoring using system tools
	8.7.1 iostat
	8.7.2 filemon

	8.8 Miscellaneous application programming notes
	8.8.1 File space pre-allocation and accessing sparse files
	8.8.2 Notes on large files
	8.8.3 GPFS library

	Chapter 9. Problem determination
	9.1 Log files
	9.1.1 Location of HACMP log files
	9.1.2 Location of GPFS log files

	9.2 Group Services
	9.2.1 Checking the Group Services subsystem

	9.3 Topology Services
	9.3.1 Checking the Topology Services subsystem

	9.4 Disk problem determination
	9.4.1 GPFS and the varyonvg command
	9.4.2 Determining the AUTO ON state across the cluster
	9.4.3 GPFS and the Bad Block relocation Policy
	9.4.4 GPFS and SSA fencing

	9.5 Internode communications
	9.5.1 Testing the internode communications

	Appendix A. Mapping virtual disks to physical SSA disks
	SSA commands
	Using diag for mapping

	Appendix B. Distributed software installation
	Creating the image
	Creating the installp command
	Propagating the fileset installation

	Appendix C. A useful tool for distributed commands
	gdsh

	Appendix D. Useful scripts
	Creating GPFS disks
	comppvid

	Appendix E. Subsystems and Log files
	Subsystems of HACMP/ES
	Log files for the RSCT component
	Trace files
	Working directories

	Log files for the cluster group
	Log files generated by HACMP/ES utilities
	Event history

	Appendix F. Summary of commands
	GPFS commands
	SSA commands
	AIX commands
	HACMP commands

	Appendix G. Benchmark and Example Code
	The benchmark programs
	Summary of the benchmark programs
	Using the benchmark programs
	Linking the benchmark programs

	Source Listing for GMGH
	gmgh.c
	gmgh.h

	Appendix H. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Glossary
	Abbreviations and acronyms
	Index
	Back cover

